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Abstract 

 

 

 This work concerns with the nonlocal problems and the main 

theme of it can be divide into three categories, which can be listed as 

follows: 

First: Some analytical methods namely, the separation of  variables 

and the eigenfunction expansion method to solve some types of 

linear  partial differential equations with nonlocal conditions, 

are presented.    

Second: The varaitional iteration method is used to solve special types 

of the nonhomogenous partial differential equations and linear 

nonhomogenous parabolic integro-differential equations with 

nonlocal conditions. 

Third : Some real life applications for the nonlocal problems arising in 

thermoelasticity problems and its solutions via the separation 

of variables, the eigenfunction expansion method and the 

varaitional iteration method with its convergence, are 

introduced. 

 
 
 
 
 
 
 
 



Introduction  
 

 
 The nonlocal problems plays an important role in real life applications 

and they arise in various fields of mathematical physics (like string oscillation 

telegraph equations) [9], [13], biology and biotechnology (like evolution of 

dominant genes and propagation nerve pulses) [23] and in other fields, where 

certain problems of modern physics and technology can be efficiently described 

in terms of nonlocal problems for partial differential equations, [5]. 

  

The history of nonlocal problems with integral conditions for partial 

differential equations goes back to [7], where Cannon studied a problem for heat 

equation and this study was followed by many papers that were devoted to 

nonlocal problems arises with parametric and elliptic equations. Mixed problem 

with nonlocal integral conditions for one-dimensional hyperbolic equations were 

considered in [13] and [24]. 

The problems with integral nonlocal boundary conditions were discussed 

for parabolic equation in [19]. Numerical methods for solving problems with 

nonlocal conditions such as finite difference method  were investigated in [8]. 

Development of the variational iteration method for solving linear, 

nonlinear, initial and boundary value problems given in [15]. It is worth 

mentioning that the method was first considered by [16], but the true potential of 

the variational iteration method was explored by He. In this method the solution 

is given in an infinite series usually converging to an accurate solutions, see 

[14], [17]. 

  

 The variational iteration method which accurately computes the series 

solution is of great interest to applied science. The method provides the solution 

in rapidly convergent series with easily computable components the main 



advantage of the method is that it can be applied directly for all types of 

nonlinear differential and integral equations, homogenous or nonhomogeneous, 

with constant or variable coefficients. Moreover, this method is capable of 

greatly reducing the size of computational work while still maintaining high  

accuracy of the numerical solution. [22].  [26] used variational iteration method 

to solve one dimensional nonlinear thermoelasiticity. [10] gave an approximate 

solution of differential equations arising in astrophysics using the variational 

iteration method. 

 This thesis consists of three chapters. 

In chapter one, we present  the method of separation of  variables to solve 

some linear homogeneous partial differential equations with homogeneous 

nonlocal conditions and  eigenfunction expansion to solve some differential 

equations with nonlocal homogenous and inhomogeneous conditions.  

In chapter two, we solve the one-dimensional Heat equation with nonlocal 

condition via the variational iteration method and  its convergence and present 

the solution of the parabolic partial differential equation with nonlocal condition 

via the variational iteration method. 

 In chapter three, we present the mathematical modeling of the 

thermoelasticity problem, and then solve the nonlocal problem arising in 

thermoelasticity problem using the separation of variables method and the  

eigenfunction expansion also we applied variational iteration method in solving  

the thermoelasticity problem after transforming the problem to a nonlocal 

condition problem and proved it is convergence under some conditions. 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Chapter One 
Solutions of Linear 
Partial Differential 

Equations with 
Nonlocal Conditions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.1 Introduction 
  

In modeling of many physical systems in various fields of physics, 

ecology, biology, etc, an integral term over the spatial domain is appeared in 

some part or in the whole boundary. Such boundary value problems are known 

as nonlocal problem. The integral term may appear in the boundary conditions. 

Non-local conditions appear when values of the function on the boundary are 

connected to values inside the domain, [4]. 

