ABSTRACT

Today automatic control systems have become an integrated part of
our life. They appear in every things from simple electronic household
products to air planes and spacecrafts. Automatic control systems can take
highly different shapes but common to them all, is their function to
mani pul ate a system so that it behaves in a desired fashion.

Control of nonlinear systems is a maor application area for neural
networks. The control design problem will be approached in two ways: direct
design methods and indirect design methods, and the network must be
trained as the controller according to some kind of relevant criterion.

In this thesis, nonlinear neuro-controller using neural network based
actuator compensation scheme for nonlinear dynamical control system is
presented.

The scheme that |eads to stability, target following, tracking error and
filtered error is proved . The tuning of artificial neural network weights for
controller are derived and adjusted based on Lypanove function approach.

The verification of this scheme has been implemented using first
order, 2-dymensional, nonlinear dynamical Pendulum problem and 1% order
3-dymensional nonlinear dynamical control system. The simulation can
effectively compensate for the uncertain nonlinearity in the nonlinear
uncertain dynamical control system.

Necessary mathematical concepts, comments, concluding remarks,

future works, figures and graphers, have also been presented.
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APPENDIX (A)

Biological Neurons And Their Artificial Models

Ahuman brain consists of approximat&l@11 computing elements

called neurons. They communicate through a conmeatietwork of

axons and synapses having adensity of approximeﬂt@ﬂ/synapses
perneuron. Our hypothesis regarding the modelingnaifiral nervous
system is that neurons communicate with each obyemeans of
electrical impulses [Arbib, 1987]. The neurons @perin a chemical
environment that is even more important in termsacfual brain
behavior.We thus can consider the brain to be adensonnected
electrical switching network conditioned largely Itge biochemical
processes. The vast neural network has an clabardtevery complex
interconnections.

The input to the network is provided by sonsoryepors,
receptors deliver stimulli both from within the bhodas well as from
sense organs when the stimuli originates in theereat world. The
stimuli are in the form of electrical impulses tlcahvey the information

into the network of neurons. As aresult of inforimatprocessing in the

central nervous systems, the effectors are coattoind give
human responses in the form of diverse actions.hUWgehave a three
stage system, consisting of receptors, neural m&ivemd effecctors, in

control of the organism and its actions.
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Information flow in nervous system

A lucid, although rather approximate idea, abowt ithformation
links the neurons system is shown above. As wesearfrom the (figure.
a.l),the information is processed, evaluated angpaoed with the stored
information in the central nervous system. Wheressary command are
generated there transmitted to the motor organsc Nwat motor organs
are monitored to central nervous system by feedbakkhat verify their
action. Both internal and external feedback contmgblementation of
command as can be see the overall nervous systeaiuse has many of

the characteristics of a class loop control system.

Living Neurons

To justify such a strong claim it is necessaryxpand the
argument a little. Living neurons are, in fact, gased of a cell body and
numerous outgrowths. One of these, which may brartohseveral
collaterals, is called the axon. It acts as th@uatuine for the neurons.

The other outgrowths are called the dendrites; #teyoften covered with
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little 'spines’, where the ends of the axons oéotells attach themselves.
The interior of the nerve cell is kept at a negatlectric potential
(usually about -60 mv ) by means of active pumphécell wall which
pump sodium ions outside and keep slightly feweagsmum ions inside.
This electrical balance is espscially delicatelyegsed at the exit point of
the axon.If the cell electrical potential beconmas positive, usually (+10
to +15 mv), then there will be a sudden reversahefpotential to about
(+60 mv), and an almost as sudden return to thal magative resting
value ,all in about (2 to 3 ms).
his sequence of potential changes is called anoracti
potential,which moves steadily down the axon aadranches (at about
1 to 10 msY). It is action potential that is the signal sewinf one cell to
its neighbores. The generation of the signal byniigron is achieved by
the summation of the signals coming to the cetlybivpom the dendrites,
which themselves have been affected by action patecoming to them
from nearby cells. The strengths of the action iodés moving along the
axons are all the same. It is by means of rescdhegeffects of each
action potential as it arrives at a synapse ortjandrom one cell to the
next (by means of multiplication of the incomingtigity of a nerve
impulse by the appropriate connection weight memtibearlier) that a

differential effect is achieved for each cell osneighbors.
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APPENDIX (B)

