ABSTRAGT

Fractional calculus is the subject of evaluatingiv@dives and
integrals of non-integer orders of a given functiowhile fractional
differential equations (considered in this work}the subject of studying the
solution of differential equations of fractionalder, which contain initial

conditions. The general form of a fractional diffietia equation is given by:

y(q) = f(X, y)’ y(q_k)(XO) = Yo

where k=1, 2, ..., n+1, n<g<n+1, and n is an integember. The
solution of fractional differential equations has many difficulties in their
analytic solution, therefore numerical methods rbayin most cases be the

suitable method of solution.

Therefore, the objective of this work is to intreéuand study several
approximate methods for solving fractional diffearahequations numerically
with the cooperation of linear multistep methods $olving numerically
differential equations and Riemann-Liouville formulof fractional

integration.
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CHAPTER

FRAGTIONAL CALGULUS

The subject of fractional calculus has a long mstehose infancy dates
back to the beginning of classical calculus and @&n area having interesting
applications in real life problems. This type ofctdus has its origins in the
generalizations of the differential and integrdtalus [Lubich, 1986].

This chapter consists of five sections, in sec{bd), detailed historical
background about the subject of fractional difféi@ion and fractional
integration is given with leading references alibat subject are given for the

interested readers.

In section (1.2), basic concepts related to theestibf fractional calculus
are given which are necessary for the rest of thesis. Among such
fundamental concepts, the gamma function and them&in — Liouville

formula.

In section (1.3), and as a tool for differentiatiand integration of
fractional order several types of fractional detives, are given and discussed

in details with some basic related properties.

In order to give well understanding about the stibjef fractional
differentiation, some well known examples are giwersection (1.4), such as
the fractional differentiation of the unit functiomero function exponential

function, etc.



Chapter One Fractional Calculus

1.1 HISTORICAL BACKGROUND
In the earlier work, the main application of fractal calculus as a

technique for solving integral equations. Receffithctional derivatives have
been used to model physical processes leadingetéotimulation of fractional
differential equations. The fractional calculus nieyconsidered as an old and
yet a novel topic. It is an old topic since it'aing in 1695. L’'Hospital was the
first researcher who asked in a letter to Leibrotz the possibility to
performing calculations by means of fractional datives of order r= Y.
Leibnitz answered this question looked as a Pardaddxim (see [Madueno,
2002)).

In (1697), Leibnitz referring to the infinite proctuof Walls forv 2 used
the notation 4% and summarized that the fractional calculus cdnddised t o

get the same results.

The earliest more or less systematic studies sedmate been made in
the beginning and middle of the A @entury by Liouville (1832), Riemann
(1953), and Holmgren (1864), although Euler (173@grange (1772), and
others made contributions even earlier. It was \iiéel (1832) who expanded
functions in series of exponentials and defined k@ derivative of such a

series by operating term-by-term as though q, whggesitive integer.

Riemann in (1953), proposed a different definitidrat involved a
definite integral and was applicable to power sevw&h no integer exponents.

Also, Grunwald in (1867), disturbed by the restactof Liouville’s approach.

Then these theoretical beginnings were a developafe¢he applications
of the fractional calculus to various problems. Tingt of these was discovered
by Able in (1823), that the solution of the intdgequation for the tautochrone
could be accomplished via an integral transfornR.ofverful stimulus to the use

of fractional calculus to solve real life problemas provided by the
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development by Boole in (1844), of symbolic methémissolving linear

differential equations with constant coefficients.

In the twentieth century, some notable contribigiblave been made to
both the theory and application of fractional calsy Weyl (1917), Hardy
(1917), Hardy and Littewood (1932), Kober (1940nhdaKuttner (1953),
examined some rather special, but natural, prasertf differintegrals of
functions belonging to Lebesgue and Lipschitz daskrdely (1954), and Oster
(1970), have given definitions of differintegralsithw respect to arbitrary
functions, and Post (1930) used difference quottentdefine generalized
differentiations for fractional operators, Ries849), has developed a theory of
fractional integration for functions of more thameovariable, Erdely (1965), has
applied the fractional calculus to integral equagiand Higgins (1967), has

used fractional integral operators to solve diffi¢iiad equations.

However, fractional calculus may be considered ae\el topic, as well
as, since only from a little more than to the ldiféy years, it has been an object
of specialized conferences and treatises. Foriteedonference the merit is a
scribed to B. Ross who organized the first confeeeon fractional calculus, and

its application at the University of New Haven umé& 1974.

For the first monograph the merit is ascribed t® KOldham and J.
Spanier (1974), who after a joint collaborationtsta in 1968, published a book
devoted to fractional calculus in 1974. The fiestts and proceedings devoted
solely or partly to fractional calculus and its hpgtions are, [Davis H.T.,
1927], [Evdely A., 1939], [Igor Poldlubny, 1999].
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1.2 BASIC CONCEPTS

In the present section, some fundamental concefdted to the subject

of fractional calculus are given in order to aveatjue notions in this subject.
1.2.1 Gamma and Beta Functions[Oldham 1974]:

Undoubtedly, one of the basic functions encounterredfractional
calculus is the Euler's gamma functibfx), which generalizes the ordinary
definition of factorial of a positive integer numbe and allows n to take also

any non- integer positive or negative and even ¢exwalues.

As it is known, the gamma functidi(x) is defined using the following

improper integral:
M(x)= j PTG, X3 Correreeeeeeee e eeeee e (1.1)
0

First of all, it is easy to show that the gammaction for a natural

number can be proved also to satisfy:
F(X)=X—-2L!Andl" (x) =(x-1)F (x—1)

which enable us to calculate for any positive xetlle gamma function in terms

of the fractional part of x.

r{-q9

The expression _
F(-a)r(j+1)

may be regarded as the binomial

coefficient, as follows:

r(-a) _(-4-0(-a-2)..ca+r Dea)_ _yy m ________ (1.2)
- j

F-or(+1 J!
Where;(ﬂz - g — .
1) Mg -))

Also an important functionin fractional differerti@quations is the beta

function defined by:
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q-1
B(pa)=[y"*fi-y] dy. p>0<q,

1.2.2 Riemann — Liouville Formula of Fractional Devatives:

Riemann and Liouville in (1832) introduced a diértial operates of

fractional order g>0 to take the from:

t

qymo L d" y(u)
DY y(t) P tj (t_u)q_mdu ........................................ (1.3)

where m is an integer defined byml < g < m, (see [Oldham and Spanier,
1974)).

Equation (1.3) is a Volterra integral equation wsimgular kernel.
Differential equations involving these fractionarivatives have proved to be

valuable tolls in the modeling of many physical pbeena.

1.3 FRACTIONAL CALCULUS

Fractional differentiation and integration could defined using several
approaches depending on the used definition oémdfftiations. Therefore, this

section present some of these types of differaotiat
1.3.1 Fractional Derivative:

The usual formulation of the fractional derivativgiven in standard
references such as [Samko, 1993], [Oldham and 8pdf74] is the Riemann-
Liouville differential equations which require i@t values expressed as

fractional derivatives.
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This is very inconvenient, since it is usually wt¢ar what the physical

meaning of these fractional order initial value Veblie and they are therefore

hard to drive from a physical system. In applicasio it is often more

convenient to use the formulation of the fractiotailivative suggested by

Caputol1971, which is known as Grunwald derivatwégch requires the same

starting conditions as in ordinary differential atjans of the next higher order.

The Grunwald definition of fractional derivativesgiven by:

t

-q
dfM _ im (Nj Nz_lr(j"])f (t— j(ln ............................... (1.4)

df  Nee T(-q) GT(j+1) N

where q < 0 indicates fractional integration andO gmdicates fractional

differentiation.

The Reiman-Liouvilli definition of fractional derative given by:

t

qymo L d” y(u)
DY, y(t) S j - u)q_mdu ........................................ (1.5)

to

Thomas J. Osler definition of fractional derivatigegiven by:

Dqt—ay(t) -

ty
ra+1) [ U= YU, (1.6)
2mi 5

where he made a branch cut from t to a and thgralteurve is an open which

starts from a and encloses t in positive senseetnd to a.

The Bertram Ross definition of fractional derivatig given by:

d o T@+D)p y)
V0= C(u_t)qﬂdu .................................................. (1.7)
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where he made a branch cut from t to infinity tlglouhe origin and integral
curve C is an open contour which encloses t inpibgtive sense and (2 C

(i.,e., Cis an integral curve a long that cut).

The equivalent between these formulas could begatovut it have more

computations therefore it is omitted.
1.3.2 Fractional Integration:

The common formulation for the fractional integcan derive directly
from a traditional expression of the repeated irgegn of a function. This

approach is commonly referred to as Riemann — Lileuapproach.

The Riemann-Liouville definition of fractional irgeal is given by:

1

f;(a,X):m

X
I(x— t)q_lf(t)dt(right hand integration
a
1 °©
fq (x,b) :—'f(t - x)97 (t)dt(left hand integration)
r;

The Weyle definition of fractional integral is givéy:

fJ(—oo,x) = % J. (x —t)q_lf (D) e (.1.8)
fq (X, ) :%I(t = X)ITH (D) o (1.9)

where f(t) is a periodic function and its mean eatar one period is zero. But
the formula (1.8), and (1.9), are used as the deimof the integral without

any condition at the present time.

