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Abstract 
The present study has been carried out to investigate numerical study of 

temperature profile for finned plate with different boundary conditions. 

For many practical heat transfer problems it is not possible to obtain a 

solution by means of analytical techniques. Instead, Solving them 

requires the use of numerical methods, which in many cases allow such 

problems to be solved quickly. Often an engineer can easily see the effect 

of changes in parameter when modeling a problem numerically.    

   The numerical techniques used in the present study are based on 

transient finite difference. An advantage of this method is that it provides 

a good physical understanding and allows for simple incorporation of 

modification such as heat source. Explicit method of finite difference is 

simple and straightforward approach and resulting system of algebraic 

equations is very easy to solve. 

The transient surface temperature distribution is determined for different 

types of structures subjected to convection and conduction. 

The radiation effect is neglected. Taylor series was used to solve the 

partial differential equation obtained from energy balance. 

Different types of structures (flat plate, T-element, stiffened structure 

plate) were taken to find the temperature distribution. 

The coupling mesh developed in this thesis in T-element and stiffened 

structure plate to know the effect of temperature distribution on these 

structures that may cause a thermal stress and may lead to a failure of the 

structure. 
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Computer program (Matlab6.1) was used to calculate the temperature 

distribution on these structures.  

It is found that the variation of thermal conductivity has an effect on the 

shape of the concaveness of the temperature profile and the global 

minimum of the curve varied with the increasing of the time increment.          
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Nomenclature 
 

Symbol Definition Units 

A Cross section Area  m 2 

Bi Biot number  ___ 

c Specific heat  kJ / kg. C˚ 

d Thickness of the plate  m 

E Energy W 

Fo Fourier number ___ 

h Convection heat transfer coefficient  W/m2. C˚ 

hu Convection heat transfer coefficient for the 

upper surfaces of the plate 

W/m2. C˚ 

hl Convection heat transfer coefficient for the 

lower surfaces of the plate 

W/m2. C˚ 

L Length of the plate m 

q Heat transfer rate W 

m,n Denotes nodal position in numerical solution  ___ 

R Ratio ___ 

T Temperature C˚ 

Tf Fluid temperature  C˚ 

t Time S 

α Thermal diffusivity m2/s 

σ Stefan- Boltzman constant  W/m2.k4 

ρ Density kg/m3 

ε Emissivity ___ 

∆ Small increment  ___ 
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 الخلاصة
 

انجز البحث الحالي في الدراسة العددية لتوزيع درجات الحرارة على السطوح المزعنفة               

انه من غير الممكن الحصول على حل لعدد من المسائل التطبيقية           . وبظروف حدودية مختلفة  

فبدلاً من ذلك يتطلب حلها استخدام التحليل العددي        . قال الحرارة باستخدام الطريقة التحليلية    لانت

الذي قد يؤدي الى سرعة ايجاد الحلول لبعض الحالات وقد يرى المهندس احياناً تأثير التغير                

 .في العوامل حين صياغة المسألة عددياً

ية على الفروقات العددية المحددة، ان فائدة       ان الظروف العددية المستخدمة في هذه الدراسة مبن       

هذه الطريقة تكمن في اعطاء الفهم الفيزيائي الجيد وتسمح ببساطة الارتباط للتحويرات مثل              

ان طريقة الفروقات المحددة بسيطة ومباشرة وتكون المعادلات الجبرية          . المصدر الحراري 

للحظي لدرجات الحرارة لانواع     تم احتساب التوزيع السطحي ا     . الناتجة منها سهلة الحل    

مختلفة في الهياكل التي تعرضت الى الحمل والتوصيل مع اهمال التأثير الاشعاعي واستخدمت             

متسلسلة تايلور لحل المعادلات الثنائية الجزئية التي تم الحصول عليها من توازن الطاقة                

 .الحرارية

 ، وصفيحة   Tة ذات شكل حرف     صفيحة مستوية، صفيح  ( استخدمت انواع مختلفة من الهياكل      

 . لايجاد التوزيع الحراري ) مقوى 

 والصفيحة المقوى هو    Tان الوصلة الرابطة المستخدمة في هذا البحث للصفيحة ذي الشكل            

لمعرفة تأثير توزيع درجات الحرارة في هذين الهيكلين الذي قد يسبب اجهادات حرارية قد                

 . تؤدي الى اخفاق الهيكل

 لحساب توزيع درجات الحرارة في هذه       (MATLAB 6.1 )رنامج الحاسوبي   تم استخدام الب  

لقد وجد ان التغير في مقدار التوصيلية الحرارية له تأثير على التقعر لمظهر توزيع               . الهياكل

 .درجة الحرارة وان النقطة الصغرى للمنحني تتغير مع زيادة الفترة الزمنية 
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Chapter One 
Introduction: 
Heat transfer is energy in transit, which occurs as a result of a 

temperature gradient or difference. This temperature difference is thought 

of as a driving force that causes heat to flow. Heat transfer occurs by 

three basic mechanisms or modes: conduction, convection and radiation. 

Conduction is the transmission of heat through a substance without 

perceptible motion of the substance it self. Heat can conduct through 

gases, liquids and solids. Conduction is the transmission of heat in liquids 

is the same as for gases – random collisions of high – energy molecules 

with low – energy molecules causing a transfer of heat. The situation with 

liquids is more complex. However, because the molecules are more 

closely spaced. Therefore molecular force field can have an effect on the 

energy exchange between molecules; that is, molecular force field can 

influence the random motion of the molecules. Conduction of heat in 

solids is thought to be due to motion of free electrons, lattice waves, 

magnetic excitations, and electromagnetic radiation. The molecular 

energy of vibration in a substance is transmitted between adjacent 

molecules or atoms from a region of high to low temperature.  

Convection is the term applied to heat transfer due to bulk movement of a 

fluid. Radiation is the transfer of energy by electromagnetic radiation 

having a defined range of wavelengths. Heat is usually transferred by a 

combination of conduction, convection, and radiation [1]. 

Many problems involving heat and mass transfer are reducible to the 

solution of partial differential equations. The differential equations that 

govern real physical processes are generally of a very complicated nature, 

and their closed- form is possible only in the simple cases. 

 1 
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Approximate methods therefore become very useful for the solution of 

such problems. The methods generally are divided into two categories. 

The first category covers those methods that allow an analytical 
expression. The second category of approximate methods is composed of 

numerical techniques that allow the determination of a table of 

approximate values of the desired solution. In this category are such 

approaches as the finite – difference method, straight-line method, large - 

particle method, and Monte Carlo method. The finite- difference 

technique is certainly the most universal and most widely used [2]. 

Thermal simulation play an important role in the design of many 

engineering applications, including internal combustion engines, turbines, 

heat exchangers, piping systems, and electronic components. In many 

cases engineers follow a thermal analysis with a stress analysis to 

calculate thermal stresses.        

External surfaces of many of today's aircraft are designed with stiffened 

panels. Some various shaped stiffening members commonly used for 

panel structural concepts are shown in figure (1-1). The stiffening 

member provides the benefit of added load-carrying capability with a 

relatively small additional weight penalty [3]. 
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Figure 1-1: The Formulation can be applied to 
any stiffened, composite panel concept. 
termination of transient temperature in geometrically 

 structures such as aero/space structure which are 

ally heated due to supersonic flight as shown in figure (1-2). 

ifference methods have to be applied. By increasing the 

f the governing equation it is possible to predict the aero 

ating of structures such as re-entry vehicles or blades in a jet 

fins are used in numerous applications, such as electrical 

 help dissipate unwanted or potentially harmful heat. 

d for cooling electronic equipment are shown in figure (1-3). 

lication of fins in single and double-pipe heat exchanger 

found in boiler and in radiator perhaps a more familiar 
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Figure 1-2: Typical aero/space structural elements 

Figure 1-3: Heat sink 

application of fins is found in air- cooled engine or compressors, where 

circumferential fins are integrally cast as part of a cylinder wall [5].  

The purpose of adding extended surface is to help dissipate heat and if the 

temperature distribution is known, then the heat transfer rate can be 

determined. 
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The Objectives of this work are to find the temperature distribution for 

different time interval on different structures numerically using transient 

finite difference method and study the effect of different value of thermal 

conductivity on the shape of temperature profile. 
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Chapter Two 
Literature Survey 

The development of numerical techniques such as finite difference and 

finite element method has enabled engineers to solve extremely complex 

physical phenomena for a variety of boundary conditions and material 

properties. In the following paragraph some of the works are reviewed.  

Casagrande[6] presented a complete discussion on the use of the flownet 

technique for predicting seepage through earth structures, originally 

developed by Forchheimer. 

Cassagrande divided the soil into two parts, the soil below the water table 

and the soil above the water. The assumption was made that water only 

flowed below the water table. The flownet method was used extensively 

in geotechnical practice. 

A large amount of research was conducted in the 1970’s for development 

of numerical models for predicting heat flow in soils. This occurred in 

response to several proposals for construction of oil and gas pipelines in 

Northern Canada and Alaska. The models needed to account for the latent 

heat effects as the pore water changes phases. 

Bhattacharya  [7] and Lick  [8] applied the improved finite-difference 

method (FDM) to time-dependent heat conduction problems with step-by 

step computation in the time domain. The finite-element method (FEM) 

based on variation principle, was used by  

Gurtin [9] to analyze the unsteady problem of heat transfer. Emery and 

Carson [10] as well as  Visser  [11]  applied  variational  formulations  in  

their  finite-element  solutions  of non stationary temperature distribution 

problems. 
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 Bruch and Zyvoloski  [12] solved the transient linear and non-linear 

two-dimensional heat conduction problems using the finite-element 

weighted residual process.  

