Appendix A

MATLAB Programs

List of Common Symbolsusingin MATLAB Programs:

ctrb(A, B)

obsv(A,C)

placgA,B, 1)

AI
placg(A',C',n)’

eye (n)
zeros (n)
ode45

inv (A)

plot (x,y)
norm (X)

eig (A)
carg(G,H,Q)

rank (A)

exp(.)
label

AL )
inline

Computes the controllability natwhere A and B are

system matsice= Ax + Bu

Computes the observability matwkere A andC are

system inputjmut matrices.

Compute an appropriate gain matrixviere A, B are
matrices of thestgyn, 1 is the vector of the desired
closed-loodgm

The transpose ofrtiedrix A.

Compute an appropriate observer gaimixnat where
@,are system input-output matricesis the vector
of the obserpeles.

Generatesmann identity matrix.

Generatesnann matrix of zeros.

(fourth, fifth ordléo implement Runge-Kutta method.
Returns the inverdeéhe square matrix A.

Graphs y as a fuantof x.

Calculates the norm.

Finds eigenvaluéshe square matrix A.

Computes the unique solution P ofalgebraic
Riccati eqoatiG'P+PG-PHHP+Q=0
Returns the rankloé square matrix A.
Exponential.

Appears benetthaspective axis in a two-
dimensionadtpl

Returns the j¢blumn of the matrix.
Construct A MATLARBIine function from a stringe

expression.
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MATLAB program (A1)

A=[0 1 00 0 1,6 -11 -6|;
B =[0,010];

c=[1 o o

M =ctrb(A,B)

rank (M)

K=[22 09 -0]
N=0bsVvA,C)

rank (N)

L = [L4;255;- 474

Q =eye(3) ;

H=[0;0;0];

G=(A-LC);

P = cardG,H,Q);

n=-eig (P) ;
0,=20;0,=1,;0,;=02;

T=[o, 0 00 g, 00 0 o,;
T =inv(T);

G=T*G*T%;

P =cargG,H,Q);

n=eig(P)

[T* (A-B*K)*T™* T*B*K*T';zros(33) T*(A-L*C)*T™

Y =inline("[20* z(2) + 0.2 * cos(z (1) /20) + z(2));5* z(3) + 006* sin(z(2)) * cos(z
(2)) +0.1* z(1) * sin?(t); - 016* z(1) -4 * z(2) -5* z(3) + 022* z(4) +1.8* z(5) —
z(6) + 0.002* sin? (z (3)/0.2) + 002* Z(2) * cosR * t); —14* z(4) + 20* z(5) + 02 *
cos(z(@)/20) + z(2)) -0.2* cos((Z@ — z(4)) /20) + (z(2) — z(5)));-11 25* z(4) +
5* z(6) + 006* sin(z(2)) * cosEz(2)) — 006* sin(z(2) — z(5)) * cosE(2) — z(5)) +
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001* z(1) * sin®(t) — 001* (z(1) — z(4)) * sin*(t);4.8 * z(4) —2.2* z(5) -6 * z(6) +
* 7(4)—2.2* z(5) -6 * z(6) + 0.002* sin?(z (3)/0.2) — 0.002* sin?((z(3) — z(6

))/0.2) + 002* z(2) * cos@ * t) — 002* (z(2) — z(5)) * cos@ *t)]', t',°Z);
[t,za] = ode45(W,[0:001:10],[10 1 04 10 O 006]);

z, = za(:,));
z, = za(:,2),
zy = za(:,3);
E, = za(:,4);
E, = za(:,5);
E; = za(:,6);
x =zl0
X, =2,/ 0,
X3 =23/ 0,4
e=E/log
e,=E,/0,
e =E;/0;

X =% —§

X, =% =&

X3 =% =&

cc =% x|

CC, = [)A(z Xz]

CC; = [)A(s Xs]

figure (1), plot(t,cc, )
xlabel (' Time (sec)")

y label (' the statey and its observer )
figure (2), plot(t,e )

xlabel (' Time (sec)))

y label (' the state variablg t ()

figure (3), plot(t,cc, )
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xlabel (' Time (sec)))

y label (' the statex, and its observer )
figure (4), plot(t,e, )

xlabel (* Time (sec)))

y label (' the state variabkg t ()
figure (5), plot(t,cc; )

xlabel (" Time (sec)")

y label (' the state; and its observer ')
figure (6), plot(t,e; )

xlabel (' Time (sec)))

y label (' the state variabkg t ()

MATLAB program (A2)
A=[0 1 0 0,-486 -124 486 00 O O 1194 0 -194 O,

B = [0;21.6;0;0];

C=[1 0 0 0O 1 0 O]
M =ctrb(A,B)

rank (M)

K=[22 09 -0
N=o0bsVA,C)

rank (N)

n=M44-i[192 -144+i[192 -16 -2Q;
L =placgA',c',n )
Q=eye(4);
H=[0;0;0;0];
G=(A-LOC);

P = caréG,H,Q);

n=-eig (P);
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0,=10; 0,=10; g5, = 20; g, = 06;

T=[lo, 0 0 00 0, 0 00 0 0g; 00 O O o,];

T =inv(T);

G=T*G*T™;

P=careg(G,H,Q);

n=eig(P)

[T* (A-B*K)*T? T*B*K*T*;zeros(44) T*(A-L*C)* T‘lj

W =inling('[2(2);-1014 * z(1) - 162 * z(2) + 321433 z(3) -1320619* z(4) +
528* z(5) +38* z(6) — 7.8433* z(7) +1320619* z(8):33.3333" z(4):1.1640*
z(1) - 0.5820* z(3) + (0.6 * —332 * sin(z(3)/20));—17.9596* z(5) + 0.7544* z(
6)1.0943" z(5) — 46.8404* z(6) + 243 * 2(7);-0.5963* z(5) — 44.1560* z(6) +
33.333* z(8)1.7117* z(5) -11.6216* z(6) — 0.5820* z(7) + 0.6 * =332 * (sin(
2(3)/20) -sin((z(3) - z(7))/20)]', t','Z);

[t,za] = ode45(W,[0:001:10,[1 0 -2 0 05 -1 -05 0J);

z, = za(:,D;

z, = za(:,2);

Z3 = Za(: !3)1

z, = za(:,4),

E, =za(:,5);

E, = za(:,6);

E3 = Za( ,7)a

E, =za(,8);

X =zl0
X, =2,/ 0,
X3 =23/ 0,4
X, =2,10
e=E/lo,
e,=E/o,

e, =E;/0,
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Appendix A
e, =E,/o,
Xp=X%~6€
X, =X, — €
X3 = X376
X4 =X, — €y
Ccl:[xl Xl]

cc, =[% %]

cCy = [)?3 x3]

cc, =[%,  x,]

figure (1), plot(t,cc, )

xlabel (' Time (sec)")

y label (' the stateq and its observer ‘)
figure (2), plot(t,e, )

xlabel (' Time (sec)")

y label (' the state variabkg t ()
figure (3), plot(t,cc, )

xlabel (' Time (sec)")

y label (' the state, and its observer )
figure (4), plot(t,e, )

xlabel (' Time (sec)")

y label (' the state variabkg t ())
figure (5), plot(t,cc; )

xlabel (' Time (sec)")

y label (' the state; and its observer ')
figure (6), plot(t,e; )

xlabel (' Time (sec)")

y label (' the state variabig t ())
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figure (7), plot(t,cc, )
xlabel (' Time (sec)")
y label (' the statex, and its observer )
figure (6), plot(t,e, )
xlabel (' Time (sec)")
y label (' the state variabke, t ()
MATLAB program (A3)

A=[0 1-9 -36;
B =[0:1];

c=[ o
N=0obsv(A,C)

rank (N)
n=[-72+96*i -72-96*i];
L =placeg(A',C',np )
Q=[0 00 10];
H=1[0;0];
G=(A-LC);

P = caréG,H,Q);
n=-eig (P);

no = norm(L)

W =inline(Tx(2) + 0.001* sin(x(2)) + 0.001* cosix(2)) + 0.01* x(2)* cost/ 2);-
9* x(1) —3.6* x(2) + exp(-t) + 0.002* cosK(2)) + 0.003* x(1) * sin®(t)], Y, X);

[t, xa] = ode45(W ,[0:001:10],[-1 2]);

® =inling(T-10.8* X(2) + X(2) —0.0054* sin(X(1)) * cosiX(2)) + 0.001* sin(X(D)
+0.001* cos(2)) + 001* X(2) * cosf /2) + 0.0065-10512* X(1) —3.6* X(2) +
exp(t) — 0.0487 sin(X(t)) * cos&(2)) + 0.002* cos(2)) + 0.003* X(1) * sin?(

t)+0.0577',Y',%);
[t, %a] = ode45(® ,[0:001:10],[-1 2]);
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X = xa(:,1);
X, =xa(:,2);
X, = Xa(:,));
X, = X4~ €
e =X "%

& =X =%,

Cclz[)A(l Xl]
Csz[)A(z Xz]

figure (1), plot(t,cc, )

xlabel (' Time (sec)))

y label (' the stateq and its observer ‘)

figure (2), plot(t,e )

xlabel (' Time (sec)))

y label (' the state variablg t ()

figure (3), plot(t,cc, )

xlabel (" Time (sec)")

y label (' the statex, and its observer )

figure (4), plot(t,e, )

xlabel (' Time (sec)))

y label (' the state variabkg t ()
MATLAB program (A4)

A=[2 0 00 2 00 3 1];
B=[0 11 00 1;

c=[11 112 3;

M =ctrb(A,B)

rank (M)

p=[-1+i -1-i -1;
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K =placgA,B, 1);
N=o0obsVA,C)

rank (N)

n=|-4+i*4 -4-i*4 -4
L =placeg(A',C',n )

Q = 3*eye(3)

H=[0;0;0];

G=(A-LC);

P =cardG,H,Q);

n=-eig (P) ;

no = norm(L)

[A-B*K B*K;zeros(33) A-L*C]

W =inling(T0.101* x(2) —1.1554* x(2) — 0.718¢&* x(3) +1.899(* x(4) +1.15E
*X(5) +0.7188* x(6) +0.1* cos(1)) + 001* sin(x(3)) + 003* sin(x(2)) * cos
(X(2));2.7088 x(1) — 3.3822* x(2) —1.8972* x(3) — 2.7088* x(4) + 5.3822* x
(5) +1.8972* x(6) + 002* cos (D)) + 006* sin(x(2)) * cosk(2)) + 003* x(3)
*sin);—1.899* x(1) +1.8446* x(2) + 0.2812* x(3) +1.899* x(4) + 1.1554* x
(5) +0.718¢&* x(6) +0.06* sin(x(3)) + 0.01* sin(x(2)) * cosix(2)) + 0.06* x(2)
*sSin@ * t);—4.4518* x(4) + 0.4207* x(5) + 7.2933" x(6) +0.1* (coskx(D)) -
cosx(@ — x(4))) + 001* (sin(x(3)) — sin(x(3) — x(6))) + 003* (sin(x(2)) * cos
(X(2)) —sin(x(2) — x(5)) * cosi(2) — x(5))) + 0.0266488 (cosi(3)) * sin(x(3)
) —cosi(3) — x(6)) * sin(x(3) — x(6))) — 0.0343625 (sin(x(1)) —sin(x() — x(4
)));0.9686* x(4) —4.9715* x(5) —14.9117* x(6) + 002* (cosk(1)) — cosk(d)
- X(4))) + 006* (sin(x(2))* cosi(2)) —sin(x(2) — x(5)) * cos(2) — x(5))) +
003* (X(3) — (X(3) — x(6)))* sin(t) — 0.0178176 (cosk(3))* sin(x(3)) —cos(
X(3) = x(6)) * sin(x(3) — x(6))) + 0.03970F (sin(x(2)) —sin(x(@) — x(4)));—045

* X(4) +0.9854* x(5) —2.5767* x(6) + 0.06* (sin(x(3) —sin(x(3) — x(6))) + 0.01
+ 006* (sin(x(3)) —sin(x(3) — x(6))) + 001* (sin(x(2)) * cosk(2)) —sin(x(2) — x
(5))* cosk(2) — x(5))) + 006* (x(2) — (x(2) — x(5))) * sin@ * t) — 0.0022192

(cosix(3))* sin(x(3)) — cosix(3) — x(6)) * sin(x(3) — x(6))) + 0.007810** sin(x
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@) —sin(x@) = x@))I', t',X);
[t,xa] = ode45(W ,[0:001:10),[L 0 -1 O 05 -05|);
X, =xa(:,1);

X, =xa(:,2);

X3 = xa(:,3);

e = xa(:,4);

e, = xa(:,5);

e; = xa(:,6);

X =% —g

Xy =Xy =€,

X3 = X3 — €&

CC = [)A(l Xl]

CC, = [)A(z Xz]

CC; = [)A(s Xs]

figure (1), plot(t,cc, )

xlabel (' Time (sec)")

y label (' the statey and its observer )
figure (2), plot(t,e )

xlabel (' Time (sec)))

y label (' the state variabg t ()
figure (3), plot(t,cc, )

xlabel (' Time (sec)))

y label (' the state, and its observer )
figure (4), plot(t,e, )

xlabel (" Time (sec)")

y label (' the state variabk t ())
figure (5), plot(t,cc; )

xlabel (' Time (sec)))
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y label (' the state; and its observer ')
figure (6), plot(t,e; )
xlabel (' Time (sec)")
y label (' the state variableg t ()
MATLAB program (A5)

A=[0 LO O]

B =[0:1];

c=[ o

M =ctrb(A,B)

rank (M)

4 =[-0.7071+i *0.7071 -0.7071-i *0.7071;
K =placgA,B, )
N=0bsVvA,C)

rank (N)
n=[-28284+i*28284 —-28284-i*28284;
L =placgA',C',7)
Q =eye(2)
H=1[0;0];
G=(A-LC);

P = caréG,H,Q);
n=-eig (P);

no = norm(L)
o=[ 1;

N, =obsV(A,O)
rank (N,)

L, =placgA',O',n7)

A-11



Appendix A

MATLAB Programs

G, =(A-LO) ;

P, = cardG,,H,Q )
n, =eig (R);
0,=30;0,=20;
T=|o, 0,0 o,];
T =inv(T);
Gi=T*G*T%;
P: =carg(Gi,H,Q);

. =eig(P1)

[T*(A-B*K)*T? T*B*K*T%zeros(22) T*(A-L*O*T7

W =inline( L5 * z(2) + 30* sin(z (1) /30) + 0.3* z(1) * cos’(t);-0.6667* z(1) -
1.4142* 2(2) + 0.6667* z(3) +1.4142* z(4) + 20* cos(z (1) /30) + z(2) * sin?(
t)10.3429* z(3) +17.0143* z(4) + 30* (sin(z (1) /30) —sin((z() — z(3)) /30)) +
0.3* (z(1) — (z() — z(3))) * cos’(t);-10.6665* z(3) —15.9997* z(4) + 20* (cos
(z(1)/30) —cos(@@®) - 2(3))/30)) + (2(2) - (2(2) - z(4)))* sin*(1)]', ', 2);

[t, za] = ode45(W ,[0:001:100],[120 66 20 -33));

z = za(:,1);

z, = za(:,2),
E, =za(:,3);
E, =za(:,4);

X =zl0
X, =2,10,
e =E/o;
e,=E/o,

X =X"€

X =X, 76

CC, = [)A(l Xl]
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cc, =[%, X,

figure (1), plot(t,cc, )

xlabel (' Time (sec)")

y label (' the stateq and its observer ')
figure (2), plot(t,e, )

xlabel (' Time (sec)")

y label (' the state variablg t ()
figure (3), plot(t,cc, )

xlabel (' Time (sec)")

y label (' the state, and its observer )
figure (4), plot(t,e, )

xlabel (' Time (sec)")

y label (' the state variabkg t ()
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Chapter One Ba€Sioncepts of Modern Control Theory and Design

This chapter presents basic concepts of modernatdheory that are
needed later on. The chapter is divided into figetions, the first section
contains the basic definitions of control theorydasome mathematical
preliminaries, the second section is about the ema#ttical control equations,
the third section concerns with Lyapunov direct moet and stability of the
non-linear dynamical system, the fourth sectiorcusses the controllability
and observability of dynamical control system, th&t section is about the
design of control system by using linear state lbeed control and full order

state observer.

1.1 PRELIMINARY CONCEPTS

Before discussing the modern control theory, soamchterminology's

must be defined:

Definition (1.1) (System) [20]:
A combination of components that acts togethergarfbrms a certain

objective is called a system.

Definition (1.2) (Disturbance) [20]:
A disturbance is a signal that tends to adversiégctathe value of the

output of a system. If a disturbance is generatéasimthe system, it is called
internal while an external disturbance is generatgtdide the system and is

an input.

