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Summary

The concept of g-deformation has found many important applications in a variety
of fields in physics, such as quantum optics, atomic physics, solid state physics,
nuclear physics and cosmology. This has motivated its extension to many
well-established other concepts such as coherent states well-known in quantum
optics. On the other hand, the interpretation of the physical meaning of the

g-deformation remains an outstanding problem.

The present work is an attempt to apply the concept of g-deformed coherent states
to solve this interpretation problem. The g-deformed 1-D quantum harmonic
oscillator is used as a model for the application of the methodology of using
g-deformed coherent states to solve this problem. This is achieved by first
deriving the classical Liouville equation for the g-deformed 1-D classical
harmonic oscillator in the undeformed and deformed oscillator phase spaces.
Then, this equation is solved by using the method of characteristics which gives
the classical probability distribution function for this oscillator in phase space.
The behavior of this function is then investigated by using a computer
visualization method based on a computer program constructed in Mathematica®

language.

On the quantum level, the Heisenberg equation of motion for the density operator
corresponding to this 1-D quantum harmonic oscillator is expressed in the present
work in terms of the standard quasiprobability distribution functions, again in the
deformed and undeformed phase spaces. This helps to derive the quantum
Liouville equations for this g-deformed oscillator in these phase spaces. The
classical limits of these resulting Liouville equations are then approached by
extending a standard procedure based on the non-deformed coherent states to the
g-deformed case. In addition to the application of the standard g-deformed
coherent states, a novel approach based on g-deformed coherent states due to Arik

and Coon is also employed in this investigation.



Summary

The results of detailed mathematical derivations in this process of approaching
the classical limit reveal that this limit is statistical in nature. This is similar to the
case of the ordinary undeformed oscillator which has been proved previously.
They also reveal, together with the complementary computer visualizations, more
information about the physical meaning of the g-deformation. This includes the
observations that the gq-deformed 1-D oscillator can be interpreted as a nonlinear
oscillator where the nonlinearity parameter depends on #. Also, the behavior of
the classical limits of the quantum Liouville equations for this oscillator is
observed to show whorl shapes that can be contrasted with their classical analogs.
This whorl shape behavior can be considered as a phenomenon connected with

g-deformation in general; the anharmonic oscillator being a special case.

Some connection with phase space having a non-commutative geometry,
resulting from g-deformation, also finds evidence in some of the results presented

in this thesis.
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Chapter One Introduction

‘ Introduction I

1.1 The g-Deformation

The notion of deformation is inherent in physics, where quantum mechanics can
be considered as a deformation of Newtonian mechanics with deformation
parameter 7 and, hence, in the limit 2 —0, quantum mechanics reduces to
classical mechanics. Similarly, special relativity is the deformation of Newtonian

mechanics with deformation parameter v/c and such that, in the limit v/c—0

reduces to Newtonian mechanics.

From these physical examples, one can give the following mathematical
definition for g-deformation which is a g-analog theorem [1-3], where the identity
expression is a generalization involving a new parameter, that returns the original

theorem, in the limit as q-—>1[1-3]. The history of g-calculus and

g-hypergeometric functions dates back to the 18" century, where Euler
(1707-1783), was the first to introduce the g-deformation parameter in his
Introduction [1]. The formal power series was introduced by Gudermann
(1798-1852) and Weierstrass (1815-1897) [1]. The basic hypergeometric series
was introduced in the 19™ century, specifically in 1846 by the German
mathematician Heine [1, 2]. In the years 1909 and 1910, Jackson [4, 5] introduced
the first explicit attempt to join the g-deformation with differential equations to
obtain what is called the g-difference equations. Jackson is also known for the
invention of the g-derivative (Jackson Derivative JD) [1, 3, 5, 6] and Jackson
Integral [1, 3].

The applications of g-deformation in physics were first strongly connected with

the development of the subject of quantum groups and then expanded to cover

2



Chapter One Introduction

many fields in physics. In the period 1945-1950, Tamm and Dancoff [7, 8]
introduced what is called Tamm-Dancoff deformed algebra. Deformed algebras
are applied in quantum field theory [8]. Many years later, in 1976, Arik and Coon

[9] introduced a deformed oscillator algebra in the Hilbert space Hq , Where ( is

a real parameter. The deformed algebra with new generators was introduced by
Feinsilver in 1987 [10, 11]. In 1989, the g-deformed oscillator algebra was
introduced independently by Biedenharn and Macfarlane [12,13]; this
g-deformed oscillator algebra was derived by adopting new definitions for the
g-deformed creation and annihilation operators. Later on, specifically in the years
2002 and 2003, Quesne’s oscillator algebra [14, 15] was introduced, where a new
family of g-deformed coherent states were constructed. In this context, one can
refer the reader to refs. [16-18].

The concept of g-deformation has found its way into real physics applications,
such as the g-deformed fermions and g-deformation in thermostatics and
statistical physics [19-22] and phase-diffusion of the g-deformed oscillator [23].
Other applications are the g-deformation of the Heisenberg algebra, Heisenberg
equation of motion, uncertainty relation and Coulomb problem for g-Hydrogen
atom [24-27]. Among these applications of the g-deformation in physics, one
singles out an important application that arises as a result of attempts by many
researchers [28-37] to apply the g-deformation and its generalization

(f-deformation) to the well-known concept of coherent states [14,15,38].

1.2 Coherent States

In 1926, Schrodinger [39] discovered the “non-spreading wavepackets” of the
harmonic oscillator. The original definition introduced by Schrédinger for these
packets is that they have minimum-uncertainty product and correspond to the

classical trajectory in phase space. Many years later, and specifically in 1963,
3



Chapter One Introduction

Glauber [40] called the Schrddinger [39] non-spreading wavepackets the
“Coherent States” for the first time, and defined them as the eigenstates of the
boson annihilation operator. The P-representation of the coherent states was
introduced in 1963 by Glauber [40] and Sudarshan [41] independently. Other
works by Glauber appeared in 1963 [42, 43]. The coherent states were always
considered as the most classical ones among the quantum states. This notion was
introduced in 1968 by Carruthers and Nieto [44]. Also, Glauber introduced more
detailed clarifications of these states in 1969 [45, 46]. Thus, after the work of
Glauber [40, 42] and Sudarshan [41], the coherent states became widely known
and intensively used by many physicists where these states find many
applications in the fields of physics and mathematical physics from solid state
physics to cosmology and they represent the core of quantum optics. The work of
Dodonov [47] represents an excellent review about coherent states, their types
and applications. It is worth mentioning here that another technique to utilize the
Glauber P-representation [40] was invented by Fan [48]. This technique is called

integration within ordered product of operators (IWOP).

1.3 The f-Deformed and g-Deformed Coherent States and Some of Their
Applications
A dominant direction in mathematical physics in the last decades of the 20"

century was related to various deformations of the harmonic oscillator canonical

commutation relation,[é,éqzl, where aand a'are the well-known

annihilation and creation operators respectively [49, 50, 51]. The corresponding

deformed bosonic operators éq and éa were introduced, where the subscript “q”

refers to the “q-deformation”. However, the first study to obtain the eigenstates

of the operatoréa éq was performed by Iwata [52] in 1951. Many years later,

specifically in 1976, Arik and Coon [9], and Kuryskin [53] considered a

4



Chapter One Introduction

generalization of the work of lwata [52] to involve the case of several dimensions
in order to obtain the g-deformed coherent states. A realization of the

g-commutation relation,[éq ,éa } =1, was achieved by Jannussis et al [54] in
q

terms of the usual bosonic operators a and af by means of the nonlinear

A

transformation aq

operator function of N . Biedenharn and Macfarlane [12, 13] in 1989 introduced

:éf(N) , whereN =4a"a , and f(N) represent a real

independently a different type of g-deformed coherent states. The squeezing
properties of these states were studied in 1990 and 1991 by Solomon and Katriel
[55-56]. An excellent review of the f-deformed and g-deformed coherent states
can be found in refs. [38, 47].

Thus, g-deformation has many applications in physics, where the g-deformed
coherent states found their way in the field of quantum optics after the famous
work of Biedenharn and Macfarlane [12, 13]. Also, the non-classical states are
applied in different areas of physics, such as high energy physics, cosmology,
condensed matter physics, molecular physics, and Bose-Einstein condensation
[47]. The recent literature on the subject of the g-deformed coherent states and
their applications in physics includes g-analogs of squeezed states, some of their
non-classical properties [57], and g-deformed entangled states introduced on the
basis of the IWOP-technique [58]. Moreover, the g-deformation can even be
useful in actual real life situations where in 2013, Capolupo et al. [59] studied the
benefit of using g-deformed coherent states to study filtered water with fractal
self-similar properties.

It is worth mentioning that g-deformed coherent states are a special type of more
generalized coherent states called Nonlinear Coherent States (NLCSs). These
states, defined in the years 1996 and 1997 by Filho et al., and Man’ko et al.
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[60,61] as the eigenstate of the f-deformed boson annihilation operator, represent

the generalization of the g-deformed boson annihilation operator éq [60,61].

The NLCSs are sometimes called the f-deformed coherent states in the work of
Man’ko et al. [61] on the f-oscillator. However, the nonlinear coherent states have
attracted much attention in recent years [62-74], mostly because they exhibit
non-classical properties of the radiation field, such as squeezing, sub-Poissonian

photon statistics and photon anti-bunching [62-74].

1.4 Interpretation of the Classical Limit of Quantum Systems

Since the formulation of the quantum theory by Schrodinger in 1926 [49, 50],
many attempts were performed to interpret the classical limit of the quantum
systems. One of these attempts was implemented by Schrédinger to produce what
was called later on the coherent states [47] for the harmonic oscillator. So, this
attempt can be considered as the first attempt to approach the classical limit where
these coherent states have a minimum uncertainty product. Another attempt was
introduced by Dirac [75] in 1927, when he considered classical mechanics as the
limiting case of quantum mechanics when & — 0. This limit implies that the time
dependent Schrodinger equation [49, 50, 51] for a single particle in an external
field reduces to the well-known Newton’s equation of motion. But this limit is
still a controversial problem and represents one of the problems still facing the

interpretation of quantum mechanics.

However, Ghosh et al. [76] proved in 1977 that the classical limit of the quantum
harmonic oscillator is statistical in nature, where the fluid dynamical equations
belonging to what is called the single particle Schrodinger fluid have been
obtained. These fluid equations reveal much of the physics involved in the
classical limit of quantum systems and shed light on the outstanding problem of

the interpretation of quantum mechanics. Another example of the interpretation

6
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of quantum systems by using the classical limit was introduced in 1986 by
Milburn [77] when he interpreted the quantum anharmonic oscillator by using the
time—evolution equation for the Husimi function (quasiprobability distribution
function) [77] in terms of undeformed phase space [77]. A simulation using the
solution of this equation was obtained by him to reveal the nature of the quantum
anharmonic oscillator in phase space. The behavior of the Husimi function
exhibited a whorl structure which becomes increasingly more convoluted on a
finer and finer scale as t — . Also, Habeeb in 1987 [78] interpreted the quantum
damped oscillator system in the light of the work of Ghosh [76]. In this work the
interpretation of such system was deduced from the conservative form of the
obtained fluid-dynamical equations, where it was found that the classical limit for
this quantum oscillator cannot be considered as the quantum analog of the
classical damped oscillator. In 2009, Jafarpour and Tahamtan [79] obtained the
classical limit for the octic anharmonic oscillator from the expectation value of
the eigenenergy and eigenstate for the Rayleigh-Schrédinger perturbation theory.
The classical limit for this oscillator revealed that there is a frequency shift

proportional to the sixth power of the amplitude of this system.

Finally, it should be stated that the statistical description of microscopic systems
Is usually obtained by employing the quasiprobabilty distribution functions
[45, 76, 80-86] in phase space. The first attempts in this direction were introduced
by Wigner in 1932 [45, 80-86,107] to study the quantum corrections to classical
statistical mechanics. His particular type of distribution function has become to
be known as the Wigner distribution function [45, 80-86,107]. This function is
normalized but can have a negative value [45, 80-86,107]. It has found many
applications, primarily in statistical mechanics, and also in areas such as quantum
optics. Another type of quasiprobability distribution function is the well-known
P-representation of Glauber and Sudarshan [40, 41], which, like the Wigner

function, can be well defined or singular [45], and has also found extensive use.
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Also, the Q-function (Husimi function) was introduced in 1940 by Husimi
[45, 80-86,107], which is a normalized function and has always positive values,

and represents a third type of quasiprobability distribution functions.

1.5 Physical Interpretation of g-Deformation

There have been many attempts to reveal the physical meaning and interpretation
of g-deformation. In this context, the q-deformed quantum harmonic oscillator
has been used as a good example of this situation. In 1991, Buzek [87] evaluated
the time-evolution of the mean values of the g (position) and the p (momentum)
for the g-oscillator in order to obtain the periodic classical behavior, where the
non- periodic behavior of this oscillator was interpreted as the interaction of the
guantum oscillator with another system. In 1992, Shabanov [88] studied also the
physical meaning and interpretation of the same oscillator used by Buzek but in
a different manner. Shabanov obtained the g-deformed variables via the standard
Heisenberg commutation relations, and defined the g-deformation parameter,q,

“h /2
to be a function of /2 and some dimensional parameter, quhere g=e / a

To interpret this oscillator, he applied the classical limit #—0, q—1 for the

canonical variables to arrive at the classical theory. The second attempt by
Shabanov [89] was more rigorous than the first attempt, where he introduced in
1993 the path integral in his approach. Hence, the classical theory was obtained
by applying the semi classical approximation. It turns out that the g-oscillator can
be interpreted as a particle with a friction force acting on the particle that is
proportional to its velocity. In the same year, Chaichian and Demichev [90]
constructed a g-deformed path integral and applied the quasi-classical limit with
some specific conditions to obtain the classical equation of motion. Also, Man’ko
et al. [91] studied both the quantum and classical g-oscillator via the Dirac

dequantization method to construct the classical g-oscillator from the
8
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corresponding quantum g-oscillator and interpret the g-oscillator as a classical
oscillator with a special type of nonlinearity, where the frequency of the oscillator
Is a function of the energy which is a constant of the motion. Man’ko also
published further works in the same context in 1997 and 1998 [61, 92] in which
he introduced the concept of the f-oscillator. Gruver [93] studied the dynamical
properties of the g-deformed oscillator and found that the g-oscillator is an
anharmonic oscillator with a g-deformation parameter which can be interpreted
as a measure of anharmonicity. Many years later, and specifically in 2007, Jafarov
et al. [94] introduced a different technique to understand the g-deformation for
the quantum harmonic oscillator by studying the behavior of the density plot for
both Wigner and Husimi quasiprobability distribution functions for this
oscillator. Another attempt to interpret g-deformation was made in the year 2014
where Batouli and El Baz [95] studied the g-deformation for the quantum
harmonic oscillator in a way similar to the work of Buzek [87] but with some
modifications. These modifications led to a different interpretation of the
g-deformation of this oscillator, where it was found that the g-deformed quantum
harmonic oscillator is the quantum version of the classical forced oscillator with

a modified g-dependent frequency, such that in the limit g —1 the driving force

disappears.

From another point of view, the g-deformation can be interpreted in terms of
non-commutative quantum mechanics, introduced by Lavagno et al. in 2006
[96], where the meaning of g-deformation was investigated by applying
non-commutative g-calculus. Then, they obtained the generalized g-classical
theory which is defined by means of the g-deformed Poisson bracket. Also,
Eftekharzadeh et al. and Benatti et al. [97-99] studied in the period 2005-2014 the
interpretation of the non-commutative quantum mechanics by applying a special

classical limiting to the non-commutativity.
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Despite all the attempts that were made to interpret g-deformation, there is still a
problem in understanding the physics behind this kind of deformation. This has
motivated the present work which is an attempt to investigate the physical nature
of g-deformation in the quantum oscillator case via the g-deformed coherent
states on the basis of Glauber-Sudarshan P-representation to obtain the
Heisenberg equation of motion (quantum Liouville equation) then approach the
classical limit to recover the classical Liouville equation of the g-deformed

oscillator.

1.6 Aims of the Thesis
The major aims of this thesis are:
1- The derivation of the 1-D classical Liouville equation in undeformed and

deformed phase spaces for g-deformed classical harmonic oscillator.

2- Investigation into the possibility of finding a well-behaved analytical solution
for this equation by using the well-known analytical solution methods to solve
partial differential equations. This solution will produce the probability
distribution function belonging to the g-deformed 1-D classical harmonic

oscillator in phase space.

3- Studying the time-evolution of the probability distribution function to
Investigate its behavior in phase space. This investigation is performed by

writing a computer simulation program in Mathematica®.

4- Generalization of the Glauber-Sudarshan P-representation for the q-deformed
1-D quantum harmonic oscillator in such a way as to handle the g-deformation
problem by overcoming the problem of operators disentanglement in order to

derive the quantum Liouville equation in the undeformed phase space.

10
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5- Employing Zaslavskii’s method [129] to derive the Q -representation for the

guantum Liouville equation of this oscillator in the undeformed phase space

for comparison purposes.

6- Investigation into the possibility of deriving the g-analog of Glauber-
Sudarshan P-representation in the deformed phase space. This permits the
derivation of the P-representation for the quantum Liouville equation of the

g-deformed 1-D quantum harmonic oscillator in this deformed phase space.

7- Investigation into the possibility to obtain the classical limit for the obtained
guantum Liouville equation in order to obtain the corresponding g-deformed

1-D classical Liouville equation.

8- Attempting to solve these equations to obtain the quasiprobability distribution

functions for the gq-deformed harmonic oscillator.

9- Finally, using a technique similar to that used in the classical treatment,
studying the time-evolution of these probability distribution functions in order

to investigate their behavior in phase space.

1.7 Thesis Layout

To achieve the aims stated previously, the rest of the thesis is organized as
follows. Chapter Two is devoted to the introduction of the mathematical
concepts and relations that are relevant to coherent states and the classical limit
of the ordinary harmonic oscillator. Then, in Chapter Three, the concepts of
quantum calculus, including g-numbers, g-deformed elementary functions,
g-derivative as well as the equations governing the g-deformed classical and
guantum harmonic oscillators are given. The g-deformed coherent states and
some of their properties are also introduced in this chapter with some

mathematical details together with the definition of the g-deformed density

11
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operator. Chapter Four is devoted to the construction of the g-deformed
oscillator and its f-deformed generalized version and the derivation of the
classical Liouville equations for these oscillators. A solution for these Liouville
equations and a simulation method is also introduced in this chapter and a
computer visualizing method is presented to investigate these oscillators in phase
space together with a discussion of the obtained results. In Chapter Five, the
g-deformed quantum oscillator is constructed and then its quantum Liouville
equation is derived in terms of the Glauber—Sudarshan quasiprobability
distribution function. Also, the classical limit is investigated for the obtained
guantum Liouville equation along the same lines used in Chapter Four to
investigate the physical meaning of g-deformation. Finally, Chapter Six is

dedicated to the main conclusions and suggestions for future work.
In addition, (8) Appendices are devoted to give the full mathematical

derivations for some relations and mathematical expressions that were used in

this thesis.

12
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Chapter Two Coherent States and the Classical Limit of the Quantum Harmonic Oscillator

Coherent States and the Classical Limit of the Quantum
Harmonic Oscillator

The undeformed simple harmonic oscillator (ordinary simple harmonic
oscillator) (SHO) represents the standard system that is used in physics to
simulate many systems in nature. In this chapter a short review is given about the
undeformed classical and quantum SHO to serve the aim of deriving the time-

evolution equations of motion for both classical and quantum oscillators.

2.1 The Undeformed 1-D Classical Harmonic Oscillator
The Hamiltonian of the 1-D-SHO with mass mand angular frequency w is
defined as [100]

2 2 2
H:/az +ma)7«
2m 2

(2.1)

where ¢ and g represent the classical position and momentum respectively. The

Poisson bracket for any two dynamical variables .4 and Bwith respect to the
classical coordinates (7, ;») in classical phase-space is defined as [100]:

o 2

Therefore, the Poisson bracket {4, } with respect to canonical variables (g, )

is (the subscript 4, » will be dropped from now on):

(r.r)=1 23)
14
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since 4 and g are considered to be independent variables. The independent
variables 4 and g that have Poisson bracket defined in egn. (2.3) are called
canonical variables [100]. One can also define the Hamiltonian in egn. (2.1) in

terms of non-canonical complex independent variables « and «”, where
[77,91,101]:

(2.4)

* maw If*
o = — 2.5
V2h7 J2hmaw (2:9)

The appearance of A in eqgns. (2.4) and (2.5) is to provide a convenient scaling
for various physical quantities even though one is dealing with a classical system

here [77].

