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Abstract

The main am of this work is to generalize the study of the one-
dimensional integral equations to include the multi-dimensional integral

equations.

This study includes the classification of the multi-dimensional integral

and integro-differential equations.

Also, some extended theorems for the existence and uniqueness of

solution for the multi-dimensional integral equations are given.

Moreover, some generalized methods are used to solve the multi-

dimensional integral equations, with some illustrative examples.



Appendices

Appendix A

The following remark whish be useful have:

Remark:

=

b
L,[a,b] :{f ‘f [ab] 0 0. D, [If ()| <oo}

2. L,[D] set of square lebsque integral function.
3. L,[D] isHilbert space.

db
4. (f ,g)=”f (x,y)g(x,y)dxdy .

ca

db
=TT o y)g(xy )dxdy -

ca

ol

2 a 2
1= IF o<, y)| “dxdy

ca

(o))

Ku
. |K]= sup
fulzo ul

\l

, K isoperator .

8. u:D OO Ly[D].
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Appendices

Appendix B (Some basic concepts of operator thepry)

B.1 Linear operator [Taylor, 1958]:

An operator T:HO - H, {H is a Hilbert space} is called a linear
operator if it satisfies.

(I)T(x+y)=Tx +Ty,Ox OX.

(i)Y (ax)=ax,Ix X and a R or C.

B.2 Bounded linear operator [Taylor, 1958]:

Let H beaHilbert spaceand T:HU - H alinear operator. The
operator T is said to be bounded if thereisarea number M such that

[Tx| <M |ul, Ox OX .

The following are some useful examples.

B.2.1 Examples [Taylor, 1958]:

(i) Identity operator : Let HisaHilbert space, | :H[ [ H isa

bounded.

(i1) Integral operator :

We define an integral operator, T : C[0,1] (Il — C[0,]], by:
1

Tx(t) =jk(t,r)x(r)dr,
0

Here k is given function, which is called the kernel of T and is
assumed to be continuous on the closed domain. This operator is linear and
bounded.
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Appendices

B.3 Bounded operator [Hochstadt H., 1973]:

An operator K issaid to be bounded if for some M we have
K<™t

for al f in Hilbert space.

B.4 Compact operator [Hochstadt H., 1973]:

Let K be abounded, linear operator on a Hilbert space H. Let {f,}

be an infinite uniformly bounded sequence in H; that is for some M we have

IfnlsM for al n. K is said to be compact operator if from the sequence
{Kf,} one can extract asubsequence {Kf, } thatisa Cauchy sequence. The

sequence {Kf N } converge, of course, since H is aHilbert space.

B.4.1 Definition Cauchy sequence [Hochstadt H., 137

Let H be an inner product space and {f ,} a Cauchy sequence in H.
Such a sequence has the property that for every £>0 we can find an N (&)

such that
[fn—fm|<e for n.m>N(e).
in other words

im [f —f ] =0.

n,m—>00

H is said to be a Hilbert space if every Cauchy sequence is converges to an

element in H.
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Appendices

Appendix C:

C.1 Equicontinuous set [Marsden, 1995]:

A subset S of C[a,b] is said to be equicontinuous, for each £ >0,
thereisa 0 >0, such that :

X —y|<d and uOM imply HU(X)_U(y)Hc[a,b]<€.

C.2 Schauder fixed point theorems [Hochstadt H9, 78] :

Let S be closed convex and compact set in Hilbert space, and K a

continuous mapping of Sinto itself. Then K has at |east fixed point.

C.3 Banach fixed point theorems [Hochstadt H., 137

Let T be acontraction operator on Hilbert space, T :H 0O [ H then

T has aunique fixed point.

C.4 Arzelal's theorem [Hochstadt H., 1973]:

Let {g,(X)} be aset of continuous function defined on [0,1], that is

uniformly bounded and equicontinuous. That is

g (X)|sM foralln

|9n (X)) = gn(X2)| <& for [xq—X5|<(e)

where M and d(¢) are independent of n. One can then extract a subsequence

{9 N (x)} that converge uniformly to a continuous function g(x).

C.5 Convex set [Hochstadt H., 1973]:

A set Sinalinear spaceis said to be convey, if for any two points X,
Y in S theset points tX +(1-t)Y ,0<t <1, asobelongto S

117



Appendices

C.6_Compact set [Hochstadt H., 1973]:

A set Sin a Hilbert space is said to be compact if every infinite

sequence of points in S, say {X,}, has a convergent subsequence, that

convergesto apointin S,

Appendix D:

D.1 Theorem (Cauchy-Schwarz inequality)[Hochstadt, 197 3]:

Let f and g belong to an inner product space, then:

(F.9)=If [ ]

Equality isachieved if and only if f and g arelinearly independent .
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Chapter One The Multi-Dimensional I ntegral Equations

1.1 Introduction:

Recall that the one-dimensional (denoted by 1-@adral equation is
an equation in which the integration is carried with respect to one variable.
In this case, the unknown function depends onlpie@ independent variable,
[Delves L., Walsh J., 1974].

Moreover the mathematicians categorize the 1-Dgnaleequation into
linear, nonlinear, Volterra, Fredholm, homogeneausnhomogeneous and
first kind, second kind, etc., [Chambers L., 1976].

The main aim of this chapter is to generalize time-dimensional
integral and integro-differential equations to tmelti-dimensional integral

and integro-differential equations.

Also the relation between the partial differentequation and the
multi-dimensional integral equations is studied. rbtiver, some basic

concepts for the partial integro-differential eqoas are given.
This chapter consists of three sections.

In section one and two, the classification of th&e-dimensional
integral and integro-differential equations areeexied to include the multi-

dimensional integral and integro-differential egoias.

In section three, the special types of related adtig differential

equations and the multi-dimensional integral equretiare studied.

In section four, a simple classification of partiategro-differential

equations is devoted.



Chapter One The Multi-Dimensional I ntegral Equations

1.2 The Multi-Dimensional | ntegral Equations:

It is known that the two-dimensional (denoted byDR-integral
equation is an integral equation in which the ind#ign is carried out with

respect to two variables, [David K., 1999].

On the other hand; the m-dimensional (denoted bip)mntegral
equation is an integral equation in which the ind#ign is carried out with

respect to m variables.

An example of the 2-D integral equations:

13
u(x,y)=23xy +4”(3<y +2°m+2ze* )u € m )dzdm
00

An example of the 3-D integral equations:
245
u(x,y,z)=4x + ®* +y2+ qH (&m + 2sirk +zy2+n3t) M n kK Jdmdndk
130

In this section, we extend the classification ot th-D integral

equations to include the m-D integral equations.
A general form of the m-D linear integral equatisn
N(Xgy Xo ooy X )UKy X9 yeves X)) = F (X, X0y X)) +

B (%) Brca(Xm) — Bi(x)
A J' J' J‘k(xl,xz,...,xm,zl,22,...,zm)u(zl,zz,...,zm)dzldzz...dzm

m m-1 0’1

(1.1)
whereh and f are known functions okq,X»,....X,, K is @ known function
of X1,X9,...Xn Z1Z2,--Zm» B 1S a known function of x; for each
i =1,2,...m, a;is a known constant for each=1,2,..m, A is a scalar

parameter andi is the unknown function that must be determined.



Chapter One The Multi-Dimensional I ntegral Equations

This equation is said to be m-D Volterra linearegral equation when

B (Xij)=x;,1=12,..m. In this case, eq.(1.1) becomes:

N(X3,X 90X M K1 X 90Ky FF K1X 90X ¥

XmXm-1 X1
A I _[ ---_[k(xl,Xz,---Xm Z172,-Zm M %1% 2,2 Yz @z 5..dzp,

Omdm-1 M

(1.2)
where a; <X; <o foreachi =1,2,...m.
When h(X{,Xo,...X5 )= C, €q.(1.2) is said to be m-D Volterra linear
integral equation of the first kind and takes tbenf:

XmXm-1 X1
g Xm)==A [ [ K &g X 20 02m O Ay o2 DP g2y,

Amdm-1 N

Also if h(xq,X5,...X7 )=1, then eq.(1.2) reduces to:

U(X1, X0, Xm )=F K1 X0, Xy K

XmXm-1 X1
Ao kX 200 2m W 812 W2 dzy (14)
Omdm-1 a1
this equation is said to be m-D Volterra lineaegral equation of the second

kind. Moreover, if f (X1,X5,....X )= C, then eq.(1.2) becomes:

N(X1,X 95000 Xy JU K X 200Xy F

XmXm-1 X1
A [ k& X 20 02m WZ10-2m) 21 2 (1.5)

OAmdm-1 M
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this homogeneous equation is said to be the m-De¥fal generalized linear

integral eigenvalue problem. Also lif(X1,X5,....X, )= 1in eqg.(1.5) then this

equation is said to be m-D Volterra standard lingdegral eigenvalue

problem.

It is clear thatu =0 is a solution of eq.(1.5) for any values of.
Therefore the problem here is to determine the rmoal solution u, which
satisfy eq.(1.5).

On the other hand, the m-D Fredholm linear integation is the
m-D linear integral equation in which the upperitsnof integrations are

constants. In this case, eq.(1.1) becomes
N(X1,X 2 X )UK 1 X g0 X T K1X 200X ¥

Bm Pm-1 B
A j j ..._[k(xl,...)(m Z1:-ZmO €q,..2 Pz, dz,, (1.6)

Omdm-1 91
The following integral equations are:

Bm Bn1 B
f g Xm)==A [ [ K& X 200-2m O £y 12 Y24 Az

O9mfm-1 M1
(1.7)

and

U(X1, X2, Xy )=F KXoy X M

,Bm ,Bm—l /81
Ao k&g Xm 2202m W 812 G721 02 (1.8)
Omdm-1 M1
are the m-D Fredholm linear integral equationstio¢ first and second kinds

respectively.
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Moreover the integral equations:
h(Xg oo X )UKo Xy )7

B Bna B
AI j ...Ik(xl,...xm Z1,Zm W € ,..2 Pzq...dzp,

Omm-1 01
(1.9)
and

,Bmﬂm—l /81
UG X )= A [ [ [ K g X 20002 O 102 M2y 2y

Omdm-1 01
(1.10)

are the m-D Fredholm generalized and standard rlimtagral eigenvalue

problems respectively.

More generally, we can recognize the m-D Fredhohd ¥olterra

non-linear integral equations as:
(1) The m-D Volterra non-linear integral equationstuod:t

A. First kind:

XmXm-1 X1
fgeeXm)==A [ [ K&y Xm 2000 Zm U 4y o2 P 2y

Omim_; N

(1.11)
B. Second kind:
XmXm-1 X1
U(XgyeeoX )=F Kpyeoo Xy A j j ...j{k(xl,...,xm,
Omim_; N
Z1yeeZ M @102 0z .02 (1.12)
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(2)

Also, the m-D Volterra generalized and standard -lnoear

integral eigenvalue problems are:

N(X1,X 95000y Xy YU K1 X 24000 X )=/1jn r]1_1...J.1{k(x1,x2,...,

Omdm_, N
Xm 21,22, Zm M €12 ,..Zm ) dz gz 5 .dz,,  (1.13)

and

XmXm-1 X1
U(X3,X 2500 Xpy )=A J. J. I{k KX, X 212 2 »--

Omlm_, A
ZmU(Z1,20,..2m )} dzdz,.dzy,  (1.14)

respectively.

The m-D Fredholm non-linear integral equations bareasily obtained

form eq.(1.11)-(1.14) by replacing by the constants3 for each

I =1,2,...m to get the same previous types.

1.3 The M ulti-Dimensional | ntegr o-Differential Equations:

It is known that, the one-dimensional integro-diiatial equation is a

1-D integral equation in which the unknown functi@epends only on one

independent variable) appears under the ordinanyatere sign, [Delves L.
and Mohamed J., 1985].

Also, the two-dimensional integro-differential etjoa is a 2-D

integral equation in which the unknown function gdeds only on two

independent variables) appears under the partraladiwe signs, [David K.,
1999].
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So, the multi-dimensional integro-differential etjaa is an m-D
integral equation in which the unknown function gdeds only on m
independent variables) appears under the partiatadize signs, [Volterra
V., 1959].

The general form for the n-th order 1-D linear grtedifferential

equation is:
n , B(x)
>a ) ue)=f )+ [ key)ulydy (1.15)
i =0 a
whereg, ,i = 1 2..,m is a known function ofx such that, #0, f and

are known functions ox, k is a known function ok andy, a is a known

constant is a scalar parameter and u is the unknown fundtiat must be
determined, [Delves L. and Mohamed J., 1985].

An example of the second order 1-D linear integftecential

equation is:

X
")+ HUE) A K)=x+J X+y?sik Yy dy
0
The general form for the n-th order 2-D linear ¥ota integro-

differential equation is:

ij GY) —— = (xy)+
i%Oa” ox' oy
i+j<n
B2(y) Bi(x)
p) j j K(x,y,z,mu(z,m)dzdm  (1.16)
a2 a1
wherea;; is a known function ofx and y for eachi, j =0,1,...n such that

i +] <n anda; #0 for somei, j such that +j =n, f is a known function
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of x andy, k is a known function ofx, y, zandm, £, and S, are known
functions of x andy respectively,a; and a, are known constants), is a

scalar parameter and is the unknown function that must be determined.

An example of the third order 2-D linear integrdteliential equation

Y X
xﬂ2+3y3sinxa—2u2=e_xy + 2” € sim+xe™? )u £ m )dzdm
ox oy 0x 50

So, the general form for the n-th order m-D lineategro-differential

equation is:
m
” o u )
=L U(Xq,.ee X
Z ailiz...im(xll---axm) il i21 im =f (Xl,...,Xm )+
i1,i9,im =0 0X 10X 57... X !
OSg Ik <n
k=1
Bm (Xm) Bn-1(Xm-1)  B1(Xx1)
0m Om-1 a
(1.17)

where &, j is a known functions of X;,X5,...Xp, for each

m
i1i2,dm=0,1,..0 suchthat0< » iy <n anda;;, ; # 0 forsome
k=1

m
i1, 5,..... ;y SUCh thatZ:il< =n, f isaknown function ofx{,x,,... X, Kis
k=1
a known function ofx;,X5,....Xm» %, Z5,....Zy, 5 1S @ known function ofx;,
a; is a known constant for each=1,2,...m, A is a scalar parameter and

is the unknown function that must be determined.
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If G (x;)=x; for eachi =1,2,...m then eq.(1.17) is of Volterra
type. On the other hand, eq.(1.17) is of Fredhtlpe if 5 (x; )=5 for

eachi =1,2,...m, wheref3 is a known constant.

Moreover ifgy i, i (X0u.X 2,0 Xm )= & ,.i,, Wherea;, j_is

m
a known constant for eadh,i 5,....,, = 0,1,...n such thatO < Z I <N
k =1

then eq.(1.17) is said to be the n-th order m-[@gri-differential equation

with constant coefficients, otherwise it is withmoonstant coefficients.
Also, if f (X1,X2,....Xy )= Cin eq.(1.17) then the homogeneous equation:

m .

n kZ ik
0K=1 u(Xq,X 0,0y Xy ) _

Z alllzlm(xl’X21"'1Xm) m -

13y ]
i1, 91 dm =0 0X 10X ... OX
m .
0< Y ik<n
k=1

Bn Xm) Bn-1(Xm-1  Ba(x1)
A J. I I {K (X1, -Xm Z11--Zm U(Zy,Zm } dzq.dz

Im 0m-1 a
(1.18)

is the n-th order m-D generalized linear intgrdeténtial eigenvalue

problem.

The n-th order 1-D non-linear integro-differenteagjuation may take

the following form:

F (x,u(x),u’(x),...u(”) & )KU ))= C

where:
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B(x)
K u(x)= I k(x,y,u(x),u (y)u' 6OHU' ¢ )y u™ g )u™ ¢ )dy

a

where a and ) are defined similar to the previodksjs known function of
X,y ,U(O)U () OU Y )., u™ & Yandu™(y) and u is the unknown
function that must be determined.