10
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1.4 FRACTIONAL DIFFERENTIATION OF SOME WELL
KNOWN FUNCTIONS

In this section, some fractional derivatives ussrguwald definition will
be evaluated as an illustrative examples to fraefidifferentiations. Other
function could be derived, such as sidE(), sin(\/;), etc.,(see [Oldham and
Spanier, 1974]).
1.4.1 The Unit Functions f=1 [Oldham and Spanier94]:

Consider first the differintegral to order q of thumction f= 1, for which

it is found convenient to reserve the special mamtatThis function will be

referred as the unit function. Straight forward laggtion of equation

g g Ry )

J

to the function £ 1, gives:
= Jim {_N TNf r(-a)
[d(x—a)]q Now Lx-a] T Ear(+1)

Application of the following equations:

Ef rG-a) _ T(N-g)
ol arg+1) ra-aqr (N

and

. . +00,)0
lim |:jc+q+1r(1_q):|:|im |:jc+qr(1_q):|: 1,c =0
TVl S O O B

11
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gives:
dig  _ i [ N T r(N-q) |_[x-a]™
[d(x-a)]" N-=|lx-a] Ta-ar (N)] T @ a)
Therefore:

A _[-d
[d(x-a)] Ta-a

1.4.2 The Zero Function [Oldham, 1974]:

For a function f= ¢, where c is any constant including zero, thiy ipa

indicated using the differential operator repreaton:

q_ . Rl r(j- B
Do =" 'A'Tm[(ﬁj . r(—cq(;r(c})+1)f(t JLN)

=0

One can see that:

d'lc] . dm _ Ix-a]*
[d(x-a)f [dx-a)f Q-0

d?[1]
[d(x -a)f

Since does not approach infinity for x > a, it is corada by

setting c= 0, that:

d?[0]

m=0, forall ..o, (1.10)

Equation (1.10) may be appearing to be trivial lovious. As an example
of its importance, however, observe that it progidgowerful counter example
to that, if:

df o d
do-a)f >

en———~—=
[d(x-a)T"
12
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For, if gives zero on differentiation to order gen f cannot be restored

by g-order integration.

1.4.3 The Function (x—a)’[Oldham, 1974]:
The function of fractional degree we consider irs thubsection is an

important function given by £ (x — af, where p is initially arbitrary, we shall
see, however, that p must exceddfor differintegration to have the properties

we demand of the operator. For integer n of eisigan, one can show that:

d"xP
ax"

=p(p-1)..(p- n+ DX", n=0, 1, ...

from classical calculus. Our first encounter witbnAinteger q, will be
restricted to negative q so that we may exploitRieEmann-Liouville definition.
Thus:

dix-alP _ J y-af
d(x-a)f T(-a); [x- y]q*l

_ 1 J~ vP
r(-a) § [x-a-v***

dv,g<0

where v has replaced by-ya. By further replacement of v by fxaju. The

integral may be cast into the structure of betzftion form:

d[x-aP _[x-al” 9}

PM1—-yr 9
dx-a)f  T(-q) Ou [1=uT 97U, 0< Corces (1.11)

The integral in (1.11), will be recognized as thetdBfunctionp(p + 1,

—() provided both arguments are positive, therefore:

dix-al’ _[x-a]”“

- 1-
dx-a)f g Pprhmd)

13
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_I(p+1)x-af™ _
S —— O<Lp>—T, (1.12)

which is the fractional derivative of fxal’.

1.4.4 The Expositional Function exp(+cx) [Oldham,1974]:

With r and c are an arbitrary constants, then theqp-series expansion is

given by:

PN
exp(r— cx)= exp(r CaZ%

which is valid for all x- a
Differintegration term-by-term with respect to ¢pa], yields:

{~c(x-a}’
ri-g+1

d9exp(r- cx)_
[d(cx - ca)f

={c(x-a} " exp(r- caZ

The sum may be expressed as an incomplete gamnwiofunof
argument-c[x — a] and parameterq, then the final result appears as:
d9exp(r- cx)_ exp(r cx

p(r= x)_ exp(= o) _

[d(x —a)] [x —a]
where

c(x—a))

1
F(J+c+1)

Y (c, y* expE y)dy= expf xZ

I'()

wherey (-n,y)=y" for non negative integer n. The above result &seto

reduce to the well-known formula for multiple diféatiation of an exponential

function, reduction to the simple formula:

d expfF x) _ exp{F x\/ (=4 %)
dx?

occurs on substituting&ka= 0 and & £1 into the general result.

14
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q p
1.45The Functionslx— and 1X—[Oldham,1974]:
- X - X

By using of the binomial expansion of €1x)™* and the technique of
term-by-term

differentegration which is from the (linearity offédrentiation), we arrive at:

At od :id_qxhq
dxd[1-x| <z dx

of
As a formula expressing the effect T operator with the lower
X

limit zero on thel_— function.
Subject to the proviso that x not exceed unity agmtude. Provided also
that g exceedl, the rules of subsection (1.4.3) permit diffezgriation of the

powers of x and lead to:
d? | x4 r(J+q+1) ¥l = -1 '
—- | = T T =r +1 —xV

Identification of the sum as a binomial expansioodpices

q¢ { x4 }: r(g+1)

dx¥|1-x | [1-x]

as the simple final result.

p
The technique for differintegratinﬁx—] follows such a similar result,
- X

that is, it will suffice to cite one intermediatedathe final result:

il pqz r(i+p+1)x' _T(p+1)B.(p-a.qr L
dx9| 1- x “F(j+p-q+1) M(p-q)[L- xP*

15
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together with the restriction, namely, 0 < x < ldgm > -1, which where

assumed during the derivation.

16



CHAPTER

NUMERICAL AND APPROXIMATE METHODS FOR
SOLVING FRAGTIONAL DIFFERENTIAL EQUATIONS

Sometimes, numerical methods for solving differ@ngquation are
more reliable than analytic methods, especiallyfractional differential
equations, since such type of equations has sdiffreutties in their methods

of solution, which could not be handled easily.

This chapter consists of five sections. In seciah we study linear
multistep methods and it’s ability for solving ftexmal differential equations
numerically. In sections 3.2, and 3.3, we modifg #pproach followed in
linear multistep methods for solving fractional fdrential equations by
altering the basis of the method to be cubic sghagis or using cubic spline
interpolation with three node points, while in seat3.4, cubic spline basis
depended on five knot points is used. Finally, est®n 3.5 an illustrative

example is given in order to compare between thesbods.

3.1 LINEAR MULTISTEP METHODS[ABD AL-QAHAR,
2004]

This section presents an introduction to the thedriinear multistep
methods (LMM'’s in short). Consider the initial valgproblem for a single
first-order differential equation:

42
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Y'(X) = (X, Y(X))s Y(X0) = Y0ueerremmmniieeeeeeeeiiiiieeeeeeeeesnnn e eenneee s (3.1)

where f is a given continuous function angl % are fixed. We seek for the

solution in the rangeax < b, where a and b are given and finite.

Consider the sequence of pointg}{>defined by: y =a + nh, r= 0, 1,
..., N, where h=a-b/2. The parameter h, which w\tajs be regarded as a
constant. As essential property of the majorit@mputational methods for
the solution of equation (3.1), is that of disaation, that is, we seek for an
approximate solution, not on the continuous inteeva x < b, but on the
discrete set of point {y| n=0, 1, ..., N}. Let y be an approximation to the
theoretical solution at.x that is, to y(¥), and let § = f(x,, y»), [Lambert,
1973].

If a computational method for determining the sewae(y,} takes the
form of Linear Multistep Method, of step numbek,a linear k-step method.

Then the general form of LMM may thus be written as

k Kk
D 0 Y0 TR Bifa e (3.2)
i=0 i=0

wherea; andf3;, are constants to be determined. We assumenth&at0 and
that not both oty andf3y, equals zero. Since equation (3.2) can be mudtipli
on both sides by the same constant without altetivgg relationship, the
coefficientsa; andf;, are arbitrary to the extent of a constant mu#iplWe
remove this arbitrariness by assuming throughoat ¢thh = 1. Thus the
problem of determining the solution y(x), of thengeal non-linear initial
value problem we replace equation (3.1) by thdinafing the sequence {};
which satisfies the difference equation (3.2). Nibt&t, since fis in general
non-linear function of y then equation (3.2) is a non-linear difference

equation. Such equations are no easier to handlerdtically as in linear
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differential equations, but they have the practadfantage of permitting us

to compute the sequence,fJynumerically.

In order to do this, we must first supply the assisof starting values
Yo» Y1, ---» Y-1. (In the case of a one-step method, only one of suathe

which is y is needed and we normally choogdoybe constant).

As a classification to the LMM we say that the LMI explicit if
Bk = 0 and implicit ifBx # 0. For an explicit method equation (3.2) yields th
current value Y. directly in terms of previousyy, fny, j =0, 1, ..., k=1,
which at this stage of the computation, have alrdsekn calculated while in
implicit methods, however, will call for the soloti at each stage of the

computation, of the equation:

Yn+k =thf(Xn+k1yn+ k)+g ................................................... (33)

where g is a known function of the previously cédoed values y, fnsj, j =0,

1, ..., k-1

When the original differential equation (3.1) isdar, then equation
(3.3) is also linear inyy, and there is a unique solution fqky while when f
Is non-linear, then there is a unique solutionyfgg, which can be approached

arbitrarily closely by the iteration:

YT = DBy (Ko VL) + 0,V

Thus implicit methods in general entail a substdliytigreater computational
effort than do explicit methods; on the other hdod,a given step number,
implicit methods can be made more accurate thanicgxmnes and,
moreover, enjoy more favorable stability propetrtiElsen, the necessary and
sufficient conditions for LMM to have an order pndae studied by using two

associated polynomials, which are:

The First characteristic polynomial of LMM (3.23, given by:
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k .
p() =Y ajr! = o + oy T+ ag
=0

while the second characteristic polynomial is gitagn

k .
a(r) =D Byr! =Ber +Byar ™ +... 4By
j=0
Also, it is important to notice that d(r) is given, then we can find a unique
polynomial p(r) of degree k such that the method has an ordekpsuch
that, we can consider the LMM according to the soaf the first

characteristic polynomigd(r) and whether it is explicit or implicit.