The Poisson bracket {a,a*} with respect to canonical variables 4 and g is given

as [101]:

*La*}:—(%) (2.6)

But, since from eqns. (2.4) and (2.5):

g= /% (a+a*) (2.7)

p=—l hm—a)(a—a*) (2.8)

then, substituting egns. (2.7) and (2.8) into egn. (2.1) one obtains [91]:

H(a,a")=hwaa” (2.9)
15
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2.1.1 The Classical Equation of Motion

The equation of motion for the system defined by the Hamiltonian of egn. (2.9)

IS obtained from Hamilton’s equations as [91]:

6={a,H(a,a")| (2.10)

where [91,101]:

{a,H (a,a*)}z{a,a*}-{a,H(a,a*)} , (2.11)

a,a

But since,

{a,H(a,a*)} .=

a,a

(), (M) - (2] (o)

(2.12)
and,
) ),
o * 805*
¢ a (2.13)
50‘* _ oa” -0
oo o oo 0[*
then, substituting egns. (2.13) into egn. (2.12), one obtains:
{a, H (a,a*)} = (M’*&)) (2.14)
a,a ox o

Substituting eqn. (2.9) into eqgn. (2.14) and using the result together with

egn. (2.6) in egn. (2.11), one obtains the Poisson bracket{a, H (a,a*)}. Finally,

substituting the result into egn. (2.10), one obtains:
16
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a=—lwa (2.15)
The solution of eqn. (2.15) is

a(t)=a(0) e ! (2.16)

where «(0)is the amplitude or the value of «(t)at t=0. Similarly, the complex

conjugates of egns. (2.15) and (2.16) are given as:

a =iwa” (2.17)

and,

ot (t) = a* (0) ' @t (2.18)

2.1.2 The Classical Liouville Equation
The classical Liouville equation (or time-evolution equation) in phase space is
given in terms of the Poisson bracket as [100]

0A_

g {H(a.a").Al (2.19)

Letting, A =P (a,a*;t) in eqn. (2.19), this equation becomes:

P (a,a™;t)
ot

={H(a,a*),PC|_(a,a*;t)} (2.20)

where, Po (a,a”;t) represents the classical probability distribution function for

the 1-D SHO in phase-space. But since,

{H (a,a”),Pet (a,a*;t)} = {a,a*} : {H (a,@"),PeL (a,a*;t)}a’a*

(2.21)

and,
17
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{H(a,a*),PCL(a,a*;t)} =

*
a,o

{8H (a,a*)] [8PC|_ (a,a*;t)J ~ (GH (a,a*)] [8PC|_ (a,a*;t)]
oa o oa” da” o o

(2.22)

then, using the Hamiltonian of egn. (2.9), one obtains:

oH (a,a”) hwd
oa o
(2.23)
M —howa
oo™ o

Substituting eqgn. (2.23) in eqgn. (2.22), and using the result in egn. (2.21) together

with the eqgn. (2.6), one obtains the expression for the Poisson bracket

{H (a,a), PCL(a,a*;t)}. Using this result, egn. (2.20) becomes:

OP (a,a™it) . « O 0 *
=—I -a— | R, ,a it 2.24
o w|a " aaa el (a,a7;t) (2.24)

Equation (2.24) represents the classical Liouville equation for the classical

undeformed 1-D SHO in phase space.

2.2 The Uneformed 1-D Quantum Harmonic Oscillator

The undeformed boson operators d and &' are defined in terms of position and

momentum operators ¢ and p respectively, as [49-51]:

1 ) .
d=———(MmMwas+i 4 annihilation operator 2.25
———(mwj+iz) ( perator) (2.25)
AT_ 1 A = A M
' =——(Mw2z—I creation operator 2.26
———(mwg-iz) ( perator) (2.26)

18
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The commutation relations for (é,éT) and (£, )are given as [49-51, 91]:

(4.4 ]=ih (2.27)
[é,éqzl (2.28)
where,
t=9 (2.29)
P =—ihdi (2.30)
7

Therefore, the Hamiltonian operator of the 1-D quantum harmonic oscillator can

be defined in terms of the boson operators as [49-51]:
I—A|=(h—wj(ééT+éTé):hw(éTé+%j:hw(ééT—%j (2.31)

Also, one usually defines the number operator, N, as
N=a'a (2.32)

Hence,
N +1=a4aa’ (2.33)

and in terms of egns. (2.32) and (2.33), the Hamiltonian operator becomes:

H=hw (N %) (2.34)

Then, the expectation value of the Hamiltonian operator can be calculated as [49-51]:

<H>=(n‘ﬁ‘n>:hw(n+%) (2.35)

where the state|n) is n™ excited number state defined as [49-51]:

19
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&)
m=-"L10) :n=012 (2.36)

n)=n+1|n+1) (2.37)

and,

where the state|0> is the vacuum (or ground) state with occupation number n =0.

2.3 Coherent States of the 1-D Quantum Harmonic Oscillator

In quantum systems, one cannot measure the position of a particle and its
momentum precisely at the same time because of the Heisenberg uncertainty
principle. Therefore, the best way to talk about a quantum state that is analogues
to classical motion is a localized state. Such a state is the “Coherent State” [39,
40, 42, 43].

2.3.1 Standard Definitions of Coherent States:

A coherent state|a) can be defined in three different ways as follows:

a) As eigenstate of the boson annihilation operator, or [40,102-108]:

ala)=a|a) (2.38)

where « is the eigenvalue of the annihilation operator & when acting on |a),

which is a complex number since 4 is a non-Hermitian operator.

20
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b) As minimum-uncertainty state (MUS):

According to this definition, it is required that the coherent state|a>satisfies the

minimum-uncertainty relation as [42, 43, 83]:

2
(ag) (Aﬁ)2=% (2.39)

where (A7)2 and (Af')z are defined as [103],

(87) =(#%)- < 7 >2 = (%) (2.40)
and,

(392 =(p2)- () = (h%] (2.41)

and the expectation values are taken with respect to the coherent state \a).

c) As the state generated from the ground state |0) by acting with the

displacement operator [3(05), or [102,104,109]:

la)=D [0) (2.42)

D(a)=e%2 ~* @ (2.43)

It is known that all three definitions of the coherent states|c) can be shown to be

equivalent for the SHO [103].

Also, it can be shown that the coherent state |«) as defined above, can be

expanded in Fock space as [40, 42, 43]:
21
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_‘“\2 © N
|a)=e 2 z?\n (2.44)
n=0
where
o =’ (2.45)

2.3.2 Some Properties of Coherent States:

Coherent states of the SHO have a number of important properties. In this section,
some of these properties that are of relevance to the work in this thesis are
reviewed. For further mathematical details about these properties and other

properties one is referred to refs. [83, 102-110].
(a) The set of coherent states {|a>} Is normalizable with normalization constant

J\r’(\a\z) given as [97,99]:
N(af)=e 2 (2.46)

(b) These coherent states are non-orthogonal states in the sense [102-110]:

(a|)- . (;j( ‘042+ MZ_ 2a*ﬂj 247

or,

2
(a|p)f=e"1* P (2.48)

Hence, fora = [ these states become approximately orthogonal since

la- B* > as (a|f) >0 [102-110].
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(c) The set of coherent states {|a>} resolves the identity:

This means that [83, 102-110]
1.2
~1d =1 2.49
ﬁj a|a>(a| (2.49)

where,

d’a=dada’” (2.50)
In view of eqn. (2.47), the set of coherent states {|a>} forms an overcomplete set

o0
of states, where ' |n)(n|=1 represents the completeness relation for number
n=0

states in Hilbert space.

(d) The expectation value of the Hamiltonian operator H in the coherent state
|) is given as [108-110]:

(H)=(aiH1a)= hw{(“‘ (aTa+ %) ‘a>}=7iw Ua\z +%) (2.51)

(e) The expectation value i of the number operator N in the coherent state|cr) is
given as [102,108-110]:

ﬁ:<N>:<aII\AIIa>:<a|éTé|a>:‘a‘2 (2.52)

(f) The probability 7(n) of measuring n excitations in a coherent state |c) is

Poisson distributed since,
|2n

P (n)=[(ne)* - {—] laf (253)

n!
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Substituting N from eqgn. (2.52) into eqn. (2.53) one gets [102,108-110]:

N
2 n _a
7 (n)=[(n|) =[Q] e " (254)
It is clear that eqn. (2.53) represents a Poissonian distribution [102,108-110].

2.4 The Density Operator
The density operator p is an operator associated with the probability of finding
any quantum system under consideration in a certain state [49, 50]. In the

coherent state representation, this operator can be defined in terms of the weight

function go(s)(a,a*) with ordering parameter, s, as [41, 42, 45, 46]:

,5=Id2a go(s)(a,a*) )] (2.55)

The weight function go(s)(a,a*) represents a quasiprobabilty distribution

function [45, 46]. A quasiprobability distribution is just like a true probability
distribution from which one can calculate the average values. However, it differs
from a true probability in that it can have negative as well as positive values
besides other properties [45, 46, 80, 81, 84].

The values of the ordering parameter,s, and their associated quasiprobability
distribution functions are illustrated in Table (2.1)
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Table (2.1)
Values of the ordering parameter s, their associated types of ordered boson

operators and quasiprobability distribution functions.

type of
type of ordered _ .
quasiprobability
bosons operators - _
distribution functions

normal Q-function

ordered (Husimi)

symmetrical W-function

ordered (Wigner)

P-function
(Glauber,

Sudarshan)

anti-normal

ordered

2.5 The Quantum Liouville Equation

The equation of motion for any operator A in the Heisenberg picture is given by

the Heisenberg equation of motion as [49, 50]:

%t_“‘i:(%j (AR (256)

For the density operator, p, this equation becomes [49, 50]:
0p (1 \[ A
—=|—|| p,H 2.57
2] @257)
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Eqgn. (2.57) is the analog of the classical Liouville equation (2.20) which can be

considered as quantum Liouville equation.

2.6 Classical Limit of Quantum Systems

The expectation value of the Heisenberg equation of motion for any operator A

can be obtained from eqn. (2.56). In general, it is written as [49, 50]
oA\ (i -
<E>_ (%) <[A, H D (2.58)

Egn. (2.58) is the quantum analog of the equation of motion for a classical

dynamical variable .4 in a Hamiltonian system as given in egn. (2.19).

It is well known that quantum mechanics should go over to classical mechanics

whenever the commutators divided by “ih” go over into the corresponding

Poisson brackets in the limit 2 —0 [49, 50, 75]. Thus, egn. (2.58) goes over into
eqn. (2.19) in the classical limit. This is Ehrenfest’s theorem in its general form
[49, 50, 75]. Therefore, one can investigate if any quantum system has a classical
counterpart by applying this theorem. This application is very important as it
sheds light on the outstanding problem of the interpretation of quantum
mechanics [76-78].

A good example of applying the classical limit for qguantum systems is the 1-D
quantum harmonic oscillator, where the standard method to approach the classical

limit for this oscillator is achieved via coherent states. This method can be
approached by using the density operator, o, in the Heisenberg equation of
motion. The best example in this respect is that of Ghosh et al. [76] for the SHO

which can be summarized as follows.
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It is well known that the density operator, p, can be written in the

Glauber-Sudarshan P-representation as [40, 42, 45, 46] (see also Sec. (2.4)):
,szdza P(a,a”) |a)a| (2.59)

Substituting the Hamiltonian of egn. (2.31) in eqn. (2.57), one gets [76]:
9p _ iw|pata-aap) (2.60)

Eqgn. (2.60) can be simplified by re-arranging terms such that all annihilation

operators, a, are to the left and all creation operators , a', are to the right for all
operator products (anti-normal ordering) [42 45,46]. This process can be
achieved by using integration by parts and the following relations
[76,108,109,111,112]:

ap = [d’a|a)a| aP(a.a”) (2.61)
pa = [d’a|a)a| a"P(a.a”) (2.62)
a'p = [d’ala)(a| (a*—%) P(a,a™) (2.63)
pa=[d%a|a)(al (0{—%) P(a,a®) (2.64)

Eqgns. (2.61) — (2.64) can be written in the form of one-to-one correspondence as
[76,108,109,111,112]:

ap—>aP(a,a”) (2.65)
pal »a P(a,a") (2.66)
éﬂﬁ—)(a*—%) P(a,a”) (2.67)
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0

oa”

pa— (a — ) P(a,a”) (2.68)

Therefore, the Heisenberg equation of motion, egn. (2.60), is translated into the

P-representation as [76]:

Mz—ia) a” 0 -« 0 P(a,a*;t) (2.69)
ot 80(* ox

One can consider egn. (2.69) as representing the classical Liouville equation by
interchanging P(a,a";t) by Py (a,a”;t)(i.e.; classical probability distribution
function) because egn. (2.69) does not contain any quantum term (i.e., 2 does not
appear in this equation). Also, defining the mass density and the local
hydrodynamic velocity, one can consider another interpretation of the classical

limit in terms of the continuity and Euler equations of the incompressible fluid

dynamics as can be found in ref. [76].

The importance of this approach to the classical limit of a quantum system will
become clearer in the next chapters, specifically when the deformed harmonic

oscillator and the approach to its classical limit are introduced.
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Chapter Three The g—Deformed Harmonic Oscillator and g—Deformed Coherent States

The g-Deformed Harmonic Oscillator and g-Deformed Coherent
States

3.1 Quantum Calculus

Quantum calculus is a branch of calculus that arises naturally from studying the
subject of quantum groups. It is different from ordinary calculus, but they
approach each other in the limit @ —1 and coincide when q is equal to unity. In
the next sections, some mathematical details about quantum calculus that are

needed in the next chapters will be introduced.

3.1.1 g-Numbers

In general, g-numbers are classified into two types according to the q-deformation
parameter under consideration; if they are real g-numbers or complex ones. In
this thesis, the interest will be in real g-deformation parameter in the range of
values0 < g <1. The real g-deformation parameter can be defined in terms of ¢ X
which could be ordinary number or operator as [16, 17, 113, 114]:

X —X
~9 —-qQ
[X]q_

(3.1)
q-q

which is invariant (symmetrical) under the substitution q —>q_1. One can also

define

q —e? (3.2)
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where A represents the nonlinearity parameter in the range of values

-0 < A<0, then,

A=1Ing (3.3)

Using egns. (3.2) and (3.3) in egn. (3.1), one can write:

sinh (A x)
=\ 3.4
o= 2) (54
There is another definition for the g-number [x]q as [116,117]:
X
qt -1
- 35
Xg=4 2 (35)

which is non-symmetrical under the substitution ¢ —>q_1.

In a similar manner as before, using egns. (3.2) and (3.3) in egn. (3.5), the

g-deformed number [x]q becomes:

(3.6)

Xlg="2

It can be noted that both definitions of the g—number [x]q coincide with the
ordinary number Xxin the limitq —1, i.e.,

(Iqiiql[x]q = X (3.7)

3.1.2 g-Deformed Elementary Functions
In addition to g-deformed numbers, some g-deformed elementary functions can

be introduced, where according to Euler’s 1% and 2" identities [3]:
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00 s J
(1+X)aO:jZ::0qJ(J /2 [(1—q)(l—qx2)---(1—qj)] (Euler’s 1% identity)
(3.8)
1 _ i xJ _ | (Buler’s 2™ identity)  (3.9)
107 {Zol(@-a)e-a?)-(-a)

Then, according to egns. (3.8) and (3.9), there are two types of g-exponential

functions which are defined as [3]:

o0 Xj
ea( = EO [qu} (3.10)
and,
e,00=3 oli-D/2 X (311)
q =0 [j]q!
where [j]q! represents the g-analog of the factorial, defined as [1,3]
[j]q!:[j]q [j_l]q [j_z]q”'[l]q (3.12)
[O]q =1 (3.13)

Also, g-trigonometric functions are defined as [1, 3,115]

00 J X2j+l

sin,(X)= -1 . (3.14)
o0 J X2j

cosq(x): Z (-1)? — (3.15)
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3.1.3 g—Derivative ( Jackson’s Derivative)

The g-analog of the ordinary derivative was first introduced by Jackson in 1909
[4]. The Jackson derivative operator with respect to x, denoted as Dg , Is defined

in terms of the dilatation (shift) operator D, [3,113-116 ] as:

-1
'Dq _ Dx_ (Dx)

(3.16)
X _
(a-a7")x
where
0
X_
D,=q (3.17)

Also, the dilatation operator can be defined by using ordinary differential calculus

d
X_

(ie, Dy=q dX) as given in refs. [3,114].

Other possible definitions of D)? are also found in the literature. For example,

the definition
D,-1
D)? =_X (3.18)
(9-1) x

is also used [114,116].

The Jackson derivative operator, defined in egns. (3.16) and (3.18), when acting

on an arbitrary function f (x), gives [115]:

pd f(x)= (q();)__q_fl()qxlx) (3.19)

N q . . _
for the definition of D, given in egn. (3.16), and [116]:
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DY £ (x)=- (‘2:)__1) ‘;(X) (3.20)

for the definition of DS given in eqn. (3.18).

These results follow from the relation [3,112-116]

sxZ

g Xf(=f(qg"x) (3.21)

Also, one notices that both definitions of the Jackson derivative given above

reduce to the standard derivative in the limit § —1 as expected, or:

. q _d
c|||£>n1DX f(x)= ™ f(x) (3.22)

It is also useful to note some examples of the action of the g-derivative on the

g-deformed elementary functions, such as [3]:

X X
D eq_e

q

X o X o
m
o]
—
>
~—
Il
m
o]
—~
O
x
~—

(3.23)

X o

D sinq(x):cosq(x)

D cosq(x):— sinq(x)

0

x

More details about such actions of the g-derivative on other functions can be
found in ref. [3].

3.1.4 Analog of Leibniz Rules for g-Differentiation
The analog of Leibniz rules for g-differentiation of two arbitrary functions

F(x) and G(x) are given as [3]:
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(i) Sum Rule

D, (F(x)+G(x)}=D, F(x)+D, G(x) (3.24)

(if) Product Rule

DY {F (%) G(X)} =F (qX) D, G(x)+G(x)Dy F(x)

which can also be written as (3.25)

Dy (F(X)-G(x)}=G(qX) Dy F (x)+F (x)D, G(x)

(iii) Quotient Rule

L4F(0] 80Dy F()-F (@D, 6()
*1600)” G(x)6(ax)

which can also be written as

(3.26)

4[] G F(0-F (D, 6(x)
S TE ] T

where G(x)and G(qgx) #0.

For more details about g-integration, g-polynomials and many other g-relations

and identities, one is referred to refs. [1- 3].

3.2 The g-Deformed Harmonic Oscillator

The g-deformed harmonic oscillator was introduced firstly in connection with
studying quantum groups [16], where one can consider the g-deformed quantum
harmonic oscillator as a deformation of the standard quantum harmonic oscillator.

There are different versions of the g-deformed harmonic oscillator that can be
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obtained by defining the q-deformed boson operators [9, 12-15]. In the next two
sections, g-deformations of the harmonic oscillator in both its classical and

guantum versions, are introduced.

3.2.1 The g-Deformed Classical Harmonic Oscillator

There are different approaches to introduce g-deformation for the classical
harmonic oscillator. One approach is g-deformation of the Poisson bracket via
the Jackson derivative [117]. Another approach is g-deformation of the
Lagrangian of the harmonic oscillator [118]. Also, there is the possibility of
g-deforming the action integral to obtain the g-deformed equation of motion
[119]. In this context, it should be emphasized that the problem of the gq-deformed
classical oscillator and its interpretation are still open problems. Finally, it should
also be stated that a q-deformed classical harmonic oscillator reduces to the

standard classical harmonic oscillator in the limitqg —1.

