
 
 
 
 
 
 Today automatic control systems have become an integrated part of 

our life. They appear in every things from simple electronic household 

products to air planes and spacecrafts. Automatic control systems can take 

highly different shapes but common to them all, is their function to 

manipulate a system so that it behaves in a desired fashion. 

 Control of nonlinear systems is a major application area for neural 

networks. The control design problem will be approached in two ways: direct 

design methods and indirect design methods, and the network must be 

trained as the controller according to some kind of relevant criterion. 

 In this thesis, nonlinear neuro-controller using neural network based 

actuator compensation scheme for nonlinear dynamical control system is 

presented. 

 The scheme that leads to stability, target following, tracking error and 

filtered error is proved . The tuning of artificial neural network weights for 

controller are derived and adjusted based on Lypanove  function approach.   

 The verification of this scheme has been implemented using first 

order, 2-dymensional, nonlinear dynamical Pendulum problem and 1st order 

3-dymensional nonlinear dynamical control system. The simulation can 

effectively compensate for the uncertain nonlinearity in the nonlinear 

uncertain dynamical control system. 

 Necessary mathematical concepts, comments, concluding remarks, 

future works, figures and graphers, have also been presented.    
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Biological Neurons And Their Artificial Models 

Ahuman brain consists of approximately 1110  computing elements 

called neurons. They communicate through a connection network of 

axons and synapses having adensity of approximately 410 synapses 

perneuron. Our hypothesis regarding the modeling of natural nervous 

system is that neurons communicate with each other by means of 

electrical impulses [Arbib, 1987]. The neurons operate in a chemical 

environment that is even more important in terms of actual brain 

behavior.We thus can consider the brain to be adensely connected 

electrical switching network conditioned largely by the biochemical 

processes. The vast neural network has an claborate with very complex 

interconnections. 

The input to the network is provided by sonsory receptors, 

receptors deliver stimulli both from within the body, as well as from 

sense organs when the stimuli originates in the external world. The 

stimuli are in the form of electrical impulses that convey the information 

into the network of neurons. As aresult of information processing in the  

 

central nervous systems, the effectors are controlled and give 

human responses in the form of diverse actions. Wethus have a three 

stage system, consisting of receptors, neural network, and effecctors, in 

control of the organism and its actions.  

APPENDIX (A) 
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Figure (A.1) 

Information flow in nervous system 

 

A lucid, although rather approximate idea, about the information 

links the neurons system is shown above. As we can see from the (figure. 

a.1),the information is processed, evaluated and compared with the stored 

information in the central nervous system. When necessary command are 

generated there transmitted to the motor organs. Notic that motor organs 

are monitored to central nervous system by feedback link that verify their 

action. Both internal and external feedback control implementation of 

command as can be see the overall nervous system structure has many of 

the characteristics of a class loop control system. 

 

Living Neurons 

To justify such a strong claim it is necessary to expand the 

argument a little. Living neurons are, in fact, composed of a cell body and 

numerous outgrowths. One of these, which may branch into several 

collaterals, is called the axon. It acts as the output line for the neurons. 

The other outgrowths are called the dendrites; they are often covered with 
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little 'spines', where the ends of the axons of other cells attach themselves. 

The interior of the nerve cell is kept at a negative electric potential 

(usually about -60 mv ) by means of active pumps in the cell wall which 

pump sodium ions outside and keep slightly fewer potassium ions inside. 

This electrical balance is espscially delicately assessed at the exit point of 

the axon.If the cell electrical potential becomes too positive,  usually (+10  

to +15 mv), then there will be a sudden reversal of the potential to about 

(+60 mv), and an almost as sudden return to the usual negative resting 

value ,all in about (2 to 3 ms). 

his sequence of potential changes is called an action 

potential,which moves steadily down the axon and its branches (at about 

1 to 10 ms-1). It is action potential that is the signal sent from one cell to 

its neighbores. The generation of the signal by the neuron is achieved by 

the summation  of the signals coming to the cell body from the dendrites, 

which themselves have been affected by action potentials coming to them 

from nearby cells. The strengths of the action potentials moving along the 

axons are all the same. It is by means of rescaling the effects of each 

action potential as it arrives at a synapse or junction from one cell to the 

next (by means of multiplication of the incoming activity of a nerve 

impulse by the appropriate connection weight mentioned earlier) that a 

differential effect is achieved for each cell on its neighbors. 
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Figuer (A.2) 

Schematic diagram of a neuron and a sample 

Of pulse train 

 

 

 

 
 
 
 
Recurrent Network 

 A recurrent (feed back) network can be obtained from the feed 

forward network shown in figure (1.14) by connecting the neurons output 

to their inputs as illustrated in figure (B.1). Unlike the feed forward 

network, where there is an algebraic relationship between input and 

output, the recurrent architecture contains memory, i.e., it is a dynamic 

system. The recurrent network contains the feed forward network as a 

special case and obviously it therefore represents a more general class of 

architectures. The mathematical expression governing the network in 

figure (B.1) is given by 

        APPENDIX (B) 
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Where ii fF ,   be the activation function of the hidden and input layer 

respectively, jlij wW ,  be the weights of the hidden, input layer of the 

neural network respectively which be adapted later. 00 , ij ww  be the bias of 

the hidden, input layer respectively and mmnnh ,, +  be the number of 

layer on which the output is adapt on. 

The recurrent can be implemented in many different ways. The 

example shown in figure (B.1) is just one example. If also the output of 

the output neurons are fed back, the network is often said to be fully 

recurrent . 

 

Figure (B.1) 

A Simple Example of a Recurrent Network 

 

 

f2 

f1 

F2 

F1  

1 

P1 

P2 

P3 

a1 

a2 

Input of the Bias 

     Hidden Layer 

   Output Layer 

Input Layer 

Outputs fed back as inputs 



                                                                                                                       Appendixes      

 - ٦ -

Radial Basis Network  

A network that has received a lot of attention recently in the field 

of neural networks is the radial basis function network. This can be 

described as 

 ( )∑
=

−=
nh

i icpgiwa
1

                                                                 (B.2) 

with mRp ∈ the input vector and Ra∈  the output (models with multiple 

outputs are also possible). The network consists of one hidden layer with 

nh hidden  neurons. One of the basic differences with the multilayer 

perceptron is in the use of the activation function: in many cases one 

takes a Gaussian function for g, which is radially symmetric with respect 

to the input argument. The output layer has output weights hnRw∈ . The 

parameters for the hidden layer are the centers m

i Rc ∈ . 

 The networks (1.27) and (B.2) are feed forward neural networks, 

which means that there is a static nonlinear mapping from the input space 

to the output space: the layers are interconnected in a feed forward way to 

each other. In recurrent neural networks outputs of neurons are feed back 

to the network, resulting in a dynamical system. A simple example of a 

recurrent neural network is the Hopfield network, in discrete time looking 

as  

 ( )kWpkp tanh1 =+                                                                  (B.3) 

with n

k Rp ∈ the state vector and nnRW ×∈  the synaptic matrix. The 

network consists of one layer of neurons. 
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Mathematical Foundations of Nuerocomputong  

Neurocomputing makes use of parallel dynamical interactions of 

modifiable neuron-like elements. It is important to show, by 

mathematical treatments, the capabilities and limitations of information 

processing by various architectures of neural networks. This section, part 

tutorial and part review, tries to give mathematical foundations to 

neurocomputing. It considers the capabilities of transformations by 

layered networks, statistical neurodynamics, a general theory of neural 

learning, and self- organization of neural networks. 

Statistical Analysis of Neural  Transformation        

A. One-layer Neural Network: 

Let us consider one-layer network consisting of k of neural 

elements, which receive the same input signals [ ]mpppp K21=  

in common, and emit respective outputs [ ]kaaaa K21= . Let ijw  

be the synaptic connection weight from the ith input component ip  to the 

jth  neuron. The output ja  of the jth  neuron is then written as 

kj
m

i ibipijwfia ,,2,1,
1

K=∑
=

+= 












                                      (C.1) 

Wheref  is a nonlinear output function and jb is the threshold value (the 

bias).  

Let us denote a bundle of output signals by a vector 

[ ]kaaaa K21= . The network transforms a vector input signal p   

to a vector output signal a . We denote this transformation by  

APPENDIX (C) 
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 pwfa =                                                                                (C.2) 

Where wf  is a nonlinear mapping defined by (C.1) and ijww =  is called 

connection matrix. A one-layer neural network thus defines a 

transformation or mapping from the input signal space { }pP =  to the 

output signal space { }aA = .  

 apwf →:                                                                               (C.3)  

We use in this section a simple binary neuron model to 

demonstrate a mathematical method of approach, such that input and 

output signals jp and ia  take on the binary values +1 and -1, so that the 

function f  is the sign function  

 ( )




<−
≥=

0,1
0,1

sgn
u
u

u                                                             (C.4) 

 Moreover, we put 0=ib  for the sake of simplicity so that  

 ( )pwpwfa sgn==                                                              (C.5) 

or 

 miipwfia ,,2,1, K==                                                    (C.6) 

There are a number of approaches to study characteristics of wf  . For 

example, one can define the capacity of the class of one-layer networks 

by the maximum number m of input-output pairs ( ) miiaip ,,2,1, K=  as 

we defined in Eq., (C.6), such that for almost all such pairs there exists a 

network which realizes the input-output relation. It is known that the 

capacity is nm 2=  by a number of interesting but different methods 

[Cover, 1965],[Gardner, 1988],[Baum, 1989]. 

 

Remarks 
   In this section, we focus on the statistical method of approach. 

When a network is complex, the connection weights may be regarded as 
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if they are determined randomly. The statistical method is applicable to 

such networks. In the special case where the connection matrix 







= ijwW  is determined randomly subject to a probability distribution, 

we can apply the statistical method to elucidate the characteristics of the 

mapping wf . Obviously, the typical characteristics depend on the 

probability distribution of ijw . We treat the two typical cases as 

examples:  

1. Totally random networks in which all the components wij are 

independently and identically distributed.  

2. Associative memory networks in which wij  are not independent 

but are by   a smaller number of random parameters. 

 

Stability of Mapping Totally Random Networks 
We first show properties of the mapping by a totally random 

network where ijw  are the realization of independent random variables 

subject to a normal distribution  N (ώ, σ2
w), with mean ώ and variance 

σ
2

w. Such a network is said to be totally random. 

jp
m

j ijwiu ∑
=

=
1

                                                                (C.7) 

Which is the weighted sum of input stimuli, and the output is written as 

( )iuia sgn=                                                                             (C.8) 

Since ijw  are the randomly determined, then given p then ( )kiiu ,,1K=   

and also randomly distributed. Moreover, they are independently and 

identically distributed. More precisely, iu  is a linear combination of ijw , 

so that it is also normally distributed. Its mean is given by  

 pAwnjpwjpijwu =∑=∑Ε= 



                                           (C.9 ) 
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Where [ ]uΕ denotes the expectation of u and pΑ  is the mean activity of 

the input vector p defined by  

 ∑= jp
npA 1                                                                         (C.10)  

The variance 2σ  of iu   

 222
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Where [ ]uV  denotes the variance of the u .  

The probability Ρ  of 1=ia , is given by  

{ } { } 






Φ=>==Ρ
σ
u

iuprobiaprob 01            

Where Φ  is the error integral, 

 ( ) ( ) dvvuu
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




−∫ ∞−=Φ 22exp21 π                                     (C.11) 

Since all the ia  are independent subject to the same probability 

distribution, the output activity 

 ∑
=

=
k

i ia
kaA

1

1   

Converges in probability to 

 [ ] ( )pAiaaA αΨ=Ε=                                                             (C.12) 

Where k is large, where we put  

 
w

wn σα =                                                                        (C.13) 
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When we partition the input and output signal space P and A, according 

to activity, wf  maps input signals of activity Ap to output signals of 

activity Aa  given by (C.12). This is a macroscopic characteristic of 

wf . When 0=w  we have α =0. So that the activity Aa is concentrated 

around 0. We study more subtle microscopic properties of the mapping  

wf . Let us assume that p  is mapping to a  

 pwfa =  

It is then expected that signals p′  belonging to a neighborhood of p  are 

mapping to a neighborhood of a . To show this, we introduce the 

normalized distance between p  and p′by  

 ( ) ∑
=

′−=′
n

i ipip
n

pppD
12

1,                                                      (C.15) 

This is the normalized Hamming distance, satisfying 10 ≤≤ pD . The 

distance ( )pppD ′,  between p and p′ is defined similarly. 

Let p′  be a signal whose distance from p  is Dp. How far is the distance 

Da between pwfa =  and pwfp ′=′ . See fig.(C.2) relation between 

pD  and aD  defines a stability or robustness of the mapping wf , 

because when p′  is regarded as a noisy version of p with noise rate Dp, 

the noise  rate of the output a′  is given by Da.  when pDaD < , the noise 

is reduced by the transformation, and if aDpD < , the noise is 

amplified. 
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Figure (C.2) 

Stability of transformation wf  

 

The next theorem shows that the noise is amplified by a totally random 

network [Amari, 1974]. This type of network enlarges small differences 

around p  so that they are convenient for detecting differences among 

similar signals . 

The following theorem holds for networks with 0=w . Similar properties 

hold for any totally random networks. 

Theorem 1 
     When the distance between p  and p′  is ( )pppD ′,  , the distance 

( )pwfpwfaD ′,  of their transforms is given by  

pDaD 1sin2 −= π                                                                  (C.15)  

Proof:  let us put  

jpijw
nivjpijw

niu ′∑=∑= 1,1  

 When jajaiviu ′=> ,0  and when jajaiviu ′=< ,0 . Therefore 

Da is given by the ratio of the number of the components; satisfying 

0>iviu to k. Since ( )iviu ,  are a pair of normal random variables and are 

independent for different i, we have 
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 { }0<= iviuprobaD   

When k The mean of ui and vi are zero, and the variances of ui and vi are 

σ2
w, their covariance is given by  

 [ ] ( ) 221212
wpDjpjpwniviuuv σσσ −=′∑=Ε=  

Therefore, 
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This can easily be calculated, giving (C.15). 

 

 

 

 

 

 

 

Figure (C.3) 

Graph of  C.15 

 

Remark 
Figure (C.3) gives the graph of relation (C.15), when Dp is 

small, we have approximately 

 pDaD π
2=  

The approximate derivative  
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pDpDd

aDd 11
π=  

Becomes infinitely large at 0=pD . This implies that a small 

neighborhood of p  is expanded and mapped to very large neighborhood 

of pwfa = . Such a mapping is useful for recognizing differences among 

similar signals in a small neighborhood of p , because the differences are 

enlarged in the corresponding output signals. This is contrary the noise 

reduction property which reduces noise added to p  in transforming it to 

a  . 

Statistical   Neurodynamics 

A. A fundamental problem of statistical neurodynamics: 

We now treat a neural network with recurrent connection (Fig C.4 ). Let 

ijw  be the connection weight from the jth  neuron to the ith neuron, and 

let ( )tip  be the state or the output of the ith  neuron at time t, taking 

values +1 or -1.  

When each neuron works synchronously at discrete time t =0, 1, 2… the 

behavior of the network is written as  

 ( ) ( )













+∑

=
−=+ i

n

j ihtjpijwtip ε
1

sgn1                                      (C.16) 

Where hi is the threshold.  iε is the weighted sum of stimuli coming to the 

jth  neuron from the outside.  
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Figure  (C.4) 

Network with Recurrent Connections 

 

For the sake of simplicity we let this iε be included in the term hi, by 

putting iih ε−  as the new hi and neglect the term iε  .  

By using the nonlinear operator wf  

 ( )hpWpwf −= sgn  

as before, eq.(C.16 ) is written as 

 ( ) ( )tpwftp =+1                                                                       (C.17) 

The vector ( )tp  is regarded as the state of the network at time t, and 

(C.17) is the state transition equation describing the dynamical behavior 

of the network. 

The state space Ρconsists of 2n vectorsp  whose component are ±1 in the 

present case. The state transition wf defines a mapping fromp  to itself, 

where pwf ′ is called the next state ofp .  

 

 Remarks 

1. The state transition graph is constructed in Ρby adding directed 

edges connecting tow nodes p and pwf in this order ( Fig. C.5). 
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Each node (state) has one, and only one, edge starting from it and 

ending at its next state. The dynamic property of the net is fully 

represented by this graph. 

 

Figure (C.5) 

.State transition graph of  wf . 

 

   ● State p  is said to be an equilibrium or a fixed point ofΡ , when  

pwfp =  

 Holds, when and only when p has a self-closed edge, i.e. an edge 

starting p  from and entering in p  , it is a fixed point 

   ● A sequence  { }kppp K21 of nodes is said to be a cycle of 

period k, when  

 
kpwfp

kttpwftp

=

−==+

1

1,,1,1 K

 

Hold and all xt are different. This is represented by a primitive loop of 

length k in the graph. 

 

2. It is not easy to analyze the behavior of the dynamics ( ) of a nonlinear 

network. When the connection weight wij are randomly determined 

subject some probability distribution. 
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  ● There exist common dynamical properties that are shared by almost 

all randomly generated networks by the same probability law. Obviously 

such properties depend on the probability distribution. 

 

B. Statistical neyrodynamics studies such properties by using 

macroscopic state variables: 

A macroscopic state variable is a function of the (microscopic) state p  

summarizing some average features of the state. A simple example is the 

activity level. 

 ( ) ∑
=

=Α
n

i
ip

n
p

1

1
                                                                         (C.18) 

Of state p  which shows the ratio of the excited neurons. The activity 

level At at time t is written as 

 ( ){ }tpt Α=Α                                                                             (C.19) 

And it is expected that dynamical equation of the type 

 ( )tt F Α=Α +1                                                                             (C.20) 

Holds for almost all randomly generated networks with a desired 

accuracy as n tends to infinity. Such a quantity is called a macroscopic 

state variable.  

It is not necessarily a scalar but may be a vector quantity. In order to 

elucidate common microscopic characteristics of the state transition 

graph, it is useful   to define a macroscopic variable, which is a function 

of two or more microscopic states. For example, we may use the distance 

( )ypD ,  between two states as a macroscopic variable and put 

 ( ) ( ){ }tytpDDt ,=                                                                      (C.21) 
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Where ( ) ( ) ( ) ( )00 yftyandpftp t

w

t

w ==  are the state transition 

sequences starting at ( ) ( )00 yandp respectively. If we have such a 

dynamical relation as 

 ( )tt DGD =+1                                                                              (C.22) 

We can study how an initial difference in the state develops in the course 

of the state transition dynamics. 

 

C. Macroscopic Dynamics of Activity:  

When ijw  are independent subject to the same distribution of the 

average ∗w  and variable 2

wσ , say the normal distribution ( )2, hhN σ∗  the 

dynamical equation of the activity is given by  

 ( )∗∗
+ +Α=Α HW tt ψ1                                                             (C.23) 

Where  

 222,, ∗+===
∗

∗
∗

∗

hw

h
H

w
W σσσ

σσ
                                      (C.24) 

Totally random networks are classified into the three categories 

depending on the behaviors of the macroscopic equation or the 

parameters ∗∗ HandW  [Amari, 1971]. 

1. Monostable, converging to the unique equilibrium macrostate ∗Α  from 

whatever initial state it starts. 

2. Bistable, converging to one of the two stable equilibrium macrostates 

depending on the initial state. 

3. Oscillatory with periods 2. (Figure (C.5)) shows how the dynamic 

behavior depends on the macroparameters ∗∗ HandW . This is the 

catastrophe curve of the macroscopic dynamics. It should be noted that 
∗Horh j  can be controlled by stimulation from the outside. 
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Figure C.5 

Catastrophe of macro dynamics 

 

Remarks 
To study the dynamical behavior of especially in the case 

consisting of two different types of neurons: 

Consider a random network consisting of several different types of 

neurons. Let αβ
ijw  be the connection weight from the jth  neuron of type β 

to the neuron of type α. It is a realization subject to the normal 

distribution with mean ∗
αβw and variance 2

ασ h . The threshold α
ih  of the ith 

neuron of type α is also assumed to be the normal distribution with mean 
∗
αh  and variance 2

ασ h . Let α
tΑ   be the activity of the neurons of type α at 

time t,  

 ( )∑=Α
i

it tp
n

α

α

α 1
              

Where αn is the number of the neurons of type α and ( )tpi

α  is the state at 

time t of the ith  neuron of type α. It is easy to show that the vector  

 ( )αΑ=Α  

 

Is a macroscopic state satisfying the postulate [Cover, 1965], the 

macroscopic dynamics is given by  
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 
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α ψ HW tt 1                                                     (C.25) 

Where the macroparameters ∗∗
ααβ HandW  are given by  

 
22

1
,

1

∗+=

==

∑∗

∗∗∗∗

α
β

αβα

α
α

ααβ
α

αβ

σσσ
σσ

h

hHwW
 

[Amari, 1971] studied the dynamical behavior of (C.25), especially in the 

case consisting of two different types of neurons. There exist at most 9 

equilibrium macrostates in such a network [Harth, 1970]. When type 1 

neurons are excitatory and type 2 neurons are inhibitory, it was shown 

that there exists a stable oscillatory solution with a long period. Similar 

results were found also by Wilson and Cowan [Wilson, 1972]. Not only 

the oscillatory behavior but also its period can be controlled by stimuli 

from the outside, so that such a network is convenient for modeling 

temporal behaviors, [Amari, 1972] also studied similar behaviors in 

random nets of continuous-time analog neurons described by a set of 

differential equations. 

 

D. Characteristics of Microstate Transition in Totally Random 

Networks: 

We now study typical characteristics of the state transition graph of 

a totally random asymmetric network, where jiij wandw  are independent. 

On the other hand, it is also important to study characteristics of a 

network of symmetric connections, in which the symmetry condition 

jiij ww =  is imposed. This is because a symmetric network can be used to 

solve the optimization problem under constraints [Hopfield, 1985], 

[Rumelhart, 1986], we consider a random symmetric network, too, where 

all the ijw  are independently, identically and normally distributed under 
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the symmetric condition jiij ww = . As will be shown there are big 

differences in the characteristics of symmetric and a symmetric random 

networks. 

1. Number of stable states: a state p   is said to be equilibrium or stable 

when it's next state pfw is equal to p  itself. 

The expected number of states can be calculated by the statistical 

neurodynamical method.  

 

Theorem   The expected number of stable is equal to 1 for a symmetric 
random net, and is equal to e0.199n for a symmetric random net. 
 
Proof: 

The proof for the asymmetric is easy [Amari, 1974]. The proof for the 

symmetric case was given by Tanaka and Edwards [Tanaka, 1980] in 

the connection with SK-model of spin glass. Here, we give a simple 

proof. We first calculate the probability that ( )1,,1,1 K=p  is stable state. 

For the above x, we put 

∑∑
=

=⋅=
n

j
jiji wijpwu

1

 

The state p  is stable, if and only if  0>iu for all i. Therefore, the 

probability Ρ  that ppfw = is written as  

 { }0,,01 >>Ρ=Ρ nuurob K  

In the symmetric case all the iu  are independently and normally 

distributed with mean 0. Therefore, because of { } 5.001 =>Ρ urob  

 { } n
n

i
iuprobasym −

=
=>=Ρ ∏ 20

1
  

In the symmetric case, iu  are normally distributed with mean 0 and 

variance 
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 [ ] 22

wij nwV σσ == ∑  

However, ji uandu  are not independent because of jiij ww =  and their 

covariance is given by  

 [ ] [ ] 2,, wjiijji wwCovuuCov σ==  

These correlated iu can be represented by using mutually independent 

normal random variables randsi  subject to ( )1,0N  as  

 ( )rsnu iwi −⋅−= 1σ  

The probability then because  

 

{ }









−
>

−
>=

>>=Ρ

1
,,

1
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1

n

r
s

n

r
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uuprobsym

n

n

K

K

 

In order to calculate this, we first fix r , and calculate the probability. We 

then take expectation with respect to r  . When r  is fixed, the events  

 1/ −> nrsi   

are independent in the sense of the conditional probability. Therefore, 

because of { } ( )ccsrob Φ−=>Ρ 1 . 

 

( )( )
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By using the saddle-point approximation, we have 

 ( ){ } ,1log
2

1
exp 0

2
0














 Φ−−−= yynpsym  

where 0y is the value of minimizing ( ) ( ){ }yy Φ−− 1log21 2  Numerical 

calculation give  

 nesymp 494.0−=  
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it is easy to show that asymΡ  and symΡ do not depend on specific p  but 

are the same foe any p . since there are n2  times the probability.  

 

2. Stability of State Transition:  for two states 21 pandp  whose distance 

is D, we search for the distance D'  between their next states 

21 pfandpf ww  [Amari, 1974]. 

 

Theorem   When the distance between 21 pandp  is D, the distance D'  
between 21 pfandpf ww  is given by  

 DD 1sin
2

' −=
π

                                                                     (C.26) 

in both cases of the asymmetric and symmetric random connections. 

 

3. Potential  function:  In the case of symmetric connections, a potential 

function monotonically decreases as the state evolves by the network 

dynamics. This is a characteristic feature of asymmetric connection 

network. Let  

 ( ) iijiij phppwp ∑∑ −−=Ε
2

1
                                              (C.27) 

Where we assume iwij ∀= ,0 , when each neuron changes its state 

(output) one by one in a non synchronized manner on the sign of the 

weighted sum of input stimuli, it is easy to show that ( )tpΕ  is 

monotonically non increasing as the state transition takes place [Hopfield, 

1982] [Hopfield, 1984]. This implies that the state of a network 

converges to one of the local minima of the potential function ( )pΕ . 

This also proves that there is no oscillatory behavior in such a network 

see also [Cohen, 1983] [Hopfield, 1985], for the Lyapunov or Potential 

function (in the continuous-time case).  
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Back propagation of Recurrent Networks 
The back propagation has been generalized to be applicable with 

recurrent connections by many researchers [Williams, 1989] [Doya, 

1989]. We give a simple but example.  

Let N be a network with n neurons, some of which are output 

neurons and some of which are input neurons. Let  ( )tzi  be the output of 

the ith  neuron at time t, which is determined by  

 ( ) ( )[ ]tutz ii Φ=                                                                   (C.28) 

 ( ) ( ) ( )11 −+−= ∑∑ txstzwtu kikjiji                                    (C.29) 

Here ijw  is the weight of the recurrent connection from the jth  unit to the 

ith  unit, and iks  is the connection weight from the kth  input kx  to the ith 

unit. When the ith unit is not an input neuron 0=iks . The input is a time 

sequence ( ){ } K,2,1, =ttx , and the network is in the quiescent state at 

time 0. For each input time sequence ( )tx  a sequence ( )ty  of the desired 

outputs is given at t = 1, 2…, to the output neurons. 

The parameters are ( )ikij sw ,  some of which may be fixed to 0 or to 

prescribed  values. We denote by S only modifiable parameters. The 

squared error loss  at time t is given by  

 ( ) ( ) ( ) 2
..