(1) If the roots ofp(r) equal to 1 and 0, then the method is calledadm's
type and if the LMM is explicit, then it is callexf Adam Bashforth type,
while if it is implicit then it is called of Adam-kulton type, i.e., in

Adam’s methods, we have the following:

p(r) =r—r

=rkYr-1=0
(2) If the roots ofp(r) equals to-1, 0 and 1, then the method is called of

Nystrom type if it is explicit and if the methodimplicit, then it is called

of Milne-Simpson type, i.e., we have:

p(r) =r* -2

=rk72(r2-1)
=rk2(r -1)(r+1)
Now, we explain the consistency, convergence amd gtbility of

LMM's, such that, a basic property which we shalindnd of an acceptable

LMM is that the solution {y} generated by the method converges, in some
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sense to the theoretical solution y(x) as the &agth h tends to zero. The

LMM is said to be consistent with the initial valpeoblem

y' =f(x, y), y(x) = Yo

if it has an order at least 1, i.e., consistent method implies that at least
Co=C;=0.ButG#0, or:

K K K
ZGjZO and Zjaj=2[3j
j=0 j=0 j=0

Finally the LMM is said to zero-stable (O-stableall the rootsis, j =1, 2,

..., K; of p(r) = 0 satisfy the condition;|& 1 and if yis a multiple zero op(r)
then |j| < 1.

3.2 THE PREDICTOR-CORRECTOR METHOD [Dielthelm
and Alan, 1997]

The definition of the fractional derivatives andrsowell known results
of fractional calculus tell us that we interpreddtional differential equations

such as:

DY =f(t, y(t)), Y) = Yo, N <g<n+ 1, M N...ooooerrvirrieiree (3.4)
and hence upon taking ™o the both sides of (3.4), yields:
DD% = DY(t, y(t)), y(to) = Yo, N<q<n+1, M N............... (3.5)

Alternatively, we can apply fractional integral optr to the differential
equation and incoorperate the initial conditiortsyst converting equation

(3.4), into the following equivalent equation:

y(t) =y(ty) + _qf(u,y(u))du ................................. (3.6)

1 j 1
Fa)y (t-u)
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which is a Volterra singular integral equation lné¢ tsecond kind.

In the following, we shall present the scheme i@ thumerical solution

of the general fractional differential equatiord(3[Gorenflo R., 1997].

In the development, we have in mind that thesetiraal differential
equations are coupled with the first-order différ@nequation, which give us
the general advice to these two algorithms in suetay that both methods
are based on very similar construction principles,thus choose an Adams-

Bashforth-Moulton approach for both integrators.

The key to the derivation of the method is to repldhe original
fractional differential equation (3.4), by an eculent singular Volterra
integral equation (3.6), and to implement a prodlietgration method for the
latter. What we do is simply to use the trapezomladdrature formula with
nodesit(j=0, 1, ..., n + 1), taken with respect to the weidHtenction (f.1 -

u)™™, to replace the integral. In other words, we appé/approximation:

th+1 . U1 .

_[ (1 —U)¥ "g(u)du= I (tey— U g (Wt (3.7)

to to
where g.,is the piecewise linear interpolent for g whosea®dre chosen at
the {, j=0, 1, ..., n + 1. Then by using Legendre quadraintegration
method vyields that we can rewrite the integral ba tight-hand side of
equation (3.7) as:

the1 n+1

j PR L T (1)1 (1 A SN TG S (3.8)
to i=0

where:

tn+1

8 p41= j CAPE ) L T (7) RSO (3.9)
to

a7
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and:

(u - t]—l)/(tj - tj_l),if,tj_l <u< t]
(pj,n+1(U)= (tj+1_ U)/(tj+1_ tj ),|f,tJ <u< tj+1 ........................ (310)
0, otherwise

where a,.; are termed as the coefficients of the method @nd(u) as the

basis functions.

Next, we will present the derivation of equatior®j3and (3.10).

3.2.1 Derivation of the Basis Functiongn.:

In order to derive the linear basgs.1, j =0, 1, ..., n+1, where n is the
number of node points. Since for the general fofma gtraight line joining
two points applied to(t, 0) and (t 1), i.e., for t; < u <f{, we have:

-0 _ 1-0
U_tj—l t] _tj—l

and hence:

_ UG
U=yl sUsh
I I

for t < u < f.1,we have:

tj+l_

u

Qjn1=
i

Hence, equation (3.10), is now derived. Figure )(3llustrate the basis

function@ 1
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ﬁ-l q fj+1

Figure (3.1) The hat functiongp.;.

3.2.2 Derivation of @,.1:

Depending on the final form of the basis functigns,, we can derive

a.n+1 as follows:

From (3.9), we have:

th+1
— -1
Ajn+1= J- (tyeg— U’ @) 1 (U)dL
to
y s t..—u
= [ (e~ —dut [ (- ufF I —d
ta “ha g ta Y

t] L4
:% .[ (tn+1_u)q_1(u_tj-1)du+ _[ (ty 1~ u)q_l(tj*'l_ u)du

Now, for the first integral in equation (3.11), amgbon using the

method of integration by parts, we have:
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t] {
I (theg =~ U9 (U~ tig)du= _[ (the 1~ U™ udu-

tj—l tj—l
tj
tia | (theg=u)*du
tj—l
ha*t
q(g+1)

[(n— j+2)% = (n+1- )I((n+ g)+ (2 j))] ...... (3.12)

Now, to the second integral in equation (3.11),pne@ceed similarly as
in the first integration to get the following resul

tj+1

o1 q+1 1
tjj (b =Wt~ wdu= ] (e
(n+1- )%((q- n)+ j)] ............. (3.13)

Hence, substituting (3.12) and (3.13) in (3.11yegifor 1<j < n:

tJ+1

8 41 = [ j (te = U (U=t )du+ j (1= UF™ (1 = U)d

tJ—l ¥

1| hatd - + i
- EL(W S 1+27) -0+ 2 ) (@- ’)}

__hd
q(q+1)

(0= +2+ (n= )T+ 1- poc2n- 2+ 2|

= q((:j- 1):(n - j+2)7H(n+1- PI(n+ 1= P+ (n- J)qH}

:q(gi 1):(”_ j+2)7% (n= )P Hn+ 1= o2n- 2+ 2))
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Equation (3.14), could be applied to the interiod@ points, ¢ t,..., t,
while for the boundary node pointsand .1, we have:

Ifj =0, then:

ty
aO,n+1: j (tn+ 1 u)q_lchvHr 1(U)dL

Similarly, for j=n+1

tn+1
_ -1
An+1n+1™ J (tr 1~ uf P 1 2(U)dU

Therefore, the final form of the coefficients ivgn by:

hq

a@+ 1)((”q+l_ (n-a)(n+ 1f) O
SR i e (U 2f - 2(n- I (- ) F L2,
hd .
a@+1) J=nd
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3.2.3 Adam’'s Method for Solving Fractional Differdial Equations:

Using Adam-Moulton implicit method to solve the giar integral
equation (3.6), with the cooperation of quadratitegration methods, the

following formula is obtained:

Yoe1=Yo+ Zajmlf(tj,yj)+an+1n+1f(tr+1,))2+1) ....... (3.18)

1
r()
Now, the problem is the determination of the pramtidormula that we

require to calculate the valyp,,. The idea we use is to generalize the one-

step Adams-Bashforth method which is the same atsotte described above
for the Adams-Mouton technique. We replace thegireteon the right-hand

side of equation (3.6), by any quadrature rule, i.e

th+1

j (t. - U)T  g(u)du= j Bt G0 eererveeeereneeerenneeenee (3.19)
j=0

Similarly as in subsection (3.3.2), we have:

tj+1
- 1
bjne1= | (tyes=U)° 1du=a(<tn+1— = (1 10 ... (3:20)
t]

Again, for equispaced case, we have the simpleresspn:

i st _—((n+ 1- )7 - (n- J)Q) .............................................. 13)

Thus, the predictor value of,,, is given by:

yP 1 =Yoo+ ij O 577 [ 13)

ra)i=

This completes the description of our basic algonit which is the

fractional version of the one-step Adams-Bshfortbuiion method.
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Recapitulating, one can see that, we first haveatoulate the predictoy?,,

according to equation (3.22), then evaluée, ., yk,,), and using this to

determine the corrector value of.yby means of equation (3.18), and finally
evaluate f(t.1, Yn+1), Which is then used in the next integration stegerefore,
methods of this type are frequently called predictoorrector or, more
precisely, PECE (Predict, Evaluate, Correct, anallate) method.

3.3 APPROXIMATE SOLUTION OF FRACTIONAL
DIFFERENTIAL EQUATIONSUSING CUBIC SPLINE
INTERPOLATION WITH 3-NODE POINTS

Suppose that we have m + 1 data poigt®4 ..., pn through which we

have to draw a curve such as that shown in fig8r2) ((in which m= 6),
[Bartels, 1987].

™ 2]
i
Ppg
o
Pl
f ™
|
\ _#f
., e —
h_\_/_xm

Figure (3.2) An interpolating cubic splin.

Each successive pair of data points is connectedlisynct curve
segment. The"i segment runs from; go p.1, and we will assume that the
parametefi runs correspondingly from the kngtto the knofi;,, to generate

this segment. Since each such segm@n) is represented parametrically as
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(Xi(0), Yi(@), we are indeed concerned with how thgiXand Y/(i) are

determined by the points $ (X;, V).

