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I 
 

Summary 

The concept of q-deformation has found many important applications in a variety 

of fields in physics, such as quantum optics, atomic physics, solid state physics, 

nuclear physics and cosmology. This has motivated its extension to many         

well-established other concepts such as coherent states well-known in quantum 

optics. On the other hand, the interpretation of the physical meaning of the              

q-deformation remains an outstanding problem. 

The present work is an attempt to apply the concept of q-deformed coherent states 

to solve this interpretation problem. The q-deformed 1-D quantum harmonic 

oscillator is used as a model for the application of the methodology of using           

q-deformed coherent states to solve this problem. This is achieved by first 

deriving the classical Liouville equation for the q-deformed 1-D classical 

harmonic oscillator in the undeformed and deformed oscillator phase spaces. 

Then, this equation is solved by using the method of characteristics which gives 

the classical probability distribution function for this oscillator in phase space. 

The behavior of this function is then investigated by using a computer 

visualization method based on a computer program constructed in Mathematica® 

language.  

On the quantum level, the Heisenberg equation of motion for the density operator 

corresponding to this 1-D quantum harmonic oscillator is expressed in the present 

work in terms of the standard quasiprobability distribution functions, again in the 

deformed and undeformed phase spaces. This helps to derive the quantum 

Liouville equations for this q-deformed oscillator in these phase spaces. The 

classical limits of these resulting Liouville equations are then approached by 

extending a standard procedure based on the non-deformed coherent states to the 

q-deformed case. In addition to the application of the standard q-deformed 

coherent states, a novel approach based on q-deformed coherent states due to Arik 

and Coon is also employed in this investigation. 



II 
 

Summary 

The results of detailed mathematical derivations in this process of approaching 

the classical limit reveal that this limit is statistical in nature. This is similar to the 

case of the ordinary undeformed oscillator which has been proved previously. 

They also reveal, together with the complementary computer visualizations, more 

information about the physical meaning of the q-deformation. This includes the 

observations that the q-deformed 1-D oscillator can be interpreted as a nonlinear 

oscillator where the nonlinearity parameter depends on . Also, the behavior of 

the classical limits of the quantum Liouville equations for this oscillator is 

observed to show whorl shapes that can be contrasted with their classical analogs. 

This whorl shape behavior can be considered as a phenomenon connected with 

q-deformation in general; the anharmonic oscillator being a special case.  

 Some connection with phase space having a non-commutative geometry, 

resulting from q-deformation, also finds evidence in some of the results presented 

in this thesis.     
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Â : expectation value of operator Â  
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1.1 The q-Deformation 

The notion of deformation is inherent in physics, where quantum mechanics can 

be considered as a deformation of Newtonian mechanics with deformation 

parameter  and, hence, in the limit 0 , quantum mechanics reduces to 

classical mechanics. Similarly, special relativity is the deformation of Newtonian 

mechanics with deformation parameter c  and such that, in the limit 0c   

reduces to Newtonian mechanics. 

 

From these physical examples, one can give the following mathematical 

definition for q-deformation which is a q-analog theorem [1-3], where the identity 

expression is a generalization involving a new parameter, that returns the original 

theorem, in the limit as 1q  [1-3]. The history of q-calculus and                                 

q-hypergeometric functions dates back to the 18th century, where Euler              

(1707-1783), was the first to introduce the q-deformation parameter in his 

Introduction [1]. The formal power series was introduced by Gudermann       

(1798-1852) and Weierstrass (1815-1897) [1]. The basic hypergeometric series 

was introduced in the 19th century, specifically in 1846 by the German 

mathematician Heine [1, 2]. In the years 1909 and 1910, Jackson [4, 5] introduced 

the first explicit attempt to join the q-deformation with differential equations to 

obtain what is called the q-difference equations. Jackson is also known for the 

invention of the q-derivative (Jackson Derivative JD) [1, 3, 5, 6] and Jackson 

Integral [1, 3].  

The applications of q-deformation in physics were first strongly connected with 

the development of the subject of quantum groups and then expanded to cover 

Introduction 
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many fields in physics. In the period 1945-1950, Tamm and Dancoff [7, 8] 

introduced what is called Tamm-Dancoff deformed algebra.  Deformed algebras 

are applied in quantum field theory [8]. Many years later, in 1976, Arik and Coon 

[9] introduced a deformed oscillator algebra in the Hilbert space Hq , where q  is 

a real parameter. The deformed algebra with new generators was introduced by 

Feinsilver in 1987 [10, 11]. In 1989, the q-deformed oscillator algebra was 

introduced independently by Biedenharn and Macfarlane [12,13]; this                     

q-deformed oscillator algebra was derived by adopting new definitions for the    

q-deformed creation and annihilation operators. Later on, specifically in the years 

2002 and 2003, Quesne’s oscillator algebra [14, 15] was introduced, where a new 

family of q-deformed coherent states were constructed. In this context, one can 

refer the reader to refs. [16-18]. 

  

The concept of q-deformation has found its way into real physics applications, 

such as the q-deformed fermions and q-deformation in thermostatics and 

statistical physics [19-22] and phase-diffusion of the q-deformed oscillator [23]. 

Other applications are the q-deformation of the Heisenberg algebra, Heisenberg 

equation of motion, uncertainty relation and Coulomb problem for q-Hydrogen 

atom [24-27]. Among these applications of the q-deformation in physics, one 

singles out an important application that arises  as a result of attempts by many 

researchers [28-37] to apply the q-deformation and its generalization                           

(f-deformation) to the well-known concept of coherent states [14,15,38].  

 

 

1.2 Coherent States 

In 1926, Schrödinger [39] discovered the “non-spreading wavepackets” of the 

harmonic oscillator. The original definition introduced by Schrödinger for these 

packets is that they have minimum-uncertainty product and correspond to the 

classical trajectory in phase space. Many years later, and specifically in 1963,    
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Glauber [40] called the Schrödinger [39] non-spreading wavepackets the 

“Coherent States” for the first time, and defined them as the eigenstates of the 

boson annihilation operator. The P-representation of the coherent states was 

introduced in 1963 by Glauber [40] and Sudarshan [41] independently. Other 

works by Glauber appeared in 1963 [42, 43]. The coherent states were always 

considered as the most classical ones among the quantum states. This notion was 

introduced in 1968 by Carruthers and Nieto [44]. Also, Glauber introduced more 

detailed clarifications of these states in 1969 [45, 46]. Thus, after the work of 

Glauber [40, 42] and Sudarshan [41], the coherent states became widely known 

and intensively used by many physicists where these states find many 

applications in the fields of physics and mathematical physics from solid state 

physics to cosmology and they represent the core of quantum optics. The work of   

Dodonov [47] represents an excellent review about coherent states, their types 

and applications. It is worth mentioning here that another technique to utilize the 

Glauber P-representation [40] was invented by Fan [48]. This technique is called 

integration within ordered product of operators (IWOP). 

 

 

1.3 The f-Deformed and q-Deformed Coherent States and Some of Their 

Applications 

A dominant direction in mathematical physics in the last decades of the 20th 

century was related to various deformations of the harmonic oscillator canonical 

commutation relation, †ˆ ˆ, 1a a  
 

, where â and †â are the well-known 

annihilation and creation operators respectively [49, 50, 51]. The corresponding 

deformed bosonic operators âq  and †âq  were introduced, where the subscript “q” 

refers to the “q-deformation”. However, the first study to obtain the eigenstates 

of the operator †ˆ ˆa aq q was performed by Iwata [52] in 1951. Many years later, 

specifically in 1976, Arik and Coon [9], and Kuryskin [53] considered a  
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generalization of the work of Iwata [52] to involve the case of several dimensions 

in order to obtain the q-deformed coherent states. A realization of the                        

q-commutation relation,
†ˆ ˆ, 1a aq q q

  
 

, was achieved by Jannussis et al [54] in 

terms of the usual bosonic operators â  and †â by means of the nonlinear 

transformation  ˆˆ ˆa a f Nq  , where †ˆ ˆ ˆN a a , and  ˆf N  represent a real 

operator function of N̂ . Biedenharn and Macfarlane [12, 13] in 1989 introduced 

independently a different type of q-deformed coherent states. The squeezing 

properties of these states were studied in 1990 and 1991 by Solomon and Katriel 

[55-56]. An excellent review of the f-deformed and q-deformed coherent states 

can be found in refs. [38, 47]. 

 

Thus, q-deformation has many applications in physics, where the q-deformed 

coherent states found their way in the field of quantum optics after the famous 

work of Biedenharn and Macfarlane [12, 13]. Also, the non-classical states are 

applied in different areas of physics, such as high energy physics, cosmology, 

condensed matter physics, molecular physics, and Bose-Einstein condensation 

[47]. The recent literature on the subject of the q-deformed coherent states and 

their applications in physics includes q-analogs of squeezed states, some of their 

non-classical properties [57], and q-deformed entangled states introduced on the 

basis of the IWOP-technique [58]. Moreover, the q-deformation can even be 

useful in actual real life situations where in 2013, Capolupo et al. [59] studied the 

benefit of using q-deformed coherent states to study filtered water with fractal 

self-similar properties. 

It is worth mentioning that q-deformed coherent states are a special type of more 

generalized coherent states called Nonlinear Coherent States (NLCSs). These 

states, defined in the years 1996 and 1997 by Filho et al., and Man’ko et al. 
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[60,61] as the eigenstate of the f-deformed boson annihilation operator, represent 

the generalization of the q-deformed boson annihilation operator âq  [60,61].  

  

The NLCSs are sometimes called the f-deformed coherent states in the work of 

Man’ko et al. [61] on the f-oscillator. However, the nonlinear coherent states have 

attracted much attention in recent years [62-74], mostly because they exhibit     

non-classical properties of the radiation field, such as squeezing, sub-Poissonian 

photon statistics and photon anti-bunching [62-74].  

 

1.4  Interpretation of the Classical Limit of Quantum Systems  

Since the formulation of the quantum theory by Schrödinger in 1926 [49, 50], 

many attempts were performed to interpret the classical limit of the quantum 

systems. One of these attempts was implemented by Schrödinger to produce what 

was called later on the coherent states [47] for the harmonic oscillator. So, this 

attempt can be considered as the first attempt to approach the classical limit where 

these coherent states have a minimum uncertainty product. Another attempt was 

introduced by Dirac [75] in 1927, when he considered classical mechanics as the 

limiting case of quantum mechanics when 0 . This limit implies that the time 

dependent Schrödinger equation [49, 50, 51] for a single particle in an external 

field reduces to the well-known Newton’s equation of motion. But this limit is 

still a controversial problem and represents one of the problems still facing the 

interpretation of quantum mechanics.  

 

However, Ghosh et al. [76] proved in 1977 that the classical limit of the quantum 

harmonic oscillator is statistical in nature, where the fluid dynamical equations 

belonging to what is called the single particle Schrödinger fluid have been 

obtained. These fluid equations reveal much of the physics involved in the 

classical limit of quantum systems and shed light on the outstanding problem of 

the interpretation of quantum mechanics. Another example of the interpretation 
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of quantum systems by using the classical limit was introduced in 1986 by 

Milburn [77] when he interpreted the quantum anharmonic oscillator by using the 

time–evolution equation for the Husimi function (quasiprobability distribution 

function) [77] in terms of  undeformed phase space [77]. A simulation using the 

solution of this equation was obtained by him to reveal the nature of the quantum 

anharmonic oscillator in phase space. The behavior of the Husimi function 

exhibited a whorl structure which becomes increasingly more convoluted on a 

finer and finer scale as t  . Also, Habeeb in 1987 [78] interpreted the quantum 

damped oscillator system in the light of the work of Ghosh [76]. In this work the 

interpretation of such system was deduced from the conservative form of the 

obtained fluid-dynamical equations, where it was found that the classical limit for 

this quantum oscillator cannot be considered as the quantum analog of the 

classical damped oscillator. In 2009, Jafarpour and Tahamtan [79] obtained the 

classical limit for the octic anharmonic oscillator from the expectation value of 

the eigenenergy and eigenstate for the Rayleigh-Schrödinger perturbation theory. 

The classical limit for this oscillator revealed that there is a frequency shift 

proportional to the sixth power of the amplitude of this system. 

 

Finally, it should be stated that the statistical description of microscopic systems 

is usually obtained by employing the quasiprobabilty distribution functions        

[45, 76, 80-86] in phase space. The first attempts in this direction were introduced 

by Wigner in 1932 [45, 80-86,107] to study the quantum corrections to classical 

statistical mechanics. His particular type of distribution function has become to 

be known as the Wigner distribution function [45, 80-86,107]. This function is 

normalized but can have a negative value [45, 80-86,107]. It has found many 

applications, primarily in statistical mechanics, and also in areas such as quantum 

optics. Another type of quasiprobability distribution function is the well-known 

P-representation of Glauber and Sudarshan [40, 41], which, like the Wigner 

function, can be well defined or singular [45], and has also found extensive use. 
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Also, the Q-function (Husimi function) was introduced in 1940 by Husimi                   

[45, 80-86,107], which is a normalized function and has always positive values, 

and represents a third type of quasiprobability distribution functions.       

 

 

1.5 Physical Interpretation of q-Deformation  

There have been many attempts to reveal the physical meaning and interpretation 

of q-deformation. In this context, the q-deformed quantum harmonic oscillator 

has been used as a good example of this situation. In 1991, Buzek [87] evaluated 

the time-evolution of the mean values of the q (position) and the p (momentum) 

for the q-oscillator in order to obtain the periodic classical behavior, where the       

non- periodic behavior of this oscillator was interpreted as the interaction of the 

quantum oscillator with another system. In 1992, Shabanov [88] studied also the 

physical meaning and interpretation of the same oscillator used by Buzek but in 

a different manner. Shabanov obtained the q-deformed variables via the standard 

Heisenberg commutation relations, and defined the q-deformation parameter,q , 

to be a function of  and some dimensional parameter, q where 

2
qq e




ω
. 

To interpret this oscillator, he applied the classical limit 0 , 1q   for the 

canonical variables to arrive at the classical theory. The second attempt by 

Shabanov [89] was more rigorous than the first attempt, where he introduced in 

1993 the path integral in his approach. Hence, the classical theory was obtained 

by applying the semi classical approximation. It turns out that the q-oscillator can 

be interpreted as a particle with a friction force acting on the particle that is 

proportional to its velocity. In the same year, Chaichian and Demichev [90] 

constructed a q-deformed path integral and applied the quasi-classical limit with 

some specific conditions to obtain the classical equation of motion. Also, Man’ko 

et al. [91] studied both the quantum and classical q-oscillator via the Dirac 

dequantization method to construct the classical q-oscillator from the                 
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corresponding quantum q-oscillator and interpret the q-oscillator as a classical 

oscillator with a special type of nonlinearity, where the frequency of the oscillator 

is a function of the energy which is a constant of the motion. Man’ko also 

published further works in the same context in 1997 and 1998 [61, 92] in which 

he introduced the concept of the f-oscillator. Gruver [93] studied the dynamical 

properties of the q-deformed oscillator and found that the q-oscillator is an 

anharmonic oscillator with a q-deformation parameter which can be interpreted 

as a measure of anharmonicity. Many years later, and specifically in 2007, Jafarov 

et al. [94] introduced a different technique to understand the q-deformation for 

the quantum harmonic oscillator by studying the behavior of the density plot for 

both Wigner and Husimi quasiprobability distribution functions for this 

oscillator. Another attempt to interpret q-deformation was made in the year 2014 

where Batouli and El Baz [95] studied the q-deformation for the quantum 

harmonic oscillator in a way similar to the work of Buzek [87] but with some 

modifications. These modifications led to a different interpretation of the                

q-deformation of this oscillator, where it was found that the q-deformed quantum 

harmonic oscillator is the quantum version of the classical forced oscillator with 

a modified q-dependent frequency, such that in the limit 1q   the driving force 

disappears.  

 

From another point of view, the q-deformation can be interpreted in terms of    

non-commutative quantum mechanics, introduced by Lavagno et al. in 2006  

[96], where the meaning of q-deformation was investigated by applying              

non-commutative q-calculus. Then, they obtained the generalized q-classical 

theory which is defined by means of the q-deformed Poisson bracket. Also, 

Eftekharzadeh et al. and Benatti et al. [97-99] studied in the period 2005-2014 the 

interpretation of the non-commutative quantum mechanics by applying a special 

classical limiting to the non-commutativity.        
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Despite all the attempts that were made to interpret q-deformation, there is still a 

problem in understanding the physics behind this kind of deformation. This has 

motivated the present work which is an attempt to investigate the physical nature 

of q-deformation in the quantum oscillator case via the q-deformed coherent 

states on the basis of Glauber-Sudarshan P-representation to obtain the 

Heisenberg equation of motion (quantum Liouville equation) then approach the 

classical limit to recover the classical Liouville equation of the q-deformed 

oscillator.       

    

1.6 Aims of the Thesis  

The major aims of this thesis are:  

1- The derivation of the 1-D classical Liouville equation in undeformed and 

deformed phase spaces for q-deformed classical harmonic oscillator.  

 

2- Investigation into the possibility of finding a well-behaved analytical solution 

for this equation by using the well-known analytical solution methods to solve 

partial differential equations. This solution will produce the probability 

distribution function belonging to the q-deformed 1-D classical harmonic 

oscillator in phase space.  

 

3- Studying the time-evolution of the probability distribution function to 

investigate its behavior in phase space. This investigation is performed by 

writing a computer simulation program in Mathematica®. 

    

4- Generalization of the Glauber-Sudarshan P-representation for the q-deformed 

1-D quantum harmonic oscillator in such a way as to handle the q-deformation 

problem by overcoming the problem of operators disentanglement in order to 

derive the quantum Liouville equation in the undeformed phase space.  
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5- Employing Zaslavskii’s method [129] to derive the Q -representation for the 

quantum Liouville equation of this oscillator in the undeformed phase space 

for comparison purposes. 

 

6- Investigation into the possibility of deriving the q-analog of Glauber-       

Sudarshan P-representation in the deformed phase space. This permits the 

derivation of the P-representation for the quantum Liouville equation of the   

q-deformed 1-D quantum harmonic oscillator in this deformed phase space.  

 

7- Investigation into the possibility to obtain the classical limit for the obtained 

quantum Liouville equation in order to obtain the corresponding q-deformed 

1-D classical Liouville equation. 

 

8- Attempting to solve these equations to obtain the quasiprobability distribution 

functions for the q-deformed harmonic oscillator. 

 

9- Finally, using a technique similar to that used in the classical treatment, 

studying the time-evolution of these probability distribution functions in order 

to investigate their behavior in phase space. 

 

1.7 Thesis Layout 

To achieve the aims stated previously, the rest of the thesis is organized as 

follows. Chapter Two is devoted to the introduction of the mathematical 

concepts and relations that are relevant to coherent states and the classical limit 

of the ordinary harmonic oscillator. Then, in Chapter Three, the concepts of 

quantum calculus, including q-numbers, q-deformed elementary functions,           

q-derivative as well as the equations governing the q-deformed classical and 

quantum harmonic oscillators are given. The q-deformed coherent states and 

some of their properties are also introduced in this chapter with some 

mathematical details together with the definition of the q-deformed density 
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operator. Chapter Four is devoted to the construction of the q-deformed 

oscillator and its f–deformed generalized version and the derivation of the 

classical Liouville equations for these oscillators. A solution for these Liouville 

equations and a simulation method is also introduced in this chapter and a 

computer visualizing method is presented to investigate these oscillators in phase 

space together with a discussion of the obtained results. In Chapter Five, the       

q-deformed quantum oscillator is constructed and then its quantum Liouville 

equation is derived in terms of the Glauber–Sudarshan quasiprobability 

distribution function. Also, the classical limit is investigated for the obtained 

quantum Liouville equation along the same lines used in Chapter Four to 

investigate the physical meaning of q-deformation. Finally, Chapter Six is 

dedicated to the main conclusions and suggestions for future work. 

 

In addition, (8) Appendices are devoted to give the full mathematical 

derivations for some relations and mathematical expressions that were used in 

this thesis.   

 

 

 

 

 



 

 

Chapter Two 

 

Coherent States and the Classical 

Limit of the Quantum Harmonic 

Oscillator 
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The undeformed simple harmonic oscillator (ordinary simple harmonic 

oscillator) (SHO) represents the standard system that is used in physics to 

simulate many systems in nature. In this chapter a short review is given about the 

undeformed classical and quantum SHO to serve the aim of deriving the time-

evolution equations of motion for both classical and quantum oscillators.  

 

2.1 The Undeformed 1-D Classical Harmonic Oscillator 

The Hamiltonian of the 1-D-SHO with mass m and angular frequency ω  is 

defined as [100] 

2 22

2 2

m
H

m
 

qp ω
       (2.1)                                                                                                                           

where q and p represent the classical position and momentum respectively. The 

Poisson bracket for any two dynamical variables and with respect to the 

classical coordinates  ,q p  in classical phase-space is defined as [100]: 

 ,
,

         
                   

q p q p p q
q qp p

  (2.2) 

Therefore, the Poisson bracket  ,q p with respect to canonical variables  ,q p

is (the subscript ,q p will be dropped from now on):  

 , 1q p                                                                                                                    (2.3)                                                                       

Coherent States and the Classical Limit of the Quantum 

Harmonic Oscillator 
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since q and p  are considered to be independent variables. The independent 

variables q and p  that have Poisson bracket defined in eqn. (2.3) are called 

canonical variables [100]. One can also define the Hamiltonian in eqn. (2.1) in 

terms of non-canonical complex independent variables   and   , where 

[77,91,101]:   

2 2

im

m
  

p
q

ω

ω
                                                                                             (2.4) 

2 2

im

m
 

p
q

ω

ω
                                           (2.5)                   

The appearance of  in eqns. (2.4) and (2.5) is to provide a convenient scaling 

for various physical quantities even though one is dealing with a classical system 

here [77].  

