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List of Common Symbols using in MATLAB Programs: 

ctrb ),( ΒΑ                    Computes the controllability matrix, where A and B are 

                                     system matrices uxx Β+Α=&  

obsv ),( CΑ                  Computes the observability matrix, where A and C are 

                                     system input-output matrices. 

place ),,( µΒΑ              Compute an appropriate gain matrix K, where A, B are 

                                 matrices of the system, µ  is the vector of the desired 

                                     closed-loop poles. 

Α′                                The transpose of the matrix A.  

place ),,( ′′Α′ ηC            Compute an appropriate observer gain matrix L, where 

                                     A,C are system input-output matrices, η is the vector  

                                     of the observer poles. 

eye (n)                         Generates an nn ×  identity matrix. 

zeros (n)                      Generates an nn ×  matrix of zeros. 

ode45                           (fourth, fifth order) to implement Runge-Kutta method. 

inv (A)                         Returns the inverse of the square matrix A. 

plot (x,y)                     Graphs y as a function of x. 

norm (x)                      Calculates the norm. 

eig (A)                         Finds eigenvalues of the square matrix A. 

care ),,( QHG               Computes the unique solution P of the algebraic    

                                     Riccati equation 0=+Ρ′Ρ−Ρ+Ρ′ QHHGG  

rank (A)                       Returns the rank of the square matrix A. 

exp(.)                           Exponential. 

label                             Appears beneath its respective axis in a two-    

                                     dimensional plot. 

A(: , j)                          Returns the j-th column of the matrix. 

inline                           Construct A MATLAB inline function from a stringe 

                                     expression. 
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MATLAB program (A1) 

[ ]6116;100;010 −−=Α ;                                                                                                     

[ ]10;0;0=Β ; 

[ ]001=C ; 

M =ctrb ),( ΒΑ  

rank (M) 

[ ]1.09.02.2 −=Κ  

N=obsv ),( CΑ  

rank (N) 

]474;255;14[ −=L  

Q =eye(3) ; 

H = [0 ; 0 ; 0] ; 

G )( LC−Α=  ; 

P = care ),,( QHG ; 

n = eig (P) ; 

201 =σ  ; 12 =σ  ; 2.03 =σ ; 

[ ]321 00;00;00 σσσ=Τ  ; 

=Τ−1 inv )(Τ ; 

1** −ΤΤ= GG ; 

=Ρ care ),,( QHG ; 

=n eig )(Ρ  

[ ]111 *)*(*)3,3(;****)*(* −−− Τ−ΑΤΤΚΒΤΤΚΒ−ΑΤ CLzeros  

+−−−+
+−−+−−+

++−++

−++−−−+

+++=Ψ

))5()2(cos(*))5()2(sin(*06.0))2(cos(*))2(sin(*06.0)6(*5

)4(*25.11)));5()2(()20/))4()1(cos(((*2.0))2()20/)1(cos((

*2.0)5(*20)4(*14;)*2cos(*)2(*02.0)2.0/)3((sin*002.0)6(

)5(*8.1)4(*22.0)3(*5)2(*4)1(*16.0;)(sin*)1(*1.0))2(

cos(*))2(sin(*06.0)3(*5;))2()20/)1(cos((*2.0)2(*20[`(

2

2

zzzzzzz

zzzzzzz

zztzzz

zzzzztz

zzzzzzinline
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+−−−− )6(*6)5(*2.2)4(*8.4);(sin*))4()1((*01.0)(sin*)1(*01.0 22 zzztzztz

6()3(((sin*002.0)2.0/)3((sin*002.0)6(*6)5(*2.2)4(* 22 zzzzzz −−+−−  

);`,`,)]'*2cos(*))5()2((*02.0)*2cos(*)2(*02.0)2.0/)) zttzztz ′′−−+  

[ ]( )06.00104.0110],10:01.0:0[,45],[ Ψ= odezat ; 

);1,(:1 zaz =  

);6,(:

);5,(:

);4,(:

);3,(:

);2,(:

3

2

1

3

2

zaE

zaE

zaE

zaz

zaz

=
=
=
=
=

 

333

222

111

/

/

/

σ
σ
σ

zx

zx

zx

=
=
=

 

333

222

111

/

/

/

σ
σ
σ

Ee

Ee

Ee

=
=
=

 

333

222

111

ˆ

ˆ

ˆ

exx

exx

exx

−=
−=
−=

 

[ ]
[ ]
[ ]333

222

111

ˆ

ˆ

ˆ

xxcc

xxcc

xxcc

=
=
=

 

figure (1), plot ),( 1cct  

xlabel (' Time (sec)') 

y label (' the state 1x and its observer ')  

figure (2), plot ),( 1et  

xlabel (' Time (sec)') 

y label (' the state variable )(1 te ')    

figure (3), plot ),( 2cct  
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xlabel (' Time (sec)') 

y label (' the state 2x  and its observer ')  

figure (4), plot ),( 2et  

xlabel (' Time (sec)') 

y label (' the state variable )(2 te ')    

figure (5), plot ),( 3cct  

xlabel (' Time (sec)') 

y label (' the state 3x  and its observer ')  

figure (6), plot ),( 3et  

xlabel (' Time (sec)') 

y label (' the state variable )(3 te ') 

MATLAB program (A2) 

];04.1904.19;1000;06.484.126.48;0010[ −−−=Α  

];0;0;6.21;0[=Β  

];0010;0001[=C  

M =ctrb ),( ΒΑ  

rank (M) 

[ ];1.09.02.2 −=Κ  

N=obsv ),( CΑ  

rank (N) 

];20162.194.142.194.14[ −−∗+−∗−= iiη  

=L place ),,( ′′Α′ ηc  

Q = eye(4) ; 

H = [0 ; 0 ; 0 ; 0] ; 

G )( LC−Α=  ; 

P = care ),,( QHG ; 

n = eig (P) ; 
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101 =σ  ; 102 =σ  ; 203 =σ ; 6.04 =σ ; 

[ ]4321 000;000;000;000 σσσσ=Τ  ; 

=Τ−1 inv )(Τ ; 

1** −ΤΤ= GG ; 

=Ρ care ),,( QHG ; 

=n eig )(Ρ  

[ ]111 *)*(*)4,4(;****)*(* −−− Τ−ΑΤΤΚΒΤΤΚΒ−ΑΤ CLzeros  

);`,`,]))20/))7()3(sin(()20/)3(

(sin(*2.33*6.0)7(*5820.0)6(*6216.11)5(*7117.1);8(*333.33

)6(*1560.44)5(*5963.0);7(*3.24)6(*8404.46)5(*0943.1);6

(*7544.0)5(*9596.17));20/)3(sin(*2.33*6.0()3(*5820.0)1(

*1640.1);4(*3333.33);8(*0619.132)7(*8433.7)6(*8.3)5(*8.52

)4(*0619.132)3(*1433.32)2(*2.16)1(*4.101);2([(

ztzzz

zzzz

zzzzz

zzzzz

zzzzz

zzzzzinline

′′′−−
−+−−

+−−+−
+−−+−

+−+
+−+−−′=Ψ

[ ]( )05.015.00201],10:01.0:0[,45],[ −−−Ψ= odezat ; 

);8,:(

);7,(:

);6,(:

);5,(:

);4,:(

);3,(:

);2,(:

);1,(:

4

3

2

1

4

3

2

1

zaE

zaE

zaE

zaE

zaz

zaz

zaz

zaz

=
=
=
=
=
=
=
=

 

444

333

222

111

/

/

/

/

σ
σ
σ
σ

zx

zx

zx

zx

=
=
=
=

 

222

111

/

/

σ
σ

Ee

Ee

=
=

 

333 /σEe =  
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444 /σEe =  

333

222

111

ˆ

ˆ

ˆ

exx

exx

exx

−=
−=
−=

 

444ˆ exx −=  

[ ]
[ ]
[ ]
[ ]444

333

222

111

ˆ

ˆ

ˆ

ˆ

xxcc

xxcc

xxcc

xxcc

=
=
=
=

 

figure (1), plot ),( 1cct  

xlabel (' Time (sec)') 

y label (' the state 1x and its observer ')  

figure (2), plot ),( 1et  

xlabel (' Time (sec)') 

y label (' the state variable )(1 te ')    

figure (3), plot ),( 2cct  

xlabel (' Time (sec)') 

y label (' the state 2x  and its observer ')  

figure (4), plot ),( 2et  

xlabel (' Time (sec)') 

y label (' the state variable )(2 te ')    

figure (5), plot ),( 3cct  

xlabel (' Time (sec)') 

y label (' the state 3x  and its observer ')  

figure (6), plot ),( 3et  

xlabel (' Time (sec)') 

y label (' the state variable )(3 te ') 
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figure (7), plot ),( 4cct  

xlabel (' Time (sec)') 

y label (' the state 4x and its observer ')  

figure (6), plot ),( 4et  

xlabel (' Time (sec)') 

y label (' the state variable )(4 te ')  

MATLAB program (A3) 

[ ]6.39,10 −−=Α ; 

];1;0[=Β  

[ ]01=C ; 

N=obsv ),( CΑ  

rank (N) 

[ ]ii *6.92.7*6.92.7 −−+−=η ; 

=L place ),,( ′′Α′ ηC  

Q = ]100;010[ ; 

H = [0 ; 0] ; 

G )( LC−Α=  ; 

P = care ),,( QHG ; 

n = eig (P) ; 

no = norm )(L  

);`,`,])(sin*)1(*003.0))2(cos(*002.0)exp()2(*6.3)1(*9

);2/cos(*)2(*01.0))2(cos(*001.0))1(sin(*001.0)2([̀(
2 xttxxtxx

txxxxinline

′′′++−+−

−+++=Ψ

[ ]( )21],10:01.0:0[,45],[ −Ψ= odexat ; 

);`ˆ,`,]0577.0)

(sin*)1(ˆ*003.0))2(ˆcos(*002.0))2(ˆcos(*))(ˆsin(*0481.0)exp(

)2(ˆ*6.3)1(ˆ*12.105;0065.0)2/cos(*)2(ˆ*01.0))2(ˆcos(*001.0

))1(ˆsin(*001.0))2(ˆcos(*))1(ˆsin(*0054.0)2(ˆ)1(ˆ*8.10[̀(

2

xtt

xxxtxt

xxtxx

xxxxxinline

′′′+
++−−

+−−+++
+−+−=Φ

[ ]( )21],10:01.0:0[,45]ˆ,[ −Φ= odeaxt ; 
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);1,(:ˆˆ

);2,(:

);1,(:

3

2

1

axx

xax

xax

=
=
=

 

444ˆ exx −=  

111 x̂xe −=  

222 x̂xe −=  

[ ]
[ ]222

111

ˆ

ˆ

xxcc

xxcc

=
=

 

figure (1), plot ),( 1cct  

xlabel (' Time (sec)') 

y label (' the state 1x and its observer ')  

figure (2), plot ),( 1et  

xlabel (' Time (sec)') 

y label (' the state variable )(1 te ')    

figure (3), plot ),( 2cct  

xlabel (' Time (sec)') 

y label (' the state 2x  and its observer ')  

figure (4), plot ),( 2et  

xlabel (' Time (sec)') 

y label (' the state variable )(2 te ')  

MATLAB program (A4) 

[ ]130;020;002=Α ; 

[ ]10;01;10=Β ; 

[ ]321;111=C ; 

M =ctrb ),( ΒΑ  

rank (M) 

[ ]111 −−−+−= iiµ ; 
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=Κ place ),,( µΒΑ ; 

 N=obsv ),( CΑ  

rank (N) 

[ ]44*44*4 −−−+−= iiη ; 

=L place ),,( ′′Α′ ηC  

Q = 3*eye(3) 

H = [0 ; 0 ; 0] ; 

G )( LC−Α=  ; 

P = care ),,( QHG ; 

n = eig (P) ; 

no = norm )(L  

[ ]CLzeros *)3,3(;** −ΑΚΒΚΒ−Α  

xxxxxt

xxxxx

xxxxxx

xxxxx

xxxxinline

*1554.1)4(*899.1)3(*2812.0)2(*8446.1)1(*899.1);sin(*

)3(*03.0))2(cos(*))2(sin(*06.0))1(cos(*02.0)6(*8972.1)5(

*3822.5)4(*7088.2)3(*8972.1)2(*3822.3)1(*7088.2));2((

cos*))2(sin(*03.0))3(sin(*01.0))1(cos(*1.0)6(*7188.0)5(*

155.1)4(*8990.1)3(*7188.0)2(*1554.1)1(*101.0[̀(

++++−
++++
+−−−

++++
++−−=Ψ

45.0)));4()1(sin())1((sin(*039701.0)))6()3(sin(*))6()3(

cos())3(sin(*))3((cos(*0178176.0)sin(*)))6()3(()3((*03.0

)))5()2(cos(*))5()2(sin())2(cos(*))2((sin(*06.0)))4(

)1(cos())1((cos(*02.0)6(*9117.14)5(*9715.4)4(*9686.0)));

4()1(sin())1((sin(*0343625.0)))6()3(sin(*))6()3(cos()

)3(sin(*))3((cos(*0266488.0)))5()2(cos(*))5()2(sin())2((

cos*))2((sin(*03.0)))6()3(sin())3((sin(*01.0)))4()1(cos(

))1((cos(*1.0)6(*2933.7)5(*4207.0)4(*4518.4);*2sin(*

)2(*06.0))2(cos(*))2(sin(*01.0))3(sin(*06.0)6(*7188.0)5(

−−−+−−
−−−−

+−−−+−
−+−−

−−−−−−
+−−−

+−−+−
−+++−

++++

xxxxxxx

xxtxxx

xxxxxxx

xxxxx

xxxxxxx

xxxxxxx

xxxxxx

xxxxt

xxxxx

 

*0022192.0)*2sin(*)))5()2(()2((*06.0)))5()2(cos(*))5(

)2(sin())2(cos(*))2((sin(*01.0)))6()3(sin())3((sin(*06.0

01.0)))6()3(sin()3((sin(*06.0)6(*5767.2)5(*9854.0)4(*

−−−+−
−−+−−+

+−−+−+

txxxxx

xxxxxxx

xxxxxx

 

xxxxxxx sin(*0078105.0)))6()3(sin(*))6()3(cos())3(sin(*))3((cos( +−−−  
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);`,`,])))4()1(sin())1( xtxx ′′′−−  

[ ]( )5.05.00101],10:01.0:0[,45],[ −−Ψ= odexat ;

);2,(:

);1,(:

2

1

xax

xax

=
=

 

);6,(:

);5,(:

);4,(:

);3,(:

3

2

1

3

xae

xae

xae

xax

=
=
=
=

 

333

222

111

ˆ

ˆ

ˆ

exx

exx

exx

−=
−=
−=

 

[ ]
[ ]
[ ]333

222

111

ˆ

ˆ

ˆ

xxcc

xxcc

xxcc

=
=
=

 

figure (1), plot ),( 1cct  

xlabel (' Time (sec)') 

y label (' the state 1x and its observer ')  

figure (2), plot ),( 1et  

xlabel (' Time (sec)') 

y label (' the state variable )(1 te ')    

figure (3), plot ),( 2cct  

xlabel (' Time (sec)') 

y label (' the state 2x  and its observer ')  

figure (4), plot ),( 2et  

xlabel (' Time (sec)') 

y label (' the state variable )(2 te ')    

figure (5), plot ),( 3cct  

xlabel (' Time (sec)') 
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y label (' the state 3x  and its observer ')  

figure (6), plot ),( 3et  

xlabel (' Time (sec)') 

y label (' the state variable )(3 te ') 

MATLAB program (A5) 

];00;10[=Α  

];1;0[=Β  

[ ];01=C  

M =ctrb ),( ΒΑ  

rank (M) 

[ ]7071.0*7071.07071.0*7071.0 ii −−+−=µ ; 

=Κ place ),,( µΒΑ  

N=obsv ),( CΑ  

rank (N) 

[ ]8284.2*8284.28284.2*8284.2 ii −−+−=η ; 

=L place ),,( ′′Α′ ηC  

Q = eye(2) 

H = [0 ; 0] ; 

G )( LC−Α=  ; 

P = care ),,( QHG ; 

n = eig (P) ; 

no = norm )(L  

[ ]11=O ; 

N1 =obsv ),( OΑ  

rank (N1) 

=1L place ),,( ′′Α′ ηO  
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G1 )( 1OL−Α=  ; 

P1 = care ),,( 1 QHG ; 

n1 = eig (P1) ; 

301 =σ  ; 202 =σ  ; 

[ ]21 0;0 σσ=Τ  ; 

=Τ−1 inv )(Τ ; 

1
11 ** −ΤΤ= GG ; 

=Ρ1 care ),,( 1 QHG ; 

=1n eig )( 1Ρ  

[ ]1
1

11 *)*(*)2,2(;****)*(* −−− Τ−ΑΤΤΚΒΤΤΚΒ−ΑΤ OLzeros  

);`,`,])(sin*)))4()2(()2(())30/))3()1(cos(()30/)1((

(cos*20)4(*9997.15)3(*6665.10);(cos*)))3()1(()1((*3.0

))30/))3()1(sin(()30/)1((sin(*30)4(*0143.17)3(*3429.10);

(sin*)2()30/)1(cos(*20)4(*4142.1)3(*6667.0)2(*4142.1

)1(*6667.0);(cos*)1(*3.0)30/)1(sin(*30)2(*5.1[̀(

2

3

2

3

zttzzzzzz

zztzzz

zzzzzt

zzzzz

ztzzzinline

′′′−−+−−

+−−−−

+−−++
++++

−−++=Ψ

[ ]( )332066120],100:01.0:0[,45],[ −Ψ= odezat ; 

);4,(:

);3,(:

);2,(:

);1,(:

2

1

2

1

zaE

zaE

zaz

zaz

=
=
=
=

 

222

111

/

/

σ
σ

zx

zx

=
=

 

222

111

/

/

σ
σ

Ee

Ee

=
=

 

222

111

ˆ

ˆ

exx

exx

−=
−=

 

[ ]111 ˆ xxcc =  
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[ ]222 ˆ xxcc =  

figure (1), plot ),( 1cct  

xlabel (' Time (sec)') 

y label (' the state 1x and its observer ')  

figure (2), plot ),( 1et  

xlabel (' Time (sec)') 

y label (' the state variable )(1 te ')    

figure (3), plot ),( 2cct  

xlabel (' Time (sec)') 

y label (' the state 2x  and its observer ')  

figure (4), plot ),( 2et  

xlabel (' Time (sec)') 

y label (' the state variable )(2 te ')    
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This chapter presents basic concepts of modern control theory that are 

needed later on. The chapter is divided into five sections, the first section 

contains the basic definitions of control theory and some mathematical 

preliminaries, the second section is about the mathematical control equations, 

the third section concerns with Lyapunov direct method and stability of the 

non-linear dynamical system, the fourth section discusses the controllability 

and observability of dynamical control system, the last section is about the 

design of control system by using linear state feedback control and full order 

state observer.   