Chen et al [13] successfully applied a hybrid method based on the 

Laplace transform and the FDM to transient heat conduction problems 

The disadvantages of these methods are the complicated procedure, need 

for large storage and long computation time.  
Wang et al [14] used the implicit spline method of splitting to solve the 

two and three-dimensional transient heat conduction problems. The 

method is applied to homogeneous and isotropic solid.   A cubic spline 

method has been developed in the numerical integration of partial 

differential equations since the pioneering work of Rubin and Graves 

[15], and Rubin and Khosla [16]. This method provides a simple 

procedure, small storage, short computation time, and a high order of 

accuracy.  Furthermore, the spline method has a direct representation of 

gradient boundary condition.  

Zbynek Svoboda [17] studied the numerical model for the analysis of the 

combined Convective-conductive heat transfer in the building 

components has been developed. Presented model is based on the partial 

differential equation for the two dimensional steady-state heat transport 

caused by conduction and convection. The finite element method was 

used to obtain the numerical solution of the governing equation. The 

general finite element formulation was derived by means of the Petrov- 

Galerkin approach. The developed computer program was used to study 

one typical lightweight building wall construction. The results of 

simulation demonstrate that the lightweight constructions insulated with 

permeable mineral wool are very sensitive to the convective heat transfer. 

 

 

 7 

http://cbs.wondershare.com/go.php?pid=1140&m=db


William R. Hamburgen [18] studied optimal finned heat sinks. In a 

multi-board computer system, the volume allocated for heat removal is 

often a significant fraction of the total system volume. Cooling 

requirements can thus impact performance, reliability, cost, acoustic 

noise, and floor space. This work addresses the volume costs or space 

requirements for removing heat with optimally designed finned heat 

sinks. Simple formulas applicable to both gas and liquid cooling 

problems provide upper bounds on the thermal resistance of an optimal 

heat sink, without explicitly designing the part. Conservative junction 

temperature estimates can thus be made without detailed design. 

S.Oktay[19] Also, on- off cycle of an electronic product creates high 

temperature variations. Heat generated inside the Electronic Package can 

be harmful to the components and to the Printing Wring Board itself. 

Generated heat must be removed. Heat removal from the electronic 

system becomes more important as chip power increases. One of the most 

common methods for heat removal is forced convection of air through 

heat generators.   

Andrej V. Cherkaev and Thomas C. Robbins [20] studied optimization 

of heat conducting structures they considered various structures designed 

to shield temperature sensitive devices from the heat generated by a given 

distributed source. These structures should redistribute the heat and 

control the total heat dissipation, in order to maintain a prescribed 

temperature profile in a certain region of the domain. They assume there 

are several materials available, each with different constants of heat 

conductivity, and that they are allowed to mix them arbitrarily. It is 

known that optimal structures consist of laminate composites that are 

allowed to vary within the design domain. The paper discusses optimal 

distributions of these composites for different settings of the problem that 

 8 
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include: prescribed volume fractions and various types of boundary 

conditions. They solve the problem numerically using the method of 

finite elements.  

Manfred Gilli and Evis.Këllezi [21] they investigate computational and 

implementation issues for the valuation of options on three underlying 

assets, focusing on the use of the Finite difference methods. They 

demonstrate that implicit methods, which have good convergence and 

stability properties, can now be implemented efficiently due to the recent 

development of techniques that allow the efficient solution of large and 

sparse linear systems. In the trivariate option valuation problem, they use 

nonstationary iterative methods (also called Krylov methods) for the 

solution of the large and sparse linear systems arising while using implicit 

methods. Krylov methods are investigated both in serial and in parallel 

implementations. Computational results show that the parallel 

implementation is particularly efficient if a fine spatial grid is needed. 

It is generally accepted that the dimensionality of the problem is a 

nontrivial issue. Up to a dimension of three, methods like the finite 

differences or the finite elements can still be used. With a greater number 

of state variables, Monte Carlo (one of the optimization method) is 

thought to be the only way out. For bivariate problems finite difference 

methods, both explicit and implicit have been successfully implemented.  

A.N. Pavlov and S.S. Sazhin [22] They carried out a conservative finite 

difference method and its application for the analysis of a transient flow 

around a square prism 

Detailed results of numerical calculations of transient, 2D incompressible 

flow around and in the wake of a square prism at Re = 100, 200 and 500 

are presented. An implicit finite difference Operator -splitting method, a 

version of the known simplec-like method on a staggered grid, is 

 9 
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described. Appropriate theoretical results are presented. The method has 

second-order accuracy in space, conserving mass, momentum and kinetic 

energy. A new modification of the multi grid method is employed to 

solve the elliptic pressure problem. Calculations are performed on a 

sequence of spatial grids with up to 401* 321 grid points, at sequentially 

halved time steps to ensure grid-independent results. Three types of flow 

are shown to exist at Re = 500: a steady-state unstable flow and two 

which are transient, fully periodic and asymmetric about the center line 

but mirror symmetric to each other. Discrete frequency spectra of drag 

and lift coefficients are presented. 

Dr. Jalal M. Jaleel [23] studied body – fitted coordinate system in 

solving temperature distribution problem in cooling turbine blade. In 

finite difference formulation, introduction of the body – fitted coordinate 

system has made it possible by using finite difference method in many 

situations with complicated geometry. The method of body fitted 

coordinate system was used in predicting the temperature distribution in 

complicated shapes such as a turbine blade. The method shows excellent 

agreement compared with finite elements results. It seems an efficient, 

flexible tool for solving partial differential equation in complicated 

geometry in fluid and solid mediums. 

David R Buttsworth [24] studied a Finite Difference Routine for the 

Solution of Transient One Dimensional Heat Conduction Problems with 

Curvature and Varying Thermal Properties. 

The implicit finite difference routine was developed for the solution of 

transient heat flux problems that are encountered using thin film heat 

transfer gauges in aerodynamic testing. The routine allows for curvature 

and varying thermal properties within the substrate material. The routine 

was written using MATLAB script.  It has been found that errors, which 

 10 
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arise due to the finite difference approximations, are likely to represent 

less than 1% of the inferred heat flux for typical transient test conditions. 

He was concluding the finite difference routine provides a convenient 

way of accounting for influence of curvature and temperature-dependent 

thermal properties within the substrate used for transient heat flux 

experiments. 

Heat flux errors, which arise due to the finite difference approximations, 

are likely to represent less than 1% of the inferred heat flux for typical 

transient test conditions. This is an acceptable level of accuracy since 

uncertainties in the temperature measurements and the actual thermal 

properties of the substrate are likely to represent a far greater contribution 

to the overall accuracy of the heat flux measurements. 

From the previous researchers it was seen that Battacharya, Lick and 

Dr.Jalal used finite difference method for solving their heat conduction 

problems at different boundary conditions while Carson and Visser, 

Zbynek Svoboda used finite element method also there is other 

researchers used another numerical technique mentioned above. 

In this thesis it is used transient finite difference method for solving the 

temperature distribution on different type of finned plate structure.    
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Chapter Three 
Numerical Analysis 

 
3.1: Numerical Method 
       There are many practical engineering problems for which exact 

solution cannot be obtained may be attributed to either the complex 

nature of governing differential equations or the difficulties that arise 

from dealing with the boundary and initial conditions, to deal with such 

problems, it resort to numerical approximations .In contrast to analytical 

solutions. Which show the exact behavior of a system at any point with in 

the system, numerical solutions approximate exact solutions only at 

discrete point, called nodes. The first step of any numerical procedure is 

discretization. This process divides the medium of interest into a number 

of small sub regions and nodes. There are two common classes of 

numerical methods [25]: 

1- Finite difference method  

2- Finite element method 

In both approaches, the governing partial differential conduction equation 

subject to specified boundary (And for transient problems, initial) 

conditions is transformed into a system of ordinary differential equations 

(for transient problems) or algebraic equations (for steady-state problems) 

Which are solved to yield an approximate solution for the temperature 

distribution. In the finite difference method, spatial discretization of the 

problem using a set of nodal points followed by application of energy 

balances and rate equations for each of the discrete segments directly 

results in a system of equations which are solved to obtain the 

temperature at each nodal point. 

12 
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The use of finite difference methods is more transition between analytical 

methods and finite element. The main advantage of the finite difference 

method is that the it is rather simple and easily understandable physically 

(the variable are: temperature, time and spatial coordinates: in contrast to 

some mathematical functional in finite element analysis solution). 

But with this method approximation of curvilinear areas is quite 

complicated. Inanition the FD method use uniform steps over the space – 

coordinate (it is possible to avoid this but it also severely complicates the 

task). 

3.2: Finite Difference Method In Steady-State Heat Transfer 

By Conduction 
In a large number of practical problems involving steady-state heat 

transfer in a solid conduction region, an exact mathematical solution is 

precluded as a result of the complex shape of the conduction region, the 

type of boundary condition, the energy generation rate per unit volume, 

variable thermal conductivity, or any combination of these. 

In such situation, the temperature distribution can frequently be 

determined by an approximate finite difference analysis and partial 

differential equation. 

The finite difference equation approximates the governing partial 

differential equation at a finite number of points within the conduction 

region, called nodes or nodal points, grid points by an algebraic finite 

difference equation at each point. Thus if (n) nodal points are selected at 

which a solution for the approximate steady-state temperature is desired 

(n) simultaneous algebraic equations for the (n) unknown temperatures 

are solved.  