The Poisson bracket  , 
 with respect to canonical variables q and p is given 

as [101]: 

 ,
i

   
   

 
                                                                                                               (2.6)                                                                                                                    

But, since from eqns. (2.4) and (2.5):     

 
2m

  q
ω

                                                                                        (2.7) 

 
2

m
i    p

ω
                                                     (2.8)                                               

then, substituting eqns. (2.7) and (2.8) into eqn. (2.1) one obtains [91]: 

 ,H     ω                                  (2.9)  
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2.1.1 The Classical Equation of Motion 

The equation of motion for the system defined by the Hamiltonian of eqn. (2.9) 

is obtained from Hamilton’s equations as [91]: 

  , ,H         (2.10)                                                   

where [91,101]: 

       
,

, , , , ,H H
 

       


        (2.11)                                                                                                                                       

But since, 

  

   

, ,
,

, ,

H

H H

  
 

    

    




 

  



       
                 

                                                                                                                

                         (2.12) 

and, 

1

0

 

  

 

  











   
            


    

           

                             (2.13) 

then, substituting eqns. (2.13) into eqn. (2.12), one obtains: 

    ,
, ,

,

H
H

 
  

  





 

 
  
  

    (2.14)                                                           

Substituting eqn. (2.9) into eqn. (2.14) and using the result together with              

eqn. (2.6) in eqn. (2.11), one obtains the Poisson bracket   , ,H  
. Finally, 

substituting the result into eqn. (2.10), one obtains:  
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i   ω                                         (2.15) 

The solution of eqn. (2.15) is 

   0
i t

t e 



ω

                                      (2.16) 

 

where  0 is the amplitude or the value of  t at 0t  . Similarly, the complex 

conjugates of eqns. (2.15) and (2.16) are given as: 

i   ω    (2.17) 

and,         

   0
i t

t e  
ω

                                     (2.18) 

                                                                                                                                                                                                                              

2.1.2 The Classical Liouville Equation  

The classical Liouville equation (or time-evolution equation) in phase space is 

given in terms of the Poisson bracket as [100]   

  , ,H
t

 



                              (2.19) 

Letting,  , ;CLP t   in eqn. (2.19), this equation becomes:  

 
    

, ;
, , , ;CL

CL

P t
H P t

t

 
   


 




          (2.20)                                                                                                              

where,  , ;CLP t 
 represents the classical probability distribution function for 

the 1-D SHO in phase-space. But since,   

           
,

, , , ; , , , , ;CL CLH P t H P t         
 

    


        

  (2.21) 

and,     
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,
, , , ;

, , ; , , ;

CL

CL CL

H P t

H P t H P t

 
   

       

  
 



 

   

 




          
       

                

 

                                                                                                                       (2.22) 

then, using the Hamiltonian of eqn. (2.9), one obtains: 

 

 

,

,

H

H

 





  













 
 

    

 

  
    

ω

ω

     (2.23)                                                                                                           

Substituting eqn. (2.23) in eqn. (2.22), and using the result in eqn. (2.21) together 

with the eqn. (2.6), one obtains the expression for the Poisson bracket

    , , , ;CLH P t     . Using this result, eqn. (2.20) becomes: 

 
 

, ;
, ;CL

CL

P t
i P t

t

 
   




 



   
   

  
ω               (2.24) 

Equation (2.24) represents the classical Liouville equation for the classical        

undeformed 1-D SHO in phase space.      

 

2.2  The Uneformed 1-D Quantum Harmonic Oscillator  

The undeformed boson operators â  and 
†â are defined in terms of position and 

momentum operators q̂  and p̂  respectively, as [49-51]: 

 
1

ˆ
2

ˆ ˆa m i
m

 ω
ω

q p             (annihilation operator)                  (2.25)   

 † 1
ˆ

2
ˆ ˆa m i

m
 ω

ω
q p             (creation operator)                  (2.26)   
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The commutation relations for  †ˆ ˆ,a a  and  ,ˆ ˆq p are given as [49-51, 91]:  

,ˆ ˆ i  q p                                                           (2.27)   

†ˆ ˆ, 1a a 
 

                  (2.28)                                                                                                                                                                                                                                                                                                                                          

where, 

ˆ q q    (2.29) 

ˆ
d

i
d

p
q

         (2.30)  

Therefore, the Hamiltonian operator of the 1-D quantum harmonic oscillator can 

be defined in terms of the boson operators as [49-51]: 

 † † † †1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2

H = aa a a a a aa
     

         
     

ω
ω ω                    (2.31) 

Also, one usually defines the number operator, N̂ , as  

†ˆ ˆ ˆN a a                     (2.32) 

Hence, 

†ˆ ˆ ˆ1N aa                     (2.33) 

and in terms of eqns. (2.32) and (2.33), the Hamiltonian operator becomes: 

1ˆ ˆ
2

H N
 

  
 

ω      (2.34) 

Then, the expectation value of the Hamiltonian operator can be calculated as [49-51]: 

1ˆ ˆ
2

H n H n n
 

   
 

ω                              (2.35) 

where the state n is nth excited number state defined as [49-51]: 
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 †ˆ

0
!

n
a

n
n

      ; 0,1,2,n                     (2.36) 

It satisfies the relations [49-51]         

†

ˆ 1

ˆ 1 1

and,

ˆ 0 0

a n n n

a n n n

a

 

  




 

       (2.37) 

where the state 0 is the vacuum (or ground) state with occupation number 0.n   

 

2.3 Coherent States of the 1-D Quantum Harmonic Oscillator  

In quantum systems, one cannot measure the position of a particle and its 

momentum precisely at the same time because of the Heisenberg uncertainty 

principle. Therefore, the best way to talk about a quantum state that is analogues 

to classical motion is a localized state. Such a state is the “Coherent State” [39, 

40, 42, 43].  

 

2.3.1 Standard Definitions of Coherent States: 

A coherent state  can be defined in three different ways as follows: 

a) As eigenstate of the boson annihilation operator, or [40,102-108]: 

â                                                                                     (2.38)   

where   is the eigenvalue of the annihilation operator â when acting on  , 

which is a complex number since â is a non-Hermitian operator.     
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b) As minimum-uncertainty state (MUS): 

According to this definition, it is required that the coherent state  satisfies the 

minimum-uncertainty relation as [42, 43, 83]: 

   
2

2 2

4
   q p                      (2.39)  

where  
2

q and  
2

p are defined as [103], 

 
22 2

2m

 
     

 ω
q q q           (2.40) 

and,                           

 
22 2

2

m 
     

 
p p p

ω
                  (2.41) 

and the expectation values are taken with respect to the coherent state  . 

 

c) As the state generated from the ground state 0  by acting with the 

displacement operator  D̂  , or [102,104,109]:  

ˆ 0 D       (2.42) 

where, 

 
†ˆ ˆˆ a aD e 

        (2.43) 

It is known that all three definitions of the coherent states   can be shown to be 

equivalent for the SHO [103]. 

 

Also, it can be shown that the coherent state   as defined above, can be 

expanded in Fock space as [40, 42, 43]: 
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2

2

n
=      

!
=0

n
n

n

e





α

α

α
                                                                                                 (2.44)        

where 

2
          (2.45) 

 

2.3.2 Some Properties of Coherent States: 

Coherent states of the SHO have a number of important properties. In this section, 

some of these properties that are of relevance to the work in this thesis are 

reviewed. For further mathematical details about these properties and other 

properties one is referred to refs. [83, 102-110]. 

(a) The set of coherent states   is normalizable with normalization constant 

 
2

N  given as [97,99]: 

 

2

2 2e






N                         (2.46) 

                                                                                                        

(b) These coherent states are non-orthogonal states in the sense [102-110]: 

2 21
2

2
e

   
 

   
  
  

  
                                                (2.47) 

 or,  

2
2

e
 

 
 

                               (2.48)    

                                                                                                                                                     

Hence, for   these states become approximately orthogonal since      

2
    as 0     [102-110]. 
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(c) The set of coherent states   resolves the identity: 

This means that [83, 102-110] 

21
1d   


                              (2.49) 

where, 

2d d d       (2.50)                                                                                                                                         

In view of eqn. (2.47), the set of coherent states    forms an overcomplete set 

of states, where 1

0

n n

n






  represents the completeness relation for number 

states in Hilbert space. 

 

(d) The expectation value of the Hamiltonian operator Ĥ in the coherent state    

 is given as [108-110]: 

  2† 1 1ˆ ˆ ˆ ˆ
2 2

H H a a    
   

       
   

ω ω                          (2.51) 

 

(e) The expectation value n  of the number operator N̂ in the coherent state  is  

given as [102,108-110]:     

2†ˆ ˆ ˆ ˆn N N a a                                                           (2.52) 

 

(f) The probability  n  of measuring n  excitations in a coherent state  is  

Poisson distributed since,      

 
2 22

!

n

n n e
n

 


 
  

 
 

                        (2.53)        
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Substituting n from eqn. (2.52) into eqn. (2.53) one gets [102,108-110]:   

 
 2

!

n
n nn n e
n


 

  
 
 

                                 (2.54) 

It is clear that eqn. (2.53) represents a Poissonian distribution [102,108-110]. 

 

2.4 The Density Operator  

The density operator ̂  is an operator associated with the probability of finding 

any quantum system under consideration in a certain state [49, 50]. In the 

coherent state representation, this operator can be defined in terms of the weight 

function 
   ,s    with ordering parameter, s , as [41, 42, 45, 46]: 

 

   2ˆ ,sd                 (2.55)  

The weight function 
   ,s  

 represents a quasiprobabilty distribution 

function [45, 46]. A quasiprobability distribution is just like a true probability 

distribution from which one can calculate the average values. However, it differs 

from a true probability in that it can have negative as well as positive values 

besides other properties [45, 46, 80, 81, 84]. 

 

The values of the ordering parameter, s , and their associated quasiprobability 

distribution functions are illustrated in Table (2.1)  
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Table (2.1) 

Values of the ordering parameter s , their associated types of ordered boson 

operators and quasiprobability distribution functions. 

 

 

 

2.5 The Quantum Liouville Equation 

The equation of motion for any operator ˆ in the Heisenberg picture is given by 

the Heisenberg equation of motion as [49, 50]:    

ˆ
ˆ ˆ,

i
H

t

          
   (2.56) 

For the density operator, ̂ , this equation becomes [49, 50]: 

 
ˆ ˆˆ ,

i
H

t




          
                          (2.57) 

 

s   

 

   ,s  
  

type of ordered 

bosons operators 

type of 

quasiprobability 

distribution functions 

1    1 ,  
 

normal 

ordered 

†ˆ ˆa a  
Q-function 

(Husimi) 

 

 ,Q  

 

0    0 ,  
 

symmetrical 

ordered 

 1 † †

2
ˆ ˆ ˆ ˆaa a a 

 
 



 

W-function 

(Wigner) 

 

 ,W  

 

-1    1 ,  
 

anti-normal 

ordered 

†ˆ ˆaa  

P-function 

(Glauber, 

Sudarshan) 

 ,P    
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Eqn. (2.57) is the analog of the classical Liouville equation (2.20) which can be 

considered as quantum Liouville equation. 

 

2.6 Classical Limit of Quantum Systems 

The expectation value of the Heisenberg equation of motion for any operator ˆ

can be obtained from eqn. (2.56). In general, it is written as [49, 50]   

ˆ
ˆ ˆ,

i
H

t

          
     (2.58) 

Eqn. (2.58) is the quantum analog of the equation of motion for a classical 

dynamical variable in a Hamiltonian system as given in eqn. (2.19).    

It is well known that quantum mechanics should go over to classical mechanics 

whenever the commutators divided by “ i ” go over into the corresponding 

Poisson brackets in the limit 0  [49, 50, 75]. Thus, eqn. (2.58) goes over into 

eqn. (2.19) in the classical limit. This is Ehrenfest’s theorem in its general form 

[49, 50, 75]. Therefore, one can investigate if any quantum system has a classical 

counterpart by applying this theorem. This application is very important as it 

sheds light on the outstanding problem of the interpretation of quantum 

mechanics [76-78].  

A good example of applying the classical limit for quantum systems is the 1-D 

quantum harmonic oscillator, where the standard method to approach the classical 

limit for this oscillator is achieved via coherent states. This method can be 

approached by using the density operator, ̂ , in the Heisenberg equation of 

motion. The best example in this respect is that of Ghosh et al. [76] for the SHO 

which can be summarized as follows. 
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It is well known that the density operator, ̂ , can be written in the                  

Glauber-Sudarshan P-representation as [40, 42, 45, 46] (see also Sec. (2.4)):  

 2ˆ ,d P                             (2.59)                                                                                                                                                                                                                  

 

Substituting the Hamiltonian of eqn. (2.31) in eqn. (2.57), one gets [76]: 

 † †ˆ
ˆ ˆˆ ˆ ˆ ˆi a a a a

t


 


 


ω                       (2.60)                                                                                                      

Eqn. (2.60) can be simplified by re-arranging terms such that all annihilation 

operators, â , are to the left and all creation operators , 
†â , are to the right for all 

operator products (anti-normal ordering)  [42 45,46]. This process can be 

achieved by using integration by parts and the following relations 

[76,108,109,111,112]: 

 2ˆˆ ,a d P                                                               (2.61) 

 † 2ˆ ˆ ,a d P                                                 (2.62)  

   † 2ˆˆ ,a d P      


 
 

                                    (2.63)                                                                                                                 

 2ˆ ˆ ,a d P      






 
  

 
                              (2.64) 

Eqns. (2.61) – (2.64) can be written in the form of one-to-one correspondence as 

[76,108,109,111,112]: 

 ˆˆ ,a P                        (2.65) 

 †ˆ ˆ ,a P             (2.66) 

   † ˆˆ ,a P   


 
 


        (2.67)  
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 ˆ ˆ ,a P   






 
  

 
     (2.68) 

Therefore, the Heisenberg equation of motion, eqn. (2.60), is translated into the 

P-representation as [76]:        

 
 

, ;
, ;

P t
i P t

t

 
   




 



   
   

  
ω                    (2.69) 

One can consider eqn. (2.69) as representing the classical Liouville equation by 

interchanging  , ;P t 
 by  , ;P t 

CL (i.e.; classical probability distribution 

function) because eqn. (2.69) does not contain any quantum term (i.e.,  does not 

appear in this equation). Also, defining the mass density and the local 

hydrodynamic velocity, one can consider another interpretation of the classical 

limit in terms of the continuity and Euler equations of the incompressible fluid 

dynamics as can be found in ref. [76].  

The importance of this approach to the classical limit of a quantum system will 

become clearer in the next chapters, specifically when the deformed harmonic 

oscillator and the approach to its classical limit are introduced. 



 

 

Chapter Three 

 

The q-Deformed Harmonic 

Oscillator and q-Deformed 

Coherent States 
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3.1 Quantum Calculus 

Quantum calculus is a branch of calculus that arises naturally from studying the 

subject of quantum groups. It is different from ordinary calculus, but they 

approach each other in the limit 1q   and coincide when q  is equal to unity. In 

the next sections, some mathematical details about quantum calculus that are 

needed in the next chapters will be introduced. 

 

3.1.1 q–Numbers 

In general, q-numbers are classified into two types according to the q-deformation 

parameter under consideration; if they are real q-numbers or complex ones. In 

this thesis, the interest will be in real q-deformation parameter in the range of 

values0 1q  . The real q-deformation parameter can be defined in terms of ‘ x ’ 

which could be ordinary number or operator as [16, 17, 113, 114]: 

 
1

xxq q
x

q
q q








                                                                                     (3.1)     

which is invariant (symmetrical) under the substitution 
1

q q


 . One can also 

define                                                                                      

q e                                (3.2)   

 

                                                                                                                                                                                                                                             

The q-Deformed Harmonic Oscillator and q-Deformed Coherent 

States 
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where  represents the nonlinearity parameter in the range of values 

0   , then, 

lnq                                                        (3.3)                                                                                         

Using eqns. (3.2) and (3.3) in eqn. (3.1), one can write: 

 
 
 

sinh

sinh

x
x

q




                                                                                   (3.4) 

There is another definition for the q-number  x
q

as [116,117]: 

 
1

1

xq
x

q q





                                                                                                               (3.5) 

which is non-symmetrical under the substitution 
1

q q


 . 

In a similar manner as before, using eqns. (3.2) and (3.3) in eqn. (3.5), the                

q-deformed number  x
q

becomes: 

 
1

1

xe
x

q
e









                                                                                                                  (3.6) 

It can be noted that both definitions of the q–number  x
q

 coincide with the 

ordinary number x in the limit 1q  , i.e.,  

 
1

lim x x
qq
                                                                                                      (3.7) 

 

3.1.2 q–Deformed Elementary Functions 

In addition to q-deformed numbers, some q-deformed elementary functions can 

be introduced, where according to Euler’s 1st and 2nd identities [3]:        
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2

0

1
1

21 1 1

j
xj j

x q
q j

q q qj

 
   

        

  (Euler’s 1st identity) 

                   (3.8)  

      0

1

21 1 11

j
x

j
q q qx jq

 
 

         

          (Euler’s 2nd identity)     (3.9) 

Then, according to eqns. (3.8) and (3.9), there are two types of q-exponential 

functions which are defined as [3]: 

 
0

!

j
xxeq j

qj

 
 
 

  

                                                                                 (3.10)   

and,                                                                                         

 
 

 
2

0

1

!

j
xj j

E x qq j
qj

 
  

 
  

   (3.11) 

where   !j
q

 represents the q-analog of the factorial, defined as [1,3]  

         ! 1 2 1j j j j
q q q q q
                                                            (3.12)  

 0 ! 1
q
                                                                                                     (3.13) 

Also, q-trigonometric functions are defined as [1, 3,115]  

   
 

2 1
sin 1

2 1 !
0

j
xj

xq j
qj

 
 




                                                         (3.14)

   
 

2
cos 1

2 !
0

j
xj

xq j
qj


 



                                                            (3.15)   
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3.1.3 q–Derivative ( Jackson’s Derivative) 

The q-analog of the ordinary derivative was first introduced by Jackson in 1909 

[4]. The Jackson derivative operator with respect to x , denoted as
q

x , is defined 

in terms of the dilatation (shift) operator Dx [3,113-116 ] as: 

 

 

1

1

q D Dx x
x

q q x








                                 (3.16)    

where 

x
xD qx



                                               (3.17) 

Also, the dilatation operator can be defined by using ordinary differential calculus 

(i.e., 

d
x

dxD qx  ) as given in refs. [3,114]. 

 

Other possible definitions of 
q

x  are also found in the literature. For example, 

the definition 

 
 

1

1

q Dx
x q x





                                                                                  (3.18) 

is also used [114,116].  

 

The Jackson derivative operator, defined in eqns. (3.16) and (3.18), when acting 

on an arbitrary function  f x , gives [115]:        

 
   

 

1

1

q f q x f q x
f xx

q q x







                   (3.19) 

 for the definition of 
q

x given in eqn. (3.16), and [116]:     
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 1

q f qx f x
f xx q x





                                                      (3.20) 

for the definition of 
q

x  given in eqn. (3.18). 

These results follow from the relation [3,112-116]  

 1
( )

x
xq f x f q x




      (3.21) 

Also, one notices that both definitions of the Jackson derivative given above 

reduce to the standard derivative in the limit 1q   as expected, or: 

   lim
1

q d
f x f xx dxq

                                                                  (3.22)         

                                                                        

It is also useful to note some examples of the action of the q-derivative on the      

q-deformed elementary functions, such as [3]: 

   

   

   

sin cos

cos sin

q x xe ex q q

q
E x E qxx q q

q
x xx q q

q
x xx q q





 





 

   (3.23) 

More details about such actions of the q-derivative on other functions can be 

found in ref. [3]. 

 

3.1.4 Analog of Leibniz Rules for q-Differentiation 

The analog of Leibniz rules for q-differentiation of two arbitrary functions  

 F x  and  G x  are given as [3]: 
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(i) Sum Rule 

        
q q q

F x G x F x G xx x x                                     (3.24)         

                                                                                   

(ii) Product Rule       

            

            

which can also be written as

q q q
F x G x F q x G x G x F xx x x

q q q
F x G x G q x F x F x G xx x x

  






  


                (3.25)                                                                                                                             

           

(iii) Quotient Rule 

 

 

       

   

 

 

       

   

which can also be written as

q q
q G q x F x F q x G xF x x x
x G x G x G q x

q q
q G x F x F x G xF x x x
x G x G x G q x

 
 
 






  
  

  

                          (3.26) 

 

where  G x and   0G q x  .   

 

For more details about q-integration, q-polynomials and many other q-relations 

and identities, one is referred to refs. [1- 3]. 

    

3.2 The q-Deformed Harmonic Oscillator 

The q-deformed harmonic oscillator was introduced firstly in connection with 

studying quantum groups [16], where one can consider the q-deformed quantum 

harmonic oscillator as a deformation of the standard quantum harmonic oscillator. 

There are different versions of the q-deformed harmonic oscillator that can be 
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obtained by defining the q-deformed boson operators [9, 12-15]. In the next two 

sections, q-deformations of the harmonic oscillator in both its classical and 

quantum versions, are introduced.   

 

3.2.1 The q-Deformed Classical Harmonic Oscillator 

There are different approaches to introduce q-deformation for the classical 

harmonic oscillator. One approach is q-deformation of the Poisson bracket via 

the Jackson derivative [117]. Another approach is q-deformation of the 

Lagrangian of the harmonic oscillator [118]. Also, there is the possibility of           

q-deforming the action integral to obtain the q-deformed equation of motion 

[119]. In this context, it should be emphasized that the problem of the q-deformed 

classical oscillator and its interpretation are still open problems. Finally, it should 

also be stated that a q-deformed classical harmonic oscillator reduces to the 

standard classical harmonic oscillator in the limit 1q  .   

 

3.2.2 The q-Deformed Quantum Harmonic Oscillator 

In general, there are different versions of the q-deformed quantum harmonic 

oscillator according to the q–commutator that is adopted for each version as well 

as the definitions of the bosonic operators that satisfy these q-commutators            

[9, 12-16, 32, 38]. An example of the q-deformed quantum oscillator is given in 

ref. [12] in which Biedenharn introduced the following q–commutator: 

      

ˆ† † 1 †ˆ ˆ ˆ ˆ ˆ ˆ, Na a a a q a a qq q q q q qq

    
 

                                                       (3.27)                                                                                                                                     

In general, and according to Man’ko [91], the q-deformed oscillator may 

represent a special type of nonlinearity where the frequency of the oscillator 

depends on the energy of the oscillator (i.e.,
2

 ). In this context, an f-deformed                      
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oscillator, which is a generalization of the q-oscillator, was introduced by Man’ko 

[61]. The realization of the f-deformed boson operators â f  and 
†â
f

 in terms of 

the undeformed boson operators â  and 
†â was achieved via the transformation  

[61, 92, 96, 120]:   

   

   † † †

ˆ ˆˆ ˆ ˆ1

ˆ ˆˆ ˆ ˆ 1

a a f N f N af

a f N a a f N
f

  



   


      (3.28) 

where  ˆf N  represents a non-negative real operator-valued function of the 

number operator. It should be noted that the subscript “f” used here refers to the 

“f-deformation” case. Also, whenever a q-deformation process is used instead of 

the f-deformation process, then the subscript “f” is interchanged by “q” and vice 

versa. 