 

1.1 PRELIMINARY CONCEPTS   

Before discussing the modern control theory, some basic terminology's 

must be defined:  
  

 

 Definition (1.1) (System) [20]: 

A combination of components that acts together and performs a certain 

objective is called a system.  

 

Definition (1.2) (Disturbance) [20]: 

A disturbance is a signal that tends to adversely affect the value of the 

output of a system. If a disturbance is generated within the system, it is called 

internal while an external disturbance is generated outside the system and is 

an input. 

 

Definition (1.3) (State Vector) [4]: 

The state of a system can be represented by a finite-dimensional 

column vector X called the state vector. The components of X are called the 

state variables. 
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Definition (1.4) (State Space) [20]: 

The n-dimensional space whose coordinate axes consist of the 1x -axis, 

2x -axis, ..., nx - axis is called state space. Any state can be represented by a 

point in the state space. 

 

Definition (1.5) (Feedback) [20]: 

Feedback control refers to an operation, that in the presence of 

disturbances, tends to reduce the difference between the output of system and 

some reference input and does so on the basis of this difference. 

Feedback controls do not depend explicitly on time t, but instead 

depend only on the state.  

 
 

Definition (1.6) (Closed- Loop Control System) [20]:  

Feedback control systems are often referred to as closed loop control 

systems. In closed-loop control system the actuating error signal, which is the 

difference between the input signal and the feedback signal is fed to the 

controller so as to reduce the error and bring the output of the system to a 

desired value. The term closed-loop control always implies the use of 

feedback control action in order to reduce system error. 

 

Definition (1.7) (Open- Loop System) [20]: 

Those systems in which the output has no effect on the control action 

are called open-loop control systems. In other words, in an open-loop control 

system the output is neither measured nor fed back for comparison with the 

input.  

 

Definition (1.8) (Time–Invariant Control System) [20]: 

A time-invariant control system (constant coefficient control system) is  
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that one whose parameters do not vary with time. The response of such a 

system is independent of the time at which an input is applied. 

 

Definition (1.9) (Time- Varying Control System) [20]:  

A time–varying control system is a system in which one or more of its 

parameters vary with time.  

 

Definition (1.10) (Observation) [21]: 

Estimation of unmeasurable state variables is commonly called 

observation. 

 

Definition (1.11) (Positive Definite Matrix) [6]: 

A  real symmetric matrix  A  is called positive definite if Τx A x 0> for 

every nonzero vector .nRx ∈   

                                                                                                                                                                                                            

Lemma (1.1) [10]: 

A symmetric matrix A is positive definite if and only if all the  

eigenvalues of  A  are positive.     

                                        

Definition (1.12) (Negative Definite Matrix) [6]: 

An nn ×  real symmetric matrix A is negative definite if the 

determinant of A is positive if n is even and negative if n is odd, and the 

successive principal minors of even order be positive and the successive 

principal minors of odd order be negative, i.e.,                                                                                                         

L,0,0,0

333231

232221

131211

2221

1211
11 <><

aaa

aaa

aaa

aa

aa
a  

det 0)( >Α if n is even, )( jiij aa =     
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det 0)( <Α  if n is odd. 

 

Definition (1.13) (Positive Definite Function) [20]:  

           A scalar function V(x) is said to be positive definite in a region Ω 

(which includes the origin of the state space) if  V(x) > 0 for  all nonzero 

states x  in the region Ω and V(0) = 0.                                                          

                                                         

Definition (1.14) (Negative Definite Function) [20]: 

           A   scalar   function V(x) is said   to be negative definite if –V(x) is 

positive definite. 

  

                                                              

1.2 MATHEMATICAL CONTROL EQUATIONS  [4]:   

           The set of n-first order differential equations that describes the unique 

relations between the input (control), output and state is called dynamical 

control equation. 

In this work, some non-linear dynamical control systems have been 

discussed: 

=)(tx& F )),(),(( ttutx                                            (state equation)                                                                    (1.1a) 

=)(ty G )),(),(( ttutx                        (output equation)                     (1.1b) 

or, more explicitly, 
 

)),(,),(),(),(,),(),(()( 212111 ttutututxtxtxftx pn KK& =         

)),(,),(),(),(,),(),(()( 212122 ttutututxtxtxftx pn KK& =  

                  .                                     (1.2 a)           
       .         

               . 
)),(,),(),(),(,),(),(()( 2121 ttutututxtxtxftx pnnn KK& =  
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)),(,),(),(),(,),(),(()( 212111 ttutututxtxtxgty pn KK=    

)),(,),(),(),(,),(),(()( 212122 ttutututxtxtxgty pn KK=  

                                                .                                      (1.2b)                            
       .          

               .          
)),(,),(),(),(,),(),(()( 2121 ttutututxtxtxgty pnmm KK=   

  
where 1[xx =  2x K

Τ]nx  is an n-dimensional state vector, nxxx ,,, 21 K  are the 

state variables, 1[ yy =  2y Τ]myK  is an m-dimensional output vector, 

myyy ,,, 21 K  are output variables, 1[uu =  2u Τ]puK  is an p-dimensional 

input (control) vector and puuu ,,, 21 K are input (control) variables. The 

dynamical control system is specified by n-dimensional vector-valued 

function F and m-dimensional vector-valued function G. 

  The control u, the output y and the state x are real-valued functions of t 

defined over the real line R. 

Equation (1.1) can be represented in the block diagram shown in figure 

(1.1). In this figure, the flow of a vector quantity is represented by double-line 

arrow. 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.1) The block diagram of a system represented by equation (1.1a) 

and (1.1 b) in vector representation. 

F(x,u,t) G(x,u,t) 
y 

On integration 
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If a vector-valued function F and/or G in (1.1a) and (1.1b) involve time                                                                                                                              

explicitly, then the system is called a time-varying control system, otherwise, 

the system is called a time-invarying control system.  

 

1.2.1 Linear Dynamical Control System [16]:  

Consider the following linear dynamical system  

F )()()()()),(),(( tuttxtttutx Β+Α≡    

and   

G )()()()()),(),(( tutDtxtCttutx +≡  

where A, B, C and D are , n×n, n×p, m×n and m×p matrices respectively. 

Hence, an n-dimensional linear dynamical control equation is of the form:   

)()()()()( tuttxttx Β+Α=&                (state equation)                        (1.3a) 

)()()()()( tutDtxtCty +=               (output equation)                      (1.3b)                      

since the values of A(·), B(·),C(·) and D(·) change with time, the dynamical 

control equation in (1.3) is more suggestively called a linear time varying 

dynamical control equation. 

For linear time – invariant dynamical control equation, the matrices 

A(·), B(·), C(·), and D(·) are independent of time and the equation reduces to: 

)()()( tutxtx Β+Α=&                                                                   (1.4a)                     

)()()( tDutxCty +=                                                                   (1.4b)  

 

1.3 Lyapunov Stability [6]:   

We present here the second method of  Lyapunov stability analysis, 

which is applicable to both linear and nonlinear systems and provides stability  

information on  linear and  nonlinear  differential equations  without  solving  

the system explicitly,  hence  the  second   method  is  called  the  direct   

method  of Lyapunov, the direct method is most useful for investigating 

stability of  non-linear systems. It gives sufficient conditions for asymptotic 
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stability of equilibrium states of nonlinear systems and linear time-invariant 

systems.  

 

Definition (1.15) (Equilibrium States) [19]:  

Consider the system ),( txfx =& , a state ex  where ttxf e ∀= ,0),(  is 

called an equilibrium state of the system. 

   

Definition (1.16)(Lyapunov Stability) [6]: 

An  equilibrium state ex of the dynamical system ),( txfx =& is stable 

(or stable  in  the  sense  of  Lyapunov)  if  for  every  ,0>ε  there  exists 

0>δ  )),(( 0tεδ  such that  

δ<− exx0  implies  ε≤− exxtx ),( 0 , for all  0tt ≥  

where .  denotes the Euclidean norm of a vector. 

 

Definition (1.17) (Asymptotic Stability) [6]: 

An   equilibrium   state  ex  of  the  system  ),( txfx =&   is  

asymptotically stable if  

1- It is stable in the sense of Lyapunov. 

2- For all 0t  there exists a 0)( 0 >tρ  (possibly depending on 0t ) such 

that 

ρ<− exx0  implies that  0),( 0 →− exxtx  as ∞→t . 

 

Remarks (1.1)    

1- An equilibrium state ex  is said to be unstable if it is not stable, [19].                                         

2- An equilibrium state ex  of a free dynamical system is unstable if 

there exists an ε  such that no δ  can be found to satisfy the 

conditions of definition of stability, [5].                                                        
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3-The system described by equation  

)()( txtx Α=&                                                                              (1.5) 

               where  Α  is a constant matrix, is  asymptotically stable if and only if  

all eigenvalues of Α  have negative real parts, [27]. 

 

Theorem (1.1) [14]: 

The time-invariant linear system (1.5): 

)()( txtx Α=&  

is stable in the sense of Lyapunov if and only if: 

1. All  of   the  characteristic  values of A  has non-positive  real  parts,  and,    

2. To  any  characteristic  value  on the  imaginary  axis with  multiplicity  m 

     there correspond exactly m characteristic vectors of the matrix A.   

     

Definition (1.18) (Asymptotically Stable Matrix) [14]: 

The nn ×  constant matrix A is asymptotically stable if all its 

characteristic values have strictly negative real parts. The characteristic values 

of A are the roots of the characteristic polynomial ).det( Α−Ιλ  

 

1.3.1 The Direct Method of Lyapunov [20]: 

The second method of Lyapunov attempts to give information on the 

stability of equilibrium state of linear and nonlinear systems without any prior 

knowledge of their solutions. 

The second method of Lyapunov is based on generalization of the idea that if 

the system has an asymptotically stable equilibrium state, then the stored  

energy of the system displaced within the domain of attraction decays with 

increasing time until it finally  assumes its  minimum value at the equilibrium 

state. The method consists of determination of a fictitious (energy) function 

called the Lyapunov function which is more general than that of energy and is 
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more widely applicable. 

 

Definition (1.19) (Attraction Domain) [20]: 

The largest region of asymptotic stability is called domain of attraction. 

It is a part of the state space in which asymptotically stable trajectories 

originate. 

 

Definition (1.20) (Quadratic Form) [20]: 

           A class of scalar function that plays an important role in the stability 

analysis, based on the second method of Lyapunov is the quadratic form. An 

example is 

1[)( xxxxV =Ρ= Τ  L2x





































ΡΡΡ

ΡΡΡ
ΡΡΡ

nnnnn

n

n

n

x

x

x

x
M

K

MKMM

K

K

2

1

21

22212

11211

]  

Note that x is a real vector and P is a real symmetric matrix. 

 

Definition (1.21) (Hermitian Form) [20]: 

If x is a complex n-vector and P is a Hermitian matrix, then the 

complex quadratic form is called the Hermitian form. An example is  

1
* [)( xxxxV =Ρ=  L2x





































ΡΡΡ

ΡΡΡ
ΡΡΡ

nnnnn

n

n

n

x

x

x

x
M

K

MKMM

K

K

2

1

21

22212

11211

]  

Note that ijΡ is the complex conjugate of ijΡ . For the quadratic form, ijij Ρ=Ρ .  

 

Theorem (1.2) [20]: 

 Suppose that a system is described by 

t),f(xx =&                                                                                     (1.6)   
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 where f(0,t) = 0, for all t 

If there exists a scalar function V(x,t) having continuous first partial 

derivatives and satisfying the following conditions,  

1- V(x,t) is positive definite  

2- )t,(V x& is negative definite  

Then the equilibrium state at the origin is uniformly asymptotically stable. 

If, in addition, V ∞→),( tx  as ∞→x , then the equilibrium state at the 

origin is uniformly asymptotically stable in the large.  

 

Remark (1.2) [20]:   

If an equilibrium state x = 0 of a system (1.6) is unstable, then there 

exists a scalar function W(x,t) which determines the instability of the  

equilibrium  state. We shall present a theorem on instability in the following. 

 

Theorem (1.3) [20]: 

 Suppose a system is described by  

=x& f ),( tx   

where f(0,t) = 0,  for all t ≥  to  

If there exists a scalar function W(x,t) having continuous first partial 

derivatives and satisfying the following conditions, 

1- ),(w tx  is positive definite in some region about the origin.  

2- ),(w tx& is positive definite in the same region. 
 

Then the equilibrium state at the origin is unstable.     

           

1.3.2 Lyapunov Stability Analysis of Linear Time–Invariant Systems [19] 

 Consider the following linear time – invariant system: 

xx Α=&                                                                                 
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where x is a state vector (n-vector) and A is n×n constant matrix. We  assume 

that A is non singular. Then the only equilibrium state is the origin     x = 0. 

The stability of the equilibrium state of the linear time – invariant system can 

be investigated easily by use of the second method of Lyapunov. For the 

system defined by equation (1.5), let us choose a possible Lyapunov function 

as  

V(x) = ∗x Px   

where P is a positive – definite Hermitian matrix (if x is a real vector and A is   

a real  matrix, then P can be chosen to be a  positive–definite real symmetric 

matrix). The time derivative of V(x) along any trajectory is  

     xxxxx &&& PP)(V ∗∗ +=  

            xxxx PAP)A( ∗∗ +=  

              xxxx PAPA ∗∗∗ +=  

               xx )PAPA( += ∗∗  

Since V(x) was chosen to be positive definite, we require, for asymptotic 

stability, that )(V x&  be negative definite. Therefore, we require that: 

xxx Q)(V ∗−=&  

where  

Q = )( ΡΑ+ΡΑ− ∗ positive definite  

Hence, for the asymptotic stability of the system of equation (1.5) it is 

sufficient that Q be positive definite. For a test of positive definiteness of an 

nn× matrix, we apply Sylvester's criterion, which states that a necessary and 

sufficient condition that the matrix be positive definite is that the determinants 

of all the successive principal minors of the matrix be positive.  

Instead of first specifying a positive – definite matrix P and examining 

whether Q is positive definite, it is convenient to specify a positive – definite 

matrix Q first and then examine whether P determined from 
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=ΡΑ+ΡΑ∗ - Q  

is positive definite. Note that P being positive definite is a necessary and 

sufficient condition. 

 We shall summarize what we have just stated in the form of a theorem. 

 

Theorem (1.4) [19]:  

Consider the system described by                                                       

                                                    xx Α=&  

where x is a state vector (n - vector) and A is an nn× constant nonsingular 

matrix. A necessary and sufficient condition that the equilibrium state x = 0 be  

asymptotically stable in the large is that, given any positive–definite 

Hermitian (or real symmetric) matrix Q, there exists a positive–definite 

Hermitian (or real symmetric) matrix P such that  

=ΡΑ+ΡΑ∗ - Q  

The scalar function ∗x Px is a Lyapunov function for this system. (Note  

that in the linear system considered, if the equilibrium state (the origin) is 

asymptotically stable, then it is asymptotically stable in the large). 

 

In applying this theorem, several important remarks are in order.  

                                                                                              

Remarks (1.3) [19]:  

1- If the system involves only real state vector x and real state matrix A, then 

the Lyapunov function xx Ρ∗  becomes xx ΡΤ and the Lyapunov equation 

becomes  

ATP + PA = -Q      

2- To  determine  the  elements  of  the   P   matrix, we  equate  the   matrices   

      ΡΑ+ΡΑ∗  and  –Q  element  by element. This  results in 2/)1( +nn  linear     

      equations for  the  determination  of the elements of  jiij pp =  of  P. If we  
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      denote the eigenvalues of A by λ1, λ2, …,λn  each repeated as often as its    

multiplicity as a root of the characteristic equation, and if for every sum of 

two roots: 

                 0≠+ kj λλ  

Then the elements of P are uniquely determined. Note that if the matrix A 

represents a stable system, then the sums λj + λk are always non zero. 

 

3- In determining whether there exists a positive – definite Hermitian or a real 

symmetric matrix P, it is convenient to choose  Q = I, where I is the 

identity matrix. Then the elements of P are determined from  

=ΡΑ+ΡΑ∗  -I 

and the matrix P is tested for positive definiteness.  

                                                                                                                

1.4 CONTROLLABILITY AND OBSERVABILITY [28]:   

There are two basic problems we need to consider. The first one is the 

coupling between the input and the state or to control the state by using the 

information about the input. This is a controllability problem. Another 

problem is the relationship between the state and the output, i.e., the  

information  about  the state can be observed  from the output. This is an  

observability problem. The concept of observability is dual to that of 

controllability. Roughly speaking, controllability studies the possibility of 

steering the state from the input; observability studies the possibility of 

estimating the state from the output. If a dynamical equation is controllable, 

all the modes of the equation can be excited from the input; if a dynamical 

equation is observable, all the modes of the equation can be observed at the 

output. These two concepts are defined under the assumption that we have the 

complete knowledge of a dynamical equation.  
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Definition (1.22) (Controllable System) [28]: 

A system is said to be controllable at time 0t  if it is possible to find an 

unconstrained control vector to transfer any initial state to the origin in a finite 

time interval. 

Stated mathematically, the system is controllable at 0t  if for any )( 0tx , 

there exists ],[ 10 ttu  that gives ⋅>= )(0)( 011 tttx  

If this true for all initial time 0t  and all initial states )( 0tx , the system is 

completely controllable.  

 

Theorem (1.5) [4]: 

The n-dimensional linear time-invariant state equation (1.4a)  

)()()( tutxtx Β+Α=&  

is completely state controllable if and only if the n×(np)  matrix  

        M = [B: AB: A2B:…:An-1B]  has rank n.  

