
 

ABSTRACT 

 

Fractional calculus is the subject of evaluating derivatives and 

integrals of non-integer orders of a given function, while fractional 

differential equations (considered in this work) is the subject of studying the 

solution of differential equations of fractional order, which contain initial 

conditions. The general form of a fractional differentia equation is given by: 

y(q) = f(x, y), y(q−k)(x0) = y0 

where k = 1, 2, …, n + 1, n < q < n + 1, and n is an integer number. The 

solution of fractional differential equations has so many difficulties in their 

analytic solution, therefore numerical methods may be in most cases be the 

suitable method of solution. 

Therefore, the objective of this work is to introduce and study several 

approximate methods for solving fractional differential equations numerically 

with the cooperation of linear multistep methods for solving numerically 

differential equations and Riemann-Liouville formula of fractional 

integration. 
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CHAPTER 

 

FRACTIONAL CALCULUS 

 

The subject of fractional calculus has a long history whose infancy dates 

back to the beginning of classical calculus and it is an area having interesting 

applications in real life problems. This type of calculus has its origins in the 

generalizations of the differential and integral calculus [Lubich, 1986]. 

This chapter consists of five sections, in section (1.1), detailed historical 

background about the subject of fractional differentiation and fractional 

integration is given with leading references about the subject are given for the 

interested readers. 

In section (1.2), basic concepts related to the subject of fractional calculus 

are given which are necessary for the rest of this thesis. Among such 

fundamental concepts, the gamma function and the Riemann – Liouville 

formula.  

In section (1.3), and as a tool for differentiation and integration of 

fractional order several types of fractional derivatives, are given and discussed 

in details with some basic related properties. 

In order to give well understanding about the subject of fractional 

differentiation, some well known examples are given in section (1.4), such as 

the fractional differentiation of the unit function, zero function exponential 

function, etc. 

1 
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1.1 HISTORICAL BACKGROUND 
In the earlier work, the main application of fractional calculus as a 

technique for solving integral equations. Recently fractional derivatives have 

been used to model physical processes leading to the formulation of fractional 

differential equations. The fractional calculus may be considered as an old and 

yet a novel topic. It is an old topic since it’s starting in 1695. L’Hospital was the 

first researcher who asked in a letter to Leibnitz on  the possibility to 

performing calculations by means of fractional derivatives of order r = ½. 

Leibnitz answered this question looked as a Paradox to him (see [Madueno, 

2002]).  

In (1697), Leibnitz referring to the infinite product of Walls for π/ 2 used 

the notation d1/2y and summarized that the fractional calculus could be used t o 

get the same results. 

The earliest more or less systematic studies seem to have been made in 

the beginning and middle of the 19th century by Liouville (1832), Riemann 

(1953), and Holmgren (1864), although Euler (1730), Lagrange (1772), and 

others made contributions even earlier. It was Liouville (1832) who expanded 

functions in series of exponentials and defined the q-th derivative of such a 

series by operating term-by-term as though q, where a positive integer. 

Riemann in (1953), proposed a different definition that involved a 

definite integral and was applicable to power series with no integer exponents. 

Also, Grunwald in (1867), disturbed by the restriction of Liouville’s approach. 

Then these theoretical beginnings were a development of the applications 

of the fractional calculus to various problems. The first of these was discovered 

by Able in (1823), that the solution of the integral equation for the tautochrone 

could be accomplished via an integral transform. A Powerful stimulus to the use 

of fractional calculus to solve real life problems was provided by the  
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development by Boole in (1844), of symbolic methods for solving linear 

differential equations with constant coefficients.  

In the twentieth century, some notable contributions have been made to 

both the theory and application of fractional calculus, Weyl (1917), Hardy 

(1917), Hardy and Littewood (1932), Kober (1940), and Kuttner (1953), 

examined some rather special, but natural, properties of differintegrals of 

functions belonging to Lebesgue and Lipschitz classes, Erdely (1954), and Oster 

(1970), have given definitions of differintegrals with respect to arbitrary 

functions, and Post (1930) used difference quotient to define generalized 

differentiations for fractional operators, Riesz (1949), has developed a theory of 

fractional integration for functions of more than one variable, Erdely (1965), has 

applied the fractional calculus to integral equations and Higgins (1967), has 

used fractional integral operators to solve differential equations. 

However, fractional calculus may be considered as a novel topic, as well 

as, since only from a little more than to the later fifty years, it has been an object 

of specialized conferences and treatises. For the first conference the merit is a 

scribed to B. Ross who organized the first conference on fractional calculus, and 

its application at the University of New Haven in June 1974. 

For the first monograph the merit is ascribed to K.B Oldham and J. 

Spanier (1974), who after a joint collaboration started in 1968, published a book 

devoted to fractional calculus in 1974. The first texts and proceedings devoted 

solely or partly to fractional calculus and its applications are, [Davis H.T., 

1927], [Evdely A., 1939], [Igor Poldlubny, 1999]. 
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1.2 BASIC CONCEPTS 

In the present section, some fundamental concepts related to the subject 

of fractional calculus are given in order to avoid vague notions in this subject. 

1.2.1 Gamma and Beta Functions[Oldham 1974]: 

Undoubtedly, one of the basic functions encountered in fractional 

calculus is the Euler's gamma function Γ(x), which generalizes the ordinary 

definition of factorial of a positive integer number n and allows n to take also 

any non- integer positive or negative and even complex values. 

As it is known, the gamma function Γ(x) is defined using the following 

improper integral: 

x 1 t

0

(x) t e dt, x 0
∞

− −Γ = >∫  ..................................................................... (1.1) 

First of all, it is easy to show that the gamma function for a natural 

number can be proved also to satisfy: 

Γ (x) = (x – 1)! And Γ (x) = (x-1)Γ  (x − 1)  

which enable us to calculate for any positive real x the gamma function in terms 

of the fractional part of x. 

The expression 
( j q)

( q) ( j 1)

Γ −
Γ − Γ +

 may be regarded as the binomial 

coefficient, as follows: 

( j q) ( j q 1)( j q 2)...( q 1)( q)

( q) ( j 1) j!

Γ − − − − − − + −=
Γ − Γ +

= j q
( 1)

j

 
−  

 
 ........ (1.2) 

where; 
q q!
j j!(q j)!

 
=  − 

. 

Also an important functionin fractional differential equations is the beta 

function defined by: 
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( ) [ ] ,q0p,dyy1yq,p
1q1

0

1p <>−=β
−

−∫  

 

1.2.2 Riemann – Liouville Formula of Fractional Derivatives: 

Riemann and Liouville in (1832) introduced a differential operates of 

fractional order q>0 to take the from:  

tm
q

t m q m 1
t

1 d y(u)
D y(t) du

(m q)dx (t u) − +=
Γ − −∫

o

 ........................................ (1.3) 

where m is an integer defined by m − 1 < q < m, (see [Oldham and Spanier, 

1974]). 

Equation (1.3) is a Volterra integral equation with singular kernel. 

Differential equations involving these fractional derivatives have proved to be 

valuable tolls in the modeling of many physical phenomena. 
 

1.3 FRACTIONAL CALCULUS 

Fractional differentiation and integration could be defined using several 

approaches depending on the used definition of differentiations. Therefore, this 

section present some of these types of differentiation. 

1.3.1 Fractional Derivative: 

The usual formulation of the fractional derivative, given in standard 

references such as [Samko, 1993], [Oldham and Spanier, 1974] is the Riemann-

Liouville differential equations which require initial values expressed as 

fractional derivatives. 

 

 

 



Chapter One                                                                                            Fractional Calculus  
 

 9 

This is very inconvenient, since it is usually not clear what the physical 

meaning of these fractional order initial value would be and they are therefore  

 

hard to drive from a physical system. In applications, it is often more 

convenient to use the formulation of the fractional derivative suggested by  

Caputo1971, which is known as Grunwald derivatives which requires the same 

starting conditions as in ordinary differential equations of the next higher order. 

The Grunwald definition of fractional derivatives is given by: 

q

q N

d f (t)
lim

dt →∞
=

q

N 1

j 0

t
( j q) tN f t j

( q) ( j 1) N

−

−

=

 
  Γ −     −   Γ − Γ +   

∑  ............................... (1.4) 

where q < 0 indicates fractional integration and q>0 indicates fractional 

differentiation. 

The Reiman-Liouvilli definition of fractional derivative given by: 

tm
q

t m q m 1
t

1 d y(u)
D y(t) du

(m q)dx (t u) − +=
Γ − −∫

o

 ........................................ (1.5) 

Thomas J. Osler definition of fractional derivative is given by: 

t
q q 1

t a

0

(q 1)
D y(t) (u t) y(u)du,

2 i

+
− −

−
Γ += −

π ∫  ......................................... (1.6) 

where he made a branch cut from t to a and the integral curve is an open which 

starts from a and encloses t in positive sense and return to a.  

The Bertram Ross definition of fractional derivative is given by: 

q

q q 1
c

d (q 1) y(u)
y(t) du

2 idt (u t) +
Γ +=

π −∫  ....................................................... (1.7) 
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where he made a branch cut from t to infinity through the origin and integral 

curve C is an open contour which encloses t in the positive sense and z ∉ C 

(i.e., C is an integral curve a long that cut). 

 

The equivalent between these formulas could be proved, but it have more 

computations therefore it is omitted. 

1.3.2 Fractional Integration: 

The common formulation for the fractional integral can derive directly 

from a traditional expression of the repeated integration of a function. This 

approach is commonly referred to as Riemann – Liouville approach. 

The Riemann-Liouville definition of fractional integral is given by:  

x
q 1

q

a

b
q 1

q

x

1
f (a, x) (x t) f (t)dt(right hand int egration)

(q)

1
f (x,b) (t x) f (t)dt(left hand int egration)

(q)

+ −

− −

= −
Γ

= −
Γ

∫

∫

 

The Weyle definition of fractional integral is given by: 

x
q 1

q
1

f ( , x) (x t) f (t)dt
(q)

+ −

−∞

−∞ = −
Γ ∫  .................................................. (1.8) 

q 1
q

x

1
f (x, ) (t x) f (t)dt

(q)

∞
− −∞ = −

Γ ∫  ...................................................... (1.9) 

where f(t) is a periodic function and its mean value for one period is zero. But 

the formula (1.8), and (1.9), are used as the definition of the integral without 

any condition at the present time. 
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1.4 FRACTIONAL DIFFERENTIATION OF SOME WELL 

KNOWN FUNCTIONS 

In this section, some fractional derivatives using Gruuwald definition will 

be evaluated as an illustrative examples to fractional differentiations. Other 

function could be derived, such as sinh(x ), sin( x ), etc.,(see [Oldham and 

Spanier, 1974]).  

1.4.1 The Unit Functions f=1 [Oldham and Spanier, 1974]: 

Consider first the differintegral to order q of the function f = 1, for which 

it is found convenient to reserve the special notation. This function will be 

referred as the unit function. Straight forward application of equation  

( ) ( )
( )
( )

N 1q

q N
j 0

x a
j qd f x aNlim f x j

q j 1 Nd x a

−

→∞ =

 −  
   Γ −  −    = −   Γ − Γ +   −    
  

∑  

to the function f = 1, gives: 

[ ]
( )

qq N 1

q N
j 0

d 1 N ( j q)
lim

x a ( q) ( j 1)d x a

−

→ ∞ =

 Γ −  =   − Γ − Γ + −     
∑  

 

Application of the following equations: 

n 1

j 0

c q 1 c q

j x

( j q) (N q)

( q) ( j 1) (1 q) (N)

and

, 0
( j q) ( j q)

lim j lim j 1,c 0
( j 1) ( j)

0,c 0

−

=

+ + +
→∞ →∞

Γ − Γ −=
Γ − Γ + Γ − Γ

+∞ 〉
   Γ − Γ − = = =   Γ + Γ     〈

∑
 



Chapter One                                                                                            Fractional Calculus  
 

 12 

gives: 

 

[ ]
( )

[ ] qqq

q N

d 1 x aN (N q)
lim

x a (1 q) (N) (1 q)d x a

−

→∞

  −Γ −  = =  − Γ − Γ Γ − −     

 

Therefore:  

[ ]
( )

[ ] qq

q

d 1 x a

(1 q)d x a

−−
=

Γ −−  

. 