The aim of this chapter is to use the separation of the variables and the 

eigenfunction expansion method to solve special types of linear nonlocal 

problems. 

This chapter consists of three sections. 

 In section two, we present  the method of separation of  variables to solve 

some types of  linear homogeneous partial differential equations with 

homogeneous nonlocal conditions. 

In section three, we present the eigenfunction expansion to solve some 

types of linear differential equations with nonlocal homogenous and 

nonhomogeneous conditions.  

 

1.2  The Separation of Variables For Solving Partial Differential 

Equation With Nonlocal Conditions: 

It is known that, the separation of variables is one of the oldest techniques 

for solving initial-boundary value problems and applied to problems  where the 

partial differential equations and the boundary conditions are linear and 

homogeneous, [12, pp33]. 

In this section  we use the separation of variables for  solving special 

types of  linear homogeneous partial differential equations together with non-

local conditions. For this purpose, first consider the one dimensional heat 

equation: 
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the homogenous Neumann condition: 
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and the homogeneous nonlocal (integral) condition 
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where   is a known nonzero constant, and r  is a known  function that must 

satisfy the following compatibility conditions: 
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By using the separation of variables, the solution of partial differential  

equation (1.1) can be expressed as: 
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where ,, BA  are arbitrary constants, [12, pp36 ] 

Then this solution must satisfy the homogenous Neumann condition given 

by equation (1.3) and the homogenous nonlocal condition given by equation 

(1.4).  To do this we differentiate the solution (1.5) with respect to x  and by 

substituting  in the resulting equation one can have : 0x
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If  0 , then the solution  becomes *u
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and we have found an infinite number of functions: 
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each one satisfy the partial differential equation (1.1), the Neumann  condition 

given by equation (1.3) and the nonlocal condition given by equation (1.4). The 

desired solution will be a certain sum of these simple functions and takes the 

form: 
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By substituting this sum into the initial condition given by equation  (1.2) 

one can obtain: 
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Thus equation (1.6) is solution of the nonlocal problem given by  equations 

(1.1)-(1.4) . 

 

 

 

 

 

 

 

 

 

To illustrate this method, consider the following example  



Example (1.1) 

  It easy to check that the solution of the one-dimensional heat equation: 
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and the homogeneous nonlocal condition: 
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takes the form 
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Second, consider the one-dimensional  wave equation: 
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the homogeneous Neumann condition: 
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and the homogeneous nonlocal  condition: 
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where   is a known nonzero constant and r , p  are given functions that must  

satisfy the following compatibility conditions: 
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By using the  separation of variables, the solution of the partial 

differential equation (1.8) can be expressed as:  
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Then this solution must satisfy the Neumann condition given by equation 
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To satisfy the initial conditions given by equations  (1.9)-(1.10), one must 

have: 
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By using the orthogonality condition given by equation (1.7) and the above two 

equations, one can obtain: 
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is the solution of the nonlocal problem given by equations (1.8)-(1.12) 

  

To illustrate this method, consider the following example: 

Example (1.2) 

 It easy to check that the solution of the one-dimensional wave equation: 
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Third, consider the one-dimensional  Laplace equation: 
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together with the initial conditions, the Neumann condition and the nonlocal 

conditions given by equations (1.9)-(1.12). It is assumed that the previous 

compatibility conditions are satisfied.  

By using the  separation of variables, the solution of the partial 

differential equation (1.13) can be expressed as:  

                              u     ])][sin()cos([),(* tt DeCexBxAtx  



where     and ,A ,B ,C D   are arbitrary constants, [12, pp15]. 

Then this solution must satisfy the Neumann condition given by equation 

(1.11)  and the homogenous nonlocal condition given by equation (1.12). So 
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each one satisfy the partial differential equation (1.13), the Neumann condition 

given by equation (1.11) and the nonlocal condition given by equation (1.12). 