                                                       

Definition (1.23) (Observable System) [28]: 

A system is said to be observable at time 0t  if it is possible to determine 

the state )( 0tx  from the output function over a finite time interval.  

Mathematically, the system is observable at time 0t  if any )( 0tx  can be 

estimated by the observation of )( 01],[ 10
tty tt > . 

If this true for all time 0t   and all states )( 0tx , the system is completely 

observable. 

 

Theorem (1.6) [20]: 

The n-dimensional linear time-invariant dynamical control equation 

(1.4)  

)()()( tutxtx Β+Α=&  
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)()()( tDutxCty +=   

is completely state observer if and only if the n×(nm) observability matrix  

       N = [C*: A*C*:…: A* n-1  C*]                                   

has rank n  (* denoted to conjugate transpose matrix).  

 

Theorem (1.7) [20]: 

Consider the dynamical control equation  

uxx Β+Α=& ,  DuCxy +=                                                                (1.7) 
and the dynamical control equation defined by: 

 

       vCzz ** +Α=&  ,  vDzn ** +Β=                                                         (1.8)                                                                                                              
 

where A*, B*, C* and D* are the complex conjugate transposes of A, B, C and 

D respectively. Then equation (1.7) is completely state controllable 

(observable) if and only if the equation (1.8) is completely state observable 

(controllable).  

                                                                                                                                                                       

1.5 POLE PLACEMENT AND FULL ORDER STATE   

      OBSERVER                                              

The pole placement approach requires the feedback of all state  

variables. Therefore, it becomes necessary that all state variables are assumed 

to be available for measurement as outputs. However, some state variables 

may be unmeasurable and may not be available for feedback. Then, we need 

to estimate such unmeasurable state variables by using state observers. 

       

1.5.1Design of Linear Dynamical Control System Via Pole Placement[20]:  

Consider a linear state dynamical control equation: 

)()()( tutxtx Β+Α=&                                                                           (1.9) 

where A and B are, respectively, constant matrices with an appropriate 

dimensions. The control )(tu  shall be assumed 
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)()( txtu Κ−=                                                                                    (1.10) 

where Κ  is constant matrix with an appropriate dimension. Substituting 

equation (1.10) into equation (1.9) gives the closed loop  

)()()( txtx ΒΚ−Α=&                                                                         (1.11) 

the solution of this equation (1.11) is given by: 

)0()( )( xetx tΒΚ−Α=                                                                         (1.12) 

where )0(x  is the initial state (may be caused by external disturbances). The 

stability and transient response characteristic are determined by the 

eigenvalues of matrix )( ΒΚ−Α . If the matrix Κ  is chosen properly, then the 

matrix )( ΒΚ−Α  can be made as asymptotically stable matrix, and for all 

0)0( ≠x  it is possible to make )(tx  approach 0 as t  approaches infinity. The 

eigenvalues of matrix )( ΒΚ−Α  are sometimes called the regulator poles. The 

problem of placing the closed- loop poles at the desired location is called a 

Pole Placement problem. Figure (1.2) (a) shows the system defined by 

equation (1.9). It is an open- loop control system, because the state x  is not 

fed back to the control u . Figure (1.2) (b) shows the system with linear state 

feedback control. This is closed-loop control system, because the state x  is 

fed back to the control u. 

                                                          

                     (a)                                                       (b) 

Figure (1.2) 

(a) Open-loop control system 

(b) Closed-loop control system with feedback control xu Κ−= . 
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Theorem (1.8) [13]:  

Consider the linear state time invariant dynamical control state equation   

(1.9): 

)()()( tutxtx Β+Α=&    

with linear state feedback control (1.10) 

)()( txtu Κ−=    

Then, the closed-loop characteristic values (regulators poles), that is ,the 

characteristic values of )( ΒΚ−Α , can be arbitrarily located in the complex 

plane (with the restriction that complex characteristic values occur in complex 

conjugate pairs) by choosing K suitably if and only if the system (1.9) is 

completely state controllable.  

                                    

Algorithm (1.1):'' pole placement design, single variable case'' [20]:  

Consider the single variable time invariant equation: 

 )()()( tutxtx Β+Α=&  

where nnR ×∈Α  and 1×∈Β nR  and linear state feedback )()( txtu Κ−=  where 

nR ×∈Κ 1         

Step (1): Check the controllability condition for the system. If the system is 

completely state controllable, i.e., ),( ΒΑ is controllable, then use the following 

steps.  

Step (2): From the characteristic polynomial for matrix ,Α   

nn
nn aaa ++++=Α−Ι −

− λλλλ 1
1

1 K                                 

and then determine the values of naaa ,,, 21 K   

Step (3): Determine the transformation matrix Τ  that transforms the system 

state equation into the controllable canonical form see the following remarks 

(1.4) (If the given system equation is already in the controllable canonical 

form, then Ι=Τ ). It is not necessary to write the state equation in the 
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controllable canonical form. All we need here is to find the transformation 

matrix Τ  which is given by   

W   Μ=Τ                                                                                        (1.13) 

where Μ  is the controllability matrix  

][ 12 ΒΑΒΑΑΒΒ=Μ −n
MKMMM                                                      (1.14) 

and W is defined by   
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                                                   (1.15) 

where the ia 's are coefficients of the characteristic polynomial of step (2). 

Step (4): Using the desired eigenvalues (desired closed-loop poles), write the       

desired characteristic polynomial as: 

nn
nn

n αλαλαλµλµλµλ ++++≡−−− −
−

1
1

121 )())(( KK  

where the values of nααα ,,, 21 K  can be determined. 

Step (5): The required state feedback gain matrix Κ can be determined from 

the following equation     

[ ] 1
112211

−
−− Τ−−−−=Κ aaaa nnnn αααα MMKMM                    (1.16) 

 
 

Remarks (1.4) [20]: 

1- The matrix Α  is said to be in a controllable canonical form if it is                  

can be written as: 
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       where the coefficients ia , ni ,,2,1 K=  are computed by 

nn
nn aaa ++++=Α−Ι −

− λλλλ 1
1

1 K                     

2- The discussed method of subsection (1.5.1) is called Pole Placement 

method. There are also different methods like Ackermann's formula, 

see for information in [20].  

3- Note that if the system is of low order 3≤n , then direct substitution 

of a matrix  Κ  into  the  desired  characteristic  polynomial  may  be                  

      simpler. For example, if  3=n ,  then write  the state  feedback  gain         

      matrix Κ  as 

[ ]321 kkk=Κ  

     Substitute   Κ     into     the      desired    characteristic     polynomial  

     ΒΚ+Α−Ιλ  and equate it to ))()(( 321 µλµλµλ −−− , or  

))()(( 321 µλµλµλλ −−−=ΒΚ+Α−Ι  

Since both sides of this characteristic equation are polynomials in 

λ , then by equating the coefficients of the same powers of λ  on 

both sides, it  is possible  to  determine  the values of ,, 21 kk  and 3k . 

This approach   is  convenient   if   2=n   or   3.  (For K,6,5,4=n   ,  

this approach may become very tedious). 

 

Algorithm (1.2) ''pole placement design multivariable case'' [4]:   

        Consider the n-dimensional linear time invariant multivariable state 

equation  

         )()()( tutxtx Β+Α=&     

where nnR ×∈Α  and pnR ×∈Β , and linear state feedback )()( txtu Κ−= , where 

npR ×∈Κ . 

Step (1): Check the controllability condition if the system is completely state              

controllable, then we use the following steps. 
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Step (2): Choose an arbitrary nn ×  matrix F, which has no eigenvalue 

common with those of A . 

Step (3): Choose an arbitrary np ×  matrix k such that (F, k) is completely 

state observer. 

Step (4): Solve the unique T in the matrix equation: 

Τ−ΑΤ F Β= k.                                                                                (1.17) 

Step (5): If T is nonsingular, then we have K = k1−Τ  and A-BK has the same      

eigenvalues as those of F. 

If T is singular, then choose a different F or a different k and repeat the 

steps.   

  

Remark (1.5) [4]: 

  If  T  is nonsingular,  the  equation  matrix  AT- TF = Bk.  Implies  that 

A-BK=TF 1−Τ                                                                                             (1.18) 

Hence A-BK and F are similar and have the same set of eigenvalues.  

 

1.5.2 States Observers [20]: 

In  the  pole placement  approach  to  the  design of control systems, we  

assumed that all state variables are available for feedback. In practice, 

however, not all state variables are available for feedback. Then we need to 

estimate unavailable state variables.  A device (or a computer program) that 

estimates or observes the state variables is called a state observer, or simply 

an observer. If the state observer observes all state variables of the system, 

regardless of whether some state variables are available for direct 

measurement, it is called a full-order state observer.  

An observer that estimates fewer than n state variables, where n is the 

dimension of the state vector, is called a reduced-order state observer or, 

simply, a reduced-order observer. If the order of the reduced-order state  
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observer is the minimum possible, the observer is called a minimum-order 

state observer or minimum-order observer. 

In this work, the full-dimensional state observer has been discussed.  

  

1.5.3 Full-Dimension Linear State Observer [4]:  

Consider the n – dimensional linear time invariant dynamical equation 

)()()( tutxtx Β+Α=&                                                           (1.19 a) 

)()( txCty =                                                                             (1.19 b) 

where A, B and C are respectively n×n, n×p and m×n real constant matrices. 

We assume now  that the state variables are not accessible. Note that although 

the state variables are not accessible, the matrices  A, B and C  are assumed to 

be completely known. Hence the problem is that of estimating or generating 

)(tx from the available input u and the output y with the knowledge of the       

matrices A , B and C.  

Consider the state observer shown in figure (1.3) 

 

 

 

 

 

 

 

 

 

      

Figure (1.3) a full – order observer state 

The observer is driven by the input as well as the output of the original              

system. The output of (1.19 b), Cy = x, is compared  with Cy =ˆ x̂  and their 
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difference is used to serve as a correcting term. The difference ˆy Cx− , is 

multiplied by n×m real constant matrix L and fed into the input of the 

integrators of the observer. This observer is called linear full–order state 

observer.    

The linear dynamical control equation of the full – order observer        

shown in figure (1.3) is given by: 

)ˆ)(()()(ˆ)(ˆ xCtyLtutxtx −+Β+Α=&                               (1.20) 

where x̂  is the state observer.   

       )()(ˆ)()(ˆ tyLutxCLtx +Β+−Α=&                       (1.21) 

Define  

        )(ˆ)()( txtxte −=                                                                               (1.22)       

Clearly )(te  is the dynamical error between the actual state and the state              

observer. 

Subtracting (1.20) from (1.19 a), we obtain: 

  )()()( teCLte −Α=&                                                        (1.23)      

If the eigenvalues of )( LC−Α can be chosen arbitrarily, then the behavior of 

the error )(te can be controlled. For example, if all the eigenvalues of 

)( LC−Α  have negative real parts smaller than -σ, then all the elements of  

)(te  will approach zero at rates faster than e-σt. Consequently, even if there is 

a large error between  )(ˆ 0tx and )( 0tx at initial time t0, the vector x̂  will 

approach x rapidly.  

 

Theorem (1.9) [15]:  

Consider the linear time – invariant full order state observer (1.20): 

)](ˆ)([)()(ˆ)(ˆ txCtyLtutxtx −+Β+Α=&  

For the linear time invariant dynamical control equations  
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)()(

)()()(

txCty

tutxtx

=
Β+Α=&

                                                           (1.24) 

Then , the observer poles , that is , the  characteristic values of  )( LC−Α , can 

be arbitrarily located in the complex plane (with the restriction that the 

complex characteristic values occur in complex conjugate  Pairs), by choosing 

the constant matrix L suitably, if and only if the system ( 1.24) is completely 

state observer .   

                                                                               

1.5.4 Design Steps for Full Order Observer [21]: 

Consider the linear time invariant dynamical control system defined by 

(1.24). In designing the full – order state observer, we may solve the dual 

problem, that is, solve the pole placement problem for the dual system 

zn

vCzz
*

**

Β=

+Α=&
                                                                                  (1.25) 

 

where A*, B* and C* are the transpose conjugate of A,  B and C  respectively.                                           

Assume the control v  to be:  

−=v K z                                                                                          (1.26) 

If the dual system is completely state controllable, then the state feedback 

gain matrix K can be determined such that matrix Κ−Α ∗∗ C will yield a set of 

the desired eigenvalues. Noting that the eigenvalues of Κ−Α ∗∗ C and those of 

C∗Κ−Α are the same, we have: 

        )()( *** CsCs Κ−Α−Ι=Κ−Α−Ι                                       (1.27) 

Comparing the characteristic polynomial )( Cs ∗Κ−Α−Ι  and the 

characteristic Polynomial )( CLs −Α−Ι  for the observer system, we find that 

L and K* are related by 

L = K*                                                                                               (1.28)                                                



Chapter One                                   Basic Concepts of Modern Control Theory and Design  

 24

Thus, using the matrix K determined by the pole placement approach in the 

dual system, the observer gain matrix L for the original system can be            

determined by using the relationship .∗Κ=L  
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In this chapter, the problem of designing dynamical state observer for 

inherently non-linear system is considered. A sufficient conditions to design a 

state observer of non-linear system are developed.  

A computational algorithm based on theorem for design a 

deterministic state dynamic observer has been developed and presented. 

An approximate procedure is proposed to design approximate observer 

based controllers. 

Finally, several problems are given to demonstrate the validity of 

our results.   

 

3.1 SUFFICIENT CONDITIONS FOR DESIGN A STATE  

      OBSERVER OF NON-LINEAR SYSTEM                     

The sufficient conditions to select observer gain matrix L that the 

state observer )(ˆ tx  for inherently non-linear dynamical control system 

will converge to the actual state of non-linear dynamical control system 

are obtained in the following theorem:  

   

Theorem (3.1) 

Consider the non-linear dynamical system 

0)0(

))(()()(

)),(())(()()(
)(

xx

txhtxCty

ttxgtxDftutx
dt

tdx

=
+=

++Β+Α=

                                   (3.1) 

and assume that the state variables are not available for measurement. 

Consider the observer of non-linear dynamical control system (3.1) is  

0ˆ)0(ˆ

))(ˆ()(ˆ)(ˆ

))))(ˆ()(ˆ()(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txhtxCty

txhtxCtyLttxgtxDftutx
dt

txd

=
+=

+−+++Β+Α=

(3.2)                                                                                                       
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where  nRx ∈ , pRu ∈ , mRy ∈ , nnR ×∈Α , pnR ×∈Β , nnRD ×∈ , nmRC ×∈ , 

 nn RRf →: , nn RRRg →×: , mn RRh →: , the following conditions are 

assumed to be satisfied 

1. The pair (A, C) of a non-linear dynamical control system (3.1), is 

completely state observer.  

2. The non-linearity function nn RRtxDf →:))((   is assumed to be 

globally Lipschitz condition with Lipschitz constant γ , i.e., 

         )(ˆ)())(ˆ())(( txtxtxDftxDf −≤− γ                                                  (3.3) 

3. The  non-linearity  function   nn RRRttxg →×:)),((    is  assumed  to  

be globally   Lipschitz condition with Lipschitz constant β , i.e., 

          )(ˆ)()),(ˆ()),(( txtxttxgttxg −≤− β  for Rt ∈                                (3.4) 

4. The non-linearity function mn RRtxh →:))((  is assumed to be globally  

Lipschitz condition with Lipschitz constant δ , i.e., 

         )(ˆ)())(ˆ())(( txtxtxhtxh −≤− δ                                                        (3.5) 

5. The observer gain L can be selected such that )( LC−Α  is 

asymptotically stable matrix. 

6. The  Riccati equation QLCPPLC −=−Α+−Α Τ )()(                  (3.6) 

has a unique positive definite solution P for arbitrary positive definite 

selection matrix Q. 

7. On using the Lyapunov function stability )()())(( tPeteteV Τ= , where 

)(ˆ)()( txtxte −=                                                                                              (3.7) 

         and P satisfy equation (3.6) 

If 

)(2

)(

max

min

P

Q
L

λ
λδβγ <++                                                                 (3.8) 

Then the dynamical error  
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)9.3()))(ˆ())(((

)),(ˆ()),(())(ˆ())(()()(
)(

txhtxhL

ttxgttxgtxDftxDfteLC
dt

tde

−

−−+−+−Α=

                                                                                                        

is asymptotically stable via a single observer gain parameter L.  

       

Proof 

 From the non-linear dynamical system (3.1) and state observer (3.2) as 

well as )(ˆ)()( txtxte −= , one can get the following  

)))(ˆ())(((

)),(ˆ()),(())(ˆ())(()()(
)(

txhtxhL

ttxgttxgtxDftxDfteLC
dt

tde

−

−−+−+−Α=
 

with )0(ˆ)0()0( xxe −=                                                                                                     

On using the Lyapunov function and its derivative                                                                                                     

)()())(()( tePteteVtV Τ=≡  

)()()()(
)(

tePtetePte
dt

tdV
&&

ΤΤ +=  

From (3.9), we have that 

)10.3())))(ˆ())(((()(

)())))(ˆ())(((())),(ˆ()),((()(

)())),(ˆ()),((()))(ˆ())((()(

)()))(ˆ())((()()]())[((
)(

txhtxhLPte

tPetxhtxhLttxgttxgPte

tPettxgttxgtxDftxDfPte

tPetxDftxDfteLCPPLCte
dt

tdV

−−

+−−+−

+−+−+

−+−Α+−Α=

Τ

ΤΤ

ΤΤ

ΤΤΤ

 

From (3.6) we have 

)11.3())))(ˆ(

))(((()()())))(ˆ())(((())),(ˆ(

)),((()()())),(ˆ()),((()))(ˆ(

))((()()()))(ˆ())((()())((
)(

txh

txhLPtetPetxhtxhLttxg

ttxgPtetePttxgttxgtxDf

txDfPtetePtxDftxDfteQte
dt

tdV

−−+−−+

−+−+

−+−+−=

ΤΤ

ΤΤ

ΤΤΤ
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From (3.3) and (3.7) one deduces. 

)()()()))(ˆ())((( max

2
PtetPetxDftxDf λγ≤− Τ                                       (3.12) 

)()()))(ˆ())((()( max

2
PtetxDftxDfPte λγ≤−Τ                                       (3.13) 

From (3.4) and (3.7) one deduces. 