3.2.2 The g-Deformed Quantum Harmonic Oscillator

In general, there are different versions of the g-deformed guantum harmonic
oscillator according to the g—commutator that is adopted for each version as well
as the definitions of the bosonic operators that satisfy these g-commutators
[9, 12-16, 32, 38]. An example of the g-deformed quantum oscillator is given in

ref. [12] in which Biedenharn introduced the following g—commutator:

a =g\ (3.27)

In general, and according to Man’ko [91], the g-deformed oscillator may

represent a special type of nonlinearity where the frequency of the oscillator

depends on the energy of the oscillator (i.e., \a\z). In this context, an f-deformed
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oscillator, which is a generalization of the g-oscillator, was introduced by Man’ko

[61]. The realization of the f-deformed boson operators a; and éﬂ} in terms of

the undeformed boson operators & and a' was achieved via the transformation
[61, 92, 96, 120]:

Il
Q»
—

—_—

ag
(3.28)
a}

I

—
—~

=z

where f(N) represents a non-negative real operator-valued function of the

number operator. It should be noted that the subscript “f” used here refers to the
“f-deformation” case. Also, whenever a g-deformation process is used instead of
the f-deformation process, then the subscript “f” is interchanged by “q” and vice

Versa.

The transformation from the f-deformed oscillator to the g-deformed oscillator or

to the undeformed oscillator involves substituting specific values for the function

f (N) in the transformation of egn. (3.28) in the form [61, 64, 65, 91]:

1 for undeformed oscillator
] [N |
f(N)= > for g-deformed oscillator (3.29)
otherwise  for f-deformed oscillator

Furthermore, the Hamiltonian operators of the g-deformed and f-deformed

quantum harmonic oscillators are defined as [61, 91, 92, 120, 121]:
o ) a a +aay 3.30
0= )\%% "% (3-302)

and,
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~ hao \ (s At At 4
s :(7j(af al +al af) (3.30b)

respectively.

Substituting the f-deformed boson operators & and é’} from eqgn. (3.28) into

eqgn. (3.30b), results in:

Hf:(%‘j{m (N + (N+1) £2( 1) (331)

Eqgn. (3.31) represents the Hamiltonian operator for the f-deformed quantum

harmonic oscillator in terms of the undeformed number operator N.

The g-deformed number operator, qu , in terms of g-deformed boson operators

Is defined as [28, 32, 33, 87]:

~ . ~ i ’\T A
Nq = [N]q = dg 8y (3.32)
and hence,
~ o A ’\T
[N +1]q =44 (3.33)

Substituting egns. (3.32) and. (3.33) in eqn. (3.30a), yields [12]:

fig=( "2 [, + [N +1], | 3.3

Eqgn. (3.34) represents the Hamiltonian operator for the g-deformed quantum

harmonic oscillator in terms of the undeformed number operator N .
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Also, the g-deformed number operator, qu , can be defined in terms of the

g-number by using eqns. (3.4) and (3.6) together with x = N, then eqn. (3.32)
becomes [120,121]:

- rw1 sinh(AN)
N, = -2\ ) 3.35
q [N]q sinh(4) (3:3%)
and,
AN
~ ~ e -1
Nq=[|\|]q= — (3.35b)

The g-deformed boson operators act on the g-deformed number state|n>q in the

g-deformed Hilbert space as [12, 28, 32, 87]

élq n>q :\/[n]q ‘n_1>q
" [n]g=[tly [2]g (3.36)
4 n>q: [n +1]q \n+1>q
where,
n
(ag)
n) =—2 o) (3.37)
g 1 q
[n],!
and,
0)g=10) (3.38)
Also, the completeness relation in g-Hilbert space for |n>q IS given as:
0 0]
2 Il =1 (3.39)
n=0
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Another formulation of the g-deformed quantum harmonic oscillator, which was
introduced by Arik and Coon [9], is based on the definition of the Jackson
derivative. The basic idea in this work depends on the basic integral [123]. For
other formulations of the g-deformed quantum harmonic oscillator, one is
referred to refs. [32, 38, 89, 96].

It should also be stated that, as in the g-deformed classical oscillator case, the
g-deformed quantum oscillator reduces to the standard quantum oscillator in the

limit g —1.

3.3 The g-Deformed Coherent States

The importance of the standard (Glauber—Sudarshan) coherent states motivated
many researchers to study the q-deformation of these states [26-28, 43, 68]. In
what follows, is an attempt made to give an introduction to this subject with some

mathematical details that are relevant to the work in the present thesis.

3.3.1 Definition of g-Deformed Coherent States and their Generalizations

In general, the g-deformed coherent state, ‘aq> is defined as the eigenstate of the

g-deformed annihilation operator [14, 15, 31, 38, 61-65, 87], or:

aq|ag)= g | ) (3.40)
This definition produces a normalizable g-deformed coherent state.

The Hilbert space adjoint of egn. (3.40) becomes

<aq‘éa = <aq o (3.41)

q
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where aq and aa represent independent arbitrary complex numbers. Also, the

g-deformed coherent state reduces to the Glauber—Sudarshan state in the limit
q—1. A generalization of the g-deformed coherent state was introduced by
Man’ko in [61]. This generalization leads to the concept of nonlinear coherent
state (NLCs). The NLCs involves the notion of the f-deformed oscillator (see egn.

(3.29)) [47, 62, 64, 68] where for each choice of the nonlinearity function f (NI)

one gets a different nonlinear coherent state.

The g-deformed coherent state (g—CS) can be expanded in the g-Fock space as
[28, 47, 64, 87]

an

ag)= (\a\) 5 [n].‘> 3.42)

2 . :
where N q (‘“q‘ ) represents the g-analog of the normalization constant defined

as [28, 47, 64, 64, 87]:

e
—a. 2

Nollagl )= (3.43)
Also, the expectation value, nq , of the g-deformed number operator, Nq, IS
given as [124]:

2
B q _ AT 4 _ * _
Ny = <aq Nq aq>— <aq ChER aq> =0qag = ‘aq‘ (3.44)

3.3.2 The g-Deformed Density Operator

As it has already been illustrated in Sec. (1.2), the conventional coherent states
(Glauber—Sudarshan states) and the P-representation of the density operator
[40, 41, 45, 46] play a crucial role in investigating the classical limit of the
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undeformed quantum harmonic oscillator via the Heisenberg equation of motion
[76, 78]. To generalize this notion to the g-deformed density operator, one should
overcome the problem of the existence of resolution of unity for g-deformed
coherent states, as not all definitions of g-CSs satisfy the resolution of unity
[38,122]. This resolution of unity can be obtained by using the standard method
to produce an explicit formula for the g-deformed density operator. This method
Is based on solving the moment problem in order to obtain the g-deformed weight
function [38,122]. This weight function represents the q-deformed
quasiprobability distribution function [14, 15, 38, 122], where in the

limit q—1, it reduces to the conventional (undeformed) quasiprobability

distribution function (o(s) (a,a”) for the standard (Glauber—Sudarshan) coherent

states [40, 41, 45, 46].
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Chapter Four Classical Treatment of the g-Deformed Harmonic Oscillator

Classical Treatment of the q-Deformed Harmonic Oscillator

In this chapter, the g-deformed classical harmonic oscillator is defined in more
details and treated along the lines of Man’ko [91]. The treatment begins with a
generalization that involves the general case of the f-oscillator where the
g-oscillator is considered as a special case. Then, the classical equation of motions
and the Liouville equations are obtained for both types of oscillator. Finally,
solutions for the classical Liouville equations for the g-deformed case are
obtained and a computer visualization method is used to investigate the phase
space time-evolution of this oscillator for comparison with the anharmonic
oscillator treated by Milburn [77].

4.1 The f-Deformed Coordinate Transformation

As mentioned in Sec. (2.1), a« and o represent two independent complex
variables that can be considered as coordinates in a complex phase space. When

considering f-deformation [61], these undeformed coordinates can be

transformed to f-deformed coordinates« ; and a"]i by a non-linear transformation

as [61, 91]:
g =f(a,a")a (4.1)
af =f (a,a")a” (4.2)
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where o ¢ and a? are considered as two independent complex variables and

f =f(a,a”)is a non-negative function of the two independent complex

variables & and o™ . The subscript “ f ” refers to “f-deformation”. Generally, the
function f(a,a”) has the following three forms corresponding to the

deformation types shown in Table (4.1):

Table (4.1)

Forms of the function f («,«™)and their associated types of deformation.

f(a,a”) type of deformation

[aa*}q g—deformed case

*

oo
otherwise || general f—deformed case

*
&l
In the case of g-deformation, . 9 can also be written in terms of the

g-numbers as [9, 61, 91]:

*
o

aa” . % ac” _ —aa”
[ Jq _ smz(/laa ) for [(m*} _9 - q_ (4.33)
aa’” sinh(4) q

and,

(4.3b)
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4.2 The Classical Hamiltonian

The classical Hamiltonian of the f-deformed oscillator can be introduced in terms
of the two sets of coordinates of the non-linear transformation given in egns. (4.1)
and (4.2) as:

(A) The Classical Hamiltonian in a-Representation

The Hamiltonian of the f-deformed oscillator defined in terms of the («,a™)

coordinates as given by Man’ko [61, 91] is,

Hi ¢ (a0 )=hwf flaa” (4.4)

For the case of the g-deformed classical oscillator, the function f is given by egns.

(4.3). Then, eqn. (4.4) in « -representation becomes

H * aa* —aa*
how M for [aa*J -4 —q_ (4.5a)
sinh(4) q q-q !
H (a,a*) =
g Aaa” aa”
hiw eT4 for [aa’] I (4.5b)
(e* - 1) qg q-1

(B) The Classical Hamiltonian in a; —Representation

The classical Hamiltonian of the f-deformed oscillator, defined in terms of the

(af ,a"% ) coordinates as given by Man’ko [61, 91], is

Hs (af ,a? ): ha)afa’; (4.6)

Hence, for the special case of g-deformation, this Hamiltonian can be written as:
7—% (aq ,aq) = ha)aqaq 4.7)
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4.3 The Poisson Bracket{af ,a? }

The Poisson bracket {af ,a"]i }can be written as (see Appendix—A, eqn. (A.11)):

{af ,a? }: {a,a*} . {af ,a? }a,a* (4.8)

. Gaf aa? 8af 60{?
logat| - ) R 49)
a,o oo o O o O " oo o

Using egns. (4.1) and (4.2), one obtains:

where,

aaf

ox o

:f+afa

aaf

da* a
. (4.10)
Gaf

oa * a

80{? .
” =f'+a" ",
da” ), o
where the following notations have been employed,
= (&)
a oa )

. 6fj
a’ \oa* a
of”

£
a oo

(4.11)

of”

S A
o o |
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then substituting eqn. (4.10) into eqn. (4.9), one can write:
* * * * * 2 * *
la ’af}a,a* —Era a1, 1 <10 1 L] @12)

For the special case of real function f , eqn. (4.12) becomes,

lagat] =121 @ty rat .| (4.13)
Now, letting

) =12 f-( f *f*) 4.14

X (a,a”) th-lafyrarf (4.14)

then, one can write:

ag o = a,a 4.15
lag ot = (@) (4.9
Substituting for{a,a*} from eqgn. (2.6) and using eqn. (4.15) in egn. (4.8), then:

{af o } —_ &j 7 (@a’) (4.16)

Egn. (4.16) represents the general formula for the Poisson bracket of the
f-deformed classical harmonic oscillator.

For the special case of the g-deformed classical oscillator, where the function f

Is given by eqgns. (4.3), the Poisson bracket {af ,a? }in eqgn. (4.16) becomes

{aq ,aa} and can then take the forms:

(A) {aq ,a;} in the @ —Representation

It is easy to show that for f defined by eqn. (4.3a):

¢ zi 1 j a*[i ‘a‘ZCOSh(ﬂ‘a‘Z)—Sinh(ﬂ‘a‘z)}
o \a\4sinh(1)

(4.17)

and,
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2l cosh 2\ _sinh 2
*:[ 1) a| 2|af* cosh(2]af?) - sinh(2]af?) .
a 2f la|*sinh(4)
Then,
.. (1 lcosh(l\a\z) )
afa—a fa* —(ij{ sinh(/l) — f (4.19)

Similarly, for f defined by eqn. (4.3b):

*{M ‘26/1\042_ (eﬂ‘a‘z 1]
1
Fo— . (4.20)
“ (21‘} o (e* -1)
2 2
. o{ﬂ ‘a‘zeﬂ\a\ — [eﬂ‘a‘ —1}}
.= (4.21)
o (21‘) of* (e* -1)
Hence,
Alef?
* 1 Ae 2
f = f ,= — f .
“lg=¢ a Eij (e}L —l) 422

Substituting egns. (4.19) and (4.22) into eqgn. (4.14), one obtains:

. /Icosh(/l\a\z)
Xgla.a”)= { Sinh(2) (4.23a)
and,
Alaf
* Ae
xqla.a’) = . g oy (4.23h)

respectively.
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When these two expressions for Xq (a,a*)are substituted in egn. (4.16), they give

e O = oa)

and,

. ﬂ‘a‘
» 1) |Ae

respectively.
Eqgns. (4.24) represent the Poisson brackets for the g-deformed harmonic

oscillator in the a —representation for two definitions of the function f. It is

observed that eqn. (4.24a) is the same as that introduced by Man’ko [91].

(B) {aq ,aq} in the aq—Representatlon

To obtain the Poisson bracket{af ,a"]l }in the o, —representation one needs the

q

inverse function f 1 = f‘l(ocOI ,aa ) Substituting the definitions of the function
f from eqgns. (4.3) in the non-linear transformation represented by egns. (4.1)

and (4.2), then multiplying these two equations with each other, one gets:

. — 2 .
, sinh 1(|aq| sinh (1))

a‘ = 7 (4.25a)
and,
In(l-|a 2 1—e/1
af = - ql( ) (4.25h)

respectively.
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The inverse of the non-linear transformation represented by eqgns. (4.1) and (4.2)

IS given as:
a=f"ra; (4.26)
-1
o« (") o] (4.27)

Then, multiplying these two equations one gets:

e

o=

Substituting egns. (4.25) into eqn. (4.28) and solving for f ~*, one obtains:

1 In(\aq\ sinh(4 \/1+\aq\ sinh? (1 )) 4.29)

and

f1= (4.29b)

respectively.

Eqgn. (4.29a) is the same as that introduced by Man’ko [61]. Substituting
eqgns. (4.29) into egn. (4.28) and substituting the result into egns. (4.23) and after
some mathematical manipulations one obtains:

1 [L+lag | sinh? ()

q( q’ q) sinh(4)

(4.30a)

and,

(o at)- {/1[1— \aqf(l_ex)] } s

q'q (eﬁ _1)
respectively.
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Finally, substituting egns. (4.30) into eqgn. (4.16), the Poisson brackets in the

ag —representation become:
PNV [\/1+|aq|4sinh2(/1) }
{aq ’aQ} T (%j sinh(4) (4.312)
and,
|2 [1— \a \2(1—eﬂ)}
* I q
{aq ,aq} __ (%) 1 (4.31b)

respectively.

It is noticed that egn. (4.31a) is the same as that introduced by Man’ko [91].

4.4 The Equation of Motion

The equation of motion for the f—deformed harmonic oscillator can be obtained

in the « -representation and « ., -representation as:

q
(A) a—Representation:
The equation of motion in this representation is:

a(t)= {a,Hf (a,a*)} (4.32)
But since, (see Appendix-B, eqn. (B.7))

{a,Hf (a,a*)}z {a,a*}- {a,Hf (a,a*)} .

a,x

(4.33)
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then, simplifying {a,Hf (a,a*)} , by using eqgn. (2.13), to obtain
a,x

OH ¢ (a,a*)
{a,Hf (a,a*)} = _ (4.34)
oo oa
o
and substituting H ¢ (a,a*) from eqn. (4.4) into eqgn. (4.34), this equation
becomes:
{a,Hf (a,a*)} - hw {f P e 15+ o't f**}a (4.35)
a,a” a a

Observing again that f = f*, and defining:

7, (@a”)=142a"F F ., (4.36)
eqn. (4.35) takes the form:

{a,Hf (a,a*)}a,a* =hw g (a,@”) a (4.37)
Defining

wf= w1, (a,a®) (4.38)

egn. (4.37) becomes:

{a,Hf (a,a*)}a i =hw; a (4.39)

where w¢ can be considered as the frequency of the f-deformed classical
harmonic oscillator in the a—representation.
Substituting{a,a*}from eqn. (2.6) and using eqgn. (4.39) in eqgn. (4.33),

eqn. (4.32) can be cast in the form:

a(t)=—-iws a (4.40)

Eqgn. (4.40) represents the equation of motion for the f-deformed classical

harmonic oscillator in the & —representation.
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For the special case of the g-deformed classical oscillator, where the function f
is given by eqns. (4.3), substituting for o* fa* from eqns. (4.19) and (4.22) into

eqn. (4.36), the result becomes:

. Acosh(ﬁ\a\z)
”q(“’“)_{ sinh (7) (4413)
and,
Alaf
x| A€
Nglawe) = = (4.41b)

respectively.
Then, substituting eqgns. (4.41) into egn. (4.38), the frequency of the q-deformed

classical oscillator, w(”), becomes:

q
2
1)_ Acosh(Ala|”)
@y a){ sinh(/l) (4.42a)
and,
Alaf
(2)_,, lAE 4.42b

respectively.

Again, it is noticed that egn. (4.42a) is the same as that introduced by
Man’ko [91].
Substituting egns. (4.42) into eqn. (4.40), leads to:

a(t)=—i w&”)a ou=12. (4.43)
and the complex conjugate of eqn. (4.43) is:
i ()=iofa’  u-12 @.44)
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where a)((:]” )is obviously real.

Eqgns. (4.43) and (4.44) represent the equations of motion for the gq-deformed

classical harmonic oscillator in the «-representation.

Solving these equations of motion, gives the equations of trajectories for the

g-deformed classical harmonic oscillator in the complex (a,a*) phase space:

—i a)(“)t\
a(t) =a(0)e q
(#)t L D ou=12. (4.45)
o (t)=a*(0)e

where, a(0) and o (0) are initial trajectory points at t=0.

(B) a¢—Representation:

In this case, the equation of motion is given by:
as(t)= {af Hi (af.a5 )} (4.46)
where, (see Appendix-B, eqn. (B.8))

{af JH (af ,a’;c )}: {af ,o/’]i} : {af Hs (af ,a? )}af ,a”]l (4.47)

Also,

(4.48)

OHy (af.af)
805”{:

o e (@paf)] = (

N4
f o o

where the counterparts of egns. (2.13) for ¢ and a’; ,1.e.,
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[aafj ) LGQ?J -
0 : B
af a? oas

i
. (4.49)
o oa
a 24 %
were used to obtain eqn.(4.48).
Substituting H ¢ (af ,a”]i )from eqn. (4.6) into eqn. (4.48), the result is:
{af,Hf (af,a? )}a ., = hwag (4.50)

o
Then, finally the substitution of {af ,a’; }from eqn. (4.16) and the Poisson

bracket of egn. (4.50) into egn. (4.47), and using the result in egn. (4.46), yields:
ag (t)=—iws ag (4.51)
where,

wf = w 1, (a,a") (4.52)

It is worth mentioning that |a|2represents a constant of the motion for the

undeformed classical oscillator. This can be proved by evaluating the Poisson

*

bracket for the undeformed classical oscillator{aa*, H (a,a*)} as:
oo

{aa*, H (a,a*)}a’a =

) e, (e ),

(4.53)

Therfore, using egns. (2.13) in egn. (4.53) leads to:
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{aa*, H (a,a*)}a’a* =a" (%’*&*)ja— a [%{;aﬂc))a* (4.54)

Substituting the Hamiltonian from egn. (2.9) in eqn. (4.54) results in:
{aa*, H (a,a*)} ,=0 (4.55)
o,
which proves that |a|2is a constant of the motion for the undeformed oscillator.

A similar result can be obtained for |a |2 and, hence, for the special case

lay|”. Therefore, the functions x (a,a”) and g (a,a”) also represent

2
ql
constants of the motion, where one can prove this by noticing that f = f (|a|2),

then substituting into eqn.(4.14), and after some mathematical manipulations, the

result is:

7o (lef?) = {1 (iaf)] "+ 2 (1) S04

(4.56)

It is obvious that the f is a function of |a|°. Then, the function % (ana’), that
is given by eqn. (4.14), reduces to the function X (\a\z). Similarly, one can

prove that the function g (a,a”) also represents a constant of the motion.