2

1
;, ∑

∈
−=Ι

Ok
kk tytzStx                                                 (C.30) 

Where the summation is taken over the set O of the output neurons.  

The connection weights are changed in the learning phase by 

( ) ( ) ijijij wctwtw ∂Ι∂−=+
..

1                                          (C.31) 

( ) ( ) ijijij sctsts ∂Ι∂−=+
..

1                                                      (C.32) 

However, ijij sandw ∂Ι∂∂Ι∂ &&&&  are not simple, because of the recurrent 

connections. We have the following theorem. 
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Theorem    The learning rule of a recurrent network is given by  
( ) ( ) ( )trectwtw

Ok
kijkijij ∑

∈
−=+1                                                (C.33) 

( ) ( ) ( )tqectsts kij
Ok

kijij ∑
∈

−=+1                                                   (C.34)   

Where 

 ( ) ( ) 2

∑ −= tytze kkk                                                            (C.35) 

And kijkij qr ,  are calculated recurrently by  

 ( )( ) ( ) ( )∑ −+−Φ=
m

mijkmkijkkij trwtztur 11' δ                             (C.36) 

 ( )( ) ( ) ( )11' −+−Φ= ∑ tqwtxtuq mij
m

kmkijkkij δ                                   (C.37) 

kiδ   being the Kronecker delta. 

 Remark 

When the dynamics of the neural network converges to ( )Szfz ;= and 

if we want the final output z to be equal to the desired ( )xy , we may use 

the equilibrium solution of (C.28) and (C.29) by solving the simultaneous 

equations. This method is proposed by [Pineda, 1987]. 
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 1 
 
1.1 History of Artificial Neural Systems  [Zurada,1996] 

 Artificial neural systems development has an interesting history. 

Since it is not possible to cover this history in depth in a short 

introductory section, the historical summary below is not exhaustive; 

some milestones are omitted and some are mentioned only briefly. 

 The year 1943 is often considered as the initial year in the 

development of artificial neural systems, when McCulloch and Pitts in 

(1943) outlined the first formal model of an elementary computing 

neuron, [McCulloch, 1943]. The model included all necessary elements to 

perform logical operations, and thus it can operate as an arithmetic-logic 

computing element. The implementation of its compact electronic model, 

however, was not technologically feasible during the bulky vacuum 

tubes. The formal neuron model was widely adopted for the vacuum tube 

computing hardware description, and the model never became technically 

significant. However, the McCulloch and Pitts neuron model laid the 

groundwork for future developments. Influential researchers of that time 

suggested that research in design of brain-like processing might be 

interesting. To quote John Von Neumann's (1958) observations on the 

"brain language", [Von, 1958].  

 Donald Hebb in (1949) first proposed a learning scheme for 

updating neuron's connections that we now refer to as the Hibbian 

leaning rule [Hebb, 1949]  . He started that the information can be stored 

in connections, and postulated the learning technique that had a profound 
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impact developments in this field. Hebb's learning rule. Made primary 

contributions to neural networks theory. 

 During the 1950, the first neurocomputers were built and tested 

Minsky (1954) [Minsky, 1954]. They adapted connections automatically.  

During this stage, the neuron-like element called a perceptron was 

invented by Frank Rosenblatt in 1958, it was a trainable machine of 

learning to classify certain patterns by modifying connections to the 

threshold elements. The idea caught the imagination of engineers and 

scientists and laid the groundwork for the basic machine learning 

algorithms that we still use today [Rosenblatt, 1958]. In the early 1960 a 

device called ADALINE  (for ADAptive LINEar  combiner) was 

introduced, and a new powerful learning rule called the Widrow-Hoff 

learning rule was developed by Bernard Widrow and Hoff in (1960) 

[Widrow, 1960]. 1962 the rule minimized the summed square error 

during training involving pattern classification. Fatly application of 

ADALINE  and its extensions to MADALINE  (for many ADALINES) 

include pattern recognition. The monograph on learning machines by Nile 

Nilsson in (1965) clearly summarized many of the developments of that 

time, [Nilsson, 1965]. 

 Despite the successes and enthusiasm of the early and mid-1960, 

the existing machine learning theorems of that time were too weak to 

support more complex computational problems. Although the bottlenecks 

were exactly identified in Nilsson's work and the neural network 

architectures called layered networks were also known. Neural network 

research entered into the stagnation phase.  

Another reason that contributed to this research slowdown at that 

time was relatively modest computational resources available then. The 

final episode of this area was the publication of a book by Marvin 

Minsky and Papert in (1969) that gave more doubt as to the layered 
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learning networks' potential, [Minsky, 1969]. The stated limitations of the 

perceptron-class networks were made public; however, the challenge 

was not answered until the mid-1980. The discovery of successful 

extensions of neural network knowledge had to wait until 1986. 

Meanwhile, the mainstream of research activity in the neural network 

field, called at that time cybernetic had sharply decreased. The artificial 

intelligence area emerged as dominant and promising research field, 

which took over, among others, many of the tasks that neural networks of 

that day could not solve. 

 During the period from 1965 to 1984, further pioneering work was 

accomplished by a handful of researchers. The study of learning in 

networks of threshold elements and of the mathematical theory of neural 

networks was pursued by Sun-Ichi Amari (1972, 1977) [Amari, 1972] 

[Amari, 1977]. Also in Japan, Kunihiko Fuukushima developed a class of 

neural network architectures known as neocognitrons Fukushima and 

Miyaka (1980) [Fukushima, 1980]. The necognitron is a model for visual 

pattern recognition and concerned with biological plausibility. The 

network emulates the retinal image and processes them using two-

dimensional layers of neurons. 

 Associative memory research has been pursued by, among others, 

Tuevo Kohonen in Finland (1977, 1982, 1984, 1988) [Kohonen, 

1977,1982,1984 and 1988] and James A.Anderson [Anderson, 1977] 

Unsupervised learning were developed for feature mapping into regular 

arrays of neurons [Kohonen, 1982]. Stephen Grossberg and Gail 

Carpenter have introduced a number of neural architectures and theories 

and developed the theory of adaptive resonance networks [Grossberg, 

1977, and 1982]. 

 During the period from 1982 until 1986, several seminal 

publications were published that significantly furthered the potential of 
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neural networks. The aera of renaissance started with John Hopfield 

(1982, 1984) [Hopfield, 1984] introducing a recurrent neural network 

architecture for associative memories. His papers formulated 

computational properties of a fully connected network of units. 

  Another revitalization of the field came from the publication in 

1986 of two volumes on parallel distributed processing, edited by James 

McClelland and David Rumelhart (1986) [McClelland, 1986] 

[Rumelhart, 1986]. The new learning rules and other concepts introduced 

in this work have removed one of the most essential network training 

barriers that grounded the mainstream efforts of the mid-1960. the 

publication by McClelland and Rumelhart opened a new era for the once-

underestimated computing potential of layered networks. The function 

approximator, EEG spike detector and autonomous driver discussed in 

the previous section provide examples facilitated by the new learning 

rules. 

The field of function approximation has led to the important 

'universal approximation theorem' [Hornik, 1989]. This theorem states 

that (any suitably smooth function can be approximated arbitrarily closely 

by a neural network with only one hidden layer). The number of nodes 

required for such an approximation would be expected to increase 

without bound as the approximation was increasingly better. The result is 

of the utmost importance to those who wish to apply neural networks to a 

particular problem (it states that a suitable network can always be found). 

This is also true for trajectories of patterns [Funahashi,  1993]. 

There is a similar, but more extended result, for the learning of 

conditional probability distribution [Allen, 1994], where now the 

universal network has to have at least two layers to be able to have a 

smooth limit when the stochastic series being modeled becomes noise-

free.  
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Although the mathematical framework for the new training 

scheme of layered networks (Backprpagation algorithm) was 

discovered in 1974 by Paul Werbos [Werbos, 1974] (and studied by 

Parker (1985) and LeCun (1985)), it went largely unnoticed at that time 

[Werbos, 1974]. According to the most recent statement [Dreyfus, 1990], 

the first authors of the optimization approach for multilayer 

feedforward systems were Bryson [Bryson, 1969] and Kelley who 

obtained a gradient solution for multistage network training. In 1962, 

Dreyfus used a simple, new recursive derivation based on the chain-rule 

of differentiation to prove the Bryson-Kelley results and dealt explicitly 

with the optimal control problem in its discrete-stage form [Dreyfus, 

1962]. Their work, however, has not been carried to maturity and adopted 

for neural network learning algorithms.  

 Beginning in 1986-87, many new neural networks research 

programs were initiated. The intensity of research in the 

neurocomputing discipline can be measured by a quickly growing 

number of conference and journals devoted to the field. In addition to 

many edited volumes that contain collections of papers, several books 

have already appeared. The list of application that can be solved by 

neural networks has expanded from small test-size examples to large 

practical tasks. Very-large- scale integrated neural network chips have 

been fabricated. At the time of this writing, educational offering have 

been established to explore the artificial neural systems science. 

Although neurocomputing has an interesting history, the field is still in 

its early stages of development. In 1988 Austin discussed Rapid learning 

with a hybrid neural network, Bolt, Austin study the assessing the 

reliability of artificial neural networks, Morgan study safety critical 

neural networks in 1995, Yan, Austin discussed the mathematical 

foundations of statistical parallelism in 1997, Hodge, Austin study the 
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evaluation of standard retrieval algorithms and a binary neural approach 

in 2000, in 2003 Hodge, Austin study the evaluation of standard spell 

checking algorithm and a binary neural network. in 2004 Pears, Crook-

Dawkins study the robust dependable model-based visual location for 

mobile robots.  

For more Details on Biological Neurons: see appendix A.  

1.2 Some Neural Networks Concepts    

 The following are some Artificial Neural Network definitions that 

are needed in the following section [Zurada, 1996] [Paual, 1997] : 

 1. An artificial neural network: is a computational structure that is 

inspired by observed processes in natural networks of biological neurons 

in the brain. It consists of simple computational units, called neurons, 

which are highly interconnected. Each interconnection has a strength that 

is expressed by a number referred to as a weight.  

 2. Neuron: is the basic processing element of a neural network. 

Includes weights and bias, a summing function and an output transfer 

function. 

 3. Bias: is a neuron parameter that is summed with the neuron's 

weighted inputs and passed through the neuron's transfer function to 

generate the neuron's output. 

 4. Bias vector: a column vector of bias values for a layer of 

neurons. 

 5. Connection: a one-way link between neurons in a network. 

 6. Weight matrix: is matrix connection strengths from a layer's 

inputs to its neurons. The element wij of a weight matrix W refers to the 

connection strength from input j to neuron i. 

 7. Layer: is a group of neurons having connections to the same 

inputs and sending outputs to the same destinations. 
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8. Input layer: a layer of neurons receiving inputs directly from 

outside the network.  

 9. Layer weight: the weights connecting layers to other layers. 

 10. Hidden layer: a layer of network that is not connected to the 

network output. 

 11. Output layer: a layer whose output is passed to the world 

outside the network. 

 12. Input space: the range of all possible input vectors. 

13. Input vector: a vector presented to the network. 

14. Input weights: the weights connecting network inputs to layers. 

15. Input weight vector: the row vector of weighs going to a 

neuron. 

16. Weight input vector: the result of applying a weight to a layer's 

input, whether it is a network input or the output of another layer. 

17. Output vector: the output of a neural network. Each element of 

the output vector is the output of the neuron. 

18. Output weight vector: the column vector of weights coming 

from a neuron or input. 

19. Target vector: the desired output vector for a given input 

vector. 

20. Error vector: the difference between a network's output vector 

in response to an input vector and an associated target output vector. 

 21. Transfer function: the function that maps a neurons (or layers) 

net output n to its actual output. 

 22. Architecture: a description of the number of the layers in a 

neural network, each layer's transfer function, the number of neurons per 

layer, and the connections between layers.   

23. Learning: the process by which weights and biases are 

adjusted to achieve some desired network behavior. 
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24. Training: a procedure whereby a network is adjusted to do a 

particular job.   

25. Learning rate: a training parameter that controls the size of 

weight and bias changes during learning. 

26. Learning rules: methods of deriving the next changes that 

might be made in a network OR a procedure for modifying the weights 

and biases of a network. 

27. Update: make a change in weights and biases. The update can 

occur after presentation of a single input vector or after accumulating 

changes over several input vectors. 

28. Supervised Learning: a learning process in which changes in a 

network's weights and biases are due to the intervention of any external 

teacher. The teacher typically provides output targets. 

29. Unsupervised Learning: a learning process in which changes 

in a network's weights and biases are not due to the intervention of any 

external teacher. Commonly changes are a function of the current 

network input vectors, output vectors, and previous weights and biases. 

1.3 Why Neural Network ?   

 Why have neural networks attracted particular attention compared 

with alternative techniques? For a given application it is of course 

difficult to say that one identification technique will outperform another 

before they have both been evaluated. Nevertheless, it is desirable to 

consider only one technique for all applications rather than having to 

evaluate several candidates on each new application. Partly because it 

simplifies the modeling process itself, and also because it will enable 

implementation of generic tools for control system design. 

When searching for a single technique that in most cases of 

practical interest performs reasonable well, certain types of neural 
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network appear to be an excellent choice. In particular the multilayer 

perceptron network has gained an immense popularity. From numerous 

practical applications published over the past decade there seems to be 

substantial evidence that multilayer perceptorns indeed possess an 

impressive ability. Lately, there have also been some theoretical results 

that attempt to explain the reasons for this success, [Barron, 1993] 

[Judisky 1995]. 

1.3.1 Remarks  

1. Artificial neural network solutions can now be implemented on 

special-chips and boards which offer considerably more throughput per 

dollar and more portability than conventional computers or super 

computers [Werbos, 1997].  

2. Because the brain itself is made up of neural networks, artificial 

neural network designs seem like a natural way to try to replicate brain-

like intelligence in artificial systems.(Advantages (1) and (2) follow 

directly from [Werbos, 1997] ). 

3. Designs are often much easier to use than the non-neural 

equivalents-especially when the conventional alternatives require first-

principles models which are not well developed.  

4. Various universal approximation theorems suggest that artificial 

neural network's can usually approximate what can be done with other 

methods and that the approximation can be as good as desired, if one can 

offered the computational cost of the accuracy required. 

5. Artificial neural network designs usually offer solutions based 

on "learning" which can be far cheaper and faster than the traditional 

approach of elaborate prior research followed by tweaking applications 

until they work.  

6. The artificial neural network literature includes designs to solve 

a variety of specific tasks-like function approximation, pattern 
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recognition, clustering, feature extraction, and a variety of novel control-

related capabilities of familiar linear methods (Advantage (5) and (6) are 

not unique to artificial neural networks; most of the algorithms used to 

adapt artificial neural networks for specific tasks can also be used to 

adapt other nonlinear structures, such as fuzzy logic systems or physical 

models based on first principles or econometric model. For example, 

backpropagation-the most popular artificial neural network algorithm- 

was originally formulated in 1974 as a general algorithm, for use across a 

wide variety of nonlinear systems, of which artificial neural networks 

were discussed only as a special case [Werbos, 1994].    

 

1.3.2 Remarks (General Advantages and disadvantages) 

A. The general advantages of artificial neural networks including: 

1. Access to existing sixth-generation computer hardware with 

hung price-performance advantages. 

2. Links to brain-like intelligence. 

3. Easy to use. 

4. Superior approximation of nonlinear function.  

5. Advantages of learning over tweaking including learning off-

line to be adaptive on-line (in control). 

6. Availability of many specific designs providing nonlinear 

generalizations of many familiar algorithms (among the algorithms 

and applications are those for image and speech preprocessing, 

function maximization or minimization, feature extraction, pattern 

classification, function approximation, identification and control of 

dynamical systems, data compression, and so on). 
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B.  Disadvantages: 

1. Not exact. 

2. Large complexity of the network structure. 

 

 

1.4 What is Neural Network? 

1.4.1 Neuron Model: [Haward, 1996] 

The neuron or node unit (as we defined in section three), as it is 

also called, is a processing element that takes a number of inputs, weights 

them, sums them up, and uses the result as the argument for a singular 

valued function, the activation function (transfer function). 

 The neuron model and the architecture of a neural network 

describe how network transforms its input into an output. Those 

transformation can be viewed as a computation. The model and the 

architecture each place limitations on what a particular neural network 

can compute. The way a network computes its output must be understood 

before training methods for the network can be explained. 

1.4.1.1 Simple Neuron:   

A neuron with a single scalar input and no bias is shown on the figure 

(1.1a). The scalar input P is transmitted through a connection that 

multiplies its strength by the weight w, to form the product wp, again a 

scalar. Here, the weighted input wp is the only argument of the transfer 

function f, which produces the scalar output a. 

 ( ) ( )pwfnfa ≡=                                                                    (1.1) 
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Figure (1.1) 

Simple Neuron 

 And we can see the general neuron symbol in the figure (1.2) 

below 

 

Figure (1.2) 

General Neuron Symbol 

 

The neuron on figure (1.1b) has a scalar bias, b. One may view the 

bias as simply being added to the product wp as shown by the summing 

function or as shifting the function f  to the left by an amount b. the bias 

is much like a weight, except that it has a constant input of value 1. the 
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transfer function net input n, again a scalar, is the sum of the weighted 

input wp and the bias b. this sum is the argument of the transfer function 

(activation function) f. Examples of various transfer functions are given 

in the next section. Note that w and b are both adjustable scalar 

parameters of the neuron. 

( ) ( )bpwfnfa +≡=                                                            (1.2) 

As shown below in figure (1.3), the bias b is an adjustable (scalar) 

parameter of the neuron. It is not an input. However, the constant 1 that 

drives the bias is an input and must be treated as such when considering 

the linear dependence of input vectors. 

 

Figure (1.3) 

Network with Bias Unit 

1.4.1.1 Remark  

The central idea of neural networks is that such parameters can be 

adjusted so that the network exhibits some desired or interesting 

behavior. Thus, we can train the network to do a particular job by 

adjusting the weight or bias parameters, or perhaps the network itself will 

adjust these parameters to achieve some desired end. 
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1.4.1.2 Transfer Function (Activation function): 

 As we defined the transfer function (activation function) in section 

three, the choice of it determines the neuron model, such that, there are 

different kinds of the transfer function, for examples:  

 

 1. Hyperbolic tangent sigmoid transfer function: a squashing 

function of the form shown below that maps the input to the interval  

(1,-1) 

( ) ( )( )2/ 1 exp 2* 1f n n= + − −                                                (1.3) 

                                                                   

           

Figure (1.4) 

Tangent-Sigmoid Transfer Function 

 

2. Symmetric saturation linear transfer function: produces the 

input as its output as long as the input i in the range -1 to 1. Outside that 

range the output is -1 and +1 respectively. 

 

 3. Symmetric hard limit transfer function: a transfer that maps 

inputs greater-than or equal-to 0 to +1, and all other values to -1. 

 ( ) 1 0

1

if n
f n

otherwise

≥= −
                                                            (1.4) 
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Figure (1.5) 

Symmetric Hard Limit Transfer function 

 

 4. Saturating linear transfer function: a function that is linear in 

the interval (-1,+1) and saturates outside this interval to -1 or +1. 

( )
0 0

0 1

1 1

if n

f n n if n

if n

≤
= ≤ ≤
 ≤

                                                            (1.5) 

 

 

Figure (1.6) 

Saturating linear transfer function 

 

 5. Radial basis transfer function: the transfer function for a radial 

basis neuron is: 

( ) 2
exp nradbas n −=                                                                   (1.6) 
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Figure (1.7) 

Radial Basis Transfer Function 

 

 6. Positive linear transfer function: a transfer function that 

produces an output of zero for negative inputs and an output equal to the 

input for positive input. 

( ) 0

0 0

n if n
f n

if n

≥=  ≤
                                                                 (1.7) 

 

 

Figure (1.7) 

Positive Linear Transfer Function 

 

 7. Log-sigmoid transfer function: a squashing function of the form 

shown below that maps the input to the interval (0, 1). 

( ) 1

1 exp n
f n −=

+
                                                                        (1.8) 
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Figure (1.8) 

Log-sigmoid Transfer function 

 

 8. Linear transfer function: a transfer function that produces its 

input as its output. 

( )f n n n= ∀                                                                            (1.9) 

 

Figure (1.9) 

Linear Transfer function 

 

 9. Hard limit transfer function: a transfer that maps inputs greater-

than or equal-to 0 to 1, and all other values to 0. 

( ) 1 0

0

if n
f n

otherwise

≥= 


                                                           (1.10) 
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Figure (1.10) 

Hard Limit Transfer Function 

 

 10. Competitive transfer function: accepts a net input vector for a 

layer and returns neuron outputs of 0 for all neurons except for the 

"winner", the neuron associated with the most positive element of the net 

input n. 

 

 11. Triangular basis transfer function: a function calculate its 

output with according to  

( ) ( )
otherwise

nifnabsntribas

,0

;11,1

=
≤≤−−=

                                 (1.11) 

 

 12. Class of sigmoid transfer function:  

( )
)exp(1

1

n
nf

⋅−+
=

λ
                                                              (1.12) 

Where λ is a positive constant (so-called steepness), whose value 

specifies a particular sigmoid function in this class. 

 

 13. Sigmoid transfer function :( with z, x, y parameters) 

( ) ( )ynx
znf

+−+
+=

exp1
1                                                        (1.13) 
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14. Gaussian transfer function: 

( )





















 −−=
2

2
1exp

2
1

σ
µ

πσ
nnf                                              (1.14) 

1.4.1.2 Remarks: 

1. The hard limit transfer function is a special sigmoid function, 

obtained as λ→∞ 

2. The sigmoid function (Hyperbolic tangent sigmoid and Log-

sigmoid ) has historically been a very popular choice [Rumelhart, 1986]. 

1.4.1.3 Neuron with Vector Input: 

 A neuron with a single R-element input vector is shown below. 
Here the individual element inputs  

, , ,
1 2

T
P p p pR

 =
 

K                                                              (1.15) 

Are multiplied by weights 

 
1,1 1,2 1,

T
W w w w

R
 =
  

K                                               (1.16) 

and the weighted values are fed to the summing function. Their 
sum is simply WP, the dot product of the matrix W and the vector P. 

( )Ta f W P b= +                                                                      (1.17) 

 

 
Figure (1.11a) 

Neuron with Vector Input 

∑  f  
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p3 
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wij  

[ ]

( ) ( )
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ij R
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j j
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n w p b
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=

=

= =      
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∑

K
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The neuron has a bias b, which is summed with the weighted inputs 

to form the net input n . This sum, n, is the argument of the transfer 
function  f. 

bjp
R

j jwn +∑
=

=
1 1                                                                     (1.18) 

this expression can rewritten as : 
n W P b= ∗ +                                                                            (1.19) 
 

We have re-down the neuron with a single R-element input vector 
network  in figure (1.11a) shown above,  in a abbreviated form below in 
figure (1.11b) 

 

 
Figure (1.11b) 

Neuron with Vector Input 
 

Here the input vector p is represented by the solid dark vertical bar at the 
left. The dimensions of p are shown below the symbol p in the figure as 
Rx1.    
 P is a vector of R input elements. These inputs post multiply the 

single row, R column matrix W. As before, a constant 1 enters the neuron 

as an input and is multiplied by a scalar bias b. The net input to the 

transfer function f is n, the sum of the bias b and the product Wp. This 

sum is passed to the transfer function f to get the neuron's output a, which 

in this case is scalar. Note that if we had more than one neuron, the 

network output would be a vector [Zurada, 1996]. 

 p 

1 

 W 

  b 

 + 
 f(n) 

 n 

Input 

Rx1 

1x1 

1xR 

1x1 

1x1 

( ) ( )
1

1

,
R

j j
j

T

n w p b

a f n f W P b

=
= +

= = +

∑
  

R=no. of elements in input 
                    vector                      

a 
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 ( ) 1, 2, ,Ta f W P for i S
i i

= = K                                        (1.20) 

where weight vector iw  contains weights leading toward the ith  output 

node, and is defined as follows 

 
1 2

T
W w w w

i i i iR
 =
 

L                                               (1.21) 

1.4.2 Network Architectures  

 1.4.2.1 Remarks   

 Before the training can be performed, some issues need special 

attention. Unfortunately, not all questions are easily answered: 

 1. What type of relationships can be learned with a multilayer 

network. 

 2. How many hidden layers should the network have and how 

many neurons should be included in each layer? 

 3. How should the transfer functions be chosen?. 

 

 In [Cybenko, 1989] it is shown that all continuous functions can 

be approximated to any desired accuracy, in terms of the uniform norm, 

with a network of one hidden layer of sigmoidal  hidden neurons and a 

layer of linear output neurons. But it dose not explains how many neurons 

to include in the hidden layer. This issue is addressed in [Barron, 1993] 

and a significant result is derived about the approximation capabilities of 

two-layer networks when the function to be approximated exhibits certain 

smoothness. Unfortunately, the result is difficult to apply in practice for 

selecting the number of hidden neurons.  

 Due to the above mentioned results one might think that there is no 

need for using more than one hidden layer and/or mixing different types 

of activation functions (transfer function). This not quite true as it may 

occur that accuracy can be improved using more sophisticated network 
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architecture. In particular when the complexity of the mapping to be 

learned is high, it is likely that the performance can be improved. 

However, since implementation, training, and statistical analysis of the 

network become more complicated, it is customary to apply only a single 

hidden layer of similar activation functions (transfer functions) and an 

output layer of linear neurons, [Norgaard, 2000]. 

 Now consider a single layer of neurons with details. 

 

1.4.2.2  Neurons Layers:   

 A one layer network with R input elements and S neurons is shown 

below in the following figure (1.12a). 

 

 

Figure (1.12a) 
One Layer Neural Network 

 
The S neuron R input one layer network also can be drown in 

abbreviated notation. 
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p3 

 

 

pR 
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Figure (1.12b) 

One Layer Neural Network 
 

 In this network, each element of the input vector 

1 2
P p p pR

 =
 

K  is connected to each neuron input through the 

weight matrix W. The ith neuron has a summand that gathers its 

weighted inputs and bias to form its own scalar output ni. The various ni 

taken together form an S-element net input vector n. Finally, the neuron 

layer outputs from a column vector [ ]TSaaaa K21= . We show 

the expression for a at the bottom of the figure (1.12b). 

 The input vector elements enter the network through the weight 

matrix W. 