In general, the x-coordinates ¥ (of points on a curve are determined
solely by the x-coordinates,xxs,..., Xn, Of the data points, and similarly o(
is determined solely by the y-coordinates of th&agmints, since both XJ

and Y @) are treated in the same way, we will discuss ifl).

For ease of computation, we will limit ourselves tloe use of
polynomials in defining X(u) and Y(u). Indeed cubic polynomials usually

provide sufficient flexibility for many applicati@nat reasonable cost.

] ?
T _ 5 "'F-h"'-."
- o

T T -

=Y

=0 =

Figure (3.3) Y(U) for the curve shown in figure (3.2) above.

It will be easiest to continue the discussion byarametrizing each
segment Y separatedly by substituting u faras was described earlier, This
means that & U; — i for the knot sequence given in figure (3.3). EaQu) is

a cubic polynomial in the parameter u. It is knawat:
Yi(u)=4a + bu + gu” + du’

where @ b, ¢ and ¢ are constants have to be evaluated for each,i2, ...,

m; and hence:
Yi0)=yi=a
Yi(l)=yma=a+hb+c+d

Where Y/(0) stands for the left hand limit and(Y) for the right hand limit.
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Because we have four coefficients to be determinwedyeed two other
constraints are needed to completely determineriécpiar Y;(u). One easy
way to do this is to simply pick, arbitrarily, firderivatives Dof Y(u) at each

knot;, so that:
Yi%0)=Di=Db
Y1) = Dir=by + 26 + 3d

These four equations how can be solved analyticalhce and for all, to

yield:

& =Y, b= D; ¢ =3(Yir1yi) — 2D — Dieg, di = 2(Y: — 1) + Di + Dina

Since we use [as the derivative at the left end of tHesegment (i.e.,
as Yi(l) (0)) and at the right of the & 1)" segment (as{i(_li(l)), Y(u) has

continuous first derivativelhis technique is called Hermite interpolation. It

can be generalized to higher-order polynomialsrtis, 1987].

A question may arise which is how are the dpecified ?. One
possibility is to compute them automatically, pgrhdy fitting a parabola
through y, y; and y.; and using its derivative at @s D, arbitrary (such as
0) can be used at the end points, or one can ude the y component of a
weighted average of the vector from o p and the vector from to p, or

the user may specify derivative vectors directly.

It is possible to arrange that successive segnmeatsh second as well
as first derivatives at joints, using only cubidymmmials. Suppose, as above,
that we want to interpolate the (m + 1) poings@, ..., pm by such a curve.
Each of the m segmentsy(¥), Yi(u), ..., Yma(u) is a cubic polynomial
determined by four coefficients. Hence, we have dmknown values to
determined. At each of the (m1) interior knotsiy, Gy..., Un.1 (Where two

segments meet), we have four conditions:
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Yia@ =y, 1Yi(-1{(1) = Yi(l)(o)
Yi(0) =v;, Y2 = Y2(0)

Since we also require that:
Yo (0)=Yo
Ym1(1) = Ym

Then we have a total of 4(m1) + 2= 4m- 2 conditions from which
to determine our 4m knows. Thus, we need two moralitions. These may
be chosen in a variety of ways. A common choicgngly to require that the
second derivatives at the endpoiiitgand U, both are equals to zero; these

conditions yield what is called a natural cubiarspl

Now, we have to derive a natural cubic spline eqguatising 3-node

points as a knot points for each bases. Let us@drin general.
Ifj =i, then:
Gu)=a+h (u-f 1 g tf+ gt

and letting@-; and to@ be the left and right parts censuriggrespectively,

as it is shown in figure (3.4):

ti+1

Figure (3.4) Cubic spline basig,.1 of 3-nodes points.
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Also, recall from the definition of cubic splinetampolation of a
function f defined on [a, b] on a set of numberdled nodes, <t < ...
< t, = b, then a cubic spline interpolation denotedpldgr f is a function thus

satisfies the following conditions:

(a) @is a cubic polynomial denoted lgyon the subintervalftt.,], for each

j=0,1, ..., n 1.
(b) @) =f(t), foreach 0, 1, ..., - 1.
(©) @u1(tj1) = @(tj+1), foreach 0, 1, ..., n— 1.
(d) @ja(ta) = @(ta), foreach 0, 1, ..., n— 1.
() @'ja(ti1) =¢@'j(tsr), foreach 50,1, ..., n- 1.
() One of the following sets of boundary conditionsasisfied:
() @'(to) =@'(t)) =0 (free boundary) ......ccccoeeeeeviiiiiiineennnn. (3.24)
(i) @(to) = f'(tp) and@(t,) = f'(t,) (Hermite boundary) ............. (2.25)

To construct the cubic spline interpolate for aegivfunction f with
¢g'(a) = ¢g'(b) = 0, the above conditions can be applied to the ccubi

polynomials:
Q=g+ (u-fr ¢ tf+d(u;t]
foreach =0, 1, ..., n— 1.

Clearly,@(t) = a = f(t;) and if condition (c) is applied, then for each (), 1,

.., N—2:

341 = Gua(tior) = Q(ter) = 3 + Bter — §) + G(tr — §)° + 4 (ks — )°
=g+bh+gh®+dh’ ..o, (3.26)

where b= t;; — t,.
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In a similar manner, defing b @(t,) and observe that:

@;(u) =y + 26(u - t;) + 2d(u - t)°
implies @;(t;) = by, for each £ 0, 1, ..., = 1. Applying condition (d):

B2 = B+ 26N + 3GN o (3.27)
foreach =0, 1, ..., n— 1.

Another relation between the coefficients @fcan be obtained by

defining ¢ = @'(t,)/2 and applying condition (e). In this case:

foreach =0, 1, ..., n— 1.

Solving for d in equation (3.28) and substituting this valueoint

equations (3.26) and (3.27) gives the new equations

2
g =a+bh+ h§(2q Sl 70 ) (3.29)

and
i1 =1+ N(G 4 Gr1) oo (3.30)
foreach=0, 1, ..., n- 1.

The final relationship involving the coefficients obtained by solving

the appropriate equation in the form of equatia29} first for b.

1 h
b = H(a,-ﬂ -g)— §(2q F G1) ceeerrerrrrr e (3.31)

Substituting these values into the equation derirech (3.30), when the

index is reduced by one, gives the linear systeggohtions:

hG-1 + 4hg + hG.y = %(aﬁl —-a) - %(2(; F Ga1) ceernreeeree e (3.32)
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for each j= 1, 2, ..., n— 1. This system involves as unknowns ofdy 1., .
Since the values da}., are given by spacing of the nodgg ., and the
values of f at the nodes. When evaluat{ng [, then{b } ., and{d}.,
could be evaluated from (3.31) and (3.28), respelsti

Then on order to construct the cubic spline inteEfien with three
node points, namely;-{, t and f., with @-1(ti-) = 0, @-1(t) = @(t) = 1 and
@(t.1) = 0, then the above conditions will applied to thédseee points as

follows:
@-1(U) = & + bp(U = i) + (U = t-g)® + (U = ti1)®erree, (3.33)
QU)=a +bu-t) + U=t + dU=1)% i, (3.34)

since a= f(t), then 3 = & = 0 and a = 1. Then the following system is

obtained Ax= b, where:

1 0 0 Co ; 03
A=|h 4h h|,x=|c |andB=| (a-a)+ (@~ 3)
0 0 1 c 0

After solving this system, we obtaineglcc, = 0 and ¢ = —1.5/F. Then from
equation (3.31), we have b 1.5/h and b= 0. Also, from (3.28), the values
of dy, and d are evaluated to bg & —0.5/F and d = 0.5/

Therefore, the final form af;_;(u) and@(u) are given by:

1.5 0.5 :
(ﬂ—l(U) = h (U - 1:i—l) - s (U - ti—1)31 ift_;<us<t

1.5 0.5 :
@u) = 1_W(U_ti)2+ F(U_ti)?), ifti<u<tyg

Now, in order to evaluate the constants.afor all j=0, 1, ..., n+1,
we proceed as follows:
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Depending on the final from of the basis functign,,;, we can derive

a.n+1 as follows:

Forj=i

tj
& ne1= I (thes~ uﬁ_](Pj,ml(u)dL

i1

ti
= I (tn+1 u)q 1[1 5( - tl 1) 3 (u | 1)3} du+
tiz

tivg

O B e e R K
ti

q(q+ 1)[1 H (n+ 2= ipt+ (- iprd | +

3[2(n+ 1~ ip3 - (n+ 2- iy3- (n— i)
(a+2)(@a+ 3)

Similarly, forj=0 and j=n + 1, we have:

1 3(n+ g2 3[(n+ 13— e
3o+ @ +l){(n 19 (g+ 1)+ 1.5m+1 o 2 + @ 2@ 3

and

_  ha B 0.5
™ DS o )
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3.4 APPROXIMATE SOLUTION OF FRACTIONAL
DIFFERENTIAL EQUATIONSUSING CUBIC SPLINE
INTERPOLATION WITH 5-NODE POINTS

Using a little foresight we can modify the basisdtions to be of five
node points. For this purpose, suppose each hasitidn to be non zero over
four successive intervals (which for conveniendeaa¢ assumed to have
length one), as shown in figure (3.5), and askwhtt in each interval abases

function be defined by a cubic polynomial:

ps (U)=g +hu+gu*+du’ i—3<j<i

-

l.-'r.
i
doal £ o)
) " 3
Hl."— -
1 1i+]  1i+3 1i+2 113+4

Figure (3.5) The uniform cubic B-splinas(u) is cubic C basis
function centered at ..