)()()())),(ˆ()),((( max

2
PtetPettxgttxg λβ≤− Τ                                      (3.14) 

)()())),(ˆ()),((()( max

2
PtettxgttxgPte λβ≤−Τ                                       (3.15) 

From (3.5) and (3.7) one deduces. 

)()()())))(ˆ())(((( max

2
PteLtPetxhtxhL λδ≤−− Τ                          (3.16) 

)()())))(ˆ())(((()( max

2
PteLtxhtxhLPte λδ≤−−Τ                          (3.17) 

where )(max Pλ  denotes the largest eigenvalue of P. 

Substituting (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17) into (3.11) gives: 

)()()(2)())((
)(

max

2
PteLteQte

dt

tdV λδβγ +++−≤ Τ           (3.18) 

with 
2

min )()()()( teQteQte λ≥Τ                                                   (3.19)                                  

One deduces from (3.19): 

( ) 2
maxmin )()()(2)(

)(
tePLQ

dt

tdV λδβγλ +++−≤                      (3.20) 

From (3.20) and (3.8) we have  

0))(( <teV&                                                                                        (3.21) 

since P is unique positive definite solution and it is clear that  

0)()())(( >= Τ tPeteteV , 0)0( =V  and by (3.21) we have conclude that the 

error dynamic system (3.9) is asymptotically stable via a single observer gain 

parameter L. Thus )(ˆ)( txtx ≅  as ∞→t . And this complete the proof.  
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Remarks (3.1)  

1. The problem tackled in this theorem can be stated as follows: 

Find the condition  on the  observer   gain   matrix  L  that  the  dynamic 

      behavior of  the  dynamical error (3.9)  is  asymptotically  stable or the                      

      unmeasurable actual state )(tx of  non-linear dynamical control system  

      (3.1) will converge to the state observer )(ˆ tx  as t tend to infinite. 

2. The assumption that Df, g and h are Lipschitz globally condition may 

be relaxed to only locally Lipschitz condition. 

3. An observer gain matrix L is selected such that (3.8) is satisfied. That 

is, by  the  single  observer  gain  L, we can always  guarantee  that  the  

state observer )(ˆ tx  converge to the actual state )(tx  of non-linear 

dynamical control system (3.1).      

 

Algorithm (3.1)  

The following algorithm is presented in order to design a deterministic    

observer that estimates the original non-linear dynamical states given in (3.1). 

Based on the result of the theorem (3.1).  

     

Step (0): Consider the non-linear dynamical system  

0)0(

))(()()(

)),(())(()()(
)(

xx

txhtxCty

ttxgtxDftutx
dt

tdx

=
+=

++Β+Α=

 

where nRtx ∈)(  is unmeasurable state vector, )(tu  is the control input  and 

mRty ∈)(  is the output vector. Suppose that the matrices A, B, C and D have 

a constant entries and appropriate dimensions. The non-linearity functions 

nn RRtxDf →:))(( , nn RRRttxg →×:)),((  and mn RRtxh →:))((  are 

assumed  to  be  globally  Lipschitz  with  a  Lipschitz  constants  γ , β  and δ   
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respectively. 

Step (1): If ),( CΑ  is observable, go to Step (2), otherwise, the system should 

be modified to satisfy the observable condition.   

Step (2): Check the following Lipschitz conditions 

)(ˆ)())(ˆ())(( txtxtxDftxDf −≤− γ  

)(ˆ)()),(ˆ()),(( txtxttxgttxg −≤− β   for Rt ∈   

)(ˆ)())(ˆ())(( txtxtxhtxh −≤− δ  

and design the observer dynamic by  

0ˆ)0(ˆ

))(ˆ()(ˆ)(ˆ

))))(ˆ()(ˆ()(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txhtxCty

txhtxCtyLttxgtxDftutx
dt

txd

=
+=

+−+++Β+Α=

 

Step (3): Select L that makes )( LC−Α  asymptotically stable by using dual of 

the pole placement. (see subsection 1.5.4). And compute L . 

Step (4): Let the dynamic error )(ˆ)()( txtxte −=  and )0(ˆ)0()0( xxe −=   

)))(ˆ())(((

)),(ˆ()),(())(ˆ())(()()(
)(

txhtxhL

ttxgttxgtxDftxDfteLC
dt

tde

−−

−+−+−Α=

 )0(ˆ)0()0( xxe −=   

Step (5): Set )()())(()( tePteteVtV Τ=≡  

where P is the unique positive definite  solution of 

QLCPPLC −=−Α+−Α Τ )()( , for arbitrary positive definite matrix Q .     

Step (6): Check  
)(2

)(

max

min

P

Q
L

λ
λδβγ <++  

where γ  is the Lipschitz constant of ))(( txDf , β  is the Lipschitz constant of 

)),(( ttxg  and δ  is the Lipschitz constant of ))(( txh . )(min Qλ  denotes the 

smallest eigenvalue of Q and )(max Pλ  denotes the largest eigenvalue of P.   
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If Step (6) is not satisfied go to Step (3) and select another L such that Step 

(6) satisfy.  

 

Problem (3.1)  

Consider a non-linear dynamical system described by the following 

dynamical equations:  

[ ] )cos()sin(0005.001)(

)(sin003.0
2

cos01.0

)cos(

)sin(

002.00

001.0001.0

1

0

6.39

10

)(

)(

21
2

1

2
1

2

2

1

2

1

xx
x

x
ty

tx

t
x

x

x
u

tx

tx

+







=
























+















+






+








−−
=









&

&

 

[ ]Τ−= 21)0(x , [ ]Τ−= 21)0(x̂                                                  

    (3.22)         

Step (1): Check the observability condition for the system 

N )( *** CC Α= M  

            






=
10

01
 

Hence rank (N) = 2. Therefore (A, C) is completely state observable. 

Step (2): To verify the non-linearity ))(( txDf , )),(( ttxg  and ))(( txh  satisfy 

Lipschitz condition: 

(1) 






 +
=

)cos(002.0

)cos(001.0)sin(001.0
))((

2

21

x

xx
txDf  

The Jacobian matrix for ))(( txDf  is  










−
−

=
)sin(002.00

)sin(001.0)cos(001.0

2

21
1 x

xx
J  

where 

 002449489.01 ≤J . 
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which implies that: 

)(ˆ)(002449489.0))(ˆ())(( txtxtxDftxDf −≤−                           (3.23) 

Thus, the non-linearity ))(( txDf  satisfy the global Lipschitz condition with 

Lipschitz constant 002449489.0=γ .  

(2) 
























=

)(sin003.0
2

cos01.0
)),((

2
1

2

tx

t
x

ttxg  

The Jacobian matrix for )),(( ttxg  is  
























=

0)(sin003.0
2

cos01.00

2
2

t

t
J   

where 

010440306.02 ≤J .   

hence: 

)(ˆ)(010440306.0)),(ˆ()),(( txtxttxgttxg −≤−                            (3.24) 

Thus, the non-linearity function )),(( ttxg  satisfy the global Lipschitz 

condition with Lipschitz constant 010440306.0=β . 

(3) )cos()sin(0005.0))(( 21 xxtxh =  

The Jacobian matrix for the function ))(( txh  is  

[ ])sin()sin(0005.0),cos()cos(0005.0 21213 xxxxJ −=  

where 

000707106.03 ≤J . 

hence: 

)(ˆ)(000707106.0))(ˆ())(( txtxtxhtxh −≤−                                  (3.25)       

Thus, the non-linearity function ))(( txh  satisfy the global Lipschitz condition 

with Lipschitz constant 000707106.0=δ . 
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Step (3): Suppose that we use the dual of the pole placement approach to 

compute observer gain matrix L and the desired poles for this system are 

selected as: 

6.92.71 i+−=η , 6.92.72 i−−=η . 

The state observer gain matrix L can be obtained (by using MATLAB) as 

shown in program (A3) in Appendix A.        








=
12.96

8.10
L                                                                                      (3.26) 

Hence  

7248.96=L .                                                                                  (3.27) 

Step (4): To find P which is the solution of this Riccati equation:  

QLCPPLC −=−Α+−Α Τ )()(   

On solving it to get a unique positive definite solution P, on selection of: 








=
100

010
Q  

hence 

  










−
−

=








−−








ΡΡ
ΡΡ

+








ΡΡ
ΡΡ










−
−−

100

010

6.312.105

18.10

6.31

12.1058.10

2212

1211

2212

1211

 

therefore 










−
−

=
6309.07288.2

7288.20235.27
P                                                        (3.28) 

3517.0)(1 =Pλ , 3027.27)(2 =Pλ . 

Then P is positive definite and also symmetric matrix. Also, it's clear that Q is 

positive definite matrix. It is clear that 10)(min =Qλ , 3027.27)(max =Pλ . 

Step (5): From step (2) and step (3) it is clear that  

  081284556.0=++ Lδβγ .                                                          (3.29) 
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Now, check 
)(2

)(

max

min

P

Q
L

λ
λδβγ <++  = 0.1831.                            (3.30) 

Finally, we shall obtain the response of the system to the given initial 

condition: [ ]Τ−= 21)0(x , [ ]Τ−= 21)0(x̂ . 

Assuming that the control is an open- loop controller, i.e., )(tu is a 

function of t only and assuming that no any disturbance to the system 

occurred. We take )exp()( ttu −=  then Equation (3.22), becomes                                                                           

 

[ ] )cos()sin(0005.001)(

)(sin003.0
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&

&

(3.31) 

Now, the observer can be estimated by: 

)()),(ˆ())(ˆ()()(ˆ)(
)(ˆ

tLyttxgtxDftutxLC
dt

txd +++Β+−Α=   






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

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                                                                                                                (3.32) 

A MATLAB program using  the  fourth-order Runge-kutta method is 

used to obtain the states 1x  , 2x  , 1x̂  and 2x̂ , and  simulate the dynamics 

errors are shown in MATLAB program (A3), in  Appendix  A. 

The numerical results and estimators based on the algorithm for 

problem (3.1) have been shown in the following plotted graphs.  
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Fig (3.1) Observer performance: state variable 1x (solid curve). and its 

observer 1x̂  (broken curve) for 1)0(1 −=x , 1)0(ˆ1 −=x  of problem (3.1). 

 

Fig (3.2) error between )(1 tx  and its observer )(ˆ1 tx  of problem (3.1). 
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Fig (3.3) Observer performance: state variable 2x  (solid curve). and its 

observer 2x̂  (broken curve) for 2)0(2 =x , 2)0(ˆ2 =x  of problem (3.1). 

  

Fig (3.4) error between )(2 tx  and its observer )(ˆ2 tx  of problem (3.1). 
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Problem (3.2)  

Consider a non-linear dynamical control system described by the 

following dynamical equations:  









+
























=

















+








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











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

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

+
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
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

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

+
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

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











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

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=


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

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[ ]Τ−= 101)0(x , [ ]Τ−−= 5.05.01)0(x̂   

                                                                                                                   (3.33) 

 (1) the first  stage: the  feedback  gain  K  is  obtained  by  algorithm  (1.2)                

     as  follows: 

Step (1): Check the controllability condition for the system 

M )( 2ΒΑΑΒΒ= MM  

             
















=
191310

040201

402010

 

Hence rank (M) = 3. Therefore (A, B) is completely state controllable. 

Step (2): Suppose that we use the pole placement approach to compute         

feedback gain matrix K and the control poles for this system are selected as: 

i+−= 11µ , i−−= 12µ , 13 −=µ .   

The feedback gain matrix K can be obtained (by using MATLAB as shown in 

program (A4) in Appendix A.           

K 






−
=

7188.01554.18990.1

8972.13822.57088.2
.                                                  (3.34)                                         
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(2) the second stage: the observer  gain L  by  algorithm (3.1)  is obtained as 

      follows: 

Step (1): Check the observability condition for the system 

N
















Α
Α=

2C

C

C

 

            



























=

3354

1134

3132

152

321

111

 

Hence rank (N) = 3. Therefore (A, C) is completely state observable. 

Step (2): To verify the non-linearity ))(( txDf , )),(( ttxg  and ))(( txh  satisfy 

Lipschitz condition: 

(1) 
















+
+

++
=

)cos()sin(01.0)sin(06.0

)cos()sin(06.0)cos(02.0

)cos()sin(03.0)sin(01.0)cos(1.0

))((

223

221

2231

xxx

xxx

xxxx

txDf  

The Jacobian matrix for ))(( txDf  is  

















−
−

=
)cos(06.0)2cos(01.00

0)2cos(06.0)sin(02.0

)cos(01.0)2cos(03.0)sin(1.0

32

21

321

1

xx

xx

xxx

J  

where         

1367.01 ≤J  

which implies that: 

  )(ˆ)(1367.0))(ˆ())(( txtxtxDftxDf −≤−                                      (3.35) 

Thus, the  non-linearity ))(( txDf  satisfy the global Lipschitz condition with 

Lipschitz constant 1367.0=γ . 
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(2) 

















=
)2sin(06.0

)sin(03.0

0

)),((

2

3

tx

txttxg      

The Jacobian matrix for the function )),(( ttxg  is  

















=
0)2sin(06.00

)sin(03.000

000

2

t

tJ  

where 

06708.02 ≤J  

hence: 

)(ˆ)(06708.0)),(ˆ()),(( txtxttxgttxg −≤−                                    (3.36) 

Thus, the non-linearity function )),(( ttxg  satisfy the global Lipschitz 

condition with Lipschitz constant 06708.0=β . 

(3) 







=

)sin(005.0

)sin()cos(002.0
))((

1

33

x

xx
txh  

The Jacobian matrix for the function ))(( txh  is   









=

00)cos(005.0

)2cos(002.000

1

3
3 x

x
J  

where 

00538.03 ≤J . 

hence: 

)(ˆ)(00538.0))(ˆ())(( txtxtxhtxh −≤−                                          (3.37) 

Thus, the non-linearity function ))(( txh  satisfy the global Lipschitz condition 

with Lipschitz constant 00538.0=δ . 

Step (3): Suppose that we use the dual of the pole placement approach to    

compute observer  gain  matrix  L  and  the  desired  poles for this system are  

 selected as: 



ynamical system Linear D-Extension to General Non                                 hree Chapter T   

 ٨٧

441 i−−=η , 442 i+−=η , 43 −=η . 

The state observer gain matrix L can be obtained (by using MATLAB) as 

shown in program (A4) in Appendix A.        

















−
−

−
=

5621.11096.1

9402.79088.8

8725.63244.13

L                                                               (3.38) 

Hence  

2/1
3

1

2

1

2













= ∑∑

= =i j
ijaL   

              1014.19=                                                                                      (3.39) 

Step (4): To find P which is the solution of this Riccati equation:  

QLCPPLC −=−Α+−Α Τ )()(  

On solving it to get a unique positive definite solution P, on selection of: 

















−
−

−
=

300

030

003

Q                                                                         (3.40) 

hence 

















−
−

−
=

















−−
−−

−

















ΡΡΡ
ΡΡΡ
ΡΡΡ

+
















ΡΡΡ
ΡΡΡ
ΡΡΡ

















−−
−

−−

300

030

003

5767.29854.04525.0

9117.149715.49686.0

2933.74207.04518.4

5767.29117.142933.7

9854.09715.44207.0

4525.09686.04518.4

332313

232212

131211

332313

232212

131211

 

therefore 

 

















−
−=

9765.12055.00725.0

2055.02661.00601.0

0725.00601.03426.0

P                                                (3.41) 

,2069.0)(1 =Pλ  ,3750.0)(2 =Pλ  0034.2)(3 =Pλ . 
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Then P is positive definite and also symmetric matrix. Also, it's clear that Q is 

positive definite matrix. It is clear that 3)(min =Qλ , 0034.2)(max =Pλ . 

Step (5): From step (2) and step (3) of stage 2 it is clear that    

3065.0=++ Lδβγ .                                                                    (3.42) 

Now, check 
)(2

)(

max

min

P

Q
L

λ
λδβγ <++  = 0.7486.                            (3.43)  

Finally, we shall obtain the response of the system to the following              

initial condition:     

















−
=

1

0

1

)0(x  ,  

















−
=

5.0

5.0

0

)0(e                                                            (3.44) 

In applying theorem (3.1), the Eq. (2.27) becomes 

)),(ˆ),(()()()( ttxtxteLCte ζ+−Α=&                                                (3.45) 

where 

 
)))(ˆ())(((

)),(ˆ()),(())(ˆ())(()),(ˆ),((

txhtxhL

ttxgttxgtxDftxDfttxtx

−−
−+−=ζ

 

where the observer gain L is determined such that the inequality (3.8), is 

satisfied. 

Hence Eq. (2.28) becomes  








 +
+

















−Α
ΒΚΒΚ−Α

=








)),(ˆ),((

)),(())((

)(

)(

0)(

)(

ttxtx

ttxgtxDf

te

tx

LCte

tx

ζ&

&
         (3.46) 
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                                                                                                                (3.47) 

A MATLAB program using the fourth-order Runge-kutta method is 

used to obtain the response is shown in MATLAB program (A4), in Appendix 

A. 

The numerical results and estimators based on the algorithm for 

problem (3.2) have been shown in the following plotted graphs.  
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Fig (3.5) Observer performance: state variable 1x (solid curve). and its 

observer 1x̂  (broken curve) for 1)0(1 =x , 1)0(ˆ1 =x  of problem (3.2). 

 

Fig (3.6) error between )(1 tx  and its observer )(ˆ1 tx  of problem (3.2). 
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Fig (3.7) Observer performance: state variable 2x  (solid curve). and its 

observer 2x̂  (broken curve) for 0)0(2 =x , 5.0)0(ˆ2 −=x  of problem (3.2). 

  

Fig (3.8) error between )(2 tx  and its observer )(ˆ2 tx  of problem (3.2). 
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Fig (3.9) Observer performance: state variable 3x  (solid curve). and its 

observer 3x̂  (broken curve) for 1)0(3 −=x , 5.0)0(ˆ3 −=x  of problem (3.2). 