As an example of the second order 1-D nonlineagra-differential

equation is:
X I
u'e)+ 1) u'(x )= 3+ [[u' (y )OO 4 sinu” (v )] dy
1

Also, the n-th order 2-D non-linear integro-diffet@l equation may

take the following form:

F[x,y,u (X ’y)’a':'Zu(x,y) Ku (X ,y )]: 0

Xilayiz
where
Ba(y) A(x) i +j k+¢
K u(x,y)= J' J' k x,y,z,m,a L.J(X,'y)’a L;(z,;n) dzdm
0 @ ox ' ay ox <0y

a; and a, are known constantg and S, are known functions ok and y
respectively andi,, iy i,j,k,/=0,1,..n such that 0<i;+i,<n,

O<it+j<nandOsk+/<n.

As an example of the third order 2-D nonlinear gntedifferential

equation is:
6y 4x
Uyxyy TUxxy TUyyxy FUyUyy = _[ _[( U, +UpnU, m +22uzz) dz dm
12

whereu =u(x,y).

10



Chapter One The Multi-Dimensional I ntegral Equations

Thus, the n-th order m-D non-linear integro-differal equation may
take the following form:
m .
2 Ik

0K=1 u(Xq,Xo,...
F| XX 00Xy Z1Z 20-0-Zpm 7 172

. . _’Xm) Kul|= (
0X 10X 2... X 1"

where:

m
Bm Xm) Bm-1(Xm-1 A1 ak{llgk u (Xl X )
oo Xm

Om Om-1 a1

m .
2k
k=1 u(zq,....21 )
j j
0z,1..0z, "

dz,..dz,

S is a known function of , a; is a known constant for each=1,2,...m,

m
0< Zik <n. k is a known function of Xq,...X . Z1,---Zm
k=1
m m
kZ lx kZle
=1 X1y.eeX 0k=l u(z4,...,z
0 éu( Lo m)  and U(ZZm)  for  gach (1,00l iy s
0X 1.0y 0z{1..0z}m

m m
j1ri2eeim =0,1,2,,...n such that 0< sz <n and OSij <n.
k=1 k=1

m
Moreoveriy,is,.... I, = 012,...,n such that0< Zik <n.[B(x), aare defined
k=1

similar to the previous for each iy,...,in=0, 1, 2,....n; such that:

11



Chapter One The Multi-Dimensional I ntegral Equations

As an example of the second order 3-D nonlineaygia-differential
equation is:

zZyx
Uz FUyx * YUyy :(3X2+y +22)+Ijju 2(21,22,23)de|Z 5z .
000

In this work we restrict our discussion to the spletypes of the n-th
order m-D non-linear integro-differential equatiointhe form:

m

> ik
n _
oK=L U(Xq,Xo,...X
Z ailiz...im(xl’XZ""’Xm) i ( |12 2 i m):f ()(1,X2,_..Xm )+
i1, =0 0X 110X 5. OX !
Osgiksn
k=1
Bon (Xm) Bm-1Xm-1  Bi(x9)
A J J J. K(X1.X2,Xm Z1Z2+-Zm
Om Om-1 a1
m .
2 Jk

ok=1 u(z4,29,-..Z1)
119 ] '
02,19z 32..0z /I

dz.dz,...dz,,

wherea;,, 5, A and f are defined similar to the previoug, is a known

function of Xq,X5,...X;y Z1Z2,..Zm U(21,25,....Z,) and its partial

derivatives up ta times and eithe®; i, j = # 0 for someiq,ig,...ipy =

m m
0,1,...n: such that Zik =n or Zik =n for some ji,jpuim =
k=1 k=1

0,1,..n.

As an example of the second order 2-D nonlineagna-differential
equation is:

y X
u, +3xu, =x+y +”u2(z,m)dzdm
00

12



Chapter One The Multi-Dimensional I ntegral Equations

1.4 The Relation Between the m-D I ntegral and | ntegro-

differential Equations and The Partial Differential

Equations:

Many problems in the field of ordinary differenti@fjuations can be
recast as a 1-D integral and integro-differentiqliations, [Delves L. and
Mohamed J., 1985].

In this section, we give some partial differenggluations that can be
expressed as m-D integral and integro-differemeplations. To do this, first
consider:

Uy =F (X,y,u), a<x <oo,b<y<oo\

with the initial and boundary conditions:

(1.19)
u@y)=h(y), by < >

u(x,b)=g(x), asx <o

whereh(b)=g(a). J

Then by integrating the above partial differenggluation with respect to

one can get:
X
uy (x,y)~uy @y)=[f 2,y u@.y)d
a

Again by integrating the above integral equatiothwespect to/, one can

obtain:
Y X
u(x,y)—u(x,b)—u(a,y)+u(a,b)=Hf (z,mu @ m))dzdm
ba

Thus:

13
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Yy X
u(x,y)=g(x)+h(y)-g@+[[f (z,mu m))dzdm
b a
which is a 2-D Volterra integral equation. It issgdo check that the solution
of the above integral equation satisfy eq.(1.19prédver if f is a linear
function with respect ta in eq.(1.19) then the above 2-D integral equaison

linear. Otherwise it is nonlinear.

Second, consider the non-linear hyperbolic partisiferential

equation

Uy =F (X,y,uuy Uy ), a<x <o ,b<y <o )

with the initial and boundary conditions:

> (1.20)
u(x,pb)=g(x), asx <ew;u(@y)=h(y),bsy<w

where;h(b) = g(a). D
Then by integrating the above partial differengiguation first with respect to

x and second with respect o one can obtain:

Yy X

u(x,y)=gx)+h(y)-g@-+[[f zmu@ m)u, @ m)uy € m))dzdm
b a

which is a 2-D Volterra integro-differential equati It is easy to check that
the solution of the above integro-differential et satisfy eq.(1.20).

Moreover if f is a linear function with respect ta, ux andu, in eq.(1.20)

then the above 2-D integro-differential equationlimear. Otherwise it is

nonlinear.

14
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1.5 The Partial | ntegro-Differential Equations:

It is known that, partial integro-differential edioa is an integro-
differential equation in which the unknown functiappears under the partial
derivatives as well as the unknown function orpestial derivatives appear
under an integral sign, [Volterra V., 1959].

In this section, we concerns with the partial imtedifferential

equations in which the integration is carried ouhwespect to one variable.

The general form of the first order linear pariiategro-differential

equation is:
L WU (Xq,e X )
D 8 (XX ) o +D Xq,ee Xy W Kpoeo X FF (XgperXy )+
i=1 |
BXi) (m
OU(X1,X9,eeeXi—1F Xig1s--Xm )
A {Zk(xl,xz,...,xmi) L éx_l jrlefm 7,
a =l i

OU(X1,X 2,000 X = .
(XX g Xy § LY 2 Jatlim Xm ),

Co(XpX 20 X E MK X 200X 18 X100 X })dt

wherea; and b are known functions of X{,X»,...X.,, ki, /1 and?, are
known functions ofx,X»,... X, andt, f is a known ofx,X,,... X, [ is a
known function of x; for some 1< j <m, A is a scalar parameter, is a

known constant andi is the unknown function that must be determined.

As an example of the first order linear partialegro-differential

equation is:

XZyM:J%(sin(xt)+ cosft Ju & t ot
X 1

15
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A general form for the second order linear painé&tgro-differential

equation is:

m 2 i +]j
0' "u(xq,...Xm )
Z Z ailizij (Xla---lxm) P i; i M’ =f (Xl,...)(m )+
il,i2:1:,+1j=S02 Xi 0y

m 2 i+
0' U (Xq, e X1t Xia1oeXm )
Al 1Y X ki KpeXim 1) T
: i 720 axilc')xi2

)a'u(xl,xz,...,xk__li Xt Xm ) | g
- ot'
i=

where a; and f are known functions ok{,X5,...X, K and

11 2i] P10 o]

¢; are known functions ok, x,,..., X, andt, A is a scalar parameter,is a

known constantZis a known function ofx, 1<k<m andu is the unknown

function that must be determined.

As an example of the second order linear partigro-differential

equation is:
2
(X?+Y ) +2YUy, = (X Py +2)+ [ (3 +y +ze' uy £t
0

Therefore, the general form for the n-th order ipanintegro-differential

equation is:

16



Chapter One The Multi-Dimensional I ntegral Equations

n
m N 2 i
O U (XX )
' Z . Z ail...inj]_...jn(Xl""’xmlaleasz axjm -
2,001 =1; 1,00 n =0 ig i PR
n
Zjisn

i=1

B(Xk ) m n
f (Xgei X )+ 4 _[ > Y Kipinipim XpeXmt)

a i1,esin=L;J200n=0
n -
2 Jjsn
=1
n -
2 i 0
0=l u(Xq,....X -1t X X
(X1 X2 & Xy 415 Xm )+Z£i(xl’---’xm1)
ox )ax )2, gxIm —
ip "o in 1 =0

aiU(Xl,...,Xk_l,‘E KXk +1Km )}dt
at'

where i, i j,j,.j,and f —are known functions 0Ky,Xp,...Xp,

Kisigoinigoim 1S @ known function ofxy, X,..., Xm andt, 4

parameterp is a known constantf is a known function ofx, 1 <k <m

IS a scalar

and u is the unknown function that must be determined.

As an example of the third order partial integrtiedential equation

1
2
Uyyx (X, Y) =Xy +J.eyt u(x,t)at
0

Thus, the n-th order non-linear partial integrdeténtial equation

may takes the following form

17
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n .
2
0= u(Xy,X2,. X )
" ooxJlgx 12 gxJm
1L O e OX!

F| X3,X0,00 X | Ku &g Xo,..X, | = (

where:

B(Xk ) m n

Ku(Xg,...Xp )= I Z | Z kiliz...inj]jz...jn( X1p-Xn
a i1i2...0n=1j1J2...Jp=0

n

ZjiSn

jui2:min#kK

n
Z i
ta' L u(Xq, e Xk o1t X1 Xm ) dt

ax_jlax_jz ax_jm
11 2" I'n

n
_lei
i - : . =L u(Xq,...X
here f is a non-linear function with respect *?o . (Xg,:::Xm )

. . or Ku,
OX.JlaX 12 ax_l m
ig OXiy e OX;

n
2 i
071 u(Xg,e o Xp o1t Xks1o--Xm )
axijlax.iz_.ax.im
1 12 I'n

Kijioinigip.jniS @ known ofxy,.x, t,

i

a andp are defined similar to the previous.

As an example of the second order nonlinear pairtigégro-

differential equation is:

1
u2 (x,y,z)=3xyz +J.e2tu(x Wy Lt
0

18



Chapter Two Existence and Uniqueness Theorems for the Multi-Dimensional
Volterra and Fredholm Integral Equations

2.1 Introduction:

It is known that, the existence and the uniquernkesrems of the
solution for the one-dimensional Fredholm and Moétdinear and nonlinear
integral equations due to fixed point theoremsdawoted by Hochstadt H. in
1973.

Moreover, some of these theorems are generalizetthode system
of the one-dimensional integral equations, [Mustdfa2004]. On the other
hand, these theorems are extended to include taaliomensional Fredholm
and Volterra fuzzy integral equations, [Najieb,2Z02].

The purpose of this chapter is to modify some ekétheorems to
ensure the existence and uniqueness solution fer nthlti-dimensional
Fredholm and Volterra integral equations. This ¢thiaponsists of the main

part of this work.
This chapter consists of three sections

In section one and two, we give some extended &me®rfor the
existence and uniqueness of the solution for thié4ginensional uniqueness

Fredholm and Volterra linear integral equations.

In section three, the existence and uniquenesgdhmsofor special
type of the multi-dimensional Fredholm non-lineategral equations are

introduced.

2.2 Existence and Uniqueness Theorems for the M ulti-

Dimensional Fredholm linear I ntegral Equations:

In This section we shall develop some existence amidjueness
theorems for the 1-D Fredholm linear integral et to be valid for the m-

D Fredholm linear integral equations.
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We start this section by recalling the followingidgion and lemma

that we needed later.

Definition (2.1), [Hochstadt H.,1973]:

Let H be a Hilbert space an@l be is a bounded operator ¢h T
Is said to be a contraction operator if there exsstpositive constant <1

such that:
[T2 =Tt <a f1-f

forall f, f, in H.

Lemma (2.1), [Hochstadt H.,1973]:

Let T be a contraction operator defined on a Hilbert sgdcThe

equation

Tf =f (2.1)
has a unique solutiof in H. Such a solution is said to be a fixed pointlof
Proof:

Suppose there are two fixed poirftsand g so that

Tf=f
and

Tg=g
Then

[t - d|=[Tf -Tg|<a|f - g
and

L-a)|f -g|<0
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Since|f - g is necessarily non-negative we see that
[t -g]=0
so thatf =g . It follows that if eq.(2.1) have a solution it stibe unique.

To show that eq.(2.1) has a solution we shall geam iteration procedure.

Select anyf, and then construct a sequelﬁt%} defined by:
foe=T f,, Nn=0,1,2,..

We shall first show that this sequence is a Cawseuguence, and then that its
limit is indeed a solution of eq.(2.1). That it hegimit will follow from the
fact that a Cauchy sequence must have a uniqueitinai Hilbert space. The
limit will be independent of the initial choidg since it will be a solution of

ed.(2.1), which must be unique,

First we note that:
[fnea=Fal=[Tfn —THo-d = allfn =

By a successive application of the above we have

[Foeafalsa o =fod<a®f,_y=f,_d<-sallf -t

More generally we have, if >m,

[0 =fml=ll o =Fr-)+Enot—Fro) ++ Enar—Fm) |
<|fn—fo-al +lfn-z= -2+ *+[fme1= Tl
s(a”‘1+a”_2+---+am) If1=f o
s(amea™ ) Jry-f =2 Jfy-1d

a

so that:

r
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fim [ —f [ =0
n,m - oo
It follows that{f,,} is a Cauchy sequence, and we denote its limit by
We shall have to show that the limft is a solution of eq.(2.1). In

view of the fact thafT is a continuous operator, we have:

T =T(Iim fn)

n — oo

= lim Tf ,

n- o

=limfo=f. m

n—oo

Now, recall that the 1-D Fredholm linear integrakeoatorK defined

by:
b
Ku = [k (x,y)u(y)dy (2.2)

is bounded in cas&(x,y) is continuous function for allx,y [[a,b],

[Hohstadt H., 1979].

The following theorem is a modification of the akdact to include

the 2-D and hence the m-D Fredholm linear integparator.

Theorem (2.1):

Consider L,[D ] where D={(x, y)\ asxshb,csy< d}. Suppose

k(x,y,zzm) is continuous for allx, z in [a,b] and for all y, m in [c,d]. Then

the operator

re
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db
Ku =“k(x,y,z,m)u(z ,m)dzdm

ca
is bounded.
Proof:

Sincek(x,y,zm) is continuous on a closed and bounded set, it beis

bounded. Then, there exist$ >0 such thatk (x,y,z,m) <M . Hence:

db
IKu| = ”k(x,y,z ,m (z ,m)zdm

ca

db
s”\k(x,y,z,m)\ | u(z m jdzdm

db
sM”\u(z,m))dzdm,

andy using Cauchy Schwarz inequality

db 1/2 db 1/2
Ku| <M [”\u(z,m)\zdzdm} [”dzdm}

ca
1/2 1/2
=M u (o -a)"%(d ~c)

Thus:

db 1/2
|Kul :[”\Ku\zdxdy]

ca

s[I [ 2Ju (o -a) (d ) dxdy]

rr
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=M |u| (b-a)""%(d -c)l’zl [ jdxdy]

ca
=M Ju|(b-2) (d -c)
Therefore:
[Kul[sM [uf(b-a) (d -c)
and hence

IK|[sM (b-a) (d-c) . m

Theorem (2.2):

Consider L,[D], where D={(x,Xp,...xn)| @ <% < B,i=12,...m.
Suppose  K(X(, X5, s Xs Z0:Z2,--0Z ) IS continuous for all

a; <X,z <G,1=12,...m Then the operator:

BmBn-1 B
Ku = .[ J ....[k(xl,..,xm Z1,-Zm M 1,2 0z, .dz,

Omdm-1 M1

is bounded.

Next, remember that a sufficient condition for théd Fredholm

linear integral operator given by eq.(2.2) to bermed is:

bb
”\k(x,y)\zdxdy =M ? <o

aa

[Hochstadt H., 1973].