Since the nonzero portion of our cubic basis fuorctp(u) consists
(from left to right) of for basis segmengs(u), @(u), @, (u) andg;(u), and
since each segment has four coefficients to berrdeted, there are sixteen
coefficients to be determined. The basis- funciofu) is identically zero for
u<uy and for u> U.s, So the first and second derivativg$(u) andqg®(u)

are also identically zero outside the intervaliuuy ).
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Similarly, as in section (3.3), the basis functiap@) with 5-node

points (see figure (3.6)), as follows:

G+1

ti o ti-1 t; tiv1 ti+o

Figure (3.6) Cubic basigg,.1 of 5-nods points.

@-o(U) = 8 + by(U = ti-) + (U — tip)® + (U = ti2) e, (3.35)
@-1(U) =& + by(u— i) + c(u— tieg)® + (U = tic) e, (3.36)
@QU)=a + b (u—1t) + U —1t)+ U —=1) e (3.37)
@ar(U) = 3 + by(U = tir) + Co(U = tiwr)? + (U = tisd)® e, (3.38)

Since a=f(t), theng=a =0, a = & = Y2 and a= 1, and the following

system for evaluating’s is obtained:

Ax=Db
Where:
_ 0 -
1 0 0 0 O ¢, | 3 3
_a— [ —_—
A=/0 h 4h h O, x=]|c,|, b= %(ae—az)—%(az—q)
O 0O h 4h h Cy 3 3
0 0 0 0 1 |c4] pa &) (& a)
0
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After solving this system, we obtaineglcc,; =0, g =3 = 0.214/K and ¢ =
-0.857/H. Then from equation (3.31), we havg=1.5/h and b= 0. Also,

from (3.28), the values of'b and d¢'s are evaluated to be:
by = 0.429/h, h=0.643/h, b=0 and B =-0.643/h
do = 0.071/K, d; = -0.357/K, d, = 0.357/F and ¢ = —0.0.71/K

Then:

@)= 20201 + 20— Ly it us

1 0.643 0.214
@-1,n+1(U) = 2 + h (U-t) + T(U - ti—1)2 -

0.357
h3

Q) = 1= 222 =2+ 22 (=), < U<t

(U—-tp)? iftiaSus<t

1 0.643 0.214
@+1n+2(U) = 27 h (U—t) + h? (u- ti+1)2 -

0.071
h3

The values of ja.; could be evaluated depending on the final form of

basis functiongy(u), similarly in section (3.3) to get the follovgrinal form:

Ifj =i, then:

"t (q+1)

-0.426(n+ 2= iy*2- 0.002( % B2 N
(+1)(q+ 2)
0.426 (v 3 iys+ (= & iwd
(q+1)(q+ 2)(at+ 3)

2.568(n+ 2 W3- 4.284( % rys}
(g+1@+ 2)(g+ 3)

_ha {—1.285(n+ 2- iy1+ 0.429(r 3 @1+ 0.428(n 4 @
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similarly if j =0 and = n+1,

_ha 0.428(n- "1 0.002(n- W2 — 1.714(r 12
1 =— [(n+21) + +
Boma =g (V1P + ==, @+ D+ 2)

2.142(n+ 1y+3- 2.568ar3+ 0.246(n @3}
+
(@+D(q+ 2)(a+ 3)

o, _fo [0.001+ 042921, 0.002 = 1.7M4 0.426@}
+1n+1 (q+1) (a+ D(a+ 2) (ar D+ 2) (e 3

q
35ILLUSTRATIVE EXAMPLE

In this section, we give an example as a test prolib check the
accuracy of the results using the above three appes discussed previously

in sections (3.2), (3.3) and (3.4), respectively.

Example:

Consider the fractional differential equation:

2t3/2
2) — _ —
y y+t2+2r(5,2),y(0) 0

where the exact solution is given by yty.

Then the results obtained upon using the threeoappes are given in

table (3.1) with step sizes0.1 with its comparison with the exact solution.
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Table (3.1).

Cubic Cubic
(3-points) (5-points)

Linear

From the above obtained results, one can see theaay of the results
in which the approximate solution of the solutidriractional differential
equation using cubic spline interpolation with 3mmintes is more accurate
than the solution obtained by using linear apprate. Also, the result
obtained by using cubic spline interpolation withd&d pointes is more
accurate than the results obtained by using cytbicesinterpolation of 3-nod

points.
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CHAPTER

2

THEORY OF FRACTIONAL DIFFERENTIAL EQUATIONS

Analytic solution of fractional differential equatis is so difficult and very limited,
therefore, analytic methods for solving fractioddferential equations dose not work in

all cases, but they may be powerful in some caseésraay not work in other.

This chapter presents some of the mostdmental and popular methods for solving
fractional differential equations analytically, suas the inverse operator method and

Laplace transformation method.

In addition this chapter presents some of the nasic concepts in fractional
differential equations as well as the statement@oodf of the existence and uniqueness

theorem which has its basis on Schauder fixed pbadrem.

2.1 PROPERTIES OF FRACTIONAL DIFFERENTIATION AND
INTEGRATION

In this section, some properties related to fractialifferentiation and integration
are explained, those properties which will provale primary means of understanding

and utilizing fractional differential equations.
We start with those properties of most importance:
2.1.1 Linearity:

By linearity of the differintegral operator, by whi we mean:

DI+ J =D F 14D F oo (2.1)

where { and § are any two functions and q is a fractional numbed:
16



Chapter Two Theory of Fractional Differential Equabns

DICE] ZCD K e (2.2)

where f is an arbitrary function while ¢ is an &y constant.

2.1.2 Scale Change:

By a scale change of the function f with respecatmwer limit a, we mean its
replacement by f3x — Ba + a), whergd is a constant termed the scaling factor, and hence
the fractional derivative of order g withYy — fa + a, and X x + (a— a)/f3, is given
by:

d(Bx) _d%(x-Ba+a)
[d(x-a)[* [d(x-a)f

X

L fiBy-Pata),

:r(_q)a [X—y:lq+1
_ 1 BJX FY)AY/
r(=a) L {1AX -1/ g9
_ p ij f(Y)
r(-a) 5 [BX -Y]9*!
_aq_ A (BX)
L LLCA0 SO 2.3
P [d(BX -a)] 23

2.1.3Leibniz's Rule:

The rule for differentiation of a product of twonictions f and g is a familiar result

in elementary calculus. It states that for a pesitnteger n:

d"[fg] :i(ﬂﬂ.@ ...................................................... (2.4)

dx" i3\
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The following product rule for multiple integrals also satisfied

_dife]__ ( j I T 25
a0 ) Eeear™ do a )

Now, when we observe that the finite sum in (2d)ld be equally well extend to

infinity (since{?] =0 for all j > n), we might expect the product ruéelte generalized to

an arbitrary order q as:

~ dfg] ZU a9 dlg
[dx-a) i) [dx-a)f ) [d(x-a)!

Thus such a generalization is indeed valid for cgder g and is called the Leibniz

rule.

Further generalization of Leibniz's rule due togd¢lL972) is the integral form (see
[Oldham and Spanier, 1974)):

d9[fg] _ °Jf r(g+1) daYAf grHA g
qu 4 r(q _ y_)\ i 1)|_ (y+)\ N 1)- dxq—y—)\ . dxy+)\

In which a discrete sum is replaced by an integral.

2.1.4 The Chain Rule [Oldham and Spanier, 1974]:

The Chain rule for the first order differentiatimngiven by:

(f( )= (f(X))—f(X)

d
df (x) )
which tacks a simple counterpart in the integréddas.

Indeed if there were such a counterpart, the psooésntegration would pose no

greater difficulty than does differentiation. Sincany general formula for
99(f(x))/[d(x - a)I" must encompass integration as a special castlehope that can
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be held out for a useful chain rule for arbitraryNevertheless, a formal chain rule in

fractional orders may be derived quit simply, whiakes the form:

' _[x-al" +i@ x-a]"? dio
[dix-a)f F@-q) “Z\)r{-q+1) dx

j=1

Now, we conside® = ®(f(x)) and evaluated'®(f(x))/dx}, in the second term of

the last equation as follows:

d_cp(f(x)) =l Zj::¢(m)z[l_| ~ {fl((kl)}pk]

whereX extends over all combinations of nonnegative ieteglues of p p;. ..
that:

., g, such

J _ i
Dkpe=j and Y p,=m
k=1 k=1

Thus:

dd x-ar9
a0 F gy )

> [X a]Jq | | (m) 1 fk) Pk
,ZUF(J ~q+1)’ Z Z 2 P! W

The complexity of this result will inhibit its gerad utility. We see on inserting ¥

-1 that even for the case of a single integration:

[o(fe0)y =[x -alo(f(x) +

pix-alt s Jiﬁ}
Z[] ) Z{Ik'lzlpk.{

m=
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The chain rule gives an infinite series that offidétke hope of begin expressible in

closed form, except for trivially simple instanadghe functions f and.

2.1.5Composition Rule [Oldham, 1974]:

In seeking a general composition rule for the operd/ [d(x — a)]*, we search for
q Q q+Q
the relationship between: d : Shi and d f+ :
[dx-a)f [dx-a)f  [dx-a)"?

abbreviated for simplicity as'd®f and d*° f of course, if these symbols are to be general

which we temporarily

meaningful then we need to assume not only thatd differintegerable but thaPfdis

differintegerable as well.

The most general nonzero differintegerable sesi@sfinite sum of differintegerable

units, each having the form:

We shall see that the composition rule may be validome units of f but possibly

not for others. It follows from the linearity offtérintegral operators that:

A0 = A8 O e (2.7)

AR, =A% O e, (2.8)

For every unit f of f. accordingly, we shall first assess the \J#afidof the

composition rule (2.8) for differintegrable serigst function f.