13 
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The main task of the engineer, when using finite difference methods, is 

the setting up, or derivation, of the algebraic finite difference equations, 

which are appropriate for the problem at hand [1]. 

 
3.3: Finite Difference Method In Unsteady-State Heat 

Transfer by Conduction 
    When the temperature at any point with in a conduction region is 

changing with time, the temperature distribution is termed (unsteady-

state); that is an unsteady-state condition prevails. 

The general unsteady-state conduction requires the determination of the 

temperature distribution in a solid conduction region as a function of 

space coordinates and the time. 

The transient finite difference equation at any node of interest is arrived 

in a manner similar to that for the steady-state finite difference equation; 

that by making an energy balance on the volume of material associated 

with each node, leading to a set of algebraic equation for the (n) nodal 

temperatures that are to be solved at a finite number of times. At this 

point, the similarity between the steady-state finite difference equation 

and the transient finite difference equation often ends because of 

differences in the way the equation set is solved and the appearance of a 

phenomenon called the stability of the equation set [1]. 
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3.4: Derivation of The General Heat – Conduction Equation 
 
Consider the three-dimensional system shown in figure 3-1.  
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Figure 3-1: elemental volume for the three –dimensional heat conduction 

analysis (Cartesian coordinates) 
 

The temperature distribution existing within a material can at most 

depends on three space variables and on time.  

In this analysis the thermal conductivity is assumed to be constant and the 

variable is isotropic [26].  

Make an energy balance on a control volume. 
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And the energy quantities are given by: 

Since   
dx
dTKAq −=  

x
TKdydzq x ∂

∂
−=∴  
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dxq

x
qq xxdxx ∂

∂
+=+

 

          = dzdydx
x
TK

xx
TK 
















∂
∂

∂
∂

+
∂
∂

−  

 

y
TdzdxKq y ∂
∂

−=  

dzdxdy
y
TK

yy
TKq dyy 
















∂
∂

∂
∂

+
∂
∂

−=+  

z
TdydxKqz ∂
∂

−=  

dydxdz
z
TK

zz
TKq dzz 
















∂
∂

∂
∂

+
∂
∂

−=+  

dzdxdyqqgen
⋅=  

t
Tdzdydxc

dt
dE

∂
∂

= ρ  

Substitute all these quantities into equation (3-1) 

t
Tcq

z
TK

zy
TK

yx
TK

x ∂
∂

=+







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

ρ.                                     (3-2) 

For constant thermal conductivity Equation (3-2) is written 

 

t
T

K
q

z
T

y
T

x
T

∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂

α
1.

2

2

2

2

2

2

                                                                (3-3) 

Where 
c
K
ρ

=α  

In our problem since there is no heat generation and constant thermal 

conductivity. Equation (3-3) will be 

t
T

z
T

y
T

x
T

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

α
1

2

2

2

2

2

2

                                                                      (3-3a) 
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Two-dimensional problem (i.e. 2

2

z
T

∂
∂ ) and equation (3-3a) will be 

t
T

y
T

x
T

∂
∂

=
∂
∂

+
∂
∂

α
1

2

2

2

2

                                                                               (3-3b) 

3.5: The Finite Difference Approximation of Derivative 
  Using Taylor’s expansion method with reminder it can [27]    

( ) ( ) ( )
xxxxxlll

ll dx
dx

dx
dxxxxx

∆+==+
∆

+∆+=∆+=
θ

φφ
φφφ 2

22

1 2
                       (3-4) 

Where  is some in the range  using the subscript  Denote 

an evaluation at  this can be written  

)( lθ 10 ≤≤ lθ ( )l

lxx =

 

xL Lx =
3x00=x 1x 2x 4x 2−Lx 1−Lx

x∆ x∆ x∆ x∆ x∆ x∆

Typical mesh point 

 

 

  
Figure 3-2: construction of a finite difference mesh over the interval 

 Lx ≤≤0 

1

2

22

1 2
θ

φφ
φφ

+

+
∆

+∆+=
l

l dx
dx

dx
dx

l
l                                               (3-5)                    

And therefore 

12

2
1

2 θ

φφφφ
+

+ ∆
−

∆
−

=
l

ll

dx
dx

xdx
d                                                                 (3-6) 

 

This leads to the so-called forward difference approximation of  

the first derivation of a function in which  

2
1

xdx
d ll

l ∆
−

= + φφφ                                                                                (3-7)               
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The error E in this approximation can be seen to given by  

 

lldx
dxE θ

φ
+

∆
−= 2

2
2

                                                                                (3-8) 

 

And as E is equal to a constant multiplied by ,the error is , this is 

known as the order of the error. 

x∆ ( xO ∆ )

The exact magnitude of the error cannot be obtained from this expression, 

as the actual value of φ  is not given by Taylor’s theorem, but it follows 

that  

l

2

2

max
2 dx

dxE φ∆
≤                                                                               (3-9) 

Figure (3-3) shows a graphical interpretation of the approximation that it 

was derived mathematically; the first derivative of φ at  is the 

slope of the tangent to the curve  at this point, that is the slope of 

this line approaches that of the line AB as the mesh spacing gets 

smaller. 

)(x lx =

)(xy φ=

x∆

 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


x
lx1−lx 1+lx

x

y

)(xy φ=

1−lφ
lφ

1+lφ

x∆

 
 
 

B  
 

C  
 
 A 

D 
 
 
 

∆  
      

 

 
 
 
 

 
 
 
 
 
 
 

I

 

 

 
W
 

 
I
 
 

 
 
 
 

Figure 3-3: a graphical interpretation of some finite difference approximations to 

ldx
dφ . Forward difference-slope of AC; backward difference-slope of DA;  central 

difference-slope of DC. 

 

n a similar manner Taylor’s series can be used to obtain  

2

2

22

1 2
θ

φφ
φ

−

−
∆

+∆−=
ll

ll dx
dx

dx
dxφ                                                          (3-10)                               

here  rewriting this expression in the form l≤≤ 20 θ

22

2
`1

2 θ
φφφφ

−
− ∆

+
∆
−

= l
ll

dx
dx

xdx
d                                                                 (3-11) 

t can produce the backward difference approximation 

xdx
d

l ∆
−

= −1ll φφφ                                                                              (3-12) 
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The error E in this approximation is again  and now  ( xO ∆ )
 

2

2

max
2 dx

dxE φ∆
≤                                                                             (3-13) 

The graphical representation of the backward difference approximation 

can be seen in Figure 3-3; the slope of the line AB is now approximated 

by the slope of the line AD. 

In both the forward and the backward difference approximations the error 

is of the same order is,  however if we replace the expression of 

equation (3-5) and (3-10) by  

( xO ∆ )

 

33

33

2

22

1 62 θ
φφφ

φφ ++
∆

+
∆

+∆+= lllll dx
dx

dx
dx

dx
dx                      (3-14a) 10 3 ≤≤θ

 
 

43

33

2

22

1 62 θ
φφφ

φφ +−
∆

−
∆

+∆−= lllll dx
dx

dx
dx

dx
dx                         (3-14b) 10 4 ≤≤ θ

 
Then a more accurate representation for the first derivative can be 

obtained by subtracting equation (3-14b) from equation (3-14a). 

The resulting equation 
 









+

∆
+∆=− −+−+ 43 3

3

3

33

11 6
2 θθ

φφφ
φφ lllll dx

d
dx
dx

dx
dx                                      (3-15) 

 
  Can be used to derive the (central difference approximation) 

  2
11

2 xdx
d ll

l ∆
−

= −+ φφφ                                                                                (3-16)                             

And the error E in this approximation satisfies  

3

32

max
6 dx

dxE φ∆
≤                                                                                  (3-17)  
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As the error here is ( )2x∆O . This should now a better representation than 

either the forward or the backward difference approximation. This can 

again be see in the figure where the graphical interpretation is that were 

now approximating to the slope of the line AB by the slope of the line 

DC. Again adding the Taylor expansions. 

 

Ll .
62 3

33

2

22

1 +
∆

+
∆

+∆+=+
lll

l dx
dx

dx
dx

dx
dx φφφ

φφ                               (3-18a)     

 

L+
∆

−
∆

+∆−=−
lll

ll dx
dx

dx
dx

dx
dx 3

33

2

22

1 62
φφφ

φφ                                (3-18b) 

 
We find that the terms involving the first and the third derivation 
disappear. 
 














+

∆
−

∆
+−

=
−+

−+

65

4

4

4

42

2
11

2

2

24
2

φφ

φφφφφφ

ll

lll

dx
d

dx
dx

xdx
d                                  (3-19) 

 
And so we can approximate the second derivative by: 
 

2
11

2

2 2
xdx

d lll

∆
+−

= −+ φφφφ                                                                  (3-20) 

 
The error E in this approximation is ( )2x∆O  and satisfies [27] 








∆
≤ 4

42

max
12 dx

dxE φ                                                                            (3-21) 

 
3.6: Transformation Of Partial Differential Equation To   

Finite Difference Equation: 
 
Since equation (3-3b) is: 
     

 
t
T

y
T

x
T

∂
∂

=
∂
∂

+
∂
∂

α
1

2

2

2

2
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This equation can be expressed in the finite difference form as: 
 

t
TT

y
TTT

x
TTT j

nm
j
nm

j
nm

j
nm

j
nm

j
nm

j
nm

j
nm

∆

−
=

∆

+−
+

∆

+− +
−+−+ ,

1
,

2
1,,1,

2
,1,,1 122

α
                       (3-23) 

 
 
 
 
 
 
 
 
 

Figure 3-4: nomenclature for numerical solution of two-dimensional 
unsteady-state conduction 

lφnm ,1− nm ,1+

1, −nm

1, +nm

 
Thus if the temperature of the various nodes are known at any particular 

time the temperature after a time increment (  may be calculated by 

writing an equation (22) for each node and obtaining the values of 

)t∆

( )1
,
+j
nmT . 