The following theorem is an extension of the abfaa to include the

2-D and hence the m-D Fredholm linear integral ajues.

ré
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Theorem (2.3):

ConsiderL,[D] where If D ={(x,y)\ as<x<shbh, csy sd}. If

dbdb
_[_[Iﬂk (x,y,z ,m)‘deddedy =M 2 <

caca

then the operator:

db
Ku =”k(x,y,z ,m (z,m)dzdm
ca
is bounded.
Proof:

By Cauchy-Schwarz inequality:

db 1204 1/2
IKu|< ”\k(x,y,z,m)\z dzdm] [” u (z ,mjzdzdm]

LCa ca

db 1/2
< ”\k(x,y,z,m)\zdzdm] |ul

LCa

Then

Kyl

o
Ji

ca

db
[ j j k(x,y,z, m)\zdzdeHuH2

ca

1/2
dxdy]

dbdb 1/2
= u H[””\k (x,y.z ,m)(zdzdmdxdy]

caca

Therefore [Ku[<M |u|. =

ro
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Theorem (2.4):

ConsiderL,[D] whereD ={(Xy,...Xy )& <x; <4 ,i =1,..m}. If

PnbPn1 PBpbn-1 A )
j _[ _[_[ j ...j\k(xl,...,xm,zl,...,zmjdzl...dzm,dxl...dxm=M2<oo

OmOm-1 A0m0m-1 41
then the operator:

Bm Pm-1 A1
Ku = J. I ...J.k(xl,..,xm Z1,-Zm M 1,2 Vz4 .dz,

Omdm-1 N

is bounded.

Now, recall that the 1-D Fredholm linear integrquation:
b

u(x)=f (x)+A[k(x,y)u(y)dy
a

has a unique solution for alf and sufficiently small/|, providedK is a

bounded operator, wheke is defined by eq.(2.2), [Hochstadt H., 1973].

The following theorem generalize the above fadidovalid for the 2-
D Fredholm linear integral equations and hencelerm-D Fredholm linear

integral equations.

Theorem (2.5):

Consider the 2-D Fredholm linear integral equation

db
u(x,y)=f(x,y)+A”k(x,y,z,m)J(z,m)jzdm (2.3)

ca

If the operatoK defined by:

r
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db
Ku =”k(x,y,z,m)u(z ,m)dzdm

ca

is a boundedinear operator, then eq.(2.3) has a unique saluoo all f in

L,[D] and for sufficiently smallA|, whereD ={(x,y)\asx <b,c <x sd}.

Proof:
Rewrite eq.(2.3) in the form
Tu =u
where
Tu=f +AKu
Then
[Tuy=Tuy||=|f +AKu;—f —AKu,|
= [AKuy = AKu,|
=A[[Kuy — Kug|
ButK is a linear operator then
[Tuy = Tuz = }A| K (uy-)]
Since K is a bounded operator then there exists a canstan 0 such that
[Kull<M fu
for all u inthe Hilbert spacé&,[D]. Therefore:
[Tuy = Tup || <[AIM ug-uy|

For W M <1, T is a contraction operator, so by using lemma)(d.1has a

unique fixed pointu in L,[D] which is the unique solution of eq.(2.3)m

ryv
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The proof of the following corollary is easy, so omitted it.

Corollary (2.1):

Consider eq.(2.3). If

dbdb
JJI.”MXWJ ’m)‘deddedy < oo

caca

then eq.(2.3) has a unique solution for &ll in L,[D] and for sufficiently

small|A].

Next, the proofs of the following generalized therorand its corollary

are easy, thus we omitted them.

Theorem (2.6):

Consider the m-D Fredholm linear integral equation:
U(X1,X 250X ) =F X1,X 20 Xy )F

BnBPm-1 B
Ao [k X 2 Z W@ 2 )24 O2 (2.4)

Omdm-1 a1
If the operatoK defined by:

Bm Pm-1 A
Ku = J. I ...Ik(xl,...,xm,zl,...,zm)J(21,... Zm Pz 4... dzp,

Omdm-1 a1
Is bounded operator then eq.(2.4) has a uniqu¢isolfor allf in L,[D] and

for sufficientlysmall|A], whereD ={(xy,...,.x)|a; <x; <A i =1....m}.

rA
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Corollary (2.2):

Consider eq.(2.4). If:

Bm Bm -1 B1Bm Bm-1 B2 2
j J J J J j|k (X210 X o210 Zp ) dZ g dz py dAX g, dX ) < 00

ImIm-1 010m dm-1 01

then eq.(2.4) has a unique solution for &llin L,[D] and for sufficiently

small|A|.

Next, recall that the 1-D Fredholm linear integrperator defined by
1

Ku = [k (x,y)u(y )y
0

has at least one positive eigenvalue, corresportdiagpositive eigenfunction

in casek (x,y) be a continuous, positive function for @< x,y <1.

The following theorem generalize the above fadidovalid for the 2-
D Fredholm linear integral equations and henceglferm-D Fredholm linear

integral equations.

Theorem (2.7):

Let k(x,y,z,m) be a continuous, positive function for all

0<x,y, zm< 1 Consider the operator

11
Ku= ”k(x, Y,z,m)u(z,m) dzdm
00

K has at least one positive eigenvalue, correspgndmm a positive

eigenfunction.
Proof:

Sincek(x,y,z,m) is positive and continuous, then we can assume

thatO<m<k(x,y,z,m)s<M . Let:

re
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11
S:{u(x,y)\u(x,y)z O,”\u X,y jzdxdy s]}

00

We show thatS is convex subset df,[D]. To do this, letu; and u; in S

O<t<1 thentu;+(1-t)u,=20

11 1
”‘t up(x,y)+@-t)ux.y jzdxdy stzj.ﬂul(x Y jzdxdy +
00 -
12 11 ,
2t (1-t )”\ul(x Y Jus (y Jdxdy + (1-t )2”\u2(x y ) dxdy
00 00

11 11
”\tu1+(1—tp2\2dxdy <t2+ 2% (1-t )[”\ul(x y | dxdy
00 00

11 1/2
”\uz(x,y)\zdxdy] +(1-t)
00

<t?+2(1-t)+ (-t =1
Therefore S is convex subset df ,[D] .
Also, we show thatS is closed, to do this, Idtu,} be a sequence 15

such thatu, O O- u. Then| u, |0 O~ | u|. But | u,|<1, thus| u|<1 and

henceu S . ThereforeS is closed subset of,[D . ]
Since k(x,y,z,m)=m >0, we have:

1]t 1
K [u +—}=”k(x,y,z,m)(u (z ,m)+—j dzdm
n n

00

if udS, thenu(z,m)=0, hence:
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u(z,m)+121,
n n
But
1|_.m
k(x,y,z,m)=m then k(x,y,z,m){u(z,m)+ﬁ}zﬁ
then
11 1 11 m
”k(x,y,z,m){u z ,m)+—}dzdm2”—dzdm =
00 : 00" :

thus k[u +1}2m, ulds
n n

where n is a positive integer. From the above inequali¢ysee that

5 1/2
1 1111 1
H K {u +—} H: ”[”k(x,y ,Z,m) (u @ m )+—j dzdm} dxdy
: 00\ 00 :
>M (2.5)
n
Consider now the mapping @ into itself defined by
K [ +1}
T U= N (2.6)

JRESI

Evidently the denominator is bounded away from @by of ineq.(2.5). Also

| Tou [=1and foru in S we clearly haveT,u = 0, so thatT, maps S

into itself. It is also easy to see tAatis continuous mapping.

Sincek(x,y,z,m)<M andu is in S we observe that

r
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11 11 1 2 /2
s{j k2(x,y .z ,m)dzdm” (u(z,m)+—} dzdm}
n
00 00

<2M

so that the numerator of eq.(2.6) is uniformly baesh Similarly:

K[u+i} > [kl]sM
n n n
so that
T <2
m

so that the set of functiosT, u}, uOS is uniformly bounded, and also
continuous. Similarly they are equicontinuous st T, (S) is compact and
T, has fixed point so that for somg we have

Th Uup = Up (2.7)
We shall now show that we can select a subsequer{ce,,} that converges
to an eigenfunction ok, corresponding to a positive eigenvalue.

By the above equation and eq.(2.6) we obtain

K [un +ﬂ =AU, (2.8)
where:
1
e fone2]| e

Since || uy +(@/n) || <] up||+| 1/ ||< 2. we see that the s§tu, +1/n} is

uniformly bounded inL,[D]. The linear integral operatét is a compact

rr
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operator, and therefore we can extract a SubSGQL{eIIﬂE +1/n} such that

the sequencgK [unk +1/ nc]} converges to some function, sgy

We shall now show that the sequemdgk} also converges to some positive

limit. We see that:

From eq.(2.9) and also that,(x,y) is a positive continuous function oD.
Let

min u, (x,y)=45,>0

Osx<1
Osy<1

so that

and it follows that

Bn 2%[mﬁn +m}

n n

The last estimate shows tht = m and is therefore bounded away from the

]

denote that limiting value bylp=m.

origin. Eq.(2.9) shows that, = 00-| ¢ |, and we shall

rr
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Finally we see from eq.(2.8) thalnk 0 /]iw. Accordingly:
0

K{unk +i}|] ELK/%{// and alsoK {unk +i}|] Ly,

N o Nk

so thatK Liz//} =y, or more explicitly:
0

11
”k(x,y,z,m) Y@z m)dzdm=Agy X .y )
00

The left side of the above equation is continuaws positive so thag/(x,y)

Is continuous and positive.m

Theorem (2.8):

Let K(Xq,X2,...Xm Z1Z2,.-.Zm P€ @ continuous positive for all

0<X;,z; <1. Consider operatd{ defined by:

Ku=|]...

KXq,--sXmsZ1s--Zm )U @1,.. Zm PZ4... dz,

O —r
o
o

K has at least one positive eigenvalue, correspgndmm a positive

eigenfunction.

2.3 Existence and Uniqueness Theorems for The M ulti-

Dimensional Volterra Linear I ntegral Equations:

In this section we modify some existence and umegas theorems for
the 1-D Volterra linear integral equations to béidséor the m-D Volterra

linear integral equations.

We start this section by the following lemma whiweé need it later.

ré
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Lemma (2.2), [Hochstadt H.,1973]:

Let T be an operator defined on a Hilbert spa¢esuch that the nth

power of T, namelyT " is a contraction operator. Then the equation:
Tf =f

has a unique solutiof in H.

Proof:

By lemma (2.1) we can assert that the equation:
T"f =f
has a unique solution. In fact, we can obtain tieton by finding

lim TX "fq=f

k—>00

for an arbitrary initial functionfy In particular, we see that, by letting
fosz

lim TK"Tf =f

k—>00

. _ kng _
ButsinceT T =f we also havd ~ 'f =f so that:

lim TX™f = lim TTK"f

K - o k - o
= [im Tf =Tf
k o o0
so thafTf =f.

To show that this solution is unique we note that i
TT=1f, Tg=g9
then we also have:

T =f, T"g=g

o
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and sinceT" is a contraction operator with a unique fixed poihen
f=g. m

Now, recall that, the 1-D Volterra linear integegjuation:
X

u(x)=f (x)+A[k(x,y)u(y)dy (2.10)
0

has a unique solution(x) for all A andf (x) in L,[0,1] in casek (x,y) is

a continuous function fok,y [[0,1] and therefore uniformly bounded, say

k(x,y)| <M, [Hochstadt H.,1973].

The following theorem is a generalization of thewabdfact to be hold
for the 2-D and hence for the m-D Volterra lingstegral equations.

Theorem (2.9):

Consider the 2-D Volterra linear integral equation:

Y X
u(x,y)=f (x,y)+/1”k(x,y,z mX @z ,m zdm (2.11)
00

where f (x,y)0L,[D] and suppose thatk(x, y, zz m) is a continuous

function for x,y,z,m0[0,1] and therefore uniformly bounded, say
[k(x,y,z,m)<M .Then eq.(2.10) has a unique solution, for/lland f in

L,[D], whereD ={(x,y)| 0sx < 1, Osy <}
Proof:

Rewrite eq.(2.11) in the form:
Tu=u

where:

T
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Y X
Tu=f +AKu and Ku=”k(x,y,z,mp(z,m)dzdm
00

Then, we use the mathematical induction to prove
TW=f +AKU+--+ A" K" + A"K "t (2.12)
For n=1, Tu=f +AKu
For n=2, one can get
T2 =T (Tu)=T (f +AKu)=f +A(f +AKu)=f +Af +A%Ku
Assume eq.(2.11) hold fon =/, then:
T =T (T )
=T (f +AKE +o+ 27K 427K )
=+ 2K (f +AKE 42K 42K )
=f +AKFf + 12K F ++ AKE + 27K

Therefore
TM=f +AKEf +-+ A" K" + 4K "y
Next, we also use the mathematical induction to@ro

Y X
K”u(x,y)z”kn(x,y,s,t)u(s,t)ds dt
00

where
ki(x,y,st)=kx,y.st)

and

ry
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Yy X
kn(x,y,s,t)zﬂk(x Y.ZmKypq@mst yzdm,n= 23,.

ts

Forn=1, one can get
y X Y X
Klu(x,y)=”k1(x,y,s,tp(s,t)dsdt =”k X,y Sty6t psdt
00 00
Forn=2, one can get

K2u(x,y)=K[ k(X,y,z,mu( ,m)jzdm]

o —<
O+ X

O —<

jk(x,y,z,m)[ k(z,m,s,t)J(sx)jsdt]dzdm
0

o+—-3
o*—N

where:
Y X
kz(x,y,s,t)zjjk(x Y.z mK@mst Yzdm
ts
hence
Y X
KAu(,y) = [kox,y st)u st )dsh
00
Assume
Y X
Kux,y)=[[k,(«.y st)u@t)dst
00
where

Y X
(¢, y,8,)= [ [k(x,y zmXK,1 @ mst )dzdm

ts

A
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then

K u(x,y)=K (Kéu(x,y))

k(x,y,z,m)K u(z ,m Xdzdm

o — X

o —< O'-—z‘<
o — X

k(x,y,z,m)[jjkg(z,m,s,t )u (sx)jsdt]dzdm

o

Ko (X,y,stiu(st)dsdt

I
o —<
o — X

Y X
.”k(x,y,z,m)kf @mst )ledm]u 61 Ysdt
ts

I
o —<
o — X

since k(x,y,st) is bounded, then there exists a constdhtsuch that

k(x,y,st)<M forall (x,y), (st)0D. Then we shall show that

N(y —c\" 1y —+\071
\kn(x,y,s,t)\gM (x-s)” “(y-t)

[(n-2) 1’

To do this, we use the mathematical induction.

,0<s<x,0<st<y (2.13)

Forn=1, the above inequality is obviously valid. fFer2,

Y X
a0,y st)=|[ [k <,y .z mk @ m st yzdm
ts

r—F!—.\<

X
ﬂk(x,y,z,m)\ [k (z,m st )dzdm
S

Yy X
< [[M?dzdm =M ?(x-s)(y -t)
ts

¢

P4
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Y X
ksy(x,y,st)= J.J.k(x Y ,Z mMKy@ mst pzdm
ts

:—rt—'\<
0 — X

k(x,y,z,m)ky(x,y,z ,m)dzdm

-3 =9y 0

XY

s”MM 2(z —s)(m —t)dzdm =

s (21?
Assume

C(y _\ 1, 1
\kg(x,y,s,t)\sM (x-s) (y2 t) 0<s<x, Ost<y
[(¢-1) 1]

then

‘k€+1(x Y Sit )‘ =

Thus ineq.(1.13) holds.

Y X
”k(x,y,z Mk, @ mst pzdm
ts

k(x,y,z,m) |k, (z.m st Jdzdm

-—n_,~<
Ny X

dzdm

?

¥ —, X

M l+1

(-9 I

MM ‘(z =s)" (m-t)"?
|v|€+1

(y-t)'

! /

[(¢-1) 17
(=) 1]

(2-s)
m“x -s)'(y -t)

/
[ ]

(x -s)'
Therefore, we have:
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nul -T nU ZH

Volterra and Fredholm Integral Equations

=[F +AKE 44 AT S ATK Uy~ = AKE -

= AN T —A”K”UZH

<’

But since 0<s<x <

Y X
"] [knteoy S 6£)-up 6 1))dsch
00

n n n
1 A'K U2H

K n (ul_uZ) H

ko (x,y,st) (u(st)-uy@t))dsdt

o —<
o — X

Y X n _¢\n-1
”M yz 3 (up(s.t)—uy(s.t))dsdt
00 n—l) ]

1, then 0<x —-s<1-s<1 and hencé -s)" <1.