Obviously, if f, = 0, then 8f, = 0 for every Q.

d9d?[0]=d% 9[0]=0
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Chapter Two Theory of Fractional Differential Equabns

While the composition rule is trivially satisfiedrfthe differintegrable function, £
0, we shall see that the possibility#f0 but ®f,=0,is exactly the condition that prevents
the composition rule (2.8), and there for (2. 7Qnirbeing satisfied generally. Having dealt

with the case,f= 0, we now assumeg £ 0, and use the following equation

o ajl (p+ J+1)

[d(x a)]q ,Zr(p g+ i+

a]p+j_q,q < 0

To evaluate &,, we have:

al (p+ j+)[x—af*i @
Q ]
df, —E:adq[x afti= § fpriQrn T (2.9)

Furthermore, we note that since p-2, it follows that p + | >1, so thal (p + | +
1) is always finite but nonzero. Individual termsd®f, will vanish. Therefore, only when
the coefficient ais zero or when the denominator gamma funcfigm + j + 1- Q) is

infinite. We, see, then, that a necessary andcseiffi condition for g, # 0 is:
[(p + )+ 1-Q)is finite for each j for which;& O ................... (2.10)

The last condition may be shown to be equivalent to

That is, to the condition that the differintegrahieit f, be regenerated upon to
application, first of 8, then d2. Assuming (2.11) temporarily, we find thdtrday then be
applied to equation (2.9) to give:

dquf _Z Jl'(p+ j+1F (p+ j— Q+ D[x- aT*J Q-q
' F(p+j—-Q+1r(p+ j—Q-qg+ 1)

With the condition (2.11) or equivalently (2.10)effect, we may safely cancel the
[(p +j—Q + 1) factors in (2.12), arriving at:
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Chapter Two Theory of Fractional Differential Equabns

@ al (p+ j+1)[x—aPr-Qd
d9ad°f, => " (p+ ) _)[ D (2.13)
o T(P+i-Q-g+1)

On the other hand, the same technique shows that:

d99f, = a;d™ 4,
=0

- $ (et i+ - aft e
M(p+i-Q-q+1)

j=0

= d%d%f,

Thus the composition rule (2.8), is obeyed foruhé f, as long as condition (2.11),
is satisfied. However, when (2.11), is violate®,d 0

so that &d° f, = 0, and on the other hand, it is not necessardyctse that®d%, = 0.
For example, we may choose=fx ™, a=0, Q= 1/2, and & -1/2, then:

r(1/2) NEENET I
r(0)

fu _ d—QdQ fu — X—1/2_ d—l/Zdl/ZX—1/2 — X—l/Z _ d—l/Z

So that condition (2.11), is certainly violated.eféfore & f, = 0 and dd%f, = 0
while d™*%, = d’?=x"?# 0.

In generalizing, we easily see the relationshipveen dd%f, and d*f, in the case
f,—d?df, £ 0, to be:

O=d"d?f, = d" A — d™ - A2 A e (2.14)

While equation (2.14) is a trivial identity for tBfintegrable units, we shall see that
it is less trivial and, therefore, more useful §@neral differentegrable series f if and only
if equation (2.8) is valid for every differintegdalunit f, of f, it is straightforward to apply
the theory just developed for unitsté obtain the composition rule for general f. Timdy

difference is that while the conditions:

fuz20and f—dCdu=0 e, (2.15)
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Chapter Two Theory of Fractional Differential Equabns

For units f, guaranteed that“f, # 0, this is no longer the case for arbitrary f. The

reason, of course, is that some units of f magfatl.15) while others do not. This will

make it possible to violate the composition rul&’Y2even though# 0 and & f # 0. The

condition:

For general differintegrable series f is howevdéill secessary and sufficient to
guarantee (2.7), we mention in passing that foegdrdifferintegrable f, as was the case
for differintegrable units,f dd®%f = d™*%, At least when Q < 0, and even when Q < 1, for
functions f bounded at x a. We have noticed previously that, in case whaee

composition rule is violated the equation:

dd®f = d¥ % — o Yf — d7? d°f).

22 FRACTIONAL DIFFERENTIAL EQUATIONS

A relationship involving one or more derivatives af unknown function y with
respect to its independent variable x is knownrasrdinary differential equation. Similar
relationships involving at least one differentegrahon integer order may be termed as

extraordinary differential equations.

As with ordinary differential equations, the sitoat of extraordinary differential

equations often involves integrals and containgrary constants.

The differential equations may involve Riemanneuwville differential operators of

fractional order g>0, which takes the form:

1 de' y(u) AU, XZ Unereeeeeeeeenn, (2.17)

9 =
ony(X) I—(m _ q) de (X _ u)q—lTH'l

Xo

where m is an integer number defined bylnx g< m. Differential equations involving

these fractional derivatives have proved to beafaritools in the modeling of many
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Chapter Two Theory of Fractional Differential Equabns

physical problems. Also, Dhas an m-dimensional kernel, and therefore we need
specify m initial conditions in order to obtain aigue solution to the fractional

differential equation:

DAY(X) = (X, V(X)) eeeerrereeireeeeirieeeetiee e et e eeeeee et e e eree e e eraeeeeaee e (2.18)

with some given function f. In the standard mathicah theory, the initial conditions

corresponding to (2.18) must be of the form:

dak

dtOI_ky(x)\xzazbk, L T+ SO A9)

with given values p In other words, we must, specify some fractiahalivatives of the

function y.

In practical applications, these values are fretjyerot available and so Caputo
(1967) suggested that one should incorporate deresaof integer-order of the function y
as they are commonly used in initial value problevith integer-order equations, into the

fractional-order equation, given:

DAY = Tt (V)] (X) = F (X, Y(X)) eeeerveeeeriee et (2.20)

where T,_((y) is the Taylor polynomial of order () for y, centered at 0. Then, one can

specify the initial conditions in the classicalrfor
yR )=y k=0,1, .., M Lo 22)

As a classification, fractional differential equats may be classified to be either
linear or non-linear, homogenous or non-humongets, In which equation (2.18) is
linear if it does not contain terms of independeatiable alone, otherwise it is non-
homogenous. Also fractional differential equati@me said to be linear if the dependent
variable y(x) appears linearly in the fractionaffeliential equation, otherwise it is non-

linear.
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Chapter Two Theory of Fractional Differential Equabns

2.3 THE EXISTENCE AND UNIQUENESS THEOREM [Diethelm,
1999]:
Looking at the questions of existence and uniquenéthe solution, we can present
the following results that are very similar to t@responding classical theorems known

in the case of first - order ordinary differentegjuations. Only the scalar setting will be

discussed explicitly; the generalization to vectealued functions is straight forward.

Theorem (2.3.1) (Existence):

Assume that D:=[O,)(D]><[ygo)—a,ygo)+a] with  some real number

XD > 0 and some& > 0, and let the function f : DI - R, be a continuous function.

Furthermore, define:
x:=min{x", (ar (g +1)/[f] )V

Then, there exists a function y : [}, 0 - R, solving the initial value problem (2.20)-
(2.21).

Theorem (2.3.2) (Unigueness):

Assume that D:=[O,x*]x[y(()0)—a,ygo)+a], with  some real number

x* > 0 and some > 0. Furthermore, let the function f :[D - R, be bounded function

on D and fulfill a Lipschitz condition with respeict the second variable, i.e.,
If(x, y) - f(x, z)|< L]y — 2|
with some constant L > 0 independent of x, y and z.

Then there exists at most one function y :X0J —» R, solving the initial value problem
(2.20)-(2.21).

In order to prove these two theorems, we shalklhisdollowing very simple result.
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It can be proved easily by applying the integradragpor of order g, given by:

19@)(x) == [(x ~2)(2)dz
q

Lemma (2.3.3):

If the function f is continuous, then the initiahlue problem (2.20)-(2.21) is

equivalent to the nonlinear singular Volterra imedgquation of the second kind:
) (o a-1
X + x=2z)" “f(z,y(2))dz.................. 2.22
y(x) = §k|Y()r()J( ) f(z,y(2))dz ( )

with m— 1 < q < m. In other words, every solution of theltérra equation (2.22), is also

a solution of our original initial value problem.2D)-(2.21), and vice versa.

We may therefore focus our attention on equatioB22 This equation is weakly
singular if 0 < g < 1, and regular forgl. Thus in the latter case, the claims of the two
theorems follow immediately from the classical tesin the theory of Volterra integral

equations.

However, in the former case (which is the case irequin most practical

applications), we must give explicit proofs.

The Proof of Theorem (2.3.1):

In particular, we use the same operator as:

(Ay)(x) =y© + (1q) (<=2 K@, y(@)dZ (2.23)
0

and recall that it maps the nonempty, convex aosed set:

U :={y OC[0, x]: Hy y(O)H <o} toitself.

26



Chapter Two Theory of Fractional Differential Equabns

We shall now prove that A is a continuous operator.

A stronger result is to prove that A satisfies:

Then since f is continuous on the compact set B3, iniformly continuous there. Thus,

(L)
s——Jy —yHLm[O’X], Oy, yOU ............ (2.24)

Ay -A'Y
y ryLoo[o,x] 1+ qgn)

given an arbitrarg > 0, we can find > 0, such that:

Fx,y) ~f(x,2)| siqr(q+1),whenevet, T O (2.25)
X

Now, lety,yJU such thaly - §| < 3. Then, in view of (2.25), one gets:

£, y(x)) =F (X, §OO)| <X_€qr(q F0) e (2.26)

for all x J [0, X], hence:

(Ay)(x) - (AY)(x)| = F@ _[ (x ~2)7Hf (z,y(2)) - f(z,¥(2))| dz

g+ 1 | -1
< qu‘(q) I(x z)" “dz

Hence A is continuous operator. Then we look ats#teof functions:
A) ={Ay:y O U}

and for zO A(U), we find that, for all XJ [0, X]

200/ =] (Ay)(0)| < \y“ﬁmj (x=2)"f (z.y(2)) dz

O)| + q
P+ gl
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This means that A(U) is bounded in pointwise sense.