The desired solution will be a certain sum of these simple functions and takes 

the form:  
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To satisfy the initial conditions given by equations  (1.9)-(1.10), one must 

have: 
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By using the orthogonality condition given by equation (1.7) and the above two 

equations, one can obtain : 
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is the solution of the nonlocal problem given by equations (1.13), (1.9)-(1.12)  

To illustrate this method, consider the following example  

 

Example (1.3) 

  Consider the one-dimensional homogeneous Laplace equation: 
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the homogenous Neumann condition: 
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and the homogeneous nonlocal condition: 
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is the exact solution of the above  nonlocal problem.  

 

 

1.3 The Eigenfunction Expansion Method for Solving Partial 

Differential Equations with Nonlocal Conditions:- 

It is known that the eigenfunction expansion method is a technique for 

finding the solution of special types of linear partial differential equations as an 

infinite sum of eigenfunctions. These eigenfunctions are found by solving what 

is known as an eigenvalue problem  corresponding to the original problem, [12, 

pp64]. 

It is used to solve the initial-boundary-value problem and applied to 

problems where the partial differential equation is linear and nonhomogeneous 

and the boundary conditions are linear and homogeneous,  [12, pp70]. 

In this section we use the eigenfunction expansion method for solving 

special types of linear nonhomogeneous partial differential equations together 

with nonlocal conditions.  

To do this, consider the initial-boundary value problem that consists of 

the nonhomogenous one-dimensional heat equation: 
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together with the initial condition given by equation (1.2), the Neumann 

condition given by equation (1.3)  and the nonlocal condition given by equation 

(1.4). 

It is assumed that the compatibility conditions for this problem are 

satisfied. The basic idea of the eigenfunction expansion method is to decompose 
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where  are the eigenfunctions of the Sturm-Liouville system we get when 

solving the associated homogeneous problem to the original- problem by using 

the separation of variables to get:  
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By using the orthogonality condition given by equation (1.7), the above equation 

one can have: 
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On the other hand, it is easy to check that this solution is automatically 

satisfy the Neumann condition given by equation (1.3) and the nonlocal 

condition (1.4). In this case the initial condition (1.2) become:    
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 By using the orthogonality condition given by equation (1.7), the above two 

equations become: 
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is the desired solution of the original problem. 

 

 To illustrate this method, consider the following example:  

 

 Example (1.4) 

Consider the nonhomogeneous one-dimensional heat equation: 
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is the solution of the above nonlocal problem.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

Chapter Two  
The Variational 

Iteration Method for 
Solving Partial 

Differential Equations 
with Nonlocal   

Conditions 
 
 
 
 
 
 
 
 
 
 
 



2.1   Introduction  

The variational iteration method, which is a modified general Lagrange 

multiplier has been shown to solve effectively, easily, and accurately a large 

class of linear and nonlinear problems with approximation converging rapidly to 

accurate solutions, [20]. 

[15] recently introduced variational iteration method which gives rapidly 

convergent successive approximations of the exact solution if such a solution 

exists. This method has proved successful in deriving analytical solutions of 

linear and nonlinear differential equations. In their paper, Jafari, Hossinzadeh 

and Salehpoor solved Gas Dynamics Equation using variational iteration 

method, [20]. Variational iteration method was used to solve some types of 

Volterra's integro-differential equations[1]. 

 The aim of this chapter is to use the  variational iteration method for 

solving some types of the one-dimensional linear nonhomogeneous partial 

differential equations.    

This chapter consists of six sections. 

In section two, we give the iteration formula that described the variatianal 

iteration method.  

In section three, we solve the one-dimensional nonhomogeneous heat  

equation with nonlocal conditions via the variational iteration method. The 

convergence of this method is discussed. 

In section four, we give  the solutions of one dimensional 

nonhomogeneous heat equation with nonhomogeneous nonlocal condition via 

the variational iteration method and  its convergence. 

 In sections five and six e, we use the variational iteration method to solve 

the one dimensional wave equation with homogenous and nonhomogeneous 

nonlocal conditions respectively. 