 

1.4.2 The Zero Function [Oldham, 1974]: 

For a function f = c, where c is any constant including zero, this may be 

indicated using the differential operator representation: 

( )
( ) ( )

q N 1q
q
0 q N

j 0

j qd f (t) t t
D lim f (t j )

N q j 1 Ndt

− −

→∞ =

 Γ −  = = −  Γ − Γ +   
∑  

One can see that: 

q q q

q q

d [c] d [1] [x a]
c c

(1 q)[d(x a)] [d(x a)]

−−= =
Γ −− −

 

Since 
q

q

d [1]

[d(x a)]−
 does not approach infinity for x > a, it is concluded by 

setting c = 0, that: 

q

q

d [0]
0

[d(x a)]
=

−
, for all q .................................................................. (1.10) 

Equation (1.10) may be appearing to be trivial or obvious. As an example 

of its importance, however, observe that it provides a powerful counter example 

to that, if:   

q q

q q

d f d g
g, then, f

[d(x a)] [d(x a)]

−

−= =
− −
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For, if gives zero on differentiation to order q, then f cannot be restored 

by q-order integration. 

 

1.4.3 The Function (x − a)p [Oldham, 1974]: 

The function of fractional degree we consider in this subsection is an 

important function given by f = (x − a)p, where p is initially arbitrary, we shall 

see, however, that p must exceed −1 for differintegration to have the properties 

we demand of the operator. For integer n of either sign, one can show that: 

n p
p n

n

d x
p(p 1)...(p n 1)x

dx
−= − − + , n = 0, 1, … 

from classical calculus. Our first encounter with non-integer q, will be 

restricted to negative q so that we may exploit the Riemann-Liouville definition.  

Thus:  

xq p p

q q 1
a

d [x a] 1 [y a]
dy

( q)[d(x a)] [x y] +
− −=

Γ −− −∫  

= 
x a p

q 1
0

1 v
dv

( q) [x a v]

−

+Γ − − −∫ , q < 0 

where v has replaced by y − a. By further replacement of v by [x − a]u. The 

integral may be cast into the structure of beta function form: 

1q p p q
p q 1

q
0

d [x a] [x a]
u [1 u] du,q 0

( q)[d(x a)]

−
− −− −= − <

Γ −− ∫  .............................. (1.11) 

The integral in (1.11), will be recognized as the Beta function, β(p + 1, 

−q) provided both arguments are positive, therefore: 

q p p q

q

d [x a] [x a]
(p 1, q)

( q)[d(x a)]

−− −= β + −
Γ −−
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p q(p 1)[x a]

,q 1,p 1
(p q 1)

−Γ + −= < > −
Γ − +

 ................................. (1.12) 

which is the fractional derivative of [x − a]p. 

 

1.4.4 The Expositional Function exp(r − cx) [Oldham,1974]: 

With r and c are an arbitrary constants, then the power-series expansion is 

given by: 

j

j 0

[ c(x a)]
exp(r cx) exp(r ca)

( j 1)

∞

=

− −− = −
Γ +∑  

which is valid for all x − a. 

Differintegration term-by-term with respect to c[x − a], yields: 

{ } { } jq
q

q
j 0

c(x a)d exp(r cx)
c(x a) exp(r ca)

( j q 1)[d(cx ca)]

∞
−

=

− −− = − −
Γ − +− ∑  

The sum may be expressed as an incomplete gamma function of 

argument −c[x − a] and parameter −q, then the final result appears as: 

q
*

q q

cx j
* x 1

j 00

d exp(r cx) exp(r cx)
( q, c(x a))

[d(x a)] [x a]

where

c x
(c, x) y exp( y)dy exp( x)

(x) ( j c 1)

∞−
−

=

− −= γ − − −
− −

γ = − = −
Γ Γ + +∑∫

 

where * n( n, y) yγ − =  for non negative integer n. The above result is seems to 

reduce to the well-known formula for multiple differentiation of an exponential 

function, reduction to the simple formula: 

q
*

q q

d exp( x) exp( x)
( q, x)

dx x
= γ −m m

m  

occurs on substituting k = a = 0 and c = ±1 into the general result. 
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1.4.5 The Functions 
qx

1 - x
 and 

px
1 - x

[Oldham,1974]: 

              By using of the binomial expansion of (1 − x)−1 and the technique of 
term-by-term  

 

differentegration which is from the (linearity of differentiation), we arrive at: 

q q q
j q

q q
j 0

d x d
x

1 xdx dx

∞
+

=

 
= −  
∑  

As a formula expressing the effect of 
q

q

d

d x
 operator with the lower 

limit zero on the 
qx

1 x−  function.  

Subject to the proviso that x not exceed unity in magnitude. Provided also 

that q exceed −1, the rules of subsection (1.4.3) permit differintegration of the 

powers of x and lead to: 

q q
j j

q
j 0 j 0

q 1d x ( j q 1)
x (q 1) [ x]

j1 x ( j 1)dx

∞ ∞

= =

  − − Γ + += = Γ + −   − Γ +    
∑ ∑  

Identification of the sum as a binomial expansion produces  

[ ]
q q

q q 1

d x (q 1)

1 xdx 1 x
+

  Γ += −  − 
 

as the simple final result. 

The technique for differintegrating [ ]
px

1 x−
 follows such a similar result, 

that is, it will suffice to cite one intermediate and the final result:  

( ) jq p
p q

q
j 0

j p 1 xd x
x

1 x ( j p q 1)dx

∞
−

=

  Γ + +
= − Γ + − +  

∑   = 
( )

( )
x

q 1

p 1 (p q,q 1)

p q [1 x] +
Γ + β − +

Γ − −
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together with the restriction, namely, 0 < x < 1 and p > −1, which where 

assumed during the derivation. 
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CHAPTER 

 

NUMERICAL AND APPROXIMATE METHODS FOR 

SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS 

 

Sometimes, numerical methods for solving differential equation are 

more reliable than analytic methods, especially in fractional differential 

equations, since such type of equations has some difficulties in their methods 

of solution, which could not be handled easily. 

This chapter consists of five sections. In section 3.1, we study linear 

multistep methods and it’s ability for solving fractional differential equations 

numerically. In sections 3.2, and 3.3, we modify the approach followed in 

linear multistep methods for solving fractional differential equations by 

altering the basis of the method to be cubic spline basis or using cubic spline 

interpolation with three node points, while in section 3.4, cubic spline basis 

depended on five knot points is used. Finally, in section 3.5 an illustrative 

example is given in order to compare between these methods. 

 

3.1 LINEAR MULTISTEP METHODS [ABD AL-QAHAR, 

2004] 

This section presents an introduction to the theory of linear multistep 

methods (LMM’s in short). Consider the initial value problem for a single 

first-order differential equation: 

3 
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y′(x) = f(x, y(x)), y(x0) = y0 ........................................................... (3.1) 

where f is a given continuous function and x0, y0 are fixed. We seek for the 

solution in the range a ≤ x ≤ b, where a and b are given and finite.  

Consider the sequence of points {xn}, defined by: xn = a + nh, n = 0, 1, 

…, N, where h=a-b/2. The parameter h, which will always be regarded as a 

constant. As essential property of the majority of computational methods for 

the solution of equation (3.1), is that of discritization, that is, we seek for an 

approximate solution, not on the continuous interval a ≤ x ≤ b, but on the 

discrete set of point {yn | n = 0, 1, …, N}. Let yn be an approximation to the 

theoretical solution at xn, that is, to y(xn), and let fn = f(xn, yn), [Lambert, 

1973]. 

If a computational method for determining the sequence {yn} takes the 

form of Linear Multistep Method, of step number k, or a linear k-step method. 

Then the general form of LMM may thus be written as: 

k k

j n j j n j
j 0 j 0

y h f+ +
= =

α = β∑ ∑  ................................................................. (3.2) 

where αj and βj, are constants to be determined. We assume that αk ≠ 0 and 

that not both of α0 and β0, equals zero. Since equation (3.2) can be multiplied 

on both sides by the same constant without altering the relationship, the 

coefficients αj and βj, are arbitrary to the extent of a constant multiplier. We 

remove this arbitrariness by assuming throughout that αk = 1. Thus the 

problem of determining the solution y(x), of the general non-linear initial 

value problem we replace equation (3.1) by that of finding the sequence {yn}, 

which satisfies the difference equation (3.2). Note that, since fn is in general 

non-linear function of yn, then equation (3.2) is a non-linear difference 

equation. Such equations are no easier to handle theoretically as in linear 
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differential equations, but they have the practical advantage of permitting us 

to compute the sequence {yn} numerically.  

In order to do this, we must first supply the assistant of starting values 

y0, y1, …, yk−1. (In the case of a one-step method, only one of such value 

which is y0 is needed and we normally choose y0 to be constant).  

As a classification to the LMM we say that the LMM is explicit if  

βk = 0 and implicit if βk ≠ 0. For an explicit method equation (3.2) yields the 

current value yn+k  directly in terms of previous yn+j, fn+j, j = 0, 1, …, k − 1, 

which at this stage of the computation, have already been calculated while in 

implicit methods, however, will call for the solution at each stage of the 

computation, of the equation: 

n k k n k n ky h f (x ,y ) g+ + += β +  ........................................................ (3.3) 

where g is a known function of the previously calculated values yn+j, fn+j, j = 0, 

1, …, k − 1. 

When the original differential equation (3.1) is linear, then equation 

(3.3) is also linear in yn+k, and there is a unique solution for yn+k, while when f 

is non-linear, then there is a unique solution for yn+k, which can be approached 

arbitrarily closely by the iteration: 

[s 1] [s] [0]
k n kn k n k n ky h f (x ,y ) g,y+

++ + += β +  

Thus implicit methods in general entail a substantially greater computational 

effort than do explicit methods; on the other hand, for a given step number, 

implicit methods can be made more accurate than explicit ones and, 

moreover, enjoy more favorable stability properties. Then, the necessary and 

sufficient conditions for LMM to have an order p can be studied by using two 

associated polynomials, which are: 

The First characteristic polynomial of LMM (3.2), is given by: 
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k
j k k 1

j k k 1 0
j 0

(r) r r r ...−
−

=
ρ = α = α + α + + α∑  

while the second characteristic polynomial is given by: 

k
j k k 1

j k k 1 0
j 0

(r) r r r ...−
−

=
σ = β = β + β + + β∑  

Also, it is important to notice that if σ(r) is given, then we can find a unique 

polynomial ρ(r) of degree k such that the method has an order p ≥ k, such 

that, we can consider the LMM according to the roots of the first 

characteristic polynomial ρ(r) and whether it is explicit or implicit. 

(1) If the roots of ρ(r) equal to 1 and 0, then the method is called of Adam's 

type and if the LMM is explicit, then it is called of Adam Bashforth type, 

while if it is implicit then it is called of Adam-Moulton type, i.e., in 

Adam’s methods, we have the following: 

k k 1(r) r r −ρ = −  

k 1r (r 1) 0−= − =  

(2) If the roots of ρ(r) equals to −1, 0 and 1, then the method is called of 

Nystrom type if it is explicit and if the method is implicit, then it is called 

of Milne-Simpson type, i.e., we have: 

k k 2(r) r r −ρ = −  

k 2 2r (r 1)−= −  

k 2r (r 1)(r 1)−= − +  

Now, we explain the consistency, convergence and zero stability of 

LMM's, such that, a basic property which we shall demand of an acceptable 

LMM is that the solution {yn} generated by the method converges, in some 
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sense to the theoretical solution y(x) as the step length h tends to zero. The 

LMM is said to be consistent with the initial value problem 

y′ = f(x, y), y(x0) = y0  

if it has an order at least p = 1, i.e., consistent method implies that at least  

C0 = C1 = 0. But C2 ≠ 0, or: 

k

j
j 0

0
=

α =∑    and   
k k

j j
j 0 j 0

j
= =

α = β∑ ∑  

Finally the LMM is said to zero-stable (0-stable) if all the roots rj’s, j = 1, 2, 

..., k; of ρ(r) = 0 satisfy the condition |rj| ≤ 1 and if rj is a multiple zero of ρ(r) 

then |rj| < 1. 