Definition (1.3) (State Vector) [4]:

The state of a system can be represented by a-timtensional

column vector X called the state vector. The congmds of X are called the

state variables.
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Definition (1.4) (State Spacd?0]:
The n-dimensional space whose coordinate axesstarfsine x;-axis,

X5 -axis, ..., X,- axis is called state space. Any state can beesepted by a

point in the state space.

Definition (1.5) (Feedback) [20]:

Feedback control refers to an operation, that i@ fresence of

disturbances, tends to reduce the difference batwWeeoutput of system and
some reference input and does so on the basissalifference.
Feedback controls do not depend explicitly on timdut instead

depend only on the state.

Definition (1.6) (Closed- Loop Control System) [20]

Feedback control systems are often referred téoaea loop control

systems. In closed-loop control system the actgamor signal, which is the
difference between the input signal and the feekllsagnal is fed to the
controller so as to reduce the error and bringaimgut of the system to a
desired value. The term closed-loop control alwayplies the use of
feedback control action in order to reduce systaore

Definition (1.7) (Open- Loop System) [20]:

Those systems in which the output has no effedhercontrol action

are called open-loop control systems. In other wontan open-loop control
system the output is neither measured nor fed backomparison with the

input.

Definition (1.8) (Time—Invariant Control System) (3:

A time-invariant control system (constant coeffitieontrol system) is
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that one whose parameters do not vary with timee fldsponse of such a
system is independent of the time at which an impapplied.

Definition (1.9) (Time- Varying Control System) [20

A time—varying control system is a system in whacte or more of its

parameters vary with time.

Definition (1.10) (Observation) [21]:
Estimation of unmeasurable state variables is comynaalled

observation.

Definition (1.11) (Positive Definite Matrix) [6]:

A real symmetric matrix A is called positive mhéfe if x' A x> Ofor

every nonzero vectox J R".

Lemma (1.1) [10]:

A symmetric matrix A is positive definite if and lgnif all the

eigenvalues of A are positive.

Definition (1.12) (Negative Definite Matrix) [6]:

An nxn real symmetric matrix A is negative definite if eth

determinant of A is positive ifi is even and negative If is odd, and the
successive principal minors of even order be pasiand the successive
principal minors of odd order be negative,,

a; Qp 3
>0, |ay &y a8, <0,

d3; Q3 dg3

d,

a,, <0,
H dy; Ay

det(A) >0if nis even,(a; =a;; )
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det(A) <0 if nis odd.

Definition (1.13) (Positive Definite Function) [20]

A scalar function ¥j is said to be positive definite in a region

(which includes the origin of the state space)M{x) > 0 for all nonzero
states x in the regia2 and V(0) = 0.

Definition (1.14) (Negative Definite Function) [20]

A scalar function ¥) is said to be negative definite if %Y (is

positive definite.

1.2 MATHEMATICAL CONTROL EQUATIONS [4]:

The set of n-first order differentialuagions that describes the unique

relations between the input (control), output atatesis called dynamical
control equation.

In this work, some non-linear dynamical controlteyss have been

discussed:
X(t) =F(x(t),u(t),t) (state equation) (1.1a)
y(t) =G(x(t),u(t),t) (output equation) (1.1b)

or, more explicitly,

X (t) = f(x (1), X, (1),..., X, (), up (), Uy (1),...,u (1),1)
X, (1) = T4 (1), X5 (1), -, X (), Uy (1), U (1), U, (1), 1)
_ - (1.2 &)

X () = T 0 (0, X (), X (0, (),U )., U 0,0
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Y1(8) = 95 (% (1), X5 (1), X (1), Uy (£), U (), U (E), 1) ~
Yo (t) = 9o (% (1), X5 (1), -, X, (1), Uy (1), U, (1), U, (1), 1)
: (1.2b)

Y () = 9 (X (D)%, ()., %, (f),ul(t),uz(t),---,up(t),tL

wherex =[x X,...X,]" is an n-dimensional state vectay, X,,..., X, are the
state variables;=[y, VY,...Y,]' is an m-dimensional output vector,
Y1, ¥Yo,---, Yy are output variablesy =[u, uz...up]T Is an p-dimensional
input (control) vector anduy;,u,,...,u,are input (control) variables. The
dynamical control system is specified by n-dimenalo vector-valued
function F and m-dimensional vector-valued functi®n

The control u, the output y and the statge real-valued functions of t
defined over the real line R.

Equation (1.1) can be represented in the blockrdragshown in figure

(1.1). In this figure, the flow of a vector quaptis represented by double-line

arrow.
State
| vector X g -
U X y
— P Fxut) |/ f ——» Gxut) —p
Control | - Oulput
| vector \gctor

On integration

{

Figure (1.1) The block diagram of a system represahby equation (1.1a)
and (1.1 b) in vector representation.

5



Chapter One Ba€Sioncepts of Modern Control Theory and Design

If a vector-valued function F and/or G in (1.1a)lgf.1b) involve time
explicitly, then the system is called a time-vagyrontrol system, otherwise,

the system is called a time-invarying control syste

1.2.1 Linear Dynamical Control System [16]:

Consider the following linear dynamical system

F(x(t),u(t),t) = A(t)x(t) + B(t)u(t)
and

G(x(t),u(t),t) = C(t)x(t) + D(t)u(t)
where A, B, C and D are , nxn, nxp, mxn and mxpriced respectively.
Hence, an n-dimensional linear dynamical controlagign is of the form:

X(t) = A(t)x(t) + B(t)u(t) (state equation) (1.3a)

y(t) = C(t)x(t) + D(t)u(t) (output equation) (1.3b)
since the values of A(-), B(-),C(:) and D(-) changé time, the dynamical
control equation in (1.3) is more suggestively exdlh linear time varying
dynamical control equation.

For linear time — invariant dynamical control eqoat the matrices
A(+), B(+), C(-), and D(-) are independent of tene the equation reduces to:

X(t) = A x(t) + Bu(t) (1.4a)

y(t) = Cx(t) + Du(t) (1.4b)

1.3 Lyapunov Stability [6]:

We present here the second method of Lyapunovlistadénalysis,

which is applicable to both linear and nonlineastsyns and provides stability
information on linear and nonlinear different@uations without solving
the system explicitly, hence the second methsdcalled the direct
method of Lyapunov, the direct method is most wisé&r investigating

stability of non-linear systems. It gives suffitieconditions for asymptotic
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stability of equilibrium states of nonlinear systeand linear time-invariant

systems.

Definition (1.15) (Equilibrium States) [19]:

Consider the system = f(x,t), a statex, where f(x,,t) =0,00t is

called an equilibrium state of the system.

Definition (1.16)(Lyapunov Stability) [6]:

An equilibrium statex;of the dynamical systemt = f (x,t)is stable

(or stable in the sense of Lyapunov) if fevery £ >0, there exists
0>0 (d(&,t,)) such that
[0 =%,|| < 0 implies ||x(t, %) = x| < €, for all t=t,

WhereH.H denotes the Euclidean norm of a vector.

Definition (1.17) (Asymptotic Stability) [6]:

An equilibrium state x, of the system x=f(x,t) is

asymptotically stable if
1- Itis stable in the sense of Lyapunov.
2- For all ty there exists g(t,) > (@possibly depending oty) such
that

% = Xe|| < p implies that |x(t, X,) = %,| - 0 ast - c.

Remarks (1.1)

1- An equilibrium statex, is said to be unstable if it is not staljl9].

2- An equilibrium statex, of a free dynamical system is unstable if

there exists ans such that noo can be found to satisfy the

conditions of definition of stability5].
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3-The system described by equation
X(t) = Ax(t) (1.5)
whereA is a constant matrix, is asymptotically stablanfl only if

all eigenvalues oA have negative real par{&7].

Theorem (1.1) [14]:
The time-invariant linear system (1.5):
X(t) = A X(t)

is stable in the sense of Lyapunov if and only if:
1. All of the characteristic values of A hasAmositive real parts, and,
2.To any characteristic value on the imaginarys with multiplicity m

there correspond exactly m characteristicorsabf the matrix A.

Definition (1.18) (Asymptotically Stable Matrix) @l:

The nxn constant matrix A is asymptotically stable if atk

characteristic values have strictly negative reat The characteristic values

of A are the roots of the characteristic polynondat(A1 —A).

1.3.1 The Direct Method of Lyapunov [20]:

The second method of Lyapunov attempts to givermé&dion on the

stability of equilibrium state of linear and nordar systems without any prior
knowledge of their solutions.

The second method of Lyapunov is based on genatializof the idea that if

the system has an asymptotically stable equilibretate, then the stored
energy of the system displaced within the domaimttfaction decays with

increasing time until it finally assumes its mimim value at the equilibrium
state. The method consists of determination otibus (energy) function

called the Lyapunov function which is more genénah that of energy and is
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more widely applicable.

Definition (1.19) (Attraction Domain) [20]:
The largest region of asymptotic stability is cdlBomain of attraction.

It is a part of the state space in which asympaditicstable trajectories

originate.

Definition (1.20) (Quadratic Form) [20]:
A class of scalar function that playsi@portant role in the stability

analysis, based on the second method of Lyapuntheiguadratic form. An

example is

P, P ... P X
V(X)) =X Px=[x X, x] © % 2n |1 72

Pn P oo Py

Note thatx is a real vector and P is a real symmetric matrix.

Definition (1.21) (Hermitian Form) [20]:

If X iIs a complexn-vector and P is a Hermitian matrix, then the

complex quadratic form is called the Hermitian fokm example is

o= _Po Py .. Py x
V()= XPX=[x X2 xn]| - 2 an |7z

P Pan ... Bl X,

Note thatP; is the complex conjugate &, . For the quadratic fornPjj = P

Theorem (1.2) [20]:
Suppose that a system is described by
x =f(x,1) (1.6)
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where f(0,t) =0, forallt
If there exists a scalar function () having continuous first partial
derivatives and satisfying the following conditipns
1- V(x,t) is positive definite
2-V(x,t) is negative definite
Then the equilibrium state at the origin is uniformsymptotically stable.

If, in addition, V(x,t) -~ » as|x| - «, then the equilibrium state at the

origin is uniformly asymptotically stable in thedg.

Remark (1.2) [20]:

If an equilibrium statex = 0 of a system (1.6) is unstable, then there

exists a scalar function W) which determines the instability of the

equilibrium state. We shall present a theorennasiability in the following.

Theorem (1.3) [20]:
Suppose a system is described by
x =f(x,1)

where f(0,t) =0, forall® t,
If there exists a scalar function W) having continuous first partial

derivatives and satisfying the following conditipns

1- W(X,t) is positive definite in some region about the iorig
2- W(X,t) IS positive definite in the same region.

Then the equilibrium state at the origin is unstabl

1.3.2 Lyapunov Stability Analysis of Linear Time—Invariant Systems [19]

Consider the following linear time — invariant ®m:

X=AX

10
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wherex is a state vector (n-vector) and A ismconstant matrix. We assume
that A is non singular. Then the only equilibriutate is the origin  x = 0.
The stability of the equilibrium state of the limgane — invariant system can
be investigated easily by use of the second metifodyapunov. For the
system defined by equation (1.5), let us choosesaiple Lyapunov function
as
V(x) = x“Px
where P is a positive — definite Hermitian matrix(is a real vector and A is
a real matrix, then P can be chosen to be a ip®siefinite real symmetric
matrix). The time derivative of W along any trajectory is
V(X) = XPx + xPx
= (AX)"Px+ X PAX
= X"A"Px + x"PAX
=X (A"P+PA)Xx
Since V§) was chosen to be positive definite, we requicg, dsymptotic

stability, thatV (x) be negative definite. Therefore, we require that:

V(X) = —x"Qx
where

Q = - (A"P+PA)positive definite
Hence, for the asymptotic stability of the systemequation (1.5) it is
sufficient that Q be positive definite. For a tesipositive definiteness of an
nxnmatrix, we apply Sylvester's criterion, which statleat a necessary and
sufficient condition that the matrix be positiveidée is that the determinants
of all the successive principal minors of the male positive.

Instead of first specifying a positive — definitatmx P and examining
whether Q is positive definite, it is convenientsfmecify a positive — definite

matrix Q first and then examine whether P deterchinem

11
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AP+PA=-Q
is positive definite. Note that P being positivefiniée is a necessary and
sufficient condition.

We shall summarize what we have just stated ifdhm of a theorem.

Theorem (1.4) [19]:

Consider the system described by

X=AX
wherex is a state vector (n - vector) and A is @R nconstant nonsingular
matrix. A necessary and sufficient condition threg €quilibrium state = 0 be
asymptotically stable in the large is that, giveny apositive—definite
Hermitian (or real symmetric) matrix Q, there exis positive—definite

Hermitian (or real symmetric) matrix P such that
AP+PA=-Q
The scalar functiorx”Px is a Lyapunov function for this system. (Note

that in the linear system considered, if the efuiim state (the origin) is

asymptotically stable, then it is asymptoticallgide in the large).

In applying this theorem, several important remauesin order.

Remarks (1.3) [19]:

1- If the system involves only real state vector ® amal state matrix A, then

the Lyapunov functionx"Px becomesx'Pxand the Lyapunov equation
becomes
AP +PA=-Q
2-To determine the elements of the P matvex equate the matrices

A"P+PA and —Q element by element. This resulta(im+1)/2 linear

equations for the determination of theredats of p, :Bji of P.If we

12
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denote the eigenvalues of AbyA,, ...\, each repeated as often as its
multiplicity as a root of the characteristic eqoatiand if for every sum of
two roots:

A +A#%2 0

Then the elements of P are uniquely determinede Mwit if the matrix A
represents a stable system, then the sym$, are always non zero.

3- In determining whether there exists a positiveefiute Hermitian or a real
symmetric matrix P, it is convenient to choose Q, where | is the
identity matrix. Then the elements of P are deteetiifrom
AP+PA = -

and the matrix P is tested for positive definitenes

1.4 CONTROLLABILITY AND OBSERVABILITY [28]:

There are two basic problems we need to conside.fifst one is the

coupling between the input and the state or torobtite state by using the
information about the input. This is a controllalil problem. Another
problem is the relationship between the state dwa&l dutput, i.e., the
information about the state can be observed filmenoutput. This is an
observability problem. The concept of observabilisy dual to that of
controllability. Roughly speaking, controllabilitytudies the possibility of
steering the state from the input; observabilitydsts the possibility of
estimating the state from the output. If a dynamezpuation is controllable,
all the modes of the equation can be excited frioenihput; if a dynamical
equation is observable, all the modes of the egnatan be observed at the
output. These two concepts are defined under thengstion that we have the

complete knowledge of a dynamical equation.

13
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Definition (1.22) (Controllable System) [28]:

A system is said to be controllable at titgef it is possible to find an

unconstrained control vector to transfer any ihgtate to the origin in a finite
time interval.

Stated mathematically, the system is controllablg & for any x(t, ),
there existay, ., that givesx(t;) =0(t; >ty)!
If this true for all initial timet, and all initial statesx(t, ,)the system is

completely controllable.

Theorem (1.5) [4]:
The n-dimensional linear time-invariant state emumafl.4a)
X(t) = Ax(t) + Bu(t)

Is completely state controllable if and only if the(np) matrix

Definition (1.23) (Observable System) [28]:

A system is said to be observable at tig€ it is possible to determine

the statex(t, Yrom the output function over a finite time intatv
Mathematically, the system is observable at tigd any x(t, ) can be

estimated by the observation gf . ,(t, >ty . )

If this true for all timet, and all statesx(t, ,)the system is completely

observable.

Theorem (1.6) [20]:

The n-dimensional linear time-invariant dynamicaintol equation
(1.4)

X(t) = Ax(t) + Bu(t)

14
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y(t) = Cx(t) + Du(t)

Is completely state observer if and only if themm} observability matrix

has rank n (* denoted to conjugate transpose xjatri

Theorem (1.7) [20]:
Consider the dynamical control equation

x=Ax+Bu, y=Cx+Du (1.7)
and the dynamical control equation defined by:

2=A"z+C'v, n=Bz+D’v (1.8)
where A, B, C and D are the complex conjugate transposes of A, B, an
D respectively. Then equation (1.7) is completelyates controllable
(observable) if and only if the equation (1.8) anpletely state observable

(controllable).

1.5 POLE PLACEMENT AND FULL ORDER STATE
OBSERVER

The pole placement approach requires the feedbdchkllostate

variables. Therefore, it becomes necessary thatatk variables are assumed
to be available for measurement as outputs. Howe@mne state variables
may be unmeasurable and may not be available éoibck. Then, we need

to estimate such unmeasurable state variablesiby state observers.