Recurrent Network

A recurrent (feed back) network can be obtainexinfthe feed
forward network shown in figure (1.14) by connegtthe neurons output
to their inputs as illustrated in figure (B.1). ka the feed forward
network, where there is an algebraic relationshgtwken input and
output, the recurrent architecture contains memiogy, it is a dynamic
system. The recurrent network contains the feed/dndt network as a
special case and obviously it therefore represem®re general class of
architectures. The mathematical expression goveritine network in

figure (B.1) is given by
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Where F, . be the activation function of the hidden anduinfayer

respectively,W,,w, be the weights of the hidden, input layer of the
neural network respectively which be adapted latey,. w,, be the bias of

the hidden, input layer respectively ang,n+m,m be the number of

layer on which the output is adapt on.

The recurrent can be implemented in many diffemeays. The
example shown in figure (B.1) is just one examflalso the output of
the output neurons are fed back, the network isnoffaid to bdully

recurrent.

Input Layer _
Hidden Layer a
2

S @

ai

o Output Layer

Outputs fed back as inputs
Input of the Bias P P

Figure (B.1)

A Simple Example of a Recurrent Network
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Radial Basis Network

A network that has received a lot of attention ntlgein the field
of neural networks is the radial basis functionwogk. This can be

described as

a= Zw gmp CIH) (B.2)

with pOR"the input vector an@d R the output (models with multiple

outputs are also possible). The network consistmefhidden layer with
nh hidden neurons. One of the basic differences with multilayer
perceptron is in the use of the activation functionmany cases one
takes a Gaussian function fgrwhich is radially symmetric with respect
to the input argument. The output layer has outgeightswOR™. The

parameters for the hidden layer are the cerderRR™.

The networks (1.27) and (B.2) are feed forwardralenetworks,
which means that there is a static nonlinear mapfsom the input space
to the output space: the layers are interconnentadeed forward way to
each other. In recurrent neural networks outputseofrons are feed back
to the network, resulting in a dynamical systemsifple example of a
recurrent neural network is the Hopfield networkgiscrete time looking

as
P41 = tanrM/pk) (B.3)

with p, O R"the state vector andV JR™ the synaptic matrix. The

network consists of one layer of neurons.
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APPENDIX (C)

Mathematical Foundations of Nuerocomputong

Neurocomputing makes use of parallel dynamicalratigons of
modifiable neuron-like elements. It is important tehow, by
mathematical treatments, the capabilities and dinwhs of information
processing by various architectures of neural neksvorhis section, part
tutorial and part review, tries to give mathemdtif@undations to
neurocomputing. It considers the capabilities ainsformations by
layered networks, statistical neurodynamics, a gegr@eory of neural
learning, and self- organization of neural networks

Statistical Analysis of Neural Transformation

A. One-layer Neural Network:
Let us consider one-layer network consisting kofof neural

elements, which receive the same input sigr[a#s[pl Py - Pm)

in common, and emit respective outpuats [al ay ... akJ. Let W;

be the synaptic connection weight from ttieinput component; to the

jth neuron. The outpuaj of thejth neuron is then written as

m :
a = f(ig Wi Py +b,} j=12...k (C.1)
Wheref is a nonlinear output function arhq Is the threshold value (the

bias).
Let us denote a bundle of output signals by a vecto

a=[al ay ... akj. The network transforms a vector input signal

to a vector output signa . We denote this transformation by
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a=fyp (C.2)

Where f,, is a nonlinear mapping defined by (C.1) and Wij Is called

connection matrix. A one-layer neural network thuaefines a
transformation or mapping from the input signal sp® ={p} to the
output signal spacé ={a}.
fw:p—a (C.3)
We use in this section a simple binary neuron mottel
demonstrate a mathematical method of approach, thathinput and

output signalspj and a take on the binary valuedl and-1, so that the

function f is the sign function

sgr(u):{_]i l:i% (C.4)
Moreover, we pubi =0 for the sake of simplicity so that

a=fy, p=sgr(wp) (C5)
or

a = fw P, d=12,...,m (C.6)