 

3.2 THE PREDICTOR-CORRECTOR METHOD [Dielthelm 

and Alan, 1997] 

The definition of the fractional derivatives and some well known results 

of fractional calculus tell us that we interpret fractional differential equations 

such as: 

Dqy = f(t, y(t)), y(t0) = y0, n < q < n + 1, n ∈ N ............................ (3.4) 

and hence upon taking D−q to the both sides of (3.4), yields: 

D−qDqy = D−qf(t, y(t)), y(t0) = y0, n < q < n + 1, n ∈ N ................. (3.5) 

Alternatively, we can apply fractional integral operator to the differential 

equation and incoorperate the initial conditions, thus converting equation 

(3.4), into the following equivalent equation: 

0

t

0 1 q
t

1 1
y(t) y(t ) f (u, y(u))du

(q) (t u) −= +
Γ −∫  ................................. (3.6) 
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which is a Volterra singular integral equation of the second kind.  

In the following, we shall present the scheme for the numerical solution 

of the general fractional differential equation (3.4), [Gorenflo R., 1997].  

In the development, we have in mind that these fractional differential 

equations are coupled with the first-order differential equation, which give us 

the general advice to these two algorithms in such a way that both methods 

are based on very similar construction principles, we thus choose an Adams-

Bashforth-Moulton approach for both integrators. 

The key to the derivation of the method is to replace the original 

fractional differential equation (3.4), by an equivalent singular Volterra 

integral equation (3.6), and to implement a product integration method for the 

latter. What we do is simply to use the trapezoidal quadrature formula with 

nodes tj (j = 0, 1, …, n + 1), taken with respect to the weighted function (tn+1 − 

u)q−1, to replace the integral. In other words, we apply the approximation: 

n 1 n 1

0 0

t t
q 1 q 1

n 1 n 1 n 1

t t

(t u) g(u)du (t u) g (u)du
+ +

− −
+ + +− ≈ −∫ ∫  ................... (3.7) 

where gn+1 is the piecewise linear interpolent for g whose nodes are chosen at 

the tj, j = 0, 1, …, n + 1. Then by using Legendre quadrature integration 

method yields that we can rewrite the integral on the right-hand side of 

equation (3.7) as: 

n 1

o

t n 1
q 1

n 1 n 1 j n 1 j
j 0t

(t u) g (u)du a , g(t )
+ +

−
+ + +

=
− =∑∫  ................................. (3.8) 

where: 

n 1

0

t
q 1

j n 1 n 1 j n 1

t

a , (t u) , (u)du
+

−
+ + += − φ∫  ............................................ (3.9) 
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and: 

j 1 j j 1 j 1 j

j n 1 j 1 j 1 j j j 1

(u t ) /(t t ),if , t u t

, (u) (t u) /(t t ),if , t u t

0, otherwise

− − −

+ + + +

− − < <
φ = − − < <



 ........................ (3.10) 

where aj,n+1 are termed as the coefficients of the method and φj,n+1(u) as the 

basis functions. 

Next, we will present the derivation of equation (3.9) and (3.10). 

 

3.2.1 Derivation of the Basis Functions φj,n+1: 

In order to derive the linear basis φj,n+1, j = 0, 1, …, n+1, where n is the 

number of node points. Since for the general form of a straight line joining 

two points applied to (tj-1, 0) and (tj, 1), i.e., for tj−1 < u < tj, we have: 

j 1 j j 1

0 1 0

u t t t− −

φ − −=
− −

 

and hence: 

j 1
j n 1 j 1 j

j j 1

u t
, , t u t

t t
−

+ −
−

−
φ = < <

−
 

for tj < u < tj+1,we have: 

j 1
j n 1 j j 1

j 1 j

t u
, , t u t

t t
+

+ +
+

−
φ = < <

−
 

Hence, equation (3.10), is now derived. Figure (3.1) illustrate the basis 

function φj,n+1: 
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1

tj-1 tj tj+1
 

Figure (3.1) The hat function φj,n+1. 

 

3.2.2 Derivation of aj, n+1: 

Depending on the final form of the basis functions φj,n+1, we can derive 

aj,n+1 as follows: 

From (3.9), we have: 

n 1

0

t
q 1

j n 1 n 1 j n 1

t

a , (t u) , (u)du
+

−
+ + += − φ∫    

j j 1

j 1 j

t t
j 1 j 1q 1 q 1

n 1 n 1
j j 1 j 1 jt t

u t t u
(t u) du (t u) du

t t t t

+

−

− +− −
+ +

− +

− −
= − + −

− −∫ ∫  

j j 1

j 1 j

t t

q 1 q 1
n 1 j 1 n 1 j 1

t t

1
(t u) (u t )du (t u) (t u)du

h

+

−

− −
+ − + +

 
 = − − + − −
 
  
∫ ∫

 
 ............................... (3.11) 

Now, for the first integral in equation (3.11), and upon using the 

method of integration by parts, we have: 
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j j

j 1 j 1

t t

q 1 q 1
n 1 j 1 n 1

t t

(t u) (u t )du (t u) udu

− −

− −
+ − +− − = − −∫ ∫  

j

j 1

t

q 1
j 1 n 1

t

t (t u) du

−

−
− + −∫  

( )
q 1

q 1 qh
(n j 2) (n 1 j) (n q) (2 j)

q(q 1)

+
+ = − + − + − + + −

 +
 ...... (3.12) 

Now, to the second integral in equation (3.11), we proceed similarly as 

in the first integration to get the following result: 

j 1

j

t
q 1

q 1 q 1
n 1 j 1

t

h
(t u) (t u)du (n j)

q(q 1)

+ +
− +

+ + − − = − +
+∫  

( )q(n 1 j) (q n) j + − − +

 ............. (3.13) 

Hence, substituting (3.12) and (3.13) in (3.11), gives for 1 ≤ j ≤ n: 

j j 1

j 1 j

t t
q 1 q 1

j,n 1 n 1 j 1 n 1 n 1

t t

1
a [ (t u) (u t )du (t u) (t u)du]

h

+

−

− −
+ + − + += − − + − −∫ ∫  

( ) ( )
q 1

q 1 q1 h
(n j 2) (n 1 j) (q n) j

h q(q 1)

+
+ 

= − + − + − − + +  
 

( )
q

q 1 q 1 qh
(n j 2) (n j) n 1 j) ( 2n 2 2j

q(q 1)
+ + = − + + − + − − − +

 +
 

( )
q

q 1q 1 qh
(n j 2) (n 1 j) n 1 j) (n j

q(q 1)
++ = − + + − + − + −

 +
 

( )
q

q 1 q 1 qh
(n j 2) (n j) n 1 j) ( 2n 2 2j

q(q 1)
+ + = − + + − + − − − +

 +  
 ............................... (3.14) 
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Equation (3.14), could be applied to the interior node points, t1, t2…, tn, 

while for the boundary node points t1 and tn+1, we have: 

If j = 0, then: 

1

0

t
q 1

0,n 1 n 1 0 n 1

t

a (t u) , (u)du−
+ + += − φ∫  

1

0

t
q 1 1

n 1
1 0t

t u
(t u) du

t t
−

+
−= −
−∫  

( )
q 1

qq 1h
n (n j) n 1

q(q 1)

+
+ = − − +

 +
 .................................... (3.15) 

Similarly, for j = n+1 

n 1

0

t
q 1

n 1 n 1 n 1 n 1 n 1

t

a , (t u) , (u)du
+

−
+ + + + += − φ∫  

qh

q(q 1)
=

+
 ....................................................................... (3.16) 

Therefore, the final form of the coefficients is given by: 

( )
q

q 1 q

q
q 1 q 1

j n 1

q

h
(n (n q)(n 1) , j 0

q(q 1)

h
a , ((n j 2) 2(n j 1) (n j)), j 1,2,...,n

q(q 1)

h
, j n 1

q(q 1)

+

+ +
+


− − + = +

= − + − − + + − = +

 = +

+  

 ............................ (3.17) 
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3.2.3 Adam's Method for Solving Fractional Differential Equations: 

Using Adam-Moulton implicit method to solve the singular integral 

equation (3.6), with the cooperation of quadratic integration methods, the 

following formula is obtained: 

n
p

n 1 0 j,n 1 j j n 1,n 1 n 1 n 1
j 0

1
y y a f (t , y ) a f (t , y )

(q)+ + + + + +
=

 
 = + +

Γ   
∑ ....... (3.18) 

Now, the problem is the determination of the predictor formula that we 

require to calculate the valuepn 1y + . The idea we use is to generalize the one-

step Adams-Bashforth method which is the same as that one described above 

for the Adams-Mouton technique. We replace the integral on the right-hand 

side of equation (3.6), by any quadrature rule, i.e., 

n 1

0

t n
q 1

n 1 j,n 1 j

t j 0

(t u) g(u)du b g(t )
+

−
+ +

=

− ≈∫ ∫  ..................................... (3.19) 

Similarly as in subsection (3.3.2), we have:  

( )
j 1

j

t

q 1 q q
j,n 1 n 1 n 1 j n 1 j 1

t

1
b (t u) du (t t ) (t t )

q

+
−

+ + + + += − = − − −∫  ..... (3.20) 

Again, for equispaced case, we have the simpler expression: 

( )
q

q q
j,n 1

h
b (n 1 j) (n j)

q+ = + − − −  .............................................. (3.21) 

Thus, the predictor value of pn 1y + , is given by: 

n
p

0 j,n 1 j jn 1
j 0

1
y y b f (t , y )

(q) ++
=

= +
Γ ∑  .............................................. (3.22) 

This completes the description of our basic algorithm, which is the 

fractional version of the one-step Adams-Bshforth-Moulton method. 



Chapter Three                                        Numerical and Approximate Methods for Solving  
                                                                    Fractional Differential Equations 

53 
 

Recapitulating, one can see that, we first have to calculate the predictor pn 1y +  

according to equation (3.22), then evaluate p
n 1 n 1f (t , y )+ + , and using this to 

determine the corrector value of yn+1 by means of equation (3.18), and finally 

evaluate f(tn+1, yn+1), which is then used in the next integration step. Therefore, 

methods of this type are frequently called predictor- corrector or, more 

precisely, PECE (Predict, Evaluate, Correct, and Evaluate) method. 

 

3.3 APPROXIMATE SOLUTION OF FRACTIONAL 

DIFFERENTIAL EQUATIONS USING CUBIC SPLINE 

INTERPOLATION WITH 3-NODE POINTS 

Suppose that we have m + 1 data points p0, p1, …, pm through which we 

have to draw a curve such as that shown in figure (3.2) (in which m = 6), 

[Bartels, 1987].  

 

Figure (3.2) An interpolating cubic splin. 

Each successive pair of data points is connected by distinct curve 

segment. The ith segment runs from pi to pi+1, and we will assume that the 

parameter ū  runs correspondingly from the knot ūi to the knot ūi+1 to generate 

this segment. Since each such segment (u)φ  is represented parametrically as 
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(X i(ū), Yi(ū)), we are indeed concerned with how the Xi(ū) and Yi(ū) are 

determined by the points pi = (xi, yi). 

In general, the x-coordinates X(ū) of points on a curve are determined 

solely by the x-coordinates x0, x1,…, xm, of the data points, and similarly Y(ū) 

is determined solely by the y-coordinates of the data points, since both X(ū) 

and Y(ū) are treated in the same way, we will discuss only Y(ū).  

For ease of computation, we will limit ourselves to the use of 

polynomials in defining Xi (u) and Yi(u). Indeed cubic polynomials usually 

provide sufficient flexibility for many applications at reasonable cost.  

 
Figure (3.3) Y(u ) for the curve shown in figure (3.2) above. 

It will be easiest to continue the discussion by reparametrizing each 

segment Yi  separatedly by substituting u for u  as was described earlier, This 

means that u = u i − i for the knot sequence given in figure (3.3). Each Yi(u) is 

a cubic polynomial in the parameter u. It is known that: 

Y i(u) = ai + biu + ciu
2 + diu

3
 

where ai, bi, ci and di are constants have to be evaluated for each i = 1, 2, …, 

m; and hence: 

Y i(0) = yi = ai 

Y i(1) = yi+1 = ai + bi + ci + di 

Where Yi(0) stands for the left hand limit and Yi(1) for the right hand limit. 
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Because we have four coefficients to be determined, we need two other 

constraints are needed to completely determine a particular Yi(u). One easy 

way to do this is to simply pick, arbitrarily, first derivatives Di of Y(u) at each 

knot ūi, so that: 

Y i
(1)(0) = Di = bi 

Y i
(1)(1) = Di+1 = bi + 2ci + 3di 

These four equations how can be solved analytically, once and for all, to 

yield: 

ai =Y i, bi = Di, ci =3(yi+1-yi) – 2Di – Di+1, di = 2(yi – yi-1) + Di + Di+1 

Since we use Di as the derivative at the left end of the ith segment (i.e., 

as (1)
iY (0)) and at the right of the (i − 1)th segment (as (1)

i 1Y − (1)), Y(u) has 

continuous first derivative. This technique is called Hermite interpolation. It 

can be generalized to higher-order polynomials. [Bartels, 1987].  

