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Abstract

The aim of this thesis is to prove the existence and uniqueness of the
mild solutions of semilinear initial value control problems in a suitable
Banach spaces as well as their controllability. Some theorems regarding
controllability, local and globa existence as well as uniqueness of the mild
solution in infinite dimensional spaces have been developed in suitable
Banach space using the Schauder fixed point theorem and the semigroup
theory (compact semigroup). By using the Banach contraction principle and
the semigroup theory (analytic semigroup) in infinite dimensional spaces,
have been discussed and developed in suitable Banach spaces the local
existence and uniqueness of the mild solution to the semilinear initial value
control problem. Some illustrations and practical scopes of the problems have

been discussed and present.
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APPENDICES

Appendix A:

The following remark which is useful here:

Remark:

(1)
(2)
3)
(4)

(5)

(6)

Kerw={w(t)DO: Ww(t)=0}.
KerW is the vector space {see [Taylor, 58]}.

KerW is the closed subspace of O. {see [Taylor}.58]

Since O is a Banach space and Ker W is a subsp&zewe can define a

Quotient space denoted by O/Ker W, define as fallow

O/Ker W& {[w(t)] : w(t) O O},
Where W ()] = {w (t) O O:w (t) - w (t) O KerW}, {see [Taylor, 58]},
Where v (t)] is said to be an equivalent classes(j.

The Quotient space O/Ker W {[ w(t)]:w(t)[JO}, forms a vector space

over the field of scalars by given the followindid#ions:
[W(t)] O [W(t)] =[w(t) + W(t)] .Ow(t),w(t) DO
ol [w(t)] =[aw(t)],for o O R andw(t) O O.

Since KerW is a closed subspace of a Banach spaicerlefine a norm

on O/Ker W, as follow|[w(®)]|, .., = W(t)i S[t/v (t)]HW(t)HO.

, Moreover O is a Banach space then O/Ker W is alBanach space. {See
[Taylor, 58]}.

17
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Remark (construction oﬂ) {[Balachandran, 01], [Quinn, 85]}:

Define a linear operatdV : O/Ker WO - X, by:
W[ w(t)] = Ww(t),w(t) O[w(t)]
W Is one-to-one

{Since W[W(t)] = w[w(t)] O[W(t)] [W()] DO/ Kerw ~ Okerw W

[ \ o\t
= W) = Wa(t), Ow(t) O w(t) |, w(t) O w(t)] k -
ay

— Win(t) - Ww(t) =0 -

/1

= W(W(t) - W(t))=0

= W(t) - W(t) OKerw

= W(t) O [w(t)] {Since [w(t)] = { W(t) O O: W(t) — W(t) 0 Kerw}
= [W(t)] = [w(t)]

So, There existW *define from V into O/Ker W.

To prove Range W=V is a Banach spaces via the defme as follow:

Iy =W
Notice that:
HWW(t)HV - HV~V_1WW(I)HO/ KerW - HW_]\N[W(J[)]HO/ ker W’Dw(t) D[W(t)]

= t = inf t S t ,D tDO,
1Ol o= 10 0] 900l 0

So, W is a bounded linear operator faz 0<y.

And [W[w(®]]., =[ww(, ,0wt) O[w()]

1
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= |W[w(t)] o < WIw)], Ow(t) O[w(t)]

Wlw®]l <|w| inf ) - =[W||[[ w(t
= W] W] int a0l = WO

= Ww],, <[WIIWOIls, o w-

Since W is bounded and D{/) = O/KerW is closed which implies thai/ ™
is closed {see Appendix D}.

Since W™ is closed operator and by the nduy, =H\/~V"lvHO/K " which
er

implies that V= Range W a Banach space. {[Balachandran, 01]}.

Since O is reflexive Banach space and KerW is weelkised {see Appendix

D}, So the infimum is actually attained, we can @b® a control function

w(t) O[w(t)] such thamv(t) = W ™Ww(t) .{see [Balachandran, 01], [Quinn, 85]}

= Ww(t) = Ww(t), for 0st<y.

Remark:

Notice that:
Givenu,, (0)= uy, U, §) =V, OV OX, for arbitraryw(.)JLP([0,r):O).

Notice that, we have a unique mild solutiqC([0,t]:X), given by:

t

uO=TeOw+ [ Tt s{ By fls (9 | hest Jo(,ur( »}s
s0 =0

For (st<t, and for every arbitrary control functiav(.) LI LP([0,t,):0).

When t=ysuchthat0 y<t,

ids



Appendices

Y s
= U, 0 =TV + f T(v-S{ BV(S} f(s,4, (S) j hist g, 0)dr s,

=0

s=0
0 w(.) LI LP([0,t,) : O).

Sinceu,, (y) = v, we get:

Y s
Vo=T(Y)Up— f T(v—s{f(s,% () j h(sT )eu,@)dr s =
s=0 =

=0

Y

[T(y=s)Bw(s)dsOw (.0 B( [0,1:0.

0

Since Gv(y) = I()VT(y—s)B\/\( s)ds, Ow(.) O LP([0,y):0), we get:

V% S
Vo~Too~ | T(v—S{f(S,kx O | Nt Jalu, ) dk = G(y),
s=0 =

=0

Ow(.)OLP([0,y):0).

From {Remark (construction &%)}, there exist a control

functionw(t) O[w(t)], for Ostsy, i.e, w(t) 1O andw(t) —w(t) OKerG,
i.e., w O LP([0,y]:0) and w(t) - w(t) 1O, W(w-w)(t) =0, such that:
w(t) = W W)

= Ww(t) = Ww(t), for 0st<y.

V% s
= vo- T~ | T(v—S{f(s,m ©F | hET e, E)d d=Gwl) = Gw(y)

s=0 =0

PPy
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% s
= Gw() =0T~ | T(v—s{f(s,% ©F | hsT glu, @)k gk

=0

s=0

Forw(y) O[w(y)].

Taking the inverse o6 (G™) of the both sides of the above equality, we get:

y s ]
w(y) =G [Vo ~Too~ | T(v—S{f(s,uv ©F [ hst au,E) ds]
s=0 1=0

| heT e, ds

=0

t
— w(t)=G* [vo =T(t)uy— I T(y—s{ f(s,y, O
s=0

Appendix B: "Some basic concepts of operator thebry

B.1 Linear operator[Taylor, 58]:

An operator T: XO - X, {X is a real or complex Banach space} is

called a linear operator if it satisfies:
i Tx+y=Tx+TyOx, yOX.

(i) T(ax)=ax, Ox O X anda R ort] , Where (R is a real numbeér,is a

complex number).

B.2 Bounded Linear Operator [Taylor, 58]:

Let X, Y are the (real or complex) Banach spacesanX [ - Y a
linear operator. The operator T is said to be bednd there is a real

number ¢ such thdf x| < c|x|,OxOX.

1re
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The following are some useful examples:

B.2.1 Examples [Taylor, 58]:

(i) Identity operator: Let X is a Banach space, I: X X is bounded.

(i) Differentiation operator: Let X be the Banach space of all polynomials

on J=[0,1], with norm given byx| = r%x\x(t)\, A differentiation operator
T is defined on X by:

TX() =X (t),
The operator is linear but not bounded.

(i)  Integral operator:

We define an integral operator, T: C[0[1]- C[O, 1], by:
1
TX(t) = [K(t, nx(r)dr,
0

Here K is a given function, which is called the&esf T and is assumed
to be continuous on the closed square GxJ in the t—-plane, where ¥

[0, 1]. This operator is linear and bounded.

B.3 Compact Linear Operator:

Compact linear operator is very important in agdlans. For instance,
they play the control role in the theory of thesgral equations and in various

problems of mathematical physics.

1re
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The following are needed later on:

B.3.1 Compact Set [Marsden,95]:

A subset M of a Banach space X is said to be comipavery open
covering of M can be reduced to a finite open cowgerof M, i.e., if

MO U Q, and Q, O X is open for every in the set\, then there exists
AOA

i=1

B.3.2 Relatively Compact [Marsden,95]:

A subset M of X is called relatively compacthf is compact.

B.3.3 Compact Linear Operator[Erwin.] :

Let X and Y are a (real or complex) Banach spades.operator
T: X O - Y is said to be compact linear operator if forreaounded subset

M of X, the image T(M) is relatively compact.

B.4 Precompact linear operator:

B.4.1 Precompact séf aylor, 58] :

Let X be a Banach space, a subset S of X is sdi@ forecompact if for

eache > 0, there exists some finite set=x4,....,%} in X such that S is

contained ianJB(xi €), whereB(x;,e) ={y O X: |y—x;|<¢e}.
i=1

1T
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B.4.2 Precompact linear operator[Harro,82]:

A linear operator T: X Y, (X,Y are Banach spaces) is said to be
precompact if for any bounded subset M of X, thagen T(M) is precompact

setin.

B.4.3 Theorem [Harro,82]:

Let X is a normed space and M is a subset of Xn ttne following

properties hold:
(i) If Mis relatively compact set then M is precomipset.

(i) If M is precompact set in a complete space theis klatively compact

set.
(i) If M is compact set then M is precompact set in X.

(iv) If M is precompact set then M is bounded set.

B.4.4 Remark [Harro,82]:

Let A and B are two precompact sets in Banach spadken A + B is

precompact set in X.

B.4.5 TheorenjTaylor, 58] :

Let X, Y is normed spaces, then:
(i) Every compact linear operator T:(X - Y is bounded.
(i) Ifdim X = oo, the identity operator | : XI —» X is not compact.

(i) If dim X <o, then the identity operator I: X X is compact.

1rv
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Appendix C:

(1) Equicontinuous set [Marsden,95] :

A subset S of C[a,b] is said to be equicontinudmiseache > 0,there

is ad>0,such that:

x—y|<d And ul M imply |u(x) - u(y)ﬂc[a’b]<s

(2) Arzela-Ascoli's theorem [Dieudonne,60] :

Suppose F is a Banach space and E is a compadt repéce. In

order that a subset H of the Banach spagéE) be relatively compact, if
and only if H be equicontinuous and that, for eadh E, the set H(x}

{f(x): f O H} be relatively compact in F.

(3) Schauder fixed point theorem [Zeidler,86]:

Let M be a nonempty closed, bounded, convex sutifsat Banach

space X and the map T: M - M is compact then T has a fixed point.

(4) Compact map [Zeidler,86]:

Let S, M are two sets, a map T{IS- M is said to be compact if the

following conditions are hold:
(i) T is continuous map.
(i) For each bounded subsets of S, T(S) is relativatypact set in M.

(5) Strict contraction map [Klaus,85]:

Suppose X is a Banach space X A mapping Tt XX is said to be

strict contraction, with strict contraction consttanifHTx —TyHX < LHX ‘YHX ,

Ox,yO X, where0<L<1.

1A
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(6) Closed set [Zeidler,86]:
A subset S of the Banach space X is said to bed|afor x,,[0 S such

thatx,,0 - X, then XJS.

(7) Bounded set [Zeidler,86]:
A subset S of the Banach space X is said to bedsaynf there exist

L > 0 such thd‘sﬂss L, OsOS.

(8) Convex set [Zeidler,86] :
A subset S of the Banach space X is said to beexgn¥ for each

S1,SUS,Asi+ (1-A)s, 0 S. Whereh U [0, 1].

(9) Banach contraction principldMarsden,93:

Let M is a closed nonempty set in the Banach spaoeerk , wherek
are a scalar field and the operator TTM- M is strict contraction operator

then T has a unique fixed point.

(10) Locally Holder continuous map [Paz,83]

Let | be an interval, A function f:J - X, where X is a Banach space is

said to beHoldercontinuous with exponefit, 0 <0< 1lon I, if there is a

constant L such thgft(t) —f(s)|, < L[t —s\’s , for s, tO 1.

(11) Gronwall's inequality [Zeidler,86]:

If the following conditions hold:
(1) f(t) = 0, g(t)= 0 and h(tx 0 [t OJa, b].

(2) f, g and h are continuous function on (a, b).

(3) f(t) <h(t) + jf(s)g(s)dsm g [a,b

}g(s)ds
Then f(t) <h(t)e2

1re
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Appendix D:

D.1 Corollary [Paz,83]:

Let A be the infinitesimal generator of an analg@migroup T(t). If f
Is locallyHoldercontinuous map on (0, a], then for everyl X the initial
value problem given by:
du(t
d—t() =Au(t) +f(t)
u(0)=x
Has a unique mild solution given by:

t
u(t) = T()x+ [ T(t=s)f(s)ds
0

D.2 Theorem (Uniform convergence) [Erwin,78]:

Convergence x— X in the space CJa,b] is uniform convergence, &)

converges uniformly on [a,b] to x.

14,



Chapter One Some Basic Concepts of Semigroup TReor

1.1 Introduction

The theory of one parameter semigroups of linearaiprs on Banach
spaces started earlier, acquired its core in 1948 whe Hille-Yosida
generation theorem, and attained its first apex wite 1957 edition of
“semigroups and functional analysis” by E. HilledaR. S. Phillips. In the
1970's and 80's, the theory reached a certain stgerfection, which is well
represented in the monographs by [Dav, 80], [G8], fPaz, 83] and others.

Today, the situation is characterized by manifofgpleation of this
theory not only to the traditional areas such atgalifferential equations or
stochastic processes. Semigroup has become impddals for integro-
differential equations and functional differentiaquations, in quantum
mechanics or in infinite-dimensional control theofyhe purpose of this
chapter is to recall some definitions, basic cotsepropositions, theorems
and some properties of the semigroup theory whiehi@portant for the
discussion of our later results. This chapter iasof eight sections, in
section one, we recall the elementary properties tioé complex
(matrix)—-valued exponential function and introduce the defin of the
semigroup on finite dimensional space(matrix semigroup). In section, two
we study the properties of the operatealued exponential function and
introduce the definition of the semigroup on int@tdimensional space and
give some typical examples of the semigroup anabaice the definition of
the uniformly continuous semigroup with some exasapbf it. In section

three,

We introduce the definition of the strongly contius semigroup with
some examples of it. In section four, we introddke definition of the
generator of the semigroup with some examples amy she properties of it
and discuss the relation between the semigroupgéserator and the
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resolvent set. In section five, we study the funeatal theorem of the
semigroup theory which is "Hille-Yosida Generatibneorems ". In section
sex, we introduce the two important special clasgebe semigroup which

are "compact semigroup" and "analytic semigroup”.séction seven, we
study the fractional powers of certain unboundeedr operator and study
some of their properties and introduce some remard theorem which

display that the analytic semigroup play an imparteool for define the

fractional power of unbounded linear operator.dot®n eight, we study the
solution of the homogenous abstract Cauchy prolaledithe inhomogeneous
also we introduce two concepts of the solution listieact Cauchy problem

which are "classical solution" and "mild solution".
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1.2 Finit-Dimensional “Matrix Semigroup”

In this section, we study the properties of thealacvalued exponential
function” and pass to a more general case; we sksthe properties of the

“Matrix-valued exponential function”.

Consider the finite-dimensional vector space=X , wherel] is a set of
complex numbers, in the following problem we witid all maps given by a

“scalar-valued function”,

T():R O - [, which satisfy the conditions:

T(t+s)=T(t)T(s), forallt,s ? (1.1)

T(0)=1

1.2.1 Problem [Klaus,00]:

Find all maps T (.): RO - [, satisfying equation (1.1).

Evidently, the exponential functiond — e satisfies (1.1) for any
all] . We take a closer look at the exponential funaiand study some its

properties by giving the following propositions:

1.2.2 Proposition [Klaus,00]:

Let T(t)=e?, for some adl and all t= 0. Then the solution T(.) is
differentiable and satisfies the initial value peoh)

d _
aT(t) =aT(t),fort=0 (1.2)

T(0) =1
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1.2.3 Proposition [Klaus,00]:

Let T(.): R O -0 be a continuous function satisfying equation (1.1)

Then T(.) is differentiable an@ alll] , such that equation (1.2) holds.

1.2.4 Theorem [Klaus,00]:

Let T(.): R O - [0 be a continuous function satisfying equation(1.1)

then ad U , such that T(tre?, 0t>0.

With this answer, we stop the discussion of thesrentary situation and

close this subsection with comment on problem {}.2.

1.2.5 Comment [Klaus,00] :
Once, as in the previous theorem, that a certaiotion T(.):R O - [

is of the form T(t=€". It is clear that it can be extended to &ll R, where R
Is the set of real numbers and evenl(all t, still satisfying the equation (1.1),

for all t, sOI0 .

Now, we pass to a more general case and consiuiéz-BDimensional
vector spaces XZ". The spacé(X) of all linear operators on X will then be
identified with the spaceM (/) of all complex wn matrices, and in the

following problem we will find all maps given by“eatrix valued function”

T(): R0 - M, (0) satisfying the conditions

T(t+s)= T()TE), O ts= 0} (1.3)

T(O) =

Where | stands the identity matrix.



Chapter One Some Basic Concepts of Semigroup TReor

1.2.6 Problem [Klaus,00] :

Find all maps T(.) : RO - M (0) satisfying the equation (1.3).

As before, the solutions of equation (1.1) aredbalar-valued "exponential
functions"”. We see later that the solutions of ¢igna(1.3) for this problem

are the matrix-valued "exponential functions".

1.2.7 Definition [Paz, 83] :

For any ALUM () and td R, the matrix — valued exponential function

e” is defined by:

o)

kak
t"A
oA —

= k!

1.2.8 Definition [Klaus,00] :

We call{etA}t>0 the (one-parameter) semigroup generated by thexmat
AOM (T).

The famil),{ etA} Oform (one — parameter) semigroup for &iyM (1)

t=

and the answer to problem (1.2.6) are given byfdHowing proposition.

1.2.9 Proposition [Klaus,00]:
For any ADM(01), the map ROt 0 - e OM,(T), is continuous

and satisfies:

=t Ot |

et =1
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The properties of the matrix — valued exponentiakction T(t)=etA , given by

the following proposition and theorem.

1.2.10 Proposition [Klaus,00]:

Let T(t)=e”* ,for some AJ M (J).Then the function T(.):RO - M,(0)

is differentiable an satisfy the initial value plein:

doiy_
aT(t) =AT(t),fort=0 (1.4)

T() =1

Conversely, every differential function T(.) "Rl - M_,() satisfy
equation (1.4) is already of the form T&g" , for some AIM (O0), finally

we observed that AT(0).

1.2.11 Theorem [Klaus,00]:

Let T(.): RO - M (1) be a continuous function satisfying the equation

(1.3). Then there existlAM (L), such that T(tre™, Ot=0.

1.3 Uniformly Continuous Semigroup

In this section a more general case is discussed $semigroup on
infinite-dimensional spaces. From now on, we takéoXbe a real Banach

space with norm |[|.||. We denotdX) the Banach algebra of all bounded

linear operators on X.
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1.3.1 Problem [Klaus,00]:

Find all maps T(.) : RO - L(X) satisfying the conditions:

T(t+9)=T()TE), O ts= O} (15)

T(O) =1
Where | stands the identity operator.

In analogy to section (1.2), the solutions of egua(l.1) and (1.3) are
scalar-valued “ exponential functions “ and thenmat valued “ exponential

functions “ respectively, the answer for this peshl will be much more
complex than as before. We see later that theisokibf equation (1.5) are

the operator— valued “exponential functions *“.

1.3.2 Definition [Klaus,00]:

A family {T(t)} o of bounded linear operators on a Banach space X is

called a (one-parameter) semigroup on X if itSegts the equation (1.5).

As in the matrix case (see definition 1.2.7), wa dafine an operator-

valued “exponential function” by the following teimology:

1.3.3 Definition [Paz,83]:

For any AlL(X) and tIR, the operator-valued “exponential function”

e” is defined by:

A °°tkAk
e _;) o AT
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The famiI){etA} Oform (one — parameter) semigroup for anyil&X) and

t=

the answer to problem (1.3.1) are given by thefaithg proposition.