There are a number of approaches to study chaisttsrof f,, . For

example, one can define the capacity of the classe-layer networks

by the maximum numbem of input-output pairdp;, g )i =12,...,m as

we defined in Eq., (C.6), such that for almostsalth pairs there exists a
network which realizes the input-output relatioh.id known that the
capacity ism=2n by a number of interesting but different methods
[Cover, 1965],[Gardner, 1988],[Baum, 1989].

Remarks
In this section, we focus on the statistical et of approach.

When a network is complex, the connection weighty tve regarded as
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if they are determined randomly. The statisticathod is applicable to

such networks. In the special case where the cdioneamatrix

Wz{vvij} is determined randomly subject to a probabilitytribution,

we can apply the statistical method to elucidagedharacteristics of the

mapping f,,. Obviously, the typical characteristics depend tbe

probability distribution of Wij' We treat the two typical cases as

examples:

1. Totally random networks in which all the comporsew; are
independently and identically distributed.

2. Associative memory networks in whiety are not independent

but are by a smaller number of random parameters.

Stability of Mapping Totally Random Networks
We first show properties of the mapping by a tgtatindom

network Wherewij are the realization of independent random vargable

subject to anormal distribution N (@, 6%,), with mean and variance

¢°,. Such a network is said to be totally random.

m
U = 2 W Py (C.7)
=1 |
Which is the weighted sum of input stimuli, and theput is written as

a; =sgrly;) (C.8)

Since w; are the randomly determined, then givethenu; (i =1...,k)

and also randomly distributed. Moreover, they ardependently and
identically distributed. More preciselyli Is a linear combination ofvij :
so that it is also normally distributed. Its mesmiven by

U=E[Zvvij pj}=2v_vpj=nv_vAp (C.9 )
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Where E[u] denotes the expectation ofand A p s the mean activity of

the input vectorp defined by

1
Ap =3P, (C.10)

2

The variancag < of U,

0-2:V Z\NI p: :ZpZV[W.}:nJVZV
RS IR A R
WhereV[u] denotes the variance of the

The probabilityP of a =1, is given by

u

P= prob{ai =l}prob{ui >0}=CD(:)

g

Where ® is the error integral,
D)= (]/\/Zn)exp{—vz/z} dv (C.11)
Since all the a are independent subject to the same probability

distribution, the output activity
1k
ST
Converges in probability to
Aq =E[ai]=LIJ(aAp) (C.12)
Wherek is large, where we put

a=«/ﬁaﬂ (C.13)
W

And
W(u)=2d(u)-1
=14 (J/«/?T)exp{—vz/z} dv (€.19)
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When we partition the input and output signal sga@ndA, according

to activity, f,y, maps input signals of activitg, to output signals of

activity A, given by (C.12). This is anacroscopic characteristicof

fww. Whenw =0 we havea =0. So that the activit}\, is concentrated
aroundO. We study more subtlenicroscopic propertiesof the mapping
fyy. Let us assume that is mapping toa

a=fyp
It is then expected that signafs belonging to a neighborhood @f are

mapping to a neighborhood dd. To show this, we introduce the

normalized distancebetweenp and p' by

Dp(p.p) an > [pi - (C.15)

This is thenormalized Hamming distance satisfying0< Dp <1. The

distanceD p(p, p') betweenpand p'is defined similarly.

Let p' be a signal whose distance framis D,. How far is the distance
D, betweena=f, p and p'=f,, p'. See fig.(C.2) relation between

Dp and D5 defines a stability or robustness of the mappifg,

because wherp' is regarded as a noisy version pivith noise rateD,,

the noise rate of the outpat is given byD,. whenDg < Dp, the noise

iIs reduced by the transformation, and @p <Da, the noise is

amplified.

=YY -
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Figure (C.2)

Stability of transformationf,,

The next theorem shows that the noise is amplifigc totally random
network [Amari, 1974]. This type of network enlasgemall differences
around p so that they are convenient for detecting diffeemnamong
similar signals .

