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Abstract

This work concerns with the nonlocal problems and the main
theme of it can be divide into three categories, which can be listed as
follows:

First: Some analytical methods namely, the separation of variables
and the eigenfunction expansion method to solve some types of
linear partial differential equations with nonlocal conditions,
are presented.

Second: The varaitional iteration method is used to solve special types
of the nonhomogenous partial differential equations and linear
nonhomogenous parabolic integro-differential equations with
nonlocal conditions.

Third : Some real life applications for the nonlocal problems arising in
thermoelasticity problems and its solutions via the separation
of variables, the eigenfunction expansion method and the
varaitional iteration method with its convergence, are

introduced.




Introduction

The nonlocal problems plays an important role in real life applications
and they arise in various fields of mathematical physics (like string oscillation
telegraph equations) [9], [13], biology and biotechnology (like evolution of
dominant genes and propagation nerve pulses) [23] and in other fields, where
certain problems of modern physics and technology can be efficiently described

in terms of nonlocal problems for partial differential equations, [5].

The history of nonlocal problems with integral conditions for partial
differential equations goes back to [7], where Cannon studied a problem for heat
equation and this study was followed by many papers that were devoted to
nonlocal problems arises with parametric and elliptic equations. Mixed problem
with nonlocal integral conditions for one-dimensional hyperbolic equations were
considered in [13] and [24].

The problems with integral nonlocal boundary conditions were discussed
for parabolic equation in [19]. Numerical methods for solving problems with
nonlocal conditions such as finite difference method were investigated in [8].

Development of the variational iteration method for solving linear,
nonlinear, initial and boundary value problems given in [15]. It is worth
mentioning that the method was first considered by [16], but the true potential of
the variational iteration method was explored by He. In this method the solution

1s given in an infinite series usually converging to an accurate solutions, see

[14], [17].

The variational iteration method which accurately computes the series
solution is of great interest to applied science. The method provides the solution

in rapidly convergent series with easily computable components the main




advantage of the method is that it can be applied directly for all types of
nonlinear differential and integral equations, homogenous or nonhomogeneous,

with constant or variable coefficients. Moreover, this method is capable of

greatly reducing the size of computational work while still maintaining high

accuracy of the numerical solution. [22]. [26] used variational iteration method
to solve one dimensional nonlinear thermoelasiticity. [10] gave an approximate
solution of differential equations arising in astrophysics using the variational
iteration method.

This thesis consists of three chapters.

In chapter one, we present the method of separation of variables to solve

some linear homogeneous partial differential equations with homogeneous
nonlocal conditions and eigenfunction expansion to solve some differential
equations with nonlocal homogenous and inhomogeneous conditions.
In chapter two, we solve the one-dimensional Heat equation with nonlocal
condition via the variational iteration method and its convergence and present
the solution of the parabolic partial differential equation with nonlocal condition
via the variational iteration method.

In chapter three, we present the mathematical modeling of the
thermoelasticity problem, and then solve the nonlocal problem arising in
thermoelasticity problem using the separation of variables method and the
eigenfunction expansion also we applied variational iteration method in solving
the thermoelasticity problem after transforming the problem to a nonlocal

condition problem and proved it is convergence under some conditions.




Chapter One

Solutions of Linear
Partial Differential

Equations with
Nonlocal Conditions




1.1 Introduction

In modeling of many physical systems in various fields of physics,
ecology, biology, etc, an integral term over the spatial domain is appeared in
some part or in the whole boundary. Such boundary value problems are known
as nonlocal problem. The integral term may appear in the boundary conditions.
Non-local conditions appear when values of the function on the boundary are
connected to values inside the domain, [4].

The aim of this chapter is to use the separation of the variables and the
eigenfunction expansion method to solve special types of linear nonlocal
problems.

This chapter consists of three sections.

In section two, we present the method of separation of variables to solve
some types of linear homogeneous partial differential equations with
homogeneous nonlocal conditions.

In section three, we present the eigenfunction expansion to solve some
types of linear differential equations with nonlocal homogenous and

nonhomogeneous conditions.

1.2 The Separation of Variables For Solving Partial Differential

Equation With Nonlocal Conditions:

It is known that, the separation of variables is one of the oldest techniques
for solving initial-boundary value problems and applied to problems where the
partial differential equations and the boundary conditions are linear and
homogeneous, [12, pp33].

In this section we use the separation of variables for solving special
types of linear homogeneous partial differential equations together with non-
local conditions. For this purpose, first consider the one dimensional heat

equation:




a“(a)t(’t) = 52 82;)(()2(’0 0<x<l, 120
together with the initial condition:
u(x,0) =r(x), 0<x</,

the homogenous Neumann condition:

ou(x,t)

=0, t=>0,
aX x=0

and the homogeneous nonlocal (integral) condition

4
ju(x,t)dx:o, t>0 (1.4)
0

where y is a known nonzero constant, and r is a known function that must
satisfy the following compatibility conditions:
r'o)=0

and

jr(x)dx =0.

By using the separation of variables, the solution of partial differential

equation (1.1) can be expressed as:
u*(x,t) =e " Asin(Ax)+ B cos(Ax)] (1.5)
where A,B,A are arbitrary constants, [12, pp36 ]

Then this solution must satisfy the homogenous Neumann condition given
by equation (1.3) and the homogenous nonlocal condition given by equation
(1.4). To do this we differentiate the solution (1.5) with respect to x and by

substituting x =0 in the resulting equation one can have :

ou *(x,1)
X o

= ane Wt =

Therefore either 1 =0 or A=0.

If 2 =0, then the solution u* becomes




u*(x,t)y=B.
Then this solution must satisfy the nonlocal condition given by equation (1.4),

therefore

jrde:Bﬁzo
0

Since 70, then B=0 and this implies that u*(x,t)=0. But this solution does
not satisfy the initial condition given by equation (1.2). Therefore A=0. In this
case, equation (1.5) becomes:

u*(x,t) = Be™ "t cos(Ax).

This solution must satisfy the nonlocal condition given by equation (1.4), thus

/

Be ("t J.cos(ﬂxﬁx =0

therefore
sin(A¢)=0

and this implies that

‘(nﬂjzt nx
u*(x,t)=Be \ * cos(ij

and we have found an infinite number of functions:

‘(wjzt nz
u,(x,t)=B,e * ‘ cos(ij, n=12,....

each one satisfy the partial differential equation (1.1), the Neumann condition
given by equation (1.3) and the nonlocal condition given by equation (1.4). The
desired solution will be a certain sum of these simple functions and takes the

form:




- w  frmY
uxt) => u,(x,t)=>_Be [ ! jtcos(n%x] (1.6)
n=1 n=1

By substituting this sum into the initial condition given by equation (1.2)

one can obtain:

/
22 oo 2 o= [rogeos " m-12.
¢ ¢ o ¢

2
B, :gjr(x)cos(n—” xjdx, n=12,....
09 14

Thus equation (1.6) is solution of the nonlocal problem given by equations

(1.1)-(1.4) .

To illustrate this method, consider the following example




Example (1.1)

It easy to check that the solution of the one-dimensional heat equation:

ou(x,t) _ o*u(x,t)
ot ox>

, 0<x<l, t>0

together with the initial condition:
u(x,0) = cos(27x), 0<x<1,
the homogenous Neumann condition:

ou(x,t)

=0, t>0
X |yoo

and the homogeneous nonlocal condition:
1

ju(x,t)dx =0, t>0

0

takes the form

ux,ty=e*tcos(2ax),  0<x<l, t>0

Second, consider the one-dimensional wave equation:

O’u(x,t) 5 dPu(xt)
aot? ox?

2

together with the initial conditions:
u(x,0) =r(x), 0<x</,

ou(x,t)

= p(X), 0<x</,
x| p(X)

the homogeneous Neumann condition:

ou(x,t)

=0, 0<t<T
OX x=0

and the homogeneous nonlocal condition:

/
ju(x,t)dx:O, 0<t<T
0




where » is a known nonzero constant and r, p are given functions that must

satisfy the following compatibility conditions:

14

'[r(x)dx =0

0

r'(0)=0

i p(x)dx =0
0

By using the separation of variables, the solution of the partial
differential equation (1.8) can be expressed as:
U*(x,t) = [Asin(74t) + B cos(74t)][C sin(AX) + D cos(AX)]
where A, B, C, D and A are arbitrary constants, [12, pp155].
Then this solution must satisfy the Neumann condition given by equation
(1.11) and the homogenous nonlocal condition given by equation (1.12). So

ou *(x,1)

= CA[Asin(yAt) + Bcos(yAt)] =0
X x=0

and this implies that either C=0 or 2=0. If 2=0 then

u*(x,t)=BD
this solution does not satisfy the initial condition given by equation (1.9).
Therefore C =0, and hence

u*(x,t) = D cos(AX)[ Asin(yAt) + B cos(yAt)].

In this case

2
j u*(x,t)dx = %sin(/w)[Asin(Mt) +Bcos(7it)]=0
0

and this implies that either D=0 or sinA/=0. If D=0 then the zero solution

does not satisfy the initial condition given by equation (1.9). Thus sin A/ =0and

this implies that A = 1”7” n=1.2,....