Similarly, one can ge{y —-t)" <1, therefore:

nul -T nU ZH <

n

Y X
”(ul(s,t)—uz(s,t )) dsdt
00

Iy

'™

[(n-1)!

n
5 | uy —uy|

For n sufficiently large

™"

—2<1
[(n-1) 1

so that T" is a co

ntraction operator and hence by using leni@2),

eq.(2.11) has a unique solutionm

£
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Now, the proof of the following theorem is easybi satisfied, thus

we omitted it.

Theorem (2.10):

Consider the m-D Volterra linear integral equation:

U(X, Xo,se e X) = F O, %0, X)) +

XmXm-1 X1
A j _[ ...jk(xl,...,xm,zl,...,zm)u(21,...,zm)jzl...dzm
0 0 0

where f (X1,X5,....Xn )OLo[D] and K(Xq,X2,.... X212 2s.. Zy ) IS @
continuous function for allx,X,,...,Xn,%,2,,...,Zy in [0,1] and therefore
uniformly bounded, say|k(Xy,X2,...Xy Z1Z2,--Zm )M Then this
integral equation has a unique solution for alland f (x4,X5,...,X;,) N

Lo[D], whereD ={x1,X,... X | 0<X; < 1, i = 1,2,. ,ih.

2.4 Existence and Uniqueness Theorems For The M ulti-

Dimensional Fredholm non-linear I ntegral Equations:

In This section we shall develop some existence anidueness
theorems for the 1-D Fredholm non-linear integihations to be valid for

the m-D Fredholm non-linear integral equations.

We start this section by recalling that, the 1-Dh+iaear integral

equation:
b
u() = (x) + Ak (x,y u(y))dy

has a unique solution ib,[a,b i the following conditions are satisfied

iy



Chapter Two Existence and Uniqueness Theorems for the Multi-Dimensional
Volterra and Fredholm Integral Equations

<M Ju].

) Suppos%

b
[k, y uty )y
(i) [k(x,y,z,m)-kx,y,zm)sN &,y )z3-2,.

bb
(i) [ [IN (x,y)[*dxdy =P?<oo.

aa

(iv) [A|P <1, [Hochstadt H., 1973].

The following theorem is a generalization of the@wabdfact to include

the 2-D and hence the m-D Fredholm non-linear nalegquations.

Theorem (2.11), [Hochstadt H., 1973]:

Consider the 2-D Fredholm non-linear integral emumat

db
u(x,y)=f (x,y)+A”k(x,y,z mu @ m)pzdm (2.14)
ca
Suppose that:
bb
”k(x,y,z,m,u(z m)yzdm|<M |u
aa
and
k(x,y,z,mu;)-k X,y .zmu,J<N &y zm)lu-uj
where:
dbdb
””\N (x,y,z,m)\zdzdmdxdy =P%<w
caca

If |A|P <1, then eq.(2.14) has a unique solution forf &l L,[D], where

ir
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Proof:

Rewrite eq.(2.5) in the form

Tu=u
where
Tu=f +AKuU
and
db
Ku(x,y) =”k(x Y ,Z,mu(z ,m)dzdm
ca
Then

[Tuy =Tuy| = [”ﬂ'ul—Tu jzdxdy]

2 1/2
:FTATJ)k(x y,Z,muy z ,m)yxzdm - A”k .y Z mu, ¢ m))dzdm dxdy]
cal ca cO

db 5 1/2
H I\k(x y.z.mu @ m)-k K.y zmu,e m))dzdm] dxdy}

1/2

2
(j-j)- ”N (X,y,z,m)uy(z,m)-uy (2 m]dzdm} dxdy

]

OO
o0
O —

o db 1/2
_HN (X,y,z ,m)\zdzdm”\ul(z ,M)—U,(Z ,mjzdzdm}dxdy}
a

ca

£¢
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db[db , , 12
SW{”[”\N (x,y,z,m) dzdm} | ug—uy| dxdy}

calLCa
dbdb , 1/2
=[A| [ up—uy] [””\N (x,y .z ,m) dzdm dxdy]
caca

<P [lu-uy
It follows that for |A|P <1, T is a contraction operator so that it has a

unique fixed point. By using lemma (2.1) this fixpdint is a solution of

eq.(2.14). =
In a similar manner, one can prove the followingairem.

Theorem (2.12):

Consider the m-D Fredholm non-linear integral eiqunat
U(X1,X25eee X )=F X1.X 00 X )t

Pm Pm-1 A
/1_[ I ...jk(xl,...,xm,zl,...,zmu(zl,..,zm))jzl...dzm (2.15)

Omdm-1 01
Suppose:

Bm Bm-1 B
I ...Jk(xl,...,xm,zl,...,zm U@Z1r. Zm)HZy..dzy[<M [ul

Omdm-1 O
and that
K (Xg0eee s X, Zg e Zm M) =K K 4pee Xy 21,00 Zim U 2)S

N (Xq,.... X Z10--Zm )| Uy =U 5

£o
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where:

Bm Bm-1 B1Bm Pm-1  B1
.[ I _[I _[ “N (X4yeee s Xy sZ e ,zm)|2dzl...dzmdx1...dxm:P2<oo

Om dm-1 d1dm 0m-1 a1
If |A|P <1, then eq.(2.15) has a unique solution for &llin L,[D] where

D ={(Xp.X2...Xm) | @ <X, <8, i =1 2..,m}.

Next, recall that the 1-D non-linear integral egomat
1

u(x) = Ak Oy Wy u(y )dy (2.16)
0

has a unique solution ib, [0ffithe following condition:

() k(x,y) is continuous for allx, y in [0,1] and thaty(y,t) is continuous

forall y in [0,1] and allt.
1

(i) [lty uy))?®<AZ|u)®.
0

(ii) ¢(y,t) satisfies the Lipschitz condition

w(y ) -w(y ty)|<Bft;-t]
where B is independent of.

(iv) |k(x,y)<C.

) [A|<—L, [Hochstadt H., 1973].
BC

The following theorem is a generalization of thewabdfact to include

the 2-D and hence the m-D Fredholm non-linear natlegguations.

£
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Theorem (2.13):

Consider the 2-D Fredholm non-linear integral eguat

11
u(x,y)=/1”k(x,y,z,m)1//(z mu @ m) dz dm (2.17)
00

and that x,y,z,m in[0,1] is continuous for alk (x,y,z,m)suppose that

Is continuous for allz, min [0,1] and allt and that ¢/(z,m,t)

11
““ W (z,mu @ m) ‘zdzdmsAZH uHZ
00

Suppose thaty(z,m,t) also satisfies the Lipschitz condition

| w(z.mt)- w@miy)|<B [t—ty
whereB is independent ok and m, and let

| k(x,y,z,m)|<C

Then eq.(2.17) has a unique solutionLig{D] provided | A \<% where
D ={(x,y) | 0sx <1, 0sy < }

Proof:

Define the operatof by
11

T uzA”k(x,y,z m) ¢(z,mu (z,m)) dzdm
00

so that a solution of eq.(2.17) is a fixed pointis a bounded operator since:

i1 1/2
|7 UH=[WZIWU\2dxdy]
00

£y
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11 1/2
= W[ j j \Tu\zdxdy]
00

11
”k(x,y,z m) ¢(z,muy @ m) dzdm
00

2 1/2
dxdy

11(/11 V2., a2 12
A ”{[J‘J‘k(x,y,z, m)zdzdm} [” | l//(Z,m,u(z,m))Zdzdmj } dxdy
00 (\0O

i

IN

00

1111 11 12
< |)I|[””|k(x,y, Z, m)|2dzdmdxdy”| w(z,m,u(z,m)) |2dzdm]
0000

00
1/2
<pl| c2A?|ulF | =plc Aful.

ThereforeTl is a bounded operator. Now:

11 11
Tu, = Tuy| = A [0y, 2 m) p(zzmuy(zm) dzdm=A[ [k, y,z.m) p(zmuw(zm) dzdrﬂ
00 00
11]11 2 H
<A {[f[[Jk&y zm)y (zmuem)-y(zmu, e m)]dzm dxdy
00|00
Thus:
1/2

1111 2
|nu1—Tu2||s|A|{j j[ Ikt 2y (zmante m) - (z ma »\dzdm} sy

00LO0O

12

00|\0O0

<A ﬁ{[ﬁk(x,y, Z,m)ZddeJ U.Jl.qj(zm w(zm)-wzm uz(z’m))Zdzdra ] dxd

iA
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1111 11 vz
< /1{ j j j j k(x, Y,z m)|* dzdmdxdy j j w(zm wzm)-w(zm u,(z m))zdzdm}
0000 00

1111 11 1/2
s\/ﬂ{ [[[[c?dzdmaxdy [[ Bz\ul(z,m)—uz(z,m)\zdzdm}
0000 00

11 1/2
<|A[cB [“\ Up(z,m)=Uy(z ,m) 2dzdm] <A CB ||up-uy
00

But [A|CB <1, thusT is contraction operator and by using lemma (2ti)s a

unique fixed point of T exists which is the solution of eq.(2.17)m

Now, recall that eq.(2.16) has at least one solutioh,in [G1]he

following conditions are satisfied:

() k(x,y) is continuous for allx, y in [0,1] and thaty(y,t) is continuous

forally in [0, 1] and allt.

(i) ¢(y,t) satisfies the Lipschitz condition

w(y ) -w(y ty)|<Bft -t
where B is independent of.

(iii) \k(x,y)\sC : \z//(y,t)\s B.

. 1

(iv) WSE'

(v) for everye <0 we can find a(¢), such that:
h 2
[ty uyN -y ua(y)dy <& i Jug-ug]<(e)
0

where u; andu, are inL,[D], [Hochstadt H., 1973].

£9
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The following theorem is an extension of the presgidact to include
the 2-D and hence the m-D Fredholm non-linear naeg@quations. But
before that we need the following lemma.

Lemma (2.3):

Let S be a closed and convex set in a Hilbert space @nds a
continuous mapping ofS into itself. Suppose thai(S) is compact. thatT

has at least one fixed point i@

Theorem (2.14):

Consider eq.(2.17) with the same previous condsitioon
k(x,y,z,m) and ¢(z,m;t) in theorem (2.13). Letk(x,y,z,m) be

continuous for al(x,y,z,m) in [0, 1, where:
| @@z mt)|<B
and for everys >0 we can find a(¢), such that:

11
”‘w(z,m,ul(z,m))—(//(z,m,uz(z ,m))‘zdzdm<£ if | up—uy|<d(e)
00

where u; andu, are inL,[D]. Then eq.(2.17) has at least one solution in

L,[D] provided
<oe
BC
Proof:
Let S ={uOL,[D] | |u|<1}.

We prove S is convex, to do this Then let,u, S, then:
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[t up+@-t)uy| <t |ug+ @t)|uy st+@-t)=1 for O<t<1
sincet u; +(1-t)u,0S. ThereforeS is convex.

Moreover, we show tha$ is closed. To do this, I§tu,} be a sequence in

S such thau, O - u.

Then| u, |0 O~ | u|. But | u,| <1, thus| u| <1 and hencei OS . Therefore

S is closed subset of,[D].

Define the operatol by:

11
T u=A”k(x,y,z,m)zp(z,mu(zm))dzdm
00

if uds, then:

11
” (x,y,z,myy(z,mu @ m)dzdm
00

2 1/2
dxdy

1/2

o —r
O —r
1
o

. 2
ﬂk(x Y,z m)H(// zZmu m)‘ dzdm] dxdy]
0

So T maps S into itself. Also we show tiats a continuous mapping. To

do this, consider:

o
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[Tup =Tu,| < [“Hul—Tu jzdxdy]

00
11
s[”A”k(x y,z,myy(z,mu; @ m)) dzdm -
0011 2 1/2
A”k(x,y,z,m)(,a(z,m,uz(z m)) dzdm| dxdy
00

|

4

o —Fr
o—

1
_ﬂk(x,y,z M) (z.mu @ m))-
0

2 1/2
¢ (z,muy(z m))|dzdm ] dxdy}

1111
w[””\k(x y,z,m) dzdmdxdymw zmu, @ m)

0000

1/2
~y(z,mu@m)’ dzdm}

11 1/2
[Tuy ~Tuy| <|AC [”‘w(z,m,ul(z m))-¢(zmu,em ))‘zdzdm]
00

then |[Tu, —Tu,|<|AICeY2 if | up-u,|<d(e)
let e”=[AIC£Y?, then:
[Tup —Tuy| <™ if | up—uy|<d(er)

ThereforeT is a continuous mapping. We note that is a continuous

function of x, y and that

or
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11
T u\z\/l\”\k(x,y,zm}‘w(z mugm) dzdms<|[A|B C
00

so that the sef (S is uniformly bounded.

Next, consider
11 11
Y ” k(X Y1,Zm) ¢(z,mu(z,m)) dzdm—/]” K(Xo,Ys,2,m)¢(z,mu(z,m)) dzdn‘{
00 00

If:

| (x1.yD)~ X2,y 2) | <€)

11
<[/ B m k(X,y1.2 )=k Koy 2z m)|dzdm<e
00

Therefore  T(S is equicontinuous. By using Arzela’s theorenmi(S) is

compact.

Hence, by using lemma (2.3) has at least fixed point in S and therefore

eq.(2.17) has at least one solutiohjfD]. =

Now, recall that the eq.(2.16) has at least onetieml in S if the

following conditions are satisfied:

() k(x,y) and ¢(x,y) are continuous functions of their variables.

.. M
(ii) WSE'

(iii) S be the set of functions in L,[0,1] for which |u|<M .

(iv) |k(x,y)<C, 0<x, y<l.

or
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1
V) [ty iy ) =@ (y ua(y )y <& if [u—up| <d(e).
0

The following theorem is a generalization of thewadfact to include

the 2-D and hence the m-D Fredholm non-linear nalegquations.

Theorem (2.15):

Consider the 2-D Fredholm non-linear integral emumatgiven by

wherek (x,y,z,m) and¢(z,m,u(z,m)) are continuous functions of their
variables. LetS be the set of functionsi in L,[D] for which | u [sM .

Suppose that:
|k(x,y,zm)|<C, 0<x,y, zm<1

11
[[ler(z.mu(z.m))|dzdm <B?  for all u such that] u <M
00

and for every positive we can findd(¢) such that

11
[[l(z.musz.m)-w(zmuy @ m)dzdmse it | u-uy|<a(e)
00

then eq.(2.17) has at least one solutiorSirior | A \sgl—B

Proof:

Define the operatoil by

11
T uzAj.J.k(x,y,z,m)t//(zmuQm))dzdm
00

for uds, s={uDL,y[D] | |ul<1}.

of
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11
)I”k(x,y,z,m)z/l(z mu g m)) dzdm
00

Tul=

11

s\/\\”\k(x,y,z,m)\ lw(z mu g m))| dzdm
00

by using Cauchy Schwarz inequality

11 12,4, 1/2
Tul :W(”\k(x,y,z.m)\zdzdm] (”‘w(z mu m))‘zdzde

00 00
from the conditior] k (x,y ,z,m)|<C and from the other condition

11
[[ler(z.mu(z.m))|dzdm <B?  for all u such that] u <M
00

Thus [Tu|<|A[CB, and

11
Tu(x,yy) =Tu(x2,y )| =|A[ [k X3y 12 MW @ mu @ m Yzdm
00

11
—)I”k(xz,yz,z,m)t//(z MU @ ,m Yyzdm

00
11
S\A\B“\k(xl,yl,z,m)—k X2,y 2.2 m)
00
11 1/2
<[AIB| [[lk(x1,y1.2.m) =k (x.y 52 m fdzdm]
00

since k is continuous, then:

K, y2,2.m) = K(xo, Y2,22m)° < if |(x1, Y3y~ (X 2y 2| <€)

I-X4
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Thus
Tu(xy,y1) -Tu(x 2,y o)|<|A|Be if ‘(X11Y1) X2y 2)‘ <o(¢)

Tu(xy,yp) -Tu(X 5,y D) <& if ‘(Xl’Y1)_(X21y 2)‘<5(€D)
We prove S is convex, to do this Then lef,u, S, then:

It u+a-tug] st [ug+ @) ug

<tM +(1-tM =M for 0<t<1

sincet u; + (1-t)u,0S. Therefore,S is convex.
Moreover, we show tha$ is closed. To do this, I§tu,} be a sequence i
such thau, 00 [ u
Then |u,[D —|u|. But |u,[<M, thus|u|<M and hence uOS.
ThereforeS is closed subset of,[D] .