The procedure may be repeated to obtain the distribution after any desired 

number of time increment. If the increment of space coordinate are 

chosen such that and resulting equation for yx ∆=∆ ( )1
,
+j
nmT becomes 

[ ] j
nm

j
nm

j
nm

j
nm

j
nm

j
nm T

x
tTTTT

x
tT ,21,1,,1,12

1
, 41 








∆
∆

−++++
∆
∆

= −+−+
+ αα                           (3-24) 

 
   [ ] ( ) j

nm
j
nm

j
nm

j
nm

j
nm

j
nm TFoTTTTFo ,1,1,,1,1
1

, 41−++++= −+−+
+T                         (3-25)                            

  
 
Where fourier number may be defined as 
 
  2x

tFo
∆
∆

=
α                                                                                          (3-26) 
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If the time increment are conveniently chosen so that  

       
4
1

2 =
∆
∆
x
tα                                                                                       (3-27) 

It is seen that the temperature of node after a time increment is 

simply the arithmetic average of the four surrounding nodal temperature 

at the beginning of the time increment. 

x∆

When a one-dimensional system involved the equation becomes 

 
 ( ) [ ] j

m
j
m

j
m

j
m TFoTTFo 2111

1 −++= −+
+T                                                    (3-28) 

 
and if the time and distance increments are chosen so that 
 

2
1

2 =
∆
∆
x
tα                                                                                           (3-29) 

 
The temperature of node ( after the time increment is given as the 

arithmetic average of the two adjacent nodal temperatures 

)m

at the beginning of the time increment. 

Note that if (Fo >½) in equation (3-28) the coefficient of ( )jmT becomes 

negative and a condition generated which will violate the second law of 

thermodynamics. 

3.7: Stability Criteria Of The Finite Difference Equation 
The restriction on the size of the fourier number is often referred to as 

(stability limit). This restriction automatically limits our choice of the  

is established. If the fourier number exceeds 

t∆









2
1 for one-dimensional 

flow and exceeds 



 4
1


 for the two-dimensional flow .The solution for the 

temperature is said to be unstable. 

2
1

≤Fo  For one-dimensional flow 

4
1

≤Fo  For two-dimensional flow 
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3.8:Derivation of Temperature Distribution for Different 

Types Of Structure  
Different types of structure such as (flat plate, T-element, stiffened 

structure plate) were taken to find the temperature distribution by using 

finite difference method. The assumptions were made to simplify the 

solution. 

3.8.1:Derivation Of Temperature Distribution For Flat Plate   
Consider the plate with relatively small thickness (d) as shown in the 

figure (3-5). The plate was subjected to convection from the upper and 

lower surface and to conduction from (x) and (y) directions. 

After taking an elemental volume and make an energy balance the 

general partial differential equation was obtained. This equation was 

solved numerically by using Taylor Series therefore the temperature 

distribution over the whole plate is calculated.     

 
 
 
 
 
 
 
 
 
 

  
 
 
 
)

xq dxxq +

dyyq +

yq

( fll TTAhq −=

)( fuu TTAhq −=

x∆ y∆

d 

d 

y

x

Making the follow

1. The plate w

Therefore co

2. There is no 
Figure 3-5: Energy balance on flat 
 
ing assumptions to simplify the solution.   

ill assumed to have relatively small thickness (d) 

nduction through the thickness is zero. 

heat generation.  
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3. Constant thermal conductivity. 

4. Radiation effect will be neglected 

5. Grid spaces are equal. 

Make an energy balance on the elemental volume 

Energy Balance: Energy in = Energy out + internal energy 

Energy Balance: Energy in = Energy out + internal energy 

( ) ( )
t
ETTAhTTAhqqqq flfdyydxxyx ∂
∂

+−+−++=+ ++                    (3-30) 

Where: 

      Convection heat transfer coefficient for upper surface =uh

         Convection heat transfer coefficient for lower surface =lh

Since  

dx
dTKAqx −=                                          

dxq
x

qq xxdxx ∂
∂

+=+ 

dy
dTKAq y −= 

dyq
y

qq yydyy ∂
∂

+=+ 

t
Tyxcd

t
E

∂
∂

∆∆=
∂
∂ )(ρ  

Substitute these quantities into equation (3-30)  

( ) ( )
t
ETTAhTTAhdy

y
q

qdx
x
q

qqq flfu
y

y
x

xyx ∂
∂

+−+−+
∂

∂
++

∂
∂

+=+     (3-31) 

( ) ( ) ( )( ) ( )( )
t
ETTyxhTTyxhdy

y
TxdKdx

x
TydK flfu ∂

∂
=−∆∆−−∆∆−

∂
∂

∆+
∂
∂

∆ 2

2

2

2

  (3-32)  

( ) ( ) ( )( ) ( )( ) ( )
t
TyxdcTTyxhTTyxhdy

y
TxdKdx

x
TydK flfu ∂

∂
∆∆=−∆∆−−∆∆−

∂
∂

∆+
∂
∂

∆ ρ2

2

2

2

                                                                                                            (3-33)   

Divide equation (3-33) by  yx ∆∆
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( )( ) d
t
TcTThh

y
T

x
TKd flu ∂

∂
=−+−








∂
∂

+
∂
∂

ρ2

2

2

2

                                   (3-34) 

Divide equation (3-34) by  will obtain Kd

( )
t
TTT

Kd
h

y
T

x
T

f ∂
∂

=−−
∂
∂

+
∂
∂

α
1

2

2

2

2

                                                            (3-35) 

Where: 

c
K
ρ

α = 

Lu hhh +=  

When transform this partial differential equation to finite difference 

equation obtain    

t
TT

TT
Kd
h

y
TTT

x
TTT j

nm
j
nm

f
j
nm

j
nm

j
nm

j
nmnm

j
nm

j
nm

∆

−
=−−

∆

+−
+

∆

+− +
−+−+ ,

1
,

,2
1,,1,

2
,1,,1 1)(

22
α

         

                                                                                                           (3-36) 

Put  yx ∆=∆

[ ] j
nm

j
nmf

j
nm

j
nm

j
nm

j
nm

j
nm

j
nm TTTT

Kd
htTTTTT

x
t

,
1

,,1,1,,1,,12 )(4 −=−∆−+++−
∆
∆ +

−+−+ α
α   

                                                                                                           (3-37)  

Multiply the second term by 2

2

x
x

∆
∆  

[ ] j
nm

j
nmf

j
nm

j
nm

j
nm

j
nm

j
nm

j
nm TTTTBiFoRTTTTTFo ,

1
,,1,1,,1,,1 )(4 −=−−+++− +

−+−+       
                                                                                               (3-38) 

              
Where: 

d
xR

K
xhBi

x
tFo

∆
=

∆
=

∆
∆

= 2

α
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Then the general finite difference equation will be 
 

f
j
nm

j
nm

j
nm

j
nm

j
nm

j
nm BiTFoRTTTTFoTBiFoRFoT +++++−−= −+−+
+ )()41( 1,1,,1,1,
1

,  

                                                                                                            (3-39) 
       

 
And the stability limit will be: 

 
041 ≥−− BiRFoFo            

 Or multiply by (-1)  
041 ≤++− BiRFoFo  

 Then by add (1) to both sides results 

 
14 ≤+ BiRFoFo                                                                                 

1)4( ≤+∴ BiRFo        (Stability limit for flat plate)                     (3-40)                            
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3.8.2:Derivation Of Temperature Distribution For  

T-element Structure 
 
 

Figure 3-6: T-element structure 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Insulated surface

x∆

Web

Skin

Coupling mesh 

d

 

 
In order to find the temperature distribution of the T-element (skin –web) 

structures placed in three dimensions as shown in the figure. Energy 

balance on the elemental volume was made in three regions skin, web and 

the coupling mesh (which is the region of contact between the two plates) 

then applying finite difference method therefore three cases will be made 

to find the temperature distribution on the skin of (T-element). 

The same assumptions for flat plate are used also. The surface of the web 

will be insulated therefore there is no convection on the web.  
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xq dxxq +

dyyq +

yq
)( fuu TTAhq −=

)( fll TTAhq −=

yq

dyyq +

dzzq +

zq

)( fuu TTAhq −=
yq

xq dxxq +

zq
dyyq +

x

zy

 

 

 

 

 

 

 

 
-(c)- 

 
-(a)-  

 

 

 

 

 

 

 

 
-(b)-  

 

 Figure 3-7: Energy balance for (T-element) structure 
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Figure 3-7 shows the energy balance on the elemental volume for (T-

element) in three regions therefore three equations were derived to find 

the temperature distribution in the skin of (T-element). 

a-Derivation Of Temperature Distribution For The Skin of 

T-element 
The same equations in (3.9.1) for flat plate were used to find the 

temperature distribution for the skin of T-element. 

xq dxxq +

dyyq +

yq
)( fuu TTAhq −=

)( fll TTAhq −=

                        
 
 
 
 
 
 
 
 
 
 
  

b-Derivation of Temperature Distributio

Mesh                                                     
Making an energy balance on the elemental volum

to obtain the partial differential equation and this

finite difference method. 
 