=

RS
w

S
w

S
w

Rwww
R

www

W

,2,1,

,22,21,2

,12,11,1

K

MOMM

K

K

                                              (1.22) 

 

  Note that the row indices on the elements of matrix W indicate the 

destination neuron of the weight and the column indicates which source is 

the input for the weight. Thus, the indices in w1,2 say that the strength of 

 p 

1 

 W 

  b 

+ 
 f 

a 

 n 

Input 

Rx1 

Sx1 

SxR 

Sx1 Sx1 

( ) ( )
1

1

,
R

j j
j

T

n w p b

a f n f W P b

=
= +

= = +

∑
  

R=no. of elements in input vector 
S=no. of Neurons in Layer 
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the signal from the second input element to the first (and only) neuron is 

w1,2. Such that 

 Siforjp
R

j ijwin ,,2,1,
1

K=∑
=

=                                          (1.23) 

 Sifor
R

j jpijwfia ,,2,1
1

K=∑
=

=













                                   (1.24) 

 

1.4.2.2 Remarks  

The following notations are used 

1. weight matrices connected to inputs, input weight. 

2. weight matrices coming from layer outputs, layer weight.  

3. we will use superscripts to identify the source (second index) 

and the destination (first index) for the various weights and other 

elements of the network. Further, we have re-drawn the one layer 

multiple input network shown above (Figure 1.11a, 1.11b) in abbreviated 

form below. 

 

Figure (1.12c ) 

One Layer Neural Network 
 
 

 

 p 
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  b1 

+ 
 
f1 

a 
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Input 
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S1xR 

S1x1 Sx1 

( ) ( )bpwfnfabpwn T

j

R

j
j +==+=∑

=
,

1
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R=no. of elements in input vector 
S1=no. of Neurons in Layer 
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1.4.2.3 Multiple Layer of Neurons  

 The following is the architectures of multilayered neural network, 

figure (1.13) shows the notations of 3-layer neural network where the  

network can have several layers. Each layer has a weight matrix W, a 

bias vector b, and an output vector a. To distinguish between the weight 

matrices, output vectors, etc., for each of those layers in our figures, we 

will append the number of the layer as a superscript to the variable of 

interest.  

 

Figure (1.13a ) 

Three Layer Neural Network 

f1 

f1 

f1 

a1 

a1 

a1 

p1 

 
p2 

 

p3 

 

 

pR 

f2 

f2 

f2 

a2 

a2 

a2 

f3 

f3 

f3 

a3 

a3 

a3 

  Input       First Layer       Second Layer       Third Layer 

Where… 
 

( )
( )
( )
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 The same three layer network discussed previously also can be 

drowning using our abbreviated notation. 

 

 

Figure (1.13b) 

Three Layer Neural Network 

 

In figure (1.13a, 1.13b), the first layer is called the Input layer 

which connected with the inputs of the network, the third layer is called 

the output layer referring to the fact that it produces the output of the 

network, and the second layer is known as the hidden layer since it is in 

some sense hidden between the external inputs [ ]1 2 3, ,p p p  and the output 

layer. 

Note that the outputs of each intermediate layer are the inputs to 

the following layer. Thus a1 is the output of the input layer (first layer) 
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






 +Ι= 11,1
11 bpWfa                                                              (1.25a) 

so that 1a  can be written as 

 1,,2,1,
1

1
11 Sjfor

R

l jblpjlWjfja K=∑
=

+=













                    (1.25b) 

where 1a  will be the input to the hidden layer (second layer), and 2a will 

be the output of the hidden layer  

 






 += 2
1

1,2
22 baLWfa                                                       (1.26a) 

which can be written as 

 2,,2,1,
1

1
122 Sifor

S

j ibjaijWifia K=∑
=

+=













                   (1.26b) 

where 2a  will be the input of the output layer (third layer), and 3a will 

be the output of the network 

 






 += 3
2

2,3
33 baLWfa                                                       (1.27a) 

which can be written as 

 3,,2,1,
2

1
233 Skfor

S

i kbiakiWkfka K=∑
=

+=













                  (1.27b) 

such that the mathematical formula expressing that is going on in the 

three-layer network takes the form 

( )( )( )3211,1
1

1,2
2

2,3
33 bbbpIWfLWfLWfa +++=                (1.28a) 

which can be written as 



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

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
∑
=

+∑
=

+∑
=

+=
2

1

1

1

1

1

S

i kb
S

j ib
R

l jblpjlWjfijWifkiWkfka (1.28b)      

where 3,,2,1,2,,2,1,1,2,1 SkSiSj KKK ===  
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  The network shown above has R1 inputs, S1 neurons in the first 

layer, S2 neurons in the second layer, etc., it is common for different 

layers to have different numbers of neurons. A constant input value 1 is 

fed to the biases for each neuron. The three-layer neural network is a 

vector-matrix form as shown below 

( )( )( ) ybbbpIWfLWfLWfa =+++= 3211,1
1

1,2
2

2,3
33    (1.29) 

1.4.2.3.1 Remarks 

1.Multiple layer networks are quite powerful. For instance, a 

network of two layers, where the first layer is sigmoid and the second 

layer is linear, can be used to approximate any function (with a finite 

number of discontinuities) arbitrarily well [Zurada, 1996]. 

  2.The styles of approach of the two extremes are some what 

different. The subject of artificial neural computing is based on networks. 

There are two extremes of the architectures of the networks: Feed 

forward networks  (input streams steadily through the network from a set 

of input neurons to a set of output ones) and recurrent networks (where 

there is constant feedback from the neurons of the network to each other) 

[Hophield, 1982]. This is mirrored in the differences between the 

topologies such networks posses: one is the line, and the other the circle, 

which cannot be topologically deformed into each other. As is to be 

expected, there are two extreme styles of computation in these networks. 

In the feed forward case the input moves through the network to become 

the output; in the recurrent network the activities in the network develop 

over time until it settles into some asymptotic value which is used as the 

output of the network. The network thus relaxes into this asymptotic 

state. 

There are several kind of networks (see appendix B) , so we will 

discussed the feed forward networks because we use it in our work.  
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1.4.2.4 Basic Neural Network Architectures   

 1. Feed forward Neural Network:  The best known neural network 

architecture is the multilayer feed forward neural network (multilayer  

perceptron). It is a static network that consists of a number of layers: 

input layer, output layer and or more hidden layers connected in a feed 

forward way[Zurada, 1996]. Each layer consists of a number of 

McCulloch-pitts  neurons. One single neuron makes the simple operation 

of a weighted sum of the incoming singles and a bias term (or threshold), 

fed through a transfer function (activation function) f and resulting in the 

output value of the neuron. A network with one hidden layer is described 

in matrix-vector notation as 

 ( )bpVfWa +=                                                                       (1.30)  

or in element wise notation: 

 li
nh

r

m

j
rbjprjvfirwia ,,1

1 1
K=∑

=
∑
=

+=













                       (1.31) 

Here mRp ∈ is the input and lRa∈ the output of the network and the 

nonlinear operation f is taken element wise. The interconnection matrices 

are nhlRW ×∈  for the output layer mnhRV ×∈  for the hidden layer, nhRb∈  

is the bias vector (thresholds of hidden neurons) with nh the number of 

hidden neurons. 

 For a network with two hidden layers one has 

 














 ++= 2112 bbpVfVfWa                                                 (1.32) 

or  

li
nh

r

nh

s
rbsb

m

j jpsjvfrsvfirwia ,,1
2

1

1

1

21

1

12
K=∑

= 












∑
=

+








+∑

=
=


































    (1.33) 
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The interconnection matrices are 2nhlRW ×∈  for the output layer, 
12

2

nhnhRV ×∈   for the second hidden layer and mnhRV ×∈ 1

1  for the first 

hidden layer. The bias vectors are 1

1

2

2 , nhnh RbRb ∈∈ for the second and 

first hidden layer respectively. In order to describe a network with L 

layers (L-1 hidden layers, because the input layer is a 'dummy' layer), the 

following notation will be used in the sequel 

 11

1
1, −∑

=
== 






 l

jp
N

j ijwl
i

l
ifl

ip ξξ                                             (1.34) 

Where Ll ,,1K= is the layer index, lN denotes the number of neurons in 

layer l and l

ip is the output of the neurons at layer l. The thresholds are 

considered here to be part of the interconnection matrix, by defining 

additional constant inputs. 

 The choice of the transfer function f may depends on the 

application are. Typical transfer functions are shown in section four. For 

applications in modeling and control the hyperbolic tangent function 

 ( ) ( )( ) ( )( )ppp 2exp12exp1tanh −+−−=                                     (1.35) 

is normally used. In case of a 'tanh' the derivative of the transfer function 

is 21 ff −=& .The neurons of the input layer have a linear transfer 

function. 
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Figure (1.14) 

A fully Connected Two Layer Feed forward Network with Three Inputs, 

Two Hidden Neurons and Two Outputs   

 

For more information about different  networks such as (Radial 

Basis function network,  Recurrent neural networks)  see appendix B.  

1.4.3  Mathematical Theory of Neural Learning 

 We defined a learning rule in section three as a procedure for 

modifying the weights and biases of a network. (This procedure may also 

be referred to as a training algorithm ). The learning rule is applied to 

train the network to perform some particular task. Learning rulers fall into 

two broad categories: supervised learning and unsupervised learning. 

 In supervised learning, the learning rule is provided with a set of 

examples (the training set) of proper network behavior: 

{ p1, t1}, { p2, t2},  …, { pQ, tQ} 

Where pq is an input to the network, and tq is the corresponding correct 

(target) output. As the inputs are applied to the network, the network 
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outputs are compared to the targets. The learning rule is then used to 

adjust the weights and biases of the network in order to move the network 

outputs closer to the targets. 

 In unsupervised learning, the weights and biases are modified in 

response to network inputs only. There are no target outputs available. 

Most of these algorithms perform clustering operations. They categorize 

the input patterns into a finite number of classes. This is useful in such 

applications as vector quantization [Rosenblatt, 1961]. 

Equivalently the supervised learning algorithm is guided by 

specifying, for each training input pattern, the class to which the pattern is 

supposed to belong. That is, the desired response of the network of each 

training input pattern and its comparison with the actual output of the 

network are used in the learning algorithm for appropriate adjustments of 

the weights. These adjustments, whose purpose is to minimize the 

difference between the desired and actual outputs, are made 

incrementally. That is, small adjustments in the weights are made in the 

desired direction for each training pair. This is essential for facilitating a 

convergence to a solution (specific values of the weights) in which 

patterns in the training set are recognized with high fidelity. Once a 

network converges to a solution, it is then capable of classifying each 

unknown input pattern with other patterns that are close to it in terms of 

the same distinguishing features. While in an unsupervised learning 

algorithm, the network forms its own classification of patterns. The 

classification is based on commonalities in certain features of input 

patterns. This requires that a neural network implementing an 

unsupervised learning algorithm be able to identify common features 

across the range of input patterns [Paual, 1997]. 
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1.4.3.1 Remark 

 Some theoretical results concerning the artificial neural networks 

and its derivates, necessary mathematical backgrounds and its 

generalizations, etc, can be found with some details in appendix C and for 

simplicity the information's have omitted from here. 

1.4.3.1 General Learning Equation: 

A neuron has ability to modify its connection weights 

, , ,
1 2

w w w w n
 =
 

K , depending on the input signals 

, ,
1 2

p p p pn
 =
 

K  which it receives and the associated teacher signals 

or error signals. The teacher or error signal is not provided in some cases, 

where a neuron modifies its weights depending only on its state and input 

signal. This is the case of non supervised learning, and such a learning 

scheme is sometimes called self-organization. In order to build a general 

theory of neural learning, we consider the following situation [Amari, 

1977]: A neuron receives input signals p from an information source Ι , 

to which it is to adapt. A set of training signals kp ,,2,1, K=αα , may be 

regarded as a set of examples from the information source ( Figure 1.15 ). 

 

 

Figure (1.15) 

Learning Scheme 

●  ●   ● 
   ●     ●   
●   ●  ●   

 aα 

 a 
pα 
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The probability or relative frequency of αp is denoted by 1, =∑ΡΡ αα . 

Let αa be the teacher signal associated with input αp . One may use the 

error signal αe  instead of αa  . 

The environmental information source Ι is, henceforth, specified by a 

probability structure of signal pairs. 

( ){ }kap ,,1,,, K=Ρ=Ι αααα                                                (1.36) 

or more generally by  

( )( ){ }apap ,,, Ρ=Ι                                                                    (1.37)  

Where ( )ap,Ρ  represents the probability distribution of a pair ( )ap,  of an 

input p  and the associated a  . In some cases a  is missing, so that  

( )( ){ }pp Ρ=Ι ,                                                                            (1.38) 

1.4.3.2 Learning Neural Networks: 

Learning behaviors of a single neuron are treated in the previous 

part, where we fix the environmental information source Ι . When a 

neural network modifies its behavior cooperatively, each neuron changes 

its connection weights according to the learning equation. The 

environmental information source Ι  of each neuron, however, is not fixed 

but changes as the other neurons modify their connection weights, 

because the information source Ι  of one neuron is given by the behaviors 

of other neurons in the network. Hence, we need to solve a set of the 

mutually coupled learning equations.  

We give  an example of learning networks. 

1.4.3.2.1  Backpropagation and its Generalization: 

1. General Learning Scheme: 

Let us consider a neural network N, which receive a vector input 

signal p , processes it, and emits a vector output a . Let S be the set of 

modifiable parameters (connection weights and thresholds). Which 
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specify the network. The output is determined as a function of input 

p and the parameter values S as  

 ( )Spfa ,=                                                                              (1.39) 

depending on the network architecture. 

Let Ι be the information source of the network, which emits signal 

p  with probability ( )pΡ , for each signal p  there is an associated desired 

output ( )pda = . Amari in 1967 formulated a general learning scheme of 

neural networks in the following manner. 

Let ( )Sp,Ι  be a loss when input p  is processed by a network 

whose parameter value are S. A simple example of the loss is the squared 

error 

( ) ( ) ( ) 21
; ;

2
p S f p S d pΙ = −                                                  (1.40) 

Which is used in the back propagation learning rule. However, there 

are many other types of reasonable loss. The expected loss is given by 

 ( ) ( ) ( ) ( ) dpSppSpSL ;; Ι∫Ρ=Ι=                                            (1.41) 

The parameters which minimize ( )SL  give the best network, which 

satisfies 

 ( ) 0=
∂

∂
S
SL                                                                               (1.42) 

The best parameters may be obtained by the gradient method. 

The learning rule is given by the gradient method as 

( )
S

tStp
tctStS

∂
Ι∂

−=+
;

1                                                           (1.43) 

              

Where St are the values of S at time t and tp  is the input at t. The 

parameter St approaches one of the local minima of ( )SL . Amari in 1967 

proposed, more than 39 years ago, this type of general learning and  
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studied the trade-off between the speed and the accuracy of convergence. 

He also applied the method to layered neural networks (Figure 1.16), and 

gave a general learning rule including that of the so-called hidden units. 

 

 

Figure (1.16) 

Layered Neural Network 

 

2. Back propagation of Layered Networks: 

We show the famous back propagation rule as an example of the 

general scheme. Here we use three layer networks (Figure 1.17), 

   x1 
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Figure (1.17) 

Back propagation learning 

 

 But the same rule holds for more general layered networks. For 

input P , the ith  element of the hidden unite emits ( )∑= kpikwfiq  and 

the jth  element of the output unit emits 

 

































 ∑ ∑=∑=

i k kpikwfjivfiqjivfja                             (1.44) 

Where ikw  and jiv  are the connection weights from the input layer to 

the hidden layer, and from the hidden layer to the output layer. Threshold 

values may be included in the above by adding a unit which emits a 

constant value. 

The modifiable parameters are 





= ikwjivS , . For the error loss 

daee −==Ι ,25.0  , 

 
( )

iqjr
jiv

Stp
=

∂
Ι∂ ;

                                                                       (1.45) 

 

a j 
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Input Layer Output Layer 
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( )
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where 

 
( )

kpir
ikw

Stp ∗=
∂
Ι∂ ;

                                                                    (1.46) 

Where  

 





∑′= iqjivfejr                                                                   (1.47) 

 jr
k kpikwf

j jiwir 












∑′∑=∗                                                       (1.48) 

are the learning signals of jth  and ith elements of the output and hidden 

units, respectively. Since the learning signals ∗
jr  are determined by back 

propagation the error signals, this is called the back propagation 

method [D. E. Rumlhart, G. E. Hinton, and R. J. Williams, 1986] , 

although there were many predecessors (e.g.,[S. Amari, 1967], [P. 

Werbos, 1974], [D. B. Parker, 1982]). 

 

3. Details on Back propagation of Recurrent Networks: see 

appendix C . 
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3  
3.1 Introduction 
 Based on the theoretical results obtained in chapter two, the following 

illustrations and computational algorithm have been developed. Two 

illustrations concerning the nonlinear Pendulum system and 3-dimentional 

nonlinear system have also been simulated. The numerical control results are 

shown in Tables and Figures, supported by some useful comments. 

3.2 Computational Algorithm 

 Based on the proof of the main problem (theorem 2.7.1, theorem 2.7.2) 

of chapter two, the following step-by-step computational algorithm have 

been  proposed. 

 Consider the general problem 

 ( ) ( ) ( )x x f x x g x u t= Α + Β + Β&                                                  (3.1) 

where nRx∈ , and the smooth functions mmRgnmRf ×∈×∈ ,  such that 

( ) xxg ∀≠ ,0 , and ( ) ,0≠xg ij  mjmi ,,1;,,1 KK =∀=∀ , mRu ∈  is the 

control, nxmRnxnR ∈Β∈Α ,  are constant matrices.  

 To design a nonlinear neuro-controller ( a nonlinear controller) so that 

the nonlinear uncertain dynamic control system is stabilized, the following 

step-by-step procedure have been adapted. 

 

Step (1):   To test the controllability of (3.1), the pair ( )ΒΑ,  should be 

controllable and have ( ) [ ]ΒΑΑΒΒ≡ΒΑ −1,,,, n
Kρ is of rank n.   

Step (2): check the boundnees of the given function ( )xg  such that   

( ) xxg ∀≠ ,0 , ( ) ,0≠xg ij mjmi ,,1;,,1 KK =∀=∀ , And   

 ( ) Rwherexg ∈>> εεε ,0,                                                                             



 Chapter Three                                                                                          Applications                                      

 ٨٦

Step (3): the uncertain function ( )xf  where its estimator ( )xf̂ , and  a 

functional  error estimation ( )xf
~

, such that 

 ( ) ( ) ( ) ( )xfxfxfxf m≤=− ~ˆ   

For some known function bound ( )xfm  

Step(4): set that the desired state vector ( ) n

d Rty ∈ , 

( ) ( )[ ]Tn

dddd yyyty 1,,, −= K& , and to check that  ( )tyd  is bounded and 

continuous. 

Step (5):  using the result of step (1), to transform the system in (3.1) into 

block companion form by assuming xTz = , where [ ]Tnzzz K1= , Such 

that T  be any nxn  invertible transformation matrix where 








Ι
=Β

m

T
0

, mΙ  is a 

unit matrix of dimension m, T can be chosen such that  [ ]Β=− :1 LT , where L 

is selected such that the inverse exists (see remark (2.6.2.1), remark (2.6.2.2) 

and example (2.6.2.1)), so that the system in (3.1) can be rewritten as 

 ( ) ugzhzz Β+Β+Α=&                                                              (3.2) 

Where ( ) ( )zTfzh 1−=  be a known functions, mmRg ×∈  be a known function 

and ( ) zzg ∀≠ ,0 , ( ) mRtu ∈  be the control, and assume that  

[ ]TmmmT

n

TT ΙΟΟ=Β=Β=−Α=Α

























L

L

L

MOMMM

L

L

,

321

1000

0100

0010

1

αααα

where  Α  be nxn matrix, Β be nxm matrix and ,, mm ΙΟ  be the Zero matrix 

and Unit matrix of dimension m respectively, nii ,,1, K=α are  constants. So 

that the system (3.2) can be rewritten as 

 ( ) ( )tugTzhTzTTz Β+Β+−Α=⇒ 1
&                                                  
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( ) ( ) 

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where [ ] [ ]Tmuuuummgmgmgmg LL 21,21 ==  . 

( ) ( )

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
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 ( ) ( ) nznzzzmhzF ααα ++++= K2211                                      (3.3)                                  
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

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Hence  

 

( ) ( )zFtumgnz

zz

zz

+=

=
=

&

M

&

&

32

21

                                                                  (3.4) 

 1zy =  

Step (6): Define the filtered tracking error ( )tr  as follows 

 zeTKzr =     

Where dz yze −= , and Chose vector   [ ]T
n

kkkK 1
121 −= K .                                           
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And find norm zr  as 

 ( )∑= 2
tzrzr      

Such that the derivative of the filtered tracking error  

 dzz

T

z yzefromandeKr &&&&& −==    

We have that  

           ( ) ( ) 1
1

1
, +∑

−

=
+−=ΥΥ++= ie

n

i ikdnydwheredtumgzFr&                                                       

Step (7): Define the control of the system (3.4) ( )tu  as follows 

 ( ) ( ) ( )tututu 21 +=                                                                       

Where ( )tu1 be the control input of the system (3.4), such that 

 21 ûWu −=  

Where W  is the tracking control law and 2û  is the approximate function of 

the ( )tu2  whose is the nonlinear control of the system (3.4) which be 

approximated by neural network. 

Step (8):  To find the tracking control law W  using the derivative of the 

filtered tracking error ( )tr  and substituting  ( ) ( ) ( ))21( tutu
i

utu +=  where 

miuthatsuchmi
g

u i

mi

i ,,2,1,0,,1,
1

KK =∀≠=∀=  and 21 ûWu −=  we 

will get the following 

 ( )[ ]α+−−−= rvk
d

YzF

i
umg

W ˆ1
  

Where we must chose 

1. where F̂  be the fixed approximation of the functional F . 

2. vk  is the feedback gain. 

3. that α  be the robust term chosen for the disturbance rejection which 

can be defined as 
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( ) ( ) ( )rsignzft m−=α                                                                        

where 

 ( )




≤
>

=
00

01

r

r
rsign                                                                         

where ( )•sign is the standard sign function. 

Step (9) (Neural Network): Consider the two-layered feed forward  neural 

network have an 2n input [ ]Te
d

yNNx ,= , whose value are real number and  

the hidden layer has m neurons, the output layer has L neurons. 

 so that the first layer feed forward neural network have  

1. An input  [ ]Te
d

yNNx ,= . 

2. The bias b  we will chose it randomly and have an input value 10 −=x  . 

3. The weights matrix  V  which we chose it randomly too. 

4.  We chosing the Log-sigmoid as the transfer function (activation 

function)  f  to the first layer and to the hidden layer too (which be 

explained in chapter one) because it is differentiable and commonly used 

in many methods such as Back propagation method  

( ) ( ) mi
j

x
n

j ij
V

i
wheref ,,2,1,

2

1
,

exp1

1
K=

=
=

−+
= ∑λ

λ
λ                                    

5. The output of the first layer q  can be found by 

( ) ( ) ( ) miwhereib
n

j
tjxtijVftiq ,,1

2

1
K=+

=
=

















∑                    

And the hidden layer (second layer) have  

1. The output q   of the input layer (first layer) will be the input to the 

hidden layer. 

2. The ideal neural network weight matrix of the hidden layer w  we chose it 

randomly and it will be bounded by  
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mww ≤                                                                                 

With mw  known bounds. 

3. The estimate neural network weight of the ideal weight w  can be 

provided by the neural network tuning algorithm 

( ) wrkSzmgrNNxTVfSw ˆˆ −= 





&                                           

Where S : be any constant representing the learning rates of the neural 

network.  

      k : be a small positive parameter.  

4. The neural network weights approximation error as follows 

www ˆ~ −=                                                                               

Where the neural network weights approximation error w~ and the     

filtered tracking error are  bounded by the proof of  theorem (1) of 

chapter two as follows 

∑



















=
++

≥
ij

ijwFwwhere
k

mwnmwk

Fw 2~,

2
1

2
12

4~
ε

       

And 

 
min

2
4

vk

nmwk

r
ε+

≥                                                                                      

5. The output of the hidden layer can be written as 

( ) ( ) ( ) Lkwhere
m

i
tiqtkiwftky K,1,

1
~ =∑

=
= 













                           

such that the output of the neural network ky  is the approximation function 

( )tu2
ˆ  of the nonlinear control ( )tu2  of the system (3.4), hence  

kyu ≡2
ˆ                                                                        
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Step (10): Now we can find the control input ( )tu1  by 

 ( ) ( )tuWtu 2
ˆ

1 −=      

such that the control inputs to the system (3.4) and all steps from (step (9)) 

will be repeated in close loop until the nonlinear system in (3.4) approaches 

zero ( until the nonlinear system in (3.4) will be stable). 

 The solution of system (3.1), (3.4) and the neural network tuning 

weights algorithm ( )( )tw&̂  can be obtained using any suitable numerical 

method. In this thesis a Rung-Kutta method of order 4, using MATLAB 

version 6.5 and personal computer's (PIT 4), have been adapted. The 

simulation have implemented step-by-step on time interval [ ]τ,0∈t  and step 

size 
0N

h
τ= , 0N  is suitable positive natural number. The random number of 

vw,  are initially selected to belong to ( )1,1− . The initial conditions of ŵ  are 

randomly selected, the initial selection of dynamical system are suitable 

selected or given. The adjusting of the weights  w~ are adapted for each step 

size h . The artificial neural network are designed for each discrete system 

(for each step time) and collected as a whole problem for all time interval  

[ ]τ,0∈t  and the number of inputs, outputs, layer, notes are dependent on 

number of divided time interval. 

 

3.3.1 Application ( Nonlinear System of Pendulum Type): 

For solving nonlinear system of " Pendulum Type " and to verify the 

effectiveness of the neural network we  will show down some successive 

steps for this purpose. 

 Consider the nonlinear system of Pendulum type as 
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1

223
152

21

xy

uxxx

xx

=
+−−=

=

&

&

                                                               (3.5) 

Where u  is the control of the system, which we defined it in the algorithm 

above step (8) as 

21 uuu +=     

where ≡1u  is the control input to the system above and 

          ≡2u   is the nonlinear control which we fined it by the general neural 

network approximation property. 

Then we have   

( ) ( ) .1,223
15 =−−= xgxxxf                                                   (3.6) 

Step (1): since the system in (3.5) is  already in companion form, so set Ι=T  

and go to the next step. 

 

Step (2):  The numerical solution haven been obtained using 4th order  Rung-

Kutta explicit, for the time interval [ ]100,0=t  and step size 
0

100

N
h =  for 

200 =N  on MATLAB version (6.5), and the following  symbols have been 

used  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ixihxihtxtx

ixihxihtxtx

2222

1111

≡≡==
≡≡==

  

where 

≡i  stands for number of  dividing time interval. 