A question may arise which is how are the Di specified ?. One 

possibility is to compute them automatically, perhaps by fitting a parabola 

through yi-1, yi and yi+1, and using its derivative at yi  as Di, arbitrary (such as 

0) can be used at the end points, or one can use for Di the y component of a 

weighted average of the vector from pi-1 to pi and the vector from pi+1    to pi, or 

the user may specify derivative vectors directly.  

It is possible to arrange that successive segments match second as well 

as first derivatives at joints, using only cubic polynomials. Suppose, as above, 

that we want to interpolate the (m + 1) points p0, p1, …, pm by such a curve. 

Each of the m segments Y0(u), Y1(u), …, Ym−1(u) is a cubic polynomial 

determined by four coefficients. Hence, we have 4m unknown values to 

determined. At each of the (m − 1) interior knots ū1, ū2…, ūm-1 (where two 

segments meet), we have four conditions: 
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(1) (1)
i 1 i i 1 i

(2) (2)
i i i 1 i

Y (1) y ,Y (1) Y (0)

Y (0) y ,Y (1) Y (0)

− −

−

= = 


= = 

 .................................................... (3.23) 

Since we also require that: 

Y0 (0) = y0  

Ym-1(1) = ym  

Then we have a total of 4(m − 1) + 2 = 4m − 2 conditions from which 

to determine our 4m knows. Thus, we need two more conditions. These may 

be chosen in a variety of ways. A common choice is simply to require that the 

second derivatives at the endpoints u0 and um both are equals to zero; these 

conditions yield what is called a natural cubic spline. 

Now, we have to derive a natural cubic spline equation using 3-node 

points as a knot points for each bases. Let us derive it in general. 

If j = i, then: 

2 3
j j j j j j j j(u) a b (u t ) c (u t ) d (u t )φ = + − + − + −  

and letting φj−1 and to φj be the left and right parts censuring φj, respectively, 

as it is shown in figure (3.4): 

| | |
ti-1 ti ti+1

φiφi-1

 

Figure (3.4) Cubic spline basis φj,n+1  of 3-nodes points. 

 



Chapter Three                                        Numerical and Approximate Methods for Solving  
                                                                    Fractional Differential Equations 

57 
 

Also, recall from the definition of cubic spline interpolation of a 

function f defined on [a, b] on a set of numbers, called nodes, a = t0 < t1 < … 

< tn = b, then a cubic spline interpolation denoted by φ for f is a function thus 

satisfies the following conditions: 

(a) φ is a cubic polynomial denoted by φj on the subinterval [tj, tj+1], for each 

j = 0, 1, …, n − 1. 

(b) φ(tj) = f(tj), for each j = 0, 1, …, n − 1. 

(c) φj+1(tj+1) = φj(tj+1), for each j = 0, 1, …, n − 1. 

(d) φ′j+1(tj+1) = φ′j(tj+1), for each j = 0, 1, …, n − 1. 

(e) φ′′j+1(tj+1) = φ′′j(tj+1), for each j = 0, 1, …, n − 1. 

(f) One of the following sets of boundary conditions is satisfied: 

(i) φ′′(t0) = φ′′(tn) = 0  (free boundary) ........................................ (3.24) 

(ii) φ′(t0) = f′(t0) and φ′(tn) = f′(tn)  (Hermite boundary) ............. (2.25) 

To construct the cubic spline interpolate for a given function f with 

φ′′(a) = φ′′(b) = 0, the above conditions can be applied to the cubic 

polynomials: 

2 3
j j j j j j j j(u) a b (u t ) c (u t ) d (u t )φ = + − + − + −  

for each j = 0, 1, …, n − 1. 

Clearly, φj(tj) = aj = f(tj) and if condition (c) is applied, then for each j = 0, 1, 

…, n − 2: 

aj+1 = φj+1(tj+1) = φj(tj+1) = aj + bj(tj+1 − tj) + cj(tj+1 − tj)
2 + dj(tj+1 − tj)

3 

= aj + bjh + cjh
2 + djh

3 ........................... (3.26) 

where h = tj+1 − tj.  
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In a similar manner, define bn = φ′(tn) and observe that: 

φ′j(u) = bj + 2cj(u − tj) + 2dj(u − tj)
2 

implies φ′j(tj) = bj, for each j = 0, 1, …, n − 1. Applying condition (d): 

bj+1 = bj + 2cjh + 3djh
2 ................................................................. (3.27) 

for each j = 0, 1, …, n − 1.  

Another relation between the coefficients of φj can be obtained by 

defining cn = φ′′(tn)/2 and applying condition (e). In this case: 

cj+1 = cj + 3djh .............................................................................. (3.28) 

for each j = 0, 1, …, n − 1.  

Solving for dj in equation (3.28) and substituting this value into 

equations (3.26) and (3.27) gives the new equations: 

aj+1 = aj + bjh + 
2h

3
(2cj + cj+1) ..................................................... (3.29) 

and 

bj+1 = bj + h(cj + cj+1) ................................................................... (3.30) 

for each j = 0, 1, …, n − 1.  

The final relationship involving the coefficients in obtained by solving 

the appropriate equation in the form of equation (3.29), first for bj. 

bj = 
1
h

(aj+1 − aj) − 
h
3

(2cj + cj+1) ................................................... (3.31) 

Substituting these values into the equation derived from (3.30), when the 

index is reduced by one, gives the linear system of equations: 

hcj−1 + 4hcj + hcj+1 = 
3
h

(aj+1 − aj) − 
3
h

(2cj + cj+1) ........................ (3.32) 
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for each j = 1, 2, …, n − 1. This system involves as unknowns only nj j 0{c } = . 

Since the values of n
j j 0{a } =  are given by spacing of the nodes nj j 0{t } =  and the 

values of f at the nodes. When evaluating nj j 0{c } = , then n
j j 0{b } =  and n

j j 0{d } =  

could be evaluated from (3.31) and (3.28), respectively. 

Then on order to construct the cubic spline interpolation with three 

node points, namely, ti−1, ti and ti+1 with φi−1(ti−1) = 0, φi−1(ti) = φi(ti) = 1 and 

φ(ti+1) = 0, then the above conditions will applied to these three points as 

follows: 

φj−1(u) = a0 + b0(u − tj−1) + c0(u − tj−1)
2 + d0(u − tj−1)

3 .................. (3.33) 

φj(u) = a1 + b1(u − tj) + c1(u − tj)
2 + d1(u − tj)

3 ............................. (3.34) 

since aj = f(tj), then a0 = a2 = 0 and a1 = 1. Then the following system is 

obtained Ax = b, where: 

A = 

1 0 0

h 4h h

0 0 1

 
 
 
  

, x = 
0

1

2

c

c

c

 
 
 
  

 and B = 2 1 1 0

0

3 3
(a a ) (a a )

h h
0

 
 
 − − −
 
 
 

 

After solving this system, we obtained c0 = c2 = 0 and c1 = −1.5/h2. Then from 

equation (3.31), we have b0 = 1.5/h and b1 = 0. Also, from (3.28), the values 

of d0 and d1 are evaluated to be d0 = −0.5/h3 and d1 = 0.5/h3. 

Therefore, the final form of ϕi−1(u) and φi(u) are given by: 

φi−1(u) = 
1.5
h

(u − ti−1) − 
3

0.5
h

(u − ti−1)
3, if ti−1 ≤ u ≤ ti 

φi(u) = 1 − 
2

1.5
h

(u − ti)
2 + 

3

0.5
h

(u − ti)
3, if ti ≤ u ≤ ti+1 

Now, in order to evaluate the constants aj,n+1, for all j = 0, 1, …, n+1, 

we proceed as follows:  
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Depending on the final from of the basis function j,n 1+φ , we can derive 

aj,n+1 as follows:  

For j = i 

i

i 1

t
q 1

i n 1 n 1 j,n 1

t

a , (t u) (u)du

−

−
+ + += − φ∫  

i

i 1

t
q 1 3

n 1 i 1 i 13
t

1.5 0.5
(t u) (u t ) (u t ) du

h h
−

−
+ − −

 = − − − − +  ∫  

i 1

i

t
q 1 2 3

n 1 i i2 3
t

1.5 0.5
(t u) 1 (u t ) (u t ) du

h h

+
−

+
 − − − + −  ∫  

= { }
q

q 1 q 1
h

1.5 (n 2 i) (n i)
q(q 1)

+ ++ − + −  +  + 

[ ]q 3 q 3 q 33 2(n 1 i) (n 2 i) (n i)
(q 2)(q 3)

+ + + + − − + − − −
 + + 

 

Similarly, for j = 0 and j = n + 1, we have: 

a0,n+1=
[ ]q 3 q 3q q 2

q q 1
3 (n 1) nh 3(n 1)

(n 1) (q 1) 1.5n
q(q 1) q 2 (q 2)(q 3)

+ ++
+

 + −++ + + − + + + + + 
 

and 

an+1,n+1 = 
qh 0.5

1.5
q(q 1) (q 2)(q 3)

 − + + + 
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3.4 APPROXIMATE SOLUTION OF FRACTIONAL 

DIFFERENTIAL EQUATIONS USING CUBIC SPLINE 

INTERPOLATION WITH 5-NODE POINTS 

Using a little foresight we can modify the basis functions to be of five 

node points. For this purpose, suppose each basis function to be non zero over 

four successive intervals (which for convenience all are assumed to have 

length one), as shown in figure (3.5), and ask that with in each interval abases 

function be defined by a cubic polynomial: 

p3 (u) = aj + bju + cju
2 + dju

3, i – 3 ≤ j ≤ i 

 

 

Figure (3.5) The uniform cubic B-spline φi(u) is cubic C2 basis 
function centered at ui+2. 

 

Since the nonzero portion of our cubic basis function φ(u) consists 

(from left to right) of for basis segments φ0(u), φ−1(u), φ−2 (u) and φ−3(u), and 

since each segment has four coefficients to be determined, there are sixteen 

coefficients to be determined. The basis- function φi (u)  is identically zero for 

u ≤ ui   and for u ≥ ui+4, so the first and second derivatives φi
(1)(u) and φi

(2)(u) 

are also identically zero outside the interval (ui, ui+4 ).  
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Similarly, as in section (3.3), the basis functions φj(u) with 5-node 

points (see figure (3.6)), as follows: 

| | |

φi-2

||

ti-2 ti-1 ti ti+1 ti+2

φi-1

φi+1

φi

 

Figure (3.6) Cubic basis φi,n+1 of 5-nods points.  