1.3.4 Proposition [Klaus,00]:

For any AJL(X), the map R Ot O - e” 0O((X) is continuous and

satisfies:

=t O te |

et =1

The properties of the operator — valued exponefuiattion T(t)=e”

given by the following proposition:

1.3.5 Proposition [Klaus,00]:

Let T(t)=e”*, for some AlL(X). Then the function T(.) : RO — L(X) is

differentiable and satisfy the initial value praite

d —
aT(t) =AT(t),fort=0 (1.6)

T(O) =1

Conversely, every differential function T(.) ¥Rl - [(X) satisfy equation

(1.6) is already of the form T&g", for some A L(X), finally we observed
that A= T(0).

10
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As seen before the ‘typical example’ of one-paramsémigroup of operators

00

on a Banach space X &' =)
k=0

tkak
k!

, for any AJL(X), also we introduce

another “ typical example” of one-parameter semigr@f operators on a
Banach space X, before this we define some basicepts for bounded

linear operator A, we define
p(A) ={A OC |A-A: D(A) OO - X is bijective}, it is called resolvent set,
a(A) =p(A) ¢, i.e.,a(A) = C\p(A), it is called spectrum set, and,
RM\; A) = (A - A)™ atA O p(A), it is called resolvent operator.

Consider now for eacke® the functiond e , which is analytic for alll
belongs tad . Therefore, one can define {see [DS, 58] or [TI0]}8the
exponential of A through the operator-valued versad Cauchy’s integral

formula.

1.3.6 Definition [Klaus,00]:

Let A O L(X) and tIR, the operator — valued “exponential function”

e” Is defining by:

oA = Zi AR, A)dA ,OA20 (1.7)
Tu
+0U

Where YU is a smooth positively oriented boundary.

The following proposition display that the famil{;etA}Podefine by

equation (1.7) form a (one — parameter) semigrougpiy ATL(X).

11
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1.3.7 Proposition [Klaus,00]:

For any A0 ((X), the map R Ot O - e” LX) is continuous and

satisfies:

eA=dAgA [Nt |

e =1

Next, we introduce the following terminology:

1.3.8 Definition [Paz,83] :

A one-parameter semigroup {T(t4 on a Banach space X is called

uniformly continuous or (norm continuous), if:
The map ROt O — T(t) OL(X), satisfies the following conditions:
1. T(t+s)=T{M)T(s),0t, sOR".
2. T(0)=1.

3. lim||T()- 1] =0.
tL0

To illustrate this definition, see the followingarples:

1.3.9 Examples [Klaus,00]:

() Let A O L(X), where X is a Banach space and set:

©® nNnpN
T()=e” =Zt A" , it is clearly that the family {T(t)}}ois a uniformly
n!
n=0
continuous semigroup.

12
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Before discuss the next example, we introduce renaefinition and

proposition which is useful here.

Remark:
Let X = Cy(Q) ( space of all continuous, complex-valued funtsiamn

compact se@) that vanish at infinity )

This space is the Banach space (with sup-norm).

Definition:
The multiplication operatoM, induced on 6{Q) by some continuous

function q:Q 00 - C, is defined by:

qu = q.f, for all f in the domain

Where DM,) = {f U Gy(Q) : q.f 11 Co(€2}

Proposition:

Let M, with domain DM ) be the multiplication operator induced on
Co(Q2) by some continuous function . The opera¥y is bounded if and

only if the function q is bounded.

(i) Sef,(®)=e", it is easy to verify that T,(t)}so is a uniformly

continuous semigroup.

1.3.10 Remark [Klaus,00]:

The family {T,(t) } =0 is said to be "Multiplication semigroup™.

13
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Now, we introduce the fundamental theorem:

1.3.11 Theorem [Paz, 83]:

A linear operator A is the infinitesimal generatof a uniformly

continuous semigroup if and only if A is a bounded.

1.4 Strongly Continuous Semigroup

In this section, we introduce definition and somarmples of a strongly

continuous semigroup and proposition which is gieme properties of it.

1.4.1 Definition [Balakrishnan,78]:

A semigroup {T(t)}o on a Banach space X is called strongly continuous

semigroup of bounded linear operators if

The map ROt O - T(t) O L(X), satisfies the following conditions:
1. T(t+s)=T@®T(s),0t, sOR".

2. TO)=1.

3. Iirg [| T(t)x — x|| =0, for every XIX.
tl

1.4.2 Remark [Paz,83]:

A strongly continuous semigroup of bounded lingaerators on X will

be denoted by £&semigroup.

To illustrate this definition, see the followingarples:

14
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1.4.3 Examples :

() Inexample (1.3.9.i), T(tr e”.

It is clear that the famil){etA} 0is a strongly continuous semigroup

t=

generated by a bounded operator A.

(i) In example (1.3.9.i)T,(®)=e"9.

It is clear that the family éth}tzo is a strongly continuous semigroup

generated by a bounded operalibg.

(i) Let X be the Banach space of continuous, boundadtifans on [Gp)

with the sup-norm, and consider the translationratpe:
(TMX)(2) =x(z +1), xOOX, z=0 and 20
Clearly T(t+s)=T(t)T(s),0 t, s= 0 and T(0Ox | and we give

[IT()x—X||=sup [x(z + t-x(2)|0 - 0,as ] - 0", Ox0OX.

z=0

1.4.4 Proposition [Paz 83]:

For every strongly continuous semigroup {T{)}here exist wl R and

M = 1, such that ||T(tg Me™, O t= 0.

1.5 Generators of Semigroups and their Resolvents

In this section, we introduce definition, exampdesl some properties of
the generator A of the semigroup {T¢)} It will be a linear, but generally

unbounded linear operator defined only on a denbsmce D(A) of the

15
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Banach space X. In order to retrieve the semigrélfh)} o from its
generator (A, D(A)), we will need a third objectamely the resolvent
operator of A, defined by R(A) = (A — A)™ 0 L(X), which is defined for all
complex numbers in the resolvent péd). To find and discuss the various

relations between these objects, which can betiéited by the following

triangle:
{T(1)} =0
semigoup
generat resolvent
(A.D(A)) (RO A)Aopa)

1.5.1 Definition [Balakrishnan,78]:

The operator A : D(A)] X 00 - X of a strongly continuous semigroup

{T(1)} =0 on a Banach space X is define by Axmgw
ty

T(t)x —x

, for every x

in its domain D(A) , where D(A¥ {x O X : Iirg exists}, which is
tl

called "The infinitesimal generator" of a semigrdiift)} o.

To illustrate this definition, see the followingamples:

1.5.2 Example:

() The infinitesimal generator of the example (1.4.3.A0L(X).

16
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(i) The infinitesimal generator of the example (1.4.3i M.

(i) The infinitesimal generator of the example (1.4)3is A= di with
X

D(A)={x: ax 0 X}.
dz

The following proposition and theorem give some pamties of the

generator A and its domain.

1.5.3 Proposition [Klaus,00]:

For the generator (A, D(A)) of a strongly contins@emigroup {T(t)}o,

the following properties hold:

() A:D(A)O X O - Xis alinear operator.

(i) If x O D(A), then T(t)xJD(A) and%T(t)sz(t)szAT(t)x, for all 0.

T
(i) For every & 0 and xI X, one hasj T(S)xds [0 D(A).
0

(iv) For every & 0, one has:

.
T(Ox —x = A I TExds, if XIx
s=0

.
= j TEAxds,  if x0 D(A)
s=0

17
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1.5.4 Theorem [Klaus,00]:
The generator of a strongly continuous semigrowpadl®sed and densely

defined linear operator that determines the seragumiquely.

1.5.5 Remark [Klaus,00]:
The above proposition and theorem shows that thegseup plays an

important role of determining the solution of arst@éct evolution equation
x=AX, X(0)=xo, where A is the infinitesimal generator of the sgoup
{T()} 0. In particular, we know Xx(tF T(t)Xo is the solution if A generates a
strongly continuous semigroup anglix D(A). so it is important to obtain a
characterization of the operator which generatetrangly continuous

semigroup.

1.5.6 Proposition [Klaus,00]:
For a strongly semigroup {T(t)h) on a Banach space X with generator

(A, D(A)), the following assertions are equivalent:
(@) The generator A is bounded.

(b) The domain of A {D(A)} is all of X.

(c) The domain of A {D(A)} is closed in X.

(d) The semigroup {T(t)¢o is uniformly continuous.

1.5.7 Remark [Balakrishnan,76]:
Let {T(t)} =0 be a strongly continuous semigroup on the BanpahesX,

then for even 0C, define a linear bounded operator:

RAAX = [e'T(t)xdt, for all x O X.
0

18
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1.5.8 Diagram [Klaus,00]:

To close this section, we collect in a diagramitiiermation obtained so

far on the relations between a semigroup, its geaeand its resolvent.

{T()} =0

R(\A) = J'e‘“T(t)xdt, Re\) >w,
0

A A) = (A - A)L
(MDA ¥Z RAAN=G-A e (ROLADacpa)
A=A-RQ; A)-1

1.6 Hille-Yasida Generation Theorems

In this section, we discuss the fundamental theooérthe semigroup
theory; this theorem shows essentially that thepdexential function” for
unbounded linear operator is well defined. "Yosid&iea" was to
approximate the unbounded linear operator A by quaece (A)non Of

bounded operators and show that:

e = lim en

n - o

Exists and is a strongly continuous semigroup.

1.6.1 Remark [Paz 83]:

A semigroup {T(t)}olis said to be contractions if ||T(8]|[L.

19
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We need some lemmas which is useful here.

1.6.2 Lemma [Paz 83]:

Let A be satisfying the following conditions:
() Aisclosed and(A) = X.

(i) The resolvent sqi(A) of A contains R and for every\ > 0,

IRQ; A)[|< (1.8)

1
A
and let Rk; A) = (Al - A) L Then)\lim AR(A;A)X=x, for x X

Proof:

Suppose first that kKl D(A), then:
1
INRQ; A)x = X[ = [IARA; A)xX|| = [IR}, A)AX|| < XIIAXII 0- 0 as

A - o
But D(A) is dense in X and\R(A; A)||< 1. Therefore:

ARM; A)x O - x, asA 0 - oo, for every xt1 X.

Remark 1.6.3[Paz 83]:

We define for every > 0, the "Yosida approximation" of A by:
Ax=MARQ; A) = A°R(A; A) = Al (1.9)

Where A is an approximation of A in the following sense:
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Lemma 1.6.4 [Paz 83]:

Let A satisfy the above conditions (i) and (ii), A, is the "Yosida
approximation" of A, then:
lim A,x = Ax, for x 1 D(A).

)\—)00

Proof:

For x D(A), we have by the above lemma and the definibb A, that
lim A,x = )\Iim AR(A; A)Ax =AxX.

A oo

Lemma 1.6.5 [Paz 83]:

Let A satisfy the above conditions (i) and (ii). A is the "Yosida

approximation” of A, then Ais the infinitesimal generator of a uniformly

continuous semigroup of continua@i8* , furthermore, for every

x O X, A, >0, we have:

tA tA
le"* x — e” x| < t]|Ax - Ax|

Now, we introduce an important theorem:

1.6.6 Theorem "Generation theorem (Hill-Yosida, 18% [Paz,83]:

A linear unbounded operator A is the infinitesinggnerator of a £

semigroup of contractions T(t)=t0 if and only if:
(i) Ais closed and(A) = X.

(i) The resolvent sqt(A) of A contains R and for every\ > 0,

- 1
IR®; Al
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Proof
=)
If A is the infinitesimal generator of a;Gemigroup of contraction, then

itis closed and(A) =X {by theorem (1.5.4)},

ForA >0 and xXJ X,

Since R{A)X = J'e_MT(t)x dt {by Remark (1.5.7)}
t=0

Satisfying:
. Ik “At 1
[IRA;A)X| < .fe || T(t)x]|dt < XIIXII
t=0
Furthermore, for h >0

% ROGA)X = % ojoe‘“[T(t +h)x=T (0] dt
0

fM-17 1! At
= JeMT@Oxdt - = [eNTMxat......... (1.10)
h h h 0

As hi 0, the right hand side of equation (1.10) convetg@dfR(\;A)X — X

This implies that for every Xl X andA > 0, RQ;A)x O D(A) and ARQA) =
AR(QA) -1, or

(Al - A)R(\A) = | (1.11)

For xJ D(A), we have:

RO:A)AX = j e MT (1) Ax dt
0
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[ee)

= J‘e_MAT(t)x dt {By proposition (1.6.3.ii)}
0

= A[Te_“T(t)x dt] =AR(\;A)X
0

This implies that:

R(A;A)AX = AR(A;A)X (1.12)
From (1.11) and (1.12), it follows that:

RA;A)(Al = A)x = x, for x[ID(A)

Thus, RQ;A) is the inverse of Xl — A), it is exists for all\ > 0 and satisfies

equation (1.8) therefore the necessary condis@atisfied.

(d)
If A satisfy the conditions (i) and (ii), to prov is the infinitesimal

generator of a £semigroup of contraction.

We anticipate that the following properties hold.

(i) e” x= lim e" x exist for each xX.

- 00

@i{ lim e x} is a strongly continuous semigroup of contractan X.
A o o

(iif) This semigroup has generator (A, D(A)).

By establishing these statements, we will compieteproof.

() let xuD(A), then :

|| x - e Xl < t]|Ax = AX]x (by lemma (1.6.5)) (1.13)
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But [|AX —AX||0 - OasA, p - o (1.14)
Since AxO - Ax, asA 0 - « {bylemma (1.6.4)}

From equation (1.13) and equation (1.14), it fobawvat for xID(A),

e’ Converges as [J - «. And the converges is uniform on bounded
interval. Since D(A) is dense in X andtﬁA ||<1, it follows that :

ehx=lim e®™x, OxOX (1.15)

A oo
(i) from equation (1.15), it follows readily that {Tf), satisfies the

semigroup properties :
(@) T(0)=1

(b) lim et*t2)= |im et gh= |im e |im &*

©) ] lim e® ||< lim [|[e®™ || lim 1=1

— 00 — 00 — 00

= || lim e ||<1, ot=0.
A

— 00

(d) From the uniform convergence, it follows that {F{) is

strongly continuous.
To conclude the proof we will show that A is thénitesimal generator of

T(t)= lim e"
A oo

Let A’ denoted the generator of the semigroupr{ e } 0, fOrp >0,

- 00

R A )X = | e“T(txdt= [ e* lim A xdt= lim [ '™ xd
t=0 t=0 - ~%t=0

=)!im R(u, A, )X
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R(u;A’)x=AIim R(w, A; )X

Next, pR(u, A, )X —R(u,A;)A,x=x (1.16)
And hence for KID(A), take limits as\ goes to infinity to the (1.16), we get:

uAIim R, A, )X —Alim R, A))AX =X

R, A)X - R(u, AYAX = X
or R, A")(Ux—AXx)=X.
Let y(IX, then x=R(1,A)y is in the domain of A, and hence
R(w A)[uR@w, A)Y - AR(1, A)y] = R(w, A)y
-
R A)[((t-ARWA))Y |= R, Ay
=
R, A"y = RLA)y, yUX.
Hence, D(A=D(A"), and from
LR, A)X —AR(, A)X = X (1.17)
LR, ANX —AR(1, AX = X (1.18)
From (1.17) and (1.18),
It follows that (A~A")R(u—A")x =0, and hence

Ax = A'x for x 1 D(A) = D(A").
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1.7 Special Classes of Semigroups

This section consists of two parts, first partagsfipact semigroup” and
the second part is "Analytic semigroup” which isigdering the important

two special classes of semigroup theory.

1.7.1 Compact Semigroups:

In what follows, some basic definitions, remarkd antheorem will be

presented which are necessary to understand tHeimohapter two.

1.7.1.1 Definition [Balakrishnan,76]:

A semigroup {T(t)}so is said to be compact if T(t) is a compact opmrat

for each t> 0.

1.7.1.2 Remark [Paz,83]:

The identity operator T(0) is not compact operaiorinfinite dimensional

space.

1.7.1.3 Remark [Paz,83]:

A semigroup {T(t)}x is called a continuous in the uniform operator

topology if:
(1) |ITt+A)x-TH)x||O - 0,asA 0 - 0,0x O X.
(2) |ITOx-Tt-A)x||0 - 0,asA 0 - 0,0x 0O X.

1.7.1.4 Theorem [Paz, 83]:
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Let T(t) be a @ semigroup. If T(t) is compact for t 3, tthen T(t) is a

continuous in the uniform operator topology forty>

1.7.2 Analytic Semigroup:

In what follows, some basic definitions, remarksl dheorems will be
presented which are necessary to understand thie iwarhapter three. As
before we dealt with semigroup whose domain wasitmegative real axis.
We will now consider the possibility of extendinget domain of the
parameter to regions in the complex plane thaughelthe nonnegative real
axis. However, we will restrict ourselves to vepesial domains, namely,

angles around the positive real axis.

We introduce a general definition of the analygaggroup:

1.7.2.1 Definition [Paz,83]:

Let A, = {zOO : |arg z| <, ¢>0 } and for z0 A, let T(z) be a bounded
linear operator. The family {T(z)} is said to be an analytic semigroupiip

if the following conditions are satisfied :
(i) z0O - T(z2) is analytic i\,

(i) T(0)=land lim T(z)x=x, 0x 0 X
S,

(|||) T(Zl + 22) = T(Z]_)T(Zz), ] 21, & 0 A(p

1.7.2.2 Definition [Paz,83]:
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A family {T(t)} w0 is said to be an analytic semigroup if the follogvin

conditions are satisfy :

() tO - T(t) is analytic in some sectd;, whereA is a sector containing the

nonnegative real axis.

(i) T(0) =1 and Iirg [|T(t)x — X]||= 0, for every xIX
tl

(i) T+ &) =T{t)T(ty), O0t, L OR".

1.7.2.3 Remark:

It is clear that the analytic semigroup {T)lis a G semigroup.

1.8 Fractional Power of Closed Operators

In this section, we define fractional powers oftagr unbounded linear
operators and study some of their properties. Wece&atrate mainly on
fractional powers of operators A for whielA is the infinitesimal generator
of an analytic semigroup. The results of this sectvill be used in the study

the existence of solution of semilinear initial wvalproblem.

The following theorem which is useful here:

Theorem 1.8.1 [Paz,83]:

Let T(t) be a uniformly bounded,Gemigroup. Let A be the infinitesimal
generator of T(t) and assume [0 p(A). The following statements are

equivalent:
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(a) T(t) can be extended to an analytic semigroup seetords = {z LIC:
|argz| <o}.

(b) There exist a constapt, such that for everg > 0,1 # 0,
IRE e A<

(c) There exist 0 <12 and M > 0, such that:

p(A) O 25 ={\: |arg\| <2 + &} O {0}
M
and [|IR(A)]| < m forAO2,A#0.

(d) T(t) is differentiable for t > 0 and there is a stant C such that:

IAT(®)||< % for t > 0.

Remark(1.8.2)

In theorem (1.8.1.c), the set:
p(A)DZ6 ={A : |arg\| < W2 +0} {0}, can be display by the following

figure:

o ™ Rekd
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We introduce the following definition:

Definition 1.8.3 [Paz,83]:

For a closed densely defined linear operator AsBatihe following

conditions:

(i) p(A) DX ={A00:0<w< |arg|<m} O {0}

(i) |IRQ: A)||< ,forA O Z*, M>0

1+ | A |

Define a bounded linear operatorA X - X,

A= 2 [A9(A-N)TdA, fora >0 (1.19)
211 i

where the pathi’is a smooth curve ix".