 

The transformation from the f-deformed oscillator to the q-deformed oscillator or 

to the undeformed oscillator involves substituting specific values for the function

 ˆf N  in the transformation of eqn. (3.28) in the form [61, 64, 65, 91]:   

 
 

1 for und eformed o  scillator

ˆ
ˆ for q-deformed o scillator

ˆ

otherwise for f-deformed o scillator

N
q

f N
N










       (3.29) 

Furthermore, the Hamiltonian operators of the q-deformed and f-deformed 

quantum harmonic oscillators are defined as [61, 91, 92, 120, 121]: 

 † †ˆ ˆ ˆ ˆ ˆ
2

a a a aq q q q q
 

  
 

ω
                                                            (3.30a) 

and, 
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 † †ˆ ˆ ˆ ˆ ˆ
2

a a a af f ff f
 

  
 

ω
                                                      (3.30b) 

respectively. 

 

Substituting the f-deformed boson operators â f  and 
†â
f

 from eqn. (3.28) into 

eqn. (3.30b), results in: 

 

      2 2ˆ ˆ ˆ ˆ ˆ1 1
2

N f N N f Nf
 

    
 

ω
                              (3.31)  

                                                                                                          

Eqn. (3.31) represents the Hamiltonian operator for the f-deformed quantum 

harmonic oscillator in terms of the undeformed number operator N̂ . 

 

The q-deformed number operator, N̂q , in terms of q-deformed boson operators 

is defined as [28, 32, 33, 87]: 

†ˆ ˆ ˆ ˆN N a aq q qq
  
 

                  (3.32) 

and hence, 

†ˆ ˆ ˆ1N a aq qq
  
 

                (3.33)  

Substituting eqns. (3.32) and. (3.33) in eqn. (3.30a), yields [12]:  

 

ˆ ˆ ˆ 1
2

N Nq q q

                

ω
                               (3.34) 

 

Eqn. (3.34) represents the Hamiltonian operator for the q-deformed quantum 

harmonic oscillator in terms of the undeformed number operator N̂ . 
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Also, the q-deformed number operator, N̂q , can be defined in terms of the               

q-number by using  eqns. (3.4) and (3.6)  together with ˆx N , then eqn. (3.32) 

becomes [120,121]: 

 
 

ˆsinh
ˆ ˆ

sinh

N
N Nq q




  
 

                                      (3.35a) 

and, 

ˆ
1ˆ ˆ

1

Ne
N Nq q e






  
 


            (3.35b) 

 

The q-deformed boson operators act on the q-deformed number state n
q

in the 

q-deformed Hilbert space as [12, 28, 32, 87]            

  

 

 
     

†

ˆ 1

1 , 2 ,
ˆ 1 1

a n n nq q qq
n

q q q
a n n nq q qq

 


  
   



             (3.36)  

where,  

 

 

†

0
!

n
aq

n
q qn

q

          (3.37) 

and, 

0 0
q
                             (3.38)                                                               

Also, the completeness relation in q-Hilbert space for n
q

is given as:   

1

0

n n
qq

n






                                                                                (3.39) 
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Another formulation of the q-deformed quantum harmonic oscillator, which was 

introduced by Arik and Coon [9], is based on the definition of the Jackson 

derivative. The basic idea in this work depends on the basic integral [123]. For 

other formulations of the q-deformed quantum harmonic oscillator, one is 

referred to refs. [32, 38, 89, 96].  

 

It should also be stated that, as in the q-deformed classical oscillator case, the       

q-deformed quantum oscillator reduces to the standard quantum oscillator in the 

limit 1q  .    

 

3.3  The q-Deformed Coherent States 

The importance of the standard (Glauber–Sudarshan) coherent states motivated 

many researchers to study the q-deformation of these states [26-28, 43, 68]. In 

what follows, is an attempt made to give an introduction to this subject with some 

mathematical details that are relevant to the work in the present thesis. 

 

3.3.1 Definition of q-Deformed Coherent States and their Generalizations 

In general, the q-deformed coherent state, q  is defined as the eigenstate of the 

q-deformed annihilation operator [14, 15, 31, 38, 61-65, 87], or:         

âq q q q                                                                    (3.40)    

This definition produces a normalizable q-deformed coherent state.     

                                                                     

The Hilbert space adjoint of eqn. (3.40) becomes 

†âq q q q                                                                           (3.41) 
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where q and q
  represent independent arbitrary complex numbers. Also, the       

q-deformed coherent state reduces to the Glauber–Sudarshan state in the limit

1q  . A generalization of the q-deformed coherent state was introduced by 

Man’ko in [61]. This generalization leads to the concept of nonlinear coherent 

state (NLCs). The NLCs involves the notion of the f-deformed oscillator (see eqn. 

(3.29)) [47, 62, 64, 68] where for each choice of the nonlinearity function  ˆf N  

one gets a different nonlinear coherent state.  

 

The q-deformed coherent state (q–CS) can be expanded in the q-Fock space as 

[28, 47, 64, 87] 

 
 

2

!0

n
q

nq q q qnn q


 






N              (3.42) 

where  
2

q qN  represents the q-analog of the normalization constant defined 

as [28, 47, 64, 64, 87]:  

 

2

2
2

q

eq q q






N                  (3.43)  

Also, the expectation value, nq , of the q-deformed number operator, N̂q , is 

given as [124]:  

2
†ˆ ˆ ˆn N a aq q q q q q q q q q q                                   (3.44) 

 

3.3.2  The q-Deformed Density Operator 

As it has already been illustrated in Sec. (1.2), the conventional coherent states 

(Glauber–Sudarshan states) and the P-representation of the density operator      

[40, 41, 45, 46] play a crucial role in investigating the classical limit of the 
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undeformed quantum harmonic oscillator via the Heisenberg equation of motion 

[76, 78]. To generalize this notion to the q-deformed density operator, one should 

overcome the problem of the existence of resolution of unity for q-deformed 

coherent states, as not all definitions of q-CSs satisfy the resolution of unity 

[38,122]. This resolution of unity can be obtained by using the standard method 

to produce an explicit formula for the q-deformed density operator. This method 

is based on solving the moment problem in order to obtain the q-deformed weight 

function [38,122]. This weight function represents the q-deformed 

quasiprobability distribution function [14, 15, 38, 122], where in the                     

limit 1q  , it reduces to the conventional (undeformed) quasiprobability 

distribution function 
   ,s  

 for the standard (Glauber–Sudarshan) coherent 

states [40, 41, 45, 46].  
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In this chapter, the q-deformed classical harmonic oscillator is defined in more 

details and treated along the lines of Man’ko [91]. The treatment begins with a 

generalization that involves the general case of the f-oscillator where the                 

q-oscillator is considered as a special case. Then, the classical equation of motions 

and the Liouville equations are obtained for both types of oscillator. Finally, 

solutions for the classical Liouville equations for the q-deformed case are 

obtained and a computer visualization method is used to investigate the phase 

space time-evolution of this oscillator for comparison with the anharmonic 

oscillator treated by Milburn [77].   

 

4.1 The f-Deformed Coordinate Transformation  

As mentioned in Sec. (2.1),   and  
represent two independent complex 

variables that can be considered as coordinates in a complex phase space. When 

considering f-deformation [61], these undeformed coordinates can be 

transformed to f-deformed coordinates
f and f by a non-linear transformation 

as [61, 91]:  

 ,ff                           (4.1) 

 ,ff                                                               (4.2) 

 

 

Classical Treatment of the q-Deformed Harmonic Oscillator 
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where 
f and f are considered as two independent complex variables and 

 ,f f   is a non-negative function of the two independent complex 

variables   and   . The subscript “ f ” refers to “f-deformation”. Generally, the 

function  ,f    has the following three forms corresponding to the 

deformation types shown in Table (4.1): 

 

Table (4.1) 

Forms of the function  ,f   and their associated types of deformation. 

 ,f    type of deformation 

1 undeformed case 

q








 
 

  q–deformed case 

otherwise general f–deformed case 

   

In the case of q-deformation, 
q









 
 

 can also be written in terms of the                    

q–numbers as [9, 61, 91]: 

 

  1

sinh
for

sinh

q qq

q q q

 


  

 




 

 
    
  

             (4.3a) 

and,                  

 

1 1
for

11

e qq

qqe

  


 

  


 

 
     

  
                                 (4.3b) 
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4.2 The Classical Hamiltonian 

The classical Hamiltonian of the f-deformed oscillator can be introduced in terms 

of the two sets of coordinates of the non-linear transformation given in eqns. (4.1) 

and (4.2) as: 

 

(A)  The Classical Hamiltonian in α–Representation 

The Hamiltonian of the f-deformed oscillator defined in terms of the  ,   

coordinates as given by Man’ko [61, 91] is, 

 , f  ff      ω      (4.4) 

For the case of the q-deformed classical oscillator, the function f is given by eqns. 

(4.3). Then, eqn. (4.4) in  -representation becomes  

 

 

 

 

1

sinh
for (4.5a)

sinh

,

1 1
for (4.5b)

11

q q

q q q

q
e q

qqe






 
 











 



             
 

              
 

ω

ω

 

(B) The Classical Hamiltonian in f –Representation 

The classical Hamiltonian of the f-deformed oscillator, defined in terms of the 

 ,f f   coordinates as given by Man’ko [61, 91], is 

 ,f f f f f     ω                                       (4.6) 

 

Hence, for the special case of q-deformation, this Hamiltonian can be written as: 

 ,q q q q q     ω                                             (4.7)                                                    
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4.3 The Poisson Bracket , f f


  

 The Poisson bracket  ,f f 
can be written as (see Appendix–A, eqn. (A.11)): 

     
,

, , ,f f f f     
 

  


                                              (4.8) 

where, 

 
,

,
f f f f

f f

   
 

      

 


  



         
                     

        (4.9)                                      

Using eqns. (4.1) and (4.2), one obtains: 

f
f f

f
f

f
f

f
f f


 










 






 







 





  


  
  

   


  
  

    


  
     


  

       

              (4.10) 

where the following notations have been employed, 

f
f

f
f

f
f

f
f

  

  

 


 




 



 






  
     

 
  

  

 
  

   

 

  
    

                           (4.11) 
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then substituting eqn. (4.10) into eqn. (4.9), one can write: 

   2

,
, f f f f f f f f f ff f         

      
  

        (4.12)     

For the special case of real function f , eqn. (4.12) becomes, 

   2

,
, f f f ff f     

 


                                                        (4.13) 

Now, letting 

   2, f f f f
f

     
 

                         (4.14) 

then, one can write: 

   
,

, ,f f f
    

 

 

                                                                           (4.15) 

Substituting for , 
from eqn. (2.6) and using eqn. (4.15) in eqn. (4.8), then: 

   , ,
i

f f f
      

   
 

                                                                 (4.16) 

Eqn. (4.16) represents the general formula for the Poisson bracket of the                   

f-deformed classical harmonic oscillator. 

For the special case of the q-deformed classical oscillator, where the function f   

is given by eqns. (4.3), the Poisson bracket  ,f f  in eqn. (4.16) becomes 

 ,q q 
and can then take the forms: 

(A)  , q q


 in the  –Representation 

It is easy to show that for f defined by eqn. (4.3a): 

   

 

2 2 2

4

cosh sinh
1

2 sinh
f

f

      


 

           
    

               (4.17) 

and,  
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2 2 2

4

cosh sinh
1

2 sinh
f

f

      

 


          
    

                                      (4.18) 

Then,  

 
 

2
2cosh1

2 sinh
f f f

f

  
   




    
    

    

                                               (4.19) 

Similarly, for f defined by eqn. (4.3b): 

 

22
2

4

1
1

2 1

e e

f
f e

  
  

 


  

    
        

   
 
 

              (4.20) 

 

22
2

4

1
1

2 1

e e

f
f e

  
  

 


   
    

        
   

 
 

                       (4.21)  

Hence, 

 

2

21

2 1

e
f f f

f e

 


  




 
  

    
  

 

                   (4.22)  

Substituting eqns. (4.19) and (4.22) into eqn. (4.14), one obtains: 

 
 
 

2
cosh

,
sinhq

  
  




 
 

  
  

                               (4.23a) 

and, 

 
 

2

,
1

e
q

e

 


  




 
 

  
 

 

                                        (4.23b) 

respectively. 
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When these two expressions for  ,q   are substituted in eqn. (4.16), they give 

   
 

2
cosh

,
sinh

i
q q

  
 




 
  

    
   

                                                                 (4.24a) 

and, 

 
 

2

,
1

i e
q q

e

 


 




 
  

    
   

 

                                     (4.24b)                      

respectively. 

Eqns. (4.24) represent the Poisson brackets for the q-deformed harmonic 

oscillator in the –representation for two definitions of the function f . It is 

observed that eqn. (4.24a) is the same as that introduced by Man’ko [91]. 

 

(B)  , q q


 in the q
–Representation 

To obtain the Poisson bracket ,f f 
in the 

q –representation one needs the 

inverse function  1 1 ,f f q q    . Substituting the definitions of the function

f  from eqns. (4.3) in the non-linear transformation represented by eqns. (4.1) 

and (4.2), then multiplying these two equations with each other, one gets: 

  21
2

sinh sinhq 






                            (4.25a) 

and, 

  2

2
ln 1 1 eq






 
                                       (4.25b) 

respectively. 
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The inverse of the non-linear transformation represented by eqns. (4.1) and (4.2) 

is given as:   

1f f           (4.26)  

 
1

f f 


                               (4.27) 

Then, multiplying these two equations one gets:  

 
222 1f q                                                                  (4.28)   

Substituting eqns. (4.25) into eqn. (4.28) and solving for 1f  , one obtains: 

    2 4 2

1

2

ln sinh 1 sinhq q
f

q

   

 


 

                    (4.29a) 

and 

  2

1

2

ln 1 1 eq
f

q



 


 

                 (4.29b) 

respectively.                    

Eqn. (4.29a) is the same as that introduced by Man’ko [61]. Substituting             

eqns. (4.29) into eqn. (4.28) and substituting the result into eqns. (4.23) and after 

some mathematical manipulations one obtains:    

  
 

 

4 21 sinh
,

sinh

q
q q q

  
  





 
 

  
 
 

                   (4.30a) 

and, 

 
 

 

2
1 1

,
1

eq
q q q

e

 
  




     
  

  

                                          (4.30b) 

respectively. 
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Finally, substituting eqns. (4.30) into eqn. (4.16), the Poisson brackets in the        

q –representation become: 

 
 

 

4 21 sinh

,
sinh

qi
q q

  

 




  
         

  
 

           (4.31a) 

and, 

 
 

 

2
1 1

,
1

eqi
q q

e

 
 




   
         

   
 

            (4.31b) 

respectively. 

 

It is noticed that eqn. (4.31a) is the same as that introduced by Man’ko [91]. 

 

4.4 The Equation of Motion 

The equation of motion for the f–deformed harmonic oscillator can be obtained 

in the  -representation and 
q -representation as: 

 

(A)  –Representation: 

The equation of motion in this representation is: 

    , ,t f                                                     (4.32) 

But since, (see Appendix-B, eqn. (B.7)) 

                        
,

, , , , ,f f       
 

  


   

                                                                                                                                                    (4.33)     
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then, simplifying   
,

, ,f  
 




by using eqn. (2.13), to obtain 

  
 

,

,
, ,

f
f

 
  

   




 

 
    

                            (4.34) 

and substituting  ,f  
 from eqn. (4.4) into eqn. (4.34), this equation 

becomes: 

    
,

, , f f f f f ff     
 

     
 

  ω             (4.35) 

Observing again that f f  , and defining: 

  2, 2f f f
f

   


 
   ,                      (4.36) 

eqn. (4.35) takes the form: 

    
,

, , ,f f
      

 

 

 ω                                  (4.37) 

Defining 

 ,f f
  ω ω                                                 (4.38) 

 

eqn. (4.37) becomes: 

  
,

, ,f f   
 



 ω                          (4.39) 

where 
fω  can be considered as the frequency of the f–deformed classical 

harmonic oscillator in the 𝛼–representation. 

Substituting , 
from eqn. (2.6) and using eqn. (4.39) in eqn. (4.33),               

eqn. (4.32) can be cast in the form: 

 t i f   ω                         (4.40) 

Eqn. (4.40) represents the equation of motion for the f-deformed classical 

harmonic oscillator in the  –representation. 
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For the special case of the q-deformed classical oscillator, where the function f  

is given by eqns. (4.3), substituting for f



 from eqns. (4.19) and (4.22) into 

eqn. (4.36), the result becomes: 

 
 
 

2
cosh

,
sinhq

  
  




  

  
  

                   (4.41a) 

and, 

 
 

2

,
1

e

q e

 


  



 
 

 
 

 

                          (4.41b) 

respectively. 

Then, substituting eqns. (4.41) into eqn. (4.38), the frequency of the q-deformed 

classical oscillator, 
 
q
ω , becomes: 

   
 

2
1 cosh

sinhq

  



  
  

  

ω ω                  (4.42a) 

and, 

 

 

2

2

1

e
q

e

 



 
 

  
 

 

ω ω                (4.42b) 

respectively. 

 

Again, it is noticed that eqn. (4.42a) is the same as that introduced by               

Man’ko [91]. 

Substituting eqns. (4.42) into eqn. (4.40), leads to: 

   
t i q


   ω        ;   .1,2                                      (4.43) 

and the complex conjugate of eqn. (4.43) is: 

     
t i q


   ω        ;   .1,2                         (4.44) 
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where 
 
q
ω is obviously real. 

Eqns. (4.43) and (4.44) represent the equations of motion for the q-deformed 

classical harmonic oscillator in the  -representation.  

 

Solving these equations of motion, gives the equations of trajectories for the          

q-deformed classical harmonic oscillator in the complex  ,   phase space: 

   
 

   
 

1 2
0

; , .

0

i tq
t e

i tq
t e






 

  


 




 

ω

ω
                           (4.45)   

where,  0  and  0
 are initial trajectory points at 0t  .  

 

(B)  f
–Representation: 

In this case, the equation of motion is given by: 

    , ,tf f f f f                        (4.46) 

where, (see Appendix-B, eqn. (B.8)) 

       
,

, , , , ,f f f f f f f f f f
f f

       
 

  


   (4.47)   

                                                                                    

Also, 

  
 

,

,
, ,

f f f
f f f f

f f f
f

 
  

  





 

 
    

                      (4.48) 

where the counterparts of eqns. (2.13) for 
f and f , i.e.,   
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1

0

ff

f f
f f

f f

ff
ff

 

 
 

 














   
         




     
            



                                      (4.49) 

were used to obtain eqn.(4.48). 

  

Substituting  ,f f f  from eqn. (4.6) into eqn. (4.48), the result is: 

  
,

, ,f f f f f
f f

   
 



 ω                 (4.50)  

Then, finally the substitution of  ,f f 
from eqn. (4.16) and the Poisson 

bracket of eqn. (4.50) into eqn. (4.47), and using the result in eqn. (4.46), yields: 

 t if f f   ω                                                                              (4.51) 

where, 

 ,f f
  ω ω                       (4.52) 

It is worth mentioning that 
2

 represents a constant of the motion for the 

undeformed classical oscillator. This can be proved by evaluating the Poisson  

bracket for the undeformed classical oscillator   
,

, ,H  
 

 


as:       

  

       

,
, ,

, ,

H

H H

  
 

     

    

 


   

  



          
       

         

 

                 (4.53) 

Therfore, using eqns. (2.13) in eqn. (4.53) leads to: 
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,

, ,
, ,

H H
H

   
    

   

 
  

  

    
    

   
 (4.54)                         

            

Substituting the Hamiltonian from eqn. (2.9) in eqn. (4.54) results in: 

  
,

, , 0H  
 

 

                                              (4.55)     

which proves that 
2

 is a constant of the motion for the undeformed oscillator. 

A similar result can be obtained for 
2

f  and, hence, for the special case          

2

q . Therefore, the functions  ,
f

    and  ,
f

  
 also represent 

constants of the motion, where one can prove this by noticing that  2
f f  , 

then substituting into eqn.(4.14), and after some mathematical manipulations, the 

result is: 

      
 2

2
2 2 2

2
2

f
f f

f


   




 


                        (4.56) 

It is obvious that the f  is a function of 
2

 . Then, the function  ,
f

   ,  that 

is given by eqn. (4.14), reduces to the function   2

f
  . Similarly, one can 

prove that the function  ,
f

  
 also represents a constant of the motion.      

     

In the same context, the frequency of the f-deformed classical oscillator,
fω , 

which  is a function of 
2

 , is a constant of the motion and depends on the energy 

of the oscillator orbit. 
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The equation of motion for the special case of the q-deformed classical harmonic 

oscillator is obtained by substituting the function  ,q q q    from eqns. (4.30) 

into eqn. (4.52). Then, the frequencies of this oscillator are given as: 

      

 
 

 

4 2

3
1 sinh

sinh

q
q

  



    
  

 
 

ω ω                                           (4.57a) 

and, 

 
 

 

2

4
1 1

1

eq
q

e

 



   
     

 
 

ω ω                                                     (4.57b) 

respectively. 

 

It is noticed that eqn. (4.57a) is the same as that introduced by Man’ko [91]. 

 

Substituting eqns. (4.57) into eqn. (4.51), one gets: 

   
3 4; , .t iq q q


   ω                             (4.58) 

The complex conjugate of eqn. (4.58) becomes: 

   
3 4; , .t iq q q


   ω                                 (4.59) 

 

Eqns. (4.58) and (4.59) represent the equations of motion for the q-deformed 

classical harmonic oscillator in the 
q -representation. 

 

Again, solving these equations of motion, gives the equations of trajectories for 

the q-deformed classical harmonic oscillator in the complex  ,q q   phase 

space: 
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3 4

0

; , .

0

i tq
t eq q

i tq
t eq q






 

  








 


ω

ω
                    (4.60)   

 

where  0q  and  0q
  are initial trajectory points at 0t  .  

 

4.5 The Classical Liouville Equation  

In this section, the classical Liouville equations for the f-deformed classical 

harmonic oscillator in the two complex phase space representations are derived 

by using the classical Liouville equation for the undeformed classical system that 

was introduced in ref. [100]. The q-deformed case is also treated as a special case. 

 

(A)  –Representation 

In this case, and using the Hamiltonian  ,f    of eqn. (4.4), the classical 

Liouville equation is given as: 

 
    , ;

, , , ;CL
CL

f
ft

tft

 
   


 




P
P                           (4.61) 

where  , ;CL

f
P t 

 represents the classical probability distribution function for 

the f-deformed classical oscillator in the 𝛼-representation. 