 

φi−2(u) = a0 + b0(u − ti−2) + c0(u − ti−2)
2 + d0(u − ti−2)

3 .................. (3.35) 

φi−1(u) = a1 + b1(u − ti−1) + c1(u − ti−1)
2 + d1(u − ti−1)

3 .................. (3.36) 

φi(u) = a2 + b2(u − ti) + c2(u − ti)
2 + d2(u − ti)

3 ............................. (3.37) 

φi+1(u) = a3 + b3(u − t i+1) + c3(u − t i+1)
2 + d3(u − t i+1)

3 ................ (3.38) 

Since aj = f(tj), then a0 = a4 = 0, a1 = a3 = ½ and a2 = 1, and the following 

system for evaluating cj’s is obtained: 

Ax = b 

Where: 

A = 

1 0 0 0 0

h 4h h 0 0

0 h 4h h 0

0 0 h 4h h

0 0 0 0 1

 
 
 
 
 
 
  

, x = 

0

1

2

3

4

c

c

c

c

c

 
 
 
 
 
 
  

, b = 

2 1 1 0

3 2 2 1

4 3 3 2

0

3 3
(a a ) (a a )

h h
3 3

(a a ) (a a )
h h
3 3

(a a ) (a a )
h h

0

 
 
 − − −
 
 

− − − 
 
 − − −
 
  
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After solving this system, we obtained c0 = c4 = 0, c1 = c3 = 0.214/h2 and c2 = 

−0.857/h2. Then from equation (3.31), we have b0 = 1.5/h and b1 = 0. Also, 

from (3.28), the values of bi’s and di’s are evaluated to be: 

b0 = 0.429/h, b1 = 0.643/h, b2 = 0 and b3 = −0.643/h 

d0 = 0.071/h3, d1 = −0.357/h3, d2 = 0.357/h3 and d3 = −0.0.71/h3 

Then: 

φi−2,n+1(u) = 
0.429

h
(u − ti−2) + 

3

0.071
h

(u − ti−2)
3, if ti−2 ≤ u ≤ ti−1 

φi−1,n+1(u) = 
1
2

 + 
0.643

h
(u − ti−1) + 

2

0.214
h

(u − ti−1)
2 −  

3

0.357
h

(u − ti−1)
3, if ti−1 ≤ u ≤ ti 

φi,n+1(u) = 1 − 
2

0.857
h

(u − ti)
2 + 

3

0.357
h

(u − ti)
3, if ti ≤ u ≤ ti+1 

φi+1,n+1(u) = 
1
2

 − 
0.643

h
(u − ti+1) + 

2

0.214
h

(u − ti+1)
2 −  

3

0.071
h

(u − ti+1)
3, if ti+1 ≤ u ≤ ti+2 

The values of aj,n+1 could be evaluated depending on the final form of 

basis functions φj(u), similarly in section (3.3) to get the following final form: 

If j = i, then: 

ai,n+1

qh
q

=  
q 1 q 1 q 11.285(n 2 i) 0.429(n 3 i) 0.428(n 1 i)

(q 1)

+ + +− + − + + − + − − + +
 

q 2 q 20.426(n 2 i) 0.002(n 1 i)
(q 1)(q 2)

+ +− + − − − −
+ +  +             

{ }q 3 q 30.426 (n 3 i) (n 1 i)
(q 1)(q 2)(q 3)

+ ++ − + − −
+ + +  − 

q 3 q 32.568(n 2 i) 4.284(n 1 i)
(q 1)(q 2)(q 3)

+ ++ − − + − 
+ + + 
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similarly if j = 0 and j = n+1,  

a0,n+1 =
qh

q [
q 1

q
0.428(n 1)

(n 1)
(q 1)

+−+ + ++
q 2 q 20.002(n 1) 1.714(n 1)

(q 1)(q 2)

+ +− − +
+ +  

+ 
q 3 q 3 q 32.142(n 1) 2.568n 0.246(n 1)
(q 1)(q 2)(q 3)

+ + ++ − + − 
+ + + 

 

an+1,n+1 =
qh

q

q 1 q 30.001 0.429(2) 0.002 1.714 0.426(2)
(q 1) (q 1)(q 2) (q 1)(q 2)(q 3)

+ ++ + + + + + + + + + 
  

 

3.5 ILLUSTRATIVE EXAMPLE 

In this section, we give an example as a test problem to check the 

accuracy of the results using the above three approaches discussed previously 

in sections (3.2), (3.3) and (3.4), respectively.  

 

Example: 

Consider the fractional differential equation: 

y(1/2) = −y + t2 + 2
3/ 22t

(5/ 2)Γ , y(0) = 0 

where the exact solution is given by y(t) = t2. 

Then the results obtained upon using the three approaches are given in 

table (3.1) with step size h = 0.1 with its comparison with the exact solution. 
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Table (3.1). 

x Linear error 
Cubic  

(3-points) 
error 

Cubic  
(5-points) 

error 

0 0.014 0.004 0.016 0.006 0.018 0.008 

0.1 0.037 0.003 0.014 0.004 0.016 0.006 

0.2 0.073 0.017 0.042 0.002 0.037 0.003 

0.3 0.127 0.033 0.147 0.013 0.161 0.001 

0.4 0.201 0.049 0.235 0.015 0.261 0.011 

0.5 0.295 0.065 0.346 0.014 0.491 0.0131 

0.6 0.414 0.076 0.511 0.021 0.472 0.018 

0.7 0.581 0.059 0.667 0.027 0.662 0.022 

0.8 0.725 0.085 0.875 0.065 0.842 0.032 

0.9 1.128 0.128 1.116 0.116 1.11 0.11 

 

From the above obtained results, one can see the accuracy of the results 

in which the approximate solution of the solution of fractional differential 

equation using cubic spline interpolation with 3-nod pointes is more accurate 

than the solution obtained  by using linear approximate. Also, the result 

obtained by using cubic spline interpolation with 5-nod pointes is more 

accurate than the results obtained by using cubic spline interpolation of 3-nod 

points.         
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CHAPTER 

 

THEORY OF FRACTIONAL DIFFERENTIAL EQUATIONS 

 

Analytic solution of fractional differential equations is so difficult and very limited, 

therefore, analytic methods for solving fractional differential equations dose not work in 

all cases, but they may be powerful in some cases and may not work in other. 

         This chapter presents some of the most fundamental and popular methods for solving 

fractional differential equations analytically, such as the inverse operator method and 

Laplace transformation method. 

In addition this chapter presents some of the most basic concepts in fractional 

differential equations as well as the statement and proof of the existence and uniqueness 

theorem which has its basis on Schauder fixed point theorem.  

  

2.1 PROPERTIES OF FRACTIONAL DIFFERENTIATION AND 

INTEGRATION 

In this section, some properties related to fractional differentiation and integration 

are explained, those properties which will provide our primary means of understanding 

and utilizing fractional differential equations. 

We start with those properties of most importance: 

2.1.1 Linearity: 

By linearity of the differintegral operator, by which we mean: 

q q q
1 2 1 2D [f f ] D f D f+ = +  .............................................................. (2.1) 

where f1 and f2 are any two functions and q is a fractional number, and: 

2 
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q qD [cf ] cD f=  ............................................................................... (2.2) 

where f is an arbitrary function while c is an arbitrary constant. 

 

2.1.2 Scale Change: 

By a scale change of the function f with respect to a lower limit a, we mean its 

replacement by f (βx − βa + a), where β is a constant termed the scaling factor, and hence 

the fractional derivative of order q with Y = βy − βa + a, and X = x + (a − βa)/β, is given 

by:  

q q

q q

d f ( x) d f ( x a a)

[d(x a)] [d(x a)]

β β − β +=
− −

 

x

q 1
a

1 f ( y a a)
dy

( q) [x y] +
β − β +=

Γ − −∫  

X

q 1
a

1 f (Y)[dY / ]

( q) {[ X Y]/ }

β

+
β=

Γ − β − β∫  

Xq

q 1
a

f (Y)
dY

( q) [ X Y]

β

+
β=

Γ − β −∫  

q
q

q

d f ( X)

[d( X a)]

β= β
β −

 ........................................................ (2.3) 

 

2.1.3Leibniz's Rule: 

The rule for differentiation of a product of two functions f and g is a familiar result 

in elementary calculus. It states that for a positive integer n: 

nn n j j

n n j
j 0

nd [fg] d f d g
.

j dxjdx dx

−

−
=

 
=  

 
∑  ........................................................... (2.4) 
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The following product rule for multiple integrals is also satisfied  

n n j j

n n j j
j 0

nd [fg] d f d g
.

j[d(x a)] [d(x a)] [d(x a)]

∞− − −

− − −
=

− 
=  − − − 
∑  ....................... (2.5) 

Now, when we observe that the finite sum in (2.4) could be equally well extend to 

infinity (since
n

0
j

 
= 

 
 for all j > n), we might expect the product rule to be generalized to 

an arbitrary order q as: 

q q j j

q q j j
j 0

qd [fg] d f d g
.

j[d(x a)] [d(x a)] [d(x a)]

∞ −

−
=

 
=  − − − 
∑  

Thus such a generalization is indeed valid for real order q and is called the Leibniz 

rule. 

Further generalization of Leibniz's rule due to Osler (1972) is the integral form (see 

[Oldham and Spanier, 1974]): 

q q

q q

d [fg] (q 1) d f d g
. . d

(q 1) ( 1)dx dx dx

∞ −γ−λ γ+λ

−γ−λ γ+λ
−∞

Γ += λ
Γ − γ − λ + Γ γ + λ +∫   

In which a discrete sum is replaced by an integral. 

 

2.1.4 The Chain Rule [Oldham and Spanier, 1974]: 

The Chain rule for the first order differentiation is given by:  

( ) ( )d d d
g f (x) g f (x) f (x)

dx df (x) dx
=  

which tacks a simple counterpart in the integral calculus. 

Indeed if there were such a counterpart, the process of integration would pose no 

greater difficulty than does differentiation. Since any general formula for 

( )q qd g f (x) /[d(x a)]−  must encompass integration as a special case of little hope that can  
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be held out for a useful chain rule for arbitrary q. Nevertheless, a formal chain rule in 

fractional orders may be derived quit simply, which takes the form: 

q q j q j

q j
j 1

qd [x a] [x a] d
.

j(1 q) ( j q 1)[d(x a)] dx

∞− −

=

 Φ − − Φ= Φ +  Γ − Γ − +−  
∑  

Now, we consider Φ = Φ(f(x)) and evaluate ( )j jd f (x) /dxΦ , in the second term of 

the last equation as follows: 

( )
kpjjj (k)

(m)
j

km 1 k 1

d 1 f
f (x) j!

p ! k!dx = =

  
 Φ = Φ  
    

∑ ∑ ∏  

where Σ extends over all combinations of nonnegative integer values of p1, p2, ..., pj, such 

that: 

j

k
k 1

kp j
=

=∑    and   
j

k
k 1

p m
=

=∑  

Thus: 

( ) ( )

(k)
k

q q

q

jjj q
p(m) f

k!
kj 1 m 1 k 1

d [x a]
f (x) f (x)

(1 q)[d(x a)]

q [x a] 1
j! [ ]

j ( j q 1) p !

−

∞ −

= = =

−Φ = Φ +
Γ −−

   − Φ     Γ − +   
∑ ∑ ∑ ∏

 

 

The complexity of this result will inhibit its general utility. We see on inserting q = 

−1 that even for the case of a single integration:  

( ) ( )

k

x

a

pjjj 1 (k)
j (m)

kj 1 m 1 k 1

f (x) dy [x a] f (x)

[x a] 1 f
[ 1]

j 1 p ! k!

∞ +

= = =

Φ = − Φ +

  −  − Φ  
 +    

∫

∑ ∑ ∑ ∏
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The chain rule gives an infinite series that offers little hope of begin expressible in 

closed form, except for trivially simple instances of the functions f and Φ. 

 

2.1.5Composition Rule [Oldham, 1974]: 

In seeking a general composition rule for the operator dq/ [d(x − a)]q, we search for 

the relationship between:
q Q

q Q

d d f
.

[d(x a)] [d(x a)]− −
 and 

q Q

q Q

d f

[d(x a)

+

+−
, which we temporarily 

abbreviated for simplicity as dqdQ f and dq+Q f of course, if these symbols are to be general 

meaningful then we need to assume not only that f is a differintegerable but that dQf is 

differintegerable as well. 

The most general nonzero differintegerable series is a finite sum of differintegerable 

units, each having the form: 

p j
u j 0

j 0

f [x a] a [x a] ,p 1,a 0
∞

=
= − − > − ≠∑  ........................................ (2.6) 

We shall see that the composition rule may be valid for some units of f but possibly 

not for others. It follows from the linearity of differintegral operators that: 

q Q q Qd d f d f+=  .............................................................................. (2.7) 

If: 

q Q q Q
u ud d f d f+=  ........................................................................... (2.8) 

 

For every unit fu of f. accordingly, we shall first assess the validity of the 

composition rule (2.8) for differintegrable series unit function fu. 