In the same context, the frequency of the f-deformed classical oscillator,wy ,

which is a function of |a|2, Is a constant of the motion and depends on the energy

of the oscillator orbit.
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The equation of motion for the special case of the g-deformed classical harmonic

oscillator is obtained by substituting the function Xq (a from eqns. (4.30)

q'%q)

into egn. (4.52). Then, the frequencies of this oscillator are given as:

[ (L+lagl*sinh?(2) |

(3) _
wy ' =w Sinh(l) (4.57a)
and,
B 2(q A
(4)_,, 1t e | (4.57b)

K (-

respectively.
It is noticed that eqn. (4.57a) is the same as that introduced by Man’ko [91].

Substituting egns. (4.57) into eqgn. (4.51), one gets:

dq()=—iaf oy u=sa (4.58)
The complex conjugate of egn. (4.58) becomes:
da (t)= ia)&/‘) aa . u=3,4. (4.59)

Eqgns. (4.58) and (4.59) represent the equations of motion for the g-deformed
classical harmonic oscillator in the aq -representation.

Again, solving these equations of motion, gives the equations of trajectories for
the g-deformed classical harmonic oscillator in the complex (aq,aa) phase
space:

58



Chapter Four Classical Treatment of the g-Deformed Harmonic Oscillator

—1 Cl)('u)t
ag (t) =2 (0)e g
(”)t . =34 (4.60)
aa (t)= aa (0) eI “0

where a (0) and aa(o) are initial trajectory points at t =0.
4.5 The Classical Liouville Equation

In this section, the classical Liouville equations for the f-deformed classical
harmonic oscillator in the two complex phase space representations are derived
by using the classical Liouville equation for the undeformed classical system that

was introduced in ref. [100]. The g-deformed case is also treated as a special case.

(A) a—Representation

In this case, and using the Hamiltonian H ¢ (a,a) of eqn. (4.4), the classical

Liouville equation is given as:

f
0P~ (a,a”:t % f %
CL(@t ): Hf(a,a ), ey (aa™3t) (4.61)

f
where P (a,a";t) represents the classical probability distribution function for
the f-deformed classical oscillator in the a-representation.

But since, (see Appendix-C, eqgn. (C.9))

H ¢ (a,a*),@CfL(a,a*;t)}z{a,a*} . {Hf (a,a*),@CfL(a,a*;t)

ao”

(4.62)
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then, using the definition of the Hamiltonian H ¢ (a,a*) in the « —representation

as in eqn. (4.4), and assuming f = f*, one obtains:

OH ¢ (a,a*)

_ 2 *

— - ho{f?+2af 1, la (4.63)

a*
and,
OH¢ (a,a”

f( . ) - hw{f2+2a*ff *}a (4.64)

oa x
o

f
Furthermore, the Poisson bracket{Hf (a,a”) ,(PCI_(a,a*;t)} _is given by:

a,x
{Hf (a,0”), P (o, ,t)}a iy -
% f * f
(aHf(a’“ )J [8@CL(a,a*;t)J ~ (GHf(a,a )J [8@&(05,0(*1)}
oa o oo oa o oa
(4.65)
Now, substituting eqgns. (4.63) and (4.64) into eqgn. (4.65), the latter takes the
form:

{Hf (a,a"), P (a,a ,t)}a . -

hw{(f%+2af f )a*i— (f2+2a*f f *)ai Q’f (a,a™;t)

(4.66)

Then, substituting egns. (4.66) and the Poisson bracket{a,a*} from eqn. (2.6)

into eqgn. (4.62), one can write:
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% f L3
{Hf(“v“ ). Fer (@ ;t)}:
—iw (f2+2aff )a*i— (f2+2a*ff )05i (Pf(a a*'t)
o aa* a* aa CL ] ]

(4.67)
Using eqn. (4.67) in egn. (4.61), one obtains:

G@Cfl_ (a,a*;t)
ot

. . ol pf . -
—|a){(f2+2af f)a"—— (f2+2a"f f *)aa—}@CL(a,a t)

a

(4.68)

Noting here that if the function f = f («,«")is a function of |a|2 (i.e;
f= f(\a\z)), then af, =a f e Also, z (a,a%)=n, (a.a”) (seeeqns.

(4.14) and (4.36)). Therefore, egn. (4.68) becomes

f
0P (a,2™5t) . « O 0 f .
= —j —a— | P o it 4.69
P w;i | a pur a@a oL (o ) (4.69)

where w¢ = 2y (a,a”) and;(]c (a,a™)is as given by eqn. (4.14).

Eqn. (4.69) represents the classical Liouville equation for the f-deformed classical

oscillator in the « -representation.

For the special case of the g-deformed classical oscillator, the classical Liouville
equation (4.69) for the f-deformed oscillator becomes:
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q %
0P (a,a™st) . . 0 o) q . |
CL - = —Ia)((qﬂ) (a e - a %j @CL(a,a ,t) C u=12.

(4.70)
where, a)&”) Is given by eqns. (4.42).

Egn. (4.70) represents the classical Liouville equation for the q-deformed

classical oscillator in the « -representation.

(B) a ¢ -Representation

For this case, the classical Liouville equation is given as:

f .
8PC|_(af ,le ,t)
ot

f
= g ag at).Poy (g af ) @71

where PCL(af ,a”]‘c ;t) represents the classical probability distribution function

for the f-deformed classical harmonic oscillator in the « ¢ -representation.

But since, (see Appendix-C, eqgn. (C.8))
* f %
{Hfﬁwﬁﬁ)ﬁ%d“fﬂfﬂﬁ:
% * f *
{af,af}.{Hf(af,af),PCL(af,af;t)} .

af ,Olf
(4.72)

then, using the definition of the Hamiltoniaan(af,a’;)in the

o ¢ -representation as in eqn. (4.6), and assuming f = f*, one obtains:

OH ¢ (et )

= hwa' 4.73
pars ag (4.73)
ot
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and,

OH ¢ (ag,at)

" = hway (4.74)
6051:
*f

f
Also, since the Poisson bracket{Hf (a5.0%F )Py (af.0F ;t)} , is defined
a.l: ,af
as:

* f * aHf(af’a?)
{Hf(af’“f)'PCL(“f’“f;t)} : :[ o J

(4.75)

. [aPCfL(O‘f a “)J ) EaHf (af.af )] [5Pch(“f a ?t)j

oot oot oas

then, substituting eqgns. (4.73) and (4.74) into (4.75) and re-arranging, the result

takes the form:

{Hf(af,a?),pCfL(af,a*]:;t)} _

a; ,a"]l
x O 0 f -
hw af aa? - (If —aaf PCL ((Zf ,af ,t) (476)

Now, substituting egn. (4.76) and the Poisson bracket{af ,a”]i }of eqn. (4.16) into

eqgn. (4.72), one obtains:
% f %
{Hf (e ) PoL(af.af ?t)}:

P o | _f .
a2 P okt 4.77
o ag a L (ag.afit) (4.77)

—Ia)f af

where w; = 2y (a,a™)and X (a,a”) are as defined in eqn. (4.14).

63



Chapter Four Classical Treatment of the g-Deformed Harmonic Oscillator

Inserting eqn. (4.77) into eqn. (4.71) one obtains:

f
0P (af,a%:t) 5 o | _f
— * _ —|P st 4.78
o wt | af Gy |Ferlepatit) (479

805’;:
Eqn. (4.78) represents the classical Liouville equation for the f-deformed classical

harmonic oscillator in the « ¢ -representation.

Also, for the special case of the g-deformed classical oscillator, the classical

Liouville equation (4.78) becomes:

q *
OFcL (aq.2qit) q
q I 07 ) I f) =
ot = Ia)q aq o aq ™ PCL(aq,aq,t) ; u=3,4.
q q
(4.79)
where, w&“) Is given by eqns. (4.57). Egn. (4.79) represents the classical

Liouville equation for the q-deformed classical oscillator in the ag-

representation.

It is obvious that in the limit f — 1, the classical Liouville egns. (4.69) and (4.78)

for the case of the f-deformed classical harmonic oscillator in the « - and
@ £ - representation respectively, reduce to the classical Liouville equation of the
undeformed simple harmonic oscillator (i.e., eqn. (2.69)) in the « - representation

as expected.

Similarly, the same result can be attainable in the limit q —1for the classical
Liouville egns. (4.70) and (4.79) of the g-deformed classical harmonic oscillator

in the « - and O!q - representation respectively.

4.6 Solution of the Classical Liouville Equation

Solutions of the classical Liouville equations of the g-deformed harmonic

oscillator, (i.e., egns. (4.70) and (4.79)) can be obtained by using the method of
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characteristics [77] in the same manner performed by Milburn [77] for the

anharmonic oscillator. Hence, assuming the following initial solution at t =0:

2
(chl_(a,a*;o) =3 jor~ax(0) (in the « -representation) (4.80)
then, the time-evolution for each point (a,a™)in complex phase space can be

obtained by replacing o by a(t) given by [77]:

a(t)=ae 4 (4.81)
Substituting egn. (4.81) into eqn. (4.80), one obtains:
2
—ia)(/“l)t
-lae q _ a(0)
Q’qu_ (a,a*;t):e C u=12. (4.82)
Similarly, in the ag -representation:
2
—ia)((q”)t
— - 0
g * aqe aq( )
PCL(aq,aq;t) = e L u=3,4. (4.83)

Direct insertion of the solutions given in eqns. (4.82) and (4.83) into the classical
Liouville egns. (4.70) and (4.79) has verified that these solutions indeed satisfy

these equations.

4.7 Computer Visualizations of the g-Deformed Classical Harmonic
Oscillator

The computer visualization method introduced in ref. [77] was utilized by

Milburn to investigate the time-evolution of the probability distribution function

for the anharmonic oscillator in phase-space using theQ -function which was

defined in Sec. (1.4). It is noted that the frequency of the anhrmonic oscillator

treated by Milburn [77] is a function of \a\z, which is the same case as that of the
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g-deformed oscillator where the frequency of this oscillator is also a function of
|a|20r |aq|2depending on the representation. This motivates using the same
method as that used by Milburn [77] to investigate the behavior of the classical

probability distribution functions (chl_ (a,a™;t)and Pgl_ (aq ,aa ;t) in the case of

the g-deformed oscillator in the o and o, representations respectively.

q
In the present work, the computer visualization method was implemented by
writing a computer program using Mathematica® [125]. The complex coordinate

a s given by eqn. (2.4) and the mass of the oscillator, the initial value for the

complex coordinate,(0) , and the momentum g, are taken as 1, 0.5 and 0
) . ) ) ) ) 2h

respectively. The position coordinate is measured in units of _m and the
w

momentum coordinate in units of \/2Amew . It should also be mentioned that all
the computer visualizations are performed in the rotating frame [77].

To verify the reliability of this program, the same results that were obtained by
Milburn [77] were reproduced by applying the computer program using
eqn. (4.82) with Q :Q)CqL (a,a”;t). The results obtained are illustrated in

Fig. (4.1).

Hence, the time evolution of the classical probability distribution functions

Q’gL(a,a*;t) and Pgl_(a a ;t) can be represented in phase space through the

q'q
behavior of two particular initial contours |a—a/(0)| :% and ‘aq —aq(o)‘ :%
centered at &(0) and e, (0) = 0.5 respectively [77]. In time(z=wt), each point

on an initial contour will move according to egns. (4.45) and (4.60), and the

evolution of this initial contour in the time interval 0 <7<2x in the phase space
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region —1< g < 1 and -1< P <1is followed. The results of such a procedure are

depicted in Figs. (4.2) and (4.3) where the time-evolution of the 2-D probability
distribution is shown. These figures exhibit whorl shapes and can be compared
with those obtained by Milburn [77] for the anharmonic oscillator as shown in

Fig. (4.1). Also, it is obvious that these whorl shapes become finer as t — oo.

U

[aNany
SPRRASY

-1. -1.
C. d.

R
o

Fig. (4.1): The 2-D time-evolution contours of the classical probability
distribution function @ for the anharmonic oscillator in phase space, for

different values of time (7 ): )z =7/2, (b)r =, (c)r=3x/2 ,and (d)r=2r.
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—

-1. =1.
C. d.

Fig. (4.2): The 2-D time-evolution contours of the classical probability
distribution function G’gL (ar, ;1) for the g-deformed harmonic oscillator
with frequency a)(ql) given by eqgn. (4.42a) and ¢ =0.5 in phase space, for

different values of time (7): (@)r=x/2, (b)r=x, (c)r=37x/2, and
(d)yr=2r.
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P P
1. 1.
T .7 1.7
-1 =1
a b.
P P
1 1
-1 1 7 =1 1 7
-5 i -5
C. d.

Fig. (4.3): The 2-D time-evolution contours of the classical probability
distribution function Q)C?L (er, ;1) for the g-deformed harmonic oscillator

with frequency a)((qz)given by eqn. (4.42b) and g =0.5 in phase space, for

different values of time (r): (a)r=x/2, (b)z=x, (c)r=37/2, and
(d) r=2r.
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It is observed that the behavior of the classical probability distribution function

PCqL (aq,aa;t) in phase space is similar to the behavior shown in Figs. (4.2) and

(4.3) for the classical probability distribution function (Pg_(a,a*;t). This

1) and

similarity is a result of the fact that the expressions for the frequencies a)((:l

w&z) In « -representation, are equivalent to the expressions for the frequencies

w&g) and a)gl) in the aq -representation (see eqns. (4.42) and (4.57)).

In Figs. (4.4) - (4.6), results of 3-D time-evolution of the same classical

probability distributions are presented. Fig. (4.4) shows the Q function which
corresponds to Fig. (4.1) presented as 3-D plot. The egns. (4.82) and (4.83) have

been used to calculate the values of the classical probability distributions

q

Py (a,a";t) and PCqL(a a*;t). All of these figures are presented for

q'q
—4<4<4 and —4 < p <4 1tis clear that from all of these figures that the peaks

of the g-deformed Gaussian for the classical probability distributions Q and

(Pg_(a,a*;t) do not change with time and are equal to the maximum value

(i.e., 1). These peaks follow the classical trajectories shown in Figs. (4.1) - (4.3),

for the probability distribution functions.
Another noticeable feature is the observation that the Gaussian shapes of these

distributions become more convoluted around themselves as t — oo, which is
clear in Figs. (4.4) - (4.6).
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Fig. (4.4): The 3-D time-evolution of the classical probability distribution
function Q for the anharmonic oscillator in phase space, for different values

of time (7): @)z =7/2, (b)r =x, (c)r=37x/2, and (d) 7 =2r.
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Fig. (4.5): The 3-D time-evolution of the classical probability distribution

function (sz(a,a*;t) for the g-deformed harmonic oscillator with frequency

a)((;) given by eqn. (4.42a) and ¢ =0.5 in phase space, for different values of
time (7): ()7 =7/2, (b)r =x, ()7 =37/2,and (d)7=27r.
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Fig. (4.6): The 3-D time-evolution of the classical probability distribution
function TgL (a,a*;t)for the g-deformed harmonic oscillator with frequency

w(qz) given by eqn. (4.42b) and ¢ = 0.5 in phase space, for different values of

time (7): (@7 =7/2, (b)r=x, (c)r=37/2,and (d)7=27r.
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The Classical Limit of the
Quantum q-Deformed Harmonic
Oscillator
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Chapter Five The Classical limit of the Quantum g-Deformed Harmonic Oscillator

The Classical Limit of the Quantum g-Deformed Harmonic
Oscillator

This chapter begins with deriving the quantum Liouville equation for the
f-deformed 1-D quantum harmonic oscillator in the Heisenberg picture by
generalizing the Glauber-Sudarshan P-representation that was presented in refs.
[40, 41] for the density operator in the « -representation. The g-deformation then
follows as a special case arising from the general case of f-deformation. In a
similar manner, the quantum Liouville equation is also derived in the
aq -representation. Then, the classical limits of these quantum Liouville

equations are investigated in - and o« -representations. Finally, a computer

q
visualization method similar to that adopted in Chapter 4 is used to investigate

the solution of the resulting Liouville equations in the classical limit.

5.1 The Quantum Liouville Equation of the f-Deformed 1-D Quantum
Harmonic Oscillator in the « -Representation

The quantum Liouville equation of the f-deformed harmonic oscillator can be

derived in general in the two representations of the complex coordinates « and

a¢ . The g-deformed harmonic oscillator follows as a special case from the

f-deformed oscillator as shown previously in Chapter 4.

The Heisenberg equation of motion for the density operator p is given by eqn.

(2.57), where the Hamiltonian ]ﬁlf is defined as in eqn. (3.31) and p is as defined

In eqn. (2.55). Substituting IF]If in the equation for the commutator []ﬁlf ,[p} and
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then inserting the result into the Heisenberg equation of motion given by
egn. (2.57), one obtains

% _ ('7“’) {[éTéﬂJ( £2(a%a+1)) p+ [a*a} (f*(a"a)) p
-p|atas1|( 17 (aTa+1)) - pl afa( £ (a*a))} (5.1)

where f (éTé) represents a boson operator function with normal ordering.

After lengthy mathematical manipulations, one obtains (see Appendix-D, egns.
(D.25) and (D.26)):

afal(f?(a%a)) p=[d%a \a>(a\{qa*+ (%)%} {0{ " (STHJ aZ*D
Ao (Lo (] e e

p[ata]( ()= [0 |a><a|{fﬂa+[57‘1j 2 } {W &3 %D
(o)

(5.3)

In a similar manner, equations for [é*éﬂ}(fz(éTéﬂ))ﬁ and
ﬁ[éTéﬂ]( f2 (éTé+1)) can be obtained.

Egns. (5.2) and (5.3) can be understood to imply the one-to-one correspondence,

(p(s)(a,a*)

[y
N
7\
R
*
_l_
7\
wn
H
N
NS
) )
|
R
_l_
7\
(7))
H
N—
Q
*
N

(5.4)
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Chapter Five
@[é*é}( f (éTé)) - f 2@“ {ST_lJ ai*}
{5535 | (55

Similarly, one-to-one correspondence relations for [é*éﬂ}(fz(éTéﬂ))

*
o

0
oa

i

_} j A9 (")

9
oa

s+1

2

Jiz)

(5.5)

A

Yo,

and ﬁ[éTé+1J(f2(éTé+1)) can be obtained. Substituting the transformations

of eqn. (5.4) and egn. (5.5) into eqn. (5.1), using the definition of the density

operator o from eqn. (2.55) and replacing go(s)(a,a*;t) by gpés)(a,a*;t) then

simplifying the result, one obtains:

(o ()
ot 2 2 Joa || 2 oo
E { *+ s-1 i}_a+(s—+lj g }+1
“"\ "2 Joa oa*
—f2 _a+ s-1) 0 a*+(8_+1ji7+1
i 2 ﬁa*_ 2 80(_
s—1) 0 . (s+1) o]
a+| — a +|— |—|+1
2 aa*__ 2 60(_
Al *+(S_—1jiMa+(S_+lj 0 }
72 Jéa 2 oo
el (e = (5 e
Y2 Joa 2 Joa*
_f2 |:a_|_(s__1j a :|_0!*+(S—+1ji}
2 [7‘05* L 2 oa
-1\ © " 1)\ 0 *
(o (]l ()
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The function (oés)(a,a*;t) represents the g-analog of the non-deformed

quasiprobability distribution function (o(s)(a,a*) (see Sec. (3.3.2)), where in

the limit g —1 the function goas)(a,a*;t) reduces to go(s)(a,a*;t).

Eqgn. (5.6) represents the quantum Liouville equation for the f-deformed 1-D

guantum harmonic oscillator in terms of the g-deformed quasiprobability

distribution function go&s)(a,a*;t) in the « -representation.