Hence




u*(xt)= Dcos(nTﬂ Xj{Asin(%tj +B cos(%tﬂ

and we have found an infinite number of functions

u,(x,t)=D, cos(n% X){An sin(%tj + B, cos(% H, n=12,...

each one satisfy the partial differential equation (1.8), the homogeneous
Neumann condition given by equation (1.11) and the homogenous nonlocal
condition given by equation (1.12). The desired solution will be a certain sum of
these simple functions and takes the form:
u(x,t) = gcos(n% Xj{An sin(%tj + B, cos(%tﬂ
To satisfy the initial conditions given by equations (1.9)-(1.10), one must

have:

i B, cos(n% Xj =r(X)
n=1

Z% A, cos[n% Xj = p(Xx)

n=1
By using the orthogonality condition given by equation (1.7) and the above two

equations, one can obtain:

2 nz
- X — X |dXx n=12,...
A, nm{p( )cos(g )

/
B, = EJ. r(x)cos(n—7Z xjdx n=12,...
‘s 14

Hence

0 l /
u(x,t) = Z;‘ cos(n% X)H%{ p(Xx) cos(nTH xjdx} sin(%t} + {%,([ r(x) cos(n% xjdx} cos(%)t}




is the solution of the nonlocal problem given by equations (1.8)-(1.12)

To illustrate this method, consider the following example:

Example (1.2)

It easy to check that the solution of the one-dimensional wave equation:

azgt(;"t) =62;)(()2(’t), 0<x<l, 0<t<T
together with the initial conditions:
u(x,0) = cos(27x), 0<x<l1

= cos(37x), 0<x<l1,
ot |,

the homogeneous Neumann condition

ou(x,t)

=0, 0<t<T
ox x=0

and the homogeneous nonlocal condition:

1
Iu(x,t)dx:o, t>0
0

takes the form

u(x,t) = cos(27x)cos(2t ) + % cos(37x)sin(37t ).
7

Third, consider the one-dimensional Laplace equation:

azu(ﬁ’thaz”(;"t) —0, O<x</f, O0<t<T (1.13)
ot OX
together with the initial conditions, the Neumann condition and the nonlocal
conditions given by equations (1.9)-(1.12). It is assumed that the previous

compatibility conditions are satisfied.
By using the separation of variables, the solution of the partial

differential equation (1.13) can be expressed as:

u*(x,t) =[Acos(Ax) + Bsin(Ax)][Ce™ + De ]




where A, B, C, D and 4 are arbitrary constants, [12, pp15].
Then this solution must satisfy the Neumann condition given by equation
(1.11) and the homogenous nonlocal condition given by equation (1.12). So

ou *(x,1)

= AB[Ce™ + De™™]=0
OX x=0

and this implies that either B=0 or 1=0. If 2 =0 then

u*(x,t)= A[C + D]
this solution does not satisfy the initial condition given by equation (1.9).
Therefore B =0. Hence

U*(x,t) = Acos(ix)|Ce” + De " |

In this case

4
[u* oty = %sin(%)[CeM +De]=0
0

and this implies that either A=0 or sin(4¢)=0. If A=0 then the zero solution

does not satisfy the initial condition given by equation (1.9). Thus sin(4¢)=0and

SO ,1:;”7”, n=12,.... Thus

u, (x,t) = Acos(n% Xj{Ce( :

and we have found an infinite number of functions

nrz

—t
u,(x,t) = A, COS(%X){CHG( !

each one satisfy the partial differential equation (1.13), the Neumann condition
given by equation (1.11) and the nonlocal condition given by equation (1.12).
The desired solution will be a certain sum of these simple functions and takes

the form:

nrz

u(x,t) = icos[n% xj[Ane(’Ij + Bne( '




To satisfy the initial conditions given by equations (1.9)-(1.10), one must

have:

>(A, +B,) cos[n—ﬂ xj = r(x)
n=l1 g

Nz
—B TCOS(TXJ p(X)

By using the orthogonality condition given by equation (1.7) and the above two

equations, one can obtain :

/
A, +B, = gJ-r(x) cos(n—” x]dx, n=12,...
ly 4

2 - (14
A —B, :EI p(X)cos| ==X dx,
0

/

1 1 nrz
A, = I[Z “XHE p(x)}COS(TXJdX n=12,...

0

¢ nz
j[ r(x)——p(X)}COS(—X)dX n=12...
. V4

U0 = ;{cos[n? Xj[ ael Y, Bne(”ftjﬂ

is the solution of the nonlocal problem given by equations (1.13), (1.9)-(1.12)

To illustrate this method, consider the following example

Example (1.3)

Consider the one-dimensional homogeneous Laplace equation:




d2u(x,t) .\ o%u(x,t)

0,
ot? ox?

together with the initial conditions:
u(x,0) = cos(x), 0<x<rm

ou(x,t)

= —cos(X), 0<x<rx
a i

the homogenous Neumann condition:

ou(x,t)

=0, 0<t<1
X |y

and the homogeneous nonlocal condition:
1

ju(x,t)dx:o, 0<t<l1

0

In this case, r(x)=cos(x) and p(x)=—cos(X)

therefore

A, = ][[l r(x)+ R p(x)} cos(nx dx
0 VA 14

= ]i lcos(x) S cos(x)} cos(nx)dx
oL nz

=0, n=12,...

B, = ][[l r(x) _ L p(x)} cos(nx dx
L7 Nz

= ]Tl cos(X) + =S cos(x)} cos(nx )dx
oL nrx

Hence

u(x,t) = icos(nx)[Ane”t + Bne‘”t]

n=l1




= cos(x)e‘t

is the exact solution of the above nonlocal problem.

1.3 The Eigenfunction Expansion Method for Solving Partial

Differential Equations with Nonlocal Conditions:-

It is known that the eigenfunction expansion method is a technique for
finding the solution of special types of linear partial differential equations as an
infinite sum of eigenfunctions. These eigenfunctions are found by solving what
is known as an eigenvalue problem corresponding to the original problem, [12,
pp64].

It is used to solve the initial-boundary-value problem and applied to
problems where the partial differential equation is linear and nonhomogeneous
and the boundary conditions are linear and homogeneous, [12, pp70].

In this section we use the eigenfunction expansion method for solving
special types of linear nonhomogeneous partial differential equations together
with nonlocal conditions.

To do this, consider the initial-boundary value problem that consists of

the nonhomogenous one-dimensional heat equation:

a”gt"t) = y? 62“(’2(’t)+ F(x,1), 0<X<l, t>0 (1.14)
together with the initial condition given by equation (1.2), the Neumann
condition given by equation (1.3) and the nonlocal condition given by equation
(1.4).

It is assumed that the compatibility conditions for this problem are
satisfied. The basic idea of the eigenfunction expansion method is to decompose

the known function f into the form

o =S £ (0X, (0
n=1




where X, are the eigenfunctions of the Sturm-Liouville system we get when

solving the associated homogeneous problem to the original- problem by using

the separation of variables to get:
Xn(X)=cos(n7ﬁxj, n=12,....
Therefore
f(x,t) = i fn(t)cos(”T”xj n=12....
n=1

By using the orthogonality condition given by equation (1.7), the above equation

one can have:
2 Nz
f (t)==|f(x,t)cos|] — X [dx n=12,...
A () 4( ) (z j

Hence by substituting

ux =31, (t)cos(nT” xj

fxt=3 1, (t)cos(%” xj

into equation (1.14) one can get the following equation

i|:T ’(tn ) + [%j Tn (t) - 1:n (t):| COS(nT” X] =0

n=

On the other hand, it is easy to check that this solution is automatically
satisfy the Neumann condition given by equation (1.3) and the nonlocal

condition (1.4). In this case the initial condition (1.2) become:
iTn (0) cos(n% Xj =r(X)
n=1

By using the orthogonality condition given by equation (1.7), the above two

equations become:

Téﬂ)+(%} T,O="f®, n




T.(0)= % [reo cos(”T” xjdx, n

0

which has the solution

2
(t-7)

Tn (t) = e_[}’”[”) tTn (0)+ j.e_[ﬂ:’”] fn (Z')d T, n=12,....

Therefore

u(x,t) = Z [ )T(O)+je (M](t)fn(r)dr}os(n%xj

is the desired solution of the original problem.

To illustrate this method, consider the following example:

Example (1.4)

Consider the nonhomogeneous one-dimensional heat equation:

ou(x,t)  0*u(x,t)
ot ox’

4—tcos(2ﬂx)

together with the initial condition:
u(x,0) =cos(32x),  0<x<I
The homogeneous Neumann conditions:

ou(x,t)

=0, t>0
X |y

and the homogenous nonlocal condition:
1
Iu(x,t)dx=0, t>0
0

Then by using the eigenfunction expansion method, the solution of this nonlocal

problem takes the form:

u(x,t) = Z ~nxfp (0)+je Pt (ydr |cos(nax), 0<t<T




where

t t,
f,(t) = ZtIcos(ZﬂX)cos(nﬂX)dx =

0 0’
and

1,

I
T,(0)= 2JCOS(37ZX)COS(I‘]72X)dX =
0

0,

Therefore

t
u(x,ty = e B cos(37x)+ [I e 2y z‘} cos(27x)

0

2 P 1 2 1 2 1
=e "' cos(32x)+e " cos 2727(){—'@4”t - 'ty }
() ( Ar? 167* 167*

77" cos(30)+ L teos(20) - L cos(2m) + et cos(2m)

47 167 167*

= e cos(3) + 4;2 {t — 4;4 + 4;4 e_4”zt}cos(2zzx)

1s the solution of the above nonlocal problem.