Obviously, if fu = 0, then dQfu = 0 for every Q. 

q Q q Qd d [0] d [0] 0+= =  
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While the composition rule is trivially satisfied for the differintegrable function fu = 

0, we shall see that the possibility fu ≠ 0 but dQfu = 0, is exactly the condition that prevents 

the composition rule (2.8), and there for (2.7), from being satisfied generally. Having dealt 

with the case fu = 0, we now assume fu ≠ 0, and use the following equation 

q
j p j qu

q
j 0

a (p j 1)d f
[x a] ,q 0

(p q j 1)[d(x a)]

∞
+ −

=

Γ + +
= − ≤

Γ − + +− ∑  

To evaluate dQfu, we have: 

p j Q
jQ q p j

u j
j 0 j 0

a (p j 1)[x a]
d f a d [x a]

(p j Q 1)

+ −∞ ∞
+

= =

Γ + + −
= − =

Γ + − +∑ ∑  ............. (2.9) 

Furthermore, we note that since p > −1, it follows that p + j > −1, so that Γ(p + j + 

1) is always finite but nonzero. Individual terms in dQfu will vanish. Therefore, only when 

the coefficient aj is zero or when the denominator gamma function Γ(p + j + 1 − Q) is 

infinite. We, see, then, that a necessary and sufficient condition for dQfu ≠ 0 is:  

Γ(p + j + 1 − Q) is finite for each j for which aj ≠ 0 ................... (2.10) 

The last condition may be shown to be equivalent to:  

fu − d−QdQfu = 0 ............................................................................ (2.11) 

That is, to the condition that the differintegrable unit fu be regenerated upon to 

application, first of dQ, then d−Q. Assuming (2.11) temporarily, we find that dq may then be 

applied to equation (2.9) to give: 

p j Q q
jq Q

u
j 0

a (p j 1) (p j Q 1)[x a]
d d f

(p j Q 1) (p j Q q 1)

+ − −∞

=

Γ + + Γ + − + −
=

Γ + − + Γ + − − +∑ ........... (2.12) 

With the condition (2.11) or equivalently (2.10) in effect, we may safely cancel the 

Γ(p + j – Q + 1) factors in (2.12), arriving at: 
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p j Q q
jq Q

u
j 0

a (p j 1)[x a]
d d f

(p j Q q 1)

+ − −∞

=

Γ + + −
=

Γ + − − +∑  ................................... (2.13) 

On the other hand, the same technique shows that: 

q Q q Q
u j u

j 0

d f a d f
∞

+ +

=
=∑  

= 
p j Q q

j

j 0

a (p j 1)[x a]

(p j Q q 1)

+ − −∞

=

Γ + + −
Γ + − − +∑  = dqdQfu 

Thus the composition rule (2.8), is obeyed for the unit fu as long as condition (2.11), 

is satisfied. However, when (2.11), is violated, dQfu = 0  

so that dqdQ fu = 0, and on the other hand, it is not necessarily the case that dq+Qfu = 0. 

For example, we may choose fu = x−1/2, a = 0, Q = 1/2, and q = −1/2, then: 

fu − d−QdQ fu = x−1/2 – d−1/2d1/2x−1/2 = x−1/2 – d−1/2 ( )1/ 2

(0)

Γ
Γ

x−1= x−1/2 ≠ 0  

So that condition (2.11), is certainly violated. Therefore dQ fu = 0 and dqdQfu = 0 

while dq+Qfu = d0x-1/2 = x−1/2 ≠ 0.  

In generalizing, we easily see the relationship between dqdQfu and dq+Q fu in the case 

fu – d-Q dQ fu ≠ 0, to be: 

0 = dq dQ fu = dq+Q fu– dq+Q {f u- d
-Q dQ fu} .................................... (2.14) 

While equation (2.14) is a trivial identity for differintegrable units, we shall see that 

it is less trivial and, therefore, more useful for general differentegrable series f if and only 

if equation (2.8) is valid for every differintegrable unit fu of f, it is straightforward to apply 

the theory just developed for units fu to obtain the composition rule for general f. The only 

difference is that while the conditions: 

fu ≠ 0 and  fu – d−Q dQ fu = 0 ......................................................... (2.15) 
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For units fu guaranteed that dQfu ≠ 0, this is no longer the case for arbitrary f. The 

reason, of course, is that some units of f may satisfy (2.15) while others do not. This will  

make it possible to violate the composition rule (2.7), even though f ≠ 0 and dQ f ≠ 0. The 

condition: 

f – d−Q dQ f = 0 ............................................................................. (2.16) 

For general differintegrable series f is however, still necessary and sufficient to 

guarantee (2.7), we mention in passing that for general differintegrable f, as was the case 

for differintegrable units fu. d
qdQf = dq+Qf, At least when Q < 0, and even when Q < 1, for 

functions f bounded at x = a. We have noticed previously that, in case where the 

composition rule is violated the equation: 

dqdQf = dq+Qf – dq+Q{f – d−Q dQf}. 

 

2.2 FRACTIONAL DIFFERENTIAL EQUATIONS 

A relationship involving one or more derivatives of an unknown function y with 

respect to its independent variable x is known as an ordinary differential equation. Similar 

relationships involving at least one differentegral of non integer order may be termed as 

extraordinary differential equations. 

As with ordinary differential equations, the situation of extraordinary differential 

equations often involves integrals and contains arbitrary constants. 

The differential equations may involve Riemann - Liouville differential operators of 

fractional order q>0, which takes the form: 

0

o

xm
q
x m q m 1

x

1 d y(u)
D y(x) du,x u

(m q) dx (x u) − += ≠
Γ − −∫  .................... (2.17) 

where m is an integer number defined by m−1 < q ≤ m. Differential equations involving 

these fractional derivatives have proved to be valuable tools in the modeling of many  
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physical problems. Also, Dq has an m-dimensional kernel, and therefore we need to 

specify m initial conditions in order to obtain a unique solution to the fractional 

differential equation: 

Dqy(x) = f(x, y(x)) ....................................................................... (2.18) 

with some given function f. In the standard mathematical theory, the initial conditions 

corresponding to (2.18) must be of the form: 

q k

kq k x a

d
y(x) b , k 1,2,...,m

dt

−

− = = =  ............................................... (2.19) 

with given values bk. In other words, we must, specify some fractional derivatives of the 

function y. 

In practical applications, these values are frequently not available and so Caputo 

(1967) suggested that one should incorporate derivatives of integer-order of the function y 

as they are commonly used in initial value problems with integer-order equations, into the 

fractional-order equation, given: 

Dq[y − Tm−1(y)] (x) = f (x, y(x)) .................................................. (2.20) 

where Tm–1(y) is the Taylor polynomial of order (m−1) for y, centered at 0. Then, one can 

specify the initial conditions in the classical form: 

y(k) (0) = (k)
0y    , k = 0, 1, …, m − 1 ............................................ (2.21) 

As a classification, fractional differential equations may be classified to be either 

linear or non-linear, homogenous or non-humongous, etc. In which equation (2.18) is 

linear if it does not contain terms of independent variable alone, otherwise it is non-

homogenous. Also fractional differential equations are said to be linear if the dependent 

variable y(x) appears linearly in the fractional differential equation, otherwise it is non-

linear. 
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2.3 THE EXISTENCE AND UNIQUENESS THEOREM [Diethelm, 

1999]: 

Looking at the questions of existence and uniqueness of the solution, we can present 

the following results that are very similar to the corresponding classical theorems known 

in the case of first - order ordinary differential equations. Only the scalar setting will be 

discussed explicitly; the generalization to vector - valued functions is straight forward. 

 

Theorem (2.3.1) (Existence): 

Assume that (0) (0)
0 0D: [0, ] [y , y ]∗= χ × − α + α  with some real number  

∗χ  > 0 and some α > 0, and let the function f : D → R, be a continuous function. 

Furthermore, define: 

* 1 q: min{ ,( (q 1) f ) }∞χ = χ αΓ +  

Then, there exists a function y : [0, χ] → R, solving the initial value problem (2.20)-

(2.21). 
[ 

Theorem (2.3.2) (Uniqueness): 

Assume that (0) (0)*
0 0D: [0, ] [y , y ]= χ × − α + α , with some real number  

*χ  > 0 and some α > 0. Furthermore, let the function f : D → R, be bounded function 

on D and fulfill a Lipschitz condition with respect to the second variable, i.e., 

|f(x, y) − f(x, z)| ≤ L|y – z| 

with some constant L > 0 independent of x, y and z. 

Then there exists at most one function y : [0, χ] → R, solving the initial value problem 

(2.20)-(2.21). 

In order to prove these two theorems, we shall use the following very simple result. 
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It can be proved easily by applying the integral operator of order q, given by: 

x
q q 1

0

1
I ( )(x) (x z) (z)dz

q
−Φ = − Φ∫  

 

Lemma (2.3.3): 

If the function f is continuous, then the initial value problem (2.20)-(2.21) is 

equivalent to the nonlinear singular Volterra integral equation of the second kind: 

xm 1 k
(k) q 1

k 0 0

x 1
y(x) y (0) (x z) f (z,y(z))dz

k! (q)

−
−

=
= + −

Γ∑ ∫  .................. (2.22) 

with m − 1 < q < m. In other words, every solution of the Volterra equation (2.22), is also 

a solution of our original initial value problem (2.20)-(2.21), and vice versa. 

We may therefore focus our attention on equation (2.22). This equation is weakly 

singular if 0 < q < 1, and regular for q ≥ 1. Thus in the latter case, the claims of the two 

theorems follow immediately from the classical results in the theory of Volterra integral 

equations. 

However, in the former case (which is the case required in most practical 

applications), we must give explicit proofs. 

 

The Proof of Theorem (2.3.1): 

In particular, we use the same operator as: 

( )
x

(0) q 1
0

0

1
Ay (x) y (x z) f (z,y(z))dz

(q)
−= + −

Γ ∫  ........................... (2.23) 

and recall that it maps the nonempty, convex and closed set: 

(0)
0U : {y C[0,x]: y y }

∞
= ∈ − ≤ α  to itself. 
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We shall now prove that A is a continuous operator.  

A stronger result is to prove that A satisfies: 

( )nq
n n

L [0,x]L [0,x]

Lx
A y A y y y , y,y U

(1 qn) ∞∞
− ≤ − ∀ ∈

Γ +
% % %  ............ (2.24) 

Then since f is continuous on the compact set D, it is uniformly continuous there. Thus, 

given an arbitrary ε > 0, we can find δ > 0, such that: 

q
f (x, y) f (x,z) (q 1),whenever, y z

x

ε− ≤ Γ + − < δ  ................... (2.25) 

Now, let y,y U∈%  such thaty y− < δ% . Then, in view of (2.25), one gets: 

q
f (x,y(x)) f (x,y(x)) (q 1)

x

ε− < Γ +%  .......................................... (2.26) 

for all x ∈ [0, χ], hence: 

( )
x

q 1

0

1
(Ay)(x) (Ay)(x) (x z) f (z, y(z)) f (z, y(z)) dz

(q)
−− = − −

Γ ∫% %  

x
q 1

q
0

(q 1)
(x z) dz

(q)
−Γ + ε≤ −

χ Γ ∫  

q

q

xε= ≤ ε
χ

 

Hence A is continuous operator. Then we look at the set of functions: 

A(U) := {Ay : y ∈ U} 

and for z ∈ A(U), we find that, for all x ∈ [0, χ] 

( )
x

(0) q 1
0

0

1
z(x) (Ay)(x) y (x z) f z, y(z) dz

(q)
−= ≤ + −

Γ ∫  

(0) q
0

1
y f x

(q 1) ∞≤ +
Γ +
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This means that A(U) is bounded in pointwise sense. 

Moreover, for 0 ≤ x1 ≤ x2 ≤χ, we have:  

1x
q 1

1 2 1

0

1
(Ay)(x ) (Ay)(x ) (x z) f (z, y(z))dz

(q)
−− = − −

Γ ∫   

2x
q 1

2

0

(x z) f (z, y(z))dz−−∫   

q qq
2 1 1 2

f
[2(x x ) x x ]

(q 1)
∞≤ − + −

Γ +
 ....................... (2.27) 

Thus, if |x2 − x1| < δ, then: 

*
1 2

f
(Ay)(x ) (Ay)(x ) 2

(q 1)
∞− ≤ δ

Γ +
 

Noting that the expression on the right-hand side is independent of y, we see that the set 

A(U) is equicontinuous. Then every sequence of functions from A(U) has got a uniformly 

convergent subsequence, and therefore A(U) is relatively compact. Then, Schauder’s fixed 

point theorem asserts that A has got a fixed point. By construction, a fixed point of A is a 

solution of the initial value problem (2.21).    � 

Remark (2.3.1): 

The proof of the uniqueness theorem is based on the following generalization of 

Banach fixed point theorem [Weissinger J., 1952]. 