1.5.1Design of Linear Dynamical Control System Vi&ole Placement[20]:

Consider a linear state dynamical control equation:
X(t) = Ax(t) + Bu(t) (1.9
where A and B are, respectively, constant matries an appropriate

dimensions. The contral(t) shall be assumed

15



Chapter One Ba€Sioncepts of Modern Control Theory and Design

u(t) = -Kx(t) (1.10)
where K is constant matrix with an appropriate dimensi8@ubstituting
equation (1.10) into equation (1.9) gives the dlds®p

X(t) = (A —=BK)x(t) (1.11)
the solution of this equation (1.11) is given by:

x(t) = eA"BK)ty(0) (1.12)
where x(0) is the initial state (may be caused by externsiudbances). The

stability and transient response characteristic determined by the
eigenvalues of matripd —BK). If the matrixK is chosen properly, then the
matrix (A —-BK) can be made as asymptotically stable matrix, amdal
x(0) £ 0 it is possible to make(t) approach0 ast approaches infinity. The
eigenvalues of matrixA — BK) are sometimes called the regulator poles. The
problem of placing the closed- loop poles at thsired location is called a
Pole Placementproblem. Figure (1.2) (a) shows the system defibgd
equation (1.9). It is an open- loop control systeexause the state is not
fed back to the contral. Figure (1.2) (b) shows the system with lineatesta
feedback control. This is closed-loop control systbecause the state is
fed back to the contral.

u X
e
{ B X f A g & f
A

(a) (b)
Figure (1.2)
(a) Open-loop control system

(b) Closed-loop control system with feedback cohtno= —Kx .

16
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Theorem(1.8) [13]:

Consider the linear state time invariant dynamooaitrol state equation
(1.9):

X(t) = Ax(t) + Bu(t)

with linear state feedback control (1.10)

u(t) = —Kx(t)
Then, the closed-loop characteristic values (regtdapoles), that is ,the
characteristic values fA —BK), can be arbitrarily located in the complex
plane (with the restriction that complex charast&sivalues occur in complex
conjugate pairs) by choosing K suitably if and oiflthe system (1.9) is

completely state controllable.

Algorithm (1.1):" pole placement design, single wable case" [20]:

Consider the single variable time invariant equatio
X(t) = Ax(t) + Bu(t)

where AOR™ and BOR™ and linear state feedbackt) = —-Kx(t) where
K OR™
Step (1):Check the controllability condition for the systelinthe system is

completely state controllable, i.6A,B) is controllable, then use the following
steps.
Step (2):From the characteristic polynomial for matix
A=A ="+ A"+ +a, ) +a,
and then determine the valuesafa,,...,a,

Step (3):Determine the transformation matrix that transforms the system
state equation into the controllable canonical fee® the following remarks
(1.4) (If the given system equation is alreadyhe tontrollable canonical

form, thenl' =1). It is not necessary to write the state equaitionthe

17
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controllable canonical form. All we need here isfittd the transformation
matrix T which is given by
T=MW (1.13)

whereM is the controllability matrix

M =[B:AB:A%B! ... :A"1B] (1.14)
and W is defined by
a1 ap_o ... a 1
dq-2 dp-3 ... 1 O
W =| : Do (1.15)
ay2 1 .. 00
1 0 .. 00

where thea, 's are coefficients of the characteristic polyndrofestep (2).

Step (4):Using the desired eigenvalues (desired closed-adgs), write the

desired characteristic polynomial as:
A=) A= )... (A=) = A"+ @A™+ +a, A +a,
where the values af,,a»,...,a, can be determined.

Step (5):The required state feedback gain matfican be determined from

the following equation

_ . . . . -1
K—[an—an:an_l—an_lz :az—azzal—al]T (1.16)

Remarks (1.4) [20]:
1- The matrix A is said to be in a controllable canonical fornt iis

can be written as:

0 1 0 .. 0
0 0 1 ... 0O
A=l : : :
0 0 0 o1
-a, —a,.1 —31-2 ... &

18



Chapter One Ba€Sioncepts of Modern Control Theory and Design

where the coefficients, i =1,2,...,n are computed by
A=A ="+ A"+ a4 ) +a,

2- The discussed method of subsection (1.5.1) isct&ltde Placement
method. There are also different methods like Agleam's formula,
see for information if20].

3- Note that if the system is of low ordek 3, then direct substitution
of a matrix K into the desired characteristic polynomialynize

simpler. For example, ih=3, then write the state feedback gain
matrixK as
K=[k ky kg
Substitute K into the desired characteristipolynomial
Al = A +BK| and equate it t¢1 — £4)(A = ps)(A = ti3) , Or
A=A +BK| = (A = 1) (A = t12)(A — p13)
Since both sides of this characteristic equatian @lynomials in

A, then by equating the coefficients of the same ggevof A on

both sides, it is possible to determine theieslofk,,k,, andks.
This approach is convenient =2 or 3. (Fom=456,... ,

this approach may become very tedious).

Algorithm (1.2) "pole placement design multivariédcase" [4]:

Consider the n-dimensional linear time nmwat multivariable state
equation
x(t) = Ax(t) + Bu(t)

where AOR™" andBOR™P, and linear state feedbaokt) = -Kx(t), where

KORP™,
Step (1):Check the controllability condition if the systesncompletely state

controllable, then we use the following steps.

19
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Step (2): Choose an arbitrarynxn matrix F, which has no eigenvalue
common with those of A .
Step (3):Choose an arbitrarypxn matrix k such that (F, k) is completely
state observer.
Step (4):Solve the unique T in the matrix equation:

AT-TF=BKk. (1.17)
Step (5):If T is nonsingular, then we have K k' and A-BK has the same
eigenvalues as those of F.

If T is singular, then choose a different F or fiedent k and repeat the

steps.

Remark (1.5) [4]:

If T is nonsingular, the equation matrix -AllF = Bk. Implies that

A-BK=TFT™* (1.18)

Hence A-BK and F are similar and have the samefsgenvalues.

1.5.2States Observers [20]:

In the pole placement approach to the desigontrol systems, we

assumedthat all state variables are available for feedbdok practice,
however, not all state variables are availableféedback. Then we need to
estimate unavailable state variables.device (or a computer program) that
estimates or observes the state variables is callgdte observer, or simply
an observer. If the state observer observes d# stiables of the system,
regardless of whether some state variables arelablai for direct
measurement, it is called a full-order state ob=serv
An observer that estimates fewer than n state bi@sawhere n is the

dimension of the state vector, is called a redumeldr state observer or,

simply, a reduced-order observer. If the order lod teduced-order state

20
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observer is the minimum possible, the observeralled a minimum-order
state observer or minimum-order observer.

In this work, the full-dimensional state observaslbeen discussed.

1.5.3 Full-Dimension Linear State Observer [4]:

Consider the n — dimensional linear time invaridyrtamical equation

X(t) = Ax(t) +Bu(t) (1.19 a)

y(t) =Cx(t) (1.19 b)
where A, B and C are respectivelym, nxp and nxn real constant matrices.
We assume now that the state variables are nessitite. Note that although
the state variables are not accessible, the matiiceB and C are assumed to
be completely known. Hence the problem is thatsbingating or generating

x(t) from the available input u and the output y witle knowledge of the

matrices A, B and C.

Consider the state observer shown in figure (1.3)

, State observer

Figure (1.3) a full — order observer state
The observer is driven by the input as well as dgut of the original

system. The output of (1.19 ly)= Cx, is compared withy =C X and their

21



Chapter One Ba€Sioncepts of Modern Control Theory and Design

difference is used to serve as a correcting tetme. differenceY — CX , IS
multiplied by nxm real constant matrix. and fed into the input of the
integrators of the observer. This observer is dalleear full-order state
observer.

The linear dynamical control equation of the fullorder observer

shown in figure (1.3) is given by:

X(t) = AR(t) + Bu(t) + L(y(t) -CX) (1.20)
whereX is the state observer.

X(t)=(A-LC)X(t)+Bu+Lyt) (1.21)
Define

e(t) =x(t) - x¢) (1.22)
Clearly e(t) is the dynamical error between the actual statk the state
observer.

Subtracting (1.20) from (1.19 a), we obtain:

et)=(A-LC)e(t) (1.23)

If the eigenvalues ofA — LC)can be chosen arbitrarily, then the behavior of
the error e(t)can be controlled. For example, if all the eigeneal of
(A —-LC) have negative real parts smaller thanthen all the elements of
e(t) will approach zero at rates faster th&h €onsequently, even if there is
a large error betweenX(t, ahd x(t, Jat initial time ¢, the vectorx will

approachx rapidly.

Theorem (1.9) [15]:
Consider the linear time — invariant full ordertstabserver (1.20):

X(t) = A R(t) + Bu(t) + L[ y(t) - C X(t)]

For the linear time invariant dynamical control atjons

22
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X(t) = A x(t) + Bu(t) } (1.24)

y(t) = Cx(t)
Then , the observer poles , that is , the charatitevalues of (A —LC), can
be arbitrarily located in the complex plane (withe trestriction that the
complex characteristic values occur in complex ggaje Pairs), by choosing
the constant matrik suitably, if and only if the system ( 1.24) is qaetely

state observer .

1.5.4 Design Steps for Full Order Observer [21]:

Consider the linear time invariant dynamical cohsiystem defined by

(1.24). In designing the full — order state observee may solve the dual

problem, that is, solve the pole placement proldl@nthe dual system
Z=A*2+Cv (1.25)
n=B z

where A, B and C are the transpose conjugate of A, B and C reispéhe
Assume the control to be:

v=-Kz (1.26)
If the dual system is completely state controllalthkeen the state feedback
gain matrix K can be determined such that ma#ix- C"K will yield a set of

the desired eigenvalues. Noting that the eigengaifid” - CK and those of

A —KCare the same, we have:
sl —(A” —C*K)\z‘sl -(A-K'C)| (1.27)
Comparing the characteristic polynomia’sl -(A- KDC)‘ and the

characteristic Polynomiédsl -(A- LC)\ for the observer system, we find that

Land K are related by
L=K (1.28)
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Thus, using the matrix K determined by the pole@haent approach in the

dual system, the observer gain mattixfor the original system can be

determined by using the relationsHip= K -,
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Chapter Three Extension to General Non-Linear Dynamical system

In this chapter, the problem of designing dynamstate observer for
inherently non-linear system is considered. A sidfit conditions to design a
state observer of non-linear system are developed.

A computational algorithm based on theorem for desia
deterministic state dynamic observer has been d@eel and presented.
An approximate procedure is proposed to design ceqpmate observer
based controllers.

Finally, several problems are given to demonstthegvalidity of

our results.

3.1 SUFFICIENT CONDITIONS FOR DESIGN A STATE
OBSERVER OF NON-LINEAR SYSTEM

The sufficient conditions to select observer gaiatmx L that the

state observek(t) for inherently non-linear dynamical control system

will converge to the actual state of non-linear dyncal control system

are obtained in the following theorem:

Theorem (3.1)
Consider the non-linear dynamical system

% = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)

y(t) = C x(t) + h(x(t)) (3.1)
X(0) = X,

and assume that the state variables are not almifab measurement.
Consider the observer of non-linear dynamical adrgystem (3.1) is

B _ Ag(t) + Bu(t) + DF (%(t)) + 9(X(). 1) + L(y(t) - (C X(t) + hX(D)))

y(t) = CX(t) + h(X(t))
X(0) =X,
(3.2)
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where xOR", uOR?, yOR™, AOR™", BOR™P, DOR™", COR™",

f:R" 5 R", g:R"xR - R", h:R" -~ R™, the following conditions are
assumed to be satisfied
1. The pair (A, C) of a non-linear dynamical contrgisem (3.1), is

completely state observer.
2. The non-linearity functionDf (x(t)):R" - R" is assumed to be

globally Lipschitz condition with Lipschitz constap, i.e.,
|DF (x(t)) = DF (R(1))] < ¥ x(t) = (1) 3B
3. The non-linearity function g(x(t),t):R" xR - R" is assumed to

beglobally Lipschitz condition with Lipschitz corsstt 5, i.e.,
la(x(),t) - g(x), 1] < Bx(t) - &(t)] for tOR (3.4)

4. The non-linearity functiom(x(t)) : R" — R™ is assumed to be globally
Lipschitz condition with Lipschitz constah, i.e.,
|h(x() = h(x)] < ox) = %) (3.5)

5. The observer gainL can be selected such thgiA -LC) is
asymptotically stable matrix.

6. The Riccati equatioffA - LC)" P+ P(A - LC) =-Q (3.6)
hasa unique positive definite solutidd for arbitrary positive definite
selection matrixQ.

7. On using the Lyapunov function stabiltye(t)) =e' (t)Pet ( Where
e(t) = x(t) = X(t) (3.7)
andP satisfy equation (3.6)

Amin (Q)

y+ B +9|L|< (3.8)
6H H Umax(P)
Then the dynamical error

vy
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@_(A LC)e(t) + Df (x(t)) - Df (X(1)) + g(x(1),t) — g(X(t),t) -

dt
L(h(x(t)) = h(X(t))) (39)

Is asymptotically stable via a single observer garametet.

Proof
From the non-linear dynamical system (3.1) antestaserver (3.2) as

well ase(t) = x(t) — X € ), one can get the following

@_(A LC)e(t) + Df (x(t)) — Df (X(t)) + g(x(t),t) — g(X(t),t) -

dt
L(h(x(t)) = h(x(t)))
with e(0) = x(0) — X(0)
On using the Lyapunov function and its derivative
V(1) =V(e(t)) = e ()Pelt)
dv(t) _
dt
From (3.9), we have that

av(t) _
dt

e’ (t)Pe(t) +e' ()P &)

e ()[(A - LC)" P+ P(A — LC)]e(t) + (Df (x(t)) — Df (X(t))) " Pe(t)

+e' ()P(Df (x(1)) - Df (X(1))) + (9(x(t),t) — 9(X(t), 1)) " Pe(t) +
e’ (P(g(x(1).,1) — g(X(t), 1)) + (~L(h(x(1)) — h(X(t))))" Pe(t) +
e’ (P(-L(h(x(t)) — h(X(1)))) (310)

From (3.6) we have

d\;t(t) e’ ()(-Q)e(t) + (Df (x(1)) - Df (X(1))) " Pe(t) +e' (t)P(Df (x(1)) -
Df (X(t))) + (9(x(t),1) — 9(X(t), 1)) Pe(t) + e ()P(g(x(t),t) -
g(X(®), 1)) + (-L(h(x(1)) — h(X(1)))) " Pe(t) + &' (t)P(~L(h(x(t)) -

h(x(1)))) (311

A&



Chapter Three Extension to General Non-Linear Dynamical system

From (3.3) and (3.7) one deduces.

(Df (x(1)) - Df (X(1))) " Pe(t) < yﬂe(t)Hzﬂmax(P) (3.12)

e’ (t)P(Df (x(t)) - Df (X(t))) < M\e(t)Hz/\max(P) (3.13)
From (3.4) and (3.7) one deduces.

(9(x(¥),t) = g(X(t),1)) " Pe(t) < BHe(t)Hzﬂmax(P) (3.14)
e’ (P(g(x(t),t) — g(R(1).1)) < />’He(t)H2/1max(F’) (3.15)
From (3.5) and (3.7) one deduces.

(—L(h(x(t)) = h(X(t)))) " Pe(t) < éﬂLHHe(t)HZ/lmax(P) (3.16)

e’ (t)P(-L(h(x(t)) - h(X(1)))) < éﬂLHHe(t)HZ/lmax(P) (3.17)
where A, (P )denotes the largest eigenvaludPof
Substituting (3.12), (3.13), (3.14), (3.15), (3.86d (3.17) into (3.11) gives:

T <" @(-Qe) + 20y + 5+ S|LDIEO A (P) (3.18)
with €” () Qe(t) = Ay, (Q)e®)]” 3.19)
One deduces from (3.19):

O < D10 (@ + 20+ B+ AU A (P) 0 (320
From (3.20) and (3.8) we have

V(et)) <0 (3.22)

since P is unique positive definite solution and it is aie that
V (e(t)) =e' (t)Pe(t) >0, V(0) =0 and by (3.21) we have conclude that the

error dynamic system (3.9) is asymptotically stab#&a single observer gain

parametet. Thusx(t) C X { )ast - «. And this complete the proof.

Yo
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Remarks (3.1)
1. The problem tackled in this theorem can be stasdfdlbows:

Find the condition on the observer gain matrithat the dynamic
behavior of the dynamical error (3.9) asymptotically stable or the
unmeasurable actual staig) of non-linear dynamical control system
(3.1) will converge to the state obserxer &s)t tend to infinite.

2. The assumption thddf, g andh are Lipschitz globally condition may
be relaxed to only locally Lipschitz condition.
3. An observer gain matrik is selected such that (3.8) is satisfied. That

Is, by the single observer galn we can always guarantee that the

state observerx t ( xonverge to the actual statdt) of non-linear

dynamical control system (3.1).

Algorithm (3.1)

The following algorithm is presented in order tiga a deterministic

observer that estimates the original non-linearadyical states given in (3.1).

Based on the result of the theorem (3.1).