Tack the initial condition of the system in (3.5) as ( ) ( ) 10,00 21 == xx . We get 

the following 
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Results of  uncontrolled  system )0( ≡u  (3.25) without using neural 

network at time [ ]100,0∈t  and step size 5=h  

t i ( )ix1  ( )ix2  

0 1 0 1.000 

5 2 0.1831 -0.0191 

10 3 0.1312 -0.0061 

15 4 0.1087 -0.0034 

20 5 0.0950 -0.0022 

25 6 0.0856 -0.0016 

30 7 0.0785 -0.0012 

35 8 0.0730 -0.0010 

40 9 0.0685 -0.0008 

45 10 0.0647 -0.0007 

50 11 0.0615 -0.0006 

55 12 0.0588 -0.0005 

60 13 0.0564 -0.0005 

65 14 0.0542 -0.0004 

70 15 0.0523 -0.0004 

75 16 0.0506 -0.0003 

80 17 0.0490 -0.0003 

85 18 0.0476 -0.0003 

90 19 0.0463 -0.0003 

95 20 0.0451 -0.0002 

100 21 0.0440 -0.0002 

Table (3.1) 
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Figure (3.1) 

The solution of the system (3.5) (( ) [ ]100,0,1 ∈itx ) without using 

neural network 
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Figure (3.2) 

Solution of the system (3.5) ( ) [ ]100,0,2 ∈ttx  without using neural network 
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Figure (3.3) 

( ) ( ) ( )100,0,, 21 ∈ttxtx  without using neural network 

 

 

Step(3):Consider the desired trajectory are given by  

 ( ) ( ) ( ) ( )ihihttt
d

x sinsinsin
1

====  

  ( ) ( ) ( ) ( )ihihttt
d

x coscoscos
2

====  

  where ( ) ( )( )txtxy ddd 21 ,=  , with time  [ ]100,0∈t , and step size 5=h . 
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Desired Trajectory with [ ]100,0∈t  and step size 5=h  

t i ( ) ( )ihi
d

x sin
1

=  ( ) ( )cos
2

x i ih
d

=  

0 1 0 1.0000 

5 2 -0.9589 0.2837 

10 3 -0.5440 -0.8391 

15 4 0.6503 -0.7597 

20 5 0.9129 0.4081 

25 6 -0.1324 0.9912 

30 7 -0.9880 0.1543 

35 8 -0.4282 -0.9037 

40 9 0.7451 -0.6669 

45 10 0.8509 0.5253 

50 11 -0.2624 0.9650 

55 12 -0.9998 0.0221 

60 13 -0.3048 -0.9524 

65 14 0.8268 -0.5625 

70 15 0.7739 0.6333 

75 16 -0.3878 0.9218 

80 17 -0.9939 -0.1104 

85 18 -0.1761 -0.9844 

90 19 0.8940 -0.4481 

95 20 0.6833 0.7302 

100 21 -0.5064 0.8623 

Table (3.2) 
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Step (4): Find the tracking errors ( ) ( )tete 2,1  at time interval [ ]100,0=t such 

that 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )ihixie

ieiheihtetettxte

sin
11

1111
sin11

−=⇒

≡≡==⇒−=
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )ihixie

ieiheihtetettxte

cos

cos

22

222222

−=⇒

≡≡==⇒−=
  

 

The evaluation of the tracking error ( ) ( )( )ieie 21 ,  at time interval 

[ ]100,0=t ,and step size 5=h are as follows 
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Errors ( ( ) ( )tete 2,1 ) of the System (3.5) Without Using Neural Network 

t i ( )ie1  ( )ie2  

0 1 0 0 

5 2 1.1420 -0.3028 

10 3 0.6752 0.8330 

15 4 -0.5416 0.7563 

20 5 -0.8179 -0.4103 

25 6 0.2179 -0.9928 

30 7 1.0665 -0.1555 

35 8 0.5011 0.9027 

40 9 -0.6767 0.6661 

45 10 -0.7862 -0.5260 

50 11 0.3239 -0.9656 

55 12 1.0585 -0.0226 

60 13 0.3612 0.9520 

65 14 -0.7726 0.5621 

70 15 -0.7216 -0.6337 

75 16 0.4384 -0.9221 

80 17 1.0429 0.1101 

85 18 0.2237 0.9841 

90 19 -0.8477 0.4478 

95 20 -0.6382 -0.7304 

100 21 0.5504 -0.8625 

Table (3.3) 
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  Figure (3.4) 

The output of the system (3.5) and the error without using neural network 

                               

Step (5): Find the filtered tracking error ( )tr  as ( ) ( )teKtr = , [ ]1,2=K  

and ( ) ( ) ( )[ ]Ttetete
21

= , such that ( )tr  at time interval [ ]100,0=t ,and step 

size 5=h , ( ) ( ) ( ) ( ) ( ) ( ) ( ))cos
2

()sin
1

(2 ihixihixirihtrtr −++=≡==  
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Filtered Tracking error with [ ] 5,100,0 =∈ ht   

t i ( )ir  

0 1 0 

5 2 1.9811 

10 3 2.1834 

15 4 -0.3269 

20 5 -2.0462 

25 6 -0.5570 

30 7 1.9776 

35 8 1.9050 

40 9 -0.6872 

45 10 -2.0984 

50 11 -0.3178 

55 12 2.0944 

60 13 1.6743 

65 14 -0.9832 

70 15 -2.0768 

75 16 -0.0453 

80 17 2.1959 

85 18 1.4315 

90 19 -1.2476 

95 20 -2.0067 

100 21 0.2382 

Table (3.4) 

The norm of ( )tr  is approximated using the numerical results which is 

depends on the simulation such that the norm ( ) ( ) 1271.7== trtr . 
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Step (6): Chose the tracking control law of the system (3.5) by using the 

derivative of the filter tracking error  and by substituting that 

( ) ( ) ( )tutWtu 21 ˆ−=  so that we can chose W  as follows  

( )( )rvk
d

xF
xg

W ++Υ−−= αˆ
)(

1
 

Where we can find dΥ  from the algorithm step (6)above as  

( ) ( )( ) ( )txtt
d 2

2cos2sin +−=Υ  

suppose ( )
222

12ˆ xxxF −−= , 1=vk . And Consider the robust term have the 

form  2
1

23
1

5 xx −=α . 

so that the tracking control law ( ) ( ) ( ) ( )iWihWihtWtW ≡===  where ≡i  

stands for number of  dividing time interval. Where the behavior of nonlinear 

part of tracking control law W  is shown in the following figure too. 

0 40 80 120 160 200

5

2.5

2.5

5

W

t  

Figure (3.5) 

The behavior of the tracking control law W    

 

 

And the simulated on  time interval [ ]100,0∈t  for step size 5=h  as follows 
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The Tracking Control Law (W ) results with [ ]100,0∈t  for 5=h  

 

t 

 

i 

Tracking control law   

( ( )iW ) 

0 1 2.0000 

5 2 3.5381 

10 3 1.0605 

15 4 -2.4902 

20 5 -2.1387 

25 6 1.5609 

30 7 3.2765 

35 8 0.5277 

40 9 -2.7646 

45 10 -1.8973 

50 11 1.8757 

55 12 3.1394 

60 13 0.0752 

65 14 -2.9341 

70 15 -1.5834 

75 16 2.1866 

80 17 2.9696 

85 18 -0.3607 

90 19 -3.0372 

95 20 -1.2292 

100 21 2.4696 

Table (3.5) 

Step (7):  Since the control input as we defined above is 

 ( ) ( ) ( )tutWtu 2
ˆ

1 −=  
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Where ( ) ≡tW  be the tracking control law  

        ( ) ≡tu2
ˆ  be the approximate function for the nonlinear control ( )tu2 . 

 such that we will going to find ( )tu2
ˆ   by using the general neural network 

approximation property as follows. 

 

Step (8) (Neural Network): Consider the two-Layered feed forward  neural 

network have four, ten, one neurons at the input, hidden and output layers 

respectively. 

1. The inputs for the first layer are 
1 21 2

x x x e eNN d d
 =
 

.  

For [ ]100,0∈t  using step size 5=h . 

Remark:  

 Since the simulation are implemented step-by-step depending on the 

divided time interval, the number of input to artificial neural network as well 

as the number of outputs are depending on the number of divided time 

interval and this is the very important problem appearing in continuous 

neural network. 

Such that the inputs of the network have the following results  

 ( ) ( ) ( ) ( )[ ]ihteihteihtihtNNx ===== 2,1,cos,sin  

( ) ( ) ( ) ( )[ ]ieieihih
21

,cos,sin=⇒  

Such that, the simulation of the neural network inputs will be shown in the 

table (3.6) with time interval [ ]100,0∈t  using step size 5=h . 
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Inputs to the First Layer Neural Network  NNx with  [ ]100,0∈t   

and step size 5=h  

t i ( )i
d

x
1

 ( )i
d

x
2

 ( )ie1  ( )ie2  

0 1 0 1.0000 0 0 

5 2 -0.9589 0.2837 1.1420 -0.3028 

10 3 -0.5440 -0.8391 0.6752 0.8330 

15 4 0.6503 -0.7597 -0.5416 0.7563 

20 5 0.9129 0.4081 -0.8179 -0.4103 

25 6 -0.1324 0.9912 0.2179 -0.9928 

30 7 -0.9880 0.1543 1.0665 -0.1555 

35 8 -0.4282 -0.9037 0.5011 0.9027 

40 9 0.7451 -0.6669 -0.6767 0.6661 

45 10 0.8509 0.5253 -0.7862 -0.5260 

50 11 -0.2624 0.9650 0.3239 -0.9656 

55 12 -0.9998 0.0221 1.0585 -0.0226 

60 13 -0.3048 -0.9524 0.3612 0.9520 

65 14 0.8268 -0.5625 -0.7726 0.5621 

70 15 0.7739 0.6333 -0.7216 -0.6337 

75 16 -0.3878 0.9218 0.4384 -0.9221 

80 17 -0.9939 -0.1104 1.0429 0.1101 

85 18 -0.1761 -0.9844 0.2237 0.9841 

90 19 0.8940 -0.4481 -0.8477 0.4478 

95 20 0.6833 0.7302 -0.6382 -0.7304 

100 21 -0.5064 0.8623 0.5504 -0.8625 

Table (3.6) 
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2. Let the bias b  are selected randomly distributed between -15 and +15, 

where ( ) 10,,2,1, K=jjb , ≡j  depends on the number of the neuron in the 

hidden layer ( )10=j in this application, the bias will be chosen as follows: 

  The bias b  to the First Layer Feed forward Neural Network 

Bias 

b  

  
١  

  
٠  

  
-1 
  

  
٠  
  
 

  
٠  
  

  
٣  

  
-4 

  
-5 

  
١  

  
٨ 

Table (3.7) 

with input to the bias has the value 10 −=x . 

3. Consider the first layer feed forward weights 

4,1,10,1 KK == jiwhere
ij

V ,(in this application) where ≡ji, representing 

the number of neurons on the hidden layer and the input layer respectively. 

Such that ijV  will be chosen randomly distributed between -1 and +1 as 

The First Layer Feed forward Neural Network Weights V  

i The first layer neural network ijV  

1 -1 1 0 1 

2 1 -1 -1 1 

3 1 0 0 -1 

4 -1 -1 -1 0 

5 -1 -1 0 -1 

6 0 -1 0 0 

7 -1 0 0 0 

8 0 1 0 1 

9 -1 1 -1 0 

10 1 1 1 -1 

Table (3.8) 
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 4.  We chose the Log-sigmoid transfer function f  (activation function) 

(which be explained in chapter one) because it is differentiable and 

commonly used in many methods such as Back propagation method  

( ) ( ) 10,,1,
4

1
,

exp1

1
K=

=
=

−+
= ∑ i

j j
x

ij
V

i
wheref λ

λ
λ      

noted that , ( ) ( ) ( ) ( ) 10,,2,1, K=≡≡≡ iwherejjhtt iijii λλλλ , ≡i  stand for 

number of evaluates in value( )tλ , ≡j stand for number of divided time 

interval. Such that the result ofλ  on the time interval [ ]100,0=t  with step 

size 5=h , the evaluation are as shown in table (3.9)  
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The values of the sigmoid function ( )λf  at [ ]100,0∈t  and step size 5=h  

t j ( )j1λ  ( )j2λ ( )j3λ ( )j4λ ( )j5λ ( )j6λ ( )j7λ ( )j8λ ( )j9λ ( )j10λ 

0 1 3.00 4.00 2.00 3.00 3.00 -6.00 2.00 6.00 -6.00 -4.00 

5 2 0.596 4.413 1.041 4.67 4.372 -6.23 3.55 3.182 -6.302 -3.403 

10 3 2.613 6.672 1.456 5.381 6.216 -8.540 5.347 2.941 -5.167 -1.198 

15 4 4.948 6.516 2.650 4.109 4.865 -8.407 3.974 5.432 -5.243 -1.375 

20 5 4.320 4.181 2.912 2.679 2.268 -6.086 1.363 7.139 -6.410 -3.723 

25 6 1.656 3.016 1.867 3.141 2.148 -4.930 1.233 5.640 -6.992 -4.898 

30 7 0.789 4.690 1.012 4.833 4.678 -6.611 3.756 3.099 -6.155 -3.231 

35 8 2.973 6.806 1.571 5.331 6.234 -8.733 5.307 3.167 -5.097 -1.1206 

40 9 5.087 6.331 2.745 3.921 4.587 -8.264 3.656 5.754 -5.339 -1.598 

45 10 4.111 3.948 2.850 2.623 2.097 -5.884 1.162 7.162 -6.526 -3.986 

50 11 1.448 3.069 1.737 3.297 2.331 -5.008 1.394 5.378 -6.965 -4.869 

55 12 0.919 4.955 1.002 4.977 4.955 -6.896 4.013 2.963 -6.022 -2.980 

60 13 3.286 6.904 1.695 5.257 6.209 -8.848 5.265 3.381 -5.048 -1.039 

65 14 5.161 6.124 2.826 3.735 4.297 -8.070 3.351 6.037 -5.437 -1.821 

70 15 3.861 3.733 2.773 2.592 1.959 5.680 1.011 7.128 -6.633 -4.421 

75 16 1.251 3.156 1.612 3.466 2.544 -5.105 1.594 5.095 -6.922 -4.793 

80 17 1.073 5.220 1.006 5.104 5.214 -7.171 4.263 2.852 -5.889 -2.7305 

85 18 3.584 6.968 1.823 5.160 6.144 -8.920 5.192 3.615 -5.015 -0.983 

90 19 5.189 5.895 2.894 3.554 4.001 -7.849 3.048 6.293 -5.552 -2.057 

95 20 3.591 3.539 2.683 2.586 1.856 -5.493 0.901 7.051 -6.730 -4.415 

100 21 1.080 3.275 1.493 3.644 2.781 -5.231 1.825 4.805 -6.8625 -4.6809 

Table (3.9) 

5. the output of the first layer feed forward neural network is given by  

( ) ( ) ( ) 10,,1
4

1
K=+

=
=

















∑ iwhereibt
j

jxtijVftiq  
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The result is as follows in table (3.10). [ ]100,0∈t  and step size 5=h . 

t j ( )jq1  ( )jq2 ( )jq3  ( )jq4  ( )jq5 ( )jq6 ( )jq7 ( )jq8 ( )jq9 ( )jq10 

0 1 0.952 0.982 0.880 0.952 0.952 0.002 0.880 0.997 0.002 0.0180 

5 2 0.644 0.988 0.739 0.990 0.965 0.002 0.9722 0.960 0.001 0.0322 

10 3 0.931 0.998 0.810 0.995 0.998 0.002 0.995 0.949 0.005 0.2320 

15 4 0.993 0.998 0.934 00.983 0.992 0.002 0.981 0.995 0.005 0.201 

20 5 0.986 0.985 0.948 0.935 0.966 0.002 0.796 0.992 0.001 0.0023 

25 6 0.839 0.9533 0.866 0.958 0.895 0.007 0.774 0.996 0.009 0.0074 

30 7 0.687 0.990 0.733 0.992 0.890 0.001 0.9772 0.956 0.002 0.038 

35 8 0.951 0.998 0.8280 0.995 0.980 0.002 0.995 0.959 0.0061 0.2459 

40 9 0.993 0.9982 0.936 0.9806 0.0899 0.900 0.9748 0.0968 0.1048 01682 

45 10 0.983 0.981 0.945 0.932 0.890 0.002 0.761 0.999 0.001 0.018 

50 11 0.809 0.955 0.850 0.964 0.911 0.006 0.801 0.995 0.009 0.007 

55 12 0.714 0.993 0.731 0.993 0.993 0.001 0.982 0.950 0.002 0.048 

60 13 0.963 0.999 0.844 0.994 0.998 0.000 0.994 0.967 0.006 0.2613 

65 14 0.994 0.997 0.944 0.976 0.986 0.000 0.966 0.997 0.004 0.139 

70 15 0.979 0.976 0.941 0.930 0.876 0.003 0.733 0.992 0.001 0.0146 

75 16 0.777 0.959 0.833 0.969 0.927 0.006 0.831 0.993 0.001 0.008 

80 17 0.745 0.994 0.732 0.9940 0.9946 0.00 0.9861 0.9455 0.002 0.061 

85 18 0.973 0.999 0.861 0.994 0.997 0.001 0.994 0.973 0.006 0.272 

90 19 0.994 0.997 0.947 0.972 0.982 0.000 0.954 0.998 0.003 0.113 

95 20 0.973 0.971 0.936 0.930 0.864 0.004 0.711 0.991 0.001 0.011 

100 21 0.746 0.963 0.816 0.974 0.941 0.005 0.861 0.991 0.001 0.009 

Table  (3.10) 

Now we must produce the hidden layer to the feed forward neural 

network which have the following: 
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1. the hidden layer (second layer) for the neural network have an input whose 

already the output of the first layer (input layer) ( )10,,1, K=iwhereiq   

2.The neural network weights to the hidden layer (second layer) is 

( ) ( ) ( ) ( ) ( )[ ]twtwtwtwtw 10321 K=  which we are chose it randomly 

between -1 and +1 as follows such that 

( ) ( ) ( ) ( ) 10,,2,1, K=≡≡≡ ijwjhwtwtw iijii , ≡i  stand for number of 

evaluates in value ( )tw , ≡j stand for number of divided time interval. Such 

that the result of won the time interval [ ]100,0=t  with step size 5=h , the 

evaluation are as shown in table (3.11). 
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The hidden layer feed forward neural network weights at [ ]100,0=t  with 

step size 5=h  

t j ( )jw1  ( )jw2 ( )jw3  ( )jw4  ( )jw5 ( )jw6 ( )jw7 ( )jw8 ( )jw9 ( )jw10 

0 1 0 0 -1 0 0 -1 0 -1 -1 ٠ 

5 2 0 0 0 0 0 0 0 0 -1 0 

10 3 0 0 0 0 0 -1 0 0 -1 0 

15 4 0 0  0 0 0  0 0 0 0 0 

20 5 0 0 -1 0 0 0 -1 0 -1 0 

25 6 0 0  -1 0 0 0 0 -1 -1 0 

30 7 -1 0 0 0 -1 0 0 -1 0 0 

35 8 0 0  0 0 -1  -1 0 -1 0 0 

40 9 0 0  0 0 -1 -1 0 0 0 0 

45 10 -1 0  0 0 -1 -1 0 0 0 0 

50 11 0 0  0 0 -1  0 -1 0 0 -1 

55 12 0 0  0 0 0  0 0 0 -1 0 

60 13 0 0  -1 0 0  0 0 -1 -1 -1 

65 14 0 0  -1 -1 -1  -1 0 -1 -1 0 

70 15 0 0  -1 0 0  0 0 0 0 -1 

75 16 -1 0  0 0 -1  0 0 0 -1 -1 

80 17 0 -1  -1 0 0  -1 -1 0 0 -1 

85 18 -1 -1  0 0 0  0 0 0 -1 0 

90 19 0 0  0 0 0  0 -1 -1 -1 0 

95 20 0 0  0 0 0  0 0 0 0 0 

100 21 0 0  -1 0 0  -1 -1 0 0 -1 

Table (3.11) 



 Chapter Three                                                                                          Applications                                      

 ١١١

Where the norm of ( )tw  is bounded by the value mw  ( )( )mwtw ≤  (the norm 

approximated by matrix norm nested of continuous norm) suppose 

that 7=mw , such that ( ) =tw 4.6944. 

 

3.Consider the hidden layer estimated neural network weights can be found 

by solving the neural network tuning algorithm  

( ) wrSkxgrNNxTVfSw ˆˆ −= 





&   

And suppose that .1,5 == kS with initial conditions ( ) 10,2,1,0ˆ K=i
i

w , 

≡i  stand for number of evaluates in value ( )tŵ (number of the neurons in the  

hidden layer). 

The initial conditions to the neural network tuning algorithm equation 

( )0ˆ1w  ( )0ˆ
2w ( )0ˆ

3w  ( )0ˆ
4w  ( )0ˆ

5w ( )0ˆ
6w ( )0ˆ

7w ( )0ˆ
8w ( )0ˆ

9w ( )0ˆ10w 

0 0 0 0 0 0 0 0 0 0 

Table (3.12) 

 

The solution of the neural network estimated weights 

( ) ( ) ( ) ( ) 10,,2,1,ˆˆˆˆ K=≡≡≡ ijwjhwtwtw iiji , ≡i  stand for number of evaluates 

in value ( )tŵ , ≡j stand for number of divided time interval. Such that the 

result of ŵon the time interval [ ]100,0∈t  with step size 5=h , the solution 

are as shown in table (3.13). 
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Results of the neural network estimated weights ( )tŵ  [ ]100,0∈t  with step 

size 5=h  

t j ( )jw1ˆ  ( )jw2ˆ ( )jw3ˆ  ( )jw4ˆ  ( )jw5ˆ ( )jw6ˆ ( )jw7ˆ ( )jw8ˆ ( )jw9ˆ ( )jw10ˆ 

0 1 0 0 0 0 0 0 0 0 0 0 

5 2 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

10 3 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

15 4 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

20 5 -0.10 -0.48 -0.08 -0.54 -0.60 0.002 -0.75 -0.37 -0.005 -0.220 

25 6 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.36 -0.005 -0.220 

30 7 -0.10 -0.48 -0.08 -0.54 -0.60 0.002 -0.76 -0.37 -0.005 -0.220 

35 8 -0.10 -0.48 -0.08 -0.54 -0.60 0.002 -0.76 -0.37 -0.005 -0.220 

40 9 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

45 10 -0.10 -0.48 -0.08 -0.54 -0.60 0.002 -0.75 -0.37 -0.005 -0.220 

50 11 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

55 12 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

60 13 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

65 14 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

70 15 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

75 16 -0.10 -0.48 -0.08 -0.54 -0.60  0.002 -0.75 -0.37 -0.005 -0.220 

80 17 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

85 18 -0.10 -0.48 -0.08 -0.54 -0.60  0.002 -0.75 -0.37 -0.005 -0.220 

90 19 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.36 -0.005 -0.220 

95 20 -0.10 -0.48 -0.08 -0.54 -0.60  0.002 -0.76 -0.37 -0.005 -0.220 

100 21 -0.10 -0.48 -0.08 -0.54 -0.59 0.002 -0.75 -0.37 -0.005 -0.220 

Table (3.13) 

4. we can find the neural network weights approximation error ( )tw~  by the 

following ( ) ( ) 10~,ˆ~ Rwtwtww ∈−= ⇒  ( ) ( ) ( ) 10,,2,1,~~~ K=≡≡= ijwjhwjhtw ii  
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≡i  stand for number of evaluates in value ( )tw~ , ≡j stand for number of 

divided time interval. Such that the result of w~on the time interval 

[ ]100,0∈t  with step size 5=h , the solution are as shown in table (3.14). 

The neural network weights approximation error ( )tw~  [ ]100,0∈t , 5=h  

t j ( )jw1ˆ  ( )jw2ˆ ( )jw3ˆ  ( )jw4ˆ  ( )jw5ˆ ( )jw6ˆ ( )jw7ˆ ( )jw8ˆ ( )jw9ˆ ( )jw10ˆ 

0 1 0 0 -1.00 0 0 -1.00 0 -1.00 -1.00 0 

5 2 0.104 0.481 0.088 0.549 0.599 -0.00 0.759 0.370 -0.99 0.220 

10 3 0.104 0.481 0.089 0.541 0.599 -1.00 0.759 0.370 -0.99 0.220 

15 4 0.104 0.480 0.088 0.540 0.599 -0.00 0.758 0.370 0.005 0.220 

20 5 0.104 0.481 -0.91 0.541 0.600 -0.00 -0.24 0.370 -0.99 0.220 

25 6 0.104 0.480 -0.91 0.540 0.599 -0.00 0.758 -0.630 -0.99 0.220 

30 7 -0.89 0.481 0.089 0.541 -0.39 -0.00 0.760 -0.629 0.005 0.220 

35 8 0.104 0.480 0.088 0.540 -0.40 -1.00 0.758 -0.630 0.005 0.220 

40 9 0.104 0.481 0.089 0.541 -0.39 0.100 0.760 0.370 0.005 0.220 

45 10 0.895 0.480 0.088 0.540 -0.40 -1.00 0.758 0.370 0.005 0.220 

50 11 0.101 0.481 0.089 0.541 -0.40 -0.00 -0.24 0.370 0.005 -0.77 

55 12 0.194 0.480 0.088 0.540 0.599 -0.00 0.759 0.370 -0.99 0.220 

60 13 0.101 0.481 -0.91 0.540 0.599 -0.00 0.759 -0.629 -0.99 -0.77 

65 14 0.104 0.481 -0.91 -0.45 -0.40 -1.00 0.759 -0.629 -0.99 0.220 

70 15 -0.09 0.480 0.088 0.540 -0.40 -0.00 0.758 0.370 -0.99 0.220 

75 16 0.104 0.481 -0.91 0.541 0.600 -0.00 0.759 0.3707 0.005 -0.77 

80 17 -0.88 0.480 0.088 0.540 -0.40 -0.00 0.758 0.3699 -0.99 -0.77 

85 18 0.104 -0.51 -0.91 0.541 0.600 -1.00 -0.23 0.370 0.005 -0.77 

90 19 -0.89 -0.51 0.088 0.540 0.599 -0.00 0.758 0.369 -0.99 0.220 

95 20 0.104 0.481 0.089 0.541 0.600 -0.00 -0.24 -0.629 -0.99 0.220 

100 21 0.104 0.481 -0.91 0.541 0.599 -1.00 -0.24 0.370 0.005 -0.79 

Table (3.14) 
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The adjusting of the neural network depending on the approximated weights 

( )tw~  by the equality 

  ∑



















=
++

≥
ij

ijwFwwhere
k

mwnmwk

Fw 2~,

2
1

2
12

4~
ε

 

Where ,0001.0,1 == nk ε and 7=mw as we defined it above. [if the above 

equality false we will restart the computations of the network from the 

begging (i.e. go back to neural network steps, step (2). And whenever the 

equality true we will stop the training of the network and compute the output 

of the network ( )ty ]. So that norm of ( ) =tw~ 8.1828 > 2.6458 . 