 
 

Fig (3.10) error between )(3 tx  and its observer )(ˆ3 tx  of problem (3.2). 
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3.2 AN APPROXIMATE STATE SPACE OBSERVER 

If we fail to find a single gain L that can lead to stable error dynamics 

when we use closed loop controller xu ˆΚ−=  such that iη−  be approximately 

equal to iµ4−  where iη−  are the observer roots, and iµ−  are the control 

roots. Then we can find approximate observer as follows: 

If  )(⋅h   is continuously differentiable function, with  0)0( =h . Let us denote  

  
0

1
=










∂
∂=

xx

h
C  

Then the given system (3.1) can be expanded as 

))(()()()(

)),(())(()()(

11 txhtxCtxCty

ttxgtxDfutxtx

++=
++Β+Α=&

                                        (3.48) 

where ))((1 txh  is obtained from expanding ))(( txh  in a Taylor series about 

0=x , as ))(()()0())(( 11 txhtxChtxh ++=  

For the observer design we will neglect the function ))((1 txh . The observer so 

designed will be approximate, since we neglect the higher-order terms of h. 

One can now find the highest value of γ  and β  for which an observer design 

is possible for the following system. 

)()(

)),(())(()()(

txOty

ttxgtxDfutxtx

=
++Β+Α=&

                                        (3.49) 

where 1CCO +=   

Then the observer, for the non-linear system (3.49) is implemented as follows. 

)(ˆ)(ˆ

)()),(ˆ())(ˆ()(ˆ)()(ˆ

txOty

tLyttxgtxDfutxLCtx

=
+++Β+−Α=&

               (3.50) 

Note that Eq. (3.49) is the same as Eq. (2.1) so we can make a suitable 

transformation and satisfy the inequality (2.9) as we discussed in Lemma 

(2.2).   
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Problem (3.3)  

Consider a non-linear dynamical control system described by the 

following dynamical equations:   

[ ] )sin(01)(

)(sin

)(cos3.0
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[ ]Τ= 3.34)0(x , [ ]Τ= 95.433.3)0(x̂  

                                                                                                             (3.51) 

(1) the  first  stage: the  feedback  gain  K  is  obtained  by  algorithm  (1.1)                

     as  follows: 

Step (1): Check the controllability condition for the system 

M )( ΑΒΒ= M  

             






=
01

10
 

Hence rank (M) = 2. Therefore (A, B) is completely state controllable. 

Step (2): Suppose that we use the pole placement approach to compute      

feedback gain matrix K and the control poles for this system are selected as: 

7071.07071.01 i+−=µ , 7071.07071.02 i−−=µ .  

The feedback gain matrix K can be obtained (by using MATLAB) as shown 

in program (A5) in Appendix A.  

( )4142.11=Κ                                                                                (3.52) 

(2) the second stage: the observer gain L by  algorithm  (3.1)  is  obtained as 

      follows: 

Step (1): Check the observability condition for the system 

N ( )∗∗∗ Α= CC M  

             






=
10

01
 



ynamical system Linear D-Extension to General Non                                 hree Chapter T   

 ٩٥

Hence rank (N) = 2. Therefore (A, C) is completely state observable. 

Step (2): To verify the non-linearity ))(( txDf , )),(( ttxg  and ))(( txh  satisfy 

Lipschitz condition: 

(1) 







=

)cos(

)sin(
))((

1

1

x

x
txDf  

The Jacobian matrix for ))(( txDf  is  










−
=

0)sin(

0)cos(

1

1
1 x

x
J  

where        

414213562.11 ≤J   

which implies that: 

)(ˆ)(414213562.1))(ˆ())(( txtxtxDftxDf −≤−                             (3.53) 

Thus, the non-linearity ))(( txDf  satisfy the global Lipschitz condition with 

Lipschitz constant 414213562.1=γ . 

(2) 







=

)(sin

)(cos3.0
)),((

2
2

3
1

tx

tx
ttxg  

The Jacobian matrix for )),(( ttxg  is  









=

)(sin0

0)(cos3.0
2

3

2
t

t
J  

where 

044030651.12 ≤J   

hence: 

)(ˆ)(044030651.1)),(ˆ()),(( txtxttxgttxg −≤−                            (3.54 )  

Thus, the non-linearity function )),(( ttxg  satisfy the global Lipschitz 

condition with Lipschitz constant 044030651.1=β . 

(3) )sin())(( 2xtxh =  
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The Jacobian matrix for the function ))(( txh  is  

[ ])cos(,0 23 xJ =  

where 

13 ≤J  

hence: 

)(ˆ)())(ˆ())(( txtxtxhtxh −≤−                                                        (3.55)  

Thus, the non-linearity function ))(( txh  satisfy the global Lipschitz condition 

with Lipschitz constant 1=δ . 

Step (3): Suppose that we use the dual of the pole placement approach to      

compute observer gain matrix L and the desired poles for this system are 

selected as: 

8284.28284.21 i+−=η , 8284.28284.22 i−−=η . 

The state observer gain matrix L can be obtained (by using MATLAB) as 

shown in program (A5) in Appendix A.        








=
9997.15

6568.5
L                                                                                  (3.56) 

Hence    

9703.16=L .                                                                              (3.57) 

Step (4): To find P which is the solution of this Riccati equation:  

QLCPPLC −=−Α+−Α Τ )()(   

On solving it to get a unique positive definite solution P, on selection of: 








=
10

01
Q  

hence  










−
−

=








−
−










ΡΡ
ΡΡ

+








ΡΡ
ΡΡ








 −−
10

01

09997.15

16568.5

01

9997.156568.5

2212

1211

2212

1211                            

therefore  
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








−
−

=
2707.05.0

5.05026.1
P                                                                      (3.58) 

0933.0)(1 =Pλ , 68.1)(2 =Pλ . 

Then P is positive definite and also symmetric matrix. Also, it's clear that Q is 

positive definite matrix. It is clear that 1)(min =Qλ , 68.1)(max =Pλ . 

Step (5): From step (2) and step (3) of stage 2, it is clear that    

428544213.19=++ Lδβγ  .                                                        (3.59)   

Now, check 
)(2

)(

max

min

P

Q
L

λ
λδβγ <++  = 0.2976.                            (3.60)  

Since the observer gain was unsuccessful and )sin()( 2xxh =  is continuously 

differentiable function, with 0)0sin()0( ==h . Then the output of the (3.51) 

can be approximate in order to overcome this difficulties and as follows: 

[ ] 







=

2

111)(
x

x
ty                                                                         (3.61) 

so another observer gain which leads to stable error dynamics by using 

approximate output (3.61), has been adapted. 

Step (6): Check the observability condition for the system 

N1 ( )∗∗∗ Α= OO M  

              






=
10

11
 

Hence rank (N1) = 2.Therefore (A, O) is completely state observable. 

Step (7): The state observer gain matrix L1  can be obtained (by using 

MATLAB) as shown in program (A5) in Appendix A.         








−=
9997.15

3429.10
1L                                                                              (3.62) 
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Step (8): Find 1P  which is the solution of this Riccati equation:  

QOLPPOL −=−Α+−Α Τ )()( 1111   

On solving it to get a unique positive definite solution 1P , on selection of: 








=
10

01
Q  

 therefore 










−
−

=








−−








ΡΡ
ΡΡ

+








ΡΡ
ΡΡ










−
−

10

01

999.15999.15

342.11342.10

999.15342.11

999.15342.10

2212

1211

2212

1211

 

→  








=
3901.19168.1

9168.19168.2
1P                                                                     (3.63) 

0903.0)( 11 =Pλ , 2167.4)( 12 =Pλ . 

Then 1P  is positive definite and also symmetric matrix. Also, it's clear that Q 

is positive definite matrix. It is clear that 1)(min =Qλ , 2167.4)( 1max =Pλ . 

Step (9): Now, check 
)(2

)(

1max

min

P

Q

λ
λβγ <+  = 0.1186.                                 (3.64) 

Since the observer gain in original coordinates was unsuccessful. Using 

transformation of coordinates, xz Τ=  where  

=Τ diag )( 3020                                                                             (3.65) 

then 

=Τ−1 diag )( 05.00333.0                                                               (3.66)  

Step (10): Compute 

1−ΚΤ=Κ  ( ) 






=
05.00

00333.0
4142.11  
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                              ( )0707.00333.0=                                                      (3.67) 

Step (11): To verify the non-linearity ))(( 1 tzDf −ΤΤ  and )),(( 1 ttzg −ΤΤ  satisfy 

Lipschitz condition: 

 





































=













































=ΤΤ −

30
cos20

30
sin30

30
cos

30
sin

200

030
))((

1

1

1

1

1

z

z

z

z

tzDf  

The Jacobian matrix for ))(( 1 tzDf −ΤΤ  is 

 


























−










=
0

30
sin

30

20

0
30

cos

1

1

1
z

z

J  

where 

201850425.11 ≤J   

hence: 

zztzDftzDf ˆ201850425.1))(ˆ())(( 1111 −−−− Τ−Τ≤ΤΤ−ΤΤ            (3.68)                       

Thus, the non-linearity ))(( 1 tzDf −ΤΤ  satisfy the global Lipschitz condition  

with Lipschitz constant 201850425.1=γ , and, 

 









=


























=ΤΤ −

)(sin

)(cos6.0

)(sin
20

)(cos
30

6.0

200

030
)),((

2
2

3
1

22

31

1

tz

tz

t
z

t
z

ttzg  

The Jacobian matrix for the function )),(( ttxg  is  









=

)(sin0

0)(cos6.0
2

3

2
t

t
J  

where 

166190379.12 ≤J . 
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hence: 

zzttzgttzg ˆ02236.0)),(ˆ()),(( 1111 −−−− Τ−Τ≤ΤΤ−ΤΤ                  (3.69)                   

Thus, the non-linearity function )),(( 1 ttzg −ΤΤ  satisfy the global Lipschitz 

condition with Lipschitz constant 02236.0=β . 

Step (12): Compute 

11 LL Τ= = 






=






−









9939.319

7040.169

9997.15

3429.10

200

030
                            (3.70) 

Step (13): To find 1P  which is the solution of this Riccati equation:  

QOLPPOL −=−Α+−Α Τ )()( 1111  

On solving it to get a unique positive definite solutionP , on selection of: 








=
10

01
Q   

therefore 

 










−
−

=








−−








ΡΡ
ΡΡ

+








ΡΡ
ΡΡ










−
−

10

01

999.15666.10

014.17342.10

999.15014.17

666.10342.10

2212

1211

2212

1211

 

→  









=

2786.21134.2

1134.21311.2
1P                                                                    (3.71) 

,0902.0)( 11 =Pλ  3195.4)( 12 =Pλ .  

Then 1P  is positive definite and also symmetric matrix. Also, it's clear that Q 

is positive definite matrix. It is clear that 1)(min =Qλ , 319.4)( 1max =Pλ 5, 

05.0)( 1
max =Τ−λ . 

Step (14): From step(11)  it is clear that 224210425.1=+ βγ . 
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Now, check 
)()(2

)(
1

max1max

min
−Τ

<+
λλ

λβγ
P

Q
 = 2.3151.                                (3.72) 

Finally, we shall obtain the response of the system to the following 

initial condition:   

 







=

66

120
)0(z  ,  









−
=

33

20
)0(E                                                          (3.73)   

Referring to Equation (2.65),  










ΤΤ
ΤΤ+ΤΤ

+
















Τ−ΑΤ
ΤΒΚΤΤΒΚ−ΑΤ

=








−−

−−

−

−−

)),(ˆ),((

)),(())((

)(

)(

)(0

)(

)(

)(

11

11

1

11

ttztz

ttzgtzDf

tE

tz

LCtE

tz

ξ

&

&

  

where 

)),(ˆ(

)),(())(ˆ())(()),(ˆ),((
1

11111

ttzg

ttzgtzDftzDfttztz
−

−−−−−

ΤΤ

−ΤΤ+ΤΤ−ΤΤ=ΤΤξ
 

the response to the initial condition can be determined from   

1 1

2 2

1 1

2 2

31
1

21
2

1 1

0 1.5 0 0

0.6667 1.4142 0.6667 1.4142

0 0 10.3429 17.0143

0 0 10.6665 15.9997

30sin 0.6 cos ( )
30

20cos sin ( )
30

30 sin sin
30

z z

z z

E E

E E

z
z t

z
z t

z z E

    
    − −    = +
    
    − −    

  + 
 

  + 
 

−  − 
 

&

&

&

&

( )

( )

31
1 1 1

21 1 1
2 2 2

0.6 ( ) cos ( )
30

20 cos cos ( ) sin ( )
30 30

z z E t

z z E
z z E t

 
 
 
 
 
 
    + − −   

   
 −    − + − −     
      

                   (3.74)                     
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Fig (3.11) Observer performance: state variable 1x (solid curve). and its 

observer 1x̂  (broken curve) for 4)0(1 =x , 33.3)0(ˆ1 =x  of problem (3.3). 

 

Fig (3.12) error between )(1 tx  and its observer )(ˆ1 tx  of problem (3.3). 
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Fig (3.13) Observer performance: state variable 2x  (solid curve). and its 

observer 2x̂  (broken curve) for 3.3)0(2 =x , 95.4)0(ˆ2 =x  of problem (3.3). 

  

Fig (3.14) error between )(2 tx  and its observer )(ˆ2 tx  of problem (3.3). 
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This chapter represents an effort towards developing a suitable 

method to design and implement observers for inherently nonlinear 

dynamical control systems. These systems are driven by nonlinear functions 

which are Lipschitz in nature. The underlying theory makes use of the 

methods developed for the quadratic stabilization of uncertain systems. 

A computational algorithm based on theorem for design a 

deterministic state dynamic observer has been presented. Observer-based 

control law for non-linear system is studied, several problems are 

demonstrated the validity of our results. The proposed theory is used to design 

an observer for a single-link flexible joint robot. 

 

2.1 MATHEMATICAL PRELIMINARIES 

 The following are some necessary mathematical principal that will be 

needed in our work.  

 

Remarks (2.1) [4]: 

1. The Euclidean norm of nn ×  matrix can be defined as:     

            

2/1

1 1

2













=Α ∑∑

= =

n

i

n

j
ija  

         where ija  is the absolute value of the matrix element ija .   

2. The norm of nn ×  matrix is also defined as:                       

             )( 2/1

max )( ΑΑ=Α Τλ  

          where  ΤΑ  is the transpose of  A, maxλ  is the maximum eigenvalue of                  

           )( ΑΑ Τ , provided that ΑΑΤ  is positive semi definite matrix. 
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Lemma (2.1) [4]:      

Let A be a hermitian matrix and let minλ  and maxλ  be the minimum and 

maximum eigenvalues of A, respectively, then:  

2

)max(

2

)min( xxxx Α
∗

Α ≤Α≤ λλ        

for any x in the n-dimensional complex vector space nC , where            

∑
=

=
n

i
ixx

1

22
, ix  is the i-th component of x.  

 

Definition (2.1) [24]:  

A (vector-valued) function )(xf  is said to be globally Lipschitz if there 

exists a constant γ  such that for all nRxx ∈21, , the following inequality  

holds: 

                     2121 )()( xxxfxf −≤− γ . 

In this case γ  is said to be the Lipschitz constant of  f.  

 

Remark (2.2) [24]:  

        If nRxxf ∈),(  is differentiable function with bounded partial 

derivatives,  then γ  is simply is the upper bound of the norm of the Jacobian 

matrix for the function )(xf , the upper bound taken over the entire nR . 

However, in general, a Lipschitz function may not be differentiable.  

 

2.2 SYSTEM DESCRIPTION AND MOTIVATION 

        The suggested non-linear dynamical control system described as follows:   

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

                                   (2.1) 
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where nRtx ∈)( is unmeasurable state vector, )(tu  is the control input and 

mRty ∈)(  is the output vector. Suppose that the matrices A, B, C and D have 

a constant entries of appropriate dimensions. The non-linear functions  

nn RRtxDf →:))((  and nn RRRttxg →×:)),((  are assumed to be globally 

Lipschitz in x with a Lipschitz constants γ  and β , respectively. 

The assumption that Df  and g  are Lipschitz globally may be relaxed to 

assume that Df  and g  are only locally Lipschitz. 

Systems of type (2.1) are common mechanical systems frequently contain 

Lipschitz-type nonlinearities-trignometric nonlinearities which occur in 

robotic applications, a non-linear softening spring,…,etc. Non-linearities 

which are square or cubic in nature are not globally Lipschitz: however, they 

are locally so. Moreover, when such functions occur in physical system, they 

frequently have a saturation in their growth rate, making them globally 

Lipschitz functions. Frequently, we make the system measurements part of 

the system state, so the assumption that the output is linear in the state is 

justified. The assumption that the system dynamics are linear in the input is 

usually true for mechanical systems because the input is usually a torque or 

force which enters the dynamics linearly due to form of Newton's laws. In 

summary, while the class of systems we are addressing is not exhaustive, it is 

fairly large from an engineering point-of-view, as well as the mathematics. 

Since the state variables of a non-linear dynamical control system (2.1) are 

not available for measurement as an output, then a dynamical state observer 

of non-linear dynamical control system (2.1) is constructed as follows: 

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()()(ˆ
)(ˆ

txCty

txCtyLttxgtxDftutx
dt

txd

=

−+++Β+Α=
 (2.2)  

where the observed state is denoted by )(ˆ tx , and L is the observer gain matrix 

with an appropriate dimension. 
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Define: 

)(ˆ)()( txtxte −=                                                                                 (2.3)  

Clearly, )(te  is the dynamical error between the actual state )(tx  and state 

observer )(ˆ tx . Then, the dynamical error in state observer (2.2) of the non-

linear dynamical control system (2.1) and has the following dynamic 

equation: 

)),(ˆ()),(())(ˆ())(()()(
)(

ttxgttxgtxDftxDfteLC
dt

tde −+−+−Α= (2.4)  

)0(ˆ)0()0( xxe −=                                                                               (2.5) 

If the dynamic behavior of dynamical error (2.4) is asymptotically stable, then 

the dynamical error (2.4) will tend to zero with an adequate speed as the time 

tend to infinity. That is, the unmeasurable actual state )(tx  given in (2.1), will 

converge to the state observer )(ˆ tx , given in (2.2), regardless of the values of 

)0(x  and )0(x̂  as t tends to infinity. 

The following theorem is developed to design the nonlinear dynamic state 

observer (2.2) for the presented problem (2.1). 