                                                                  

q

xq

dyyq +
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e of the coupling mesh 

 will be solved by using 
)( fuu TTAh −=

yq

dxxq +

zq
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Applying energy balance: 

 Energy in = Energy out + internal energy 

t
Eqqqqqq uzdyydxxyx ∂

∂
++++=+ ++                                                     (3-41) 

t
Eqqdyq

y
qdxq

x
qqq uzyyxxyx ∂

∂
+++

∂
∂

++
∂
∂

+=+                          (3-42)                   

( ) ( )
t
Eqqy

y
TxdKx

x
TydK uz ∂

∂
=−−∆

∂
∂

∆+∆
∂
∂

∆ 2

2

2

2

                                       (3-43) 

( ) ( ) ( ) ( )( ) ( )
t
TydxcTTyxh

z
TyxKy

y
TxdKx

x
TydK f ∂

∂
∆∆=−∆∆−

∂
∂

∆∆+∆
∂
∂

∆+∆
∂
∂

∆ ρ2

2

2

2

 

                                                                                                            (3-44)                            
Divide equation (3-44) by ( ) yx∆∆

 

( ) ( )
t
TdcTTh

z
TK

y
TKd

x
TKd fu ∂

∂
=−−

∂
∂

+
∂
∂

+
∂
∂

ρ2

2

2

2

                           (3-45)      

And the partial differential equation will be 

( )
t
TTT

dK
h

z
T

dy
T

x
T

f
u

∂
∂

=−−
∂
∂

+
∂
∂

+
∂
∂

α
11

2

2

2

2

                                           (3-46)   

 
Transform this differential equation to finite difference equation obtain: 

t
TT

TT
kd
h

z
TT

dy
TTT

x
TTT j

nm
j
nm

f
j
nm

u
j
l

j
l

j
nm

j
nm

j
nmnm

j
nm

j
nm

∆
−

=−−
∆
−

+
∆

+−
+

∆

+− +
+−+−+ ,

1
,

,
1

2
1,,1,

2
,1,,1 1)(122

α

                                                                                                            (3-47)  

Since  yx ∆=∆
 

[ ] j
nm

j
nmf

j
nm

j
l

j
l

j
nm

j
nm

j
nm

j
nm

j
nm TTTT

Kd
htTT

dz
tTTTTT

x
t

,
1

,,11,1,,1,,12 )()(14 −=−∆−−
∆
∆

++++−
∆
∆ +

+−+−+ α
αα

(3-48) 

Multiply the second term by 
z
z

∆
∆  and the third term by 2

2

x
x

∆
∆  

 
[ ] j

nm
j
nmf

j
nmu

j
nm

j
lzz

j
nm

j
nm

j
nm

j
nm

j
nm TTTTBiFoRTTFoRTTTTTFo ,
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,,,11,1,,1,,1 )()(4 −=−−−++++− +

+−+−+

 (3-49) 
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fu
j
lzz

j
nm

j
nm

j
nm

j
nm

j
nmu

j
nm TBiFoRTFoRTTTTFoTBiFoRRFoFoT ++++++−−−= +−+−+
+

11,1,,1,1,
1

, )()41(

(3-50) 

And the stability limit is 

1)4( ≤++∴ uRBiRFo      Stability limit of equation (b)                       (3-51)               

c-Derivation Of Temperature Distribution For The Web of T-

element 

Making an energy balance on the elemental volume of the web 
 

zq

dyyq +

dzzq +

zq  
 
 
 
 
 
 
 
 
 
 
 -c- 
 
 
 

Energy Balance: Energy in = Energy out + internal energy 

t
Eqqqq dzzdyyzy ∂

∂
++=+ ++                                                            (3-52)                   

 

t
Edzq

z
qdyq

y
qqq zzyyzy ∂

∂
+

∂
∂

++
∂
∂

+=+                                            (3-53) 

t
Tzyxcz

z
Tyxky

y
Txzk

∂
∂

∆∆∆=∆
∂
∂

∆∆+∆
∂
∂

∆∆ )()()( 2

2

2

2

ρ                                 (3-54)          

Divide equation (3-54) by will get the partial differential 

equation.  

)( zyxk ∆∆∆

t
T

z
T

y
T

∂
∂

=
∂
∂

+
∂
∂

α
1

2

2

2

2

                                                                             (3-55) 

 

32 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Transforming it to finite difference equation: 

t
TT

z
TTT

y
TTT j

ln
j
ln

j
ln

j
ln

j
ln

j
ln

j
ln

j
ln

∆

−
=

∆

+−
+

∆

+− +
−+−+ ,

1
,

2
1,,1,

2
,1,,1 122

α
                              (3-56) 

[ ] j
ln

j
ln

j
ln

j
ln

j
ln

j
ln T

z
tTTTT

z
tT ,21,1,,1,12

1
, 41 








∆
∆

−++++
∆
∆

= −+−+
+ αα                               (3-57) 

[ ] ( j
lnz

j
ln

j
ln

j
ln

j
lnz

j
ln TFoTTTTFoT ,1,1,,1,1

1
, 41−++++= −+−+
+ )                               (3-58) 

And the stability limit is: 

4
1

≤Fo                     (Stability limit of equation (c))                  
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3.8.3:Derivation Of Temperature Distribution For Stiffened 

Structure Plate. 
Convection from the 

upper surface  
 

Convection from 
the lower surface Insulated

Web

d 

Skin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3-8: stiffened structure plate 
 

 

Stiffened structure plate consists of skin with multi branches (web) as 

shown in fig 3-8. The same approach of (T-element) will be used to find 

the temperature distribution but here there are three web therefore 

equation (3-50) applied at the three coupling mesh. Also all the surfaces 

of the web are insulated and the same boundary conditions of (T-element) 

are applied. 
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3.9: Radiation Heat Transfer 
 

 In contrast to the mechanisms of conduction, where energy transfer 

through a material medium is involved. Heat may also be transferred 

through regions where a perfect vacuum exists. The mechanism in this 

case is electromagnetic radiation. Which is propagated as a result of 

temperature difference: this is called thermal radiation.  

Thermodynamic considerations show that an ideal thermal radiator or 

black-body will emit energy at a rate proportional to the fourth power of 

the absolute temperature of the body and directly proportional to its 

surface area. Thus  
4ATqemitted σ=                                                                           (3-59)               

Where  is the proportionality constant and is called Stefan–Boltzman 

constant with the value of  W/m².k

σ

810669.5 −× 4 .   

 Equation (3-59) is called the Stefan – Boltzman law of thermal radiation 

and it applies only to black bodies.0. 

Equation (3-59) governs only radiation emitted by a black body. The net 

radiant exchange between two surfaces will be proportional to the 

difference in absolute temperatures to the fourth power  

)( 4
2

4
1 TT

A
q exchangenet −∝σ                                                                          (3-60) 

3.10:Radiation In an Enclosure  
A simple radiation problem is encountered we have a heat – transfer 

surface at temperature T  completely enclosed by a much larger surface 

maintained at T       

1

2

The net exchange can be calculated with 
)( 4

2
4

111 TTAq −= σε                                                                                (3-61)          

Values of ε  are given in Ref. [26]   
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3.11:Computer Programs 
 Matlab is a powerful computing system for handling the calculation 

involved in scientific and engineering problems [28]. The constants will 

be entered at the beginning of the program that includes the thickness of 

the plate; initial temperature, boundary temperatures, and convection heat 

transfer coefficient. When running the program the number of nodes and 

material properties will be entered as an input to the program to get the 

temperature distribution as an output. The flow chart of the program is 

shown below. The computer program shown in appendix A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

36 
 

http://cbs.wondershare.com/go.php?pid=1140&m=db


37 
 

Flow Chart Of The Program 
 

Start 
 

Apply boundary 
conditions 

Select the period 
of time increment

Out put temperature 
distribution of the 
skin for T-element 

 

 
Input number of 

nodes and Material 
 

 

 

    

 

 
 
 
 

 

To calculate the 
temperature distribution 
for the skin of T-element 

use eq. (3-39) 

To calculate the 
Temperature distribution 
for the coupling mesh use 

eq.(3-58) 

End 
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Chapter Four 
Calculations, Results and Discussion 

4.1:Calculations 
Sample of a different structures will mentioned below for different 

boundary conditions such as 

4.1.1:For Flat Plate 
Consider the flat plate shown in figure 3-5 and the boundary conditions 

are assumed to be: 

1-All boundaries at T C° 200=

2-the plate initially at T  C° 30=

3-fluid temperature or environment temperature T C° 15=f

4-convection-heat transfer coefficient for upper surface is h W/m². C°  20=u

5-convection-heat transfer coefficient for lower surface is h  W/m². C° 10=l

6-different type of material will be used as shown in the table: 

Metal K = W/m .C° α =  m²/s 

Copper 386  510234.11 −×  

Nickel steel 73  510026.2 −×  

Glass fiber 038.0  7106.22 −×  

  

The properties of the material will be taken from Ref. [26] 

7- the value of and are selected such that they must satisfy the 

stability criteria. Since 

t∆ x∆

2x
tFo

∆
∆

=
α  

K
xhBi ∆

=  

d
xR ∆

=  
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And the stability criteria is 

1)4( ≤+ BiRFo  

8- the thickness of the plate assumed to have a value of m. or 

m. and the length of the plate have a value or  

1.0=d

L 6.1=125.0=d mL 8.0= m

9-the grid space was chosen to be m. or m depending on 

the stability limit 

1.0=∆x 2.0=∆x

10-the time increment was chosen to be min. 1=∆t

By knowing the initial temperatures at time=0 the temperature at the next 

time step can be calculated from equation (3-39) 

