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Summary

Atoms and molecules are the fundamental constituents of materials and they

are the main key that can open the door to understand the materials’ structures

and dynamics. The goal of a computational atomic and molecular physics is

to determine numerical solutions of approximate equations. All measurable

properties of the atoms and molecules can be obtained by these solutions.

In the present work, accurate treatments for both non-relativistic quantum me-

chanics and relativistic quantum mechanics have been presented. The treat-

ments were applied for the atoms group15 (in periodic table) that comprises

7N, 15P, 33As, 51Sb, 83Bi and 115Uup and for diatomic molecules, such as Li2,

N2, F2 and Se2. The treatments depended on three essential techniques, which

are basis-set, Hamiltonian and type of method. The obtained results, from

modified GRASP1.0.0 and DIRAC14.2 programs, were compared with ex-

perimental results, non-relativistic C.F.Fischer treatment and relativistic Viss-

cher treatment.

The first technique depended on approximate 4-component spinors and the

expanded spinor into a finite basis set. Each 4-components are a linear com-

bination of scalar basis function (atomic basis set). The scalar basis set was

formed by primitive Cartesian Gaussian basis function and subdivided into a

large (L) and small (S) components sets, which were used to describe the up-

per and lower two components of the 4- spinors, respectively. Gaussian basis

function type Dunning basis set for the non-relativistic treatment and the type

Dyall basis set for the case of relativistic treatment have been adopted. The

small component Gaussian basis function was derived from the large com-

ponent Gaussian basis function by using kinetic balance relationship. The

second technique depended on the type of Hamiltonian, especially on the

potential term. In this technique, two models were utilized to describe the

nuclear charge distribution. The first model is called point charge model,

whereas the second model is called the Gaussian charge model, which can

be combined with Gaussian basis set for the two cases non-relativistic and

relativistic treatments to solve the singularity. Accurate calculations for the
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atoms and molecules required methods that have more flexibility to treat the

relativistic and non-relativistic treatments. The third technique depended on

two methods. Firstly, Hartree-Fock method, which was used with Dunning-

Gaussian basis-set in non-relativistic. Secondly, Dirac-Hartree-Fock method,

which was used with Dyall-Gaussain basis-set in relativistic to treat the sys-

tems that have many-electrons in atoms and molecules.

The results showed that in the case of heavy atoms, such as 51Sb and 83Bi

and super heavy atoms, such as 115Uup the inner spinors s1/2 and p1/2 were

strongly contracted. In addition, the result showed weak singularity. In order

to describe the nuclear charge distribution and solve the issue of singularity

at the origin for the 1s1/2 and 2p1/2 spinors, the Gaussian charge plus Gaus-

sian basis set model was harnessed. For the atoms, the obtained results, that

include the total energy, the energy of each spinor in atoms, the energy of

valance configuration, the expectation value of 〈r〉, the energy of each molec-

ular orbital, the behavior of the large and small components for closer orbitals

and the behavior of the radial overlap density of p1/2 and p3/2 for each atom

in group15, were better than the C.F.Fischer treatment in non-relativistic and

Visscher treatment in relativistic.

The technique’s accuracy was stemmed from the type of Gaussian basis-

set, that containens Dunning-Gaussian type (non-relativistic treatment) and

Dyall-Gausaaian type (relativistic treatment), which was used to describe the

correlation and polarization wave functions for valance orbitals and the Gaus-

sian charge model, which was used to describe the nuclear charge to solve the

problem of singularity in closer orbitals.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The laws and equations that govern the behavior of the electrons in atoms and

molecules are, of course, unknown exactly, but only to a certain approxima-

tion. The goal of atomic and molecular computational physics is to determine

the numerical solutions to these approximate equations. From these solutions,

most measurable properties of atoms and molecules can be obtained, and can

be compared with experiments. For the calculated properties to be of any

practical use, it must be possible to provide error estimates for them. To do

so, a number of calculations have to be performed, where the convergence of

the properties is studied as the approximate solution improved. Variational

methods, such as Multi-Configuration-Hartree-Fock or Dirac-Hartree-Fock,

are well suited for this purpose, since the function space spanned by the trial

functions can be extended in a natural way. In addition, most variational

methods are very general, and allow different types of atoms and states to

be studied within the same formalism. The starting point of non-relativistic

quantum mechanics is the Schrödinger equation that describes the motion of

electrons and nuclei. Many-particle equations can not be solved exactly and

ways to obtain approximation solution must be found. The majority of the

elements in the periodic table are many-electron systems, where the motion

of every electron is coupled to the motion of all the other electrons, as well

as to the nucleus. For the study of such a system we rely on some approx-

imation methods, such as the Hartree-Fock method (HF). It is based on the

2
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rather natural approximation that every electron moves in the potential created

by the nucleus plus the average potential of all the other electrons. This as-

sumption leads to the independent-particle model, which essentially reduces

the many-electron problem, to the problem of solving a number of coupled

single-electron equations. The single electron equation is solved in an itera-

tive manner until a chosen level of self-consistent accuracy is achieved. To

study the properties of molecular systems as many particle systems, funda-

mental concepts of quantum physics must be applied. Molecular systems

involve, fast and slow degrees of freedom, these would be electronic and nu-

clear variables, respectively. Such systems can be analyzed by means of the

Born-Oppenheimer approximation [1]. Atomic data are of great importance

in astrophysics. Computational atomic physics has provided data for many

atoms and ions, but the need for additional data is enormous [2], especially

for more complicated atoms, where little progress has been made so far. By

developing reliable computational methods in order to provide these data,

atomic physics can help to answer fundamental questions about the universe

and its evolution. Atomic data are also essential for understanding processes

in plasmas. such data can also be applied, to fusion plasmas, laser physics,

and transition probabilities. They are also needed in the search for new and

efficient laser transitions. This is particularly important in the context of the

current research in X-ray laser generation in dense plasmas.

1.2 Hartree–Fock Algorithm

In computational physics, the Hartree–Fock (HF) method is a method of ap-

proximation for the determination of the wave function and the energy of a

quantum many-body system in a stationary state. The Hartree–Fock method

often assumes that the exact N-body wave function of the system can be ap-

proximated by a single Slater determinant in the case of fermions. By in-

voking the variational method, one can derive a set of N-coupled equations

for the N spin orbitals. A solution of these equations yields the Hartree–Fock

wave function and energy of the system [3]. The Hartree–Fock method is typ-
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ically used to solve the time-independent Schrödinger equation for a multi-

electron atom or molecule as described in the Born–Oppenheimer approxi-

mation. Since there aren’t exact known solutions for many-electron systems,

the problem is solved numerically. Due to the nonlinearities introduced by

the Hartree–Fock approximation, the equations are solved using a nonlinear

method such as iteration, which gives rise to the name "self-consistent field

method".

1.3 Basis set

Basis sets are a mathematical convenience, this is because of the quantum

mechanical equations which describe the behavior of electrons in atoms and

molecules are most easily solved by expanding the wave function or density

in terms of a finite set. The molecular orbitals can be created by linear com-

binations of a set of functions called atomic orbitals as [4]:

Ψi =
n

∑
µ=1

cµiφµ (1.1)

where Ψi is the i− th molecular orbital, cµi are the coefficients of linear com-

bination of atomic orbitals, φµ is the µ−th atomic orbital, and n is the number

of atomic orbitals. The basis sets typically model atomic orbitals centered on

the atoms. There are two general categories of basis sets. The first minimal

basis-set, is a basis set that describes only the most basic aspects of the or-

bitals, and secondly extended basis set, is a basis set that describes the orbitals

in a great detail. In quantum molecules approximate calculations are used for

atomic orbitals with different forms. One type of basis functions is the Slater

Type Function (ST F) which is similar to the hydrogen wave function. An-

other type of basis functions is the Gaussian Type Function (GT F).

1.3.1 Slater Type Function

Slater type function (ST F) which is similar to the hydrogen wave function,
has the form in spherical coordinate as:
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φi (ξ ,n, l,m;r,θ ,ϕ) = Nrn−1e−αrYlm (θ ,ϕ) (1.2)

where N is a normalization constant, α is the control width of the orbital

called exponent, r,θ and ϕ are spherical coordinates, and Ylm (θ ,ϕ) is the

angular momentum part. The n, l,m are the principal, angular momentum,

and magnetic quantum numbers, respectively. The exponential depends on

the distance between the nucleus and electron mirrors of the exact orbitals.

However, the STFs do not have any radial nodes; nodes in the radial part are

introduced by making linear combinations of ST Fs. The exponential depen-

dence ensures a fairly rapid convergence with increasing number of functions.

The Slater type orbital for 1s type atomic orbital have a cusp at the origin.

1.3.2 Gaussian Type Function

Gaussian type function(GT F) is an atomic orbital used in linear combinations

forming molecular orbitals, has the form in spherical coordinate as.

φ (ζ ,n, l,m;r,θ ,ϕ) = Nrne−ζ r2
Ylm (θ ,ϕ) (1.3)

where ζ is the Gaussian orbital exponent, N, is a normalization constant, The

r,θ and ϕ are spherical coordinates, and Ylm (θ ,ϕ) is the angular momentum

part. The Gaussian function can be written in Cartesian coordinates, and it is

given by:

φ
GT F (ζ ,a,b,c;x,y,z) = Ne−ζ r2

xaybzc (1.4)

where N is a normalization constant which insures that the square of the

Gaussian gives a value of 1.0 when integrated over all space x,y,z in Carte-

sian coordinates. The a,b,c are angular momentum control parameters; L =

a+ b+ c, and ζ controls the width of the orbital. ζ is the Gaussian orbital

exponent, which helped to determine the radial size of the function. The vari-

able r represents the distance of the electron from the origin of the Gaussian

functions with L = a+b+ c = 0, are spherically symmetric about the origin

and are known as "s" functions. Similarly, the three functions correspond-

ing to a+b+ c = 1 are the px, py, pz functions, etc. The Cartesian Gaussian
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possesses six functions with a+b+c = 2, from which the five spherical com-

ponents, dxy, dxz, dyz, dxx−yy and d2zz−xx−yy, can be constructed.

1.3.3 Gaussian Primitive Functions

Gaussian primitives are added together in linear combinations to produce

basis functions which are approximations to natural orbitals. The primi-

tive function is usually obtained from quantum calculations on atoms. The

primitive functions describe isolated atoms and cannot accurately describe

deformations of atomic orbitals brought by the presence of other atoms in the

molecule. For molecular calculations, these Gaussian primitives have to be

contracted. The contraction means a linear combination of Gaussian primi-

tives which can be used as basis function. A Gaussian primitive is given by

:

φµ = ∑
k

dµkgk (1.5)

where φµ is the atomic basis function, dµk is the fixed coefficient of Gaus-

sian primitive k, and called contraction coefficient in atomic orbitals, and gk

is Gaussian primitive. The designers of basis sets have optimized the set of

coefficients dµk and the set of exponents ζ in equation (1.4) used in the Gaus-

sian primitive gk to give a balanced set of orbitals for a certain set of elements.

The individual Gaussian functions are summed to produce a contracted Gaus-

sian basis function (cGTF). So a set of p-functions is three basis functions, but

may be many primitive basis functions.

1.3.4 Contracted Gaussian Basis Function (cGTF)

Contracted Gaussian-type Function (cGTF) is the usual basis-set function, a

linear combination of Gaussian functions with the linear coefficients fixed,

multiplied by an angular function. Contracted Gaussian basis sets for atom

and molecule calculations are derived from primitive basis-sets. So, one set of

p-functions contains three cGTF’s (px, py, and pz), i.e, three basis functions.
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Contraction refers to the particular choice of scheme for generating the linear

combinations of Gaussian functions that constitute a contracted basis set. A

"generally-contracted" basis set is one in which each primitive is used in many

basis functions.

1.3.5 Valence Double-Zeta (VDZ) Basis-Set

A basis consisting of a minimal basis set for the core electrons and a dou-

ble zeta basis set for the valence electrons would be called a split valence

double zeta basis set. A Valence Double-Zeta (VDZ) is a minimal basis-set

used to describe core electrons, but the valence electrons have twice the min-

imum number of functions which mean double zeta. This means the valance

orbitals are split into two parts: an inner, compact orbital and an outer, ex-

panded orbital. The coefficients of these two kinds of orbitals can be varied

independently during the construction of the molecular orbitals as shown in

Fig (1.1). The Double-Zeta (DZ) is a basis set for which there are twice as

many basis functions as are minimally necessary.

Figure 1.1: Split-valance for p-type basis functions

1.3.6 Polarized Basis-Set

When the wave function includes polarization functions, this means increas-

ing basis-set to get closer to the exact electronic energy. A polarized basis set

includes functions that are of higher angular momentum than minimally re-

quired. For example, nitrogen atom has 1s, 2s, and 2p orbitals, so a polarized
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basis set would also include at least a set of d-functions. The added functions

are often called polarization functions. Polarization functions are included to

improve the flexibility of the basis set, particularly to better represent elec-

tron density in bonding regions. The outer shell have two (or more) valence

shell basis functions for each natural valence shell orbital. The tails of the

Atomic Orbitals (AOs) are allowed to vary to account for the different elec-

tronic properties of an element in different molecular environments. Usually,

need at least one extra basis function and allow electron cloud to be polarized

off-center from the nucleus, this is called a polarization function. Polariza-

tion functions help to account for the fact that atoms within molecules are not

spherical. The use of polarization basis functions allows for the atomic elec-

tron densities to be polarized in order to better represent the electron density

of the molecule. Consider the sum of an s-type orbital and a p-type orbital, as

shown in Fig (2.1). One lobe of the p-type orbital is enhanced by the addition

of the s-type orbital, while the lobe of opposite sign cancels and a few are

left. This has the effect of polarizing the electron density from its original

spherical shape into a form that is polarized in one direction.

Figure 1.2: The polarization s-type basis with p-type basis functions

Figure 1.3: The polarization p-type basis with d-type basis functions
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1.3.7 Double-zeta with polarization (DZP)

The Double Zeta (DZ) basis set is polarized with two basis functions added

of each type found in the separated atoms. A polarization set generally has an

angular momentum one unit higher than the highest valence function. So a

polarization set on nitrogen is added to the set of d-functions. For the nitrogen

atom, a double zeta basis set would consist of two 1s, two 2s, and two each

of 2px, 2py, and 2pz orbitals, for a total of 10 basis f unctions. The two 1s

orbitals employed in the basis set are not identical. Rather, they have different

orbital exponents. The same is true for the 2s and 2p orbitals. The basis

functions in the double zeta basis set are denoted 1s, 1s′, 2s, 2s′, 2p(3), and

2p′(3).

1.3.8 Correlation-Consistent Polarized Valence Double-Zeta Basis-Set cc-
pVDZ

The smallest in a series of "correlation consistent" basis sets was developed by

Dunning and coworkers for high-level calculations. It has been observed that

properties computed using successively larger basis sets of this series appear

to converge exponentially, presumably to the corresponding Complete Basis-

Set (CBS) values. Complete basis set indicates that some method of basis set

extrapolation is applied in an attempt to determine the result that would have

been obtained using an infinitely large basis set. The two major extrapolation

methods are (1) repeating the calculation with increasingly large basis sets

and making an empirical extrapolation, and (2) using analytical formulas that

are correct to second-order.

1.4 Historical Background

Hartree published two important papers in 1927 [5,6]. In the first paper

Hartree described a numerical method for the solution of radial equation with

a non-Coulomb central-field, and in a second paper he used these methods to
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find a field of force such that the distribution of a charge given by the wave

functions,shall reproduce the field. Hartree called this field the self-consistent

field. The system of differential equations that he solved later, are known as

the Hartree equations but Hartree equation with out exchange field. In 1929,

Egli Hylleraas concluded a very successful variational calculation of the en-

ergy levels in Helium[4]. In 1934, E. Wigner explained, Fock pointed out

that the Hartree wave function was involved, as it did not satisfy the Pauli

exclusion principle, that the wave function must be antisymmetric with re-

spect to electron interchange. Fock also showed that a Hartree product could

be made antisymmetric by appropriately adding and subtracting all possible

permutations of the Hartree product, thereby forming the Hartree-Fock(HF)

wave functions [7]. Slater showed that the resulting wave function was sim-

ply the determinant of matrix, called a Slater determinant in 1930 [8]. In 1936

the idea of the configuration average was discussed early by Shortly[9] and

has been treated in detail by Slater [10]. S.F.Boys in 1950 obtained numeri-

cal accuracy electronic wave functions for the stationary states of atoms and

molecules by using Gaussian functions for molecular orbitals and and linear

combination of many slater determinant treatment by the variational proce-

dure [11]. E.Clementi and D.L.Raimondi in 1963 used minimum basis set of

Slater-type orbitals for atoms with 2 to 36 electrons [12]. In 1964 E.Clementi

presented simple basis set by taking inner and outer regions of the wave func-

tion for the ground state of the first and second row atom, using self consis-

tent field functions, with two slater type orbitals (STO) [13]. Liberman et al.,

calculated numerical wave functions for closed shell configuration of some

atoms by approximating the exchange term by Slater’s method in 1965 [14].

W.J.Hehre, R.F.Stewart and J.A.Pople fixed Slater atomic orbital in 1969, by

linear combination of Gaussian orbitals. The sum of Gaussian-type orbital

type (STO-nG) to represent STO and Gaussian exponent are shared between

Slater-type 2s and 2p functions in self consistent field molecular-orbital cal-

culations [15]. R.Ditchfield, W.J.Hehre and J.A.Pople extended the basis set

of atomic functions. The basis set type 4-31G described each inner shell and

valance shell for atoms from carbon to flourine. The expansion coefficient
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and Gaussian exponents are determined by minimizing the total calculated

energy of the electron ground state in 1971 [16]. In 1971 Dunning’s concen-

trated on energy optimized GTOs, where each exponent had been variational

optimized in an atomic HF linear combination of atomic orbital calculation.

He used Huzinaga GTO, which consist of ten primitive S-type GTO and six

primitive GTO for each first row atom (10s,6p) to constract contracted (5s,3p)

and (5s,4p) GTO [17]. Bungeo et al. in 1992, studied the atoms from (He-Xe)

with atomic orbital expressed in terms of Slater type functions. When the the

basis set size is increased with respect to the Cleimenti basis , they yield to

the total energy becomes better using HF method under MCHF program [18].

M.B.Ruiz and M.Rojas in 2003 studied variational calculation of the 2p1/2

ground state of boron atom of using a single term reference wave function

without inter electronic distance using a 4-31G basis set [19]. The attempts

in 1935 to set up relativistic self-consistent field calculation were initiated by

Swirles [20]. Swirles showed that Dirac’s equation is able to carry through

the relativistic version of Fock and Slater’s formulation of the Hartree-Fock

equations. For a closed shell configuration some relativistic self-consistent

calculations were made by various authors, but most of these calculations

either omitted the exchange term or made some approximation to avoid the

numerical difficulties. For instance, Schonfelder computed for various atoms

numerical wave functions without the exchange terms [21]. In 1973 Desclaux

calculated highly accurate spinor energies, total energies,and other expecta-

tion values for closed shell atoms [22]. Desclaux also published a program

for calculation on Multi-Configuration Dirac-Hartree-Fock(MCDHF) in 1975

[23]. B.Fricke presented in 1984 a relativistic atomic structure calculation

with Multi-configuration-Dirac-Fock method to study charge density for one-

electron Mercury atom in (1s,2s,2p) levels [24]. Matveen et al.,in 1998 an-

alytically calculated the ground state wave function and the energy term of

the relativistic electronic moving in the field of two Coulomb center by the

method of LCOA to calculate of the critical distance between two nuclei

Z=35,Z=68 [25]. Paolo et al., in 2002 studied relativistic correction of the

simple one electron mass velocity Darwin approximation and two electron to

11



Chapter One Introduction and Literature Review

the ground state electronic energy of H2S molecule [26]. Hiroshi et al.,in 2005

solved analytically relativistic Dirac-Coulomb (DC) equation for atoms and

molecules. Appling this method on the hydrogen like and helium like atoms

gives satisfactory results implying a high potentiality in relativistic case [27].

Jacek Bieron et al., used MCDHF model to calculate the expectation value for

the D3/2 and D5/2levels of atomic gold. The approximation employed in this

study is equivalent to a complete active space approach [28]. D.M.Gitman,

A.D.Levin, I.V.Tyutin, and B.L.Voronov in 2013 used Dirac equation with the

Coulomb field of a point charge model to study the electronic spectrum for

heavy elements[29]. V.P.Neznamov and I.I.Safronov in 2014 determined the

energy level for hydrogen-like atom for Z > 105 by using a new method. This

method included finite nuclear size effects, suggested for heavy elements en-

countered in solving the Dirac equation for an electron in the field of a point

charge Ze. In this method, the boundary condition for the numerical solution

of the equations for the Dirac radial wave functions is taken so that the com-

ponents of the electron current density are zero at the boundary of the nucleus

[30].

1.5 The Aims of The Thesis

The main goal of this work is to find accurate and flexible treatments for both

non-relativistic and relativistic quantum mechanics and to develop GRASP1.0.0

program based on these treatments. In addition, the work aims to expand one-

component in case of non-relativistic and four-component spinors in case of

relativistic into a finite basis-set and to investigate the atomic level properties

of heavy and super heavy atoms for group15. Moreover, DIRAC14.2 pro-

gram was used to compute the properties of diatomic molecules via evaluate

the total energy and the spinor energy, which depend on the type potential

model and Gaussian Dyall basis set functions.
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1.6 Outline of Thesis

The first chapter will briefly review the history of non-relativistic quantum

mechanics and relativistic quantum mechanics and the development of the

basis-set. The second chapter is divided into two parts, the first part de-

scribes Hartree-Fock (HF) approach with Gaussian basis set in case of non-

relativistic quantum mechanics for atoms. In the second part, the Schrödinger

equation for molecular systems in general is presented. The standard method

for quantum molecules is solved for the electronic part problem by using

Born-Oppenheimer approximation to find total energy and find energy for

grad state and ungrad state. Chapter three have two parts. Part one describes

the relativistic atomic structure by using Dirac-Hartree-Fock (DHF) approach

for atoms and part two describes the molecular structure theory using DHF

approach for molecules. It also gives the relativistic wave function described

by Dyall basis set type Gaussian dyall−2zp. In chapter four we present and

discuss the results and figures achieved in this project. Finaly, capter five

gives the main conclusion, and some suggested future work.
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Chapter 2

Non-Relativistic Hartree-Fock for Atoms and Molecules

Part One

Non-Relativistic Hartree-Fock for Atomic Structure Theory
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2.1 The Non-Relativistic Hamiltonian

For an N-electron system (atoms or molecules), with a nuclear charge Z, the

normal starting point is the Hamiltonian. The non-relativistic Hamiltonian

can be written, in atomic units,(h̄ = m = e2/4πε◦ = 1) ,as [31].

Ĥ = Ĥ1 + Ĥ2 (2.1)

where,

Ĥ1 =
N

∑
i=1

ĥi ; ĥi =−
1
2

∇
2
ri
− Z

ri
(2.2)

and

Ĥ2 =
N

∑
i< j

1
ri j

; ri j =
∣∣~ri−~r j

∣∣ (2.3)

The first term of equation (2.1), Ĥ1 is the sum of the N identical one-body
Hamiltonians ĥi; each individual Hamiltonian ĥi, containing the kinetic en-
ergy operator of an electron and its potential energy due to the attraction of
the nucleus. The second term, Ĥ2 , is the sum of N(N−1)/2 identical terms
1
ri j

, which represent the two-body interactions between each pair of electrons,
where~ri denotes the relative coordinate of the electron i with respect to the
nucleus, the Hamiltonian can be write, as [32],

Ĥ =
N

∑
i=1

(
−1

2
∇

2
ri
− Z

ri

)
+

N

∑
i< j

1
ri j

(2.4)

The non-relativistic Hamiltonian commutes with the angular momentum op-
erators L̂2, L̂Z, Ŝ2, ŜZ and with the inversion operator Î, and thus the eigenfunc-
tions of Ĥ must also be eigenfunctions of these operators. In the Hamiltonian
above, it is assumed that the atomic nucleus can be treated as a point charge
and Gaussian nucleus model.

2.2 Nuclear Charge Distribution Model

In a large part of previous studies, atomic nuclei are considered mainly as

massive point-like centers of positive charge, which attract the surrounding
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electrons and repel other nuclei. The attractive and repulsive Coulomb inter-

actions between the constituting particles, i.e., nuclei and electrons, as well

as their kinetic energy, must be balanced if stable structures are to be formed.

The application of quantum mechanics which describes behavior of electrons

and nuclei under these interactions, finally leads to connection with structure

optimization according to the energy minimization principle. The charge dis-

tribution within a nucleus can be described by two types of model, using both

the point nucleus model and Gaussian nuclear model [33]. The important ef-

fects on a single particle function and energy are due to the change from the

point like nucleus to an extended nucleus. The models included here are either

frequently used in electronic structure calculations or are of importance due

to their use for representing nuclear charge density distribution as obtained

from experiment. As long as one is interested only in the total energy of

the atomic electron system, the change from the simple but unrealistic point

nuclear charge to a roughly realistic Gaussian nuclear charge is much more

important than finer details due to the variation of the finite nucleus. In the

non-relativistic treatment, based on the Schrödinger equation, solutions exist

for any nuclear charge Z for both, the point model and the Gaussian model,

and the change from the point model to the Gaussian model induces only a

slight change in the short-range behavior of non-relativistic radial functions

(removal of the cusp). The nuclear charge density distribution ρ(r) is related

to the resulting potential energy function V (r).

2.2.1 Point Charge Model

In non-relativistic theory, nuclei are usually treated as point charges. The

charge density distribution ρ(r) for the atomic nucleus can be given in terms

of Dirac delta distribution [34],

ρN (~ri) = ZNδ (~rN) (2.5)

where δ is the three-dimensional Dirac delta function and ~rN is the nuclear

position . And the scalar potential due to a nucleus N determined by the
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nuclear charge Z is given by [35],

φ (ri) =

ˆ
ρN (r′)
|~ri−~r′|

d3r′ (2.6)

giving a Coulomb potential

φ (ri) =
ZN

riN
;riN = |~ri−~rN| (2.7)

However, this introduces weak singularities in the relativistic wave functions

at the nuclear origins, which are hard to model in a finite basis approximation

[36]. With the introduction of a Gaussian nucleus model, which in any case

is a better physical model, the wave functions attain a Gaussian shape at the

nuclear origins [37].

2.2.2 Gaussian Charge Model

The Gaussian nuclear charge distribution has the following form,[33]

ρN (ri) = ZN

(
ηN

π

)3/2

exp
(
−ηNr2

iN

)
(2.8)

where the exponent of the normalized Gaussian type function representing

the nuclear distribution is determined by the root-mean-square radius of the

nuclear charge distribution via the relation [38],

ηN =
3

2〈r2〉
(2.9)

where η is the exponential parameter chosen to give a root-mean-square value〈
r2〉1/2of the nuclear charge distribution and, equal to the empirical formula

[39, 40] 〈
r2
〉1/2

=
[
0.836A1/3 +0.570

]
∗10−15mbohr (2.10)

where A is the atomic mass of the nucleus .This gives the formula

η =
3
2

[
0.529167

0.836A1/3 +0.570

]2

∗1010 (2.11)
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The electrostatic potential for this charge density distribution is given in terms

of the incomplete gamma function as Fn (x) : [41],

φ (riN) = ZN

√
4ηN

π
F
(

ηNr2
iN

)
;whrer Fn (x) =

1ˆ

0

exp
[
−xt2

]
t2ndt (2.12)

The Gaussian charge distribution leads to a long-range behavior of the poten-

tial identical to that of a Coulomb potential, but value at the nuclear origin is

finite:

φ (riN) = 2ZN

√
ηN

π
(2.13)

This model is popular, due to the easy computational implementation, since

the electronic wave function is usually also expanded to Gaussian-type func-

tion and electron-electron repulsion integrals.

2.3 Slater Determinants

For a single particle, or electron in a central potential created by static pro-

ton, a single wave function is required to describe the system. It would seem

reasonable then to form the total wave function of a system of particles as a

product of individual wave functions. This describes the simplest approxima-

tion. Hartree assumed that each electron moves only in the average field of all

the other electrons of the system, where for N-electron system the total wave

function can be written as a simple product of one-particle wave functions

[42]:

Ψ =
N

∏
q=1

uα,β ,...,ν(qN) = uα (q1)uβ (q2) ...uν (qN) (2.14)

Each of the symbols α,β , ...,ν represents a set of four quantum numbers(n, l,ml,ms).

The one-particle wave function uα,β ,...,ν(qN) is composed of a spatial func-

tion and a spin function. And qi = (~ri,σi), is the space and spin coordinate

of the electron labeled i. The problem with this assumption is that elec-

trons are a among a class of particles called fermions. According to Pauli
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exclusion principle two fermions can not be in the same state and same lo-

cation, at the same time. This means any wave function describing a system

of such particles must be antisymmetric under exchange of particles [39], to

build up out of single-electron spin orbitals, a total N-electron wave function

Ψ(q1,q2, ...,qN), which is antisymmetric in the spatial and spin coordinates

of any two electrons, in order to satisfy the requirements of the Pauli ex-

clusion principle. The total wave function describing an atom in which one

electron is in state α and another in state β and so on may be written as a NxN

determinant [43]. To satisfy this requirement, Fock and Slater re-derived the

equations of Hartree, such that the wave function can be written as a Slater

determinant given by [44]:

Ψ(q1,q2, ...,qN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
uα (q1) uβ (q1) . . . uν (q1)

uα (q2) uβ (q2) · · · uν (q2)
... ... ...

uα (qN) uβ (qN) uν (qN)

∣∣∣∣∣∣∣∣∣∣
(2.15)

This wave function is obviously antisymmetric because if we interchange the
(spatial and spin) coordinates of two electrons (say q1 and q2) this is equiva-
lent to interchanging two rows, so that the determinant changes sign, to satisfy
the requirements of the Pauli exclusion principle. The factor 1√

N!
appearing

in equation (2.15) is a normalization factor arising from the fact that there are
N! permutations of the electron coordinates, q1,q2, ...,qN . A more convenient
notation for the total wave function uses the anti symmetrizing operator Â and
is given by [45].

Ψ = Â [Ψ(q1,q2, ...,qN)] = Â
N

∏
q=1

uα,β ,...,ν (2.16)

where

Â =
1√
N! ∑

p
(−1)p P̂ =

1√
N!

[
1−∑

i j
p̂αβ +∑

i jk
P̂αβν − ...

]
(2.17)

and P̂ is the permutation operator. P̂αβ permutes the coordinates of electron

α and β , and p is the number of permutations of two indices. If an even num-
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ber of permutations occurs, the term (−1)pis positive while if odd, the term

(−1)p is -ve. In terms of electron coordinate permutations, we can rewrite

the Slater determinant (2-15) in the more compact form. That is [46]

Ψ(q1,q2, ...,qN) =
1√
N! ∑

P
(−1)p Puα (q1)uβ (q2) ...uν (qN) (2.18)

2.4 The Variational Principle

The variational principle is a method for approximation to the exact solution

of the Schrödinger equation, which is very useful in obtaining the bound state

energies and wave functions of a time-independent Hamiltonian H. We de-

note by E j the eigenvalues of this Hamiltonian and by Ψ j the corresponding

orthonormal eigenfunctions. We choose a trial function with a flexible form,

with some parameters that we can vary. The best approximatation to the exact

solution for this class of trial wave function is known. Suppose we know that

the exact solution of the ground state is given by [47]:

Ĥ|Ψ j >= E j|Ψ j > (2.19)

where Ψ j is arbitrary wave function. The solutions for any function Ψtrial

can be expressed as a linear combination of the eigenfunctions of a Hermitian

operator, for instance

|Ψtrial >= ∑
j

c j|Ψ j > (2.20)

where |Ψtrial > is an approximate ground state eigenfunction for the Hamil-

tonian. The approximate energy function Eapproxi [Ψ] is given by:

Eapproxi [Ψtrial] =

〈
Ψtrial

∣∣Ĥ∣∣Ψtrial
〉

〈Ψtrial|Ψtrial〉
(2.21)

An important additional property of the functional Eapproxi [Ψtrial] is that it

provides an upper bound to the exact ground state energy E◦. To prove this

result, we substitute equation (2-20) in equation (2-21), to get
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Eapproxi [Ψtrial] =
∑i |ci|2 Ei

∑i |ci|2
(2.22)

If we now subtract E◦, the energy eigenvalue, from both sides of equation

(2-21) we obtain

Eapproxi [Ψtrial]−E◦ =
∑i |ci|2 (Ei−E◦)

∑i |ci|2
(2.23)

We can write the above equation in another form

Eapproxi [Ψtrial] =
∑i |ci|2 Ei

∑i |ci|2
>

∑i |ci|2 E◦
∑i |ci|2

(2.24)

Since Ei > E◦, the right-hand side of above equation (2.24) is non-negative

so that E◦ ≤ Eapproxi [Ψtrial]. The functional Eapproxi [Ψtrial] gives an upper

bound, i.e., we can show the exact ground state energy is lower than any

approximation.

2.5 The Hartree-Fock Approach

The Hartree-Fock (HF) approach is a method for obtaing approximate total

wave functions for many-electron systems. It has been applied successfully

for many areas of quantum mechanics including atomic, molecular and solid

state systems. This method is based on both central field approximation and

the variational principle [48]. To study details of many-electron atoms is a

very difficult task in which approximation must be made. The starting point

of this approximation is that each of the atomic electrons moves in an effec-

tive spherically symmetric potential created by the nucleus and all the other

electrons [41]. This approximation is based on an independent particle model,

in which each electron moves in an effective potential which represents the

attraction of the nucleus and the average effect of the repulsive interactions

between this electron and the (N−1) other electrons.
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2.5.1 Hartree-Fock Energy Expression for Atoms

The non-relativistic Hamiltonian is explained in section (2.1), and can written

in another form, in atomic units i.e. (h̄ = m = e2/4πε◦ = 1), as

Ĥ =
N

∑
i=1

ĥ(i)+
1
2 ∑

i6= j
ĝ(i, j) (2.25)

The first term in above equation is the sum of the N identical one body Hamil-

tonians and the second term ĝ(i, j) represents the two-electron interaction,

i.e., ĝ(i, j) = 1
ri j

. To calculate the Hartree-Fock energy for atoms, we take the

expectation value of the Hamiltonian (2-25)

EHF =
〈
Ψ
∣∣Ĥ∣∣Ψ〉= ˆ Ψ

? (1, ...,N) ĤΨ(1, ...,N)d1...dN (2.26)

Now, we take the expectation value for the 1st term in equation (2-25),

N

∑
i=1

〈
Ψ
∣∣ĥ(i)∣∣Ψ〉= N

∑
i=1

ˆ
Ψ

? (1, ...,N) ĥ(i)Ψ(1, ..,N)d1...dN (2.27)

Since electrons are indistinguishable, therefore each term in this sum must

have the same value and we can select one term and multiply with the number

of terms, i.e.

N

∑
i=1

〈
Ψ
∣∣ĥ(i)∣∣Ψ〉= N

ˆ
Ψ

? (1, ...,N) ĥ(1)Ψ(1, ..,N)d1...dN (2.28)

Following the same argument, we can write the two-electron term in equation

(2-25) as,

1
2

N

∑
i 6= j
〈Ψ |ĝ(i, j)|Ψ〉= 1

2

N

∑
i6= j

ˆ
Ψ

? (1, ...,N)g(i, j)Ψ(1, ...,N)d1...dN (2.29)

=
1
2

N(N−1)
ˆ

Ψ
? (1, ...,N) ĝ(i, j)Ψ(1, ...,N)d1...dN (2.30)
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Now, can write the energy expression by summing equation (2-28) and equa-
tion (2-30), to obtain:

E =N
ˆ

Ψ
? (1, ...,N) ĥ(1)Ψ(1, ..,N)d1...dN+

1
2

N(N−1)
ˆ

Ψ
? (1, ...,N) ĝ(i, j)Ψ(1, ...,N)d1...dN

(2.31)

Substituting equation (2-18) in equation (2-28), the first term can be written,

N
ˆ

Ψ
? (1, ...,N) ĥ(1)Ψ(1, ..,N)d1...dN = N

ˆ
1√
N!