  

Theorem (2.1) 

Consider the non-linear dynamical system (2.1) 

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

  

where nRx ∈ , pRu ∈ , mRy ∈ , nnR ×∈Α , pnR ×∈Β , nnRD ×∈ , nmRC ×∈ , 

nn RRf →: , nn RRRg →×: , and assume that the state variables are not 

available for measurement. Consider the observer of non-linear dynamical 

control system (2.1) is given in (2.2) 
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0ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txCty

txCtyLttxgtxDftutx
dt

txd

=
=

−+++Β+Α=

 

The following conditions are assumed to be satisfied 

1. The pair (A, C) of a non-linear dynamical control system (2.1), is 

completely state observer.  

2. The non-linearity function nn RRtxDf →:))((  is assumed to be 

globally Lipschitz condition with Lipschitz constant γ , i.e., 

         )(ˆ)())(ˆ())(( txtxtxDftxDf −≤− γ                                                  (2.6) 

3. The  non-linearity  function   nn RRRttxg →×:)),((    is  assumed  to  

be globally   Lipschitz condition with Lipschitz constant β , i.e., 

          )(ˆ)()),(ˆ()),(( txtxttxgttxg −≤− β  for Rt ∈                                (2.7) 

4. The observer gain L can be selected such that )( LC−Α  is 

asymptotically stable matrix. 

5. The  Riccati equation QLCPPLC −=−Α+−Α Τ )()(                  (2.8) 

has a unique positive definite solution P for arbitrary positive definite 

selection matrix Q. 

6. On using the Lyapunov function stability )()())(( tPeteteV Τ= , where 

)(ˆ)()( txtxte −=  and P satisfy equation (2.8) 

If 

)(2

)(

max

min

P

Q

λ
λβγ <+                                                                             (2.9) 

Then the dynamical error (2.4) 

)),(ˆ()),(())(ˆ())(()()(
)(

ttxgttxgtxDftxDfteLC
dt

tde −+−+−Α=  

is asymptotically stable via a single observer gain parameter L.  



Chapter Two                                         Deterministic State Observer for some Non-Linear 
Dynamical system                                                                                                                       

 ٣٠

Proof 

The non-linear dynamical control system (2.1) 

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

 

the state observer of non-linear dynamical control system (2.1) is given as 

follows (2.2) 

0ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txCty

txCtyLttxgtxDftutx
dt

txd

=
=

−+++Β+Α=

 

The dynamical error in state observer (2.2) of non-linear dynamical 

control system is obtained to subtract (2.2) from (2.1) as follows  

)),(ˆ()),(())(ˆ())(()()(
)(

ttxgttxgtxDftxDfteLC
dt

tde −+−+−Α=   

 where  

)0(ˆ)0()0( xxe −=   

and thus 

ΤΤΤΤΤ −+−+−Α= ))),(ˆ()),((()))(ˆ())((())(()( ttxgttxgtxDftxDfLCtete&   

                                                                                                                 (2.10)                                                                   

To examine the stability of )(te , we consider the following quadratic 

Lyapunov function,  

)()())(()( tePteteVtV Τ=≡  

)()()()(
)(

tePtetePte
dt

tdV
&&

ΤΤ +=  

On using (2.4) and (2.10) we have that 
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))]),(ˆ()),(((

)))(ˆ())((()()[()()(

]))),(ˆ()),((()))(ˆ())((())(([
)(

ttxgttxg

txDftxDfteLCPteteP

ttxgttxgtxDftxDfLCte
dt

tdV

−+
−+−Α+

−+−+−Α=

Τ

ΤΤΤΤ

 

)11.2())),(ˆ()),((()(

)())),(ˆ()),((()))(ˆ())((()(

)()))(ˆ())((()()]())[((
)(

ttxgttxgPte

tPettxgttxgtxDftxDfPte

tPetxDftxDfteLCPPLCte
dt

tdV

−

+−+−+

−+−Α+−Α=

Τ

ΤΤ

ΤΤΤ

 

From (2.8) we have 

)12.2())),(ˆ(

)),((()()())),(ˆ()),((()))(ˆ(

))((()()()))(ˆ())((()())((
)(

ttxg

ttxgPtetePttxgttxgtxDf

txDfPtetePtxDftxDfteQte
dt

tdV

−+−+

−+−+−=

ΤΤ

ΤΤΤ

Now 

))),(ˆ()),((()()())),(ˆ()),((()))(ˆ(

))((()()()))(ˆ())((())),(ˆ()),(((

)()())),(ˆ()),((()))(ˆ())((()()(

)))(ˆ())((())),(ˆ()),((()()())),(ˆ(

)),((()))(ˆ())((()()()))(ˆ())(((

ttxgttxgPtetPettxgttxgtxDf

txDfPtetPetxDftxDfttxgttxg

PtetPettxgttxgtxDftxDfPtetPe

txDftxDfttxgttxgPtetPettxg

ttxgtxDftxDfPtetePtxDftxDf

−+−+

−+−≤−

+−+−+

−≤−+

−+−+−

ΤΤ

ΤΤ

ΤΤΤ

ΤΤΤ

ΤΤ

                                                                                                                   (2.13) 

The first part of (2.13) can be simplified as follows:                                          

)())(ˆ())(()()))(ˆ())((( tePtxDftxDftePtxDftxDf −≤− Τ  

Since ))(( txDf  satisfy Lipschitz condition with Lipschitz constant γ  i.e,. 

)()(ˆ)())(ˆ())(( tetxtxtxDftxDf γγ =−≤−  

then 

)()()()))(ˆ())((( max

2
PtetePtxDftxDf λγ≤− Τ                      (2.14) 
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similarly, the second part of (2.13) becomes    

)()()))(ˆ())((()( max

2
PtetxDftxDfPte λγ≤−Τ                            (2.15) 

and hence the third part of (2.13) can be simplified as follows: 

)()),(ˆ()),(()()),(ˆ()),((( tePttxgttxgtPettxgttxg −≤− Τ  

Since )),(( ttxg  satisfy Lipschitz condition on x with Lipschitz constant β  i.e,  

)()(ˆ)()),(ˆ()),(( tetxtxttxgttxg ββ =−≤−  

then 

)()()())),(ˆ()),((( max
2

PtetPettxgttxg λβ≤− Τ                           (2.16) 

Similarly, the fourth part of (2.13) becomes  

)()())),(ˆ()),((()( max
2

PtettxgttxgPte λβ≤−Τ                           (2.17)                                                                                                     

where )(max Pλ  denotes the largest eigenvalue of P. 

Substituting (2.14),(2.15),(2.16) and (2.17) into (2.12) gives: 

)()()(2)())((
)(

max

2
PteteQte

dt

tdV λβγ ++−≤ Τ                                      (2.18) 

with 
2

min )()()()( teQteQte λ≥Τ                                                  (2.19) 

One deduces from (2.19): 

2

maxmin )())()(2)((
)(

tePQ
dt

tdV λβγλ ++−≤                                        (2.20) 

From (2.20) and (2.9) we have  

0
))(( <

dt

tedV
                                                                                         (2.21)                                         

since P is unique positive definite solution and it is clear that  

0)()())(( >= Τ tPeteteV , 0)0( =V  and by (2.21) we have conclude that the 

error dynamic system (2.4) is asymptotically stable via a single observer gain 

parameter L. Thus )(ˆ)( txtx ≅  as ∞→t .  

The state observer )(ˆ tx converges to the actual state of a non-linear system via  
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an observer gain parameter L. 

 

Algorithm (2.1)  

The following algorithm is presented in order to design a deterministic    

observer that estimates the original non-linear dynamical states given in (2.1). 

Based on the result of the main theorem (2.1).      

Step (0): Consider the non-linear dynamical system  

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

 

where nRtx ∈)(  is unmeasurable state vector, pRtu ∈)(  is the control input 

and mRty ∈)(  is the output vector. Suppose that the matrices A, B, C and D 

have a constant entries and appropriate dimensions. The non-linearity 

functions nn RRtxDf →:))((  and nn RRRttxg →×:)),(( are assumed to be 

globally Lipschitz in x with a Lipschitz constants γ andβ  respectively. 

Step (1): If ),( CΑ  is observable, go to Step(2), otherwise, the system should 

be modified to satisfy the observable condition.                    

Step (2): Check the following Lipschitz conditions 

)(ˆ)())(ˆ())(( txtxtxDftxDf −≤− γ

 )(ˆ)()),(ˆ()),(( txtxttxgttxg −≤− β   for Rt ∈  , nRx ∈  

and design the observer dynamic by       

 

0ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txCty

txCtyLttxgtxDftutx
dt

txd

=
=

−+++Β+Α=

   

Step (3): Select L that makes )( LC−Α  asymptotically stable by using dual of 

the pole placement. (see subsection 1.5.4).  
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Step (4): Let the dynamic error )(ˆ)()( txtxte −=  and )0(ˆ)0()0( xxe −=  

)),(ˆ()),(())(ˆ())(()()(
)(

ttxgttxgtxDftxDfteLC
dt

tde −+−+−Α=

 )0(ˆ)0()0( xxe −=   

Step (5): Set )()())(()( tePteteVtV Τ=≡  

where P is the unique positive definite  solution of  

QLCPPLC −=−Α+−Α Τ )()(  for arbitrary positive definite matrix Q . (Q 

is designed depending on decision maker).    

Step (6): Check 
)(2

)(

max

min

P

Q

λ
λβγ <+  , where γ  and β  are found in step (2). 

and )(min Qλ  denotes the smallest eigenvalue of Q , )(max Pλ  denotes the 

largest eigenvalue of P . 

If step (6) is not satisfied go to step (3) and choose another L.  

 

2.3 OBSERVER-BASED CONTROL LAW FOR NON-  

       LINEAR DYNAMICAL CONTROL SYSTEM       

Consider a non-linear dynamical control system (2.1) 

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

 

is completely state  observer and  completely  state  controllable. If the actual 

state )(tx  is not available for a feedback xu Κ−= , then it is designed state 

observer for inherently non-linear dynamical control system (2.2) as follows: 

0ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()()(ˆ
)(ˆ

xx

txCty

txCtyLttxgtxDftutx
dt

txd

=
=

−+++Β+Α=

 

                                                                                                         (2.22)                                                   
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where L is the observer gain that has been developed in theorem 2.1 

Thus, it is natural to apply the feedback gain parameter K, on the state 

observer )(ˆ tx  as follows: 

        )(ˆ)( txtu Κ−=                                                                                      (2.23) 

as shown in Fig. (2.1) 

 

 

 

 

 

 

 

 

                          Fig (2.1) Feed-back from observer state 

 

Equation (2.1) with this control (2.23) will be obtained the closed-loop 

of a non-linear dynamic system as follows:   

))(ˆ)(()),(())(()()(
)(

txtxttxgtxDftx
dt

tdx −ΒΚ+++ΒΚ−Α=     (2.24) 

The difference between the actual state )(tx  and the state observer )(ˆ tx  

of a non-linear dynamical control system (2.1) stands for the dynamical error 

in state observer: 

)(ˆ)()( txtxte −=                                                                               (2.25) 

Substituting of dynamical error vector into equation (2.24) 

)),(())(()()()(
)(

ttxgtxDftetx
dt

tdx ++ΒΚ+ΒΚ−Α=                   (2.26) 

Note that, the dynamical error in state observer (2.2) for inherently non-   

linear dynamical control system is obtained by subtracting (2.2) from (2.1) as        

follows: 

Plant 
     

Observer    

K       

u=control    
y=output 

    

=State observer̂Χ 
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)),(ˆ),(()()()( ttxtxteLCte ξ+−Α=&                                                (2.27) 

where 

)),(ˆ()),(())(ˆ())(()),(ˆ),(( ttxgttxgtxDftxDfttxtx −+−=ξ    

When considering (2.27), it is seems that )(te  converges to zero, independent 

of initial state, if the observer gain L  can be found that makes (2.27) 

asymptotically stable. As we known from theorem 2.1, such observer gain L 

often can be found. 

Next, we consider (2.26), if (2.26) is verified the sufficient conditions 

for theorem 2.1 and 0)( →te  as ∞→t .  

Then, the closed loop of a non-linear dynamical system (2.26) is 

asymptotically stable:  

         From (2.26) and (2.27), we have: 








 +
+

















−Α
ΒΚΒΚ−Α

=








)),(ˆ),((

)),(())((

)(

)(

0)(

)(

ttxtx

ttxgtxDf

te

tx

LCte

tx

ξ&

&
         (2.28) 

equation (2.28) described a dynamic of the state observer feedback control. 

Hence,  as  far  as  the  sufficient  conditions  gives  a  theorem  2.1  is      

concerned, one concludes from (2.28) that the roots of the combined system 

in Fig (2.1) consist of the sum of the control roots and the estimator roots. The 

control roots are unchanged from those obtained by assuming state feedback 

)(tx . Hence, the control law and the observer can be designed separately and 

then used jointly. 

The final matter to be settled is the specification of the desired roots of 

the observer characteristic equation. The estimation error decays at a rate      

dependent on these roots. In Eq. (2.26), we require the observer error )(te   to 

decay at fast rate with time constants that are much smaller than the time 

constants of  the controlled system so that the total response is dominated by 

the slower control roots. Hence, the observer roots should be placed to the left 

of the control roots in the complex plane. But if the observer roots are placed 
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too far to the left of the control roots, then the observer gains represented by 

the elements of L will be high. Hence, the measurement noise will not be 

filtered out and may even be amplified. 

Clearly, a compromise is required in selecting the roots of the observer 

characteristic equation. Optimal estimation theory can be employed for this 

purpose (Bryson and Ho, 1969) [3]. A rule of thumb is to let iη−  be 

approximately equal to iµ4− , where  iη−  are the observer roots, and iµ−  

are the control roots. The control roots are of course chosen to satisfy the 

performance requirements. 

The controller, including the control law and the observer, can be 

constructed with analog components, such as the operational amplifiers. It is 

expected that a controller with state feedback would be more expensive than a 

controller with output feedback. However, digital computer implementation 

of the controller with state feedback involves software and hence would be 

cost effective. 

Computationally, one can follow the conceptual procedure below to 

evaluate the single linear state observer feedback control which stabilize the 

non-linear dynamical control system.  

   

Remark (2.3) 

 The design a single linear state observer feedback control which 

stabilize the non-linear dynamical control system (2.1) becomes two stages 

process as follows:  

1. The first stage being the determination feedback gain K. 

2. The second stage being the determination of the observer gain L  

such that the inequality (2.9) is satisfied.  
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Remark (2.4)  

        If the second stage of the procedure to obtain linear state observer 

feedback control does not satisfied then take the nonsingular transformation 

xz Τ=  where ),,,( 21 ndiag σσσ K=Τ  , ,0≠iσ  ni L,2,1= . The 

transformation used to prove the stability of course, for stability not only do 

the value of γ  and β  matter but also how exactly the matrix  A  gets 

transformed, in the sense that the structure of the transformed matrix 

manifests itself in the form of the new Lyapunov solution P . We shall study 

the transformed system in the following lemma:  

 

Lemma (2.2) 

Consider the non-linear dynamical system (2.1) 

0)0(

)()(

)),(())(()()(
)(

xx

txCty

ttxgtxDftutx
dt

tdx

=
=

++Β+Α=

 

where the conditions in theorem (2.1), are satisfied, and  consider the  

following nonsingular state transformation xz Τ= , with 

),,,( 21 ndiag σσσ K=Τ , 0≠iσ , ni ,,2,1 K= . The non-linear dynamical 

system (2.1), represented in the new coordinates is given by: 

0

11

)0(

)()(

)),(())(()()(
)(

zz

tzCtY

ttzgtzDftutz
dt

tdz

=
=

ΤΤ+ΤΤ+Β+Α= −−

                   (2.29) 

where nRtz ∈)(  is the state vector, pRtu ∈)(  is the input vector, mRtY ∈)(  is 

the output vector. nnR ×− ∈ΤΑΤ=Α 1 , pnR ×∈ΤΒ=Β , nmRCC ×− ∈Τ= 1 , 

TD nnR ×∈ . Assume the following conditions are satisfied. 
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1. The pair Α( , C ) of a non-linear dynamical control system ( 2.29 ), is 

completely state observer. 

2. The non-linearity function nn RRtzDf →ΤΤ − :))(( 1  is assumed to be 

globally Lipschitz condition with Lipschitz constant γ , i.e., 

)(ˆ)())(ˆ())(( 1111 tztztzDftzDf −−−− Τ−Τ≤ΤΤ−ΤΤ γ                    (2.30) 

3. The non-linearity function nn RRRttzg →×ΤΤ − :)),(( 1  is assumed to     

be globally Lipschitz condition in the first argument with Lipschitz 

constant β , i.e.,  

          )(ˆ)()),(ˆ()),(( 1111 tztzttzgttzg −−−− Τ−Τ≤ΤΤ−ΤΤ β   for Rt ∈    (2.31) 

4. The suggested  non-linear dynamic observer 

0

11

ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()(ˆ
)(ˆ

zz

tzCtY

tzCtYLttzgtzDfutz
dt

tzd

=
=

−+ΤΤ+ΤΤ+Β+Α= −−

 

                                                                                                           (2.32) 

    where  the  observed  state  is  denoted  by  )(ˆ tz   and  mnRL ×∈   is  the   

    observer gain matrix. 

5. The observer gain L  can be selected  such that )( CL−Α  is  

asymptotically stable  matrix. 

6. The Riccati equation QCLPPCL −=−Α+−Α Τ )()(                   (2.33)  

 has a unique positive definite solution P  for  arbitrary positive definite   

     selection matrix Q. 

7. On using the Lyapunov function stability )()())(( tEPtEtEV Τ= , where      

         )(ˆ)()( tztztE −=  and P satisfy equation (2.33) 

If 
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)()(2

)(
1

maxmax

min
−Τ

<+
λλ

λβγ
P

Q
                                                      (2.34) 

Then the dynamical error is asymptotically stable via a single observer gain 

parameter L . 