Chapter Two
The Variational
Iteration Method for

Solving Partial
Differential Equations
with Nonlocal
Conditions




2.1 Introduction

The variational iteration method, which is a modified general Lagrange
multiplier has been shown to solve effectively, easily, and accurately a large
class of linear and nonlinear problems with approximation converging rapidly to
accurate solutions, [20].

[15] recently introduced variational iteration method which gives rapidly
convergent successive approximations of the exact solution if such a solution
exists. This method has proved successful in deriving analytical solutions of
linear and nonlinear differential equations. In their paper, Jafari, Hossinzadeh
and Salehpoor solved Gas Dynamics Equation using variational iteration
method, [20]. Variational iteration method was used to solve some types of
Volterra's integro-differential equations[1].

The aim of this chapter is to use the variational iteration method for
solving some types of the one-dimensional linear nonhomogeneous partial
differential equations.

This chapter consists of six sections.

In section two, we give the iteration formula that described the variatianal
iteration method.

In section three, we solve the one-dimensional nonhomogeneous heat
equation with nonlocal conditions via the variational iteration method. The
convergence of this method is discussed.

In section four, we give the solutions of one dimensional
nonhomogeneous heat equation with nonhomogeneous nonlocal condition via
the variational iteration method and its convergence.

In sections five and six e, we use the variational iteration method to solve

the one dimensional wave equation with homogenous and nonhomogeneous

nonlocal conditions respectively.




2.2 The Variational Iteration Method, [27]

To illustrate the basic idea of this technique, we consider the following

general nonlinear equation:

L[u(x,t)]+ N[u(x,t)]= g(x,1) 2.1)
where L is a linear operator, N is a nonlinear operator, g is a given function
of x and t and u is the unknown function that must be determined for t >t,.

The basic character of the variational iteration method is to construct a

correction function for equation (2.1) which reads

t
Ui (G0 = U (X, 1) + J‘ﬂu[Lui (x,8) + NT; (x,8) — g(x,5) s, (2.2)

t
where 4 is a general Lagrange multiplier which can be identified optimally via

variational theory, u; is the ith approximate solution, and {; denotes a restricted
variation, 1.e., 5i; = 0, [27]. Then we substitute 1 into the following iteration

formula:

t
Uiy (%0 = U; (X, 1) + _M[Lui (X,8) + Nu; (x,8) — g(x,8)ds, =01, (2.3)
0

where u, is the initial approximation to the solution of equation (2.1).

2.3 The Variational Iteration Method for Solving Heat Equation

with Homogeneous Nonlocal Conditions

In this section, we use the variatianal iteration method for solving the one-

dimensional nonhomogeneous heat equation:

au(x,t) _, d*u(x,t)

A 0 +f(xt), 0<x</,  O<t<T (2.4)

together with the initial condition




u(x,0) =r(x), 0<x</
the homogeneous Neumann condition

ou(x,t)

=0, 0<t<T
X x=0

and the homogeneous nonlocal condition

l
Iu(x,t)dx:o, 0<t<T 2.7)
0

where y is a nonzero constant, fis a known function of x and t, and r is a

given function of x that must satisfy the following compatibility conditions
r'(0) = [r(x)dx =0
0

In order to use the variatianal iteration method to solve such type of

nonlocal problems one must rewrite equation (2.4) as
L(u(x, 1)+ N(u(x,t)) = f(x,1)

2
where L= and N ——;/28—
ot ox?

Therefore equation (2.2) becomes:

t 2~
Ui (1) = U (x,) + | ﬂ(s,t){a“ig’ ) 28 “aX(X D _fx, s)}ds 2.8)
0

where A is the Lagrange multiplier. Thus by taking the variation of the above

equation one can have:

¢ au; (x,S) 070 (x,5)
5ui+1(x,t)=&Ji(x,t)+5£ﬂ(s,t)[ P -y’ e — f(x,5) [ds

Then by using the integration by parts one can obtain

t t
A (X,1) = AU; (X, 1) + A(S)A; (X, s)|S=t - §J'/I’(s)ui (x,8)ds + 5[[ Z/I(s)—() A(S) f (X, s)}
0 0 X

u(s)

t t
= U, (xO[1+A)]_, - j A'(s)Au; (x,5)ds + & j { y2A(s) — 2 a(s) f (X, s):lds
0 0




The stationary conditions will be:
[1+4(9)] , =
and
A'(s) =0, 0<s<t

The solution of the above differential equation is
At) = A
where A is an arbitrary constant. To find the value of A, substitute 2 into
equation (2.9) to get:
1+A_ =
Therefore
As)=A=-1
By substituting 4 =-1 into equation (2.3) one can obtain the following iteration

formula:

2
Ui (%,1) = U; (X,1) — _[Fu 1(%,5) —y? 20 Lg(;(,s)_ f(x,s)|ds (2.10)
X

For simplicity, let u,(x,t) =r(x), then
U, (X,0) =r(x), 0<x</

ou, (X,t)

™ =r'(X)|,_,=r'©=0, 0<t<T

x=0

and

l l
Iuo(x,t)dx=.[r(x)dx=0, 0<t<T
0 0

Therefore u,(x,t)=r(x) is the initial approximation of the solution of equation
(2.4) that satisfy the initial condition, the Neumann condition and the nonlocal
condition given by equation (2.5)-(2.7).

Then by setting i =0 into equation (2.10) one can have:

auo(x s) e 07U, (x,5)

u; (X,t) =uy(X,t) - '[ o

- f(x,s) |ds




t
=r(X) —H—yzr"(x) — f(x, s)]ds
0

t
=100 +77r"O0t+ [ f(x,)ds
0

By setting i=1 in equation (2.10) and by substituting u,(x,t)in it, one can get
u,(x,t). By continuing in this manner one can get:

u(x,t) = i1i_>rgui(x,t)

1s the solution of the nonlocal problem given by equations (2.4)-(2.7).

Next, to show the convergence of the variational iteration method for
solving the nonlocal problem given by equations (2.4)-(2.7), we gives the
following theorem. This theorem is a special case of theorem (1) that appeared

in [2, ppl7].

Theorem (2.1):

Let ueC’(Q)be the exact solution of the nonlocal problem given by
equations (2.4)-(2.7) and u, eC>(Q), where Q={xtJ0<x<r0<t<T}, be the
obtained solution of the sequence defined by equation (2.10) with u,(x,t) =r(x).

If
E; (X,t) = u; (X,t) —u(x,t) 1=0,l,...

O%E; (x,1)

o <|E (x.t)

2

.

TV
where |E;(x,1)], :”|Ei(x,t)2dxdt,
00

then the sequence defined by equation (2.10) converges to u.




Proof

Since u is the exact solution of equation (2.4), then

2
{6u i (X,8) _y2 0 ui(;<,s)+ f(x,s):lds
OX

Uit (6B Ut = U (D —u (1) = |

+J'{au(x,s) _ d%u(x,s)

as v, - f(x, s)}ds

0

= u; (X, t) —u(x,t) - J.{ U; (X,8) —U(x,8)}— ¥ ;22 {ui(x,s)—u(x,s)}}ds
X

Ei (Xat) = ui (X5t) - U(X,t)
Therefore

E; (X,S) =U;(X,S) —U(X,S)

Eia(x8) = Ei(x0) - [

FE(XQ yzyEﬂxﬁks

ox?

t 2
= £,000) - [E (6D - E (0] 7 | F e ’S)}ds

0
t 2
- Ei(x,0)+;/2_|'{—a E‘(zx’ S)}ds
0 OX

E, (%,0) = U, (x,0) — u(x,0) i=0,L,...

Ey(X,0) = U, (x,0) —u(x,0) =r(x) - r(x) =0
and from equation (2.10), one can have

Ui, (X,0) = U; (x,0), i=0,1,...

therefore

Uj (X,O) = uO(X’O)a




Ei (X,O) = ui (X,O) - U(X,O) = 07
and this implies that

t A2

0 E;(X,s
Em(x,t)zﬁj—'(2 ) ds
0

Thus, according to norm properties, we have

t A2 t 2

J.a Ei (2X7 S) dsl < }/ZJ. 0 Ei (ZX’ S) ds
OX

0 ) 0 2

[ (0], =77

t
[Ei (.0, <77 [[Ei(x.5)], ds
0
For i =0 one can have:

t
[E: bl <72 [(Eo(x,9)],)ds
0

t

<7 max [Eq(x s)|2£ds

=»? max ||E0(X,t) )t
(x,9)eQ

t
[Ex 0, <72 [(E (x,9)],)ds
0

t
< y4j((£2?§QIIEo(XaS)|2S)dS
e

2

t
_ .4
=7 (x,s{;‘e}é)”Eo (X’t) 2 2!

By continuing in this manner one can have:

. ti
IFie0l <77 a0l

By letting i — « one can obtain:




|Ei (x,s)|, —0 as i——w
and this implies that
E,(X,s)——0 as i——»

Therefore

lim E; (x,t) = 0
|—00

which gives

limu; (X,t) = u(x,t)
|—00

To illustrate this method, consider the following example

Example (2.1):

Consider the one-dimensional nonhomogeneous heat equation:

au(x,t) _ d°u(x,t)
ot ox?