∑(−1)p uα (q1)uβ (q2) ...uν (qN) ĥ(1)× 1√
N! ∑(−1)p′ uα ′ (q1)uβ ′ (q2) ...uν ′ (qN)

(2.32)

To simplify equation (3.32), we replace symbols (α,β , ...,ν) by λ , i.e., λ =

α,β , ...,ν , we can rewrite equation (2-32),

N
ˆ

Ψ
? (1, ...,N) ĥ(1)Ψ(1, ..,N)d1...dN = ∑

λ

〈
uλ (qi)

∣∣ĥi
∣∣uλ (qi)

〉
(2.33)

where the sum over λ runs over the N individual quantum states (i.e. the N

spin orbitals) occupied by the electron, therefore, we introduc a new definition

as:

Iλ =
〈
uλ (qi)

∣∣ĥi
∣∣uλ (qi)

〉
(2.34)

to be the average value of the individual Hamiltonian ĥi relative to the spin

orbital uλ , as 〈
Ψ
∣∣ĥ(i)∣∣Ψ〉= ∑

λ

Iλ (2.35)

The second term in equation (2.31) can be written after substituting equation

(2-18) as:

1
2

N(N−1)
ˆ

Ψ
? (1, ...,N) ĝ(i, j)Ψ(1, ...,N)d1...dN =

1
2

N

∑
i 6= j
〈Ψ |ĝ(i, j)|Ψ〉

=
1
2

N(N−1)
ˆ

1√
N! ∑(−1)p uα (q1)uβ (q2) ...uν (qν) ĝ(i, j)

1√
N! ∑(−1)p′ uα ′ (q1)uβ ′ (q2) ...uν ′ (qN) (2.36)

The antisymmetrizer operator of equation (2-17) acting on second term in
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equation (2-31), gives :

Â

[
1
2

N

∑
i< j
〈Ψ |ĝ(i, j)|Ψ〉

]
=

1
2

N

∑
i< j

∑
P
(−1)p 〈

Ψ
∣∣ĝ(i, j) P̂

∣∣Ψ〉 (2.37)

=
1
2

N

∑
i< j

〈
Ψ
∣∣ĝ(i, j)

(
1− P̂i j

)∣∣Ψ〉 (2.38)

where P̂i j an operator that interchanges linked coordinates (spatial and spin)

of the electrons i and j. Combining equations (2-18) and (2-38) of two body

operators, where the sum over λ and µ runs over the N(N − 1)/2 pairs of

orbitals, we can write

1
2

N

∑
i< j

〈
Ψ
∣∣ĝ(i, j)

(
1− P̂i j

)∣∣Ψ〉=[1
2 ∑

λ

∑
µ

〈
uλ (qi)uµ (qi)

∣∣∣∣ 1
ri j

∣∣∣∣uλ (qi)uµ (qi)

〉

−
〈

uλ (qi)uµ

(
q j
)∣∣∣∣ 1

ri j

∣∣∣∣uµ (qi)uλ

(
q j
)〉]

(2.39)

where λ ,µ = α,β , ...,ν , The first Dirac notation bracket in equation (2.39)
represents the direct term

Jλ µ =

〈
uλ (qi)uµ (qi)

∣∣∣∣ 1
ri j

∣∣∣∣uλ (qi)uµ (qi)

〉
(2.40)

which is the average value of the interaction 1
ri j

relative to the state uλ (qi)uµ

(
q j
)
,

such that electron i is in the spin orbital uλ and electron j in the spin orbital
uµ . Also, we can introduced the exchange term representing the second Dirac
notation bracket in equation (2.39),

Kλ µ =

〈
uλ (qi)uµ

(
q j
)∣∣∣∣ 1

ri j

∣∣∣∣uµ (qi)uλ

(
q j
)〉

(2.41)

which is the matrix element of the interaction 1
ri j

between the two states
uλ (qi)uµ

(
q j
)

and uµ (qi)uλ

(
q j
)

obtained by interchanging the electrons i
and j. Combining eqs. (2-40), and (2-41), we get

1
2

N

∑
i 6= j
〈Ψ |ĝ(i, j)|Ψ〉= 1

2 ∑
λ

∑
µ

[
Jλ µ −Kλ µ

]
(2.42)
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Using eqs. (2-25),(2-35), and(2-42), the Hartree-Fock energy (EHF) can writ-
ten as

EHF = ∑
λ

Iλ +
1
2 ∑

λ

∑
[
Jλ µ −Kλ µ

]
µ

(2.43)

2.5.2 The Hartree-Fock (HF) Equations for Atoms

The form unlm (r) of a single-electron orbital, in the central field approxima-

tion is given by

unlm (r) =
1
r

Pnl (r)Ylml (θ ,φ)ξms (σ) (2.44)

where Ylml is a spherical harmonic and ξms is a spin function. The radial or-

bital can be assigned a principal quantum number n, dependent on the num-

ber of radial nodes, and the single-electron orbitals can be entirely specified

in terms of the four quantum numbers n, l,ml and ms. All orbitals with the

same n and l quantum numbers have the same energy and are said to belong

to the same nl shell. The equation (2.44), is referred to as a configuration

state function CSF and is denoted by Φ(γLS), where γ represents the set of

nl quantum numbers and the angular coupling scheme. Usually , an orthonor-

mal constraint is imposed on the radial orbitals
ˆ

∞

0
Pnl (r)Pn′l (r)dr = δnn′ (2.45)

In the variational procedure, the energy is minimized with respect to varia-

tions in the radial orbitals in above equations. This is a non-linear problem,

and an iterative procedure is required to determine the solution. Instead of

minimizing the energy directly, a set of integro-differential equations for the

radial orbitals that can be obtained by applying the radial variational condition

to the functional, and introducing a Lagrange multiplier λi j, as:
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E (γLS)+∑
i, j

δli,l jλi j
〈
Pnili|Pn jl j

〉
−λ

m

∑
i=1

c2
i = 0 (2.46)

where E (γLS) is the energy functional of the configuration state function
Φ(γLS) with

γ = (n1l1)
q1 (n2l2)

q2 ...(nm)
qm (2.47)

The energy can be written as [49],

E (γLS) =
〈
γLS

∣∣Ĥ∣∣γLS
〉

(2.48)

=
m

∑
i=1

qi

[
I
(
nili,n jl j

)
+

(
qi−1

2

) 2li

∑
k=0

fk (i)Fk (nili,nili)

]
+

m

∑
i=2


i−1

∑
j=1

qiq j

F
(
nili,n jl j

)
+

(li+l j)

∑
k=
∣∣∣li−l j

∣∣∣
gk (i, j)Gk (nili,n jl j

)
 (2.49)

where I
(
nili,n jl j

)
, Fk (nili,nili), and Gk (nili,n jl j

)
are radial integrals, given

by

I
(
nili,n jl j

)
=

ˆ
∞

0
Pnl (r)

(
−1

2
d2

dr2 −
Z
r
+

l′ (l′+1)
2r2

)
Pn′l′ (r)dr (2.50)

Fk (nili,nili) = Rk (nln′l′,nln′l′
)

(2.51)

Gk (nili,n jl j
)
= Rk (nln′l′,n′l′nl

)
(2.52)

and Rk (nln′l′,n′l′nl) is given by [50]:

Rk (n1l1n2l2,n3l3n4l4) =
ˆ

∞

0

1
r2

Y k (n1l1n3l3)Pn2l2 (r2)Pn4l4 (r2)dr2 (2.53)

where the function Y k (n1l1n3l3) is given by:

Y k (n1l1n3l3,r3) = r2

ˆ
∞

0

rk
<

rk+1
>

Pn1l1 (r1)Pn3l3 (r1)dr1 (2.54)

The coefficients fk and gk depend on the angular coupling and can be deter-
mined analytically using Racah algebra techniques [51]. The integro-differential
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equations for each radial orbital, has the form,(
d2

dr2 +
2
r
[Z−Y (nili;r)]− li (li +1)

r2 − εii

)
Pnili =

2
r

χ (nili;r)+∑
j 6=i

δli,l jεi jPn jl j (r)

(2.55)

Eq. (2.55) is the Hartree-Fock equation for the radial part of the orbitals for
each occupied sub-shell, where Y (nili;r) is given by [52]

Y (nili;r) = 2(qi−1)
2li

∑
k=0

fk (i)Y k (nilinili,r)+∑
j 6=i

q jY ◦
(
n jl jn jl j;r

)
(2.56)

and the function χ (nili;r) arises from exchange with configuration state func-
tion and from interaction between configuration states is as,

χ (nili;r) = ∑
j 6=i

q j

(li+l j)

∑
k=|li−l j|

gk (i, j)Y k (n jl jn jl j;r
)

Pn jl j (r) (2.57)

where εii and εi j represent the diagonal and off diagonal energies ,respec-
tively in equation(2-55). These parameters εii and εi j are related to the La-
grange multipliers by,εii =

λii
qi

and εi j =
λi j
qi

. The integro-differential equations
are non-linear and must be solved iteratively by the so called Self-Consistent
Field (SCF) procedure explained in Fig (2.1).
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Figure 2.1: The Iterative Self-Consistent -Field (SCF) Procedure
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2.5.3 Multiconfiguration Hartree-Fock (MCHF) Calculations

In the Multi-Configuration Hartree-Fock (MCHF) method, the trial wave func-

tion is given as a linear combination of orthogonal configuration state func-

tions [50,52]. The Atomic State Functions (ASFs) can now be defined by

taking a linear combination of CSFs with the same total angular momentum

J value as,

Ψ(γLs) =
m

∑
i=1

ciφ (γiLS) (2.58)

where m is the number of CSFs included in the expansion and the ci are

the configuration mixing coefficients for state Ψ, where φ (γiLS)configuration

state function. m

∑
i=1

c2
i = 1 (2.59)

The energy functional for state Ψ is given by ,

EΨ =
〈
Ψ(γLS)

∣∣Ĥ∣∣Ψ(γLS)
〉

(2.60)

=
m

∑
i=1

m

∑
j=1

cic j
〈
φ (γiLS)

∣∣Ĥ∣∣φ (γ jLS
)〉

(2.61)

=
m

∑
i=1

c2
i Hii +2

m

∑
i> j

cic jHi j (2.62)

The first term in above equation represents the non-relativistic average energy

of a configuration, and this term can be called the diagonal contribution to the

Hamiltonian matrix which can be written as [53],

Eav =
m

∑
i=1

c2
i Hii (2.63)

and the second term in equation (2.62) represents the interaction matrix, where

the Hamiltonian matrix element Hi j as,

Hi j =

ˆ
∞

0
φ
∗
i (γLS) Ĥφ j (γLS)d3r (2.64)
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The energy function in Eq. (2.60) for state Ψ, can be written

E (γLS) =
m

∑
i=1

m

∑
j=1

cic jHi j (2.65)

where Hi j can be expressed in terms of radial integrals is given by

Hi j = ∑
ab

qi j
abI (a,b)+ ∑

abcdk
ν

i j
abcd;kRk (ab,cd) (2.66)

where a and b denote nl quantum numbers of the orbitals. The sums ab

and abcd are over the occupied orbitals in configuration i and j. In MCHF

calculations the energy functional is minimized with respect to variations in

the radial orbitals and the expansion coefficient subject to the orthonormal

restrictions in Eqs. (2-45) and (2-54). The stationary condition with respect

to variations in the expansion leads to the matrix eigenvalue equation ,

HC = EC (2.67)

which is coupled to the radial equations. These equations are solved itera-

tively as follows [54,55]. The first step is initial estimates of the radial func-

tions and the second step is solving the matrix eigenvalue equation. The next

step is improving the radial function by solving the integro-differential equa-

tions and the last step is solving the matrix eigenvalue equation. As for the

minimization, steps 3 and 4 are repeated until both the energy and the orbitals

have converged within some specified tolerance.
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2.6 Molecular Schrödinger Equation

For calculating molecular properties, the quantum mechanics for molecule

seems to be the obvious tool to use. Calculations use the Schrödinger equa-

tion, and are acceptable only to the extent that they produce the result of

high level quantum mechanical calculation [56]. A number of experimental

observations have shown that the motion of microscopic particles cannot be

correctly described with the framework of classical or Newtonian mechanics.

This tool has become essential in understanding phenomena at the micro-

scopic scale. Meanwhile, the quantum mechanics for molecules gives us the

possibility to describe the fundamental behavior of molecular systems by ap-

plying quantum mechanics theory [57]. To study a molecule as a microscopic

system, we start from solving the time-independent molecular Schrödinger

equation ,

ĤΨ

(
~r,~R
)
= EΨ

(
~r,~R
)

(2.68)

where the Hamiltonian Ĥ is for the system describing the atomic nuclei and

the electrons, and it is composed of the kinetic and potential energies. Ψ(r,R)

is the wave function for the stationary state with energy E, While ~r and ~R

are used to denote the set of electronic and nuclear coordinates respectively.

The non-relativistic Hamiltonian of a molecular system in atomic units for

N-electrons and Na nuclei is given by,

Ĥ =−
Na

∑
A=1

1
2MA

∇
2
A−

N

∑
i=1

1
2

∇
2
i −

N

∑
i=1

Na

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
i< j

1
ri j

+
Na

∑
A=1

Na

∑
A<B

ZAZB

RAB

(2.69)

where riA =
∣∣∣~ri−~RA

∣∣∣ is the distance between the electron i and the nucleus A,

ri j =
∣∣~ri−~r j

∣∣ denotes the distance between the electrons i and j. The distance

between the nucleus A and the nucleus B is RAB =
∣∣∣~RA−~RB

∣∣∣. MA is the mass

for the nucleus A and ZA is the atomic number.
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For convenience, we write the Hamiltonian as

Ĥ = T̂N + T̂e +V̂e−N (r,R)+V̂e−e (r)+V̂N−N (R) (2.70)

where T̂N is the kinetic energy of nuclei in atomic units,

T̂N =−
Na

∑
A=1

1
2MA

∇
2
A (2.71)

and T̂e is the kinetic energy of electrons

T̂e =−
N

∑
i=1

1
2

∇
2
i (2.72)

For a molecule with Ne electrons and Nn nuclei there are three types of inter-

actions between these components, which contribute with the potential term

V̂ . Here V̂e−N is the electron-nuclear attraction or electrostatic interaction

between the electrons and the nuclei

V̂e−N =−e
N

∑
i=1

Na

∑
A=1

φA (2.73)

where −e is the electron charge and φA is the scalar potential of the nucleus

given by:

φA (~r1) =

ˆ
ρA (~r2)

r12
dr2 (2.74)

For a point charge, the charge density can be expressed via the Dirac delta

function as:

ρA (~r2) = ZAeδ

(
~r2−~RA

)
(2.75)

where RA is the nuclear position. Substituting equation (2-75) in equation

(2-74), yields

φA (~r1) =

ˆ ZAeδ

(
~r2−~RA

)
r12

dr2 =
ZAe
r1A

(2.76)

and V̂e−e is the repulsion energy between electrons or is the electrostatic in-

teraction between the electrons. It is given by the instantaneous Coulomb
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interaction

V̂e−e =
1
2

N

∑
i=1

N

∑
i6= j

1∣∣~ri−~r j
∣∣ (2.77)

where indices’s i and j run over all electrons and V̂N−N is the repulsion energy

between nuclei given by:

V̂N−N =
1
2

NN

∑
A=1

NN

∑
A6=B

ZAZB∣∣∣~RA−~RB

∣∣∣ (2.78)

Due to the impossibility to get the exact solution of the molecular Schrödinger

equation, a number of approximations must be introduced.

2.7 The Born-Oppenheimer Approximation

It is well-known that the Schrödinger equation for the hydrogen atom com-

posed of one nucleus (proton) and one electron can be solved analytically.

The molecular system has many-body problem to solve the Schrödinger equa-

tion approximations must be applied [58]. As a result of the great difference

in masses between an electron and a nucleus, one can separate the motions

of the electrons, from the motions of the nuclei. It means that electrons move

much faster than the nuclei [59]. Assuming the nuclei to be fixed, we can

omit the nuclear kinetic energy term from the Hamiltonian (2-70), obtaining

:

Ĥel = T̂e +V̂e−N (r,R)+V̂e−e (r)+V̂N−N (R) (2.79)

To obtain the Schrödinger equation for the electronic motion

ĤelΨ
(
~r;~R
)
= E (R)Ψ

(
~r;~R
)

(2.80)

The wave function and the potential energy depend, parametrically, on the

nuclear configuration, R. The repulsion between the nuclei is considered to

be constant. It adds to the eigenvalue of the electronic Hamiltonian operator.

Then, it has no effect on the operator eigenfunctions or other properties. This

term shifts only the eigenvalue by same constant. In the adiabatic approxima-
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tion, the nuclear configuration R will change slowly and the motions of the

electrons will immediately adjust to the new nuclear configuration and remain

in the same electronic eigenstate. When R is changing to R′, the electronic

wave function change from Ψ

(
~r;~R
)

to Ψ

(
~r;~R′

)
and the potential energy

changes from E(R) to E(R′). Solving the electronic Schrödinger equation

for different nuclear configurations allow us to construct the potential energy

curve for (diatomic molecules) or in general, a potential energy surface for

a diatomic molecule. When the electronic Schrödinger equation (2-80) is

solved, an infinite number of eigenfunctions, Ψi

(
~r;~R
)

, are obtained with the

energies Ei (R), where i= 1,2,3, ... . The eigenfunctions form complete set of

states and to go beyond the adiabatic approximation the full molecular wave

function can be expanded in the adiabatic electronic wave function.

Ψ

(
~r;~R
)
= ∑

i
Ψi

(
~r;~R
)

χi (R) (2.81)

where the expansion coefficients χi (R) are functions of nuclear coordinates.
Inserting wave function in Eq.(2.81) into the total Schrödinger equation (2.68)
and multiplying from left with Ψ∗j

(
~r;~R
)

and integrating over the electronic
coordinates, yields :

∑
i

〈
Ψ j

(
~r;~R
)∣∣[T̂N + Ĥel

]
χi (R)

∣∣Ψi

(
~r;~R
)〉

= ∑
i

〈
Ψ j

(
~r;~R
)
|Eχi (R)|Ψi

(
~r;~R
)〉

(2.82)

Here, the Dirac bracket notation implies integration over all electron coordi-
nates. The right hand side of equation (2.82) can be written as

RHS = E ∑
i

χi (R)
〈

Ψ j

(
~r;~R
)
|Ψi

(
~r;~R
)〉

(2.83)

= E ∑
i

χi (R)δi j = Eχ j (R) (2.84)

Since the integration is over r, χi (R) has been brought out of the bracket,
and by using the orthonormal properties of the electronic state, the sum is
eliminated. And the left hand side in equation (2.82)

LHS = ∑
i

{〈
Ψ j

(
~r;~R
)∣∣T̂N χi (R)

∣∣Ψi

(
~r;~R
)〉

+
〈

Ψ j

(
~r;~R
)∣∣Ĥelχi (R)

∣∣Ψi

(
~r;~R
)〉}

(2.85)

We should notice that the nuclear kinetic energy operator contained deriva-
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tives with respect to the nuclear coordinates R, and it acts on the both factors

in the product Ψi

(
~r;~R
)

χi (R), so the first term in parenthesis, in the LHS of

equation (2.85) becomes

〈
Ψ j

(
~r;~R
)∣∣T̂N χi (R)

∣∣Ψi

(
~r;~R
)〉

= {TN χi (R)}
〈

Ψ j

(
~r;~R
)
|Ψi

(
~r;~R
)〉

+χi (R)
{〈

Ψ j

(
~r;~R
)∣∣T̂N

∣∣Ψi

(
~r;~R
)〉}

(2.86)

Since we use adiabatic eigenfunctions that by definition diagonalize the elec-

tronic Hamiltonian, the second term in parenthesis, in the LHS of equation

(2.85) becomes

〈
Ψ j

(
~r;~R
)∣∣Ĥel

∣∣Ψi

(
~r;~R
)〉

= Ei (R)δi j (2.87)

By substituting Eqs. (2.86) and (2.87) into Eq. (2.85 ) and once again us-

ing the orthonormality of the electronic states, the sum is eliminated and we

finally obtain

[
T̂N +E j (R)

]
χ j (R)+∑

i

{〈
Ψ j

(
~r;~R
)∣∣T̂N

∣∣Ψi

(
~r;~R
)〉}

χi (R) = Eχ j (R) (2.88)

The second term in above equation is usually small when compared to E j (R),

and the interaction between different electrostatic states can be neglected, thus

we obtain the Schrödinger equation:

[
T̂N +E j (R)

]
χ j (R) = Eχ j (R) (2.89)

The eigenvalue E is the total energy of the molecule within the Born-Oppenheimer

approximation.
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2.8 Electronic Energy Expression for Molecules

By freezing the molecular positions (nuclear kinetic energy is zero), we can

write the Hamiltonian alternatively as [60]:

Ĥel = V̂N−N +
N

∑
i=1

ĥ(i)+
1
2

N

∑
i6= j

ĝ(i, j) (2.90)

where ĥ = Ĥ + V̂e−N , Ĥel is the Hamiltonian for a charged particle, V̂e−N is

the electrostatic interaction between the electron and the nuclei and ĝ(i, j)

is the two electron interaction. Now, the expectation value of the electronic

Hamiltonian in above equation is

E =
〈
Ψ
∣∣Ĥel

∣∣Ψ〉= ˆ Ψ
∗ (1, ..,N) ĤelΨ(1, ...,N)d1...dN (2.91)

The firs term in equation (2-90) is constant〈
Ψ
∣∣V̂N−N

∣∣Ψ〉=VN−N 〈Ψ|Ψ〉=VN−N (2.92)

The expectation value of second term, can be written as:

N

∑
i=1

〈
Ψ
∣∣ĥ(i)∣∣Ψ〉= N

∑
i=1

ˆ
Ψ
∗ (1, ..,N) ĥ(i)Ψ(1, ...,N)d1...dN (2.93)

Each of these terms must have the same value, since the electrons are indis-
tinguishable. We select one and multiply with the number of the terms, so we
can rewrite the equation (2-93) as:

N

∑
i=1

〈
Ψ
∣∣ĥ(i)∣∣Ψ〉= N

ˆ
Ψ
∗ (1, ..,N) ĥ(1)Ψ(1, ...,N)d1...dN (2.94)

The expectation value of last term in equation (2.90), for two electrons, can
be written as:

N

∑
i=1
〈Ψ |ĝ(i, j)|Ψ〉= 1

2

N

∑
i 6= j

ˆ
Ψ
∗ (1, ..,N) ĝ(i, j)Ψ(1, ...,N)d1...dN (2.95)
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=
1
2

N (N−1)
ˆ

Ψ
∗ (1, ..,N) ĝ(i, j)Ψ(1, ...,N)d1...dN (2.96)

By combining Eqs. (2.92), (2.94) and (2.96), we get the electron energy

E =VNN +N
ˆ

Ψ
∗ (1, ..,N) ĥ(1)Ψ(1, ...,N)d1...dN

+
1
2

N (N−1)
ˆ

Ψ
∗ (1, ..,N) ĝ(i, j)Ψ(1, ...,N)d1...dN

(2.97)

2.9 Electronic Schrödinger Equation for Molecules

As we have seen in the Born-Oppenheimer approximation, the electronic

motions can be separated from nuclear motions and solved the electronic

Schrödinger equation (2-80). For molecular systems containing more than

one electron, the electronic Schrödinger equation is still a many-body prob-

lem and approximation have to be applied. Now, we will discuss how to solve

the electronic Schrödinger equation, given by(
VN−N +

N

∑
i=1

ĥ(i)+
1
2

N

∑
i 6= j

ĝ(i, j)

)
Ψel

(
~r;~R
)
= EelΨel

(
~r;~R
)

(2.98)

In a simpler system containing one-electron interaction, i.e., ĝ(i, j) = 0, and

VN−N is just constant for the fixed set of nuclear coordinates (R), we ignore

it (VN−N does not change the eigenfunctions and only shifts the eigenvalue)

[61]. Then the Schrödinger electronic equation for an electronic system can

be written
N

∑
i=1

ĥ(i)Ψel

(
~r;~R
)
= EelΨel

(
~r;~R
)

(2.99)

If we have N-electrons, the Schrödinger equation is written as:[
ĥ1 + ĥ2 + ...+ ĥN

]
Ψ(1,2, ...,N) = EΨ(1,2, ...,N) (2.100)

and the wave function for many-body system in the independent particle ap-
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proximation can be expressed as

Ψ(1,2, ...,N) = φ(1)φ(2)...φ(N) (2.101)

Substituting equation (2-78) into equation (2-77), yields

[
ĥ1 + ĥ2 + ...+ ĥN

]
φ(1)φ(2)...φ(N) = Eφ(1)φ(2)...φ(N) (2.102)

The electronic Schrödinger equation can be solved by the method of sep-

aration of variables and a set of orthonormal eigenfunctions,
{

φ j
}

, can be

obtained

ĥ(i)φ j (~ri) = εiφ j (~ri) (2.103)

where φ j (~ri) is spin-orbital describing the one-electron wave function.

2.10 Developing Hartree-Fock Approximation for Molecules

The Hartree-Fock method seeks to approximately solve the electronic Schrödinger

equation, and it assumes that the wave function can be approximated by a sin-

gle Slater determinant made up of one spin orbital per electron [62]. For an

N-electron system, the orbital φ j (~ri) consists of a spatial part ϕ j (~r) (molecu-

lar orbital) and a spin part. The spin up and the spin down states are denoted

by α and β , respectively, and we can write the orbital form as:

φ
(s)
j (~r) =

{
ϕ j (~r)α

ϕ j (~r)β
(2.104)

where s denotes the spin state. The molecular orbitals can be describe by the

linear combination of atomic orbital approximation (LCOA) as [63].

ϕi (~r) = ∑
j

ci jξ j (~r) (2.105)

In equation (2.105), the ci j’s are coefficients or weights of the atomic orbitals

ξ j (~r) for the molecular orbitals ϕi (~r). The orbitals satisfy the orthonor-

mality condition. For a system having many particles, the wave function

Ψ(1,2, ...,N) must be antisymmetric with respect to the exchange of the co-
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ordinates of any two electrons to satisfy the Pauli principle, as : [64].

Pi jΨ(r1, ...,ri, ...,r j, ...,rN) = Ψ(r1, ...,r j, ...,ri, ...,rN)

=−Ψ(r1, ...,ri, ...,r j, ...,rN). (2.106)

A single Slater determinant can be used to describe the ground state of the

N-electron system, and is given by [65]

Ψ(1,2, ...,N) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
φ1 (1) φ2 (1) . . . φN (1)

φ1 (2) φ2 (2) · · · φN (2)
... ... ...

φ1 (N) φ2 (N) φN (N)

∣∣∣∣∣∣∣∣∣∣
(2.107)

when act antisymmetric operator on the Slater determinant, the wave function

has the form:

Ψ(1,2, ...,N) =
1√
N! ∑

P
(−1)p

φp1 (1)φp2 (2) ...φpN (N) (2.108)

Choosing ΨHF = ΨSlater , where ΨHF is the trial wave function in the HF

approach for many particle, and ΨSlater = Ψ . Substituting ΨHF = ΨSlater in

the one electron energy (2.94), yields:

N

∑
i=1

〈
Ψ

HF ∣∣ĥ(i)∣∣ΨHF〉= N
ˆ

1√
N! ∑

P
(−1)p

φP1 (1)φP2 (2) ...φPN (N)

ĥ(1)
1√
N! ∑

Q
(−1)q

φQ1 (1)φQ2 (2) ...φQN (N)d1...dN

(2.109)

When Pi = Qi , we obtain

N

∑
i=1

〈
Ψ

HF ∣∣ĥ(i)∣∣ΨHF〉= N

∑
i=1

〈
φi
∣∣ĥ∣∣φi

〉
(2.110)

The second term for two electron energy in equation (2.96), after substituting

ΨHF = ΨSlater , becomes
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N

∑
i=1

〈
Ψ

HF |ĝ(i, j)|ΨHF〉= 1
2

N (N−1)
ˆ

1√
N! ∑

P
(−1)p

φP1 (1)φP2 (2) ...φPN (N)

×ĝ(i, j)
1√
N! ∑

Q
(−1)q

φQ1 (1)φQ2 (2) ...φQN (N)d1...dN

(2.111)

=
1
2

N (N−1)
1

N! ∑
P
(−1)p

∑
Q
(−1)q 〈

φP1 (1)φP2 (2) |ĝ(i, j)|φQ1 (1)φQ2 (2)
〉

×
〈
φP3 (3) |φQ3 (3)

〉
...
〈
φPN (N) |φQN (N)

〉
(2.112)

Orthonormality condition applied on the last two terms in above equation,

and P1 = Q1 and P2 = Q2, yields

N

∑
i=1

〈
Ψ

HF |ĝ(i, j)|ΨHF〉= 1
2

N

∑
i6= j

[〈
φiφ j |ĝ(i, j)|φiφ j

〉
−
〈
φiφ j |ĝ(i, j)|φ jφi

〉]
(2.113)

Thus, we can write the Hartree-Fock energy by combination between the Eqs.

(2.110) and (2.113) and substituting in equation (2-97), as:

EHF =VN−N+
N

∑
i=1

〈
φi
∣∣ĥ∣∣φi

〉
+

1
2

N

∑
i6= j

[〈
φiφ j |ĝ(i, j)|φiφ j

〉
−
〈
φiφ j |ĝ(i, j)|φ jφi

〉]
(2.114)

Since the energy expression is symmetric, and the variation theorem holds,

and since the Slater determinant with the lowest energy is close to the true

wave function of, we obtain a single Slater determinant. The Hartree-Fock

method determines the set of spin orbitals which minimize the energy and

gives us this best single determinant [66]. So, we need to minimize the HF

energy expression with respect to changes in the orbitals φi→ φi +δφi . We

also assume that the orbital φ is orthonormal. We want to ensure that our

variational procedure leaves them orthonormal. We can accomplish this by

Lagrange’s multipliers method to keep the set of orbitals {φk} orthonormal

through the minimization process, where we employ a functional L defined
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as :

L [{φi}] = EHF [{φi}]−∑
i j

λi j
{〈

φi|φ j
〉
−δi j

}
(2.115)

where λi j are the Lagrange multipliers and
〈
φi|φ j

〉
is the overlap between

spin orbitals i and j, i.e: 〈
φi|φ j

〉
=

ˆ
φ
∗
i (r)φ j (r)dr (2.116)

The variational Lagrangian is given by:

δL [{φi}] = ∑
i

ˆ
δL

δφi (1)
δφi (1)d1+∑

i

ˆ
δL

δφ∗i (1)
δφ
∗ (1)d1 (2.117)

We seek a stationary point, i.e. δL = 0, which implies

δL
δφi (r)

= 0 ,
δL

δφ∗i (r)
= 0 (2.118)

and working through some algebra, we eventually arrive at the Hartree-Fock

equation defining the orbitals:

ĥ(1)φk (1)+

[
N

∑
j

ˆ
φ
∗
j (2) ĝ(1,2)φ j (2)d2

]
φk (1)

−

[
N

∑
j

ˆ
φ
∗
j (2) ĝ(1,2)φk (2)d2

]
φ j (1) = ∑

j
λk jφ j (1)

(2.119)

The first term in square brackets gives the Coulomb interaction of an electron

in spin orbital φk with the average charge distribution of the other electrons.

This is called the Coulomb term and it is convenient to define a Coulomb

operator as [67] :

Ĵ j (1)φk (1) =
ˆ

φ
∗
j (2) ĝ(1,2)φ j (2)d2φk (1) (2.120)

which gives the average potential due to the charge distribution from the elec-

tron in orbital φ j. The other term in square bracket in equation (2-119) is dif-

ficult to explain because it does not have a simple classical analog. It arises
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from the antisymmetry requirement of the wave function. It looks much like

the Coulomb term, except that it switches or exchanges spin orbitals φ j and

φk. Hence, it is called the exchange term, and we can define an exchange

operator in terms of its action on a spin orbital φi as:

K̂ j (1)φk (1) =
ˆ

φ
∗
j (2) ĝ(1,2)φk (2)d2φ j (1) (2.121)

In terms of Coulomb and exchange operators, the Hartree-Fock equations

become considerably more compact as:[
ĥ(1)+

N

∑
j=1

(
Ĵi (1)+ K̂ j (1)

)]
φk (1) = ∑

j
λk jφ j (1) (2.122)

We can introduce a Fock operator as:

F̂ (1) = ĥ(1)+
N

∑
j=1

(
Ĵi (1)+ K̂ j (1)

)
(2.123)

The Hartree-Fock equations become after substituting Eq. (2.123) in Eq.

(2.122), as

F̂ (1)φk (1) = ∑
j

λk jφ j (1) (2.124)

By the unitary transformation of the orbitals, we can transform the Lagrange

multipliers λk j in the diagonal matrix form

λk j =U†
εkU (2.125)

The Hartree-Fock equation can be written,

F̂ |φk >= εk|φk > (2.126)

The above equation is called the canonical Hartree Fock equations, where εk

is the energy associated with the orbital φk. We notice that the HF operator

depends on the orbitals φk because it consists of Coulomb operator Ĵ j and

exchange operator K̂ j. The Hartree-Fock equation is developed by expanding

the Molecular Orbitals (MOs) |φk > as a linear combination of a number of
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linearly independent functions, using basis set as:

|φk >=
n

∑
µ=1

cµk|χµ > (2.127)

where φk is the molecular orbitals, cµk are the coefficient of atomic orbitals
and χµ is the basis set function for atomic orbitals. Substitution equation
(2.127) into equation (2.126), yields

F̂
n

∑
µ=1

cµk|χµ >= εk

n

∑
µ=1

cµk|χµ > (2.128)

Multiplication on the left by χν and integration over the range of the coordi-
nates of the electron gives :

n

∑
µ=1

ˆ
χν F̂χµdτcµk =

n

∑
µ=1

ˆ
cµkεkχν χµdτ (2.129)

The above equation can be written by another form as :

n

∑
µ=1

Fµνcµk =
n

∑
µ=1

Sνµcµkεk (2.130)

where Fµν are the Fock integrals defined as:

Fµν =

ˆ
χν F̂χµdτ (2.131)

The Fock integrals are constructed from kinetic energy integrals, nuclear-
electron attraction integrals, and two-electron repulsion integrals, and Sνµ in
equation (2-130) is the overlap integral which is defined as:

Sνµ =

ˆ
χν χµdτ (2.132)

If the basis functions are normalized, so Sii = 1, but are not orthogonal, Si j 6= 0

in general. Equation (2.130) can be cast as a matrix equation,

Fc = Scε (2.133)
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This equation is called the Fock equation, where F is the Fock matrix opera-

tor, S is the overlap matrix, ε is the orbital energy or the diagonal Fock matrix

elements in atomic orbitals basis. To construct the Fock matrix, one must

already know the molecular orbitals, since the electron repulsion integrals

require them. For this reason, the Fock equation (2.133) must be solved itera-

tively. One makes an initial guess at the molecular orbitals and uses this guess

to construct an approximate Fock matrix. Solution of the Fock equations will

produce a set of MOs from which a better Fock matrix can be constructed

. After repeating this operation a number of times, if everything goes well,

a point will be reached where the MOs obtained from solution of the Fock

equations are the same as those obtained from the previous cycle and used to

make up the Fock matrix [68].

2.11 Basis-Set Considerations

The accuracy of the electronic structure does not depend only on which level

of theory should be chosen, but also on the quality of the finite set of ba-

sis functions used to expand the orbitals. The basis set is a mathematical

convenience, because the quantum mechanics equations which describe the

behavior of electrons in molecules are most easily solved by expanding the

wave function in terms of a finite basis set [69]. The molecular orbitals can

be created by linear combinations of a set of functions called atomic orbitals,

given by equation (1.1) . The basis set typically models atomic orbitals cen-

tered on the atoms. When the minimum number of the basis functions are

used to describe the orbitals in each atom, this means, we have the mini-

mal basis sets [70]. In quantum molecule calculations, approximate atomic

orbitals are used with different forms. One type of basis functions is the

Slater Type Function (ST F), which is similar to the hydrogen wave func-

tion, described by the function depending on spherical coordinate, given by

equation(1.2). Another type of normalized basis set functions is the Gaussian

Type Function (GT F), given by equation (1.3). The important difference be-

tween these two type of basis functions occurs when r→ 0 and, at large value
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of r. At r = 0 the Slater type function (ST F) has finite slope, but the slope

of the Gaussian type function (GT F) is zero. At large r the Gaussian type

function(GT F) decays more rapidly than the Slater type function(ST F). For

comparable results, the Slater type function(ST F) orbitals are more correct,

but difficult to integrate. However, they are esear to obtain from Gaussian type

functions (GFT) orbitals. The essential difference is that, there is squared r

[71]. In our work use Gaussian type function(GT F) basis set functions type

cc− pV XZ, which means Dunning correlation-consistent, polarized valance,

X−zeta basis, where X =D,T,Q, D is Double-zeta, T is Triple-zeta, and Q is

Quadruple-zeta. The calculation of the two electron integrals in the Hartree-

Fock equation is much easier and faster in the Self-Consist-Field SCF pro-

cesses, because the product of the two Gaussian functions with two different

centers, will be a Gaussian function on a third center. And another reason to

use GT F , if we had more basis function than ST F , is that we need more co-

efficients c′es to optimize in our SCF calculation for our particular molecule .

This will give a better quality Molecular Orbitals (MOs) and energy. A large

basis-set can give a more accurate result. For better and improved descrip-

tion, the number of basis functions per atom can be increased by multiplying

a minimal basis-set and obtain the double, triple, quadrupole zeta,... basis sets

[72].