The following theorem holds for networks with=0. Similar properties
hold for any totally random networks.

Theorem 1
When the distance betwegm and p' is Dp(p, p) , the distance

D4(fw P, fyy P') of their transforms is given by
_ 2.1
Dg —Esm /Dp (C.15)
Proof: let us put
_ 1 _1 '
Ui —ﬁzvvijpj Vi —EZWUPJ'
Whenu,v; >0, aj =a'j and whenyv; <0, aj =a’j . Therefore

D, is given by the ratio of the number of the compusg satisfying

uv;, >0to K. Since(ui ,vi) are a pair of normal random variables and are

independent for different we have

-VY -
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Dga = probju;v, <0f

Whenk The mean ofi; andv; are zero, and the variancesupaindv; are
o’w, their covariance is given by

U&v = E[uivi]=% a\%,z of p’j = @—ZDp)a\,zv

Therefore,
_ 1 _1fu -q(u
Dg = uvj<0 o exp{ Z[Vj ) (vj} du dv,
Where
Z{agv agzv}
Ouwv 9w

This can easily be calculated, giving (C.15).

Dz
1...

=,
(X

Figure (C.3)
Graph of C.15

Remark

Figure (C.3) gives the graph of relation (C.1BhenD,is
small, we have approximately

Da=2 /Dp

The approximate derivative

-VY -
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dDg _
de 77\/7

Becomes infinitely large atDp=0. This implies that a small

neighborhood ofp is expanded and mapped to very large neighborhood
of a= f,p. Such a mapping is useful for recognizing diffeeshamong
similar signals in a small neighborhood pf because the differences are

enlarged in the corresponding output signals. Thisontrary the noise

reduction property which reduces noise addeg tm transforming it to

a.

Statistical Neurodynamics

A. A fundamental problem of statistical neurodynaosi

We now treat a neural network with recurrent cotinac(Fig C.4 ). Let

wij be the connection weight from tite neuron to theth neuron, and
let p;(t) be the state or the output of tith neuron at time, taking

values+1 or -1.
When each neuron works synchronously at discretett=0, 1, 2...the

behavior of the network is written as
n
pt+1)=sgn ¥ W pj(t)—hi +& (C.16)
=

Whereh; is the threshold,gi Is the weighted sum of stimuli coming to the

jth neuron from the outside.

-V¢ -
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Figure (C.4)

Network with Recurrent Connections

For the sake of simplicity we let thiq be included in the terrh;, by
putting hi —& as the nevi; and neglect the termg, .

By using the nonlinear operatdy,

fw p=sgriw p-h)
as before, eq.(C.16) is written as

p(t+1)= fy, pt) (C.17)
The vector p(t) is regarded as the state of the network at tijrend

(C.17) is the state transition equation descrilihregdynamical behavior
of the network.

The state spacBconsists oR" vectorsp whose component are *1 in the
present case. The state transitiffdefines a mapping from to itself,

where fy, p'is called the next state pf

Remarks
1. The state transition graph is constructedPiby adding directed

edges connecting tow nodgsand f,, pin this order ( Fig. C.5).

-Yo .
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Each node (state) has one, and only one, edgengténdm it and
ending at its next state. The dynamic propertyhef met is fully
represented by this graph.

’
'l
'l
’l
l”
r"‘
....... %,
®— — @ ‘n‘
/ I equilibrium
e .
1}
1]
]
;

AN

Figure (C.5)

.State transition graph of,.

e Statep is said to be an equilibriuor a fixed poinbfP, when
p="fwp

Holds, when and only wherphas a self-closed edge, i.e. an edge

starting p from and entering irp , it is a fixed point

e A sequence ipl Py - pk}of nodes is said to be a cycle of

periodk, when
Py = fw P t=1.. k-1
P = fuw Py
Hold and allx; are different. This is represented by a primitivep of

lengthk in the graph.

2. It is not easy to analyze the behavior of the dyina () of a nonlinear
network. When the connection weighy are randomlydetermined

subject some probability distribution.