 



2.2   The Variational Iteration Method, [27]  

To illustrate the basic idea of this technique, we consider the following 

general nonlinear equation:  
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where  is the initial approximation to the solution of equation (2.1).  0u

 

 

 

2.3   The Variational Iteration Method for Solving Heat Equation 

with Homogeneous Nonlocal Conditions   

 In this section, we use the variatianal iteration method for solving the one-

dimensional nonhomogeneous heat equation: 
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together with the initial condition 
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 where   is a nonzero constant, is a known function of f x  and t , and r  is a 

given function of x  that must satisfy the following compatibility conditions 
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 In order to use the variatianal iteration method to solve such type of 

nonlocal problems one must rewrite equation (2.4) as 
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 where   is the Lagrange multiplier. Thus by taking the variation of the above 

equation one can have:  
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The stationary conditions will be: 
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Therefore  is the initial approximation of the solution of equation 

(2.4) that satisfy the initial condition, the Neumann condition and the nonlocal 
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is the solution of the nonlocal problem given by equations (2.4)-(2.7). 

Next, to show the convergence of the variational iteration method for 

solving the nonlocal problem given by equations (2.4)-(2.7), we gives the 
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Theorem (2.1): 
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By continuing in this manner one can have: 
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To illustrate this method, consider the following example 

 

Example (2.1): 

Consider the one-dimensional nonhomogeneous heat equation:  
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It is easy to check  that the compatibility conditions are satisfied. 

To solve this example by using the variational iteration method, we 

consider the iteration formula given by equation (2.10):  
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is the exact solution of the above nonlocal problem. 

 

 

Example (2.2): 

Consider the one-dimensional nonhomogeneous heat equation:  
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To solve This example by using the variational iteration method, we 
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is the exact solution of the above nonlocal problem. 

 

2.4  The Variational Iteration Method for Solving Heat Equation 

with Nonhomogeneous Nonlocal condition:  

In this section we use the variatianal iteration method foe solving the one 

dimensional nonhomogeneous heat equation:  
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together with the initial condition: 
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and the nonhomogeneous nonlocal condition: 
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and homogeneous nonlocal condition. To do this, we use the transformation that 
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Then the nonlocal problem given by equations (2.11)-(2.14) reduces to the 

nonlocal problem that consists of the nonhomogeneous one-dimensional heat 

equation:  
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In this case, equation (2.10) takes the form: 
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By continuing in this manner one can get: 
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 To illustrate this method, consider the following example 

  

 

 

 

Example (2.3): 

Consider the one-dimensional nonhomogeneous heat equation:  
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This example can be solved by using the variational iteration method. To do 

this, we transform the above nonlocal problem with nonhomogeneous Neumann 

condition and nonlocal condition to an equivalence one with homogeneous 

Neumann condition and nonlocal condition by using the transformation given by 

equation (2.15) to obtain the following  one dimensional heat equation  
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Next, consider the iteration formula given by equation(2.20). 
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is the exact solution of the above  nonlocal problem. 
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Example (2.4): 

Consider the one-dimensional nonhomogeneous heat equation:  
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This example can be solved by using variational iteration method. To do this, we 

transform the above problem with nonhomogeneous Neumann and nonlocal 

conditions to an equivalence one with homogeneous Neumann and nonlocal 

conditions by using the transform given by equation (2.15) to give the following 

equation:  
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By continuing in this manner one can get: 
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is the exact solution of the above  nonlocal problem. 