But since, (see Appendix-C, eqn. (C.9)) 

           
,

, , , ; , , , , ;CL CL

f f
t tf f         

 

    


 P P  

                                (4.62)  
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then, using the definition of the Hamiltonian  ,f  
 in the  –representation 

as in eqn. (4.4), and assuming f f  , one obtains: 

 
 2

,
2

f
f f f

 
 









 
   
 
 

ω                            (4.63) 

and, 

 
 2

,
2

f
f f f

 
 









 
   
 
 

ω                             (4.64) 

Furthermore, the Poisson bracket     
,

, , , ;CL

f
tf

 
   



 P is given by: 

    
       

,

, , , ;

, ,, ; , ;

CL

CL CL

f
tf

f f
t tf f

   
 

      

   

 



  

 




        
                 

P

P P
 

                 (4.65) 

Now, substituting eqns. (4.63) and (4.64) into eqn. (4.65), the latter takes the 

form:  

    

     

,

2 2

, , , ;

2 2 , ;

CL

CL

f
tf

f
f f f f f f t

   
 

       

 



  




  
   

 

P

Pω

 

                                             (4.66)  

Then, substituting eqns. (4.66) and the Poisson bracket , 
 from eqn. (2.6) 

into eqn. (4.62), one can write: 
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     2 2

, , , ;

2 2 , ;

CL

CL

f
tf

f
i f f f f f f t

   

       

 

  




  
    

 

P

Pω

 

                                     (4.67)     

Using eqn. (4.67) in eqn. (4.61), one obtains: 

 

     2 2

, ;

2 2 , ;

CL

CL

f
t

t

f
i f f f f f f t

 

       



  







  
    

 
ω

P

P

         

                                          (4.68)  

 

Noting here that if the function  ,f f   is a function of 
2

  (i.e.;

 2
f f  ), then f f  


 . Also,    , ,

f f
        (see eqns.                                    

 (4.14) and (4.36)). Therefore, eqn. (4.68) becomes   

  

 
 

, ;
, ;CL

f CL

f
ft

i t
t

 
   




 



   
   

  
ω

P
P                  (4.69)  

where  ,f f
  ω ω  and  ,

f
   is as given by eqn. (4.14).      

 

Eqn. (4.69) represents the classical Liouville equation for the f-deformed classical 

oscillator in the  -representation.  

 

For the special case of the q-deformed classical oscillator, the classical Liouville 

equation (4.69) for the f-deformed oscillator becomes: 
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      1 2
, ;

, ; ; , .CL
CL

q
qt

i tqt




 
   




 



   
    

  
ω

P
P        

                (4.70) 

where, 
 
q
ω  is given by eqns. (4.42). 

Eqn. (4.70) represents the classical Liouville equation for the q-deformed 

classical oscillator in the  -representation.     

  

(B)  f
-Representation 

For this case, the classical Liouville equation is given as: 

 
    

, ;
, , , ;

CL

CL

f
P t ff f

P tf f f f ft

 
   



 





                     (4.71) 

where  , ;CL

f
P tf f 

 represents the classical probability distribution function 

for the f-deformed classical harmonic oscillator in the 
f -representation.     

But since, (see Appendix-C, eqn. (C.8)) 

    
      

,

, , , ;

, , , , ;

CL

CL

f
P tf f f f f

f
P tf f f f f f f

f f

   

     
 

 

  






 

                                                  (4.72)      

                                                                                                                                                                               

then, using the definition of the Hamiltonian  ,f f f  in the                                 

f -representation as in eqn. (4.6), and assuming f f  , one obtains: 

 ,f f f
f

f
f

 











 
  
 
 

ω                                                         (4.73) 
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and, 

 ,f f f
f

f
f

 









 
  
 
 

ω                                                                     (4.74) 

Also, since the Poisson bracket     
,

, , , ;CL

f
P tf f f f f

f f

   
 

 


is defined 

as: 

    
 

     
 

,

      4.75   

,
, , , ;

, ; , , ;

CL

CL CL

f f f f
P tf f f f f

ff f
f

f f
P t P tf f f f f f f

ff f
f

 
   

 


     

 




 




  

 

 
    

      
               

  

 then, substituting eqns. (4.73) and (4.74) into (4.75) and re-arranging, the result 

takes the form: 

    

   

,

      4.76   

, , , ;

, ;  

CL

CL

f
P tf f f f f

f f

f
P tf f f f

ff

   
 

   


 



 





 
  

 
 

ω

Now, substituting eqn. (4.76) and the Poisson bracket ,f f 
of eqn. (4.16) into 

eqn. (4.72), one obtains: 

    

   

, , , ;

, ; 4.77

CL

CL

f
P tf f f f f

f
i P tf f f f f

ff

   

   


 

 





 
   

 
 

ω

where  ,f f
  ω ω and  ,

f
    are as defined in eqn. (4.14). 
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Inserting eqn. (4.77) into eqn. (4.71) one obtains: 

 
 

, ;
, ;

CL

CL

f
P t ff f

i P tf f f f ft ff

 
   





 



      
  
 

ω         (4.78)       

Eqn. (4.78) represents the classical Liouville equation for the f-deformed classical 

harmonic oscillator in the 
f -representation. 

Also, for the special case of the q-deformed classical oscillator, the classical 

Liouville equation (4.78) becomes: 

      3 4

, ;
, ; ; , .

CL

CL

q
P t qq q

i P tq q q q qt qq




 
   





 



       
  
 

ω                   

                   (4.79) 

where, 
 
q
ω  is given by eqns. (4.57). Eqn. (4.79) represents the classical 

Liouville equation for the q-deformed classical oscillator in the 
q -

representation.     

It is obvious that in the limit 1f  , the classical Liouville eqns. (4.69) and (4.78) 

for the case of the f-deformed classical harmonic oscillator in the  - and             

f - representation respectively, reduce to the classical Liouville equation of the      

undeformed simple harmonic oscillator (i.e., eqn. (2.69)) in the  - representation                                    

as expected. 

Similarly, the same result can be attainable in the limit 1q  for the classical 

Liouville eqns. (4.70) and (4.79) of the q-deformed classical harmonic oscillator 

in the  - and q - representation respectively.   

4.6 Solution of the Classical Liouville Equation  

Solutions of the classical Liouville equations of the q-deformed harmonic 

oscillator, (i.e., eqns. (4.70) and (4.79)) can be obtained by using the method of 
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characteristics [77] in the same manner performed by Milburn [77] for the 

anharmonic oscillator. Hence, assuming the following initial solution at 0t  : 

 
 

2
0

0, ;CL

q
e

 
   

P     (in the  -representation)                  (4.80) 

then, the time-evolution for each point  ,  in complex phase space can be 

obtained by replacing   by  t  given by [77]: 

 

 
i tq

t e



 



ω

                                 (4.81) 

Substituting eqn. (4.81) into eqn. (4.80), one obtains: 

 

 

 

2

0

1 2, ; ; , .CL

i tqe
q

t e





 

 

 





 

ω

P                                  (4.82) 

Similarly, in the 
q -representation:  

 

 

 

2

0

3 4, ; ; , .CL

i tqe
q qq

P t eq q





 

 








 

ω

       (4.83) 

Direct insertion of the solutions given in eqns. (4.82) and (4.83) into the classical 

Liouville eqns. (4.70) and (4.79) has verified that these solutions indeed satisfy 

these equations.  

 

4.7 Computer Visualizations of the q-Deformed Classical Harmonic 

Oscillator 

The computer visualization method introduced in ref. [77] was utilized by 

Milburn to investigate the time-evolution of the probability distribution function 

for the anharmonic oscillator in phase-space using theQ -function which was 

defined in Sec. (1.4). It is noted that the frequency of the anhrmonic oscillator 

treated by Milburn [77] is a function of 
2

 , which is the same case as that of the    
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q-deformed oscillator where the frequency of this oscillator is also a function of 

2
 or 

2

q depending on the representation. This motivates using the same 

method as that used by Milburn [77] to investigate the behavior of the classical 

probability distribution functions  , ;CL

q
t P and  , ;CL

q
P tq q 

 in the case of 

the q-deformed oscillator in the    and 
q  representations respectively.   

In the present work, the computer visualization method was implemented by 

writing a computer program using Mathematica® [125]. The complex coordinate 

  is given by eqn. (2.4) and the mass of the oscillator, the initial value for the 

complex coordinate,  0 , and the momentum op are taken as 1, 0.5 and 0 

respectively. The position coordinate is measured in units of
2

mω
 and the 

momentum coordinate in units of 2 mω  . It should also be mentioned that all 

the computer visualizations are performed in the rotating frame [77].    

To verify the reliability of this program, the same results that were obtained by 

Milburn [77] were reproduced by applying the computer program using              

eqn. (4.82) with  , ;CL

q
Q t P . The results obtained are illustrated in          

Fig. (4.1).  

 

 

Hence, the time evolution of the classical probability distribution functions                                 

 , ;CL

q
t P  and  , ;CL

q
P tq q 

 can be represented in phase space through the 

behavior of two particular initial contours  
1

0
2

    and  
1

0
2q q     

centered at  0 and  0 0.5q   respectively [77]. In time  t ω , each point 

on an initial contour will move according to eqns. (4.45) and (4.60), and the 

evolution of this initial contour in the time interval 0 2    in the phase space 
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region 1 1  q   and 1 1  p  is followed. The results of such a procedure are 

depicted in Figs. (4.2) and (4.3) where the time-evolution of the 2-D probability 

distribution is shown. These figures exhibit whorl shapes and can be compared 

with those obtained by Milburn [77] for the anharmonic oscillator as shown in 

Fig. (4.1). Also, it is obvious that these whorl shapes become finer as t  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

     

 

  

a. b. 

d. c. 

Fig. (4.1): The 2-D time-evolution contours of the classical probability 

distribution function  for the anharmonic oscillator in phase space, for 

different values of time ( ): (a) , (b) , (c)  , and (d) .  
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a. b. 

  

d. c. 

Fig. (4.2): The 2-D time-evolution contours of the classical probability 

distribution function for the q-deformed harmonic oscillator 

with frequency  given by eqn. (4.42a) and  in phase space, for 

different values of time ( ): (a) , (b) , (c) , and                

(d) . 
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a. b. 

  

d. c. 

Fig. (4.3): The 2-D time-evolution contours of the classical probability 

distribution function  , ;CL

q
t P for the q-deformed harmonic oscillator 

with frequency 
 2

qω given by eqn. (4.42b) and 0.5q   in phase space, for 

different values of time ( ): (a) 2  , (b)  , (c) 3 2  , and            

(d) 2  .  
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It is observed that the behavior of the classical probability distribution function 

 , ;CL

q
P tq q 

 in phase space is similar to the behavior shown in Figs. (4.2) and 

(4.3) for the classical probability distribution function  , ;CL

q
t P . This 

similarity is a result of the fact that the expressions for the frequencies 
 1

qω  and 

 2

qω   in  -representation, are equivalent to the expressions for the frequencies 

 3

qω  and 
 4

qω  in the q -representation (see eqns. (4.42) and (4.57)).        

 

In Figs. (4.4) - (4.6), results of 3-D time-evolution of the same classical 

probability distributions are presented. Fig. (4.4) shows the Q  function which 

corresponds to Fig. (4.1) presented as 3-D plot. The eqns. (4.82) and (4.83) have 

been used to calculate the values of the classical probability distributions

 , ;CL

q
t P  and  , ;CL

q
P tq q 

. All of these figures are presented for 

4 4  q   and 4 4  p . It is clear that from all of these figures that the peaks 

of the q-deformed Gaussian for the classical probability distributions Q  and  

 , ;CL

q
t P  do not change with time and are equal to the maximum value     

(i.e., 1). These peaks follow the classical trajectories shown in Figs. (4.1) - (4.3), 

for the probability distribution functions.  

 

Another noticeable feature is the observation that the Gaussian shapes of these 

distributions become more convoluted around themselves as t  , which is 

clear in Figs. (4.4) - (4.6).  
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a. b. 

 

 

 

 

 

d. c. 

Fig. (4.4): The 3-D time-evolution of the classical probability distribution 

function  for the anharmonic oscillator in phase space, for different values 

of time ( ): (a) , (b) , (c) , and (d) .  

 

  

  



Chapter Four                                                      Classical Treatment of the q-Deformed Harmonic Oscillator 

72 
 

            

            

            

            

            

            

            

            

            

 

 

 

 

 

 

 

            

            

            

            

             

 

 

 

 

 

 

 

   

      

      

      

       

 

 

 

            

 

 

 

b. 

Fig. (4.5): The 3-D time-evolution of the classical probability distribution 

function  for the q-deformed harmonic oscillator with frequency 

 given by eqn. (4.42a) and  in phase space, for different values of 

time ( ): (a) , (b) , (c) , and (d) . 

d. c. 

a. 
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a. b. 

d. c. 

Fig. (4.6): The 3-D time-evolution of the classical probability distribution 

function for the q-deformed harmonic oscillator with frequency 

 given by eqn. (4.42b) and  in phase space, for different values of 

time ( ): (a) , (b) , (c) , and (d) . 
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This chapter begins with deriving the quantum Liouville equation for the                  

f-deformed 1-D quantum harmonic oscillator in the Heisenberg picture by 

generalizing the Glauber-Sudarshan P-representation that was presented in refs.      

[40, 41] for the density operator in the  -representation. The q-deformation then 

follows as a special case arising from the general case of f-deformation. In a 

similar manner, the quantum Liouville equation is also derived in the                       

q -representation. Then, the classical limits of these quantum Liouville 

equations are investigated in  - and q -representations. Finally, a computer 

visualization method similar to that adopted in Chapter 4 is used to investigate 

the solution of the resulting Liouville equations in the classical limit.      

   

5.1 The Quantum Liouville Equation of the f-Deformed 1-D Quantum 

Harmonic  Oscillator in the  -Representation  

The quantum Liouville equation of the f-deformed harmonic oscillator can be 

derived in general in the two representations of the complex coordinates   and

f . The q-deformed harmonic oscillator follows as a special case from the             

f-deformed oscillator as shown previously in Chapter 4.  

The Heisenberg equation of motion for the density operator ̂  is given by eqn.              

(2.57), where the Hamiltonian ˆ
f is defined as in eqn. (3.31) and ̂  is as defined 

in eqn. (2.55). Substituting ˆ
f in the equation for the commutator ˆ ˆ,f  

 
 and 

The Classical Limit of the Quantum q-Deformed Harmonic 

Oscillator 
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 then inserting the result into the Heisenberg equation of motion given by                 

eqn. (2.57), one obtains      

     

     

† 2 † † 2 †

† 2 † † 2 †

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1
2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 (5.1

ˆ

)

  i
a a f a a a a f a a

t

a a f a a a a f a a

 

 

                  

           

ω

 

where  †ˆ ˆf a a represents a boson operator function with normal ordering.  

After lengthy mathematical manipulations, one obtains (see Appendix-D, eqns. 

(D.25) and (D.26)):   

  

   

† 2 † 2

2

1 1
ˆˆ ˆ ˆ ˆ

2 2

1 1
(5.2)

2 2
,

s s
a a f a a d

s s
  f

s

    
 


 

  









                                 

            
                   


  

and,  

  

   

† 2 † 2 2 1 1
ˆ ˆ ˆ ˆ ˆ

2 2

1 1

2 2
,

s s
a a f a a d f

s s
  s

     


 


  









                                   

            
                  



                                     (5.3)  

In a similar manner, equations for   † 2 † ˆˆ ˆ ˆ ˆ1 1a a f a a   
 

 and 

  † 2 †ˆ ˆ ˆ ˆ ˆ1 1a a f a a   
 

can be obtained. 

Eqns. (5.2) and (5.3) can be understood to imply the one-to-one correspondence,  

 

  

   

† 2 †

2

1 1
ˆˆ ˆ ˆ ˆ

2 2

1 1

2 2
,

s s
a a f a a

s s s
f  

 
 

 
 









                               

           
               




                                                                                                     

                                                                   (5.4)      
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† 2 † 2 1 1
ˆ ˆ ˆ ˆ ˆ

2 2

1 1

2 2
, (5.5)

s s
a a f a a f

s ss

  


 





 









                              

           
               






  

Similarly, one-to-one correspondence relations for   † 2 † ˆˆ ˆ ˆ ˆ1 1a a f a a   
 

 

and   † 2 †ˆ ˆ ˆ ˆ ˆ1 1a a f a a   
 

 can be obtained. Substituting the transformations 

of    eqn. (5.4) and eqn. (5.5) into eqn. (5.1), using the definition of the density 

operator ̂  from eqn. (2.55) and replacing 
   , ;s t    by 

   , ;s tq    then 

simplifying the result, one obtains: 

   

2

2

1 1
1

2 2 2

1 1
1

2 2

1 1
1

2

1

2

, ;

2

i s s

s s
f

s s

s

s
q

f

t

t


  


 


 

 
















             
                      

           
                  

           
                 


  








ω

2

2

1
1

2

1 1

2 2

1 1

2 2

1 1

2 2

s

s s

s s
f

s s
f





 


 

 
















         
             

           
                 

           
                 

           
                

   , ;
1 1

(5.6)
2 2 q

s s s t   
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The function 
   , ;s tq    represents the q-analog of the non-deformed 

quasiprobability distribution function 
   ,s    (see Sec. (3.3.2)), where in 

the limit 1q   the function 
   , ;s tq    reduces to 

   , ;s t   .  

 

Eqn. (5.6) represents the quantum Liouville equation for the f-deformed 1-D 

quantum harmonic oscillator in terms of the q-deformed quasiprobability 

distribution function 
   , ;s tq    in the  -representation.  

 

For the special case of the q-deformed oscillator, the definitions of the function 

f from Table (4.1) and the q-number from eqn. (4.3a) can be used to write:  

 
 

2 1 1
1

2 2

1 1
sinh 1

2 2
5.7

1 1
1 sinh

2 2

s s
f

s s

s s


 

 
 

 
 










           
                  

            
                   

           
                 

  

The complex conjugate of eqn. (5.7) is: 

 

 

2 1 1
1

2 2

1 1
sinh 1

2 2

1 1
1 sinh

2 2

s s
f

s s

s s

 


  


  












           
                 

            
                  

           
                

     

            (5.8) 
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Then, substituting for the sine hyperbolic function in terms of the exponential 

function into eqns. (5.7) and (5.8), one obtains: 

 

2

1

1 1
1

2 2

1 1
2 1 sinh

2 2

1 1

2 2

1

2

s s
f

s s

s s

e

s

e


 

 
 

  
 

 















           
                  

             
                    

                           



     
 

1

2

s
 



                 



     

                   (5.9) 

The complex conjugate of eqn. (5.9) is: 

 

2

1

1 1
1

2 2

1 1
2 1 sinh

2 2

1 1

2 2

1

2

s s
f

s s

s s

e

s

e

 


  


   


 


















           
                 

             
                   

                          



     
  

1

2

s
 



                




      

                 (5.10) 

 

Substituting eqns. (5.9) and (5.10) together with their complex conjugates into         

eqn. (5.6), and after some lengthy mathematical manipulations, one obtains:   
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1
4sinh

1 1

2 21

1 1

2 21

, ;

, ;. .

s tq

t

s tq

i

s s

e e

s s

e e c c



 
  

  
 

 





  















                       



                          


 
 

 










ω

 

                 (5.11) 

where the abbreviation . .c c  represents the complex conjugate of the first term in 

the braces.   

Simplifying eqn. (5.11), the final result takes the form: 

   
    

 

 
 

1
1

2

2 2
2

1

2

2 2
2

4sinh 1

11 1

2 2 4

1

2 2

,

11

;

1

4

s s

i e e

s

t

s s

e

s

e e

ss s

q

t

e




  
  




   
  

  
 

  
 



 

 
  








 




 



         
               


 

         
         


 


 



   




 



  

ω

   , ;. . s tqc c   




 



  

                   (5.12) 

 



Chapter Five                                         The Classical limit of the Quantum q-Deformed Harmonic Oscillator  

81 
 

Eqn. (5.12) represents the quantum Liouville equation for the q-deformed 1-D 

quantum harmonic oscillator in terms of the q-deformed quasiprobability 

distribution function 
   , ;s tq    in the  -representation. The exponential 

functions appearing in this equation are operator functions because they contain 

the differential operators 





 and 






 . 

 

5.1.1 Solution of the  Disentanglement Problem for the Operator Functions 

In general, the disentanglement problem is the problem of how to express the 

exponential of a sum of two operators in terms of the product of exponentials of 

these operators [50,110,126].  

Assuming that Â and B̂  are two given operators, then the problem of 

disentanglement consists in finding operators 1Ĉ , 2Ĉ ,  such that [50,110,126] 

1 2
ˆ ˆ ˆˆ ˆˆ ˆ C C CA B A Be e e e e e                                                                (5.13) 

The sĈm  are the combinations of repeated commutators of Â and B̂ . 

If these combinations of commutators satisfy:   

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆA, A,B B, A,B A, A, A,B B, B, A,B 0                        
                    

                                           

                 (5.14) 

where the dots     represent all the commutators of order higher than 

ˆ ˆ ˆ ˆA, A, A,B   
    

  and ˆˆ ˆ ˆB, B, A,B   
    

, then eqn. (5.13) reduces to: 

1

2
ˆ ˆA Bˆ ˆˆ ˆA B A B ,

e e e e
 
                                                  (5.15) 

Eqn. (5.15) is known as the Baker-Campbell-Hausdorff (BCH) formula                     

[50,110,126].      

Therefore, letting    
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2
Â                                                                                  (5.16)              

 2 2

1

s 11 1

2 2 4
B̂

s s


  
 

 

        
           

  
  

   
           (5.17)    

and, 

2 1
ˆ ˆB B                          (5.18) 

and substituting for the operators Â and B̂  from eqns. (5.16), (5.17) and (5.18) 

into eqn. (5.14), the results are: 

 

1 1 1
ˆ ˆ ˆˆ ˆ ˆA , A ,B B , A ,B 0  

       
      

                                                     (5.19) 

and, 

2 2 2
ˆ ˆ ˆˆ ˆ ˆA , A ,B B , A ,B 0  

       
      

                            (5.20)

  

Eqns. (5.19) and (5.20) represent the required conditions that should be satisfied 

to apply the BCH-formula (i.e., eqn. (5.15)). 