For the special case of the g-deformed oscillator, the definitions of the function

f from Table (4.1) and the g-number from eqn. (4.3a) can be used to write:
£2]] o+ (S—_lJi a+(s—+lj 0 +1|=
2 )oa 2 80(*
sinh| 1| | g™+ (S_ljé o+ (SHJ 0 +1
2 oo 2 80{*
a’+ (S_lja a+(s+1) 0 +1 |sinh(4)
2 oo 2 80(*

The complex conjugate of egn. (5.7) is:

(5.7)

(5.8)
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Then, substituting for the sine hyperbolic function in terms of the exponential

function into egns. (5.7) and (5.8), one obtains:

B (e B e P o
2 o 2 oo
) _ _ -1
2( a*+(s—_1ji +(S—+lj 6* +1]sinh(/1)
i 2 805__ 2 oo ]
1_a*+(3—_1Jﬁ__a+(s—+1J ° J+a
Je L 2 oa I 2 oo 4
s-1)\ 0 s+1) 0O

(5.9)
The complex conjugate of egn. (5.9) is:
f2 a+(s—_1j 0 a*+(S—+1Ji +1| =
2 8a* 2 oo
- ar - -1
{2 [ a+ (S—_lj O |l o +(S—+1J 9 +lj sinh(4 )}
L 2 6a* 1L 005_
A _a+(ﬂ) 0 "a*+[ﬂJ— +A
e L 2 )oa”*lL 2 )oa.
_,1[0“_(5__]'} 0 }[a* (S_Jrlji}_l
_ e 2 )oa” 2 )oa
(5.10)

Substituting egns. (5.9) and (5.10) together with their complex conjugates into

eqgn. (5.6), and after some lengthy mathematical manipulations, one obtains:
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8¢és)((x,a*;t)
ot

| (1+eﬂ)el[“*+(87_lj ﬂ“*(%ﬂ aZ*J

s-1) o0 « [S+1) 0O
+(1+e_’1)e_ﬁ[a+[7j 505*}[0[ +(Tj %] + C.C. qoéls)(a,a*;t)

— {—iw{4sinh (1)}

(5.11)

where the abbreviation C.C. represents the complex conjugate of the first term in

the braces.

Simplifying eqn. (5.11), the final result takes the form:

a(pas)(a,a*;t)
ot

| iw {4sinh(/1)}_1 (1+e’1)e/1(82_1j

{ 2 (s+1) 0 (s—lj ., 0 {(52—1)} 0 }
Al ||+ a— + o ——+ .
. 2 )J7oa 2 )" 44 4 |oa*oa

+ C.C. goés)(a,a*;t)
(5.12)
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Eqgn. (5.12) represents the quantum Liouville equation for the g-deformed 1-D
guantum harmonic oscillator in terms of the g-deformed quasiprobability

distribution function go((qs)(a,a*;t) in the « -representation. The exponential

functions appearing in this equation are operator functions because they contain

. . 0
the differential operators « — and Q*L .
a oa*

5.1.1 Solution of the Disentanglement Problem for the Operator Functions

In general, the disentanglement problem is the problem of how to express the
exponential of a sum of two operators in terms of the product of exponentials of
these operators [50,110,126].

Assuming that Aand B are two given operators, then the problem of

disentanglement consists in finding operators Cl, 62 ,--- such that [50,110,126]

A A ~ A

The €, are the combinations of repeated commutators of Aand B.

If these combinations of commutators satisfy:

[A[AB]-{8[AB]]-|A[A[AB]]|-|B[B[AB]]|-~0

(5.14)
where the dots --- represent all the commutators of order higher than
[A,[A,[A,Bﬂ] and [B[B[AB]H then egn. (5.13) reduces to:

1 A A
AR A B -|AB
AB_ A B eZ[ ] (5.15)

Egn. (5.15) is known as the Baker-Campbell-Hausdorff (BCH) formula
[50,110,126].
Therefore, letting
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A, =+Alaf (5.16)
2 2
A . _ -1
B =4 (S+lja 5*+(S 1ja 2 {(S )} . (5.17)
2 oo 2 oo 4 oada
and,
B,=-B] (5.18)

and substituting for the operators Aand B from eqgns. (5.16), (5.17) and (5.18)

into egn. (5.14), the results are:
[A+ 1A, Blﬂz[sl,[A+ , Bﬂ:o (5.19)

[A_,[A_,Bzﬂ{éz,[A_,Bzﬂ:o (5.20)

Eqgns. (5.19) and (5.20) represent the required conditions that should be satisfied
to apply the BCH-formula (i.e., eqn. (5.15)).

The commutators [A s Bl] and [A_,BZ] can be calculated by substituting the

operatorsAi, B,and B, from egns. (5.16), (5.17) and (5.18) into the expansion

of these commutators to obtain (see Appendix-E):

[A+,B1]—[A,BZ]—_12{S \a‘z+[sz4_1J[a*aa* .l 1}} 521

(04

Similarly, the commutators [A+,[A+,I§1ﬂ ,[Bl,[AJr,Blﬂ,[A_,[A_,Bzﬂ
and [Bz ,[A_,Bzﬂ can be calculated to obtain (see Appendix-E, egns. (E.9),

(E.10), (E.14) and (E.15)):
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[A+,[A+,e1ﬂ:(%j o (5.22)

[I%l,[AJr,Blﬂ:—/f {32|a|2+ (yj{a*ﬁ +a%+l}
+[<s+1>2<s—1>2] i } (523)

8 dada”

*

and,
[A_ JA ézﬂz - [A+ JA,, élﬂ (5.24)
[Bz JA BZH . [Bl, (A, Blﬂ (5.25)
The expressions for the commutators [A,,By].[A_8,][A. [A, B]],
[A_ [A, Bzﬂ, [Bl A, élﬂ and [BZ [A_, Bzﬂ for different values of the

ordering parameter s are illustrated in Tables (5.1) and (5.2), where egn. (5.16)
and the egns. (5.21)-(5.25) have been used to obtain the results:

Table (5.1)

The expressions for the commutators [A " Bl] and [A_,éz]for different

values of the ordering parameter S.

: (A.8] (A8,

1 —1A, AA_
PRl A2V, 0

0| — ||l +ta—+1| || — || & +a—+1
4 80!* a 4 80{* a

1 AA, —AA_
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Table (5.2)

The expressions for the commutators [A+ ,[A+ , Blﬂ , [A_ ,[A_ , Bzﬂ,

[Bl,[A+,I§1ﬂ and [BZ,[A_,BZH for different values of the

ordering parameter S.

s |[Ac[Ace]] | [Bu[A B[ | [A[A B, ]] | [B2 [A 8]
1 0 ~A%A, 0 —2°A_
LA 23 8 2%, 23 82
RS R
-1 0 ~A%A, 0 ~2%A_

The fact that the expressions for the commutators [A+,[A+,Bl]_

A_|A_B,||,[B,|A, B ||and |B,,|A_,B, || shown in Table (5.2) are
A [A B [Bu[A, B[ and B, [A B, ]|

non-vanishing for all three values of the ordering parameter S means that the
conditions given in egns. (5.19) and (5.20) are not satisfied. In other words, the
BCH-formula cannot be applied to solve the problem of the disentanglement of

the operators appearing in egn. (5.12).

An alternative solution to this operator disentanglement problem could be
through the Zassenhous formula [127]

e =e’'- e -e (5.26)

~

Again, the operators A and B are substituted from egns. (5.16) and (5.17)

respectively and the operator eC can be calculated by employing the method
introduced in ref. [128] since the same conditions of ref. [128] apply to our case,

l.e.,
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(A, B ]=-1(2)A, (5.27)
[A_B, |=—f(2)A_ (5.28)
where f (Z) represents any real function of arbitrary variableZ € R.

In our case, the function f (Z), denoted here for convenience by yés)’ can be

calculated according to eqns. (5.27) and (5.28) as:

-1A, B )
% associated with the operator A,
= (5.29)
- [A— ’ Bz] . . A
— A associated with the operator A _

C can be written as [128]:

o0 1—mj (s) m—T X
o A A — =7 A
eC C,. .C3 C [m2=1( m! ( q ) +

—e 2.g73...e7® =¢

Thus, the operator e

(5.30)

and the subscript g and superscript s in yés) refer respectively to the

g-deformation and the associated type of ordering, i.e.;s=1,0,-1.
But since [128]:

i(lr_n—:n)(‘7é8) )m—1: (‘Vés) )TGW‘SS) —1] e a” (5.31)

then, inserting eqgn. (5.31) into egn. (5.30) results in:
(s) (S)
1| — _ R
e ST
(5.32)
Substituting Aifrom egn. (5.16) and the commutators [A+,I§1] and [A_,BZ]
from Table (5.1) into eqn. (5.29) leads to three expressions for 7&3) as given in

Table (5.3).
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Table (5.3)

The expressions for yés) corresponding to different values of the ordering

parameter s.

S 7/(:(18)
1 )/(1): A associated with the operator A+
9 |-4 associatedwith the operator A_
—(i)|a|_2(a* 8* +ai+1) associated with the operator A+
0| ,0_]) 4 oo Oa
q A\ -2 « O 0 : _ A
(—)|a| (a +a—+1) associated with the operator A_
4 805* oa
P ~ associated with the operator A,
q A associated with theoperator A_

Inserting the expressions for ]/és) from Table (5.3) into eqn. (5.32) produces

different expressions for eC associated with different values of s. These results
are summarized in Table (5.4).

Table (5.4)

A

The expressions for eC corresponding to different s values.

5 e
1) 1)
[ -y 77
1 {(—7&”) {e q —1}— a 1A,
€ =¢
(0) (0)
1 -y W7
0 = {(‘%ﬁo)) {e | 1}_ | }Ai
eC=e
(-1 (-1
1 - A
1) {( i) {e Y —1}—e 9 }Ai
eC:e
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~

C

Substituting e~ from eqn. (5.32) into eqn. (5.26) gives:

(s) (S)
a( = — .
A ) |:(—7/és)) {e ’q —1}—e g }AJF
A +B A, B (5.33)

where the expressions for 7/c(]S) associated with A, and A_ are given in

Table (5.3) for different s values. Eqgns. (5.33) and (5.34) represent the solution
of the operator disentanglement problem for egn. (5.12).

Substitution of the expressions for Ai, B, and B, into egns. (5.33) and (5.34)
gives:

{ 2 (s+1j . 0 (s—lj 8 {(32—1)} 02 }
Alla|”+ a— + oa— + -
. 2 da 2 oa 4 oada” | _

Ksuj . 0 (s—lj o [(52—1)} 0°
) A a -+ o + ”
e/1|05| . 2 oa 2 oa 4 oada

(5.35)
2 2

—/1{|a|2+(s+1jaa +(s—1Ja* G*J{(s 1)} o *}
e 2 oa 2 oo 4 dada” | _

_1{(5_”}&%3_—1) e +[(52—1)} o’ }
e—/1|a|2 . 2 o 2 oa” 4 dada”

(s) (s)

1 = .
(ERATE SN
e (5.36)

Finally, substituting egns. (5.35) and (5.36) into eqgn. (5.12) results in:
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8(0&3)(0(,05*;'[)
ot

i a){4sinh (2 )}_1 (1+eﬂ) e /1(82_1)

(s+1) o (5—1] . 0 [(52—1)} 0
—A o— + a -+ ”
e 2 ox 2 oo 4 oada

+ C.C. (/)((13) (a,a*;t)

(5.37)

Eqn. (5.37) represents the quantum Liouville equation for the g-deformed 1-D

guantum harmonic oscillator in terms of the g-deformed quasiprobability

distribution function ¢S a,a”:t) in a -representation. Substituting the values
%

of the ordering parameter s (i.e.;S=10,—-1) into eqn. (5.37) leads to the
g-analogs of the well-known quasiprobability functions in quantum optics,
namely; the Husimi Q -function (s=1), the Wigner W-function (s=0) and the
Glauber-Sudarshan P-function (s=-1). This thesis is concerned with the
g-analog of both Q-function (s =1) and P-function (s =-1), where for these two
functions, eqn. (5.37) has a well-behaved analytical solution as will be seen in the

next sections.
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5.1.2 The g-deformed Husimi QOI -function (s=1) , Glauber-Sudarshan
Pq -function (s=-1) and the Dilatation (Shift) Operator

The g-deformed quasiprobabilitity distribution function (oés)(a,a*;t) that

appeared in eqn. (5.37) represents the g-analog of the function (p(s)(a,a*;t).
Hence, for (s =1) this function becomes (péD (a,a”;t), and from Table (2.1) this

function is the g-analog of Q a,a™;t which is denoted by Qq(a,a*;t).

Substituting Qq(a,a*; t),AJ_r and yél) into eqn. (5.37) leads to:

0Q, (a,a™; t 1 al?
q(ét )= —iw{4sinh (1)} [(1+eﬂ)e/1| |
« O
B [ e e I [
0

(5.38)

which can be simplified to

8Qq (a,a";t)

= {— i w{4sinh (1)}

2 ha' o laea)eh -l (jof)

2
: (1+e’1)ei|a| e 0a ¢ + (1+e_/1)e_/1|a|

| _;mai —{(1—l)e/l 1}(&2)}+C.C.}Qq(a,a*;t)

(5.39)
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Similarly, the g-deformed quasiprobability distribution function is denoted by

*, -1 *, * . . *
Pq(a,a ,t):(péI )(a,a ;). As for Qq (@ @™ t), insertion of By (a,a"; t),

A, and 7&‘1) into eqn. (5.37) gives:
oP,(a,a’;t 2
q(zta ): {—iw{4sinh(ﬂ)}_1l(l+ei)e_}“e/1|a|
—iai 1 ﬂ,e/l 1 2
e da-pet (o) (re ) e oW

. 0
ro— e{(lm)e"1 S (S

e +CC. P (a,a*;t)

v
(5.40)

0
PX—
Since the action of the dilatation (shift) operator e~ 9X ona function F x can

be written as (see eqn. (3.21)):
0
L F(x)=F (xe?) (5.41)

for any arbitrary constant 4, then one can employ eqgn. (5.41), assuming that

B =+ andreplacing F x by F(a,a”) to write:

ixla*i
oo *) = 4
e F(a,a )—F(a,e a ) (5.42)
0
a,a )—F(e a,o ) (5.43)

Eqns. (5.42) and (5.43) can be generalized to the case when the shift operator acts
on the product of two function F(a,a”)G(a,a”) (see Appendix-F, egns. (F.10)

and (F.11)).
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Using this result leads to:
iia*i* +ia"
e oa F(a,a*)G(a,a*):F(a,ei’la*)e 0 G(a,a*) (5.44)

and,

tla— 12 i/l@ti
e O F(a,a*)G(a,a*):F(e_ a,a*) e 0 G(a,a") (5.45)

Letting

- (1+2)e” -1} (o)

Fla,a")= (5.46)
- ((1-2)e*~1}(|af)
and,
G(a,a*):Qq (a,a";t) (5.47)

and substituting egns. (5.46) and (5.47) into egns. (5.44) and (5.45), gives:

« 0 ) 2
eila pyr e—{(l+/1)e _1}(\05\ )Qq(a,a*;t)z

- {(1+,1)e‘ A —1}[eﬂ \a\z] a2

e e oa" Qqa@.a™;t)  (5.48)

and,

ei/la% . {(1—}L)e’1 —1}(\042)

Qq(a,a*;t):

o
. _{(1—1)9,1_1}[@1‘“‘2} eiAO‘%Qq(a,a*; 0

(5.49)

Then, substituting egns. (5.48) and (5.49) into eqgn. (5.39), this equation becomes:
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6Qq (a,a;t)

= {— i w{4sinh(4)}™

(5.50)
But since,
et [af] af o (" lof) 5,
and,
Aenet [P Jof e (€ lef) 552
then, substituting egns. (5.51) and (5.52) into eqn. (5.50) gives:
0Qq (c;,a*; t): iofasin()) Y (1+e?) e‘|“|2 e(ez |a|2)eza* -
N (1+e_/l)e_|a|2 e(e_’l |a|2)e_/m£ +C.C.{ Qq(a,a™;t)
(5.53)

After substituting the complex conjugate terms and re-arranging, egn. (5.53)

becomes:
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Q. (a,a";t Y
q(ﬁt )=—ia){4sinh(;t)} b gl

x O 0

A2\l Aa Ao ——

(1+e’?”)e(e ) e 0d" _¢ " oa

(5.54)
Eqgn. (5.54) represents the quantum Liouville equation for the 1-D g-deformed

guantum harmonic oscillator where the probability distribution function is the

Husimi function Qq (a,a”;t).

Similarly, one can simplify the Glauber-Sudarshan eqn. (5.40) for

quasiprobability Pq(a,a*; t) to obtain:

0P, (a,a";t 2
q(Zta ):—ia){4sinh(ﬁ,)}_1 el
x O 0
A2\ A i
(1+e_l)eﬂ‘ e(_e o) e e elaaa
0
A2 —la ” —loa—
—(1+eﬂ)e ’Ie( el e oa” _¢ " oa Pylaa’;t)
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5.1.3 Zaslavskii’s Method for Deriving the Quantum Liouville Equation for

the g-Deformed Oscillator in the a -Representation
According to Zaslavskii [129], the equation of motion of an averaged physical
quantity & a,a”;t is defined as [129]:

o0& a,a”;t

=—iK¢& a,a”;t 5.56
T ¢ aa (5.56)
where,
2 2
K:[lJe_‘“‘ oo -2 a2 ol (5.57)
h q oa” q Ja

The Hamiltonian of the g-deformed quantum harmonic oscillator is given by
eqn. (3.34). And according to Sudarshan [102], one has the following
correspondence:
aT — o

5 o for I[:]Iq a”, i* (5.58)
oa”

and,
ot for H, «, o (5.59)
Substituting egns. (5.58) and (5.59) into the expressions for [I\Al}q and [N +1]q

appearing in ]I:Hq a, % by using eqns. (3.35), leads to:
o
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sinh Aa™ 8*
N|l = o . .
[ ]q sinh 4 X qN_q—N
. 0 9 a-gq
N+1 = @
* q sinh 4
and,
ra” 8*
N . e da” _ 1 .
for [N} = (5.61)
5 9 q-1
ia*a *—l—l}
. o _
N+, =" 1
g e’ —1
The same method can be used for [N] and [N —|—1} appearing in H, o — .
g q q oo

Now, insertion of [I\] ]q and [N —|—1}q from eqns. (5.60) and (5.61) into eqgn. (3.34),

gives:
5 " sinh /la*aa* sinh 1 a*aa*Jrll
. o, = 4 4 5.62a
a5 [2] sinh 4 sinh 4 (5.622)
hence,
a*aa* AMa™ a*+4
A (04 _ (04 _
. o 8* :[hw] e /1 1 L|® A 1 (5.62b)
f oa 2 e’ —1 e’ —1
and,
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i 9 oo sinh iai sinh A[aa+l]

i a, :[ ] __Oa ! Oda (5.63a)

47 9« 2 sinh A sinh A
hence,

i ) [ et
A h e 0o 1 e o -1
i, 2 _ “’] : + B » (5.63b)
Oa 2 e” —1 e —1

respectively.
Using egns. (5.62) and (5.63) in eqn. (5.57), leads to:

; 1 —af 9 )

K=w 2sinh 1 e {sinh A" —— +sinh 4 a*—*+1}

oa oa
2
_sinh 222~ sinh A[aiﬂ} } el
oa oa
(5.64a)
and,
1 _‘a‘z ra’ 8* Aa” 8*4—1] /105i
Kew 2e*—1 e e Oa 4o da _ ¢ Oa
0
/1{ < 1] 2
— e a8a+ e‘a‘
(5.64b)

Then, using the definition of the sine hyperbolic function and re-arranging terms,

eqn. (5.64a) can be cast in the form:
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« 0 0
. e DV I
K=w 4sinh 1 e 1+e* e Oa _¢ Oa
« O 2
- —la * —/1061 e|a|
— 14+e * e da’ _ e  Oa
Similarly, eqn. (5.64b) becomes:
« O 0

5.65a

2
2

(04
e (5.65b)

Eqgns. (5.65a) and (5.65b) can be substituted in egn. (5.56) and after replacing

Ea,a";t by & a,a”;t , one obtains:

ia” J
o0&, a,a t 1R b
g =—jw 4sinh A 1e |a| 14—e’1 e “
ot
x« O
—1 Ja Ja | |
— 1+e e — e afq a,o ;t
and,
x« O
la
o0&, a,a ;t 12 9
g Py —lw 2e’1—1 e |a| 1+e’l e “
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respectively, where the function §q a,a”;t represents the g-analog of the

averaged physical quantity & «,a"

.t appearing in ref. [129]. Also, it is noted

that the function fq a,a”;t reducesto & a,a”;t inthe limit g —1.

Finally, egn. (5.66a) and (5.66b) can be simplified by using eqns. (5.44) and

(5.45) with F(«, a | |

0¢& a,at 1 |2
g =—iw 4sinh A e |a|
ot
« O
= da” /laai e #
- e “ _ “ 1+e 2 e
—/105* a* —,lai
oo Ja
e - ‘5 aia 1t
q
and,
o0&, a,a ;t -1 .2
g =—jiw 2 e’l—l e |a|
ot
| 0 o
1+e

respectively.
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fq(a a’; ) and re-arranging to get:

A2
i ¢l

(5.67a)

»§q a,a ;t

(5.67b)
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Eqgns. (5.67) represent the quantum Liouville equations for the g-deformed

quantum harmonic oscillator in the « -representation. The probability distribution
function ‘fq a,a ;t ineqn. (5.67a) is equal to Qq (a,a”;t) since eqn. (5.67a)

Is the same as eqgn. (5.54).