+(t +3tHcos(x), 0<x<z, O0<t<l

together with the initial condition
u(x,0)=0 0<x<m,
the homogenous Neumann condition

ou(x,t)

=0, 0<t<l1.
OX x=0

and the homogenous nonlocal condition

J.u(x,t)dx =0, 0<t<l
0

It is easy to check that the compatibility conditions are satisfied.
To solve this example by using the variational iteration method, we

consider the iteration formula given by equation (2.10):

6u(xs) au(xs)

— f(x,s) |ds
o5 (X,5)

Ui (%) = Uy (X, 1) - j




— (s +3s%)cos(x) |ds

2

Let u,(x,t)=r(x)=0, then

U, (x,t) = j[(s3 +35%) cos(x) s
0

= (t3 + %j cos(X),

ou;(x,8)  0°U(X,9)
ox?

U, (X, 1) =uy(x,t) - j{ f(x,s)}ds

4

:( j cos(X) — J.{ 3s* +5 )cos(x)+[s +57jcos(x) (s +3s )cos(x)}

5
( %J OS(X) s

ouy (x,8) 0? U, (X,9)
ox?

= t3—i cos(x)—Jt. 352—i cos(X) + S3—i cos(X)—<S3+3S2)cos(X) ds
20 0 4 20

3t
=t +E cos(X).

By continuing in this manner one can get:

a3 ()it 1 3+i
ui(X,t)—[t +( 1) (4)(5)-~-(3+i)t }cos(x)

and

Uy (X, 1) = U, (X,1) — j{

(33 +3s? )cos(x)}ds

- {ﬁ +(=1) ﬁtm}cos(x), i=12,....

. 3+i
u(x,t) = limu; (x,t) = t3 cos(X) + 6_lim(— 1)' t —c0s(X)
1—00 1—00 (3 + |)'

=1’ cos(X)




is the exact solution of the above nonlocal problem.

Example (2.2):

Consider the one-dimensional nonhomogeneous heat equation:

2
U _ouh s 3o —6tx+§t+6x—i, 0<x<l, 0<t<l
ot ox? 2 2

together with the initial condition
u(x,O):—x3+%x2, 0<x<l1

the homogenous Neumann condition

ou(x,t)

=0, 0<t<l1.
2 X=0

and the homogenous nonlocal condition

1
Iu(x,t)dx =0, 0<t<l1

It is easy to check that the compatibility conditions are satisfied.
To solve This example by using the variational iteration method, we

consider the iteration formula given by equation (2.10)

ou; (X,S) au(xs)
82

Ui (D) = U (1) - | { - f(x, s)}ds

=U;(X,t) - jru 1(%.5) _ 00 (%.9) {x3 —%xz —6sx+%s+6x—%ﬂds

ox?

Let u,(x,t)=r(x)=-x’ +%x2

then

3, 3 3
u (x,t)=—x> +=x? —J'{— x> +=x2 +6sx——s}ds
4 4 2

N AV IV B NV T Y AT
4 4




au, (x,8)  0%u,(x,9)
ox*

U, (X,t) =u, (X,t) - j[ f(x,s)}ds

t
=X’ +§x2 +tx° —étx2 —3t2x+§t2 —J. —6sx+§s ds
4 4 4 2

0

NI S BRI ve
4 4

ou, (x,s) d? U, (X,9)
ox?

Us(X,t) =U,(X,t) - J‘{

- f(x, s)}ds

S IV RS ve
4 4

Therefore
u _ 3 30 3 3. .
(D =U (X)) =—X"+=X" +tX" —=tx", 1=12,...
4 4
and this implies that
u(x,t) = limu; (x,t) = —x* PSR UL
i—>o0 4 4

is the exact solution of the above nonlocal problem.

2.4 The Variational Iteration Method for Solving Heat Equation

with Nonhomogeneous Nonlocal condition:

In this section we use the variatianal iteration method foe solving the one
dimensional nonhomogeneous heat equation:

au(x,t) 5 d%u(x,t)
= 7/ 2

" + f(x,1), 0<x</, 0<t<T (2.11)

together with the initial condition:
u(x,0) = r(x) 0<x</, (2.12)
the nonhomogeneous Neumann condition:

ou(x,t)

x | =a(t), 0<t<T (2.13)

and the nonhomogeneous nonlocal condition:




ju(x,t)dx=,8(t), 0<t<T (2.14)
0

where y is a nonzero constant, fis a known function of x and t, and r, «,
are given functions that must satisfy the following compatibility conditions
r'(0) = a(0)

and

l

j r(x)dx = B(0).

0
For the sake of simplicity transform the nonlocal problem given by equations
(2.11)-(2.14) to an equivalent one, but with homogeneous Neumann condition
and homogeneous nonlocal condition. To do this, we use the transformation that
appeared in [12].

V(X,t) = u(x,t) — z(x,t) (2.15)

where z(x,t)= a(t){x - q + @
2 V4
Therefore

ou(x,t)  ov(x,t) N oz(X,1)
ot ot ot

o’u(x,t)  9*v(x,t)
ox’ oxt

Then the nonlocal problem given by equations (2.11)-(2.14) reduces to the
nonlocal problem that consists of the nonhomogeneous one-dimensional heat

equation:

V(X)) 5 8%V(X,1)
= 7/ 2

+9g(x,t), 0<x</, O0<t<T 2.16
- p” g(xt) (2.16)

together with the initial condition
v(x,0) = m(x), 0<x</ (2.17)

the homogeneous Neumann condition




ov(X,t)

=0, 0<t<T
OX x=0

and the homogenous nonlocal condition:
V4

J'v(x,t)dx=0, 0<t<T

0

m(Xx) = r(x) - z(x,0)

g(x.t) = f(x.t) - Z&Y

In this case, equation (2.10) takes the form:

Vi (%S5) 2*Vi(x5)
os ox*

t
Vi+1 (Xat) = Vi (X,t) - I|:
0

g(x, s)}ds, i=0,1,...

For simplicity, let v,(x,t) = m(x), then
V, (X,0) = m(x), 0<x</

oV, (X,1)

P =m'(x)|,_, =m'(0)=r'(0)-

x=0 x=0

=r'(0)—a(0)

0z(x,0)
0

=0

and

jvo(x,t)dx = J('m(x)dx = J[' r(x)dx — j' z(X,0)dx

( AT
= B(0) - ! {a(O){x - 5} + 7}dx

0? 0?
= p(0) —?0!(0) +70!(0) - p(0)
=0
Therefore v,(x,t)=m(x) is the initial approximation that satisfy the initial

condition, the Neumann condition and the nonlocal condition given by equation
(2.16)-(2.19).

By setting i =0 into equation (2.20) one can have




v, (%,1) = m(x) + m’ (0t + [ g(x,$)ds

By setting i =1 into equation (2.20) one can have

t t 2 ts A2
V, (X,t) = m(x)+m”(x)t+Ig(x,s)ds—I m"’(x)%ﬁt”%drdr ds
0 00

0

By continuing in this manner one can get:

V(X,t) = limv; (X,t)
I—>0

is the solution of the nonlocal problem given by ( 2.16)-(2.19).

Thus
u(x,t) =v(x,t)+ z(x,t)

is the solution of the nonlocal problem given by equations (2.11)-(2.14)

To illustrate this method, consider the following example

Example (2.3):

Consider the one-dimensional nonhomogeneous heat equation:

ou(x,t) _ o*u(x,t)
ot x>

0<x<l, O<t<l

2

together with the initial condition:
u(x,0) = x°, 0<x<1
the nonhomogenous Neumann condition:

ou(x,t)

= 6t, 0<t<l
ox x=0

and the nonhomogenous nonlocal condition




1
ju(x,t)dx=%+3t, 0<t<l
0

In this example, we have
r(x)=x>, at)=6t and A(t)= % +3t

It is noted that, the compatibility condition are satisfied. That is
r'(0) = 0 = a(0)

and
1 1 5 _1_
J;r(x)dx __([x dx —Z—ﬂ(O)

This example can be solved by using the variational iteration method. To do
this, we transform the above nonlocal problem with nonhomogeneous Neumann
condition and nonlocal condition to an equivalence one with homogeneous
Neumann condition and nonlocal condition by using the transformation given by
equation (2.15) to obtain the following one dimensional heat equation

NVt Pv(xt)
ot ox*

6X, 0<x<]l, 0<t<l1

together with the initial condition

V(X,0) = u(x,0) — z(x,0) = x —%, 0<x<1

the homogenous Neumann condition

v(x,1)

=0, 0<t<l1.
2 x=0

and the homogeneous nonlocal condition

1
jv(x,t)dx:O 0<t<l
0

In this case,

m(x) = X’ —% and z(x,t)= 6tx+i

Next, consider the iteration formula given by equation(2.20).




By setting i =0, v,(x,t) =m(x) = x’ _i

and g(x,s) = % = —6x in it, one can have:

t
v, (X,1) = x° —i—J‘[— 6Xx + 6x s
0

4 0

Then by setting i =2 and v, (x,t) = x° —% into equation (2.20) one can have:

t t 2 ts A2
vz(x,t)zm(x)+m”(x)t+jg(x,s)ds—j m"’(x)%+”%drdr ds
0 00

0

t
=X’ —l—J.[—6x—6x}js
4 0

v, (X,t) = v, (x,t) == x° —%,

V(X t) = limv; (1) = v (%) = x> —%

1s the exact solution of the above nonlocal problem.
Therefore

u(x,t) =v(x,t)+ z(x,t)

SR L
4 4

= x> + 6tx

is the exact solution of the original nonlocal problem.