( ) ( ) RFoBiTfTTTTFoTRFoBiFoT j
nm

j
nm

j
nm

j
nm

j
nm

j
nm +++++−−= −+−+
+

1,1,,1,1,
1

, 41  

200Cº  

200Cº 
     22         23       24        25       26        27         28    

     29        30        31       32        33        34         35  
          36      37      38         39       40        41         42     

        43       44        45        46       47        48        49      

      200Cº 

     1          2         3          4          5          6           7   
        8          9        10        11      12         13         14 

      15       16        17        18        19       20         21      

 

 

 

 

 
200Cº 

 
Figure 4-1: Nodal distribution in flat plate  

Put 
)041( BiRFFoa −−=  

Foa =1   

fRFoBiTa =2   

For node 1  

    ( ) 22002001 821
1

1 aTTaTa jjjj +++++=+T  

For node 2  

     ( ) 22001 9132
1

2 aTTTaTa jjjjj +++++=+T  

For node 3  

     ( ) 22001 10243
1

3 aTTaaT jjjjj +++++=+T  
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For node 4 

( ) 22001 4354
1

4 aTTTaaTT jjjjj +++++=+  

For node 5  

      ( ) 22001 12465
1

5 aTTTaaT jjjjj +++++=+T  

For node 6  

       ( ) 22001 13576
1

6 aTTTaaT jjjjj +++++=+T  

In the same way continue for all nodes in the plate to get the temperature 

distribution for the whole plate 

4.1.2:For T-element 
Consider the T-element shown in the figure (3-6) and the boundary 

conditions are assumed to be: 

1-All boundaries at T C° 200=

2-the plate initially at T  C° 30=

3-fluid temperature or environment temperature T C° 15=f

4-convection-heat transfer coefficient for upper surface is h W/m². C°  20=u

5-convection-heat transfer coefficient for lower surface is h  W/m². C° 10=l

6-different type of material will be used as shown in the table: 

 
 

Metal K = W/m .C°  α =  m²/s 
Copper 386  510234.11 −×  
Aluminum 204  710418.8 −×  
Nickel steel 73  510026.2 −×  
Ni-Cr  17  510444.0 −×  
Asbestos 154.0  7103.3 −×  
Glass fiber 038.0  7106.22 −×  

 
The properties of the material will be taken from Ref. [26] 

7- the value of ∆ and are selected such that they must satisfy the 

stability criteria. Since 

t x∆
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 2x
tFo

∆
∆

=
α  

K
xhBi ∆

=   

d
xR ∆

=  

And the stability criteria for T-element are: 

1)4( ≤+ BiRFo           Equation  (3-40) 

1)4( ≤++ uRBiRFo            Equation (3-51)      

 
8- the thickness of the plate assumed to have a value of m. or 

m and the length of the plate have a value or  

1.0=d

mL 6.1=125.0=d mL 8.0=

9-the grid space was chosen to be m. or m depending on 

stability limit 

1.0=∆x 2.0=∆x

10-the time increment was chosen to be min. 1=∆t

By knowing the initial temperatures at time=0 the temperature at the next 

time step can be calculated from equation (3-50). Since 

a - ( ) ( ) RFoBiTfTTTTFoTRFoBiFo j
nm

j
nm

j
nm

j
nm

j
nm

j
nm +++++−−= −+−+
+

1,1,,1,1,
1

, 41T  
 
b- 

 ( ) ful
j
nm

j
nm

j
nm

j
nm

j
nmu

j
nm TRFoBiRFoTTTTTFoTBiRFRFoFoT ++++++−−−= +−+−+
+

11,1,,1,1,
1

, (041

 
c- ( ) [ ]j

ln
j
ln

j
ln

j
ln

j
ln

j
ln TTTTFoTFo 1,,,1,1

1
,

1
, 41 −−+

++ ++++−=T  
 
Put: 

)041( BiRFFoa −−=  
Foa =1    

fRFoBiTa =2  

l

l

RFoBiuTb
RFoTb
Fob

RFoBiuRFoFob

=
=
=

−−−=

+

3
2
1

)41(

1

 

 

Foc
Foc

=
−=

1
)41(  
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The temperature at each node in the skin can be calculated by using 

system of equations. 

Equation (3-39): 

For node 1  

 ( ) 22002001 821
1

1 aTTaTa jjjj +++++=+T  

For node 2  

( ) 22001 9132
1

2 aTTTaTaT jjjjj +++++=+  
For node 3  

( ) 22001 10243
1

3 aTTaaTT jjjjj +++++=+  

For node 5  

 ( ) 22001 12465
1

5 aTTTaaT jjjjj +++++=+T  

For node 6  

 ( ) 22001 13576
1

6 aTTTaaT jjjjj +++++=+T  

For node 7 

2)200200(1 1467
1

7 aTTaaTT jjjj +++++=+  
Equation (3-50): 

The temperature in the coupling mesh is calculated as shown 

For node 4 

32)200(1 11354
1

4 bbTTTbbTT jjjjj ++++++=+   

For node 11 

32)(1 418101211
1

11 bbTTTTbbTT jjjjjj ++++++=+  

For node 18  
32)(1 1128171918

1
18 bbTTTTbbTT jjjjjj ++++++=+  

In the same way continue for all nodes in the skin to get the temperature 

distribution for the whole skin of T-element. 
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Figure 4-2: Nodal distribution in T-element 
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3-For Stiffened Structure Plate 

 The same procedure will be made to find the temperature distribution 

over the skin of the stiffened structure plate but equation (3-50) will be 

used at each coupling mesh. 
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4.2:Results and Discussion 
The research cases are shown in fig. 3-5, 3-6 and 3-8. The calculations of 

temperature distribution for each increment of time and that for different 

types of thermal conductivity were made.  

The partial differential equation for each case was obtained from the 

energy balance and that was solved by finite difference method. The 

assumptions and boundary conditions were considered. For each equation 

the values of ( and  were chosen so that they must be satisfy the 

stability limit. The temperature distribution for each increment of time 

(transient finite difference) was obtained by using a computer program. 

) )x∆ ( t∆

The variation of temperature over the length of the plate i.e. (two 

dimensional plot) for different values of thermal conductivity of the 

material was plotted for a slice of the plate. Also contour plot was made 

for the whole plate to show the temperature distribution. 

The bold line in the diagram (shown on top of each figure for each type 

of the structure) marks the location where the temperature distribution 

was plotted. Any other location could have been chosen since the shape 

of the temperature profile is not affected by the location where the 

temperature distribution acts. The legend beside the figure shows the time 

increment for each plot. The results shows 

4.2.1:Flat Plate 
For the flat plate shown in figure 3-5. The rectangular plate of thickness 

 being subjected to convection from the upper and lower surfaces and 

to conduction from both (x) and (y) directions since the plate having a 

value initially at (30Cº) and the boundaries being maintained at (200Cº) 

i.e. the plate has a symmetrical boundary condition. Equation (3-39) was 

used to find the temperature distribution over the whole plate. 

)(d
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Figure 4-1 shows the variation of temperature with plate length at 

different time increment. The temperature drops at both sides towards the 

neighbor node and remain almost constant at the center of the plate (the 

flat portion). 

Figures 4-2 and 4-3 show that the variations of the time increment and 

that of material properties do not change the flatness of the curve. 

4.2.2:T-element 
 For the T-element (skin-web) shown in fig. 3-6 in which the coupling 

mesh was subjected to convection at the upper surface and to conduction 

at the side and bottom surfaces. System of equations for the skin and 

coupling mesh were used to find the temperature distribution over the 

skin of T-element. 

Figures 4-4, 4-5, 4-6 and 4-7 show the variation of temperature with plate 

length for each increment of time (1min). 

It is seen that the curve at the region of (coupling mesh) was concaved 

downward until its bottom reaching to global minimum. 

This global minimum is decreasing with the increasing of the time 

interval also the shape of the curve will be different for each type of the 

thermal conductivity because the thermal resistance due to conduction 







 ∆

=
kA
xRcond  is less than thermal resistance due to convection 





=
hA

Rconv
1


  

for the same cross sectional area. Therefore the coupling mesh acts as a 

heat sink i.e. (heat sinking to the web).  

Figures 4-5, 4-7 and 4-9 show the effect of using materials of different 

thermal conductivity for each plot. The general shape of the concaveness 

is maintained but the global minimum is affected. A lower value is 

obtained for higher thermal conductivity. 

Figures 4-8 and 4-9 show the variation of the temperature with plate 

length for each increment of time. 
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 It is seen that the curve at the region of (coupling mesh) was concaved 

upward until its top reaching to global maximum. 

 This global maximum is decreasing with the increasing of the time 

interval because the thermal resistance due to conduction is greater than 

thermal resistance due to convection for the same cross sectional area 

therefore coupling mesh acts as a heat source. 

These effects that discussed above in (4.2.2) at the coupling mesh of the 

T-element structure will cause thermal stresses acting on this region and 

the structural material expands and contracts as shown in equation (c) in 

addition to the existing of mechanical stress. These stresses may cause 

mechanical failures in the structure. Therefore this effect must be taken 

into consideration in the design application. 

4.2.3:Stiffened Structure Plate 

 Figure 3-8 shows integrally stiffened structure plate that has three 

coupling mesh. Figures 4-10, 4-11, 4-12 and 4-13 show the variation of 

temperature with plate length for integrally stiffened structure. It shows 

that the concaveness occurs at each coupling mesh and it occurs 

downwards but in fig 4-14 the concaveness occur upwards until its top 

reaching global maximum then it will be decreased for each increase of 

time interval.  The global minimum at the middle web of the structure is 

higher than that of the other branches as shown in fig. 4-15. 