 

5. we will tack the Log-sigmoid transfer function (activation function) . 

( ) ( )λ
λ

−+
=

exp1
1

f  

6. the output of the neural network is given by 

 ( ) ( ) ( ) .10,1,1,
10

1
~

K==∑
=

=













ikwhere

i
tiqtkiwftky  

Suppose that  

 ( ) ( ) ( ) ( )jyjhytyty j 1111 ≡≡≡ , ≡j stand for number of divided time 

interval. Such that the result of ( )ty on the time interval [ ]100,0∈t  with step 

size 5=h , the solution are as shown in table (3.15). 
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The output of the neural network [ ]100,0∈t  with step size 5=h  

t j    ( )jy
1

 

0 1 ٠٫٣٧٧٥ 

5 2 ٠٫٦٣١٨  

10 3 ٠٫٦٦٨٥  

15 4 ٠٫٢٨٥٣  

20 5 ٠٫٦٨٨٢  

25 6 ٠٫٤٨٧١  

30 7 ٠٫٦٠٠٦  

35 8 ٠٫٤٦٣٦  

40 9 ٠٫٦٨٩٠  

45 10 ٠٫٦٠١٨  

50 11 ٠٫٧٦٨٣  

55 12 ٠٫٤١١٨  

60 13 ٠٫٦٥٤٦  

65 14 ٠٫٢٨٢٩  

70 15 ٠٫٢٣٦٥  

75 16 ٠٫٥٦٨٦  

80 17 ٠٫٧٣٠٥  

85 18 ٠٫٥٣٤٢  

90 19 ٠٫٢٦٨٥  

95 20 ٠٫٥١٤٦  

100 21 ٠٫٦١١٠ 

Table (3.15) 
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Figure (3.6) 

The output of the neural network 2û  

 

Step(9): We can now find the control input of the system (3.5) with using  

( ) ( )tkytu =2
ˆ ,and we defined ( )tu1  in step (7) as ( ) ( ) ( ) ( )jujhututu j 1111 ≡≡≡ , 

≡j stand for number of divided time interval. Such that the result of ( )tu1 on 

the time interval [ ]100,0∈t  with step size 5=h , the solution are as shown in 

table (3.16). is given by 
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The control input of the system (3.5) [ ]100,0∈t  with step size 5=h  

t j ( )ju1  

0 1 1.6225  

5 2 2.9036 

10 3 0.3920 

15 4 -2.7754 

20 5 -2.8268 

25 6 1.0738 

30 7 2.6760 

35 8 0.0641 

40 9 -3.4536 

45 10 -2.4991 

50 11 1.1074 

55 12 2.7277 

60 13 -0.5794 

65 14 -3.2170 

70 15 -1.8198 

75 16 1.6180 

80 17 2.2392 

85 18 -0.8949 

90 19 -3.3057 

95 20 -1.7438 

100 21 ١٫٨٥٨٦ 

Table (3.16) 
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Step (10): display the control input ( )tu1  in the system (3.5) (step(1)) and 

find new the results and the error of the  nonlinear system with using neural 

network. 

Where  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )jhjhttte

jxjhxjhtxtx

sinsinsin1

1111

≡=≡=⇒

≡≡=≡
 

And 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )jhjhttte

jxjhxjhtxtx

coscoscos2

2222

≡=≡=⇒

≡≡=≡
 

 

≡j stand for number of divided time interval. Such that the result of ( )tu1 on 

the time interval [ ]100,0∈t  with step size 5=h , the solution are shown in 

table (3.17) as follows 
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The Results and the error of the system (3.5)with using neural network 

[ ]100,0∈t  with step size 5=h  

t j     ( )tx1  ( )te1  

0 1 0 0 

5 2 1 0.0907 

10 3 1.6225 1.4814 

15 4 -1.0937 -0.3369 

20 5 -19.3412 -18.3823 

25 6 0.0003 0.0003 

30 7 3.6154 3.6153 

35 8 -0.0000 -0.0000 

40 9 -2.3629 -2.3629 

45 10 0.0000 0.0000 

50 11 6.5962 6.5962 

55 12 0.0000 0.0000 

60 13 -1.4350 -1.4350 

65 14 0.0000 0.0000 

70 15 0.0000 0.0000 

75 16 0.0000 0.0000 

80 17 0.0000 0.0000 

85 18 0.0000 0.0000 

90 19 0.0000 0.0000 

95 20 0.0000 0.0000 

100 21 0.0000 0.0000 

Table (3.17) 

Now, the figures down shows the effectiveness of  using neural network and 

who the system (3.5) will be stable as follows  
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Figure (3.7) 

The solution of the system (3.5)(( ) ( )100,0,1 ∈ttx ) with using neural network 
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Figure (3.8) 

The error of the system (3.5) with using neural network 
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Figure (3.9) 

Architectural graph of two-layered neural network of application 
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3.2.2 APPLICATION: 

 Consider the nonlinear system 

( ) 




 −−−∗



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
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

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                                                                                                                    (3.8) 

where n=3, m=1, such that  

 [ ]TxxxxRx 321
3 =⇒∈  

















−=Β×∈Β

















−−
−−

=Α×∈Α

1

011.1

15.0

,13

010

0011.1939.2

0339.0428.0

,33

R

R

 

 ( ) ( ) 111 =⇒×∈ xgRxg  

 ( ) ( )
32

23
1

511 xxxxfRxf −−−=⇒×∈  

Step (1): we need to translate the system by define  

 
T

zzzzwherexTz 



== 321,  

Such that we have a new system 

 ( ) fTtugTzTTz Β+Β+−Α= 1&                                              

Where we consider that T  is as follows  
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TT  

and we have that    
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
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
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The following transform system is derived. 

 

1

)(3439.122264.13
153

32

21

zy

tuzzzz

zz

zz

=
+−−−=

=
=

&

&

&

                                   (3.9) 

 

Step (2) From the system above (3.9)we have  

 ( ) ,1=zg  and we have that ( ) 3439.122264.13
15 zzzzf −−−= . 

 

Step (3):  The numerical solution haven been obtained using Rung-Kutta of 

order 4 , for time interval [ ]100,0=t  and step size 
0

100

N
h =  for 200 =N  on 

MATLAB version (6.5), then the following  symbols have been used  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )izihzihtziz

izihzihtziz

izihzihtziz

3333

2222

1111

≡≡==
≡≡==

≡≡==
  

Where 

≡i  stands for number of  dividing time interval. 

Tack the initial condition of the system in (3.9) as 

( ) ( ) ( ) 5.00,2.00,00 321 === zzz . We get the following evaluation  
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The solution of non controller 0=u  system (3.9) without using neural  

network [ ]100,0∈t  with step size 5=h  

t i ( )iz1  ( )iz2  ( )iz3  

0 1 0 0.2000 0.5000 

5 2 -0.2707 -0.1324 0.2075 

10 3 -0.0282 0.000 -0.0178 

15 4 -0.0423 0.0008 -0.0001 

20 5 -0.0403 0.0003 0.000 

25 6 -0.0390 0.0002 -0.000 

30 7 -0.0378 0.0002 -0.000 

35 8 -0.0368 0.0002 -0.000 

40 9 -0.0358 0.0002 -0.000 

45 10 -0.0349 0.0002 -0.000 

50 11 -0.0340 0.0002 -0.000 

55 12 -0.0332 0.0002 -0.000 

60 13 -0.0325 0.0002 -0.000 

65 14 -0.0318 0.0001 -0.000 

70 15 -0.0312 0.0001 -0.000 

75 16 -0.0305 0.0001 -0.000 

80 17 -0.0300 0.0001 -0.000 

85 18 -0.0294 0.0001 -0.000 

90 19 -0.0289 0.0001 -0.000 

95 20 -0.0284 0.0001 -0.000 

100 21 -0.0280 0.0001 -0.000 

Table (3.18) 
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Figure (3.10) 

The solution of the system (3.9) (( ) ( )100,0,1 ∈ttz ) without using neural 

network 
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Figure (3.11)  

the solution of the system (3.9) (( ) ( ) ( ) ( )100,0,,, 321 ∈ttztztz ) without using 

neural network 
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Step (4): Consider the desired trajectory are given by  

( ) ( ) ⇒= tt
d

z sin
1

( ) ( ) ( ) ( )ihihzihtztz ddd sin
111

≡≡==  

( ) ( ) ⇒= tt
d

z cos
2

( ) ( ) ( ) ( )ihihzihtztz ddd cos
222

≡≡==  

( ) ⇒−= tet
d

z 5
3

( ) ( ) ( ) ih

ddd eihzihtztz 5

333

−≡≡==  

where ( ) ( ) ( )( )tztztzy dddd 321 ,,= ,such that ≡i  stands for number of  dividing 

time interval, and  with step size 5=h . 
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The desired trajectory ( ) ( ) ( )t
d

zt
d

zt
d

z
3

,
2

,
1

 with [ ]100,0∈t , and step size 

5=h  

t i ( ) ( )ihiz d sin1 =  ( ) ( )ihizd cos
2

=  ( ) ih

d eiz 5

3

−=  

0 1 0 1.0000 1.000 

5 2 -0.9589 0.2837 0.000 

10 3 -0.5440 -0.8391 0.000 

15 4 0.6503 -0.7597 0.000 

20 5 0.9129 0.4081 0.000 

25 6 -0.1324 0.9912 0.000 

30 7 -0.9880 0.1543 0.000 

35 8 -0.4282 -0.9037 0.000 

40 9 0.7451 -0.6669 0.000 

45 10 0.8509 0.5253 0.000 

50 11 -0.2624 0.9650 0.000 

55 12 -0.9998 0.0221 0.000 

60 13 -0.3048 -0.9524 0.000 

65 14 0.8268 -0.5625 0.000 

70 15 0.7739 0.6333 0.000 

75 16 -0.3878 0.9218 0.000 

80 17 -0.9939 -0.1104 0.000 

85 18 -0.1761 -0.9844 0.000 

90 19 0.8940 -0.4481 0.000 

95 20 0.6833 0.7302 0.000 

100 21 -0.5064 0.8623 0.000 

Table (3.19) 
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Step (5): Find the tracking errors ( ) ( ) ( )tetete 3,2,1   at time interval [ ]100,0=t  

and step size 5=h  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) iheizie

ieiheitetetetzte

ihizie

ieiheitetettzte

ihizie

ieiheitetettzte

5
33

3333
5

33

cos
22

2222
cos22

sin
11

1111
sin11

−−=⇒

≡≡==⇒−−=

−=⇒

≡≡==⇒−=

−=⇒

≡≡==⇒−=

 

Where ≡i  stands for number of  dividing time interval, so that the simulation 

are shown as below in table (3.20).    
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Errors ( ( ) ( ) ( )tetete 3,2,1 ) of the System (3.9) Without 

t i ( ) ( )ihie sin1 =  ( ) ( )ihie cos1 =  ( ) iheie 5

3

−=  

0 1 0 -0.8000 -0.5000 

5 2 0.6882 -0.4161 0.2075 

10 3 0.5159 0.8391 -0.0178 

15 4 -0.6926 0.7605 -0.0001 

20 5 -0.9533 -0.4078 0.000 

25 6 0.0933 -0.9910 -0.000 

30 7 0.9502 -0.1540 -0.000 

35 8 0.3914 0.9039 -0.000 

40 9 -0.7809 0.6671 -0.000 

45 10 -0.8858 -0.5251 -0.000 

50 11 0.2284 -0.9648 -0.000 

55 12 0.9665 -0.0220 -0.000 

60 13 0.2723 0.9526 -0.000 

65 14 -0.8586 0.5626 -0.000 

70 15 -0.8050 -0.6332 -0.000 

75 16 0.3572 -0.9216 -0.000 

80 17 0.9639 0.1105 -0.000 

85 18 0.1466 0.9844 -0.000 

90 19 -0.9229 0.4482 -0.000 

95 20 -0.7117 -0.7301 -0.000 

100 21 0.4784 -0.8622 -0.000 

                                                    Table (3.20) 

Using Neural Network with time interval [ ]100,0∈t , step size 5=h  
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Figure (3.12) 

The output of the system (3.9) and the error of the system without using 

neural network 

 

Step (6): Find the filtered tracking error ( )tr  as ( ) ( )teKtr = , 

where [ ]1,1,2=K , ( ) ( ) ( ) ( ), ,
1 2 3

T
e t e t e t e t =   

 

( ) ( ) ( ) ( ) ( ) ( ) )5
3

()cos
2

()sin
1

(2 tetzttzttztr −−+−++=⇒  

Such that  

( ) ( ) ( ) ( )irihrihtrtr ≡≡==  where ≡i  stands for number of  dividing time 

interval such that [ ]100,0=t  and step size 5=h . 

The simulation are shown as below  
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Filtered tracking error at time interval [ ]100,0=t  and step size 5=h . ( )tr    

t i ( )ir  

0 1               -1.3000 

5 2 1.1678 

10 3 1.8530 

15 4 -0.6248 

20 5 -2.3143 

25 6 -0.8040 

30 7 1.7464 

35 8 1.6867 

40 9 -0.8946 

45 10 -2.2967 

50 11 -0.5081 

55 12          1.9111 

60 13 1.4972 

65 14 -1.1547 

70 15 -2.2433 

75 16 -0.2072 

80 17 2.0383 

85 18 1.2778 

90 19 -1.3977 

95 20 -2.1535 

100 21 0.0946 

Table (3.21) 

The norm of ( )tr  is approximated using the numerical results which is 

depends on the simulation such that the norm ( ) ( ) 0568.7== trtr . 
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Step (7): chose the tracking control law of the system (3.9) by using the 

derivative of the filter tracking error  and by substituting that 

( ) ( ) ( )tutWtu 21 ˆ−=  so that we can chose W  as follows  

( )( )rvk
d

zF
zg

W ++Υ−−= αˆ
)(

1
 

Where we can find dΥ  from the algorithm step (6)above are  defined as  

( ) ( ) ( ) ( )tzttztte
d 3

cos222sin55 +−++−−=Υ     

And suppose ( ) 2
1

23
1

5,
3

439.122264.12
12ˆ zzzzzzF −=−−−= α , 1=vk . 

so that the tracking control law ( ) ( ) ( ) ( )iWihWitWtW ≡≡== , where ≡i  

stands for number of  dividing time interval such that [ ]100,0∈t  and step 

size 5=h .The simulation are shown as below in table (2.22): 
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The Tracking Control Law (W ) results [ ]100,0∈t  for 5=h    

t i Tracking control law  

 ( ( )iW ) 

0 1 5.7648 

5 2 2.7886 

10 3 0.719 

15 4 -2.7955 

20 5 -2.4116 

25 6 1.310 

30 7 3.0424 

35 8 0.3071 

40 9 -2.9740 

45 10 -2.0973 

50 11 1.6839 

55 12 2.9548 

60 13 -0.1031 

65 14 -3.1067 

70 15 -1.7508 

75 16 2.0239 

80 17 2.8112 

85 18 -0.5151 

90 19 -3.1880 

95 20 -1.3766 

100 21 2.3254 

Table (3.22) 

The behavior of nonlinear part of tracking control law W  is shown in the 

following figure. 
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Step (8):  Since the control input as we defined above is 

 ( ) 2
ˆ

1 uWtu −=  

Where ≡W  be the tracking control law  

        ( ) ≡tu2
ˆ  be the approximate function for the nonlinear control ( )tu2  

which we will going to find it by using the general neural network 

approximation property. 

 

Step (9) (Neural Network): Consider the two-Layered feed forward  neural 

network have six, ten and one neurons at the input, hidden and output layers 

respectively. 

1.The inputs for the first layer are. 

( ) ( ) ( ) ( ) ( ) ( ), , , , ,
1 2 3 1 2 3

x z t z t z t e t e t e tNN d d d
 =   

  

For [ ]100,0∈t  with using step size 5=h .where 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )ieihete

ieihete

ieihete

eihztz

ihihztz

ihihztz

ih

dd

dd

dd

333

222

111

5

33

22

11

cos

sin

≡=
≡=
≡=

≡=
≡=
≡=

−
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Inputs to the First Layer Neural Network  NNx  For [ ]100,0∈t  using step 

size 5=h  

t i ( )i
d

z
1

 ( )i
d

z
2

 ( )i
d

z
3

 ( )ie1  ( )ie2  ( )ie3  

0 1 0 1.0000 1.000 0 -0.8000 -0.5000 

5 2 -0.9589 0.2837 0.000 0.6882 -0.4161 0.2075 

10 3 -0.5440 -0.8391 0.000 0.5159 0.8391 -0.0178 

15 4 0.6503 -0.7597 0.000 -0.6926 0.7605 -0.0001 

20 5 0.9129 0.4081 0.000 -0.9533 -0.4078 0.000 

25 6 -0.1324 0.9912 0.000 0.0933 -0.9910 -0.000 

30 7 -0.9880 0.1543 0.000 0.9502 -0.1540 -0.000 

35 8 -0.4282 -0.9037 0.000 0.3914 0.9039 -0.000 

40 9 0.7451 -0.6669 0.000 -0.7809 0.6671 -0.000 

45 10 0.8509 0.5253 0.000 -0.8858 -0.5251 -0.000 

50 11 -0.2624 0.9650 0.000 0.2284 -0.9648 -0.000 

55 12 -0.9998 0.0221 0.000 0.9665 -0.0220 -0.000 

60 13 -0.3048 -0.9524 0.000 0.2723 0.9526 -0.000 

65 14 0.8268 -0.5625 0.000 -0.8586 0.5626 -0.000 

70 15 0.7739 0.6333 0.000 -0.8050 -0.6332 -0.000 

75 16 -0.3878 0.9218 0.000 0.3572 -0.9216 -0.000 

80 17 -0.9939 -0.1104 0.000 0.9639 0.1105 -0.000 

85 18 -0.1761 -0.9844 0.000 0.1466 0.9844 -0.000 

90 19 0.8940 -0.4481 0.000 -0.9229 0.4482 -0.000 

95 20 0.6833 0.7302 0.000 -0.7117 -0.7301 -0.000 

100 21 -0.5064 0.8623 0.000 0.4784 -0.8622 -0.000 

Table (3.23) 
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2. Let the bias b  are selected randomly distributed between -15 and +15 as 

where ( ) 10,,2,1, K=jjb , ≡j  depends on the number of the neuron in the 

hidden layer ( )10=j in this application, the bias will be chosen as follows: 

    The Bias b  to the First Layer Feed forward Neural Network 

Bias 

b  

  
٩  
  

 
-2 

  
٤  
  

  
٢  
  

  
٨  

  
٦  

  
١  

  
-5 

  
٧  

  
١ 

Table (3.24) 

with input to the bias has the value 10 −=x . 

 

3.Consider the first layer feed forward weights 

6,1,10,1 KK == jiwhere
ij

V , wherei , j representing the number of 

neurons on the hidden layer and the input layer respectively. Such that ijV  

will be chosen randomly distributed between -1 and +1 as 

The First Layer Feed forward Neural Network Weights V  

i The first layer weight ijV  

1 -1 ٠ -1 ٠ ١ -1 

2 -1 ٠ ٠ -1 -1 -1 

3 0 -1 -1 -1 -1 ١ 

4 -1 ٠ ١ ١ ٠ ١ 

5 -1 ١ -1 -1 ١ -1 

6 1 ١ ٠ -1 ٠ ١ 

7 0 ٠ ٠ -1 ٠ ١ 

8 1 ١ ٠ -1 ٠ -1 

9 ١ ١ -1 ٠ ٠ -1 

10 -1 ٠ -1 ٠ ٠ -1 

Table (3.25) 
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4.  We chose the Log-sigmoid transfer function f  (activation function) 

(which be explained in chapter one) because it is differentiable and 

commonly used in many methods such as Back propagation method  

( ) ( ) 10,,1,
6

1
,

exp1

1
K=

=
=

−+
= ∑ i

j j
x

ij
V

i
wheref λ

λ
λ      

noted that , ( ) ( ) ( ) ( ) 10,,2,1, K=≡≡=≡ iwherejjhjhtt iiii λλλλ , ≡i  stand 

for number of evaluates in value( )tλ , ≡j stand for number of divided time 

interval. Such that the result ofλ  on the time interval [ ]100,0=t  with step 

size 5=h , the evaluation are as shown in table (3.26) 
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The values of the sigmoid function  ( )λf with [ ]100,0=t  , 5=h  

t j ( )j1λ  ( )j2λ ( )j3λ ( )j4λ ( )j5λ ( )j6λ ( )j7λ ( )j8λ ( )j9λ ( )j10λ 

0 1 -4.50 2.300 -10.7 -2.80 -9.30 -1.80 -7.80 3.500 2.500 -8.500 

5 2 -2.56 1.479 -9.34 -1.48 -9.06 -4.063 -8.10 0.145 1.1172 -7.248 

10 3 -2.92 0.206 -9.53 -1.94 -8.95 -2.220 -6.67 0.958 0.634 -7.438 

15 4 -5.34 0.281 -8.30 -4.32 -8.95 0.103 -5.54 3.343 1.890 -8.650 

20 5 -5.86 1.448 -8.04 -4.86 -8.95 -0.541 -6.45 3.866 3.321 -8.913 

25 6 -3.77 2.030 -9.09 -2.77 -8.96 -3.216 -8.08 1.774 2.858 -7.868 

30 7 -2.06 1.191 -9.95 -1.06 -8.96 -4.092 -8.10 0.061 1.166 -7.012 

35 8 -3.18 0.132 -9.39 -2.18 -8.96 -1.915 -6.48 1.180 0.668 -7.571 

40 9 -5.52 0.368 -8.21 -4.52 -8.99 0.152 -5.52 3.526 2.078 -8.745 

45 10 -5.73 1.560 -8.11 -4.73 -8.96 -0.788 -6.63 3.736 3.376 -8.850 

50 11 -3.50 1.998 -9.22 -2.50 -8.96 -3.455 -8.19 1.509 2.702 -7.737 

55 12 -2.03 1.055 -9.96 -1.03 -8.96 -3.988 -7.98 0.033 1.022 -7.000 

60 13 -3.42 0.079 -9.27 -2.42 -8.96 -1.624 -6.31 1.422 0.742 -7.695 

65 14 -5.68 0.469 -8.14 -4.68 -8.96 0.248 -5.57 3.685 2.2644 -8.856 

70 15 -5.57 1.664 -8.19 -4.57 -8.96 -1.054 -6.82 3.578 3.107 -8.773 

75 16 -3.25 1.952 -9.35 -2.25 -8.96 -3.666 -8.27 1.255 2.534 -7.612 

80 17 -2.04 0.919 -9.96 -1.04 -8.96 -3.847 -7.85 0.042 0.895 -7.006 

85 18 -3.77 0.045 -9.14 -2.67 -8.97 -1.338 -6.16 1.677 0.839 -7.823 

90 19 -5.81 0.580 -8.07 -4.81 -8.97 0.265 -5.62 3.816 2.445 -8.894 

95 20 -5.39 1.758 -8.28 -4.39 -8.97 -1.335 -7.01 3.395 3.413 -8.683 

100 21 -3.01 1.890 -9.47 -2.01 -8.97 -3.847 -8.34 1.015 2.356 -7.493 

Table (3.26) 

5. the output of the first layer feed forward neural network is given by  

( ) ( ) ( ) 10,,1
6

1
K=+















=
= ∑ iwhere

i
bt

j j
xt

ij
Vftiq  
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The result is as follows The output of the first layer neural network with 

[ ]100,0=t  with step size 5=h  

t j ( )jq1  ( )jq2 ( )jq3  ( )jq4  ( )jq5 ( )jq6 ( )jq7 ( )jq8 ( )jq9 ( )jq10 

0 1 0.011 0.390 0.00 0.073 0.000 0.141 0.000 0.970 0.924 0.0002 

5 2 0.071 0.814 0.000 0.184 0.000 0.016 0.000 0.536 0.753 0.000 

10 3 0.051 0.551 0.000 0.125 0.000 0.097 0.001 0.722 0.653 0.000 

15 4 0.004 0.570 0.000 0.012 0.000 0.525 0.003 0.965 0.868 0.000 

20 5 0.002 0.809 0.000 0.007 0.000 0.367 0.001 0.979 0.965 0.000 

25 6 0.022 0.883 0.000 0.058 0.000 0.038 0.000 0.855 0.945 0.0004 

30 7 0.112 0.767 0.000 0.257 0.000 0.0164 0.000 0.515 0.762 0.0009 

35 8 0.039 0.533 0.000 0.101 0.000 0.128 0.001 0.765 0.661 0.0005 

40 9 0.004 0.591 0.000 0.010 0.000 0.548 0.003 0.971 0.888 0.0002 

45 10 0.003 0.826 0.000 0.008 0.000 0.312 0.001 0.976 0.967 0.0001 

50 11 0.029 0.880 0.000 0.075 0.000 0.030 0.000 0.849 0.937 0.0004 

55 12 0.115 0.741 0.000 0.262 0.000 0.018 0.000 0.508 0.735 0.0009 

60 13 0.031 0.520 0.000 0.081 0.000 0.164 0.001 0.805 0.677 0.0005 

65 14 0.003 0.615 0.000 0.009 0.000 0.561 0.0038 0.975 0.905 0.0001 

70 15 0.003 0.840 0.000 0.010 0.000 0.258 0.001 0.972 0.967 0.0002 

75 16 0.037 0.875 0.000 0.0949 0.000 0.024 0.000 0.778 0.926 0.0005 

80 17 0.114 0.714 0.000 0.260 0.000 0.020 0.000 0.510 0.710 0.0009 

85 18 0.024 0.511 0.000 0.0643 0.000 0.207 0.002 0.842 0.698 0.0004 

90 19 0.003 0.641 0.000 0.008 0.000 0.565 0.003 0.978 0.920 0.0001 

95 20 0.004 0.853 0.000 0.012 0.000 0.208 0.000 0.967 0.968 0.0002 

100 21 0.046 0.868 0.000 0.117 0.000 0.020 0.000 0.734 0.913 0.0006 

Table  (3.27) 
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Now we must produce the hidden layer to the feed forward neural 

network which have the following 

1. the hidden layer (second layer) for the neural network have an input whose 

already the output of the first layer (input layer) ( )10,,1, K=iwhereiq   

2.The neural network weights to the hidden layer (second layer) is 

( ) ( ) ( ) ( ) ( )1 2 3 10
w t w t w t w t w t =

 
K  which we are chose it 

randomly between -1 and +1 as follows ,such that 

( ) ( ) ( ) ( ) 10,,2,1, K=≡≡=≡ ijwjhwjhtwtw iiii , ≡i  stand for number of 

evaluates in value ( )tw , ≡j stand for number of divided time interval. Such 

that the result of won the time interval [ ]100,0=t  with step size 5=h , the 

evaluation are as shown in table (3.28). 
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The hidden layer weights ( )tw  [ ]100,0=t  with step size 5=h  

t j ( )jw1  ( )jw2 ( )jw3  ( )jw4  ( )jw5 ( )jw6 ( )jw7 ( )jw8 ( )jw9 ( )jw10 

0 1 0 0 -1 0 0 -1 0 -1 -1 ٠ 

5 2 0 0 0 0 0 0 0 0 -1 0 

10 3 0 0 0 0 0 -1 0 0 -1 0 

15 4 0 0  0 0 0  0 0 0 0 0 

20 5 0 0 -1 0 0 0 -1 0 -1 0 

25 6 0 0  -1 0 0 0 0 -1 -1 0 

30 7 -1 0 0 0 -1 0 0 -1 0 0 

35 8 0 0  0 0 -1  -1 0 -1 0 0 

40 9 0 0  0 0 -1 -1 0 0 0 0 

45 10 -1 0  0 0 -1 -1 0 0 0 0 

50 11 0 0  0 0 -1  0 -1 0 0 -1 

55 12 0 0  0 0 0  0 0 0 -1 0 

60 13 0 0  -1 0 0  0 0 -1 -1 -1 

65 14 0 0  -1 -1 -1  -1 0 -1 -1 0 

70 15 0 0  -1 0 0  0 0 0 0 -1 

75 16 -1 0  0 0 -1  0 0 0 -1 -1 

80 17 0 -1  -1 0 0  -1 -1 0 0 -1 

85 18 -1 -1  0 0 0  0 0 0 -1 0 

90 19 0 0  0 0 0  0 -1 -1 -1 0 

95 20 0 0  0 0 0  0 0 0 0 0 

100 21 0 0  -1 0 0  -1 -1 0 0 -1 

Figure (3.28) 