 

The commutators 1
ˆ ˆA ,B

 
 

  and 2
ˆ ˆA ,B

 
 

 can be calculated by substituting the 

operators Â , 1B̂ and 2B̂ from eqns. (5.16), (5.17) and (5.18) into the expansion 

of these commutators to obtain (see Appendix-E): 

2
22

1 2
1ˆ ˆˆ ˆA ,B A ,

4
1B

s
s 


 






   
 



                     
    (5.21)                                                                                  

                                                                                                        

Similarly, the commutators 1
ˆ ˆ ˆA , A ,B 

  
  

, 1 1
ˆˆ ˆB , A ,B

  
  

, 2
ˆ ˆ ˆA , A ,B 

  
  

 

and 2 2
ˆˆ ˆB , A ,B

  
  

  can be calculated to obtain (see Appendix-E, eqns. (E.9),  

(E.10), (E.14) and (E.15)): 
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2
23

1
1ˆ ˆ ˆA , A ,B

2

s
  

          
 

                                                       (5.22) 

 

   
 

2 2 2

2
23 2

1 1 1
4

1 1
      5.23

8

1ˆˆ ˆB , A ,B
s

s

s s

s




 

 
 



    
        

  

        








 

   

 

and, 

2 1
ˆ ˆ ˆ ˆˆ ˆA , A ,B A , A ,B   

       
      

                                      (5.24)   

2 2 1 1
ˆ ˆˆ ˆ ˆ ˆB , A ,B B , A ,B 

       
      

                                      (5.25) 

The expressions for the commutators 1
ˆ ˆA ,B

 
 

, 2
ˆ ˆA ,B

 
 

, 1
ˆ ˆ ˆA , A ,B 

  
  

,

2
ˆ ˆ ˆA , A ,B 

  
  

, 1 1
ˆˆ ˆB , A ,B

  
  

 and 2 2
ˆˆ ˆB , A ,B

  
  

 for different values of the 

ordering parameter s  are illustrated in Tables (5.1) and (5.2), where eqn. (5.16) 

and the eqns. (5.21)-(5.25) have been used to obtain the results: 

 

Table (5.1) 

The expressions for the commutators 1
ˆ ˆA ,B

 
 

 and 2
ˆ ˆA ,B

 
 

for different 

values of the ordering parameter s . 

s  1
ˆ ˆA ,B

 
 

 2
ˆ ˆA ,B

 
 

 

1 Â   Â   

0 

2

1
4









    
        

 

2

1
4









    
        

 

-1 Â   Â   
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Table (5.2)  

The expressions for the commutators 1
ˆ ˆ ˆA , A ,B 

  
  

, 2
ˆ ˆ ˆA , A ,B 

  
  

, 

1 1
ˆˆ ˆB , A ,B

  
  

 and 2 2
ˆˆ ˆB , A ,B

  
  

  for different values of the  

ordering parameter s . 

s  1
ˆ ˆ ˆA , A ,B 

  
  

 1 1
ˆˆ ˆB , A ,B

  
  

 2
ˆ ˆ ˆA , A ,B 

  
  

 2 2
ˆˆ ˆB , A ,B

  
  

 

1 0 2Â   0 2Â   

0 
2

Â
2




 
  
 
 

 

3 2

8



 

  
  
    

 

2

Â
2




 
  
 
 

 

3 2

8



 

  
 
    

 

-1 0 2Â   0 2Â   

 

The fact that the expressions for the commutators 1
ˆ ˆ ˆA , A ,B 

  
  

, 

2
ˆ ˆ ˆA , A ,B 

  
  

 , 1 1
ˆˆ ˆB , A ,B

  
  

 and 2 2
ˆˆ ˆB , A ,B

  
  

 shown in Table (5.2) are 

non-vanishing for all three values of the ordering parameter s  means that the 

conditions given in eqns. (5.19) and (5.20) are not satisfied. In other words, the 

BCH-formula cannot be applied to solve the problem of the disentanglement of 

the operators appearing in eqn. (5.12). 

 

An alternative solution to this operator disentanglement problem could be 

through the Zassenhous formula [127]        

ˆ ˆ ˆˆ ˆA B A B Ce e e e                                                          (5.26) 

Again, the operators Â  and B̂  are substituted from eqns. (5.16) and (5.17) 

respectively and the operator Ĉe can be calculated by employing the method 

introduced in  ref. [128] since the same conditions of ref. [128] apply to our case,  

i.e.,      
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 1
ˆ ˆˆA ,B Z Af 

   
 

                                                                               (5.27) 

 2
ˆ ˆˆA ,B Z Af 

  
 

                                       (5.28)  

where  Zf  represents any real function of arbitrary variable Z  . 

In our case, the function  Zf , denoted here for convenience by 
 s
q , can be 

calculated according to eqns. (5.27) and (5.28) as:   

 

1

2

ˆ ˆA ,B
ˆassociated with theoperator A

Â

ˆ ˆA ,B
ˆassociated with theoperator A

Â

s
q











  
 




   



                         (5.29)    

Thus, the operator Ĉe  can be written as [128]: 

  
132

11
Â

!ˆˆ ˆˆ CC CC m

mm s
qm

e e e e e


 

 
 
 

 
   

     


                    (5.30)   

and the subscript q  and superscript s  in 
 s
q  refer respectively to the                           

q-deformation and the associated type of ordering, i.e.; 1,0, 1s   .  

But since [128]: 

       
   

1

1

11
e 1 e

!
m

ssmm s s q q
q qm


 

 



  
     
 
 

             (5.31)    

then, inserting eqn. (5.31) into eqn. (5.30) results in:   

  
   

1

32

ˆ1 A
ˆˆ ˆˆ CC CC

s s
s q qe eq

e e e e e

 






    
     
                 

(5.32)   

Substituting Â from eqn. (5.16) and the commutators 1
ˆ ˆA ,B

 
   and 2

ˆ ˆA ,B
 
   

from Table (5.1) into eqn. (5.29) leads to three expressions for 
 s
q  as given in 

Table (5.3).                                    
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Table (5.3) 

The expressions for 
 s
q  corresponding to different values of the ordering 

parameter s . 

s  
 s
q  

1   
 1

ˆassociated with theoperator A

ˆassociated with theoperator A
q















 

0  
   

   

2

0

2

ˆassociated with theoperator A
4

ˆassociated with theoperator A
4

1

1
q

























  





 




 
 






 

-1  1
ˆassociated with theoperator A

ˆassociated with theoperator A
q










 



 

 

Inserting the expressions for 
 s
q  from Table (5.3) into eqn. (5.32) produces 

different expressions for Ĉe associated with different values of s . These results 

are summarized in Table (5.4). 

Table (5.4) 

The expressions for Ĉe   corresponding to different s  values. 

 

s  Ĉe  

1 
  

   1 1
11 ˆ1 A

Ĉ

q qe eq
e e

 


    
     

    

0 
  

   0 0
10 ˆ1 A

Ĉ

q qe eq
e e

 


     
     

     

-1 

  

  
   1 1

11 ˆ1 A
Ĉ

q qe eq
e e
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 Substituting Ĉe    from eqn. (5.32) into eqn. (5.26) gives:  

  
   

1

1 1

ˆ1 A
ˆ ˆ ˆ ˆA B A B

s s
s q qe eq

e e e e

 





 

     
     

               (5.33)          

  
   

1

2 2

ˆ1 A
ˆ ˆ ˆ ˆA B A B

s s
s q qe eq

e e e e

 





 

     
     

                (5.34) 

where the expressions for 
 s
q  associated with Â  and Â  are given in          

Table (5.3) for different s  values. Eqns. (5.33) and (5.34) represent the solution 

of the operator disentanglement problem for eqn. (5.12). 

Substitution of the expressions for Â , 1B̂  and 2B̂ into eqns. (5.33) and (5.34) 

gives: 

 

 

  
   

 

2 2
2

2

2

1

2

11 1

2 2 4

11 1

2 2

ˆ

4

5.

1 A

35

ss s

e

ss s

s s
s q qe e

e

e

q

e

  
  



 


  



 





 



 

         
                



     
     

    

          
              

 



 

 

  
   

 

2 2
2

2

1

2

2

11 1

2 2 4

11 1

2 2

ˆ

4

5.

1 A

36

ss s

e

ss s

s s
s q qe eq

e

e e

   
  

  
   

 








 



 

         
                 

 

     
     

    

        
               



 



 

Finally, substituting eqns. (5.35) and (5.36) into eqn. (5.12) results in: 
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1
1

2

1 2
2

1

2 2

2

4sinh 1

11 1

2 2 4

1

, ;

ˆ1

2

A

1

s

i e e

ss s

e

s tq

t

s s
q q

e

s

e e e

s e

s

e

eq
e




 

  

 


  







 

 

 
  

 



 

 
    







 




          




            




 


     
     

 

   




 

  
 

 



 






ω

 

  
   

   

2 2

1
ˆ1 A

11

2 4

, ;. .

s s
q qs e e

e

s

q

s

s tqc c

 


 















 





       
       

        


      
             



 

   

                                 (5.37) 

Eqn. (5.37) represents the quantum Liouville equation for the q-deformed 1-D 

quantum harmonic oscillator in terms of the q-deformed quasiprobability 

distribution function 
   , ;s tq    in  -representation. Substituting the values 

of the ordering parameter s  (i.e.; 1, 0, 1s   ) into eqn. (5.37) leads to the                  

q-analogs of the well-known quasiprobability functions in quantum optics, 

namely; the Husimi Q -function ( 1s  ), the Wigner W-function ( 0s  ) and the                

Glauber-Sudarshan P-function ( 1s   ). This thesis is concerned with the               

q-analog of both Q-function ( 1s  ) and P-function ( 1s   ), where for these two 

functions, eqn. (5.37) has a well-behaved analytical solution as will be seen in the 

next sections. 
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5.1.2 The q-deformed Husimi Qq -function ( 1s  ) , Glauber-Sudarshan         

Pq -function ( 1s   ) and the Dilatation (Shift) Operator  

The q-deformed quasiprobabilitity distribution function 
   , ;s tq    that 

appeared in eqn. (5.37) represents the q-analog of the function 
   , ;s t   . 

Hence, for ( 1s  ) this function becomes 
   1 , ;tq   , and from Table (2.1) this 

function is the q-analog of , ;Q t  which is denoted by  , ;Q tq   .  

Substituting  , ;Q tq   , Â  and 
 1
q into eqn. (5.37) leads to:  

 
    

     
 

     
 

2
1

2 2

2

, ;
14sinh

1

1
1

1

, ;
1

. .

Q tq
e ei

e e e

e

t

e e

Q tq

e

e e
e c c

   

   


 

   

  
 













 
 

 


   


 



  

      
 

  
 

  
 



ω

  

                 (5.38) 

                          

which can be simplified to  

 

 
  

 
    

 

   
 

1

2
22

2

, ;
4sinh

1
1

1

1

,

1

1
;. .

Q tq
i

e e e e e

e Q tq

t

e
e

e
e c c

 


       






 











 







  


  

 
 

 

  

  
 






  

ω

                    

                                (5.39) 
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Similarly, the q-deformed quasiprobability distribution function is denoted by

     , ; ,1 ; tqP tq      . As for  , ;Q tq   , insertion of  , ;P tq   ,

Â   and 
 1
q


 into eqn. (5.37) gives:            

 
    

    
 

    
 

2
1

2 2

2

1 1

, ;
14sinh

1

,
1 1

;. .

P tq
e e ei

e e

t

e
e

e P

e e

q

e
te c c

   

    

 




  











 

 
 

 

 


 

 




 





   







 



ω

       (5.40) 

Since the action of the dilatation (shift) operator 
x

xe




  on a function F x can 

be written as (see eqn. (3.21)): 

   
x

xe F x F xe






                                                                                  (5.41) 

for any arbitrary constant , then one can employ eqn. (5.41), assuming that 

    and replacing F x by  ,F    to write:                                                                                                         

   , ,

λ
λ

e F F e


    



  




                   (5.42) 

   , ,
λ

λ
e F F e


     




                                                         (5.43) 

Eqns. (5.42) and (5.43) can be generalized to the case when the shift operator acts 

on the product of two function    , ,F G      (see Appendix-F, eqns. (F.10) 

and (F.11)). 
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Using this result leads to: 

       , , , ,

λ λ
λe F G F e e G

 
        

 

    

 
 

          (5.44) 

and, 

       , , , ,
λ λ

λe F G F e e G
 

           

 
 

                    (5.45) 

Letting 

 

   

   

2

2

1 1

,

1 1

e
e

F

e
e


 

 


 






 



   


                                                      (5.46) 

and, 

   , ;, Q tqG                                                  (5.47) 

and substituting eqns. (5.46) and (5.47) into eqns. (5.44) and (5.45), gives:      

   
 

  
   

2

2

1
,

1
;

, ; 5.48
1 1

λ e
e e

λ λe

Q

e Qe

tq

tq

e

  


  


 

 







  



   
 

    
  

                                                                                                                        

and, 

   
 

  
 

2

2

1
, ;

, ;

1

1 1

λ e
e e

λ λe e
e

Qq

Q tqe

t

  


























  

 

   
  

 

 

                 (5.49) 

 

Then, substituting eqns. (5.48) and (5.49) into eqn. (5.39), this equation becomes: 
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1

2 22

2

1 1

, ;
4sinh

1 1

,
1 1

;. .

λ

t

λ λλ e e
e e

λ λ λλ e e
e e

Q tq
i

e e e e

Q tqc c

 


    



























 

 
 

 


       




    
  




  

  

ω

                   (5.50) 

 

But since, 

    
2 22 21 1

λ λ λλ e e eλ
e e e e

  
                         (5.51) 

and, 

    
2 22 21 1

λ λλλ e e eλ
e e e e

  



                           (5.52) 

 

then, substituting eqns. (5.51) and (5.52) into eqn. (5.50) gives: 

 
      

   
 

2

2

2
1

2

, ;
14sinh

1 , ;. .

λ λe
e e

t

λ λe
e

Q tq
e ei

e e Q tqe c c


 

  

















 
 

 


  

    
  

 

     


 

ω

                                   (5.53) 

 

After substituting the complex conjugate terms and re-arranging, eqn. (5.53) 

becomes: 
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1
2

2

2

, ;
4sinh

1

1 , ;

t

λ λ λe
e e

λ λ λe

Q tq
ei

e e

e e Qe e tq



 
 

 




 

 


 
















  
    

 
   

 
     

 
 

 




 

 

   






ω

  

                 (5.54) 

Eqn. (5.54) represents the quantum Liouville equation for the 1-D q-deformed 

quantum harmonic oscillator where the probability distribution function is the 

Husimi function  , ;Q tq   . 

 

Similarly, one can simplify the Glauber-Sudarshan eqn. (5.40) for 

quasiprobability  , ;P tq    to obtain:   

 

 
  

   

 
 

 

2
1

2

2

, ;
4sinh

1

1 , ;

P tq
ei

e
e e

t

λ λ
e e

λ

e

e
e e e P t

λ
e e q

  


   
 

 


 


  








 





  
   






 

  
 

   

 
 

 

 
 

   
 

  



ω

                                  (5.55) 
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5.1.3 Zaslavskii’s Method for Deriving the Quantum Liouville Equation for 

the q-Deformed Oscillator in the  -Representation 

According to Zaslavskii [129], the equation of motion of an averaged physical 

quantity , ; t   is defined as [129]: 

, ;
ˆ , ;

t
i t

t

  
  







                                             (5.56)  

where, 

22
1 ˆ ˆˆ , ,e eq q


 






                    (5.57) 

 

The Hamiltonian of the q-deformed quantum harmonic oscillator is given by    

eqn. (3.34). And according to Sudarshan [102], one has the following 

correspondence: 

†ˆ

f ,r ˆo
ˆ q

a

a















             (5.58) 

and, 

†

ˆ

r ˆo
ˆ

,f

a

qa








                                                  (5.59) 

Substituting eqns. (5.58) and (5.59) into the expressions for N̂
q

 and ˆ 1N
q

 

appearing in ˆ ,q 





 by using eqns. (3.35), leads to: 
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1

ˆ
ˆˆ

ˆfor

1

ˆ

sinh

sinh

sinh

s
1

inh

λ

N
Nq Nλ q q

N
q q q

λ

N
q λ













          (5.60) 

and, 

1ˆ

1

1

1

ˆ
1ˆfor

1

1

ˆ 1

e

e

e

e

λ

N
λ Nq q

N
q q

λ

N
λq













                   (5.61)                       

The same method can be used for N̂
q

 and ˆ 1N
q

 appearing in ˆ ,q 


. 

Now, insertion of N̂
q

 and ˆ 1N
q

 from eqns. (5.60) and (5.61) into eqn. (3.34), 

gives: 

sinh sinh
ˆ ,

2 sinh s

1

inh

λ λ

q λ λ

 
 



 
 





ω
      (5.62a) 

hence, 

1 1

1 1

1

ˆ ,
2

λ

λ

e e
q

e e
λ

 
 




 
 





ω
     (5.62b) 

and, 
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sinh sinh 1
ˆ ,

2 sinh sinh

λ

λq

λ

λ

 
 



ω
                       (5.63a)  

hence, 

1
1 1ˆ ,

2 1 1

e e
q

e e

λ

λ λ

 
 




ω
 (5.63b)  

respectively. 

Using eqns. (5.62) and (5.63) in eqn. (5.57), leads to: 

 

2
1

2

ˆ 2sinh sinh sinh

sinh sinh 1

1λ λ λ

λ λ

e

e


 

 


 

 

 

 
 ω

 

                                                                                                                      (5.64a) 

and, 

21

2

1

12

1

ˆ
λ λ

e e e e

e e

λ
λe

λ

     

 

 

 
 ω

 

                        (5.64b) 

Then, using the definition of the sine hyperbolic function and re-arranging terms, 

eqn. (5.64a) can be cast in the form:   
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2
1

2

ˆ 4sinh 1

1 5.65a

λ λ
λe e e e

λ λ
eλ

λ

e e e

   

 
 









 ω

  

Similarly, eqn. (5.64b) becomes: 

221

1ˆ 2 1

λ λ
e eλ λe ee e

    




 ω  (5.65b)   

Eqns. (5.65a) and (5.65b) can be substituted in eqn. (5.56) and after replacing 

, ; t    by  , ; tq   , one obtains:   

2
1

2

, ;
4sinh 1

1 , ; 5.66a

λ λ
tq λi e e e e

t

λ λ
λ

e e e e tq

λ

 
    

 
  

  


 






ω

  

and, 

21

2

, ;
2 1

,

1

;

λ λ
tq λi e e e e

t

e t

λ

q

e

 
    


  


 



ω

               (5.66b) 
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respectively, where the function , ; tq   represents the q-analog of the 

averaged physical quantity , ; t    appearing in ref. [129]. Also, it is noted 

that the function , ; tq   reduces to , ; t   in the limit 1q  .  

    

Finally, eqn. (5.66a) and (5.66b) can be simplified by using eqns. (5.44) and 

(5.45) with  
2

,F e


   ,    , , ; tqG        and re-arranging to get:     

22
1

2

, ;
4sinh 1

1

, ;

λt eq λi λ e e e
t

λ λ λ
eλ

e e e e

λ λ

e e tq

   

 
 

 
 

  












ω

 

                  (5.67a)    

and, 

21

2

, ;
2

1 ;

1

,

tq
i e

t

λ λλeλe e e t

λ

q

e

e

   

 
  

  








ω

 

              (5.67b) 

respectively. 
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Eqns. (5.67) represent the quantum Liouville equations for the q-deformed 

quantum harmonic oscillator in the  -representation. The probability distribution 

function , ; tq    in eqn. (5.67a) is equal to  , ;Q tq    since eqn. (5.67a) 

is the same as eqn. (5.54).  

 

5.2 The Quantum Liouville Equation of the q-Deformed 1-D Quantum 

Harmonic Oscillator in the q -Representation 

A quantum Liouville equation for the q-deformed quantum harmonic oscillator 

can be also obtained for the q-deformation defined by 

ˆ
ˆ

ˆ

N
q

f N
N

 where 

ˆ
1ˆ

1

Nq
N

q q


   

 in the q -representation. The aim of this section is to show that 

this is possible by using the q-deformed P-representation based on the q-deformed 

coherent states that have been introduced by Arik and Coon [9].  

 

5.2.1 The q-Analog of Glauber-Sudarshan P-Representation  

The q-deformed boson operators âq  and †âq  in this case obey the q-commutation 

relation [9]:    

† † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a a a qa aq q q q q qq

    
 

                                                    (5.68) 

where †ˆ ˆ,a aq q q

 
 

represents the q-commutator. 

The unnormalized q-deformed coherent state q  is defined as the eigenfunction 

of the q-deformed annihilation boson operator âq , or [9]: 
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âq q q q                                                                            (5.69)  

where, 

 
=0

n

n
n !

n

q
q q

q






                                                                  (5.70)        

     

and the q-deformed Hilbert space bases are given by [9]: 

 † n
ˆn 0aqq q

                                                                            (5.71) 

such that 

ˆ 0 0aq q
                                                                                                                      (5.72) 

0 0 1
q q

                                                                                                       (5.73) 

It can also be shown that [9]: 

 
†ˆ n n +1aq q q

                                 (5.74) 

 ˆ n n n -1aq qq q
               (5.75) 

where  n
q

 is as defined by eqn. (3.5). 

Therefore, the scalar product m n
q q

 , using eqns. (5.71), (5.74) and (5.75), 

becomes:  

     †
nm

ˆ ˆm n 0 0 n ! nma aq q qq q q q
                                 (5.76) 
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where  n !
q

 is as defined by eqn. (3.12). 

The action of 
†âq   on q  can also be written as (see Appendix-G)  

†ˆ Daq q qD q
 


                                                                         (5.77) 

where D
D q

 represents the q-differential operator defined as [9]: 

 
   f f qq qD

f qD qq q q

 


  





                                                  (5.78) 

The operators âq  and †âq  are Hermitian adjoints of each other and the Hilbert 

space  n
q

 is the Hilbert space adjoint of the Hilbert Space  n
q . Therefore, 

 
†

âq q q q                                  (5.79) 

and, 

 
†

†ˆ ˆ
D

a aq q q q q D q
  

                                 (5.80) 

Arik and Coon [9] have also proved that for the states  q there is also a 

resolution of identity in the form: 

  
 

2
1

Î=  
D q

q qEq


 

 
                                              (5.81)   

where,   
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2

q q                                  (5.82) 

2D D Dq q q                                                                                 (5.83)

   

and D  is the q-deformed differential associated with the q-deformed differential 

operator
D

D
q


,  represents the basic integral, which is for a function F of real 

variable x defined as [9]: 

     
b

1 b b
0 0

F x D x q q F q




                                                    (5.84)      

and the q-deformed exponential  Eq   is defined as [9]:   

 
  

2

1

1

Eq
G q q q









                                                       (5.85) 

where,   
2

1G q q q  is an entire function and  
2

1
lim E eqq





 .   