Step (0): Consider the non-linear dynamical system

? = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)

y(t) = C x(t) + h(x(t))
X(0) =X,

where x(t) JR" is unmeasurable state vectal}) is the control input and

y(t) OR™ is the output vector. Suppose that the matigeB, C and D have
a constant entries and appropriate dimensions. nbmelinearity functions
Df (x(t)):R" - R", g(x(t),t):R"xR - R" and h(x(t)):R" -~ R™ are
assumed to be globally Lipschitz with a ldpi$z constantsy, £ andd

&
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respectively.
Step (1): If (A,C) is observable, go t8tep (2), otherwise, the system should

bemodified to satisfy the observable condition.
Step (2): Check the following Lipschitz conditions

Df (x(t)) = Df (X(1))] < ¥x(t) - X(t)|
g(x(),t) = g(X(t),t)| < Bx(t) - X(t)| for tOR

h(x(t)) - h(X(t))] < J|x(t) - X(V)|

and design the observer dynamic by
dx(t)

dt

y(t) = CX(t) + h(X(t))
%(0) = %,

= AX(t) + Bu(t) + Df (X(t)) + g(X(t),t) + L(y(t) = (C x(t) + h(x(t))))

Step (3): Selectl that makegA — LC) asymptotically stable by using dual of
the pole placement. (see subsection 1.5.4). AnghaterL | .
Step (4): Let the dynamic erroe(t) = x(t) — X t (&nde(0) = x(0) — X (0)

9o - (A - LC)ett) + DF (x(1)) - DF (X)) + g(x(t).t) - G(X().1)

dt
— L(h(x(t)) = h(x(1)))
e(0) = x(0) - X(0)

Step (5): SetV(t) =V (et)) =e' (t)Pe)
where P is the unique positive definite solution  of
(A-LC)"P+P(A - LC) =-Q, for arbitrary positive definite matrig.

/]min (Q)

Step (6): Check y + B +J|L| < e (P)

where y is the Lipschitz constant ddf (x(t)), £ is the Lipschitz constant of
g(x(t),t) and o is the Lipschitz constant ofi(x(t)). A, (Q) denotes the

smallest eigenvalue @) and A, (P ) denotes the largest eigenvaludof

A%
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If Step (6) is notsatisfiedgo to Step (3) andselect anothek such thatStep
(6) satisfy.

Problem (3.1)

Consider a non-linear dynamical system describedhieyfollowing

dynamical equations:

{xl(t)}{o 1 }Hu{aom o.ooﬂrin(xl)} 001x, co{lzj
Xt | |-9 -36| |1 0  0.002| cos,) 0,003, sin? (1)

y(t) =1 O]Lﬂ +0.0005sin(x, ) cOs,)
2
x(0)=[-1 2]", x©0)=[-1 2
(3.22)
Step (1): Check the observability condition for the system
N=(C :A'C")

{5 1

Hence rank (N) = 2. Therefore (A, C) is completgtigte observable.
Step (2): To verify the non-linearitpf (x(t)), g(x(t),t) and h(x(t)) satisfy
Lipschitz condition:

(1) Df (x(1) = {0.00lsin(xl) + 0.00lcos(xz)}

0.002cos(,)
The Jacobian matrix fobf (x(t)) is

5 _[0.001c0st;) - 0.001sin(x,)
' 0 - 0.002sin(x,)

where

|9] < 0.002449489

YA
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which implies that:

|Df (x(1)) - DFf (X(1))] < 0.00244948x(t) - X(1)| (3.23)
Thus, the non-linearitipf (x(t)) satisfy the global Lipschitz condition with
Lipschitz constany =0.00244948 .

t
@) gxt),t) =| 2O CO{EJ
0.003x, sin(t)

The Jacobian matrix fog(x(t),t) is

0 0.0lco{lj
J, = 2

0.003sin?(t) 0

where

|3,] < 0.010440306
hence:

la(x(),t) = g(X(t), )| < 0.01044030p(t) — X(t)| (3.24)
Thus, the non-linearity functiong(x(t),t) satisfy the global Lipschitz
condition with Lipschitz constanf =0.01044030.

(3) h(x(t)) =0.0005sin(x,) cos(x, )
The Jacobian matrix for the functidiix(t)) is

J, =[0.0005c0s(x, ) cos(x,),  —0.0005sin(x, ) sin(x,)]
where

|35 <0.000707106
hence:

Ih(x(t)) = h(X(t))] < 0.000707108(t) — X(t)| (3.25)
Thus, the non-linearity functioh(x(t)) satisfy the global Lipschitz condition

with Lipschitz constan® =0.00070710.

va
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Step (3): Suppose that we use the dual of the pole placeagmtoach to
compute observer gain matrix and the desired poles for this system are
selected as:

n,=-12+i96,n, =-72-i96.

The state observer gain matilixcan be obtained (by using MATLAB) as
shown in program (A3) in Appendix A.

{108}
L= (3.26)
9612

Hence
|L| =96.7248. (3.27)
Step (4): To find P which is the solution of this Riccati equation:
(A-LC)"P+P(A-LC)=-Q

On solving it to get a unique positive definitewgan P, on selection of:

0= 10 O
0O 10
hence
[-108 -10512 P, Py N P, Po 108 1 |
1 -36 |P, P, P, P, ||-10512 -36
-10 O
0 -10
therefore

(3.28)
~27288 0.6309

b= { 270235 - 2.728&1
A, (P) =0.3517, A,(P) =27.3027.
ThenP is positive definite and also symmetric matrixs@\l it's clear tha® is
positive definite matrix. It is clear thaf,, (Q) = 10,,.(P)=27.3027.
Step (5): Fromstep (2) andstep (3) it is clear that

y + B+ J|L|=0.081284556 (3.29)
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/]min (Q)

Now, checky + B+ J|L| < 21 (P)

= 0.1831. (3.30)

Finally, we shall obtain the response of the systeithe given initial
condition: x(0) =[-1 2]", x©)=[-1 2.
Assuming that the control is an open- loop congmli.e., u(t)is a

function of t only and assuming that no any distmde to the system

occurred. We take(t) = exp(—t) then Equation (3.22), becomes
X, (1) _ 0 1 N 0 . 0.001 0.001| sin(x,) N
X, (1) -9 -36 1 0 0.002| cos,)
t
001x, CO{E) (3.31)
0.003, sin®(t)
y(t) =L o]Lﬂ +0.00058iN(x, ) COS(K,)
2

Now, the observer can be estimated by:

% = (A - LC)K(t) + Bu(t) + Df (X(1)) + g(X(t),t) + Ly(t)

5[ -108 1 T%],[0] . [000Isin(%)+0.001c0s,)
X, | |-10512 -36]%,| |1 0.002cos,)

001X, co{%) .\ { 1.2080}
0.00%, sin’(t)| LL07°18
(3.32)

A MATLAB program using the fourth-order Runge-tautmethod is

used to obtain the stategs , X, , X, and X,, and simulate the dynamics

errors are shown in MATLAB program (A3), in AppexdA.
The numerical results and estimators based on Iheritam for

problem (3.1) have been shown in the following f@ldtgraphs.
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ctate variable 1 and its oaservar

Time(sec)

Fig (3.1) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) = -1, X, (0) = -1 of problem (3.1).

0.4

0.4 ¢ -

error state vriable e1(t)

0G| .

0.8 4 .

Time(sec)

Fig (3.2) error between x,(t) anditsobserver X, (t) of problem (3.1).
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state varable 2 and its oaservzr

Time(sec)

Fig (3.3) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) =2, X, (0) =2 of problem (3.1).

error state warishle e2(t)

=

Time(sec)

Fig (3.4) error between X, (t) and itsobserver X, (t) of problem (3.1).
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Problem (3.2)

Consider a non-linear dynamical control system desd by the
following dynamical equations:

%t [2 0 ox | [0 1 01 001 003] cos,)
%,(t)[=|0 2 0| x,|+|1 Olu+/002 0 006 sin(x,)

X5 (t) 0 3 1| x, 01 0 006 001|sin(x,)cos,)
0
+| 0.003, sin()
0.006x, sin(2t)
111 % (! 0.002c0s(x, ) sin(x;)
y(t){l 2 3} %21 J{ 0.005sin(x,) }

x©) =1 0 -1, O = -05 -o05

(3.33)
(1) thefirst stage: the feedback gain K is obtained by algorithm (1.2)
as follows:

Step (1): Check the controllability condition for the system
M= (B:AB:A’B)
01020 4
=11 02 0 40
01 31091
Hence rank (M) = 3. Therefore (A, B) is completstgite controllable.
Step (2): Suppose that we use the pole placement approadorpute
feedback gain matrix K and the control poles fas #ystem are selected as:
e S N P e N
The feedback gain matrix K can be obtained (bygi8ATLAB as shown in
program (A4) in Appendix A.

- 27088 53822 18972
K= . (3.39
1.8990 11554 0.7188

A€
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(2) the second stage: the observer gain L by algorithm (3.1) isobtained as
follows:
Step (1): Check the observability condition for the system
C
N=| CA
CA*?
1

1
1 2
2 5
2
4

R

13 3
13 1
4 35 3

Hence rank (N) = 3. Therefore (A, C) is complet&tigte observable.
Step (2): To verify the non-linearitpf (x(t)), g(x(t),t) and h(x(t)) satisfy
Lipschitz condition:

0.1cos(k,) + 001sin(x;) + 003sin(x,) cos,)
(1) Df (x(t)) = 002cos(,) + 006sin(x,) cos,)
006sin(x;) + 001sin(x,) cos,)

The Jacobian matrix foDf (x(t)) is
- 01sin(x;) 003cos@x,) 001cos(,)

J; =| — 002sin(x,) 006cos@x,) 0
0 001cos@x,) 006cosks;)
where
HJlu <0.1367

which implies that:
|Df (x(t)) - Df (X(1))] < 0,136 x(t) =~ X(1)| (3.35)
Thus, the non-linearitydf (x(t)) satisfy the global Lipschitz condition with

Lipschitz constany =0.1367.
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0
(2) g(x(t),t) =| 003x;sin()
006x, sin(2t)

The Jacobian matrix for the functiag(x(t),t) is

0 0 0
J,=|0 0 003sin()
0 006sin(2t) 0
where
|9,||< 0.06708
hence:
la(x(),t) — g(X(t),t)| < 0.06708x(t) — X(t))| (3.36)

Thus, the non-linearity functiong(x(t),t) satisfy the global Lipschitz
condition with Lipschitz constanf =0.0670¢.

0.002c0s (X, ) sin(xg)}

(3) h(x(t)) :{ 0.005sin(x, )

The Jacobian matrix for the functidrix(t)) is

_ 0 0 0.002cos@x,)
* 1 0.005cosf,) O 0

where

|3, < 0.00538
hence:

[h(x(t)) = h(X(t))| < 0.00538x(t) — X(t)| (3.37)
Thus, the non-linearity functioh(x(t)) satisfy the global Lipschitz condition

with Lipschitz constan® = 0.0053¢.
Step (3): Suppose that we use the dual of the pole placeagmtoach to
compute observer gain matrlx and the desired poles for this system are

selected as:

AT
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n,=-4-i4,n, =-4+i4, n, =-4.
The state observer gain matilixcan be obtained (by using MATLAB) as
shown in program (A4) in Appendix A.

133244 -6.872
L=|-89088 7.9402 (3.38)
-1.1096 15621

Hence
1/2
3 2 2
=23 ]
i=1j=1
=19.1014 (3.39)
Step (4): To find P which is the solution of this Riccati equation:
(A-LC)'P+P(A-LC)=-Q

On solving it to get a unique positive definitewgan P, on selection of:

-3 0 O
Q=0 -3 0 (3.40)
O O -3
hence
- 44518 09686 - 0.4525] Pp P, Pgs P, P, P
04207 -49715 09854 |P, P,, Py |+|P, P, P,
| 72933 -149117 -25767||P; P, Py Ps P,y Psg
[—4.4518 0.4207 72933 ] [-3 0 O
09686 -49715 -149117(=| 0 -3 O
| —04525 09854 -25767| O O -3
therefore

03426 00601 00725
P=|00601 02661 -0.2055 (B)4
0.0725 -0.2055 1.9765

A,(P)=0.2069 A,(P)=0.375Q A,(P) = 2.0034.
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ThenP is positive definite and also symmetric matrixs@lit's clear thad is
positive definite matrix. It is clear thalt,,;, (Q) = , 48, (P)=2.0034.

Step (5): Fromstep (2) andstep (3) of stage 2 it is clear that
y+ [+ 6HLH = 0.3065. (3.42)

/‘min (Q)

Now, check L
ow, checky + B+ | H<2/]

= 0.7486. (3.43)

max

Finally, we shall obtain the response of the systenthe following

initial condition:

1 0
x(0)=| 0|, e()=| 05 (3.44)
-1 - 05

In applying theorem (3.1), the Eq. (2.27) becomes

&t) = (A = LC)e(t) + J(x(t), X(t), 1) (3)4
where

J(x(1), X(t),t) = Df (x(t)) = Df (X(t)) + g(x(t),t) — g(X(t),t)

= L(h(x(t)) = h(X(1)))

where the observer gain is determined such that the inequality (3.8), is
satisfied.
Hence Eqg. (2.28) becomes

{)‘((t)} _ {A -BK  BK }{x(t)} .\ {Df (x(t)) + g(x(t),t)}

| 0 A-LC|et) Z(x(1), X(0),1)

3.46
0 240

AA
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x,] [ 01 -11554 -0.7188 1.899 11554 07188 [[ X
X, 27088 —-3.3822 -18972 -27088 53822 18972 | X,
X3 -1899 18446 02812 1899 11554 0.7188 || X4

= +
& 0 0 0  -44518 04207 72933 | ¢
e, 0 0 0 09686 -4.9715 -149117| e,
e, 0 0 0  -04525 09854 -25767]e,

0.1cos, ) + 001sin(X;) + 003sin(x,) cos,)
002cos(, ) + 006sin(x,) cosk, ) + 003x, sint)
006sin(x;) + 001sin(x, ) cos, ) + 006x, sin(2t)
0.1(cos, ) —cos, —e;)) + 001(sin(x;) —sin(X; —e;)) + 003sin(x,) cosk,) —
-sin(x, —e,) cosi, —e,)) —0.0266488cos;) Sin(X;) —cosk, —e;) sin(X; — €3))

+0.034362%sin(x,) —sin(x, —€,))
002(cos,) —cosk, —e,)) + 006(sin(x,) cosk,) —sin(x, —e,) cosk, —e,)) + 003

(X3 — (X3 —€3))sin(t) + 0.01781cos(;) Sin(X;) —COSK; —€;) Sin(X; —€;))

—0.0391sin(x,) —sin(x, —€,))
006(sin(x;) —sin(x; —e;)) + 001(sin(x,) cos,) —sin(x, —e,) cosK, —e,)) + 006(x,

- (X, —&,))sin(2t) + 0.002219cos;) sin(X;) —cos; —e;) sin(x; —e;)) —0.007810
| (sin(xy) =sin(x, —€,))

(3.47)
A MATLAB program using the fourth-order Runge-kuttaethod is
used to obtain the response is shown in MATLAB paag(A4), in Appendix

A.
The numerical results and estimators based on Iheritam for

problem (3.2) have been shown in the following f@ldtgraphs.
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ctate variable 1 and its oaservar

Time(sec)

Fig (3.5) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) =1, X, (0) =1 of problem (3.2).

01

0.05 .

0.05 - .

01} .

crror statc v criable o1(t)

DEE 1 1 1 1 1 1 1 1 1
|:| =

Time(sec)

Fig (3.6) error between x, (t) anditsobserver X, (t) of problem (3.2).
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]

15F] .

0.5 [ 4

ctate variable 2 and its oaservar

DE 1 1 1 1 1 1 1 1 1
|:| =

Time(sec)

Fig (3.7) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) =0, X, (0) =-0.5 of problem (3.2).

na

0.7 -

0E | .

0.4 r -

03t .

error state varizhle e2(t)

01 -

_|:|_ 1 1 1 1 1 1 1 1 1
|:| =

Time(sec)

Fig (3.8) error between X, (t) and itsobserver X, (t) of problem (3.2).
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0.4

ctate variable 3 and its oaservar

Time(sec)

Fig (3.9) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x,(0) = -1, X;(0) =—0.5 of problem (3.2).

n2

01t .

N1tk i

N7tk i

error state varizhle e3(t)

ek i

nal i

_DE 1 1 1 1 1 1 1 1 1
|:| =

Time(sec)

Fig (3.10) error between X, (t) anditsobserver X,(t) of problem (3.2).
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3.2 AN APPROXIMATE STATE SPACE OBSERVER

If we fail to find a single gaih that can lead to stable error dynamics

when we use closed loop controller -KX such that-7, be approximately
equal to—-4u, where -7, are the observer roots, andy; are the control

roots. Then we can find approximate observer devist

If h() is continuously differentiable function, with(0) =0. Let us denote

(3
aX x=0

Then the given system (3.1) can be expanded as
X(t) = Ax(t) + Bu + Df (x(t)) + g(x(t),1) (3.48)
y(t) =Cx(t) + Cy x(t) + hy (x(1))

where h, (x € )) is obtained from expanding(x(t)) in a Taylor series about
x =0, ash(x(t)) =h(0) + C, x(t) + hy(x t))

For the observer design we will neglect the functp(x(t)). The observer so
designed will be approximate, since we neglechigber-order terms df.