To show thatT is continuous

1/2

11
[Tup ~Tuy| <|A|C ”‘w(z,m,ul(z m))-¢(zmu,em ))‘zdzdm
00

by the conditions| k (x,y,z,m) |<C and for everye >0 we can find a

o0(&) such that

11
[[l(z.mus@.m)-w(z.muy@ m) dzdm<e i |u;-u,|<d(e)
00

then [Tu, —Tuy|<|A[CeY2 if | u—u,|<d(e)

let e7=|A|C£Y?, then:

o
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[Tu, —Tuy| <" if | up—uy|<d(D)

ThereforeT is a continuous mapping. We note that is a continuous

function of x, y and that.

If udS, then:

[Tul =[HFU\20'XO'V]

<|A|BC<M foralluls

So T maps S into itself. So that the SE€5) is uniformly bounded.

Therefore T(S) is equicontinuous and bounded. By using Arzetfldorem,
T(S is compact. Hence, by using lemma (Z'3)as at least fixed point in S

and therefore eq.(2.17) has at least one solutbpD]. =

Now, recall that the eq.(2.16) has at least onetieml in S if the

following conditions are satisfied:

() k(x,y) and ¢(x,y) are continuous functions of their variables.

M
BC

(i) 1<
11

(iii) ”\k(x,y)\zdxdy <C?<w.
00

(iv) [k(x,y,z,m)|<sC, O0<x,y,zms]1

11
W) [ [l(z.mu(z.m))|’dzdm <B? forall u such that| u <M .
00

oy
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The following theorem is a generalization of thewabdfact to be hold

for the 2-D and hence for the m-D Fredholm nondmategral equations.

Theorem (2.16):

Consider eq.(2.17) with the same conditions @fz,m,u(z,m)) as in
the theorem (2.15). Lek(x, y, z, m) be such that

hljljl\k(x,y,z,m)\zdxdydzdm <C?<w (2.18)
0000

Then eq.(2.17) has at least one solutiorsiior
PIEA
CB

Proof:
Let k,(X,y,z,m) be a sequence of continuous kernels, such that:

1111

lim ””\ K(x,y,z,m)=kn(x,y,z,m)[dxdydzdm=0 (2.19)
"=°0000

since ineq.(2.18) holds, then we can assume

1111

””‘ Kn(X,y,z,m) \dedydzdm <C?
0000

We can define a sequence of integral operators

11
T, U :Ajjkn(x,y,z M) ¢(z mu @ m) dzdm
00

We also see that:
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11
rull=

)I”k(x,y,z,m) @(z,mu@ m) dzdm
00

11

1111 1/2
s\/]‘[_[ “ ki (X,y .2 ,m)(zdzdmdxdy”‘w(z mu@m ))‘2 dzdm]
0000 00

<|A[CB<M if M\s%

and also|T,u[<M, so thatT and allT, mapSinto itself. These mapping

are also continuous, and (S is compact we would be done. On the other
hand, from the proof of theorem (2.15), a}j(S) are compact.

Consider:
1111
|ITu-T,u<s|A \{“”\ K(X,y,zm)-k, &,y zm )‘Zdzdmdxdy
0000
11 1/2
”‘ w(z,mu(,m)) ‘Zdzdm}
00

CB 0000

v [1112 , 1/2
S—{“”\k(x,y,z,m)—kn(x y.z.,m) dydzdxdy}
<g if n>N (&) (2.20)
Then ineq.(2.20) is clearly uniform for allin S,
Let {u,} be any sequence B We can select a subsequerioe o}
such that{‘l'lun(l)} converges. From that subsequence we can extrnaetva

subsequencg un(z)} SO that{'l'zun(z)} converges, and so on. In this fashion

we obtain a chain of subsequences
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{up v @ u@y 080 u g O
such that the sequen(ﬂéiun(k)} converges for all =1,2,...k . Finally, we

take the sequenc{eun(n)} which is a subsequence of evéryn(k)} except

for a finite number of elements and clea{ﬂxun(n)} converges for every.

Now:
H Tu (n) ‘Tum(m>H =‘hun(n) ~TU ) FTU ) ~TilU () +
Tkum(m) —TUm(m) H

SH Tun(n) —TkUn(n) +H Tkun(n) —TkUm(m) H +

H Tkum(m) —Tum(m) H

The first and third terms on the right of abovequality can be made small
for large k by use of eq.(2.18). The middle term becomedidoraarge n

andm since
H T Un(n) -T Um(m) H <2, n m> M(f)

and this implies that the sequer{?feln(n)} is a Cauchy sequence so tig5)

Is compact and by using lemma (2.B)must have a fixed point. m



Chapter Three Methods for Solving the Multi-Dimensional
Volterra and Fredholm Integral Equations

3.1 Introduction:

Recall that there are many methods for solvingahe-dimensional
integral equations. These methods depend on thetgte of the one-

dimensional integral equations, [Golberg A., 1979].

On the other hand, some of these methods are ededsolve the
multi-dimensional integral equations like the vadaal method and the
Taylor’'s expansion method, [Hasson H., 2005] amdetkpansion methods,
[Al-Bayati, B., 2005].

This chapter concerned with modifying another méghtor solving

the multi-dimensional Fredholm and Volterra lingdegral equations.
This chapter consists of two sections.

In section one, we generalize three methods forirsplthe multi-
dimensional Fredholm linear integral equations, elsithe degenerate kernel
method, the method of iterated kernels and the odetth Fredholm resolvent

kernel.

In section two, we modify two methods for solvinget multi-
dimensional Volterra linear integral equations, ebnthe resolvent kernel

method: Neumann series and the method of succemspreximation.

3.2 Some M ethods for Solving the M ulti-Dimensional Fredholm

Linear Integral Equations:

It is known, there are many methods for solving thB Fredholm
linear integral equations, say the Taylor expansmathod, [kanwal R. and
Liv k., 1989], the degenerate kernel method, [Delkeand Walsh J., 1974],
the expansion methods, [Delves L. and Mohamed985]1 the quadrature
methods, [Chombers L., 1976], the variational méfH@aboon A., 1993],
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the method of iterated kernels and the method efllf@lm resolvent kernel,

[Jerri J., 1985] and etc.

In this section, we generalize some of there metliodolve the m-D
Fredholm linear integral equations, say the degeaekernel method, the

method of iterated kernels and the method of Friedhesolvent kernel.

3.2.1 The Degenerate Kernal Method:

It is known that, the degenerate kernel methodneethod for solving
the homogeneous and the nonhomogeneous 1-D Fredifiteignal equations
when the kernels of them are degenerate. Also, rileégthod can be also
modified to solve the homogeneous and the nonhonsages 1-D Fredholm

integral equations of nondegenerate kernels, [31B85].

In this section, we generalize this method to idelthe homogeneous
and the nonhomogeneous m-D Fredholm integral espusatvhen the kernels
of them are also degenerate. Also a modificatioths method for solving
the homogeneous and nonhomogeneous m-D Fredhagrahequation with
nondegenerate kernels is presented. For simpliaigy,use this method to
solve the homogeneous and the nonhomogeneous 2&hdétm integral

equations.

First, consider the nonhomogeneous 2-D Fredholrealinintegral

equation of the second kind with degenerate kernel
n
K(x,y,z,m)=>"a (x,y Yoy .m) (3.1)
k=1
that is, consider

db
u(x,y)=f(x,y)+A”k(x,y,z,m)J(z,m)jzdm (3.2)

ca
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after using eq.(3.1) and exchanging summation imigration, one can get:
n

db
U, y)=f (x,y)+A[ [ D a (<.y oy @.m) (2 mdzdm

Cak=1

n db
=f(x,y)+AZak(x,y)”bk(z,m)u(z,m)dzdm (3.3)
k=1 ca

In the following we show how the solution of thisD2 Fredholm

integral equation with degenerate kernel reduce®idng a system of linear

equations. If we define, as the integrals in the above equation,

db
Cy =”bk (z,m)u(z,m)dzdm (3.4)

ca

Then eq.(3.3) becomes
n
u(x,y)=f (x,y)+A> a (x,y)ck (3.5)
k=1
If we multiply both sides of eq.(3.5) byn(zm) and integrate the

resulting equation first frona to b and second front to d, we producec,

on the left hand side,
n d

db db b
[ om0 yutx, y)axdy =[ [lo (¢, ) £ (x y)rely + 4" i [ [lom (x, V) (x, y)crcly
ca ca k=1 ca

(3.6)
If we define the integrals in eq.(3.6) as:
db
fm = [ [om (,¥)f ¢,y )ixdy (3.7)
ca

and
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db

Ak = [ [om (¢, )y (x,y )ixdy (3.8)

ca

then eq.(3.6) becomes:
n
Cm=fm+4) anCk, m=12,.n (3.9)
k=1

which is a set ofn linear equations inc,,c,,...,c,. Here f,, and a, are

considered known since we are givb(x,y), fu(Xy) and ac(x.y).

So the solution to the 2-D Fredholm integral equaif the second
kind given by eq.(3.2) with degenerate kernel gilmneq.(3.1) reduces to
solving for c,, from the system of then linear equations given by eq.(3.9),
sincec, will then be used in the series given in eq.(305pktain the solution
u(x,y) of eq.(3.2).

If we use matrix notation, the system af linear equations given by

ed.(3.9) can be written in the form
C fq g Ay ... ap\(Cq
c=|%|=|f2], 81 322 - B2 )[C2 L ic (310
Cn fn 1 @2 -+ 8 J\Cn
or as
(I —AA)C =F (3.11)

From the theory of linear systems of equationskm@wvn that eq.(3.11) has a

unique solution if{l —~AA|#0 and has either infinite or no solution when
I —=AA|=0.

To illustrate this approach, see the following eghas.
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Example (3.1):

Consider the nonhomogeneous 2-D Fredholm integnatgon of the

second kind
2 4 Fo
u(x,y)=xy—§x —§y +”(xz+ym)u(z,m)dzdm (3.12)
00

This Fredholm integral equation has a degenerateekef the form given by

ed.(3.1), since

k(x,y,z,m)=xz+ym

2
=D & (x,y)og (z,m) (3.13)
k=1

where a(x,y)=X,a(X,y)=y,bi(z,m)=z andby(z,m)=m.

To solve for ¢, in eq.(3.9) and hencau(x,y) of eq.(3.12) we must
prepare f;, f, from eq.(3.7) andajq, a5, a5,a,. from eq.(3.8). From

ed.(3.12) we have
2 4
f(X,y)=xy ——x ——
(X,y)=xy 3¢ Y
hence according to eq.(3.7),

21 21 5 . 0
f1= [ [y, y)f ¢,y Yxdy =[ [x (xy 3 —:—Sy)dxdy ==

00 00
21 21
2 4 26
P =”b2(x,y)f (x,y )dxdy :J.J'y(xy ~Zy —Zyydxdy = -2
00 00 3 3 9

and the column matridé of eq.(3.10) becomes:

65



Chapter Three Methods for Solving the Multi-Dimensional
Volterra and Fredholm Integral Equations

f) [ -2
F = = 296
f _<£°
2 9

To prepare the matrixA in eq.(3.10), we use eq.(3.8) to evaluate the

elementsa, with ag(x,y) andb(xy) asin eq.(3.13) fdt, m=1, 2,

21 21 ,
&= ”bl(x VY )ay(x,y )dxdy = ”X Zdxdy = 3
00 00

21 21
TP =IIb1(x,y)a2(x ,y )dxdy =”xydxdy =1
00 00

21 21
851 = [ [2(x,y )ay(x,y Jaxdy = [ [ yxdxdy =1
00 00

21 21 o
852 = | [ba(x,y)az(x,y Jxdy = [ [y “dxay =3
00 00

Hence C =F + AAC of eq.(3.10) becomes:

10
Cl —? g 1 Cl
= + 3 8
26
_ 1 =2
Co 9 3 C,

and if we transform the matrix product to the lefide, we obtain
C -AC =F, thatis:

1 10
2 _1](c _Y
3 . _| 9
5 26

_1 — —
3 )\C2 9
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The solution of the above system¢§=§ and ¢, =i31. Thus u(x,y)=xy

Is the solution of eq.(3.12).

Example (3.2):

Consider the nonhomogeneous 2-D Fredholm integradteon of the

second kind
11
u(x,y)=x2+y2+/1”(x +y +z +m)u(z,m)dzdm (3.14)
00

This Fredholm integral equation has a degenerateekef the form given by

ed.(3.1), since:
2
k(x,y,zm)=x+y+z+m=> a X,y by @.m) (3.15)
k=1
whereg (X,y)=x +Yy, ax(X,y)=1, by(z,m)=1andb,(z,m)=z +m.
To solve forc,, in €q.(3.9) and henca(x, y) of eq.(3.14), we must
preparefy, f, from eq.(3.7) andy 4, a;,, a,q,a ».from eq.(3.8). From eq.(3.14)

we havef (x,y)=x?+y?2, hence according to eq.(3.7),

11 2
f1:”(x2+y2)dxdy =3
00

11
2= [[0?+y2)0x +y)axdy =
00 6

and the column matrix¢ of eq.(3.10) becomes:

olo w|N
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To prepare the matri& in eq.(3.10), we use eq.(3.8) to evaluate the ehdm

an Wwith a (x,y) andby (z,m) as in eq.(3.15) fok, m=1, 2,

11
allz_H(X +y)dxdy =1
00

11
o= ”dxdy =1
00

11
ag1= [ [(x +y)axdy =<

00 6
11

a22=”(x +y)dxdy =1
00

HenceC =F + AAC of eq.(3.10) becomes

2
Cq 3 1 1)(C
= c + A 7
C = 6 C
2 6 2

and if we transfer the matrix product to the ledies we obtain

1-14 -4 C1

) 1-
6 Co

ol wlN

In general, before solving the above system, we exeduate the determinant

of the matrixl —AA,

1-/ -]
I - A= :(1—/|)2—%/12=1—2/1—%)|2
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If 1-24 —%/12 # 0, the above linear system has a unique solutioo,fand

C, which we can evaluate by finding the inve(se- AA)"1

6(-1+A1) -64
(| —in)tz| 6712 +1% -6+ 12+ A%
7 6(-1+1)
6+120+ 1% -6+ 12+ A2
Therefore
6(-1+A) -6/ 2
C1) | 6+120+1% -6+12A+4% | 3
(CZJ_ -7 6(-1+1) | 5
6+121+ A% -6+12+1% J\6
Thus
S /) o R ., 5C1+4)

—6+121 + A2 3(-6+121+A%) -6+ 12+ A2

and hence the solution of eq.(3.12) is given by:

2 ) 4(—1+/1)—54 141
u(x, =X“+ + A X + - +
x.¥) y —6+12/1+/12( 2 36+ 12A+4%)
5(-1+ 1) }
—6+121 + A2

Remark (3.1):

The degeneratekernel method can be also used to solve the multi-

dimensional Fredholm linear integral equation & $kecond kind
U(Xgs Xgpeees Xin) = F (X, X0 pee iy X)) +

ﬁmﬂm—l 181
A kg Xm 2002m W €102 G2 dzpy (3.16)

OmOm_; N
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in case K(Xq,X5,...Xm Z1Z 2,---Zm , takes the degenerate form:

K(Kgoeo X 21, Zm = 28 K1 ooXn D €102 (3.17)
k=1

In this case, the solution of the above integraldign takes the form:
n
U(Xg X200 X )=F @y X 200X WA B K1X 20 %m O
k=1
where:
n
Ck =fk +/12akiCi . k=12,...n
i =1

Bm Bm-1 B
fio = J. I ...Ibk X1 X0y Xm J K1 Xo,e Xy X X 5 ..0X

Omam_, <M

Bn Bn1 B
a‘ki = J. J. J.bk (Xl,Xz,...,Xm p' Q(l?(z,---,xm dxijx 2 ..de

AGmam_, @1
andk,i =1,2,...n

Second, consider the homogeneous 2-D Fredholmraiteguation

db
u(x,y)=)|”k(x,y,z,mp(z ,m Yzdm (3.18)

ca

where k(x,y,z,m) is a degenerate kernel given by eq.(3.1) then
n db
u(x,y):AZak(x,y)”bk (z,m (z ,m)dzdm (3.19)
k=1 ca

we will follow the same steps as those we usedhi®nonhomogeneous

equation to reduce eq.(3.18) to
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u(x,y)=4 cea (x,y) (3.20)
k=1

and then to a system of n homogeneous equatigp in

n
Cm =4, @nkCk, M=12,..n (3.21)
k =1

Or in matrix notation
(1 —AA)C =0 (3.22)

Instead of the nonhomogeneous system of lineartieqsagiven in
eq.(3.9) and eq.(3.10). HefeandC are defined as in eq.(3.10).