Example (2.4):

Consider the one-dimensional nonhomogeneous heat equation:

au(x,t) a’u(xt) _

p " xe' — 6X + sin(X) + tsin(x),

together with the initial condition
ux,0)=x>+x  0<x<l1
the nonhomogeneous Neumann condition

ou(x,t)

=e' +1, 0<t<l1
OX x=0

and the nonhomogeneous nonlocal condition

1
Iu(x,t)dx L —tcos(l)+t  0<t<l
0 4 2

In this example, we have
rx)=x>+x, 0<x<I

at)=e' +t, 0<t<l

1 1
t)=—e —tcos(l)+t+—
Bt) > ) 1

It is noted that, the compatibility condition are satisfied. That is
r'(0)=1=a(0)

and

Jl'r(x)dx:j‘[x3 +x]dx Lyl :E:ﬂ(O)

5 5 4 2 0 4
This example can be solved by using variational iteration method. To do this, we
transform the above problem with nonhomogeneous Neumann and nonlocal
conditions to an equivalence one with homogeneous Neumann and nonlocal

conditions by using the transform given by equation (2.15) to give the following

equation:




V()  2*v(x,b)
ot ox?

= tsin(X) + sin(X) — 7X — % + cos(1),

together with initial condition

V(X,0) = r(x) —z(x,0)
0<x<I

The homogeneous Neumann condition

ov(Xx,t)

=0, 0<t<lI
X x=0

and the homogeneous nonlocal condition

1
Iv(x,t)dx =0, t>0
0

In this case

m(x) = v(x,0) = x° —%, Z(x,t) =e'x +1x +%t —tcos(l) +%

and g(x,t) =tsin(X) +sin(X) — 7X — % +cos(1)

Vv, (X, t) = m(x) +m"(X)t + j g(x,s)ds

t
Vi (X,t) = x3 _ J‘{%{— 6X +tsin(X) —cos(X) + 7X + % - cos(l)}ds
0

;1 t? . 1
=X ——+—sin(X)—tsin(X)—tx +tcos(l) ——t
2t (X) (%) 4y 5

2
Then by setting i=2 and vl(x,t):x3—%+%sin(x)—tsin(x)—tx+tcos(l)—%t into

equation (2.20) one can have:

t t 2 ts A2
V, (X, t) = m(X) + m"(X)t +Ig(x, s)ds—j m”’(x)%JrJ.J.aL)z(’r)drdr ds
0 0 00 ox

3
V,(X,1) = x> _%+t3—'sin(x) + tsin(X) —tx +tcos(1) —%t




By continuing in this manner one can get:

v(Xx,t) = .152"' (x,1)

v(x,t) = x° —%—tx + tsin(X) +tcos(1) —%t

Thus we obtain
u(x,t) =v(x,t)+ z(x,t)
= x> + xe' +tsin(x)

is the exact solution of the above nonlocal problem.

2.5 The Variational Iteration Method for Solving Wave Equation

with Homogeneous Nonlocal Condition

In this section, we use the variational iteration method for solving the one-

dimensional nonhomogeneous wave equation:

o%u(x,t) 2 d%u(x,t)

e Sao et 0sxsh 0sts (2.21)

together with the initial conditions
u(x,0) = r(x), 0<x</ (2.22)

ou(x,t)

= p(x), 0<x</ (2.23)
ot o

the homogeneous Neumann condition

ou(x,t)

=0, 0<t<T
X x=0

and the homogeneous nonlocal condition

!
fuxdx=0,  o0<t<T (2.25)
0

where y is a nonzero constant, f is known function of x, t and r, pare given

functions of x that must satisfy the following compatible conditions:




r'(0) = p'(0) = 0)

4

jr(x)dx = j' p(x)dx =0
0

0
In order to use the variational iteration method to solve such type of nonlocal

problem one must rewrite equation (2.21) as
L[u(x,t)]+ N[u(x, )] = g(x,t)
2 2
where L =6—2 and N = —;/28—
ot ox*

Therefore equation (2.8) becomes:

2 2~
U, (6t) = U; (X, t)+fﬂ(s){a Ui(%8) 20 “i(;(’s)— f(x,s)}ds i=0l... (2.26)
0 os’ OX

where 4 is the Lagrange multiplier. Thus by taking the variation of the above

equation one can have:

t
A (%) = 8 (1) + 5 A(s)
0

0%Ui(X,8) 5 DT (X,S)
2 8)(2

+ f(x, s)}ds
Then by using the integration by parts one can obtain

Sy (1) = Ay (1) + 5[1(9 O (% s)}

o, (x 5) . o%T: (X,9)
—5]1() S+ 5{1(5){—y2&(—2—f(x,s):|ds

s=0

t
- 5[/1’(s)a1i (X, s)]zj) + 5[1"(s)ui (X,5)ds +

s=t

= U, (1) + A(s)s D) (gx >S)

; o%l (x,5)
A e AR d
5{ (s){ p” (X, s)} s

_ 1= A} (1) + A(s)s i %S (s >5)

Lo ¢ 8T (x,5)
+ j A"(S)AU; (X, 5)ds + 5{1@){— % — " f(x, s)}ds

s=t 0

The stationary conditions will be:

[1-2'(s)]_, =0




ﬁb(s)|s:t =0

and
2"(s) =0
The solution of the above differential equation is
A(s)= A+ Bs
where A and B are arbitrary constants. To find the value of A and B substitute
A into equations (2.27)-(2.28) to get:
[1-8B]_ =0

A+Bt=0
Therefore B=1 and A=-t. Hence
A(s,t) =s—t.
By substituting 4 into equation (2.3) one can obtain the following iteration

formula:

0%Ui(%,8) 5 A°U;(X,S)

P PV f(x,s) ds (2.30)

t
ui+1(xat) = U; (X’t) + J.(S _t{
0

For simplicity, let u,(x,t) =r(x)+tp(x), then
U, (x,0) = r(x), 0<x</

Ou, (X,1)

= p(x), 0<x</
ot t=0

ou, (X,t)

=r'(0)+ p'(0)t =0, 0<t<T
X |y

and

l l l
Iuo(x,t)dx:jr(x)dx+t_|. p(x)dx =0, 0<t<T
0 0 0

Therefore u, satisfy the initial condition, the Neumann condition and the

nonlocal condition given by equation (2.22)-(2.25).

Then by setting i =0 into equation (2.30) one can have:




t
u; (X, 1) = r(x) + p(t + J.(s —t)[— 72" () — 72 p"(x) - f(x, s)]ds (2.30-a)
0

2 2 2 t t
=r(x)+ p(x)t —%r”(x)t2 —% p"(X)t> + 7/2t2r”(x)+7/7t3 p"(X) +tJ' f(x,s)ds —J'sf (x,s)ds
0 0

By setting i =1 and substituting u, (x,t) of equation (2.30-a) in equation (2.30),
one can get u,(x,t). By continuing in this manner one can have:

u(x,t) = i1i_>rgui(x,t)

1s the solution of the nonlocal problem given by equations (2.21)-(2.25).

To illustrate this method, consider the following example:
Example (2.5):

Consider the one dimensional nonhomogeneous wave equation:

o’u(x,t)  d’u(x,t)

e o T2 eos(),  0sxs<m, 0<t<]
X

together with initial condition:
u(x,0) = cos(x), 0<x<rm

ou(x,t)

=—cos(X), 0<x<rx
ot o
the homogeneous Neumann condition:

ou(x,t)

=0, 0<t<l
X |ico

and the homogenous nonlocal condition:

ju(x,t)dx:o, 0<t<l
0

It is easy to check that the compatibility conditions are satisfied.
To solve this example by using the variational iteration method, we

consider the iteration formula given by equation (2.30):

0%U;(%,8) 5 0%U;(X,9)
os? ox?

- f(x,s)|ds

t
U, (x,t) = u, (x,t)+j(s —t){
0




t 2 2
0°U;(X,8) 07U;(X,S) s
= u; (X, t)+ (s—t)[ ! - —2e cos(x)}ds
{ 0s° ox’

Let uy(x,t)=r(x)+ p(xt
= cos(X) — cos(X)t,

then

07Uy (X,8)  0%Uy(X,9)
2

. PR 2e°° cos(X)}dS

t
Uy (X, 1) = Uy (X, 1) + j(s —t){
0
t
= cos(X) — cos(X)t + J.(s - t)[— (—cos(X) + Scos(x) —2e~° cos(x)]ds
0

——1+t—£+i (X) —2e" cos(X)
= o) 3 COS COS

o%u (x,5) 90U (x,9)
os? ox?

t
U, (X, 1) :ul(x,t)+j(s—t){ —2e° cos(X)}dS
0

2 13 t
= H— 1+t-— o + 5] +2e7" } cos(X) +2e 7 cos(x) + j(s —t)[(— 1+2s+2e7° )cos(x) +
o3l 0

s s’
(—1+s—3+?+2e‘5)cos(x)—2e_S cos(X) |ds

uz(x,t)z[l—t+ 2.

and

t 2 2
Uy (1) = uz(x,t)+j(s—t){a ”2(2)(’ $)_9 u2(2x, S e cos(x)}ds
0

0S OX

- z (—if)i cos(X) + j(s - t){g (- ?)' cos(X) + g (- ?)

5
_ —2cos(X) —2e7° cos(x)}ds
i ! it

== & f)l cos(X) +2e " cos(X)

7
i=0 I




By continuing in this manner one can get:

i=0

2i+l1 (_ t)'
_ Z_' +2e7" |cos(x) i oddinteger
1!