One can now find the highest valuepofand S for which an observer design

is possible for the following system.
x(t) = Ax(t) + Bu + Df (x(t)) + g(x(t),1)
y(t) = O x(t)

whereO=C +C,

(3.49)

Then the observer, for the non-linear system (3giBhplemented as follows.
X(t) = (A = LC)X(t) + Bu + Df (X(t)) + g(X(t),t) + Ly(t)
y(t) =OX(t)

Note that Eq. (3.49) is the same as Eqg. (2.1) scamemake a suitable

(3.50)

transformation and satisfy the inequality (2.9)ves discussed in Lemma
(2.2).
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Problem (3.3)
Consider a non-linear dynamical control system desd by the

following dynamical equations:

{xl(t)}{o 1}‘%{0}{1 O}{sin(xl)}r 0.3%, cos’(t)
X{t)| |0 Ofx,| |1 0 1| cosk,) X, Sin(t)

v =1 0]{:1 +sin(x;)

2

x(0)=[4 33", x(0)=[333 495"

(3.51)
(1) the first stage: the feedback gain K is obtained by algorithm (1.1)
as follows:
Step (1): Check the controllability condition for the system
M= (B:AB)

01
{1 o
Hence rank (M) = 2. Therefore (A, B) is completstgte controllable.
Step (2): Suppose that we use the pole placement approadortgpute
feedback gain matrix K and the control poles fos 8ystem are selected as:
4, =-0.7071+i0.7071, p, =—-0.7071-i0.7071
The feedback gain matrix K can be obtained (byi$tATLAB) as shown
in program (A5) in Appendix A.
K=01 14142 (3.52)
(2) the second stage: the observer gain L by algorithm (3.1) is obtained as
follows:

Step (1): Check the observability condition for the system
N=(c:ATcr)

5 3
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Chapter Three Extension to General Non-Linear Dynamical system

Hence rank (N) = 2. Therefore (A, C) is completgtigte observable.
Step (2): To verify the non-linearitpf (x(t)), g(x(t),t) and h(x(t)) satisfy
Lipschitz condition:

(1)DF (x(1)) = [Si”(xl)j

cos,)
The Jacobian matrix fobDf (x(t)) is
{ cos(x,) O}
J, = _
-sin(x;)) O
where

|9,| = 1.414213562
which implies that:

|DF (x(t)) - Df (%(t))]| < 1.414213568x(t) ~ X(1)| (3.53)
Thus, the non-linearitipf (x(t)) satisfy the global Lipschitz condition with
Lipschitz constany =1.41421356 .

(2) g(x(t),t) = {0-3X1 COSO’(t)}

X, Sin (t)

The Jacobian matrix fog(x(t),t) is

], = 03cos’t) O
? 0 sin?(t)

where

|3,] < 1.044030651
hence:

|la(x(t),t) — g(X(t),1)| < 1.04403065K(t) — X(t)| (3.54)
Thus, the non-linearity functiong(x(t),t) satisfy the global Lipschitz
condition with Lipschitz constanf =1.04403065.

(3) h(x()) =sin(x;)

q0
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The Jacobian matrix for the functidiix(t)) is

J,=[0, cos,)]
where

195 <1
hence:

In(x(t)) = h(x(®)] < [x(t) - X(0) (3.55)
Thus, the non-linearity functioh(x(t)) satisfy the global Lipschitz condition
with Lipschitz constan® =1.

Step (3): Suppose that we use the dual of the pole placeagmtoach to
compute observer gain matrix and the desired poles for this system are
selected as:

n, =—-2.8284+12.8284, n, = -2.8284-12.8284.

The state observer gain matiixcan be obtained (by using MATLAB) as
shown in program (A5) in Appendix A.

5.6568
L={ } (3.56)
159997
Hence
|L|=16.9703 (3.57)

Step (4): To find P which is the solution of this Riccati equation:
(A-LC)'P+P(A-LC)=-Q

On solving it to get a unique positive definitewgan P, on selection of:

s 3

hence
-56568 ~159997 R, P,] [Py R,|-56568 1]_[-1 ©

therefore

a1
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(3.58)
- 05 02707

_ {1.5026 -05 }

A, (P) =0.0933, A,(P) = 168.
ThenP is positive definite and also symmetric matrixs@\l it's clear tha® is
positive definite matrix. It is clear that,,(Q) = , A,,,(P) = 168.

Step (5): Fromstep (2) andstep (3) of stage 2, it is clear that

y+ [ +0|L| =19.428544213 (3.59)

Amin (Q)

Now, check L
ow, checky + B+ | H<2/]

= 0.2976. (3.60)

max

Since the observer gain was unsuccessful l#mgl=sin(x, is cpntinuously
differentiable function, withh(0) =sin(0) =0. Then the output of the (3.51)

can be approximate in order to overcome this diffies and as follows:

yt) =[1 1]{;(1

2

} (3.61)
so another observer gain which leads to stabler etypamics by using

approximate output (3.61), has been adapted.

Step (6): Check the observability condition for the system

N, = (0":A%0")

(11
o1
Hence rank () = 2.Therefore (AQ) is completely state observable.
Step (7): The state observer gain matriy can be obtained (by using

MATLAB) as shown in program (A5) in Appendix A.

—-10.3429
15.9997

1=

(3.62)

v
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Step (8): Find P, which is the solution of this Riccati equation:
(A - Llo)T P +PR(A-L0O)=-Q

On solving it to get a unique positive definitewg@n P,, on selection of:

s 3

therefore

10342 -15999|'R, R,] [Py P, 10342 113427 _
11.342 -15999|P, P, | |P, P, | -15999 -15999

-1 0
0 -1

_[2.9168 1.9168
17119168 1.3901

(3.63)

A, (P,) =0.0903 A,(R,)=4.2167.
Then P, is positive definite and also symmetric matrixs@\l it's clear tha®

Is positive definite matrix. It is clear thdt, . (Q) = , A . (P,) =4.2167.

Step (9): Now, checky + ,B<M =0.1186. (3.64)

2/]max(F)l)

Since the observer gain in original coordinates wesiccessful. Using
transformation of coordinateg,= Tx where

T =diag (20 30) (3.65)
then

T™! =diag (0.0333 005) (3.66)

Step (10): Compute

K=KT™"=(1 1.4142)(0'0333 ° ]

0 005

aA
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=(0.0333 0.0707) (3.67)

Step (11): To verify the non-linearityrDf (T 'z t( )and Tg(T ™ z(t),t ) satisfy

Lipschitz condition:

S ij_ ' [ﬁj
sin 30sin
TDf(T‘lz(t))zﬁ)O O} (30 = 30

20 co 4 20co 4
i 30/ 30

- cos{%} 0
J1=| o

where

31 < 1201850425

hence:

HTDf (T™2(t)) - TDFf (T2(1)| < 1.20185042 2 -T2 (3.68)

Thus, the non-linearityrDf (T ™z t ( )katisfy the global Lipschitz condition

with Lipschitz constany = 1.201850425 and,

4
rariag =[20 0) %030V |0z cos )
J o 20 Z g2y |z sin?(t)
20

The Jacobian matrix for the functiag(x(t),t) is

5. = 06cos’(t) O
? 0 sin?(t)

where

92| < 1166190379

19
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hence:

Tg(T z(t),t) - Tg(T2(t),1)| < 0.02236T *z- T2 (3.69)
| | :

Thus, the non-linearity functioTg(T *z(t),t 3}atisfy the global Lipschitz

condition with Lipschitz constang = 0.02236.

Step (12): Compute

30 O ](—10.3429] 3 (1697040]

= (3.70)
0 20)\ 159997 ) | 3199939

Li=TL,= (

Step (13): To find P1 which is the solution of this Riccati equation:
(A-LiO)"P1 +P1(A-L10)=-Q

On solving it to get a unique positive definitewg@nP, on selection of;

s}

therefore

10342 -10666] Pu Pz | |Pu Prp [ 10342 17014 _
17.014 -15999| P, P2 | |Piz P2 | -10.666 -15999

-1 0
0 -1

(3.71)

— 21311 21134
21134 22786

A, (P1) =0.0902 A,(P1) = 4.3195,
Then P1 is positive definite and also symmetric matrixsd|l it's clear thad
is positive definite matrix. It is clear that . (Q)= , N__ (P1)=4.3195,
(T™) = 005.

/]max

Step (14): Fromstep(11) it is clear thaty + 8 =1.224210425
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Anin (Q)  =23151. (3.72)
2/‘maX(P1)/‘maX(T )

Finally, we shall obtain the response of the systenthe following

Now, checky + B <

initial condition:

120 20
2(0) {66} . E(0) {_33} (3.73)

Referring to Equation (2.65),
{Z(t)} _| T(A-BK)T™ TBKT™ {z(t)} N
E(t) 0 T(A - LO)T™ | E(t)
TDf (T 1z(t)) + Tg(T *z(t),t)
E(T7Mz(t), T 2(t),1)

where
E(T 7 z(t), T12(t),t) = TDf (T 1 z(t)) - TDF (T 2(t)) + Tg(T *z(t),t) -
Tg(T 2(1),1)

the response to the initial condition can be deit@ethfrom

(2,1 [ O 15 0 0 Tz,
2,|_|-0.6667 -1.4142 0.6667 14142z, |
E, 0 0  10.3429 17.0143| E,

E,|] | © 0  -10.6665 - 15.999] E,

303ir(§—(1)j+ 0.&, codt()
(3.74)

20co{%j +z, SR )

BO(Sir(%j— sir(zls;oElD+0.6(zl— 2,—E;))cos ()
Zo(co{ﬁj— co%zl_E1D+(22— 4,-E, ) siht()

30 30
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o
— —F —=
1

state varable 1 and its oaservzr

AU

1 1 1 1 1 1
0 10 20 a0 40 a0 B0 70 a0 an 100
Time(sec)

]

Fig (3.11) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) =4, X, (0) = 333 of problem (3.3).

error state vriable e1(t)
=
m
1

-1.5 .

]

1 1 1 1 1 1 1
0 10 2 a0 40 a0 B0 70 a0 an 100
Time(sec)

Fig (3.12) error between x, (t) and itsobserver X, (t) of problem (3.3).
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state varable 2 and its oaservzr

4 | | | | | | | | |
0 10 2 30 40 a0 all] 70 &0 H0 100

Time(sec)

Fig (3.13) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) = 3.3, X, (0) = 495 of problem (3.3).

'I.‘:u“ .

0.5 H .

05 .

error state varizhle e2(t)
]

-1.5F -

_2 | | | | | | | | |
0 10 2 30 40 a0 all] 70 &0 H0 100

Time(sec)

Fig (3.14) error between X, (t) and itsobserver X, (t) of problem (3.3).



Chapter Two Deterministic State Observer for some Non-Linear
Dynamical system

This chapter represents an effort towards devetpmn suitable
method to design and implement observers for intigrenonlinear
dynamical control systems. These systems are diyemonlinear functions
which are Lipschitz in nature. The underlying theanakes use of the
methods developed for the quadratic stabilizatibanzertain systems.

A computational algorithm based on theorem for desia
deterministic state dynamic observer has been ptede Observer-based
control law for non-linear system is studied, saVeproblems are
demonstrated the validity of our results. The psmabtheory is used to design

an observer for a single-link flexible joint robot.

2.1 MATHEMATICAL PRELIMINARIES

The following are some necessary mathematical pahchat will be

needed in our work.

Remarks (2.1) [4]:
1. The Euclidean norm afixn matrix can be defined as:

1/2
n n 2
HAu=[_ $a]
i=1 j=1

where*aij‘ is the absolute value of the matrix elemept

2. The norm ofnxn matrix is also defined as:

(ATA))UZ

max

A=
whereA" is the transpose of Al is the maximum eigenvalue of

(ATA), provided thatA " A is positive semi definite matrix.

Yo
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Lemma (2.1) [4]:

Let A be a hermitian matrix and ldt,, and A

be the minimum and

max

maximum eigenvalues of A, respectively, then:

Amin(A) Hxﬂz < X"AXs /]maX(A) HXHZ

for anyx in then-dimensional complex vector spa€¢, where

? = 3 X 2, X is the i-th component of
1 1
i=1

Definition (2.1) [24]:

A (vector-valued) functionf (x) is said to be globally Lipschitz if there

exists a constany such that for allx;,x, OR", the following inequality

holds:
H f(x)-f (XZ)H < VHX1 - XZH-

In this casey is said to be the Lipschitz constant fof

Remark (2.2) [24]:

If f(x),xOR" is differentiable function with bounded partial

derivatives, thery is simply is the upper bound of the norm of theolgan

matrix for the functiorf (x), the upper bound taken over the entke.

However, in general, a Lipschitz function may netdifferentiable.

2.2SYSTEM DESCRIPTION AND MOTIVATION

The suggested non-linear dynamical corslysetem described as follows:

? = Ax(t) + Bu(t) + Df (x(t)) + g(x(t),t)
y(t) = C x(t) (2.1)

X(0) = X,

¥
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where x(t) JR"is unmeasurable state vecta(t) is the control input and

y(t) OR™ is the output vector. Suppose that the matii;eB, C and D have
a constant entries of appropriate dimensions. Tha-limear functions
Df (x(t)):R" - R" and g(x(t),t): R" xR - R" are assumed to be globally
Lipschitz inx with a Lipschitz constantg and £, respectively.

The assumption thabf and g are Lipschitz globally may be relaxed to
assume thabf andg are only locally Lipschitz.

Systems of type (2.1) are common mechanical sysfesggiently contain
Lipschitz-type nonlinearities-trignometric nonlimggs which occur in
robotic applications, a non-linear softening springetc. Non-linearities
which are square or cubic in nature are not glgdafschitz: however, they
are locally so. Moreover, when such functions ognyshysical system, they
frequently have a saturation in their growth ratgking them globally
Lipschitz functions. Frequently, we make the systeeasurements part of
the system state, so the assumption that the oigputear in the state is
justified. The assumption that the system dynarareslinear in the input is
usually true for mechanical systems because that iispusually a torque or
force which enters the dynamics linearly due tarfaf Newton's laws. In
summary, while the class of systems we are adagssinot exhaustive, it is
fairly large from an engineering point-of-view, \&sll as the mathematics.
Since the state variables of a non-linear dynangoatrol system (2.1) are
not available for measurement as an output, thdypnamical state observer

of non-linear dynamical control system (2.1) is stoancted as follows:

% = AX(t) + Bu(t) + Df (X(t)) + g(X(t),t) + L(y(t) - CX(t)) (2.2)
y(t) =C X(t)

where the observed state is denotedkfiy, andL is the observer gain matrix

with an appropriate dimension.

Yv
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Define:

e(t) = x(t) - X(t) (2.3)
Clearlye(t) is the dynamical error between the actual stgt¢ and state
observerX t{ ) Then, the dynamical error in state observer (8fZhe non-

linear dynamical control system (2.1) and has tb#owing dynamic

equation:
de(t) _ . .
e (A - LC)e(t) + Df (x(t)) — Df (x(t)) + g(x(t),t) — g(Xx(t),t) (2.4)
e(0) = x(0) — X(0) (2.5)

If the dynamic behavior of dynamical error (2.4ag&/mptotically stable, then
the dynamical error (2.4) will tend to zero with amequate speed as the time

tend to infinity. That is, the unmeasurable actate x(t) givenin (2.1), will
converge to the state observet , @)ven in (2.2), regardless of the values of
x(0) and X (0)as t tends to infinity.

The following theorem is developed to design thalimear dynamic state

observer (2.2) for the presented problem (2.1).

Theorem (2.1)
Consider the non-linear dynamical system (2.1)

% = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)

y(t) =C x(t)
X(0) = X,

where xOR", uORP, yOR™, AOR™", BOR™P, DOR™", COR™",

f:R" - R", g:R"xR - R", and assume that the state variables are not

available for measurement. Consider the observamooflinear dynamical

control system (2.1) is given in (2.2)

YA
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f%ngﬂo+Bwo+mom»+mﬂu0+me—C*®)

y(t) =CX(t)
X(0) =X,
The following conditions are assumed to be satisfie
1. The pair (A, C) of a non-linear dynamical contrgistem (2.1), is

completely state observer.
2. The non-linearity function Df (x(t)):R" - R" is assumed to be

globally Lipschitz condition with Lipschitz constap, i.e.,
|Df (x(¥)) = Df (R()] < Yx(t) = (1) p
3. The non-linearity function g(x(t),t):R" xR - R" is assumed to

beglobally Lipschitz condition with Lipschitz comstt 5, i.e.,
la(x(),t) - g(x), 1] < Bx(t) - (t)] for tOR (2.7)

. The observer gainL can be selected such thgtA -LC) is

D

asymptotically stable matrix.
5. The Riccati equatiofA - LC)" P+ P(A - LC)=-Q (2.8)
hasa unique positive definite solutidd for arbitrary positive definite

selection matrixQ.