2.12 Hartree-Fock Approach With Basis-Set

In this section, the Hartree-Fock equations and total energy with Gaussian
basis-set wave function in matrix form will be derived. The wave function is:

φnlm (~r) =
1
r

Pnl (r)Ylm (Ω) (2.134)

where Pnl (r) is the radial part and Ylm (Ω) is the spherical harmonic part. The

Gaussian type basis-set function for the radial part Pnl (~r) is given by

Pnξ (~r) = Nnξ rne−ξ r2
(2.135)

where Nnξ is the normalization constant and ζ is the controle width of orbital
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or the Gaussian orbital exponent. The Gaussian type function is normalized

as the radial wave function Pnξ (~r) . The Hartree-Fock equation developed by

using basis-set in section (2.10), can be written as:

n

∑
µ=1

Fµνcµk =
n

∑
µ=1

Sνµcµkεk (2.136)

where the Fµν is the Fock integrals which are constructed from kinetic energy
integrals, nuclear-electron attraction integrals two-electron repulsion integrals
is defined as:

F̂µν = T̂µν +V̂µν + Ĝµν (2.137)

The kinetic matrix element denoted by T̂µν , represents the kinetic energy in-
tegral in equation (2.137) defined as:

T̂µν =

ˆ
φ
∗
µ

(
−1

2
∇

2
)

φνd3r (2.138)

where φµ is the Gaussian type wave function given by

φµ

(
ξ ,nµ , lµ ,mµ ;r,θ ,ϕ

)
=

1
r

Nµrnµ e−ξµr2
µYlµmµ

(θ ,ϕ) (2.139)

The radial part is Pnξ (r) = Nnξ rne−ξ r2
, substituting in eqn. (2.139) , to get

φµ

(
ξ ,nµ , lµ ,mµ ;r,θ ,ϕ

)
=

1
r

Pnµ lµ
Ylµmµ

(θ ,ϕ) (2.140)

To evaluate kinetic energy integrals using Gaussian basis-set type function,
we substitute equation (2.140) into kinetic energy integrals, to obtain:

T̂µν =

∞̂

0

(
1
2

P′nµξµ
(r)P′nνξν

(~r)+Pnµξµ
(r)

l (l +1)
2r2 Pnνξν

(~r)
)

dr (2.141)

Substituting Gaussian type orbital basis function, equation (2.135) into equa-
tion (2.141), yields
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Tµν =
1
2

Nnµξµ
Nnνξν

nµnν + l (l +1)
(
nµ +nν −3

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν−1


−2
(
nµξν +nνξµ

)(
nµ +nν −1

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν+1

+4ξµξν

(
nµ +nν −1

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν+1

dr (2.142)

The nuclear-electron attraction energy integrals can be evaluated by using

Gaussian type function. The potential matrix element V̂µν , represents the

nuclear-electron attraction integrals in equation (2.137). The energy caused

by the attraction between an electron in the region described by the overlap of

orbitals φµ and φν and a nuclear charge Z is expressed by the nuclear-electron

attraction integral , defined as:

V̂µν =

ˆ
φ
∗
µ

(
−Z

r

)
φνd3r (2.143)

When involving Gaussian type function with nuclear electron attraction en-
ergy integrals, and substituting equation (2.139) into equation (2.143), we get
:

V̂µν =

∞̂

0

Pnµξµ
(~r)
(
−Z

r

)
Pnνξν

(~r)dr (2.144)

Substituting Gaussian type orbital basis function (2.135) into (2.144), yields

V̂µν =−ZNnµξµ
Nnνξν

(
nµ+nν−2

2

)
!

2
√(

ξµ +ξν

)nµ+nν

2

(2.145)

The two particle matrix element Gµν , represents the two-electron repulsion
integrals in equation (2.137) defined as:
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Ĝµν =

ˆ
φ
∗
µ (~r1)

(ˆ
2∑

N/2
k=1 |ψk (~r2)|2

|~r1−~r2|
d3r2

)
φν (~r1)d3r

−
ˆ

φ
∗
µ (r1)

N/2

∑
k=1

ˆ
φν (~r2)ψ∗k (r2)

|~r1−~r2|
d3r2ψk (~r1)d3r (2.146)

Introducing the density matrix, defined as:

Pαβ = 2
N/2

∑
k=1

CαkC∗βk (2.147)

and the probability density defined as:

ρ (r) = 2
N/2

∑
k=1
|ψk (r)|2 = ∑

αβ

φα (~r)Pαβ φ
∗
β
(~r) (2.148)

then, substituting equation (2.147) and equation (2.148) into equation (2.146),
we get

Ĝµν = ∑
αβ

Pαβ

ˆ
φ
∗
µ (~r1)

(ˆ
φ∗

β
(~r2)φα (~r2)

|~r1−~r2|
d3r2

)
φν (~r1)d3r1

−1
2 ∑

αβ

Pαβ

ˆ
φ
∗
µ (~r1)

ˆ
φν (~r2)φ∗

β
(~r2)

|~r1−~r2|
d3r2φα (~r1)d3r1 (2.149)

We can write the above equation in a more compact form

Ĝµν =∑
αβ

Pαβ

ˆ
φ∗µ (r1)φν (r1)φ∗

β
(r2)φα (r2)− 1

2φ∗µ (r1)φα (r1)φ∗
β
(r2)φν (r2)

|r1− r2|
d3r1d3r2

(2.150)

The above equation can be simplify to a form :

Ĝµν = ∑
αβ

Pαβ

(
〈µβ |να 〉− 1

2
〈µβ |αν 〉

)
(2.151)
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It can also be written in matrix form as,

Pαβ = 2∑
i

CαiCβ i (2.152)

where Pαβ is the density matrix. The sum over all occupied orbitals i can be
written as:

∑
i
= ∑

nilimi

=
∞

∑
nl=1

∞

∑
l=0

l

∑
ml=−l

(2.153)

Then,
Pnα lαmα ;nβ lβ mβ

= 2∑
i

Cnα lαmα ;nilimiCnβ lβ mβ ;nilimi (2.154)

= 2∑
i

δlilα δmimα
δlilβ δmimβ

Cli
nαni

Cli
nβ ni

= 2δlα lβ δmαmβ ∑
ni

Clα
nαni

Clα
nβ ni

(2.155)

and we get

Ĝµν = Ĝnµ lµ mµ nν lν mν
= ∑

nα lα mα nβ lβ mβ

Pnα lα mα nβ lβ mβ

(
〈µβ |να 〉− 1

2
〈µβ |αν 〉

)
= Ĵµν − K̂µν

(2.156)

The first part in the above equation is the direct term Ĵµν , and the second part
represents the exchange term K̂µν . Let us treat the direct term first:

Ĵµν = ∑
nα lαmαnβ lβ mβ

Pnα lαmαnβ lβ mβ
〈µβ |να 〉 (2.157)

= ∑
nα lα mα nβ lβ mβ

Pnα lα mα nβ lβ mβ

min(lµ+lν ,lβ+lα)

∑
k=max(|lµ−lν |,|lβ−lα |,|mµ−mν |)

ck (lµ ,mµ , lν ,mν

)
ck (lα ,mα , lβ ,mβ

)
δmµ+mβ−mν−mα ,0

×Rk (nµ lµ ,nβ lβ ,nν lν ,nα lα
)

(2.158)

where Rk (nµ lµ ,nβ lβ ,nν lν ,nα lα
)

represents the two particle integral,

Ĵµν = ∑
nα lα mα nβ lβ mβ

δlα lβ δmα mβ
Plα

nα nβ

min(lµ+lν ,lβ+lα)

∑
k=max(|lµ−lν |,|lβ−lα |,|mµ−mν |)

ck (lµ ,mµ , lν ,mν

)
ck (lα ,mα , lβ ,mβ

)
δmµ+mβ−mν−mα ,0
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×Rk (nµ lµ ,nβ lβ ,nν lν ,nα lα
)

(2.159)

= ∑
nα nβ

∑
lm

Pl
nα n

β

min(lµ+lν ,2l)

∑
k=max(|lµ−lν |,|mµ−mν |)

ck (lµ ,mµ , lν ,mν

)
ck (l,m, l,m)δmµ−mν ,0Rk (nµ lµ ,nβ l,nν lν ,nα l

)
(2.160)

= δmµ mν ∑
nα nβ

∑
l

Pl
nα n

β

c0 (lµ ,mµ , lν ,mν

)
(2l +1)R0 (nµ lµ ,nβ l,nν lν ,nα l

)
(2.161)

Jµν = δlµ lν δmµ mν ∑
l
(2l +1) ∑

nα nβ

Pl
nα n

β

R0 (nµ lµ ,nβ l,nν lν ,nα l
)

(2.162)

The exchange term can be treated in equation (2.156), can be written as:

K̂µν =
1
2 ∑

nα lαmαnβ lβ mβ

Pnα lαmαnβ lβ mβ
〈µβ |αν 〉 (2.163)

=
1
2 ∑

nα lα mα nβ lβ mβ

Pnα lα mα nβ lβ mβ

min(lµ+lα ,lβ+lν)

∑
k=max(|lµ−lα |,|lβ−lν |,|mµ−mα |)

ck (lµ ,mµ , lα ,mα

)
ck (lν ,mν , lβ ,mβ

)
×δmµ+mβ−mα−mν ,0 Rk (nµ lµ ,nβ lβ ,nα lα ,nν lν

)
(2.164)

=
1
2 ∑

nα lα mα nβ lβ mβ

δlα lβ δmα mβ
Plα

nα nβ

min(lµ+lα ,lβ+lν)

∑
k=max(|lµ−lα |,|lβ−lν |,|mµ−mα |)

ck (lµ ,mµ , lα ,mα

)
ck (lν ,mν , lβ ,mβ

)

×δmµ+mβ−mα−mν ,0 Rk (nµ lµ ,nβ lβ ,nα lα ,nν lν
)

(2.165)

=
1
2

δmµ mν ∑
nα nβ

∑
lm

Pl
nα n

β

min(lµ+l,l+lν)

∑
k=max(|lµ−l|,|l−lν |,|mµ−m|)

ck (lµ ,mµ , l,m
)

ck (lν ,mν , l,m)Rk (nµ lµ ,nβ l,nα l,nν lν
)

(2.166)

=
1
2

δmµ mν ∑
nα nβ

∑
lm

Pl
nα n

β

min(lµ+l,l+lν)

∑
k=max(|lµ−l|,|l−lν |,|mµ−m|)

ck (lµ ,mµ , l,m
)

ck (lν ,mµ , l,m
)

Rk (nµ lµ ,nβ l,nα l,nν lν
)

(2.167)

For lµ = lν , we can be write the above equation as

Kµν = δlµ lν δmµ mν ∑
l
(2l +1) ∑

nα nβ

Pl
nα n

β

lµ+l

∑
k=|lµ−l|

1
2

(
lµ k l
0 0 0

)2

Rk (nµ lµ ,nβ l,nα l,nν lν
)

(2.168)

Substituting equation (2.168) and equation (2.162) into equation (2.156), we
obtain
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Gµν = δlµ lν δmµ mν ∑
l
(2l +1) ∑

nα nβ

Pl
nα n

β

R0 (nµ lµ ,nβ l,nν lν ,nα l
)
−

lµ+l

∑
k=|lµ−l|

1
2

(
lµ k l
0 0 0

)2

Rk (nµ lµ ,nβ l,nα l,nν lν
) (2.169)

The two particle integrals Rk (nµ lµ ,nβ lβ ,nν lν ,nα lα
)

can be written as:

Rk (µ,ν ,α,β ) =

∞̂

0

dr′
∞̂

r′

dr
r′k

rk+1 Pµ (r)Pα (r)Pν

(
r′
)

Pβ

(
r′
)

(2.170)

Substituting Gaussian type orbital basis function (2.135) into (2.170), yields

Rk (µ,ν ,α,β ) = Nnµ ξµ
Nnν ξν

Nnα ξα
Nnβ ξβ

(
nµ+nα−k

2 −1
)

!

2
(
ξµ +ξα

) nµ+nα−k
2

nµ+nα−k−2

∑
ν=0

(
ξµ +ξα

)ν

ν!

×
(
nν +nβ + k+2ν−1

)
!
√

π

2
nν+n

β
+k+2ν+2
2

(
ξµ +ξα +ξα +ξβ

) nν+n
β
+k+2ν+1
2

(2.171)

The overlap matrix element Sµν represents the overlap integrals in equation

(2.137) and can be evaluated with Gaussian type functions, defined as:

Sµν = Snµ lµmµnν lνmν
=

ˆ
φ
∗
µ (r)φν (r)d3r (2.172)

Sµν ==

ˆ Pnµ lµ
(r)

r
Y ∗lµmµ

(θ ,ϕ)
Pnν lν (r)

r
Ylνmν

(θ ,ϕ)r2drdθdϕ (2.173)

= δlµ lν δmµmν

∞̂

0

Pnµ lµ
(r)Pnν lν (r)dr

= δlµ lν δmµmν

∞̂

0

Pnµ lµ
(r)Pnν lµ

(r)dr (2.174)

Substituting Gaussian type orbital basis function (2.135) into (2.174), yields

Sµν = Nnµξµ
Nnνξν

(
nµ +nν −1

)
!

√√√√ π

2
(
ξµ +ξν

)(nµ+nν+1
2

) (2.175)
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Combining Eqs. (2.142), (2.145), (2.156), and Eq.(2.175), we get to the

Hartree-Fock equation with Gaussian basis-set function

∑
ni

(T +V +G)l
nµnν

Cl
nνni

= εnil ∑
nν

Sl
nµnν

Cl
nµni

(2.176)

∑
ni

1
2

Nnµ ξµ
Nnν ξν

nµnν + l (l +1)
(
nµ +nν −3

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν−1


−2
(
nµξν +nνξµ

)(
nµ +nν −1

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν+1 +4ξµξν

(
nµ +nν −1

)
!
√

π

2
(
2ξµ +2ξν

)nµ+nν+1

dr

−ZNnµ ξµ
Nnν ξν

(
nµ+nν−2

2

)
!

2
√(

ξµ +ξν

) nµ+nν

2

+

(
δlµ lν δmµ mν ∑

l
(2l +1) ∑

nα nβ

Pl
nα n

β

R0 (nµ lµ ,nβ l,nν lν ,nα l
)

δlµ lν δmµ mν ∑
l
(2l +1) ∑

nα nβ

Pl
nα n

β

lµ+l

∑
k=|lµ−l|

1
2

(
lµ k l
0 0 0

)2

Rk (nµ lµ ,nβ l,nα l,nν lν
)Cl

nν ni

= εnilC
l
nµ ni ∑

nν

Nnµ ξµ
Nnν ξν

(
nµ +nν −1

)
!

√√√√ π

2
(
ξµ +ξν

)( nµ+nν+1
2

)
 (2.177)

The total Hartree-Fock energy can be written as:

E = ∑
µν

Pµν

(
Fµν −

1
2

Gµν

)
(2.178)

E =∑
l

∑
n

2(2l +1)

εnl−∑
l′

∑
n′

(
2l′+1

)R0 (nl,n′l′,nν l,n′l′
)
− 1

2

k=l+l′

∑
k=|l−l′|

(
l k l′

0 0 0

)2

Rk (nl,n′l′,n′l′,nν l
)

(2.179)
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3.1 Introduction

In the phenomena that occur in every day life, we intuitively apply a series of

notions which are at the base of the Newtonian physics. For example, when

we cross a street and the traffic light is on red, we can quickly estimate the

speed of car that is coming on our direction, provided that does not suddenly

accelerate. If the measured time that reached our position is long enough, we

could safely cross the road. Our guess depends on a certain description of

the dynamics of the car that turns out to be the same for us and for the car’s

driver. The laws which describe this motion are said to be invariant under a

Galileo transformation over all the inertial frames. The theory that explains

the movement of these macroscopic objects is known as classical mechan-

ics. Macroscopic objects can be pushed to move at very high speed, and if

their velocities come close to the speed of light, then classical mechanics is

no longer capable of predicting their trajectories. Einstein developed a new

theory where space and time are not two distinct entities, like we intuitively

expect, but are closely related. The equations of motion in this new domain

are not invariant under Galileo transformation, but under a Lorentz transfor-

mation. We can explain what happens to these very fast objects by making

paradoxical examples. One of these, is the famous twins paradox, in which

one of two brothers is an astronaut who travels on a spaceship at speed of

light and the other, less adventurous brother, prefers to live in a slow moving

object, i.e. the earth. At the end of his trip, the first brother is younger than his

brother, because of the phenomena of time contraction. A fast-moving per-

son ages more slowly due to the relation that connects the coordinates of two

different frames, t ′ = t−(xv/c2)√
1−v2/c2

, in the approximation we move along the X

axis. The dynamics that explains the behavior of fast moving objects is called

the special theory of relativity. At microscopic scale, it is more difficult to

predict trajectories because of the dual wave-particle nature that each object

intrinsically possesses. The Heisenberg principle teaches us that momentum

and position can not be known exactly at the same time, the more accurately

one is measured, the bigger is the uncertainty on the measurement of the
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other. The equation of motion of microscopic objects can be deduced from

the Schrödinger equation and the theory that explains their behavior is called

quantum mechanics. In the last fourty years the evolution of computer power

has helped in finding an approximate solution to the Schrödinger equation for

microscopic systems of increasing complexity. In particular, the movement of

electrons can be decoupled from the much slower nuclei (Born-Oppenheimer

approximation) in order to predict the properties of a molecular system. A

very small object can also move at velocity close to the speed of light. For

example, an electron moving in the vicinity of a heavy nucleus can increase

its speed so much. Therefore its mass can be changed significantly and the

orbital in which it moves gets deformed. This can affect certain properties of

a system. The combination of quantum mechanics and the special theory of

relativity is known as relativistic quantum mechanics.

3.2 Dirac Equation for One Particle System

The Dirac equation with the Coulomb potential describes the motion of an

electron in the field of an atomic nucleus. This problem can be solved and

the solution a agrees with experiments [73]. The one-electron Dirac wave

function Ψnκm satisfies the single-particle Dirac equation [74 ]:

ĥDΨnκm (~r) = EnκΨnκm (~r) (3.1)

where ĥD is the Dirac Hamiltonian, given by [75]:

ĥD = c~̂α.~̂p+ β̂mc2 +V (r) (3.2)

where r is the distance between electron and nucleus, and V (r) is the potential
energy. Obviously, the β̂mc2 term in equation (3.2) is independent of coor-
dinates system. The Hamiltonian ĥD is invariant under rotation and space,
which means that it commutes with the operators of the total angular momen-
tum and the parity [76]. The operators ~̂α and β̂ in equation (3.2) involves
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4×4 Dirac matrices that are hermitian and given by [77]:

~̂α =

(
0 ~σ

~σ 0

)
; β̂ =

(
Î 0
0 −Î

)
(3.3)

where Î is the 2×2 unit matrix ,and the σ̂ ’s are defined by [78] :

~̂σ x =

(
0 1
1 0

)
, ~̂σ y =

(
0 −i
i 0

)
, ~̂σ z =

(
1 0
0 −1

)
(3.4)

Equation (3.4) represents Pauli matrices that constitute with the unite matrix,

a basis for 2× 2 hermitian matrices. In a spherical coordinate system, the

eigenstate or bound-state solution to the Dirac equation for one-electron has

the 4-spinor structure [79].

Ψnκm(~r) =
1
r

(
Pnκ(~r) χ

m j
κ (θ ,φ)

iQnκ (~r) χ
m j
−κ (θ ,φ)

)
(3.5)

where Pnκ(~r) and Qnκ(~r) are the large and small component radial wave func-

tions of the one electron radial wave function respectively, and satisfy the

orthonormal condition given by [80]
ˆ

∞

0
[Pnκ (~r)Pn′κ (~r)+Qnκ (~r)Qn′κ (~r)]dr = δnn′δκκ ′ (3.6)

where δnn′δκκ ′ is the Kronecker delta, and χ
m j
κ (θ ,φ) terms in equation (3.5)

are the spin-orbit parts which are two-dimensional vector harmonics. The

spherical spinors satisfy the orthogonality relation too which is defined by

the equation [81]:

χ
m j
κ (θ ,φ) =

1/2

∑
ms=−1/2

C
(
l,1/2 j;m j−ms,ms

)
Y m j−ms

l (θ ,φ)χms (3.7)

Here n is the principal quantum number, and κ is the Dirac quantum num-

ber which is related to the total angular momentum j and the orbital angular
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momenta l,and l− of the large and small components respectively, by [82]:

j = |κ|− 1
2

l =
∣∣κ + 1

2

∣∣− 1
2

l− =
∣∣−κ + 1

2

∣∣− 1
2

(3.8)

there is also another useful formfor the spherical spinors given by :

χ
m j
κ (θ ,φ) =

 C
(
l,1/2 j;m j− 1

2,+
1
2

)
Y

m j−1
2

l (θ ,φ)χms

C
(
l,1/2 j;m j +

1
2,−

1
2

)
Y

m j+
1
2

l (θ ,φ)χms

 (3.9)

But ĥD does not commute with L̂2 and Ŝ2 and the quantum numbers j and

m j are not sufficient to describe one state (each value of j corresponds to two

non-relativistic states). This is why it is useful to introduce the operator κ̂:

κ̂ = (2~̂L·~̂S+1) = (~̂σ ~̂·L+1) (3.10)

that commutes with ĥD as well as with ~̂J . Its application on an eigenvector
gives

(~̂σ ·~̂L+1)χm j
κ (θ ,φ) = κχ

m j
κ (θ ,φ) (3.11)

where the eigenvalue κ is{
κ =−

(
j+ 1

2

)
, i f l = j− 1

2
κ =+

(
j+ 1

2

)
i f l = j+ 1

2
(3.12)

The value of κ determines both j and l. As the Dirac Hamiltonian does not

change under space-like reflections, the parity operator P̂ that maps~r→ −~r,

may also produce good quantum numbers. In spherical coordinates, the op-

erator P̂ transforms φ → φ +π and θ → π−θ . Under a parity transformation,

P̂Y m j−ms
l (θ ,φ) = Y m j−ms

l (π−θ ,φ +π) = (−1)l Y m j−ms
l (θ ,φ). From the ac-

tion of the 4-components operator p̂= β̂ P̂ on the 4-rank spinor, it follows that

the spherical spinors are eigenfunctions of P̂ having eigenvalues Π = (−1)l.

The two spinors χ
m j
κ (θ ,φ) and χ

m j
−κ (θ ,φ), corresponding to the same value

of j, have values of l differing by one unit and, therefore, have opposite parity.
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3.3 Dirac-Coulomb Equation for a Many-Body System

If more than one-electron is present in the system, an additional term, arising

from the interaction between electrons, must be added in the Dirac-Coulomb

Hamiltonian describing the problem, given by [83]:

ĤDC =
N

∑
i=1

[
c~̂α i.~̂pi +(β̂i−1)c2 +V (ri)

]
+

N

∑
i< j

V (i, j) (3.13)

where the first summation is over all electrons and the second summation is

over all pairs of electrons. The first and second terms in the Dirac-Coulomb

Hamiltonian represent the Dirac kinetic energy operator as [84]:

T̂i = c~̂αi.~̂pi +(β̂i−1)c2 (3.14)

and the terms in bracket represent the one-electron Hamiltonian ĥD which is

defined in section (3.2), V (ri) is the Coulomb potential for one-electron and

the last term V (i, j) in equation (3.2) represents the interaction energy of elec-

trons i and j, where V (i, j) = 1
ri j

, ri j =
∣∣~ri−~r j

∣∣ is the inter electronic distance.

The result of many-body Hamiltonian is called Dirac-Coulomb Hamiltonian.

The study of the bound state of the atomic system consists of solving an

eigenvalue problem of the form [85]

ĤDCΨnκm = EΨnκm (3.15)

whose solutions are square-integrable. Such an equation can no longer be

solved analytically and all the challenge consists in determining an approxi-

mate wave function for an N-electron atom. Furthermore, as the electrons are

fermions, the exclusion Pauli Principle play a major role. This physical con-

straint implies that the wave function of any N-electron system Ψ(~r1,~r2, ...,~rN),

must be antisymmetric under the exchange of any pair of coordinates (~ri ,~r j

). Such function has the form [86]:

Ψ(~r1,~r2, ...,~rN) =
1√
N! ∑

p
(−1)pP̂{Ψa(~r1)Ψb(~r2)...ΨN(~rN)} (3.16)
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where P̂ is an operator which permutes the coordinates of the electrons, (−1)p =

1 for an even permutation, and −1 otherwise. In an equivalent and convenient

writing, the latter function can also be written as a Slater determinant which

is given by [87]:

Ψ(~r1,~r2, ...,~rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
ψa(~r1) ψb(~r1) ... ψN(~r1)

ψa(~r2) ψb(~r2) .... ψN(~r2)
... ... . . . ...

ψa(~rN) ψb(~rN) ··· ψN(~rN)

∣∣∣∣∣∣∣∣∣∣
(3.17)

Each element of the determinant is a Dirac four-spinor (eigenstate) associated

with an orbital. In analyzing the commutation properties of the many-electron

Hamiltonian, we are looking for functions characterized by the good quantum

numbers Ĵ,M j,Π̂ . A single Slater determinant is usually not an eigenfunction

of J2 and a J2 -symmetry adapted linear combination of Slater determinants

is needed to define a single Configuration State Function (CSF). These state

functions ψ
(
α jJ
)

are called CSFs (Configuration State Functions), where α j

contains enough parameters to define each state uniquely.

3.4 Configuration State Functions

A configuration state function (CSF), ψ
(
α jJ
)

, of an N − electron sys-

tem is formed by taking linear combinations of Slater determinants of or-

der N constructed from the orbitals of eqn. (3.5) so as to obtain normalized(〈
ψ
(
α jJ
)
|ψ
(
α jJ
)〉

= 1
)

eigenfunctions of the parity operator P̂, and total

angular-momentum operators Ĵ2 and ĵz. In general, one configuration gives

rise to several CSFs, all have the same total quantum numbers for spin and

spatial parts but differ in their intermediate couplings.

3.5 Dirac-Hartree-Fock (DHF) Approximation

The strategy of the Dirac-Hartree-Fock (DHF) approach for calculating the

electronic structure of atoms is to set up an expansion for the expectation

value of the Hamiltonian, and minimizing with respect to variations wave
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functions. This problem concerns, with the fact that we have a four-component

wave function and we want to minimize the total energy of an N-electron

atom. The Dirac-Coulomb Hamiltonian for a many-electron atom can be

written in another form as [88]:

ĤDC =
N

∑
i=1

[
c~̂α i.~̂pi +(β̂i−1)c2 +V (ri)

]
+

N

∑
i< j

e2∣∣~ri−~r j
∣∣ (3.18)

To find the total energy of an N-electron atom, we have to find the expectation

value of the Dirac-Coulomb Hamiltonian for determinant wave functions of

eqn. (3.18). We can write down the expectation energy as [89]

〈
Ψ
∣∣ĤDC

∣∣Ψ〉= occ

∑
i=1

ˆ
Ψi (~r)

(
c~̃αi.~̂pi + β̂imic2− Ze2

ri

)
Ψi (~ri)d~ri

+e2
∑
i< j

ˆ ˆ
Ψ

†
i (~r1)Ψ

†
j (~r2)

1
|~r1−~r2|

Ψi (~r1)Ψ j (~r2)d~r1d~r2

−e2
∑
i< j

ˆ ˆ
Ψ

†
i (~r1)Ψ

†
j (~r2)

1
|~r1−~r2|

Ψi (~r2)Ψ j (~r1)d~r1d~r2 (3.19)

where the first term is summed over all occupied states, and the other terms

are summed over pairs of electrons. The single-particle wave functions take

on the usual form for solutions of the Dirac equation in a central field [90] :

Ψ
m j
nκ(~r) =

1
r

(
unκ(~r) χ

m j
κ (θ ,φ)

−vnκ (~r) χ
m j
−κ (θ ,φ)

)
(3.20)

In this form, we note that the energy depends only on the radial part of the

wave function, and this energy does not depend on the spin-angular functions.

Therefore, it will be convenient that if we could integrate the spin-angular

functions, then equation (3-20) has the form Ψ(~r)=

(
u(~r)

v(~r)

)
. This leaves us

with integrals, involving u(~r)and v(~r) only, where u and v are large and small

component of the electron wave function respectively. The radial functions
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unκ(~r) and vnκ (~r) may be expanded using Gaussian basis-sets as [91].

unκ(~r) =
N

∑
i=1

f L
κ p (~r)ξnκ p (3.21)

vnκ(~r) =
N

∑
i=1

f S
κq (~r)ηnκq (3.22)

where N is the expansion length. ξnκ p and ηnκq are linear variation parame-
ters, f L

κ p (~r) and f S
κq (~r) are the relativistic Gaussian basis-sets given by [92]

f L
κ p (~r) = NLr exp

(
−ζLr2

)
(3.23)

f S
κq (~r) = NSr exp

(
−ζSr2

)
(3.24)

The factors ζL and ζS in Eq. (3.23) and Eq. (3.24) are the only adjustable pa-
rameters of these basis functions and these parameters are usually called the
exponents of the basis functions. NL and NS are normalization factors . Sub-
stituting Eq. (3.23) and Eq. (3.24) into Eq.(3.21) and Eq.(3.22), respectively,
the radial functions become

unκ(~r) =
N

∑
i=1

r exp
(
−ζLr2

)
ξnκ p (3.25)

vnκ(~r) =
N

∑
i=1

r exp
(
−ζSr2

)
ηnκ p (3.26)

In equation (3-20), the wave function is labeled with the quantum number κ

and m j. We will replace the subscripts κ and n with the letters a,b,c , which
will represent both n and κ . Then, the total energy expression of an atom can
be find. We start from the first term in first bracket, in equation (3.19), which
represents the kinetic energy, the expectation value for this term is [93]:〈

Ψ
m j
a

∣∣∣c~̂α i.~̂pi

∣∣∣Ψm j
a

〉
=

ˆ
Ψ

m†
j

a (~r) icγ̂5σ̂r

(
h̄

∂

∂ r
+

h̄
r
− β̂

k
r

)
Ψ

m j
a (r)dr (3.27)

Integrating equation (3-27) over angles and using the orthonormality of the

spin-angular functions, we get
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Ψ

m j
a

∣∣∣c~̃α i.~̂pi

∣∣∣Ψm j
a

〉
=

(
ch̄
ˆ

va (r)
(

∂ua (~r)
∂ r

+
k
r

ua (~r)
)

dr

−
ˆ

ua (r)
(

∂va (~r)
∂ r

− k
r

ua (~r)
)

dr
)

(3.28)

The expectation value of second term in first bracket in equation (3-19) rep-
resent the rest mass energy as:〈

Ψ
m j
a

∣∣∣β̂imc2
∣∣∣Ψm j

a

〉
= mc2

ˆ
Ψ

m†
j

a (~r) β̂Ψ
m j
a (~r)dr (3.29)

= mc2
ˆ (

u2
a (~r)− v2

a (~r)
)

dr (3.30)

And finally, the last term in first bracket in eqn. (3.19) represents the nuclear

potential term. The expectation value for this term is:

〈
Ψ

m j
a

∣∣∣∣Ze2

ri

∣∣∣∣Ψm j
a

〉
= Ze2

ˆ
Ψ

m†
j

a (~r)
1
r

Ψ
m j
a (~r)dr (3.31)

= Ze2
ˆ

1
r

(
u2

a (~r)+ v2
a (~r)

)
dr (3.32)

Combining Eqs. (3.28), (3.30), and (3.32), we obtain the total single-particle
energy for one electron :

〈
Ψ
∣∣ĥD
∣∣Ψ〉= ∑

a,m j

ˆ
Ψ

m†
j

a (r) ĥD
(
κ,m j

)
Ψ

m j
a (r)dr (3.33)

= ∑
a

na

(
mc2
ˆ (

u2
a (r)− v2

a (r)
)

dr−Ze2
ˆ

1
r

(
u2

a (r)+ v2
a (r)

)
dr+

ch̄
ˆ (

va (r)
(

∂ua (r)
∂ r

+
ka

r
ua (r)

)
−ua (r)

(
∂va (r)

∂ r
− ka

r
ua (r)

)
dr
))
(3.34)

This equation represents the single-particle part of the total energy in terms

of the radial parts of the single-particle wave functions only. While the total

64



Chapter three - Part one The Issues of Complex Atoms

energy for two-particles is given by :〈
a,b
∣∣∣∣ e2

r12

∣∣∣∣c,d〉=

ˆ ˆ
Ψ

†
a (r1)Ψ

†
b (r2)

e2

r12
Ψc (r1)Ψd (r2)dr1dr2 (3.35)

The Coulomb operator can be expanded as

1
|~r1−~r2|

=
∞

∑
l=0

+l

∑
m=−l

(
4π

2l +1

)
rl
<

rl+1
>

Y m∗
l (r̂<)Y m

l (r̂>) (3.36)

where r> ≡ max(ri,r j) and r< ≡ min(ri,r j), represent longer (shorter) dis-
tance of the center of the nucleus for the ith and jth electron. Substituting Eqs.
(3.20) and (3.36 ) into equations (3.35) and multiplying out the 4-component
wave functions, we get :〈

a,b
∣∣∣ e2

|~r1−~r2|

∣∣∣c,d〉= e2 ´ dr1
´

dr2 ∑
∞
l=0 ∑

+l
m=−l

(
4π

(2l+1)

)
rl
<

rl+1
>

Y m∗
l (r̂<)Y m

l (r̂>)

×
(

ua (r1)uc (r1)ub (r2)ud (r2)χ
m†

ja
κa (θ1,φ1)χ

m jc
κc (θ1,φ1)χ

m†
jb

κb (θ2,φ2)χ
m jd
κd (θ2,φ2)

+ua (r1)uc (r1)vb (r2)vd (r2)χ
m†

ja
κa (θ1,φ1)χ

m jc
κc (θ1,φ1)χ

m†
jb
−κa

(θ2,φ2)χ
m jd
−κd

(θ2,φ2)

+va (r1)vc (r1)ub (r2)ud (r2)χ
m†

ja
−κa

(θ1,φ1)χ
m jc
−κc

(θ1,φ1)χ
m†

jb
−κb

(θ2,φ2)χ
m jd
−κd

(θ2,φ2)

+va (r1)vc (r1)vb (r2)vd (r2)χ
m†

ja
−κa

(θ1,φ1)χ
m jc
−κc

(θ1,φ1)χ
m†

jb
−κb

(θ2,φ2)χ
m jd
−κd

(θ2,φ2)
(3.37)

where χ
m j
κ (θ ,φ) is the spin-angular function, which when expanded is gives

:

χ
m j
κ (θ ,φ) = ∑

ms

c
(

l
1
2

j;m j−ms,ms

)
Y m j−ms

l (θ ,φ)χ
ms (3.38)

This is a complicated expression. Now let us rename radial wave functions as

u(r) = R(+1),v(r) = R(−1), and define new quantities, [94]

βa =±1,βb =±1

κ =−l−1 =−
(

j+ 1
2

)
; j = l + 1

2

κ = l =
(

j+ 1
2

)
; j = l− 1

2

(3.39)
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and the quantum number l̄ associated with −κ as:

l̄ = l +1 =−κ ,κ < 0

l̄ = l−1 = κ−1 κ > 0
(3.40)

and new quantities [95]

sκ = κ

|κ|
sκ =−1 ; j = l + 1

2

sκ =+1 ; j = l− 1
2

sκ = l− l̄ = 2(l− j)

(3.41)

λa = ja + 1
2sκaβa

λb = jb + 1
2sκbβb

λc = jc + 1
2sκcβc

λd = jd + 1
2sκd βd

(3.42)

where ji is the j quantum number associated with κi. Substituting Eq.(3.38 ),

Eq. (3.39 ), Eq. (3.40 ), Eq.( 3.41), and (3.42), into equation ( 3.37), we get

〈
a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣c,d〉= e2
ˆ

dr1

ˆ
dr2

∞

∑
l=0

+l

∑
m=−l

(
4π

(2l +1)

)
rl
<

rl+1
>

Y m∗
l (r̂<)Y m

l (r̂>)

× ∑
βa=±1

∑
βb=±1

Ra(βa) (r1)Rc(βa) (r1)Rb(βb) (r2)Rd(βb) (r2)

×
(

c(λa
1
2

ja;m ja−
1
2
,
1
2

)
c
(

λc
1
2

jc;m jc−
1
2
,
1
2

)
Y

m ja−1
2
∗

λa
(r1)Y

m jc−1
2

λc
(r1)

+

(
c
(

λa
1
2

ja;m jd +
1
2
,−1

2

)
c
(

λc
1
2

jc;m jc +
1
2
,
1
2

)
Y

m ja+
1
2
∗

λa
(r1)Y

m jc+
1
2

λc
(r1)

)
×
(

c
(

λb
1
2

jb;m jb−
1
2
,
1
2

)
c
(

λd
1
2

jd;m jd −
1
2
,
1
2

)
Y

m jb−
1
2
∗

λb
(r2)Y

m jd−
1
2

λd
(r2)

+ c
(

λb
1
2

jb;m jb +
1
2
,
1
2

)
c
(

λd
1
2

jd;m jd +
1
2
,−1

2

)
Y

m jc+
1
2
∗

λc
(r2)Y

m jd+
1
2

λd
(r2)

)
(3.43)

For more clear representation, we define new quantities sa =±1
2 ,sb =±1

2 and
summing over these quantities and separating the radial and angular integrals,
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the equation (3.43) becomes〈
a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣c,d〉= ∑
βa=±1

∑
βb=±1

∑
sa=±1

2

∑
sb=±1

2

∞

∑
l=0

(
4π

(2l +1)

)
+l

∑
m=−l

(
c(λa

1
2

ja;m ja− sa,sb)

)
c
(

λb
1
2

jb;m jb− sb,sb

)
c
(

λc
1
2

jc;m jc− sa,sb

)
ˆ

Y m ja−s∗a
λa

(r1)Y m jc−sa

λc
(r1)Y m?

l (r1)dr1c
(

λd
1
2

jd;m jd − sb,sb

)ˆ
Y m

l (r2)Y
m jb−s∗b
λb

(r2)

Y
m jd−sb

λd
(r2)dr2e2

ˆ ˆ
Ra(βa) (r1)Rc(βa) (r1)Rb(βb) (r2)Rd(βb) (r2)

rl
<

rl+1
>

dr1dr2

(3.44)

To simplify equation (3.44) we let c = a ,d = b, to obtain:〈
a,b
∣∣∣∣ e2

4πε◦ |r1− r2|

∣∣∣∣a,b〉=
e2

4πε◦
∑

βa=±1
∑

βb=±1
∑

sa=±1
2

∑
sb=±1

2

∞

∑
l=0

(
4π

(2l +1)

)
+l

∑
m=−l

ˆ ˆ
R2

a(βa)
(r1)R2

b(βb)
(r2)

rl
<

rl+1
>

dr1dr2c2(λa
1
2

ja;m ja− sa,sa)

ˆ
Y

m jb−s∗a
λa

(r1)Y m ja−sa

λa
(r1)Y m?

l (r1)dr1c2(λb
1
2

jb;m jb− sb,sb)

ˆ
Y m

l (r2)Y
m jb−s∗b
λb

(r2)Y
m jb−sb

λb
(r2)dr2 (3.45)

To simplify further, we introduce the spherical harmonics function as:

Y−m
l (θ ,φ) = (−1)Y m∗

l (θ ,φ) (3.46)

The spherical harmonics are written in terms of Legendre functions as [96]:

Y m
l (θ ,φ) = (−1)m

(
2l +1 (l−m)!