 

 

2.5  The Variational Iteration Method for Solving Wave Equation 

with Homogeneous Nonlocal Condition 

In this section, we use the variational iteration method for solving the one-

dimensional nonhomogeneous wave equation:  
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where   is a nonzero constant,  is known function of f x ,  and t r , p are given 

functions of x  that must satisfy the following compatible conditions: 
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In order to use the variational iteration method to solve such type of nonlocal 
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 where   is the Lagrange multiplier. Thus by taking the variation of the above 

equation one can have:  
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The stationary conditions will be: 
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The solution of the above differential equation is 
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where A  and B  are arbitrary constants. To find the value of A  and B substitute 
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By substituting   into equation (2.3) one can obtain the following iteration 
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Therefore  satisfy the initial condition, the Neumann condition and the 

nonlocal condition given by equation (2.22)-(2.25). 
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Then by setting  into equation (2.30) one can have: 0i



   
t

dssxfxpxrtstxpxrtxu
0

22
1 ),()()()()(),(                        (2.30-a) 

 
tt

dssxsfdssxftxptxrttxptxrtxpxr
00

3
2

223
2

2
2

),(),()(
2

)()(
3

)(
2

)()(
  

  By setting  and substituting of equation (2.30-a) in equation (2.30), 

one can get . By continuing in this manner one can have: 
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is the solution of the nonlocal problem given by equations (2.21)-(2.25). 

 

To illustrate this method, consider the following example: 

Example (2.5): 

Consider the one dimensional nonhomogeneous wave equation:  
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and the homogenous nonlocal condition: 
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It is easy to check  that the compatibility conditions are satisfied. 

To solve this example by using the variational iteration method, we 

consider the iteration formula given by equation (2.30):  
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By continuing in this manner one can get: 
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is the exact solution of the above nonlocal problem. 

 

 

 

 

 

 

 

 

 

2.6  The Variational Iteration Method for Solving Wave Equation 

with Nonhomogeneous Nonlocal Condition 

In this section, we use the variational iteration method for solving the one-

dimensional nonhomogeneous wave equation:  
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together with the initial conditions  
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the nonhomogeneous Neumann condition  

 Ttt
x

txu

x








0),(
),(

0

                   (2.34)  

and the nonhomogeneous nonlocal condition  
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where   is a nonzero constant,  a known function of f x ,  and t r , p ,  ,   are 
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In order to use the variational iteration method to solve such type of nonlocal 

problem, we first transform this nonlocal problem into other nonlocal problem, 

but with homogenous Neumann condition and homogeneous nonlocal condition. 

To do this we use the transformation given by equation (2.15). then   
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Therefore the nonlocal problem given by equations (2.31)-(2.35) is transformed 

to the one-dimensional nonhomogeneous wave equation: 
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together with the initial conditions  
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the homogeneous Neumann condition  
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Therefore  satisfy the initial approximation to the solution of the differential 

equation(2.36) that satisfies the initial conditions, the Neumann condition and 

the nonlocal condition given by equation (2.37)-(2.40). 
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Therefore  by substituting  into the iterative formula (2.41) one can have: 0i

dssxg
x

sxv

s

sxv
tstxvtxv

t

 


















0
2

0
2

2
2

0
2

01 ),(
),(),(

)(),(),(   

                   
t

dssxgsxqxqtstxqxq
0

21
2

21 ),()()()()( 

          

   









t

dssxgtsxq
t

xqt
t

xq
t

xqtxqxq
0

2

3
2

1
22

3

2
2

2

1
2

21 ),()(
2

)(
3

)(
2

)()()(   

   









t

dssxgts
t

xq
t

xqtxqxq
0

3

2

2

1
2

21 ),(
6

)(
2

)()()(     

By setting  in equation (2.41) and by substituting in it, one can get 

. By continuing in this manner one can get: 
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is the solution of the nonlocal problem given by equations (2.36)-(2.40). 

Therefore  
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is the solution of the original nonlocal problem. 



 

To illustrate this method, consider the following example: 

Example (2.5): 

Consider the one dimensional nonhomogeneous wave equation:  
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together with initial condition: 

  10,1ln)0,(  xxxxu                                                                  (2.43) 

10,
),(

0








xx
t

txu

t

                     (2.44) 

The nonhomogeneous Neumann condition:  
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and the nonhomogeneous nonlocal condition: 
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In this example, we have  
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This implies that the compatibility conditions are satisfied. 