[o2]

. On using the Lyapunov function stabiltye(t)) =e' (t)Pet ( yhere
e(t) = x(t) — x(t) andP satisfy equation (2.8)

Amin (Q)

2 (P) (29)

y+pB<

Then the dynamical error (2.4)

% = (A - LC)e(t) + Df (x(t)) = Df (X(t)) + g(x(t),1) - g(%(t),1)

iIs asymptotically stable via a single observer garameteL..

Y4
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Proof
The non-linear dynamical control system (2.1)

% = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)

y(t) = C x(t)

X(0) =X,
the state observer of non-linear dynamical congg@tem (2.1) is given as
follows (2.2)

% = AX(t) + Bu(t) + Df (X(1)) + g(X(t),t) + L(y(t) - CX(t))

y(t) =CX(t)
X(0) =X,
The dynamical error in state observer (2.2) of hoear dynamical

control system is obtained to subtract (2.2) fr@m) as follows

% = (A - LC)e(t) + Df (x(1)) - Df (X(t)) + g(x(t),t) - g(X(),1)

where
e(0) = x(0) - x(0)
and thus
e’ (t)=e’ ()(A - LC)" +(Df (x(t)) - DF (X(1)))" + (9(x(1),t) — 9(X(1),1))"
(2.10)
To examine the stability oé(t), we consider the following quadratic
Lyapunov function,
V(1) =V (e(t) =€’ ()Pe(t)

dv(t)
dt
On using (2.4) and (2.10) we have that

=e' (H)Pe(t) +e' (t)Pet)
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—dv(t) =[e" (t)(A = LC)" +(Df (x(t)) = Df (X(t)))" + (g(x(t),t) — g(X(t),1))"]

Pe(t) + e’ (1)P[(A - LC)e(t) + (Df (x(t)) - Df (X(1)))
+(g(x(®), 1) - g(x(t), )]

B = e 1A - LC) P+ P(A = LC)Je() + (DF (x(0) = DF (X)) Pe()

+e' ()P(Df (x(1)) - Df (X(1))) + (9(x(t),t) — 9(X(t),1)) " Pe(t) +
e’ (DP(g(x(t).t) - g(X(1).1)) (211)

From (2.8) we have

d\(/jt(t) e’ (t)(-Q)e(t) + (DF (x(1)) - DF (X(1))) " Pe(t) + €T (1) P(DF (x(1) -

Df (X(1))) + (9(x(), 1) — g(X(1),1)) " Pe(t) + e’ ()P(g(x(1),1) -

g(x(t),1)) (212)
Now

(Df (x(t)) = Df (X)) " Pet) + e ()P(DF (x(1)) = DFf (X(1))) + (9(x(t), 1) -
g(R(t),1)" Pe(t) + " ()P(g(x(t), 1) ~ 9(X(),1)) <|(DF (x(1)) = DF (X(t)))"
Pe(t) + e () P(Df (x(1)) ~ D ((1))) + (9(x(1),1) = g(R(t), 1)) Pe(t) +e' (t)P
(9(x(), 1) = g(X(),1))] < |(DF (x(t)) ~ DF (X(1))) " Pe(t)| + |e" (1) P(DF (x(t)) -
Df ()] + [(a(x(1), 1) ~ g(X(1),1)) " Pe(t)] +|e” ())P(a(x(t).1) ~ g(X(t).1))|
(2.13)

The first part of (2.13) can be simplified as folk

|(Df (x(t)) - DF (x(1))) " Pe(t)] < |DF (x(1)) - DF (X(©)] Pl Ject)]
Since Df (x(t)) satisfy Lipschitz condition with Lipschitz constani.e,.

|Df (x(t)) - Df (R < Yx(t) = %) = Vect)]

then

(OF () = D (O)" Pe(t)] = ¥[e(0)] e (P) 2.14)

AR
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similarly, the second part of (2.13) becomes

le™ ®P(DF (x(t)) - Df (X(t))] < Ye®)] Arax(P) (2.15)
and hence the third part of (2.13) can be simplifis follows:

[(a(x(®).t) = a(R(t).t) " Pe(®)] < g (x(t). 1) — g(X(t), )] || |ect)]
Sinceg(x(t),t) satisfy Lipschitz condition orwith Lipschitz constanp i.e,

la(x(®),t) = g(X(t), 1) < Bx(t) = X(t)| = Blet)

then

[(a(x(®),t) = 9(%(),1)) " Pe(t)| < Blet)]* Amax(P) (2.16)
Similarly, the fourth part of (2.13) becomes

le" P(a(x(®).1) = 9(X(), )] < Ale®)]” Amax (P) (2.17)

where A .. (P )denotes the largest eigenvaludPof

Substituting (2.14),(2.15),(2.16) and (2.17) inRal@) gives:

U <" @(-Qe) + 2y + AoV Aes(P) (2.18)
with €7 () Qe(t) = Ay, (Qe(t)]” 19)
One deduces from (2.19):
T < (A (@ + 2+ A (P00 (2.20)
From (2.20) and (2.9) we have
dv(et) (2.21)
dt

since P is unique positive definite solution and it is aie that
V(e(t)) =e' (t)Pe(t) >0, V(0) =0 and by (2.21) we have conclude that the

error dynamic system (2.4) is asymptotically stabéea single observer gain

parametet. Thusx(t) C X { )ast — oo,

The state observert gdnverges to the actual state of a non-linear systa
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an observer gain parameter

Algorithm (2.1)

The following algorithm is presented in order tig@ a deterministic

observer that estimates the original non-linearadyical states given in (2.1).
Based on the result of the main theorem (2.1).

Step (0): Consider the non-linear dynamical system

? = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)
y(t) =Cx(t)
X(0) =X,

where x(t) JR" is unmeasurable state vecta(t) JRP is the control input

and y(t)OR™ is the output vector. Suppose that the matrkeB, C and D
have a constant entries and appropriate dimensidhs. non-linearity
functions Df (x(t)): R" - R" and g(x(t),t):R" xR -~ R"are assumed to be
globally Lipschitz inx with a Lipschitz constantgandf respectively.

Step (1): If (A,C) is observable, go t6tep(2), otherwise, the system should

be modified to satisfy the observable condition.
Step (2): Check the following Lipschitz conditions

|DF (x(t)) = DF (K@) < Yx(t) = K1)

la(x().t) - g(x@), 1) < Ax() - ()| for tOR ,xOR"
and design the observer dynamic by

dX(t) _

o C AX(t) + Bu(t) + Df (X(t)) + g(X(t),t) + L(y(t) - C X(t))
y(t) = C X(t)
X(0) =X,

Step (3): Selectl that makegA — LC) asymptotically stable by using dual of

the pole placement. (see subsection 1.5.4).
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Step (4): Let the dynamic erroe(t) = x(t) — X t (and e(0) = x(0) — X (0)

dz(t) (A - LC)e(t) + Df (x(t)) — Df (X(t)) + g(x(t),t) — g(X(t), 1)

e(0) = x(0) - x(0)
Step (5): SetV(t) =V (e(t)) =e' (t)Pe ()

where P is the unique positive definite solution  of

(A-LC)"P+P(A -LC)=-Q for arbitrary positive definite matriQ. (Q
is designed depending on decision maker).

Amin (Q)
max( )

and A, (Q) denotes the smallest eigenvalue @f, A ..(P) denotes the

Step (6): Checky+ f<—"——

, Wwherey and S are found in step (2).

largest eigenvalue d?.

If step (6) is not satisfied go tatep (3) and choose another

2.3 OBSERVER-BASED CONTROL LAW FOR NON-
LINEARDYNAMICAL CONTROL SYSTEM

Consider a non-linear dynamical control system)(2.1
ax(t)
dt
y(t) =Cx(t)

X(0) =X,

= Ax(t) + Bu(t) + Df (x(t)) + g(x(t),t)

is completely state observer and completelyestaintrollable. If the actual

state x(t) is not available for a feedbaak=-Kx, then it is designed state

observer for inherently non-linear dynamical cohsiystem (2.2) as follows:

aX(@©) _ AX(t) +Bu(t) + Df (X(1)) + g(X(),t) + L(y(t) - C X(t))

y(t) = CX(t)
X(0) =X,

(2.22)
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whereL is the observer gain that has been developectoréim 2.1
Thus, it is natural to apply the feedback gain peri@r K, on the state

observerx {( )as follows:
u(t) =-Kxt¢) (2.23)
as shown in Fig. (2.1)

y=output

P> Plant i >

—p{ Observer I{:
=State observet
K I{:

Fig (2.1) Feed-back from observer state

u=control

Equation (2.1) with this control (2.23) will be alnted the closed-loop
of a non-linear dynamic system as follows:

% = (A - BK)x(t) + Df (x(t)) + g(x(t),t) + BK (x(t) - X(t))  (2.24)

The difference between the actual staf and the state observ&rt ()

of a non-linear dynamical control system (2.1) d&afor the dynamical error

in state observer:

e(t) = x(t) — X(t) (2.25)
Substituting of dynamical error vector into equat{@.24)
% = (A - BK)x(t) + BKe(t) + Df (x(t)) + g(x(t),t) (2.26)

Note that, the dynamical error in state observe) (r inherently non-
linear dynamical control system is obtained by smdiing (2.2) from (2.1) as

follows:

Yo
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&t) = (A — LC)e(t) + £(x(t), X(t), 1) (2)2

where

¢ (X(t), X(t),t) = Df (x(t)) — Df (X()) + g(x(t),t) = g(X(t),1)
When considering (2.27), it is seems th@) converges to zero, independent
of initial state, if the observer gaibh can be found that makes (2.27)
asymptotically stable. As we known from theorem, 21ich observer gain
often can be found.

Next, we consider (2.26), if (2.26) is verified thefficient conditions

for theorem 2.1 and(t) - O ast — .

Then, the closed loop of a non-linear dynamicaltesys(2.26) is
asymptotically stable:
From (2.26) and (2.27), we have:
{)‘((t)} _ {A -BK  BK }{x(t)} .\ {Df (x(t)) + g(x(t),t)}
&(t) 0 A-LC| et) E(X(1), X(t),1)
equation (2.28) described a dynamic of the staseer feedback control.

(2.28)

Hence, as far as the sufficient conditiomgeg a theorem 2.1 is
concerned, one concludes from (2.28) that the robtee combined system
in Fig (2.1) consist of the sum of the control ahd the estimator roots. The
control roots are unchanged from those obtaineddsyming state feedback

X(t). Hence, the control law and the observer can Begded separately and

then used jointly.

The final matter to be settled is the specificatbthe desired roots of
the observer characteristic equation. The estimatioor decays at a rate
dependent on these roots. In Eq. (2.26), we rediu@®bserver errog(t) to
decay at fast rate with time constants that arehnamaller than the time
constants of the controlled system so that thed tesponse is dominated by
the slower control roots. Hence, the observer relotaild be placed to the left

of the control roots in the complex plane. Buthié tobserver roots are placed

1
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too far to the left of the control roots, then tieserver gains represented by
the elements oL will be high. Hence, the measurement noise will be
filtered out and may even be amplified.

Clearly, a compromise is required in selectingrthes of the observer
characteristic equation. Optimal estimation theceyp be employed for this

purpose (Bryson and Ho, 19693]. A rule of thumb is to let-5, be
approximately equal te-4y;, where —p, are the observer roots, argy,

are the control roots. The control roots are ofrsewchosen to satisfy the
performance requirements.

The controller, including the control law and thbserver, can be
constructed with analog components, such as theabpeal amplifiers. It is
expected that a controller with state feedback ddea more expensive than a
controller with output feedback. However, digitaingputer implementation
of the controller with state feedback involves wafte and hence would be
cost effective.

Computationally, one can follow the conceptual pdwre below to
evaluate the single linear state observer feedbankrol which stabilize the

non-linear dynamical control system.

Remark (2.3)

The design a single linear state observer feedlmskrol which

stabilize the non-linear dynamical control systeétrl) becomes two stages
process as follows:

1. The first stage being the determination feedbauk Ka

2. The second stage being the determination of therebs gainL

such that the inequality (2.9) is satisfied.
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Remark (2.4)
If the second stage of the procedure taiobtinear state observer

feedback control does not satisfied then take tresimgular transformation
z=Tx where T=dag(o,,0,,....0,) , 0;#0, i=12,---n. The
transformation used to prove the stability of ceurfer stability not only do
the value ofy and £ matter but also how exactly the matrix A gets
transformed, in the sense that the structure of tthesformed matrix
manifests itself in the form of the new Lyapunowsion P. We shall study

the transformed system in the following lemma:

Lemma (2.2)
Consider the non-linear dynamical system (2.1)

% = AX(t) + Bu(t) + Df (x(t)) + g(x(t),t)

y(t) = C x(t)
X(0) = X,

where the conditions in theorem (2.1), are satisfiand consider the
following nonsingular state transformation z=Tx, with
T=dag(o,,0,,...,0,), 0, %20, i=12,...,n. The non-linear dynamical
system (2.1), represented in the new coordinatgivén by:

% = Az(t) + Bu(t) + TDF (T 2(t)) + Tg(T *z(t),t)

Y(t) =C z(t) (2.29)
z(0) = z,

where z(t) OR" is the state vectoy(t) ORP is the input vectorY(t)OR" is
the output vector.A=TAT*OR™, B=TBOR™P, C=CT*OR™",

TDOR™". Assume the following conditions are satisfied.
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1. The pair(A, C) of a non-linear dynamical control system ( 2.2%)
completely state observer.

2. The non-linearity functionTDf (T *z(t)):R" — R" is assumed to be
globally Lipschitz condition with Lipschitz constany, i.e.,

[TDF (T2(t) - TDF (T 2(0)| < YT 2(t) = T 2(1) (2.30)

3. The non-linearity functionTg(T *z(t),t): R" xR - R" is assumed to
be globally Lipschitz condition in the first arguntewith Lipschitz

constantg, i.e.,
HTg (T2(t),t) - T(T™20), 1) < BT 2(t) - T2 for tOR (2.31)

4. The suggested non-linear dynamic observer

% = AZ(t) + Bu + TDF (T™2(t)) + Tg(T 2(t),t) + L(Y(t) - C(t))

Y(t) = C2(t)
2(0) = 2,

(2.32)
where the observed state is denotedzfpy and LOR™™ is the

observer gain matrix.
5. The observer gainL can be selected such thgA -LC) is
asymptotically stable matrix.
6. The Riccati equatiofA —LC)" P+ P(A - LC) =-Q (2.33)
has a unique positive definite solutiénfor arbitrary positive definite
selection matrix.

7. On using the Lyapunov function stabilt(E(t)) = ET (t)PE(t), where

E(t) = z(t) - 2 ¢ ) and P satisfy equation (2.33)
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LN Amin(Q)
S P o (T

(2.34)

Then the dynamical error is asymptotically stalkbe a/ single observer gain

parameterl .
Proof
Let E(t) = z(t) - 2(t) (2.35)
on simple calculations one can have that
di—f) = (A - LC)E(t) + TDf (T *z(t)) - TDf (T *2(t)) + Tg(T *z(t),t)
—To(T2(t),t)
(2.36)
and
ET(t)=ET(t)(A - LC)" + (TDf (T *z(t)) - TDf (T22(t)))" +
(Tg(Tz(t),t) - Tg(T2(1),1))" (237)

As discussed previously in the main theorem (2et),
V(t) =V(E(®) = ET(PE()

and thus
—dvt(t) =ET(OPE®) +ET ()P E®)

On using (2.36) and (2.37) we have that

‘il_\t’ =E"(®)((A — LC)P + P(A - LC))E(t) + (TDf (T z(t)) - TDF (T*2(t)))"

PE(t) + ET (t)P(TDf (T *z(t)) - TDf (T 2(t))) + (Tg(T *z(t),t) -
Tg(T 22(t),t)) T PE(t) + ET (t)P(Tg(T z(t),t) - Tg(T *2(t),1))
(2.38)

From (2.33), we have
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‘i'j_\t/ = ET(t)(-Q)E(t) + (TDF (T z(t)) - TDf (T 22(t)))" PE(t) + ETP

(TDF (T 2z(t)) — TDf (T 2(t))) + (Tg(T 2z(t),t) - Tg(T 12(t),t)"
PE(t) + ET () P(Tg(T "z(t),t) - Tg(T 2(t),t))

(2.39)
From (2.30) and (2.35) one deduces.