5.2 The Quantum Liouville Equation of the g-Deformed 1-D Quantum

Harmonic Oscillator in the aq -Representation

A quantum Liouville equation for the g-deformed quantum harmonic oscillator

N
can be also obtained for the g-deformation defined by f N = Nq where

~

N
[N]q _d _11 in the % -representation. The aim of this section is to show that
q_

this is possible by using the g-deformed P-representation based on the g-deformed

coherent states that have been introduced by Arik and Coon [9].

5.2.1 The g-Analog of Glauber-Sudarshan P-Representation

The g-deformed boson operators éq and éa in this case obey the g-commutation

relation [9]:
s AT | —_4 at _qafa —
[aq,aq Jq =agdg — 984 1 (5.68)

where [éq,éﬂ represents the g-commutator.
g

The unnormalized g-deformed coherent state H aq> Is defined as the eigenfunction

of the g-deformed annihilation boson operator éq, or [9]:

99



Chapter Five The Classical limit of the Quantum g-Deformed Harmonic Oscillator

@)= 2q | =) (569

where,

o0
0!

H aq)= (5.70)

0

and the g-deformed Hilbert space bases are given by [9]:

H n>q - (éa)n H o>q (5.71)

such that
8 H o}q -0 (5.72)
(0] 0>q =1 (5.73)

It can also be shown that [9]:

ag )=+, 5.74)

éq Hn>q=[n]q Hn-l>q (5.75)

where [n]q is as defined by eqn. (3.5).

Therefore, the scalar product <mH n>q , using eqgns. (5.71), (5.74) and (5.75),

q

becomes:

mHn>q=q<0H(éq H = [n]y! 8nm (5.76)
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where [n]q! is as defined by eqn. (3.12).

The action of éa on H aq> can also be written as (see Appendix-G)

ad | aq) = B—aq o) (5.77)

where D represents the g-differential operator defined as [9]:

flag) - f(aag)
D—aq f(aq) = P (5.78)

The operators éq and éa are Hermitian adjoints of each other and the Hilbert

space {Hn)q} is the Hilbert space adjoint of the Hilbert Space { q<n H} Therefore,

oy *
(aq H“q>) ={eg] g (5.79)

and,
L i
<“qHaq =(a3 H“q>) :<0‘qH DDTa (5.80)

Arik and Coon [9] have also proved that for the states {Haq>}there Is also a

resolution of identity in the form:

D%a
Eq ((3) Haq ><0‘q |

i=1s (5.81)
T

where,
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2
o= q‘aq‘ (5.82)

2 *
D aq—Daq Daq (5.83)

and D is the g-deformed differential associated with the g-deformed differential

operator[g)T, S represents the basic integral, which is for a function F of real

variable x defined as [9]:

b 00
S F(xDx=(1- q)bEZ‘éqf F(q'b) (5.84)

and the g-deformed exponential Eq (o) is defined as [9]:

()= —— (585

o{ata-aleq

2
2
where, G(q(l—q)‘a ‘ ) is an entire function and lim E (o)= e‘a‘ :

Then, by using the resolution of identity as in egn. (5.81), one can write the

zza -representation of the density operator /3q in the «, -representation as:

q

1 Dzaq .
pg=7" Eq(g)ﬂa(%’“q)”“qxaqu (5.86)

where, [)q and Iy (aq ,aa) represent the g-analogs of the density operator p

and the weight function P(«,a”) for the Glauber-Sudarshan P-representation
respectively (see eqgn. (2.59).

Using these results, one can write the following relations (see Appendix-H, egns.
(H.17), (H.18), (H.19) and (H.20))
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A Py 1 Dzaq %k

4Py :;S £y (o) H“q><“q”“q% (aq.9) (5:87)
. 4 1 D : ;
Py aa = S Eq(aq) HO‘Q><“QH aq Iy (aq.aq) (5.88)
A A 1 Dza * — %k
APy =78 Eq(aq) Jorg (x| {“q_ [I)Daq } Iy (@ ag.aq)  (5:89)

and,

R R 1 DZOC _ "
Pq8q=—_" Eq—((j) Jetg ) {exg {QQ_STE}% (aq.a'ag)  (5.90)

Hence, eqgns. of correspondence which are the analogs of egns. (2.65), (2.66),

(2.67) and (2.68) in « -representation can be written in «, -representation in the

q
form:
aq 'Oq — g [Fa (aq ,aq) (5.91)
p al —al B (ay.0) (5.92)
q 9 a g\ q’'q
éT,b | a b P (q_la a*) (5.93)
q7q q Daq q q'7q '
and,
p. a4 —>la _b P (a q_la*) (5.94)
q 9 q Daa qrrq’ q '
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These equations permit the derivation of g-analog equations corresponding to
eqgns. (2.61) - (2.64) in the aq -representation. Thus, by multiplying both sides of

egn. (5.89) from the left by éq , One obtains:
D?%a
A oAt~ 1 q 4 « D ~1 #
38q P = S Eq(c) 1 Jerg (] {“q Doy } fq(a”aq.aq) (5.99)

The substitution of egn. (5.69) into eqgn. (5.95) gives:

A

.. 1 D ) _ )
898 P =S ?@,q) g (g g {“q‘[?Tq} Iy (a7 aq.aq)  (5.96)

But since éq and éa are both Hermitian adjoints of each other and ,[)q IS

self-adjoint, then the conjugate of egn. (5.96) becomes;

.. 1 Da
ot ~(887) - 25 ¢ gl

* D -1 =*
- ag {aq—wjl ﬂa (aq (] aq) (5.97)

Also, one can show that (see Appendix-H, egns. (H.34) and (H.35))

. . 1g D . _ _ )
3 4 Ayq :;qu—((g)”“qxaqu {“q[?Tq}(q 1O‘Q)%(q ag.aq)
(5.98)
and,
noata _(ata Ay 1 Daq
Pqdqdq=(3gdqr) =—5 Eq (o) Jerg )
: l:aq—[E)Ta] (q_laa)[?’a (aq,q_laa) (5.99)
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Thus, the correspondence equations in the « -representation, which are the

q
analogs of eqgns. (D.27), (D.28), (D.29) and (D.30) in the « -representation given
in Appendix-D, become (see Appendix-H, egns. (H.36) and (H.37)):

A At A £ D -1 *

%% Pq 7% {“q Day, } fq (0" aq.aq) (5.100)
5 a4l 5o |a.-2—| P (ag.0 ") (5.101)
7% 7| %0 Dgg | "a\ A T

A'f‘ A A * _ D -1 —1 *

%% pq_’{“q Day }(q ag) 7 (4" 'ag ) (5.102)

and,

p ata - |a, - D (q_la*)P (a q_la*) (5.103)
%% 9" Dag g/ ‘g% 9 “q

These correspondence equations represent novel results and will play an
important role in deriving the quantum Liouville equation for the g-deformed

guantum harmonic oscillator in the «, -representation.

q

5.2.2 The Quantum Liouville Equation in Terms of g-Derivatives

The quantum Liouville equation in terms of g-derivative can be derived by
substituting the Hamiltonian of the g-deformed quantum harmonic oscillator as
given by egn. (3.30a) in the Heisenberg equation of motion (i.e., eqn. (2.57)) to
yield:

P lw
d_ (@4 at5 vata. 5 —p 445 _ 5 af
( j{aqaqpq”qaqpq Pqq@q =~ aq"ﬂ‘q} (5.104)

Using the correspondence of egns. (5.100) - (5.103), eqgn. (5.104) for the density
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operator can be transformed to the Pq -representation in a manner similar to what

has been done in the « -space. This gives:

0P (a o t)
g \*q'“q- lw « D -1 % |
ot (2){% {“q‘—Daq}Pé(q “qogit)

* D *k
"% Da, (a7taq) £ (a7ag o)
* [ D | 1
_ aq q Daq q(aq,q aq t)
—a—D (qla)P(a qlat)
q Daa q//q\"q q
(5.105)
Eqgn. (5.105) can be simplified to give
8172&(aq,aa;t):
ot
17) -1 * D -1 *,
_( j{“ qu (4 g aqit) ~ o Daq%(q ag.agit)
0| |2 (g t) - o (0 ag) £ (a7 e )]
I q q q'q’ Daq q/°q q'q’

2 -1 . % D -1 _=*,
_ _‘aq‘ }ﬂa(aq,q aq,t)+(aq)—Daa Pa(aq,q 1aq,t)

* D -1 =% —1 x
- ‘ q‘ }ﬂa q 105q ) Daa [(q 10‘q)ﬂa (aq’q 10‘q’t)}

(5.106)
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Applying the product rule of qg-differentiation egn. (3.25) to

gTq[( _1aq) I (q_laq,aa;t)} with F(x):q_laq and
G(x)= Pa (q_laq ,Ota;t) gives:

B0 ) 6 o]

q‘léﬂa (q_laq agit)+ay [?Tq Iy (q_laq agit) (5.107)

*

.. D -1 = -1 =, . -1
And, similarly for 5o [(q aq)ﬂa(aq,q aq,t)]butwnh F(x)=q o

and G(x) = ﬂa (th ,q_laa; t), one obtains:

D -1 =* -1 =*,
Daa [(q 1aq)ﬁa (aq,q 1aq,t)}:

q_1P (aq ,q_la

) ") 2 ot ot) (5.108)

q

Substituting eqgns. (5.107) and (5.108) into eqn. (5.106) and simplifying the result,
then:

8%(aq,aa;t) —[iwj

(5.109)
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The Jackson derivative Dg Is defined as [115-117]:

DCID

- 5.110
. =5, (5.110)

+ +
Then, using q_1: e_,1 and egn.(5.110) in eqn. (5.109), this equation becomes:

MUEI (aq ,aa;t) _ (Igj
ot

2aa D;a Pa (aq,e_/laa;t)—Zanaq Pa (e_ﬂ’aq,aq,t)}
(e g 2 (e gty )~ 2 (g™ i)

(5.111)

Using the analogs of eqgns. (5.42) and (5.43), in the «, -representation, one can

q
write:
0
_Mqaaq . 2 .
e By (aq.agit)=Fy (67" ag.aq:t) (5.112)
—Aa 0
qaaa % —A %
e By (aq.oqit) =By (aq.e " agit) (5.113)

Substituting egns. (5.112) and (5.113) into eqn. (5.111), the final result is:
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0l (aq'aa:t):_(iwj

ot 2

+e e 49 _ ¢ 9 Mza (aq,aa;t)

(5.114)

Egn. (5.114) represents the quantum Liouville equation for the probability
distribution function ﬂa(aq,aa;t) of the g-deformed quantum harmonic

oscillator in the aq -representation.

5.3 The Classical Limit of the g-Deformed Quantum Harmonic Oscillator

The present section is devoted to the investigation of the classical limit of the
g-deformed 1-D quantum harmonic oscillator. This investigation is performed on
the basis of the quantum Liouville equations corresponding to this oscillator that
have been derived in Secs. (5.1) and (5.2).

109



Chapter Five The Classical limit of the Quantum g-Deformed Harmonic Oscillator

5.3.1 The Approach to the Classical Limit
The classical limit for the g-deformed 1-D quantum harmonic oscillator can be
approached in a way similar to what has been done by Ghosh et al [76] for the
undeformed 1-D quantum oscillator with some necessary modifications.
In the case of the undeformed 1-D quantum oscillator, the following conditions
are used to approach the classical limit [76]:
I —>0,\a\2 >0
such that (5.115)
hlaf” —finite
These conditions are necessary to obtain the energy as the classical limit of the
expectation value of the Hamiltonian for the case of the non-deformed oscillator
where it is required that this expectation value (i.e., egn. (2.51)) remains finite as
h—0.

For the case of the g-deformed 1-D quantum harmonic oscillator, the expectation

value of the Hamiltonian in a coherent state |«z) can be obtained as:

Hq )= (hZ’ j[sinhl(g)J{(“e/l) 6,1‘042 - (1+e_i) e_i‘a‘z} (5.116)

where the Hamiltonian H_ is given by egn. (3.34), and the g-number operators

q
: . i I . inh A[N+1
aregivenas N —SM AN ang ggq S N+ |
sinh 4 q sinh 4

Again, the classical limit of this expectation value could be taken to correspond
to the classical energy of the q-deformed oscillator.

For this expectation value to remain finite as ~—0, a modification to the
conditions given in eqns. (5.115) is necessary. This is due to the introduction of

g-deformation which is related to the non-linearity parameter A. The modified
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conditions can be obtained by expanding all the exponential functions appearing
in the expression for the expectation value of eqgn. (5.116) as power series in A4

to obtain:

(5.117)

Simplifying eqgn. (5.117) then, after some lengthy mathematical manipulations,

one obtains:
haw 1 2 2% 6 4
(alfigla)={ "2 )5 {4\04 SN RSP LI
[+++--}
3! b5l
4 4
+/12\a\2+/1—\a\6+---+/1—+/1—\a\4+ }
6 3 6

(5.118)

Letting A —0 (i.e.,q —1) ineqgn. (5.118), this equation will reduce, as expected,

to the energy equation for the undeformed quantum harmonic oscillator of
eqn. (2.51). Therefore, to apply the condition for approaching the classical limit,
h —0 one should take into consideration the fact that A0 in the present

g-deformed case.

The main idea again is to let the energy as represented by the expectation value

of egn. (5.118) remain finite as A —0. It appears from egn. (5.118) that as
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h — 0 this expectation value can remain finite only if some additional conditions

on A are applied. Table (5.5) shows the different cases that can arise.

Table (5.5)

Different cases that arise in taking the limit 7z — Ofor the g-deformed oscillator

o . existence of
limiting condition o
classical limit
_ h—0, \a\z — o0 such that h\a\z — finite, and \
) 0
§ keeping A fixed.
h—0, \a\z — oo such that 2 — 0 faster than
o . o
i A—0,i.e., A=(const.)-h® where 6=1-¢ No
(4¢3
(&)
and 0< & <1, hence, i\a\z —>undefined.
2
h—0, |a| — o0 such that 4 —0 as fast as
™ .
& h—0,i.e., A=(const.)- A , hence Yes
S
/1\0:\2 —finite
- f h i.e.
same as case-3 but A — Ofaster than 7 —0, i.e., Yes, but the
; A =(ConSt.) . h5Where o=1+¢ and ¢ >1, q_deformation must
(4¢3 .
° hence, Ala|” —0 vanish

There are different reasons for the non-existence of classical limits in some of the

cases shown in Table (5.5). For example, when applying the condition 7 —0,

\a\z — oo such that h\a\z — finite and keeping A fixed (case-1), the terms in eqn.

(5.118) containing 22" ||, 42" |a[*™**and A2] |a|2j(i_e_, m=12--- and

J=2,3,--+) will blow-up (i.e., go to ®). This is interpreted to mean that under
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such a condition (i.e., keeping A fixed), a classical limit does not exist [97].

While when applying the condition 7 —0 faster than 4 —0, \a\z — oo and

A=(const.)-h-h~¢ such that /l\a\z —undefined (i.e., case 2 in Table (5.5)),

eqn. (5.118) does not produce a finite value for the energy. This is also interpreted
to mean that under such condition (i.e., A —0 faster than A — 0) the classical

limit does not exist.

Applying the other limiting condition 4 — 0 faster than 7 —0, \a\z — oo and

A=(const.)- ii-K¢ such that /1|a|2 —0, (i.e., case 4 in Table (5.5)) then,

eqgn. (5.118) produces a finite value for the energy of the undeformed quantum

A

oscillator (i.e. ,(a|H a>:hw\a\2). Again, this means that under such a

condition (i.e., A —0 faster than A~ —0), a classical limit exists but the

g-deformation must vanish. This case is similar to the case of taking q —1 (i.e.,

A—0)in  eqn. (5.118) as mentioned before. However, applying the limiting

condition, A —0 as fast as A~ —0, \a\2—>oo and A=(const.)-A such that

/1\042 —finite (i.e., case 3 in Table (5.5)), then all terms in egn. (5.118)

.. 2m+2 . .. . ..
containing /1m|a| m (m:1,2,---) remain finite with other terms vanishing.

Therefore, eqn. (5.118) reduces to the energy of the g-deformed classical

harmonic oscillator as:

(a|Hqyla) = (hij {4\042 +¥\a\6+... } (5.119)

This result means that under the condition, A —0 as fastas 7 —0(i.e., case 3in
Table (5.5)), a classical limit exists. Therefore, this limiting condition (case 3)
will be adopted in this thesis to approach the classical limit for the g-deformed
quantum oscillator on the basis of its various representations of the Liouville

equation.
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5.3.2 The Classical Limit of the Liouville Equation for Qq in the

a -Representation
Expanding all functions appearing in eqn. (5.54) as power series in A, and

simplifying the result, one obtains:

aQq(a’a*it)__(iwj[ 1 }

ot U4 L[+ ()]

2

[/1 |a|2+/1—|a|2+---}
2!

- < [2+82(ﬂ)] (S

e G B e
a —a— [+ —=1| « —la— | p+:
oo’ oa ) 2! oa™ da

+[2+S3(1)] e

s allesd s}

where,
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A2 % 48
I T
FEE R

22 58

S3(A)=-4 +E_§+

Applying the adopted condition for the classical limit, i.e., h —>0, \a\z — 00 Such
that /I\a\z —finite, to egn. (5.120), where A=(const.)-A, and letting

Q (a,a";t) —>Q’§L(a,a*;t) in this limit, then egn. (5.120) reduces to:

(5.122)

where the fact that in this limit S;(1)=S,(4) =S3(4)=0 has been used.

Re-arranging the terms in egn. (5.122), this equation becomes:

q. .
0P, (a,ast) :—ia)(l)[a* 0 0 J

— a_
ot q oo’ da

Q’qu_(a,a*;t) (5.123)

where,

wél) = w cosh (i\a\z) (5.124)
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Eqgn. (5.123) represents a classical Liouville equation for a classical harmonic

oscillator having frequency a)&l). By expanding the frequency of this oscillator

a)((ql) up to /12, eqgn. (5.123) becomes:

O@CqL(a,a*;t)
ot

2
—iw{a* 0 —aiJ+l—\a\4(a* 0 —ai]}@cql_(a,a*;t)
oa” oa 2! oa” oo

(5.125)

Eqgn. (5.125) can be interpreted as a classical Liouville equation for a classical

harmonic oscillator with frequency:
1) _ 1+)“—2\ \4 (5.126)
a)q =w ol o .

It is apparent that the 1% term on the right hand side of egn. (5.125) represents the
classical Liouville equation for a simple harmonic oscillator with frequency w.
Thus, egn. (5.125) agrees with that obtained by Ghosh [76] for the undeformed

2
case but with an additional term i_‘a‘4 a” 0 _ ozi resulting from the
2! oa” oa

g-deformation.
Also, the comparison between eqn. (5.125) and the corresponding eqn. (4.70)
shows that, when w&l) (i.e., eqn. (4.42a)), is expanded up to first order of A2 the

result agrees with that of egn. (5.126).
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5.3.3 The Classical Limit of the Liouville Equation for Pq in the

a -Representation

Using a technique similar to that of Sec. (5.3.2), eqn. (5.55) results in

an(Z;a*; ! = _(ic: j|:(l+st(ﬂ“))}

- 2
2 - [/1 af + 2 fafP - ]
(2+83(/1)) (1+1+7+---j e 2!

[ e o e

2
e A
PRNAVIRRCEE

oo allorss o)

(5.127)

Applying the limiting condition, 2 —0, \a\z —oand A —0 as” fastas 7 —0,
i.e., A=(const.)-h, hence i\a\z —finite, to egn. (5.127) and letting
Pq(a,a*;t)a@gl_(a,a*;t), one obtains the same result as in eqn. (5.122).