 To solve the example by variational iteration method, we use the 

transformation: 
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The homogeneous Neumann condition:  
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is the exact solution of the nonlocal problem given by equations (2.47)-(2.51). 
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Chapter Three 
 Real Life Application 
For Nonlocal Problems 

Arising in 
Thermoelasticity  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.1   Introduction 

In recent years, problems with integral conditions have received an 

increasing attention. The physical significance of integral conditions (mean, 

total flux, total energy, total mass, moments,…) has served as a fundamental 

reason for the interest carried to this type of problem [25]. 

The aim of this chapter is to solve the real applications for nonlocal 

problem arising thermoelasticity and use the separation of the variables, the 

eigenfunction expansion method and the variational iteration  method for 

solving such types of nonlocal problems. 

This chapter consists of five sections 

In section two, we give the mathematical modeling of  the 

thermoelasticity problem. 

In section three, we use the separation of variables to solve special types 

of homogenous thermoelasticity problem. 

In section four, we use the eigenfunction expansion method to solve 

special types of nonhomogeneous nonlocal problems.  

In section five, we use the variational iteration method to solve a nonlocal 

problems arising in thermoelasticity. 

 

 

 

 

 

 

 

 



3.2 The Mathematical Modeling of the thermoelasticity Problem, 

[6]: 

In this section we describe the mathematical modeling for a 

thermoelasticity rod problem. Let us consider a rod 10  x , the temperature 

 and the transverse displacement ),( txvv  ),( txzz  . The thermoelasticity  rod 

problem can be described by the coupled partial differential equations  
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where   is the thermal conductivity,  is the specific heat at constant strain, k   

is the flexural rigidity,   is a measure of the cross-coupling between thermal 

and mechanical efforts,  is a uniform reference temperature. 0v

If we suppose that the initial temperature of the rod  is , and the initial 

displacement is ; the ends 
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Moreover if we assume that the average temperature in the rod 10  x  is 

equal to  That is  ).(1 tg
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and the difference between the heat exchange of the atmosphere on the  end 

 and the temperature on the end 0x 1x  is equal to , then by using 

Newton's law one can have: 

)(2 tg

)(),1(),0(
),(

2
0

tgtvtv
x

txv

x








                                                            (3.7) 



We reformulate the problem given by equation (3.1)-(3.7) into an 

equivalent form where the coupled partial differential equations (3.1)-(3.2) is 

reduced to one partial differential  equation. To do this  we  introduce a new 

unknown function  defined as follows: u
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where u  is the entropy. Then 
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 By using equation (3.2), (3.8)-(3.10), one can get:  
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Therefore, the entropy  is a solution of the heat equation: u
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To deduce the initial condition on the entropy u , we use the conditions given by 

equations (3.3)-(3.4) to get: 
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To deduce the first boundary condition on the entropy u , we integrate u  
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By using equation (3.5)-(3.6) one can have:  
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which is the average entropy. To conclude the second boundary condition, we 

multiply equation (3.9) by the weight )1( x  and we integrate the result over  1,0  
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which is the weight average entropy. Then, instead of searching for a pair of 

function , a solution of the problem given by equation (3.1)-(3.7), is made 

by searching for the function u , solution of problem given by equation (3.10)-

(3.13), then the solution will be 

),( zv
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3.3  The Separation of Variables for Solving A Nonlocal  Problem 

Arising in Thermoelasticity:    

In this section  we try to use the separation of variables to  solve special 

types of  the  nonlocal problems arising in thermoelasticity problem. To do this, 

consider the one-dimensional homogeneous heat equation 
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together with the initial condition:  
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conditions: 
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By using the separation of variables, the solution of the partial differential  

equation (3.17) can be expressed as: 
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where ,, BA  are arbitrary constants. Then this solution must satisfy the nonlocal 

conditions given by equations (3.19)-(3.20). 
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These equations becomes: 