Moreover, for ( x; < X, <y, we have:

(AY)(x0) = (AY)(x )| = j (x1-2)7 (2, y(2))dz~

r()

f (x2=2)7(2,y(2))d

I’ﬂ Hj:l) Xo =X) T+ XT=XT] oo (2.27)

Thus, if |%— X4| <9, then:

H Hoo *

|(Ay)(x9) = (Ay)(x p)| <2 1)

Noting that the expression on the right-hand sgdmdependent of y, we see that the set
A(V) is equicontinuous. Then every sequence oftions from A(U) has got a uniformly
convergent subsequence, and therefore A(U) iSvelgtcompact. Then, Schauder’s fixed
point theorem asserts that A has got a fixed p@ntconstruction, a fixed point of A is a

solution of the initial value problem (2.21).m

Remark (2.3.1):

The proof of the uniqueness theorem is based oriolleving generalization of

Banach fixed point theorem [Weissinger J., 1952].

Theorem (2.3.4):

Let U be a nonempty closed subset of a Banach dpaaerd letn, = 0 for every n
and such that Zan converges. Moreover, let the mapping
n=0
A : U0 - U, satisfy the inequality:

IA’U — AV < an [Ju = V|
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for every n0 N and every u, \JU. Then, A has a uniquely defined fixed point u*.

Furthermore, for anyq U, the sequencf U ¢ 1=, converges to this point u*.

The Proof of Theorem (2.3.2):

As we identified previously, we need only to dissushe case when

0 < g < 1. In this situation, the Volterra integegjuation (2.22) reduces to:

y(x)=y©@+ L ") j (X =2)8 (2, Y(Z)AZe oo (2.28)

we thus introduce the set U defined previously.
Now, since the constant functlorF_yy(O) is in U, we also see that U is non empty.

On U we define the operator A by:

(Ay)(X): —y<0)+m j (X =2) (2, Y(2)AZe oo, (2.29)
Using this operator, equation (2.29), could be & as y= Ay, and in order to prove
our desired uniqueness result, we have to showAHhas a unique fixed point. Let us

therefore investigate the properties of the operatd-rom (2.28), recall that:

+1)

|(Ay)(xq) = (Ay)(x2)\ [2(x ;—x 99 +x7 -x]]

Proving that Ay is a continuous function. Moreover,y [1 U and x[1 [0, X], we have:

ORTRIE

G )j (x-2)" (2, y(z»d%

<ol
q+1)
al (q+1)

< ] =
ra+™ ™ .,
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Thus, we have shown that AyU, i.e. A maps the set U to itself. The next st prove

that, for every i N, where N is the set of natural numbers and exénhj0, x], we have:

This can be seen by induction. In case cf @, the statement is trivially true. For the

(LxH"

L oof0,%] r(l"'qn)Hy_

induction steps from f 1 to n, we write:

=|Aa ™) -AA )

LOO[O,X] L°°[O'X]
=L sup|[ (- @AY @) fz AT @)
r( )O<W<x0

%ofv‘dfx J = Y A Lyw)- ATy (w) dz

F( )I(x z)%71 sup | A"y (w)- Ar”‘y(wi

O<ws<z

L _\a1,4(D) -
*T(@r @+ an- D) [c-ai SUP | YOy y(w)

L" (1)
*F@rr - Doand "™ y(WJ(X AT

_ " o @@+ gn-1) g
rara a1y’ et ™ gy

which is the desired result (2.30).

We have now shown that the operator A fulfils teswuanptions of theorem (2.3.4),
with a, = (Lx%)"/ [ (1+qn)

In order to apply that theorem, we only need toifyethat the series

M s

a , converges. This however is a well known resultgesin
0

n
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(LxH" q
ZF(1+qn) Ea(bX)

which is the Mittag-Leffler function of order q, &uvated at k“.

Therefore, we may apply the fixed point theorem aedluce the uniqueness of the

solution of our differential equation. =

Remark (2.3.2):

Without the assumption of Lipschitze condition onhien the solution need not to

be unique. To see this, consider the following sengme-dimensional example:

D = y*
with initial condition y(0)= 0. Consider 0 < k < 1, so that the function onrbgat-hand
side of the differential equation is continuoust btwe Lipschitz condition is violated,
obviously the zero function is a solution of thistial value problem, however, setting
pi(x) := X, we recall that:

F(j+1)

ap. =\ =
PP a-g)

pj—q (X)
Thus, the function:

y(x) =4r(j+1) /T (j+1-q)x , with j=q/ (1~ k)

Also solves the problem, proving that the solui®not unique.

24 ANALYTICAL METHODSFOR SOLVING FRACTIONAL
DIFFERENTIAL EQUATIONS

In the present section, some analytical methodspaesented which has the utility

of solving fractional differential equations thetcally.
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2.4.1 Inverse Operator Method:

This method is based on considering perhaps thelesin of all fractional

differential equations:

where Q is arbitrary, F is a known function. Itésnpting to apply the operatorddx® to
both sides of equation (2.31), and perform “invamsi

d"°F

f=
dx

But this is not the most general solution. In faeterring to our discussion of the

composition law:
DIDEf (x) =DED%F (x) =D ¢*FF (%)
We recall that it is precisely the condition:

Q 49
_d® dr

f _
dx™@ dx®

which guarantees obedience to the compositionfarlgeneral differintegrable series f.

dQ d%f

The differencef — —_—,
dx @ dx®

will not in general, vanish, but will consist tfiose

portions of the differentegrable series unjtgff that are sent to zero under the action of

Q
;—Q. We decompose f into differintegrable unitg Wwhere:
X
foi=xP ¥ axn >-1g # 0F 1,2, oo (2.32)
j=0

and investigate the conditions Qf fequired to give:
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-Q 4Q
fod© d%%
dx @ dx®
The condition{(p + j + 1- Q)) or (f, - d %df, = 0), to which are equivalent, tell

us that condition (2.33) obtains if and only iff &mme in the rangedi < n,

(P = QF L) e (2.34)

is infinite. This condition can occur, however, ymwhen p, - Q+1= 0-1,... that is,
whenp, = Q-1,Q- 2,... and putting these facts together shows that,emtbst general
case:

_d™? d9f

f —_—
dx @ dx®

=ex Heox %4 L+ o X

wherec,,¢c,,...,G,, are arbitrary constants afick Q< m< Q+ 1. For Q< 0 the right-hand
member of the equation is zero. Thus:
_dQ d9f _ d %

dx Q dx? dx ©

and the most general solution of equation (2.31) is

-Q
f=d _F+c1xQ'1+csz'2+....+ Gy X e, (2.35)
dx
Next, consider the fractional equation:
dof  d7
+A — T (X) oo (2.36)
dx® dx?t
where Q is again arbitrary, A is a known constarigd F is known function of x.
- gt @ . . .
Application of the operat%lTQ to the both sides of equation (2.36), yields, by
X

techniques like those discussed in connection thghnversion of equation (2.31):

1-Q
i + Af = d F
dx dxt @

+ex 2 4o x 3+ L+ o xT M

33



Chapter Two Theory of Fractional Differential Equabns

A first-order ordinary differential equation for Whose solution may be

accomplished by standard methods [Murphy, 1960].

For the two extraordinary differential equationstjtreated were quite special, the

solution of the even slightly more general equation

dif  d%f
—  +— _=F
dxd  dx®

encounters very great difficulties except when difeerence g— Q is integer or half-

integer.

2.4.2 Semi Fractional Differential Equations:

By a semi differential equation we shall understamdelationship involving
differintegrals of an unknown function. Each difféegral order occurring as some

multiple of 1/2, at least one.

For example, the equation:

3

d°f b 82F _ \
@ sm(x)—g—exp(x,
dx?2

is a semi fractional differential equation, andals

3 -1

d2f d?2f _
—3 - ;1+2f—0
dx2 dx?

is a semi differential equation, while:

1

of | df _deF
dx? dx 1
dx?
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is not if F is regarded as a known function. Wellstiscover by examples that two
principal techniques are available for solving sdnaictional differential equations,

namely:
1) Transformation to an ordinary differential eqaat
2) Laplace Transformation method.

As it is often the case when dealing with the f@awl calculus, we are not able to
discuss solutions of every general semi fractiahi@rential equations but are forced to

content ourselves with examples intended to resaakion techniques.

2.4.3 Laplace Transform Method[Oldham, 1974]:

In this subsection, we seek for a Laplace transfaffitddx® for all g and

differintegrable f, i.e., we wish to relate:
dof | _ % df
L s—¢=|expEsx)— dx
{dxq} -([ Pt dx

to the Laplace transforitff} of the differintegrable function, Let us firsecall the well-

known transforms on integer-order derivatives:

dof L d*F(0)
L{— =g {f} =Nt k= ) g=12,.
(o - E oG

and multiple integrals:

L =sIL {f},q=0-1- 2 (2)37
o A= 0715 2,0 e,

and note that both formulas are embraced by:

i I L dT T (0)
L i——r=siL {f} =Y &7 q= OF Lo 2.38
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Also, formula (2.38), can be generalized to incluxba integer g by the simple

extension:
dof = dTEX(0)
Li—it=c9 {fl - s*=— >~ forall gueereveereernn.. 2.39

where n is integer such than—nl < g< n. The sum vanishes when<g0. In proving

(2.39), we first consider g < 0, so that the Riem&iouville definition:

X

o _ 1 J £(y)
dxd T (-q)?[x-y]o!

dy,g< 0,x# vy
0

may be adopted and upon direct application of trevalition theorem [Churchill, 1948]:

L {](.fl(x —y)f Z(y)dy} =L {f}L {f 3}

Then gives:

dif |_ 1 1-q _.q
L {dxq}_ ot (XL {f} =s {f},a<0 (2.40)

so that equation (2.37) unchanged generalizescigative g.