4.3:Contour Plots 
Temperature distribution for flat plate, T-element and integrally stiffened 

plate were plotted in contour. 

 a-For flat plate 

 Figure 4-18 shows the three-dimensional plot of temperature distribution 

over flat plate for (t=6min). 

Figure 4-18a is the color region plot and figure 4-18b is the mesh plot. 
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It can be seen that the temperature profile was found to be a parabolic 

when viewed in both front and sidewise. The increase of time increment 

does not affect the flatness of the curve as shown in fig 4-19.   

b-For T-element 

Figure 4-20 shows the variation of temperature distribution over skin of 

the T-element in color region and mesh plot. Figure 4-20a shows that 

when progress towards the center of the skin of T-element. The 

temperature shape mode is decreasing when viewed in front view this is 

due to convection heat transfer effect. Therefore the trend of temperature 

profile in line (2) has greater than line (1) and so line (3) has greater than 

(2) until reach the center of the skin. As for the side view no concaveness 

is seen and the shape of the temperature profile is parabolic. This shows 

that the web has not affected on the profile viewed from side. 

The line (ii) is greater than line (i) and so line  (iii) is greater than line (ii). 

In the mathematical point of view coupling mesh cause concaveness and 

this appears when viewed frontally. 

Figure 4-20b shows the temperature distribution as gray color region. The 

legend beside the figure shows the variation of temperature distribution. 

Zone (1) shows the interaction between the two curves of the front and 

size view.  Zone (2) shows the global minimum at the coupling mesh. 

The corner in T-element is a point of interference between the two 

curves.  Figure 4-21 shows the variation of temperature distribution over 

skin of T-element at different time increment (a, t=1;b, t=2;c, t=3min). 

c-Stiffened Structure Plate  

Figure 4-22 shows the temperature distribution for stiffened structure 

plate in gray color region and mesh plots. Figure 4-22a shows the 

temperature distribution as mesh. The concaveness is seen at each 

coupling mesh when viewed from the front. Also the temperature shape 

mode is decreasing when viewed in front view this is due to convection 
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heat transfer effect. Therefore the trend of temperature profile in line (2) 

has greater than line (1) and so line (3) has greater than (2) until reach the 

center of the skin 

Figure (4-22b) shows the temperature distribution as color region. The 

legend beside the figure shows the variation of temperature distribution. 

Zone (1) shows the interaction between the two curves of the front and 

size view.   

 Zone (2) shows the concaveness of the curve and the global minimum at 

each coupling mesh. Figure 4-23 shows the variation of temperature 

distribution over skin of stiffened structure plate at different time 

increment (a, t=1;b, t=2;c, t=3min). 

 Figure 4-24 shows temperature distribution in skin of stiffened structure 

plate at (t=40min). The global minimum at the middle web of the 

structure is higher than that of the other branches.  
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4.4:Radiation Effects 
As for the radiation effect on the different types of the structures.  

Equation (3-61) 

)( 4
2

4
1 TTAqrad −= εσ  

Where σ  W/m².k810669.5 −×= 4    Stefan-Boltzman constant. 

)( fconv TThAq −=  

15=fT Cº                         m²   1.01.0 ×=A

          ( )152001.01.030 −××=convq

5.55=convq W  

Taking the Nickel as a sample for calculation of radiant heat  

The Emissivity ε  from Ref. [26] 1.0=

4732732001 =+=T k                        T k 288273152 =+=

( ) ( )4428 2884731.01.010669.5 −×××= −
radq    

45.2=radq W       

0
0100×

+
=

convrad

rad

qq
q

Error   

0
0100

55.5545.2
45.2

×
+

=Error  0
02.4=   

The calculation below show that the radiant heat can be neglected since 

the error is acceptable. 
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Figure 4-1: temperature against plate length in flat plate for 
 k=386 W/m .C° at different time increment  
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 Figure 4-2: temperature against plate length in flat plate for 

 k=73 W/m .C° at different time increment   
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 Figure 4-3: temperature against plate length in flat plate for 

 k=0.038 W/m .C° at different time increment   
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Figure 4-4: temperature against plate length in (T-element) for 

k=386W/m .C° at different time increment 
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Figure 4-5: temperature against plate length in (T-element) for 

k=204W/m .C° at different time increment 
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Figure 4-6: temperature against plate length in (T-element) for 

k=73W/m .C° at different time increment 
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Figure 4-7: temperature against plate length in (T-element) for 

k=17W/m .C° at different time increment 
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 Figure 4-8: temperature against plate length in (T-element) for 

k=0.154W/m .C° at different time increment 
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Figure 4-9: temperature against plate length in (T-element) for 

k=0.083W/m .C° at different time increment 
59 

http://cbs.wondershare.com/go.php?pid=1140&m=db


 
 
 

F igure 4-10: temperature against plate length in (stiffened structure plate) 

for k=386W/m .C° at different time increment 
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Figure 4-11: temperature against plate length in (stiffened structure plate)

for k=204W/m .C° at different time increment 
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Figure 4-12: temperature against plate length in (stiffened structure plate) 

for k=73W/m .C° at different time increment 
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Figure 4-13: temperature against plate length in (stiffened structure plate) 

for k=17W/m .C° at different time increment 
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Figure 4-14: temperature against plate length in (stiffened structure plate) 

for k=0.038W/m .C° at different time increment 
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igure 4-15: temperature against plate length in (stiffened structure plate) 

for k=204W/m .C° at t=40min  
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 Figure 4-18: Contour presentati

plate for k=73 W/m .C° at t= 
 

 

-b-
on of temperature distribution in flat 
6min a-Mesh type, b= Color type 
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Figure 4-19: Contour presentation of temperature distribution in flat 
plate for k=73 W/m .C° at different time increment a, t=1min;b, 

t=2min;c, t=3min 
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 Figure 4-20:Contour presentation of temperature distribution in 

skin of T-element for k=73 W/m .C° at t=6min a-Mesh type; 
 b= Color type 
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Figure 4-21:Contour presentation of temperature distribution in 
skin of T-element for k=73 W/m .C° at different time increment a, 

t=1min;b, t=2min;c, t=3min 
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 Figure 4-22: Contour presentation of temperature distribution in 

skin of stiffened structure plate for k=386 W/m .C° 
at t=6min a-Mesh type; b= Color type 
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Figure 4-23: Contour presentation of temperature distribution in skin 
of stiffened structure for k=386 W/m .C° at different time increment 

a, t=1min;b, t=2min;c, t=3min 

 
 
 

 71 

http://cbs.wondershare.com/go.php?pid=1140&m=db


-a- 

Figure 4-24: Contour presentation of temperature distribution in 
skin of stiffened structure plate for k=204 W/m .C° 

at t=40min a-Mesh type; b=Color type 

-b- 
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Chapter Five 
Conclusions and Recommendations For Future Work 
5.1:Conclusions 
The following conclusions are obtained from the analysis of the present 

results. 

1. The material property has an effect on the shape of the temperature 

distribution for T-element and stiffened plate but has no effect on 

flat plate. 

2.  The concaveness of the temperature profile for flat plate does not 

occur when thermal conductivity is varied. 

3.   The concaveness of the temperature profile for T-element and 

stiffened structure occurs at the coupling mesh when thermal 

conductivity is varied. 

4. The value of thermal conductivity for T-element and stiffened 

structure plate has an effect on the shape of the concaveness. The 

concaveness is downward for large value of thermal conductivity 

and it’s upwards for small values of thermal conductivity. 

5. Concaveness occurs at each coupling mesh for stiffened structure 

plate.  

6. The concaveness at the coupling mesh, which may cause thermal 

stresses, must be considered in the selection of material.    
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5.2:Future Works 
During the course of this research, there appear some aspects that can be 

further developed to enhance this work the following suggestions could 

serve as further topics of research with in the same field of this thesis 

1. Introducing a new study includes the heat generation in the 

equation of energy balance and study the effect of thermal 

conductivity on the shape of temperature distribution for these 

cases. 

2. The value of convection heat transfer coefficient can be changed to 

be appropriate to the environment to which the structure subjected. 

3. It will be interesting to study temperature distribution on the same 

structures by using finite element analysis. 