(TDF (T™2(t)) - TDF (T22(1))) " PE(t) < Mo P THE®)|"  (2.40)

E" (t)P(TDf (T z(t)) - TDF (T2(1)) £ Moo P A T H[E®)]”  (2.41)

From (2.31) and (2.35) one deduces.

(Ta(T22(t),t) — TG(T*2(t), 1)) " PE() < Blumax (P Anax TH[E®)”  (2.42)

ET()P(Tg(T2(t), 1) - T9(T22(),1)) < Blyax P A T HE®)]"  (2.43)

Substituting (2.40),(2.41),(2.42) and (2.43) in2a3Q) gives:

d\;t‘t) < ETO(QE®) + 20y + B) s (P A TH|ED (2.44)
with ET () QE() 2 Ay (QEW®)]° @)4

One deduces from (2.45):

L < (A Q)+ 20+ D (P TNEO (2.46)
From (2.46) and (2.34) we have
dv(EM) g (2.47)
dt '

since P is unique positive definite solution and its clehat V (E(t)) >0,

V(0)=0 and by (2.47) we have conclude that the error ohynasystem

(2.36) is asymptotically stable via a single obsemyain parametek.. Thus
z(t)C 2(t) ast - oo,
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Algorithm (2.2)
Step (0): Consider the non-linear dynamical system

% = Az(t) + Bu(t) + TDf (T2z(t)) + Tg(T *z(t). )

Y(t) = C z(t)
z(0) = z,

where z(t) OR"is unmeasurable state vectaft) is the control input vector
and Y(t)OR™ is the output vector. Suppose that the matrite= TAT ™,
B=TB, C=CT™? and TD have a constant entries and appropriate
dimensions. The non-linearity functiondDf (T *z(t)):R" -~ R" and
Tg(T*z(t),t):R"xR - R" are assumed to be globally Lipschitz with a
Lipschitz constantg’ and 3 respectively.
Step (1): Check the following Lipschitz conditions

HTDf (T 2(t) - TOF (T 2(0)] < YT *2(t) - T2(1)]

HTg (T™2(t), 1) - Tg(T*2(t), )] < AT 2(t) - T2(t)| for tOR

where

% = AZ(t) + Bu + TDf (T2(t)) + Tg(T 2(t), t) + L(Y(t) - C2(t))

Y(t) = C2(t)

2(0) =z,
Step (2): Computef =TL that makes(K - EE) asymptotically stable matrix.
Step (3): Let the dynamic erroE(t) = z(t) — 2 t (and E(0) = z(0) — Z (0)

% = (A - LC)E(t) + TDf (T z(t)) - TDF (T*&(t)) + Tg(T "z(t),t) -

To(T2(t),1)
E(0) = z(0) - 2(0)

Step (4): SetV(t) =V (E(t)) = ET (t)P E(t)
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where P IS the unique positive definite  solution  of

(A-LC)"P+P(A-LC)=-Q , for arbitrary selection positive definite

matrix Q.

- 5 Amin (Q)
Step (5): Check n
e e (P (T

where y and B are found instep (1), Ain (Q) denotes the smallest

eigenvalue of Q , A__(P) denotes the largest eigenvalue Bf and

max

A, (T™) denotes the largest eigenvalu€eTot.

The following illustration has been discussed.

Problem (2.1)

Consider a non-linear dynamical control system desd by the

following dynamical equations:

X, (1) 0 1 0 | x 0 001 O 0 cosf, + X,)
X({t)|=|0 O 1 |x,|+|0ju+| O 006 O |sin(x,)cos,)
X;(1)| |6 -11 -6 x;| |10 0 0 001 sin®(xy)
0
+| 0.2x, sin’(t)
0.1x, cosgt)

[

N

Xy (t)
)=t 0 0] %
X3(t)
x(0)=[05 1 2]", x©)=[0 1 17|
(2.48)
(1) thefirst stage: the feedback gain K is obtained by algorithm (1.1)

asfollows:
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Step (1): Check the controllability condition for the system

M= (B:AB:A’B)
0O 0 10
=0 10 -60
10 -60 250

Hence rank (M) = 3. Therefore (A, B) is completstgite controllable.
Step (2): From the characteristic polynomial for matrix A,

A -1 0
A-A=j0 2 -1
-6 11 A+6

=X +64+11-6
=13+ a1/12 +apA +ag , then
a=6,a =11anda, =-6
Step (3): Determine the following transformation matik
H=MW
where M is the controllability matrix ofstep (1), and using the result of
step (2), W is defined by

(@)
=

Ay 1 11
W=|a 1 0/ =610
1 0 O 1 0O

and hence
0 0 10 (11 6 1 10 0 O
H=0 10 -60| 6 1 O0(=/0 10 O
10 -60 25001 O O O 0 10

and

01 0 O
H'=l0 01 O
0 0 01

123
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Step (4): Let the desired eigenvalues be selected as:

= —2+i243, u, =-2-i243, py =-1

(A = 11)(A = tp)(A = 3) = A° +5A% + 201 +16

=P +a 2 +a,)+a;,

Then

a,=5,a,=20,a;=16
Step (5): The state feedback gain matixcan be determined using the result
of step (3) andstep (4) as follows:

K=[a,-a;ia,-a,'a, —a,|H™

K=(16+620-11:5-6)H™"

01 0 O
=(22 9 -1){ 0 01 O
0 0 01

K=(22 09 -041). (2.49)

(2) the second stage: the observer gain L by algorithm (2.1) is obtained as
follows:
Step (1): Check the observability condition for the system

N=(C" :A'C {(A")%C")

1 0
=10 0
0 01
Hence rank (N) = 3. Therefore (A, C) is completgigte observable.
Step (2): To verify the non-linearit{pf (x(t)) and g(x(t),t) satisfy Lipschitz

condition:

¢o



Chapter Two Deterministic State Observer for some Non-Linear
Dynamical system

001cos, + X,)
Df (x(t)) =| 006sin(x,)cos,)
001sin®(x;)

The Jacobian matrix foDf (x(t)) is

— 001sin(x; + X,) — 001sin(x, + X,) 0
J, = 0 006cos@x,) 0
0 0 002sin(x;) coss;)

where
1/2
3 3 2
SIS
i=1j=1
|3, < 0.0648
which implies that:
|DF (x(t)) - DFf (X(1))] < 0.0848x(t) ~ X(1)| (2.50)
Thus, the non-linearityDf (x(t)) satisfy the global Lipschitz condition with
Lipschitz constant = 0.064¢, and,

0
g(x(t),t) =| 0.2x, sin*(t)
0.1x, cos@t)

The Jacobian matrix for the functiag(x(t),t) is

0 0 0
J, =| 02sin’(t) 0 0
0 O.lcosgt) O

where

; , 12
HJzH=[_ Z‘aij ]
i=1 j=1

|9,] < 02236

hence:

1
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la(x(),t) = g(X(t), )| < 0.223@x(t) — X(t)| (2.51)
Thus, the non-linearity functiong(x(t),t) satisfy the global Lipschitz

condition with Lipschitz constanf =0.223¢.
Step (3): Let the desired eigenvalues be selected as:

n, =-8+i8J3, 7, =-8-i8J3, 17, =-4.
(A=n)A =1,)A-n3) =A% +204% + 3204 +102¢
= B+ @A +a,) +ag
Then
a, =20, a, =320, a; =1024.
The state observer gain matti>xcan be determined as follows:
a; — a3
L=(WN)" a,-a,
a, -
O O 1)1024+6
=0 1 -6|320-11
1 -6 25) 20-6
14

L=| 255 (2.52)
— 474

Step (4): To find P which is the solution of this Riccati equation
(A-LC)"P+P(A-LC)=-Q
On solving it to get a unique positive definitewgan P, on selection of:

100
Q=0 1 0 (2.53)
001

hence

1Y



Chapter Two Deterministic State Observer for some Non-Linear
Dynamical system

[—-14 -225 480 P, P, P P, P, Ps

1 0 —111P, P, Py |+ P, Py Py
L 0 1 —6 | Ps Py Py Pis P Pg
[ -14 1 0 -1 0 O
-225 O 1/={0 -1 O
| 480 -11 -6] |0 O -1

therefore

386705 0.5043 1.3633
P=| 05043 0.2686 0.0913 (2.54)
1.3633 0.0913 0.0986

A, (P)=0.0274 A,(P)=0.2849 A,(P)=38.7254

ThenP is positive definite and also symmetric matrixs@ylit's clear thad is
positive definite matrix. It is clear that, (Q)= , A ., (P)=38.7254

Step (5): Fromstep (2) of stage (2) it is clear that+ £ =0.288<.
/]min (Q)

max

Now, checky + B < =0.0129 52)

Since the observer gain in original coordinates wesiccessful. Using

transformation of coordinateg,= Tx where

T=diag(20 1 02) (2.56)
Then
T =diag (005 1 5) (2.57)
Step (6): Compute
005 0 0
K=KT*=(22 09 -01)] 0 1 0
0 05

=(011 09 -05) (2.58)
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Step (7): To verify the non-linearityTDf (T ™z t( ))and Tg(T *z(t),t ) satisfy

Lipschitz condition:

4
20 0 0 0.0100{2—0 + 22]
TDf(T7z(t))=| 0 1 0 | 006sin(z,)cos(,)

00 02} gosin?| 2
02

02c0d 2 + zZ,
20

=| 006sin(z,) cos(z,)
0.002sin?| 22
0.2

The Jacobian matrix foFDf (T ™z t ( )i

0260 A 42| —o02si] A+ g, 0
20" | 20 20

Ji1 = 0 006cosez,) 0

0 0 0004 () (2
02 ~ (02) (02

where
31 < 021
hence

HTDf (T 2(t) - TOF (T2()| < 024T 2 -T2

(2.59
Thus, the non-linearityrDf (T ™z t ( )katisfy the global Lipschitz condition

with Lipschitz constany = 021, and,

2000 0 0 0
Tg(T™z(t),t)=| 0 1 0 | 001z sin®(t) |=| 001z sin’(t)
0 0 02) 01z, cosgt) 002z, coset)

The Jacobian matrix for the functiag(x(t),t) is
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0 0 0
J, =| 001sin®(t) 0 0
0 002cos@t) O
where
HLH <0.02236
hence

[Ta(T™2(t),t) - To(T™2(t),1)| < 0.0223¢T 'z~ T2

(2.60)

Thus, the non-linearity functiomg(T *z(t),t 3atisfy the global Lipschitz

condition with Lipschitz constarﬁ? =0.02236.

Step (8): Compute
20 0 O 14 280
L=TL=|0 1 O | 255 |=| 225 (2.61)

0O 0 02)\-474) |-948
Step (9): To find P which is the solution of this Riccati equation:
(A-LC)"P+P(A-LC)=-Q

On solving it to get a unique positive definitelg@nP, on selection of:

1 00
Q=0 1 0
0O 01
therefore
(-14 -1125 48 |Pu P2 P3| |Pu P Pu
20 0 —~22||Pi2 P22 Pas|+|Pi2 P2 Pas
0 5 ~6 [Pz P2 Pas Pis P23 Pass
! 20 0 -1 0 O
-1125 O 5|/=l0 -1 0
. 438 -22 -6 O 0 -1
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00497 -0.0192 -0.0040
P=|-00192 0.1357 0.0530 (2.62)
- 00040 00530 0.1275

A, (P) =0.0447, A,(P)=0.0814 A,(P)=0.1868.
Then P is positive definite and also symmetric matrixsd\l it's clear tha®
is positive definite matrix. It is clear tht, (Q)= , 1 __ (P)=0.1868,

(ThH=5.

/] max

Step (10): Fromstep(7) it is clear thaty + 3 = 0.23236.

A min (Q)
22 max (P) A (T )

Now, checky + B < = 0.5353. (2.63)

Finally, we shall obtain the response of the systenthe following

initial condition:

10 10
z0)=| 1 |, EO=| 0 (2.64)
04 006

Referring to Equation (2.28), it becomes

{Z(t)}z T(A-BK)TT  TBKT? {Z(t)}+
E(t) 0 T(A - LO)T™ | E(t)

B B 2B
{TDf (T z(t)) + Tg(T z(t),t)}

E(T 7 z(t), T 2(t),1)
where

E(T 7 z(t), T12(t),t) = TDf (T 1 z(t)) - TDF (T 2(t)) + Tg(T *z(t),t) -
Tg(T 2(1),1)

the response to the initial condition can be deit@echfrom
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(2] 0 20 0
2, 0 0 5
z| |-016 -4 -5
EEl | 0 0 O
E, 0 0 0
E,] | 0 0 o0

o.2co{2iO + zzj - o.2co{% +(z, - Ez)j
006(sin(z,) cos(z,) —sin(z, - E,) cos, — E,)) + 001(z - (z - E;))sin*(t)

OOO{sinz(%j —sin{%}] +002(z, - (z, - E,)) cos@t)

0 0 01 z

0 0 0|z
022 18 -1\ z
-14 20 O || g
-1125 O 5 || E
48 -22 -6| K

O.ZCO:{i + zzj
20

006sin(z,) cos(z,) + 001z, sin®(t)
ooozm{%) + 0022, cos@t)

(2.66)

A MATLAB program using the fourth-order Runge-Kuttzethod is used to

obtain the response is shown in MATLAB program (Af)Appendix A.

The numerical results and estimators based onlgoeittam for problem (2.1)

have been shown in the following plotted graphs.
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Fig (2.2) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) = 05, X, (0) =0 of problem (2.1).
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Figure (2.3) error between x, (t) and itsobserver X, (t) of problem (2.1).
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state vanable 2 and its oaservar

Trmelsec)

Fig (2.4) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x,(0) =1, X, (0) =1 of problem (2.1).
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Figure (2.5) error between x,(t) and its observer X, (t) of problem (2.1).
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]

stata varable x3 and its oagervar

[
1|:||I| -

Trmelsec)

Fig (2.6) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x;(0) =2, X3(0) = 1.7 of problem (2.1).

error state wanshle edit)
=
|

—_

Figure (2.7) error between x,(t) and itsobserver X,(t) of problem (2.1).
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2.4 AN OBSERVER FOR A SINGLE-LINK FLEXIBLE
JOINT ROBOT

Experimental evidence (Sweet and Good 1984) has revealed that

the performance of a large class of robots is s&#ydmited when joint
flexibility introduced by their transmission is nabnsidered. The joint
flexibility introduces low-frequency resonance etfe which, when
unaccounted for, limit the robot's performance eyith this in view, recent
literature has focused on the control of flexildmn§ robots, e.g. Spong (1987)
[30]. In his work, Spong proposed the use of an |/@diizing control law for
these robots. This control however, uses informatio all states-which for a
single-link flexible-joint robot are the joint pdsin and velocity, and the link
position and velocity. For physical reasons, wbile can easily measure the
motor position and velocity the measurement ofaiier states are not trivial.
Figure (2.8), shows the schematic of a laboratoogenh of single-link

flexible joint robot. In the figureJ , represents the inertia of the actuator, a
dc motor, andJ, represents the inertia of the controlled ligk, and 8, are
angular rotations of the motor and the link respett, and,«,, and «, are

their angular velocities. In general, these will diferent from each other
functions of time, due to the torsional compliarice,

A state-space description of this system is givext.n

6. =w, (2.67)
k B k

w, =—(6,-0_)-—aw. +——u 2)68

m Jm( 1 m) Jm m Jm ()

0, =w (2.69)

. k h .

@ == (6,~0,) - sinG,) 2.10)
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Torsional m

Spring

\ |

DC Motor

i

Central Shaft
Engenders

Fig (2.8) Schematic of elastic robot

The length of the link is given [#p. B represents the viscous friction in the
motor bearing and the back-e .m .f. effects. THieWong are the simulation
parameters used in the simulations. They are reptasve of a laboratory

model that can be used to model a flexible-joitioto

Table (2.1)

System parameter (Units) Value
Motor inertia. J,, (kg m?) 3.7x107°
Link inertia. J, (kg m?) 9.3x107°
Pointer massm (kg ) 2.1x107"
Link length. 2b (m) 3.0x107"
Torsional spring constark.(Nm rad™) 1.8x107"
Viscous friction coefficientB (Nm V™) 4.6%107
Amplifier gain. K, (Nm V™) 8x1072

Remark (2.5)
The derivation of mathematical model (2.67), (2.62.69), (2.70)

from its mechanical system (single-link flegilpoint robot shown in graph

oy
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(2.8)) can be found if24].

In our work we consider the only mathematical dgitasystem (2.67),
(2.68), (2.69), (2.70).