2i+1 ¢ 4\
Z%COS(X) [ even integer
; 1!

i=0

Then

u(x,t) = ili)rgui (x,t) =e ™" cos(X)

is the exact solution of the above nonlocal problem.

2.6 _The Variational Iteration Method for Solving Wave Equation

with Nonhomogeneous Nonlocal Condition

In this section, we use the variational iteration method for solving the one-

dimensional nonhomogeneous wave equation:

o*u(x,t) 2 d2u(x,t)
at? ox?

+f(xb), <x< <t< 2.31)

together with the initial conditions

u(x,0) = r(x), 0<x</ (2.32)




ou(x,t)

= p(X), 0<x</
Al p(X)

the nonhomogeneous Neumann condition

ou(x,t)

=a(t), 0<t<T
OX |40

and the nonhomogeneous nonlocal condition

/
J.u(x,t)dx = Bt), 0<t<T (2.35)
0

where y is a nonzero constant, f a known function of x, t and r, p, a, S are

given functions of x that must satisfy the following completely conditions:
r'(0) = (0)
p'(0) ='(0)

4

[reodx = B(0)

p(x)dx =4(0)
In order to use the variational iteration method to solve such type of nonlocal
problem, we first transform this nonlocal problem into other nonlocal problem,
but with homogenous Neumann condition and homogeneous nonlocal condition.
To do this we use the transformation given by equation (2.15). then

dPu(x,t)  8*v(x,t) d*z(x,t)
= +
at? ot? at?

d°u(x,t) _ a°v(x,t)
ox? ox?

Therefore the nonlocal problem given by equations (2.31)-(2.35) is transformed
to the one-dimensional nonhomogeneous wave equation:

d2V(x,t) d2v(x,t)
e v L0} <, 0<ts< (2.36)




together with the initial conditions
V(x,0) = g,(X), 0<x</

V(X 1)

= X), 0<x</
o |, d, (X)

the homogeneous Neumann condition

V(X 1)

=0, 0<t<T
X |ylo

and the homogeneous nonlocal condition

/
J.v(x,t)dx:O, 0<t<T
0

2
where g(x,t) = f(x,t)—a 2:;("[)

> 01 () = r(x) = 2(x,0)

o0z(X,1)

and g, = po9 -2
t=0

To solve this nonlocal problem by the variatianal iteration method, consider the

iteration formula

Vit (60 =V, (%, t)+j(s t)

2
F M (X S) —y? 20 V‘(ﬁ’s)—g(x,s)}ds i=01.. (241
OX
For simplicity, let v,(x,t) =q,(x)+q,(x)t, then
Vo (X,0) = g, (), 0<x</

oV, (X,1)

= X), 0<x</
at q,(X)

t=0

D o)+ a0t =ro-2 [p() a2 }
xt=0 x,t=0

X | otox

=r'(0)—a(0) +[p'(0) — (O }
=0

and

0 l
Jvo 0 tydx = [, 00 + a, 0t
0 0




8z(x t) dx

t=0

= p(0)- j{a(O)(x——j £ (O)}dx+tﬁ(0) tj.[ r(o)(x_g}ﬂ’lgm}dx

= jr(x)dx IZ(X 0)dx +tf p(x)dx - tj

= p(0) - S(0) +14'(0) —t4'(0)
=0

Therefore v, satisfy the initial approximation to the solution of the differential

equation(2.36) that satisfies the initial conditions, the Neumann condition and

the nonlocal condition given by equation (2.37)-(2.40).

Therefore by substituting i =0 into the iterative formula (2.41) one can have:

{sz 0 (X,9) e , 0V, (X,S)

v, (X) = v(xt)+j(s t)

aXZ - g(xas)j|ds

—ql(x>+q2<x>t+js O (a0 + 45 005) - g(x.9) s

2 n 2. 2.4n

t
—q1<x>+q2<x)t{—yzqr(x)——y @00 g0+ —qﬂx)} [s-tNg(x.9)ks
0

2 3 t
= (0 + G, (0t + ;/{q{'(x)%+ q;’(xfg} - [(s~tlg(x.5)lds

0

By setting i=1 in equation (2.41) and by substituting v,(x,t)in it, one can get
v, (x,t). By continuing in this manner one can get:

V(X,t) = limv, (X,t)
is the solution of the nonlocal problem given by equations (2.36)-(2.40).

Therefore

u(x,t) =v(x,t)+ z(x,t)

is the solution of the original nonlocal problem.




To illustrate this method, consider the following example:
Example (2.5):

Consider the one dimensional nonhomogeneous wave equation:

2 2
8U(Z<,t)_8U(>;=t)=e—tx+ L o0s<xs<l osts<I
ot X (x+1)

together with initial condition:
u(x,0) = In(x +1)+ x, 0<x<lI

ou(x,t)

==X, 0<x<l1
ot t=0

The nonhomogeneous Neumann condition:

ou(x,t)

=1+e™, 0<t<l
X o

and the nonhomogeneous nonlocal condition:

1
ju(x,t)dx = 2ln(2)—1+%e_t, 0<t<l
0

In this example, we have

r(x)=In(x+1)+x, p(x)=-x, a(t)=1+e™
and ﬂ(t)=2ln(2)—1+%e‘t .

Therefore

r'(0) =2 = a(0)
p'(0)=~1=a'(0)




1

1
[rogdx = [[in(x+1)+ xJdx = 21n(2) —% = B(0)
0

0
1 1
!—xdx=—§:,8(0)

This implies that the compatibility conditions are satisfied.
To solve the example by variational iteration method, we use the

transformation:

o°v(x,t)  *v(x,1) L1

2 2-47
ot’ x> (x+1) (247)

together with initial condition:

v(x,0) = 1n(x+1)—x+%—21n(2), 0<x<l1

0<x<l1

The homogeneous Neumann condition:

ov(X,t)

=0, 0<t<l
X x=0

and the homogenous nonlocal condition:

1
Iv(x,t)dx:o, 0<t<lL
0

Let vy(x,t) =q,(X)+q, )t =In(x+1) — x + % -2In(2)

Therefore by substituting i =0 into the iterative formula (2.41) one can have:

02V (%,8) 5 8Vy(X,9)
os? ox?

—g(x,s) [ds

t
Vi (X, 1) = v, (X, 1)+ J.(s —t){
0

3 t 1 1
= ln(x+1)—X+5—21n(2)+_([(8—t){(x+1)2 - (X+1)2_d8




=ln(x+1)—x+%—2ln(2)

Therefore
V; (X, 1) =V (X,1), i=12,...
and this implies that

vV(X,t) = iliigvi (x,t) = i1i_>rgv0(x,t) =V, (X,1)

:ln(x+1)—x+%—21n(2)

is the exact solution of the nonlocal problem given by equations (2.47)-(2.51).
Therefore

u(x,t) =v(x,t)+ z(x,t)
3 3 4
= ln(x+1)—x+5—2ln(2)+ x—5+e X+21In(2)

=In(x+1)+e7'x
is the exact solution of the original nonlocal problem given by equations (2.42)-

(2.46).




Chapter Three
Real Life Application
For Nonlocal Problems

Arising in
Thermoelasticity




3.1 Introduction

In recent years, problems with integral conditions have received an

increasing attention. The physical significance of integral conditions (mean,
total flux, total energy, total mass, moments,...) has served as a fundamental
reason for the interest carried to this type of problem [25].

The aim of this chapter is to solve the real applications for nonlocal
problem arising thermoelasticity and use the separation of the variables, the
eigenfunction expansion method and the variational iteration method for
solving such types of nonlocal problems.

This chapter consists of five sections

In section two, we give the mathematical modeling of  the
thermoelasticity problem.

In section three, we use the separation of variables to solve special types
of homogenous thermoelasticity problem.

In section four, we use the eigenfunction expansion method to solve
special types of nonhomogeneous nonlocal problems.

In section five, we use the variational iteration method to solve a nonlocal

problems arising in thermoelasticity.




3.2 The Mathematical Modeling of the thermoelasticity Problem,
16]:

In this section we describe the mathematical modeling for a

thermoelasticity rod problem. Let us consider a rod 0<x<1, the temperature
v=v(x,t) and the transverse displacement z=z(x,t). The thermoelasticity rod
problem can be described by the coupled partial differential equations

OPV(X,1) | ov(x,t) o’ z(x,1)
9 — k b +V 9
o a P e

: (3.1

4
o o z(x,1)
ox*

O*V(X,1)
ox’

=p 3.2)

where u is the thermal conductivity, k is the specific heat at constant strain, «
is the flexural rigidity, B is a measure of the cross-coupling between thermal
and mechanical efforts, v, is a uniform reference temperature.