Then, by using the resolution of identity as in eqn. (5.81), one can write the           

q -representation of the density operator ˆ
q  in the q -representation as:    

 
 

 
2

1
ˆ  , 

D q
q q q q qq Eq


    

 

                                             (5.86) 

where, ˆ
q

 and  ,q q q   represent the q-analogs of the density operator ̂  

and the weight function  ,P    for the Glauber-Sudarshan P-representation 

respectively (see eqn. (2.59).   

Using these results, one can write the following relations (see Appendix-H, eqns. 

(H.17), (H.18), (H.19) and (H.20))  
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2
1

ˆˆ  , 
D q

aq q q q q q qq Eq


     

 

                                      (5.87) 

 
 

2

† 1
ˆ ˆ  , 

D q
aq q q q q q qq Eq


     

 

                                 (5.88)   

 
 

2

† 11
ˆˆ  , 

D q D
a qq q q q q q qq DE qq


     

 

   
  

 
          (5.89)      

and,              

 
 

2

11
ˆ ˆ  , 

D q D
a qq q q q q q qq DE qq


     

 

 



 
  

  

          (5.90) 

Hence, eqns. of correspondence which are the analogs of eqns. (2.65), (2.66), 

(2.67) and (2.68) in  -representation can be written in q -representation in the 

form:                                       

  ˆˆ ,aq q q q qq
                                                                               (5.91)    

 †ˆ ˆ ,aq q q q qq
                                                                 (5.92) 

 † 1ˆˆ ,
D

a qq q q q qq D q
   


   

  
 

                                             (5.93) 

and, 

 1ˆ ˆ ,
D

a qq q q q qq D q
   


 



 
  

  

                                                 (5.94)  



Chapter Five                                         The Classical limit of the Quantum q-Deformed Harmonic Oscillator  

104 
 

These equations permit the derivation of q-analog equations corresponding to 

eqns. (2.61) - (2.64) in the q -representation. Thus, by multiplying both sides of 

eqn. (5.89) from the left by âq , one obtains: 

 
   

2

† 11
ˆˆ ˆ ˆ , 5.95 

D q D
a a a qqq q q q q q q qq DE qq


     

 

   
  

 

   

The substitution of eqn. (5.69) into eqn. (5.95) gives: 

 
 

2

† 11
ˆˆ ˆ  , (5.96) 

D q D
a a qq q q q q q q q qq DE qq


      

 

   
  

 

    

But since âq and 
†âq  are both Hermitian adjoints of each other and ˆ

q
  is                  

self-adjoint, then the conjugate of eqn. (5.96) becomes;  

 
 

   

2
†† †

1

1
ˆ ˆˆ ˆ ˆ

., 9

ˆ  

  5 7

 
D q

a a a aq qq q q qq Eq

D
qq q q q qD q


   

 

   


  



 

 
  

  

  

Also, one can show that (see Appendix-H, eqns. (H.34) and (H.35))  

     
2

† 1 11
ˆˆ ˆ  ,

D q D
a a q qqq q q q q q q qq DE qq


      

 

    
  

 

         

        (5.98)  

and,  

 
 

     

2
†† †

1 1

1
ˆ ˆˆ ˆ ˆ ˆ  

5.99,

 
D q

a a a aqq q q qqq Eq

D
q qq q q q qD q
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Thus, the correspondence equations in the q -representation, which are the 

analogs of eqns. (D.27), (D.28), (D.29) and (D.30) in the -representation given 

in Appendix-D, become (see Appendix-H, eqns. (H.36) and (H.37)):                   

 † 1ˆˆ ˆ ,
D

a a qq q q q q qq q D q
    


   

  
 

       (5.100) 

 † 1ˆ ˆ ˆ ,
D

a a qq q q q q q qq D q
    


  



 
  

  

         (5.101) 

   † 1 1ˆˆ ˆ ,
D

a a q qq q q q q qq q D q
    


    

  
 

                           (5.102)  

and, 

   † 1 1ˆ ˆ ˆ ,
D

a a q qq q q q q qqq D q
    


   



 
  

  

            (5.103)  

 

These correspondence equations represent novel results and will play an 

important role in deriving the quantum Liouville equation for the q-deformed 

quantum harmonic oscillator in the q -representation.  

 

5.2.2 The Quantum Liouville Equation in Terms of q-Derivatives 

The quantum Liouville equation in terms of q-derivative can be derived by 

substituting the Hamiltonian of the q-deformed quantum harmonic oscillator as 

given by eqn. (3.30a) in the Heisenberg equation of motion (i.e., eqn. (2.57)) to 

yield:      

 † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ
ˆ ˆ ˆ ˆ

  i
a a aq

q q q
a a a a aq q q q q q q qt q


   

  
     

  

ω
        (5.104) 

Using the correspondence of eqns. (5.100) - (5.103), eqn. (5.104) for the density 
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operator can be transformed to the q -representation in a manner similar to what 

has been done in the  -space. This gives: 

 
 

   

 

   

1

1 1

1

1 1

2

                              

, ;
,

  

;

, ;

, ;

, ;    

tq q q D
q tq q q q qD q

D
q q tq q q q qD q

D
q tq q q q qD q

D
q q tq

  i

q q q q

t

D q

 
   



   


   


   




  

   

  



   



  
   

  

 
 

 

 
 

 

 
  

  

  
   
    





ω

        

       

               (5.105) 

Eqn. (5.105) can be simplified to give: 

 

 

   

     

     

 

2
1 1

2
1 1 1 1

2
1 1

2
1 1

, ;

, ; , ;

, ; , ;

, ; , ;

, ;

2

tq q q

D
q t q tq q q q q q q qD q

D
q q t q q tq q q q q q q qD q

D
q t q tq q q q q

 

q q qD
q

D
q q tq q q q

t

i

D

 

     


     


     


  




   

     

    



  







 

  
  

 
  
 

 
  
 

 
 

 

 
 



 
  
 

ω

   1 1, ;q q tq q q q
q

     




 


 


                                (5.106) 
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Applying the product rule of q-differentiation eqn. (3.25) to 

   1 1 , ;
D

q q tq q q qD q
  


   

 
 with   1F x q q

  and

   1 , ;G x q tq q q    gives: 

   

     

1 1

1 1 1   

, ;

, ; ,   5.10; 7

D
q q tq q q qD q

D
q q t q tq q q q q q qD q

  


    


  

    

  
 



                 

And, similarly for    1 1, ;
D

q q tq q q qD
q

  


   


 
 

, but with   1F x q q
   

and    1, ;G x q tq q q   , one obtains: 

   

       

1 1

1 1 1

, ;

, 5, . 08; ; 1

D
q q tq q q qD

q

D
q q t q tq q q q q q qD

q

  


    


   



     



  
 



 

Substituting eqns. (5.107) and (5.108) into eqn. (5.106) and simplifying the result, 

then: 

 

   

     

   

1 1

2
1 1 1

1 1 1

, ;

2 , ; 2 , ;

1 , ; , ;

, ; ,

2

                  

_ ;

tq q q

D D
q t q tq q q q q q q qDD qq

q q t q tq q q q q q q

q q t q tq q q q q

  i

t

q

 

     


    

   



    



    

    

 
 
 
 

  
 




  
   

  




 





  


 


ω

     

                (5.109)  
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The Jackson derivative 
q

z  is defined as [115-117]: 

q D
z D z
                                                                                              (5.110) 

Then, using 
1

q e
 

  and eqn.(5.110) in eqn. (5.109), this equation becomes: 

 

 

   

     

   

2

, ;

2 , ; 2 , ;

1 , ; , ;

, ; , ;

2

q

tq q q

q q
e t e tq q q q q q q q

q q

e e t e tq q q q q q

e e t e tq q q q q q

  i

t

 

 
     

 

  
    

  
   



  


 

 

 
  

 
 

    
 

  
  

  




 






 


   
  





ω

                                                                                                      

                          (5.111) 

 

Using the analogs of eqns. (5.42) and (5.43), in the q -representation, one can 

write: 

   , ; , ;

λ q
q

e t e tq q q q q q





    







                                  (5.112) 

   , ; , ;

λ q
q

e t e tq q q q q q


 

   




 







                               (5.113) 

 

Substituting eqns. (5.112) and (5.113) into eqn. (5.111), the final result is: 
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2

, ;

2

2

2

1

, ;

tq q q

q q
qq qq

e eq q qq

qq
q q

e e eq

q q
qq

e e e tq q

  i

t

q

 

 


  


 



 


 



















   
 

 
 
  

 
 

  
 
  

   

  
   

  





 





 
 
 
 
 

 
 




ω

 

                        (5.114) 

 

Eqn. (5.114) represents the quantum Liouville equation for the probability 

distribution function  , ;tq q q   of the q-deformed quantum harmonic 

oscillator in the 
q

-representation. 

 

5.3 The Classical Limit of the q-Deformed Quantum Harmonic Oscillator  

The present section is devoted to the investigation of the classical limit of the       

q-deformed 1-D quantum harmonic oscillator. This investigation is performed on 

the basis of the quantum Liouville equations corresponding to this oscillator that 

have been derived in Secs. (5.1) and (5.2).  
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5.3.1 The Approach to the Classical Limit  

The classical limit for the q-deformed 1-D quantum harmonic oscillator can be 

approached in a way similar to what has been done by Ghosh et al [76] for the 

undeformed 1-D quantum oscillator with some necessary modifications. 

In the case of the undeformed 1-D quantum oscillator, the following conditions 

are used to approach the classical limit [76]: 

2

2

0,

such that

finite





 




 

      (5.115) 

These conditions are necessary to obtain the energy as the classical limit of the 

expectation value of the Hamiltonian for the case of the non-deformed oscillator 

where it is required that this expectation value (i.e., eqn. (2.51)) remains finite as 

0 . 

For the case of the q-deformed 1-D quantum harmonic oscillator, the expectation 

value of the Hamiltonian in a coherent state   can be obtained as: 

 
   

22
1ˆ 1 1

4 sinh
e e e eq

   



    

      
     

ω
(5.116)                                                                                                             

where the Hamiltonian ˆ
q is given by eqn. (3.34), and the q-number operators 

are given as 
sin ˆ

ˆ h

sinh

N
N

q




  and  

s ˆ 1
ˆ

inh

si h
1

n

N
N

q




.  

 

Again, the classical limit of this expectation value could be taken to correspond 

to the classical energy of the q-deformed oscillator.  

For this expectation value to remain finite as 0 , a modification to the 

conditions given in eqns. (5.115) is necessary. This is due to the introduction of 

q-deformation which is related to the non-linearity parameter . The modified 
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conditions can be obtained by expanding all the exponential functions appearing 

in the expression for the expectation value of eqn. (5.116) as power series in 

to obtain:     

2 4

2 3
2 4 62 3

2 3
2 4 62 3

1ˆ
4

1
3! 5!

1 1
2 1

2! 3! 2! 3!

1 1
2 1

2! 3! 2! 3!

q 
 



 
     

 
     

 
  

   
            

                     

                     

ω

                   (5.117) 

 Simplifying eqn. (5.117) then, after some lengthy mathematical manipulations, 

one obtains:  

2
2 6 42

2 4

4 2 4
2 6 42

1 2ˆ 4 2
4 3

1
3! 5!

6 3 6

q


    
 

  
   

 
  

          
            


        



ω

                                                    (5.118) 

 

Letting 0  (i.e., 1q  ) in eqn. (5.118), this equation will reduce, as expected, 

to the energy equation for the undeformed quantum harmonic oscillator of                

eqn. (2.51). Therefore, to apply the condition for approaching the classical limit,  

0  one should take into consideration the fact that 0   in the present              

q-deformed case.  

The main idea again is to let the energy as represented by the expectation value 

of eqn. (5.118) remain finite as 0 . It appears from eqn. (5.118) that as        
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0 this expectation value can remain finite only if some additional conditions 

on   are applied. Table (5.5) shows the different cases that can arise. 

Table (5.5) 

 Different cases that arise in taking the limit 0 for the q-deformed oscillator 

 limiting condition 
existence of 

classical limit  

ca
se

-1
 0 , 

2
   such that 

2
finite  , and 

keeping   fixed. 

No 

ca
se

-2
 

0 , 
2

   such that 0  faster than

0 , i.e.,  .const     where 1     

  and 0 1  , hence, 
2

undefined   . 

No 

ca
se

-3
 

0 , 
2

    such that 0  as fast as 

0 , i.e. ,  .const    , hence 

2
finite    

Yes 

ca
se

-4
 

same as case-3 but 0 faster than 0 , i.e., 

 .const    where 1    and 1  , 

hence, 
2

0    

Yes, but the                  

q-deformation must  

vanish 

 

There are different reasons for the non-existence of classical limits in some of the 

cases shown in Table (5.5). For example, when applying the condition 0 ,

2
   such that 

2
finite   and keeping   fixed (case-1), the terms in eqn. 

(5.118) containing 
2 22 mm 


, 

2 42 mm 


and 
22 jj  (i.e., 1,2,m   and 

2,3,j    ) will blow-up (i.e., go to  ). This is interpreted to mean that under 
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such a condition (i.e., keeping   fixed), a classical limit does not exist [97]. 

While when applying the condition 0  faster than 0 , 
2

   and 

 .const      such that 
2

undefined    (i.e., case 2 in Table (5.5)), 

eqn. (5.118) does not produce a finite value for the energy. This is also interpreted 

to mean that under such condition (i.e., 0  faster than 0 ) the classical 

limit does not exist.  

Applying the other limiting condition 0  faster than 0 , 
2

   and 

 .const      such that 
2

0   , (i.e., case 4 in Table (5.5)) then,            

eqn. (5.118) produces a finite value for the energy of the undeformed quantum 

oscillator (i.e. ,
2

Ĥ   ω ). Again, this means that under such a 

condition (i.e., 0  faster than 0 ), a classical limit exists but the                  

q-deformation must  vanish. This case is similar to the case of taking 1q   (i.e.,

0 ) in      eqn. (5.118) as mentioned before. However, applying the limiting 

condition, 0  as fast as 0 , 
2

   and  .const    such that 

2
finite    (i.e., case 3 in Table (5.5)), then all terms in eqn. (5.118) 

containing 
2 2mm 


 1,2,m    remain finite with other terms vanishing. 

Therefore, eqn. (5.118) reduces to the energy of the q-deformed classical 

harmonic oscillator as:   

    
2

2 62ˆ 4
4 3q


   

   
      
    

ω                    (5.119) 

This result means that under the condition, 0  as fast as 0 (i.e., case 3 in          

Table (5.5)), a classical limit exists. Therefore, this limiting condition (case 3) 

will be adopted in this thesis to approach the classical limit for the q-deformed 

quantum oscillator on the basis of its various representations of the Liouville 

equation.    
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5.3.2 The Classical Limit of the Liouville Equation for qQ  in the  

 -Representation  

Expanding all functions appearing in eqn. (5.54) as power series in  , and 

simplifying the result, one obtains:  

 

 

  

  

  

1

2
2 2

2

2 2

2
2 2

3

2

1

4 1

2!2

2!

2!2

2!

, ;Q t iq

e

S

e

t

S

S




  




   

  


  




   

  

 

 

 







 


          

    
   

         
          

       

     
  

       
  






  
 





 
 
  

 




 

ω

 

2

, ;Q tq  

  
  
    

 
    

 




  

                         (5.120) 

where, 
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2 4 6

1

2 3

2

2 3

3

3! 5! 7!

2! 3!

2! 3!

S

S

S

  


 
 

 
 


      




      



       


                           (5.121)    

Applying the adopted condition for the classical limit, i.e., 0 , 
2

   such 

that 
2

finite   , to eqn. (5.120), where  .const   , and letting 

   ; , ;, CLQ
q

t tq    P  in this limit, then eqn. (5.120) reduces to:    

  

 

 

2

2

, ;

 

2
4

2 , ;

CL

CL

i
e

e

q
t

t

q
t

   
 



 
   








 



    
    


 



    

   
 

 

ωP

P

  

   (5.122) 

 

where the fact that in this limit      1 2 3 0S S S      has been used.                

Re-arranging the terms in eqn. (5.122), this equation becomes: 

 

     1, ;
, ;CL

CL

q
qt

tqt
i

 
   




 



   
  

  
 ω

P
P   (5.123) 

where, 

   21
coshq  ω ω           (5.124) 
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Eqn. (5.123) represents a classical Liouville equation for a classical harmonic 

oscillator having frequency 
 1

qω . By expanding the frequency of this oscillator         

 1

qω  up to 
2 , eqn. (5.123) becomes: 

 

 
2

4

, ;

, ;
2!

CL

CL

q
t

q
i

t

t

 


      

  



  

 






        
      

    


  

ω

P

P

 

   (5.125) 

 

Eqn. (5.125) can be interpreted as a classical Liouville equation for a classical 

harmonic oscillator with frequency: 

 
2

41
1

2!q



 

  
 
 

ω ω                                         (5.126)  

It is apparent that the 1st term on the right hand side of eqn. (5.125) represents the 

classical Liouville equation for a simple harmonic oscillator with frequencyω . 

Thus, eqn. (5.125) agrees with that obtained by Ghosh [76] for the undeformed 

case but with an additional term   
2

4

2!


  







  
 

 
ω  resulting from the 

q-deformation. 

Also, the comparison between eqn. (5.125) and the corresponding eqn. (4.70) 

shows that, when 
 1

qω  (i.e., eqn. (4.42a)), is expanded up to first order of 
2 , the 

result agrees with that of eqn. (5.126).  
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5.3.3  The Classical Limit of the Liouville Equation for Pq in the 

 -Representation  

Using a technique similar to that of Sec. (5.3.2), eqn. (5.55) results in  

 

  

  

  

1

2
2 2

2

3

2 2

2
2 2

2

2

1

4 1

2!2 1
2!

2!

2!2 1

;

2!

,

t S

S

S

P t iq

e

e




  

 


   

  


  

 

 











   
    

    

               
 
 

         
                  

      






 



 
 

      
 
 

 
 



ω

 

2 2

2

, ;

!

P tq


   

 



 









 




         
             


  
  
   



       




  

                        (5.127) 

Applying the limiting condition, 0 , 
2

  and 0  as` fast as 0 , 

i.e.,  .const   , hence 
2

finite   , to eqn. (5.127) and letting

   ; , ;, CLP
q

t tq    P , one obtains the same result as in eqn. (5.122). 

Also, applying the same limiting condition to eqn. (5.67a) (i.e., the Liouville 

equation obtained from Zaslavskii’s method) and letting 

; , ;, CL

q
tq t    P , produce the same result as in eqn. (5.122). 
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Similarly, applying the same previously mentioned limiting conditions                 

(i.e., case-3) to eqn. (5.67b), leads to eqn. (5.123) but with q-deformed frequency 

given as: 

 
2

2
eq
 

ω ω                          (5.128)                                      

As in the case of the classical limit of the Liouville equation for Qq , eqn. (5.123) 

can be compared with the corresponding eqn. (4.70) by expanding eqn. (5.128) 

up to first order in  . The result is: 

   22
1q   ω ω                                                                 (5.129) 

 

Similarly, the expansion of eqn. (4.42b) leads to the same result given by            

eqn. (5.129) and, hence, eqn. (5.123) agrees with the corresponding eqn. (4.70).  

 

Again, substituting eqn. (5.129) into eqn. (5.123), one obtains a classical 

Liouville equation consisting of two terms. The 1st term represents the classical 

Liouville equation for a simple harmonic oscillator with frequency ω . This result 

is the same as that obtained by Ghosh et al. [76]. The 2nd term is  

2
   







  
 

 
ω  resulting from the effect of q-deformation. 

 

5.3.4 The Classical Limit of the Liouville Equation for q  in the  

q -Representation  

Using the same technique of expanding the exponentials functions as power series 

in  , and after some lengthy manipulations, eqn. (5.114) becomes:  
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22

22

2

3

2

, ;

2 1
22

2 1

!

2

2

!

!

2

tq q q

q

q q q
q q q

q

q q qq
q q

S q q q
qq

q
q

t

i
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ω

  

 

2

4

2 2

1

2!
, ;

q

S q q
qq

tq q q q q
qq



  


   












 



 
    
   


 



   
     

 
 
 

  
    

      
     

       





      

                                  (5.130) 

where,   

 
2 3

4
2! 3!

S
 

                                                       (5.131) 

 

Letting 0  (i.e., 1q   ) in eqn. (5.130) leads to 

 
 

CL

CL

, ;
, ;

t

tP
ti P


















   

  
 


 

ω                                            (5.132) 

where, in this limit the relations [115-117] 
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0

0

lim

lim

q

q

q

q

 

 

 



 
 

 


 
 

                                         (5.133) 

have been used. 

Eqn. (5.130) is the same as that obtained by Ghosh et al. [76] for the undeformed 

case as expected. 

Now, applying the limiting conditions 0 , 
2

q   and 0  as fast as 

0 , i.e.,  .const    such that 
2

finiteq   , to eqn. (5.130), with 

   , ; , ;
CL

q
t P tq q q q q     , the result is:    

 

 
2

, ;

, ;

CL

CL

q
P tq q

t

q
P tq q q q q q q

q qq

i

q

 

       
  



  

 






        
      

          

 ω

 

                                  (5.134) 

 Eqn. (5.134) can be re-written in the form: 

 

     3
, ;

, ;
CL

CL

q
P t qq q

P tq q q q qt qq

i
 

   




 



   
  

   

 ω         (5.135) 

where, 

   
2

3
1q q  ω ω                                          (5.136) 

 

Eqn. (5.135) is the classical Liouville equation for harmonic oscillator with 

frequency
 3

qω . This result for 
 3

qω  could be shown to agree with the result 
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obtained by Shabanov [89] using the path integral method to approach the 

classical limit for the q-deformed oscillator with q-deformation possessing the 

box function defined in eqn. (3.6). 

  

The comparison between eqn. (5.135) and the corresponding eqn. (4.79) has been 

performed by using the same procedure presented in Sec. (5.3.2) and Sec. (5.3.3). 

The result shows agreement between these equations when the expansion of     

eqn. (4.57b) is accomplished up to first order in  , thus, eqn. (5.135) agrees with 

eqn. (4.79). 

 

Also, it is noticed that the classical Liouville equation for the simple harmonic 

oscillator corresponds to the first term in eqn. (5.135). The additional term in this 

equation 
2

q q q
qq

   






  
   

ω  results from the effect of                             

q-deformation.  