  0sincos1   BA                                                                           (3.22) 

    01cossincossin   BA                                                (3.23) 

Assume that 0cos1    

                              BA



cos1

sin


  

By substituting the above  equation into equation (3.23) one can get 
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each one satisfy the partial differential equation (3.17)  and the nonlocal 
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With the initial condition (3.18), one can used the orthogonality condition  

given by (1.7) to get 
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To illustrate this method, consider the following example  

Example (3.1) 

Consider the one-dimensional homogenous heat equation: 
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together with the initial condition:  
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and the homogenous nonlocal  conditions: 
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Therefore the solution of this nonlocal problem is  
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Thus the solution of the above nonlocal problems is: 
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3.4 The Eigenfunction Expansion Method for Solving  Nonlocal 

Problems Arising in Thermoeslasticty Problems:  

In this section, we try to use  the eigenfunction expansion method as a 

technique for solving special types of nonlocal problems arising in 

thermoelasticity. To do this, consider the one dimensional homogeneous  heat 

equation 
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together with the initial condition:  
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with the nonhomogeneous nonlocal  conditions: 
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It is assumed  that the compatibility conditions are satisfied. That is 
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 It is convenient at the beginning to reduce the nonlocal problem given by 

equation by equations (3.25)-(3.28) with nonhomogeneous nonlocal conditions 

given by equations (3.27)-(3.28) to an equivalent  one with homogeneous 

nonlocal conditions. For this purpose, we introduce a new unknown function  

by setting : 
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together with the initial condition  
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and the homogeneous non-local conditions: 
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Hence instead of looking for the function , we search for the function . The 

solution of the nonlocal problem given by equations (3.25)-(3.28) will be simply 

given by the formula: 
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g  into the form  The basic idea of the eigenfunction  method is to decompose 
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where  are the eigenvectors of the Sturm-Lioville problem  we get when 

solving the associated homogeneous problem to the original- problem by using 

the separation of variables.  
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By using the orthogonality condition given by equation (1.7) and the above 

equation one can have: 
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into equation (3.29) one can get the following ordinary differential equation:  
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On the other hand, it is easy to check that this solution v  is automatically satisfy 

the nonlocal conditions given by equations (3.31)-(3.32). In this case, the initial 

condition given by equation (3.30) becomes:    
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 By using the orthogonality condition given by equation (1.7) and the above two 
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 is the desired solution of the nonlocal problem  given by equations  (3.25)-

(3.28). 

 

 

 

3.5 The  Variational Iteration Method for Solving A Nonlocal 

Problem Arising in Thermoelasticity   

In this section we use the variational iteration method to solve the 

nonlocal problem arising in thermoelasticity. 

To do this consider the one-dimensional nonhomogeneous heat equation: 
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together with initial condition  

10),()0,( 0  xxuxu                                                                        (3.33) 

and the homogeneous nonlocal conditions: 
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As mentioned above, this nonlocal problem is transformed to an 

equivalent one with homogeneous nonlocal conditions by using the 

transformation :     



                             Ttxtxztxutxv  0,10),,(),(),(  

where z is defined previously.  

Then the function  is seen to be the solution of the partial differential equation : v

Ttxtxg
x

txv

t

txv









0,10),,(

),(),(
2

2

                                  (3.36) 

together with initial condition  
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and the homogeneous nonlocal conditions: 
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According to the variational iteration method, we consider the correction 

functional in  direction for equation (3.36) in the following form: t
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where   is the generalized  Lagrange multiplier. Thus by taking the variation of 

above equation one can have:  
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Thus by using the integration by part, the above equation 

becomes:

dssxg
x

sxv
ssxvssxvstxvtxv

t
i

itsiii  


















0

2

2

1 ),(
),(~

)(),()(),()(),(),(   



                  


















t
i

iits
dssxg

x

sxv
ssxvssxvs

0
2

2

),(
),(~

)(),()(),()(1   

The stationary condition would be as follows: 
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Then, any initial condition  given by equation (3.37) must satisfy the 

homogeneous nonlocal conditions (3.38)-(3.39) help to starting with. Then by 

substituting   into equation (3.41) one can get: 
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To illustrate this method, consider the following example: 