The mathematical system model can be representatiebfollowing

equations.
x(t) = Ax(t) + Bu(t) + g(x(t),t)
y(t) =C x(t)
.. |0 1 0 O -. 1o rna1 T T
6] |-k B Kk _[6n] |0 °
. ol ., A 0
0, 0 0 0 1|4 0 —mg
0 Koo Kol 0 sin@,)
- L J [ - L¥d L il
On using the value of table (2.1), we get
0 1 0 0] -0 ]
A= -486 -124 486 O B 216 /1000
0 0 o 1 ° 0|’ 0100
| 194 0 -194 0] | 0 |
and
_ 0 -
B 0
J 0
| —33.2sin(@,) |
Let

x@Q = 2 -2 -1, %0)=[05 3 -15 2|
(1) the first stage: the feedback gain K isobtained by algorithm (1.1)
as follows:

Step (1): Check the controllability condition for the system
M=(B:AB:A’B:A°B)

oA
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0 22 -268 2271
22 -268 2271 -15149
0 0 0 419
0 0 419 -5196

Hence rank (M) = 4.Therefore (A, B) is completeigte controllable.
Step (2): From the characteristic polynomial for matrix A,

p _1 0o o0

1486 A+124 -486 0

Al - Al= 0 0 A -1
~194 0 194 A

=A* +12.42° + 684% + 24(.561
=A* +aA* +a,A° +a;A +a, , then
a, =124, a, =68, a, =24056, a, =0.
Step (3): Determine the following transformation matik
H=MW
where M is the controllability matrix ofstep (1), and using the result of

step(2), W is defined by

a; a, a 1 24056 68 124 1
W = a, a 1 0 | 68 124 1 O
aa 1 0 O 124 1 0O O
1 0 0 O 1 0 O O
and hence

0 0 -268 2271 \(24056 68 124 1
22 -268 2271 -15149] 68 124 1 O
0 0 0 419 124 1 0O O
0 0 419 -5196 1 0 0O O

oq
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41904 0 216 O
0 41904 0 216

41904 0 0 0
0 41904 O 0

and
0 0 0.0024 0
L | 0 0 0 0.0024
0.0463 0 -0.0463 0
0 0.0463 0 -0.0463

Step (4): Let the desired eigenvalues be selected as:
M, =-36+148, u,=-36-148, u; =-4, u, =-5.
(A= 1) = p)(A = p5)(A = )
=A% +16.24° +12(.84% + 46€1 + 72C
=M +al+a, P +ah+a,
Then
a, =162, a, =1208, a, =468, a, = 720.
Step (5): The state feedback gain matkxcan be determined using the result
of step (3) andstep (4) as follows:

K=[a,-a,'a,-a;'a,-a,'a, —a,|H™

K =(720:468- 24056:1208 - 68:16.2 —12.4)H *

0 0 00024 0
0 0 0 0.0024
=(720 22744 528 38)
00463 0 -00463 0O
0 00463 0  -00463
= (24444 01759 -0.7262 0.3668. (2.72)

(2) the second stage: the observer gain L by algorithm (2.1) is obtained as

follows:
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Step (1): Check the observability condition for the system

C
N cyt
CA
CA®

1 0 0 0

0 1 0 0

0 1 0 0

-486 -124 486 0

-486 -124 486 0

6026 1052 -6026 486

6026 1052 -6026 486
-41679 -7013 41679 -6026

Hence rank (N) = 4. Therefore (A, C) is complet&tigte observable.
Step (2): To verify the non-linearity functiory satisfy Lipschitz condition:

0
0
0
| —33.2sin(6,) |

The Jacobian matrix for the functianis

00 0 0
j= 00 0 0
1o 0 0 0
0 0 -332cos@,) O]
where

M{ii\aﬂ

i=1j=1
|3] <332

which implies that:

1)
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la(x(),t) = g(X(),t)| < 33.2x(t) — X(t)| (2.73)

Thus, the non-linearity functiog satisfy the global Lipschitz condition with

Lipschitz constanjB =33.2.
Step (3): Suppose that we use the dual of the pole placeaggmtach to
compute observer gain matrix and the desired poles for this system are
selected as:

n,=-144-i192, n, =-144+i19.2, n, =-16, n, = -20.
The state observer gain matiixcan be obtained (by using MATLAB) as
shown in program (A2) in Appendix A.

179596 0.2456

- 496943 34.4404
L = (2.74)
02981 220780

—0.1292 1936928
Step (4): To find P which is the solution of this Riccati equation:
(A-LC)'P+P(A-LC)=—Q

On solving it to get a unique positive definitetgan P, on selection of:

1 000
0= O100 (2.75)
loo1o0 '
0 0 0 1
hence
[-17.9596 1.0943 -0.2981 285292 "Pll P, P; P14_
0.7544 -46.8404 -220780 -1936928| P, P,, P,y P,y
0 486 0 -194 Ps Py Py Py
O 0 1 0 Pl Pz P3 P4

4

-179596 0.7544 0 0
1.0943 -468404 486 O
1
0

&
N

[
N
w
N

N
N
w
N

-02981 -220780 0
| 285292 -1936928 -194

+
.0 .U ,U .0

S

w

o9 oY GO S0
w

w9 oY GO U
w

~U g'U w9 .U

I
I
i
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(-1 0 0 O]
O -1 0 O
O 0 -1 O
0 0 0 -1]
therefore
[ 0.1686 0.0393 -0.8838 0.0779 |
p= 0.0393 04877 -0.2099 -0.0913

| 00779

—0.8838 —-0.2099 5.9555
—-0.0913 -0.5000 0.0783

- 05

(2.76)

A,(P) =0.0099, A,(P)=0.0375 A,(P)=0.5055, A,(P)=6.1372

ThenP is positive definite and also symmetric matrixs@\l it's clear tha® is

positive definite matrix. It is clear thatl;, (Q) = , 4

Step (5): Now, check

,8 < /]min (Q)

= 0.0815.

(P)=6.1372

(2.77)

Since the observer gain in original coordinates wesiccessful. Using

transformation of coordinateg,= Tx where

T=diag (10 10 20 086)

Then

T =diag(01 01 005 1.6667)

Step (6): Compute
K=KT™

=(0.24444 001759 -0.03631 0.6113455¢

01 O

0 o1
=(24444 01759 -0.7262 0.3669 0

0

1y

(2.78)
A2)
0 0
0 0
0 005 O
0 16667
(2.80)
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Step (7): To verify the non-linearity functiog(T z(t),t ¥atisfy Lipschitz

condition:
10 0 0 O 0 0
0 0
0 10 0 O
To(T z(t),1) = =
g( ())00200 oZ 0Z
332sin —= 1992sin —=
0O 0 0 06 '{20} r(zoj

The Jacobian matrix for the functidrg(T ™ z(t),t i9

00 0 0
_joo 0 0
J=lo 0 0 0

0 0 1222c0{Z% | o

I 20 20) |

where
H3H£0.996
hence

[Ta(T™2(t),1) - Tg(T*2(t),1)| < 0.994T "z~ T2

(2.81)

Thus, the non-linearity functioTg(T *z(t),t 3}atisfy the global Lipschitz

condition with Lipschitz constang = 0.996.

Step (8): Compute

10 0 0 0 ) 179596 0.2456
0O 10 0 O | -496943 344404
0O 0 20 O 02981 220780
0O 0O 0 06)\ —9.1292 1936928

L=TL=

1795959  2.4559
| 4964931 3444041 42
| 59626 4415601

-54775 1162157

Step (9): To find P which is the solution of this Riccati equation:

¢
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(A-LC)"P+P(A-LC)=-Q

On solving it to get a unique positive definitelg@nP, on selection of:

—-11.6216 -0.5820

1 0 00
o100
=0 01 0
0 0 0 1]
therefore
[-17.9596 1.0943 -05963 1.7117 |
0.7544 -46.8404 -441560 -11.6216
0 24.3 0 -0.5820
i 0 0 33.3333 0
‘P P2 Pis Pu|[-17.9596 0.7544
N Elz ?22 E)zg E)24 1.0943 -46.8404
Piz P23 P33 Pas || —05963 -44.1560
_|514 P2a Paa 544__ 1.7117
(-1 0 0 O]
O -1 0 O
O 0O -1 0
0 0 0 -1
[ 0.0293 0.0003 -0.0045 0.0132]
0.0003 0.0468 -0.0209 -0.0660

ol

| 00132

—-0.0045 -0.0209 0.0527
—-0.0660 -0.0150 0.2637 |

—-0.0150

P11

P12

P13

| P1a

P12

P22

P23

P24

0
24.3
0

P13
P23
P33
P34

P14

P24

P34

Paa |

0
33.3333
0

(2.83)

A, (P)=0.0132 A,(P)=0.028Q A,(P)=0.0681, A,(P)=0.2832.

Then P is positive definite and also symmetric matrixsd\l it's clear tha®

is positive definite matrix. It is clear thaf, (Q)= ,A, . (P)=0.2832,

Amax (T =1.6667.

10
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Step (10): Now, check

n < /]min (Q)
21 max (I_D)/1 max (T _1)

= 1.0595. (2.84)

Finally, we shall obtain the response of the systenthe following

initial condition:

[ 10 | [ 5 ]
20 -10
z(0) = , E(0) = 2.85
O= ", | EO=| (2.85)
- 06 | 06 |

Referring to Equation (2.28), it becomes

{Z(t)}z{T(A—BK)Tl TBKT™ }{Z(t)}{ Tg(le(t),t)}

E(t) 0 T(A-LC)T | E@)| | &Tz(t), 2(t),t)
(2.86)
where
E(T71z(t), TH2(t),t) = Tg(T z(t),t) - Tg(T2(t),1)
the response to the initial condition can be deit®echfrom
I z 17 0 1 0 0 0 0 0 0
Z, -1014 -162 3214 -13206 528 38 - 784 13206
Z, 0 0 0 3333 0 0 0 0
z,| | 1164 0 - 058 0 0 0 0 0
E, 0 0 0 0 -1795 075 0 0
E2 0 0 0 0 109 -4684 243 0
E, 0 0 0 0 -059 -4415 0 3333
_E4_ 0 0 0 0 171 -1162 -058 0 |

N
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0

[z, ] 0

z, 0

%3 19.9zsir[ﬁj

Zs |, 20

E, 0

E, 0

E, 0

E _
[Fa) 119,04 sif %3 |- sih 23~ Es

I 20 20 )]

(2.87)

A MATLAB program using the fourth-order Runge-kuttaethod is

used to obtain the response is shown in MATLAB paog (A2), in
Appendix A.

The numerical results and estimators based on Iheritam for

problem discussed in (2.4) have been shown indalh@fing plotted graphs.
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Fig (2.9) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x,(0) =1, X, (0) = 0.5 of problemin (2.4).
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Fig (2.10) error between x, (t) and itsobserver X, (t) of problemin (2.4).
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ctate variable 2 and its oaservar

Time(sec)

Fig (2.11) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x, (0) =2, X, (0) =3 of problemin (2.4).
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Fig (2.12) error between X, (t) and itsobserver X, (t) of problemin (2.4).
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Time(sec)

Fig(2.13)Observer performance: state variable x;(solid curve). and its

observer X, (broken curve)for x, (0) =-2,%;(0) =—1.5 of problemin(2.4).
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Fig (2.14) error between X, (t) and itsobserver X, (t) of problem in (2.4).
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ctate variable =4 and its oaservar

Time(sec)

Fig (2.15) Observer performance: state variable x, (solid curve). and its

observer X, (broken curve) for x,(0) =-1,%, (0) = -2 of problemin (2.4).
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Fig (2.16) error between x,(t) anditsobserver X,(t) of problemin (2.4).
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Conclusions

From the present study of this thesis, sufficient conditions were given
for the design observers for a class of nonlinear systems. These systems are
characterized by nonlinear functions which are Lipschitz in nature. Nonlinear
observer design is still afiled in itsinfancy, and we hope this thesis represents
afruitful step forward. The suggested methodology is based on the dual of the
results from the theory of stabilization of uncertain systems. Moreover, it has
been shown that the separation property holds. Hence, the control and
observation algorithms can be joined together to form the observed-state
feedback control system, we have tested it on several examples and we
proposed in this thesis the design of an observer for the single-link flexible
joint robot show the good performances of our method. The computational
algorithms, based on the results of proposed theory are found to be very
applicable and as one can see this fact from the illustrations. The behavior of
the suggested dynamic observers are shown to be very good as one can see
this fact from the graphs of theillustrations.
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The future work may be considered are the following:
1. Observability full order or reduced are of stochastic dynamic
system.
2. Dynamic fuzzy observer for fuzzy control system.
3. Observahility of differential inclusion.
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I ntroduction

(Thau 1973) [33] gave a sufficient condition for estimate convergence
of a non-linear dynamical system described by a system of first-order
differential equations. The origina work was further extended for
deterministic problems by (Kou et a. 1975) [11] and (Banks 1981) [1], and
for the stochastic case by (Tarn and Rasis 1976) [32].

Exact methods of observing the state of non-linear systems are due to
(Krener and Isidori 1983) [12] and to (Krener and Respondek 1985) [13] who,
respectively, considered single-output unforced systems and multi-input
multi-output systems. The conditions under which these observers can be
designed are restrictive and do not apply to many physical systems.

To some extent, approximate observers can be derived on the basis of
different techniques. (Zeitz 1987) [34], linearizes the observer error system,
expressed in suitable coordinates, and requires the knowledge of the input
derivatives. (Nicosiaet al. 1989) [18], proposed amethod of designing non-
linear observers effective near the operating point set, assuming that the first
time derivative of the outputs are measurable. (Baumann and Rugh 1986) [2],
gave both controller and observer, and proved the convergence of the output
feedback controller.

The class of Lipschitz nonlinear systems has been widely investigated,
since most physical processes can be described by nonlinear Lipschitz
models. (Reif et al. 1999) [29], ( Rgamani and Cho 1998) [26], (Rajamani
1998) [25], (Zhu and Han 2002) [35] and (Raghavan and Hedrick 1994) [24],
the authors proposed specific solutions to this type of systems where the
stability conditions are expressed in terms of the algebraic Riccati equations.

In this thesis, the problem of designing state observers for inherently a
non-linear dynamical control system is considered. A sufficient conditions for
the jointed design of a linear state feedback control which stabilizes the non-
linear dynamical control systems and state observers for inherently a non-

linear dynamical control system are given.



I ntroduction

This thesis consists of three chapters. The first chapter deals with the
basic concepts of modern dynamical control system theory.

In chapter two, the problem of designing state observers for inherently
non-linear dynamical control systems is discussed. A sufficient theorem for
the design state observers for a non-linear dynamical control systemsis stated
and proved. A computational algorithm to construct the state observers for
non-linear dynamical control system is presented. Observer-based control law
of non-linear dynamical control system is studied. Some useful
transformations to simplify the dynamic deterministic state space observer
have been developed. This transformation helps the designer to overcome the
some difficulties in the nature of nonlinearity (Lipschitz condition). Several
problems are demonstrated to justify the validity of our results.

In chapter three, the generalization theorem to the results of chapter two
has been developed. Illustrations using an open loop controller and closed
loop controller have been presented and developed. An approximate state
observer for some non-linear dynamical control system has also been given.

Concluding remarks, future work, list of references, appendix of

MATLAB programs have also been presented.



Introduction

Modern control theory, which is based on state space concepts, is

extremely useful not only for designing a specific dynamic control system.
But also, for improving the principle on which the system will operate. By
using the state space approach the control engineering may able to design
dynamical control system with performance characteristic that can not be
achieved by the classical approach by means of the frequency response
method or the root locus method.

Dynamic control has played a vital role in the advance of engineering
and science. In addition to its extreme importance in space-vehicle systems,
missile-guidance systems, robotic systems, and the like, dynamic control has
become an important and integral part of modern manufacturing and
industrial processes.

The problem of designing nonlinear observers has been studied for a
long time. Much of the effort has resulted in extensions of the linear
Luenberger observer (Kailath 1980) [7] examples of this are the extended
Kaman filter psuedo linearization techniques etc (see Misawa and Hedrick
1989 for a survey) [17]. These techniques are valid in a small range around
the operating point. They also frequently require heavy real-time computation.
A geometric technigques were proposed to build exact observers for a general
description of nonlinear systems (Krener and Isidori 1983 [12], and Keller
1987 [8] ). However, the conditions that are required to be satisfied by these
observers are extremely stringent, making the applicable class very small.
Recently, the quadratic stabilization of uncertain systems of (Khargonekar et
a. 1990) [9], (Peterson 1987) [23] and (Peterson and Hollot 1986) [22] is
used to construct observers for a class of non-linear systems.
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Abstract

The main theme of this thesis is the design of a full order nonlinear
deterministic dynamic observer for estimation of state space from its
nonlinear input-output dynamic control system.

The quadratic Lyapunov function stabilization approach has been
adapted and devel oped.

The sufficient conditions for existence of the dynamic observer for
some class of nonlinear input-output dynamic system have been presented and
discussed. Useful linear transformations have also been adapted to design a
stable controller based on the suggested dynamic (deterministic) observer
system. Computational algorithms based on the presented theorems for design
a deterministic stable controller have also been discussed and developed.
[llustrations are presented to demonstrate the validity of the presented

procedure.
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