Where X is a Banach space angdiXa Banach space being dense in X, define

as follow:

Xaz{x OX : IimHtH‘AT(t X H =O} , for O<a<1
t10

With norm which is equivalent to the graph nornAof

A%

x| :‘ " Where A is the inverse of &, which can be display the

construction of the operator’ Ay the following definition and theorem.

Lemma(l.8.4)[Klaus,00]:

A define by (1.18) is injective.
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Definition(1.8.5 [Paz,83]:

Let a > 0.the operator Adefine as the inverse of Awith domain
D(A%) = R(A™) is called then-power of A, which denoted pthe domain of
A% i.e. X, = D(AY).

Theorem1.8.6 [Paz,83]:
Let A® be defined as the inverse of°AThen:

(a) A% is closed linear operator with domain DjA& R(A™) = the range
A

(b) D(A?) =X, for everya = 0.

(c) If a, B are real, then &Px = A®APx, for every xO D(AY), wherey = max

(@, B, a+p).

Theorem1.8.7 [Paz,83]:

Let —A be the infinitesimal generator of an analytic ggoup T(t) if:
0 O p(A), then:
(@)T(x): X O — D(AY), for every t > 0 and = 0.
(b) For every XID(A%), we have T(t)Ax = A"T(t)x.
(c) For every & 0, the operator A (t) is bounded and [[A(1)]|< Mqt™.

(d) Let O<u<1 and XID(A®) then|T(t)x — x| < C,t* | A*X

X

where G is the positive constant depencbon
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Remark 1.8.8 [Paz,83]:

From the definition (1.8.3), if w "2, then-A is the infinitesimal
generator of an analytic semigroup {see theorer8.1)}, which can be

display by the following figures:

Gl(A)

Rek

of-A)
Rel

Conclusion 1.8.9:

If —A is the infinitesimal generator of bounded analgmigroup

Then the fractional power A exist fora>0.
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1.9 The Abstract Cauchy Problem

In this section, our aim is to solve the homogesanitial value problem

(i.e., Banach-space-valued) linear initial valueljpem of the form:

u(t) = Au(t), for t=> O} (1.20)

u0) =y

Where the independent variable t represents tiri¢,is1 a function with
values in a Banach space X, A:D(AX [0 - X is a linear operator ang[uX

the initial value.

We start by introducing the following terminology:

Definition 1.9.1 [Klaus,00]:

() The initial value problem given by (1.20):

Is called the abstract Cauchy problem denoted b@R)Aassociated to
(A,D(A)) and the initial value g

(i) A function u: RO - X is called a (classical) solution of (ACP) on
[0,a),where a is a fixed number if u is continuawms[0,a), continuously
differentiable on (0,a), u(@D(A) for 0< t <a and (1.20) is satisfied on
[0,a).

Remark 1.9.2 [Klaus,00]:

If the operator A is the generator of a stronglyptamuous semigroup. It
follows from proposition (1.5.3.ii) that the senogp yields solutions of the

associated abstract Cauchy problem given by (1.20).
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Remark 1.9.3 [Paz,83]:

If A is the infinitesimal generator of a,Gemigroup, which is not
differentiable and does not satisfy (1.20), thergameral, if x(1 D(A), the
initial value problem (ACP) does not have a solutidhe function 1 -
T(t)x is then a "generalized solution" of the iaitivalue problem (ACP)

which call it a "mild solution”.
Next, we consider the inhomogeneous initial valigbfem:

u(t) = Au(t) +f (1), fOI’tZO} (1.21)

u(0) =x

Where the independent variable t represents the, tuf) is a function with
values in Banach space X, A : D(A) X [0 - X, a linear operator and a

functionf: R 0 - X and @ O X the initial value.

Next, we introducing the necessary terminology:

Definition 1.9.4 [Paz,83]:

() The inhomogeneous initial values problem given bhy21) is called

inhomogeneous abstract Cauchy problem denoteddAR).

(i) A function u: R 0 - X is called a (classical) solution of (IACP) on
[0,a),where a is a fixed number if u is continuouas[0,a), continuously
differentiable on (0,a), u@D(A) for O< t <a and (1.21) is satisfied on
[0,a).
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Remark 1.9.5 [Paz,83]:

Let T(t) be the @semigroup generated by A and let u be a solutfon o
the (IACP). Then the X valued function g&s)(t —s)u(s) is differentiable for

O0<s<tand:

% =—-AT(t — s)u(s) + T(t-s)u(s)

=—AT(t — s)u(s) + T(t s)Au(s) + T(t= s)f(s)
=T(t - s)f(s) (1.22)
If f O LY0,a):X), then T(t s)f(s) is integrable and integrating equation(}.22

from O to t yields, then:

t
u(t) = T()x + j T(t- 9)f ©)ds
s=0

We introduce the following definition of a mild swion.

Definition 1.9.6 [Paz,83]:

Let (A,D(A)) be the generator of a strongly contms semigroup
{T(1)} w0 On X and take ®¥X and fOL*(R*,X). Then the function MC([0,a]:X)
given by:

t
u(t)= T(H)x + j T(t- 9)f @©)ds, Ost<a,

s=0
is the mild solution of the (ICAP) on [0, a].

Remark 1.9.7 [Paz,83]:

It is not difficult to show that every classical@mon of (IACP) is also a

mild solution.
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Chapter Three Existence and Uniqueness of Mild Solution to the Semilinear Initial
Value Control Problem via " Banach Contraction Principle"

3.1 Introduction

In this chapter, by using the theory of semigroupd &Banach
contraction principle”, the local existence, unigass of the mild solution to
the semilinear initial value control problem hasibeeveloped in an arbitrary
Banach space X, associated with the unboundedrlimgarator generating

strongly continuous semigroup {S(&y:

3.2 Local Existence and Uniqueness of the Mild Solution to the
Semilinear Initial Value Control Problem

Consider the following semilinear initial value ¢ problem:

%+Au(t)=f(t,u(t))+ j h(t-s)g(s,u(s)ds (B )(t).*

s=0

(3.1)
u(0)= u,

The mild solution of equation (3.1) defines asduis:

Definition (3.2.1)

A continuous function yis said to be a mild solution to the semilinear

initial value problem (3.1) given by:

t
W) = TOW + [ A=) (B )(S)* f(s.y, ()

s=0
t
jh(s—r)g(s,u, t))d| d OwULP(O, r):0) (3.2)
s=0
The local existence and uniqueness of a mild swiutib the semilinear
initial value control problem have been developgdssuming the following

assumptions:
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(@) —A be the infinitesimal generator of bounded analy§emigroup
{S(t)} =0 and 0J p(—A).where the operatorA define from DEA) LI X

into X, (X is a Banach space).

(b) Let U be an open subset of [xX), for O < r< co.Where X, is a Banach

space being dense in X.

(c) For every (t, X)JU, there exists a neighborhood [G U of (t, x),the
nonlinear maps f, g:[0xX, [0 - X satisfy the locally Lipchitize

condition with respect to second argument,
[I(t, u)—=1(s, V)lk < Lollv—ulk
llg(t, u)—g(s, V)} < Lq||v—u]}, for all (t, u) and (s, V)IG.
(d) Fort" >0, ||f(t,v){<B4, [|g(t,v)<B,, for O<t< t'" and for every ¥ X,.
(e) Fort">0, ||St)- 1| ||Au|< &', Whered <3, 0<t<t”,

(f) h is continuous function which at leadfilb’([0,r):R),Where R is the real

number.

(9) w(.) be the arbitrary control function is given if(J0,r):O), a Banach
space of control functions with O as a Banach spawt here B is a

bounded linear operator from O into X avdtf|jo< ki, for Ost<r,

(h) Let £>0 such that ;£min {t',t",t" ,r}, satisfy the condition

1

(hi) t<{[KK,+(& o+B) +h (& ;+B ) C A1 -0) 3-5)} =@
= 4TS KK, HE o+B) +h (& ;+B )] Tl -0) (5-9)
(i) there exist =0 and 0<¥ <1 such that:

Ih®)-h(s)< G|t §, for all t, sO[O, t].

11.
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Chapter Three

(g) There exist R0 and 0<¢<1 such that:
[w(t) - w(s), < Ro|t- &, for all t, sT[0, t].

Remark (3.2.2):

The same problem (3.1) is being taken (in chaptdn®) the conditions
on the semigroup and the functions, operators hamged and hence, this

problem shows it. The comparison between the cmmditof the same

problem of chapter 2 and chapter 3, present aswoll

Chapfer two

Chapter hnree

1. Ais the infinitesimal generator of

C,compact semigrou.{ﬁr(t)} 50"

2. The operator A is defining from

D(A)OX into X. Where X is a Banach

Space.

3. U is an open subset of X.

4.the nonlinear maps f,g:[0Y0 - X
Satisfythe locally Lipchitize conditior
[IfCt, va) = (t, v2)lix < Lollva — vl

llot, ¥ — a(t, w)lix < Lallvi = v2|

5. For t>0, [|IT()w — w|k < p',

Wherep'<p, 0<t<t".

1.-Ais the infinitesimal generator d@ounded
analytic semigrom{ﬁ(t)}t>o.

2. Toyerator-A is defining from D(A)JX

into X,Jp(-A). Where X is a Banach space.

Ude an open subset of [0xXq, for O < r< co.
\Where Xis a Banach space being dense in X.
4.The nonlinear maps f,g:[0s¥4 [0 - X satisfy
1 the locally Lipchitize condition

[ICt, u)— (s, V)lk < Lollv —ulk

lla(t, wy g(s, V)N < La|[v—ulk

m

5. Fort" >0, (IS 1| [|Aul|< &,

a

whefe <, 0<t<t'"”, A” is the fractional power

Of A.
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Theorem (3.2.3):

Assume that hypotheses (a)-(g) are hold, then veryew[X,, there
exists a fixed numbei,t0 < § <r, such that the initial value control problem

has a unique local mild solutiopUC((0,1,]:X), for every control function
w(.)OLP([0, r):0).
Proof:

Without loss of generality, we may supposeof<because we are

concerned here with the local existence only.

For a fixed point (0O4) in the open subset U of [0%X,, we choosed > 0
such that the neighborhood G of the point {Odefine as follow:

G={(t,x) JU:0<st<t, ||x— Wwlk <8} OU {since U is an open subset
of [0,r)xX}.

[|A°S(1)||< Cut™®, for t >0 { by theorem (1.8.7.c }

Where G is a positive constant dependingcon

:
And assume ¥ J.| h(s) |d:
0

Set Y=C([0,1]:X), then Y is a Banach space with the supremunmno

Iyl = sup [ly(®lk

OStStl
Let S, be the nonempty subset of Y, define as follow:
Sw= {uw Y Un(0)= AUy, [lut)— A%Uolhs B, O t< ti} (3.3)

To prove the closedness qf & a subset of . LeIQ,DSW, such that
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u{,‘v 0f5 - Uy as Nl - oo, we must prove that,ulS,, where (P.C) stands

for point wise convergence.

Sinceuy, S, = ul,0OY, uj (0)= A%y and |y, (t)-A%Ug|k< 8,0 t < ty.

Sinceuy, [ HS - uy {see appendix D}, hencg,uY. where (U.C) stands for

the uniform convergence, and also
Sinceu, [ T luj,— Uyl O - 0, as NI — oo

since [y~ k= Sup [|u(®) ~Uu(®)lk O -0, as i — oo,

Ostst

By llyll = sup [ly(t)[k}-

O<t< tq

Which implies that |J;, (t)-u.(t)|k O - 0, as N -, for every &t<t, i.e.,

lim uy, () =uyt), 00<t<ty (3.6)

n - oo

— lim ul(0) =u,(0) {by (3.6)}

n — oo

= lim A% = u,(0) {since u,, S}

n— oo
= A%Ug= u,(0)
Notice that:

1)) = A” Wolk =[] lim uy, () = A" wlk  {by (3.6)}

= || lim u () - lim A%k
n_oo

n - oo

=l lim (ug () = A" w)lk = nlimooIIUCv(t) = A% wolk

n - oo
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= |luft) = A% Ulk < lim 8 {since uj, 00 S}

n - oo
= ||uu(t) = A" wo|k £ 8, for 0 t<ty.
We have got gis closed subset of .

Now, define a mapf: S, - Y, given by:

(R0 = SOA W + | A’S(- ) 16A” U, O
s=0

t

[ hs=Dgt A"y, €0t

s=0

t
d: + j A%S(t-s)(Bw)(s)ds (3.7)

s=0

To show that §{S,) O Sy, let u, be arbitrary element in,&nd let
Faouwll Fu(Sy), to prove Ku,[S, for arbitrary elementyin S,.
From (3.3), notice that J&,Y {by the definition of the map f}
And (F,uy)(0) = A%y {by (3.7)}, notice that:

[ (Futha) (t) = A%Uolk = |[S)A U, = Aug + j A"S(t-s)(Bw)(s)ds +

s=0

t t
[ A'st-s) fs. A" u, ) | hisT)aC A"y Oyd) dl
s=0 s=0
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t
IR ® - Auglh = [[SOA G ~ AU+ [ A’S(t-5) (BW)(s)ds +

s=0

[ A'st-s) fs. A" u, () | hisT)al A"y (e o+
s=0 s=0

t t
jA“S(t—s)f(s,q) )de - jA“S(t—s)f(s,q) )de +

s=0 s=0

jA“S(t—s) j h(s=1)gt ,y )d| d-

s=0 s0

t

[ A'st=s) [ nst)gt .y)d | dlk
s=0

s0

—

t
MO - A%l = [[SOA ~ AU+ | A’S(t-s) (Bw)(s)d +

s=0

j AGS(t—s)[f(s,A_a u, (S)r- f(s,y } d+

s=0

J A9 [ hstf ot A4 € ot b ] dJ 0+
s=0

s0

t S
jA“S(t—s) f(s,4 ﬁj h(s-t)g( .y )d] |k
s=0 =0
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t
IF)(®) ~ Aol < [IS@ATU =~ AUol bt [ 11A™S(t= ) 1111 (B ))l1c +

s=0
t
JIA'SE= 91T, A" 4 () flsg)II+
s=0
.'||A°‘S(t—s)|[j IhGT)IIgC R W) 9l ou )Tl]i +
s=0 s0
t s
[ nats- s)|[ If(s.p ) [ Ihest )] Ig(ou x@d
s=0 =0

=

By the conditions c, d, e, we get:

t
(Rt (® = AUolk < & + [ C, (t=5)" KoK, ds +
s=0
t

| Calt=9)" Lo IIA U, (s)- @ i d+
s=0
t

| Calt=9)"h Lo 1A%y, () @ Yl o+
s=0
Cy (t—5)“[By + h B,]ds

s=0

=

A%

By using|x|, =‘ . We get:

[1(Futka) (8) = A%Uolhs & + CaKoK(1 = 0)™ ™ + 8Calo(1 ~ ) i+ 3Cq
Ly hy (1-0)™ t," + (By + hy Bo)Cq(1 - a) 'ty

=

[[(Futha) (1) — A%Uolh < & + [KoKy + Lo + 8Ly h, + (Bi+ hy B2)]Cq(1 - a)™

1o
t
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-

[(Futta)(©) = A%Uglk < &' + [KoKy + (BLo + By) + hy, (Blo + Bp)]Co(1 - a)™t
g1

By using condition (h.i)

-

|| (Ruli) (t) = A%uglk < O, for 0 t < ty.

So one can selegt, such that:

ty=min{t’, t', t", r, { [K K, +(& o +B ) +h (& ;+B )] € {1 -0) (G-

1

8)} -}
Thus, we have that,F S, 0 - S,

Now, to show that [ is a strict contraction on,Sthis will ensure the
existence of a unique mild solution to the semdmeaitial value control

problem.

Letu,,,U,,0 Sy, then:
IR B)® ~ (FuT )OIk = [SOA U + [ A'S(t-3) (Bw)(s)ds +
s=0
t t
| A“S(t—s)[f(s,A‘a:uN ) | heT)a ATy T »d] C-
s=0 s=0

t
S(t)A%U, - j A%S(t-s)(Bw)(s)ds -

s=0

| A“S(t—s)[f(s,A‘“uN ) | hsT)al ,A“—wr())d] dl
s=0 s=0
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=

(R T, )(®) = (Fu Ty )OIk =

t t
] A“S(t—s)[f(s,A‘“ﬂN O | hsT)aC ,A“:wt())d] -
s=0 s=0

| A“S(t—s)[f(s,A‘“uN ) | hsT)al ,A“—wr())d] |k
s=0 s=0

=
(Rt )() = (Ruty)(Olks

t
JIASE= 911115 Ay () fls.A W GBIl +
s=0

t t
IIIA“S(t—S)I{j IhsT )0 A7 pT() ol ,ﬂwr(»n}
s=0 s0

=

IR TW)® = (Fut )OIk S [ Cq(t=5)" Lol AT, (s A™Y, (S)1Id+
s=0

t
| Calt=57" R L IIA“T, €)= AT, €)11d
s=0

—

[1(Fuly) () = (FuT )OIk Ca(1 = 0) Lo [Ty (8-, () " + Cu(1—0) ™
hy, LollTy @)~ Ty € °
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”(Fwa)(t) - (FWUW)(t)”xS Cu(1- C()_lLO sup ”m (t)__l,{N (t) |)l( tll—ot + G,

O<t< tq

(1-a)™ hy Ly sup [Ty, ()=, (O t™°

O<t< tq
—

[1(FuT)® = (R T )OS Ca(L = 0) Lo [Ty~ T, | 677 +
Ca(l-0) hy Ly [Ty =Ty § &

-
(Rl ) () = (R )OIk S (Lo +hy L)Co(1 - )™ 17 [T, — Ty I

=

(R T, () = (Rt )(®)lk< %5 (LotLih )Co(1 - ) " |IT, ~ T, |
=

(R, )(1) = (Fwty, )OIk = %[5|—0+5 hy La] Ca(d =)™ &7 [Ty~ Ty W
=

(R, )(®) = (FuT,, )k < %[6L0+6 h,, L1+KoK1+By+h, B] Co(1 - )™

0 [Ty~ Ty

—

R, = (Rl )OIk < 3 KoK + BLo+ B) + , (BLs + B Co

(1=0) ™ |Ty =Ty W t°
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(R G)(®) = (FuTy )OIk < %[KOKl + (BLo + By) + hy (BLy+ By)] Cu(l -

0) KoKy + (BLlo + By) + hy (BLa+ Bo)] ™ Cl (1~
a)®-9) ||t, -1, N {by the condition (h.i)}

=
IR0)0 - (R0 )OS (1-3 | 1T, b

—

U

(R, )(O) — (Ruty, ) Ok < (1-% It~ N (3.8)

Taking the supremum over [Q] bf both sides to (3.8), we get:

sup [|(FuU)(t) = (Fuly, )OIk < (Pé'j It~ N

Oststy o

=

(Rt )(O) — (Ruty, ) Ok < (Pé’] T =T, K . {by IIyly = sup|ly(®)Ii}

o O<tsty

Thus, F, is a strict contraction map {see appendix C fa definition} from
Sy into S, and therefore by the Banach contraction prindipée appendix C
for the definition} there exist a unique fixed poig, of F, in S,, i.e., there is

a unique WS, such that fu, = uy,.

The fixed point satisfies the integral equation:

1r.
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t
Un() = S(OA U, + j AS(t-s) (s, Ay, ()

s=0

S

j h(s-1)gf,A" q,v(r))d} de + J.A“S(t—s)Bw(s)ds,
s=0

=0

forO<t<t;, Ow(.)JLP((0,t,):0) (3.9)

For simplification, we set f(Bf(t, A uut), §(t)=g(t, A un(t)). Then

equation (3.9) can be rewritten as:

t S
() = S(HA%U, + j A“S(t—s){?(s)+ j h(s-1 )gt ))m} d +

s=0 =0

t
J A%S(t-s)Bw(s)ds, for 0<t<t;, Ow(.)JLP((0,t,):O) (3.10)

s=0

To show that f (tis locally Holder continuous {see appendix C for the

definition} on (O, t].