Where the norm of ( )tw  is bounded by the value mw  ( )( )mwtw ≤  (the norm 

approximated by matrix norm nested of continuous norm) suppose 

that 7=mw , such that ( ) =tw 4.6944. 
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3.Consider the hidden layer estimated neural network weights can be found 

by solving the neural network tuning algorithm  

( ) wrSkxgrNNxTVfSw ˆˆ −= 





&   

And suppose that .1,5 == kS with initial conditions 

 

The initial conditions to the neural network tuning algorithm equation 

( )0ˆ1w  ( )0ˆ
2w ( )0ˆ

3w  ( )0ˆ
4w  ( )0ˆ

5w ( )0ˆ
6w ( )0ˆ

7w ( )0ˆ
8w ( )0ˆ

9w ( )0ˆ10w 

0 0 0 0 0 0 0 0 0 0 

Table (3.29) 

 

The solution of the neural network estimated weights 

( ) ( ) ( ) ( ) 10,,2,1,ˆˆˆˆ K=≡≡=≡ ijwjhwjhtwtw iii , ≡i  stand for number of 

evaluates in value ( )tŵ , ≡j stand for number of divided time interval. Such 

that the result of ŵon the time interval [ ]100,0∈t  with step size 5=h , the 

solution are as shown in table (3.30). 
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Results of the neural network estimated weights ( )tŵ  

t j ( )jw1ˆ  ( )jw2ˆ ( )jw3ˆ  ( )jw4ˆ  ( )jw5ˆ ( )jw6ˆ ( )jw7ˆ ( )jw8ˆ ( )jw9ˆ ( )jw10ˆ 

0 1 0 0 0 0 0 0 0 0 0 0 

5 2 -0.12 0.554 0.000 -0.28 0.000 0.575 0.002 0.957 0.798 -0.00 

10 3 -0.12 0.554 0.000 -0.28 0.000 0.5752 0.002 0.957 0.798 -0.00 

15 4 -0.12 0.554 0.000 -0.28 0.000 0.579 0.002 0.957 0.798 -0.00 

20 5 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

25 6 -0.12 0.553 0.000 -0.28 0.000 0.5741 0.002 0.955 0.796 -0.00 

30 7 -0.12 0553 0.000 -0.28 0.000 0.573 0.002 0.955 0.796 -0.00 

35 8 -0.12 0.553 0.000 -0.28 0.000 0.573 0.002 0.955 0.796 -0.00 

40 9 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.955 0.797 -0.00 

45 10 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

50 11 -0.12 0.554 0.000 -0.28 0.000 0.575 0.002 0.957 0.798 -0.00 

55 12 -0.12 0.554 0.000 -0.28 0.000 0.575 0.002 0.975 0.798 -0.00 

60 13 -0.12 0.554 0.000 -0.28 0.000 0.571 0.002 0.957 0.797 -0.00 

65 14 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

70 15 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.955 0.797 -0.00 

75 16 -0.12 0.553 0.000 -0.28 0.000 0.573 0.002 0.955 0.796 -0.00 

80 17 -0.12 0.553 0.000 -0.28 0.000 0.573 0.002 0.955 0.796 -0.00 

85 18 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.955 0.796 -0.00 

90 19 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

95 20 -0.12 0.554 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

100 21 -0.12 0.553 0.000 -0.28 0.000 0.574 0.002 0.956 0.797 -0.00 

Table (3.30) 

4. we can find the neural network weights approximation error ( )tw~  by the 

following 

( ) ( ) 10~,ˆ~ Rwtwtww ∈−= ⇒ ( ) ( ) ( ) ( ) 10,,2,1,~~~~ K=≡≡=≡ ijwjhwjhtwtw iiii , 
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≡i  stand for number of evaluates in value ( )tw~ , ≡j stand for number of 

divided time interval. Such that the result of w~on the time interval 

[ ]100,0∈t  with step size 5=h , the solution are as shown in table (3.31). 

The neural network weights approximation error ( )tw~ [ ]100,0∈t , 5=h    

t j ( )jw1
~  ( )jw2

~ ( )jw3
~  ( )jw4

~  ( )jw5
~ ( )jw6

~ ( )jw7
~ ( )jw8

~ ( )jw9
~ ( )jw10

~ 

0 1 -1.00 0 0 -1.00 0 0 -1.00 0 0 -1.00 

5 2 0.124 -0.55 -0.00 0.285 -0.00 -1.57 -0.00 -1.95 -1.79 0.00 

10 3 -0.87 -0.55 -0.00 0.285 -1.00 -0.57 -0.00 1.957 -0.79 -0.99 

15 4 0.124 -1.55 -1.00 0.285 -0.00 -0.57 -0.00 -0.95 -0.79 0.00 

20 5 0.124 -0.55 -1.00 0.285 -0.00 -1.57 -0.00 -1.95 -0.79 0.00 

25 6 0.124 -0.55 -0.00 -0.71 -0.00 -0.57 -0.00 -0.95 -1.79 -0.99 

30 7 -0.87 -0.55 -0.00 -0.71 -0.00 -1.57 -0.00 -1.95 -1.79 0.00 

35 8 0.124 -0.55 -1.00 0.284 -1.00 -1.57 -1.00 -0.95 -0.79 0.00 

40 9 0.124 -0.55 -1.00 0.284 -0.00 -0.57 -0.00 -1.95 -0.79 -0.99 

45 10 -0.87 -0.55 -1.00 -0.71 -1.00 -0.57 -0.00 -1.95 -0.79 0.00 

50 11 -0.87 -1.55 -0.00 0.285 -0.00 -0.57 -0.00 -0.95 -0.79 0.00 

55 12 0.124 -0.55 -0.00 0.285 -0.00 -0.57 -0.00 -0.95 -0.79 0.00 

60 13 -0.87 -0.55 -0.00 0.285 -0.00 -0.57 -1.00 -0.95 -0.79 -0.99 

65 14 -0.87 -1.55 -1.00 0.251 -1.00 -0.57 -0.00 -0.95 -0.79 0.00 

70 15 0.124 -0.55 -1.00 0.28 -1.00 -0.57 -0.00 -0.95 -1.79 -0.99 

75 16 0.124 -0.55 -0.00 -0.71 -0.00 -0.57 -1.00 -0.95 -0.79 0.00 

80 17 0.124 -1.55 -0.00 0.284 -0.00 -0.57 -1.00 -0.95 -1.79 -0.99 

85 18 0.124 1.553 -1.00 0.284 -0.00 -1.57 -1.00 -1.95 -0.79 0.00 

90 19 -0.87 -1.55 -0.00 0.284 -0.00 -0.57 -1.00 -1.95 -0.79 -0.99 

95 20 0.124 -0.55 -1.00 0.285 -0.00 -0.57 -0.00 -0.95 -0.79 -0.99 

100 21 -0.87 -0.55 -1.00 -0.71 -1.00 -0.57 -0.00 -1.95 -0.79 -0.99 

Table (3.31) 
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The adjusting of the neural network depending on the approximated weights 

( )tw~  by the equality 

  ∑



















=
++

≥
ij

ijwFwwhere
k

mwnmwk

Fw 2~,

2
1

2
12

4~
ε

 

Where ,0001.0,1 == nk ε and 7=mw as we defined it above. [if the above 

equality false we will restart the computations of the network from the 

begging (i.e. go back to neural network steps, step (2). And whenever the 

equality true we will stop the training of the network and compute the output 

of the network ( )ty ]. So that norm of ( ) =tw~ 8.1828 > 2.6458 . 

 

5.we will tack the Log-sigmoid transfer function (activation function) . 

( ) ( )λ
λ

−+
=

exp1

1
f  

6.the output of the neural network is given by 

 ( ) ( ) ( ) .10,1,1,
10

1
~

K==∑
=

=













ikwhere

i
tiqtkiwftky  

Suppose that ( ) ( ) ( ) ( )jyjhyjhtyty 1111 ≡≡=≡ , ≡j stand for number of 

divided time interval. Such that the result of ( )ty on the time interval 

[ ]100,0∈t  with step size 5=h , the solution are as shown in table (3.32). 
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The output of the neural network [ ]100,0∈t  with step size 5=h  

t j    ( )jy
1

 

0 1 ٠٫٤٨١٠  

5 2 ٠٫٣٦٢٣  

10 3 ٠٫١٩٦٩  

15 4 ٠٫٤٠١٥  

20 5 ٠٫٣٦٧٦  

25 6 ٠٫٣٩٢٠  

30 7 ٠٫٢٠١٥  

35 8 ٠٫٣٦٥٢  

40 9 ٠٫٣٧٢٨  

45 10 ٠٫٣٥٨١  

50 11 ٠٫٣٩٤٣  

55 12 ٠٫٢٠٢٥  

60 13 ٠٫٤٠٤٢  

65 14 ٠٫١٨٤٣  

70 15 ٠٫٣٦٤٤  

75 16 ٠٫٣٦٤٠  

80 17 ٠٫١٧٦٩  

85 18 ٠٫٣٤٩٣  

90 19 ٠٫٣٧١٢  

95 20 ٠٫١٧٧٢  

100 21 ٠٫٤٨١٠  

Table (3.32) 
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Step(9): We can now find the control input of the system (3.9), with using 

( ) ( )tkytu =2
ˆ and we defined it in step (7) as ( ) ( ) ( ) ( )jujhujhtutu 1111 ≡≡=≡ , 

≡j stand for number of divided time interval. Such that the result of ( )tu1 on 

the time interval [ ]100,0∈t  with step size 5=h , the solution are as shown in 

table (3.33). is given by 
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The control input of the system (3.9) [ ]100,0∈t  with step size 5=h  

j j ( )ju1  

0 1 5.2837 

5 2 2.4263 

10 3 0.5140 

15 4 -3.1970 

20 5 -2.7792 

25 6 0.9180 

30 7 2.8410 

35 8 -0.0581 

40 9 -3.3468 

45 10 -2.4554 

50 11 1.2897 

55 12 2.7523 

60 13 -0.5073 

65 14 -3.2909 

70 15 2.1152 

75 16 1.6599 

80 17 ٢٫٦٣٤٣  

85 18 -0.8645 

90 19 -3.5592 

95 20 -1.5538 

100 21 ٢٫١٣٠٨ 

Table (3.33) 
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Step (10): display the control input ( )tu1  in the system (3.9) (step(1)) and 

find new the results and the error of the  nonlinear system with using neural 

network. 

Where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )jhjtttejzjhzjtztz sinsinsin11111 ≡=≡=⇒≡≡=≡  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) jhjtt eeetejzjhzjtztz

jhjtttejzjhzjtztz
555

33333

22222 coscoscos
−=−− ≡≡=⇒≡≡=≡

≡=≡=⇒≡≡=≡
 

≡j stand for number of divided time interval. Such that the result of ( )tu1 on 

the time interval [ ]100,0∈t  with step size 5=h , the solution are as shown in 

table (3.34). is given by 
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The results of the system (3.9) with using neural network on the time interval 

[ ]100,0∈t  with step size 5=h  

t j ( )jz1  ( )jz
2

 ( )jz3  ( )je1  ( )je2  ( )je3  

0 1 0 0.2 0.5 0 -0.8 -0.5 

5 2 0.2 0.7 4.8140 -0.7093 1.1161 4.8184 

10 3 0.9 5.5190 -0.5877 0.7584 6.5089 -0.5877 

15 4 6.4190 4.9312 -9.6414 7.1758 5.5849 -9.6414 

20 5 0.0114 -0.0047 -1.3274 0.0123 -0.0050 -1.3274 

25 6 0.0066 -1.3321 -6.7253 0.0064 -1.331 -6.7253 

30 7 -1.3255 -8.0574 3.1233 -1.3261 -8.0582 3.1233 

35 8 -0.000 -0.000 1.1644 -0.000 -0.000 1.1644 

40 9 -0.000 -0.0116 4.1252 -0.000 0.10116 4.1252 

45 10 0.0012 0.4137 1.2848 0.0012 0.4137 1.2848 

50 11 0.000 0.000 -7.8930 0.000 0.000 -7.8931 

55 12 0.000 -0.000 -3.5698 0.000 0.000 -3.598 

60 13 -0.000 -0.0357 -4.7038 -0.000 -0.0357 -4.7038 

65 14 -0.000 -0.000 2.4587 -0.000 -0.000 2.4587 

70 15 -0.000 0.000 2.2740 -0.000 0.000 2.2740 

75 16 0.000 0.000 5.4442 0.000 0.000 5.4442 

80 17 0.0000 0.000 -7.4319 0.0000 0.000 -7.4319 

85 18 0.000 -7.4319 0.000 0.000 -7.4319 0.000 

90 19 -7.4319 0.000 0.000 -7.4319 0.000 0.000 

95 20 0.0000 0.0000 0.000 0.000 0.000 0.000 

100 21 0.000 0.000 0.000 0.000 0.000 0.000 

Table (3.34) 

The effectiveness of using neural network shown in the figures down and 

who the system in (3.9) will be stable  
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Figure (3.13) 

The output of the system (3.9) (( ) ( )100,0,1 ∈ttz ) with using neural network 
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Figure (3.14) 

The solution of the system (3.9) (( ) ( ) ( ) ( )100,0,,, 321 ∈ttztztz ) with using 

neural network 
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Figure (3.15) 

The output of the system (3.9) (( ) ( )100,0,1 ∈ttz ) and the error of the system 

with using neural network 

0 20 40 60 80 100

8.5

4.38

0.25

3.88

8

z2

e2

t

 

Figure (3.16) 

The solution of the system (3.9) (( ) ( )100,0,2 ∈ttz ) and the error of the 

system with using neural network 
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Figure (3.17) 

The solution of the system (3.9) (( ) ( )100,0,3 ∈ttz ) and the error of the system 

with using neural network 
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Figure (3.18) 

Architectural graph of two-layer of neural networks of 

application(3.2.2) 
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( )tw~

 

 
( )tw

 

( )02
~ˆ bxvwu NN

T += σ  

( ) ( ) ( )twtwtw ˆ~ −=  

( )tu2ˆ  

 Updating weights 

ijv

 
  
Inputs 

iw 

[ ]( )
[ ]( )

( ) ( )
( )

( )

( ) ( )

( )
( )















=

−=
−=⇒

=
≡=

≡






=

≡=
≡=

=≡
=≡

∑

∑

=

=

10

1
2

6

1

321321

0,100,10

~ˆ

ˆ~
ˆˆˆ

10,,1

,.,1,

,

.,6,1

.,10,1,1

,,,,,

,,

i
ikik

ki

j
jiji

ij

ddd

qwunetworkneuraltheofoutputthe

wwwweightserorrthe

wrkssqgwsolvingbyfoundwhichwweightsestimatedthe

i

layeroutputtheinneuronstheofnothekkwlayerhiddentheofweightsthe

layerfirsttheofoutputtheqzvq

layerinputtheinneuronsofnothejj

layerhiddentheinneuronsofnotheiivlayersttheinweightsthe

eeezzzzarenetworkneuralthetoinputthe

bbbbiasthe

where

σ

σ

&

K

K

K

K

 



 Chapter Three                                                                                          Applications                                      

 ١٥٥

 



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٤٣

 2 
  

Introduction 
 Today automatic control systems have become an integrated part of our 

life. They appear in every thing from simple electronic household products to 

air planes and spacecrafts. Automatic control systems can take highly 

different shapes but common to them all is their function to manipulate a 

system so that it behaves in a desired fashion. When designing a controller for 

a particular system, it is obvious that a vital intermediate step is to acquire 

some knowledge about how the system will respond when it is manipulated in 

various ways. Not until such knowledge is available, can one plan how the 

system should be controlled to exhibit a certain behavior.  

 Control of nonlinear systems is a major application area for neural 

networks. The control design problem will be approached in two ways: direct 

design methods and indirect design methods. "Direct design" mean that a 

neural network directly implements the controller. Therefore, a network must 

be trained as the controller according to some kind of relevant criterion. The 

indirect methods represent a more conventional approach, where the design is 

based on a neural network model of the system to be controlled. In this case 

the controller is not itself a neural network, [Zurada, 1996].  

2.1 Remarks and Comments 

 To control a system is to make it behave in a desired manner. How to 

express this "desired behavior" depends primarily on the task to be solved, but 

the dynamics of the system, the actuators, the measurement equipment, the 

available computational power, etc., influence the formulation of the desired 

behavior as well. Although the desired behavior obviously is very dependent 

of the application, the need to rephrase it in mathematical terms suited for 



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٤٤

practical design of control systems seriously limits the means of expression. 

At the higher level it is customary to distinguish two basic types of problems: 

 Regulation problems. The fundamental desired behavior is to keep the 

output of the system at a constant level regardless of the disturbances acting 

on the system (e.g., controlling the temperature in a room). 

 Servo problems. The fundamental desired behavior is to make the 

output follow a reference trajectory closely (e.g., controlling a robot), [Hertz, 

1991]. 

2.1.1 Why Using Neural Networks in Control System?  

 How are neural networks useful for control system design? It is 

practical to distinguish between the following categories of controllers: 

 1. Highly specialized controllers that are relevant when the system to 

be controlled is in some sense difficult to stabilize or when the performance is 

extremely important. 

 2. General purpose controllers where the same controller structure 

can be used on a wide class of practical systems. The controllers are 

characterize by being simple to tune so that a satisfactory performance can be 

achieved with a modest effort.  

 Basically, neural networks are relevant in both cases, but they probably 

have the biggest potential within general purpose control. It is believed that 

their ability to model a wide class of systems in many applications can reduce 

time spent on development and offer a better performance than can be 

obtained with conventional techniques like auto-tuned PID-controllers, 

[Zurada, 1996].                                                                                                                                                                                    

 

2.2 Remarks and Comments 

 1. The multilayer perceptron (MLP) network (which discussed in 

chapter one/section four) is straightforward to employ for discrete-time 
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modeling of dynamic systems for which there is a nonlinear relationship 

between the system's input and output: 

 

      Input, u(t)                                                             output, y(t)  

                                     

 

Figure (2.1) 

A dynamic system with one input u(t) and one output y(t) 

 

Let t  count the multiple of sampling periods so that ( )ty  specifies the present 

output while ( )1−ty  signifies the output observed at the previous sampling 

instant, etc, if it is assumed that the output of the dynamic system at discrete 

time instances can be described as a function of a number of past inputs and 

outputs 

 ( ) ( ) ( ) ( ) ( )[ ]mtutuntytySty −−−−= ,,1,,,1 KK                                   (2.1) 

an multilayer perceptron network can be used for approximating S if the 

inputs to the network [ ]1 2, ,p p K  are chosen as the n past outputs and the m 

past inputs:  

 ( ) ( )[ ] ( ) 0,0,1 ,1
,\ˆ

iWjwtlp
mn

l ljwjf
nh

j jWtpgty ++∑
+

=
∑
=

==











θθ             (2.2) 

Where ( ) 0,,,, iWtlpjfjW  are the weights matrix, the transfer function 

(activation function), the inputs and the bias of the  multilayer perceptron 

network respectively, and mnnh +, are the number of the neuron in the hidden  

layer, the number of neuron in the first layer of the multilayer perceptron 

network, respectively, [Hertz.,1991].  

 2. The history of universal approximation by neural networks started in 

fact in 1900. When Hilbert formulated a list of 23 challenging problems for 

       System, S    
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the century to come. The famous 13-th problem is the following conjecture 

[Funahashi, 1989].  

Conjecture [Hilbert,1900]. There are analytic functions of three 

variables which cannot be represented as a finite superposition of continuous 

functions of only two variables. 

 This conjecture was refused by Kolmogorov and Arnold in 1957, and 

they proved the following Theorem: 

 3. Theorem:  Any continuous function f (x1, …, xn) of several variables 

defined on the cube [0,1]n (n ≥ 2) can be represented in the form  

 ( ) ( )








∑
=

∑
+

=
=

n

i ixij
n

j jxf
1

12

1
ψχ                                                   

where χj, ψij are continuous functions of one variable and ψij are monotone  

functions which are not dependent on f  .  

This Theorem was refined by Sprecher as follows: 

 4. Theorem: For each integer n ≥ 2, there exists a real, monotone 

increasing function ψ(x), ψ([0,1]) = [0,1], depending on n and having the 

property: for each preassigned number δ > 0 there is a rational number ε, 0 < ε 

< δ, such that every real continuous function of n variables f (x), defined on 

[0,1]n , can be represented as 

 ( ) ( )( )∑
+

=
−+−+∑

=
=



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





12

1
11

1

n

j
jjix

n

i
ixf εψλχ  

where the function χ is real and continuous and λ is a constant independent of 

f  .  

 5. A link between the Sprecher Theorem and neural networks was first 

revealed by Hecht-Nielsen in 1987. He pointed out that the Sprecher Theorem 

means that:  Any continuous mapping [ ] ( ) ( )( ) mRxmfxfnxf ∈→∈ ,,11,0: K  is 

represented by a form of a two hidden layer neural network with hidden units 

whose output functions are ψ, χi (i= 1, …, m), where ψ is used for the first 



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٤٧

hidden layer, χi are used for the second hidden layer and is given by the 

Sprecher Theorem for f i(x). However the fact that the functions ψij are highly 

nonsmooth and the functions χi depend on the specific function f  and are not 

representable in a parameterized form, was part of the criticism made by 

Girosi & Poggio, who claimed that Kolmogorov's representation theorem is 

irrelevant for neural networks [Girosi, 1989]. In 1991 this was refuted by 

Kurkova, who proved that Kolmogorov's Theorem is indeed relevant: by 

using staircase-like functions of the form ( )icxibia +∑Ι σ  where ( )σ  is a 

sigmoidal function, for χi and ψi in the two hidden layer network it is indeed 

possible to approximate any continuous function arbitrarily well [Kurkova 

(1991), (1992)]. 

 6. On the other hand in 1991 it was also shown independently by 

Hornik, Funahashi, and Cybenko, that a multilayer feed forward neural 

network with one or more hidden layers is sufficient in order to approximate 

any continuous nonlinear function arbitrarily well on a compact interval, 

provided sufficient hidden neurons are available. In contrast to Kurkova, they 

make use of advanced theorem from functional analysis. We will focus here 

on the results presented in [Horink, 1989]. In order to understand the 

following Theorem some preliminary definitions have to be introduced. Let 

rC denote the set of continuous functions RrR → , ρ a metric to measure the 

distance between rrCgf Α∈ ,, the set of all affine functios from 

( ) ( )






 ∈+=Α→Α rRxbxTwxRrRxRtorR ;::: .  

so called ∑ networks and ∑П networks are then defined as 

( ) ( ) ( )














∑ = ∈∈∈=→=∑ q

j
rAjARj

rRxxjAGjxfRrRfGr
1 ,,;:: ββ

( ) ( ) ( )


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

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


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
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j jl
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1 1 ,,;:: ββ

where RRG →:  is a Borel measurable function. A function ψ: R→ [0,1] is a 
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squashing function if ψ is nondecreasing, ( ) 0lim =−∞→ λψλ  and 

( ) 1lim =∞→ λψλ  and has a conuntable number of discontinuities. Remarks 

that a ( )Gr∑ network reduces to a stnandard classical multilayer feed forward 

neural network with one hidden layer and activation function ψ  if 

( )( )networkrG ψψ ∑= .  

The following definitions are necessary to what follows: 

 2.2.1 Definition:  

A subset S of a metric space (X, ρ) is ρ- dense in a subset T if 

( ), , .t T s S such that t sρ ε∀ ∈ ∃ ∈ <  

 2.2.2 Definition:  
rCS ⊂  is uniformly dense on compact in Cr if for all compact subsets 

rRK ⊂  the subset S is ρκ -dense in Cr with ( ) ( ) ( )xgxfKxgf −∈= sup,ρκ . 

A sequence{ }nf  converges to f  uniformly on compact if for all  

( ) ∞→→⊂ nasfnf
rRK 0,: ρκ . 

 In our case T corresponds to Cr and S to ∑r(G) or ∑Пr(G). The 

following theorem then holds: 

 7. Theorem Let G be any continuous nonconstant function from R to R. 

Then  ∑Пr (G) is uniformly dense on compact in Cr. 

 Hence ∑П(G) feed forward networks are capable of arbitrarily accurate 

approximation to any real-valued continuous function over a compact set and 

G may be any continuous nonconstant function here. 

 Now let µ be a probability measure defined on ( )rBrR ,  with rRr ⊂Β   

a  Borel σ-field and Mr the set of all Borel measurable functions from RtorR . 

Functions rMgf ∈, are called µ-equivalent if 

( ) ( ){ }: 1rx R f x g xµ ∈ = = . Then the metric : r rM M Rρµ
+∗ → is 

defined by ( ) ( ) ( ){ }{ }, inf 0 : :f g x f x g xρ ε µ ε εµ = > − > < . Hence f  
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and g  are close in the metric ρµ if and only if there is only a small probability 

that they differ significantly and f and g are µ-equivalent if ( ) 0, =gfµρ  

[Hornik, 1989].  

The following Theorem then holds 

 8. Theorem For every squashing function ψ and every probability 

measure µ on ( ) ( )ψ∑ rrBrR ,,  is uniformly dense on compact  in rC and ρµ-

dense in rM  [Hornik, 1989]. 