 Example (3.2) 

Consider the following one-dimensional nonhomogeneous heat equation: 

10,10,22
),(),(

2

2










txtx
x

txu

t

txu                                   (3.42) 

together with the initial condition:  
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That is the compatibility conditions are satisfied. To solve such problem by 

using the variational iteration method, we must transform it into an equivalent 

problem  given by equations (3.36)-(3.39) with homogeneous nonlocal 

conditions. 

In this case: 
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Therefore the nonlocal problem given by equation (3.42)-(3.45) becomes: 
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together with the initial condition: 
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which is the exact solution for the original nonlocal problem. 

 

 

Example (3.3) 

Consider the following one-dimensional nonhomogeneous heat equation: 
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together with the initial condition:  
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and the nonhomogeneous nonlocal conditions: 
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That is the compatibility conditions are satisfied. To solve such problem by 

using the variational iteration method, we must transform it into an equivalent 

problem  given by equations (3.36)-(3.39) with homogeneous nonlocal 

conditions. 
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By continuing in this manner one can get 
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Which is the exact solution of the original  problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Conclusions    

 
  Form this present thesis, we can conclude the following: 

1. The separation of variables and the eigenfunction expansion method gave 

the solvability for special types of  nonlocal problems. 

2. In the application of the varaitional iterational method, it is noted that 

every initial approximation to the solution of the nonlocal problems must 

satisfy the local and nonlocal conditions that associated with these 

problems. 

3. In a similar manner, one can easily use the varaitional iterational method 

to solve the one-dimensional nonhomogeneous Laplace equation with 

nonhomogeneous nonlocal conditions.  

 

 

 

 

 

 

 

 

 

 

 



 

Recommendations for Future Work 

 

 

 The variational iterational method is a provided methods, from the present 

study, we can recommend the following problems as future works: 

1. Describe other types of nonlocal conditions uses series type.  

2. Use the varaitional iterational method for solving the nonlinear nonlocal 

problems. 

3. Study the multi-dimensional nonlocal problems and use the separation of 

variables, the eigenfunction expansion method and the varaitional 

iterational method to solve them 

4. Devote the varaitional iterational method as a technique for solving 

partial integro-differential equations with nonlocal conditions.  

 

5.  The main advantage of the varaitional iterational method is that it can be 

applied directly for all types of nonlinear partial differential and integral 

equations, homogeneous or nonhomogeneous, with constant or variable 

coefficients   
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    المستخلص

 
    

ھѧѧذا العمѧѧل يخѧѧتص بالمѧѧسائل الѧѧلا محليѧѧة حيѧѧث يمكѧѧن تقѧѧسيم ھدفѧѧه الأساسѧѧي الѧѧى ثلاثѧѧة   

  :والتي يمكن ادراجھا كالتالي، اقسام

والمسماة بطريقة فصل المتغيѧرات وطريقѧة توسѧيع الدالѧة ، تقديم بعض الطرق التحليلة: اولاً 

اضلية الجزئيѧة الخطيѧة مѧع الѧشروط المستخدمة لحل بعض أنواع المعادلات التف، الذاتية

  . اللامحلية

استخدام طريقѧة التكѧرار التغѧايري لحѧل بعѧض انѧواع خاصѧة مѧن المعѧادلات التفاضѧلية : ًثانيا 

  .الجزئية ذات البعد الواحد مع الشروط اللامحلية

عرض بعض التطبيقات االلامحلية والتي تظھر في مشكلة المرونة الحراريѧة باسѧتخدام : ًثالثا 

  . رق فصل المتغيرات وتوسيع الدالة الذاتية والتكرار التغايري مع حلولھاط
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