For this, we first show that,(t) given by (3.10) is locally Bllder continuous
on (O, .

Notice that, from the theorem (IV.7), it followsathfor every 0 A <1 -«

and every 0 < h <1, we have:
I(S(h)- NA°S(t- s)||< Cg hP ||A**S(t - s)||< CHP(t — sy P

Which is useful for provingt) given by (3.10) is locally Bllder continuous
on (O, .

Next, we have for0 <t <t +4t;

11



Chapter Three Existence and Uniqueness of Mild Solution to the Semilinear Initial
Value Control Problem via " Banach Contraction Principle"

s=0 =0

t+h S
[lu(t+h)-ua @) [b=1IS () A'uo+ f ATS(t+ h—&‘»{f(S)+ j h(s-T Jo( )d] d

t+h
+ j A%S(t+h-s)Bv (s)d: — S(H)A U -

s=0
t+h S t
j A“S(t—s)[?(s)+ j h(s-T )gt )cu] d- j A’S(t-s)Bw (s)dql
s=0 =0 s=0
f—

llun(tHh)-un(®)lk = 1IS(t + h)Auo — S(HA U, +

t s ]
jA“S(t+h—s{?(s)+J h(s-t )g¢ )d| d +

s=0 =0

t+h S ]
J-A“S(t+h—s{~f(s)+J. h(s-T Jgt )d| d +

s=t =0 i

t t+h

jA“S(t+ h- s)Bw (s)ds + jA“S(t+ h-s)Bw(s)d: -
s=0 s=t

t S t
j A“S(t—s)[?(s)+ j h(s-T )gt )cu] d- j A’S(t-s)Bw(s)dql

s=0 =0 s=0
=

[lu(t+h)=ta(®)lk < [1(S(h)DSOA Uolk +

t S
f”“ﬂhf'ﬂwsﬂ-S{ﬂﬂﬁﬂ+I |hest nu@oMn} +

s=0 =0

t
[ I1sthyx DATS@E= )P N1 (sHI o+

s=0

1re
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t+h S

[ AT+ h-s)i | MM+ [ Ihtst )TIkgGolrd +
s=t

=0

t+h
JuATs@r h-s)i & Gl ¢
s=t
= |1 + |2 + |3 + |4 + |5. (311)
We estimate each of the terms of (3.11) separately.
11 = [IS(h)- DSOA Uolk < CohIA™PS)lk [1ubll < CH [Jupl|t ™
=
I, < M;h®, where M depends on t forh<t;.
t S
2= [ (S DA*S(= ) T+ [ Ihest )TIL( ||+
s=0 =0
=

t t
I, < J‘ (B + htle)ChB (t- ST(‘“B) di< (Bl+htle)ChB I (t- ST(OHB) ds
s=0 s=0

—(a+p)+1

< (B, + htle)ChB @ (B, + htle)ChB
1-(a+p) 1- (@ +p)

=

(Bl + h,[1 BZ)ChB g(a+[3)+1
1-(a+B)

I, < M, hP, where M= is independent of t forQ<t,.

t
5= [ 11(Sthy- DA"S(= 9)U IIB (sMI

s=0

rrr
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t t
ls< j ChP (t- sy @) K K, ds< CHPK K, j (t-s) @*B) ge
s=0 s=0

Ch KoK y1-@+p o ChPKoK, {l-(@+B)
*1- (0(+[3) S 1- (0(+[3)

B —(a+B)
I, < M3 h?, where M = Ch™KoKity

Is independent of t fori<t;.

1-(a+B)
t+h S
o= [ I1A*S(t+ h- )Y | TfEMI+ [ Ihest )TIgG) I d
s=t =0
—
t+h
(Bl+ht BZ)CO( -
o A 1-a
l4< (B, +hy B,)C, j (t+ h- )% ds 2 2h
s=t
=
1-a _ ( +h 2) .
l,<Msh™™, where M = - is independent of t fordi<t;.
a

—

l,< M hP

t+h

5= [IIA*S(t+ h= )| 1B (S)I ¢

s=t

1ré
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t+h
- C. KoK, 1-

Is< C, KoKy | (t+h—5)"" dsg 200" 1pla
5 o ™0 1[( ) 1-a

s=t
—
Il < Msh'™, where M = % is independent ofi[0, t;]

~a

:>|5S M5hB

Combining (3.11) with these estimates, it followsttthere is a constant C

such that:

lut+h) = wD)lk < C; i< 1| h|

Where G =M; + M, + M3 + My + M.

=Let k=t+h=> h=k-t

=||udK)—Un(®) [k <Cilk —tf°. For 0 <t < ks t;.

And therefore yis locally Holder continuous on (04t

Now, to show thaf (t) is locally Hilder continuous on (0;]t we have,
Fort>s:

I1F(8) =F(S) Il = IIf(t, A ua(®)) = f(s, A unl(s))lk

=

I1F (1) =F(S) Ik < Lo[lt = s + || A%un(t) — A un(s)]k] for 0<6<1
{By using assumption (c)},

-

IF(t) =F () 1k < Lo [It = SF + [1ud®) = uu(S)IK {by [Ixl = lIA™XIk}

1re
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N
I1F(£) =F(8) Ik < Lo [It = sf + Cift = sf]
=
IIf () =f ()l < Lo [It = s} + Cylt - s}], wherey = min {6,3}
=
IF(8) —f(s)Ik < Lo (1 + G) |t—sI
=
IIF(t) =f(s) |k < Cylt - s, where G=L, (1 + G) is a positive constant.
Let h(t) = f(t) + jh(t—r)g(r)dr + Bw(t)
=0
To show thath(t) is locally Hblder continuous on (0,]t

For t > s, we have:

Ih(t)=h(s)lk =[f(t) + j h(t-1)g()dt - f(s)- i h(s-t1 ot )d
o 20
+Bw(t) - Bw(s)
=
lIh(t) = h(s)lk = |f(t) —F(s) + i h(t-1)g(r)dr + _f h(t-1)9€)d -

j h(s-1)y()d + Bw(t) — Bw(s)

=0

X

11
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—

Ih(t) = h(s)lk < 1T (1) -F(s) Ik + flh(t—T)— h(s=T)| IF'g( )}l T+

Ilh(t—T)I Ilgt )W d + [[B ((t) -w(s)) Ik

=
Ih(t) - h(s)k < Clt—sl + Cs B, |t—sf t, + KoRo|t — sf

Consider the following initial value control probie

dv(t) -
ot +Av(t) =h(t),t>0 (3.12)

v(0) = u,

Whereh(t)=f(t) + j h(t - 1) §(T) dt +Bw(t).

=0

Which implies that the initial value control probig3.12) has a unique mild

solution y,C((0, t]:X), {see appendix D for the state}, given by:
t ~

Vi) = S(w + [S(t- sih(s)d:
0

=

vW(t)=S(t)Lb+J‘S(t—s{~f(s)+ j his-1 Yot Yo+ ®& (s}) c
0

=0

—
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val®) = SOW + [S(t- s{ f(s, Ay, O [ hisT gl A y( )+
0

=0

Bw(s) } ds (3.13)

For 0 <t<t, Ow O LP((0, t]:0).
Operating on both sides of equation (3.13) with we find:

A%V, (1) = S()AUG + j S(t—s)A{f(s,A'“ u, (S)F j h(sT
0 =

=0

g(t,A%u,, (r))dr + Bw(s) } ds (3.14)

But by (3.9), the right hand side of (3.14) equgf¢) and therefore:
AV, (1) = un(t)
—

Vi(t) = A™%Uy(t), for 0 < t< t, O w(.) O LP((0, t]:0)

= v(t) = Sy + jS(t—s{f(s,wv (s))kj h(st Jg( Yo+ ® (%) (For
0 =

=0

O<t< t1,0 w(.)OLP((0, £]:0). So, we have a unique mild solution

Vi C((0, t]: X).

1 1A



Chapter Two  Existence, Uniqueness and Controllability of Mild Solution to the
Semilinear Initial Value Control Problem Via" Schauder Fixed Point Theorem"

2.1 Introduction

In this chapter, by using the theory of semigroanp &chauder fixed
point theorem”, the local existence, uniquenessthacdexact controllable of
the mild solution to the semilinear initial valuentrol problem has been
developed in an arbitrary Banach space X. Sufftatenditions for the global
existence of the mild solution to the semilineatiah value control problem

has also been developed.

The global existence of the mild solution to thend@ear initial value

problem has been studied see [Paz, 83],

du _
57 Au(t) =f(t,u(t) (2.1)
u@)=

where A is the infinitesimal generator of & Gemigroup define from
D(A)LIX into X and f is a nonlinear continuous map defifim [0,r)xX
into X.

Byszewski in 1991 [Byszewski, 91], has study thealoexistence and
uniqueness of the mild solution to the semilingatial value problem given
by (2.1).

Definition(2.1.1) [Pazy,83]

A continuous function u is said to be a mild saatito the semilinear

initial value problem (2.1) given by:

u(t) = T(t) w+ j T(t - s)f(s, u(s))d (2.2)

s=0
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Bahuguna.D in 1997 [Bahuguna, 97], has studiedldbal existence

without uniqueness of the mild solution to the demar initial value

problem:
du, Au(t) =f(t,u(t)+ 't[ h(t-s)g(s,u(s)dst |
dt RN ’ (2.3)
u(0)= u,

where A is the infinitesimal generator of a Gemigroup define from
D(A)LUX into X , f and g are a nonlinear continuous magsfine from
[0,)xX into X and h is the real valued contms function define from

[0,r) into R where R is the real number.

Pavel in 1999 [Pavel, 99] has studied the uniquepéghe mild solution

to the semilinear initial value problem given by32

Definition(2.1.2) [Bahuguna,97]:

A continuous function u is said to be a mild saauntito the semilinear

initial value problem (2.3) given by:

WD=T®%+ETG—$f@M@»+fh@ﬂm@ﬁﬁmhds (2.4)

s=0 =0

Our work is concerned the semilinear initial vatoatrol problem:

% + Au(t) = f(t, u(t)) +S£0 h(t=s)g(s,u(s)ds & (>0 (2.5)
u(0) =

where A is the infinitesimal generator of gg€&émigroup define from D(A)X

into X, fand g are a nonlinear continuous maje$ine from [0,r)xX into X,
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h is the real valued continuous function defir@fr[0,r) into R where R is
the real number and B is a bounded linear operbne from O into X.
Where O is a Banach space av(d be the arbitrary control function is given
in L"([0, r):0), a Banach space of control functiondwjjt(t)||o < ki, for 0<'t
<r. The local existence, uniqueness, controllaplé global existence of the
mild solution to the semilinear initial value camitrproblem has been

developed.

The following subtitle (2.1.3) shows the scope pplecability of the
present work. The present work guarantees the esxist uniqueness,
controllability of some important class of contrpfoblems in infinite
dimensional spaces and that is very important al e applications in
mathematics and one can see the following appkcakamples taken from
the literature. The reformulation of the followsaexples to general problem
in infinite dimensional spaces is out of the scopthis thesis, so we refer the

reader to study this reformulation. {See [KlausQ@p.

Practical scope of Problem(2.1.3)

We introduce some basic general concepts whichsetil here.

Note: We sef] ]| =||

Definition(2.1.4)[Rektorys,72]:

The symbol B, a = (a4,0,,...,0y) is an N-dimensional vector whose

coordinates are non-negative integers is definetthé&yelation

gl
DG_

= m wheredl|=a; + a, +... +ay.
1 - OXN
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Remark (2.1.5 [Rektorys,72]:

Let a,,(X) be a real or complex valued function definedband let

o = (04,dy,...,0N), M=(M1, H2,..., Un) be N-dimensional vectors with non-

negative integer coordinateg|3a, + a, + ... +ay, 4| =M1 + o + ... + U\

The symbol:

Ax,D)= > (-1)"'D (g, (x)D") (2.6)
lof,uE K

Define a partial differential operator of order 2K.

Here, the summation ovex|| | £ K means that addition is carried out
over all N-dimensional vectors, i for whicha,+ a, + ... +ay < K andy, +

b+ ... NS K.

We rewrite equation (2.6) as follows:

aIO(I alil
A(x, D) = Pol—= X 2.7
(x, D) IO(IEK( ) o O T PTRTIN )m (2.7)

Next, we give some examples:

Examples(2.1.6) [Rektorys,72] :

(i) Consider the operator given by (2.7), forlk i.e., an operator of the

second order, the summation of (2.7) in detail plv&in:

glal oMy
A(x, D) = el =2 X
(x, D) MEK( ) o o T TTIRTIN )—axyl..a o
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9 u |
= - X)y——— | +
|a|:%1:1( )axfl..axﬁ,w _a“l""*“N“l""“N( OX .. OX |
o | % |
- X)y——— | +
|G|:%:1F0( )axfl.. o _aal,...,aNpl,.._uN( oo
a° ou
10— Xy————| +
k,%ﬂ( )axfl..ax‘;‘,w{a“l""“N“v'"“N( axll..ak,gw}
> g, 0—U | 28
aEDheo o OxE oy | e g o |

If N =2(i.e., if we consider a plane problem), then thngtfSum includes

generally four forms, namely for the pair of vestar(a,0,)andp=(}y,Mo):

From the relatiofo| =1= a, +a, =1, for a3,a, are nonnegative integers and

The relatioﬂu\ =1=py; +H, =1, for Yy, Y, are nonnegative integers. We have

that:
a=(0)u=(@10
a=(1,0)u=(0,1
a=(0,)u=(0
a=0,)u=(0,1

(2.9)

The second sum includes two terms for the pairs vettors, for

la| =1|u| = 0.We have that:

a=(1,0),u=(0,0)
a=(0,)u= (0,0)}

(2.10)

And the third sum also includes two terms for thairp of vectors,

for|a| =0Ju[=1:
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a =(0,0)u = (1,0)
a=(0,0)u = (0,1)}

(2.11)

In the case of the last term in equation (2.8):ehe only one possible pair of

vectors, fofo| =0,/ =

a = (0, 0),u = (0, 0) (2.12)

From equation (2.9), we get:

d du 9 :
x,0x3 { Bono ()52 6xj x Px$ {a“””( ox Px }

0 30110 (%) ou d a0, ()—2Y au
X%, | O ax axS | ax%xd| R ax B,

From equation (2.10), we get:

d

‘m[al,o;o,o (x)u]

0
- m[ Q),I;O,o (X)u:|

From equation (2.11), we get:

a0010(x) X10X2 5 T &001 (X)Tz

From equation (2.12), we get:

80.0:0.0(X)u

Thus the differential operator (equation (2.6))tbé second order in two
variables x, X, has in general nine terms. Some of these termsnaiayally

vanish (if the corresponding coefficien}, & zero).
(if) Let 8y, = 1, fora = (1, 0),u = (0, 0) ,a = (0, 1)p = (O, 1),

And &,,=0, in the remaining seven cases. We get:
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2 2
AxDyu= -2 (100 | 9 [,0u)__[O0U, 0,
ox,\ 0x; ) 0X,{ 0%, 0X; 0X5
Thus, in this case, the operator A is the familiaplace operator in two

variables.

(i) If k =2 and N= 2, i.e., if we consider an operator of the fowtHder in

two variables and if we put:
agu =1 for a = (2, 0),u=(2, 0)
a=(0,2),u=(0,2),
ayy =2 for a=(1,1), p=(1,1)

And a,, = 0, in the other cases, then we obtain:

2 2 2 2 2 2
A(x,D)u = a{la ‘j)+az[1a ‘;j+ 0 [2 ou j
OX;\ OXy ) Ox5\ 0x5) O0X;0X,{ O0X0X,

0*u 0'u  9“u _ A2

A(X,D)u = + =
D= o Zaxaax2 * ox

Thus, in this case, the operator A is the biharmoperator.

Definition(2.1.7) [Rektorys,72]:

The operator A given by (2.6) is said to be elapfifor every real non-

zero vectok = (4, &5, ..., &),

D g, (XBeE, %0, wheref, = 11852 EQ, &, = Ef1EL2. ENY.
o, k
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Definition(2.1.8)[Rektorys,72]:

The operator A given by (2.6) is said to be strgraliptic if there exist

a number C > 0, such that:

> ag, (X)%.E, = CEFY,

ol F k
Where §[F= &2 +&5+...+ &3,

Next we give some examples about the above demiti

Examples(2.1.9)[ Rektorys,72:

(@) From example (2.1.6.ii), the Laplace operatdy is strongly elliptic,

since:
K=1, N=2, 3,~1, fora = (1, 0),u= (0, 0) ,a = (0, 1)p= (0, 1),
la|=1=0a;+0a, =1,y =1=p +p,=1.

And a,,=0, in the remaining seven cases. We get:

2 2
AxD)u= -2 19U |- 9, 0u ) _[OTU, 0TU)__\
X, \ 0x;) 0X,{ 0x, 0X; 0X5
Then:

> ag 8.8, =1 GEXES + 1 EJELEES
o hEF1

=&1&1 + &8>
=& +&;5
= [gf

So that it is sufficient to put € 1.
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(b) If K=1,N=2, and putting @.10=1, @101 =1, 8,001 = C, @110 =—-C,

with C being an arbitrary constant ang=® in the other cases, we get:
A(x,D)uz—a 16u 0 16u _ou Cau _du _Cau
X, 0X; ) OX,\ OX,) Ox,\ O0X,) OX,| OX

= -Au

Also:

Y Adady = LEEEL, + LEEEES + CEEEES - C.EELR,
G

g2 +g2=[¢.

(c)fK=1and N=2,a,0.,0=-1, @101 =—1, then:

A(x,D)u = (—D%[(—nﬂ] _i£ - 1@]

1 0X, ) 0X, 0X ,
=
2 2
A(X,D)u = a—l; +a—l2J= Au.
X; O0X5
So that:
> ag&al, =8 - &=k
a1

Which implies A is not a strongly elliptic operator

For the general example, we introduce the follovaamilinear parabolic
integrodifferential equation. Le® 0 R" be a bounded domain with smooth
boundargQ.
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t

au((;t(,t)+A(X,D)u(x,t)=f(x,t,u(x,t))+j h(t= s)g(x,s,u(s))ds
t>0,x0Q =
(2.13)
where
Ak D)= %Ka‘“ CoD" (2.14)

Is said to be partial differential operator, wheg€x) is a real or complex
valued function defined of and O' stands for ang-th order derivative, and

assume that the partial differential operator gigri2.14) is strongly elliptic.

The parabolic integrodifferential equation (2.18nhde reformulated as

the following abstract integrodifferential equationX= L"(Q),1<p<.

{See [Bahuguna, 97]}.

t

S au(y =1u(0)+ ] e shgls uishds.s (2.15)
u(0)=u,

where the operator A : D(A)] X [ - X is the infinitesimal generator,C
compact semigroup and f, g : [0x® [0 — X, are nonlinear continuous maps
and h is continuous function which at lea8LA([0,r):R),Where R is the real

number. And in our system the following parabofitegrodifferential control

equation define as follow:
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t

%+A(x,D)U(x,t):f(x,t,u(x,t))+j h(t= $)g(x.s,u(s))ds+ By (1)
t>0,x0Q FO
(2.16)
where
A(x, D)= 2 a, (x)D" (2.17)

oK

Is said to be partial differential operator, wheg€x) is a real or complex
valued function defined o and D' stands for ang-th order derivative, and
assume that this partial differential operator givey (2.17) is strongly
elliptic.