4π (l +m)!

)
Pm

l (cosθ)eimφ (3.47)

The normalization condition is given as [97]

ˆ 2π

0
dφ

ˆ
π

0
sinθY m∗

l (θ ,φ)Y m′
l′ (θ ,φ)dθ = δll′δmm′ (3.48)
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and

cl′′m′′
lml′m′ =

ˆ
Y ∗

m′′

l′′ (Ω)Y m′
l′ (Ω)Y m

l (Ω)dΩ

=

(
(2l +1)(2l′+1)

4π (2l′′+1)

)
c
(
ll′l′′;mm′

)
c
(
ll′l′′;0,0

)
δm′′m′+m

(3.49)

and to add simplification, let l′′ = l ,m′′ = m, we get to

ˆ
Y m ja−s∗a

λa
(r1)Y m∗

l (r<)Y m ja−sa

λa
(r1)dr1 =

(
2l +1

4π

)1/2

c(l1ll1;m1m)c(l1ll1;0,0)

(3.50)

By using the triangle condition for Clebsh-Gordon coefficients as [98]

j = | j1− j2| ; | j1− j2|+1; | j1− j2|+2, ..., j1 + j2−2, j1 + j2−1, j1 + j2
(3.51)

Eqn. (3.45 ) becomes〈
a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣a,b〉= e2
∑

βa=±1
∑

βb=±1
∑

sa=±1
2

∑
sb=±1

2

c2(λa
1
2

ja;m ja− sa,sa)

×c2(λb
1
2

jb;m jb− sb,sb)

ˆ ˆ
R2

a(βa)
(r1)R2

b(βb)
(r2)

1
r>

dr1dr2 (3.52)

where,

c2
(

l
1
2

j;m j−
1
2
,
1
2

)
+ c2

(
l
1
2

j;m j +
1
2
,
1
2

)
= 1 (3.53)

The summations over sa and sb in equation (3.52 ) can be re-expanded. Then
using Eq. (3.53) we obtain :〈

a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣a,b〉= e2
∑

βa=±1
∑

βb=±1

ˆ ˆ
R2

a(βa)
(r1)R2

b(βb)
(r2)

1
r>

dr1dr2

(3.54)

Eqn. (3.54) represents for the two particle integral which also called the direct

integral or Coulomb integral (or direct Coulomb integral) denoted by J. We

can also get rid of the summations in equation (3.54 ) over βa and βb, by
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putting u(r) and v(r) instead of R2
a(βa)

and R2
b(βb)

into equation (3.54), to obtain

J = e2
ˆ ˆ (

u2
a (r1)+ v2

a (r1)
)(

u2
b (r2)+ v2

b (r2)
) 1

r>
dr1dr2 = F (a,b)

(3.55)

where Fl (a,b) is the radial integral given [99]

Fl (a,b) = e2
ˆ ˆ (

u2
a (r1)+ v2

a (r1)
)(

u2
b (r2)+ v2

b (r2)
) rl

<

rl+1
>

dr1dr2 (3.56)

To find the total Coulomb average for all N− electrons in the atom, we can

write the equation (J) by another form as [100]:

JT = ∑
a

(
1
2

na (na−1)F (a,a)+
1
2 ∑

b6=a
nanbF (a,b)

)
(3.57)

where the first term in Eqn. (3.57) represents the interaction of all electrons
in a− shell with all the other electrons in the same shell, F (a,a) describes
the interaction of one pairs of electrons, and 1

2na (na−1) is the number of
pairs in a− shell. The second term represents the interaction of all electrons
in the a− shell with all electrons in the b− shell. The factor 1

2 outside the
summation in second term avoids counting every pair of electrons twice. To
obtain the exchange integral, recall equation (3.45 ). Then , using the same
procedure used imperviously in the Coulomb integral, and letting c= b,d = a,
equation (3.45 ) becomes :〈

a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣b,a〉= ∑
βa=±1

∑
βb=±1

∑
sa=± 1

2

∑
sb=± 1

2

∞

∑
l=0

(
4π

(2l +1)

)

+l

∑
m=−l

(
c(λb

1
2

jb;m jb− sa,sa)

)
c
(

λa
1
2

ja;m ja− sb,sb

)

c
(

λa
1
2

ja;m ja− sa,sb

)ˆ
Y m ja−s∗a

λa
(r1)Y

m jb−sa

λb
(r1)Y m?

l (r1)dr1

c
(

λb
1
2

jb;m jb− sb,sb

)ˆ
Y m

l (r2)Y
m jb−s∗b
λb

(r2)Y m ja−sb
λa

(r2)d

re2
ˆ ˆ

Ra(βa) (r1)Rb(βa) (r1)Rb(βb) (r2)Ra(βb) (r2)
rl
<

rl+1
>

dr1dr2 (3.58)
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The integral in equation (3.58) has three spherical harmonics, and will be zero
unless [101]:

m = m ja−m jb (3.59)

When removing the sum over m in eqn. (3.58) and replacing where ever it
occurs using (3.59 ), and substituting into the angular integrals in eqn. (3.58)
, yields:〈

a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣b,a〉= e2 (−1)m ja−m jb ∑
βa=±1

∑
βb=±1

∞

∑
l=0

c(λblλa;0,0)c(λalλb;0,0)

ˆ ˆ
Ra(βa) (r1)Rb(βa) (r1)Rb(βb) (r2)Ra(βb) (r2)

rl
<

rl+1
>

dr1dr2

×I
m ja ,m jb
λa,λb,l

I
m jb ,m ja

λb,λa,l
(3.60)

where :

I
m j2 ,m j1
λ2,λ1,l

= ∑
s=±1

2

c
(

λ2
1
2

j2;m j2− s,s
)
×c
(

λ1
1
2

j1;m j1− s,s
)

c
(
λ1lλ2;m j1− s,m j2−m j1

)
(3.61)

where Clebsh-Gordan symmetry relation was used. Then I
m j2 ,m j1
λ2,λ1,l

can be writ-
ten as [102]:

I
m j2 ,m j1
λ2,λ1,l

= (−1)λ1+λ2−l− j2−m j2

(
2 j1 +1
2l +1

)1/2

× ∑
s=±1

2

c
(

j1
1
2

λ1;−m j1,s
)

.c
(

1
2

λ2 j2;s,m j2− s
)

c
(
λ1λ2l;s−m j1,m j2− s

)
(3.62)

Using the symmetry relations for Racah coefficients, we get [103]

I
m j2 ,m j1
λ2,λ1,l

= (−1)λ2−m j2−
1
2 ×

(
(2 j1 +1)(2 j2 +1)1/2

2l +1

)
× (2λ1 +1)1/2

.W
(

λ1 j1λ2 j2;
1
2

l
)

c
(

j1 j2l;−m j1,m j2
)

(3.63)

Now, putting Eq.(3.63) into (3.60 ), we get :
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〈
a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣b,a〉=
∞

∑
l=0

(−1)m ja−m jb ∑
βa=±1

∑
βb=±1

dl ( ja,m ja, jb,m jb
)

dl

(
jb,m jb, ja,m ja

)
× e2
ˆ ˆ

Ra(βa) (r1)Rb(βa) (r1)Rb(βb) (r2)Ra(βb) (r2)

rl
<

rl+1
>

dr1dr2 (3.64)

where [104]

dl ( j1,m j1, j2,m j2
)
= (−1)λ1−m j1−

1
2

(
(2 j1 +1)(2 j2 +1)

2l +1

)1/2

× (2λ1 +1)1/2

.c
(

j1 j2l;−m j1,m j2
)

W
(

λ1 j1λ2 j2;
1
2

l
)

c(λ1lλ2;0,0) (3.65)

and the recoupling coefficients in the Clebsh-Gordan symmetry relations is

[105]:

W
(

λ1 j1λ2 j2;
1
2

l
)

c(λ1lλ2;0,0) = (−1)λ1

(
(2λ2 +1)

(2l +1)(2 j1 +1)(2 j1 +1)

)1/2

×
(
(2 j1 +1)(2 j2 +1)
(2λ1 +1)(2λ2 +1)

)1/2

c
(

j1 j2l;−1
2
,
1
2

)
(3.66)

Now substituting equations (3.66 ) into equation (3.65 ), yields

dl ( j1,m j1, j2,m j2
)
= (−1)m j1+

1
2 × ((2 j1 +1)(2 j2 +1))1/2

(2l +1)

.c
(

j1 j2l;−1
2
,
1
2

)
c
(

j1 j2l;−m j1,m j2
)

(3.67)

Rewritting equation (3.67) using simple expression [106]:

dl ( j2,m j2, j1,m j1
)
= (−1)m j2−m j1 dl ( j1,m j1, j2,m j2

)
(3.68)

then the Clebsh-Gordon coefficients in equation (3.66) become independent
of λ1and λ2. Therefore, we can go outside the summation over βa and βb in
equation (3.64), and substituting (3.67) into (3.64 ), yields
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〈
a,b
∣∣∣∣ e2

|~r1−~r2|

∣∣∣∣b,a〉= e2
∞

∑
l=0

(
dl ( ja,m ja, jb,m jb

))2
∑

βa=±1
∑

βb=±1

ˆ ˆ
Ra(βa) (r1)Rb(βa) (r1)Rb(βb) (r2)Ra(βb) (r2)

rl
<

rl+1
>

dr1dr2 (3.69)

It is possibel to get rid of the summations over βa and βb in equation (3.69)

by replacing Ri(βi) by u(r) and v(r), and introducing a new definition which

has the compact expression :

bl ( ja,m ja, jb,m jb
)
=
(

dl ( ja,m ja, jb,m jb
))2

(3.70)

Substituting eqn. (3.70) into equation (3.69) and denoting exchange integrals

by K, we get the expression of the exchange energy as:

K =
∞

∑
l=0

bl ( ja,m ja, jb,m jb
)
×Gl (a,b) (3.71)

where Gl (a,b)is the radial integral given by [107]:

Gl (a,b) =
e2

4πε◦

ˆ ˆ
(ua (r1)ub (r1)+ va (r1)vb (r1))

×(ua (r2)ub (r2)+ va (r2)vb (r2))
rl
<

rl+1
>

dr1dr2 (3.72)

Now simplify the term bl ( ja,m ja, jb,m jb
)

as

bl ( ja,m ja, jb,m jb
)
=

(
2 jb +1
2l +1

)
c2
(

ja jbl;−1
2
,
1
2

)
c2 ( jbl ja;m jb,m ja−m jb

)
(3.73)

The exchange integral evaluated for ka− shell of an electron which has quan-

tum numbers ja,m jainteracting with the complete kb− shell electrons has

quantum numbers jb and all possible values of m jb, equation (3.73) becomes
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jb

∑
m jb=− jb

bl ( ja,m ja, jb,m jb
)
=

(
2 jb +1
2l +1

)
c2
(

ja jbl;−1
2
,
1
2

)
jb

∑
m jb=− jb

c2 ( jbl ja;m jb,m ja−m jb
)

(3.74)

jb

∑
m jb=− jb

bl ( ja,m ja, jb,m jb
)
=

1
2
(2 jb +1)Γ

l
ja, jb (3.75)

where (2 jb +1) is the number of electrons in the b−shell , and Γl
ja, jb is given

by :

Γ
l
ja, jb =

2
2l +1

c2
(

ja jbl;−1
2
,
1
2

)
(3.76)

The exchange energy between an electron in the ka− shell and all the elec-

trons in the kb− shell , after substituting the equations (3.75 ) into equation

(3.70), becomes

K =
∞

∑
l=0

1
2
(2 jb +1)Γ

l
ja, jbGl (a,b) (3.77)

Eqn. (3.77) represents the exchange energy between one electron and the

electrons in a different shell. The exchange energy between electrons in the

same shell can be written as

K =
∞

∑
l=0

1
2
(2 jb +1)Γ

l
ja, jaGl (a,a) (3.78)

The above equation when multiplied by factor 1
2na which gives the total ex-

change energy for one shell, and when multiplied eqn. (3.78) by factor na−1
2 j

gives the total exchange energy between one electron and the electrons in

different shell described by a Slater determinant wave function. The total

exchange energy for an atom is given by [108]:
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KT = ∑
a

(
1
2

na
na−1

2 ja

∞

∑
l=0

1
2
(2 ja +1)Γ

l
ja, jaGl (a,a)

+
1
2 ∑

b6=a
na

∞

∑
l=0

1
2
(2 jb +1) Γ

l
ja, jbGl (a,b)

)
(3.79)

This equation represents a final expression for the total exchange energy. The
total energy expression for an atom, can be fond by combiningEqs. (3.37 ),
(3.57), (3.79), to yield

ET =∑
a

na

(
ch̄
(ˆ

va (r)
(

∂ua (r)
∂ r

+
ka

r
ua (r)

)
dr−

ˆ
ua (r)

(
∂va (r)

∂ r
− ka

r
va (r)

)
dr
)

−Ze2
ˆ

1
r

(
u2

a (r)+ v2
a (r)

)
dr+mc2

ˆ (
u2

a (r)− v2
a (r)

)
dr
)

−∑
a

(
1
2

na
na−1

2 ja

∞

∑
l=0

1
2
(2 ja +1)Γ

l
ja, jaFl (a,a)−∑

b6=a
na

∞

∑
l=0

1
4
(2 jb +1)

Γ
l
ja, jbGl (a,b)

)
+∑

a

(
1
2

na (na−1)F (a,a)+
1
2 ∑

b6=a
nanbF (a,b)

)
(3.80)

3.6 Dirac-Hartree-Fock Equations for Atoms

The Dirac-Hartree-Fock (DHF) equations are derived by minimizing the ex-

pectation value of the total energy (3.80), with respect to variations in ua (r)

and va (r), subject to maintaining the normalization. Eqn. (3.80) has been

set up for many-electron atoms. However, it’s instructive to minimize it for

a one-electron atom. In the one-electron limit, there is no exchange energy

between electrons. The terms inside first summation in equation (3.80) rep-

resent the total energy for one electron in an atom as:

E1
T =∑

a
na

(
ch̄
(ˆ

va (r)
(

∂ua (r)
∂ r

+
ka

r
ua (r)

)
dr−

ˆ
ua (r)

(
∂va (r)

∂ r
− ka

r
va (r)

)
dr
)

−Ze2
ˆ

1
r

(
u2

a (r)+ v2
a (r)

)
dr+mc2

ˆ (
u2

a (r)− v2
a (r)

)
dr
)

(3.81)
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And a one electron has only one occupied shell, so the summation disappears.

The equation (3.81) for one electron can be rearranged slightly to become

E1
T =

ˆ
vk (r)

((
∂uk (r)

∂ r
+

k
r

uk (r)
)

ch̄− vk (r)
(

mc2−V (r)
))

dr

−
ˆ

uk (r)
((

∂vk (r)
∂ r

− k
r

vk (r)
)

ch̄−uk (r)
(

mc2 +V (r)
))

dr (3.82)

where V (r) is the nuclear Coulomb potential felt by the electron. When the

wave functions are constrained to be normalized, such that Ia,b is given by

[109]

Ia,b =

ˆ
(u∗a (r)ub (r)+ v∗a (r)vb (r))dr = δa,b (3.83)

the variation in the normalization is ∆I, where

∆I = 2
ˆ

(∆uk (r)uk (r)+∆vk (r)vk (r))dr (3.84)

If we vary u(r),while everything else remains constant, the change in energy

∆E1
T for one electron is given by :

∆E1
T =

ˆ
vk (r)

((
∂∆uk (r)

∂ r
+

k
r

∆uk (r)
)

ch̄
)

dr−
ˆ

∆uk (r)
((

∂vk (r)
∂ r

− k
r

vk (r)
)

ch̄
)

−2uk (r)
(

mc2 +V (r)
)

dr (3.85)

The right way to minimize a quantity subject to a constraint for one electron,

is to use the Lagrange multipliers method as given by [110]

∆E1
T − ε∆I = 0 (3.86)

where the first term in equation (3.85) that gives trouble, is the derivative of

∆uk (r) and this problem can be solved by using integration by parts to obtain
ˆ

vk (r)
∂∆uk (r)

∂ r
dr = [vk (r)∆uk (r)]

∞

0 −
ˆ

∆uk (r)
∂vk (r)

∂ r
dr (3.87)

The first term on the right hand side of equation (3.87) is zero, and ∆uk (r)

is zero at r = 0 and r = ∞. Substituting equation (3.87) into equation (3.85),
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and putting equations (3.84 ) and (3.85 ) into equations (3.86 ), yields

ˆ
∆uk (r)

(
2ch̄
(
−∂vk (r)

∂ r
+

k
r

vk (r)
)
+2
(

mc2 +V (r)− ε

)
uk (r)

)
dr = 0

(3.88)

This equation must be true for any variation function ∆uk (r), and the quantity

in square brackets is equal to zero, i.e.,

∂vk (r)
∂ r

=
k
r

vk (r)−
1
ch̄

(
ε−V (r)−mc2

)
uk (r) (3.89)

By using a similar procedure in volving variation of u(r)and v(r) in equation

(3.82 ), we obtain

∂uk (r)
∂ r

=−k
r

uk (r)−
1
ch̄

(
ε−V (r)+mc2

)
vk (r) (3.90)

The equations (3.89 ) and (3.90) represent the single-particle radial Dirac

equations. To find the variation energy for two electrons, the direct and the

exchange Coulomb terms are add to the single-particle radial Dirac equations.

The radial integral in equation (3.55) is

Fl (a,b) = e2
ˆ ˆ (

u2
a (r1)+ v2

a (r1)
)(

u2
b (r2)+ v2

b (r2)
) rl

<

rl+1
>

dr1dr2 (3.91)

and the radial integral in equation (3.79) is

Gl (a,b) = e2
ˆ ˆ

(ua (r1)ub (r1)+ va (r1)vb (r1))

×(ua (r2)ub (r2)+ va (r2)vb (r2))
rl
<

rl+1
>

dr1dr2 (3.92)

The variations of the radial integrals Fl (a,b) and Gl (a,b) respectively, can

be fond for small variations ∆ua (r) in ua (r) and ∆va (r) in va (r). First, start

of the variations ∆ua (r) in ua (r), and the variation radial integrals in direct

Coulomb term Fl (a,b) as:
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∆Fl (a,b) = 2e2
ˆ ˆ

(ua (r1)∆ua (r1)+ va (r1)∆va (r1))

×
(

u2
b (r2)+ v2

b (r2)
) rl

<

rl+1
>

dr1dr2 (3.93)

The variations of radial integrals in exchange Coulomb term Gl (a,b) as :

∆Gl (a,b) = 2e2
ˆ ˆ

(ub (r1)∆ua (r1)+ vb (r1)∆va (r1))

×(ua (r2)ub (r2)+ va (r2)vb (r2))
rl
<

rl+1
>

dr1dr2 (3.94)

To simplify the radial integrals in equations (3.91 ) and (3.92 ), we need to

introduce a new definition Yl (a,b,r) as [111]

Yl (a,b,r) =
e2

4πε◦
r
ˆ

(ua (r2)ub (r2)+ va (r2)vb (r2))
rl
<

rl+1
>

dr2 (3.95)

where Yl (a,b,r) represents the exchange energy produced from the interac-

tion between the electron and the electrons in other shells. The variation in

total energy ∆ET in equation (3.80 ) can be written, after substituting Eq.

(3.95) into Eq. (3.90) and (3.91), and putting these radial integrals equation

in Eq.(3.80), we get

∆ET = ∑a na

(´
∆ua (r1)

(
2ch̄
(
−∂va(r1)

∂ r1
+ ka

r1
va (r1)

)
+2
(
mc2 +V (r1)

)
ua (r1)

+
′

∑
b

2nb
1
r1

Y◦ (b,b,r1)ua (r1)−
na−1

2 ja

∞

∑
l=0

(2 ja +1)Γ
l
ja, ja

1
r1

Yl (a,a,r1)ua (r1)

−
′

∑
b 6=a

(2 jb +1)
∞

∑
l=0

Γ
l
ja, jb

1
r1

Yl (a,b,r1)ub (r1)

)
dr1

)
(3.96)

The symbol ∑
′means summation over pairs. Every pair is only summed once,

not twice as the summations in equation (3.96). The first ∑
′ in equation (3.96)

includes b = a, and for that case nb = na−1, in equation (3.96). When using

the Lagrange multipliers method with variational method it’s possibel to find
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the minimum energy for more one electrons. The nature of the Lagrange

multipliers requires some explanation. The Lagrange multipliers in Dirac-

Hartree-Fock (DHF) approach, correspond to the energy eigenvalues of the

electronic state. The Lagrange multipliers is given [112]:

∆ET −∑
a

εa,a∆Ia,a−∑
a,b

(
εa,b∆Ia,b + εb,a∆Ib,a

)
= 0 (3.97)

The last two terms in Eqn. (3.97) are complex conjugates of each other, but

the energy eigen value should be real, then εa,b = ε∗b,a in equation (3.97), so

that the Lagrange multipliers must also be real. Substituting equations (3.96

), into (3.97) to obtain the total minimum energy for an atom as:

∑
a

na

(ˆ
∆ua (r1)

(
2ch̄
(
−∂va (r1)

∂ r1
+

ka

r1
va (r1)

)
+2
(

mc2 +V (r1)− εa,a

)
ua (r1)

+
′

∑
b

2nb
1
r1

Y◦ (b,b,r1)ua (r1)−
na−1

2 ja

∞

∑
l=0

(2 ja +1)Γ
l
ja, ja

1
r1

Yl (a,a,r1)ua (r1)

−
′

∑
b6=a

(2 jb +1)
∞

∑
l=0

Γ
l
ja, jb

1
r1

Yl (a,b,r1)ub (r1)−
′

∑
b 6=a

εa,bub (r1)

)
dr1

)
= 0

(3.98)

To simplify these expressions, we introduce a new definition as :

Ua (r) = Ze2−
′

∑
b

nb
1
r1

Y◦ (b,b,r1)+
1
2

na−1
2 ja

∞

∑
l=0

(2 ja +1)Γ
l
ja, ja

1
r1

Yl (a,a,r1)

(3.99)

This equation represents the potential felt by an electron in a−shell. The first

term in equation (3.99) represents the nuclear potential, and the second term

represents the direct Coulomb interaction due to all other electrons, and the

last term represents an effective exchange potential due to all other electrons

in the a− shell. Substituting equation (3.99) into equation (3.98), yields
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ch̄
(
−∂va (r)

∂ r
+

ka

r
va (r)

)
+
(

εa,a +Ua (r)−mc2
)

ua (r)+
1
2

′
∑
b 6=a

∞

∑
l=0

(2 jb +1)

Γ
l
ja, jb

1
r
Yl (a,b,r)ub (r)+

′
∑
b6=a

εa,bub (r)δkakb = 0 (3.100)

The variation ∆va (r) in va (r), can be found by using same procedure with

variation ∆ua (r) in ua (r).

ch̄
(
−∂ua (r)

∂ r
+

ka

r
ua (r)

)
+
(

εa,a +Ua (r)−mc2
)

va (r)−
1
2

′
∑
b 6=a

∞

∑
l=0

(2 jb +1)

Γ
l
ja, jb

1
r
Yl (a,b,r)vb (r)−

′
∑
b6=a

εa,bvb (r)δkakb = 0 (3.101)

The two equations (3.100) and (3.101), represent the Dirac-Hartree-Fock (DHF)

equations for the electronic structure of many-electrons atoms. Where Ua (r)

is potential for each electron shell which differs for each electron and εa,a ,εa,b,

represent the diagonal and off diagonal energies respectively. The term Yl (a,b,r)

is derived from the exchange energy between the electron and the other elec-

trons in all other shells. The Kronecker δ − f unction in the final term is

non-zero, if the angular momentum quantum numbers differ. To find εa,a,

equation (3.100) is multipled by ua (r) and equation (3.101) is multiplied by

−va (r). Then, adding the resulting equations and integrating the sum over r,

yields [113]

εa,a = ch̄
ˆ (

va (r)
[

∂ua (r)
∂ r

+
ka

r
ua (r)

]
−ua (r)

[
∂va (r)

∂ r
− ka

r
va (r)

])
dr

−1
2

(
na−1

2 ja

)
(2 ja +1)

∞

∑
l=0

Γ
l
ja, jaFl (a,a)+

′
∑
b 6=a

nbF◦ (a,b)

−1
2

′
∑
b6=a

∞

∑
l=0

(2 jb +1)Γ
l
ja, jbGl (a,b) (3.102)

The first four terms of equation (3.102) represent the one-particle energy of an
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electron in state a. To find the o f f −digonal Lagrange multipliiers, equation
(3.100) is multiplied by uc (r) and equation (3.72) is multiplied by−vc (r),
where c 6= a, then adding the two equations and integrating over all space,
yields

εa,c =mc2
ˆ

[ua (r)uc (r)− va (r)vc (r)]dr−Ze2
ˆ

[ua (r)uc (r)+ va (r)vc (r)]drdr

+ch̄
ˆ (

va (r)
[

∂ua (r)
∂ r

+
ka

r
ua (r)

]
−ua (r)

[
∂va (r)

∂ r
− ka

r
va (r)

])
+

′
∑

b 6=a,c
nbR◦ (babc)+(na−1)R◦ (a,a,a,c)+nc

2 jc
2 jc +1

R(c,a,c,c)

−1
2

(
na−1

2 ja

)
(2 ja +1)

∞

∑
l=0

Γ
l
ja, jaR

l (a,a,a,c)− 1
2

∞

∑
l=0

(
′

∑
b6=a,c

(2 jb +1)Γ
l
ja, jb

Rl (a,b,b,c)− (2 jc +1)Γ
l
ja, jcR

l (a,c,c,c)
)

(3.103)

where Rl (a,c,c,c) is the Slater integrals, defined as:

Rl (a,c,c,c) = e2
ˆ ˆ

(ua (r1)uc (r1)+ va (r1)vc (r1))

×(ub (r2)ud (r2)+ vb (r2)vd (r2))
rl
<

rl+1
>

dr1dr2 (3.104)
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Part Two

Relativistic Hartree-Fock for Molecular Structure
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3.7 The Basic Theory

This section highlights the study of the systems having many-particle (elec-

trons), moving in the field of nuclei. A correct description of these systems

should be based on relativistic quantum molecules, to introduce in a natural

way spin of the electrons, and takes into account the effects that occur, when

particles move at velocities close to the speed of light (electron in 1s orbital).

This theory is based on Dirac equation, which combines together quantum

mechanics and principles of the special relativity [114]. To derive the Dirac

equation, one must start with the idea of preserving the relativistic equiva-

lence between space and time coordinates. The Schrödinger equation does

not conform to this requirement, because it’s first order in time derivatives

and second order in space derivative [115]. Dirac argued that it is necessary

for the time coordinate to appear as a first derivative, and, in order to preserve

this condition, the space coordinate should appear as first derivative as well.

The time-dependent Dirac equation for an electron moving in electromagnetic

field described by the scalar potential φ and the vector potential
(
~Ax,~Ay,~Az

)
,

has the following form [116,117]

ih̄
∂

∂ t
Ψ(~r, t) =

[
c ~̂αx

(
p̂x +

e
c

Ax

)
+ c~̂αy

(
~̂py +

e
c
~Ay

)
+ c~̂αz

(
~̂pz +

e
c
~Az

)
+
(
−eφ + β̂mc2

)
I4Ψ(~r, t)

]
(3.105)

where ~̂αand β̂ are 4×4 matrices called Dirac matrices given as [118]

α̂x =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 α̂y =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0



α̂z =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 β̂ =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


(3.106)
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~̂α and β̂ matrices can be written more compactly in 2-component form as[119]

α̂x =

(
02 σ̂x

σ̂x 02

)
; α̂y =

(
02 σ̂y

σ̂y 02

)
; α̂z =

(
02 σ̂z

σ̂z 02

)
; β̂ =

(
I2 02

02 −I2

)
(3.107)

where I2 and 02 are the 2-dimensional identity and null matrices, respectively,

σ̂x, σ̂y, σ̂z are the Pauli spin matrices and ~̂p is the vector of the momentum

operator (p̂x, p̂y, p̂z). The time-dependent Dirac equation (3.105) is Lorentz

invariant and its wave function Ψ(~r, t) is not a scalar quantity, but rather a

4-component vector, referred as a spinor

Ψ(~r, t) =


ψL
↑ (~r, t)

ψL
↓ (~r, t)

ψS
↑ (~r, t)

ψS
↓ (~r, t)

 (3.108)

In this case ↑ and ↓ represent the degree of freedom of the electron spin,

where L and S are the large and small components, respectively of the wave

function. The wave function of Eqn. (3.105) can be written as a product of

spatial and temporal parts, as[120]

Ψ(~r, t) = Ψ(~r)Θ(t) (3.109)

where Ψ(~r) is the spatial part and Θ(t) is the temporal part. The Hamiltonian

in Dirac equation is independent of time. When substituting equation (3.109)

into Dirac equation (3.105), yields, the right hand side which is a function of

r only and the left side a function of t only. Since the two side are equale,

they must be equal to a constant, which is the total energy E. The solution

of the temporal part is easily obtained as a simple exponential, Θ(t) = eEt/ih̄.

The spatial part is the time-independent Dirac equation for a charged particle.

which can be written in a more compact form using the 2-component Pauli

matrices as:

83



Chapter three - Part two Relativistic Hartree-Fock for Molecular Structure

 mc2− eφ c
(
~̂σ .~̂p

)
+ e~̂σ .~A

c
(
~̂σ .~̂p

)
+ e~̂σ .~A −mc2− eφ

( ψL

ψS

)
= E

(
ψL

ψS

)
(3.110)

Here ~̂σ .~̂p and ~̂σ .~A represent the inner product of a vector of three Pauli spin

matrices (σ̂x, σ̂y, σ̂z) with the vector of the momentum operator (p̂x, p̂y, p̂z)

and the vector of the vector potential (Âx, Ây, Âz) respectively. This form of

the time-independent Dirac Hamiltonian is used widely for computational

purposes. We will first discuss some aspects of the one-electron Dirac Hamil-

tonian.

3.7.1 The One-Electron Equation

The Dirac equation for a free particle in the two-component notation reduces

to  mc2−E c
(
~̂σ .~̂p

)
c
(
~̂σ .~̂p

)
−mc2−E

( ψL

ψS

)
= 0 (3.111)

The Born-Oppenheimer approximation field in which the electron moves is

represented by a static potential φ of the nuclear framework mc2− eφ c
(
~̂σ .~̂p

)
c
(
~̂σ .~̂p

)
−mc2− eφ

( ψL

ψS

)
= E

(
ψL

ψS

)
(3.112)

The nuclei are considered to be fixed in space and may have either a finite or

a point charge distribution. Properties of this relativistic one-electron Hamil-

tonian are well known and can be found in standard textbooks [121,122].

3.7.2 The Many-Electron Approach

The free particle Dirac equation (3.112) can be extended to a particle in an

external electromagnetic field. The Hamiltonian for interaction of an electron

with an external field has form :
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ĥD = c~̂α.~̂p+mc2
β̂ + ec~̂α.~A− eφ (3.113)

where φ is the external scalar potential and ~A is the vector potential. The

relativistic one-electron Hamiltonian in the presence of the static potential in

the Born-Oppenheimer reference frame of nuclei is

ĥD = c~̂α.~̂p+mc2
β̂ +V̂N (~r) (3.114)

In our project we are interested in many-body Hamiltonian, and not just a

single particle in an electric field. The extension from one to many particles

is describes by the Dirac-Coulomb Hamiltonian for a molecular system of an

electron in the field of N−nuclei which has the form :

Ĥ =
M

∑
I

~̂P
2
I

2mI
+

N

∑
i=1

ĥD +
N

∑
i< j

ĝ(i, j)+V̂N−N (3.115)

The second term is a sum over one electron Dirac operators in the molecular

field defined in equation (3.114), while the third term describes the electron-

electron interaction in terms of the instantaneous Coulomb interaction given

as

ĝ(i, j)≡Vc (i, j) =
e2∣∣~ri−~r j

∣∣ (3.116)

The last term represents the Coulomb interaction of nuclei and is given by :

V̂N−N =
N

∑
A<B

ZAZB

RAB
(3.117)

where ZA and ZB are the nuclear charges A,B respectively. In all our calcula-

tions, we will consider the Born-Oppenheimer approximation (BOA) [123].

The electrons are considered to be moving in the field of fixed nuclei. The

Born-Oppenheimer approximation is inherently incompatible with the the-

ory of special relativity, since it singles out a preferred reference frame. The

frame in which nuclei can be treated as stationary source of external field.

Relativistic correction to the nuclear motion is expected to be small [124].

The advantage of the Born-Oppenheimer approximation is that it reduces the
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complexity of the molecular description, and allows us to focus our attention

on the electronic degree of freedom, hence it freezes the nuclear motion, and

neglects the kinetic energy operator for the nuclei. In this clamped-nuclei

approximation, the remaining electronic Hamiltonian is

Ĥ ′el =
N

∑
i

ĥD +
N

∑
i< j

ĝ(i, j)+VN−N (3.118)

where N is the total number of electrons, ĥD is the one-electron Hamiltonian.

The repulsive energy operator of the clamped nuclei, VN−N is added to the

electronic Hamiltonian. The eigenfunction of the many-electron Hamiltonian

Ĥ ′el is

Ĥ ′elΨel,A = E ′el,AΨel,A (3.119)

where Ψel,A = Ψel,A ({~ri}) is the electronic wave function of the A− th elec-

tronic state. Since the nucleus-nucleus interaction energy operator VN−N is a

multiplicative constant with respect to integration over electronic coordinate,

it can thus simply be subtracted from the Hamiltonian

Ĥel = Ĥ ′el +VN−N (3.120)

and, hence, from the electronic energy eigenvalue E ′el,A . The total state elec-

tronic wave function can be expanded in a product basis as:

Ψ

(
{~ri} ,

{
~RI

})
= ∑

A
χA
(
{RI}Ψel,A ({~ri} ,{RI})

)
(3.121)

The eigenvalues of the electronic Hamiltonian defined by the Born-Oppenheimer

approximation are assumed to vary smoothly as function of nuclear coordi-

nates. The eigenvalue Eel,A is called the electronic energy. The electronic

wave functions represent the set of basis functions, and the nuclear wave

functions χA, appear as coordinate dependent expansion coefficients,χA =

χA ({RI}). Substituting Eq. (3.115 ), Eq.(3.118 ), and Eq.(3.120 ) in equation

(3.121), we obtain
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[
M

∑
I

P̂2
I

2mI
+ Ĥ ′el

]
∑
A

χAΨel,A = E ∑
A

χAΨel,A (3.122)

Multiplication Eq. (3.123) from the left with
〈
Ψel,B| , yields〈

Ψel,B

∣∣∣∣∣− M

∑
I

P̂2
I

2mI

∣∣∣∣∣∑A Ψel,AχA

〉
+

〈
Ψel,B

∣∣Ĥ ′el
∣∣∑

A
Ψel,AχA

〉
=E

〈
Ψel,B|∑

A
Ψel,AχA

〉
(3.123)

It must be emphasized that integration in equation (3.124) is over all elec-

tronic coordinates. The nuclear coordinates remain untouched, and appling

the orthonormal condition on the eigenfunction in equation (3.124 ),
〈
Ψel,B|Ψel,A

〉
=

δBA, yields

∑
A

〈
Ψel,B

∣∣∣∣∣− M

∑
I

h̄24I

2mI

∣∣∣∣∣Ψel,AχA

〉
+E ′el,BχB = EχB (3.124)

where
(
h̄24I

)
is the square of the momentum operator P̂2

I of the nucleus I.

For the remaining bracket on the left hand side of above equation, the product

rule needs to be applied twice, hence

4IΨel,AχA = ∇I
[
χA∇IΨel,A +Ψel,A∇IχA

]
= χA∇IΨel,A+2(∇IχA)

(
∇IΨel,A

)
+Ψel,A∇IχA

(3.125)

Substituting equation (3.126 ) into equation (3.125 ), we get

−
M

∑
I

h̄24I

2mI
χB +

(
E ′el,B−E

)
χB = ∑

A
χA

[〈
Ψel,B

∣∣∣∣∣M

∑
I

h̄24I

2mI

∣∣∣∣∣Ψel,A

〉

+
M

∑
I
(∇IχA) .