2.2.1 Remarks 

 1.The above theorem means that regardless of the dimension r of the 

input space and for any squashing function ψ, a feed forward neural network 

with one hidden layer can approximate any continuous function arbitrarily 

well in the ρµ metric. In the proof of Hornik's Theorems a central role is 

played by the Stone-Weierstrass theorem. 

 2. In addition to the previous Theorems, more refined Theorems were 

formulated by [Hornik, 1991]. More recently [Leshno, 1993] showed that a 

standard multilayer feed forward network with a locally bounded piecewise 

continuous activation function can approximate any continuous function to 

any degree of accuracy if and only if the network's activation function is not a 

polynomial. 

 3. The previous Theorems are existence theorems and are not 

constructive in the sense that no learning algorithms are presented and they 

give no or little information about the number of hidden unites to be used for 

the approximation. Furthermore, no comparision is made between neural 

networks and other universal approximators such as polynomial expansions in 

terms of network complexity.  

4. The latter problem is addressed by [Barron, 1993]. It has been shown 

that the parsimony of a neural network parameterization is surprisingly 

advantageous in high-dimensional settings. Feed forward networks with one 
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hidden layer of sigmoidal activation function achieve an integrated squared 

error of order O (1/n), independent of the dimension of the input space, where 

n denotes the number of hidden neurons. The underlying function to be 

approximated is assumed to have a bound on the first moment of the 

magnitude distribution of the Fourier transform (smoothness property). On the 

other hand for a series expansion with n terms, in which only the parameters 

of a linear combination are adjusted (such as traditional polynomial, spline 

and trigonometric expansions), the integrated square error cannot be made 

smaller than O(1/n2/d) where d is the dimension of the input, for functions 

satisfying the same smoothness assumption. In order to formulate Barron's 

theorem, let ( )xf  denote the class of functions on dR  for which there is a 

Fourier representation of the form  

( ) ( ) ( ) .
~

exp dwwfiwxxf
dR∫=  

for some complex-valued function ( )wf
~

 for which ( )wfw
~

 is integrable, and 

define 

 ( ) .
~

dwwfwC
dRf ∫=  

 Let ( )
01 cn

k k
bx

k
a

k
cnf +∑ = += ψ  with RkckbdRka ∈∈ ,,  denote a 

linear combination of sigmoidal functions with squashing function ψ. 

Furthermore let µ denote a probability measure on the ball 

{ }rxxrB ≤= : with radius r > 0. then the following theorem could be proved. 

5. Theorem: For every function f with Cf  finite, and every 1≥n , there 

exists a linear combination of sigmoidal functions fn (x), such that  

( ) ( )( ) ( )
n

k
dxxfxf f

B n
r

≤−∫ µ2
 

where 
2

2 





=

f
Cr

f
k . Hence the effects of the curse of dimensionality are 

avoided in terms of the accuracy of approximation [Barron, 1993]. 
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 6. Stability plays a very important role in control theory. It is a 

necessary condition for feasibility of the control system that the closed-loop 

system, consisting of a controller and the system to be controlled, is stable. 

Additionally, the controller must of course be designed in such a way that the 

behavior of the closed-loop system satisfies various requirements, e.g., with 

respect to speed and damping. 

  Sometimes stability of the solution is not an important issue, what is 

important to get a bounded output if the input is bounded. Examples of norms 

used in these cases are  

 ( ) ( )txtx sup=∞l                                                                        (2.3) 

 ( ) ( ) ( ) 2
1

02








∑
∞

=
=

t
txtTxtx

l
                                                         (2.4) 
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                                                         (2.5) 

2.3 Feedback Linearization  

 In the area of nonlinear control theory, feedback linearization is a 

principle which has drawn much attention. The application is restricted to 

certain classes of systems, but these are actually not uncommon in practice. 

The advantage of feedback linearization is that the design can be used 

generally, in the sense that the same principle can be used on all systems of 

the right type. Moreover, extensions have been developed to take into account 

possible model inaccuracies, design and associated stability analysis is based 

on quite well established theory. See for example [Slotine, 1991], [Isidori, 

1995], [Khalil, 1996] and [Chen, 1991]. 
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2.3.1 The Basic Principle of Feedback Linearization 

Feedback linearization is commonly discussed in a continuous-time 

framework. The fundamental assumption made about the system is that the 

model of the considered system can be written in the canonical form 

( )
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with f
~

and g~being nonlinear functions of the states. t is now the actual time 

and not a multiple of the sampling period. If this form is not obtained directly 

when modeling the system, it must be possible to derive it through an 

appropriate diffeomorphic transformation [Slotine, 1991]. 

The system can be linearized by introducing of the following control 

redefinition (it is assumed that ( )[ ] 0~ ≠txg ), [Khalil, 1991]. 

 ( ) ( ) ( )[ ]
( )[ ]txg

txftw
tu ~

~−=                                                                           (2.7) 

If complete knowledge about the states is available; either from measurements 

or from an observer, a pole placement type design is easily accomplished. 

Selecting the virtual control input, w, as the reference plus a linear 

combination of the states results in a closed-loop system specified by 
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 ( ) [ ] ( ),001 txty L=  

corresponding to the transfer function model 

 ( )
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1
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1
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The coefficients { } 1
0

−
=

n
iia  will specify the characteristic polynomial; i.e., the 

poles of the linear time invariant closed-loop system. The connection to pole 

placement control is thus obvious. 

 Discretization of nonlinear systems is a quite involved action unless it 

is done by crude approximations. Here a somewhat pragmatic approach will 

be taken, similar to the one suggested in Chen and Khalil (1991). It is 

assumed that the system can be modeled as 

 

( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ( )1,,2,,,1

,,2,,,1

−−−−−+

−−−−=

tumtutuntytyg

mtutuntytyfty

KK

KK

             (2.10) 

or equivalently 
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with the state vector being defined by 

 ( ) ( ) ( ) ( )[ ]Ttytyntytx ,1,,1 −+−= K                                                   (2.12)  

Assuming the functions f  and g  are known. Introduction of the following 

control redefinition will linearize the system at the sampling instants: 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]1,,1,1,,

1,,1,1,,
+−−+−

+−−+−−=
mtutuntytyg

mtutuntytyftw
tu

KK

KK
                   (2.13)  

Selecting the virtual control input,w , as the reference plus an appropriate 

linear combination of past outputs again allows for an arbitrary assignment of 

the closed-loop poles. The control design can be regarded as a nonlinear 

counterpart to pole placement with full zero cancellation. 
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2.3.2 Feedback Linearization Using Neural Network Models 

 In case that the system is unknown, a model can be induced from data 

by letting two separate neural networks approximate the functions f and g  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )1,,,2,,,1ˆ
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 (2.14) 

 

 Derivation of a training method for determination of the weights in the 

two networks used for approximating f  and g is straightforward. The 

prediction error approach requires knowledge of the derivative of the model 

output with respect to the weights. In order to calculate this derivative, the 

derivative of each network output with respect to the weights in the respective 

network must be determined first  

 ( )
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The derivative of the model output with respect to the weights is then 

composed of the derivatives of each network in the following manner 
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With this derivative in hand, any training methods can be used without further 

modification [Chen, 1991]. 

2.3.1 Remarks 

 The controller is related to the model-reference controller discussed 

previously: a nonlinear controller is designed to make the closed-loop system 

behave linearly according to a specified transfer function model.  

  Advantages and disadvantages of the neural-network-based feedback 

linearization method are briefly listed below.  
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Advantages: 

1. Implementation is simple. 

2. Only a model of the system to be controlled is required. 

3. Tuning of the closed-loop response can be made without retraining 

of the model. An outer feedback can be introduced containing a 

linear pole placement controller. 

Disadvantages: 

1. Restricted to a particular class of systems. Difficult to resolve 

whether an unknown system actually belongs to this class. 

2. Model structure selection is very complicated because two neural 

network architectures must be chosen. 

3. Lack of design parameters for tuning of the controller.  

2.3.3 Feedback control action 

 1. The main reason for using feedback control is to stabilize unstable 

systems and to reduce the influence from possible disturbances and model 

inaccuracies. 

 2. Using feedback to ensure that the system rapidly follows changes in 

the reference is not always good practice.  

 3. A rapid reference tracking obtained with feedback generally has the 

side effect that the controller becomes highly sensitive to noise. 

 

 Feedback linearization was proposed as a method for designing pole 

placement type controllers for a particular class of nonlinear systems. The 

neural network used for modeling the system have a specific structure in order 

to implement the controller. But we use another method (Coordinate 

Transformation) to translate the systems  in the main theorems (Theorem 

2.7.1, Theorem 2.7.2) of this chapter,  which we will be discuss it below, but 

first we will show some remarks that we need it later. 
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2.4 Controllability of Dynamical System 

 System analysis generally consists of two part; quantitative and 

qualitative. 

 In quantitative study, we are interested in the exact response of the 

system to certain input and initial conditions. The quantitative study is 

concerned with the general properties of a system. In  qualitative properties of 

linear dynamical equations is introduced here: controllability, which is very 

important in the study of control.  

2.4.1 Definition (Controllable system):  

 A system is said to be controllable at time t0 if it is possible by means of 

an unconstrained control vector to transfer the system from any initial state 

( )0tx  to any other state in a finite time interval, [Jayc, 1968]. 

2.4.2 Definition (controllability): 

 A system ( )tuxfx ,,=&  is completely controllable if any initial state 

( )0tx  can be transferred to any final state ( )1tx  by means of some control ( )tu  

over a finite interval 10 ttt ≤≤  [Kolman, 1984]. 

2.4.1 Theorem 

 Consider the linear time-invariant system: 

 ( ) ( )tutxx Β+Α=&                                                                          (2.17) 

Where nRx∈ is the state vector, mRu ∈ is the control, nxmnxn RandR ∈Β∈Α  

are constant matrices. 

 The necessary and sufficient condition for the complete controllability 

of the system (2.17) is the nmn × matrix  ( )




 Β−ΑΑΒΒ≡ΒΑ 1,,,, nKρ  has 

rank n, [Chen, 1984]. 
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2.4.2 Theorem  

 A continuous time system described by (2.17) is completely state 

controllable if and only if the composite nmn ×  matrix 

( )




 Β−ΑΑΒΒ≡ΒΑ 1,,,, nKρ  is of rank n [Ogata, 1996]. 

2.4.3 Definition:  

 Let Α  be an nn ×  matrix and Β  be an mn ×  matrix, then we say that 

the pair ( )ΒΑ,  is completely state controllable if the system: 

 ( ) ( )tutxx Β+Α=&  

Is completely state controllable, [Ogata, 1967]. 

 

2.5  Lyapunov Stability:  

 We present here the Lyapunov methods of stability analysis ( the first 

method and the second method) which are applicable to both linear and 

nonlinear system. Our attention will be devoted to the second of Lyapunov 

method, which provides stability information on linear and non-linear 

differential equations without solving them, hence the second method is called 

the direct method of Lyapunov, the direct method is most useful for 

investigating stability of non-linear systems. It gives sufficient conditions for 

asymptotic stability of equlilibrium states of non-linear systems and gives 

necessary and sufficient conditions for asymptotic stability of equilibrium 

states of time-invariant systems, [Jayc, 1968]. 

2.5.1 Definition (Equilibrium States):  

Consider the dynamical system ( )txfx ,=& , a state ex , where 

( ) ttxf e ∀= ,0,  is called an equilibrium state of the system, [Ogata, 1967]. 
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2.5.2 Definition (Lyapunov Stability):  

 An equilibrium state ex  of the dynamical system ( )txfx ,=&  is stable (or 

stable in the sense of Lyapunov) if for every 0>ε , there exists ( )( )0,0 tεδδ >  

such that  

 ( ) 000 ,; ttallforxxtximpliesxx ee ≥≤−≤− εδ                          (2.18) 

Where ⋅  denotes the Euclidean norm of a vector, [Jayc, 1968]. 

2.5.3 Definition (Asymptotic Stability):  

 An equilibrium state ex  of the system  ( )txfx ,=&  is asymptotically 

stable if: 

1. It is stable in the sense of Lyapunov. 

2. For all 0t , there exists a ( ) 00 >tρ  (possibly depending on 0t ) such that  

 ( ) ∞→→−<− tasxxtxthatimpliesxx ee 0, 00 ρ                   (2.19) 

[Jayc, 1968]. 

2.5.4 Definition (Asymptotic Stability in the Large):  

 The nominal solution ( )tx0  of the system ( ) ( )( )ttxftx ,=&  is 

asymptotically stable in the large if : 

1. It is stable in the sense of Lyapunov. 

2. For any ( )tx0  and any ( ) ( ) ∞→→− tastxtxt 0, 00 . 

 A solution that is asymptotically stable in the large has the property that 

all other solutions eventually approach it, [Jayc, 1968]. 

2.5.1 Theorem (Stability of Time Invariant System):  

 The time-invariant linear system: 

 ( ) ( )txtx Α=&  

is stable in the sense of Lyapunov if and only if : 

a. All of the characteristic values of Α  has non-positive real parts, and,  

b. To any characteristic value on the imaginary axis with multiplicity m, there 

correspond exactly m characteristic vectors of the matrix Α , [Huibert, 1972]. 
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2.5.2 Theorem:   

 The time-invariant system: 

 ( ) ( )txtx Α=&  

Is asymptotically stable if and only if all of the characteristic values 

(eigenvalues) of Α  have strictly negative real part [Huibert, 1972]. 

2.5.3 The Direct Method of Lyapunov: 

 The second method of Lyapunov attempts to give information on the 

stability of equilibrium state of linear and non-linear systems without any 

prior knowledge of their solutions. 

 The essence of the second method of Lyapunov is given in the 

following theorem: 

2.5.3.1 Theorem (Lyapunov Main Stability Theorem):   

 Consider the system: 

 ( ) ( )( )ttxftx ,=&  

and suppose that ( ) ttf ∀= ,0,0 . 

 Suppose also, that there exists a scalar function ( )txV ,  which has 

continuous first partial derivatives. If ( )txV ,  satisfies the following 

conditions: 

1. ( )txV ,  is positive definite , namely ( )tV ,0 , and 

( ) ( ) αα wheretallandxallforxtxV ,,0,0, ≠≥≥  is a continuous, non-

decreasing scalar function, such that ( ) 00 =α . 

2. The total derivative V&  is negative for all 0≠x , and all t or 

( ) γγ wheretallandxallforxtxV ,0,0, ≠<−≤& is a continuous, non-

decreasing scalar function such that ( ) 00 =γ . 

3. There exists a continuous non-decreasing function such that 

( ) ( ) xtxVtallfor ββ ≤= ,,00 . 

4. ( )xα  approaches infinity as x  increases indefinitely, or  
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 ( ) ∞→∞→ xasxα  

Then, the origin of the system 0=x  is uniformly asymptotically stable in the 

large, [Ogata, 1996]. 

2.5.3.2 Theorem:  

 If there exists a scalar function ( )txV ,  with contiuous first partial 

derivatives satisfying the following conditions: 

(1) 
( )
( ) tallfortV

tallandinxallfortxV

,0,0

0,0,

=
Ω≠>

                                             (2.20) 

(2)  
( )
( ) ttV

tallandinxallfortxV

∀=
Ω≠<

,0,0

0,0,
&

&

                                             (2.21) 

where Ω  is the region (can be the entire state space), which includes the 

origin. Then, the origin of the system ( ) ( )( )ttxftx ,=&  is uniformly 

asymptotically stable, [Ogata, 1967]. 

2.6 Mathematical Preliminaries 

2.6.1 Definition: 

 A norm is a function which assign to every vector x in a given vector 

space a real number denoted by x , such that: 

1. 000 ==≥ xifonlyandifxandx                                                   (2.22) 

2. Rxx ∈= ααα , is a scalar and α  is the absolute value of α         (2.23) 

3. 212121 ,, xxxxxx ∀+≤+                                                                 (2.24) 

4. 2121, xxxx ≤                                                                                (2.25) 

 The Euclidean norm of a vector nx R∈ is defined as: 
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  Where ija  is the absolute value of ija  

 The Euclidean norm of nn ×  matrix is also defined as: 

 ( )( ) 21

max ΑΑ=Α Tλ                                                                        (2.26b) 

 Where TΑ  is stands for the transpose of Α , maxλ  is standing for the 

maximum eigenvalue of ( )TΑΑ , [Chen, 1984]. 

2.6.2 Preliminary Remarks and Definitions: 

 Let R  denote real number, nR  denote the real n vector, and m nR ×  

denote the real nm ×  matrices. Let S  be a compact simple connected set of 
nR . With map : mf S R→ , define ( )SC  as the space such that f  is 

continuous. The initial condition is ( )00 txx ≡ , let the equilibrium point 

exe Uandx ,  be the neighborhood of ex . 

1. Definition (Vector and Matrix Norms):  

 By  is denoted any suitable vector norm. when it is required to be 

specific, we denote the p -norm by 
p
. The supremum norm of norm of 

( )xf , over S , is defined as  

 ( ) , : ,m

x S

sup f x f S R x X
∈

→ ∈                                                     (2.27) 

Given [ ] nm

ija ×ℜ∈Β=Α ,  the Frobenius norm is defined by 

 ( ) ∑=ΑΑ=Α
ji

ij

T

F
atr

,

22
                                                                 (2.28) 

The Frobenius norm is compatible with the 2-norm so that 

22
xx

F
Α≤Α .  

The associated inner product is ( ), ,T

F
trΑ Β = Α Β . Suppose Α  is positive 

definite, then for any m nR ×Β∈   

 ( ) 0≥ΒΑΒ Ttr ,                                                                             (2.29) 

 ( )[ ] 2~~~~
FFF

Ttr Α−ΑΑ≤Α−ΑΑ                                                     (2.30) 
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and 

 ( )( ){ } ( )







 Α=Α
dt

xd
trxtr

dt

d
                                                              (2.31) 

[Lewis,1993]. 

 

2. Definition(Uniformly Ultimate Boundness )(UUB)): 

 Consider the non-linear system 

 ( )txgx ,=&                                                                                      (2.32) 

With state ( ) ntx ℜ∈ . The equilibrium point ex  is said to be uniformly 

ultimately bounded if there exists a compact set nS ℜ⊂ , so that for all Sx ∈0  

there exists an ,0>ε  and a number ( )0,xT ε  such that 

( ) Tttallforxtx e +≥≤− 0ε . That is, after a transition period T, the state 

( )tx  remains within the ball of radius ε  around ex  [Lewis, 1999]. 

2.6.2.1 Remark  

 Leangs Shich and Yates et al in 1983. proposed a method to transform 

system into block companion form as follows: 

 Consider the linear time-invariant system: 

 uxx Β+Α=&                                                                                  (2.33)                                                 

where nxmRnxnRmRunRx ∈Β∈Α∈∈ ,,, . 

 If the rank of the block controllability test matrix 

( )




 Β−ΑΑΒΒ≡ΒΑ 1,,,, nKρ  is n, then the system (2.33) is completely block 

controllable companion form: 

 uccxccx Β+Α=&   

where 
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Where nii K,1, =Α−  are constant values. 

 [ ]TmmmmcTc ΙΟΟΟ=Β=Β ,,,, K  

 xcTcx =  

The similarity transformation matrix cT  is given by [Leangs, 1983]: 

 
Tn

cTcTcTcTcT




 −ΑΑΑ= 1

1
2

111 K  

where 

 ( )ΒΑ−Β= ,1
1 ρT

ccT   

2.6.2.2 Remark (Coordinate Transformation)  

 It is recalled that the state model for a system is not unique, but depends 

on the choice of a set of state variables. To simplify analysis and design for a 

system (2.33) can be written as: 

 ( ) ( ) ( )tutxtx Β+Α=&                                                                         

it is often beneficial to define a new state variable z by a coordinate 

transformation: 

 Tzx =                                                                                           (2.34) 

where T is a non-singular matrix. 

The state model corresponding to these new state variable is found by 

substituting (2.34) into (2.33). 

 ( ) ( ) utzTtzT Β+Α=&  

 ( ) ( ) utztz Β+Α=&                                                                       (2.35) 

where ΒTΒΑT,TΑ
11 −=−=  



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٦٤

 The definition of a new set of internal state variables should evidently 

not affect the eigenvalues or input-output behavior, this may verified by 

evaluating the characteristic equation of the transformed system [John, 1990]: 

 

 
( )

Α−Ι=−Α−Ι=

Α−Ι−=Α−Ι−=Α−−Ι=Α−Ι

sTTs

TsTTsTTTss

1

111

 

2.6.2.1 Example:  

 Choosing the nn × invertable transformation matrix T such that 










Ι
=Β

m

T
0

, mΙ  is a unit matrix of dimension m, can be proposed by ([Leangs, 

1986] [Huibert, 1972] [Ian, 1986]). 

It can be chosen such that [ ] LwhereLT ,:1 Β=−  is selected such that the 

inverse exists.  

To show this consider the linear system 

uxx Β+Α=&                                                                                 (2.36)        
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                       (2.37) 

where n=3, m=1, such that  

  [ ]Txxxx 321=  

0.428 0.339 0 0.15

2.939 1.011 0 , 1.011

0 1 0 1

− −   
   Α = − − Β = −   
      

 

suppose 

 xTz =  

where [ ]Tzzzz 321=  
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such that we have a new system 

 ( )tuTzTTz Β+−Α= 1
&        

Choose an  nn ×  invertable matrix T such that 








Ι
=Β

m

T
0

        

The choice can be such that   [ ] LwhereLT ,:1 Β=−  is selected such that the 

inverse exists. T is found to be: 

            



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











−−

−−−
=

03406.13688.2

04067.07414.2

1447.14707.01728.3

T  

and 

















−−
−−=−

1011.18736.1

011.18735.00

15.04944.0000.0
1T   

hence we get  

















=Β
















−
=−Α

1

0

0

,

4390.15636.00

100

010
1 TTT  

Finally, the new system will be as follows 

 

1

)(3439.125636.03

32

21

zy

tuzzz

zz

zz

=

+−=

=

=

&

&

&

                                                    (2.38) 

 So far, we have discussed some necessary requirements that are needed 

in what follows, and hence we are in position to present and develop the main 

results of this work. The representation of the main theorem are discussed as 

follows: 
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2.7 Main Problem 

2.7.1 Theorem 

 Consider the non-linear system 

 ( ) ( )x x g x u f x= Α + Β + Β&                                                         (2.39) 

where nRx∈ , and the smooth functions mRgmRf ∈∈ , , mRu ∈  is the 

control, nxmRnxnR ∈Β∈Α ,  are constant matrices. Assuming that  

1.  The pair ( )ΒΑ,  is controllable matrix. 

2. The function ( ) ( ) ( ) ( )( )x
m

gxgxgxg ,,
2

,
1

K=  is known such that 

( ) xxg ∀≠ ,0 , and ( ) ε>xg  where +∈ Rε and ( ) 0, , 1, ,ig x x i m≠ ∀ = K .                                                     

3. Let the desired state be defined by ( )












 






 −
=

1n
dydydytdy L& , such 

that ( ) Qtdy ≤ , for some scalar Q . 

4. The uncertain nonlinear function ( )xf  may be estimated by ( )xf̂  such that  

( ) ( ) ( ) ( )xmfxfxfxf ≤≡− ~ˆ  for some bounds function ( )xmf . 

5. Let the filtered tracking error can be defined as  

 eTKr =                                                                                       (2.40)   

Where ( ) ( ) ( )tytxte d−=  be the tracking error of the system in (2.39), and                                                                           

[ ]1,1,,2,1 −= nkkkK K  is approximate chosen coefficient vector. 

6. Set the nonlinear neuro-controller by 

 ( ) 21 uutu +=                                                                                  (2.41)       

Where 

 ( )( ) ( )( ) ( )( )txutxWtxu 21 ˆ−=                                                               (2.42)  

Where ( )tW  is chosen as the control law of the system (2.39), and 2u is the 
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nonlinear control function which we will approximate by the general neural 

network property. 

7. Let the following structure of artificial neural network have been adapter 

where 

- Consider two-layer neural network, consisting of two layers of tunable 

weights. The hidden layer has L  neurons, and the output layer has m neurons. 

- The first layer neural network have the input which is chosed as 

[ ]TedyNNx ,= , [ ] Linjvv ji ,,2,1;,,2,1, KK ===  as the weights of the 

first layer neural network which we will chose it randomly, and 

[ ]T

Lbbbb 002010 ,,, K= as the bias of the first layer neural network which we will 

chose it randomly too. 

- Choose ( ).σ  as any continuous sigmiodal function which be the activation 

function of the network in the first layer and in the hidden layer (second 

layer). 

- the output of the first layer will be defined as following 

 ( ) Libxvq NN

T

i ,,2,10 K=+= σ                                                    (2.43) 

- the input to the hidden layer (second layer) of the neural network will be the 

output of the first layer (iq ). 

- w  is neural network adjusted weight (hidden layer neural network weights), 

and it is assumed that they are bounded so that mww ≤ , with mw  known 

bounds. And ŵ  are the estimated neural network weights which be provided 

by the neural network tuning algorithm as  

 ( ) wrKsgrNNxTvsw ˆˆ −Β= σ&                                                  (2.44) 

where 0>= Tss , any constant matrices representing the learning rates of the 

neural network. 

K , small scalar positive design parameter. 

Hence, the neural network weights approximation error is  
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 www ˆ~ −=                                                                                       (2.45)   

- Neural network universal approximation property defines that any 

continuous function can be approximated arbitrarily well using a linear 

combination of sigmoidal functions, such that the output of the neural network 

( )xu2  can be defined as 

 ( ) ( ) ( )xbNNxTvTwxu εσ ++=
02                                                  (2.46)  

Where the ( )xε  is the neural network approximation error.            

Implementer neural network 2û , is actually an approximation of the ideal 

neural network (2.49) and is given by 

 ( )
0

ˆ
2

ˆ bNNxTvTwu += σ                                                                (2.47) 

If the following conditions are satisfied   

  
min

2
4

vk

nmwK

r
ε+

≥                                                                     (2.48) 

or 

 

2
1

2
12

4~


















++

≥
K

mwnmwK

Fw
ε

                                            (2.49) 

Then the filtered error ( )tr  and the neural network weights ŵ  are (Uniformly 

Ultimate Boundness). 

Proof: 

Let  

 xTz =  

where nRz ∈ , and T is any suitable invertible matrix (The choice can be such 

that   [ ] LwhereLT ,:1 Β=−  is selected such that the inverse exists). 

. 
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( )

fTugTzTT

fugzTT

fugxTxTz

Β+Β+−Α=

Β+Β+−Α=

Β+Β+Α==










1

1

&&

                                               (2.50) 

Since ( )ΒΑ,  is controllable by theorem (2.4.1), we have  

 




















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

=−Α
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M

 

Where nααα ,,, 21 K  are sutable constant. 