The parabolic integrodifferential control equatgimen by (2.16) can be
reformulated as the following abstract integrodiéf@ial equation in
X = LP(Q),1<p<o. {See [Bahuguna, 97]}.

t

du _ -
o AUOSICUO)* [ he-sas.ue)ds 8 02, g
u(0)=u,

where the operator A : D(A)) X OO - X is the infinitesimal generator,C
compact semigroup and f, g : [0x® [0 — X, are nonlinear continuous maps
and h is continuous function which at lea8LA([0,r):R),Where R is the real
number. Andw(.) be the arbitrary control function is given if{[0, r): O), a
Banach space of control functions with O as a Barsggace and here B is a

bounded linear operator from O into X.

Next, the following useful examples have been dised in details:
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Example(2.1.10.i) [Klaus, 00]:

Consider the partial differential equation withaiel

du(t,x) _ 0°u(t,x)

—d(X)u(t,x) + b(x)u(t= r,x),&= 0,X1 [0,1]

ot aZXZ
ou(t,0) —0= ou(t,1) >0
) ox
u(s,x)=h(s,x), st [-r,0], x O [0,1] (2.19)

This equation can be interpreted as a model fogtheith of a population in
[0, 1].In fact, u(t,.) is the population density tahe t, and the term?@ix*
u(t,x) describes the internal migration. Moreovitie continuous functions
d,b:[0,10 - R" represent space-dependent death and birth raggeatively,

and r is the delay due to pregnancy.

In order to reformulation (2.19) as an abstracagelifferential equation
of the following form:

u(t)=Bu(t)+Puy,t= 0

2.20
U =ht X, ( )

where u [-r, 0] O - Y is define ys)=u (t+s).

We introduce the spaces =C[0,1] and X=C([-r,0],Y). Moreover,
define the operators:
o2
A= 5 D():={y IC0.1]:y'(0) =0=y (1)}
B:=A-M4,D(B) :=D(A).
®:=Mo_, 0(X,Y),

where M, and M, are the multiplication operators induced by d dnd

respectively.
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Example(2.1.10.i1)[Klaus, 00]:

On the interval [0, 1], consider the seceadder Cauchy problem:

2 3 4
4 ‘;f; X) baa:a()t(’zx)—(;ix(a(x)—a “a(;’ X)j _ Qulbx a‘:((:’x), t= Q x7J [0,1]
u(t,x)= O:E)Zu—(tz,x),tz O0x=01
(2.21)
u(019= t (Y = 4 0 0 0.4

For &1C'[0,1],b00 with Re k20 and c>0.

In order, to reformulate (2.21) to as an abstracosd-order Cauchy
problem on X: =F[0,1], of the following form:

u() = Bu-(t)+ Au(t), t= 0, (2.22)
u(0)=x,u(0)=vy

To that purpose, we introduce the operators:

A:= —cA? D(A) :={f [JH 0,1]:f"(0) =0 =f"(1)} :
B:=bA,D(B):= H3[0,1],

C:=+/aA,D(C) = H[0,1]

D:=-D,,M,D ,,D(D):= H%0,1],

Moreover 0, and [ denote the first derivative with maximal domain

and the boundary conditions, respectively= DD, is the Laplacian with

boundary conditions, and Jtands for the multiplication operator induced by
the function a.
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Example (2.1.10.ii1))[Klaus, 00]:

(Heat Equation).consider a hot bar of length ors th insulated at its
endpoints s= 0, 1. We assume that the bar can be heated asmmd point
s(0,1) and that we can measure its average temperataund some other
point s [1 (0,1). Denoted by x(s, t) the temperature at pwsi$ (] [0,1] and
the time t= 0 and by ¥(.) the initial temperature profile. This model da@

described by the equations:

OX(s,1) _ 62;(5 Yy bsyuct) t= 9 6 [0,

ot
0x(©0,8) __0X(LY o
0s 0s (2.23)

X(5,0)= % (5) € [0,1]

1
y@® = [c(s)x(s,tyds e 0
0

Here b and c represent the functions around thet gpand the point;$

respectively, i.e., we may take:

1
b(s):= [50 “€0,S0 *€ ol (s)
0

c(s):= k[s1 eps, ey (S)

For g,,e; >0, wherek;denotes the characteristic function of a subset
J 0 [0,1]. In order to reformulate (2.23) to an abstreontrol problem of the

following form:

X(t) = Ax(t) +Bu(t),
y(t) =Cx(t),t= 0, (2.24)
X(0) = Xp.
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Where A generates a strongly continuous semigrdiipH-o on Banach
space X, B is a bounded control operator from th&rol Banach space U to
X, u: R'0 - U is a locally integrable control function (alsdled the input),
C is a bounded operator from X to the Banach spyatie function y: R—Y

is the output of the system, angllx X is its initial state.

We choose the space X1.90,1], the control space B ,and the space

Y:=[ and define the operators:

A= d D(A) := {x 0HZ0,1]: x'(0) =0= x'(1)}
ds?’ ’ ’

B (U, X),Bu:=b()u,

1
CO(X,Y),Cx:= [c(x)x(s)ds
0

2.2 Local Existence and Uniqueness of the Mild Solution to the

Semilinear | nitial Value Control Problem

In this section, the local existence and uniqueonésise mild solution to

(2.5) has been developed.

Define the mild solution of (2.5) for every givenl L"([0, r):0).

Definition(2.2.1) :

A continuous function ywill be called a mild solution of (2.5), given by:

t S
0,0 =T + | Te- s{ BY(9) s (©)4 h(sr)g(w(r»dr}s (2.25)

s=0 =0

For every giverwL! LP([0, r):0).
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The local existence and uniqueness of a mild swiudf (2.5) have been

developed, by assuming the following assumptions:
(a) A be the infinitesimal generator,€ompact semigroup {T(t3, where
A define from D(A)O X into X. where X be a Banach space.

(b) Letp > 0 such thaB,(ug) = {x O X | [[x— w|| < p}, (where wOU {open
subset of X}),

The nonlinear maps f, g define from [0, Y into X, satisfy the locally

Lipschitze condition with respect to second arguties.
[IF(t, va) = (t, va)llx < Lollvi — v2l| @nd [|g(t, ¥ — g(t, W)l < Lal[v = V|
ForO<st<randy, v, 0By(uy) and Lg,L, is Lipschitze constant.

(c) h is continuous function which at leasilti([0,r):R),Where R is the real

number.
(d) Lett > 0 such that |[f(t, v}||< Ny, ||g(t, V)}f < Npfor 0<t <t and
VOB, (Uo).
Also let t'>0 such that ||T(tyt Wl < p’ for0O<t<t' and y O U, wherep’
IS a positive constant such tigat< p.

(e) w(.) be the arbitrary control function is given if([0, r): O), a Banach
space of control functions with O as a Banach spaud here B is a

bounded linear operator from O into X withv(})|lo < ki, forO<st<r.
(f) Let t,>0 such that:
t; =min {r, t', t'} and satisfy the following conditions

() ‘< P~P
(KK, +N +h N M

1

W b M(Lo+Lh )
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We introduce the following main theorem:

Theorem (2.2.2):

Assume the hypotheses (a)-(f) are hold. Then feryew U, there exist
a fixed numbert, 0 < t <, such that the initial value control probleny)
has a unique local mild solution,MC([0, t]:X), for every control function
w(.) O LP([0, r): O).

Proof:

Without loss of generality, we may supposeof<because we are

concerned here with the local existence only.

There exist M0 such that ||T(t)E M, 0<t<r. { since T(t) is a bounded

linear operator on X}.

Let p > O be such th&,(up) ={v O X | |[v— wl||<p} O U {since U is an

open subset of X}.
r

Assume h= [ |h(s)|ds (2.26)
s=0

We set ¥ C([0,1]:X), where Y is a Banach space with the sup-natefined

as follows:

|yl = Suplly(t)[k

o<ty
and we define

Sv={uw OY | u0) = g, uy(t) O By(to), for a givenw(.) O
LP([0, r): O), O t < t3} (2.27)

To prove § is bounded, convex and closed subset of Y.
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First to prove the boundedness {See appendix @htodefinition} of § as a
subset of Y for a givew(.)dL([0, r):0) , i.e. to prove there exist k >0, such

that ||w|h <k, forevery 4O S,
Letu, S, = u, 0Y, uy0)=u and y(t) O B(uy), for 0 t<ty

Since [|ully = Sup||u.(D)]k (2.28)

Ostsy
[lun(®)]x = [Jut) = Uo + Wol| < [Jun(t) = Uolk + [wllk < p + [|wli
Letk=p + ||w|lx > O, then:
lu(®)k < k, forany u, 0 S, (2.29)
Take the supremum over [Q] bn both sides of equation (2.29), we get:

Sup||uft)[k < k= [lull <k, forany u, 00 S, {by (2.28)}.

Oststy

Which implies that $ is a bounded subset of Y.

Second, to prove the convexity {see appendix GHerdefinition} of § as a

subset of Y. i.e. to prove

AU, + (1-A\)u,0S, , for everyu,,,u,,0S,, A O [0, 1]

Letu,,,u, 0S,, thenu,,u,0Y, U,(0)=0,(0)=u, andU,(t), U, (t)0 By(uo),
O<st<st;.

from (2.27), notice thahu,+ (1 — A\)U,,0Y{ the properties of the Banach
space Y} and it is clear thaxu,(0) + (1- A)u,(0) = u,.To prove AU,,(t) +
(1-AN)u,(t)0By(ug), 0st<ty.

From the definition of the closed bd)(ug), notice thatAu,(t)+(1-A)u,,

()X {the properties of the Banach space X} and
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VT (® + (L= N Ty (O = ok = INT,y (O + (L= N) T, (0 - AT, (0) - (L -
N U, )]k
R
N Ty ) + (1= A) Ty () = Ul = [N Ty () = AT,y (0) + (1= W)Uy (1) = (L -
N Uy, (0)lk
< IM(T(®) = Ty Ok + 1L~ ATy (1) Ty (O)) Ik
<Ap+ (I-Np=p
R
ING,, () + (L-A\)T,, (1) - Wk < p, for 0<t<t,
-
AT, (t) + (1-A\) T, (t) O Bo(Up), for 0st<ty
Therefore\ T, + (1-A) U, 0Sy, for everyl,,, U, 0Sy, 0SA < 1
Hence S is convex subset of Y.
Third, to prove the closedness {see appendix GHerdefinition} of §, as a

subset of Y. Letuy,(0S, , such thatu{) [ . u,as nd - «, to prove

u, Sy , where (P.C) stands for point wise convergence.

Since uy, 0S, = uy,0Y, uy(0) = up and ug, (t) 0 By(Uo), for 0O<t<t;

Sinceu;, 0 . uy {see appendix D}, hencg,uY. where (U.C) stands for

the uniform convergence, and also

Sinceuy, 0 MS - Uy = |[ug, = Unlly O0M5- 0,as Ml - w
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Since [y, ~uwl|= sup [Jug,(t) Utk O - 0, as i - o

Ost<ty
which implies that [j;, (t)-u(t)|k O — 0, as @l - o, for every g<t<ty, i.e.,

lim uy,(t) =ut), 00<t<ty (2.30)

n - oo

= lim ug,(0) =uy(0) = lim Uy = Uy(0) = U= u,(0).

n - oo n - oo

to prove y(t)UBy(Ug), for 0< t < t;, from the definition of the closed ball
B,(Up) , notice that y(t) O X, for 0< t< t; {the definition of the Banach space
Y} and

1)) = ol =[11im uiy(t) — tllc by (2.30)

=] lim ug,(t) = lim ugll

n - oo n - oo

=1L im [u},() - wll

= lim Jlug(®) - wlk < lim p=p
n- o

n- oo

Hence ||W(t) — Wk < p, for 0<st<ty
We have got Sis closed subset of .

Defineamapf: Sy O - Y, by:

t S
(Fatl)(®) = T(OW+ [ T(t-s) f(s,uy () +[ h(s g u,, @)dr ds+

s=0 =0

j T(t-s)Bw(s)ds, for arbitraryw(.) O L°([to, r): O)  (2.31)

s=0
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To show that §{S,) O S, , let u, be arbitrary element in,Such that
FaounOFW(Sy) , to prove Ru, O S,.

From (2.26), notice that ,&,1Y {by the definition of the map f}

and (Ruw)(0) = up by (2.31), to prove (fi,)(t) O By(Ug), for any y, 0 S,

From the definition of the closed b&}J(uy) , notice that (Fu,)(t) O X { the
definition of the Banach space Y} and

[I(Run) (1) = ol = [ITOW =~ Uo + [ T(t-s)Bw(s) ds +

s=0

IT(t—S) f(S,qN(S))+.? h(s-1)g(t, u,, (t)) dt | ds|k

s=0 =0

=

IEM)O -tk < ITOW -tk + [ 1T ) 1118 @) ¢+

s=0

[UTE=9) s,y M ¢+

[1TE=9)1| [ 1h 1l u, @)l d | ds
s=0 =0
—

S
Let J=[ |h(s-1)| ck,
=0

Assume k= st = dk=-dt

= for1=0 = k=s and for=s=k=0

0 S t;
=J=- [ |h(K[dk = J= [ |h(Kjdks [ [h(K)dk = hy {by (2.26)},
k=s k=0 k=0
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= J= [ |h(s-1)| ct< hy,
=0

=

Notice that:

[1TE=9)1| | Ihs 0 lll 9. u, @) Il d |ds<
s=0 L t=0

[1Te-9)1[ k] ot u 0l ]ds
—_—

1RO ~ lk < ITOW = tolk + [ [T ) 1118 (S)41 ¢+

s=0

[ITE=9)l1Ifs.y (SN ¢+
s=0

[1Te-9)1[ k] ot u 0l ]ds

=
[|(Rulw) (t) = Uo|lx € p' + MKoK 3ty + MNyt; + M hthz ty
<P + (KK +Ni+hy Ny Mty
By using the assumption (f.i), we get:
[|(Fsuw)(t) — Wollk < p, for 0O<st<t;, i.e., (Ruw)(t) O By(Ug), forO<st<ty

Hence Ru, O S,, for arbitrary y, 0 S, , which implies that f: S, 0 - S,

So one can select the timestich that:

t; =min <t t"r, PP
(K0K1+ N, + thz)M
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To complete the prove, we have to show that &, [ - S, is a continuous

map:
Given |uy, — U O - 0,as M -

To prove ||fuy, —Fulw|ly O - 0, as Ml — oo
Notice that:

[IFuty ~Futially = Supl|(Fuy)() = (Fat) ©)1k

Osts<t;

—

t

IRty = Futill = Sup|T®OWw + [ T(t-s)(Bw)(s) ds +

Oststy oo

j T(t —s)[ (s, U} (s)) + j h(s- 1)g(z, U’ (2)) dr] ds — T()uo —

s=0 T:to

[ T(t-s)(Bw)(s) ds -

s=0

t

_[ T(t —S){ f(s,u, () +_T h(s-1)g(t,u,, (1)) dt} ds|k
=0

s=0

j—
[IFuty = Fullall = Supll [ T(t-s) f(s. 4, () f(s.y (s)) *
Ostst; 2

t

J Ta —s){ J (s oe.ul @) - gte.u, (r))]dr} dslk

s=0
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| |Fw u\r/]v_Fwal IY < Sup

Osts<t

j HT(t-sX\Hf(s,u‘N ©F sy 6 4 | ot o) -geu,60), dm}ds
s=0 =0

—

IR ub —Fulh|ly < Sup j |\/|[L0 d ¢ _UW(T)HX st

0<tsty g—g

TWORITWE BEY N

—

”FWu\r/]v_quW“YS

u? () - u, (t)”x }ds

Oststy 0339

t
sup | M{Lo sup [un(® —u, (0], +h, Ly sup

Ostst o=

—

n
uw _UWHY + htlLl

uy, — UWHY st}

t
||FWu\r/]V_FWuW”YS SLIp{ I M |:L0

0stst | o2

=

n
uw - UWHY + htl Ll

uy, — UWHY ]ds}

ty
”qu\r/]v_quw”YS{ J. M |:LO
s=0

=

IR~ M| L

n
uw - UWHY + htl Ll

d-ulf,
—

||FWu\r/]\/—FWuW”YS M |:|—0 +ht1L1:|Hu\r/]V - UWHY t1

Since

n
u, — UWHY - 0,asn- o
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=

lim||Ryuy,—Fulull =0, i.e. ||Rug—Fulwlly —» 0, as no «
nooo

Assume thatS= Fu(S), and for fixed t [0, t], let
SO={Fut)® : wOSu}.
To show thatS (t) is a precompact set for every fixed {0, t],

fort=0= §(0) = {(Fwuw)(0) : LS.} ={ug} which is a precompact set in
X { see appendix B}

Now fort > 0, 0 < < t, define:

(Fvsvum)(t)=T(t)Uo+TT(t—s) f(s u, (S)H j h(s-T )g(, y W)drt|ds
s=0 =0

}’FOT(t - s)(Bw)(s) ds » for arbitraryu,, IS,
B =
(R (1) =
T(t)uo+T(8)t__[£T(t—S—e){f(s,qN(S))F JS‘ h(s-T )gl, i o)dt+ Bw(s)} s
0

s=0 1=

for arbitraryu,, J S, (2.32)

To prove that for every, 0 <¢ <t,
The setS(t) Z{(FVSVUW) (t)} s, ={( R, uy)(t) : u,0S,} is precompact set in X.
uW

Let:

J={TT(t—s—e){f(s,qN(s))k JS' h(st )o( { f))dt+ Bw(s):l ds:y,U %}
0

s=0 =
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To prove the set J is bounded in X, i.e., therestexiL>0 such
thalﬂj”x <L,003.0u,0S,,

Notice that, for arbitrary,, 'S, :

t_

IsT(t—s—e){f(S,qN(s))k T h(s1 )g(, i 0)dt+ Bw(s):l d%
- X

R
< tf T(t—s—e){f(s,uN(s)ﬁ fo h(s-T gl Y B+ Bw(s)} ds
= X
R
< [ ITa-s-oiI1eu, O+ 1] 6t u O ~Kofwiolo s
R

<M (N1+ htl N2+K0K1) (t_E) <M (N1+ htl N2+K0K1) t1
LetC=M (N1+ htl N2+KOK1) t1 >0

=

s=0 =0

t—¢ S
jT(t—s—e){f(s,qN(s))-k [ h(st)g( y)dr+ Bw(s):l d% <C,
X

fordu,OS,.
= Jis a bounded set in X.

Let A={T(e)d:u,0F}which Is precompact sétu,OS,{the

compactness of the semigroup}, also let B =Ty(t)s precompact set
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Ou,OS,, which implies that A+B is precompact set, faru, S, .[see
appendix B].

—
The setS,(t) Z{(FVSVUW) (t)} = {( K, u)(®) : w,0S,} is precompact set in
u,, 0s,
X. Moreover for any 1S,, we have:
[[(Ruta) (1) — (K b)) = [IT(Ow +

IT(t-S{f(s,uN(s)H h(s-1 g, w())dr} ds +

j T(t-s)(Bw)(s) ds— T(t)uo —

=0

t-¢€

jT(t—s){f(s,uN(s)H h(s-T ), wr())dr} ds -
=0

s=0
FT(t —~sX Bw)(s) delx
=

[1(Ftha) (t) = (R u) Ok =

T(t—s){f(s,q,v (s)r+ f h(s 1 )a(, Y w)dr} ds +

|

0

j T(t-s)(Bw)(s) ds+

s=0

J T(t—s){f(s,uN(s)H h(s-T )9, M)ﬂ ds +

s=t-¢ =0

0
[ T(t-s)Bw)(s) dﬂ

s=t-¢
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= [I(Ruuw)(t) = (Ry U) (Ol =

J T(t-S){f(S,uN(S»FI h(s-T )g(, y W)dt |ds+

s=t-¢

t
[ T(t-s)Bw)(s) dﬂ
X

s=t-¢

=

—

I(Fut)(t) = (K u) @)l < MNy(t -t +€) + Mh No(t -t +€)

+ MKoK; (t - t+€)
< (Nl + htl N, + KoKl)MS

=
I(Fut) () = (R u) (I < (N1 + hy N + KgKy)Me
=

|(Ruw)(®) = (Fyu)®Ik 0 -0 ,aseld -0

ie., |im(F§qu) ®=(F,u,) @

€00

Which imply thaté(t) Is precompact set in X, for every fixed t > 8eg
[Bahuguna, 97], [Balachandran, 02]}.