T
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e There exist common dynamical properties that derexd by almost
all randomly generated networks by the same prdibalaw. Obviously

such properties depend on the probability distrdwut

B. Statistical neyrodynamics studies such propestidby using

macroscopic state variables:

A macroscopic state variable is a function of tihrec(oscopic) statep

summarizing some average features of the statemples example is the

activity level.

A(p)=%i P (C.18)
Of state p which shows the ratio of the excited neurons. Totvidy
level A; at timet is written as

A =A{p(t)} (C.19)
And it is expected that dynamical equation of et

A.=F(A) (C.20)
Holds for almost all randomly generated networkghwa desired
accuracy a® tends to infinity. Such a quantity is calladmacroscopic
state variable.
It is not necessarily a scalar but may be a vegtantity. In order to
elucidate common microscopic characteristics of $@e transition
graph, it is useful to define a macroscopic k@aawhich is a function
of two or more microscopic states. For exampleyveg use the distance

D(p, y) between two states as a macroscopic variable@aind

D, = D{p(t). y(t)} (C.21)

-VVv -
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Where p(t)=f!p(0) and y(t)=f y(0)are the state transition
sequences starting ap(0)and y(0)respectively. If we have such a
dynamical relation as

D,, =G(D,) (C.22)
We can study how an initial difference in the std®elops in the course

of the state transition dynamics.

C. Macroscopic Dynamics of Activity:

When w; are independent subject to the same distributfotihe

averagew” and variables?, say the normal distributiol(h”, o?) the

dynamical equation of the activity is given by

A, =y WEA, +H?) (C.23)
Where
O O
wo=" pesl g (C.24)
g (9)

Totally random networks are classified into the e#hrcategories
depending on the behaviors of the macroscopic emuatr the
parametersV”and H" [Amari, 1971].

1. Monostable converging to the unique equilibrium macrostatefrom
whatever initial state it starts.

2. Bistable converging to one of the two stable equilibriuracnostates
depending on the initial state.

3. Oscillatory with periods 2(Figure (C.5)) shows how the dynamic

behavior depends on the macroparametMfsand H". This is the

catastrophe curve of the macroscopic dynamicshdulsl be noted that

h, or H” can be controlled by stimulation from the outside.

-YA -
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monostable

oscillatory
e

Figure C.5

Catastrophe of macro dynamics

Remarks
To study the dynamical behavior of especially ire thase

consisting of two different types of neurons:

Consider a random network consisting of severaledifit types of

5 : :
neurons. Lew” be the connection weight from tjth neuron of types
to the neuron of typen. It is a realization subject to the normal
distribution with meanw,,and variances,, . The thresholch” of theith

neuron of type is also assumed to be the normal distribution widan
h'' and variances?,. Let A7 be the activity of the neurons of typeat

timet,

Wheren, is the number of the neurons of typand p’(t) is the state at

timet of theith neuron of type.. It is easy to show that the vector
A=(A7)

Is a macroscopic state satisfying the postulatevéGo 1965], the

macroscopic dynamics is given by

-V4 -
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A7 =¢(zwa; A’ +H 5) (C.25)
B

Where the macroparametéig, and H, are given by

1.0

Wo=Tw, Hiz= 1

Ua Ua
0,=3% 0, + 0,
[Amari, 197] studied the dynamical behavior of (C.25), espscialthe
case consisting of two different types of neurcdrisere exist at mos
equilibrium macrostates in such a network [Harta7d]. When typel
neurons are excitatory and tygeneurons are inhibitory, it was shown
that there exists a stable oscillatory solutiorhvatlong period. Similar
results were found also Wilson and Cowan [Wilson, 1972. Not only
the oscillatory behavior but also its period cancbatrolled by stimuli
from the outside, so that such a network is corer@nfor modeling
temporal behaviors, [Amari, 19F2also studied similar behaviors in
random nets of continuous-time analog neurons testrby a set of

differential equations.

D. Characteristics of Microstate Transition in Tolg Random

Networks:
We now study typical characteristics of the stedagition graph of

a totally random asymmetric network, wheweandw, are independent.