Also, applying the same limiting condition to eqn. (5.67a) (i.e., the Liouville

equation obtained from  Zaslavskii’s method) and letting

fq a,a’ it —>Q’Cq|_ a,a’t produce the same result as in eqn. (5.122).
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Similarly, applying the same previously mentioned limiting conditions
(i.e., case-3) to egn. (5.67b), leads to eqn. (5.123) but with g-deformed frequency
given as:

A a|2

a)éz) _well (5.128)

As in the case of the classical limit of the Liouville equation for Qq , egn. (5.123)

can be compared with the corresponding eqn. (4.70) by expanding egn. (5.128)

up to first order in 4. The result is:

o) = o (1+]af ) (5.129)

Similarly, the expansion of eqn. (4.42b) leads to the same result given by

egn. (5.129) and, hence, eqn. (5.123) agrees with the corresponding eqn. (4.70).

Again, substituting egn. (5.129) into eqgn. (5.123), one obtains a classical
Liouville equation consisting of two terms. The 1% term represents the classical
Liouville equation for a simple harmonic oscillator with frequency w . This result
is the same as that obtained by Ghosh et al. [76]. The 2" term is

wA \a\z (a* a* —~ aaij resulting from the effect of g-deformation.
ox o

5.3.4 The Classical Limit of the Liouville Equation for /Za in the

%

Using the same technique of expanding the exponentials functions as power series

-Representation

in A, and after some lengthy manipulations, egn. (5.114) becomes:
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8%(aq,a*;t):
ot
5 2
~(%2)4 |2 a4 Dye | 1-20 O +Alagn 2 |-
q agq qé‘“q 21 q@aq

q 2 2
2ag Dy [1-nag 2 a2 .
q4“q qaaq 21 qaaq

2 x« O 0
q

) ) (oo )

+(1+S4(A) A |- [a — -

q
il - v

O «*
R |D»
*
o]
o))
SHES)
N

(5.130)
where,
YRR &
84(1): —ﬂ, + ; —E + - (5131)
Letting 4 —0 (i.e., =1 ) in egn. (5.130) leads to
8PCL(05,0!*;'[) ) . o o N
po = —Ia)(a o aaj PCL(a,a ,t) (5.132)

where, in this limit the relations [115-117]
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A—0 aq 80(*

(5.133)
) q 0
ImD —»>—
ﬂ—)O aq 805

have been used.

Eqgn. (5.130) is the same as that obtained by Ghosh et al. [76] for the undeformed
case as expected.

2
Now, applying the limiting conditions 7 —0, ‘“q‘ —>o and 4 —0 as fast as

2
h—0, i.e, A=(const) % such that ﬂ‘aq‘ finite, to eqn. (5.130), with

%

ﬂa (aq ,aq;t) —>PCqL(aq ,aa ; t), the result is:

0P (ag.agit)

CL
ot

—lw a*i—a i +/1‘a ‘2 a*i—a i Pq (a a*'t)
q@aa q(?aq q qaaa q@aq cLATq g’

(5.134)
Egn. (5.134) can be re-written in the form:
8P§L(aq’aa;t)——|w(3) * 0 4 O NP (ag.alit) (5135
ot Q| %5 %5 | Tcl%qagt)  (613)
q q
where,
(=0t
Wy =@ 1+ A aq (5.136)

Eqgn. (5.135) is the classical Liouville equation for harmonic oscillator with

frequencya)é?’). This result for a)((f) could be shown to agree with the result
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obtained by Shabanov [89] using the path integral method to approach the
classical limit for the g-deformed oscillator with g-deformation possessing the

box function defined in eqgn. (3.6).

The comparison between eqgn. (5.135) and the corresponding egn. (4.79) has been
performed by using the same procedure presented in Sec. (5.3.2) and Sec. (5.3.3).
The result shows agreement between these equations when the expansion of
eqgn. (4.57b) is accomplished up to first order in A, thus, egn. (5.135) agrees with
eqgn. (4.79).

Also, it is noticed that the classical Liouville equation for the simple harmonic
oscillator corresponds to the first term in eqgn. (5.135). The additional term in this

i*—a i results from the effect of

2
equation a)ﬂ,‘aq‘ [aq .

g-deformation.

5.4 Computer Visualizations

It can be noticed that the classical Liouville equations, obtained from applying

the classical limiting procedure in this chapter, are similar to those derived in

Chapter 4 where the frequency of the system is also a function of \a\z . Therefore,

one can use the same solution procedure introduced in the previous chapter to
solve these equations. Then, computer visualizations similar to those used in that
chapter can be employed to study the behavior of the g-deformed oscillator in its
different classical limits. Performing this procedure, the results depicted in

Figs. (5.1) - (5.3) are obtained for the 2-dimensional time-evolution contours of
the probability distribution functions Q?g_ a,a ;t and PCL(aq g ; t) in phase

space. These probability distributions exhibit whorl shapes, and it can be seen

that these whorl shapes become finer as t — c0. Again, these whorl shapes can be
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compared with those obtained by Milburn [77] for the anharmonic oscillator

shown in Fig. (4.1).

P ”
—1. 1. 7 -1 1 7
—1. -1.
a. b.
P P
1 K]

—1. -1
C.

Fig. (5.1): The 2-D time-evolution contours of the classical probability
distribution function @gL(a,a*;r) for the g-deformed harmonic oscillator
with frequency wg) given by eqgn. (5.124) and ¢ =0.5 in phase space, for
different values of time (7): (@) =7/2, ()7 =7, (c) r=37/2,and (d) r=2x.

122



The Classical limit of the Quantum g-Deformed Harmonic Oscillator

Chapter Five
P P
1. | 5
—1. 1 7 —1. 1 7
—1. -1
a. b
P P
I. 1
-1. 1 7 -V 1 7
-1. -1.
C. d.

Fig. (5.2): The 2-D time-evolution contours of the classical probability
distribution function Q’gL (a,a*;t) for the g-deformed harmonic oscillator

with frequency wgz) given by eqgn. (5.128) and ¢ =0.5 in phase space, for
different values of time (7): ()7 =7/2, (b)r=x, (c) 7=3x/2,and (d) =27 .
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Chapter Five
P P
1. 1.
. R 7
=1 =1
a. b.
e P

C. d.

Fig. (5.3): The 2-D time-evolution contours of the classical probability

T ) q . .
distribution function PCL(aq,a;; t) for the g-deformed harmonic oscillator

with frequency a)‘(; ) given by eqgn. (5.136) and ¢ =0.5 in phase space, for
different values of time (7): ()7 =7/2, (b)r =x, (c) 7=3x/2,and (d) r=2r.
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It should be noticed that Fig. (5.3) has been obtained by substituting the definition

2
of ‘aq‘ into eqn. (5.136), using eqns. (4.1), (4.2) and (4.3Db).

From all the previous figures, it can be observed that the behavior of the classical

q

probability distribution functions @, (e, a";t) and Pccﬂ(a +: t) is more or

q%:!
less similar to that exhibited in Chapter 4, i.e., Figs. (4.2) and (4.3).
It is also observed that Fig. (5.3) is not similar to Fig. (5.2). This dissimilarity is

basically the result of the non-commutative nature of quantum mechanics. That

is, applying the classical limiting procedure in the present case leads to different

expressions for a)é”)in the « - and ag- representations (see egns. (5.128) and

(5.136)).

Also, in Figs. (5.4) - (5.6), the results of 3-D time-evolution of the classical

probability distribution functions (PgL(a,a*;t) and P(?L(aq,aa;t) are depicted

in phase space. It is clear from these figures that the peaks of the q-deformed

Gaussians for the classical probability distributions (PgL(a,a*;t) and

chl_(aq,aa;t) do not change with time and are equal to the maximum value
(i.e.,, 1). These peaks follow the classical trajectories that are shown in
Figs. (5.1) - (5.3) for the probability distribution functions. Another observation
Is the nature of the Gaussian shapes of these distributions which become more
convoluted around themselves as t — o, as is apparent in Figs. (5.4) - (5.6).

become more convoluted around themselves as t—oo, as is apparent in

Fig. (5.4)-Fig. (5.6).
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Fig. (5.4): The 3-D time-evolution of the classical probability distribution
function @gL (a,a*;t) for the g-deformed harmonic oscillator with frequency

a)g) given by eqn. (5.124) and ¢ =0.5 in phase space, for different values of
time (7): @)z =x/2, (b)r=x,(c)r=37/2 ,and (d) 7 =27.
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Fig. (5.5): The 3-D time-evolution of the classical probability distribution

function @gL(a,a*;t) for the g-deformed harmonic oscillator with frequency

wgz) given by egn. (5.128) and ¢ =0.5 in phase space, for different values of
time (r): @Q)z=x/2,(0)r=x,(c)r=37/2 ,and (d)r=27.
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Fig. (5.6): The 3-D time-evolution of the classical probability distribution
function PgL (a q,a;;t) for the g-deformed harmonic oscillator with frequency

a)é?) given by eqgn. (5.136) and ¢ = 0.5 in phase space, for different values of
time (7): @) r=x/2,(b)r=x,(C)r=3x/2 ,and (d)7r =2x.
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Chapter Six Conclusions and Suggestions for Future Work,

Conclusions and Suggestions for Future Work

6.2 Conclusions

1. The investigation of the classical limit of the 1-D g-deformed quantum
harmonic oscillator leads to the conclusion that this limit is statistical in
nature. This is clear from egns. (5.125) and (5.135) where the classical
Liouville equations are obtained for the 1-D g-deformed classical harmonic

oscillator in « - and a -representations respectively. This is in conformity

with Ghosh et al.’s work [76], where the classical Liouville equation was

obtained for the 1-D classical simple harmonic oscillator, by applying the

classical limiting conditions 2 — 0 ,\a\z — o0, such that h\a\z — finite. It is

also concluded that this interpretation for the g-deformed quantum harmonic
oscillator is more accurate than that introduced by Batouli and El Baz [95],

because they interpreted this oscillator as a driven harmonic oscillator with
. 2 2 2
the driving force and deformed frequencya)q =(w /4)(qt) , both dependent

on the deformation of this oscillator. Batouli and El Baz’s interpretation [95]
is based on using the undeformed Heisenberg equation of motion to calculate
the g-deformed time dependent expectation values for the position and
momentum. This methodology has intrinsic limitations compared with our
methodology which is based on obtaining the Liouville classical limit that

uncovers more details due to its phase space nature.
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2. The g-deformed 1-D quantum harmonic oscillator can be interpreted as a

nonlinear quantum oscillator where the nonlinearity parameter 4 depends on

h such that 4 :(const.) - h . This dependence is as required for the classical

limit to exist (see Table (5.1)). Based on the more detailed approach to the
classical limit adopted in this work, this interpretation seems to be more
accurate than that introduced by Man’ko [91] because this oscillator was
interpreted as a nonlinear quantum oscillator with special type of nonlinearity

where the frequency is energy dependent.

3. The behavior of the classical limit of the quantum Liouville equations for the
g-deformed 1-D quantum harmonic oscillator in phase space shows whorl
shapes evolving with time as in Figs. (5.1) - (5.3). These figures are similar to
those obtained by Milburn [77] for the 1-D classical anharmonic oscillator as
in Fig. (4.1). This similarity results from the fact that the anharmonicity itself
represents a kind of deformation.

This leads to the conclusion that the whorl shapes in phase space can be
considered as a generalized phenomenon connected with g-deformation; the

anharmonic oscillator being a special case.

4. It has been noted in Sec. (5.3.4) that the classical limit obtained in the present
work using Arik and Coon’s [9] coherent states for the q-deformed oscillator
agrees with that obtained by Shabanov [89] based on path integrals for the
same g-deformation type. This can be taken as a strong confirmation of the
correctness of the results obtained in the present work for the classical limit

based on Arik and Coon’s work for the q-deformed oscillator.
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S.

It can also be concluded that the g-deformation of the 1-D quantum harmonic
oscillator induces a non-commutative effect in the geometry. This can be
understood in the light of Vitiello’s work [130], where the q-deformation of

the coherent states was studied to find that the fractal self-similarity, obtained

- - ai -
by defining a fractal operator q 9« leads to a non-commutative geometry.

The expression for this fractal operator is similar to the structure of the

0
el st S Pqge
dilatation (shift) operators e Jda ¢ da ¢ 9 and
J_rxlaa .
0 . L :
e “ appearing in the present work. These dilatation (shift) operators

are inherent to the g-deformation and arise naturally in the quantum Liouville
equations given in egns. (5.54), (5.55), (5.67a), (5.67b) and (5.114) for the

g-deformed 1-D quantum harmonic oscillator in the «- and -

representations respectively.

6.2 Suggestions for Future Work

One can suggest the following proposals to develop the present work in the future:

Studying the possibility of finding analytical or numerical solutions for the
quantum Liouville equations of the 1-D quantum harmonic oscillator given by
eqgns. (5.54), (5.55), (5.67a), (5.67b) and (5.114). Such a study is essential to
enable the visualization of the behavior of the g-deformed quantum oscillator

in the quantum phase space.

The path integral approach introduced by Ajanapon [131] for the undeformed
guantum harmonic oscillator can be used to investigate the classical limit of

the g-deformed 1-D quantum harmonic oscillator. The results that emerge

132



Chapter Six Conclusions and Suggestions for Future Work,

from such an approach can then be compared with the results of this thesis. In
this context, Shabanov’s work [89], where the quantum and classical
mechanics of the g-deformed quantum harmonic oscillator were also

investigated using path integrals, can also be cited.

3. The use of other potentials, such as the Morse and Pdschl-Teller potentials,
and the investigation of the interpretation of the g-deformation of such
potentials along the same lines used in the present thesis are suggested. The
importance of such an extension of the present work stems from the fact that
such potentials are very useful in many fields of physics such as molecular,

solid state and nuclear physics.

4. Treatment of the classical limit of the g-deformed 1-D quantum harmonic
oscillator in the light of Lavagno’s work [96] can be suggested. One may first
construct the g-deformed quantum Liouville equation by using the g-deformed
Heisenberg equation of motion. The construction of the g-deformed classical
system may then be attempted by using the g-deformed Poisson bracket to
derive the g-deformed 1-D classical Liouville equation. Then, one may
investigate the classical limit of the resulting quantum Liouville equation and
compare the result with that obtained from the g-deformed classical Poisson

bracket approach.
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Appendix A

Appendix A

Evaluation of the Poisson Bracket {af ,a";c }

The Poisson bracket{af ,a”]i } is defined as [100]:

Gaf 805? 6051: 80{?
{“f’“?}:(a J 5 _(a j 5
7 po l " l 3 7

f/
But since,
&) -5 - G5
87 » oa 0(* 67 » 8a* a 67 »
(aa_fj (@_fj (%) {“f] (%)
ap7 o o 6/@7 aa*a 8;07

and their conjugates are,
[80[?] B [aa?j (‘3—“) N E&a?j (5a*j

57 » oa a* 57 oa” o 87
805? _ 805’;: (‘laj N 805? (805*)

8/0 o (Z* 6/@ aa* o 8/:»

7

(A1)

(A2)

(A3

(A4)

(A5)

then, substituting egns. (A.2) — (A.5) into egn. (A.1), and after some mathematical

manipulations, one obtains:
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\ Oag) (Oaj oa) (oo oa\ (da*
eet)= o) e ) 15 %) - (5 (5

7
(2o (5, e ) - () (),
(A.6)
Now, since
o) (2) (5) - (2) (22)
and
{a,a*}z— {a*,a} (A.8)

then, substituting eqns. (A-7) and (A-8) into egn. (A-6), the result is:

ox da’s o da’s
i) =l (T )| (G )| @

But,

*

8af éaf éaf 60:?
{af ,a?} = E—j voll Bl ( *j (A.10)
a,a oo o oo o oo a oo o

then, substituting egn. (A.10) into eqn. (A-9), one obtains:

{af ,a’;c } = {a,a*} : {af ,a”{c }a,a* (A.11)
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Appendix B

Evaluation of the Poisson Brackets {a,IHIf (a,a*)}

and {af ’Hf (af ,a? )}

According to the definition of the Poisson bracket [100]:

0H¢ (a,a” 0H ¢ (a,a”
{a’Hf(a’a*)}: [Z_a} [ fa(aa )} ~ [ZC{J [ fa(aa )
7 » r ' 7 7

7

(B.1)

Considering H ¢ as a function of the two independent variables « and a”, one

can write:

(aHfJ ) [aHf] [an ’ [aHf] [a“*]
8 0 +\ 0 * 5
» )y \F g 0@ ) P

7

7

and,

[aHf] ) (aHf] (5“) ' [8Hfj [50‘*j
3 oo | .\ < 7@
T p NN\ L0 LT,

Then, substituting egns. (B.2) and (B.3) into eqn. (B.1), the result is:
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{aHfJ (an . {fme [60:*]
ox a* af' 7 oo o 8/:»
) [aaj GHfJ (@a} X [GHfj (aa*J
aﬁ 7 oa o 87/ » oo o 87
Eqgn. (B.4) can be simplified to obtain:

. . OH
{a,Hf (a,a*)}: [8_05} (%J _ [a_aj (80{ J ( I) (B.5)
57 » a/w 5/:» 7 57« s oo o

7

(B.4)

Now, since

{a,Hf (a,a*)} = {aHf ] (B.6)
a

%k
a,a oo

then, substituting egns. (A.7) and (B.6) into egn. (B.5), one obtains:

{a,Hf (a,a*)}: {a,a*}-{a,Hf (a,a*)} . (B.7)

a,o

Similarly, one can prove that

{af JH (af ,a? )}: {af ,a’;c } {af My (af ,a? )}Olf ,a’; (B.8)
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Appendix C

) ) f
Evaluation of the Poisson Brackets {’Hf (af ,a’;c ) PCL(af ,a’;c ;t)}

f
and {]HI f (a,a*),?CL(a,a*;t)}

f
The Poisson bracket {Hf (af ,a”% ) PCL(af ,a”]i ;t)} is defined as [100]:

f f
N oM o
{Hf (af’af)’PCL(O!f,af ;t)}: f aPCL _ f aPCL
@ )\ % op , og

7 I
(C.1)

Considering ¢ as a function of the two independent variables « ¢ and of’]l , one

can write:

OH s OH da ¢ OHs oot
% | g | |\ ) T | | (€2)
a * a
7 » faf 7 » faf 7

f*
and,
oH OH oo oH oa’s
e 2 e Ol O i ) c3)
aﬁ 80(1: N ﬁﬁ 5‘05f 8/@
7 af 7 af ¥
Also,
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f i f .
Fer | _ | %L [aa_fj LR || 0% (C.4)
O oay | | O oa’t %
P 0(]'- P OZf P
f f f .
Pop | _ [P | [O%) || | 971 (C.5)
8;:» (90£f . 8;:» 8(1? @p
7 g 7 g 7

Substituting egns. (C.2) — (C.5) into eqn. (C.1), the result becomes:

{Hf (.ot )’Pch(af af ?t)}=

(C.6)

After some mathematical manipulations, this equation can be simplified to yield:
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« f *
{Hf (af’af)’PCL(af’af;t)}:
f * *
8Hf {aPCLJ 80!]: [80(]:] B 6061: 8&1:
oa’ oo . Oz Op Op Oz
f ag f af P 7 7 P
f %
) {aHf} Py (aafj oat | [aafj oa’t
oas | .| oa 0 2 2 E
f o a ¢ 7 . ul ul 7

f a5

(C.7)
Then, substituting eqn. (A-1) into eqgn. (C-7) one gets:
i\ ol *
{Hf (.0t ). Pop(af.at ?t)}=
f

(vt} e (g o) Py afit)]
fo=f

Similarly, one can prove that

1 (0 B (') foa'} {1 () B ()]
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Appendix D

The Correspondence Relations for

afa|(%(a%)) p and p|aa|( 1% (a%a))

Multiplying the Glauber-Sudarshan P-representation for the relations 4 5 and

,[)éTgiven in egns. (2.61) and (2.62) by a' from the left and 4 from the right

respectively, results in:

afa p= Idza al ‘a)(a‘{aP(a,a*)} (D.1)

pala= [d’a|a)(a|a e P(a.a")| (D.2)

a'|a)a] = [a*+-- | |a)(al (D.3)

| [e)el (D.4)

Substituting egns. (D.3) and (D.4) into egns. (D.1) and (D.2) respectively, gives

afa p= jdza [a*+£]‘a><a‘{aP(a,a*)} (D.5)
pata= J.dza [a+%}‘a><a‘{a*P(a,a*)} (D.6)

Performing integration by parts in eqns. (D.5) and (D.6), one obtains [111,112]:
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a'a p= Idza ‘a)(a‘{[a*— %} (a)P(a,a*)} (D.7)
pata— jdza\axa\{[a_ () P(a,a*)} 0.9
AN\2

Now, starting from eqns. (2.61) and (2.62) to obtain (&) p and ,E)(éﬁ)2 , then

2
multiplying the results by (éT) from the left and (& )2from the right, and using

the same technique used previously to obtain eqns. (D.7) and (D.8), the results

become:
_ _2
(élT)Z(él)2 p= Idza 05*+i o) (] {(a)zP(a,a*)} (D.9)

_ -2
pa') (2) = [d%aar
L oa -

Applying again integration by parts to egns. (D.9) and (D.10), gives [108,109]:

@){el{(a)Plaa’)]  ©10

0

(&)’ (a) p= [d% \a><a\{[a*— @]z(afp(a,a*)} (D)

0 TP .\2 )
60!*} (") P(a.a )} (D.12)

pahy (ay = | dza\axa\{[a

Then, using the mathematical induction method, and following the same previous

procedure used to derive egns. (D.11) and (D.12), one obtains:

AT AN A (42 « 0 mom x

(@) (&) p= _[d a ‘a)(a‘{[a 60{J (o) P(a,a )} (D.13)
and,

0 1" m .
aa*} (") P(a.a )} (D.14)

paT (8 - [oa o)l -

Now, letting f (474) :(éT)m(é)m, and substituting f (47a)into egns. (D.13)
and (D.14), results in:
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and,

The function of the number operator, f (éTé), represents a special case of the
function f (4,47), where f(4,4") represents an arbitrary operator ordered
function. This permits the generalization of eqgns. (D.15) and (D.16) using
f(a'a) p>f(a,a")p and pf(a'a)->pf(4,a") (see Sec. (5.1)). This
generalization process can be satisfied if:

f(aa"h)p=f(a%a)p=1f(aa")p (D.17)
and,

pf(aah)=pf(a'a)=pf(aa") (D.18)
where f (447) represents the anti-normal ordered operator function. Both
functions f (47a) and f (44") can be obtained from the function f(4,a7) by
using the commutator [é,éq .
The derivation of eqn. (D.17) is as follows. Supposing any expression for
arbitrary operator ordered function f(é,éT) then, letting this function act on the

density operator p from the left, and using the one-to-one correspondence
relations given by eqgns. (2.65) and (2.67), one can obtain the expression for

f (4, a*) . This expression is compared with the expressions obtained for the
f(afa)p and f(aa'),. Similarly, one can derive eqn. (D.18) by using the same

expression for the operator ordered function f(é,é*) that was used to prove
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egn. (D.17), but with the one-to-one correspondence relations that are defined in

eqgns. (2.66) and (2.68). Thus, by using the mathematical induction method for
any arbitrary operator ordered functionf(é,éT), and following the same

previously mentioned procedure (see Sec. (5.1)), one can prove that the eqgns.
(D.17) and (D.18) are still satisfied.