 

Proof 

Let )(ˆ)()( tztztE −=                                                                                (2.35) 

on simple calculations one can have that                                                                                   

)),(ˆ(

)),(())(ˆ())(()()(
)(

1

111

ttzg

ttzgtzDftzDftECL
dt

tdE

−

−−−

ΤΤ−

ΤΤ+ΤΤ−ΤΤ+−Α=
 

                                                                                                      (2.36) 

and 

)37.2())),(ˆ()),(((

)))(ˆ())((())(()(
11

11

Τ−−

Τ−−ΤΤΤ

ΤΤ−ΤΤ

+ΤΤ−ΤΤ+−Α=

ttzgttzg

tzDftzDfCLtEtE&

 

As discussed previously in the main theorem (2.1), let                                                                                                      

)()())(()( tEPtEtEVtV Τ=≡  

and thus 

)()()()(
)(

tEPtEtEPtE
dt

tdV
&& ΤΤ +=  

On using (2.36) and (2.37) we have that  

))),(ˆ()),((()()())),(ˆ(

)),((()))(ˆ())((()()(

)))(ˆ())((()())())(((

111

111

11

ttzgttzgPtEtEPttzg

ttzgtzDftzDfPtEtEP

tzDftzDftECLPPCLtE
dt

dV

−−ΤΤ−

−−−Τ

Τ−−Τ

ΤΤ−ΤΤ+ΤΤ

−ΤΤ+ΤΤ−ΤΤ+

ΤΤ−ΤΤ+−Α+−Α=
                                                                                                          

(2.38) 

From (2.33), we have 
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))),(ˆ()),((()()(

)),(ˆ()),((()))(ˆ())(((

)()))(ˆ())((()())((

11

1111

11

ttzgttzgPtEtEP

ttzgttzgtzDftzDf

PEtEPtzDftzDftEQtE
dt

dV

−−Τ

Τ−−−−

ΤΤ−−Τ

ΤΤ−ΤΤ+

ΤΤ−ΤΤ+ΤΤ−ΤΤ

+ΤΤ−ΤΤ+−=

  

                                                                                                      (2.39)                                                                                                 

From (2.30) and (2.35) one deduces. 

21
maxmax

11 )()()()()))(ˆ())((( tEPtEPtzDftzDf −Τ−− Τ≤ΤΤ−ΤΤ λλγ         (2.40) 

21
maxmax

11 )()()()))(ˆ())((()( tEPtzDftzDfPtE −−−Τ Τ≤ΤΤ−ΤΤ λλγ        (2.41) 

From (2.31) and (2.35) one deduces. 

21
maxmax

11 )()()()())),(ˆ()),((( tEPtEPttzgttzg −Τ−− Τ≤ΤΤ−ΤΤ λλβ       (2.42) 

21
maxmax

11 )()()())),(ˆ()),((()( tEPttzgttzgPtE −−−Τ Τ≤ΤΤ−ΤΤ λλβ       (2.43) 

Substituting (2.40),(2.41),(2.42) and (2.43) into (2.39) gives: 

21
maxmax )()()()(2)())((

)(
tEPtEQtE

dt

tdV −Τ Τ++−≤ λλβγ                   (2.44) 

with 
2

min )()()()( tEQtEQtE λ≥Τ                                                (2.45) 

One deduces from (2.45): 

21
maxmaxmin )())()()(2)((

)(
tEPQ

dt

tdV −Τ++−≤ λλβγλ                (2.46)                                     

From (2.46) and (2.34) we have  

0
))(( <

dt

tEdV
                                                                                   (2.47) 

since P  is unique positive definite solution and its clear that 0))(( >tEV , 

0)0( =V  and by (2.47) we have conclude that the error dynamic system 

(2.36) is asymptotically stable via a single observer gain parameter L . Thus 

)(ˆ)( tztz ≅  as  ∞→t . 
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Algorithm (2.2) 

Step (0): Consider the non-linear dynamical system 

0

11

)0(

)()(

)),(())(()()(
)(

zz

tzCtY

ttzgtzDftutz
dt

tdz

=
=

ΤΤ+ΤΤ+Β+Α= −−

  

where nRtz ∈)( is unmeasurable state vector, )(tu  is the control input vector 

and  mRtY ∈)(   is  the output vector. Suppose that the matrices ,1−ΤΑΤ=Α  

,ΤΒ=Β  1−Τ= CC  and TD have a constant entries and appropriate 

dimensions. The non-linearity functions nn RRtzDf →ΤΤ − :))(( 1  and    

nn RRRttzg →×ΤΤ − :)),(( 1  are assumed to be globally Lipschitz with a 

Lipschitz constants γ  and β  respectively.  

Step (1): Check the following Lipschitz conditions 

)(ˆ)())(ˆ())(( 1111 tztztzDftzDf −−−− Τ−Τ≤ΤΤ−ΤΤ γ

 )(ˆ)()),(ˆ()),(( 1111 tztzttzgttzg −−−− Τ−Τ≤ΤΤ−ΤΤ β   for Rt ∈  

where      

0

11

ˆ)0(ˆ

)(ˆ)(ˆ

))(ˆ)(()),(ˆ())(ˆ()(ˆ
)(ˆ

zz

tzCtY

tzCtYLttzgtzDfutz
dt

tzd

=
=

−+ΤΤ+ΤΤ+Β+Α= −−

 

Step (2): Compute LL Τ=  that makes )( CL−Α  asymptotically stable matrix.          

Step (3): Let the dynamic error )(ˆ)()( tztztE −=  and )0(ˆ)0()0( zzE −=                   

)),(ˆ(

)),(())(ˆ())(()()(
)(

1

111

ttzg

ttzgtzDftzDftECL
dt

tdE

−

−−−

ΤΤ

−ΤΤ+ΤΤ−ΤΤ+−Α=
                                                            

)0(ˆ)0()0( zzE −=    

Step (4): Set )()())(()( tEPtEtEVtV Τ=≡  
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where P  is the unique positive definite solution of 

QCLPPCL −=−Α+−Α Τ )()(  , for arbitrary selection positive definite 

matrix Q.      

Step (5): Check    
)()(2

)(
1

maxmax

min
−Τ

<+
λλ

λβγ
P

Q
 

where  γ  and  β   are  found  in step (1), )(min Qλ  denotes the smallest 

eigenvalue of  Q , )(max Pλ  denotes the largest eigenvalue of P  and 

)( 1
max

−Τλ   denotes the largest eigenvalue of 1−Τ .   

 

The following illustration has been discussed. 

 

Problem (2.1)  

Consider a non-linear dynamical control system described by the 

following dynamical equations:   


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[ ]Τ= 215.0)0(x , [ ]Τ= 7.110)0(x̂   

                                                                                                                   (2.48)           

(1) the first stage:  the  feedback  gain  K  is  obtained  by   algorithm  (1.1)                   

      as follows: 
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Step (1): Check the controllability condition for the system 

M )( 2ΒΑΑΒΒ= MM  

             
















−
−=
2506010

60100

1000

 

Hence rank (M) = 3. Therefore (A, B) is completely state controllable. 

Step (2): From the characteristic polynomial for matrix A,  

6116

6116

10

01

23 −++=

+−
−

−
=Α−Ι

λλλ

λ
λ

λ
λ

 

          32
2

1
3 aaa +++≡ λλλ  , then 

61 =a , 112 =a  and 63 −=a    

Step (3): Determine the following transformation matrix Η  

W   Μ=Η         

where Μ  is the controllability matrix of step (1), and using the result of      

step (2), W  is defined by    

















=
001

01

1

W  1

12

a

aa

















=
001

016

1611

                

and hence 

































−
−=Η

001

016

1611

2506010

60100

1000

















=
1000

0100

0010

                                   

and 

















=Η −

1.000

01.00

001.0
1  
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Step (4): Let the desired eigenvalues be selected as:   

3221 i+−=µ , 3222 i−−=µ , 13 −=µ  

))()(( 321 µλµλµλ −−−  16205 23 +++= λλλ  

                        32
2

1
3 αλαλαλ +++≡  

Then  

51 =α , 202 =α , 163 =α    

Step (5): The state feedback gain matrix Κ can be determined using the result      

of step (3) and step (4) as follows:   

[ ] 1
112233

−Η−−−=Κ aaa ααα MM  

( ) 1651120616 −Η−−+=Κ MM  

     ( )
















−=
1.000

01.00

001.0

1922  

K ( )1.09.02.2 −= .                                                                      (2.49) 

(2) the second stage:  the  observer  gain  L by algorithm (2.1) is obtained as  

      follows: 

Step (1): Check the observability condition for the system 

  N ))(( *2**** CCC ΑΑ= MM  

 

             
















=
100

010

001

 

Hence rank (N) = 3. Therefore (A, C) is completely state observable. 

Step (2): To verify the non-linearity ))(( txDf  and )),(( ttxg  satisfy Lipschitz 

condition: 
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













 +
=

)(sin01.0

)cos()sin(06.0

)cos(01.0

))((

3
2

22

21

x

xx

xx

txDf   

The Jacobian matrix for ))(( txDf  is  















 +−+−
=

)cos()sin(02.000

0)2cos(06.00

0)sin(01.0)sin(01.0

33

2

2121

1

xx

x

xxxx

J  

where 

2/1
3

1

3

1

2

1 











= ∑∑

= =i j
ijaJ         

0648.01 ≤J   

which implies that: 

)(ˆ)(0648.0))(ˆ())(( txtxtxDftxDf −≤−                                      (2.50) 

Thus, the non-linearity ))(( txDf  satisfy the global Lipschitz condition with 

Lipschitz constant 0648.0=γ , and,  

















=
)2cos(1.0

)(sin2.0

0

)),((

2

2
1

tx

txttxg    

The Jacobian matrix for the function )),(( ttxg  is 

















=
0)2cos(1.00

00)(sin2.0

000
2

2

t

tJ  

where 

2/1
3

1

3

1

2

2 











= ∑∑

= =i j
ijaJ  

2236.02 ≤J   

hence: 
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)(ˆ)(2236.0)),(ˆ()),(( txtxttxgttxg −≤−                                      (2.51) 

Thus, the non-linearity function )),(( ttxg  satisfy the global Lipschitz  

condition with Lipschitz constant 2236.0=β . 

Step (3): Let the desired eigenvalues be selected as:  

3881 i+−=η , 3882 i−−=η , 43 −=η . 

))()(( 321 ηληληλ −−−  102432020 23 +++= λλλ  

                        32
2

1
3 αλαλαλ +++≡  

Then   

201 =α , 3202 =α , 10243 =α . 

The state observer gain matrix L can be determined as follows: 

L = (W N 1* )−

















−
−
−

11

22

33

a

a

a

α
α
α

 

            
















−
−
+

















−
−=

620

11320

61024

2561

610

100

 

  L
















−
=

474

255

14

                                                                                      (2.52)      

Step (4): To find P which is the solution of this Riccati equation 

QLCPPLC −=−Α+−Α Τ )()(  

On solving it to get a unique positive definite solution P, on selection of:  

















=
100

010

001

Q                                                                                  (2.53) 

hence 
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















−
−

−
=

















−−
−
−

















ΡΡΡ
ΡΡΡ
ΡΡΡ

+
















ΡΡΡ
ΡΡΡ
ΡΡΡ

















−
−

−−

100

010

001

611480

10225

0114

610

1101

48022514

332313

232212

131211

332313

232212

131211

         

therefore  

















=
0986.00913.03633.1

0913.02686.05043.0

3633.15043.06705.38

P                                                     (2.54) 

,0274.0)(1 =Pλ  ,2849.0)(2 =Pλ  7254.38)(3 =Pλ .  

Then P is positive definite and also symmetric matrix. Also, it's clear that Q is 

positive definite matrix. It is clear that 1)(min =Qλ , 7254.38)(max =Pλ . 

Step (5): From step (2) of stage (2) it is clear that 2884.0=+ βγ . 

Now, check 
)(2

)(

max

min

P

Q

λ
λβγ <+  = 0.0129                                        (2.55) 

Since the observer gain in original coordinates was unsuccessful. Using 

transformation of coordinates, xz Τ=  where   

=Τ diag )( 2.0120                                                                       (2.56) 

Then 

=Τ−1 diag )( 5105.0                                                                   (2.57) 

Step (6): Compute 

1−ΚΤ=Κ  ( )
















−=
500

010

0005.0

1.09.02.2  

                ( )5.09.011.0 −=                                                        (2.58)             
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Step (7): To verify the non-linearity ))(( 1 tzDf −ΤΤ  and )),(( 1 ttzg −ΤΤ  satisfy 

Lipschitz condition:   





































 +

=







































+

















=ΤΤ −

2.0
sin002.0

)cos()sin(06.0
20

cos2.0

2.0
sin01.0

)cos()sin(06.0
20

cos01.0

2.000

010

0020

))((

32

22

2
1

32

22

2
1

1

z
zz

z
z

z
zz

z
z

tzDf

                           

The Jacobian matrix for ))(( 1 tzDf −ΤΤ  is 















































+−






+−

=

2.0
cos

2.0
sin

2.0

004.0
00

0)2cos(06.00

0
20

sin2.0
20

sin
20

2.0

33

2

2
1

2
1

1

zz
z

z
z

z
z

J

where 

21.01 ≤J   

hence  

zztzDftzDf ˆ21.0))(ˆ())(( 1111 −−−− Τ−Τ≤ΤΤ−ΤΤ                         (2.59)                       

Thus, the non-linearity ))(( 1 tzDf −ΤΤ  satisfy the global Lipschitz condition   

with Lipschitz constant 21.0=γ , and,   

















=

























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



=ΤΤ −

)2cos(02.0

)(sin01.0

0

)2cos(1.0

)(sin01.0

0

2.000

010

0020

)),((

2

2
1
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2
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1

tz
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tzttzg   

The Jacobian matrix for the function )),(( ttxg  is  
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















=
0)2cos(02.00

00)(sin01.0

000
2

2

t

tJ  

where 

02236.02 ≤J  

hence  

zzttzgttzg ˆ02236.0)),(ˆ()),(( 1111 −−−− Τ−Τ≤ΤΤ−ΤΤ                  (2.60)                   

Thus, the non-linearity function )),(( 1 ttzg −ΤΤ  satisfy the global Lipschitz 

condition with Lipschitz constant 02236.0=β . 

Step (8): Compute 

LL Τ= = 
















−
=

















−















8.94
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474

255

14

2.000

010

0020

                                    (2.61)                                                                    

Step (9): To find P  which is the solution of this Riccati equation:  

QCLPPCL −=−Α+−Α Τ )()(  

On solving it to get a unique positive definite solutionP , on selection of: 
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
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







=
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010
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therefore  
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
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−
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02014
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→  
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















−
−

−−
=

1275.00530.00040.0

0530.01357.00192.0

0040.00192.00497.0

P                                          (2.62) 

,0447.0)(1 =Pλ  ,0814.0)(2 =Pλ  1868.0)(3 =Pλ . 

Then P  is positive definite and also symmetric matrix. Also, it's clear that Q 

is positive definite matrix. It is clear that 1)(min =Qλ , 1868.0)(max =Pλ , 

5)( 1
max =Τ−λ . 

Step (10): From step(7)  it is clear that 23236.0=+ βγ . 

Now, check 
)()(2

)(
1

maxmax

min
−Τ

<+
λλ

λβγ
P

Q
 = 0.5353.                       (2.63) 

Finally, we shall obtain the response of the system to the following 

initial condition:     


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




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




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
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06.0

0

10

)0(E                                                           (2.64) 

Referring to Equation (2.28), it becomes 










ΤΤ
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

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)),(())((

)(

)(

)(0

)(

)(
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ttzgtzDf

tE
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LCtE
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ξ

&

&

                      (2.65)                                                              

where 

)),(ˆ(

)),(())(ˆ())(()),(ˆ),((
1

11111

ttzg

ttzgtzDftzDfttztz
−

−−−−−

ΤΤ

−ΤΤ+ΤΤ−ΤΤ=ΤΤξ
 

the response to the initial condition can be determined from 
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                                                                                                                   (2.66)                                                                                                                                 

A MATLAB program using the fourth-order Runge-Kutta method is used to 

obtain the response is shown in MATLAB program (A1), in Appendix A.  

The numerical results and estimators based on the algorithm for problem (2.1) 

have been shown in the following plotted graphs. 
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Fig (2.2) Observer performance: state variable 1x (solid curve). and its 

observer 1x̂  (broken curve) for 5.0)0(1 =x , 0)0(ˆ1 =x  of problem (2.1). 

 

Figure (2.3) error between )(1 tx  and its observer )(ˆ1 tx  of problem (2.1). 
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Fig (2.4) Observer performance: state variable 2x  (solid curve). and its 

observer 2x̂  (broken curve) for 1)0(2 =x , 1)0(ˆ2 =x  of problem (2.1).  

     

Figure (2.5) error between )(2 tx  and its observer )(ˆ2 tx  of problem (2.1). 
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Fig (2.6) Observer performance: state variable 3x  (solid curve). and its 

observer 3x̂  (broken curve) for 2)0(3 =x , 7.1)0(ˆ3 =x  of problem (2.1). 

 
 

Figure (2.7) error between )(3 tx  and its observer )(ˆ3 tx  of problem (2.1). 
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2.4 AN OBSERVER  FOR A SINGLE-LINK FLEXIBLE    

      JOINT ROBOT                                                                 

Experimental evidence (Sweet and Good 1984) [31] has revealed that 

the performance of a large class of robots is severely limited when joint 

flexibility introduced by their transmission is not considered. The joint 

flexibility introduces low-frequency resonance effects which, when 

unaccounted for, limit the robot's performance range. With this in view, recent 

literature has focused on the control of flexible joint robots, e.g. Spong (1987) 

[30]. In his work, Spong proposed the use of an I/O linearizing control law for 

these robots. This control however, uses information on all states-which for a 

single-link flexible-joint robot are the joint position and velocity, and the link 

position and velocity. For physical reasons, while one can easily measure the 

motor position and velocity the measurement of the other states are not trivial.  

Figure (2.8), shows the schematic of a laboratory model of single-link 

flexible joint robot. In the figure, mJ  represents the inertia of the actuator, a 

dc motor, and 1J  represents the inertia of the controlled link. mθ  and 1θ  are 

angular rotations of the motor and the link respectively, and, mω  and 1ω  are 

their angular velocities. In general, these will be different from each other 

functions of time, due to the torsional compliance, k. 

A state-space description of this system is given next. 

mm ωθ =&                                                                                            (2.67) 

u
J

k

J

B

J

k

m
m

m
m

m
m

τωθθω +−−= )( 1&                                               (2.68) 

11 ωθ =&                                                                                              (2.69) 

)sin()( 1
1

1
1

1 θθθω
J

mgh

J

k
m −−−=&                                                   (2.70) 
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Fig (2.8)  Schematic of elastic robot 

 

The length of the link is given byb2 . B represents the viscous friction in the 

motor bearing and the back-e .m .f. effects. The following are the simulation 

parameters used in the simulations. They are representative of a laboratory 

model that can be used to model a flexible-joint robot. 