〈
Ψel,B

∣∣∣∣ h̄2
∇I

mI

∣∣∣∣Ψel,A

〉]
(3.126)

If we neglect the so-called non-adiabatic terms on the right hand side, we

arrive at an eigenvalue equation,
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[
−

M

∑
I

h̄24I

2mI
+E ′el,B ({RI})

]
χB ({RI}) = EχB ({RI}) (3.127)

3.8 The Dirac-Hartree-Fock Approach for Molecules

In many areas of physics many-particle problems are solved by generating

a basis- set of suitable single-particle solutions, and then by using this basis

to obtain approximate solutions for the full many-particle problem. This is

also the approach that will be used to solve the Dirac-Coulomb equation for

molecular systems.

3.8.1 The Energy Expression for Molecules

The exact total electronic wave function is obtained by expansion into the

complete set of CSFs constructed from a completes set of electron spinors

ΨA =
∞

∑
I=0

CIAΦI (3.128)

ΦI = ∑
K

ΘKBKI (3.129)

The electronic energy Eel,Acan then be written as

Eel,A =
〈
Ψel,A

∣∣Ĥel
∣∣Ψel,A

〉
= ∑

IJ
C∗IACJA ∑

KL
B∗KIBLJ

〈
ΘK
∣∣Ĥel

∣∣ΘL
〉

(3.130)

where ΘK is the Slater determinant given by :

ΘK (1, ...,N) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
ψk1(~r1) ψk1(~r2) ... ψk1(~rN)

ψk2(~r1) ψk2(~r2) .... ψk2(~r2)
... ... . . . ...

ψkN(~r1) ψkN(~r2) ··· ψKN(~rN)

∣∣∣∣∣∣∣∣∣∣
(3.131)

The equation (3.132) represents the Slater determinant of the simplest ap-

proximation to an electronic ground state. The Slater determinant satisfies
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Pauli exclusion principle, and when actting with the antisymmetric operator

on equation (3.132), It this equation can be written as:

ΘK = ÂΘk1,k2,...,kN (~r1,~r2, ...,~rN) (3.132)

where Â is the antisymmetrization operator

Â =
1√
N!

N!

∑
p=1

(−1)p Pp (3.133)

and k denotes the specific set {k1,k2, ...,kN} of one electron spinor in the

Slater determinant, so we can write equation (3.131) as

Eel,A = ∑
IJ

C∗IACJA ∑
KL

B∗KIBLJ
〈
AΘK

∣∣Ĥel
∣∣AΘL

〉
(3.134)

= ∑
IJ

C∗IACJA ∑
KL

B∗KIBLJ

〈
ΘK

∣∣∣A†Ĥel,AA
∣∣∣ΘL

〉
= ∑

IJ
C∗IACJA ∑

KL
B∗KIBLJ ∑

p
(−1)p 〈

ΘK
∣∣Ĥel

∣∣PpΘL
〉

=∑
IJ

C∗IACJA ∑
KL

B∗KIBLJ ∑
p
(−1)p×

[〈
ΘK

∣∣∣∣∣ N

∑
i=1

ĥ(i)

∣∣∣∣∣PpΘL

〉
+

〈
ΘK

∣∣∣∣∣12 N

∑
i 6= j

ĝ(i, j)

∣∣∣∣∣PpΘL

〉]

=∑
IJ

C∗IACJA ∑
KL

B∗KIBLJ

[〈
ΘK

∣∣∣∣∣ N

∑
i=1

ĥ(i)

∣∣∣∣∣ΘL

〉
+

〈
ΘK

∣∣∣∣∣12 N

∑
i 6= j

ĝ(i, j)
{

1−Pi j
}∣∣∣∣∣ΘL

〉]
(3.135)

The total integral in the second term separates into products of integrals over

individual electronic coordinates〈
ΘK

∣∣∣∣∣ N

∑
i1,i2,...,iN

ĝ(i1, i2, ..., iN)

∣∣∣∣∣ΘL

〉
= N (N−1) ...(N−n+1)

×
〈
ψk1 (1)ψk2 (2) ...ψkN (N) |ĝ(1,2, ...,N)|ψl1 (1)ψl1 (2) ...ψlN (N)

〉
×
〈
ψkn+1|ψln+1

〉
× ...×

〈
ψkN |ψlN

〉
(3.136)

The same procedure can be used in the non-relativistic HF approach to solve
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equation (3.136). The energy given in a compact form is

EDHF
el,A =

N

∑
i=1

ĥi +
1
2

N

∑
i j

(
Ĵi j− K̂i j

)
(3.137)

The superscript DHF stands for Dirac-Hartree-Fock which denotes the fact

that the Hartree-Fock expression utilizes the Dirac one electron Hamiltonian,

and ĥi is the one-electron integral given by

ĥi =
〈
Ψi (1)

∣∣ĥD (1)
∣∣Ψi (1)

〉
(3.138)

where Ĵi j is the two-electron Coulomb integral, given by

Ĵi j =
〈
Ψi (1)Ψ j (2) |ĝ(1,2)|Ψi (1)Ψ j (2)

〉
(3.139)

and Ki j is the exchange integral given by

K̂i j =
〈
Ψi (1)Ψ j (2) |ĝ(1,2)|Ψ j (1)Ψi (2)

〉
(3.140)

With the generalized one-electron integrals and two electron integrals in Eqs.(3.139),

(3.140) and (3.141) respectively, these equations can be weitten in compact

form as:

ĥi j =
〈
Ψi (1)

∣∣ĥD (1)
∣∣Ψ j (1)

〉
(3.141)

ĝi jkl =
〈
Ψi (1)Ψ j (2) |ĝ(1,2)|Ψk (1)Ψl (2)

〉
(3.142)

Substituting equation (3.142), (3.143) into equation ( 3.138), we get the total

energy expression as:

EDHF
el,A =

N

∑
i j

ĥi j +
1
2

N

∑
i jkl

ĝi jkl (3.143)

The equation (3.144) can be conveniently simplified by defining γA
i j, ΓA

i jkl[125]

γ
A
i j = ∑

IJ
C∗IACJA ∑

KL
B∗KIBLJĥKL

i j (3.144)

and

Γ
A
i jkl = ∑

IJ
C∗IACJA ∑

KL
B∗KIBLJĝKL

i jkl (3.145)
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where γA
i j and ΓA

i jkl are called structure factors or coupling coefficients. So,

the electronic energy expression can be written as [126].

Eel,A =
n′

∑
i j

γ
A
i jĥi j +

1
2

n′

∑
i jkl

Γ
A
i jklĝi jkl (3.146)

where n′denotes the total number of one electron states. The last equation rep-

resents the most general expression for the electron energy of many electron

system with a given total number of electrons.

3.8.2 Dirac-Hartree-Fock Equation for Molecules

Approximate solutions to the Dirac-Coulomb equation can be obtained by

variational method. The basic idea of this method is to introduce a trial func-

tion furnished with parameters that can be varied, so as to obtain the best

possible approximate solution within parameter space. The parametrization

of trial function, leads to a parametrization of its energy, known as the ex-

pectation value of the Dirac-Coulomb Hamiltonian. Approximations to exact

eigenfunction of the Hamiltonian are found as stationary values of the energy

in the parameters space [127]. Note that, if the variational parameters are in-

troduced in a non-linear manner, the reciprocal relation would not hold true

therefore a stationary value of the energy may correspond to a physically un-

acceptable solution of the Dirac-Coulomb equation [123]. Let us consider the

general form of the trial function in molecular electronic structure theory. The

basic building blocks for approximative wave functions are Molecular Orbital

“MOs” and electronic configurations. They can be introduced by turninig off

the electron-electron interaction, then the electronic Hamiltonian reduces to a

sum of one-electron Dirac equations. The wave function may be written as a

Hartree-product of one electron molecular 4-spinors :

Φ =
n

∏
i=1

ψi (ri) (3.147)

The spinors are chosen from the complete set {ψi}of orthonormal solutions to

the corresponding Dirac equation in the molecular field. We shall refer to any
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set of one electron functions as our 1-particle basis and denote the individual

one-electron functions molecular orbitals “MOs”. Physically, the equation

(3.148) is not an acceptable many-electron wave function, since it dos not

obey the Pauli-principle, which states that the many-electron wave function

should change sign under the permutation of any pair of electrons (fermions).

We can remedy the situation by antisymmetrizing the wave function, there-

fore, the wave function has the form of equation (3.132), represents slater-

determinant, of orthonormal molecular orbitals,
〈
ψi|ψ j

〉
= δi j. The Slater-

determinant represents a particular electronic configuration, namely the set of

molecular orbitals appearing in the determinant. When the electron-electron

interaction is turned on, it is no longer possible to separate the electronic

degree of freedom, and the exact electronic wave function can no longer be

expressed in terms of a single slater-determinant. It can be expanded in all

possible Slater-determinants and generated from the complete 1-particle basis

is given by.

ψ = ∑
i

ciΦi (3.148)

The exact solution, is therefore obtained in terms of complete 1-particle and

n-particle bases, where the set {Φi} of Slater determinants in equation (3.132)

constitutes the n-particle basis. Therefore we may seek an approximate solu-

tion of the Dirac-Coulomb equation in the space of truncated 1-particle and

n-particle basis. The search for stationary energies then corresponds to sep-

arate rotations within the 1-particle and n-particle basies. The simplest vari-

ational approach is to choose a single Slater-determinant equation (3.132) as

the trial function. This forms the basis for the HF method in non-relativistic

theory and the DHF method in relativistic theory. These are independent par-

ticle models which view the electron as moving independently in the field of

nuclei and the average field of the other electrons. The independent parti-

cle model, usually, provides an adequate description of molecular structure

at the equilibrium geometry, but fails in situations, where degeneracies or

near-degeneracies of configuration occur. Near-degeneracies, typically, arise

in bond breaking and bond formation, in open shell and excited state. In
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relativistic molecules, additional near-degeneracies may be introduced by

the fine structure of the spin-orbit splitting. Such systems require a multi-

configuration approach. In relativistic quantum molecule, variational method

is very important, so the starting point from the total electronic energy Eel,A

is given by:

Eel,A [ΨA] = Eel,A
[{

ciµ
}
,{ψi}

]
=
〈
ΨA
∣∣Ĥel

∣∣ΨA
〉

(3.149)

where

ψi (~r) =

(
∑

L
µ ciµφ L

µ (~rA)

∑
S
µ ciµφ S

µ (~rB)

)
(3.150)

where ψi (~r) is a molecular spinor and ciµ is a molecular spinor coefficient,

and ciµare unknown which are determined by, using variational condition.

The variational condition is given as follows :

δE [ΨA] =
〈
ΨA
∣∣Ĥel

∣∣ΨA
〉
+
〈
ΨA
∣∣Ĥel

∣∣δΨA
〉
= 0 (3.151)

∂Eel,A
[{

ciµ
}
,{ΨA}

]
∂ciµ

= 0 (3.152)

∂Eel,A
[{

ciµ
}
,{ΨA}

]
δψi

= 0 (3.153)

where we have a set of coefficient
{

ciµ
}

and orbitals {ΨA}. To determine a

set of spinors ψi, for a given expression of the total electronic energy, the

energy as functional of the spinors Eel,A [{ΨA}] is minimized. This variation

must be carried out under the constraint that the orbitals remain orthonormal.

Therefore we define a Lagrange functional L as :

L
[{

ψ
L
i ,ψ

S
i

}]
= E

[{
ψ

L
i ,ψ

S
i

}]
−

N

∑
i j

εi j

[〈
ψ

L
i |ψL

j
〉
+
〈

ψ
S
i |ψS

j

〉
−δi j

]
(3.154)

where εi j are the Lagrangian multipliers. For stationarity, the variation δL
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with respect to all parameters must equal zero, and thus we determine

δψiL
[
{ψi} ,

{
εi j
}]

= δψiEel,A−
N

∑
j

εi j
(
〈δψi|ψi〉+

〈
ψ j|δψi

〉)
= 0 (3.155)

and
∂L
[
{ψi} ,

{
εi j
}]

∂εi j
=
〈
ψi|ψ j

〉
−δi j = 0 (3.156)

To obtain the basis set expansion for the spinor of Linear Combination of

Atomic Orbital “LCAO” type we could differential the Lagrange f unctional

directly and would obtain equations in matrix form. In this way we can pro-

ceed in more general way with the method of variation. The variation of any

the matrix element over an operator Ĥelcontaining ψiin L
[
{ψi} ,

{
εi j
}]

may

be written as the limit for infinitely small variations of a given orbital ψi as:

δ
[〈

ψi
∣∣Ĥel

∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣ψi
〉
+
〈
ψi
∣∣Ĥel

∣∣ψi
〉]

=

lim
δψi→0

[〈
ψi +δψi

∣∣Ĥel
∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣ψi +δψi
〉
+
〈
ψi +δψi

∣∣Ĥel
∣∣ψi +δψi

〉
(ψi +δψi)−ψi

−
〈
ψi
∣∣Ĥel

∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣ψi
〉
+
〈
ψi
∣∣Ĥel

∣∣ψi
〉

(ψi +δψi)−ψi

]
(3.157)

Resolving the term in brackets in equation (3.152) allows us to write this limit

as

= lim
δψi→0

〈
δψi

∣∣Ĥel
∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣δψi
〉
+
〈
δψi

∣∣Ĥel
∣∣ψi
〉
+
〈
ψi
∣∣Ĥel

∣∣δψi
〉
+
〈
δψi

∣∣Ĥel
∣∣δψi

〉
δψi

(3.158)

= lim
δψi→0

〈
δψi

∣∣Ĥel
∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣δψi
〉
+
〈
δψi

∣∣Ĥel
∣∣ψi
〉
+
〈
ψi
∣∣Ĥel

∣∣δψi
〉

δψi
(3.159)

Abbreviating the complex conjugate terms as “c.c”, we finally obtain the vari-

ational of matrix element of the operator Ĥel, that contains ψi. And substitut-

ing equations (3.160) into equation (3.158) , we get
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δ
[〈

ψi
∣∣Ĥel

∣∣ψ j
〉
+
〈
ψ j
∣∣Ĥel

∣∣ψi
〉
+
〈
ψi
∣∣Ĥel

∣∣ψi
〉]

=

lim
δψi→0

〈
δψi

∣∣Ĥel
∣∣ψ j
〉
+
〈
δψi

∣∣Ĥel
∣∣ψi
〉

δψi
+ c.c = 0 (3.160)

The variation of the Lagrangian functional δL [{ψi}] with respect to the spinors

can now be written as :

δL [{ψi}] =
N

∑
j

γi j
〈
δψi

∣∣ĥD
∣∣ψ j
〉
+

1
2

N

∑
jkl

Γi jkl×[〈δψi (1) |ĝ(1,2)(1−P12)|ψk (1)ψl (2)〉

+
〈
ψ j (1)δψi (2) |ĝ(1,2)(1−P12)|ψk (1)ψl (2)

〉
−

N

∑
j

εi j
〈
δψi|ψ j

〉
+ c.c = 0

(3.161)

After rearranging and adjusting the summation indices of equation (3.162),

we obtain

δL [{ψi}] =
N

∑
j

[
γi j
〈
δψi

∣∣ĥD
∣∣ψ j
〉
+

N

∑
kl

Γik jl
〈
δψi (1)ψk (2) |ĝ(1,2)(1−P12)|ψ j (1)ψl (2)

〉
−εi j

〈
δψi|ψ j

〉]
+ c.c = 0 (3.162)

This equation holds for any variation of δψi, so that we may require the re-

maining integrand to be zero

N

∑
j

[
γi jĥDψ j +

N

∑
kl

Γik jl
〈
ψk (2) |ĝ(1,2)(1−P12)|ψ j (1)ψl (2)

〉
− εi jψ j

]
= 0

(3.163)

It is convenient to introduce the Fock operator fi j given by

f̂i j (r) = γi jĥD (r)+
N

∑
kl

Γik jl
[
Ĵkl (r)− K̂kl (r)

]
(3.164)

where Ĵkl is the Coulomb operator given by

Ĵklψ j = 〈ψk (2) |ĝ(1,2)|ψl (2)〉ψ j (1) (3.165)
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and the K̂kl in equation (3.165 ) is the exchange operator having the form

K̂klψ j =
〈
ψk (2) |ĝ(1,2)|ψ j (2)

〉
ψl (1) (3.166)

So, equation (3.164) can be written the stationary condition form as

N

∑
j

fi jψ j =
N

∑
j

εi jψ j (3.167)

Re arranging equation (3.168) for spinor ψi, it becomes:

[ fii− εii]ψi =
N

∑
j, j 6=i

[
εi j− fi j

]
ψ j (3.168)

For the approximation of the electronic state ΨA, all fi j for i 6= j vanish and

the above equation can be simplified to become:

fiiψi =
N

∑
i

εi jψ j (3.169)

The equation (3.170) is called Dirac-Hartree-Fock equation, where f̂ii is the

Fock operator given by:

f̂ii = ĥD +
N

∑
k

[
Ĵkk + K̂kk

]
(3.170)

3.9 Basis Set Expansion of Molecular Spinors

In quantum mechanics, the molecular system wave functions are represented

by a basis expansion of infinite dimension. For the study of isolated molecular

systems, it can be very convenient to use the Linear Combination of Atomic

Orbitals “LCAO” as:

Φ
MO (~r) =

Natom

∑
i

biψi

(
~r,~RA

)
(3.171)

Then one forms a number of molecular spinors equal to the number of atomic

spinor, where each molecular spinor ΦMO in equation (3.172) is a linear com-
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bination of atomic spinor ψi centered in its own nucleus at the position RA.

Atomic spinor components are indicated by the superscript i in ψ
(i)
k , which

represent the single-particle 4-spinors that are expanded scalar function basis

set for the large component
{

φ L}and small
{

φ S}component parts

ψ
(i)
k =


ψLα

k

ψLβ

k

ψLα

k

ψLβ

k

=


∑µ φ L

µ cLα

µk

∑µ φ L
µ cLβ

µk

∑µ φ S
ν cSα

νk

∑µ φ S
ν cSβ

νk

 (3.172)

These basis in above equation can be represented by Gaussian functions or

atomic centered Cartesian Gaussian given by :

Gα
i jk (~rA) = Nxi

Ay j
Azk

Aexp
(
−ξ r2

A

)
(3.173)

where ,i+ j+ k = l ,is the angular quantum number, A refers to the nuclear

center, and N is a normalization constant. For a given quantum number l,

there are 1
2 (l +1)(l +2) Cartesian Gaussians. This basis set for a given l

value may be transformed to a set of (2l +1) spherical Gaussians given by

Gα
nlm (~rA) = Nrn−1

A exp
(
−ξ r2

A

)
Ylm (θA,φA) (3.174)

with the restriction n = l + 1 ,where Ylm (θA,φA) are spherical harmonics. It

is also possible to form terms , directly from the set of 2-spinor Gaussian of

the form :

Gα
nkm (~rA) = Nrn−1

A exp
(
−ξ r2

A

)
χk,m (θA,φA) (3.175)

where χk,m (θA,φA) is the angular part of the Dirac equation. A basis set

contains several Gaussian functions for each considered value of the angular

momentum l (s, p,d, ...). The large exponent describes, predominantly, the

core orbitals, close to the nucleus. The very low-value exponents describe the

diffuse orbitals. To construct a basis set, each Gaussian exponent is optimized

separately with the self-consistent field method [128]. In general manner, the

more basis functions is contained in the basis set, the better will be the de-
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scription, in order to describe the one-electron spinors of molecules that enter

the Slater determinants to approximate the total electronic wave function. It is

natural to be inspired by the fact that molecules are composed of atoms. The

relativistic description of molecules means that each molecular spinor ψi (~r)

entering a Slater determinant must be expanded in a set of four-component

atomic spinors ψatom
k (~r)

ψi (~r) =
m′

∑
k

dikψ
atom
k (~r) (3.176)

Each atomic spinor ψatom
k (~r) = ψatom

k

(
~r,~RA

)
has its center at the position of

the nucleus RAof some atom A. As a first step, we include only those atomic

spinors ψatom
k (~r) which would be considered in an atomic Dirac–Hartree–Fock

calculation on every atom of the molecule. The number of basis spinors “m′”

is then smallest for such a minimal basis set. In this case, it can be calculated

as the number of shells “s” per atom times the degeneracy “d” of these shells

times the number of atoms “M” in the molecule,

m = s(A)×d(s)×M (3.177)

In practice, the number of basis spinors m increases even further for a minimal

basis set because we have no analytic expression for the atomic spinors of a

many-electron atom available. Hence, the atomic spinors themselves need to

be expanded in terms of known basis functions φ a
µ (~r,RA) given by

ψ
atom
k (~r,RA) =

m′k

∑
µ


b(1)kµ

φ
(1)
µ

(
~r,~RA

)
b(2)kµ

φ
(2)
µ

(
~r,~RA

)
b(3)kµ

φ
(3)
µ

(
~r,~RA

)
b(4)kµ

φ
(4)
µ

(
~r,~RA

)

 (3.178)

where bkµ represents the set of contraction coefficients. When substituting

equation (3.179) into equation (3.177), the final basis set expansion for a

molecular spinor can then be written as,
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ψi (~r) =
m′

∑
k

m′k

∑
µ

dik


b(1)kµ

φ
(1)
µ

(
~r,~RA

)
b(2)kµ

φ
(2)
µ

(
~r,~RA

)
b(3)kµ

φ
(3)
µ

(
~r,~RA

)
b(4)kµ

φ
(4)
µ

(
~r,~RA

)

≡
m

∑
µ


c(1)iµ φ

(1)
µ

(
~r,~RA

)
c(2)iµ φ

(2)
µ

(
~r,~RA

)
c(3)iµ φ

(3)
µ

(
~r,~RA

)
c(4)iµ φ

(4)
µ

(
~r,~RA

)

 (3.179)

Accordingly, the total number of basis functions are 4×m with m = m×
mk. In principle, the number of basis spinors m needs to be infinitely large

complete basis for an exact representation of a molecular spinor in this basis.

For practical reasons, however, it must be as small as possible in order to

keep the computational effort as low as possible. The basis set size should

thus be small but still allow for sufficiently accurate calculations. In order

to achieve this, we need to exploit the physics of the problem to the largest

extent, a procedure in which the LCAO idea is the first step. Hence, we

emphasize that the expansion of Eq. (3.150) provides an optimum description

of an atomic spinor. To obtain a minimal basis set constructed of atomic

spinors, we may well freeze the coefficients b(a)kµ
and thus reduce the number

m back to the smaller number m′. Then, only the m′ coefficients dik are to be

determined rather than the 4mciµ coefficients. To use fixed b(a)kµ
in a molecular

calculation is known as using a ‘contracted’ basis set. Various variants of

such contractions are known but we shall not delve deeper into such purely

technical issues. Basis functions that have not been contracted are called

primitives or primitive basis functions. The molecular spinors can also be

expressed in terms of 2-spinor expansions these expansions ψi (r) of 2-spinor

basis functions are given by [130]

ψi (~r) =

(
∑µ cL

iµφ L
µ (~rA)

∑µ cS
iµφ S

µ (~rA)

)
(3.180)

with the spherical two-component basis functions φ L
µ (~rA) and φ S

µ (~rA) given

by :

φ
L
µ (~rA) =

Pµ (~rA)

rA
χκµmµ(θA,φA) (3.181)
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φ
S
µ (~rA) = i

Qµ (~rA)

rA
χ−κµmµ(θA,φA) (3.182)

The subscript A, denotes that the electronic coordinate is to taken relative to

atomic nucleus A at which it is centered,rA =~r− ~RA, and χκµmµ(θA,φA) are

two-component spherical spinors.We can write the radial parts PGT F
µ (rA) and

QGT F
µ (rA) using the Gaussian type radial basis functions given by :

PGT F
µ (~rA) = NL

µrlµ+1
A exp

(
−ξµr2

A

)
(3.183)

QGT F
µ (~rA) = NS

µ

[(
κµ + lµ +1

)
−ξµrA

]
rlµ

A exp
(
−ξµr2

A

)
(3.184)

Hence, the factors ξµ in the exponents are only adjustable parameters of these

basis functions and this parameter ξµ is usually called the ‘exponents’ of the

basis functions. The spherical Gaussian basis sets introduced so far can be

written as Cartesian Gaussian functions,

φ
L
µ (~rA) = NL

µxαµ yβµ zγµ exp
(
−ξ

L
µ r2

A

)
(3.185)

φ
S
µ (~rA) = NS

µxαµ yβµ zγµ exp
(
−ξ

S
µr2

A

)
(3.186)

The sum of the exponents αµ ,βµ ,andγµ is related to the angular momentum

quantum number, and we generate one-electron atomic functions from the

basis set. The Gaussian combination, fits as best as possible the analytical

radial wave function. The use of four components wave function required an

additional condition, to have stable results. This has been shown that the ex-

pansion for the large and small component should be performed in a balanced

way. The solution for this problem is called the kinetic−balance [131].

3.10 Kinetic Balance

Since all basis sets contain a large component (L) and small component (S)

set, It is possible to establish the relation between the large and small com-

ponent parts of the four-component spinor at Dirac-Hartree-Fock level. The
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time-independent Dirac equation for one electron in the form of two coupled

equations is given by,

(VN−E)ψ
L + c

(
~̂σ .~̂p

)
ψ

S = 0 (3.187)

c
(
~̂σ .~̂p

)
ψ

L +
(

VN−E−2mec2
)

ψ
S = 0 (3.188)

Equation (3.189), can be rewritten as

2mec2
ψ

S = c
(
~̂σ .~̂p

)
ψ

L +VNψ
S−Eψ

S (3.189)

so that, the small component can be expressed as a function of the large com-

ponent [132]

ψ
S =

c
2mec2−VN +E

(
~̂σ .~̂p

)
ψ

L (3.190)

ψ
S =

1
2mec

B(E)
(
~̂σ .~̂p

)
(3.191)

B(E) =
[

1+
E−VN

2mec2

]−1

(3.192)

In case of 2mc2�−VN +E in equation (3.191), we get

ψ
S ≈

~̂σ .~̂p
2mec

ψ
L (3.193)

The equation (3.194) is called kinetic−balance condition [133,134]. It shows

that the lower component of the spinor ψS is by a factor of 1
c smaller than ψL

(for small linear momenta). This is the reason why ψLis also called the large

component, and ψS the small component. We may instantaneously write the

kinetic balance condition for the molecular spinors ψ ′i s [135]

ψ
S
i =

c
2mec2−W + εi

(
~̂σ .~̂p

)
ψ

L
i (3.194)

where εi is the orbital energy and W is the total interaction potential of the

Fock operator. The potential contains the electron–nucleus and electron–electron

mean-field interaction(W contains VN and the electron–electron mean-field

potential energy). In the limit c→ ∞, the small component vanish, and now
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a days kinetic-balanc is used for building relativistic small component basis

set, starting from the large component counter parts. From Eq.(3.194), we can

see that the small component function depends on the operator ~̂σ .~̂p, which is

a partial derivative along the x,y,z coordinates. Applying this derivative to

equation (3.186), we obtain a dependence of the small component on l− 1

and l + 1. This means that in the design of the basis set higher angular mo-

menta are included by increasing the number of primitive small component

functions with respect to the number of primitives of the large component.

The approximate kinetic-balance condition after acting on Cartesian Gaus-

sian functions primitive Gaussian in Eq.(3.186), gives [133]

∂

∂x
xαµ exp

(
−ξµr2

A

)
=
[
αµxαµ−1−2ξµxαµ+1

]
exp
(
−ξµr2

A

)
(3.195)

It’s clear that the Eq.(3.195) is a linear combination of two functions with

the same value of ξ . But different values of α aris , which have to be evalu-

ated to associate the exponentsξµ for small component with those of the large

component ξµ . Because of the derivative operator p̂ = −ih̄∇ every large

component Gaussian basis spinor φ L
i gives rise to two small-component basis

functions with the same exponent, That is, starting from a px− type Gaus-

sian basis function for the large component, for example, the kinetic balance

requirement produces an s− type and a d− type basis function for the small

component. Therefore, the small-component basis has to comprise at least

all spinors originating by differentiation of the large-component basis. As a

consequence, the small- component basis will contain functions with higher

angular momentum than the large-component basis in order to represent both

upper and lower parts of the Dirac Hamiltonian with equal quality for elec-

tronic solutions. Thus the small-component basis can become twice as large

as the large-component basis, as sketched in Figure (3.1 ) [136]. To fulfill the

kinetic-balance condition, these functions have to be contained in the small

component basis. The connection of the large component function to a small

component function with the same exponential parameter,but with its 1-value

shifted up or down by one, is typical for the kinetic-balance operator and is
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retained if the relations are further worked out for the four-component func-

tions.

Figure 3.1: Generation of small components exponents from large components exponents
through kinetic balance [136]

3.11 Dirac-Hartree-Fock Energy With Basis Set

The starting point in the discussion of this section is the Dirac-Hartree-Fock

energy, which can be written as:

EDHF
el,A =

N

∑
i

〈
Ψi (1)

∣∣ĥD (1)
∣∣Ψi (1)

〉
+

1
2

N

∑
i j

[〈
Ψi (1)Ψ j (2) |ĝ(1,2)|Ψi (1)Ψ j (2)

〉
−
〈
Ψi (1)Ψ j (2) |ĝ(1,2)|Ψ j (1)Ψi (2)

〉]
(3.196)

The four-component basis-set expansion for a molecular spinor is given by

Eq. (3.180) in section (3.9)

ψi (~r) =
m′

∑
k

m′k

∑
µ

dik


b(1)kµ

φ
(1)
µ

(
~r,~RA

)
b(2)kµ

φ
(2)
µ

(
~r,~RA

)
b(3)kµ

φ
(3)
µ

(
~r,~RA

)
b(4)kµ

φ
(4)
µ

(
~r,~RA

)

≡
m

∑
µ


c(1)iµ φ

(1)
µ

(
~r,~RA

)
c(2)iµ φ

(2)
µ

(
~r,~RA

)
c(3)iµ φ

(3)
µ

(
~r,~RA

)
c(4)iµ φ

(4)
µ

(
~r,~RA

)

 (3.197)

and the Dirac Hamiltonian can be written in the 4-component form given by :
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ĥD=


VN 0 c~̂pz c

(
~̂px− i~̂py

)
0 VN c

(
~̂px + i~̂py

)
c~̂pz

c~̂pz c
(
~̂px− i~̂py

) (
VN−2mc2) 0

c
(
~̂px + i~̂py

)
c~̂pz 0 VN−2mc2

 (3.198)

Substitute Eqs. (3.198) and (3.196), in Eq. (3.197). we get

EDHF
el,0 =

N

∑
i

m

∑
µν

[
c(1)

∗

iµ c(1)iν

〈
φ
(1)
µ |VN|φ

(1)
ν

〉
+ c(2)

∗

iµ c(2)iν

〈
φ
(2)
µ |VN|φ

(2)
ν

〉
+c(3)

∗

iµ c(3)iν

〈
φ
(3)
µ

∣∣∣VN−2mec2
∣∣∣φ (3)

ν

〉
+ c(4)

∗

iµ c(4)iν

〈
φ
(4)
µ

∣∣∣VN−2mec2
∣∣∣φ (4)

ν

〉
+c(1)

∗

iµ c(3)iν

〈
φ
(1)
µ

∣∣∣c~̂pz

∣∣∣φ (3)
ν

〉
+ c(1)

∗

iµ c(4)iν

〈
φ
(1)
µ

∣∣∣c(~̂px− i~̂py

)∣∣∣φ (4)
ν

〉
+c(2)

∗

iµ c(3)iν

〈
φ
(2)
µ

∣∣∣c(~̂px + i~̂py

)∣∣∣φ (3)
ν

〉
+ c(2)

∗

iµ c(4)iν

〈
φ
(2)
µ

∣∣∣c~̂pz

∣∣∣φ (4)
ν

〉
+c(3)

∗

iµ c(1)iν

〈
φ
(3)
µ

∣∣∣c~̂pz

∣∣∣φ (1)
ν

〉
+ c(3)

∗

iµ c(2)iν

〈
φ
(3)
µ

∣∣∣c(~̂px− i~̂py

)∣∣∣φ (2)
ν

〉
+c(4)

∗

iµ c(1)iν

〈
φ
(4)
µ

∣∣∣c(~̂px + i~̂py

)∣∣∣φ (1)
ν

〉
+ c(4)

∗

iµ c(2)iν

〈
φ
(4)
µ

∣∣∣c~̂pz

∣∣∣φ (2)
ν

〉
+

1
2

N

∑
i j

m

∑
µν

4

∑
ab

{[
c(a)

∗

iµ c(a)iλ c(b)
∗

jµ c(b)jk − c(a)
∗

iµ c(a)jλ c(b)
∗

jν c(b)ik

]
×
〈

φ
(a)
µ (1)φ

(b)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (a)
λ

(1)φ
(b)
k (2)

〉}
(3.199)

The pair exchange that differentiates Coulomb and exchange integrals is trans-

ferred into the molecular spinor coefficients in Eq. (3.200), to be multiplied

with the corresponding two-electron integral over four basis functions each.

Thus this type of basis-set expansion leads to 16 different pairs of molecu-

lar spinor coefficient product to be multiplied with two-electron integrals per

Coulomb and per exchange integral. To simply equation (3.200), we use the

104



Chapter three - Part two Relativistic Hartree-Fock for Molecular Structure

expansion in terms of 2-spinor basis functions in Eq.(3.181)

ψi (~r) =

(
∑µ cL

iµφ L
µ (~rA)

∑µ cS
iµφ S

µ (~rA)

)
(3.200)

where ψi (~r) represent the molecular spinor, and c′iµs represent the coefficients
of molecular spinor and the Dirac Hamiltonian in (2×2) super-structure form
of the one electron, given by:

hD =

 VN c
(
~̂σ .~̂p

)
c
(
~̂σ .~̂p

)
VN−2mc2

 (3.201)

Now, substituting Eqs. (3.202) and (3.201) into (3.200), we get

EDHF
el,0 =

N

∑
i

m

∑
µν

[
c(L)

∗

iµ c(L)iν

〈
φ
(L)
µ |VN|φ

(L)
ν

〉
+ c(S)

∗

iµ c(S)iν

〈
φ
(S)
µ

∣∣∣VN−2mec2
∣∣∣φ (S)

ν

〉
+c(L)

∗

iµ c(S)iν

〈
φ
(L)
µ

∣∣∣c(~̂σ .~̂p
)∣∣∣φ (S)

ν

〉
+ c(S)

∗

iµ c(L)iν

〈
φ
(S)
µ

∣∣∣c(~̂σ .~̂p
)∣∣∣φ (L)

ν

〉]
+

1
2

N

∑
i j

m

∑
µνλk

[
c(L)

∗

iµ c(L)iλ c(L)
∗

jµ c(L)jk

〈
φ
(L)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(L)
k (2)

〉

+c(L)
∗

iµ c(L)iλ c(S)
∗

jν c(S)jk

〈
φ
(L)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(S)
k (2)

〉
+c(S)

∗

iµ c(S)iλ c(L)
∗

jν c(L)jk

〈
φ
(S)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(L)
k (2)

〉
+c(S)

∗

iµ c(S)iλ c(S)
∗

jν c(S)jk

〈
φ
(S)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(S)
k (2)

〉
−c(L)

∗

iµ c(L)jλ c(L)
∗

jµ c(L)ik

〈
φ
(L)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(L)
k (2)

〉
−c(L)

∗

iµ c(L)jλ c(S)
∗

jν c(S)ik

〈
φ
(L)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(S)
k (2)

〉
−c(S)

∗

iµ c(S)jλ c(L)
∗

jν c(L)jk

〈
φ
(S)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(L)
k (2)

〉
−c(S)

∗

jµ c(S)jλ c(S)
∗

jν c(S)ik

〈
φ
(S)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(S)
k (2)

〉
(3.202)
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For more simplification, we introduce a new definition of the elements of the

m-dimensional relativistic density matrix D =
{

Dµν

}
with an (LL), (LS),

(SL) and (SS) super-structure,

D(XY )
µν =

N

∑
i

c(X)∗

iµ c(Y )iν , and X ,Y ∈ {L,S} (3.203)

So, the Dirac-Hartree-Fock energy can be written in a more compact way as

EDHF
el,0 =

m

∑
µν

[
D(LL)

µν

〈
φ

L
µ |VN|φ L

ν

〉
+D(SS)

µν

〈
φ
(S)
µ

∣∣∣VN−2mec2
∣∣∣φ (S)

ν

〉
+D(LS)

µν

〈
φ
(L)
µ

∣∣∣c(~̂σ .~̂p
)∣∣∣φ (S)

ν

〉
+ D(SL)

µν

〈
φ
(S)
µ

∣∣∣c(~̂σ .~̂p
)∣∣∣φ (L)

ν

〉]
+

1
2

m

∑
µνλk

{[
D(LL)

µλ
D(LL)

νk −D(LL)
µk D(LL)

νλ

]〈
φ
(L)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(L)
k (2)

〉

+
[
D(LL)

µλ
D(SS)

νk −D(LS)
µk D(SL)

νλ

]〈
φ
(L)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(S)
k (2)

〉
[
D(SS)

µλ
D(LL)

νk −D(SL)
µk D(LS)

νλ

]〈
φ
(S)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(L)
k (2)

〉
[
D(SS)

µλ
D(SS)

νk −D(SS)
µk D(SS)

νλ

]〈
φ
(S)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(S)
k (2)

〉
(3.204)

The Dirac Hamiltonian in (2×2) super-structure form equation (3.202) can

be written in a matrix form of an (mL +mS)−dimensional matrix, i.e. ĥD ={
ĥD

µν

}
, and the elements are still in the (2×2) super-structure, given by

ĥD
µν =

(
ĥD(LL)

µν ĥD(LL)
µν

ĥD(SL)
µν ĥD(SS)

µν

)
=

 V LL
µν c

[
~̂σ .~̂p

](LS)

µν

c
[
~̂σ .~̂p

](SL)

µν
V (SS)

µν −2mec2S(SS)
µν


(3.205)
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where the matrix elements in Eq. (3.206) are defined as

V LL
µν =

〈
φ

L
µ |VN|φ L

ν

〉
(3.206)

c
[
~̂σ .~̂p

](LS)

µν
=
〈

φ
(L)
µ

∣∣∣c(~̂σ .~̂p
)∣∣∣φ (S)

ν

〉
(3.207)

S(SS)
µν =

〈
φ
(S)
µ |φ

(S)
ν

〉
(3.208)

The two electron terms in Eq.(3.205) represent the Coulomb and exchange

energy, we can introduce a new definition of the Coulomb matrix J(XX)
µλ

given

by :

Ĵ(XX)
µλ

= ∑
νk

[
D(LL)

νk

〈
φ
(X)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (X)
λ

(1)φ
(L)
k (2)

〉

+D(SS)
νk

〈
φ
(X)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (X)
λ

(1)φ
(S)
k (2)

〉]
; X ∈ {L,S}

(3.209)

Ĵ(LS)
µλ

= Ĵ(SL)
µλ

= 0 (3.210)

Hence, the Coulomb matrix Ĵ has a block-diagonal form, given by

Ĵ =

(
Ĵ(LL) Ĵ(LS)

Ĵ(SL) Ĵ(SS)

)
=

(
Ĵ(LL) 0

0 Ĵ(SS)

)
(3.211)

The exchange terms in Eq (3.205) can be defined in terms of the exchange

matrix K(XY )
µλ

given by:

K̂(LL)
µk = ∑

νλ

D(LL)
νλ

〈
φ
(L)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(L)
k (2)

〉
(3.212)

K̂(SL)
µk = ∑

νλ

D(LS)
νλ

〈
φ
(L)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (L)
λ

(1)φ
(S)
k (2)

〉
(3.213)

K̂(LS)
µk = ∑

νλ

D(LS)
νλ

〈
φ
(S)
µ (1)φ

(L)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(L)
k (2)

〉
(3.214)
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K̂(SS)
µk = ∑

νλ

D(SS)
νλ

〈
φ
(S)
µ (1)φ

(S)
ν (2)

∣∣∣∣ 1
r12

∣∣∣∣φ (S)
λ

(1)φ
(S)
k (2)

〉
(3.215)

And the exchange matrix K can be written as

K̂ =

(
K̂(LL) K̂(LS)

K̂(SL) K̂(SS)

)
(3.216)

Finally, we can write the energy in matrix form, given by

EDHF
el,0

[{
ciµ
}]

=

n

∑
i=1

(
c(L)i ,c(S)i

)
.