Hence, egns. (D.15) and (D.16) can be re-written as:

f(é,éT) p= Idza a){c| {f ([a*— %} , (a)ij(a,a*)} (D.19)

5f(a,a)= [d? f[ S *mjp o D.20
priad)- feafa)el| (a2 (@) Jowa)| @
Egns. (D.19) and (D.20), together with eqgns. (D.17) and (D.18), permit the

m
generalization of egns. (D.7) and (D.8) by using éTéﬁ:[éTé} (f(é,éT)) Jo,

m
and pala=p [éTé} (f (é,é*)) .Therefore, eqns. (D.19) and (D.20) become:

[afa]"(12(aah)) p=
foa o)t o 2] @ o2{[a- 2 @ Jotaa)
(D.21)
and,
pata]"(12(aa))=
fealepial) 12 [a- 2 (@ o 2T ) )
(D.22)
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respectively, where the function f has been replaced by f2 in these equations.

Egns. (D.21) and (D.22) can be re-written equivalently in terms of the

quasiprobability distribution function go(s)(a,a*) given in Table (2.1) as:

[aTa

éé
jd a|a {{
_1
2

[):

.fZ[{a +( % {a+(5+l)ai*}mj (p(s)(aa )}
(D.23)
and,
plafa] (12(aah))=
e o205 o (92T
[T o ()] oovee
(D.24)

respectively.

Eqgns. (D.23) and (D.24) represent the general relations for [éTé} ( f2 (éT,é)) Y,
and /| a'a|(f2(a",9))
A special case of the relations for [é*é}m(ﬂ(é,éf))band

Tzﬂm(f2(<'§1,éﬂL)) can be obtained by letting m=1  and
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(D.25)
and,
platal( 2(aTa))-
et} (o372 ][ (33)32 )
[+ ()
(D.26)

respectively.

It is clear that in the limit f2 —1, and using the ordering parameter s=-1 (i.e.,

the anti-normal ordered bosons operators , as given in Table (2.1)), then the
s-ordered quasiprobability function (™1 (a,a”)— P(a,a*) and, hence,

eqns. (D.25) and (D.26), reduce to eqgns. (D.7) and (D.8) respectively. The
following one-to-one correspondence relations for the Glauber-Sudarshan
P-representation in the « -representation, which are the same as those introduced
by Walls and Milburn [111], can then be obtained:
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Evaluation of the Commutators

(A [A B ] [A [AB]] [Bi[A B[ [A[A B,]]

and [éz,[A_,Bzﬂ

Using the definition of the commutator:

[A,.B|-A,B-BA, (E.1)
and multiplying both sides of egn. (E.1) form the right by an arbitrary function
g=g(a,a"), then substituting the definitions of A, and B, given in eqns.

(5.16) and (5.17) in these equations and simplifying the result , gives:

|:A+’B1:| g=
(ﬂjizaa*z % +(S_1j/12a2a*a—g
2 oa” 2 oo
— 2
+[—(S 1)(S+1)} Aac” 2 g* - S+lj/12a* a*(aa*g)
4 dada 2 oo
s-1)., 0 . [(s—l)(s+1)} ) 0° *
- | — |[Afa— - A
( 2 ) “oa (aa g) 4 8a6a*(aa g)
(E.2)
where,
a% (aa*g) =aa’g+ aza*g—g (E.3)
a’ a*(aa*g): ad’ g +a a*z 8g* (E.4)
ox ox



Appendix E

and,

2 2
0 g*(aa*g): aag +a" ag*+aa*a—g*+g (E.5)
oada oa oa dada

Substituting eqns. (E.3), (E.4) and (E.5) into eqn. (E.2) and simplifying the result,

one obtains:

[A+ : Iél]: 22 {s‘a‘z + [824_1J {a* az* + 0{% +1}} (E.6)
Similarly, one can prove that:

[A_B; |=|A,.B] (E.7)
Also, one can write,

[A+ ’[Awél} }:A+ |:A+’|A31]_ [A+191}A+ (E.8)

Then, substituting the expressions for A+ from eqgn. (5.16) and for the

commutator [A+,I§1J from eqgn. (E.6) into eqgn. (E.8), applying the same

technique used to obtain the commutator [A+,I§1} and simplifying the result,

yields:

[A+ A, B] }:[Szz_q 23 |af’= (i‘lj A2A, (E.9)

Similarly, the commutator[él,[A+,lA31ﬂ can be evaluated by using the same

technique used to evaluate [A+,[A+,l§1ﬂ, and after some lengthy

mathematical manipulations, the result is:

B[ 6]-
)3 {Sz\a\2+ (8(824_1)} {0!* 82* +a% +1} j{(s +1)24(S —1)2} aoi;*}
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The following relations and there complex conjugates, as well as eqgns. (E.3) —
(E.5), have been used to obtain egn. (E.10):

2

ai(aa—gjz a o +a? o9 (E.11)

oa\ O« oa ol

2

ai(a* Gg*): aa” 9 " (E.12)

da\ oo dada

2 2 3

8g*£a6gJ: 79 499 (E.13)
oada oa) odada oa“ oa

Using the same technique, the commutators [A_,[A Bzﬂand

[BZ ,[A_ , Bzﬂ can be evaluated. The results are:

[A_,[A_,BZH:—[A+,[A+,élﬂ (E.14)
[BZ,[A_,BZH:—[Bl,[A+,B1H (E.15)
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ilai
The Action of the Dilatation (Shift) Operators e Oa
i/la*i*
and e 92" on F(a,a")G(a,a")

Assume two functions F (x) and G(x)that have power series expansions of the

form:

an X" (F.1)

b X™ (F.2)

Using these expressions, the product F(x) G(x) can be written as:
F(x)G(x)= (ao +agX + AyX? + agX> +-- ) : (b0+ byX + byx? + bax® +-- ) (F.3)

Multiplying both sides of eqn. (F.3) from left by the dilatation (shift) operator

pxo

e OX where S represent any arbitrary constant, the result is:



Appendix F

P 0 2 3
e X [a0b0+aoblx+aob2x +a,bg X +}
2 3 4
+[a1box+a1blx +ayby X7 + ayby X +]
+ [azbo X% + aby X3+ ashy, x* + ayhs X - }
+ [a3b0 X3 + azhy x* + azb, X + azhs x® +}}

(F.4)
Applying egn. (5.41) to eqn. (F.4) and simplifying, the result becomes:

(F.5)
Collecting similar terms, this gives:

px

e XF(x)G(x)=
{ao + al(eﬂx) +a, (eﬁx)z N ag(eﬂx)3 . }
. {bo + bl(eﬂx) + bz(eﬂx)z N bg(eﬁx)s B }
(F.6)
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But since,

F(eﬂx)z éoam(eﬂx)m (F.7)
and

6(e/x) éobm(eﬂx)m )

then, substituting egns. (F.7) and (F.8) into egn. (F.6), one obtains:

eﬂng(x)G(x): F(eﬂx)G(e'Bx) (F.9)

Using F(x)=F(a,a") and G(x)=G(a,a") in eqn. (F.9), then substituting

f =14 and applying eqns. (5.42), (5.43) for F (o,") and G (e, ") respectively
to eqn. (F.9), the, results become:

J_r/loz*L iia*L

e 50‘*F(a,a*)G(a,a*)zF((x,ei’la*)e aa*G(a,a*) (F.10)
and,

ilai +) iiai
e 0¢ F(a,a")G(a,a”) =F(e— a,a*) e 0a G(a,a") (F.11)
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The Expressions for éa Haq>and <aq Héq in Terms of g-Derivatives

The unormalized g-deformed coherent state Haq>is given by egn. (5.70). Then,

(24

o0 n
éa HO‘Q>: Z [n]q |
n=0

4f n)q from eqn. (5.74) into the right hand side of eqgn. (G.1),

ag In)g (G.1)

o)

then multiplying both sides of the result by[n +1]q and taking m=n+1, the result

becomes:
00 -1
lleq) = 2. ¢ m] [m 7 im ©2)
m =1 q
But,
g~ [l [m-1], 63

Then, substituting egn. (G.3) into egn. (G.2) yields:

0 ml

al g =Z m] Mg (G.4)

: q
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Using the expression for the action of the g-differential operator (Jackson’s

derivative) and f (“q):“trqn given in eqn. (5.78), leads to:
D [& o
al - — m) +[0 G.5
R ET) e
where,
D m_ m-1
—Daq aq = [m]q o (G.6)
and,
D
= — G.7
oo 1010 ©

But since Haq > is as defined in egn. (5.70), then using this definition in eqn. (G.5),

one obtains:

o
4

D
lag) = Dag |ag) (G.8)

Similarly, it can be shown that:

(A i D
(g8 =(38 H“q>) = (g D—“S (G.9)
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The Correspondence Relations for éa ,bq : [)q a

The correspondence relations for éa ,[yq and /3q éq in terms oftheéﬂa -representation

can be derived as follows.

Using the product rule of g-differentiation defined in eqgn. (3.25) with

g D * *
D, :D—aq , F(x):F(aq,aq) and G(x):G(aq,aq), then egn. (3.25)
becomes:
D " *
D_%{F(“Q’“q)G(“q’“q)}:
D—aq (aq,aq) (aq,aq)+ (qaq,aq)D—aq (aq,aq)

(H.1)

Eqgn. (H.1) is similar to the equation introduced by Arik and Coon [9], where

F (aq ,aa) and G(“q ,aa) are two arbitrarily functions defined as [9]:

2
F(aq,aa):G((l—q)‘aq‘ Jf(q_laq,aa) (H.2)

Therefore,
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2
F(qaq,aa)zG(q(l—q)‘aq‘ )f(qu,aa) (H.3)
and,
G(aq,aa)z g(aq,aa) (H.4)

where, f(aq,aa)and g(aq,aa) are two arbitrary functions.

Substituting eqgns. (H.2) — (H.4) into eqn. (H.1) and re-arranging the result, gives:

caq@fqﬂaﬁzf(“w“é)ﬁ%‘9@m¢%)=

-l Jrfrg i,
Eﬁi‘{G(ﬁl‘q>‘%42Jf(Q‘laq’aé)G(aq’aa)}
RS VA PR

(H.5)

Applying the product rule of g-differentiation (i.e., egn. (H.1)) again to the

. D 2 4 . .
expression D—%{G[(l_q)‘“q‘ ) f(q aq,aq)} that appears in eqgn. (H.5)

2
. % * -1 * .
W|thF(aq,a ):G((l—q)‘aq‘ j and G(aq,aq):f(q aq,aq), then using
the definition of Eq (o/q) that have been introduced in [9] as:

1

G(@—QHquj

Eq (0/q): (H.6)

or,
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G(q(l—q)‘aq‘2]= Eq(—q‘aq‘z) (H.7)

where o was given in egn. (5.82), yields:

D 2 -1 * _
ag F(a aqaq) 1 D ., _ )
__q q2 a’ | S {Da f(q 1aq’aq):l

Eq(q‘“q‘ ) EQ(q‘“q‘ )

(H.8)

and the following equation has been used:

s - e o) o

Substituting egns. (H.7) and (H-8) into egn. (H.5) and simplifying the result,

produces

* D ®
—Zj f(aq,aq) D—aq g(aq,aq):

%{G((l—q)aqr] f(a bag ) g(aq,aa)}

g(aCI’aQ) * D -1 *
L AT AN [“q‘ﬂ]f(q aq,aq)
Eq[q‘%‘ ] |

(H.10)

Using the basic integral S on both sides of eqn. (H.10), yields:
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D20{q . D «
S T 2) f(aCI’aq)Wg(aCI’aq):
Eq[q‘“q‘ j |

q

S D%, {%{G((l—q)‘aqm f(a ™ ag.aq) 9(eq aq )H

Daq 8laqg) | [ . o *
+S g 9 9 [aq—— f(q_laq,aq)

2 Da
By (q‘“q‘ J |

(H.11)

Eqgn. (H.11) is similar to the equation that was introduced by Arik and Coon [9]

where the 1% term on the right hand side represents the boundary term [9] that

2 2
vanishes at ‘aq‘ =[0]q and at ‘aq‘ —[] ,, where [o]qzo and

q H
[oo]q =(1- q)_1 are as defined in [9].

Then, egn. (H-11) becomes:

Dzaq .
S > f(aq,aq) Do (aq,aq)—
Eq[q‘%‘ J
D2a g(a , *) . D .
S g 9" 9 [aq D—aq f(dq 1aq aq)

(H.12)

But since,
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4075 £ o) “al:7) g (o] (413

then, by applying eqgn. (H.12) to eqgn. (H.13) and using eqgn. (G.8), one can get:

f(aq,aa)zﬂa (aq,aa) (H.14)

(e )= gl 19
Hence,

A D %

4q g ) g = Darg 9(aq.2q) (H.16)

Therefore, one can deduce that eqn. (H.13) takes the form:

2
14 P@ +__D
q

q :;S Eq((j) H“q><“q” D—%}% (q_laq,aa) (H.17)

The adjoint of egn. (H.13) is given as:

(H.18)
Then, the one-to-one correspondence for egns. (H.17) and (H.18) in terms of the

Pq -representation can be deduced as:

At oA * D -1 *
aq pq — {aq —Daq }P(’] (q aq ,aq) (H.19)

and,
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A A D -1 =
'Oq aq —)l:aq _D—a*] ﬂa (aq,q aq) (H.20)
respectively.

Similarly, the correspondence relations for a

o —-
Q)

o)
>

derived by the same technique, but using:

F(ag.ag)= G[(l— q)‘aq‘zJ (a7 aguag)] o (H.21)

instead of eqn. (H.2).

Therefore,

2
F(qag.ag)= G{q (1-0)[ag| j (agag)|(agg) (H.22)
Then, after some lengthy mathematical manipulations, the result becomes:

DZO!q N D N
5| 20| o) (10q) 2 o(og s -
Eq[q‘“q” |
S D%a D G| (1- )‘a ‘2 f( 1o a*)a (a a*)
9 e Do) |19 ag.aq) % 9\ &g g

_G(q(l_q)‘aqm o(agaf) f<aq,aa>}

+S Dzaq g(“q’“a) {* D

-1 *
2 “q‘ﬁ}“q fla”agqaq)
By q‘“q‘ !

(H.23)
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Similarly, the 1% term on the right hand side of egn. (H.23) represents a boundary

2 2
term [9] which also vanishes at ‘aq‘ =[0]q and at ‘aq‘ —>[oo]q.

This can be proved in a similar manner a done by Arik and Coon [9] and as

follows.

Since S D%« consists of an ordinary integration over the argument ¢ of the

q
2
complex variable « —‘ q‘ '¢ and a basic integration over ‘aq‘ , then one can
write [9]:
[oo]q
2 *
S D2ay F(ag.af) = [O] U q”jdng ag.ag) (H.24)
Letting
i daa
d¢:(—j - (H.25)
2 ag

F(“q’“a):DL{G((l_q)‘aq‘z F(a”aq.aq) aq 9(eq q)}

_G(Q(l—q)‘“qzj flag:ag) 9(eq2q)

(H.26)
and using the fact that for —— ‘ ‘ then
Da q
q
D _ D (H.27)
Daq
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After some mathematical manipulations, eqn. (H.24) becomes:

. Dzaq {% {G((l—Q)‘aq‘zj f (q‘laq,aa)aq 9(aq.2q )}

q
’ i ,
_G(q(l—q)‘aq‘ ) f(aq,aa) g(aq,aa)} =[§] §daq E]qD

A I e

'“qg(“qﬂa)}

(H.28)
b . _
But %D F (aq ,aq) can be written as [9]:
2
[+ | = I#lg
S DF(aq.aq)= Fagag) (H.29)
od-o
where,
F (aq : aa ) =

{G((l—Q)‘aqm f(q_laq,aa)—G(q (1—q)\aq\2] f(aq,aa)} arg 9 (arg )

(H.30)

Then, applying eqgn. (H.29) to the right hand side of eqn. (H.28), and simplifying
the result, yields:
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S0 {D—Dq o[-0l | (e ) )

_G£q(1—q)‘aq‘2] g(aq,aa) f (aq,aa)} =

‘“qr: [l

=0

[12]§daa F (gt

2
‘“q‘ =10
(H.31)
- - - - 2
The notation @ represents a closed contour integration on the circle ‘aq‘ :
‘2

The term on the right hand side of egn. (H.31) vanishes for ‘a :[O]q and for

g
2
‘aq‘ —>[oo]q as in ref. [9].

Therefore, egn. (H.23) becomes:

D2a D
S| ——5 f(“q’“q)(%)o—%g(“q’%):
Eqiq‘“qw
D%c g(a a)
q *\"q'“q «__D -1 -1 *
S 2 {“q‘D—an(q “q)f(q aq.oq)
Eq(q‘“q”
(H.32)
But, since
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éa aq Yo, :%S 4 p (aq,aa)(aq)éa Haq><aqH (H.33)

then, by applying egn. (H.32) to eqn. (H.33), and using eqn. (G.8), one can deduce
that eqn. (H.33) takes the form:

. . 1 D ., D |/_ . \
g0 £ el ] () 7 )

(H.34)

The adjoint of egn. (H.34) is:

) 1 D2a {

AT A& D - * i
Pathta =15 g (5 oo aq_D_A(q ') B (ag.a7'a)

v
(H.35)

Then, the one-to-one correspondence relations for egns. (H.34) and (H.35) in

terms of the P, -representation become:

q
ala D — 05*—L (q_la )P (q_la a*) (H.36)
q°4 Fq q Daq q/°q q'q '
and
N ,\T,\ _ D -1 = -1 =
pqaqaq —)[aq Daa:l(q aq)lpa(aq,q aq) (H.37)

respectively.
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