To prove thatS = Fu(Sy) is an equicontinuous family of functions {see

appendix C for the definition}. We have:

|[(Futin) (r) = (Fatw)(r2) [l = |[T(r)u, + j T(r,— s)(Bw)(s) ds +

s=0

jl T(rl—s)[f(s,qN (s)) +f h(s r)g(t,uw(r))dr} ds = T(r2)Uo —

s=0 =0

f T(r, —S){ f(s,uy (s)) "‘T h(s-t)a(z,uy, (@) d’[} ds —

s=0 =0

[ T(r, =s)(Bw)(s) d%
X

s=0
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=

”(quw)(rl) - (quw)(rZ)“X = ”(T(rl) - T(rZ))uO +

] 0
[ Th-s)Bw)(s)ds+[ TE~- s)(® )(s)ds
s=0 S=y

NG ‘S{ .Uy )+ ] (s D9e U 9) dr} ds+

<=0 =0

0 S

[ 10, —s){f(s, Uy () +] (s D)9 uy (T))dr:l ds” "
s=p, =0
p—

IEMD) - Rk s ITE - TeDudk+ [ IT6-9) 118 @4 ¢
0

S=

0
*INTEH=9)IB ()Y c*

=h

TITG- 9Ty M+ | 106111196 Uy ©) Il eds
| |

S= T
S

0
+ [ NTwR-9)lfs.y M+ [ IhE=D1l9¢ u, @)k deds

=5 =0
—

|[(Fth) (r1) = (Futw)(r2)[lx < [[(T(R) = T(r2))uollx + M KoKy 11 + M KoKy(-T2)
+ M(N1+ hrl N2) rn+ M(N1+ hrl N2) (_rz)

=

|[(Fatw) (1) = (Fatw)(r2)[lx < [[(T(r) = T(r2)uollx + M KoKy (ri—r2) +
M(Nl+ hr1 Nz) (r]_ - rz)
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Since {T(}so is @ compact semigroup which implies T(t) is coagdus in the
uniform operator topology for t > 0 {see (1.7.1Meorem}, therefore the

right hand side of the above inequality tends tm & § — r, tends to zero.

ThusS is equicontinuous family of functions.

It follows from the theorem "Arzela-Ascoli's thearé {see appendix C for

the state} that is§=FW(S) be relatively compact in Y and by Applying
"Schauder fixed point theorem" {see appendix Ciliar state}, which implies
Fv : Sy O S, has a fixed point, i.e., b, = U,, Hence the initial value
control problem given by equation(2.5) has a llooald solution
U, JC([0,1]:X).

To show the uniqueness,

Let U,,(t), Gu(t) be two local mild solutions of the initial vaucontrol

problem given by equation(2.5) on the intervalt[p, We must prove

|| U, (t)— auw(t) [k =0, Assume [{i,, (t) — Gu(t)|lx Z O, notice that:

t
T(t)u, + j T(t—s)(Bw)(s) ds +
s=0

11 T, (1) — Tl =

t

[ T(t=9) f(sTy (S)¥ f h(s-1) g,y no)dr} ds — T(t)uo —

s=0 =0

t

[ T@=s) (s @) [ h(sT) gl (t»u} -
=0

s=0 T

t
[ T(t=s)(Bw)(s) dﬂ
X

s=0
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t

[ T-s)fsT, O)r f(sy () d+

s=0

11 T (1) — Gu(®)l =

t

| T(t—S){J‘ h(s-1) 9¢t. 7, ())_Q(T,UW(T)))dT} d%
=0

s=0 =

X

—

[l Ty (1) = Gu(®)lk < MIIf(s, Ty, (8)) = (s, G(s)) Ik ta + My [lg(r, T, (T)) =
9(IW(T)k &

—

Il Ty (8) — GBIl < MLof| Ty, (S) — BulS)lk t +M Lihy || Uy (T) = G(T)l ta

=

I Ty (1) = Bu(®)li < MLo Sup || Ty, (1) ~ (Bl t. + Mh, Ly Sup |[T,,(t) -

Ostst, Ostst
aw(t)[x t
—

” ﬁw(t) _ﬁw(t)“X S MLO” ﬁw_ Uy “Y t + Mhtl I—l” ﬁw_ Uy ”Y th

{By using [lully = Sup|lu/(Oli }

0ty
—
I Ty (1) = Tu®Ik <M (Lo+h Lo) || Ty=Ow [ ta

By using assumption (g.ii) which implies:

_ 1 _
U, () —au(t)|lk <M (Lo+h Ly) * Uy, Uw
|| Uy () — Bu(®lk <M (Lothy L) M (Lo +hy Ly || TUy— T [}y
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11 Ty, (1) = Bu®lk < 1Ty~ G |l

By taking the suprumun over [Q] bf the both sides of the above inequality,

we get:
| U,,— Gw |y < || U,,~ Tw |}y , which implies to a contradiction
= ||, 0)-tut) [k =0 = T, (t)=1Tn(t) for O<t<t;,

Hence we have a unique local mild solutiofdG([O, t]:X) , for arbitrary
w(.) O LP([0, t): O).
So one can selegt0 such that:

t; =min < t',t",r, P=P : :
(KoK1+N3+h (N M M(L o+l R )

2.3 Exact Controllable of the Mild Solution to the Semilinear

I nitial Value Control Problem

In section, the controllable of the mild solutioiven by (2.25) to the

semilinear initial value control problem given /%) has been established.

We introduce the following general concept of tegdct controllability”

Definition(2.3.2) [Balakrishnan,78],[Balachandran.,02]:

Given any two pointsdy, U, LIX ( X is a Banach space) , we say that the
mild solution given by (2.25) to the semilineartial value control problem
given by (2.5) is exactly controllable op 3 [0,y] , if there exist a control

wOLP(J:0) such that the mild solution,() of equation (2.25) satisfy the

following conditionsu,, (0)=w and u, (y)=U.
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Remark(2.3.3)

Our aim is, the mild solutiom,,(.) to the semilinear initial value control

problem can be steered to a subspace of X dengtdddnd it can may be

transfer fromu,, (0) =W to u,,(y) =u=volIV.

The following remark which is useful for findingetttontrolwOLP(J,:0)

Remark(2.3.4)

Let O be a reflexive Banach space define as follow:
O = {w(t) : wOLP(J»:0)} , and X be a Banach space.

Define a linear operator W: O, X as follow:

Ww(t)= f;T(t —-s)Bw( s) ds, for O<t<y,d w(.) O L"([0, r):0).
Or equivalently as, define WL(t)B = f;T(t —-s)B.ds, for O<t<y

Where B: O- X and L(t) :X - X , where L(t)=I;T(t -s)..ds, for O<st<y

For the special case wheryt=define a linear operator GapB ,

G: O- X, as follows:

Gw(y)=[ T(y=-s)Bw( ) ds, Ow(.) O L%([0,y):0).

Actually, we can assume, without losing generdlitgt RangW=V and we

cam construct an invertible operatﬁtdeﬁne on O/kerW.

We are trying to simplify and discuss the constauctof an invertible

operatorW define on O/kerW. [See appendix A].
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The controllable of the local mild solution to tisemilinear initial value

control problem will be developed by using thedaling assumptions:

(&) A be the infinitesimal generator,Compact semigroup {T(t)o, where

A defined from D(A)CI X into X. where X be a Banach space.

(b) Forp > 0, we define,(up) = {x O X | |[x—Uo|lx < p}, where wLU (open
subset of X) , The nonlinear maps f, g define f{OmMxU into X, satisfy

the local Lipschitz condition with respect to tleesnd arguments | i.e.

|[f(t, va) = f(t, vo)[lk < Lollvi = vof| and [lg(t, ) —g(t, vo)l < Lal[vi = V2|
For Ost<t; and v, v, U B,(Up) and Ly, L; is a Lipschitz constants.

(c) h is continuous function which at leasilt([0,t;):R),Where R is the real

number.
(d)Let t >0 such that ||f(t,a)| Ny, ||[g(t,a)f < N, for <t <t and all B
o(Uo)-

Also let t'>0 such that ||T(thu- wllk < p' for 0<t<t" and 4 O U, where

p' is a positive constant such tipatk p.

(e) w(.) be the arbitrary control function is given ifi(J0,t;]:0), a Banach
space of control function with O as a reflexive Belm space and here B is

a bounded linear operator from O into X.

(f) The linear operator G from O into X defined by:

Gw(y) = f T(y-s)Bw(s) ds, O w(.) OL[0,y): O).

s=0
Induces an invertible operatér defined on O/kerG.

(g) There exist a positive constant$uch that f[;‘1|| <.

69



Chapter Two  Existence, Uniqueness and Controllability of Mild Solution to the
Semilinear Initial Value Control Problem Via" Schauder Fixed Point Theorem"

(h) Lety=min {t', t’, t;} and satisfy the following conditions

(hi)y < P=P = oIV I[+Mlu o)
d)Yys=s a+ IOII)M(N1+hyN )

1
(Lo +h,L)(L+ g M

(h.ii) y <

Remark(2.3.5):

The condition (f) in our assumption can be satis{eee appendix A}.

Theorem (2.3.6):

Assume that the hypotheses (a)-(h) are hold. Taeevery 4, vo LIV [
U, there exists a fixed number,0<y<t;, such that (2.25) is exactly

controllable on g=[0.y].
Proof:

Using the condition (f), define the control:

t

w(t) = él{vo ~T(tug~ [ T(t-s) f(su, (S

s=0

F h(s—T)g(r,u(r))dr} ds} (2.33)

=0

Define the following map, given by:
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t
(@)D =TMOU + [ T(t=S)[ (BW)(S)+ f(S 4y (S)F

s=0

S
| hs-T)gt. u, (c))dr}ds 0 w() OLP(O, 1): 0) (2.34)
=0

By using (2.33) and (2.34), we have to show th&4Phas a fixed point.
We can rewrite equation (2.34) as follows:

t S
(@) O=TOUH | T(t—S){f(s,L{N(S))* [ hsT e ww)dr}ds

s=0 =0

+ L(t)Bw(t) , Ow(.) OLP([0, t): O) (2.35)
By using (2.33) and (2.35), we obtain:
t S
(@uuy) (1) = T(uo + j T(t-S){f(s,qN(s))r j h(sT )oK ¥ rO)dT:lds
s=0 =0
t

+ L(t)Bé'{v0 -T(H)u, - j T(t- s)[f(s, Uy ()}

s=0

f h(s-1)g(, Y, (r))dt:lds] For wl L?([0, t,):0)

=0

There exist M0, such thaflT(t)| <M, for O<t<t; {since T(t) is a bounded

linear operator on X}.

Let p > 0 be such tha,(up) = {xO X : ||[x— ulk < p} O U { since U is an

open subset of X}.

To guarantee the fixed point property, we have dollow:
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r
Assume h= f | h(s)| ds
s=0

We set ZC(J} :X), where Z is a Banach space with the supremefimed as

follows:

1zl = Supll|z () [k
Ostsy

And define 4={u,0Z: u,(0) =, u,(t)TB,(Up), for O t< v}

We note that £is bounded, Closed and convex subset of Z, (seer¢m
(2.2.2)).

Define a nonlinear map,, : Zo U - Z, by:

t S
(@) O =TOW+ | T(t—s){f(s,qﬂ,(s))-lr [ h(s1)a( i f)dt ds

s=0 =0

t

+ L(t)Bél{vo—T(t)uo— [ T@t=9) f(suy G

s=0
S

To prove thatp,, (Zo) O Zo

h(s-1)a(, u, (c))dT:| ds] , for wlI LP([0, t,):0) (2.36)

=0

Letu,, be arbitrary element ingAuch thatp,u,, @, (Zo), to proveq,u,, 0 Zo

for arbitrary elemenuwu Zo.

from the definition of £, notice thatg,u,,0Z {the definition of @, }and
(@uy,)(0) = Wiby equation(2.36)}, to proved,u,, )(1)0 By(Up), for 0= t<y.
From the definition of the closed b&(uo), notice that @,u,,)(t)LX {the

definition of the Banach space Z} and we have :
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T()uo ~ Uo + j T(t-s) f(s u, ()

s=0

[1(@yuy, ) (D) — Wollx =

!

t
{VO—T(t)uo- I T(t-S)[f(sqN(S))F

s=0

h(s-1)g(, y, (c))dT}ds+ L{)BG ™
0

[ h(s=1)at, u, (r))dT:l ds]
=0

X
—

t
1@ty )(®) — Lol < IIT@W - wlk + [ [T(t-s)y [f(su, ), de+
s=0

t
JIma ‘S)Hx( [ Ihes=1)] gt y )], drj ds +
s=0 0

=

L(t)Bél{vo ~T(tuy - j T(t-s)
s=0

f(s,u, (S))+ JS' h(s-1 )d(, Yy, ())dr} ds}

=0

X
—

t
1@t )(O) = Ul < ITOW = W)k + [ [T(t=s) |f(s u, )], de+

s=0
t s
J HT(t—S)H( [ Ihs=1)] gt y )], dr] ds +
s=0 =0

T

t

él|:v0 ~T(M®uo~ [ T(t-s)
s=0

lo

{f(s,uw ) |

=0

h(s-1)gt, y ’())dl} ds]
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=

t
(@10 — Ul < [ITOW = W)l + [ [T(t=s)y | (s uy G, de+

0

=

t S
[ ro-si Jinealat o), ocs
s=0 0

1olIG 7|

|:VO—T(I)UO— j T(t-s)

s=0

{f(s,uw(s))+ JS' h(s-1)gt(, y ())dr} ds}

=0

X
=

t
1@u1)(®) — Wl < [ITOW = W)k + [ [T(t=s), |f(suy G, d:+

0

t

-]

[ In-1) gt y ©), dr]ds +1oly
=0

0 T

t
{”Vo”"‘”-r(t)uo”"‘ [uT=s)

s=0
{Ilf(s,uW(S))II+ [IhTl ot w())IIdT}ds
=0

—
1@y, )(®) = Wollx < p" + MNyy+ M hyN2 y + lolaf[Vol| +lolaM]|uo|| + blaM(N4

+hNy)y
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1@y )(0) = Uoll < p" +(Ni+ hN2)M y + Il 1[M [[to| +]]wl[]+ (N2 + hyNo)
Mlolly

=
[1(@uUy )(1) — Uollk = p" +[1+lol J(N 1+ hN2IMy + Il 1[M [|uol| +]]el[]
By using the condition (h.i), we get:

[1(@uy )(1) — Wl < p
Thereforecpwuwlj Z,, for any u,, 0 Zo
= Q- 2o - Zy

So, one can selegt>0, such that:

y=Min {t,t"t,P P =l Vol +M | g ||
(L+1gl)M(N + hyNZ)

To complete the prove, to show thpgt Z, [1 — Z, is a continuous map
Given |uy— uy |k 0 - 0,as il - o

To prove |, Uy~ @, Uyl 0 - 0,as m — o

Notice that:

[y Uy~ @y Uyl = sup [1(@, ug)(®) =(@ Uy, )k

Ostsy
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@, Uy =@y Uy ll= sup

O<tsy

!

t
{Vo ~T(t)uo- | T(t-9) f(s U} ()

s=0

t
T(uo+ [ T(t=s)| (s U ()

0
h(s-1)g(, U, (c))dT:Ids+L(t)Bé'l
0

[ h(s=1)g(, 4, (c))dT}ds] ~T()uo—
=0

t S
| T(t—s){f(s,uN O

s=0 =0

- t
L(t)BG'l{vO—T(t)uo— j T(t-s) f(su, (S)F
0

I

h(s-1 )da(, i TO)dT:l ds-

h(s-1)g(, U, (r))dt}ds

=0

X
=

|y, Uy~ @y Uyl = sup

O<tsy

t s
I T(t—5)|:f(5,'.ﬂ/(8))+ I h(s- 1 )g, Q'd))dT:ldS+
s=0 =0

t

L)BG™ {— | T(t—s)[f(s,qjV ()

s=0

J h(s—r)g(r,m))dr}ds} -
=0

t S
J T(t—s)[f(s,uN(s)ﬁ [ hsT ) wo)dr}ds—
s=0 =0

t

LBG™ {— [ Tt=s) f(su, )¢

s=0

[ h(s=1)gf, uy (r))dr:lds}
=0

X
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I, 3-8, 0, b= | [ T-s) 165 4 () 1G5y, (5) a

Ostsy|ls=0

t S
I T(t—S)[ I h(S—TX ot, l@, ())—g(T,uW(r)))dr}ds+
s=0 =0

N t
L(t)BG‘{— [ T(t=s) fs U, o) sy ()b +

Lo
LBG™
LIOT(t S>Uoh(s—r)(gt g ) -9, uw(r»)on] }
R x
1@ U= @y Uy [l =
O<t<y j T(t- S)|:|:f(vaCv(s))_ f(s (s)} j h(sr( ) a( W0 -9, UW(T))) _ds
+|_(t)BG1

[ [ T~ s){[f(su&(s»ﬂ(s% (s))+ j h(sT )@( W) -g(t.uy, (r)»dr}

s=0

X
—
@y Uy =@y Uy |l <
Sup J [T(t-s) {f (s O) sy Gf) + f | (st g \r,LITX)—g(T,uW(t))dT}ds"'
<t<yl|ls=g =0
lLos] |67

[j T(t-SX{f(saLCv(s)ﬁ sy (sf) + [ et o 0 - 9t uy ©)], dTH
s=0 =0

=
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|| @, Uy =@y Uy |L< SUp

Ostsy

{ j M[Lo‘UCV(S)- uw(sﬂX +h Li‘ d (r)—uw(r)‘x}ds

Jo)

+|0|1[ j ML ol o6s) ~uy(s), + hy Loy © -,
s=0

|l @, Uy~ @y Uy |L< SUp

Oty
{(1+ lol)M j [L o) ~ Uy (sf, +h, L[ U © - U, @) }ds}
s=0
j—

||y, Uy~ @y Uy L= sup

Ostsy

t
{(1+ lol)M | {L o SUp U (1) —uw(t)Hx +h, Ly sup
szl Ostsy o<ty

ult (t) = Uy (q\x } ds}

=

191 Uy~ @ Uy [l < SUP {(1+|OIJ)M } Lofun —ug|, +hyL1Hucv-uWHX}ds}

O<tsy s=0

—

Y
I U~ @y Uyl S+ llM [ | Lo - ] ds

s=0

PC\,—UWHZ thb

=
1y Uy~ Uyl < (L#1ols) (Lorhyba) |ufy =ty |y

Since

uQv— UWHZ - 0,asn- o
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=

lim ||@, Uy —@, Uyl =0, i.e. [, Uy—@y Uyl - 0, as N> o

N - o
Assume R= @, (Zo), let R(t) = {( @, U,)(®) : u,, 0 Z}, to show thatR (t) is
a precompact set in X, for every fixedth, when t=0

- R (0) ={( @, u,)(0) : u,0Zc} ={ug} which is a precompact set in X
{see appendix B}.
Now, for t >0, 0 <¢ < t, define:

(@ Uy) () =T(Ow +

t_

| T(t—s)[f(s,qN(S))lr [ his1)g wﬂo())dr}ds+
0

s=0 =

t-¢ S
J.T(t—S)BG_l{VO—T(S)Lb— [ T(so
s=0 06=0

0
[f(e,uw(e))+ | h(e—T)g(r,qN(r))dT}dG} ds

=0

(@ uy) ()= T(t)uo +

0 1=

t—¢ S
T(e) j T(t—s—s)[f(s,q,v(s))k I h(s-1 )d( Y r())dr}ds+
S= 0

t—¢ S
T(e) | T(t—S—E)BG_l{VO—T(S)Lb— [ T(so
s=0 6=0

tn

5]
[f(e,uw(e))+ | h(G—T)g(I,qN(r))dt}de}d (2.37)

=0
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To show that for ang, O<e<'t.