From the theory of systems of linear equations areanclude that if
\I —/IA\;«:O then the only solution to the homogeneous equagivan by
eq.(3.22) is the trivial solution =0. By using eq.(3.20), the solution to the
homogeneous 2-D Fredholm integral equation giveadp{B8.18) is the trivial

solution u(x,y)=0 when || —AA|#£0. On the other hand, when
Il =AA|=0, then eq.(3.22) and hence eq.(3.18) may haveraitheolution

or infinitely many solutions. To determine which thiose possibilities, we
need to discuss next the eigenvalue and eigenanstf the homogeneous

problem.

For the homogeneous 2-D Fredholm integral equatioren by
eq.(3.18), the parametdr# 0 for which eq.(3.18) does not a trivial solution
is called the eigenvalue or characteristic value@{3.18). The nontrivial

solution u(x,y)#0 corresponding to the eigenvalue is called the

eigenfunction or characteristic function of eq.8.1

In this sense, the eigenvalues of eq.(3.18) are sthlations of

Il =AA|=0, since if 1 is not the solution of this equation, thign-AA |#0,
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and hence eq.(3.21) and in turn eq.(3.18) havérithal solution. There may

exist more than one eigenfunctiap; (x,y )corresponding to a specific
eigenvaluel;. Then numberp of such eigenfunctiong; .1, +2,---#j +p 1S
called the multiplicity or degeneracy of;, and A; is called a simple
eigenvalue wherp=1.

To illustrate this approach, consider the followaxg@mple.

Example (3.3):

Consider the homogeneous 2-D Fredholm integraltemjua
v
u(x,y)=/1”(my COSX cos2 +2z°2x COp cm)u z(m dzdm (3.23
00

This is a homogeneous 2-D Fredholm integral eqoatith degenerate

kernel

kK(x,y,z,m)=my cosX cos2 +z °X COs CO%

= > a (x,y)og (z,m)
k=1

henceg (Xx,y)=Yy cosX , a,(X,y)=xcosy, b(z,m)=mcoszZ,
bz(z,m)zzzcosm.

We follow the previous method to finel andc, from eq.(3.21) or
ed.(3.22). The solutionu(x,y) of eq.(3.23) is:

u(x,y)=21> ca(x,y)
k=1

=Acyy COSX + AC,X COoy
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To evaluatec; and ¢, from eq.(3.20) we must evaluate,, a;,, a,; anday,,

the elements of matrijA:

T T ﬂ4
a11=”b1(z,m)a1(x,y Xzdm :”mzcosz co$ 2 dzdm e
00 00

JT7T TIT
%2 =jjb1(z,m)a o(X,y Xzdm =”mz cosm cos2 dzdm = |.
00 00

v it
a21=”b2(z,m)al(x ,y )dzdm =”22m cosm cos2 dzdm =-r7.
00 00

JT7T 7T n5
a22=”b2(z,m)a o(x,y )dzdm =”23c032m dzdm = 2.
00 00 8

Hence eq.(3.22) becomes:

= (3.24)
Amr 1-2=—|c,) \O

C .. ) )
For c { 1} not to be the trivial solution, we must have aozeeterminant
Co

for I —AA in eq.(3.24),

4
w
1-A— 0 4
6 . =(1—)|%)(1—/|§)=0
Amr 1-A—
8
: : o : 6 8
which a quadratic equation in  whose solution arey =— and A =?
m

which in turn are the eigenvalues of eq.(3.23)aAsolution to eq.(3.23), we
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have two eigenfunctions(x,y) andu,(x,y), corresponding to the two

and /A 2=i respectively.

]75

Next we consider the two eigenvalues separately famdl their

eigenvaluest ;= —
m

corresponding eigenfunctions.

6
a) A.=—
( ) 1 ]_[4

If we substituted 1=£4 in eq.(3.24) to solve for; and c,, we have:
m

G = g(%/] _JJCZ

From eq.(3.20) the eigenfunctiam (x,y) corresponding tol 1=£4 IS:
s

6
ul(x,y)=g[01y CoS(X Jcx COy |

1/6 6
=—| —/m-1|coy cOS(X H—-CoX CO

This means that the eigenfunction is known exceptch, which

determines it's amplitude, we may arbitrarilydet=A to have

ul(x,y)=(gﬂ—1jy cos(X )k%x coy

Now we consider the case of the second eigenvalue:

(b) A, :%

We again substitutd, -8 in eq.(3.24) to obtaig, =0.

775
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From eq.(3.20), the eigenfunctiog(x,y) corresponding tol, -8 5

]75

8
Us(X,Y ) =—%CoX COSy

775

Now we may letc, =§ to haveu,(x,y)=x cosy .

Example (3.4):

Consider the homogeneous 2-D Fredholm integralteansa

11
u(x,y)=AII(x22 +y2m)u(x,y)dzdm (3.25)
-1-1
This integral equation has degenerate kernel

k(x,y,z,m)zxzz +y2m

2
= a (x,y)by (z,m)
k=1
where a(X,y)=x2, ay(x,y)=y?,byz,m)=z andb, & m Fm The
solutionu(x,y) of eq.(3.25) is

2
u(x,y)=A cray (x,y)=Acx 2+ Acyy 2
k=1

To evaluatec; andc, from eq.(3.21) we must evaluadg,, a;,, a,;anda »-,
the elements of the matri:
11
1= I Ix3dxdy =0.
-1-1
11

o= I Ixy Zdxdy =0.
-1-1
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11
ayq = I Iyxzdxdy =0.
-1-1

11
Ayo = I Iy3dxdy =0.
-1-1

Hence eq.(3.22) becomes:

(é ﬂ@]:@ (3.26)

Therefore || —=AA|=1#0 then the only solution to eq.(3.26) is the trivial

solutionC =0. By using eq.(3.20), the solution of eq.(3.25){x,y) =0.

Remark (3.2):

The degenerate kernel method can be also usedvwe g multi-
dimensional Fredholm linear integral equation:

XmXm-1 X1
U X )=A [ [ [ K&y Xm 20002m O £y 2 dR g G2 (3:27)

Omdm_;
where K(X1,X2,..., X Z1Z 2.,...Z, . takes the degenerate form given by

ed.(3.17). In this case, the solution of eq.(3taKgs the form:

n
U(X,X 20X )= A D 8 K1 X0, Xpm Bk
k=1

where

n
Ck =4 &G, k=12,..n
i=1

Bn Bn1 B
aki = J. J. J.bk (Xl’XZ’---’Xm hl Q(1X2,---,Xm prXZ"de

AGmdm_; @A

andk,i =1,2,...n
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Now, in many cases a nondegenerate keknel,y,z,m)s may be

approximated by a degenerate kernel as a partmalafuhe Taylor (or other)

series expansion & (x,y,z,m).

Let us consider the nonhomogeneous 2-D Fredholegiat equation

given by eq.(3.2) and its associated equation

db
v(x,y)=f(x,y)+/1”k1(x,y,z,m)/(z m Yzdm (3.28)

ca
with kernel k; as the degenerate kernel approximatiork {&,y,z,m). In
principle, we may use the previous method to s@gy43.28) forv (x,y),
which is considered as an approximate to the swiuti(x,y) of eq.(3.2). Of

course, there will be an error involved in suchagproximation, which is

defined ase‘:\u(x,y)—v (x ,y)\, and we may attempt to estimate this error

to give us a measure of how good this approximason

To illustrate this fact, consider the following exale.

Example (3.5):

Consider the nonhomogenuous 2-D Fredholm integpaion

11
u(x,y)=sinx —y+l+”[y—x coskz )l ¢ m¥zdm  (3.29)
00

We note here that the kernel
k(x,y,z,m)=y -xcoskz )

Is not degenerate, but a finite number of termigsd¥laclaurion series

22 4_ 4 2 % 4
x°z% x% .. XZ° X
y—X|:l— o + m —...}_y X + o 2 + (3.30)
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Is degenerate, or in other words, separablgy) (and gm).

So, if we consider only two terms of the seriegq(3.30), we have a
degenerate kernel:
372
2!
as an approximation tdk(x,y,z,m)=y —x coskz ; of eq.(3.29). The

kiX,y,zm)=y -X +

associated equation io;(X,y )

11 3.2
uy(X,y)=sinx -y +1+”{y - X +x22| }ul(z mpzdm  (3.31)
00 '

has a degenerate kernel and can be solved byghmps method.
Hence from eq.(3.1), we have:
3,2

Ki(X,y,z,m)=y —X +X2Z

—Zak(x Y by (.m)
=1

53
whereg (X,y)=Yy —X, ay(X,y)=—, by(z,m)=1 and by(z,m) = z?

Also, from eq.(3.7), one can get

11
i 3
f :J(;J(;(smx— y +1)dxdy = —cos() +E.

11
fs =IIX2(sinx —y + 1ydxdy = cos(1+ 25in(1-)1€1-
Moreover, the elements of the matix are

11
a11=”(y —Xx)dxdy =0.
00

11 3
o= ”—dxdy
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1
a X X )dx —
21= H 2(y —x)dxdy = o
11 5
App = ”—dxdy =—
Therefore eq.(3.11) becomes
1 3
1 =& —-cos(1p—
8 _ (L 2
1 11 . 11
— = cos(1H+ 2sin(ly—

which has the solution:
c; = —0.854cos(ly 1.236 0.27sin|

and

C,=1.169cos(1ly 2.112 2.157sini

Thus, by using eq.(3.5), the solution of eq.(3i81)

Uy(X,y)=sinx -y +1+[-0.854cos(ly 1.236 0.27sir(L)y £ X
3
+[1.169cos(ly 2.112 2.157sink%

which is approximation solution to eq.(3.29). Irsthpecial case, the exact

solution of eq.(3.29) is(x,y) =1.

The following table shows that the approximatedusoh u;(x,y)
and the exact solution(x,y) =1 of eq.(3.29) at some specific points in the

regionD ={(x,y) |[0<x <1,0<y <1}
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Table (3.1): The approximated solution and the exact solution of

example(3.5) at some specific points.

(X, y) The Exact Solution The Approxi mated
u(x, y) Solution u(X, Y)
(0,0) 1 1
(0.1,0) 1 ;
(0.1,0.1) 1 -
(0.9,0.0002) 1 Y
(0.01,0.5) 1 o
(0.5,0.5) 1 ;
(0.9,0.07) 1 Y
(0.02,0.3) 1 -
(0.5,1) 1 1.001
(10 1 1.007
©1) 1 1.001
(0.8,1) 1 1.003
(1,0.65) 1 o0
(1) 1 1.009

On the other hand, if we consider three terms @fs#ries in eq.(3.30),

we have also a degenerate kernel:

x322 x%*

2! 41

Ko(X,y,z,m)=y —-x +

as an approximation tk(x,y,z,m)=y —-xcosfkz @ of eq.(3.29). The

associated equation up(X,y),

Tt x322 x%4
Us(X,y)=sinx -y +1+” y —-X + T - 2 U, @ m pzdm (3.32)
00 ! !
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has a degenerate kernel:

3
kZ(le’Z!m)z Zak (X 3% bk (Z ’m)
k=1

where:

x 3 —x°
&(x,y)=y —X, az(x,y)=?, ag(x sY)=T,b1(Z m)=1

b2(z,m)=z2 and b3(z,m)=z4-

Also from eq.(3.7), one can get

11

1= [ [(sinx —y + 1yixdy =—cos(1)+%
00
11

fo= j j (sinx —y + 1)x 2dxdy = cos( Ly 23|n(1-)—
00

fa =”(sinx -y +1)X 4dxdy —13cos( 1y 205|n(ﬂ)£1
Moreover, the elements of the matix are

a11=”(y —Xx)dxdy =0.

00
11 3
&2 = ”—d dy =
3= I I —dxdy 14114

) = HX (y - X)dXdY———
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Therefore eq.(3.11) becomes

-1 1
8 144
1 11 1 oy 21
= 2= =~ s l= cos(1)+ 2sin(1yX—=
12 12 192 CZ (0 A
- 3
1 -1 24 —-13cos (1) ZOSin(Bﬁl
15 16 240 10

1 —cos( 1)+g

which has the solution
¢, =-0.757cos(ly 1.056 0.42sin,

C, =-1.233cos(ly 23.791 19.804sin

and
C3=-12.819cos(l}y 23.791 19.804sir

Thus by using eq.(3.5), the solution of eq.(3.32) i
Up(X,y)=sinx -y + 1+[-0.757cos(l} 1.056 0.42sif®H ¢x +

3
[-1.233cos(1y 23.794 19.804sir]éZLI -

5
[-12.819c0s(1y 23.791 19.804sir]@%¥|

which is the approximation solution to eq.(3.29).
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The following table shows that the approximatecdusoh u,(x,y)

and the exact solution(x,y) =1 of eq.(3.29) at some specific points in the

regionD.

Table (3.2): The approximated solution and the exact solution of example

(3.5) at some specific points.

The Exact Solution | The Approximated Solution

) u(x, y) (X, Y)
(0,0) 1 1

(0.97,0.008) 1 1.089
(0.01,0.001) 1 1
(0,0.5) 1 1
(0.7,0.1) 1 1
(0.9,0) 1 1
(0.8,0.07) 1 1
(0.1,0) 1 1
(0.9,0.8) 1 1
(1,0) 1 1
(0,1) 1 1
(0.007,0.85) 1 1
(0.9,0.9) 1 1
(0.99,1) 1 1
(1,1) 1 1

Now, if we consider four terms of the series i(8@0), we have also

a degenerate kernel

Ka(X,y .Z.m)= _X+x322_x524+x726
gV Y,z,m)=y 21 41 6!

as an approximate tdk(x,y,z,m)=y —-xcoskz  of eq.(3.29). The

associated equation ux(X,y),
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1 3,2 4 7,6
uz(x,y)=sinx -y +1+” y —X + 22 XSZ + 22 Uz € /m Jzdm
2! 4! 6!
00
(3.33)
has a degenerate kernel:
3
ka(x,y,z,m)= > a (x,y by @.m)
k=1
where:
53 x5 % 7
&(x,y)=y —x, a(X, y)—— XY )= aalky )——
b (z,m) =1, by(z,m) =22, bs3(z ,m)=z4 and b,(z,m) =25,
Also from eq.(3.7), one can get:
11 3
f1=”(sinx -y + 13dxdy =- cos( 1 —-
00 2
fr= ”(smx y +1)x 2dxdy = cos( 1Ly} Zsm(l-)—
00
3= [ (sinx -y + Dx ‘dxdly =-13cos(1y 203m(1)2—41
00
fa= j j (sinx —y + 1)x Sdxdy = 389cos(1y 10079+ 6065in(.