On the other hand, it is also important to studwrabteristics of a
network of symmetric connections, in which the syinmy condition

w, =w, is imposed. This is because a symmetric netwonkbeaused to

solve the optimization problem under constraintogfield, 1985],
[Rumelhart, 1986], we consider a random symmetigvork, too, where

all the w; are independently, identically and normally disited under
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the symmetric conditionw, =w, . As will be shown there are big

differences in the characteristics of symmetric ansymmetric random
networks.

1. Number of stable states statep is said to be equilibrium or stable
when it's next statd, pis equal top itself.

The expected number of states can be calculatedhéystatistical

neurodynamical method.

Theorem The expected number of stable is equd! fior a symmetric
random net, and is equaléd'**"for a symmetric random net.

Proof:

The proof for the asymmetric is easy [Amari, 1978he proof for the
symmetric case was given @yanaka and Edwards [Tanaka, 198Din
the connection with SK-model of spin glass. Here, give a simple

proof. We first calculate the probability that=(11,...,1) is stable state.

For the above, we put
U, =X w, Op, =Y wij
j=1

The state p is stable, if and only if u > for all i. Therefore, the
probability P that f  p = pis written as
P=Prob{u, >0,...,u, >0}
In the symmetric case all the are independently and normally
distributed with mean 0. Therefore, becaus@mib{u, >0} = 05
n
Pasym=T] prob{u >0}=2""
i=1
In the symmetric casey, are normally distributed with mean 0 and

variance

=YY -
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o' =v|Tw]=no;
However, u, and u, are not independent becausewf=w, and their
covariance is given by

Cov[ui,ujJ=Cov[vv”,Wj.ijzafv
These correlatedi can be represented by using mutually independent

normal random variables and r subject toN (01) as

U, =0, (\/n—lE‘e,- —r)
The probability then because
P sym= prob{ u, >0,...,u, >0}

r r
= prob >—, ..., >—
P {Sl vn-1 ™ \/n—l}
In order to calculate this, we first fix, and calculate the probability. We

then take expectation with respectrto Whenr is fixed, the events

s >r/ Jn-1
are independent in the sense of the conditionabghity. Therefore,
because oProb{ s>c}=1-d(c).

psym=E, [ﬁ (1— d)(r/x/n——l))}

= o Jo| g+ neg {1_ il nr—lj} !
< [T fe] o[ ) -edi-ots}

By using the saddle-point approximation, we have
1 .
Py = exp{- n[i Yo —log{L- oy, )}}},

where y,is the value of minimizing1/2) y* —log{1-®(y)} Numerical

calculation give

—0494n

psym=e

-YY -
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it is easy to show thdt asym and P symdo not depend on specifig but

are the same foe aryy. since there ar@" times the probability.

2. Stability of State Transition:for two statesp, and p, whose distance

is D, we search for the distancB®' between their next states
f,p,and f_p, [Amari, 1974].

Theorem When the distance betwegnand p, is D, the distancé®'
betweenf p, and f p, is given by

D'=Esin‘l D (C.26)
T

in both cases of the asymmetric and symmetric nanclennections.

3. Potential function: In the case of symmetric connections, a potential
function monotonically decreases as the state egolw the network
dynamics. This is a characteristic feature of asginim connection

network. Let

E(p)=-2 X, p.p, XN P (©27
Where we assumew, =0,0i, when each neuron changes its state
(output) one by one in a non synchronized mannethensign of the
weighted sum of input stimuli, it is easy to showatt E(p,) is

monotonically non increasing as the state transiiaies place [Hopfield,
1982] [Hopfield, 1984]. This implies that the statdé a network
converges to one of the local minima of the potritinction E( p).

This also proves that there is no oscillatory b&vawm such a network
see also [Cohen, 1983] [Hopfield, 1985], for theapynov or Potential

function (in the continuous-time case).