The setR (1) ={{(cp(i\p W)(t)} = {( ¢, uy) (1):u,0Z} is precompact set in

u, Uz,
X.

Let Q=

s=0 = 6=0

{TT(t—s—s){f(s,qN(s))-lr T h(s-T )a( W tO)dT+BG_1{VO—T(S)Lb— f T(s-0)
. !

h(0-1)g(,u, (r))dr}de ds:y,0 %}

0
[f(e,uw<e))+ |

=0

To prove the set Q is bounded in X, ie. there texik >0 such

that|q, < L,0g0Q.0 u,, 0 Z,, notice that:

h(s-T ot i IO)dT+B(~3_1[VO—T(S)Lb— f T(s-0)
6=0

t—¢ S
{jT(t—s—a){f(s,qN(s)y |

s=0 =0

0
f(Ou,(8))+ [

=0

h(G—T)g(T,L\N(T))d‘} @] 18, <

t—¢

J

s=0

S
{f(e,uww))+ |

=0

T(t—s—s)[f(s,q,v(s))k i h(s-1 )a( vO)dr+Bé’1{v0—T(s)Lb— i T(s-0)

=0 6=0

ds
X

h(@-1)o(t.u, (r))dT} do] |
f—

t—¢ S
< [r-s-e)[[fs uy @ + [ | hisT I} ot D+ Ko G vol +
s=0 =0
S 0
Mlugl+ [ [T(s=8)[|f®u, @), + | \h(e—w\Hg(r,uN(r»\br}d@llds
0=0 =0
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=

<fw {N +hyN +Ka1{\w+wp J+ [M(N N 2)oleﬂd

s=0 6=0

=

by

< | M[N1+th2+Kdl{H\/d\+M\p d+ jolvl (N +h N 2)d9ﬂds

0=

by

< [ M{Np+h N, + K[V d+M o d+M (N o+ Nt o] Bis

s=0

=
< M[N; +h N, + K [[v J+M u { ]t 7+ M(Ny +h N)t,?
Let P=M[N; +h N, +Kd[[v | +Mu ¢]]t # M(N; +h,N,)t? >0

—

s=0 0=0

t—-¢ S
{jT(t s— a)[f(sq,\,(s))lrj h(s1 )g(, 4 W)dt+BG {VO—T(S)Lb—J. T(s-0)

f(8,u,(0)) + j h(®-1)g(, uW(r))dT}de] Jdg, <P, 0u, 02
=0

= Qis a bounded set in X.

Let A’={T(e)Q:uWDZO} which Is precompact setlu,[00Z, ({the

compactness of the semigroup}, also let B =Ty(t)s precompact set

Ouy,UZy, which implies that A+B is precompact sefu,[Z,.[see

appendix B].
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=

The setR (t) :{{(cpcpw)(t)} = {(¢, u,) (O: u,0Z} is precompact set

u, Uz,
in X.
Moreover for anyu,, ] Z,, we have:

t
(@l )(®) = (& U )OI = TOU+ | T(t=s) f(s Uy (S

s=0

i

h(s-1)9(@, y, (c))dr} ds +

=0

j T(t—s)BG’l{vo— T(s)y - f T(s-6
s=0 6=0

0
[f(e,uw(e))+ | h(G—T)g(T,uW(r))dr}dGI ds

=0
t-¢

-T(t)up - j T(t—s){f(s,qN(s))k j h(s-1 )d( Y rO)d‘[:|dS
=0

s=0

- TT(t—s)Bé’l{vo— T(S)y - f T(s-0
s=0 6=0

0
[f(e,uw(e))+ | h(e—T)g(T,uW(r))dr}dG] d%
- X

=0
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[1(@yuy )(®) = (¢ uy )OIk =

t S
| T(t—s){f(s,q,v(s))lr [ his1)a r())dl}ds+

s=0 =0

j T(t—s)Bé‘l{vo— T(s)y - f T(s- 0
s=0 6=0

0
{f(e,uw(e» + [

=0

h(®-1)g(,u, (T))dl} dG] ds -

t—¢ S
J T(t—S){f(S,uN(S))* [ hEt)Hm wo)dr}ds—
0

s=0 1=

t-¢ S
IT(t—s)BG‘l{VO—T(S)Lb— [ T(s6
s=0 6=0

0
{f(e,uw(e» + [

=0

h©®-T)9@, U, @))dT} de] d{
X
—

[1(@yuy )(®) = (¢, uy )OIk =

s=0 =0

t S
| T(t—s){f(s,q,v(s))lr [ he1)K ¥ r())dl}ds+

j T(t—s)Bé‘l{vo— T(s)y - f T(s-9
s=0 6=0

0
{f(e,uw(e)) + j h(@-1)g(,u, (T))dl} dG] ds+

=0
0
= t—

T(t—s){f(s,uN O

=0

h(s1 )d( ¥ TO)dT} ds+

S €
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S

0
j T(t—s)BG’l{vO—T(S)Lb—J. T(s-9

s=t-¢ 6=0
0
{f(e,uw(e)w | h(G—T)g(T,uW(r))dT}deld%
=0 X
=

[1(@yuy )(®) = (¢, uy )OIk =

t

J

S=t-¢

T(t-S){f(&uN(S))F j hst )a( .y [ ))d} ct
=0

t

s 6
] T(t—s)Bé‘l{vo—T(s—m%—j T(&eﬁfe,w)ﬂ G-t )g( ,wr())d} @1] %’s
6=0 =0

s=t-¢ X

(@t ) (1) = (¢, Uy )OI <
| ||T(t—s)|{ (s, M+ [ Ihest ) llig(, (»rﬂuﬂw

s=t-¢ =0

S

t 0
| ||T<t—s)||||B~G{ - TN~ | T(se[) B e N [ BT ) Wut(di}d(?] I de

s=t-¢ 06=0 =0

—

1@ty )® = (@ u)OIk < [ M(N;+h N,)ds +

| MKd1[||vo||+M||uo||+j M(N1+WN2)@} d

s=t-¢ 06=0

=

1@u)O - (6 U)OIS [ M(N +h N,)ds +

S=t-¢

t t S
[ MKgilvoll+MIlug [] dsr M Kok (Ny+ qu[ [ ] @J d:
s=t-¢

s=t-¢ 6=0
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=

1@y )® = (@ u)OIk < [ M(N;+h N,)ds +

s=t-¢

[ MKdfllvoll+Mlug [] dst MKoll(leNz[ [ sd}

s=t-¢ S=1-¢

—

1) = (6 u)Ol S | MON,+h N)ds +

S=t-¢

t 2t
[ MKGJIvoll+MIlug [ ds M Kol (N Nis_

S:t_s 2 t—s}

=

[1(@ty ) = (¢ uy)Dk < M(NL + hy No)(t -t +€) +

€

2
MK g IV oll+M 1 g ] £~ t+8) + MK (N3 +h N ) (te_f]

=

1@y )(©) ~ (&, Uy )OIk < M(N1 + hy No) & + MK ]| voll+M ] ug [| € +

2
MZK J {N,+h N ) (te—%]

=

I1(@yu, )(®) = (¢, uy )OIk O - 0,ase 0 - 0.

Which implies thatR (t) is precompact set in X for every fixed t > Geés
[Bahuguna, 97], [Balachandran, 02]}.

85



Chapter Two  Existence, Uniqueness and Controllability of Mild Solution to the
Semilinear Initial Value Control Problem Via" Schauder Fixed Point Theorem"

To prove thaﬂichw(zo) Is an equicontinuous family of functions.

Notice that:

(@) ~ (@ )EI = | T+ | T(r-S) £(5.4, ()4

s=0

I

h(S_T)g(T’Uw(T))dT}dSJ’ Il T(r,—s)BG"

=0 s=0

Vo= T(S)up — JS' T(s—0)
L 0=0

0
f(0,u,, ©)) + j h@® —r)g(r,uw(r))dr}delds

=0

I

- T(r))up — I T(r, —s)[f(s, Uy (s)) + T h(s—-1)g(x, Uy (r))dr}ds -

s=0 =0

IZT(rZ—s)BG'1 {VO—T(S)UO— f T(s-6)
s=0 0=0

=0

0
{f(@,uw(e))+ J. h(O—r)g(r,uW(r))dr}dO]d%

X

—

”(%uwxrl) - (%uw)(rZ)”X:

T(r)ug + jl T(rl—s){ f(s, Yy (s))+j h(s 1)g(t,u,, (¥))dr |ds

s=0 =0
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+ j T(rl—s)BG'1|:v0—T(s)uo— f T(s-0)
s=0 0=0

=0

0
[f(@,u_(@))+ [ h(O—r)g(r,uW(r))dr}de}ds

0 s
“T(RUo+ | T(r=9) f(s,uy (5)) 4 | h(s—r)g(r,uw(r))dr}ds+

S=I, 1=0

0 S
[ T(r,-s)BG™ {VO—T(S)UO— [ T(s-9)

S=b 0=0

=0

0
{f(e,uw(e)w | h(O—r)g(r,uW(r))dr}dO]d%

X

=

1@yl (1) = (@l YK S [(T(r) = T(r))ugl, +

[ 55 1624, @) ] | el e o
s=0 =0

0 . _
+ I HT(rZ_S)”[Hf(S’UA/ (S)D 1 j Ih(s- r)\”g(r, UW(T))HdT ds
= =0 |

s=p

¥ fl T(:~s)|BG" |:VO_T(S)U0_ [ Ts-0)
s=0 0=0

0 0
(6,u, )+ [ h(e—r)g(x,uw(r))dr}de]udy [ IT(r-9)]|BG™

=0

s=r,

ds

S 0
Vo=T(S)Up~ | T(s-6) {f(e,uw(e))+ [ h(O—r)g(r,uW(r))dr}dO}

L 06=0 =0
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1@ty (1) = (Pl )k S [(T(R) = T(r))ugl, + M(Ng+h, No) 1y

+ M, No) (-12) + MKl [vo -+ M ug ]

+ MKols [ Vo] + Muo ] (-r2)

n S
+ M?Koly (Ng+h, No) { | [ | de]ds]
s=0\06=0

+ M*Koly (Ny+h, Ny) ( ? [ f de]dsJ

s=L\6=0
=

(@t (1) = (U )k < [|[(T(R) = T(r))ugly + M(Ns+h No) (r1—T2)

+ MK[ Vol + M]ug|] (r:-r)
(2 iy
+Tol (Nl"'hrl N,) 1? + M?Kol, (N1+hrl N,) 72

f—
(@t (1) = (@ )k < [[(T(R) = T(r))ugly + M(Ny+h, No) (1)
+ MK [vo +Mug|] (ri-r2)

|\+/|2|<0|1(N +h N

2 (rlz B r22)

Since {T(t)}=o Is @ compact semigroup, which implies T(t) is cmundus in
the uniform operator topology for t > 0, therefdine right hand side tends to

Zero as¢—r, tends to zero.
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ThusR is equicontinuous family of functions

It follows from the theorem {Arzela-Ascoli's theong that is R = @, (Zo) be
relatively compact in Z.

By applying "schauder fixed point theorem”, whichplies @, has a fixed
point, i.e.cp\ﬂuW = u,

Now, to show that the unigueness:

Let U, (t) and U, () be two mild solution of equation (2.5) on the

interval 3§, we must prove that 4j,(t)-u,(t)[k=0. Assume that

|IT,, ()T, () i # 0. Notice that:

t S
T, + | T(t—s){ f(s7l, (5)(s) +[  h(s1)g@. Ty (1)@)dr |ds
s=0

=0

Ty, () -0y, ® [k =

t

+L(1BG™ {vo -T(t)ug - j T(t- s){ f(s,u, (s))

s=0

f h(s—r)g(r,ﬁw(r))dr}dsl ~ T(O)uo -

=0

t S
I T(t —s){ f(s,u, (s)) +J' h(s-t)g(x, T, (r))dr:lds - L(tBG™

s=0 =0

t
{Vo “T(Oup— | T(t-s) (74, (5)

s=0

J§ h(s-1)g(z, U, (r))dr} dS]
=0

X
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t

J T-9) ST O f(5y, ()] d+

s=0

1Ty, () -ty )1k =

t IS N
J T(t—S)[ [ his-t) gty f))—g(T,UW(r)))dr}ds +L()BG™
s=0 =0

t ~
= [ T(t-s) f(sT, (&) f(sy (8)dk+LMHBG™

s=0

ol T(t-S)( [ h(s-t)et, W f))-g(T,uW(r)))dr]ds
=0

L s=0 =

X

—

t t
10, =T, O1ks [ITE=9)I (ST ) fisy N d+ [ T(t=9)|
s=0 s=0

!

[h(s=1)IIl 9. 4, ©) -9(t. Ty @)l dT} ds + [IL(t)BG™

| =0

t ~
= [ T(t-s) f(sT, (O f(sy (s)dlk +|IL(HBG™

s=0

t s
- T(t_s)[ [ h(s-1)(gt, t))—g(T,UW(T)))dT)dS]“X
=0

| s=0

=

1Ty, () =Ty, (O [k <M [If(s,U(s)) ~ (5,7, (S))Ik Y +M hy[Ig. Ty, (1)) —

v}

. _
9T, Uy, (M)[ky + Iol{ JUTE=-9)MIf(sT, () f(sY (M ds
s=0

t s ]
+IoI1[ | ||T<t—s)||[ [ Ihs=T)II gt ) —9(1.5, 0)) Ik drjds
=0 _

s=0 =
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[Ty, (1) =Ty, ® [k < MLo [[TUy, (S} Ty (S)Ik Y+ M h, Ly [T, (1)~ Ty (DIk v

+ lol1MLo [Ty, (S)= Ty (S)lk Y + lol:Mhy Laf[U,, (T)= T, (Dl ¥

[T, (1) =Ty, ®) [k < MLo sup [[T,, ()= T, ®)Iky+ M hLs sup |[T, ()~ T, 0]k y
O<tsy O<tsy

+ lol:ML o sup ||T,, (0)- T, (®)lk ¥ + lolaMhy Ly sup |[T,, (D)- T, O]k Y
O<tsy O<tsy

”ﬁw(t)_uw(t)llx <ML, ”ﬁw_uwllz y+M thl ”ﬁw_uwllz Y

+ lolsMLo [[Uy, =Tyl ¥+ lol:M hy Ly [[T,—TylE v

[Ty =Ty Ok < (L+lol) ML [Ty =Tyl Y+ (1+ll1) M by Ly[[T,, Ty | Y

1T, (=T, O 1k < (LothLa) (1+ll1) M [[U,,~Tylk v

Take the spremum ovegtkxy of the above inequality, we obtain:

sup I, (-, |k < (LothyLy) (L+ll1) M [[U,,~Ty |k Y
<ty

—
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”ﬁw_uwllz S (I—O+hy|—1) (1+IOI1) M ||ﬁW_leIZ Y
By using the condition (h.ii), we get:

[, — 4,k <|[u,~T,lk , which get a contradiction

= [[ty (1) =T, B[k =0

= T, (t)=0,(t) , for Ot<y

Therefore, we have a unique local mild solutigfilC(J:X)

So one can select the tinye Such that:

y=Min dt 17 ¢, P~ P ol alllVol M lu oll). 1
(LIl M(N1+hyN5) (L grhyL L+ 4 M

Notice that (@, u,,) (0) = U, and

Y S
(@ Uy) (V) =T(Y)Uo + | T(v-S){f(S,uN ) | h(sT)d 4 v())dr}ds +
s=0 =0

_ y
L(YBG ™ vo=T(uo= [ T(y=s) f(s Uy (S
s=0

!

= (@ Uy) (¥) = Vo

h(s-T)g(, Yy ¢))dr}ds}

=0

Thus equation (2.25) is exactly controllable gn J
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2.4 Global Existence of the Mild Solution to the Semilinear I nitial

Value Control Problem

In this section the global existence of the miltlgon to the semilinear

initial value control problem has been developed.

The following remark which is useful here:

Remark (2.4.1)

(1) As a result of the theorem (2.2.2), we get a fustque local mild

solution y, define on [04] for every w O L"([0, t,]:0), given by:

t S
U ()=TOU+ | T(t-S{BN(S)F f.4 OF [ hst )al ( )1% s,

s=0 =0

with t; is defining as follow:

t;=min<t,t',r, PP , 1
(KgK1+Ny+h NJIM M(L o+L R )
(2) To extend the local mild solutio give by (2.25) to a maximal interval

[0, tma], We define the ¥ problem as follow:

%+Av(t)=f(t,\/(t))+ _[h(t—s)g(s,v(S))dSr (B )(0), & o

S:tl

(2.38)

v(ty) =u(ty)

We have to show that the existence of the unigoal lmild solution

Vo IC([ty, t]:X) for some §, 1< tr<oo.

The local existence and uniqueness of the mildtewmw,, given by (2.38)

have been developed, by assuming the followingragsans:
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(@) A be the infinitesimal generator of,@ompact semigroup {T(t}o,

where A is defined from D(A) X into X. where X be a Banach space.
(b) Letg >0, such tha&:(u;) ={x O X : ||x— w|k < &}

The nonlinear maps f, g define from, ft )xX into X, satisfy the Lipschitz

condition with respect to the second argument, i.e.

[[f(t, vi) = f(t, v2)[lk < L'afvi = Vol lk and [|g(tve) — g(t, vo)[lk < L'2[ V1 = Vallx

For g <t <o andvy, v, 0 B(uy), and Ly, L', are Lipschitz constants.

(c) h is continuous function which at leagilh'([t;, ):R),Where R is the

real number.

(d) Let T >t ||f(t,V)|k < Ny, ||g(t,V)|k < N'p, for ty <t < T, where N; and
N', are positive constants. also Bt > t;, [|T(t—t)u; —u|lx < &', for t; <
t< 1", whereg' is a positive constant, such tlgak &.

(e) w(.) be the control function is given irf([t;,» ]:0), a Banach space of

control functions with O as a Banach space and Berge a bounded

linear operator from O into X with ||[w(BHk K'y, fort; <t < co.
() Lett >t such thatt=min{t’,v"'} satisfy the following conditions:

§-¢

fi) bt +
() o=t (KoK y+Ny+h N'YM

1

fil) t<t; +
E T
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We introduce the following lemma:

Lemma (2.4.2)

Assume that hypotheses (a)-(f) are hold, then f@rneuw 0O X, there
exists a fixed numbes,tt;<t,<oo, such that the semilinear initial value control
problem given by (2.37) has a unique local mildusoh v,[IC([ty, t,]:X), for

every control functionvOLP([t1, 0 ]:0).
Proof:

Without loss of generality, we may supposeof<because we are

concerned here with the local existence only.

There exist M=0, such that ||T()k M, for all Ost<t, {since T(t) is a

bounded linear operator on X}.

r
Assume h= j | h(s) |ds

s=0

Set H= C([ty,15]:X), where H is a Banach space with the sup-noefmed as

follows:

IVl = Sup [[YTD)]x

t<t<t,
and define k= {vy,[OH | viy(ty) = Uy, Vi (t)OBg(uy) , for wOLP([t;,0]: O),
t, <t <ty

It is clear that K is bounded, convex and closed subset of H {seer¢he
(2.2.2)}.