       

5.4 Computer Visualizations  

It can be noticed that the classical Liouville equations, obtained from applying 

the classical limiting procedure in this chapter, are similar to those derived in    

Chapter 4 where the frequency of the system is also a function of  
2

 . Therefore, 

one can use the same solution procedure introduced in the previous chapter to 

solve these equations. Then, computer visualizations similar to those used in that 

chapter can be employed to study the behavior of the q-deformed oscillator in its 

different classical limits. Performing this procedure, the results depicted in        

Figs. (5.1) - (5.3) are obtained for the 2-dimensional time-evolution contours of 

the probability distribution functions , ;CL

q
t P  and  , ;

CL

q
P tq q 

  in phase 

space. These probability distributions exhibit whorl shapes, and it can be seen 

that these whorl shapes become finer as t  . Again, these whorl shapes can be 
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compared with those obtained by Milburn [77] for the anharmonic oscillator 

shown in Fig. (4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

     

     

     

 

  

a. b. 

d. c. 

Fig. (5.1): The 2-D time-evolution contours of the classical probability 

distribution function   for the q-deformed harmonic oscillator     

with frequency  given by eqn. (5.124) and  in phase space, for          

different values of time ( ): (a) , (b) , (c) , and (d) .  
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a. b. 

d. c. 

Fig. (5.2): The 2-D time-evolution contours of the classical probability 

distribution function   for the q-deformed harmonic oscillator     

with frequency  given by eqn. (5.128) and  in phase space, for 

different values of time ( ): (a) , (b) , (c) , and (d) . 
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a. b. 

d. c. 

Fig. (5.3): The 2-D time-evolution contours of the classical probability 

distribution function   for the q-deformed harmonic oscillator 

with frequency  given by eqn. (5.136) and  in phase space, for 

different values of time ( ): (a) , (b) , (c) , and (d) . 
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It should be noticed that Fig. (5.3) has been obtained by substituting the definition 

of  
2

q  into eqn. (5.136), using eqns. (4.1), (4.2) and (4.3b). 

  

From all the previous figures, it can be observed that the behavior of the classical 

probability distribution functions  , ;CL

q
t P  and  , ;

CL

q
P tq q 

 is more or 

less similar to that exhibited in Chapter 4, i.e., Figs. (4.2) and (4.3). 

It is also observed that Fig. (5.3) is not similar to Fig. (5.2). This dissimilarity is 

basically the result of the non-commutative nature of quantum mechanics. That 

is, applying the classical limiting procedure in the present case leads to different 

expressions for 
 
q
ω in the  - and q - representations (see eqns. (5.128) and 

(5.136)).         

 

Also, in Figs. (5.4) - (5.6), the results of 3-D time-evolution of the classical 

probability distribution functions  , ;CL

q
t P  and  , ;CL

q
P tq q 

  are depicted 

in phase space. It is clear from these figures that the peaks of the q-deformed 

Gaussians for the classical probability distributions  , ;CL

q
t P  and  

 , ;CL

q
P tq q 

 do not change with time and are equal to the maximum value           

(i.e., 1). These peaks follow the classical trajectories that are shown in                  

Figs. (5.1) - (5.3) for the probability distribution functions. Another observation 

is the nature of the Gaussian shapes of these distributions which become more 

convoluted around themselves as t  , as is apparent in Figs. (5.4) - (5.6).  

become more convoluted around themselves as t  , as is apparent in                  

Fig. (5.4)-Fig. (5.6).  
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a. b. 

d. c. 

Fig. (5.4): The 3-D time-evolution of the classical probability distribution 

function  for the q-deformed harmonic oscillator with frequency 

 given by eqn. (5.124) and  in phase space, for different values of 

time ( ): (a) , (b) , (c)  , and (d) . 
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Fig. (5.5): The 3-D time-evolution of the classical probability distribution 

function  for the q-deformed harmonic oscillator with frequency 

 given by eqn. (5.128) and  in phase space, for different values of 

time ( ): (a) , (b) , (c)  , and (d) . 

a. b. 

d. c. 
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Fig. (5.6): The 3-D time-evolution of the classical probability distribution 

function  for the q-deformed harmonic oscillator with frequency 

 given by eqn. (5.136) and  in phase space, for different values of 

time ( ): (a) , (b) , (c)  , and (d) . 

a. b. 

d. c. 
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6.2  Conclusions 

 

1. The investigation of the classical limit of the 1-D q-deformed quantum 

harmonic oscillator leads to the conclusion that this limit is statistical in 

nature. This is clear from eqns. (5.125) and (5.135) where the classical 

Liouville equations are obtained for the 1-D q-deformed classical harmonic 

oscillator in  - and q -representations respectively. This is in conformity 

with Ghosh et al.’s work [76], where the classical Liouville equation was 

obtained for the 1-D classical simple harmonic oscillator, by applying the 

classical limiting conditions 0 ,
2

  , such that 
2

finite  . It is 

also concluded that this interpretation for the q-deformed quantum harmonic 

oscillator is more accurate than that introduced by Batouli and El Baz [95], 

because they interpreted this oscillator as a driven harmonic oscillator with 

the driving force and deformed frequency   
22 2 4 qtq ω ω , both dependent 

on the deformation of this oscillator. Batouli and El Baz’s interpretation [95] 

is based on using the undeformed Heisenberg equation of motion to calculate 

the q-deformed time dependent expectation values for the position and 

momentum. This methodology has intrinsic limitations compared with our 

methodology which is based on obtaining the Liouville classical limit that 

uncovers more details due to its phase space nature.     
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2. The q-deformed 1-D quantum harmonic oscillator can be interpreted as a 

nonlinear quantum oscillator where the nonlinearity parameter  depends on 

 such that  const.   . This dependence is as required for the classical 

limit to exist (see Table (5.1)). Based on the more detailed approach to the 

classical limit adopted in this work, this interpretation seems to be more 

accurate than that introduced by Man’ko [91] because this oscillator was 

interpreted as a nonlinear quantum oscillator with special type of nonlinearity 

where the frequency is energy dependent.   

 

3. The behavior of the classical limit of the quantum Liouville equations for the 

q-deformed 1-D quantum harmonic oscillator in phase space shows whorl 

shapes evolving with time as in Figs. (5.1) - (5.3). These figures are similar to 

those obtained by Milburn [77] for the 1-D classical anharmonic oscillator as 

in Fig. (4.1). This similarity results from the fact that the anharmonicity itself 

represents a kind of deformation. 

This leads to the conclusion that the whorl shapes in phase space can be 

considered as a generalized phenomenon connected with q-deformation; the 

anharmonic oscillator being a special case. 

 

4. It has been noted in Sec. (5.3.4) that the classical limit obtained in the present 

work using Arik and Coon’s [9] coherent states for the q-deformed oscillator 

agrees with that obtained by Shabanov [89] based on path integrals for the 

same q-deformation type. This can be taken as a strong confirmation of the 

correctness of the results obtained in the present work for the classical limit 

based on Arik and Coon’s work for the q-deformed oscillator.              
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5.  It can also be concluded that the q-deformation of the 1-D quantum harmonic 

oscillator induces a non-commutative effect in the geometry. This can be 

understood in the light of Vitiello’s work [130], where the q-deformation of 

the coherent states was studied to find that the fractal self-similarity, obtained 

by defining a fractal operator 

d

dq


 , leads to a non-commutative geometry. 

The expression for this fractal operator is similar to the structure of the 

dilatation (shift) operators e







 , e











 , 

q
q

e








 and  

q
q

e










appearing in the present work. These dilatation (shift) operators 

are inherent to the q-deformation and arise naturally in the quantum Liouville 

equations given in eqns. (5.54), (5.55), (5.67a), (5.67b) and (5.114) for the      

q-deformed 1-D quantum harmonic oscillator in the  - and q -

representations respectively.  

 

6.2  Suggestions for Future Work 

One can suggest the following proposals to develop the present work in the future: 

 

1. Studying the possibility of finding analytical or numerical solutions for the 

quantum Liouville equations of the 1-D quantum harmonic oscillator given by 

eqns. (5.54), (5.55), (5.67a), (5.67b) and (5.114). Such a study is essential to 

enable the visualization of the behavior of the q-deformed quantum oscillator 

in the quantum phase space. 

 

2. The path integral approach introduced by Ajanapon [131] for the undeformed 

quantum harmonic oscillator can be used to investigate the classical limit of 

the q-deformed 1-D quantum harmonic oscillator. The results that emerge 
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from such an approach can then be compared with the results of this thesis. In 

this context, Shabanov’s work [89], where the quantum and classical 

mechanics of the q-deformed quantum harmonic oscillator were also 

investigated using path integrals, can also be cited.  

 

3. The use of other potentials, such as the Morse and Pöschl-Teller potentials, 

and the investigation of the interpretation of the q-deformation of such 

potentials along the same lines used in the present thesis are suggested. The 

importance of such an extension of the present work stems from the fact that 

such potentials are very useful in many fields of physics such as molecular, 

solid state and nuclear physics. 

 

4. Treatment of the classical limit of the q-deformed 1-D quantum harmonic 

oscillator in the light of Lavagno’s work [96] can be suggested. One may first 

construct the q-deformed quantum Liouville equation by using the q-deformed 

Heisenberg equation of motion. The construction of the q-deformed classical 

system may then be attempted by using the q-deformed Poisson bracket to 

derive the q-deformed 1-D classical Liouville equation. Then, one may 

investigate the classical limit of the resulting quantum Liouville equation and 

compare the result with that obtained from the q-deformed classical Poisson 

bracket approach.
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Evaluation of the Poisson Bracket  , f f


 

 

The Poisson bracket ,f f 
 is defined as [100]: 

 ,
f f f f

f f

   
 

 


         

                   q p p qqp q p

               (A.1) 

But since,         

 

 

A.2

A.3

and their conjugates are,

f f f

f f f

f f

   

  

   

  

  












 



                   
           

                   
          

       
               

q q q
p p p

p p pq qq

q q
pp

 

 

                   A.4

A.5

                           

f

f f f



 

   

  






  





   
       

          
                         

q
p

p p pq qq

                                              

then, substituting eqns. (A.2) – (A.5) into eqn. (A.1), and after some mathematical 

manipulations, one obtains:  
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 ,
f f

f f

f f

     
 

  

     

  


 






 




                                         
 

                                         
 

q p p qq qp p

q p p qq qp p

 

                  (A.6)

   

Now, since 

 ,
   

 
 

                
         pq p qq qp p

                                 (A.7) 

and     

    , ,                                                                                       (A.8) 

then, substituting eqns. (A-7) and (A-8) into eqn. (A-6), the result is: 

   , ,
f f f f

f f

   
   

    

 

 

  

           
                      

  (A.9)                         

But, 

 
,

,
f f f f

f f
 

   
 

    


 



  

         
                  

        (A.10) 

 

then, substituting eqn. (A.10) into eqn. (A-9), one obtains: 

             

     
,

, , ,f f f f     
 

  


                                            (A.11)    
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Evaluation of the Poisson Brackets   , ,  f


 

and   , ,  f f f f
  

 

 

According to the definition of the Poisson bracket [100]: 

  
   , ,

, ,
f f

f

    
  

 


                             

q p p q
qp q p

 

                  (B.1)

                    

Considering f  as a function of the two independent variables   and  
, one 

can write: 

f f f 

 
 






           
                           

p p p
q qq

             (B.2) 

and, 

f f f 

 
 






           
                            

q q q
p pp

             (B.3) 

Then, substituting eqns. (B.2) and (B.3) into eqn. (B.1), the result is: 
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  , ,
f f

f

f f

  
  

 
 

  

 
 












             
                           

 

            
                            

 

q p p
qp q

p q q
q p p

 

                 (B.4) 

Eqn. (B.4) can be simplified to obtain: 

  , ,
f

f
   

  




 




             
                             
 

q p p q
qp q p

   (B.5) 

Now, since 

  , ,
,

f
f  

  








 
  

  

                                                           (B.6) 

then, substituting eqns. (A.7) and (B.6) into eqn. (B.5), one obtains: 

 

       , , , , ,
,f f       

 

  


                                    (B.7) 

 

 Similarly, one can prove that 

 

       
,

, , , , ,f ff f f f f f f f
f f

       
 

  


                  (B.8) 
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Evaluation of the Poisson Brackets     , ;, ,   CL t
f

Pf f f f f
 

 

 and     , , , ;   CL

f
tf

 P  

 

The Poisson bracket     , , ;, CL t
f

Pf f f f f   
 

 is defined as [100]: 

    , , ;, CL CL
CL t

f f
f P Pf f

Pf f f f f   
 

        
       

         
      

q p p q
p qq p

   

                     (C.1)                                 

Considering f  as a function of the two independent variables f  and f
, one 

can write: 

f f f f f

f f
f f

 

 
 






           
        

                    
q q q

p p p

              (C.2) 

and, 

f f f f f

f f
f f

 

 
 






           
        

                    
p p p

q q q

                     (C.3)              

Also, 
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CL CL CL

f f f
P P Pf f

f f
f f

 

 
 






                   
                   

q q q
pp p

            (C.4) 

CL CL CL

f f f
P P Pf f

f f
f f

 

 
 






                   
                   

p p p
qq q

               (C.5) 

Substituting eqns. (C.2) – (C.5) into eqn. (C.1), the result becomes: 

    , ;, , CL

CL CL

f
P tf f f f f

f f f f

f f
f f

f f
P Pf f

f f
f f

f

f
f

  

 

 
 

 

 
 
















 

 
                 

                
  

 
                

               
  

 
 
 

 

q q
p p

p p
q q

CL CL

f f f

f
f

f f
P Pf f

f f
f f

 




 

 
 











 
             

            
  

 
                

               
  

p p
q q

q q
p p

 

                  (C.6) 

After some mathematical manipulations, this equation can be simplified to yield: 
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    , ;, , CL

CL

CL

f
P tf f f f f

f
Pf f f f f

ff
ff

f
Pf f f

f f
f f

  

   




  

 
 



 









 

 
                           

                        
  

              
               

q p p q
q pp q

q p
p q

f f
 

       
        

  

p q
q p

 

                     (C.7) 

Then, substituting eqn. (A-1) into eqn. (C-7) one gets: 

    
      

, ;

, , ;

, ,

, ,
,

CL

f f CL

f
P tf f f f f

f
P tf f f f f

f f

 

   

 

 
 









 




  

                                      (C.8) 

Similarly, one can prove that 

           
,

, , , ; , , , , ;CL CL

f f
t tf f         

 

    


 P P  

                                                        (C.9) 
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The Correspondence Relations for 

  ˆ ˆ ˆ ˆ ˆ 
 

† 2 † a a f a a  and   ˆ ˆ ˆ ˆ ˆ 
 

† 2 † a a f a a  

 

Multiplying the Glauber-Sudarshan P-representation for the relations ˆ ˆa  and 

†ˆ â given in eqns. (2.61) and (2.62) by 
†â from the left and â  from the right 

respectively, results in: 

  † 2 †ˆˆ ˆ ,ˆa a d a P                           (D.1) 

  † 2ˆ ˆ ,ˆ ˆa a d a P     
                       (D.2) 

The expression for 
†â    and its conjugate are given in refs. [108,109] as:  

†â     


   
 

                                                            (D.3)  

   

â    


  
 

                                                          (D.4) 

Substituting eqns. (D.3) and (D.4) into eqns. (D.1) and (D.2) respectively, gives  

  † 2ˆˆˆ ,a a d P      


  
 

                                          (D.5) 

  † 2ˆ ˆ ,ˆa a d P     





 
 

            (D.6)  

Performing integration by parts in eqns. (D.5) and (D.6), one obtains [111,112]: 
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    † 2ˆˆˆ ,a a d P      


       
                              (D.7) 

   † 2ˆ ˆ ,ˆa a d P      





    
  

                             (D.8) 

Now, starting from eqns. (2.61) and (2.62) to obtain  
2

ˆ ˆa   and  2†ˆ â , then 

multiplying the results by  
2†â from the left and  

2
â from the right, and using 

the same technique used previously to  obtain eqns. (D.7) and (D.8), the results 

become: 

        
22 2 2† 2ˆˆ ,ˆa a d P      



  
 




      (D.9) 

        2 22
2

† 2ˆ ˆ ,ˆa a d P     




 
 

       (D.10) 

Applying again integration by parts to eqns. (D.9) and (D.10), gives [108,109]: 

       
22 2 2† 2ˆˆ ,ˆa a d P     




        

    (D.11) 

       
22 22† 2ˆ ˆˆ ,a a d P      






     
   

   (D.12) 

Then, using the mathematical induction method, and following the same previous 

procedure used to derive eqns. (D.11) and (D.12), one obtains: 

       † 2ˆˆ ˆ ,
mm m m

a a d P     



        

       (D.13) 

and, 

       † 2ˆˆ ˆ ,
mm mm

a a d P      






  

 





 



      (D.14) 

Now, letting      † †ˆ ˆˆ ˆ
m m

f a a a a , and substituting  †ˆ ˆf a a into eqns. (D.13) 

and (D.14), results in: 
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     † 2ˆˆ ,ˆ
m

m
f a a d f P     




           

      (D.15) 

and, 

     † 2ˆˆ ˆ ,
m m

f a a d f P      





 
 

   
   

   
       (D.16) 

 

The function of the number operator,  †ˆ ˆf a a , represents a special case of the 

function  †ˆˆ,f a a , where  †ˆˆ,f a a  represents an arbitrary operator ordered 

function. This permits the generalization of eqns. (D.15) and (D.16) using 

   † †ˆ ˆˆ ˆ,ˆˆf a a f a a   and    † †ˆ ˆ ˆˆ ˆ ˆ,f a a f a a   (see Sec. (5.1)). This 

generalization process can be satisfied if: 

     † † †ˆ ˆˆ ˆ ˆˆ ˆ ˆ, ˆf a a f a a f a a                                                       (D.17) 

and, 

      † † †ˆ ˆ ˆˆ ˆˆ ˆ, ˆ ˆf a a f a a f a a                                                      (D.18) 

where  †ˆˆf a a  represents the anti-normal ordered operator function. Both 

functions  †ˆ ˆf a a  and  †ˆˆf a a  can be obtained from the function  †ˆˆ,f a a  by 

using the commutator †ˆ ˆ,a a 
 

 .  

The derivation of eqn. (D.17) is as follows. Supposing any expression for 

arbitrary operator ordered function  †ˆˆ,f a a  then, letting this function act on the 

density operator ̂  from the left, and using the one-to-one correspondence 

relations given by eqns. (2.65) and (2.67), one can obtain the expression for

 † ˆˆ,ˆf a a  . This expression is compared with the expressions obtained for the  

 † ˆ ˆˆf a a   and  † ˆˆ ˆf a a  . Similarly, one can derive eqn. (D.18) by using the same 

expression for the operator ordered function  †ˆˆ,f a a  that was used to prove    



Appendix D 

145 
 

eqn. (D.17), but with the one-to-one correspondence relations that are defined in 

eqns. (2.66) and (2.68). Thus, by using the mathematical induction method for 

any arbitrary operator ordered function  †ˆˆ,f a a , and following the same 

previously mentioned procedure (see Sec. (5.1)), one can prove that the eqns. 

(D.17) and (D.18) are still satisfied.                                                                                                

 

Hence, eqns. (D.15) and (D.16) can be re-written as: 

     † 2ˆˆ, , ,ˆ
m

m
f a a d f P     




           

  (D.19) 

     † 2ˆ ,ˆ ˆ, ,
m m

f a a d f P      





 
 

   
   

   
            (D.20)         

Eqns. (D.19) and (D.20), together with eqns. (D.17) and (D.18), permit the 

generalization of eqns. (D.7) and (D.8) by using   † † †ˆ ˆˆ ˆˆ ˆ ,ˆ ˆ
m

a a a a f a a  
 

 

and   † † †ˆ ˆˆ ˆˆ ˆ ˆ ˆ,
m

a a a a f a a   
 

.Therefore, eqns. (D.19) and   (D.20) become:     

                                                            

  

     

† 2 †

2 2

ˆˆ ˆ,

, ,

ˆ ˆ
m

m m
m m

a a f a a

d f P



      
 

 

  
 

                 


                   

   (D.21) 

and, 

  

     

† 2 †

2 2

ˆ ˆ ˆ ˆ

,

ˆ,

,

m

m mm m

a a f a a

d f P



       
 

 
 

  
 

      


 
   
   

 



 

     (D.22) 
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respectively, where the function f  has been replaced by 2f  in these equations. 

Eqns. (D.21) and (D.22) can be re-written equivalently in terms of the 

quasiprobability distribution function 
   ,s  

 given in Table (2.1) as:  

  

   

† 2 †

2

2

ˆˆ ˆ,

1 1

2 2

1 1
,

2
,

2

ˆ ˆ
m

m m

m m

a a f a a

s s
d

s s
f

s  



   
 


 

  









  
 

             
                   

            
                     

  

                                                                            (D.23) 

and, 

  

  

   

† 2 †

2 2

ˆ ˆ ˆ,ˆ ˆ

,

1 1
,

2 2

1 1

2 2

m

m m

m m

a a f a a

s s
d f

s ss
   



    


















  
 

             
                  

            
                    

  

  (D.24) 

respectively. 

 

Eqns. (D.23) and (D.24) represent the general relations for   † 2 † ˆˆ ˆ ˆ ˆ,a a f a a  
 

and   † 2 †ˆ ˆ ˆ ˆ ˆ,a a f a a  
 

. 

A special case of the relations for   † 2 † ˆˆ ˆˆ ˆ,
m

a a f a a  
 

and

  † 2 †ˆˆ ˆ ,ˆ ˆ
m

a a f a a  
 

can be obtained by letting 1m  and

   2 2† †ˆ ˆ ˆ ˆa , a a af f  in eqns. (D.23) and (D.24), then these equations become: 
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2† †

2

2

ˆˆ ˆ ˆ

1 1

2 2

1 1

2 2

ˆ

,

a a a af

s s
d

s s
  f

s



   
 







 








  
 

             
                  

            
                    

                                                                                                                       

  (D.25) 

and, 

 

  

   

2† †

2 2

ˆ ˆ ˆ ˆ

1 1

2 2

1

2

ˆ

1

2
,s

a a a af

s s
d f

s s
 



    


    








  
 

             
                 

            
                   

  

  (D.26) 

respectively. 