Table (2.1) 

System parameter (Units)                                              Value 

Motor inertia. mJ  (kg m2)                                              3107.3 −×    

Link inertia. 1J  (kg m2)                                                  3103.9 −×  

Pointer mass. m  (kg )                                                      1101.2 −×  

Link length. b2  (m )                                                        1100.3 −×  

Torsional spring constant. k (Nm rad 1− )                          1108.1 −×  

Viscous friction coefficient. B (Nm V 1− )                        2106.4 −×  

Amplifier gain. τK  (Nm V 1− )                                          2108 −×     

     

Remark (2.5)        

 The derivation of mathematical model (2.67), (2.68), (2.69), (2.70) 

from  its  mechanical  system  (single-link  flexible joint robot shown in graph   

DC Motor 

Torsional 
Spring 

Central Shaft 
Engenders 

K 

m 

lJ mJ 
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(2.8)) can be found in [24]. 

 In our work we consider the only mathematical dynamic system (2.67), 

(2.68), (2.69), (2.70). 

  

The mathematical system model can be represented by the following 

equations.  

)),(()()()( ttxgtutxtx +Β+Α=&  

)()( txCty =  





















−
+





















+









































−

−−

=



















)sin(

0

0

0

0

0

0

00

1000

0

0010

1
1

1

1

11
1

1
θω

θ
ω
θ

ω
θ
ω
θ

τ

J

mgh
uJ

k

J

k

J

k

J

k

J

B

J

k

m
m

m

mmmm

m

&

&

&

&

   (2.71) 

On using the value of table (2.1), we get 



















=Β



















−

−−
=Α

0

0

6.21

0

,

04.1904.19

1000

06.484.126.48

0010

   ,  







=

0010

0001
C   

and 



















−

=

)sin(2.33

0

0

0

1θ

g  

Let  

 [ ]Τ−−= 1221)0(x , [ ]Τ−= 25.135.0)0(x̂  

 (1) the  first  stage: the  feedback  gain  K  is obtained  by  algorithm  (1.1)                 

     as  follows: 

Step (1): Check the controllability condition for the system 

M )( 32 ΒΑΒΑΑΒΒ= MMM  
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

















−

−−
−

=

519641900

419000

15149227126822

2271268220

 

Hence rank (M) = 4.Therefore (A, B) is completely state controllable. 

Step (2): From the characteristic polynomial for matrix A,                                

λ
λ

λ
λ

λ

4.1904.19

100

06.484.126.48

001

−
−

−+
−

=Α−Ι   

                      λλλλ 56.240684.12 234 +++=  

                      43
2

2
3

1
4 aaaa ++++≡ λλλλ  , then 

,4.121 =a  ,682 =a   ,56.2403 =a   04 =a . 

Step (3): Determine the following transformation matrix Η  

W   Μ=Η          

where Μ is the controllability matrix of step (1), and using the result of 

step(2), W  is defined by    



















=

0001

001

01

1

W  
1

12

123

a

aa

aaa



















=

0001

0014.12

014.1268

14.126856.240

           

              

and hence  





































−

−−
−

=Η

0001

0014.12

014.1268

14.126856.240

519641900

419000

15149227126822

227126800
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

















=

0004.4190

00004.419

6.21004.4190

06.21004.419

 

and 



















−
−

=Η −

0463.000463.00

00463.000463.0

0024.0000

00024.000

1                    

Step (4): Let the desired eigenvalues be selected as:  

8.46.31 i+−=µ , 8.46.32 i−−=µ , 43 −=µ , 54 −=µ . 

))()()(( 4321 µλµλµλµλ −−−−  

7204688.1202.16 234 ++++= λλλλ   

43
2

2
3

1
4 αλαλαλαλ ++++≡  

Then   

2.161 =α , 8.1202 =α , 4683 =α  , 7204 =α . 

Step (5): The state feedback gain matrix Κ can be determined using the result 

of step (3) and step (4) as follows:                                                         

[ ] 1
11223344

−Η−−−−=Κ aaaa αααα MMM  

( ) 14.122.16688.12056.240468720 −Η−−−=Κ MMM  

      ( )


















−
−

=

0463.000463.00

00463.000463.0

0024.0000

00024.000

8.38.5244.227720  

     ( )3668.07262.01759.04444.2 −= .                                 (2.72) 

 

(2) the second stage: the observer  gain L  by  algorithm  (2.1) is obtained as  

      follows: 
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Step (1): Check the observability condition for the system 

N



















Α
Α
Α

=

3

2

C

C

C

C

 

   

































−−−
−
−

−−
−−

=

6.6029.41673.7019.4167

6.486.6022.1056.602

6.486.6022.1056.602

06.484.126.48

06.484.126.48

0010

0010

0001

  

Hence rank (N) = 4. Therefore (A, C) is completely state observable. 

Step (2): To verify the non-linearity function g  satisfy Lipschitz condition: 



















−

=

)sin(2.33

0

0

0

1θ

g   

The Jacobian matrix for the function g  is 



















−

=

0)cos(2.3300

0000

0000

0000

1θ

J  

where 

2/1
4

1

4

1

2













= ∑∑

= =i j
ijaJ  

2.33≤J  

which implies that: 
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)(ˆ)(2.33)),(ˆ()),(( txtxttxgttxg −≤−                                          (2.73) 

Thus, the non-linearity function g  satisfy the global Lipschitz condition with 

Lipschitz constant 2.33=β . 

Step (3): Suppose that we use the dual of the pole placement approach to 

compute observer gain matrix  L  and  the  desired  poles  for  this system are   

selected as:       

2.194.141 i−−=η , 2.194.142 i+−=η , 163 −=η , 204 −=η . 

The state observer gain matrix L can be obtained (by using MATLAB) as 

shown in program (A2) in Appendix A.        



















−

−
=

6928.1931292.9

0780.222981.0

4404.346943.49

2456.09596.17

L                                                             (2.74) 

Step (4):  To find P which is the solution of this Riccati equation:  

QLCPPLC −=−Α+−Α Τ )()(  

On solving it to get a unique positive definite solution P, on selection of: 



















=

1000

0100

0010

0001

Q                                                                            (2.75)  

hence  

        

=



















−−
−−
−

−



















ΡΡΡΡ
ΡΡΡΡ
ΡΡΡΡ
ΡΡΡΡ

+



















ΡΡΡΡ
ΡΡΡΡ
ΡΡΡΡ
ΡΡΡΡ



















−
−−−

−−

04.196928.1935292.28

100780.222981.0

06.488404.460943.1

007544.09596.17

0100

4.1906.480

6928.1930780.228404.467544.0

5292.282981.00943.19596.17

44342414

34332313

24232212

14131211

44342414

34332313

24232212

14131211
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

















−
−

−
−

1000

0100

0010

0001

 

therefore  

    



















−−
−−−

−−
−

=

0783.05000.00913.00779.0

5.09555.52099.08838.0

0913.02099.04877.00393.0

0779.08838.00393.01686.0

P                             (2.76) 

    ,0099.0)(1 =Pλ  ,0375.0)(2 =Pλ  5055.0)(3 =Pλ , 1372.6)(4 =Pλ .        

Then P is positive definite and also symmetric matrix. Also, it's clear that Q is 

positive definite matrix. It is clear that   1)(min =Qλ , 1372.6)(max =Pλ .  

Step (5): Now, check  

)(2

)(

max

min

P

Q

λ
λβ <  = 0.0815.                                                                 (2.77) 

Since the observer gain in original coordinates was unsuccessful. Using 

transformation of coordinates, xz Τ=  where   

=Τ diag )( 6.0201010                                                             (2.78) 

Then 

=Τ−1 diag )( 6667.105.01.01.0                                               (2.79) 

Step (6):  Compute 

 1−ΚΤ=Κ               

               ( )


















−=

6667.1000

005.000

001.00

0001.0

3668.07262.01759.04444.2  

               ( )61134556.003631.001759.024444.0 −=                       (2.80)                       
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Step (7): To verify the non-linearity function )),(( 1 ttzg −ΤΤ  satisfy Lipschitz    

condition:   


























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=ΤΤ −
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0

0
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sin2.33

0

0

0

6.0000

02000

00100
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)),((

33

1

zz
ttzg  

The Jacobian matrix for the function )),(( 1 ttzg −ΤΤ  is                                      






























=

0
20

cos
20

92.19
00

0000

0000

0000

3z
J   

where 

996.0≤J  

hence  

zzttzgttzg ˆ996.0)),(ˆ()),(( 1111 −−−− Τ−Τ≤ΤΤ−ΤΤ                      (2.81) 

Thus, the non-linearity function )),(( 1 ttzg −ΤΤ  satisfy the global Lipschitz 

condition with Lipschitz constant 996.0=β . 

Step (8): Compute   

LL Τ= = 



















−

−



















6928.1931292.9

0780.222981.0

4404.346943.49

2456.09596.17

6.0000

02000

00100

00010

 

                       



















−

−
=

2157.1164775.5

5601.4419626.5

4041.3444931.496

4559.25959.179

                                                (2.82)                                   

Step (9): To find P  which is the solution of this Riccati equation:  
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QCLPPCL −=−Α+−Α Τ )()(   

On solving it to get a unique positive definite solutionP , on selection of:      


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
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therefore 
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05820.06216.117117.1

3333.3301560.445963.0

03.248404.460943.1

007544.09596.17

03333.3300

5820.003.240

6216.111560.448404.467544.0

7117.15963.00943.19596.17

44342414
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→   



















−−
−−−
−−

−

=

2637.00150.00660.00132.0

0150.00527.00209.00045.0

0660.00209.00468.00003.0

0132.00045.00003.00293.0

P                                 (2.83)   

,0132.0)(1 =Pλ  ,0280.0)(2 =Pλ  0681.0)(3 =Pλ , 2832.0)(4 =Pλ . 

Then P  is positive definite and also symmetric matrix. Also, it's clear that Q 

is positive definite matrix. It is clear that 1)(min =Qλ , 2832.0)(max =Pλ , 

6667.1)( 1
max =Τ−λ . 
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Step (10): Now, check  

)()(2

)(
1

maxmax

min
−Τ

<
λλ

λβ
P

Q
 = 1.0595.                                                 (2.84) 

Finally, we shall obtain the response of the system to the following 

initial condition:  



















−
−

=
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)0(z  ,  
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
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
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−
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=
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5

)0(E                                                        (2.85) 

Referring to Equation (2.28), it becomes 

 
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
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

Τ
ΤΤ
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

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
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
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

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)(0
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ttztz
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 (2.86) 

where 

)),(ˆ()),(()),(ˆ),(( 1111 ttzgttzgttztz −−−− ΤΤ−ΤΤ=ΤΤξ   
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 (2.87)                                                                                         

A MATLAB program using the fourth-order Runge-kutta method is 

used to obtain the response is shown in MATLAB program (A2), in  

Appendix A. 

The numerical results and estimators based on the algorithm for 

problem discussed in (2.4) have been shown in the following plotted graphs.  
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Fig (2.9) Observer performance: state variable 1x (solid curve). and its 

observer 1x̂  (broken curve) for 1)0(1 =x , 5.0)0(ˆ1 =x  of problem in (2.4). 

      

Fig (2.10) error between )(1 tx  and its observer )(ˆ1 tx  of problem in (2.4). 
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Fig (2.11) Observer performance: state variable 2x  (solid curve). and its 

observer 2x̂  (broken curve) for 2)0(2 =x , 3)0(ˆ2 =x  of problem in (2.4). 

 

Fig (2.12) error between )(2 tx  and its observer )(ˆ2 tx  of problem in (2.4). 
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Fig(2.13)Observer performance: state variable 3x (solid curve). and its 

observer 3x̂ (broken curve)for 2)0(3 −=x , 5.1)0(ˆ3 −=x  of problem in(2.4).   

 

Fig (2.14) error between )(3 tx  and its observer )(ˆ3 tx  of problem in (2.4). 
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Fig (2.15) Observer performance: state variable 4x  (solid curve). and its 

observer 4x̂ (broken curve) for 1)0(4 −=x , 2)0(ˆ4 −=x  of problem in (2.4). 

 

Fig (2.16) error between )(4 tx  and its observer )(ˆ4 tx  of problem in (2.4). 
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Conclusions 
  

From the present study of this thesis, sufficient conditions were given 

for the design observers for a class of nonlinear systems. These systems are 

characterized by nonlinear functions which are Lipschitz in nature. Nonlinear 

observer design is still a filed in its infancy, and we hope this thesis represents 

a fruitful step forward. The suggested methodology is based on the dual of the 

results from the theory of stabilization of uncertain systems. Moreover, it has 

been shown that the separation property holds. Hence, the control and 

observation algorithms can be joined together to form the observed-state 

feedback control system, we have tested it on several examples and we 

proposed in this thesis the design of an observer for the single-link flexible 

joint robot show the good performances of our method. The computational 

algorithms, based on the results of proposed theory are found to be very 

applicable and as one can see this fact from the illustrations. The behavior of 

the suggested dynamic observers are shown to be very good as one can see 

this fact from the graphs of the illustrations.  
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Future Work 
  

The future work may be considered are the following:  

1. Observability full order or reduced are of stochastic dynamic 

system. 

2. Dynamic fuzzy observer for fuzzy control system. 

3. Observability of differential inclusion. 

 

 

 

 



                

 II

                                                                                                                            Introduction 

(Thau 1973) [33] gave a sufficient condition for estimate convergence 

of a non-linear dynamical system described by a system of first-order 

differential equations. The original work was further extended for 

deterministic problems by (Kou et al. 1975) [11] and (Banks 1981) [1], and 

for the stochastic case by (Tarn and Rasis 1976) [32].  

Exact methods of observing the state of non-linear systems are due to 

(Krener and Isidori 1983) [12] and to (Krener and Respondek 1985) [13] who, 

respectively, considered single-output unforced systems and multi-input 

multi-output systems. The conditions under which these observers can be 

designed are restrictive and do not apply to many physical systems. 

To some extent, approximate observers can be derived on the basis of 

different techniques. (Zeitz 1987) [34],  linearizes the observer error  system, 

expressed in suitable coordinates, and requires the knowledge of the input  

derivatives. (Nicosia et al. 1989) [18],  proposed  a method of  designing  non- 

linear observers effective near the operating point set, assuming that the first 

time derivative of the outputs are measurable. (Baumann and Rugh 1986) [2],  

gave both controller and observer, and proved the convergence of the output 

feedback controller.   

The class of Lipschitz nonlinear systems has been widely investigated, 

since most physical processes can be described by nonlinear Lipschitz 

models. (Reif et al. 1999) [29], ( Rajamani and Cho 1998) [26], (Rajamani 

1998) [25], (Zhu and Han 2002) [35] and (Raghavan and Hedrick 1994) [24], 

the authors proposed specific solutions to this type of systems where the 

stability conditions are expressed in terms of the algebraic Riccati equations. 

In this thesis, the problem of designing state observers for inherently a 

non-linear dynamical control system is considered. A sufficient conditions for 

the jointed design of a linear state feedback control which stabilizes the non-

linear dynamical control systems and state observers for inherently a non-

linear dynamical control system are given. 



                

 III

                                                                                                                            Introduction 

This thesis consists of three chapters. The first chapter deals with the 

basic concepts of modern dynamical control system theory. 

In chapter two, the problem of designing state observers for inherently 

non-linear dynamical control systems is discussed. A sufficient theorem for 

the design state observers for a non-linear dynamical control systems is stated 

and proved. A computational algorithm to construct the state observers for 

non-linear dynamical control system is presented. Observer-based control law 

of non-linear dynamical control system is studied. Some useful 

transformations to simplify the dynamic deterministic state space observer 

have been developed. This transformation helps the designer to overcome the 

some difficulties in the nature of nonlinearity (Lipschitz condition). Several 

problems are demonstrated to justify the validity of our results. 

In chapter three, the generalization theorem to the results of chapter two 

has been developed. Illustrations using an open loop controller and closed 

loop controller have been presented and developed. An approximate state 

observer for some non-linear dynamical control system has also been given. 

 Concluding remarks, future work, list of references, appendix of 

MATLAB programs have also been presented.  
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Introduction 
  

Modern control theory, which is based on state space concepts, is 

extremely useful not only for designing a specific dynamic control system. 

But also, for improving the principle on which the system will operate. By 

using the state space approach the control engineering may able to design 

dynamical control system with performance characteristic that can not be 

achieved by the classical approach by means of the frequency response 

method or the root locus method. 

Dynamic control has played a vital role in the advance of engineering 

and science. In addition to its extreme importance in space-vehicle systems, 

missile-guidance systems, robotic systems, and the like, dynamic control has 

become an important and integral part of modern manufacturing and 

industrial processes.  

The problem of designing nonlinear observers has been studied for a 

long time. Much of the effort has resulted in extensions of the linear 

Luenberger observer (Kailath 1980) [7] examples of this are the extended 

Kalman filter psuedo linearization techniques etc (see Misawa and Hedrick 

1989 for a survey) [17]. These techniques are valid in a small range around 

the operating point. They also frequently require heavy real-time computation. 

A geometric techniques were proposed to build exact observers for a general 

description of nonlinear systems (Krener and Isidori 1983 [12], and Keller 

1987 [8] ). However, the conditions that are required to be satisfied by these 

observers are extremely stringent, making the applicable class very small. 

Recently, the quadratic stabilization of uncertain systems of (Khargonekar et 

al. 1990) [9], (Peterson 1987) [23] and (Peterson and Hollot 1986) [22] is 

used to construct observers for a class of non-linear systems. 
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 Abstract 
 

The main theme of this thesis is the design of a full order nonlinear 

deterministic dynamic observer for estimation of state space from its 

nonlinear input-output dynamic control system.  

The quadratic Lyapunov function stabilization approach has been 

adapted and developed.   

The sufficient conditions for existence of the dynamic observer for 

some class of nonlinear input-output dynamic system have been presented and 

discussed. Useful linear transformations have also been adapted to design a 

stable controller based on the suggested dynamic (deterministic) observer 

system. Computational algorithms based on the presented theorems for design 

a deterministic stable controller have also been discussed and developed. 

Illustrations are presented to demonstrate the validity of the presented 

procedure.    
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