Theorem (2.3.4): 

Let U be a nonempty closed subset of a Banach space E, and let αn ≥ 0 for every n 

and such that n
n 0

∞

=
α∑ converges. Moreover, let the mapping  

A : U → U, satisfy the inequality: 

||Anu – Anv|| ≤ αn ||u – v|| 
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for every n ∈ N and every u, v ∈U. Then, A has a uniquely defined fixed point u*. 

Furthermore, for any u0 ∈ U, the sequence n
0 n 1{A u } ∞

=  converges to this point u*. 

 

The Proof of Theorem (2.3.2): 

As we identified previously, we need only to discuss the case when  

0 < q < 1. In this situation, the Volterra integral equation (2.22) reduces to: 

x
(0) q 1
0

0

1
y(x) y (x z) f (z, y(z)dz

(q)
−= + −

Γ ∫  ................................... (2.28) 

we thus introduce the set U defined previously. 

Now, since the constant function y ≡ (0)
0y is in U, we also see that U is non empty. 

On U we define the operator A by: 

x
(0) q 1
0

0

1
(Ay)(x) : y (x z) f (z, y(z)dz

(q)
−= + −

Γ ∫  ............................. (2.29) 

Using this operator, equation (2.29), could be rewritten as y = Ay, and in order to prove 

our desired uniqueness result, we have to show that A has a unique fixed point. Let us 

therefore investigate the properties of the operator A. From (2.28), recall that: 

q qq
1 2 2 1 1 2

f
(Ay)(x ) (Ay)(x ) [2(x x ) x x ]

(q 1)
∞− ≤ − + −

Γ +
 

Proving that Ay is a continuous function. Moreover, for y ∈ U and x ∈ [0, X], we have: 

x
(0) q 1
0

0

1
Ay(x) y (x z) f (z, y(z))dz

(q)
−− = −

Γ ∫  

 

q1
f x

(q 1)

1 (q 1)
f

(q 1) f

∞

∞
∞

≤
Γ +

αΓ +≤ = α
Γ +
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Thus, we have shown that Ay ∈ U, i.e. A maps the set U to itself. The next step is to prove 

that, for every n ∈ N, where N is the set of natural numbers and every x ∈ [0, χ], we have:  

[ ] [ ]0,x0,x

q n
n n

LL

(Lx )
A y A y y y

(1 qn) ∞∞
− ≤ −

Γ +
% %  .............................. (2.30) 

This can be seen by induction. In case of n = 0, the statement is trivially true. For the 

induction steps from n − 1 to n, we write: 

[ ] [ ]0,x 0,x

n n n 1 n 1

L L
A y A y A(A y) A(A y)

∞ ∞

− −− = −% %  

w
q 1 n 1 n 1

0 w x 0

1
sup (w z) [f (z,A y(z)) f (z,A y(z))]dz

(q)
− − −

≤ ≤
= − −

Γ ∫ %  

w
q 1 n 1 n 1

0 w x 0

x
q 1 n 1 n 1

0 w z0

L
sup (w z) A y(w) A y(w) dz

(q)

L
(x z) sup A y(w) A y(w) dz

(q)

− − −

≤ ≤

− − −

≤ ≤

≤ − −
Γ

≤ − −
Γ

∫

∫

%

%

 
xn

q 1 q(n 1)

0 w x0

xn
q 1 q(n 1)

0 w x 0

n
qn

L [0,x]

L
(x z) z sup y(w) y(w)

(q) (1 q(n 1))

L
sup y(w) y(w) (x z) z dz

(q) (1 q(n 1))

L (q) (1 q(n 1))
y y x

(q) (1 q(n 1)) (1 qn)

− −

≤ ≤

− −

≤ ≤

∞

≤ − −
Γ Γ + −

≤ − −
Γ Γ + −

Γ Γ + −= −
Γ Γ + − Γ +

∫

∫

%

%

%

 

which is the desired result (2.30). 

We have now shown that the operator A fulfils the assumptions of theorem (2.3.4), 

with αn = (Lxq)n / Γ(1+qn) 

In order to apply that theorem, we only need to verify that the series 

n
n 0

∞

=
α∑ converges. This however is a well known result, since: 
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q n
q

q
n 0

(L )
: E (L )

(1 qn)

∞

=

χ = χ
Γ +∑  

which is the Mittag-Leffler function of order q, evaluated at Lχq . 

Therefore, we may apply the fixed point theorem and deduce the uniqueness of the 

solution of our differential equation.    � 

 

Remark (2.3.2):  

Without the assumption of Lipschitze condition on f, then the solution need not to 

be unique. To see this, consider the following simple one-dimensional example:  

Dqy = yk 

with initial condition y(0) = 0. Consider 0 < k < 1, so that the function on the right-hand 

side of the differential equation is continuous, but the Lipschitz condition is violated, 

obviously the zero function is a solution of this initial value problem, however, setting 

pj(x) := xj, we recall that: 

q
j j q

( j 1)
D p (x) p (x)

( j 1 q) −
Γ +=

Γ + −
 

Thus, the function: 

jky(x) ( j 1) / ( j 1 q)x ,with j q (1 k)= Γ + Γ + − = −               

Also solves the problem, proving that the solution is not unique. 

 

2.4 ANALYTICAL METHODS FOR SOLVING FRACTIONAL 

DIFFERENTIAL EQUATIONS 

In the present section, some analytical methods and presented which has the utility 

of solving fractional differential equations theoretically. 
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2.4.1 Inverse Operator Method: 

This method is based on considering perhaps the simplest of all fractional 

differential equations:  

Q

Q

d f
F

dx
=  ...................................................................................... (2.31) 

where Q is arbitrary, F is a known function. It is tempting to apply the operator d−Q/dx-Q to 

both sides of equation (2.31), and perform “inversion” 

Q

Q

d F
f

dx

−

−=  

But this is not the most general solution. In fact, referring to our discussion of the 

composition law: 

x x x x xD D f (x) D D f (x) D f (x)α β β α α+β= =  

We recall that it is precisely the condition: 

Q Q

Q Q

d d f
f 0

dx dx

−

−− =  

which guarantees obedience to the composition rule for general differintegrable series f. 

The difference 
Q Q

Q Q

d d f
f .

dx dx

−

−− , will not in general, vanish, but will consist of those 

portions of the differentegrable series units fu in f that are sent to zero under the action of 

Q

Q

d

dx
. We decompose f into differintegrable units fu,i, where: 

ip j
u,i ij i io

j 0

f x a x ,p 1,a 0,i 1,2,...,n
∞

=
≡ > − ≠ =∑  .............................. (2.32) 

and investigate the conditions of fu,i required to give: 
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Q Q

Q Q

d d f
f 0

dx dx

−

−− ≠  ....................................................................... (2.33) 

The condition (Γ(p + j + 1 − Q)) or (fu − d−QdQfu = 0), to which are equivalent, tell 

us that condition (2.33) obtains if and only if, for some in the range 1 ≤ i ≤ n, 

i(p Q 1)Γ − +  ............................................................................... (2.34) 

is infinite. This condition can occur, however, only when ip Q 1 0, 1,...,− + = −  that is, 

when ip Q 1,Q 2,...,= − −  and putting these facts together shows that, in the most general 

case: 

Q Q
Q 1 Q 2 Q m

1 2 mQ Q

d d f
f . c x c x ... c x

dx dx

−
− − −

−− = + + +  

where 1 2 mc ,c ,...,c , are arbitrary constants and 0 Q m Q 1< ≤ < + . For Q ≤ 0 the right-hand 

member of the equation is zero. Thus: 

Q Q Q
Q 1 Q 2 Q m

1 2 m Q Q Q

d d f d f
f c x c x ..... c x .

dx dx dx

− −
− − −

− −− − − = =  

and the most general solution of equation (2.31) is: 

Q
Q 1 Q 2 Q m

1 2 mQ

d F
f c x c x .... c x

dx

−
− − −

−= + + + +  .............................. (2.35) 

Next, consider the fractional equation: 

Q Q 1

Q Q 1

d f d f
A F(x)

dx dx

−

−+ =  ................................................................ (2.36) 

where Q is again arbitrary, A is a known constant, and F is known function of x. 

Application of the operator
1 Q

1 Q

d

dx

−

−  to the both sides of equation (2.36), yields, by 

techniques like those discussed in connection with the inversion of equation (2.31): 

1 Q
Q 2 Q 3 Q m 1

1 2 m1 Q

df d F
Af c x c x .... c x

dx dx

−
− − − −

−+ = + + + +  

 



Chapter Two                                                    Theory of Fractional Differential Equations 

 34  

 

A first-order ordinary differential equation for f whose solution may be 

accomplished by standard methods [Murphy, 1960]. 

For the two extraordinary differential equations just treated were quite special, the 

solution of the even slightly more general equation: 

q Q

q Q

d f d f
F

dx dx
+ =  

encounters very great difficulties except when the difference q − Q is integer or half-

integer. 

 

2.4.2 Semi Fractional Differential Equations: 

By a semi differential equation we shall understand a relationship involving 

differintegrals of an unknown function. Each differintegral order occurring as some 

multiple of 1/2, at least one.  

For example, the equation: 

3
6 2

6 3
2

d f d f
sin(x) exp(x)

dx
dx

+ =                      

is a semi fractional differential equation, and also:        

3 1
2 2

3 1
2 2

d f d f
2f 0

dx dx

−

−− + =  

is a semi differential equation, while: 

1
2 2

2 1
2

d f df d F

dxdx
dx

+ =  
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is not if F is regarded as a known function. We shall discover by examples that two 

principal techniques are available for solving semi fractional differential equations, 

namely: 

1) Transformation to an ordinary differential equation. 

2) Laplace Transformation method. 

As it is often the case when dealing with the fractional calculus, we are not able to 

discuss solutions of every general semi fractional differential equations but are forced to 

content ourselves with examples intended to reveal solution techniques. 

 

2.4.3 Laplace Transform Method[Oldham, 1974]: 

In this subsection, we seek for a Laplace transform dqf/dxq for all q and 

differintegrable f, i.e., we wish to relate: 

q q

q q
0

d f d f
exp( sx) dx

dx dx

∞   = − 
  

∫L  

to the Laplace transform L{f} of the differintegrable function, Let us first recall the well-

known transforms on integer-order derivatives: 

{ }
q 1q k

q q 1 k
q k

k 0

d f d f (0)
s f s ,q 1,2,...

dx dx

−
− −

=

   = − = 
  

∑L L  

and multiple integrals: 

{ }
q

q
q

d f
s f ,q 0, 1, 2,...

dx

   = = − − 
  

L L       ....................................... (2.37) 

and note that both formulas are embraced by: 

{ }
q 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s ,q 0, 1,...

dx dx

− − −

− −
=

   = − = 
  

∑ mL L  .................. (2.38) 
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Also, formula (2.38), can be generalized to include non integer q by the simple 

extension: 

{ }
n 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s , for all q

dx dx

− − −

− −
=

   = − 
  

∑L L  .................... (2.39) 

where n is integer such than n − 1 < q ≤ n. The sum vanishes when q ≤ 0. In proving 

(2.39), we first consider q < 0, so that the Riemann-Liouville definition: 

xq

q q 1
0

d f 1 f (y)
dy,q 0,x y

( q)dx [x y] += < ≠
Γ − −∫  

 

may be adopted and upon direct application of the convolition theorem [Churchill, 1948]: 

{ } { }
x

1 2 1 2

0

f (x y)f (y)dy f f
  − = 
  
∫L L L  

Then gives: 

{ } { } { }
q

1 q q
q

d f 1
x f s f ,q 0

( q)dx
− −   = = <  Γ −  

L L L L  ................. (2.40) 

so that equation (2.37) unchanged generalizes for negative q. 