=YY -
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Back propagation of Recurrent Networks
The back propagation has been generalized to becalple with

recurrent connections by many researchers [Willjiad®89] [Doya,
1989]. We give a simple but example.
Let N be a network with n neurons, some of which areguut

neurons and some of which are input neurons. ) be the output of
theith neuron at time, which is determined by

z(t)=o[u (1) (C.28)

u )= w z{t-2)+3X s x(t-1) (C.29)
Here w, is the weight of the recurrent connection fromjtheunit to the
ith unit, ands, is the connection weight from tlkéh input x, to theith
unit. When theth unit is not an input neurog, = .0’he input is a time
sequencg{x(t)}, t=12..., and the network is in the quiescent state at
time 0. For each input time sequendg) a sequence/(t) of the desired
outputs is given dt=1, 2..., to the output neurons.

The parameters arfw,,s, ) some of which may be fixed t0 or to

prescribed values. We denote Byonly modifiable parameters. The

squared error loss at tinhés given by

i' (x,t;S)=%Z 2,(t)- v, (t) 80)

kOO
Where the summation is taken over the®@ef the output neurons.

The connection weights are changed in the leampinage by
w,(t+1)=w, (t)—cal/avv”. (C.31)
s (t+1)=5 (t)-coai/os (C.32)
However, d1/dw, and d1/ds, are not simple, because of the recurrent

connections. We have the following theorem.

-Y¢ -



Appendixes

Theorem The learning rule of a recurrent network is givgn

w (t+1)=w;(t)-c 3 & 1y (1) 83)

5(t+)=5t)-cX &a,) (C.34)
Where

=2 |z(0)- v (C.35)
And r,,q, are calculated recurrently by

r, =®'(u(t) z,(t-1) 5, + 2 Wi Ty (t-2) (C.36)

Gy = @' (, () (t-2) &, + X w, a,(t -1) (C.37)

o, being theKronecker delta.

Remark

When the dynamics of the neural network converges= f(zS) and
if we want the final outputzto be equal to the desireg(x), we may use

the equilibrium solution of (C.28) and (C.29) bywing the simultaneous
equations. This method is proposedBineda, 198]

-Yo.



Chapter one Introduction To Artificial Neural Network

1.1 History of Artificial Neural Systems [Zurada,1996]

Artificial neural systems development has an irgeng history.
Since it is not possible to cover this history iepth in a short
introductory section, the historical summary bel@mvnot exhaustive;
some milestones are omitted and some are mentmmgdriefly.

The year1943 is often considered as the initial year in the
development of artificial neural systems, whiéoCulloch and Pitts in
(1943) outlined the first formal model of an elementarymputing
neuron[McCulloch, 1943]. The model included all necessdeynents to
perform logical operations, and thus it can opeaatan arithmetic-logic
computing element. The implementation of its comgdectronic model,
however, was not technologically feasible during thulky vacuum
tubes. The formal neuron model was widely adopbtedHe vacuum tube
computing hardware description, and the model negeame technically
significant. However, the McCulloch and Pitts neunmodel laid the
groundwork for future developments. Influentialeaschers of that time
suggested that research in design of brain-likecggsing might be
interesting. To quotdohn Von Neumann's (1958)observations on the
"brain languagé€', [Von, 195§.

Donald Hebb in (1949) first proposed a learning scheme for
updating neuron's connections that we now refeagothe Hibbian
leaning rule [Hebb, 1949]. He started that the information can be stored

In connections, and postulated the learning teclenthat had a profound
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Impact developments in this field. Hebb's learniote. Made primary
contributions to neural networks theory.

During the1950,the first neurocomputers were built and tested
Minsky (1954) [Minsky, 1954]. They adapted connections autonadtic

During this stage, the neuron-like element callgdraeptron was
invented byFrank Rosenblatt in 1958 it was a trainable machine of
learning to classify certain patterty modifying connections to the
threshold elements. The idea caught the imaginatioengineers and
scientists and laid the groundwork for the basiccmae learning
algorithms that we still use today [Rosenblatt, 8]9%n the earlyl960a
device called ADALINE (for ADAptive LINEar combiner) was
introduced, and a new powerful learning rule callled Widrow-H off
learning rule was developed bBernard Widrow and Hoff in (1960)
[Widrow, 1960]. 1962 the rule minimized the summed square error
during training involving pattern classification.atfy application of
ADALINE and its extensions tMADALINE (for many ADALINES)
include pattern recognition. The monograph on liegmachines bilile
Nilssonin (1965)clearly summarized many of the developments of tha
time, [Nilsson, 1965].