 V (LL)+ Ĵ(LL)− K̂(LL) c
[
~̂σ .~̂p

](LS)
− K̂(LS)

c
[
~̂σ .~̂p

](SL)
− K̂(SL) V (SS)−2mec2S(SS)+ Ĵ(SS)− K̂(SS)

 .

(
c(L)i

c(S)i

)
(3.217)

The Dirac–Hartree–Fock energy depends on the molecular spinor coefficients

ciµ
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Results and Discussion

The electronic properties of atoms and molecules are studied by theoreti-

cal methods with in non-relativistic and relativistic framework. The results

of this study has been achieved by using a modified GRASP1.0.0 program

which is an acronym for the General-purpose Relativistic Atomic structure

Program, designed for atoms [137 ]. The accuracy in GRASP1.0.0 program

is 1.000×10−09. In our work we have takein atoms in group15 from periodic

table. The results for diatomic molecules Li2, N2, F2, and Se2 are obtain by

using DIRAC14.2 program which is an acronym for the Direct Iterative Rel-

ativistic All-electron Calculations, designed for atoms and molecules 138].

The results obtained in our work for atoms are compared with C.F.Fischer

in case of non-relativistic treatment [46], and Visscher in case of relativistic

treatment [139] of the ground state. This chapter shows the analysis of the

results and figures achieved in this project.

4.1 The Configuration Energy for Natural Atoms

In the present work we find the energy of the ground state configuration and

excited state configuration for each atom in group15 of block P in periodic

table. All elements in this group have the same valance-shell configuration,

type np3. Table (4.1) represents the energy configuration of the natural atoms

(group15). Comparison between our results with experimental results, for

two cases, non-relativistic and relativistic calculations for group15. The elec-

tron configuration np3 for each atom in the group15 gives rise to three atomic

terms 2D,4 S, and 2P in case of non-relativistic treatment by using Dunning

basis sets type cc-pVDZ. But for the relativistic case the configuration np3

for each atom in the same group we have different terms because of the spin-

orbit coupling, they are split into five states 4S3/2,
2 D5/2,

2 D3/2,
2 P3/2 and ,2 P1/2

by using Dyall basis set type dyall-2zp. The number of Slater determinants or

so-called micro-configuration for each element in this group is the number of
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ways to distribute 3-electrons over 6 spin-orbitals. This is

(
6

3

)
= 6!

3!3! = 20

number of Slater determinants. This means that the electronic configuration

for each element really indicates 20 different quantum states. However, we

can write each state as a linear combination of the 20 possible Slater determi-

nants for each element Ψα = ∑
20
k=1 ckαΦk . To solve the hardest problem in

case multi Slater determinants ,we used Configuration Interaction method to

obtain results in table (4.1). The state 4S3/2 has 4 determinants representing

the ground state, state 2D5/2 has 6 determinants, state 2D3/2 has 4 determinants

representing the first excite state, state 2P1/2 has 2 determinants, and state 2P3/2

have 4 determinants representing second excite state. The energy configura-

tions for natural atoms in non-relativistic case and relativistic case have been

calculated by using modified GRASP1.0.0 code.
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Table 4.1: Comparison of experimental energy levels of neutral atoms with our results

Natural

Atom
Term J Energy level [exp] cm−1

Energy level

[Relativistic-calculi-

Ourwork]cm−1

Energy level

[non-relativistic

calculus-Our

work]cm−1

7N

4S 3/2 0.000 [140,141] 0.000 0.000

2D
5/2

-19224.464

[140,141]
-22636.036246 -22642.624859

3/2
-19233.177

[40,141]
-22638.137931

2P
1/2

-28838.920

[40,141]
-37726.047203 -37737.708098

3/2 -28839.306[40,141] -37731.457672

15P

4S 3/2 0.000[142,141] 0.000 0.000

2D
3/2

-11361.02

[142,141]
-15123.922999 -15139.400026

5/2
-11376.63

[142,141]
-15139.325896

2P
1/2

-18722.71

[142,141]
-25212.124156 -25232.333377

3/2
-18748.01

[142,141]
-25244.700967

33As

4S 3/2 0.000[143,141] 0.000 0.000

2D
3/2

-10592.666

[143,141]
-14378.80179 -14399.596246

5/2
-10914.866

[143,141]
-14628.029343

2P
1/2

-18186.328

[143,141]
-24257.337035 -23999.327077

3/2
-18647.663

[143,141]
-24651.208818

51Sb

4S 3/2 0.000[143,141] 0.000 0.000

2D
3/2

-8512.125

[144,141]
-12132.102745 -12809.252581

5/2
-9854.018

[144,141]
-13295.592133

2P
1/2

-16395.359

[144,141]
-21707.388802 -21348.754301

3/2
-18464.202

[144,141]
-23528.134251

83Bi

4S 3/2 0.000[145,140] 0.000 0.000

2D
3/2

-11419.039

[145,141]
-12536.828371 -12188.664764

5/2 -15437.501[145,141] -17316.263029

2P
1/2 -21660.914[145,141] -25144.185126 -20314.441273
3/2 -33164.805[145,140] -36341.493487

115Uup

4S 3/2 - 0.000 0.000

2D
3/2 - -37179.611441 -11270.711484
5/2 - -42317.771157

2P
1/2 - -49494.048252 -18759.570083
3/2 - -93970.244144
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The experimental energies of the ground state 4S3/2 for N,P,As,Sb,Bi respec-

tively, are given by 117225.7cm−1 [139], 84580.83cm−1 [141], 78950cm−1[146],

69431.34cm−1 [147], 58762.0cm−1[148] . The last element (Z=115) in group

15 has no experimental value as yet, but in our work, we can calculate ground

state energy for state 4S3/2 as 95648.6cm−1 and find energies for all states.

4.2 Spin-Orbit Mixing (State Interaction)

The effect due to spin–orbit coupling is considered the main reason for the

splitting of the p shell into p1/2 and p3/2 , the d shells into d3/2 and d5/2 and so

on. The np3electron configuration for each element in group15 gives rise to

three LS− states, 4S,2 D and 2P. The effect of spin-orbit coupling of these

states will lead to splitting into, 4S3/2,
2 D5/2,

2 D3/2,
2 P3/2 ,2 P1/2. Some states

that have the same total angular momentum J may interact and mix. This

means the states 4S3/2,
2 D3/2, and 2P3/2 interact, leading to doublet-quadruplet

mixing, but this interaction is forbidden in a non-relativistic framework. The

symbol es for the terms in relativistic cas are different notation the first con-

figurations nP1
1/2
, nP2

3/2
f or J = 5/2 have 6 determinants, the second config-

urations nP2
1/2
, nP1

3/2
for J = 3/2 have 4 determinants, the third configurations

nP1
1/2
, nP2

3/2
forJ = 3/2 have 4 determinants, the fourth configurations nP3

3/2
f orJ =

3/2 have 4 determinants, and the fifth configurations nP1
1/2
, nP2

3/2
f or j = 1/2

have 2 determinants. The second, third, and fourth configurations have the

same J = 3/2 . Each configuration of these states is called Configuration State

Functions CSFs . The linear combination of configuration state functions

CSFs called Atomic State Functions ASFs has the form Ψi =∑
5
m=1 CSFm〉cmi,

where m is the number of CSFs, and where the c′is are the configuration mix-

ing coefficients for state Ψ, and ∑
m
i=1
∣∣c2

i

∣∣ = 1 represents the weight of con-

figuration state functions CSFs. The average occupation of P3/2 in atomic

state function has the form
〈
occ
(
P3/2

)〉
= ∑mCSFocc

(
P3/2

)
.
∣∣c2

i

∣∣. Each atom

in group15 has five configuration state functions as explained in previous

section. Table (4.2) gives the contribution weight interaction of the atomic
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state function (ASF) for three configuration state functions (CSF) that have

the same total angular momentum J of each atom in group15 in relativistic

framework. The effective occupation weight number as function of the atomic

number(Z) of the np3/2 orbital for each state given in Fig (4.1)

Table 4.2: The contribution of weight states that have the same total angular momentum for
group15

Z Contribution of weight states that have same J = 3/2

nP1
3/2 nP2

3/2
nP3

3/2

7 0.2825 0.4444 0.2731
15 0.2996 0.4446 0.2559
33 0.0002 0.9776 0.0222
51 0.4628 0.4777 0.0595
83 0.2090 0.7901 0.0008
115 0.0095 0.9881 0.0025

Figure 4.1: Effective occupation weight number of the np3/2orbital as function of the atomic
number(Z)

4.3 Non-relativistic Hartree-Fock for Atoms

Table (4.3) gives the the non-relativistic orbital energies in Hartree-Fock level

for the nitrogen atom in atomic units, obtained by using Gaussian basis-set

type Dunning (cc− pV DZ) with two model nuclear charge distributions. The

first model is point charge and the second is Gaussian charge distribution
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model. The basis-set cc-pVDZ has [3s2p1d] contractive functions for nitrogen

atom, and has (9s4p1d) primitive functions for nitrogen atom. Our results are

compared with those of C.F. Fischer [46] in table (4.3).

Table 4.3: Hartree-Fock spinor energy for different nuclear models for N-atom with basis set
The ground state Hartree-Fock energy with Dunning basis set cc-pVDZ for nitrogen atom

Spinor Our work/HF-energy
(a.u.)-point model

Our work/HF-energy
(a.u.)-Gaussian model

C.F.Fischer/HF-
energy (a.u.)using
Grid Technique

1s 15.66639161100 15.66638860079 15.6290595
2s 0.9636702700312 0.9636701067407 0.9453236
2p 0.5086548640255 0.5086549107696 0.56758885

Table (4.4) gives the the non-relativistic orbital energies in Hartree-Fock level

for phosphorus atom in atomic units, obtained by using Gaussian basis-set

type Dunning (cc− pV DZ) with two model nuclear charge distributions. The

basis-set cc-pVDZ has [4s3p1d] contractive functions for phosphorus atom,

and has (12s8p1d) primitive functions for phosphorus atom. Our results are

compared with those of C.F. Fischer [46] in table (4.4).

Table 4.4: Hartree-Fock spinor energy for different nuclear models for P-atom with basis set
The ground state Hartree-Fock energy with Dunning basis set cc-pVDZ for phosphorus atom
Spinor Our work/HF-energy

(a.u.)-point model
Our work/HF-energy
(a.u.)-Gaussian model

C.F.Fischer/HF-energy
(a.u.)using Grid

Technique
1s 79.98906454033 79.98896408548 79.96912
2s 7.528773798541 7.528766526948 7.5110935
2p 5.418450867141 5.418452223616 5.400955
3s 0.7063628418693 0.7063622517076 0.69641485
3p 0.3505641350000 0.3505642812601 0.3917082

Table (4.5) gives the non-relativistic orbital energies in Hartree-Fock level

for the arsenic atom in atomic units, obtained by using Gaussian basis-set

type Dunning (cc− pV DZ) with two model nuclear charge distributions. The

basis-set cc-pVDZ has [5s4p2d] contractive functions for arsenic atom, and

has (14s11p6d) primitive functions for arsenic atom, and comparing our re-

sults with C.F.Fischer results [46].
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Table 4.5: Hartree-Fock spinor energy for different nuclear models for As-atom with basis set
The ground state Hartree-Fock energy with Dunning basis set cc-pVDZ for Arsenic atom

Spinor Our work/HF-energy
(a.u.)-point model

Our work/HF-energy
(a.u.)-Gaussian model

C.F.Fischer/HF-energy
(a.u.)using Grid

Technique
1s 432.6020902090 432.5976700577 432.58619
2s 56.32520354201 56.32477746980 56.30982
2p 50.16912209304 50.16915761056 50.153735
3s 8.044609904424 8.044544513191 8.029619
3p 5.895508632684 5.895515598165 5.8806905
4s 0.6951367708357 0.6951316213837 0.6858967
3d 2.127599622272 2.127604898083 2.112655555
4p 0.3301361963250 0.3301372428760 0.36948255

Table (4.6) gives the the non-relativistic orbital energies in Hartree-Fock level

for the antimony atom in atomic units, obtained by using Gaussian basis-

set type Dyall (dyall−2zp) with two model nuclear charge distributions.

The basis-set dyall− 2zp has [21s15p11d1f] contractive functions for anti-

mony atom, and has (21s15p11d1f) primitive functions for antimony atom,

and comparing our results with C.F.Fischer results [46].

Table 4.6: Hartree-Fock spinor energy for different nuclear models for Sb-atom with basis set
The ground state Hartree-Fock energy with Dyall basis set dyall-2zp for Antimony atom

Spinor Our work/HF-energy
(a.u.)-point model

Our work/HF-energy
(a.u.)-Gaussian model

Charlotte Froese
Fischer/HF-energy

(a.u.)using Grid
Technique

1s 1085.601391167 1085.567407612 1085.58905
2s 164.7700678882 164.7665463130 164.75797
2p 154.0159042754 154.0161140794 154.0038
3s 33.64818691602 33.64750141569 33.636223
3p 29.11807061409 29.11812444522 29.106151
4s 6.074808510639 6.074675454163 6.0631855
3d 20.81006314552 20.81011174023 20.798079
4p 4.456219707509 4.456234533260 4.44471865
5s 0.5889413634203 0.5889279394407 0.5817731
4d 1.699371666838 1.699383261431 1.68786555
5p 0.2992468300293 0.2992495888001 0.33471125

Table (4.7) gives the the non-relativistic orbital energies in Hartree-Fock level

for the bismuth atom in atomic units, obtained by using Gaussian basis-set

Dyall type (dyall−2zp) with two model nuclear charge distributions. The

basis-set dyall − 2zp has [24s20p14d9f] contractive functions for bismuth
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atom, and has (24s20p14d9f) primitive functions for bismuth atom, and com-

paring our results with C.F.Fischer results [46].

Table 4.7: Hartree-Fock spinor energy for different nuclear models for Bi-atom with basis set
The ground state Hartree-Fock energy with Dyall basis set dyall-2zp for bismuth atom

Spinor
Our work/HF-energy

(a.u.)-point model
Our work/HF-energy
(a.u.)-Gaussian model

Charlotte Froese
Fischer/HF-energy

(a.u.)using Grid
Technique

1s 3000.163735658 2999.832734383 3000.15275
2s 512.8526043069 512.8160575933 512.84175
2p 493.4598678575 493.4612612584 493.44903
3s 125.4157312057 125.4074441361 125.40496
3p 116.1448735417 116.1452732285 116.13412
4s 29.59821136067 29.59610802740 29.5875005
3d 99.06717042097 99.06755218046 99.05639
4p 25.44835367523 25.44848334851 25.4376765
5s 5.508208214800 5.507791445388 5.4977845
4d 17.82889617363 17.82901514152 17.8181785
5p 4.005043283896 4.005087313235 3.99471445
6s 0.5581695152534 0.5581226782181 0.55169005
4f 7.419412602500 7.419505303731 7.4087005
5d 1.487435388793 1.487470378546 1.47715695
6p 0.2861884819993 0.2861977082341 0.32010435

Table (4.8) gives the the non-relativistic orbital energies in Hartree-Fock level

for the ununpentium atom [149] in atomic units, obtained by using Gaussian

basis-set Dyall type (dyall−2zp) with two model nuclear charge distribu-

tions. The first model is point charge and the second is Gaussian charge distri-

bution model. The basis-set dyall−2zp has contractive functions [26s23p16d12f]

and has (26s23p16d12f) primitive functions for ununpentium atom. and com-

paring our results with C.F.Fischer results [46].
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Table 4.8: Hartree-Fock spinor energy for different nuclear models for Uup-atom with basis set
The ground state Hartree-Fock energy with Dyall basis set dyall-2zp for Ununpentium atom
Spinor Our work/HF-energy

(a.u.)-point model
Our work/HF-energy
(a.u.)-Gaussian model

Our work/HF-energy
(a.u.)-point-without basis
set using Grid Technique

1s 5899.960411720 5898.482551546 5898.054648730
2s 1079.936867394 1079.768754103 1079.349997789
2p 1051.175392391 1051.180199446 1051.041606519
3s 297.7647459564 297.7242654790 297.3758347434
3p 282.7704018980 282.7719200088 282.8360680359
4s 87.67056102714 87.65858721745 87.42038472118
3d 255.2005386354 255.2020160433 255.8994294738
4p 80.06665921454 80.06721596819 80.11951894910
5s 23.49327940830 23.48975962008 23.35853851884
4d 66.01239474752 66.01292748307 66.47149052178
5p 19.99082418540 19.99103875354 20.03523474467
6s 4.681054317942 4.680273601348 4.636655382532
4f 46.69217630000 46.69264536664 47.24147816556
5d 13.71540018451 13.71559905830 13.95772054556
6p 3.387790427697 3.387873251973 3.404411318790
7s 0.5065770006769 0.5064801107768 0.4997786128369
5f 5.703220283898 5.703376220399 5.947219211560
6d 1.276019899695 1.276087072882 1.346060246721
7p 0.2568643350823 0.2568832386987 0.2684413074059

4.4 Total Electronic Hartree Fock Energy for Atoms of Group15

As was discussed in more detail in chapter two part one, we can find the

total electronic HF energy for ground state by using GRASP1.0.0 modified

program in case of non-relativistic treatment. Table (4.9) gives comparison

of the total HF electronic energies for group15-atoms, using two different

nuclear charge distribution model with two types of Gaussian Basis-set; Dun-

ning type cc− pV DZ and Dyall type dyall− 2zp in case of non-relativistic

treatment. From the table it is clear that the Gaussian nucleus model gives a

smaller total energy than the point charge model.
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Table 4.9: Total electronic energies for the different nuclear models with Gaussian basis set

Z Electronic
configu-

ration

Total electronic
energy (a.u)-point
model /Our work

Total electronic
energy (a.u)-Gauss
model /Our work

Total electronic
energy (a.u) by
C.F.Fischer[46]

using Grid
Technique

P.E=

point
(Fischer)

−
Gauss
model

point(Fischer)

×100%

7 2s22p3 -54.28929125000 -54.28928404265 -54.400934 0.20%
15 3s23p3 -340.6442717812 -340.6440398301 -340.71878 0.02%
33 4p3 -2234.167785734 -2234.157611288 -2234.2386 0.003%
51 5s25p3 -6313.422328672 -6313.343782906 -6313.4853 0.002%
83 6p3 -20095.52650467 -20094.75773532 -20095.586 0.004%

115 7p3 -43584.10822144 -43580.66196908
-43584.14349336

our work
0.007%

4.5 Effect of The Nuclear Charge Distribution on Spinor Energies

The effect of nuclear charge distribution on the total energy and spinor energy

are notable when switching from the singular potential of point nucleus to a

Gaussian nucleus potential. The most important is the effect on relative ener-

gies. Here we may note that the effect is observable, but small for moderate

nuclear charge it becomes larger for super heavy atoms. The spinor energies

and total ground state energies are given in tables below for atoms group 15

from periodic table, in Hartree atomic units.

4.5.1 The Dirac-Hartree-Fock Spinor Energy for Group15 Atoms

To obtain results of the orbital energies in Dirac-Hartree-Fock level for atoms

in group 15, two different model nuclear charge distributions where used .

The first model is point charge and the second model is Gaussian charge dis-

tribution. Table (4.10) compares our results with Visscher [139], results of the

relativistic orbital energies for the nitrogen atom in atomic units, obtained by

using Gaussian basis-set Dyall type (dyall.2zp). The dyall−2zp large com-

ponents basis-set has [10s6p1d] contractive functions and (10s6p1d) primitive

functions for nitrogen atom. The dyall− v2z small component basis-set has
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[6s11p6d1f] contractive functions and (6s11p6d1f) primitive functions for ni-

trogen atom.

Table 4.10: Relativistic spinor energies using different nuclear charge models for N-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall.2zp for nitrogen atom
Spinor Our work/DHF-

energy(a.u.)-point
model

Our work/DHF-
energy(a.u.)-Gaussian

model

Visscher
/DHF-energy(a.u.)

using Grid
Technique[139]

1s1/2 15.67641393998 15.67641086411 15.676414

2s1/2 0.9647881086797 0.9647879414597 0.96478811

2p1/2 0.5088816659328 0.5088817137571 0.50888167

2p3/2 0.5081840426397 0.5081840904034 0.50818404

Table (4.11) gives comparison of our results with Visscher [139], results of

the relativistic orbital energies in Dirac-Hartree-Fock level for the phospho-

rus atom in atomic units. The results are obtained by using Gaussian basis-set

Dyall type (dyall.2zp). The large components basis-set type dyall−2zp has

[12s8p2d] contractive functions and (12s8p2d) primitive functions for phos-

phorus atom. Small components basis-set type dyall− 2zp has [8s16p8d1f]

contractive functions and has (8s16p8d1f) primitive functions for phosphorus

atom.

Table 4.11: Relativistic spinor energies using different nuclear charge models for P-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall.2zp for phosphorus atom

Spinor Our work/DHF-energy
(a.u.)-point model

Ourwork/DHF-energy
(a.u.)-Gaussian model

Visscher /DHF-energy
(a.u.)

using Grid
Technique[139]

1s1/2 80.23031525695 80.23020545473 80.230315
2s1/2 7.566465817966 7.566457790623 7.5664658
2p1/2 5.441233165503 5.441234655682 5.4412332
2p3/2 5.405918929562 5.405920420815 5.4059189
3s1/2 0.7094589099354 0.7094582579317 0.70945891
3p1/2 0.3514633487919 0.3514635094280 0.35146335
3p3/2 0.3493907143972 0.3493908748457 0.34939071

Table (4.12) gives comparison of our results with Visscher [139], results of

the relativistic orbital energies in Dirac-Hartree-Fock level for arsenic atom

in atomic units. The obtained results by using Gaussian basis-set Dyall type
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(dyall.2zp). The large components basis-set type dyall−2zp has [15s11p7d1f]

contractive functions and has (15s11p7d1f) primitive functions for arsenic

atom. Small components basis-set type dyall − 2zp has [11s22p12d7f1g]

contractive functions and has (11s22p12d7f1g) primitive functions for arsenic

atom.

Table 4.12: Relativistic spinor energies using different nuclear charge models for As-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall.v2z for Arsenic atom

Spinor Ourwork/DHF-energy
(a.u.)-point model

Ourwork/DHF-energy
(a.u.)-Gaussian model

Visscher
/DHF-energy (a.u.)

using Grid
Technique[139]

1s1/2 439.2247311001 439.2183037329 439.22473
2s1/2 57.81549006985 57.81483873461 57.81549
2p1/2 51.42597182112 51.42602153862 51.425972
2p3/2 50.06813273071 50.06818657561 50.068133
3s1/2 8.292958907325 8.292858200028 8.2929589
3p1/2 6.081267398763D+00 6.081277254166D+00 6.0812674
3p3/2 5.885302590048 5.885313145586 5.8853026
4s1/2 0.7128161556667 0.7128081265659 0.71281616
3d3/2 2.099912013124 2.099919925352 2.099912
3d5/2 2.070458146139 2.070465983591 2.0704581
4p1/2 0.3359837734273 0.3359853238800 0.33598377
4p3/2 0.3255323076120 0.3255338785350 0.32553231

Table (4.13) gives comparison of our results with Visscher [139], results of

the relativistic orbital energies in Dirac-Hartree-Fock level for the antimony

atom in atomic units. To obtained results by using Gaussian basis-set Dyall

type (dyall−2zp). The large components basis-set type dyall − 2zp has

[21s15p11d1f] contractive functions and has (21s15p11d1f) primitive func-

tions for antimony atom. Small components basis-set type dyall− v2z has

[15s32p16d11f1g] contractive functions and has (15s32p16d11f1g) primitive

functions for antimony atom.
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Table 4.13: Relativistic spinor energies using different nuclear charge models for Sb-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall.2zp for antimony atom

Spinor Ourwork/DHF-energy
(a.u.)-point model

Ourwork/DHF-energy
(a.u.)-Gaussian model

Visscher
/DHF-energy

(a.u.)using Grid
Technique[139]

1s1/2 1127.119473109 1127.041546454 1127.1195
2s1/2 174.9685171413 174.9593874499 174.96852
2p1/2 163.1951791397 163.1955322116 163.19518
2p3/2 153.9015321395 153.9020702545 153.90153
3s1/2 35.80588275517 35.80409121650 35.805883
3p1/2 30.95326573690 30.95336312051 30.953266
3p3/2 29.18918436071 29.18932304145 29.189184
4s1/2 6.490168786914 6.489819993540 6.4901688
3d3/2 20.72511640126 20.72524037880 20.725116
3d5/2 20.36366220033 20.36378359542 20.363662
4p1/2 4.769274183204 4.769304463568 4.7692742
4p3/2 4.440117314199 4.440155399446 4.4401173
5s1/2 0.6273484565397 0.6273113409773 0.62734846
4d3/2 1.655236554788 1.655265599716 1.6552366
4d5/2 1.605707409992 1.605735903253 1.6057074
5p1/2 0.3136375235310 0.3136440321581 0.31363752
5p3/2 0.2900003330087 0.2900073000793 0.29000033

Table (4.14) gives comparison of our results with Visscher [139], results of

the relativistic orbital energies in Dirac-Hartree-Fock level for the bismuth

atom in atomic units. To obtained results by using Gaussian basis-set Dyall

type (dyall−2zp). The large components basis-set type dyall − 2zp has

[24s20p14d9f] contractive functions and has (24s20p14d9f) primitive func-

tions for bismuth atom. Small components basis-set type dyall − 2zp has

[20s38p29d14f9g] contractive functions and has (20s38p29d14f9g) primitive

functions for bismuth atom.
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Table 4.14: Relativistic spinor energies using different nuclear charge models for Bi-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall-2zp for Bismuth atom-

Spinor
Ourwork/DHF-energy

(a.u.)-point model
Ourwork/DHF-energy
(a.u.)-Gaussian model

Visscher
/DHF-energy

(a.u.)using Grid
Technique[139]

1s1/2 3352.039076443 3349.426060889 3352.0391
2s1/2 607.7970911034 607.3929225354 607.79709
2p1/2 582.4967817486 582.4827155162 582.49678
2p3/2 497.0931648138 497.1084526627 497.09316
3s1/2 149.3877267202 149.2941325671 149.38773
3p1/2 138.1044219131 138.1010029562 138.10442
3p3/2 118.7419926655 118.7464701558 118.74199
4s1/2 35.75784510191 35.73385000036 35.757845
3d3/2 100.6180719438 100.6222678433 100.61807
3d5/2 96.55142237998 96.55537283099 96.551422
4p1/2 30.83293247254 30.83232473061 30.832932
4p3/2 25.99901422753 26.00045681049 25.999014
5s1/2 6.691186092642 6.686253607900 6.6911861
4d3/2 18.02529423455 18.02656353821 18.025294
4d5/2 17.11319409309 17.11440129796 17.113194
5p1/2 4.909505586620 4.909584733623 4.9095056
5p3/2 3.976443466448 3.976926293748 3.9764435
6s1/2 0.6868478253917 0.6861931922182 0.68684783
4 f5/2 6.703886554846 6.704797943718 6.7038866
4 f7/2 6.495226320245 6.496119123073 6.4952263
5d3/2 1.389084536207 1.389435763865 1.3890845
5d5/2 1.270617290964 1.270949267762 1.2706173
6p1/2 0.3384213555385 0.3384834872791 0.33842136
6p3/2 0.2610826852490 0.2611778720615 0.26108269

Table (4.15) gives comparison of our results using Gaussian basis-set and

without Gaussian basis-set of the relativistic orbital energies in Dirac-Hartree-

Fock level for ununpentium atom in atomic units. To obtained results by

using Gaussian basis-set Dyall type (dyall−2zp). The large components

basis-set type dyall−2zp has [26s23p16d12f] contractive functions and has

(26s23p16d12f) primitive functions for ununpentium atom. Small compo-

nents basis-set type dyall−2zp has [23s42p35d16f12g] contractive functions

and has (23s42p35d16f12g) primitive functions for ununpentium atom.
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Table 4.15: Relativistic spinor energies using different nuclear charge models for Uup-atom
The ground state Dirac-Hartree-Fock energy with Dyall basis set dyall.2zp for Ununpentium atom

Spinor Ourwork/DHF-
energy(a.u.)-point

model

Ourwork/DHF-
energy(a.u.)-Gaussian

model

Ourwork/DHF-
energy(a.u.) with out
basis-set using Grid

Technique -point model
1s1/2 7692.743279688 7608.831870440 7692.743279693
2s1/2 1594.729544466 1575.873224054 1594.729544470
2p1/2 1540.288405602 1536.827733074 1540.288405607
2p3/2 1071.193542304 1071.725443621 1071.193542305
3s1/2 433.9396492659 429.2857713086 433.9396492696
3p1/2 410.8960726388 409.9316778840 410.8960726433
3p3/2 296.0324677059 296.2084651931 296.0324677082
4s1/2 127.9634222334 126.6080139819 127.9634222370
3d3/2 265.6623689875 265.8271544004 265.6623689914
3d5/2 247.0539097751 247.2007559732 247.0539097764
4p1/2 117.2484671125 116.9727943473 117.2484671162
4p3/2 83.93976753015 84.00409862472 83.93976753252
5s1/2 35.14524950375 34.74139069872 35.14524950487
4d3/2 63.75079989965 63.80278971574 68.92886631433
4d5/2 68.92886631151 68.98636539870 63.75079990293
5p1/2 30.36977682437 30.29379931806 30.36977682533
5p3/2 20.72638477718 20.75055873844 20.72638477776
6s1/2 7.365786673419 7.259823178097 7.365786673723
4 f5/2 44.11737616348 44.16188325562 44.11737616470
4 f7/2 42.59909669208 42.64185249661 42.59909669323
5d3/2 14.16365861571 14.18360112888 14.16365861700
5d5/2 12.81098539738 12.82905899428 12.81098539739
6p1/2 5.542250520871 5.525680464906 5.542250520728
6p3/2 3.298719414074 3.307294525163 3.298719414351
7s1/2 0.8772251063641 0.8583728431790 0.8772251066735
5 f5/2 4.851061396679 4.864141861758 4.851061396897
5 f7/2 4.549872603143 4.562437818085 4.549872603197
6d3/2 1.146712647361 1.152217380975 1.146712647902
6d5/2 0.9593721407993 0.9640033146962 0.9593721413814
7p1/2 0.4474219455236 0.4458895150570 0.4474219460526
7p3/2 0.2139921453225 0.2155264592600 0.2139921452578
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4.5.2 The Total Dirac-Hartree-Fock Electronic Energy for Atoms

The total DHF electronic energies for group15-atoms in periodic table, are
obtaing by using two different nuclear charge distribution models with Dyall
Basis set type dyall− 2zp. Table (4.16) shows the Gaussian model giving a
higher total energy than the point charge model.

Table 4.16: Total DHF electronic energies using different nuclear models with basis-set dyall-2zp

Z Electronic
configu-

ration

Total electronic
energy (a.u)-point

model /present
work

Total electronic
energy

(a.u)-Gaussian
model /present

work

Total electronic
energy (a.u)- by
Visscher using

Grid
Technique[138]

P.E=

point
(visscher)

−
Gauss
model

point(visscher)

×100%

7 2s22p3 -54.32085443665 -54.32084706926 -54.3277292629 0.01%
15 3s23p3 -341.4903528722 -341.4900989335 -341.4949424692 0.001%
33 4p3 -2259.452500113 -2259.437579618 -2259.456841457 0.0008%
51 5s25p3 -6480.698339178 -6480.514171242 -6480.702171855 0.002%
83 6p3 -21572.23237662 -21565.70280668 -21572.23594272 0.03%

115 7p3 -51189.80613005 -50951.45542798
-51189.80613005

ourwork
0.46%

4.6 The Radial Expectation Value

The mean values of rn for non-relativistic treatment is 〈rn〉li, j =
´

∞

0

[
PiPj

]
rndr,

where Pi is the radial wave function described by Dunning basis set type cc-

pVDZ. The mean value for relativistic treatment is 〈rn〉li, j =
´

∞

0

[
PiPj +QiQ j

]
rndr

[136], where Pi,Qi are the large and small radial wave functions, respectively,

describe by Dyall basis set type dyall-2zp. In the present work we find the

radial expectation value 〈r〉 for different nuclear charges distribution models.