00

Moreover, the elements of the matix are

11
a11=”(y —Xx)dxdy =0.
00

113

o= ”—dxdy —é
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11 5
X 1
a13=jj_—d dy -
90 4! 144
11 7
X 1
al“‘”ﬁd ¥ =5760
00
11

a21=”x2(y — X )dxdy -1
00

12
11
X 1

Ao —”—dxdy =—

002I 12

11 7

TR _ 1
o= || =2 =1

00

11 g9

(X 1
az“_”Ed V=200

11X9 1
a42 = JO‘J(;?dXdy = E) :
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a3 = Hx—d y_2_818
11 13
W4 = ” 10080

Therefore eq.(3.11) becomes

1411
8 144 5760
G
111 cos( 1)+ Zsin(l)-l—1
12 12 192 7200 | €2 |_

3
—cos( 1+~
(1) 5

1 -1 241 -1 1% | _g3c05(1) 203m(1}2il
15 16 240 8640 |.c,

3 -1 1 10079 10079 ]
56 20 288 10080 os(1y + 606sin(y

which has the solution:

c; =—-0.831cos(ly 1.194 0.304sin,

C,=1.18cos(ly 2.134 2.174sin,

C 3=-12.773cos(ly 23.705 19.732sir
and

c, =389.187cos(ly 720.253 606.221sit.

Thus by using eq.(3.5), the solution of eq.(3.33) i

Ug(x,y)=sinx -y +1+[ -0.831cos(l) 1.194 0.304sir|() {x

3
+[1.18cos(l) 2.134 2.174sin%} -

5
[-12.773cos(ly 23.705 19.7323ir1@%+

,
[389.187cos(ly 720.253 606.2213@»@(

which is the approximation solution to eq.(3.29).
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The following table shows that the approximatedusoh us(Xx,y)

and the exact solution(x,y) =1 of eq.(3.29) at some specific points in the

regionD.

Table (3.3): The approximation solution and the exact solution of the

example (3.5) at some specific points.

(X, y) The Etaz)c(t %l ution | The Approljd gated Solution
’ 3(X, y)

(0.0) 1 1
(0.97,0.008) 1 1
(0.01,0.001) 1 1
No (0,0.5) 1 7
(0.7,0.1) 1 1
(0.9,0) 1 :
(0.8,0.07) 1 1
(0.1,0) 1 1
(0.9,0.8) 1 1
(1.0) 1 1
(0.1) 1 1
(0.007,0.85) 1 1
(0.9,0.9) 1 :
(0.99,1) 1 1
(1.1) 1 1

3.2.2 The Method of |terated Kernels:

It is known, the method of iterated kernels is afighe important
methods that can be used to solve the 1-D to FiedHioear integral

equation of the second kind, [Jerri J., 1985].
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In this section we generalize this method to sthee2-D and hence

the m-D Fredholm linear integral equations.

To do this, consider the 2-D Fredholm linear in&égruation of the

second kind
ux,y)=f (x,y)+/1ﬁk(x,y,z ,mu @z ,m Jdzdm (3.34)

We use the method of iterated kernels to find thet®n of eq.(3.34).
This method starts by the zeroth approximatigix,y)="f (x,y) for the

solutionu(x, y) in the integrals of eq.(3.34) to obtain the fagproximation

u(x,y),

u,(x,y)=f (x,y)+}lﬁk(x Y,z m) (z,mzdm

=t (x,y)+Ag,(x,y)s (3.35)
where:
¢1(x,y)=ﬁk(x,y,z,m)f (z ,m)dzdm (3.36)

The functionu,(x,y) defined in eq.(3.35) is substituted again in titegrals

of eq.(3.34) to obtain the second approximatigx, y ).

u(x,y) =t (x,y)+/1dﬁk(x,y ,Z,m ), (x,y dzdm

= (x,y)+/1ﬁk(x,y,z,m)[ f@z,m)+

db
A”k(z,m,s,t)f (st )Ydsdt |dzdm
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=f (x,y)+Aﬁk(x,y ,Z,mf (z,myzdm+

)Izﬁ dﬁk(x,y,z Mk (z,mst )ledm}( 6 1 dsat

=f (X,Y)+/‘¢1(X,Y)+/|2dﬁkz(x,y,Sl)f (6t Hsdt (3.37)

with
db
kz(x,y,s,t)=”k x,y.,zmk, & mst yzdm (3.38)
and
ki (z,mst)=k(@Z,mst).
If we define

B¢, y)=[[ky(x,y S (61 xisch

Thenu,(x,y)in eq.(3.37) becomes

U (X) = (x) +AB,(X) + A°B,(X)...

This second approximation is then substituted ixi3e8¢) and following the

same steps as those used above to obtgiyy )
db
Us0GY) =F 0y )+ AG (Y )+ A%,y )+ A [y ST X 61 psdt

=f (X,y)+AB,(X,y )+ A%, (x,y )+ AP (x .y ) (3.39)

where

k3(x,y,s,t)=ﬁk x,y,zmk, @ mst pzdm
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B:(x,y) = [[Kkq(x,y st (5t )sdt

and k,(z,m,st) is given by eq.(3.38). If this process is contohuetimes,

we obtainu  (x,y), the nth approximation for the solution of eq.@3.as

u,(x,y)=f (x,y)+Ag, (X ,y )+ A%, (x .y ) +--- + A"@, (X .y )

:f(x,y)+iz;/l‘¢i(x,y) (3.40)
where
4 (x,y):ﬁki(x,y,s,t)f (s ¢ dsdlt (3.41)
and

ki(x,y,s,t)=ﬁk X, y,zmXk,.,@ mgstysdt,i=23,.n
(3.42)

k.(x,y) is called the i-th iterate kernel. It remains iodf under what

condition the series give by eq.(3.40) converges(to,y), the solution of

eq.(3.34). It turns out that the series give by3:40) converges fotAB| <1,

where :

2

B = U])'j'j'k 2(x,Y,z ,m)dzdmdxdyj

The convergent series

ueY)=F 0GY)+ A () (3.43)

is called the Neumann series.
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To illustrate this approach, consider the followaxg@mple.

Example (3.6):

Consider the 2-D Fredholm linear integral equatbthe second kind

z+m

11
u(x,y)=1+ %j xye?*™u (z ,m Ydzdm (3.44)
00

We start by the zeroth approximatiar(x,y)=f (x,y)=1, then the first

approximationu,(x,y)is given by

11

u,(x,y)=1+ lj xye*"mdzdm
200

=1+ %xy (e' - 1)?

Here ¢,(x,y)= ("' —1)°xy .

The second approximatian(x,y )is obtained form:-
1
{

1 1
=1+ =(et-1)*xy + =xy (e'-1)?
2( ) Xy 2 y ( )

1
U,(x,y) =1+ A2 €' - xy +

o —r
o

1
J'xye“mzme“‘dzdmdsdt
0

N|E

hereg,(x,y)=xy (e' -1)°.

It this process is continued times, we obtainu (x,y), the n-th

approximation for the solution of eq.(3.41)

U, (x,y) =1+ Y (3) 4, (<.y)

=1+ (' -1)°xy .

To arrive at the Neumann series solution given Qy3e43) for

eq.(3.44) we must preparek, (x,y,z,m), the i-th iterated of the kernel
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k(x,y,z,m)=xye*™. Here we have k,(x,y,z,m)=k(x,y,z,m)=

xye*"™ . For i = 2 we obtain the second iteratg(x,y,z,m),

kz(x,y,s,t)=ﬁk x,y,zmX @ ,mst pgzdm

Z+m

xye** " zme*" dzdm

|

11
= xye®™ j I zme® Mdzdt =xye®" (3.45)
00

o t—r

Now, we use this result again in eq.(3.41) fer 3 to obtain

11
k3(x,y,s,t)=”k (X,y,zmk, mst Hzdm
00
xye’""zme*"dsdt = xye®™ (3.46)

|

and it obvious from eq.(3.45)-(3.46) and eq.(3#ha&} if these calculations

o t—r

are repeated, we obtain the general expressiahdadrth iterate of the kernel

as
k. (x,y,st)=xye*".
By substitutingk; (x,y,s,t) in eq. (3.41) are can obtain

11
é (x,y) =nyes+‘dsdt =xy (€' -1)°.
00

this is now substituted in the Neumann series giwerq.(3.43) to obtain the

final solution of eq.(3.44):

UOGY) =1+ Y NG ()

:“i@ xy @' -1 =1+xy €' -1
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Not that

B =

O ey
o t—

11
j j X 2y e ®* dzdmdxdy
00
1 2 2
=—(e"-1)".
36( )
_1 _ 1 o e
and A==, so|AB|=—=(e*-1)*=0.567< 1
2 72

Remark (3.3):

The method of iterated kernels can be also usesblice the multi-
dimensional Fredholm linear integral equation ¢ #econd kind given by

ed.(3.16). In this case the solution of eq.(3.h&es the form
U(X3, X preee Xy )= F K XXy WD A'B KX X
i=1

where

Pm Pm-1 B
¢ (%pXm)= | [ [ ki €k 2002m O 21 2 B2 B2

Omdm-1 M1
Ki (X, Xo0eeeX iy 2y Z o yeniZi F

,Bmﬁm—l :81
J .[ Ki X1, Xm S1,--Sm Ki-1$1+--Sm Z1 +--Zm 951 ds

Omadm-1 M
and

Ki (X0 X greeX iy Z1Z 50 Zy FRK K X500 X0 2125 502, -
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3.2.3 The Method of Fredholm Resolvent Kernel:

It is Known that, the method of Fredholm resolvieertnel can be used
to solve the 1-D Fredholm linear integral equatodrine second kind, [Jerri
A., 1985]. In this section, we modify it to be atimed for solving the 2-D and
hence the m-D Fredholm linear integral equatiothef second kind. To do
this, consider the 2-D Fredholm linear integral a&en given by eq.(3.34).

The solution of the integral equation may oftenesgas an integral
db
u(x,y)=f (.y)+A[[r(x.y.zmA¥ @ myzdm

where

D(x,y,z,m;A)

F(x,y,z,m;A)= D)

,D(A)#0

where '(x,y,z,m;A),D (x,y,zm;A) and D(A) are called the Fredholm
resolvent kernel of eq.(3.34), the Fredholm mirmord the Fredholm

determinant, respectively. The functi@n(x,y,z,m;A)is defined as

[e4] (_/])n

D(x,y,z,m;A)=k(x,y zm)+> y Yy Zm)
n=1 '
where
db
B,(x.y,2,m)=Ck (x.y zm)-n[[k &y st B,, 6t z myisct,
B,(x,y,z,m)=k((x,y,z,m)
where

db
C, =”Bn_1(z,m,z,m)dzdm/l, n=12,.,C, =1
and D(A)is defined as

D(A) = Z( )'.) C,, C, =1.
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To illustrate this approach consider the followexgample.

Example (3.7):

Consider example (3.6) according to eq.(3.34). W& the method of
Fredholm resolvent kernel to solve this exampleer&fore the solution of

this example takes the form
1 11
u(x,y) =1+ 2] [T(x,y,2,m;3)dzdm
00

To evaluate the resolvent kernélx,y,z,mZi)we must find the
functions D (x,y,z,m;A) and D (A). For this purpose, we must find the
functions D(x,y,z,m;A) and D(A). For this purpose, we must find

B, (X,y,z,m) andC, .Here:

B,(x,y,z,m)=k (x,y,z,m)=xye’™™,C, =1

C,

ﬁBo(z,m,z,m):Izdm
00

11
= J I xzme**"dzdm =1.
00
For C, we needB;(z,m,z,m hich can evaluated below:

B,(x,y,2,m)=Ck(x,y.zm)-[[k .y stB, 6tz mosi

=xye*™ - Jl-jxye“‘ste”mdsdt
00

z+m

=xye’™ —xye*” =0

Therefore
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1
C Z:I B,(z,m,z,m)zdm =0.
0

ot—r

and
11
B,(X,y,z,m)=Ck (x,y.zm)-[[k .y stB 6tz m s
00

Thus
C,=0,n=2,3,..

and
B,=0,n=12,..

Hence:

and

Z+m

D(x,y,z,m;1)=xye

Therefore
D(x,y,z ,m;g)

rx,y,z,m;3)= 1
°(3)
2

m

=2xye””

and the solution of this example is:
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11
u(x,y)=1+%“I’(x,y,z,m;/l)dzdm
00

=1+ ﬁxye”mdzdm
00

=1+xy (€' - 17.

Remark (3.4):

The method of Fredholm resolvent kernel can be @sal to solve the

m-D Fredholm linear integral equation of the seckimdl given by eq.(3.16).
In this case, the solution of eq.(3.16) takes timf
U(X1,X0,.Xm)=F K1X0,. XM

,Bm,gm—l :81
A _[ I ---_[r(Xl,---Xm Z1Zm A ) €4,..2 921 dz

Omdm-1 M
where

D (X1, Xm 215 Zm A )

(X155 X5 Z e Zm3A) = D)) ,

DA)#0
D(X1,X0,....km Z1Z 2+ Zm A FK K1X5,.Xm 212 2 -2, 7}

00 _A n
>
n=1

- Bn(X1, X2, 0o Xy Z1Z24--Zm )

Bn(X1:X0,eeeXy Z1Z2+--Zm FCrK K1X5,.. X0 212 2 ,-Z )

,Bm,gm—l :81
n J .[ ...Jk(xl,...,xmsl,...sm Br-161,-Sm 21 ,-Zym dB1 dsp

OAmdm-1 M
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Bn Bm-1 B
Ch= J. J. j Bh-1@1,-eZm 21402 021 .d2, n= 1.0 C, =

Omm-1 a1

and D (A) is defined as:

D(A)= Z—cn, Co=1,Cqy=1.

3.3 Some M ethods for Solving The Multi-Dimensional Volterra

Linear Integral Equations:

Recall that these are many methods for solvingltBevolterra linear
integral equations, like the Laplace transform mdihthe method of
successive approximations and the resolvent kened¢hod, [Jerri A., 1985],
the expansion methods, [Delves L. and Mohamed985]1 the quadrature
methods, [Chambars L., 1976] and the variationlhoet [Zaboon A., 1993]

and etc.

In this section, we generalize some of these mathke the resolvent
kernel method and the method of successive appetiins to solve the m-D

volterra linear integral equation.

3.3.1 The Resolvent Kernel Method : Neumann Series:

It is known the resolvent kernel method is a mettiad can be used

to solve the 1-D linear Volterra integral equatadrihe first kind.

Here, we use the same method to solve the 2-DriMeléerra integral

equation of the second kind

Y X
u(x,y)=f(x,y)+)|”k(x,y,z,m)1(z ,m Yzdm (3.47)

ca
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The solution of the 2-D linear Volterra linear igtal equation of the second

kind may often appear as an integral

Y X
ux,y)=f (x,y)+/1HF(x,y,z MAX (z ,m)3zdm (3.48)

ca

in terms of the given functioh (x,y) where I'(x,y,z,m;A) is called the
resolvent kernel of the integral equation giverely(3.47).

When k(x,y,z,m) and f(x,y) in eq.(3.47) are both continuous, it is
easy to construct the resolvent kerhék, y,z,m; A) for eq.(3.47) in terms of

the following Neumann series :

F(x,y,z,m;A)=> A"kyq(x,y,z,m) (3.49)
n=0

wherek,,41(X,y,z,m), the iterated kernel, is evaluated as follows:

Yy X
Kns1($,y,2,m)= [ [k(x,y stk 61tz m Hisot (3.50)

mz

and

ki(x,y,st)=k(x.,y st)
This is easily shown by assuming the following egriorm for the solution
u(x,y):

U(X,Y) =Ug(X,Y )+ Ay (Y )+ AUp(,y )+ ... (3.51)
and substituting it in eq.(3.47) to obtain

Uo(X,Y )+ Aug(X,y )+ AUs(x,y ) +... =F (x,y )+

A)J()J(.k(x,y,z,m)Jo(z ,m)dzdm +/1)J/.)J('k X,y .,z m)y, € mpzdm

ca ca

Y X
ﬂZHk(x,y,z,m)uz(z,m)dzdm +...  (3.52)

ca
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Now, we equate the coefficients of eathof the same power on both

sides of eq.(3.52) to obtain

up(x,y)=f (x,y) (3.53)
Yy X

ul(x,y)znk(x,y,z,m)Jo(z ,m Ylzdm (3.54)
Y X

uz(x,y)zjjk(x,y,z My (z ,m dzdm (3.55)

Y X
Un(x,y) = [ [k (x.y 2 mq_q @ mxizdm

ca

So if we substituteuy(x,y)=f (x,y) from eq.(3.53) in eq.(3.54), we get:

Y X
ul(x,y)=Hk(x,y,z m) (z,m)zdm (3.56)

ca

then use this resulting value af (x,y ineq.(3.0) to get:

y X y X
u2(x,y):Hk(x,y,z,m)[Hk(z mstY (st)jsdt]dzdm (3.57)

ca ca

and interchange the integral in eq.(3.57) to obtain

Y X
uy(x,y)= [ [t (x,y)+[

——_<

X

jk xX,y,zmk@Z mst ﬁzdm}wt (3.58)
S

That is:

Y X
u2(x,y)=Hf (s,t)k,(X,y st Xisdt (3.59)

ca
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Just as the functiok(x, y,z,m) in eq.(3.54) is taken &g (x,y,z,m) to give

u;(x,y), the inside integrals in eq.(3.58) definkes(x,y,st), the iterated

kernel, to giveu, (x,y ),

Yy X
kKo(,y,s.)=[ [K(x,y.zmX@.mst Hzdm

ts

.