4. Experimental studies of temperature distribution on the structures. 
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APPENDIX  A 
 
%transient temperature distribution for flat plate 
n=input('n='); 
Kt=input('thermal conductivit='); 
al=input('thermal diffusivity='); 
h=zeros(n,n); 
h(:,1)=200;        
h(:,n)=200; 
h(1,:)=200; 
h(n,:)=200; 
gg=h; 
for m=2:n-1 
   for w=2:n-1 
h(m,w)=30;        
end 
end 
 p=zeros(n,n); 
 TT=p+h 
  for j=1:10                 
ht=30;                         %h=hu+hl 
Tf=15;                        %fluid temperatur 
dt=1*60; 
x=0.1; 
d=0.125; 
R=2; 
Fo=al*dt/x^2;               %fourier number 
Bi=ht*x/Kt;                 %Biot number 
 for m=2:8 
   for n=2:8  
p(m,n)=(1-4*Fo-R*Fo*Bi)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Bi)*Tf;        %eq(1) 
end 
end 
   j 
TT=p+gg 
    
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%transient temperature distribution for T-element 
n=input('n='); 
Kt=input('thermal conductivity='); 
al=input('thermal diffusivity='); 
h=zeros(n,n); 
h(:,1)=200;        
h(:,n)=200; 
h(1,:)=200; 
h(n,:)=200; 
gg=h; 
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for m=2:n-1 
   for w=2:n-1 
h(m,w)=30;        
end 
end 
 p=zeros(n,n); 
 TT=p+h 
  for j=1:10                 
ht=30;                         %h=hu+hl 
Tf=15;                        %fluid temperatur 
dt=1*60; 
x=0.1; 
d=0.125; 
R=2;                           %Ratio 
Fo=al*dt/x^2;               %fourier number 
Bi=ht*x/Kt;                 %Biot number 
 for m=2:8 
   for n=2:8  
p(m,n)=(1-4*Fo-R*Fo*Bi)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Bi)*Tf;        %eq(1) 
end 
end 
hu=20;                       
Biu=hu*x/Kt; 
n=5; 
for m=2:8 
 p(m,n)=(1-4*Fo-R*Fo-R*Fo*Biu)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Biu)*Tf;    %eq(2)       
end 
   j 
  
 TT=p+gg 
n=9; 
h1=zeros(n,n); 
h1(:,1)=200;        
h1(:,n)=200; 
h1(1,:)=40; 
for mm=1:9 
        h1(9,mm)=TT(mm,5); 
end 
for m=2:n-1 
   for w=2:n-1 
h1(m,w)=30;        
end 
end 
 for j=1:10                 
 for m=2:8 
   for n=2:8  
p1(m,n)=(1-4*Fo-R*Fo*Bi)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Bi)*Tf; 
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end 
end 
 
  j; 
      
end 
end 
 
for m=2:8 
    for n=2:8 
p1(m,n)=+Fo*(TT(m+1,n)+TT(m-1,n)+TT(m,n+1)+TT(m,n-1))+(1-4*Fo)*TT(m,n);      
%eq(3)       
end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%transient temperature distribution for stiffened structure plate 
n=input('n='); 
Kt=input('thermal conductivit='); 
al=input('thermal diffusivity='); 
h=zeros(n,n); 
h(:,1)=200;        
h(:,n)=200; 
h(1,:)=200; 
h(n,:)=200; 
gg=h; 
for m=2:n-1 
   for w=2:n-1 
h(m,w)=30;        
end 
end 
 p=zeros(n,n); 
 TT=p+h 
              
ht=30;                         %h=hu+hl 
Tf=15;                        %fluid temperatur 
dt=1*60; 
x=0.2; 
d=0.125; 
R=2; 
Fo=al*dt/x^2; 
Bi=ht*x/Kt;                 %Biot number 
 for j=1:10     
for m=2:16 
   for n=2:16  
p(m,n)=(1-4*Fo-R*Fo*Bi)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Bi)*Tf;        %eq(1) 
end 
end 
hu=20;                       
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Biu=hu*x/Kt; 
for n=5:4:13 
for m=2:16 
 p(m,n)=(1-4*Fo-R*Fo-R*Fo*Biu)*TT(m,n)+Fo*(TT(m+1,n)+TT(m-
1,n)+TT(m,n+1)+TT(m,n-1))+(R*Fo*Biu)*Tf;    %eq(2)       
end 
end 
z=p; 
j 
TT=z+gg  
end 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Reference 
1- James Suces “ Heat Transfer ” Wm.c Brown Publishers USA, 1985  

2- Nogotov E.F, “Application of Numerical Heat transfer” Hemisphere, 

McGraw- Hill, New York 1978  

3- Craig S. Collier “ stiffness, thermal expansion, and thermal Bending 

Formulation of stiffened, fiber- Reinforced composite panels “ AIAA / 

ASME/AHS / ACS 34th structures, Dynamic & Material conference 1993 

4-Lewis R, W, and Morgan, K. “Numerical Methods In heat Transfer” 

John Wiley New York 1985 Volume 3 

5- William S. Janna “Engineering Heat Transfer” Six Edition 

6-Jason S. Pentland ” Use of a General Partial Differential Equation 

Solver for Solution of Mass and Heat Transfer Problems in Geotechnical 
Engineering” University of Saskatchewan, Canada 1999 

  7-Bhattacharya, M.C., 1985, an explicit Conditionally Stable Finite 

Difference Equation for Heat Conduction Problems. Int. J. Numer. 

Methods Eng., vol.  21, pp. 239-265  

8-Lick, W., 1985, Improved Difference Approximation to the Heat 

Equation, Int. J. Numer. Methods Eng., vol. 21, pp. 1957-1969,   

9-Gurtin, M. E., 1964, Variational Principles for linear Initial-Value 

Problems, Q. Appl. Math., vol. 22, pp. 252-256,   

10- Emery, A. F. and   Carson, W.W., 1971, An Evaluation of the Use of 

the Finite Element Method in the Computation of Temperature, ASME J. 

Heat Transfer, vol. 39, pp. 136-145  

11-Visser, W., 1965, A finite Element Method for the Determination of 

Non-Stationary Temperature Distribution and Thermal Deformations, 

Proc. Conference on Matrix Methods in Structural Mechanics, pp. 925-

943, Air Force Institute of Technology,  

 75 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Wright Patterson Air Force Base, Dayton, Ohio  

12-Bruch, J.C. and Zyvolovski, G., 1974, Transient two-dimensional 

Heat Conduction Problems Solved by the Finite Element Method, Int. J. 

Numer. Methods Eng., vol. 8, pp. 481-494  

13- Chen H-K and Chen C-K, 1988, Application of Hybrid Laplace 

Transform/Finite Difference Method to Transient Heat Conduction 

Problems, Numerical Heat Transfer, vol. 14, pp. 343-356  

14- Wang, S.P., Miao, Y. and Miao, Y.M., 1990, An Implicit Spline 

Method of Splitting for the Solution of Multi-Dimensional Transient Heat 

Conduction Problems, Proc., Advanced Computational Methods in Heat 

Transfer, vol. 1, pp. 127-137  

15. Rubin, S.G.  And Graves, R.A., 1975, Cubic Spline Approximation 

for Problems in Fluid Mechanics, NASA TR R-436 18.  

16-Rubin, S.G. and Khosla, P.K., 1976, Higher Order Numerical 

Solutions Using Cubic Splines, AIAA J., vol. 14, pp. 851-858.  

17-Zbynek Svoboda ”the analysis of the convective-conductive heat 

transfer in the building constructions” 166 29 Prague 6 1991 

 
18-William R. Hamburgen” Optimal Finned Heat Sinks” Digital 

Equipment Corporation Western Research Laboratory 100 Hamilton 

Avenue Palo Alto, CA 94301   28 October 1986 

19-Oktay, R.J.Hanneman, and A. Bar-Cohen, 1986”High Heat From A 

Small Package”, Mech. Eng., vol 108, no. 3, pp.36-42    

20-Cherkaev, Andrej V., 1999, Variational Approach to Structural 

Optimization. Structural Dynamic Systems, Computational Techniques 

and Optimization, 9, 199--236. 

21- Manfred Gilli and Evis.Këllezi “solving finite difference schemes 

arising in trivariate option pricing” university of Geneva, 1221 Geneva, 

Switzerland 

 76 

http://cbs.wondershare.com/go.php?pid=1140&m=db


22-A.N. Pavlov and S.S. Sazhin  “A conservative finite difference 

method and its application for the analysis of a transient flow around a 

square prism” International Journal of Numerical Methods for Heat & 

Fluid Flow, Vol. 10 No. 1, 2000, pp. 6-46MCB University Press, 0961-

5539 

23-Dr. Jalal M. Jaleel “body – fitted coordinate system in solving 

temperature distribution problem in cooling turbine blade” engineering 

and technology vol.17 no.9, 1998 

24-David R Buttsworth “A Finite Difference routine for the solution of 

Transient One dimensional heat conduction Problems with Curvature and 

Varying Thermal Properties” Faculty of Engineering & Surveying 

University of Southern Queensland November 2001 
 
25- Saeed Moarani “Finite Element Analysis”, Hall, Inc, 1999 

26- Holman, J.P “Heat Transfer”, McGraw - Hill Book Company, New 

York, 8th edition 1989 

27- Morgan” Finite elements and approximation” a Wiley-Interscience 

publication John Wiley and sons 1983 

28-Brian D.Hahn  “Essential matlab for scientists and Engineers” John 

Wiley and sons Inc. New York 1997 

 

 77 

http://cbs.wondershare.com/go.php?pid=1140&m=db


 بسم االله الرحمن الرحيم
 

 "ما علمتنا انك انت العزيز الحكيم لااا نسبحانك لا علم ل"
 
  ــل اضـاذي الفــاني لاستــق امتنـائـاتقدم بعظيم شكري وف  
 المشرف على اعداد هذا البحث لما ابداه من         )خالد عبد الحميد    . د.  أ (

 ورته الحالية مساعدة كبيرة وجهود مخلصة من اجل انجاز هذا البحث بص         
، ارجو من االله عز وجل ان يمن عليه بدوام           هذه الحصيلة وهذا الجهد   

ــة الهندس قسم ســرئي الى الصحة كما اوجه شكري وعرفاني       
 وجميع الاساتذة والمدرسين    )هشام محمد توفيق    . د.  أ (  الميكـانيكيـة

 .في القسم
 

 .أبي... الى من دلّني على طريق المعرفة واناره لي 
 

 .أمي... الى من عبّد لي درب الحياة فسهلها لي 
 

 .أخواتي... الى من شجعاني للأستمرار في درب العلم الشائك 
 

للمساعدة )  علي حسين    (فائق شكري وتقديري الى طالب الدكتوراه        
 .الكبيرة التي قدمها لي 

 
وختاماً  اقدم شكري الجزيل الى كل اصدقائي وزملائي في مرحلة              

 .البحث
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