First one point charge distribution model and second one Gaussian charge

distribution model are used. Comparison between 〈r〉 in HF level, and 〈r〉 in

DHF level for group 15 in periodic table is given in table (4.17). We see that

the mean radius of spinors decreases due to relativistic effects. Table (4.17)

and Table (4.18) show the comparison for the radial expectation values be-

tween HF level and DHF level for nitrogen atom and phosphorus atom using

different nuclear charge distribution models for our results and Charlotte’s

results [46].
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Table 4.17: Comparison between HF and DHF of 〈r〉 using different nuclear distribution charge
for N-atom

The radial expectation value 〈r〉 (a.u.) using different basis set in HF and DHF for nitrogen atom
Spinor 〈r〉 (a.u)

by
Charlott

〈r〉
(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈r〉
(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈r〉
(a.u)-Ourwork-

DHF-point
model using

Dyall basis set

〈r〉
(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.22829 0.22825983 0.22825986 0.22807568 0.22807571
2s1/2 1.332277 1.3263232 1.3263234 1.3252661 1.3252662
2p1/2 1.4458042 1.4458041
2p3/2 1.409632 1.4466234 1.4466233 1.4471153 1.4471152

Table 4.18: Comparison between HF and DHF results for 〈r〉 using different nuclear distribution
charge for P-atom

The radial expectation value 〈r〉 using different Basis set in HF and DHF for phosphors atom
Spinor 〈r〉 (a.u)

by
Charlott

〈r〉
(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈r〉
(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈r〉
(a.u)-Ourwork-

DHF-point
model using

Dyall basis set

〈r〉
(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.111431 0.10380412 0.10380423 0.10340521 0.10340532
2s1/2 0.562941 0.51561199 0.51561229 0.5136256 0.51362594
2p1/2 0.48158216 0.48158211
2p3/2 0.535408 0.48354809 0.48354804 0.48369061 0.48369057
3s1/2 2.207087 1.9277923 1.9277932 1.9223661 1.9223671
3p1/2 2.3635647 2.3635643
3p3/2 2.752211 2.36881 2.3688096 2.3717095 2.371709

Table (4.19) and Table (4.20) respectively, shows comparison for the radial
expectation values between HF level and DHF level for arsenic atom and an-
timony atom. Using different nuclear charge distribution models. The results
from our obtained comparing with Charlotte, results [46].
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Table 4.19: Comparison between HF and DHF results for 〈r〉 using different nuclear distribution
charge for As-atom

The radial expectation value 〈r〉 using different Basis set in HF and DHF for arsenic atom

Spinor 〈r〉 (a.u)
by

Charlott

〈r〉
(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈r〉
(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis set

〈r〉
(a.u)-Ourwork-

DHF-point
model using

Dyall basis set

〈r〉
(a.u)-Ourwork-
DHF-Gaussain

mode using Dyall
basis set

1s1/2 0.046363 0.046363469 0.046363874 0.045475919 0.045476506
2s1/2 0.205963 0.20596288 0.20596387 0.20178263 0.20178409
2p1/2 0.17464139 0.17464133
2p3/2 0.178758 0.17875807 0.17875802 0.17827902 0.17827895
3s1/2 0.605963 0.60595127 0.60595373 0.59557442 0.59557804
3p1/2 0.60925059 0.60925033
3p3/2 0.620229 0.62038075 0.62038055 0.61910609 0.61910578
4s1/2 2.029707 2.0252903 2.0252988 1.9925168 1.9925295
3d3/2 0.66741283 0.66741217
3d5/2 0.667451 0.66730005 0.66729962 0.67197603 0.67197537
4p1/2 2.5242016 2.5241977
4p3/2 2.512258 2.5611016 2.5610988 2.5696461 2.5696417

Table 4.20: Comparison between HF and DHF results for 〈r〉 using different nuclear distribution
charge for Sb-atom

The radial expectation value 〈r〉 using different Basis set in HF and DHF for antimony atom
Spinor 〈r〉 (a.u)

by
Charlotte

〈r〉 (a.u)
-Ourwork-HF-

point model
using Dunning

basis set

〈r〉 (a.u)
-Ourwork-HF-

Gaussain model
using Dunning

basis set

〈r〉 (a.u)
-Ourwork-DHF-

point model
using Dyall basis

set

〈r〉 (a.u)
-Ourwork-DHF-
Gaussain mode

using Dyall basis
set

1s1/2 0.28816 0.029815912 0.029816733 0.028413134 0.028414991
2s1/2 0.128494 0.12849379 0.1284957 0.12203233 0.1220369
2p1/2 0.10336125 0.10336123
2p3/2 0.109749 0.10974911 0.10974905 0.10879436 0.1087942
3s1/2 0.342004 0.34200314 0.34200702 0.32854881 0.3285581
3p1/2 0.31973849 0.31973826
3p3/2 0.333323 0.33332336 0.33332315 0.33068608 0.33068554
4s1/2 0.821515 0.82150245 0.82151084 0.79325324 0.7932734
3d3/2 0.30234486 0.30234423
3d5/2 0.304568 0.30456666 0.30456642 0.30586094 0.30586032
4p1/2 0.83674705 0.83674608
4p3/2 0.867077 0.8673444 0.86734372 0.86368613 0.86368432
5s1/2 2.390167 2.3858973 2.3859274 2.2928933 2.292968
4d3/2 1.0165963 1.016592
4d5/2 1.016401 1.0161527 1.0161511 1.0297216 1.0297172
5p1/2 2.8456867 2.8456708
5p3/2 2.901138 2.9518812 2.9518731 2.9688872 2.9688645
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Table (4.21) shows comparison for the radial expectation value 〈r〉 between

HF level and DHF level for bismuth. Using two different nuclear charge dis-

tribution models. The results our obtained comparing with Charlotte, results

[46].

Table 4.21: Comparison between HF and DHF results for〈r〉 using different nuclear distribution
charge for Bi-atom

The radial expectation value 〈r〉 using different Basis set in HF and DHF for bismuth atom
Spinor 〈r〉 (a.u)

by
Charlott

〈r〉
(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈r〉
(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈r〉
(a.u)-Ourwork-

DHF-point
model using

Dyall basis set

〈r〉
(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.018233 0.018232761 0.018234574 0.015780291 0.015793731
2s1/2 0.076596 0.076595502 0.076599516 0.065716919 0.065752034
2p1/2 0.053955292 0.0539579
2p3/2 0.064750 0.064750493 0.064750414 0.062962803 0.062961921
3s1/2 0.192187 0.19218713 0.19219464 0.17067767 0.17074399
3p1/2 0.16151088 0.16151529
3p3/2 0.183033 0.1830335 0.18303326 0.17783421 0.17783158
4s1/2 0.417902 0.41790175 0.41791632 0.053955292 0.37675449
3d3/2 0.015780291 0.15463153
3d5/2 0.159629 0.15962895 0.15962871 0.065716919 0.15957658
4p1/2 0.062962803 0.37801084
4p3/2 0.420547 0.42054786 0.42054728 0.17067767 0.41100553
5s1/2 0.930093 0.93008302 0.93011516 0.84039171 0.84068511
4d3/2 0.16151088 0.41503495
4d5/2 0.423968 0.42396749 0.42396669 0.17783421 0.42583227
5p1/2 0.89564719 0.89566224
5p3/2 0.994107 0.99443621 0.99443415 0.98011627 0.98008874
6s1/2 2.543441 2.5393481 2.539464 2.2417491 2.2428653
4 f5/2 0.43646733 0.4364543
4 f7/2 0.430420 0.43041781 0.43041664 0.4424149 0.44240174
5d3/2 1.2012479 1.2011784
5d5/2 1.204947 1.2046218 1.2046158 1.2439741 1.2438985
6p1/2 2.7802113 2.7801622
6p3/2 3.084795 3.1365459 3.1365184 3.1865734 3.1861687
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Table (4.22) shows comparison for the radial expectation value between HF
level and DHF level for ununipentum atom.

Table 4.22: Comparison between HF and DHF results for 〈r〉 using different nuclear distribution
charge for Uup-atom

The radial expectation value 〈r〉 using different Basis set in HF and DHF for ununipentum atom
Spinor 〈r〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈r〉
(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈r〉
(a.u)-Ourwork-

DHF-point
model using

Dyall basis set

〈r〉
(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.013129526 0.013132536 0.0091796002 0.0093155189
2s1/2 0.054498294 0.054504804 0.037747737 0.038157168
2p1/2 0.029233786 0.029334117
2p3/2 0.045866295 0.045866203 0.043274943 0.043264269
3s1/2 0.13335673 0.13336837 0.10087824 0.10164956
3p1/2 0.093496607 0.09368931
3p3/2 0.12589836 0.1258981 0.11847085 0.11843944
4s1/2 0.27329761 0.2733178 0.21699424 0.21834565
3d3/2 0.10094203 0.10091404
3d5/2 0.10828753 0.10828728 0.1075556 0.10752876
4p1/2 0.21325374 0.21358501
4p3/2 0.27027642 0.27027582 0.2576934 0.25761618
5s1/2 0.53007501 0.5301112 0.43002503 0.43251093
4d3/2 0.2489391 0.24886099
4d5/2 0.26141193 0.26141122 0.26052017 0.26044253
5p1/2 0.43789333 0.43850097
5p3/2 0.54167863 0.54167725 0.52270075 0.52249432
6s1/2 1.090516 1.0905968 0.86744182 0.87326472
4 f5/2 0.23962001 0.23954063
4 f7/2 0.23975801 0.23975727 0.24497671 0.24489774
5d3/2 0.54992911 0.54968884
5d5/2 0.56897578 0.56897368 0.57443725 0.57419332
6p1/2 0.92297806 0.92450201
6p3/2 1.169189 1.1691844 1.145176 1.1442491
7s1/2 2.8006744 2.8009612 2.0712314 2.0919357
5 f5/2 0.65073705 0.65035196
5 f7/2 0.63480692 0.63480344 0.66557784 0.66518347
6d3/2 1.4147888 1.4129862
6d5/2 1.4243698 1.4243548 1.5111582 1.509236
7p1/2 2.4979793 2.5041922
7p3/2 3.4448006 3.4447367 3.6225641 3.6095804
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Table (4.23) explain comparison for the radial expectation values
〈
r2〉 be-

tween HF level and DHF level for nitrogen atom . Using different nuclear

charge distribution models. The results from our obtained comparing with

Charlotte, results [46]. We can see, the mean radius of a spinors decreased

due to relativistic effects.

Table 4.23: Comparison between HF and DHF results for
〈
r2
〉

using different nuclear distribu-
tion charge for N-atom

The radial expectation value
〈
r2
〉
(a.u.) using different basis set in HF and DHF for nitrogen atom

Spinor
〈
r2
〉

(a.u)
by

Charlott
[46]

〈
r2
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r2
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈
r2
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.070265 0.070235735 0.070235755 0.070137107 0.070137128
2s1/2 2.149438 2.1294117 2.1294121 2.1261908 2.1261912
2p1/2 2.7044179 2.7044177
2p3/2 2.547658 2.7071583 2.707158 2.7091717 2.7091715

Table (4.24) shows comparison of the radial expectation values
〈
r2〉 between

HF level and DHF level for phosphorus atom . Using different nuclear charge
distribution models. The results from our obtained comparing with Charlotte,
results [46].

Table 4.24: Comparison between HF and DHF results for
〈
r2
〉

for different nuclear distribution
charge for P-atom

The radial expectation value
〈
r2
〉

using different Basis set in HF and DHF for phosphors atom
Spinor

〈
r2
〉

(a.u)
by

Charlott

〈
r2
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r2
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈
r2
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.014488 0.014488142 0.014488169 0.014391216 0.014391246
2s1/2 0.315921 0.31585463 0.315855 0.31358086 0.31358126
2p1/2 0.28990962 0.28990956
2p3/2 0.291798 0.29206497 0.29206492 0.29230493 0.29230487
3s1/2 4.347115 4.3249126 4.3249166 4.3012872 4.3012916
3p1/2 6.6659403 6.6659377
3p3/2 6.389641 6.6944134 6.694411 6.7119714 6.7119688
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Table (4.25) and Table (4.26) shows comparison of the radial expectation

values
〈
r2〉 between HF level and DHF level for arsenic and antimony atoms

respectively. The results from our obtained comparing with Charlotte, results

[46].

Table 4.25: Comparison between HF and DHF results for
〈
r2
〉

using different nuclear distribu-
tion charge for As-atom

The radial expectation value
〈
r2
〉

using different basis set in HF and DHF for arsenic atom
Spinor

〈
r2
〉

(a.u)
by

Charlott

〈
r2
〉

(a.u)-
Ourwork-HF-point

model using
Dunning basis set

〈
r2
〉

(a.u)-Ourwork-HF-
Gaussain model
using Dunning

basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using Dyall
basis set

1s1/2 0.002879 0.002879472 0.0028795184 0.0027840833 0.0027841489
2s1/2 0.049964 0.049963604 0.049964076 0.048088887 0.04808957
2p1/2 0.037449585 0.037449559
2p3/2 0.039071 0.039071229 0.039071206 0.038899067 0.038899033
3s1/2 0.422160 0.4221415 0.42214489 0.40814975 0.40815467
3p1/2 0.43545812 0.43545773
3p3/2 0.450758 0.45105381 0.4510535 0.44951933 0.44951886
4s1/2 4.747515 4.7266865 4.7267256 4.5780971 4.5781547
3d3/2 0.55724402 0.55724284
3d5/2 0.556645 0.55630501 0.55630424 0.5649068 0.5649056
4p1/2 7.5012469 7.5012219
4p3/2 7.371548 7.7156661 7.7156481 7.7753666 7.7753384
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Table 4.26: Comparison between HF and DHF results for
〈
r2
〉

using different nuclear distribu-
tion charge for Sb-atom

The radial expectation value
〈
r2
〉

using different basis set in HF and DHF for antimony atom
Spinor

〈
r2
〉

(a.u)
by

Charlott
[46]

〈
r2
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r2
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using Dyall
basis set

1s1/2 0.001189 0.0011891717 0.0011892319 0.0010934519 0.0010935805
2s1/2 0.019398 0.019397915 0.01939848 0.017625108 0.017626388
2p1/2 0.013139265 0.013139256
2p3/2 0.014649 0.01464897 0.014648953 0.014429038 0.014428995
3s1/2 0.133489 0.13348854 0.13349155 0.12350818 0.12351509
3p1/2 0.11878488 0.1187847
3p3/2 0.128664 0.12866391 0.12866375 0.12686495 0.12686453
4s1/2 0.761324 0.76129722 0.76131272 0.71050186 0.71053781
3d3/2 0.10830341 0.10830296
3d5/2 0.109644 0.10964274 0.10964256 0.11069274 0.11069229
4p1/2 0.79808446 0.79808242
4p3/2 0.855986 0.8566607 0.85665928 0.8503251 0.85032131
5s1/2 6.507030 6.4841073 6.4842685 5.9970549 5.9974401
4d3/2 1.2149269 1.214916
4d5/2 1.212440 1.2116961 1.2116919 1.246746 1.2467346
5p1/2 9.3767464 9.3766313
5p3/2 9.668054 10.073235 10.073176 10.213168 10.213

Table (4.27) shows comparison between of the radial expectation values
〈
r2〉

between HF level and DHF level for bismuth atom. The results from our

obtained comparing with Charlotte, results [46].
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Table 4.27: Comparison between HF and DHF results for
〈
r2
〉

using different nuclear distribu-
tion charge for Bi-atom

The radial expectation value
〈
r2
〉

using different basis set in HF and DHF for bismuth atom
Spinor

〈
r2
〉

(a.u)
by

Charlott
[46]

〈
r2
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r2
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈
r2
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 0.000444 0.00044418449 0.00044426559 0.00034580865 0.00034632056
2s1/2 0.006876 0.0068755206 0.0068762256 0.0051797701 0.0051850201
2p1/2 0.0036527604 0.0036530563
2p3/2 0.005075 0.0050747218 0.0050747093 0.0048293534 0.0048292177
3s1/2 0.042089 0.042089014 0.042092278 0.033480075 0.033505608
3p1/2 0.030491001 0.030492531
3p3/2 0.038725 0.03872463 0.038724531 0.036755386 0.036754287
4s1/2 0.196495 0.19649417 0.19650786 0.16015019 0.16025817
3d3/2 0.028076555 0.028075616
3d5/2 0.029725 0.029725049 0.029724962 0.029773422 0.029772471
4p1/2 0.16260403 0.1626103
4p3/2 0.200415 0.20041587 0.2004153 0.19196789 0.19196126
5s1/2 0.966119 0.96609629 0.96616283 0.79055793 0.79110502
4d3/2 0.19885232 0.19884376
4d5/2 0.206808 0.20680654 0.20680574 0.20909878 0.20908989
5p1/2 0.90361369 0.90364078
5p3/2 1.110609 1.1115343 1.1115293 1.0824889 1.0824228
6s1/2 7.330088 7.3070578 7.3077156 5.7125757 5.7182223
4 f5/2 0.22683601 0.22682178
4 f7/2 0.219561 0.21955829 0.21955704 0.23295964 0.23294505
5d3/2 1.6655842 1.6653779
5d5/2 1.668392 1.6672832 1.6672654 1.7877966 1.7875647
6p1/2 8.907309 8.9068736
6p3/2 10.859224 11.295326 11.29511 11.742169 11.738941
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Table (4.28) shows comparison between of the radial expectation values
〈
r2〉

between HF level and DHF level for uniunpentum atom. The results from our
obtained comparing with Charlotte, results [46].

Table 4.28: Comparison between HF and DHF results for
〈
r2
〉

using different nuclear distribu-
tion charge for Uup-atom

The radial expectation value
〈
r2
〉

using different basis set in HF and DHF for uniunpentum atom
Spinor

〈
r2
〉

(a.u)-Ourwork-
HF-point model using

Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
HF-Gaussain model
using Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-point model

using Dyall basis set

〈
r2
〉

(a.u)-Ourwork-
DHF-Gaussain mode
using Dyall basis set

1s1/2 0.00023020982 0.00023030672 0.00012476292 0.00012783119
2s1/2 0.0034767675 0.0034775796 0.0017686493 0.0018041273
2p1/2 0.0011379202 0.0011444508
2p3/2 0.0025407228 0.0025407125 0.0022913302 0.0022902044
3s1/2 0.020244866 0.020248369 0.01184166 0.012017581
3p1/2 0.010392578 0.010432377
3p3/2 0.018300174 0.018300097 0.016395209 0.016386507
4s1/2 0.08392963 0.083941997 0.053417037 0.05407387
3d3/2 0.011986442 0.011979822
3d5/2 0.013603444 0.013603381 0.013480584 0.013473829
4p1/2 0.052060599 0.052216883
4p3/2 0.082637528 0.082637152 0.075588958 0.07554326
5s1/2 0.31302626 0.31306911 0.20703427 0.20940676
4d3/2 0.071455093 0.071410127
4d5/2 0.078226681 0.078226255 0.078027519 0.077980942
5p1/2 0.21563379 0.21621871
5p3/2 0.3281479 0.32814616 0.3065967 0.30635
6s1/2 1.3189869 1.3191812 0.83941396 0.85059181
4 f5/2 0.066131272 0.066086842
4 f7/2 0.065867882 0.065867471 0.068968106 0.068922924
5d3/2 0.34245775 0.34215549
5d5/2 0.36521874 0.36521599 0.37328571 0.37296746
6p1/2 0.95426788 0.95734182
6p3/2 1.5228587 1.5228453 1.4694408 1.4669412
7s1/2 8.8340659 8.8358513 4.8446051 4.9425795
5 f5/2 0.4894226 0.48882957
5 f7/2 0.46358199 0.46357677 0.51197351 0.51134987
6d3/2 2.2863833 2.2802817
6d5/2 2.2988022 2.2987503 2.6131314 2.6061828
7p1/2 7.1249429 7.1600044
7p3/2 13.538533 13.537982 15.191185 15.077022

Table(4.29) and Table (4.30) shows comparison between of the radial expec-
tation values

〈
r−1〉 between HF level and DHF level for nitrogen and phos-

phorus atoms, respectively. The results from our obtained comparing with
Charlotte, results [46].

134



Chapter four Results and Discussion

Table 4.29: Comparison between HF and DHF results for
〈
r−1
〉

using different nuclear distri-
bution charge for N-atom

The radial expectation value
〈
r−1
〉

(a.u) using different basis set in HF and DHF for nitrogen atom
Spinor

〈
r−1
〉

(a.u)
Char-

lotte[46]

〈
r−1
〉

(a.u)-Ourwork-
HF-point
model/

Dunning basis
set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain

model/
Dunning basis

set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point

model/ Dyall
basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain

mode/ Dyall
basis set

1s1/2 6.65324 6.6538794 6.6538779 6.6621081 6.6621065
2s1/2 1.07818 1.0831782 1.083178 1.0845192 1.0845191
2p1/2 0.94287863 0.94287867
2p3/2 0.95769 0.94207685 0.94207689 0.94184289 0.94184293

Table 4.30: Comparison between HF and DHF results for
〈
r−1
〉

using different nuclear distri-
bution charge for P-atom

The radial expectation value
〈
r−1
〉

using different Basis set in HF and DHF for phosphors atom
Spinor

〈
r−1
〉

(a.u) by
Charlott

[46]

〈
r−1
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 14.57355 14.573599 14.573577 14.659129 14.659103
2s1/2 2.83171 2.8319558 2.8319536 2.850073 2.8500704
2p1/2 2.7216195 2.7216198
2p3/2 2.70627 2.7058874 2.7058876 2.7060096 2.7060099
3s1/2 0.69473 0.69672375 0.69672336 0.69949768 0.69949724
3p1/2 0.56474717 0.56474727
3p3/2 0.57015 0.56305764 0.56305773 0.56255485 0.56255496

Table (4.31) and Table (4.32) shows comparison between of the radial expec-
tation values

〈
r−1〉 between HF level and DHF level for arsenic and antimony

atoms respectively. The results from our obtained comparing with Charlotte,
results [46].
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Table 4.31: Comparison between HF and DHF results for
〈
r−1
〉

using different nuclear distri-
bution charge for As-atom

The radial expectation value
〈
r−1
〉

using different basis set in HF and DHF for arsenic atom

Spinor
〈
r−1
〉

(a.u) by
Charlotte

[46]

〈
r−1
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using Dyall
basis set

1s1/2 32.50504 32.505052 32.50463 33.474142 33.473378
2s1/2 7.19237 7.1923916 7.1923431 7.4460108 7.4459195
2p1/2 7.3752342 7.3752363
2p3/2 7.13463 7.1346293 7.1346314 7.164172 7.1641751
3s1/2 2.33228 2.3323115 2.3322998 2.3950766 2.3950559
3p1/2 2.264621 2.2646218
3p3/2 2.20711 2.2067441 2.2067448 2.2164539 2.216455
4s1/2 0.63755 0.63909921 0.63909611 0.65243815 0.65243311
3d3/2 1.921065 1.9210667
3d5/2 1.91776 1.9179967 1.9179978 1.9074214 1.907423
4p1/2 0.51249971 0.51250042
4p3/2 0.50999 0.50356505 0.50356555 0.50268002 0.50268079

Table 4.32: Comparison between HF and DHF results for
〈
r−1
〉
using different nuclear distribu-

tion charge for Sb-atom
The radial expectation value

〈
r−1
〉

using different basis set in HF and DHF for antimony atom

Spinor
〈
r−1
〉

(a.u) by
Charlotte

[46]

〈
r−1
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point model using

Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain mode
using Dyall basis set

1s1/2 50.47339 50.473394 50.471325 54.331316 54.323984
2s1/2 11.57531 11.57532 11.575075 12.648484 12.647496
2p1/2 12.59093 12.590915
2p3/2 11.55263 11.552633 11.552639 11.695378 11.695395
3s1/2 4.20963 4.2096374 4.2095752 4.5000984 4.4998665
3p1/2 4.3986384 4.398637
3p3/2 4.12293 4.1229239 4.1229265 4.1823082 4.182315
4s1/2 1.66186 1.6618819 1.6618619 1.7480219 1.7479559
3d3/2 4.0183532 4.0183612
3d5/2 3.97362 3.9736304 3.9736334 3.9620995 3.9621073
4p1/2 1.6324101 1.6324109
4p3/2 1.55376 1.5533881 1.5533892 1.5673909 1.5673939
5s1/2 0.53214 0.53325162 0.53324375 0.56035518 0.5603323
4d3/2 1.3004467 1.3004519
4d5/2 1.29566 1.2958777 1.2958797 1.2816701 1.2816752
5p1/2 0.44817472 0.44817674
5p3/2 0.43378 0.42886936 0.42887038 0.42797671 0.42797951
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Table (4.33) shows comparison between of the radial expectation values
〈
r−1〉

between HF level and DHF level for bismuth atom. The results from our ob-
tained comparing with Charlotte, results [46].

Table 4.33: Comparison between HF and DHF results for
〈
r−1
〉
using different nuclear distribu-

tion charge for Bi-atom
The radial expectation value

〈
r−1
〉

using different basis set in HF and DHF for bismuth atom
Spinor

〈
r−1
〉

(a.u) by
Charlott

[48]

〈
r−1
〉

(a.u)-Ourwork-
HF-point model
using Dunning

basis set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain
model using

Dunning basis
set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point

model using
Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain

mode using
Dyall basis set

1s1/2 82.44526 82.445261 82.433058 103.40544 103.16879
2s1/2 19.47367 19.473674 19.472197 25.621494 25.579814
2p1/2 25.492566 25.488533
2p3/2 19.48264 19.482642 19.482666 20.232288 20.232575
3s1/2 7.60157 7.601575 7.6011722 9.3992803 9.388873
3p1/2 9.2868081 9.2857119
3p3/2 7.54562 7.5456171 7.5456269 7.9154819 7.9155985
4s1/2 3.36363 3.3636386 3.3634939 3.9773022 3.9741684
3d3/2 7.7961567 7.7962877
3d5/2 7.46834 7.4683434 7.4683542 7.4931312 7.4932489
4p1/2 3.8627395 3.8624335
4p3/2 3.27571 3.2757056 3.27571 3.4089562 3.4090077
5s1/2 1.42219 1.4222049 0.4942788 1.63582 1.6348326
4d3/2 3.2095222 3.2095897
4d5/2 3.10039 3.100396 3.1004018 3.1040405 3.1041044
5p1/2 1.5166225 1.5165458
5p3/2 1.32017 1.3198223 1.3198247 1.3541795 1.3542096
6s1/2 0.49337 0.49430486 0.4942788 0.57481131 0.57443856
4 f5/2 2.7683685 2.7684434
4 f7/2 2.79235 2.7923602 2.7923671 2.7282743 2.7283475
5d3/2 1.090407 1.0904661
5d5/2 1.07680 1.0770163 1.0770214 1.0483735 1.0484338
6p1/2 0.45898247 0.45897853
6p3/2 0.40289 0.39850629 0.39850921 0.39637609 0.3964181
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Table (4.34) shows comparison between of the radial expectation values
〈
r−1〉

between HF level and DHF level for uninpentum atom. The results from our

obtained comparing with Charlotte, results [46].

Table 4.34: Comparison between HF and DHF results for
〈
r−1
〉

using different nuclear distri-
bution charge for Uup-atom

The radial expectation value
〈
r−1
〉

using different basis set in HF and DHF for Uunipentum atom

Spinor
〈
r−1
〉

(a.u)-Ourwork-
HF-point model using

Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
HF-Gaussain model
using Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-point model using

Dyall basis set

〈
r−1
〉

(a.u)-Ourwork-
DHF-Gaussain mode
using Dyall basis set

1s1/2 114.42865 114.38964 209.31907 199.58879
2s1/2 27.407021 27.402256 56.482765 54.011862
2p1/2 55.779538 55.077457
2p3/2 27.43988 27.439936 29.666562 29.674043
3s1/2 11.019803 11.01847 19.352219 18.724111
3p1/2 19.070599 18.871243
3p3/2 10.983002 10.983025 12.149627 12.152927
4s1/2 5.2306864 5.2301905 8.0931133 7.8996009
3d3/2 12.023768 12.027196
3d5/2 10.945638 10.945663 11.085826 11.088579
4p1/2 7.9140604 7.8529661
4p3/2 5.1568963 5.1569077 5.6187717 5.6204182
5s1/2 2.5932047 2.5929964 3.681542 3.6159538
4d3/2 5.4424725 5.4442275
4d5/2 5.0270567 5.0270704 5.1053595 5.1068906
5p1/2 3.5402234 3.5206097
5p3/2 2.5105796 2.5105854 2.676657 2.6776364
6s1/2 1.1930215 1.1929202 1.6597404 1.6356449
4 f5/2 4.8858591 4.8874344
4 f7/2 4.848579 4.8485933 4.7614332 4.7629168
5d3/2 2.47473 2.4758258
5d5/2 2.3362415 2.3362502 2.3377796 2.3388013
6p1/2 1.5364796 1.5299405
6p3/2 1.1059354 1.1059388 1.1539922 1.1548279
7s1/2 0.44347959 0.44342716 0.63916057 0.63025309
5 f5/2 1.9873625 1.9885229
5 f7/2 2.019385 2.0193957 1.9363584 1.9374819
6d3/2 0.92232123 0.92348826
6d5/2 0.89960851 0.89961747 0.85532781 0.85643528
7p1/2 0.52153114 0.51958695
7p3/2 0.35889404 0.35889939 0.34899698 0.35015506
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4.7 The Radial Functions and Electron Density Distribution for 1s1/2

All the orbitals in atom have zero amplitude at the nucleus except for s−
orbital which has a cusp of the form exp(−ζ r). In relativistic calculations s1/2

spinor instead has a weak singularity at the nucleus. In atomic calculations

one expands the wave function in to a large set of Gaussian basis functions

to solve the weak singularity. In our project we adopted two models to de-

scribe the nuclear charge distribution; point model and Gaussian distribution

model. The figures below provide ground state radial functions of the ele-

ments in group15. Fig (4.2) displays the radial function P1s1/2
(r) component

and Q1s1/2
(r) component for 1s1/2 of nitrogen (Z=7). The Gaussian basis-set

type dyall.2zp, has 10s-set contractive functions to describe large component

for 1s1/2spinor and has 6s-set contractive functions to describe small radial

component for 1s1/2spinor . We see that the small component for nitrogen

(Z=7) has small value. This is due to nuclear charge for nitrogen (Z=7) being

light .

Figure 4.2: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of N-atom using Gaussian dyall-2zp basis sets with Gaussian model

We see that the radial functions P1s1/2
(r) and Q1s1/2

(r) take zero values at

the origin and the weak singularity at the origin is not visible when adopting

the point model, because Z is small in Fig (4.3). The electron density is
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obtained as the square of the orbital in each of the four-component as ρi (r) =

P2
i (r) +Q2

i (r). The electron density does not possess any nodes, because

large component and small component have nodes at different position. Fig

(4.4) displays the radial density for 1s1/2 of the nitrogen atom. The radial

density ρ1s1/2
(r) approaches values which are very close to zero if P1s1/2

(r) is

zero, because the radial functions P1s1/2
(r) and Q1s1/2

(r) take zero values at

the origin.

Figure 4.3: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of N-atom using Slater type basis sets with point model
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Figure 4.4: The radial density distribution versus R(Bohr) for 1s1/2orbital of N-atom using Gaus-
sian model

Fig (4.5) displays the radial functions P1s1/2
(r) and Q1s1/2

(r) for 1s1/2 of the

phosphorous atom. The Gaussian basis-set type dyall.2zp, has 12s-set con-

tractive functions to describe large component for 1s1/2spinor, and 8s-set con-

tractive function to describe small component for 1s1/2spinor. Comparing be-

tween Fig (4.2) to Fig (4.5), we see that, there is a little increase in the small

radial component of phosphorus when nuclear charge of phosphorus increases

relative to nitrogen. Fig (4.6) shows the weak singularity at the origin that be-

comes visible when we adopt the point model. The radial functions P1s1/2
(r)

and Q1s1/2
(r) do not have zero values at the origin, because of the increase of

the nuclear charge for phosphorus relative to nitrogen. Fig (4.7) displays the

radial density for 1s1/2 of the phosphorus atom. The radial density pi(r) has

higher value for phosphorus compared to nitrogen.

141



Chapter four Results and Discussion

Figure 4.5: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of P-atom using Gaussian dyall-2zp basis sets with Gaussian model

Figure 4.6: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of P-atom using Slater type basis sets with point model
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Figure 4.7: The radial density distribution versus R(Bohr) for 1s1/2orbital of P-atom using Gaus-
sian model

Fig (4.8) shows large radial component P1s1/2
(r) and small radial component

Q1s1/2
(r) for 1s1/2 of arsenic atom. The Gaussian basis-set type dyall.2zp,

has 15s-set contractive functions to describe large component for 1s1/2spinor

and 11s-set contractive functions to describe small component for 1s1/2spinor.

Comparing between Fig (4.3), Fig (4.5) and Fig (4.8), we notice that there is

increase in small component of arsenic atom because of increased in the nu-

clear charge of arsenic atom relative to nuclear charge of nitrogen and phos-

phorus atoms, respectively. The singularity behavior at the origin for 1s1/2

of radial functions P1s1/2
(r) and Q1s1/2

(r) increases when nuclear charge in-

creases. Fig (4.9) shows the radial functions P1s1/2
(r) and Q1s1/2

(r) when we

adopt the point model for arsenic atom. Fig (4.10) displays the radial density

for 1s1/2 of arsenic atom.
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Figure 4.8: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of As-atom using Gaussian dyall-2zp basis sets with Gaussian model

Figure 4.9: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of As-atom using Slater type basis sets with point model
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Figure 4.10: The radial density distribution versus R(Bohr) for 1s1/2orbital of As-atom using
Gaussian model

Fig (4.11) shows large radial component P1s1/2
(r) and small radial component

Q1s1/2
(r) for 1s1/2 of antimony atom. The Gaussian basis-set type dyall.2zp,

has 21s-set contractive functions to describe large component for 1s1/2spinor

and 15s-set contractive function to describe small component for 1s1/2spinor.

In Fig (4.11) the small component is clear increasing due to increased nuclear

charge of antimony atom with respect to previous elements. Fig (4.9) shows

the singularity behavior at the origin for 1s1/2 of radial functions P1s1/2
(r) and

Q1s1/2
(r) increases when the nuclear charge increase when we adopt the point

model for antimony atom. Fig (4.13) displays the radial density for 1s1/2 of

antimony atom.
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Figure 4.11: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Sb-atom using Gaussian dyall-2zp basis sets with Gaussian model

Figure 4.12: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Sb-atom using Slater type basis sets with point model
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Figure 4.13: The radial density distribution versus R(Bohr) for 1s1/2orbital of Sb-atom using
Gaussian model

Fig (4.14) shows large radial component P1s1/2
(r) and small radial component

Q1s1/2
(r) for 1s1/2 of bismuth. The Gaussian basis-set type dyall.2zp, has

24s-set contractive functions to describe large component for 1s1/2spinor, and

20s-set contractive functions to describe small component for 1s1/2spinor. In

fig (4.14) small component is more increased due to increasing of nuclear

charge of bismuth atom with respect to previous elements. Fig (4.15) shows

the singularity behavior at the origin for 1s1/2 of radial functions P1s1/2
(r) and

Q1s1/2
(r), respectively when we adopt the point model. Fig (4.16) displays

the radial density for 1s1/2 of bismuth atom.
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Figure 4.14: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Bi-atom using Gaussian dyall-2zp basis sets with Gaussian model

Figure 4.15: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Bi-atom using Slater type basis sets with point model
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Figure 4.16: The radial density distribution versus R(Bohr) for 1s1/2orbital of Bi-atom using
Gaussian model

Fig (4.17) shows large radial component P1s1/2
(r) and small radial component

Q1s1/2
(r) for 1s1/2 of Uninpentum. The Gaussian basis-set type dyall.2zp, has

26s-set contractive functions to describe large component for 1s1/2spinor and

23s-set contractive functions to describe small component for 1s1/2spinor. In

Fig (4.17) the small component is much like the large component for super

heavy atom (uninpentum), because the increased of the nuclear charge(Z=115)

relative to previous elements. This means that for super heavy atoms , Z >

100, the small component is no longer small. The magnitude of the small

component is similar the large component but different sign when Z = 115.

We also note from Fig (4.17) that only small component gives a signifi-

cant contribution to the density close to the nucleus. The highly localized

small component density in Uup contributes more than the large component

for the total density, and majority of this comes from the core-spinors. Fig

(4.18) shows the singularity behavior at the origin for 1s1/2 of radial functions

P1s1/2
(r) and Q1s1/2

(r), respectively when we adopt point model. Fig (4.19)

displays the radial density for 1s1/2 of uninpentum atom.
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Figure 4.17: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Uup-atom using Gaussian dyall-2zp basis sets with Gaussian model

Figure 4.18: The radial large P1s1/2
(r) and small Q1s1/2

(r) components in atomic units versus
R(Bohr) for 1s1/2orbital of Uup-atom using Slater type basis sets with point model

150



Chapter four Results and Discussion

Figure 4.19: The radial density distribution versus R(Bohr) for 1s1/2orbital of Uup-atom using
Gaussian model

4.8 Relativistic Radial Functions for All Orbitals of Group15

The group of figures below represent two sets of radial functions, Pnκ(r)and Qnκ(r),

respectively. The electronic wave function of the group15 is obtained by ap-

proximating the four component spinor into relativistic Gaussian basis set.

The Dirac–Hartree-Fock radial functions of the shells occupied in the ground

state are determined for the neutral atoms (group15). The large components

of the occupied shells and the small components are depicted in the graphs

for each atom. Notic that the number of nodes of the radial functions de-

pend on the quantum numbers. The number of nodes in these functions and

also the small components Qi(r) of a shell i are short-ranged. Moreover, the

spin–orbit- coupling induced splitting of the radial shells is visible for the p-

shell of group 15. An important aspect of the radial functions of the 4-spinor

are the number of (radial) nodes, i.e., the number of positions where these

functions are zero. Hence, the number of nodes solely depends on the quan-

tum numbers that are used to classify the spinor. Pnκ(r) always has(n−l−1)

radial nodes like its non-relativistic analog. However, Qnκ(r) has as many

nodes as Pnκ(r) for negative values of κ and one additional node for posi-

tive values ofκi. From the figures it is also clear that the small-component
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radial functions Qniκi(r) are more compact and short-ranged than the large-

component functions. This, depends on the atomic number Z as can be seen

for the heavy and super heavy atoms, where the radial extension of the small-

component radial functions is less compared to the set of large-component

radial functions. Fig (4.20) represents large radial components Pniκi(r) for

all orbitals of nitrogen atom. The radial large components are described by

relativistic Gaussian basis-set type dyall−2zp has set [10s6p1d] contractive

functions. The large radial components appear as three components in Fig

(4.20), but in reality they are four components, because the relativistic effect

is small on p1/2and p3/2large components. Therefore, the large radial compo-

nents p1/2and p3/2 appear as one component.

Figure 4.20: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all N-atom orbitals

Fig (4.21) shows the small radial components Qniκi(r) for all orbitals of nitro-
gen atom. The small components described by relativistic Gaussian basis-set
type dyall−2zp has set [6s11p6d1f] contractive functions for nitrogen atom.
The small radial components are compact than the large component functions
and short ranged.
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Figure 4.21: Small radial functions Qnκ(r) in atomic units against R(Bohr) orbitals for all N-atom
orbitals

Fig (4.22) represents the large radial components Pniκi(r) for all orbitals of
phosphorus atom. The large components are described by relativistic Gaus-
sian basis-set type dyall.2zp has set [12s16p2d] contractive functions. The
large radial components are extended and long range than the small compo-
nent functions when Z increased .