 

It is clear that in the limit 2 1f  , and using the ordering parameter 1s   (i.e., 

the anti-normal ordered bosons operators , as given in Table (2.1)), then the              

s -ordered quasiprobability function      1 , ,P      and, hence,      

eqns. (D.25) and (D.26), reduce to eqns. (D.7) and (D.8) respectively. The 

following one-to-one correspondence relations for the Glauber-Sudarshan             

P-representation in the  -representation, which are the same as those introduced 

by Walls and Milburn [111], can then be obtained:  
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 † ˆˆ ˆ ,a a P    


  
  

 
  (D.27) 

 †ˆ ˆ ˆ ,a a P    


 



 
  

 
                   (D.28) 

 † ˆˆ ˆ ,a a P    


  
  

 
                                      (D.29) 

 †ˆ ˆ ˆ ,a a P    


 



 
  

 
                                               (D.30)      
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Evaluation of the Commutators  

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,              
              1 2 1 1 1 2A ,B , A ,B , A A ,B , B A ,B , A , A ,B             

and ˆˆ ˆ  
  2 2B , A ,B  

 

Using the definition of the commutator: 

1 1 1
ˆ ˆ ˆˆ ˆ ˆA ,B A B B A  

  
 

    (E.1) 

and multiplying both sides of eqn. (E.1) form the right by an arbitrary function 

 ,g g   , then substituting the definitions of Â  and 1B̂  given in eqns. 

(5.16) and (5.17) in these equations and simplifying the result , gives: 

     

      

1

22 2 2

2
2 2

2
2 2

ˆ ˆA ,B

1 1

2 2

1 1 1

4 2

1 11

2 4

g

s g s g

s s g s
g

s ss
g g

    


    
  

    
  



 



  

 

 



  
 

      
   

   

               

               

    

                                                                                                                     (E.2) 

where, 

  2 g
g g    

 

   
 

 
   (E.3)

 
2 g

g g    
 

   

 

 
 

 
                                                 (E.4) 
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and, 

 
2 2g g g g

g g   
    

  

  

   
   

    
                        (E.5) 

Substituting eqns. (E.3), (E.4) and (E.5) into eqn. (E.2) and simplifying the result, 

one obtains: 

2
22

1
1ˆ ˆA ,B 1

4

s
s   




 

                      

                  (E.6)     

Similarly, one can prove that: 

2 1
ˆ ˆˆ ˆA ,B A ,B 

   
   

                (E.7) 

Also, one can write,  

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆA , A ,B A A ,B A ,B A     

       
      

   (E.8) 

Then, substituting the expressions for Â from eqn. (5.16) and for the 

commutator 1
ˆ ˆA ,B

 
 

 from eqn. (E.6) into eqn. (E.8), applying the same 

technique used to obtain the commutator 1
ˆ ˆA ,B

 
 

 and simplifying the result, 

yields: 

2 2
23 2

1
1 1ˆ ˆ ˆˆA , A ,B A

2 2

s s
    

                 
   

         (E.9) 

Similarly, the commutator 1 1
ˆˆ ˆB , A ,B

  
  

 can be evaluated by using the same 

technique used to evaluate 1
ˆ ˆ ˆA , A ,B 

  
  

, and after some lengthy 

mathematical manipulations, the result is:  

     

1 1

2 2 2 2
23 2

ˆˆ ˆB , A ,B

1 1 1
1

4 4

s s s s
s   

  





 

   
  

         
                  

  

         (E.10) 
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The following relations and there complex conjugates, as well as eqns. (E.3) – 

(E.5), have been used to obtain eqn. (E.10): 

 
2

2

2

g g g
   

   

    
  

    
                   (E.11) 

2g g
  

   

 

 

   
 

    
           (E.12) 

2 2 3

2

g g g g
 

       

    
  

      
             (E.13) 

Using the same technique, the commutators 2
ˆ ˆ ˆA , A ,B 

  
  

and 

2 2
ˆˆ ˆB , A ,B

  
  

can be evaluated. The results are:   

 

2 1
ˆ ˆ ˆ ˆˆ ˆA , A ,B A , A ,B   

       
      

   (E.14) 

and, 

 

2 2 1 1
ˆ ˆˆ ˆ ˆ ˆB , A ,B B , A ,B 

       
      

  (E.15) 
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The Action of the Dilatation (Shift) Operators 


e




   

and 


e








 on    , ,   F G
 

 

 

 

Assume two functions  F x and  G x that have power series expansions of the 

form: 

  m
m

m 0

F x a x




          (F.1) 

  m
m

m 0

G x b x




         (F.2) 

Using these expressions, the product    F x G x  can be written as:  

        2 3 2 3
1 2 3 1 2 3o oF x G x a a x a x a x b b x b x b x               (F.3) 

Multiplying both sides of eqn. (F.3) from left by the dilatation (shift) operator

x
xe




 , where   represent any arbitrary constant, the result is: 
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2 3
1 2 3

2 3 4
1 1 1 1 2 1 3

2 3 4 5
2 2 1 2 2 2 3

3 4 5 6
3 3 1 3 2 3 3

o o o o o

o

o

o

x
xe F x G x

x
xe a b a b x a b x a b x

a b x a b x a b x a b x

a b x a b x a b x a b x

a b x a b x a b x a b x







 



       
 

       
 

       
 

       
 

 

   (F.4)  

Applying eqn. (5.41) to eqn. (F.4) and simplifying, the result becomes: 

  

   

     

       

       

       

2 3

1 2 3

2 3

1 1 2 3

2 2 3

2 1 2 3

3 2 3

3 1 2 3

o o

o

o

o

x
xe F x G x

a b b e x b e x b e x

a e x b b e x b e x b e x

a e x b b e x b e x b e x

a e x b b e x b e x b e x

  

   

   

   




 

 
      

 

 
       

 

 
       

 

 
       

 

 

                                                                                                         (F.5)  

Collecting similar terms, this gives: 

 

   

     

     

2 3

1 2 3

2 3

1 2 3

o

o

x
xe F x G x

a a e x a e x a e x

b b e x b e x b e x

  

  




 

 
     

 

 
       
 

 

                                                                                                                   (F.6)   
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But since, 

   
m

m
m 0

F e x a e x 




      (F.7) 

and 

   
m

m
m 0

G e x b e x 




        (F.8) 

then, substituting eqns. (F.7) and (F.8) into eqn. (F.6), one obtains: 

       
x

xe F x G x F e x G e x


 



        (F.9) 

Using    ,F x F    and    ,G x G    in eqn. (F.9), then substituting 

    and applying eqns. (5.42), (5.43) for  ,F  
 and  ,G  

 respectively 

to    eqn. (F.9), the, results become: 

       , , , ,

λ λ
λe F G F e e G

 
        

 

    

 
 

         (F.10) 

and, 

       , , , ,
λ λ

λe F G F e e G
 

           

 
 

                 (F.11) 

 

 

 

 

           

            

          



Appendix G 

 

 
 

           

            

 

 

 

 

The Expressions for ˆ† aq q and ˆ aq q  in Terms of q-Derivatives  

 

The unormalized q-deformed coherent state q is given by eqn. (5.70). Then, 

 
† †

n

ˆ ˆ n
n !

n 0

q
a aq q q q

q










                                                            (G.1)  

Substituting for 
†ˆ naq q

 from eqn. (5.74) into the right hand side of eqn. (G.1), 

then multiplying both sides of the result by n +1
q

and taking m = n +1, the result 

becomes:  

 

   
†

m -1m
ˆ m

m m -1 !
m 1

qq
aq q q

q q










                                                 (G.2) 

But, 

     m ! m m -1 !
q q q
                                                                                (G.3) 

Then, substituting eqn. (G.3) into eqn. (G.2) yields: 

 

 
†

m -1m
ˆ m

m !
m 1

qq
aq q q

q










                          (G.4) 
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Using the expression for the action of the q-differential operator (Jackson’s 

derivative) and   mf q q   given in eqn. (5.78), leads to: 

 
†

m

ˆ m 0
m !

m 1

D q
aq q q qD q q






 
 

  
  

                                  (G.5)  

where, 

 m m -1m
D

q qqD q

 


              (G.6)  

and, 

0 0
D

qD q
                                         (G.7) 

But since q is as defined in eqn. (5.70), then using this definition in eqn. (G.5), 

one obtains: 

†ˆ
D

aq q qD q

 


                                             (G.8)   

Similarly, it can be shown that: 

 
†

†ˆ ˆ
D

a aq q q q q
D q

  


                                                       (G.9) 
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The Correspondence Relations for  ˆ ˆ†
aq q

 , ˆ âqq
 , ˆ ˆ ˆ†

a aq q q
 and ˆ ˆ ˆ†

a aq qq
  

 

 

The correspondence relations for † ˆâq q
 and ˆ âqq

  in terms of the q -representation                                     

can be derived as follows. 

 Using the product rule of q-differentiation defined in eqn. (3.25) with 

x

q D

D q
  ,    ,F x F q q   and    ,G x G q q  , then eqn. (3.25) 

becomes:  

    

       

, ,

, , , ,

q

q q
q q

D
F Gq q q qD

D D
F G F q Gq q q q q qD D

   


       
 

 

   



 
 

 

  

                                                                                             (H.1) 

Eqn. (H.1) is similar to the equation introduced by Arik and Coon [9], where

 ,F q q   and  ,G q q 
 are two arbitrarily functions defined as [9]: 

     
2

1, 1 ,F G q f qq q q q q       
  

 
        (H.2) 

Therefore,    
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2

, 1 ,F q G q q fq q q q q      
  

 
                                        (H.3) 

and, 

   , ,G gq q q q                                                 (H.4) 

where,  ,f q q  and  ,g q q   are two arbitrary functions. 

Substituting eqns. (H.2) – (H.4) into eqn. (H.1) and re-arranging the result, gives: 

     

     

     

2

2
1

2
1

1 , ,

1 , ,

1 , ,

D
G q q f gq q q q qD q

D
G q f q gq q q q qD q

D
G q f q gq q q q qD q

    


    


    


 

  

  

 
  

 

   
  

   

   
   

   

 

                                     (H.5) 

Applying the product rule of q-differentiation (i.e., eqn. (H.1)) again to the 

expression    
2

11 ,
D

G q f qq q qD q

  


    
  

   
 that appears in eqn. (H.5) 

with    
2

, 1F G qq q q    
  

 
 and    1, ,G f qq q q q      , then using 

the definition of  E qq   that have been introduced in [9] as: 

 
 

2

1

1

E qq
G q q






 

 
 

                   (H.6) 

or, 
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2 2

1G q q E qq q q 
 

   
 

                                                 (H.7) 

where   was given in eqn. (5.82), yields:  

   

 

   
 

2
1

1

1

2 2

1 ,

, 1
,

D
G q f qq q qD q

f q Dq q q
f q q qD qE q E qq q q q

  


  
 


 

 

  

 

   
   

   

 
           

               

                                                                  (H.8)       

and the following equation has been used: 

 
2 2 2

1
D D

G q E E qq q q q q qD Dq q

   
 

           
             

           
   (H.9) 

Substituting eqns. (H.7) and (H-8) into eqn. (H.5) and simplifying the result, 

produces  

   

     

 
 

2

2
1

1

2

1
, ,

1 , ,

,
,

D
f gq q q qD qE qq q

D
G q f q gq q q q qD q

g Dq q
f qq q qD qE qq q

   




    


 
  




 

  



  

 
 

 
  
    

   
  

   

 
  
   

          

 

                         (H.10) 

Using the basic integral  on both sides of eqn. (H.10), yields: 
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2

2

2
2 1

2

1

2

, ,

1 , ,

,
,

D Dq
f gq q q qD qE qq q

D
D G q f q gq q q q q qD q

D g Dq q q
f qq q qD qE qq q


   




     


  
  




 

  



  

 
 

 
  
    

    
   

    

 
  
   

          

 

                                 (H.11) 

Eqn. (H.11) is similar to the equation that was introduced by Arik and Coon [9] 

where the 1st term on the right hand side represents the boundary term [9] that 

vanishes at  
2

0q q
    and at  

2

q q
   , where  0 0

q
  and 

   
1

1 q
q


    are as defined in [9]. 

Then, eqn. (H-11) becomes: 

   

 
 

2

2

2

1

2

, ,

,
,

D Dq
f gq q q qD qE qq q

D g Dq q q
f qq q qD qE qq q


   




  
  




 



  

 
 

 
  
    

 
  
  

          

 

                                  (H.12) 

But since, 
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2

† †1
ˆˆ ˆ , 

D q
a aq q q q q q qq Eq


    

 

                                 (H.13) 

then, by applying eqn. (H.12) to eqn. (H.13) and using eqn. (G.8), one can get: 

   , ,f q q q q q                            (H.14) 

 ,g q q q q                            (H.15) 

Hence, 

 †ˆ ,
D

a gq q q q qD q

   


              (H.16) 

Therefore, one can deduce that eqn. (H.13) takes the form: 

 
 

2

† 11
ˆˆ  ,

D Dq
a qq q q q q q qq E Dq q


     

  

   
  

 
     (H.17)  

The adjoint of eqn. (H.13) is given as: 

 
   

2
†

† 11
ˆ ˆˆ ˆ  ,

D Dq
a a qq q q q q q q qq q E Dq q


      

  

 



 
   

  

  

                         (H.18) 

Then, the one-to-one correspondence for eqns. (H.17) and (H.18) in terms of the  

q -representation can be deduced as: 

 † 1ˆˆ ,
D

a qq q q q qq D q

   


   
  

 
                            (H.19)   

and,                                                                      
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 1ˆ ˆ ,
D

a qq q q q qq D q

   


 



 
  
  

                                    (H.20) 

respectively. 

Similarly, the correspondence relations for † ˆˆ ˆa aq q q
 and †ˆ ˆ ˆa aq qq

 can be 

derived by the same technique, but using: 

     
2

1, 1 ,F G q f qq q q q q q               
          (H.21) 

instead of eqn. (H.2). 

 

Therefore,    

       
2

, 1 ,F q G q q f qq q q q q q              
                       (H.22) 

Then, after some lengthy mathematical manipulations, the result becomes: 

     

     

     

 

2

2

2
2 1

2

2

1

2

, ,

1 , ,

1 , ,

,
,

q

D Dq
f q gq q q q qD qE qq q

D
D G q f q gq q q q q q qD q

G q q g fq q q q q

D g Dq q q
f qq q qD

E qq q


    




      


    

  
   




 

  

 



 

 
 

 
  
    

   
   

  

  
   

  

 
  

   
      
    

 q


 

                         (H.23) 
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Similarly, the 1st term on the right hand side of eqn. (H.23) represents a boundary 

term [9] which also vanishes at  
2

0q q
    and at   

2

q q
   .  

This can be proved in a similar manner a done by Arik and Coon [9] and as 

follows. 

Since 2D q  consists of an ordinary integration over the argument   of the 

complex variable ieq q
   and a basic integration over 

2

q , then one can 

write [9]: 

 
 

 

 
22

2

0 0

, ,
q

D F D d Fq q q q q q
q



      



  
  

 
                          (H.24) 

Letting 

2

di q
d

q










 
  
 

             (H.25) 

       

     

2
1

2

, 1 , ,

1 , ,

D
F G q f q gq q q q q q q qD q

G q q f gq q q q q

       


    

   

 

   
   

   

 
  

 

 

                                                                                      (H.26) 

and using the fact that for 
2D

q qD q

 


 
 

 
, then 

2

D D
qD q D q







 
 
 

        (H.27) 
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After some mathematical manipulations, eqn. (H.24) becomes:   

     

     
 

 

       

 

2
2 1

2

0

2 2
1

1 , ,

1 , ,
2

1 , 1 ,

,

D
D G q f q gq q q q q q qD q

q
i

G q q f g d Dq q q q q q
q

G q f q G q q fq q q q q q

gq q q

      


     

     

  

  



  

  



   
   

  

  
      

  

    
       

    


 





                          (H.28) 

But  
0

,
b

D F q q 
 can be written as [9]: 

 
 

 

   
 

 
2

2
0

0

, ,

qq q
D F Fq q q q

q
qq



   



 

 



               (H.29) 

where, 

 

         
2 2

1

,

1 , 1 , ,

F q q

G q f q G q q f gq q q q q q q q q

 

        



   



    
      

    

 

                (H.30) 

 

Then, applying eqn. (H.29) to the right hand side of eqn. (H.28), and simplifying 

the result, yields:  
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2

2

2
2 1

2

0

1 , ,

1 , ,

, 0
2

q q

q q

D
D G q f q gq q q q q q qD q

G q q g fq q q q q

i
d Fq q q





      


    

  

  

 

 

 



   
   

  

  
   

  

 
  

    
 
  



                         (H.31) 

The notation  represents a closed contour integration on the circle 
2

q .    

The term on the right hand side of eqn. (H.31) vanishes for  
2

0q q
   and for 

 
2

q q
    as in ref. [9]. 

Therefore, eqn. (H.23) becomes: 

     

 
   

2

2

2

1 1

2

, ,

,
,

D Dq
f gq q q q qD qE qq q

D g Dq q q
q f qq q q qD qE qq q


    




  
   




 



   

 
 

 
  
    

 
  
  

          

 

            (H.32) 

But, since 
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2

† †1
ˆˆ ˆ ˆ , 

D q
a a aqq q q q q q q qq Eq


     

 

                       (H.33) 

then, by applying eqn. (H.32) to eqn. (H.33), and using eqn. (G.8), one can deduce 

that eqn. (H.33) takes the form: 

     
2

† 1 11
ˆˆ ˆ  , 

D Dq
a a q qqq q q q q q q qq E Dq q


      

  

    
  

 

                                  (H.34)  

The adjoint of eqn. (H.34) is: 

     
2

† 1 11
ˆ ˆ ˆ  , 

D Dq
a a q qqq q q q q q q qq E Dq q


      

  

   



 
  

  

                                  (H.35) 

Then, the one-to-one correspondence relations for eqns. (H.34) and (H.35) in 

terms of the q -representation become: 

   † 1 1ˆˆ ˆ ,
D

a a q qqq q q q q qq D q

    


    
  
 

                              (H.36)  

and 

   † 1 1ˆ ˆ ˆ ,
D

a a q qqq q q q q qq D q

    


   



 
  
  

                          (H.37) 

respectively. 
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 لخَصالم  

ل مث ،طريقه الى العديد من التطبيقات في حقول الفيزياء المختلفة qمن النوع   مفهوم التشوه د  ج  لقد و  

شجع على  مما ،الفيزياء النووية وعلم الكونيات ،فيزياء الحالة الصلبة ،الفيزياء الذرية  ،البصريات الكمية

لتشمل مفاهيم أخرى مثل الحالات المتشاكهة المعروفة في حقل البصريات التشوه هذا النوع من تعميم فكرة 

يبقى المشكلة الأبرز  qمن النوع   للتشوهفأن تفسير المعنى الفيزيائي  ومن جانب أخرهذا من جانب الكمية. 

  هذه التطبيقات.   جميعفي 

 تفسير سألةملحل  أيجاد العمل الحالي هو محاولة لتطبيق مفهوم الحالات المتشاكهة المشوهة من أجلن إ

بعد الواحد ب qمن النوع   ذي التشوهالتوافقي الكمي حيث تم أستخدام المتذبذب  ،هذه الفيزيائي المعنى

     .لحل هذه المسألة منهجية في أستخدام الحالات المتشاكهة المشوهةال هذهلتطبيق  كنموذج

 من  و التشوهذالتوافقي الكلاسيكي للمتذبذب أشتقاق معادلة ليوفل الكلاسيكية  ا  أبتداءتم في العمل الحالي ، 

تخدام بأسنفة الذكر آالمعادلة تم حل حيث  ،حالتي فضاء الطور المشوه وغير المشوهفي  بعد واحدب qلنوع ا

دالة توزيع الأحتمالية تعطي  التي  فة في حل المعادلات التفاضلية الجزئيةوالمعر “طريقة الخصائص”

خدام طريقة بأستفي فضاء الطور  سلوك هذه الدالةثم تم تحري  .لهذا المتذبذب في فضاء الطور الكلاسيكية

بأستخدام حزمة البرمجيات  حاسوبيمن خلال بناء برنامج  لتوضيح تفاصيل هذا السلوك ةحاسوبي

®Mathematica. 

 مؤثر الكثافةلمعادلة هايزنبيرك للحركة عادة صياغة إفي العمل الحالي قد تم ف على المستوى الكميو

 يلتمثل المعروفة، توزيع شبه الأحتمالية بدلالة دوالبعد واحد بغير المشوه  للمتذبذب التوافقي الكمي

هذا الأمر في الحصول ساعد الطور المشوه وغير المشوه.  ئيفي فضا qالتشوه من النوع  وذالمتذبذب 

ليوفل  تالكلاسيكية لمعادلا اتلغايل التوصلتم  .نئيفضاهذين الفي على معادلة ليوفل الكمية للمتذبذب 

الاضافة المشوهة. ب لةغيرالمشوهة الى الحا ةلحالافي المستخدمة  التقليدية للغايات تعميم الطريقةب الكمية

توظيف تقريب جديد لتحري الغاية الكلاسيكية لمعادلة ليوفل الكمية لهذا  في العمل الحالي تم قدف ،الى ذلك

     .(يك وكوونأر) قبل الباحثينمن  التي تمت صياغتها سابقاأستخدام الحالات المتشاكهة المشوهة بالمتذبذب 

لمتذبذب الكلاسيكية لمعادلات ليوفل الكمية لهذا ا اتلغايلالنتائج المترشحة عن الأشتقاقات الرياضية أثبتت  

 ،لكالكمي غير المشوه. كذذات طبيعة أحصائية كما هو الحال للغاية الكلاسيكية للمتذبذب  اتبأن هذه الغاي

عن معلومات  Mathematica®المعدة بأستخدام  ةالحاسوبيالبرامجيات مع نتائج كشفت ن هذه النتائج إف

  تفصيلا  أكثر 
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ذي التشوه من ملاحظة أن المتذبذب  تضمنو ،المتذبذبلهذا   qللتشوه من النوع تخص المعنى الفيزيائي 

لوحظ .   يعتمد على لاخطيةمعامل يتصف بمتذبذب لاخطي ل عتباره مكافئا  إبعد الواحد يمكن بال  qالنوع 

في فضاء  ةدواميأشكال يتصف بادلة ليوفل الكمية لهذا المتذبذب عالكلاسيكية لم اتلغاياأن سلوك ب ا  ضأي

ذا ويمكن أعتبار ه .لأظهار التفاوت في السلوك مع نظيراتها الكلاسيكية ان مقارنتهاا لأمكب الطورحيث

حالة  اللاتوافقي المتذبذب كونحيث ي ،qبالتشوه من النوع مرتبطة السلوك ذي الشكل الدوامي ظاهرة عامة 

 خاصة. 

لى وجود مؤشرات على طبيعة لاتبادلية لهندسة فضاء إتم التوصل أيضا  من خلال نتائج  العمل الحالي    

 . الذي تمت دراسته qالطور للمتذبذب ذي التشوه من النوع 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