Xk(x,y,z,m)kl(z,m,s,t)jzdm (3.60)
J

sincek (z,m,s;t)=k(z,mst).

In general, following the same steps, we can @dhe general term

for the iterated kernel,

Y X
Kna(X,y,st)= Hk X.,y,zmXk,_1€ mst yzdm (3.61)

ts

The final solution given by eq.(3.48) is then ob& fromu(x,y)
given by eq.(3.51) withug(x,y)=f (x,y) as in eq.(3.53)u;(x,y as in
eq.(3.54)u,(x,y) as in eq.(3.55), and so on.

To illustrate this method, consider the followingeple.

Example (3.8):

Consider the 2-D volterra linear integral equatdthe second kind

Y X
u(x,y)=f (x,y)+/1”eX+y_Z_mu(z,m)dzdm (3.62)
00

Here we have

ki(x,y,st)=k (x,y st)=e*"y s (3.63)
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X+y-z-m

So,ifweusek Xy zm Fe and ky(z,m,;s;t)=k(z,mst)=

eZ™M=S7 iy eq.(3.60), we obtain:

Y X
kz(x,y,s,t)znk(x,y Z MXK;@ mst pzdm

ts

eX +ty -z —mez +m-s—t dde

:—r'—.\<
00— X

e**Y S7ldzdm = (x —s)(y —-t)e**Y 57 (3.64)

:—r'—.\<
00— X

From eq.(3.61) witm = 2, we have:

Y X
k3(x,y.st)=[[k(.y.zmky@ mst Hzdm

ts

]

eX*X"27M(7 —s)(m —-t)e?* M St dzdm

0 —) X%

Y X
=Xty st j j (z —s)(m —t)dzdm
ts

2
st Z
=gV S Z_—sz
2

— (X_S)Z (y_t)z ex+y—s—t
2 2

Similarly, from eq.(3.61) witm = 3, we have

(3.65)

Y X
k4(x,y,s,t)=”k(x,y Z MXK3@ mst yzdm

ts

eX*y-z-m (z _25)2 (m ;t)z eZ+M=S=t 4 4m

f—kt—'\<
0 —) X
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_a)3[x —t)3y
K,(X.V .St —pX*y st (z-s)1* (m
4(X,y,st) 2 | 3 |
X +y—s—t
o (x=8)° (y ~t)° (3.66)
6 6
These calculations can be continued to find that
_\N _s\Nn
Ko (%, y 5t) = E TS U ey s (3.67)

(n!)?

Hence from eq.(3.49) and (3.67), the resolventdieior eq.(3.62) is

FX,y,StiA)=k X,y st)+AKo (K y St A%k &k y St M...+
AKX,y ,s0t)

=X YT 4 J(x —s)(y —t)e* Y ST+
12X =92y )% xay-st
2

13X -s)°(y —t)3€x+y—s—t b+

An(x s)" (y ~t)" eXty st 4
(n!)*

eX +y —s-t (x =s)" (y -t)"
Z 2 (3.68)

So from eq.(3.48) and the resolvent kernel giverdpy3.68), the solution of
the integral equation given by eq.(3.62) is

Y X
u(x,y)=f (x,y)+ [ [e* S‘tz(x S() |()y D f (s,t)dsdt (3.69)
00 n=1
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Remark (3.5):

It is not often that the series representation ¢ft,y,z,m;A) will

converge to an expression in closed form (see ebea(B(y)). In this case, we
may have to evaluate numerically a finite numbeteoins of the Neumann
series gives by eq.(3.49) which gives only an axipration of the resolvent

kernell'(x,y,z,m;A).

Remark (3.6):

The resolvent kernels method can be also used lt@ she m-D

volterra linear integral equation of the secondiigiven by eq.(1.4).
In this case, the solution of eq.(1.4) takes thinfo
U(X1, X9, Xm )=F KXo, X K

XmXm-1 X1
Ao o T&eXim 2002m A #1002 021 G2y

Omdm-1 0
where
F(Xp X Z10eZm = D A Kne1 €10-Xm Z15-2m
n=0
Kns1 (X3 X 5eeesXinys 205 Z s eeesZ) =

XmXm-1 X1

ZmZm-1 21
and

Ki(X1,X 9. Xy 81828y FK K1X 2,..Xm S1S 2 +-Sm
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3.3.2 The Method of Successive Approximations:
This method can besedto solve the 1-D Volterra linear integral

equations of the second kind, [Jerri J., 1985].
Here, we use this method to solve the 2-D Voltdimaar integral

equation of the second kind given by eq.(3.47).
This method starts with substituting a zeroth agination u,(X,y)

in the integral (of eq.(3.47) witlh = 1) to obtain a first approximation

Uy (X,Y),

Y X
ug(x,y)=f (x,y)+/1_Hk(x,y,z Mg @ m xizdm (3.70)

ca

Then u (x,y) is substituted again in the integral of eq.(3.4Y)obtain a

second approximation, (X,y ,)

Y X
u,(x,y)=f (x,y)+/1Hk(x,y,z M)y @ m Yzdm

ca

This process can be continued to obtain the nthoxppation,

Y X
Up (X, y) =F (<,y) +A] [k (x,y ,z mu,_s @ m Hzdm (3.71)

ca

Notice that if f(x,y) is continuous fora<x <b, c<y <d and if

k(x,y,z,m) is also continuous foe<x<b, csy<d and a<z<b,

c<m<d, then it can be proved that the sequenggx,y will)converge to

the solutionu(x,y) of eq.(3.47).
To illustrate this method, consider the followingmple.
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Example (3.9):

Consider the 2-D Volterra integral equation of seeond kind
Y X

u(x,y)=xy+”(xm)u(z,m)dzdm (3.72)
00

we may first remark here that is always an advantagnaking a reasonable

zeroth approximation, a matter that becomes cledter solving a number of
problems.

We start withug(x,t)=0 in the above integral equation to obtain

U, (X, y) according to eq.(3.70)
uy(x,y)=xy (3.73)

so if we let u(x,y) =u;(x,y )in eq.(3.70) we obtain

Yy X
Us(X,Y)=XY —H(x m) uq(z,m)dzdm

00
Y X
=xy—”(x m)(z m)dzdm
00
_vy_L 33
=Xy Ex y >, (3.74)

Now,

Y X
uz(x,y)=(xy)~ [ [ (xm)u,(z,m)dzax
00

Yy X
us(X,y)=xy —H(x m)(z m —%zgmﬂdzdm
00
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1 33, 1 5
=Xy -—=X°y +_—X
y 6 y 120 5y

vy Ll .33 1
=Xy 5x y +ax 5y (3.75)
From eq.(3.73), eq.(3.74) and eq.(3.75) it looleachow that if we continue

this process, we obtain the nth approximatigp(x,y) as

1 1 X 2n+1
uncy)=xy =y oy S () EH @76
which is obviously the nth partial sum of Maclauarigeries ofin(xy) . Hence
the solution to eq.(3.72) is

u(x,y)=limu,(x,y)=sin(xy ). (3.77)

Remark (3.7):

Recall that the 2-D Volterra integral equation lo¢ ffirst kind takes

the form

Y X
f(x,y)=/1Hk(x,y,z,m)J(z ,m Ydzdm (3.78)

ca
which can be reduced to the 2-D Volterra integeplagion of the second kind
when k (x,y,x,y )# 0 since if we differentiate both side of eq. (3.%8)h
respect to y and with respect to x we can obtain:

0% (x.y) _ 110k (X, y,z,m)
3y % _H Jy Ox u(z,m)dzdm + AK (x,y , X,y u(X,y)

This can easily be rewritten

u(x, y)dzdm

2 y X 2
uxy)=— =~ 9 f(X’y)_”Ak(Xl 0°k(x,y,z,m)

AK(X,y,X,y) 0dyox Y. X Y) dyox
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As a 2-D Volterra integral equation of the secomddk So when

kK(x,y,%,¥)Z0 in eq.(3.78) we can reduce it to a 2-D Volterrgegnal

equation of the second kind which can be solvedrsy of the methods that

discussed previously.

Next, the following example is very useful to urstand the above

study

Example (3.10):

Consider the 2-D Volterra linear integral equatodnhe first kind

Y X
e e v P -e W ) = [ [(x +1)(y +16™ M @ ,m pzdm
11

herek Kk y z m F x + 1y + BYM thus:

K(X,y,%Y) = (x+D(y+De Y 20, O(x,y) 0D
whereD ={(x,y)[1<x.y < 3. Also

F(x,y)= @20+ _X+lye 0 +D_g=26+1)
Hence:

0% (x,y) = (20201 X+~ +1) _ gp= G+ 1)y
dy 0x

Moreover:

2
POV 2 - (- m(y +1)(1-2 ( + D)+ 2 b+ DR
dy 0x

Therefore, eq.(3.78) reduces to the following 2-Bit¥rra integral equation

of the second kind
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1 (2e2(x+1)_ex+1)(e—2(y+1)_e—6/+1))_

u(x,y)= (X +1)(y +1e*@ym

y x
” (x +1)(y il)exz‘ym (A-m(y +1)x + 2)+ & + 1z F*""u ¢ m Jizdm
11

then which can be solved by any one of the previnehods.
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Conclusion and Recommendations

From the present study, we can conclude the following:

The classification of the 1-D integra and integro-differential equations
can be extended to include the m-D integral and integro- differential
equations.

The multi-dimensional integro-differential equations can be aso regarded
as partial integro-differential equations.

In most cases, the multi-dimensional integral and integro-differential
equations and the partial integro- differential equations, are so difficult to
be solved analytically.

Some of the existence and uniqueness theorems of the 1-D integral
equations can be extended to include the m-D integral equations.

Some of the methods, say the degenerate Kernel method, the method of
iterated kernels and the method of Fredholm resolvent kernel are
extended to solve special types of the m-D linear integral equations.

For future work, the following problems could be recommended:

Modify the quadrature methods to solve the multi-dimensiona integral
equations.

Generadlize the Laplace transform method to solve the multi-dimensional

Volterralinear integral equations.

Solve rea life applications in which its mathematical modeling can be
represented as m-D integral equations.

The study of the m-D non-linear integral equations to include the m-D
non-linear integro-differential equations.

Devote the study of the system of the non-linear m-D integral equations.

11.
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Introduction

The integral equations arise quite frequently as mathematical models
in diverse disciplines. The origins of the study of the integral equations may
be traced to the work of Abel, Lotka, Fredholm, Malthas, Verhulst and
Volterra on problems in mechanics, mathematical biology and economics,
[Lakshmikantham V. and Rama M., 1995].

The one-dimensional integral equations are one of the important
classes of the integral equations that has many real life applications, say in
population dynamics, the surge in birth rates, the mortality of equipment and
the rate of replacement, biological species living together, the torsion of a
wire or rod, the control of arotating shaft, the propagation of a nerve impulse,
the smoke filtration in a cigarette, the chance of crossing dense traffic, the
shape of a hanging chain, the deflection of a rotating rod, and the shape of a
wire that allows a bead to descend on it in a predetermined time, [Jerri A.,
1985].

Many researchers and authors studies the one-dimensiona integral
equations say [Hochstadt H., 1973], [Delves L. and Walsh J., 1974],
[Chambers L., 1976], [Delves L. and Mohamed J., 1985], [Jerri J., 1985],
[Corduneanu C., 1991] [Atkinson K., 1997]. Moreover, [Ngjieb, S., 2002]
studied the one-dimensional fuzzy integral equations, [Mustafa M., 2004]
devoted the numerical solutions for system of the one-dimensional integral
eguations, [Al-Shakry A., 2001] descried the one-dimensional delay integral
equations with their solutions, [Al-Shather, A., 2003] introduced some
approximate solutions for solving the one-dimensiona fractional integral
eguations with or without delay, [Abdul-Jabbar, R., 2005] presented the
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inverse problem for the one-dimensional fractional integral equations, [Al-
Shather, A.,1999] studied the one-dimensional singular integral equations.

The one-dimensional integral equations play an important role in the
mathematical modeling of many physical problems, biological phenomena
and engineering scions, [Belotscrkovsky S. and Lifanov |, 1985] and
[Anfinogenov A., 2000].

Many researches studied the two-dimensional integral equations, say
[David K., 1999] gave some analytically methods for solving the multi-
dimensional integral equations, [Hasson H., 2005] devoted the variational
technique for solving the two-dimensional linear integral equations and [Al-
Bayati, B., 2005] used the expansion methods for solving the two-
dimensional delay integral equations.

The main purpose of this work is to extend the study of the one-
dimensional integral equations to include the multi-dimensional integral
equations. This study include, the classification of the multi-dimensional
integral equations, the relation between the partial differential equations and
the multi-dimensional integral equations, the existence and uniqueness
theorems for the solutions of the multi-dimensional integral equations and

some methods for solving them.
This thesis consists of three chapters.

In chapter one, we extend the classification of the one-dimensional
integral and integro-differential equations to be valid for the multi-
dimensional integral and integro-differential equations. Also, the relation
among some special types of the partial differential equations with the multi-
dimensional integral equations is discussed. Moreover, some basic concepts
for the partial integro-differential equationsis introduced. In chapter two, we

generalize some existence and uniqueness theorems for the solution of special
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types of the multi-dimensional linear and non-linear integral equations (to the
best of our knowledge, all theorems appeared in this chapter seems to be

new).

In chapter three, we modify some methods that used to solve the one-
dimensional linear integral equations to solve the multi-dimensional linear
integral equations. These methods are the degenerate kernel method, the
method of iterated kernels, the method of Fredholm resolvent kernel for
solving the multi-dimensional Fredholm linear integral equations and the
resolvent kernel method: Neumann series and the method of successive
approximation for solving the multi-dimensional Volterra linear integral

eguations.
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Abstract

The main am of this work is to generalize the study of the
one-dimensional integral equations to include the multi-

dimensional integral equations.

This study includes the classification of the multi-

dimensional integral and integro-differential equations.

Also, some extended theorems for the existence and
uniqueness of solution for the multi-dimensional integral

eguations are given.

Moreover, some generalized methods are used to solve the
multi-dimensional integral equations, with some illustrative

examples.



Al i)y adl adasilh 55 9
Sl Asala
o slal) dls

datalsil) e aleal) Jga
dadial) alay¥) <)
(o) Aadia Al

Ao 0 cldlaia (e 30 (gl Anala (o a al) i
il ) (A asle e

u..uu.“c.uw\m LSJJL;‘-‘

vl drala cagle (g sSs)

i iy

Yoot N VEYY s




	Microsoft Word - _1_العنوان.pdf
	Microsoft Word - _2_  الايه.pdf
	Microsoft Word - _3_  الاهداء.pdf
	Microsoft Word - _4_.pdf
	Microsoft Word - _6_ الشكر.pdf
	Microsoft Word - 5 Examining.pdf
	Microsoft Word - absetract.pdf
	Microsoft Word - appendex.pdf
	Microsoft Word - ch1.pdf
	Microsoft Word - ch2.pdf
	Microsoft Word - ch3.pdf
	Microsoft Word - Conclusion and Recommendations.pdf
	Microsoft Word - contents.pdf
	Microsoft Word - introdaction.pdf
	Microsoft Word - References.pdf
	Microsoft Word - العناو ين.pdf
	Microsoft Word - المستخلص.pdf
	Microsoft Word - بسم الله الرحمن الرحيم.pdf
	Microsoft Word - معلومات عامه لمى.pdf
	Microsoft Word - وزارة التعليم العالي والبحث العلمي.pdf