Hence 
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
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−

⇒
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+




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
















+























−




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






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







=
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
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



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







−

⇒
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n
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n
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Let  ( ) nznzzmfzF ααα ++++= K2211                                                (2.51) 
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( ) ( )


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
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

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


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


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
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

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








−

⇒
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and hence, we have the following system 

 

( ) ( )

1

32

21

zy

zFtumgnz

zz

zz

=
+=

=

=

&

M

&

&

                                                               (2.52) 

with [ ]Tnxnzzzz 1,,2,1 K=   , ,: RnRF →  an unknown smooth function; 

RnRmg →:  , a known smooth function; ( )tu  the control. 

Define the state tracking error ( )tze  as 

 dyzze −=                                                                                    (2.53) 

where ( )tyd  is the desired state vector which we can defined as  

( )












 






 −
=

1n
dydydytdy L&    

hence 
d

yxT
d

yzze −≡−=⇒  

Differentiation yields    

 
d

yxTze −= &&                                                                                    (2.54) 

Using equation (2.39)  we get  

( )
( )( )

d
yfTugT

d
yTxeT

d
yfug

d
yxeT

d
yfugxTze

&

&

&&

−Β+Β+Α−Α≡

−Β+Β+−Α≡

−Β+Β+Α=

 

where 
d

yxxe −=  as we defined it above, and since  
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And if we suppose that  

 ( )21
1 uu

mg
u +=                                                                       (2.55) 

Where by condition (2) above ( ) xxg i ∀≠ ,0 .  

The system (2.53) and the action (2.55) leads to the following 

 
1 2

e T e T y u u T f yz x d d
 = Α + + + + Β −
 

& &                               (2.56) 

and, from equation (2.42) we choose that  

 xeKTxeKTdydyTfTW Β−Β++−Β−= &                                 (2.57) 

Such that equation (2.56) can be modified as 

( ) xeKTze Β+Α=&                                                                        (2.58) 

Since ( )ΒΑ,  is a controllable pair by condition (1). To make the convergent 

faster define the filtered tracking error of the system (2.52) and by equation 

(2.40) we have the following  

 zeTKzr =                                                                                    (2.59) 

where  , , , ,1
1 2 1

K k k k
n

 =
 −K  is approximate chosen  (filter coefficients 

vector), so that .00 →→ rase Then the time derivative of the filtered error 

can be written as 

 ( ) ( ) dYzFtumgr ++=&                                                                   (2.60) 

where ( )
1

1

1 +
−

=
+−= ∑

i
e

n

i i
kn

d
y

d
Y  , and ( )zF  is defined in equation (2.51) 

 Similarly in terms of the filtered tracking error, the above  system 

dynamics (by using equation (2.41)), can be described as follows  
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 ( )1 2
r g u u F z Ym d

 = + + +
 

&                                                      (2.61) 

Using condition (4) above and equation (2.60), the tracking control law W  

which be chosen in equation (2.57) can be written as 

 ( )[ ]α+−−−= rvk
d

YzF
mg

W ˆ1
                                                      (2.62) 

where F̂  is the fixed approximation of the functional F , vk  is the feedback 

gain, and assuming that α  be the robust term chosen for the disturbance 

rejection which can be defined as 

( ) ( ) ( )rsignzft m−=α                                                                       (2.63) 

where 

 ( )




≤
>

=
00

01

r

r
rsign                                                                        (2.64) 

( )•sign  is the standard sign function. Using control law in equations (2.62), 

(2.42), (2.45), and substituting into equation (2.61) we get  

 ( ) ( ){ } εασ +−++Β+= rkbxvwgTzFr vNN

TT

0
~~

&                            (2.65) 

Setting that Lyapunov function candidate as 

( )wsTwtrrV &~1~
2

12
2

1 −+=                                                               (2.66) 

where r  is the filtered tracking error and w~ is the neural network 

approximation error which is defined in equation (2.45), such that  

 www &&& ˆ~ −=                                                                                     (2.67) 

Where w&  is the neural network ideal weights, and w&~ is the estimated neural 

network weights which provided by the neural network tuning algorithm as 

defined in equation (2.44), where 

 ( )( ) ( )( )/ /
V dr V dw

V V r t t V w t t
r dt w dt

∂ ∂= ∂ ∂ + ∂ ∂ = ⋅ + ⋅
∂ ∂

%
& %

%
 

( )wsTwtrrrV &&& ~1~ −+=⇒                                                                       (2.68) 
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Hence substitution equation (2.65) into equation (2.68) yields 

( ) ( )
{ } ( ){ }( )gTrNNxTvwsTwtrFrrvk

wswtrrrNNxTvTwgrTFrrvkV

Β+−++++−=

−+++Β++−=

σεα

εασ

&

&&

~1~~2

~1~~~2

   (2.69) 

Applying the neural network tuning rules (equation (2.44)), then the 

derivative of Lyapunov function is simplified to  

 { } ( )wTwtrrKFrrvkV ˆ~~2 ++++−= εα&                                        (2.70) 

Using equation (2.63) one has the following 

 ( )( ) nrFrmfrwwTwtrrKr
v

kV ε++−−+−≤ ~~~2
min

&          (2.71) 

Using the inequality  

 ( ) 2~~~~
FxFxFxxxTxtr −≤−





                                                      (2.72) 

Using the inequality (2.72), such that the inequality (2.71) can be written as 

 nrFwFwFwrKr
v

kV ε+





 −+−≤ 2~~2

min
&                       (2.73) 

(From using mwFw ≤ ), and from inequality (2.73)we have that 

 













++






 −−−=







 +






 −+−≤

nmKwmwFwKr
v

kr

nFwmwFwKr
v

krV

ε

ε

2
4

1
2

2

1~
min

2~~
min

&

               (2.74) 

which is guaranteed to remain negative as long as (conditions (2.48) (2.49) 

above satisfied as following  

 
min

2
4

vk

nmwK

r
ε+

≥                                                                             

Or 



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٧٤

 

2
1

2
12

4~


















++

≥
K

mwnmwK

Fw
ε

                                                 

Such that, since ( ) ( ) ( )0 0, 0 0V V r and V r= ≥ <& , which means that the 

stable of the system for tracking filter is guarantied and if  0,r as t→ → ∞ . 

Therefore 0,z as t→ → ∞  and hence ∞→→ tasx ,0  so that the stability of 

the system (2.39), with using neural network controller is proven. 

 

The advanced vision of system (2.39) is know proposed. The more 

related theorem based on theorem (2.7.1), is discussed, the root of this 

theorem also been submitted, the following requirement and representation 

are shown as below, the generalizing of vector valued function 
mm RgRf ∈∈ ,  into mmnm RgandRf ×× ∈∈  respectively, are of the main 

developed in this following theorem. 

2.7.2 Theorem 

 Consider the nonlinear system 

 ( ) ( ) ( )tuxgxxfxx Β+Β+Α=&                                                       (2.75) 

where nRx∈ , and the smooth functions mmRgnmRf ×∈×∈ , , mRu ∈  is 

the control, nxmRnxnR ∈Β∈Α ,  are constant matrices. Assuming that  

1.  The pair ( )ΒΑ,  is controllable matrix. 

2. The Function ( ) mmRxg ×∈  is known such that ( ) xxg ∀≠ ,0 , and 

( ) ε>xg  where +∈ Rε and ( ) mjmixg ij ,,1;,,1,0 KK =∀=∀≠ .                                                   

3. Let the desired state be defined by ( )












 






 −
=

1n
dydydytdy L& , such 

that ( ) Qtdy ≤ , for some scalar Q . 
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4. The uncertain nonlinear function ( )xf  may be estimated by ( )xf̂  such that  

( ) ( ) ( ) ( )xmfxfxfxf ≤≡− ~ˆ  for some bounds function ( )xmf . 

5. Let the filtered tracking error can be defined as  

 eTKr =                                                                                       (2.76)   

Where ( ) ( ) ( )tytxte d−=  be the tracking error of the system in (2.75), and                                                                           

[ ]1,1,,2,1 −= nkkkK K  is approximate chosen coefficient vector. 

6. Set the nonlinear neuro-controller by 

 ( ) 21 uutu +=                                                                                  (2.77)       

Where 

 ( )( ) ( )( ) ( )( )txutxWtxu 21 ˆ−=                                                               (2.78)  

Where ( )tW  be chosen as the control law of the system (2.78). And 2u be the 

nonlinear control function which we will approximate by the general neural 

network property. 

7. let the following structure of artificial neural network have been adapter 

where 

- Consider two-layer neural network, consisting of two layers of tunable 

weights. The hidden layer has L  neurons, and the output layer has m neurons. 

- The first layer neural network have the input which be chosen as 

[ ]TedyNNx ,= , [ ] Linjvv ji ,,2,1;,,2,1, KK ===  as the weights of the 

first layer neural network which we will chose it randomly, and 

[ ]T

Lbbbb 002010 ,,, K= as the bias of the first layer neural network which we will 

chose it randomly too. 

- Choose ( ).σ  as any continuous sigmiodal function which be the activation 

function of the network in the first layer and in the hidden layer (second 

layer). 

- the output of the first layer will be defined as following 
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 ( ) Libxvq NN

T

i ,,2,10 K=+= σ                                                    (2.79) 

- the input to the hidden layer (second layer) of the neural network will be the 

output of the first layer (iq ). 

- w  is neural network adjusted weight (hidden layer neural network weights), 

and it is assumed that they are bounded so that mww ≤ , with mw  known 

bounds. And ŵ  are the estimated neural network weights which be provided 

by the neural network tuning algorithm as  

 ( ) wrKsgrNNxTvsw ˆˆ −Β= σ&                                                  (2.80) 

where 0>= Tss , any constant matrices representing the learning rates of the 

neural network. 

K , small scalar positive design parameter. 

Hence, the neural network weights approximation error is  

 www ˆ~ −=                                                                                       (2.81)   

- Neural network universal approximation property defines that any 

continuous function can be approximated arbitrarily well using a linear 

combination of sigmoidal functions, such that the output of the neural network 

( )xu2  can be defined as 

 ( ) ( ) ( )xbNNxTvTwxu εσ ++=
02                                                  (2.82)  

Where the ( )xε  is the neural network approximation error.            

Implementer neural network 2û , is actually an approximation of the ideal 

neural network (2.49) and is given by 

 ( )
0

ˆ
2

ˆ bNNxTvTwu += σ                                                                (2.83) 

If the conditions down satisfied   

  
min

2
4

vk

nmwK

r
ε+

≥                                                                     (2.84) 

Or 



Chapter Two                                                                  Nonlinear Neuro Controller                                                

 ٧٧

2
1

2
12

4~


















++

≥
K

mwnmwK

Fw
ε

                                            (2.85) 

Then the filtered error ( )tr  and the neural network weights ŵ  are (Uniformly 

Ultimate Boundness). 

Proof: 

Let  

xTz =                                                                                          (2.86) 

and [ ]Tnzzzz ,,2,1 L= , where T is any invertible matrix, (The choice 

can be such that   [ ] LwhereLT ,:1 Β=−  is selected such that the inverse exists). 

 
( ) ( ) ( )[ ]

( ) ( ) ( )



















 Β+−Β+−Α=

Β+Β+Α==

tuzgzTzfzTT

tuxgxxfxTxTz

11

&&

   

Let 

 ( ) ( ) 





 −= zTzfzh 1                                                                          (2.87) 

( ) ( )tugTzhTzTTz Β+Β+−Α=⇒ 1
&                                                 (2.88) 

Since ( )ΒΑ,  is controllable by theorem (2.4.1), we have  

 

















































Ι
Ο

Ο
Ο

=Β=−Α

m

m

m

m

T

n

TT M

L

L

MOMMM

L

L

,

321

1000

0100

0010

1

αααα

  

where nααα ,,, 21 K  are constant. And mΙ  standard for identity of order m. 

hence  
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where [ ] [ ]Tmuuuummgmgmgmg LL 21,21 ==  . 
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 ( ) ( ) nznzzzmhzF ααα ++++= K2211                                           (2.89) 
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and hence, we have the following system 

 

( ) ( )

1

32

21

zy

tumgzFnz

zz

zz

=
+=

=

=

&

M

&

&

                                                                  (2.90) 

with [ ]Tnxnzzzz 1,,2,1 K=   , ,: RnRF →  an unknown smooth function; 

RnRmg →:  , a known smooth function; ( )tu  the control. 

Define the state tracking error ( )tze  as 
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 dyzze −=                                                                                    (2.91) 

where ( )tyd  be the desired state vector which we can defined it by  

( )












 






 −
=

1n
dydydytdy L&    

 
d

yxT
d

yzze −≡−=⇒  

Differentiation yields    

 
d

yxTze &&& −=                                                                                    (2.92) 

Using equation (2.75)  we get  

( )
( ) ( )( )

( )
d

yzhTugT
d

yTxeT
d

yzhug
d

yxeT
d

yxfugxTze

&

&

&&

−Β+Β+Α−Α≡

−Β+Β+−Α≡

−Β+Β+Α=

 

where 
d

yxxe −=  as we defined it above, and since  

 

( )



















=





















++

++
++





















Ι

Ο
Ο

=Β⇒



















Ι

Ο
Ο

=Β

tu
m

g
m

u
mm

gu
m

g

m
u

m
gug

m
u

m
gug

m

m

m

ugT

m

m

m

T
M

K

M

K

K

MM

0

0

11

2121

1111

 

where  

[ ] ( ) [ ]T

mmmmmm uuutugggg KK ,,,,,, 2121 == . 

and  
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suppose that  
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[ ] ( )
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1

2121

uu

T

mm
g

m
g

mi
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uuT
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uuuu

+
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









=

+=

K

K

                               (2.93) 

where by condition (2) above ( ) mjmixxg
ji ,,1;,,1;,0 KK =∀=∀∀≠ , and  

miuthatsuchmi
g

u i

mi

i ,,2,1,0,,1,
1

KK =∀≠=∀= .  

The system (equation (2.91)) and the action (equation (2.93)) leads to the 

following 

 [ ] ( )
d

yzhTuu
d

yTxeTze && −Β+++Α−Α= 21                             (2.94) 

and, from equation (2.78) we choose that  

 ( ) xeKTxeKT
d

y
d

yTzhTW Β−Β++Α+Β−= &                       (2.95) 

Such that equation (2.94) can be modified as 

( ) xeKTze Β+Α=&                                                                        (2.96) 

Since ( )ΒΑ,  is a controllable pair by condition (1). To make the convergent 

faster define the filtered tracking error of the system (2.90) and by equation 

(2.76) we have the following  

 zeTKzr =                                                                                    (2.97) 

where  , , , ,1
1 2 1

K k k k
n

 =
 −K  is approximate chosen  (filter coefficients 

vector), so that .00 →→ rase Then the time derivative of the filtered error 

can be written as 

 ( ) ( ) dYzFtumgr ++=&                                                                   (2.98) 

where ( )
1

1

1 +
−

=
+−= ∑

i
e

n

i i
kn

d
y

d
Y  , and ( )zF  be defined in equation (2.89) 

 Similarly in terms of the filtered tracking error above  system dynamics 

(by using equation (2.77)), can be described as follows  
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 [ ] ( )
d

YzFuu
i

umgr +++= 21
&                                                          (2.99) 

Using condition (4) above and equation (2.98), the tracking control law W  

which be chosen in equation (2.95) can be written as 

 ( )[ ]α+−−−= rvk
d

YzF

i
umg

W ˆ1
                                               (2.100) 

where F̂  be the fixed approximation of the functional F , vk  is the feedback 

gain, and assuming that α  be the robust term chosen for the disturbance 

rejection which can be defined as 

( ) ( ) ( )rsignzft m−=α                                                                       (2.101) 

where 

 ( )




≤
>

=
00

01

r

r
rsign                                                                        (2.102) 

( )•sign  is the standard sign function. Using control law in equations (2.100), 

(2.78), (2.81), and substituting into equation (2.99) we get  

 ( ) ( ){ } εασ +−++Β+= rkbxvwgTzFr vNN

TT

0
~~

&                          (2.103) 

Setting the Lyapunov function candidate as 

( )wsTwtrrV &~1~
2

12
2

1 −+=                                                               (2.104) 

Where r  be the filtered tracking error and w~ be the neural network 

approximation error which we defined in equation (2.81), such that  

 www &&& ˆ~ −=                                                                                     (2.105) 

Where w&  be the neural network ideal weights, and w&~ be the estimated neural 

network weights which provided by the neural network tuning algorithm as 

defined in equation (2.80).such that the differentiating yields  

 ( )( ) ( )( )/ /
V dr V dw

V V r t t V w t t
r dt w dt

∂ ∂= ∂ ∂ + ∂ ∂ = ⋅ + ⋅
∂ ∂

%
& %

%
 

( )wsTwtrrrV &&& ~1~ −+=⇒                                                                       (2.106) 
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Hence substitution equation (2.103) in equation (2.106) yields 

( ) ( )
{ } ( ){ }( )gTrNNxTvwsTwtrFrrvk

wswtrrrNNxTvTwgrTFrrvkV

Β+−++++−=

−+++Β++−=

σεα

εασ

&

&&

~1~~2

~1~~~2

 (2.107) 

Applying the neural network tuning rules (equation (2.80)), the derivative of 

Lyapunov function is simplified to  

 { } ( )wTwtrrKFrrvkV ˆ~~2 ++++−= εα&                                      (2.108) 

Using equation (2.101) one has the following 

 ( )( ) nrFrmfrwwTwtrrKr
v

kV ε++−−+−≤ ~~~2
min

&        (2.109) 

Using the inequality  

 ( ) 2~~~~
FxFxFxxxTxtr −≤−





                                                    (2.110) 

Using the inequality (2.110) in the inequality (2.109) can be written as 

 nrFwFwFwrKr
v

kV ε+





 −+−≤ 2~~2

min
&                      (2.111) 

(From using mwFw ≤ ), and from (2.111)we have that 
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which is guaranteed to remain negative as long as (conditions (2.84) (2.85) 

above satisfied as following  

 
min

2
4

vk

nmwK

r
ε+

≥                                                                             

Or 
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Such that, since ( ) ( ) ( ) ⇒<≥= 00,00 rVandrVV &  the stable of the system for 

tracking filter is guarantied and if  ∞→→⇒∞→→ tasztasr ,0,0 and 

hence ∞→→ tasx ,0  so that the stability of the system (2.75), with using 

neural network controller is proven. 

 

2.7.1 Remark 

  The following are structure of the neuro-controller 
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Figure (2.2) 

General Nonlinear System and Neural Network 
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1. The class loop optimal control using neural network has been defined 

and named as neurocontroller. 

 

2. Since the weights are function of time as well as the solution and the  

control of the nonlinear dynamical control system, some difficulties 

have been faced for design neurocontroller. To over come this 

difficulties, in this work, some divided difference scheme has been 

adapted and then successive tuning weight and controller are 

implemented.   

 

3. The neurocontroller depends on the nature of artificial neural network 

structure, number of inputs layers, number of hidden layers, number of 

output layers as well as the way for which the weights are tuned. If the 

number of hidden layers are increased , the numerical future becomes 

more accurate. 

 

4. From the simulation, it is clear that the proposed scheme can 

effectively compensate the uncertain nonlinearity in a class of 

nonlinear control systems. Simulation results show that the proposed 

uncertain compensation techniques for the illustrations can be 

effective for a feedback-linearizable class of nonlinear systems so that 

the stability is reach faster.  

    

5. neural network is trained by the filtered tracking error, trying to 

minimize the filtered tracking error. 

CONCLUDING REMARKS  
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- Neurocontroller for uncertain nonlinear Robotic dynamical control 

systems may be developed. 

 

- Neurocontroller plus neuro solution of some neural adjusting control 

system may be developed. 

 

- Identification of uncertain dynamical control system based control 

system in artificial neural network base on our work must be developed. 

 

- Fuzzy neurocontroller for uncertain of nonlinearity some may nonlinear 

also dynamical control system be considered. 
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Neural networks constitute a very large research field, and it is 

difficult to obtain a clear overview of the entire field. Several motives 

originally lead researchers to study neural networks.  

 When designing a controller for a particular system, it is obvious that a 

vital intermediate step is to acquire some knowledge about how the system 

will respond when it is manipulated in various ways. Not until such 

knowledge is available, can one plan how the system should be controlled to 

exhibit a certain behavior.  

 A common and practically oriented approach to control system design 

is to use physical insights about the system supplemented with a series of 

practical closed-loop tests. In the tests, different parameters are treated until a 

working controller is obtained. Another often-use approach is based on 

conducting a simple experiment with the system to provoke  a particular 

response, [Khalil, 2002].  

 Control of nonlinear systems is a major application area for neural 

networks. The control design problem will be approached in two ways: direct 

design methods and indirect design methods. "Direct design" mean that a 

neural network directly implements the controller. Therefore, a network must 

be trained as the controller according to some kind of relevant criterion. The 

indirect methods represent a more conventional approach, where the design 

is based on a neural network model of the system to be controlled. In this 

case the controller is not itself a neural network, [Ogata, 1996], [John, 1990]. 

 To control a system is to make it behave in a desired manner. How to 

express this "desired behavior" depends primarily on the task to be solved, 

but the dynamics of the system, the actuators, the measurement equipment, 

the available computational power, etc., influence the formulation of the 

desired behavior as well. Although the desired behavior obviously is very 

dependent on the application, the need to rephrase it in mathematical terms 
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suited for practical design of control systems seriously limits the means of 

expression.  

 The work in this thesis is divided into three chapters; the first chapter 

entitled "Introduction to Artificial Neural Network" gives the introductory 

material that is necessary to understand the Artificial Neural Network subject 

by giving historical background, some remarks and definitions on the neuron 

model and the architecture of a neural network which describe how a 

network transforms its input into an output. This transformation can be 

viewed as a computation. The model and the architecture each place 

limitations on what a particular neural network can compute. The way a 

network computes its output must be understood before training methods for 

the network can be explained. And we will discuss the learning rule of neural 

networks which fall into two broad categories: supervised learning which 

can be the training method are commonly used, and unsupervised learning 

and an example of learning networks (Back propagation algorithm) had 

been given. 

 In chapter two we have discussed some necessary requirements that 

are needed in the main theorems of the work of this thesis and proposed an 

artificial neural network-based scheme for control a class of nonlinear 

systems, which can be transformed to the canonical form. Neural network 

weights are tuned on-line, and the overall system performance is guaranteed 

using Lyaounov function approach. The convergence of the neural network 

learning process and the boundness of the neural network weights estimation 

error are all rigorously proven. 

 Chapter three can be considered as an extension to the work of chapter 

two. Where we give a general computational algorithm for our work and we 

discussed two simulation examples: "Pendulum type" nonlinear system and a 

proposed nonlinear 3-dimention concerning system, the numerical result are 

shown in tables and figures. 
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 Numerical simulation are obtained using  MATLAB version 6.5 and 

using the personal computers PIT 4.   

       

 

   

 

  

 

 
 



 
 
 
 
 

Artificial neural networks form a class of systems that is inspired 

by biological neural networks. They usually consist of a number of 

simple processing elements, called neurons, that are interconnected to 

each other. In most cases one or more layers of neurons are considered 

that are connected in a feed forward or recurrent way. The strength of the 

interconnections is quantified by means of interconnection weights. Basic 

features of neural architectures are that they work massively parallel, the 

weights have to be learned from a set of examples and can be adapted. 

Although artificial neural networks can perform human brain-like tasks 

such as object and pattern recognition, speech recognition or associative 

memory, there is still a huge gap between biological and artificial neural 

nets. Nevertheless, although we are still far away from mimicking the 

human brain, from an engineering point of view, it is certainly step to let 

us inspire by biology. Indeed artificial neural networks have provided 

good solutions to many problems in various fields: example include 

classification problems, vision, speech, signal processing, time series 

prediction, modeling and control, robotics, optimization, expert systems 

and financial applications,[Zurada, 1996]. 

Many of the abilities one possesses as a human have been learned 

from examples. Thus, it is only natural to try to carry this "didactic 

principle" over to a computer program to make it learn how to output the 

desired answer for a given input. In a sense the artificial neural network is 

one such computer program; it is a mathematical formula with several 

adjustable parameters, which are tuned from a set of examples. These 

examples represent what the network should output when it is shown a 

particular input. 
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��)� #"  أ���ا�'�&%ة #" ! ��� ھ�ا ��ء ��� و��
� ������� ���  أ��
	 أ������� 
���/	 ا�&�1%ات  إ�2ا�
����	 ا���%-��1	 ا���0/�	  ا+���ة�.  ا-,�أ ا+*��ء�(�� 

.  ا��1�67	وا�
%��5ت   
 ��" ا?*��ل" ا�'�&%ة ا;و� ������	 -�70ت � ��ة ر>� ا;),:#�ت # أ��
	�9,%ك 

.  ا��راE	 !,0%ف -'C ك ��� ل  �B(� �. ا����م @��  
   ا+�&��/�	 ا����9	 ا�(��0	ا�,&����ت  أھ�%ة ا��G% ا�F&" �. �&���م ا�'!(,�% 

 (Artificial Neural Network)  
 (Neuro-Controller)  %�< "�0/ %&�'� %! &� �� ��� 	��E%ه ا��)&"  #" ھ
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. �9%وع ا�(  
(Neural Network Weights)  ا�(��0	 ��� �� أ*,��ق و ����� و��ر!R أوزان ا���9	


�د ,/+�- 	C
),'
.                                                 /2C أCE -�	 دا�	 ���-�� فا�  
(Lyapunov Function approach)  

 U��,�2C/ ���7�  ��C
/ 	�C/�# .�  I)- 	��ا;��,%و 	�Eا���	
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(Uncertain nonlinear function) د��
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	 وا�(
�  وأ)�%ا�
��ت ا��,�,E;وا 	ا�6%ور! 	�V�!%�7ھ�� ا�
��� �� /%ض -(I ا�

5
�ل ا�
',��C" ��/ م -O*��ل ورE ��ت? �
)C� "#ط%ح وا.  
 

 

 ا�������
 


	Microsoft Word - ABSTRACT.pdf
	Microsoft Word - acknowledgments.pdf
	Microsoft Word - APPENDIXES.pdf
	Microsoft Word - chapter one.pdf
	Microsoft Word - CHAPTER THREE.pdf
	Microsoft Word - CHAPTER TWO.pdf
	Microsoft Word - concluding remarks.pdf
	Microsoft Word - contants1.pdf
	Microsoft Word - CONTENS.pdf
	Microsoft Word - DEDICATION.pdf
	Microsoft Word - futuer work.pdf
	Microsoft Word - introduction.pdf
	Microsoft Word - introduction1.pdf
	Microsoft Word - references.pdf
	Microsoft Word - refrences.pdf
	Microsoft Word - Supervisors Certification.pdf
	Microsoft Word - titale.pdf
	Microsoft Word - مستخلص.pdf