If we suppose that the initial temperature of the rod is r(x), and the initial
displacement is f(x); the ends x=0 and x =1 are clamped. Then
V(X,0) = r(X) (3.3)
z(x,0) = f(x) (3.4)

oz(X,1)
OX

oz(X,1)

2(0,t) = =z2(L,t) =

X=0 x=1

) (3.5)

Moreover if we assume that the average temperature in the rod 0<x<1 1is

equal to g,(t). That is

Iv(x,t)dx =g,(t) (3.6)

and the difference between the heat exchange of the atmosphere on the end
x=0 and the temperature on the end x=1 is equal to g,(t), then by using

Newton's law one can have:

av())((’t) v(0,) —v(l,t) = g, () (3.7)

x=0




We reformulate the problem given by equation (3.1)-(3.7) into an
equivalent form where the coupled partial differential equations (3.1)-(3.2) is
reduced to one partial differential equation. To do this we introduce a new

unknown function u defined as follows:

(3.8)

0> z(x,1)
ox*

u(x,t) = Vh[v(x,t) —v,(x,0)]+ B

0

where u is the entropy. Then

d’z(x,1)

v ou(x,t) K ov(X,t) N
0 ox2ot

ot ot

Vo B

O*V(X,1) ou(x,t)
=V
e T

By using equation (3.2), (3.8)-(3.10), one can get:

d*z(x,1)

*u(xt) _ k 2*v(x,b) .
ox*

8X2 Vy 8X2

B

_ kv aux B* 0°V(x,1)
ox?

Therefore, the entropy u is a solution of the heat equation:

2 2
PRIEA ={k+v0 B }cm(x,t)

ox? o | ot

3.11)

To deduce the initial condition on the entropy u, we use the conditions given by

equations (3.3)-(3.4) to get:

o0 = <[00 -vy J+ 400 (3.12)

0

Then
u(x,0) = u, (x) (3.13)




To deduce the first boundary condition on the entropy u, we integrate u

with respect to x from x=0 to x=1 to get:

o)  az(xt)
OX X |yoo

Jl-u(x,t)dx = L[j‘v(x,t)dx —Vo} + ﬂ[
0 Volo

x=1

By using equation (3.5)-(3.6) one can have:

Juoxax =-[g,0-v,]

Let 6,(t) :VL[91(U—V0]
0

1
j u(x, tydx = 6, (t) (3.15)
0

which is the average entropy. To conclude the second boundary condition, we

multiply equation (3.9) by the weight (1-x) and we integrate the result over [0,1]

with respect to x to obtain

1 1

I(l—x)u(x,t)dx=V£'[(1—x)v(x,t)dx—k, (3.16)
0 00

which is the weight average entropy. Then, instead of searching for a pair of
function(v,z), a solution of the problem given by equation (3.1)-(3.7), is made
by searching for the function u, solution of problem given by equation (3.10)-

(3.13), then the solution will be v=u+z.




3.3 The Separation of Variables for Solving A Nonlocal Problem

Arising in Thermoelasticity:

In this section we try to use the separation of variables to solve special
types of the nonlocal problems arising in thermoelasticity problem. To do this,

consider the one-dimensional homogeneous heat equation

ou(x,t) _ o*u(x,t)

" P~ 0<x<I, 0<t<T (3.17)
X

together with the initial condition:
u(x,0) = u,(x) 0<x<l1 (3.18)

and the homogeneous nonlocal conditions:

1
ju(x,t)dx:o, 0<t<T (3.19)
0

and

1
Ixu(x,t)dx =0, 0<t<T (3.20)
0

where u, is a given function that must satisfy the following compatibility

conditions:

'l[uo(x)dx =0

1
J.xuo(x)dx =0.
0

By using the separation of variables, the solution of the partial differential

equation (3.17) can be expressed as:

u*(x,t) = e **[Asin(Ax) + B cos(Ax)] (3.21)

where A,B,A are arbitrary constants. Then this solution must satisfy the nonlocal
conditions given by equations (3.19)-(3.20).

Therefore




e[ Asin(Ax)+ B cos(Ax)Hx = 0

1
'[xe’ft [Asin(Ax)+ B cos(Ax)[x = 0

0
These equations becomes:
A(l-cosA)+Bsin 1 =0

A(sin 2 — Acos A)+ B(Asin A +cos 1 —1)=0
Assume that 1-cos 1 #0

B sin A
1—cosA

By substituting the above equation into equation (3.23) one can get

B[-2+ Asin A +2cosA]=0
This equation gives B=0 and hence A=0. But this is contradiction, since the
zero solution does not satisfy the initial condition given by equation (3.18).
Therefore 1=cos A and this implies that
A=F2nz, n=12,....

Thus,

ul (x,t) = Be—(2n7)'t cos(2nzx), n=12,...
and we have found an infinite number of functions:

u,(x,t)=B,e ™ cos(2nx), n=1.2...
each one satisfy the partial differential equation (3.17) and the nonlocal
conditions (3.19)-(3.20). The desired solution will be a certain sum of these

simple functions and takes the form:

u(x,t) = i B,e " cos(2nx) (3.24)

n=1

With the initial condition (3.18), one can used the orthogonality condition

given by (1.7) to get




1
B, =2[r()cos2nax)dx,  n=12...
0

To illustrate this method, consider the following example

Example (3.1)

Consider the one-dimensional homogenous heat equation:

ou(x,t) _ o’u(x,t)
ot ox*

together with the initial condition:

u(x,0) = cos(27x)

and the homogenous nonlocal conditions:

1
'[u(x,t)dx:o, 0<t<l1
0

1
jxu(x,t)dx =0, O0<t<l.
0

It is easy to check that the compatibility conditions are satisfied. That is

1 1
Iuo(x)dx :J' cos(27zx)dx = 0
0 0

1 1
'[xuo (x)dx :J x cos(2zx Jix = 0
0 0

Therefore the solution of this nonlocal problem is

u(x,t) = i B,e " cos(2nx)

n=l1

1 1, n=1
B, = 2ju0(x) cos(2nzx)dx =
0
0,

Thus the solution of the above nonlocal problems is:




ux,ty=e* tcos(2zx),  0<x<l, 0<t<T

3.4 The Eigenfunction Expansion Method for Solving Nonlocal

Problems Arising in Thermoeslasticty Problems:

In this section, we try to use the eigenfunction expansion method as a
technique for solving special types of nonlocal problems arising in
thermoelasticity. To do this, consider the one dimensional homogeneous heat
equation

au(x,t) _ o*u(x,t)
ot ox?

: <x< <t< (3.25)

together with the initial condition:
ux,0)=u,(x), 0<x<I1 (3.26)

with the nonhomogeneous nonlocal conditions:

1

ju(x,t)dx =6,(t), 0<t<T (3.27)
0

and

1
j xux,Hdx =6,(t), 0<t<T (3.28)
0

It is assumed that the compatibility conditions are satisfied. That is

1
j Uy (X)dx =6, (0).
0

1
jxuo(x)dx =6, (0).
0

It is convenient at the beginning to reduce the nonlocal problem given by
equation by equations (3.25)-(3.28) with nonhomogeneous nonlocal conditions
given by equations (3.27)-(3.28) to an equivalent one with homogeneous
nonlocal conditions. For this purpose, we introduce a new unknown function z
by setting :

V(X,t) =u(x,t)—z(x,t) 0<x<1, 0<t<T




2(x,t) = 6[26, (1) - 6, (1) ]x - 2[36, (1) — 26, ()] [21]

=0, then the function v 1s seen to be the solution of the one

2
Since i);t)

OX

dimensional nonhomogeneous heat equation:

V(X1 _ O*V(x,1)

P o + g(x,1), 0<x<Il, 0<Zt<T
X

together with the initial condition
V(X,0) = m(x), 0<x<l1

and the homogeneous non-local conditions:

1
[vixtdx=0,  0<t<T
0

and

1
jxv(x,t)dx =0, 0<t<T
0

and m(x) =u,(x) - z(x,0)

where g(x,t) = —%

Hence instead of looking for the function u, we search for the function v. The
solution of the nonlocal problem given by equations (3.25)-(3.28) will be simply

given by the formula:

u(x,t) =v(x,t) + z(x,t)

The basic idea of the eigenfunction method is to decompose g into the form
g%t =>9,(OX,(x)
n=1

where X, are the eigenvectors of the Sturm-Lioville problem we get when

solving the associated homogeneous problem to the original- problem by using

the separation of variables.

X, (X) = cos(2nx), n=12...

Therefore




g(x,t) = ign(t)cos(Znﬂx)

n=1
By using the orthogonality condition given by equation (1.7) and the above

equation one can have:

1
g,(t)= 2[ g(x,t) cos(2nzx)dx n=12,...
0

Therefore by substituting

v(x,t) = iTn (t)cos(2nax)

n=l1

g(x,t) = Zw: g, (t)cos(2nx)

n=1

into equation (3.29) one can get the following ordinary differential equation:
i fr (t,) +(2nz)’ T, (1) - g, (t)]cos(2n7zx) =0
n=1

On the other hand, it is easy to check that this solution v is automatically satisfy
the nonlocal conditions given by equations (3.31)-(3.32). In this case, the initial

condition given by equation (3.30) becomes:

iTn (0)cos(2nzx)=m(x) 0<x<I

n=1
By using the orthogonality condition given by equation (1.7) and the above two

equations becomes:

TLO+2nz)T,0=9,0), n=12...
1

T,(0) = ZJ' m(x)cos(2nzx)dx,  n=12,...
0

which has a solution

t
T, =e " T )+ [e T Ig (. n=12,....
0

Therefore




°° V) t 2
V(X,1) = Z{e—(zn”) T, (0)+ [e (=g (r)d r} cos(2n7x)
n=1 0

and hence,
0 N t ,
u(x,t) = Z[e‘“””)'tTn (0)+ je‘(z””) g ()d r} cos(2n7zx)+ z(x, 1)
n=l 0

is the desired solution of the nonlocal problem given by equations (3.25)-

(3.28).