For non integer g, we use the result:

{d%}: d" {dq‘”f}

q n g-n

dx dx’| dx L-R
d9f _ d" d9"f

dx9 dx" dx@"

where n is an integer number such thath< g < n. Now, on application of the formula
(2.38), we find that:
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dif dn d4 "f
L<—+¢=L -
dx? dx"| dx&

da-"¢ n-1 dn—l—k do "
—an _
“st {dxq‘”} kZ:;,é(dx”‘l'k dxT " ©)

The difference ¢ n being negative, the first right-hard term mayebaluated by

use of equation (2.40), since-n < 0, the composition rule may be applied totdrens

within the summation. The result:

{ }—sqL {f} - nz (dTTH(0) ,0< g2 1,2,.

= ke Fk

follows from these two operations and is seen toirrporated in (2.39). The
transformation (2.39) is a very simple general@atof the classical formula for the
Laplace transform of the derivative or integral fofNo similar generalization exists,

however, for the classical formulas [Oldham, 1974]:

_ d-L
L{_f} L{f}()d 1L{f}()
X ds

dL {f
L {xf} = di}

L {1} = d :Sf}’ I . ¢ )

As a final result of this section we shall estdblise useful formula:
qe

L JexpE kx)d—q [f* It = [s+ KPL {f},0 <O cevveeeeeeeeeeeeen (2.42)
X

of which equation (2.39), may be regarded as th@ knstance.

The linear fractional ordinary differential equatsowith constant coefficients, so let

us consider the equation:
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n qi
Zcid 1:(X)=g(x),where— i o = (2.43)
= dx'

by taking the Laplace transformation to the botlesiof the above equation, we get:

0 gaf(x)]
L {Zci e }—L{g(x)}

i=0

Now, using the homogeneous and linear propertiéiseofaplace transformation, to

get:

n Gi
2.6k {ddigix)}=t {o(x}

i=0
Using equation (2.39) with f(x) is defined for all1(0,), we can find:
L {F(X)} SG(X) v (2.44)

So taking the Laplace transform to the both sidesgoation (2.43), will give the

solution of equation (2.43).

In this method, the following initial conditionseaneeded:

d9 %5 (0)

K =0,k=0,1,....n .
X

where m-1 < g< m, if the initial, conditions are non-homogeneotlgen the shift

property could be used to transform to the origin.

251LLUSTRATIVE EXAMPLES

Some llustrative examples for solving fractionadfetential equation using the

methods which had been discussed earlier are giexh
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Example (2.5.1):

Consider the fractional differential equation:

3
d—zg X ettt (2.45)
dx?
1 -1
with initial conditionsoI f(10) =ky, and d® f_(lo) =k;.
dx? dx 2

Now, we applying @ / dx*?, for both sides of equation (2.45), yields:

-3 3 -3
d2 d2f _d2f
-3° 3~ -3

dx2 dx2 dx2

Hence:
-3
245 1 -1
f=——+cx2+cyx2
dx 2
3 1 -1
=r(5—;1)X5+2 +Cr_|_X2+C X2
rG6+=+1
2
1 -1
I'(165) x2 +clx2 +C, X 2 oottt (2.46)
r
(2)

Now, taking the first initial condition and applgrequation (2.46), gives:

1 1 13 11 1-1

d2f _ r(6) d2x2  d2x2 d2x 2
1-—15 1 G~ 717% T

dx2 e ) dx?2 dx?2 L dx?
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13 1 _
F(£3+1)x2 2 ) r(21+1)x‘l

r(6) 3 1 TaTtpy Te
) re-osy @ ro)

=

Hence:

1 r(gj

d2f(0) _ 2 _ 3 __ko
Peard = homel (3= a ()
dx? >

Now, if we take the second initial condition, weah:

1 -113 -11 -1-1
d2f_F(6)d2x2+ d 2 x2 d?

IT 15 1 AT Tt
dx2 S ) dx 2 dx 2 1 dx2

13 1
M =—+1 rMN=-+1
_ T(6) (2 ) L2 (z j
F(lSJF(B+1+1j 1
2 2 2
and therefore:

-1 1
421(0) _, r(zj

-1 2
= M1
dx 2 )

which implies that:

C, = ki
2
2
= 1 1
2 1 -1
Then: f= r(6i)é +C X2 +CyX 2
)
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13

F(6)x2

re) r(3) r(;>

Example (2.5.2):

Consider the semi differential equation:

3
d2f(x) g B f(x)

dx2 dx2

and in order to solve this equation using Laplaaadformation method, first we take the

Laplace transformation to the both sides of equai47):

1 -1
d2f(x) d 2f(x) 2 1 6

LT L e {feoh =L {&}+ﬁ|_{&}
dx? dx 2

+%L {x2}+2L {x+L {4

or equivalently in its final form:

28+ 3s+ ¥ 2/ & 4f

(0= (s+ 1+/s)

_ (2s+ D+ (st H 2 s
P (s+ 1+ 2/'s)

EEN)
+
U)N|H

Then upon using the inverse Laplace transform, aveh
f(x) =2 +x

as the solution of the fractional differential etjoi.
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In this thesis the gamma distn. Is considered for the reason of it
appearance in many statistical fields of applications. Some mathematical
and statistical properties of the distn. Are collected and unified. Moments
and higher moments are illustrated and two methods of estimation for the
distn. Parameters are discussed theoretically and assessed practically.

A new method of approximation to the cumulative distn. Function
Is drived and compared with four well-known method of appri\oximation

and it shown a high performance.

Finally five procedure for generating random variates from gamma
distn. Are discussed and their efficiencies are compared theoretically and
pratically by Monte-Carlo simulation.




r.v=random variable

r.s= random sample

Distn. =Distribution

p.d.f= Probability density function

c.d.f= Cumulative density function

m.l.e= maximum likelihood estimate
M.L.E= Maximum Like&ihood Estimator
MC= Monte-Carlo

| T=Inverse Transform




INTRODUCTION

Fractional calculusis that field of mathematics of study which grows
out of the traditional definitions of the calculus integral and derivative
operators in which the same by fractional exponents is an outgrowth of
exponents with integral value. According to our primary school ideas an
exponents provides a short notation for what is essentialy a repeated
multiplication of numerical value. These concept in itself is easy to grasp and
straight forward. However, this physical definitions can clearly become
confused when considering exponents of non-integer vaue, [Loverro, A.,
2004].

Oldham and Spanier [Oldham, 1974], who wrote in this field or
subject had began their work in 1968 with the realization that the use of half-
order derivatives and integrals leads to a formulation of certain electro
chemical problems which is more economical and useful than the classical
approaches. This discovering stimulated our interest, not only in the
applications of notions of the derivative and integral to arbitrary order, but
also in the basic mathematical properties of these fascinating operators. Their
collaboration since 1968, has taken us far beyond the original motivation and
has produced a wealth of material some of which are believe to be original.
As benefits a cooperative effort between a mathematician Spanier and the
chemist Oldham, their work attempts to expose not only the theory underlying
the properties of the generalized operator, but also to illustrate the wide
variety of fields to which these ideas may be applied with profit. They do not
presume to present an exhaustive survey of the subject, but our aim has been
to introduce as many readers as possible to the benty and utility of this

material. Accordingly, they have made a deliberate attempt to keep the
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mathematical discussions as simple, as possible. For example, we have not
used techniques of modern functional analysis to deal with d¥dx% q 0 R,
from an operator-theoretic point of view. This latter approach, which has been
taken to some extent by Feller (1952), and Hille (1939, 1948) should prove to
be very fruitful but is properly the subject of a much more advanced work.
Now we have sought to incorporate the fractional calculusinto the larger field
of symbolic, operational mathematics (Boole, 1844; Heaviside, 1893, 1920;
Mikusinki, 1959; Fridman, 1969; Bourlet, 1897).

This thesis consists of three chapters.

In chapter one, we study the fundamental concepts and definitions
related to fractional calculus including historical background, fundamental
concepts, while the main objective of this chapter isto give an overview about
fractional differentiation and integration including differentiation of unit

function, zero function, the function (x — a)®, etc.

In chapter two, we present the basic theory of fractional differential
eguations including two aspects. The first aspect is the formulation of
fractional differential equations and its relationship with initial conditions, as
well as, analytical methods for solving fractional differential equations
including the inverse operator method, solution of semi- fractional differential
equations, Laplace transformation method, as well as, with some illustrative
examples. The second aspect of this chapter isto give the statement and proof
of the existence and uniqueness theorem of fractional differential equation

using Schauder fixed point theorem.

Chapter three presents the numerical and approximate methods for
solving fractional differential equations, since numerical methods may be
sometimes the most reliable and applicable method for solving differential
equations, in general, and fractional differential equations, in particular.

Therefore, in this chapter, several numerical and approximate methods are
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derived for solving fractional differential equations using linear, cubic with
three node points, cubic with five nod points spline basis functions for solving
fractional differential equations, which are examined using an illustrative

example.

It isimportant to notice that, the computer programs are written using
the mathematical software MATHCAD, 2001 (i), and the results are given in
tabulated form.
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