For non integer q, we use the result: 

q n q n

q n q n
L R

d f d d f

dx dx dx

−

−
−

   
=   

      
 

q n q n

q n q n

d f d d f

dx dx dx

−

−=  

where n is an integer number such that n − 1 < q < n. Now, on application of the formula 

(2.38), we find that: 

 



Chapter Two                                                    Theory of Fractional Differential Equations 

 37  

 

q n q n

q n q n

n 1q n n 1 k q n
n k

q n n 1 k q n
k 0

d f d d f

dx dx dx

d f d d f
s s (0)

dx dx dx

−

−

−− − − −

− − − −
=

       =     
        

    = −   
     

∑

L L

L

 

The difference q − n being negative, the first right-hard term may be evaluated by 

use of equation (2.40), since q − n < 0, the composition rule may be applied to the terms 

within the summation. The result: 

{ }
n 1q q 1 k

q k
q q 1 k

k 0

d f d f (0)
s f s ,0 q 1,2,...

dx dx

− − −

− −
=

   = − < ≠ 
  

∑L L  

follows from these two operations and is seen to be incorporated in (2.39). The 

transformation (2.39) is a very simple generalization of the classical formula for the 

Laplace transform of the derivative or integral of f. No similar generalization exists, 

however, for the classical formulas [Oldham, 1974]: 

1 1

1 1

f d {f} d {f}
(s) ( )

x ds ds

− −

− −
−  = − ∞ 
 

L L
L  

{ } d {f}
xf

ds
− = L

L  

{ }
n

n
n

d {f}
[ x] f , n 1,2,...

ds
− = =L

L  ............................................... (2.41) 

As a final result of this section we shall establish the useful formula: 

q
kx q

q

d
exp( kx) [fe ] [s k] {f},q 0

dx

  − = + ≤ 
  

L L  .......................... (2.42) 

of which equation (2.39), may be regarded as the k = 0 instance. 

The linear fractional ordinary differential equations with constant coefficients, so let 

us consider the equation: 
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i

i

qn

i i iq
i 0

d f (x)
c g(x),where 1 q n

dx=

= − < ≤∑  ..................................... (2.43) 

by taking the Laplace transformation to the both sides of the above equation, we get: 

{ }
i

i

n q

i q
i 0

d f (x)
c g(x)

dx=

   = 
  
∑L L  

Now, using the homogeneous and linear properties of the Laplace transformation, to 

get:  

{ }
i

i

n q

i q
i 0

d f (x)
c g(x)

dx=

   = 
  

∑ L L  

Using equation (2.39) with f(x) is defined for all x (0, )∈ ∞ , we can find: 

{ }f (x) G(x)=L  ......................................................................... (2.44) 

So taking the Laplace transform to the both sides of equation (2.43), will give the 

solution of equation (2.43). 

In this method, the following initial conditions are needed: 

q 1 k

q 1 k

d f (0)
0, k 0,1,...,n 1

dx

− −

− − = = −  

where m −1 < q ≤ m, if the initial, conditions are non-homogeneous, then the shift 

property could be used to transform to the origin. 

 

2.5 ILLUSTRATIVE EXAMPLES  

Some illustrative examples for solving fractional differential equation using the 

methods which had been discussed earlier are given next. 
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Example (2.5.1): 

Consider the fractional differential equation: 

3
2

5
3

2

d f
x

dx

=  ..................................................................................... (2.45) 

with initial conditions 

1
2

01
2

d f (0)
k

dx

= , and 

1
2

11
2

d f (0)
k

dx

−

− = . 

Now, we applying d−3/2f / dx−3/2, for both sides of equation (2.45), yields: 

3 3 3
2 2 2

3 3 3

2 2 2

d d f d f
.

dx dx dx

− −

− −=  

Hence: 

3
1 152
2 2

1 23
2

d x
f c x c x

dx

−
−

−= + +   

3 1 1
5

2 2 2
1 2

(5 1)
x c x c x

3
(5 1)

2

−+Γ += + +
Γ + +

 

13 1 1
2 2 2

1 2
(6)

x c x c x
15

( )
2

−Γ= + +
Γ

 ...................................................... (2.46) 

Now, taking the first initial condition and applying equation (2.46), gives: 

1 1 13 1 1 1 1
2 2 2 2 2 2 2

1 21 1 1 1
2 2 2 21

d f (6) d x d x d x
c c

15
( )dx dx dx dx2

−

Γ= + +
Γ
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13 1
12 2

1 2

13 3 1
( 1)x ( ) ( 1)x(6) 2 2 2c c

15 13 1 (1) (0)( ) ( 1)
2 2 2

− −−Γ + Γ Γ +Γ= + +
Γ ΓΓ Γ − +

 

Hence: 

1
2

0
1 0 1 11

2

3
kd f (0) 32c k c c

3(1) 2
dx 2

 Γ    = ⇒ = Γ ⇒ = Γ    Γ 
 

 

Now, if we take the second initial condition, we obtain: 

1 1 13 1 1 1 1
2 2 2 2 2 2 2

11 1 1 1
2 2 2 21

d f (6) d x d x d x
c c

15
( )dx dx dx dx2

− − − −−

− − − −
Γ= + +

Γ
 

13 1
2 2

1 2

13 1 1
1 1

(6) 2 2 2x c x c
15 13 1 1 1 (1)1 1
2 2 2 2 2

+
     Γ + Γ + Γ     Γ      = + +

Γ     Γ Γ + + Γ + +     
     

 

and therefore: 

1
2

21
2

1
d f (0) 2c

(1)
dx

−

−

 Γ 
 =

Γ
 

which implies that: 

1
2

k
c

1
2

=
 Γ 
 

 

Then:      

13
1 12
2 2

1 2
(6)x

f c x c x
15

( )
2

−Γ= + +
Γ
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13
1 12

o 12 2k(6)x k
x x

15 3 1
( ) ( ) ( )

2 2 2

−Γ= + +
Γ Γ Γ

 

Example (2.5.2): 

Consider the semi differential equation:         

1 1 3
2 2 2

1 1

2 2

d f (x) d f (x) 2 x 4x
2f (x) 6 2x 4

x 3
dx dx

−

−+ + = + + + +
ππ π

 ........ (2.47) 

and in order to solve this equation using Laplace transformation method, first we take the 

Laplace transformation to the both sides of equation (2.47): 

{ } { }
1 1
2 2

1 1
2 2

d f (x) d f (x) 2 1 6
2 f (x) x

x
dx dx

−

−

   
     + + = +     

π π    
   

L L L L L  

                                          { } { }
3
24

x 2 x 4
3

  + + + 
π   

L L L  

or equivalently in its final form: 

2

2

2s 3s 1 2 s 4s s
(f )

s (s 1 s)

+ + + +=
+ +

L  

2

(2s 1) (s 1 2 s)

s (s 1 2 s)

+ + + +=
+ +

 

2

2 1

s s
= +  

Then upon using the inverse Laplace transform, we have:  

f(x) = 2 + x 

as the solution of the fractional differential equation. 
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Abstract 

               

In this thesis the gamma distn. Is considered for the reason of it 

appearance in many statistical fields of applications. Some mathematical 

and statistical properties of the distn. Are collected and unified. Moments 

and higher moments are illustrated and two methods of estimation for the 

distn. Parameters are discussed  theoretically and assessed practically.  

A new method of approximation to the cumulative distn. Function 

is drived and compared with four well-known method of appri\oximation 

and it shown a high performance. 

Finally five procedure for generating random variates from gamma 

distn. Are discussed and their efficiencies are compared theoretically and 

pratically by Monte-Carlo simulation.      
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r.v= random variable 

r.s= random sample 

Distn. =Distribution 
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c.d.f= Cumulative density function 

m.l.e= maximum likelihood estimate 
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INTRODUCTION 

 

Fractional calculus is that field of mathematics of study which grows 

out of the traditional definitions of the calculus integral and derivative 

operators in which the same by fractional exponents is an outgrowth of 

exponents with integral value. According to our primary school ideas an 

exponents provides a short notation for what is essentially a repeated 

multiplication of numerical value. These concept in itself is easy to grasp and 

straight forward. However, this physical definitions can clearly become 

confused when considering exponents of non-integer value, [Loverro, A., 

2004]. 

 Oldham and Spanier [Oldham, 1974], who wrote in this field or 

subject had began their work in 1968 with the realization that the use of half-

order derivatives and integrals leads to a formulation of certain electro 

chemical problems which is more economical and useful than the classical 

approaches. This discovering stimulated our interest, not only in the 

applications of notions of the derivative and integral to arbitrary order, but 

also in the basic mathematical properties of these fascinating operators. Their 

collaboration since 1968, has taken us far beyond the original motivation and 

has produced a wealth of material some of which are believe to be original. 

As benefits a cooperative effort between a mathematician Spanier and the 

chemist Oldham, their work attempts to expose not only the theory underlying 

the properties of the generalized operator, but also to illustrate the wide 

variety of fields to which these ideas may be applied with profit. They do not 

presume to present an exhaustive survey of the subject, but our aim has been 

to introduce as many readers as possible to the benty and utility of this 

material. Accordingly, they have made a deliberate attempt to keep the 
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mathematical discussions as simple, as possible. For example, we have not 

used techniques of modern functional analysis to deal with dq/dxq, q ∈ R, 

from an operator-theoretic point of view. This latter approach, which has been 

taken to some extent by Feller (1952), and Hille (1939, 1948) should prove to 

be very fruitful but is properly the subject of a much more advanced work. 

Now we have sought to incorporate the fractional calculus into the larger field 

of symbolic, operational mathematics (Boole, 1844; Heaviside, 1893, 1920; 

Mikusinki, 1959; Fridman, 1969; Bourlet, 1897). 

This thesis consists of three chapters.  

In chapter one, we study the fundamental concepts and definitions 

related to fractional calculus including historical background, fundamental 

concepts, while the main objective of this chapter is to give an overview about 

fractional differentiation and integration including differentiation of unit 

function, zero function, the function (x − a)p, etc. 

In chapter two, we present the basic theory of fractional differential 

equations including two aspects. The first aspect is the formulation of 

fractional differential equations and its relationship with initial conditions, as 

well as, analytical methods for solving fractional differential equations 

including the inverse operator method, solution of semi- fractional differential 

equations, Laplace transformation method, as well as, with some illustrative 

examples. The second aspect of this chapter is to give the statement and proof 

of the existence and uniqueness theorem of fractional differential equation 

using Schauder fixed point theorem. 

Chapter three presents the numerical and approximate methods for 

solving fractional differential equations, since numerical methods may be 

sometimes the most reliable and applicable method for solving differential 

equations, in general, and fractional differential equations, in particular. 

Therefore, in this chapter, several numerical and approximate methods are 
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derived for solving fractional differential equations using linear, cubic with 

three node points, cubic with five nod points spline basis functions for solving 

fractional differential equations, which are examined using an illustrative 

example. 

It is important to notice that, the computer programs are written using 

the mathematical software MATHCAD, 2001 (i), and the results are given in 

tabulated form. 
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يعتبـــــر التفاضـــــل الكســـــري مـــــن المواضـــــيع المهمـــــة والحديثـــــة فـــــي حســـــاب المشـــــتقات 

بينما يعتبر موضوع المعادلات التفاضلية الكسرية . والتكاملات ذلات الرتب الكسرية لدوال معينة

ــــذي يهــــتم بدراســــة طــــرق ايجــــاد حلــــول المعــــادلات ) موضــــوع هــــذا البحــــث( هــــو ذلــــك الحقــــل ال

  :حيث أن الصيغة العامة للمعادلة التفاضلية الكسرية. حليلياً وعددياً التفاضليةالكسرية ت

y(q) = f(x, y), y(q−k)(x0) = y0 

  .عدد صحيح n، وان n < q < n + 1و  k = 1, 2, …, n + 1حيث أن 

اكل ة يتضـمن الكثيـر مـن الصـعوبات والمشـكما وان حلول المعادلات التفاضلية الكسري

عند أيجاد الحل تحليليـاً ولـذلك يمكـن أعتبـار الطـرق العدديـة مـن اكثـر الطـرق شـيوعاً عنـد أيجـاد 

  .الحلول

هــدف هــذه الرســالة هــو لاســتحداث ودراســة أســاليب تقريبيــة لحــل المعــادلات التفاضــلية 

الكســرية وبمســاهدة الطرائــق متعــددة الخطــوات وصــيغة ريمــان ليــوفيلي للتكــاملات الكســرية لحــل 

  .لمعادلات التفاضلية الكسريةا
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  وزارة التعليم العالي والبحث العلمي
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  كلية العلوم               

  رياضيات وتطبيقات الحاسوبقسم ال
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