3.5 The Variational Iteration Method for Solving A Nonlocal

Problem Arising in Thermoelasticity

In this section we use the variational iteration method to solve the
nonlocal problem arising in thermoelasticity.

To do this consider the one-dimensional nonhomogeneous heat equation:

ou(x,t) _ d2u(x,t)

o p~ + f(x,t), 0<x<I, <t< (3.33)
X

together with initial condition
ux,0)=u,(x), 0<x<I (3.33)

and the homogeneous nonlocal conditions:

1

Juxbdx=6,@1), o<t<T (3.34)
0

and

1
[xutdx=6,t), o<t<T (3.35)
0

As mentioned above, this nonlocal problem is transformed to an
equivalent one with homogeneous nonlocal conditions by using the

transformation :




v(x,t) =u(x,t)—z(x,t), 0<x<1, 0Zt<T
where z is defined previously.
Then the function v is seen to be the solution of the partial differential equation :

8v(x,t) ? v(x t)
ot

+9g(xt), 0<x<1, O0<t<T (3.36)

together with initial condition
v(x,0)=m(x), 0<x<I1 (3.37)

and the homogeneous nonlocal conditions:

1

[veetdx=0, o<t<T (3.38)
0

and

1
va(x,t)dx =0, 0<t<T
0

where

g(x,t) = f(x,t)—%

m(X) = U, (X) —z2(X,0)
According to the variational iteration method, we consider the correction

functional in t direction for equation (3.36) in the following form:

Vi (X,5) 0%V(X,S)
X 2

Vi (X0 =V, (X, 1) + J./l(s){ g(x,s)}ds i=0,,... (3.40)

where 4 is the generalized Lagrange multiplier. Thus by taking the variation of

above equation one can have:

Vi (%,5)  2*Vi(X,9)
ox?

t
S, (X, 1) = SV, (X, 1) + 5]1(5){
0

—g(x, s)}ds

Thus by wusing the integration by part, the above equation

becomes:

v(x S)

t
N, (X, 1) = v, (X, i (X, Szt—ﬁj[ﬂ'(s)w(x,sﬂﬂ(s) + Ag(x,s) d
0




8v(xs)

=1+ 49|, Briox.s) - 5j A'(S)V; (%, 5) + A(S) +2g(x,s) |ds

The stationary condition would be as follows:
L+ A(s)|,_, =0, 0<s<t
and
A'(s) = 0.
Thus
A(s)=-1
Therefore the iterative formula for computing v;(x,t) taking the form:

v, (x s) 8%, (x s)

Vi (60 =V (X, 1) - j A(s)
For simplicity, let v,(x,t) = m(x), then

1 1 1 1 1
Ivo(x,t)dx :I m(x)dx = I[uo(x) —2(x,0)|dx = Iuo(x)dx - I z(x,0)dx
0 0 0 0

0
1 1
= 6,(0) - j [126,(0) — 66, (0)Jxdx + j [66, (0) — 46, (0)]dx
0 0

=6,(0)-60,(0) +36,(0) + 66, (0) — 46,(0)

=0

1 1 1 1 1
jxvo(x,t)dx :j xm(x)dx = Ix[uo(x) —2(x,0)Jdx = Ixuo(x)dx - j xz(x,0)dx
0 0 0 0 0

1 1
= 6,(0)— j [126, (0) - 66, (0)[x*dx + j [66, (0) — 46, (0)]xdx
0

0
= 0,(0) — 46, (0) + 26,(0) + 36, (0) — 26,(0)
=0
Then, any initial condition v,(x,t) given by equation (3.37) must satisfy the
homogeneous nonlocal conditions (3.38)-(3.39) help to starting with. Then by

substituting i =0 into equation (3.41) one can get:




v, (X,1) =V (X,1) — Il:avo(x ) 0 Vao(;( S) (x,s):lds

2
=m(X)— I[ 0 m(x) g(x s)}ds

t
=m(x)+tm"(x)+ j[ f(X,9) —M}ds
5 0s
t
=m(x)+tm"(X)+ J. f(x,8)ds — z(x,t) + z(x,0)
0

t
=U,(X)+tm"(x) +j f(x,8)ds — z(x,t)
0

To illustrate this method, consider the following example:

Example (3.2)

Consider the following one-dimensional nonhomogeneous heat equation:

ou(x,t) _ d*u(x, Dy otx_2, (3.42)
ot ox2 o o |

together with the initial condition:

u(x,0) = x> (3.43)

and the nonhomogeneous nonlocal conditions

Iu(x t)dx _—+i (3.44)
3 2

and

2

1

jxu(x,t)dx = l+t—
0 4 3
It 1s clear that

‘91 0)=

1 1 1

—=|Upy(x)ds = | x“dx

| Jx’
0 0

92 0)=

1 1
1_ Ixuo(x)dx = J'x3dx
4 0 0




That is the compatibility conditions are satisfied. To solve such problem by
using the variational iteration method, we must transform it into an equivalent
problem given by equations (3.36)-(3.39) with homogeneous nonlocal
conditions.

In this case:
) 1
Z(x,t)y=(1+t )x—g

g =2

1
2

m(X) = X* = X+—.
(X) p

Therefore the nonlocal problem given by equation (3.42)-(3.45) becomes:

v(xt) _ o*v(x,h)

2 <x< <t< 3.46
- 2 2 (3.46)

together with the initial condition:
v(x,O):xz—x+é, 0<x<lI

and the homogeneous nonlocal conditions

1 1
Iv(x,t)dx = jxv(x,t)dx =0, 0<t<l1
0 0

Let

Vo (X,t) = m(x) = x* —x+%

Ny _
oS




Vo(X.8)  8°Vp(x,5)
s ox*

g(x,s) |ds

t
Vi (X,t) :vo(x,t)—J.
0

=X’ —x+%—j[0—2+2}13

1
=X’ —X+—

Therefore

vi(x,t):vo(x,t):xz—x+% i=12,...
and this implies that

v(x,t) = .IE}.EVI (x,t) = x* —x +%

Therefore the solution of the original problem is
u(x,t) =v(x,t) + z(x,t)
2 1 2 1
X" —X+ p +(1+t7)x p

=X’ —x+%+x+t2x—l

=x? +t%x

which is the exact solution for the original nonlocal problem.

Example (3.3)

Consider the following one-dimensional nonhomogeneous heat equation:

ou(x,t) _ d2u(x,t)

- v +(1-te™, 0<x<1,

together with the initial condition:
u(x,0) =0, 0<x<l1

and the nonhomogeneous nonlocal conditions:




1
fuocdx=@-e™t, o0<t<i
0

1
jxu(x,t)dx =(1-2et, o0<t<l
0

That is the compatibility conditions are satisfied. To solve such problem by
using the variational iteration method, we must transform it into an equivalent
problem  given by equations (3.36)-(3.39) with homogeneous nonlocal
conditions.

It 1s clear that

1
6,(0) = [uy(x)ds = 0
0

1
6,(0) = j XUy (X)dx = 0
0

In this case:
z(x,t) = 6(1-3e "Htx —2(1-4e ")t
2(x,0)=0

0z 1 -1
—=6(1-3e" )x—2(1—-4e
p ( )X —=2( )

gx,t)=e *(1-t)—6(1-3e H)x+2(1-4e™)
m(x)=0-2(x,0)=0

v, (Xt) = j[e (1-5)—6(1—3e™)x+2(1—4e™)|ds

2
=e X (t- %) —6(1-3e")xt+2(1-4e™it




2
Vv, (X,1) =e X (t —%) —6(1-3e M )xt+2(1—4e Ht -

t 2
I{e‘x(l —95)—6(1-3e " )x+2(1—-4e)—e (s —57) +6(1-3e")x—2(1-4e™") |ds
0

3

v, (X,t) =e~*(t —%) -6(1-3e)xt+2(1-4e™t

By continuing in this manner one can get

i+1
vi(x,t)=e* t—_t— —6(1-3e H)xt+2(1-4e™MHt, i=12,...
(i+1)

Hence,

V(X,t) = ili_)rgvi (x,t)=te™* —6(1—-3e )xt+2(1—4e it

In this case
u(x,t) =v(x,t) + z(x,t)
=te” —6(1-3e " Hxt+2(1—-4e Ht+6(1-3e7")xt—2(1-4e ")t

=te

Which is the exact solution of the original problem.




Conclusions

Form this present thesis, we can conclude the following:
1. The separation of variables and the eigenfunction expansion method gave
the solvability for special types of nonlocal problems.

. In the application of the varaitional iterational method, it is noted that
every initial approximation to the solution of the nonlocal problems must
satisfy the local and nonlocal conditions that associated with these
problems.

. In a similar manner, one can easily use the varaitional iterational method
to solve the one-dimensional nonhomogeneous Laplace equation with

nonhomogeneous nonlocal conditions.




Recommendations for Future Work

The variational iterational method is a provided methods, from the present
study, we can recommend the following problems as future works:
1. Describe other types of nonlocal conditions uses series type.
2. Use the varaitional iterational method for solving the nonlinear nonlocal
problems.

. Study the multi-dimensional nonlocal problems and use the separation of
variables, the eigenfunction expansion method and the varaitional
iterational method to solve them

. Devote the varaitional iterational method as a technique for solving

partial integro-differential equations with nonlocal conditions.

The main advantage of the varaitional iterational method is that it can be
applied directly for all types of nonlinear partial differential and integral
equations, homogeneous or nonhomogeneous, with constant or variable

coefficients
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