Define amap A: Hy O - H, by the following:
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t
(AwVa)(D) = T(t - tr)uy + j T(t-s)[ (Bw )(s)* f(svy (S)F

S:tl

[ o gtu, O c

T:tl

To show that A(Ho) U Ho, let «, be an arbitrary element inglduch that
AwWwlA(Ho), to prove Avy[THo.

From the definition of Kl notice that Av,,[1H and (Awy)(t1) = u; {see
theorem (2.2.2.)}, to prove (f,)(t)0 B:(uy), fory <t<t,

From the definition of the closed b&}{(u,), notice that:

(Aww)(®) O X and |[(Avw)(t) —u|k <&, fory <t <t, { see theorem (2.2.2.)}.
Therefore A(Ho) O Ho , for an arbitrary element,yn H,

= Ay Ho - Ho

§-¢

So one can sele such that= min {t',7"", t; +
G, = { 1 (KK +Ny+h NM

}

To complete the prove, the map:Ady . Hg is continuous {see theorem
(2.2.2)}

Suppose thaP= A.(H,), and for fixed {J [t1, 1],
Let P(t) = {(A wW)(t) : VO Ho}
To show thatP(t) is a precompact set for every fixed {ty, t,],

When t=t;, thenP(t;) = {(A W) (t):vuO Ho} = {u1} which is precompact set
in X {see theorem (2.2.2)}.

Now, fort>t, 0 <e <t-t;, define:
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t—¢
(AL WD) = T(t - ty)uy + j T(t-s)[ f(svy (S))*

jlh(S—T)IIIg(\AW () [[o+ (& )%) C (2.39)

To show that for every, 0 <e <t —ty, the setP(t) = {( AL Vi) () 1 v, O He}

IS precompact set in X. {see theorem (2.2.2)}.

Moreover for anyw,, [J Ho, we have:

(1AM (O—(Ay V) O = H T(t-t)u + j T(t-s)[f(svy ()

S:tl

.[ h(s-t)gty, @)d+ (Bv )(3} d—T(t=ty)u -

T:tl

j T(t—S)[f(SVW (s)F J h(s-t)g@v, €))d+ (Bv )(S% dHE
= ey )

t
| Ta-slfsw, @

Ss=t-¢

= (AN O~(Ay V) Ol =

[ hs-vat v €0t + @ )(% st
X

=Y
—
(AN (D) —(AL V) (Ol < (N'1 + hy N + K'oK'1)Me

=
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(AN ) —(AL Vi) (B — 0, ase - 0.

Which imply that P(t) is precompact in X for every fixed t >. t{See
[Bahuguna, 97], [Balachandran, 02]}.

To prove P=A,(Ho) is an equicontinuous family of functions {see dtem
(2.2.2)}.

It follows from "Arzela-Ascoli's theorem" that i®=A.(H,) be relatively

compact in K.
Applying "Schauder fixed point theorem" which ingdi
Aw: Ho O - Hp has a fixed point, i.e., & = Vi, iy 1 Ho

Hence the initial value control problem given by3@ has a local mild

solutionv,, O C([t1, t;]:X), for everywL([t1,]: O).
To show that the uniqueness:

Let v, (t) andV,(t) be two local mild solutions of the initial valuertrol

problem given by (2.37) on the interval, [t].

We must prove ¥}, (t) —V,,(t) [k = 0 {see theorem (2.2.2)}.

Hence we have a unique local mild solutighlC([ty, t5]:X)
Fort, ti<t, < oo,
So one can selectt; such that

§-¢ 1

, bt
KoKy +Nj+h (NYM " M(L'1+htlL'2)}

t=min {T', T, t; +
So, we conclude that there exist two unique loadd solutions y, , v, to the

semilinear initial value control problem (2.5) a(®138) respectively. Given

as follow:
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t S
WO=TOw* T(t—s{ BU(S) s ) [ hest ol ( »}s

s=0 0

For (st<t, and every givem(.)LIL"([0,t;):0). And

t
V(=T (t=t)ug+ j T(t-s)[ (B )(S)* F(svyy (S)F

S:tl
S
I h(s-1)gfv, €))d|d:, Fori<t<t,and every givemll LP([t1,t,):0).
T=t1
Now, we define a functiom, : [0, t;] O - X, by:

u,(t), Osts g
v, (1), L <tst,

a,, (1) ={

Thend,, JC([0,t;):X) and G, satisfies the integral equation:

f(s, Y, )+ | h(st)a( "y ()t B %) (
=0

T

t
Gy O=T(Ow + [ T(t-s)
s=0

For 0<t<t,, O w(.)ULP([0,t,):0).
To see this, for 8 t<t;, we have:

Oy, (D)=w(t)=

!

=0

t
T(tup+ | T(t—S){ Bv(s)y+ f(siy, () | h(sT )a("WT( )T% '

s=0

Also, for t;<t<t,, we have:
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t
V(=T (t=t)ug+ j T(t-s)[ (Bw)(s)+ f(swy (S)F

S:tl

j h(s-1)g( ,vw(f))d] d:

T:tl

=

i1
V() = T(t - t) {T(H)Uo + J. T(t - S)[ f(s.uy (S)F
s=0
jh(s—r)g(r,qv(r»cn va(s% d+
=0

! T=t1
=

jh(s—r)g(r,uN(r))cH BN(% d+

=0

W) = TOw+ [ TE-s)]1(su, O
s=0

[ =) flsmu (s [ nis=1)gE v €+ (B )(s% d

S= tl T:tl
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For t,<t<t,, notice that G, (t)= vi(t) = T(t)up+ j T(t —s)[f(s,uN (s)

s=0

J.h(s_.[)g([’u/v(())d"' BN(% d+ jT(t—S)[f(S,HV (s)+
=0 st

j h(s-T)g ., €))d+ (Bu )(% d

T=t1
=

a, (1) = T(Oue+

} T(t-s) f(s,u, (s)}+ Bv (s)] d+
s=0

l:l
[ T(t-s)

s=0 LT

[ hs-1)at 7y, ¢ ))ﬂi} d+
=0

t S
J T(t‘S)[ | hs=1)gt Ty € ))d] d
S:Ti '[:t1

=

a, ()= T(Ow +

t
[ T(t-s) f(s.y, ()} B (s) d+

s=0

t, s

[ ] Tt-s)h(s=1)gt 7y, )d d+

s=01=0

t S
[ ][ Tt-s)h(s-1)gt 7y t)d d
s=t 1=t
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t, s

Let]= [ [ T(t-s)h(s-1)gt y,  )d d+

s=0t=0

t S
[ ][ Tt-s)h(s-1)gt 7y t)d d
s=t 1=t

=

J= } T(t—s){ T h(s-1)gf 7y, € )d} d , {see [Bahuguna, 97]}
=0

s=0 =

=

, () = T + j T(t-s)
s=0

f(S,UN(S))*I h(sT )g( Y T )+ B (9) «
=0

for f;<t<ts.

so we have a unique local mild solutiar), to the semilinear initial value

control problem given by (2.5) on the interval {f),

(3) From the steps {(1) and (2)}, we can extendlttoal mild solutiond,, to a

maximal interval [0, $a], With O<{5< 0.

(4) We impose some assumptions to obtain a glokiatemnce of the mild
solution @, JC([0,00 ]:X).

The following theorem which is useful for obtainitige global existence of

the mild solution.

Theorem (2.4.3):

Let A is the infinitesimal generator of @ Gompact semigroup T(t), t >0

on X. If f, g: [th,0)xX O - X are continuous and map bounded sets in
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[0,0)xX into bounded sets in X, h is a real-valued cardirs function which
at least HIL*([0,:0):R) andw(.) be an arbitrary control function is given in
L"([0,0):0), a Banach space of control functions with CaaBanach space

and here B is a bonded linear operator from O ¥with |w ()|, <1, for

O<t<w ,Then

For fna<o, lim |u,,(t)], - For arbitrary control functiowlIL"([0,0):0).
1 tmax

Proof:

To show thatlim || u, (t) [ =0, if this is false, then there is a sequence

max

t,1 tmax @nd a constant K, such that{ts)|| < K, for all n

[ M>0 such that ||T(t)# M, for O<t< ta {T(t) is a bounded linear operator}

and let:

Ni= sup {[[f(t,v)[k : 0< < tmay [[V]Is M(K + 1)}

O=st<t

max

N2= sup {llg(t,V)lk: 0<t< tmay |[V]Is M(K + 1)}

Ost<t,
We can find a sequenceftwith following properties:
h,O - 0as nd - oo, |Ju()|kc M(K + 1), fort,<t<t, + h,and

[luu(tn + h)|lk = M(K + 1) {see [Paz,83]}.But then we have:

M (K + 1) = [Justn + [k = H T(ty + hy)uo +
th*hy

[ Tt+ha-9) feu @ [ nETHot wiOm: ® )%) nm
s=0 =0

X
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M (K + 1) = [Juu(ta + [k = H T(ho) T(tn)Uo +

th S
| T(tn+hn—s{f(s,qv(s»+ | et O @ )%) -
s=0 =0

th+hp s
j T(t, +h,—s) f(s,4, (S)F j h(sT ) .4 T( )+ (B )%) ”m
s=t, =0 X

=

M (K + 1) = [Juu(ta + [k = H T(h)[T(tn)uo +

j T(t, -5) (s, (&) j h(s-T ) .y T )yo+ (B )%) o+
s=0 =0

th+hp s
[ Tt+n-s) fsu @ [ heTHst wiOmr @ )%) His
s=ty =0 X

M (K + 1) = [Juta + )l < | T(ho)[T(tn)Uo +

S:!‘OT(tn -S)

f(S,uN(S))*_[ h(st)al .y 1 o+ (B )%) HN
=0 X

th+h,

RCELIED

s=ty

S

fs,4y SN | h(sT )al W 1( ) (B )%) His
0

T=

X
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tn+hn
j T(t, +h,~s)
=t

M (K + D)= [IT(F)un(to)lk +

f(s,uw(s))+j h(s-T)gt 4 ( )d+ (B )(s} s
=0

X
—
th+h,
M (K + 1)< [|T(t)un(to) I + j 1T, +h - S)|
[If(s,uy SN | [hsT )9t ( NItE  [WB )%ﬂls
=0
—

M (K + 1) = [|utn + h)[k s MK + M [Ny + hyax N2 + lol 1] (tn + ) = 1]
<MK + M (Ny + hpax N2 + lgly) hy
<M [K + (N1 + hpax No + Iol 1) hy]

Which gives a contradiction agh - O

Hence lim || u(t) [ = co.

T Tmax

This completes the proof.

Corollary(2.4.4):

Let A is the infinitesimal generator of @ Gompact semigroup T(t),t>0
on X. If f, g: [tho)xX O - X are continuous and map bounded sets in

[0,0)xX into bounded sets in X, h is a real-valued cardirs function which
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at least HIL*([0,:0):R) andw(.) be an arbitrary control function is given in
L"([0,:0):0), a Banach space of control functions with CaaBanach space

and here B is a bonded linear operator from O Miwith |w(t)|, <K, for

O<t<oo, Then for every 41X, the initial value control problem given by
(2.5), has a global solution,UC([0,0):X) if either one of the following

conditions are satisfied:
() There exists a continuous functian [0,0) [1 — [0,%), such that:
[lud(t)|k < T(t), for every t in the interval of existence qf u

(i) There exist functions K [0,0) I - (00), 1=1, 2, 3, such that KK,, K3

are continuous functions on ¢, and for 0t <o, v I X:
[IF(t, V)Ik < Ka(t) [V]] + Ks(t)

llg(t, VI < Ks(t)
Proof:

Part (i), To prove that the solutioR, bas a global solution on X, i.e., we

must prove that the solutior, exist on the interval [&)

Assume that the solution,uloes not has a global solution on X,
Since the solutionexist on the interval [0t,], for tya < o

By assumption (i), we get ||i)|k < t(t), for every tl1 [0,tna

=

Jm flu, @1 < im <)

—
lim [u, O]k <o C!

max
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Therefore, y has a global solution on X.

Part (ii) There exist functions;K [0, ) [0 - [0,0), i =1, 2, 3, such that K
K,, K3 are continuous functions on ¢, and for O t <oo, v [J X:
|[f(t, V)Ik < Ka(®) [IV]] + Ke(t) (2.39)

9, VIH = Ks(t) (2.40)
The Part (ii) can be reducing it to (i) as follow:

Assume that the solution, @xist on the [0, t) for & t < t,ax given by:

Uult) = T(t)uo + j T(t-s)] (Bw)(s)+ f(s.y, (S)¥

s=0

[ ne-tgt.u, €)d | o (2.41)
=0

There exist WIR and M= 1, such that ||T(@|Me"™, Ot = 0 {by the
proposition (1.4.4)}.

Taking the norm of equation (2.41) and then muftigi by €", we get:

t
|lun(O)[k < [ITCO)] IIU||+_[IIT(t—S)|[ (B )(S) (I T(sy (SR B
s=0

J.Ih(s—r)lllg(,u,())ilvﬂ :
=0

—

t
lulksMiluelle e [ &Kok, +K () U, () Ko (s*

s=0

J. |h(s—1)]| K (r)d:] d¢ {by (2.39) and (2.40)}

=0

And multiplying by €, we get:
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Chapter Two  Existence, Uniqueness and Controllability of Mild Solution to the

Semilinear Initial Value Control Problem Via" Schauder Fixed Point Theorem"

™ [|u®)l< M|l +M je‘WS[KoK1+K1(s)||uN(s) [ K (s +

s=0
[ine-oiK o) |
=0
For 0< t <, set:
t S
LIJ(t)=M||Lb||+Mje—WS[K0K1+K2(s)+J'|h(s—r)| K @)t | d
s=0 =0

The functiony:[0,0) 0O - (0,), thus defined is obviously continuou
[0,00).

t
= " Ok < W + M [ e K (©)lly, 4 o
s=0
By Gronwall’s inequality {see appendix C for thate} implies that:

M } K, (s)ds
e lu®lk< w(e O

t
M [ K. (s)ds
IU®lk < e¥ ) e =0

From the last inequality implies that there exatontinuous function

M } Kl(s)ds M } Kl(s)ds
Y@)=eVy(t) e 50 such that [(t)|k < e™ y(t) e s=0

For every t in the interval of existence @f u
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CONCLUSIONS AND FUTURE WORK

Conclusions:

1.

The basic preliminaries of understanding this subject are infinite
dimensional spaces and theory of semi group and some non-linear
functional anaysis. This subject is very important in applications in
control theory area.
The existence and uniqueness as well as controllability problems have
represented the main objects of rea life dynamical control system, so
studying these titles providing as a good work studying of this subject.
The subject of the problem is based mainly on the semi group theory and
the provided as a good approach or approach or tools to solve the
problem not only to ensure the existence and uniqueness.
This present approach is difficult, but its scope is wider than others and
covering a large class of non-linear integral, integro, distributed,
differential system with the system with initial or even boundary

conditions.

Future Work:

1.

Developing the present approach to some optimum control in infinite
dimensional spaces.
Developing numerical procedures to find the solution numerically or
even exact in some infinite dimensional spaces.
Developing numerical procedures to find the solution numerically or

even exact in approximate finite dimensional spaces.
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| ntroduction

The theory of one parameter semigroups of linearaiprs on Banach
spaces started earlier, acquired its core in 1948 whe Hille-Yosida
generation theorem, and attained its first apex wite 1957 edition of
“semigroups and functional analysis” by E. HilledaR. S. Phillips. In the
1970's and 80's, the theory reached a certain stgerfection, which is well
represented in the monographs by [Dav, 80], [G5], fPaz, 83] and others.
Today, the situation is characterized by manif@dleation of this theory not
only to the traditional areas such as partial defifidial equations or stochastic
processes. Semigroup has become important toolsntegro-differential
equations and functional differential equationsguantum mechanics or in
infinite-dimensional control theory. The theoryaantrol is one of the major
areas of application of mathematics today. Froneady inception to meet
the demands of automatic control system desigmgineering, it has grown
steadily in scope and now has spread too many tdheemoved areas such
as economics. The theory of semigroups of lineaeratprs lends a
convenient setting and offers many advantages. rGotiteory in infinite-
dimensional spaces is a relatively new field amdtstl blooming only after a
well-developed semigroup theory was at hand. Arobrslystem uses many
ideas from the standard control methodology exoepontrol it is often said
that a formal mathematical model is assumed urebail so that
mathematical analysis is imposible.We emphasize,weker, that
mathematical analysis cannot alone provide thendefe answers about the
control system since such analysis proves propged®ut the model of the
process, not the actual physical process. It isomapt to note that the

advantages of control often become most apparenefy complex problems



I ntroduction

where we have an intuitive idea about how to aahibigh performance
control. The work of this thesis is divided intogh chapters; the first chapter
entitled "Some basic concepts of semigroup thewryich is recalls some
Definitions, basic concepts, propositions, theorams$ some properties of the
semigroup theory which are important for the disous of our later results.
In chapter two entitled "Existence, uniqueness aoxtrollability of mild
solution to the semilinear initial value controloptem via "Schauder fixed
point theorem" , by using the theory of semigrougd &chauder fixed point
theorem”, the local existence, uniqueness and xaetecontrollable of the
mild solution to the semilinear initial value cawitrproblem has been
developed in an arbitrary Banach space X. Sufftatenditions for the global
existence of the mild solution to the semilineatiah value control problem
has also been developed. In chapter three enkttesience and uniqueness of
mild solution to the semilinear initial value camitrproblem via "Banach
contraction principle", by using the theory of sgmup and “Banach
contraction principle”, the local existence andquaness of the mild solution
to the semilinear initial value control problem hasen developed in an
arbitrary Banach space X, associated with the umébed linear operator

generating strongly continuous semigroup {T{b)}
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Table of Notations

{T(M} 0 Family of bounded linear operators

U Open set

O, XY Banach space

B Bounded linear operator

w Control function

Uy, Continuous function depend on w

LP([0, r):0) Banach space of p-integrable functions with its domain [0,r)

1

r 1
into O such that Hpr=( I \f(t)\pdtjp <oo
t=0

Uy, Sequence of Continuous function depend on w

O=(E) The set of al continuous function define from E into F
Bo(Uo) Closed ball with center ug and radius p

A bounded linear operator

Xq Banach space depend on a

A° The inverse operator of A™

{S()} 0 Family of bounded linear operators
HE[0,1] Classical Sobolev space of order (k, 2)

cYo,1] The space of 1-times continuously differentiable functions



Table of Notations

C([0,1]: X) The space of continuous functions define from [0, 1] into X

0 The set of complex numbers

R* The set of positive real numbers

gon Unitary space

L(X) Banach algebra (the set of all bounded linear operators define

from X into X)

M,() The space of all nxn matrices with components of complex
number

pP(A) Resolvent set of the operator A

o(A) Spectrum set of the operator A

R(A; A) Resolvent operator

Co(Q) The space of continuous functions vanishing at infinity
Q Compact set
M The multiplication operator

D(Mg) The domain of the operator M,

Co Strongly continuous semigroup

A, Y osida approximation” of A

Cq Positive constant depend on a

ACP Abstract Cauchy problem

IACP Inhomogeneous abstract Cauchy problem
Sw The set depend on control function w
a,,U Continuous function depend on w



Table of Notations

Fo Mapping depend on w
S The set of continuous function
w Linear operator

O/kerW  Quotient space

[w (t)] An equivalent classes of w(t)

w Control function belong to [w ()]

Py M apping depend on the control function w

uQv Seqguence of continuous function depend on the control function w
g, 4 Continuous map

V Subspace of X

wt The inverse linear operator of W

+0U Smooth positively oriented boundary

Hy = sup [
O<st<t

stsh

A%,

I, =|

o ke =inf Ho

0]

X
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