Figure 4.22: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all P-atom orbitals
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Fig (4.23) shows the radial small components Qniκi(r) for all orbitals of phos-
phorus atom. The small components described by relativistic Gaussian basis-
set type dyall − 2zp has set [8s16p8d1f] contractive functions. The small
radial components are more compact than the large component functions and
short ranged.

Figure 4.23: Small radial functions Qnκ(r) in atomic units against R(Bohr) for all orbitals for all
P-atom orbitals

Fig (4.24) represents the large radial components Pniκi(r) for all orbitals of
arsenic atom. The large radial components are described by relativistic Gaus-
sian basis-set type dyall.2zp has set [15s11p7d1f] contractive functions. The
large radial components are extended and long range than the small compo-
nent functions when increased Z.
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Figure 4.24: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all As-atom or-
bitals

Fig (4.25) shows the radial small component Qniκi(r) for all orbitals of ar-
senic. The small components are described by relativistic Gaussian basis-set
type dyall− v2z has set [11s22p12d7f1g] contractive functions. The small
radial components are more compact than the large component functions and
short range when increased Z.

Figure 4.25: Small radial functions Qnκ(r) in atomic units against R(Bohr) for all orbitals for all
orbitals
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Fig (4.26) represents the large radial components Pniκi(r) for all orbitals of
antimony. The large radial components are described by relativistic Gaussian
basis-set type dyall.2zp has set [21s15p11d1f] contractive functions.

Figure 4.26: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all Sb-atom or-
bitals

Fig (4.27) shows the radial small components Qniκi(r) for all orbitals of anti-
mony atom. The small components describe by relativistic Gaussian basis-set
type dyall− v2z have set [15s32p16d11f1g] contractive functions.

Figure 4.27: Small radial functions Qnκ(r) in atomic units against R(Bohr) for all orbitals for all
Sb-atom orbitals
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Fig (4.28) represents the large radial components Pniκi(r) for all orbitals of
bismuth atom. The large radial components are described by relativistic
Gaussian basis-set type dyall− 2zp has set [24s20p14d9f] contractive func-
tions. The large radial components are more extended and long range than
the small component functions when Z increased .

Figure 4.28: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all Bi-atom or-
bitals

Fig (4.29) shows the radial small components Qniκi(r) for all orbitals of bis-
muth atom. The small components describe by relativistic Gaussian basis-set
type dyall− 2zp has set [20s38p29d14f9g] contractive functions. The small
radial components are more compact than the large component functions and
short range when increased Z.

157



Chapter four Results and Discussion

Figure 4.29: Small radial functions Qnκ(r) in atomic units against R(Bohr) for all orbitals for all
Bi-atom orbitals

Fig (4.30) represents the large radial components Pniκi(r) in atomic unit for all
orbitals of uninpentum atom. The large radial components describe by rela-
tivistic Gaussian basis-set type dyall.2zp has set [26s23p16d12f] contractive
functions.

Figure 4.30: Large radial functions Pnκ(r) in atomic units against R(Bohr) for all Uup-atom
orbitals
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Fig (4.31) shows the radial small component Qniκi(r) for all orbitals of un-
unpentum. The small radial components describe by relativistic Gaussian
basis-set type dyall− v2z has set [23s42p35d16f12g] contractive functions.

Figure 4.31: Small radial functions Qnκ(r) in atomic units against R(Bohr) for all orbitals for all
Uup-atom orbitals

4.9 The Radial Overlap Density for 2p1/2 and 2p3/2 of Group15

The radial overlap density functions between two different radial spinors are

described by relativistic Gaussian basis sets type dyall− 2zp. The behavior

of the overlap of the radial density functions due to spin-orbit effect, specially

for 2p1/2 and 2p3/2 shell functions for group15 has been study. The difference

within each pair of radial density functions is more pronounced when the nu-

clear charge Z is increas, because the repulsion force between electrons can

be canceled if the nuclear force is high. The overlapping of adjacent orbitals

leads to orbital degeneracy and reorganization of orbitals. Fig (4.32) shows

the overlapping radial density functions between 2p1/2 and 2p3/2 for nitrogen.

The radial density functions for 2p1/2 and 2p3/2 are totally overlapped between

for these two state, because the fine structure is small. This means the over-

lapping electrons don’t collide, as in such a condition the wave function be-

comes undefined as two electrons are occupying the same state momentarily,

but thankfully the Pauli exclusion principle prevents exactly this.
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Figure 4.32: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for N-atom

Fig (4.33) shows overlapping radial density functions between 2p1/2 and 2p3/2

for phosphorus atom. The overlap of the radial density functions between
2p1/2 and 2p3/2 is decreases , because the fine structure starts to increase .

Figure 4.33: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for P-atom
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Figure 4.34: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for As-atom

Fig (4.34) shows the overlapping radial density functions between 2p1/2 and

2p3/2 for arsenic atom. The overlap of the radial density functions for 2p1/2

and 2p3/2 is more decreased, because the spin-orbit has more effect on the

behavior radial density. We also note that only 2p1/2radial density gives a sig-

nificant contribution to the overlapping behavior . Fig (4.35) shows the over-

lapping radial density functions between 2p1/2 and 2p3/2 for antimony atom.

The overlap of the radial density functions for 2p1/2 and 2p3/2 is clear decreas-

ing because the spin-orbit has more effect on the behavior radial density.
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Figure 4.35: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for Sb-atom

Fig (4.36) shows the overlapping radial density functions between 2p1/2 and

2p3/2 for bismuth. The overlap of the radial density functions for 2p1/2 and

2p3/2 is become decreses because the spin-orbit effect has strong on the be-

havior for these two states.

Figure 4.36: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for Bi-atom
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Figure 4.37: The radial overlap between 2p1/2 and 2p3/2 against R(Bohr) for Uup-atom

Fig (4.37) shows the overlapping radial density functions between 2p1/2 and
2p3/2 for uninpentum. The overlap radial density functions for 2p1/2 and 2p3/2

is missing between two states, because the spin-orbit effect is very strong on
the behavior of the radial density for these two states.

4.10 Comparison Between Radial Wave Functions for Point Model And
Gaussian Model

Fig (4.38) explains the radial wave functions for large component and small

components for the 1s1/2of the super heavy atom Uup,Z = 115. Both radial

amplitudes u(r)/r and v(r)/r for the Dirac-Hartree-Fock 1s1/2 orbital have

been plotted. In calculation on 1s1/2 state, the large radial component u(r)/r

is expanded to u(r) = ∑
N
i=1 rexp

(
−ζir2)ξi , where N is the number of 1S

GT Fs and the small radial component expanded to v(r)=∑
N
i=1 r2exp

(
−ζir2)ηi

by Gaussian type functions (GTFs) when using Gaussian distribution model.

The large and small components are expanded to rexp(−ζ r) by Slater type

functions (STFs) when using the point model (for more details see [150]

p(106-117)). As the fig illustrates, the wave functions for the point and Gaus-

sian nuclear charge distribution models are identical, except in the nuclear re-

gion. At the center of the nucleus the point nuclear solution diverges, whereas

163



Chapter four Results and Discussion

the more physically correct Gaussian nucleus gives a smooth and continuous

wave function at the origin.

Figure 4.38: Comparison of radial wave functions in (a.u) against R(Bohr) for point model and
Gaussian model of super heavy element Z=115

4.11 The Hartree Fock Energy for Diatomic Molecules

The Hartree-Fock approach with Born-Oppenheimer approximation was ap-

plied on diatomic molecules, such as Li2, N2, F2, Se2 . To computation of the

total electronic energy for molecules and energy for each molecular orbital of

ground state can be achieved by using DIRAC14.2 program in case of non-

relativistic treatment. The wave function of molecular orbitals is described

by Dunning Gaussian basis set type cc-pVDZ and used two different poten-

tial in present work. Table (4.35) shows the non-relativistic orbital energies

for Li2 diatomic molecule in atomic units. The configuration of the ground

state, 1
∑
+
g , for Li2 diatomic molecule is σ (1s)grad σ (1s)ungrad σ (2s)grad,

where σ (1s)grad is the molecular orbital composed from two atomic 1s or-

bitals. The radial wave function in non-relativistic case is described by Gaus-

sian basis-set type Dunning (cc− pV DZ). In our calculations we used two
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model nuclear charge distributions. The first model is point charge and the

second is Gaussian charge distribution model. The basis-set cc-pVDZ has

[3s2p1d]+[3s2p1d] contractive functions for Li2 diatomic molecule, and has

(9s4p1d)+ (9s4p1d) primitive functions for Li2 diatomic molecule. Table

(4.36) explained the total electronic energy for Li2 diatomic molecule of two

model nuclear charge distributions.

Table 4.35: The orbital energies for Li2 molecule
The non-relativistic orbital energy for Li2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital energy
(a.u.)-

point model

Ourwork-Orbital energy
(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ(1s)grad -2.447944729833274 -2.447944662189034 -2.4506

σ(1s)ungrad -2.447605537669246 -2.447605469886924 -2.4504
σ(2s)grad -0.180369113516792 -0.180369111444094 -0.1778

Table 4.36: Total Hartree Fock electronic energy for Li2
The non-relativistic total energy for Li2using Dunning basis-set (cc− pV DZ)

Electronic energy (a.u.)
-point model

Nuclear repulsion energy
(a.u.)-point model

SS Coulomb
correction

(a.u.)-point model

Total energy (a.u.) -point
model

-16.651306129734770 1.781808101575068 - -14.869498028159700
Electronic energy (a.u.)

-Gaussian model
Nuclear repulsion energy
(a.u.) -Gaussian model

SS Coulomb
correction

(a.u.)-Gaussian
model

Total energy (a.u.)
-Gaussian model

-16.651305849789882 1.781808101575068 - -14.869497748214812

Table (4.37) shows the non-relativistic orbital energies for N2 diatomic molecule
using basis-set Dunning type cc− pV DZ with different nuclear charge distri-
bution models . To obtain a good description of N2 diatomic molecule we
used basis-set type cc-pVDZ that has [3s2p1d]+[3s2p1d] contractive func-
tions and (9s4p1d)+ (9s4p1d) primitive functions .
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Table 4.37: The orbital energies for N2 molecule
The non-relativistic orbital energy for N2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Our work-Orbital energy
(a.u.)-

point model

Our work-Orbital energy
(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ(1s)grad -15.68643304886525 -15.68642983753813 -15.6800

σ(1s)ungrad -15.68303016407930 -15.68302695027274 -15.6761
σ(2s)grad -1.47120850873232 -1.47120837685820 -1.4863

σ(2s)ungrad -0.77409693725683 -0.77409681772065 -0.7674
σ(2pz)grad -0.62622747931744 -0.62622749440319 -0.6279

π(2px)ungrad -0.60815941494309 -0.60815944682894 -0.6170
π(2py)ungrad -0.60815941494310 -0.60815944682894 -0.6170

Table 4.38: Total Hartree Fock electronic energy for N2
The non-relativistic total energy for N2using Dunning basis-set (cc− pV DZ)

Electronic energy (a.u.)
-point model

Nuclear repulsion energy
(a.u.)-point model

SS Coulombic
correction

(a.u.)-point model

Total energy (a.u.)-point
model

-132.57639152777543 23.62226077426937 - -108.95413075350606
Electronic energy

(a.u.)-Gaussian model
Nuclear repulsion energy

(a.u.)-Gaussian model
SS Coulombic

correction
(a.u.)-Gaussian

model

Total energy
(a.u.)-Gaussian model

-132.57637774891205 23.62226077426937 - -108.95411697464269

Table (4.39) shows the non-relativistic orbital energies for F2 diatomic molecule
using basis-set Dunning type cc− pV DZ with different nuclear charge distri-
bution models . The basis-set cc-pVDZ has [3s2p1d]+[3s2p1d] contractive
functions for F2 diatomic molecule, and (9s4p1d)+ (9s4p1d) primitive func-
tions for F2 diatomic molecule.
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Table 4.39: The orbital energies for F2 molecule
The non-relativistic orbital energy for F2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital energy
(a.u.)-

point model

Ourwork-Orbital energy
(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ(1s)grad -26.43290235546674 -26.43289180512685 -26.4256

σ∗(1s)ungrad -26.43265909296129 -26.43264854178556 -26.4253
σ(2s)grad -1.76790239636716 -1.76790191113075 -1.8044

σ∗(2s)ungrad -1.49949399389019 -1.49949340736751 -1.4816
π(2px)ungrad -0.80663177618714 -0.80663185450282 -0.8217
π(2py)ungrad -0.80663177618714 -0.80663185450281 -0.8217
σ(2pz)grad -0.74418213377055 -0.74418219635494 -0.7694
π∗(2px)grad -0.66254748812802 -0.66254756686554 -0.6495
π∗(2py)grad -0.66254748812802 -0.66254756686554 -0.6495

Table 4.40: Total Hartree Fock electronic energy for F2
The non-relativistic total energy for F2using Dunning basis-set (cc− pV DZ)

Electronic energy (a.u.)
-point model

Nuclear repulsion energy
(a.u.)-point model

SS Coulombic
correction

(a.u.)-point model

Total energy (a.u.)-point
model

-229.04365827711368 30.35798791179450 - -198.68567036531917
Electronic energy

(a.u.)-Gaussian model
Nuclear repulsion energy

(a.u.)-Gaussian model
SS Coulombic

correction
(a.u.)-Gaussian

model

Total energy
(a.u.)-Gaussian model

-229.04361291664441 30.35798791179450 - -198.68562500484992

Table (4.41) shows the non-relativistic orbital energies for Se2 diatomic molecule
using basis-set Dunning type cc− pV DZ with different nuclear charge dis-
tribution models . The basis-set cc-pVDZ has [14s11p6d]+[14s11p6d] con-
tractive functions for Se2 diatomic molecule, and (14s11p6d)+ (14s11p6d)
primitive functions for Se2 diatomic molecule.
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Table 4.41: The orbital energies for Se2 molecule
The non-relativistic orbital energy for Se2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital
energy (a.u.)-
point model

Ourwork-Orbital
energy (a.u.)-

Gaussain model

Orbital
energy

(a.u.)[141]
σ(1s)grad -460.896804738 -460.891732154 -460.9296

σ∗(1s)ungrad -460.896805279 -460.891732696 -460.9255
σ(2s)grad -60.697079669 -60.696588287 -60.7260

σ∗(2s)ungrad -60.697083954 -60.696592572 -60.7235
π(2px)ungrad -54.297982449 -54.298022922 -54.3269
π∗(2px)grad -54.297982990 -54.298023463 -54.3297

π(2py)ungrad -54.297982449 -54.298022922 -54.3297
π∗
(2py)grad

-54.297982990 -54.298023463 -54.3297
σ(2pz)grad -54.298471368 -54.298511833 -54.3273

σ∗(2pz)ungrad -54.298471986 -54.298512451 -54.3273
σ(3s)grad -8.956667158 -8.956590622 -8.9677

σ∗(3s)ungrad -8.956570480 -8.956493937 -8.9592
π(3px)ungrad -6.685508951 -6.685517389 -6.6997
π∗(3px)grad -6.685439080 -6.685447517 -6.6997

π(3py)ungrad -6.685508951 -6.685517389 -6.6997
π∗
(3py)grad

-6.685439080 -6.685447517 -6.6997
σ(3pz)grad -6.689770227 -6.689778639 -6.6975

σ∗(3pz)ungrad -6.689221816 -6.689230230 -6.6969
σ3d

(
dz2 −dz2

)
g -2.676627068 -2.676633627 -2.6840

σ∗3d
(
dz2 −dz2

)
u -2.669952464 -2.669959058 -2.6792

π (3dxz)u -2.672205511 -2.672212087 -2.6792
π∗ (3dxz)g -2.669836892 -2.669843482 -2.6768
π (3dyz)u -2.672205511 -2.672212087 -2.6768
π∗ (3dyz)g -2.669836892 -2.669843482 -2.6768
δ (3dxy)g -2.667025728 -2.667032331 -2.6757
δ ∗ (3dxy)u -2.666657932 -2.666664536 -2.6757

δ

(
3dx2−y2

)
g

-2.667025728 -2.667032331 -2.6755

δ ∗
(

3dx2−y2

)
u

-2.666657932 -2.666664536 -2.6755
σ(4s)grad -1.000239302 -1.000234212 -1.0340

σ∗(4s)ungrad -0.777954222 -0.777947487 -0.8330
π(4px)ungrad -0.424551560 -0.424553123 -0.4834
π(4py)ungrad -0.424551560 -0.424553123 -0.4834

σ(4pz−4pz)grad -0.471333124 -0.471334387 -0.4825
π∗(4px)grad -0.185288060 -0.185289438 -0.3545
π∗
(4py)grad

-0.185288060 -0.185289438 -0.3545
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Table 4.42: Total Hartree Fock electronic energy for Se2
The non-relativistic total energy for Se2using Dunning basis-set (cc− pV DZ)

Electronic
energy(a.u.) -point

model

Nuclear repulsion
energy(a.u.)-point

model

SS Coulombic
correction(a.u.)-

point
model

Total
energy(a.u.)-point

model

-5081.8951770555941 282.4232930723915 - -4799.4718839832030
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-

Gaussian
model

Total
energy(a.u.)-Gaussian

model

-5081.8718194138437 282.4232930723915 - -4799.4485263414517

4.12 The Dirac-Hartree-Fock Energy for Diatomic Molecules

The Dirac-Coulomb energy of a four-component spinor is expanded into sep-

arate one-particle basis sets for the large (L) and small (S) components. Dirac-

Hartree-Fock approach has been developed which allows relativistic Dirac-

Hartree-Fock calculations for molecules by computing integrlas formed by

expanding basis atomic spinors in Gaussian functions. The results obtained

by using DIRAC14.2 program in relativistic treatment for Li2, N2, F2, Se2

show the orbital energies and total enrgies for each diatomic molecule. Ta-

ble (4.43) shows the relativistic orbital energies for Li2 diatomic molecule has

configuration ground state σ
(
1s1/2

)
grad σ

(
1s1/2

)
ungrad σ

(
2s1/2

)
grad, in atomic

units. The large and small componet radial wave functions in the relativistic

case are described by two type of Gaussian basis set; first one type used

Dunning (cc− pV DZ) basis set and second one used dyall-2zp basis set.

In our calculations we used two model nuclear charge distributions. The

first model is point charge and the second is Gaussian charge distribution

model. The large components basis-set cc− pV DZ [3s2p1d]+[3s2p1d] con-

tractive functions and (9s4p1d)+(9s4p1d) primitive functions for Li2 diatomic

molecule . The small components basis-set cc− pV DZ has [4s10p4d1f]+[4s10p4d1f]

contractive functions and has (4s10p4d1f)+(4s10p4d1f) primitive functions

for Li2 diatomic molecule.
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Table 4.43: The relativistic orbital energies for Li2 molecule
The relativistic orbital energy forLi2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussain model

Orbital energy
(a.u.)[141]

σ1/2(1s)grad -2.448321973613917 -2.448321905974459 -2.4506
σ1/2(1s)ungrad -2.447983756309737 -2.447983688534220 -2.4504
σ1/2(2s)grad -0.180390459486164 -0.180390457414968 -0.1778

Table (4.44) gives the contribution energies of the total energy for Li2 molecule

using basis set type Dunning cc− pV DZ with different nuclear charge distri-

bution models in case of relativistic treatment.

Table 4.44: Total Dirac-Hartree-Fock electronic energies for Li2
The relativistic total energy for Li2using Dunning basis-set (cc− pV DZ)

Electronic energy (a.u.)
-point model

Nuclear repulsion energy
(a.u.)-point model

SS Coulombic correction
(a.u.)-point model

Total energy (a.u.)-point
model

-16.652923250501118 1.781808101575068 0.000000007919147 -14.871115141006904
Electronic energy

(a.u.)-Gaussian model
Nuclear repulsion energy

(a.u.)-Gaussian model
SS Coulombic correction

(a.u.)-Gaussian model
Total energy

(a.u.)-Gaussian model
-16.652922970577741 1.781808101575068 0.000000007919147 -14.871114861083527

Table (4.45) shows the relativistic orbital energies for N2 diatomic molecule in

atomic units. In our calculations we used two model nuclear charge distribu-

tions. The first model is point charge and the second is Gaussian charge distri-

bution model. The large components basis-set cc− pV DZ [3s2p1d]+[3s2p1d]

contractive functions and has (9s4p1d)+(9s4p1d) primitive functions for N2

diatomic molecule. Small components basis-set cc− pV DZ [4s10p4d1f]+[4s10p4d1f]

contractive functions and has (4s10p4d1f)+(4s10p4d1f) primitive functions

for N2 diatomic molecule.
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Table 4.45: The relativistic orbital energies for N2 molecule
The relativistic orbital energy for N2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussain model

Orbital
energy

(a.u.)[141]
σ1/2(1s)grad -15.69885511146428 -15.69885190123023 -15.6800

σ1/2(1s)ungrad -15.69546445993603 -15.69546124720449 -15.6761
σ1/2(2s)grad -1.47210403707627 -1.47210390553577 -1.4863

σ1/2(2s)ungrad -0.77502071020440 -0.77502059090265 -0.7674
σ1/2(2pz)grad -0.62617584005632 -0.62617585513071 -0.6279

π1/2(2px)ungrad -0.60811528071560 -0.60811531245615 -0.6170
π3/2(2py)ungrad -0.60772033020855 -0.60772036194977 -0.6170

Table (4.46) gives the contribution energies to the total energy for N2 molecule

using basis set type Dunning cc− pV DZ with differenet nuclear charge dis-

tribution models in case of relativistic treatment.

Table 4.46: Total Dirac-Hartree-Fock electronic energies for N2
The relativistic total energy for N2using Dunning basis-set (cc− pV DZ)

Electronic energy(a.u.)
-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-point

model

Total energy(a.u.)-point
model

-132.63869671411101 23.62226077426937 0.00000094489043 -109.01643499495120
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-Gaussian

model

Total
energy(a.u.)-Gaussian

model
-132.63868294277756 23.62226077426937 0.00000094489043 -109.01642122361777

Table (4.47) shows the relativistic orbital energies for F2 diatomic molecule in

atomic units. In our calculation we used two model nuclear charge distribu-

tions. The first model is point charge and the second is Gaussian charge distri-

bution model. The large components basis-set cc− pV DZ [3s2p1d]+[3s2p1d]

contractive functions and has (9s4p1d)+(9s4p1d) primitive functions for F2

diatomic molecule. Small components basis-set cc− pV DZ [4s10p4d1f]+[4s10p4d1f]

contractive functions and has (4s10p4d1f)+(4s10p4d1f) primitive functions

for F2 diatomic molecule.
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Table 4.47: The relativistic orbital energies for F2 molecule
The relativistic orbital energy for F2using Dunning basis-set (cc− pV DZ)

Molecular
orbital

Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussain model

Orbital
energy

(a.u.)[141]
σ1/2(1s)grad -26.46704231214135 -26.46703176785501 -26.4256

σ1/2(1s)ungrad -26.46680213504469 -26.46679158993980 -26.4253
σ1/2(2s)grad -1.77065868226464 -1.77065819887817 -1.8044

σ1/2(2s)ungrad -1.50304506722407 -1.50304448335979 -1.4816
π1/2(2px)ungrad -0.80695796949387 -0.80695804711272 -0.8217
π3/2(2py)ungrad -0.80536804066645 -0.80536811830971 -0.8217
σ1/2(2pz)grad -0.74367743971153 -0.74367750180086 -0.7694
π1/2(2px)grad -0.66311122746396 -0.66311130550478 -0.6495
π3/2(2py)grad -0.66126636412975 -0.66126644220854 -0.6495

Table (4.48) gives the contribution energies to the total energy for F2 molecule

using basis set type Dunning cc− pV DZ with differenet nuclear charge dis-

tribution models in case of relativistic treatment.

Table 4.48: Total Dirac-Hartree-Fock electronic energies for F2
The relativistic total energy for F2using Dunning basis-set (cc− pV DZ)

Electronic energy(a.u.)
-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-point

model

Total energy(a.u.)-point
model

-229.22614528674632 30.35798791179450 0.00000253358023 -198.86815484137156
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-Gaussian

model

Total
energy(a.u.)-Gaussian

model
-229.22609996816070 30.35798791179450 0.00000253358023 -198.86810952278597

Table (4.49) shows the relativistic orbital energies for Li2 diatomic molecule

in atomic units . The large and small radial functions are described by Gaus-

sian basis-set Dyall type dyall−2zp . In our calculations we used two model

nuclear charge distributions. The first model is point charge and the second is

Gaussian charge distribution model. The large components basis-set dyall−
2zp has [10s6p]+[10s6p] contractive functions and (10s6p)+(10s6p) primitive

functions for Li2 diatomic molecule. Small components basis-set dyall−2zp

[6s10p6d]+[6s10p6d] contractive functions and has (6s10p6d)+(6s10p6d) prim-

itive functions for Li2 diatomic molecule.
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Table 4.49: The relativistic orbital energies for Li2 molecule
The relativistic orbital energy for Li2using Dyall basis-set (dyall−2zp)

Molecular orbital Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussain model

Orbital
energy

(a.u.)[141]
σ1/2(1s)grad -2.453330864916 -2.453330813364 -2.4506

σ1/2(1s)ungrad -2.453007142856 -2.453007091260 -2.4504
σ1/2(2s)grad -0.181796291210 -0.181796290046 -0.1778

Table (4.50) gives the contribution energies to the total energy for Li2 molecule
using basis set type dyall− 2zp with differen t nuclear charge distribution
models in case of relativistic treatment.

Table 4.50: Total Dirac-Hartree-Fock electronic energies for Li2
The relativistic total energy for Li2using Dyall basis-set (dyall−2zp)

Electronic energy
(a.u.)-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-point

model

Total energy(a.u.)-point
model

-16.654632674234374 1.781808101575069 0.000000007919147 -14.872824564740158
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-Gaussian

model

Total
energy(a.u.)-Gaussian

model
-16.654632390349875 1.781808101575069 0.000000007919147 -14.872824280855658

Table (4.51) gives the relativistic orbital energies for N2 diatomic molecule in
atomic units. The large and small radial components are described by rela-
tivistic Gaussian basis-set type dyall− 2zp. The large components basis-set
dyall− 2zp has [10s6p1d]+[10s6p1d] contractive functions and (10s6p1d)+
(10s6p1d) primitive functions for N2 diatomic molecule. Small components
basis-set dyall−2zp [6s11p6d1f]+[6s11p6d1f] contractive functions and (6s11p6d1f)+
(6s11p6d1f) primitive functions for N2 diatomic molecule.
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Table 4.51: The relativistic orbital energies for N2 molecule
The relativistic orbital energy for N2using Dyall basis-set (dyall−2zp)

Molecular
orbital

Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ1/2(1s)grad -15.69463506145 -15.69463214399 -15.6800

σ1/2(1s)ungrad -15.69112149888 -15.69111857878 -15.6761
σ1/2(2s)grad -1.47609780971 -1.47609768698 -1.4863

σ1/2(2s)ungrad -0.77834125171 -0.77834113430 -0.7674
σ1/2(2pz)grad -0.63305787177 -0.63305790701 -0.6279

π1/2(2px)ungrad -0.61338496630 -0.61338501493 -0.6170
π3/2(2py)ungrad -0.61296620200 -0.61296625061 -0.6170

Table (4.52) gives the contribution energies of the total energy for N2 molecule
using basis set type dyall − 2zp with different nuclear charge distribution
models in case of relativistic treatment.

Table 4.52: Total Dirac-Hartree-Fock electronic energies for N2
The relativistic total energy for N2using Dyall basis-set (dyall−2zp)

Electronic energy(a.u.)
-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-point

model

Total energy(a.u.)-point
model

-132.66194824136170 23.62226077426937 0.00000094489043 -109.03968652220188
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-Gaussian

model

Total
energy(a.u.)-Gaussian

model
-132.66193426009073 23.62226077426937 0.00000094489043 -109.03967254093092

Table (4.53) shows the relativistic orbital energies for F2 diatomic molecule in

atomic units. The large components basis-set dyall−2zp has [10s6p1d]+[10s6p1d]

contractive functions and (10s6p1d)+(10s6p1d) primitive functions for F2 di-

atomic molecule. Small components basis-set dyall−2zp [6s11p6d1f]+[6s11p6d1f]

contractive functions and (6s11p6d1f)+(6s11p6d1f) primitive functions for F2

diatomic molecule.
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Table 4.53: The relativistic orbital energies for F2 molecule
The relativistic orbital energy for F2using Dyall basis-set (dyall−2zp)

Molecular
orbital

Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ1/2(1s)grad -26.45727863889 -26.45726868836 -26.4256

σ1/2(1s)ungrad -26.45704237212 -26.45703242134 -26.4253
σ1/2(2s)grad -1.77167300127 -1.77167249884 -1.8044

σ1/2(2s)ungrad -1.50327988021 -1.50327926771 -1.4816
π1/2(2px)ungrad -0.81185046644 -0.81185058332 -0.8217
π3/2(2py)ungrad -0.81011688501 -0.81011700169 -0.8217
σ1/2(2pz)grad -0.75173152076 -0.75173160928 -0.7694
π1/2(2px)grad -0.66936224315 -0.66936236895 -0.6495
π3/2(2py)grad -0.66735974267 -0.66735986830 -0.6495

The table (4.54) explain the contribution energies of the total energy for F2

molecule using basis set type dyall−2zp with differenet nuclear charge dis-
tribution model in case of relativistic treatment.

Table 4.54: Total Dirac-Hartree-Fock electronic eneries for F2
The relativistic total energy for F2using Dyall basis-set (dyall−2zp)

Electronic energy(a.u.)
-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-point

model

Total energy(a.u.)-point
model

-229.29766920007242 30.35798791179450 0.00000253358023 -198.93967875469770
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-Gaussian

model

Total
energy(a.u.)-Gaussian

model
-229.29762278972032 30.35798791179450 0.00000253358023 -198.93963234434560

Table (4.55) shows the relativistic orbital energies for Se2 diatomic molecule

in atomic units. The large components basis-set described by using dyall−
2zp has [15s11p7d]+[15s11p7d] contractive functions and (15s11p7d) +(15s11p7d)

primitive functions for Se2 diatomic molecule. Small components basis-set

dyall−2zp has [11s22p11d7f]+[11s22p11d7f] contractive functions and (11s22p11d7f)+

(11s22p11d7f) primitive functions for Se2 diatomic molecule.
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Table 4.55: The relativistic orbital energies for Se2 molecule
The relativistic orbital energy forSe2using Dyall basis-set (dyall−2zp)

Molecular orbital Ourwork-Orbital
energy(a.u.)-
point model

Ourwork-Orbital
energy(a.u.)-

Gaussian model

Orbital
energy

(a.u.)[141]
σ

1/2(1s)grad -468.3968445957 -468.3898757870 -460.9296
σ∗

1/2(1s)ungrad -468.3968449599 -468.3898761514 -460.9255
σ

1/2(2s)grad -62.3869769670 -62.3862650685 -60.7260
σ∗

1/2(2s)ungrad -62.3869809138 -62.3862690155 -60.7235
σ

1/2(2pz)grad -55.7283263056 -55.7283813211 -54.3269
σ∗

1/2(2pz)ungrad -55.7283261883 -55.7283812038 -54.3297
π

1/2
(2px)ungrad -54.1793876982 -54.1794456065 -54.3297

π∗
1/2

(2px)grad -54.1793876521 -54.1792991264 -54.3297

π∗
3/2(2py)grad

-54.1792416864 -54.1792996456 -54.3273

π
3/2(2py)ungrad -54.1792411671 -54.1794456525 -54.3273
σ

1/2(3s)grad -9.2382830387 -9.2381713969 -8.9677
σ∗

1/2(3s)ungrad -9.2382133994 -9.2381017502 -8.9592
π∗

1/2(3px)grad -6.8985124388 -6.8985240257 -6.6997
π

1/2(3px)ungrad -6.8983954229 -6.8984070108 -6.6997
σ

1/2(3pz)grad -6.6706977829 -6.6707098825 -6.6975
σ∗

1/2(3pz)ungrad -6.6703643973 -6.6703764987 -6.6969
π

3/2(3py)ungrad -6.6682012074 -6.6682133252 -6.6997
π∗

3/2(3py)grad
-6.6681375089 -6.6681496264 -6.6997

σ1/23d
(
dz2 −dz2

)
grad -2.6397868600 -2.6397962399 -2.6840

σ∗1/23d
(
dz2 −dz2

)
ungrad -2.6382894900 -2.6382988829 -2.6792

π3/2 (3dyz)ungrad -2.6346812060 -2.6047775192 -2.6768
π∗3/2 (3dyz)grad -2.6343635954 -2.6021205015 -2.6768

π1/2 (3dxz)ungrad -2.6019107439 -2.6346906161 -2.6792
π∗1/2 (3dxz)grad -2.6047682232 -2.6343730095 -2.6768
δ3/2 (3dxy)grad -2.6002496794 -2.6019200594 -2.6757

δ ∗3/2 (3dxy)ungrad -2.6021111934 -2.6002590006 -2.6757
δ5/2

(
3dx2−y2

)
grad

-2.5980416860 -2.5980510183 -2.6755

δ ∗5/2

(
3dx2−y2

)
ungrad

-2.5976294950 -2.5976388302 -2.6755

σ
1/2(4s)grad -1.0170801826 -1.0170726172 -1.0340

σ
1/2(4s)ungrad -0.8010991267 -0.8010891539 -0.8330

π
1/2(4px)ungrad -0.4703729912 -0.4703748139 -0.4834

π
3/2(4py)ungrad -0.4268913522 -0.4268935581 -0.4834

σ
1/2(4pz−4pz)grad -0.4172412470 -0.4172434719 -0.4825
π∗

1/2(4px)grad -0.1883613363 -0.1883633090 -0.3545
π∗

3/2(4py)grad
-0.1786884386 -0.1786884386 -0.3545

The table (4.56) gives the contribution energies of the total energy for Se2

molecule using basis set type dyall−2zp with differenet nuclear charge dis-
tribution models in relativistic treatment.
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Table 4.56: Total Dirac-Hartree-Fock electronic energies for Se2
The relativistic total energy for Se2using Dyall basis-set (dyall−2zp)

Electronic energy(a.u.)
-point model

Nuclear repulsion
energy(a.u.)-point model

SS Coulombic
correction(a.u.)-

point
model

Total
energy(a.u.)-point

model

-5139.5160225689351 282.4232930723915 0.0010227070267 -4857.0917067895170
Electronic

energy(a.u.)-Gaussian
model

Nuclear repulsion
energy(a.u.)-Gaussian

model

SS Coulombic
correction(a.u.)-

Gaussian
model

Total
energy(a.u.)-Gaussian

model

-5139.4836560419189 282.4232930723915 0.0010227070267 -4857.0593402625009
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5.1 Conclusions

From the results shown in chapter four we conclude that

• For heavy and super heavy atoms, the high nuclear charge creates a more

pronounced singularity in the relativistic case. Therfore, a number of

Gaussian type functions of high exponent must be included in a basis-set

in order to mimic the region of the wave function near the origin.

• For Z = 115 the P1s (r) and Q1s (r) have similar absolute magnitude value
but with -ve sign at any distance r.

• The Uup(Z = 115) atom, has most contractive 1s1/2 and diffuse 7p3/2

spinors. The expectation value for these spinors are 〈r〉= 0.0093155189a.u.

and 〈r〉 = 3.6095804a.u. respectively, suggesting that for the calcula-

tions of the properties of atoms and molecules only the outer parts of the

valence spinors are important. The choice of nuclear charge distribution

model will have no significant effect on the valance properties, but the

properties of the spinors at or closer to the nuclei are important in the

choice of the nuclear charge distribution model.

• For relativistic calculations, the point charge model is not recommend-

able, especially, at or closer to the nuclei. This is because of the sin-

gularity appearance. Therefore, we adopted the Gaussian-charge model

combined with Gaussian type basis functions which are computationally

favourable and physically more accurate than the point nucleus model.

• The total Dirac-Hartree-Fock energies for atoms (group15) depend quite

a lot on the model nuclear charge distribution, and this dependecy is

more obvious in the lower part of the group15 for atoms.

• For molecules, to obtain a better approximation of the exact relation be-

tween the large and small component, we must take into account the

atomic balance procedure which consists of two steps:
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1. An atomic calculation is performed using primitive basis functions where

the small component is generated from the large component using the

kinetic balance relation.

2. A new set of large and small component contracted basis function is

constructed from the primitive basis combined with the expansion coef-

ficients from this atomic calculation.

• For the superheavy element (Z=115) one set of exponents to describe the
s1/2 state, another set to describe p1/2 and p3/2 states, and another set to
describe the d3/2 and d5/2, etc. This approach is favorable for superheavy
elements where the p1/2 and the p3/2 functions have considerably different
radial behaviours.

5.2 Future Work

We suggest some studies as follows:

1. Study the effects of Gaunt Interaction and Breit retardation for the heavy
molecules using configuration interaction method.

2. The development of relativistic versions using the coupled cluster method
to study the Nuclear Magnetic Resonance (NMR) Spectroscopy of heavy
atoms and diatomic molecules.
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