Despite the successes and enthusiasm of the aaitiymid-1960
the existing machine learning theorems of that time¥e too weak to
support more complex computational problems. Algiothe bottlenecks
were exactly identified in Nilsson's work and theural network
architectures callethyered networkswere also known. Neural network
research entered into the stagnation phase.

Another reason that contributed to this researctvabwn at that
time was relatively modest computational resoueslable then. The
final episode of this area was the publication obaok by Marvin

Minsky and Papert in (1969)that gave more doubt as to the layered
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learning networks' potentigivinsky, 1969. The stated limitations of the
perceptron-class networks were made public; however, the challenge
was not answered until theid-1980 The discovery of successful
extensions of neural network knowledge had to waitil 1986
Meanwhile, the mainstream of research activity he teural network
field, called at that timeybernetic had sharply decreased. The artificial
intelligence area emerged as dominant and promisasgarch field,
which took over, among others, many of the tasksnleural networks of
that day could not solve.

During the period fromd965 to 1984 further pioneering work was
accomplished by a handful of researchers. The stfdiearning in
networks of threshold elements and of the mathealatheory of neural
networks was pursued Bun-Ichi Amari (1972, 1977) Amari, 1972]
[Amari, 1977]. Also in Japan, Kunihiko Fuukushimavdloped a class of
neural network architectures known masocognitrons Fukushima and
Miyaka (1980) [Fukushima, 1980]. The necognitroa isiodel for visual
pattern recognition and concerned with biologic#upibility. The
network emulates the retinal image and processem thsing two-
dimensional layers of neurons.

Associative memory research has been pursuedniyna others,
Tuevo Kohonen in Finland (1977, 1982, 1984, 1988)Kohonen,
1977,1982,1984 and 1988] addmes A.Anderson[Anderson, 1977]
Unsupervised learning were developed for featurppimg into regular
arrays of neurons [Kohonen, 1982tephen Grossberg and Gail
Carpenter have introduced a number of neural architectunelstiaeories
and developed the theory of adaptive resonanceonktwGrossberg,
1977, and 1982].

During the period from 1982 until 1986, severaimsel

publications were published that significantly heted the potential of
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neural networks. The aera of renaissance startéd Jehn Hopfield
(1982, 1984)Hopfield, 1984] introducinga recurrent neural network
architecture for associative memories. His pape@milated
computational properties of a fully connected neknaf units.

Another revitalization of the field came from tpeblication in
19860f two volumes on parallel distributed processiedited byJames
McClelland and David Rumelhart (1986) [McClelland, 1986]
[Rumelhart, 1986]. The new learning rules and otle@cepts introduced
in this work have removed one of the most essengfivork training
barriers that grounded the mainstream efforts & thid-1960. the
publication by McClelland and Rumelhart opened\a eea for the once-
underestimated computing potential of layered ndtaioThe function
approximator, EEG spike detector and autonomougdiiscussed in
the previous section provide examples facilitatgdtiee new learning
rules.

The field of function approximation has led to thmportant
‘universal approximation theorem' [Hornik, 1989] This theorem states
that (any suitably smooth function can be approxamarbitrarily closely
by a neural network with only one hidden layer)eTumber of nodes
required for such an approximation would be expkd® increase
without bound as the approximation was increasibgiyer. The result is
of the utmost importance to those who wish to amelyral networks to a
particular problem (it states that a suitable nekwean always be found).
This is also true for trajectories of patterns [&ashi, 1993]

There is a similar, but more extended result, f@ kearning of
conditional probability distribution [Allen,1994, where now the
universal network has to have at least two layerbd able to have a
smooth limit when the stochastic series being nexldlecomes noise-

free.
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Although the mathematical framework for the new training
scheme of layered networksBgckprpagation algorithm) was
discovered in1974 by Paul Werbos Werbos, 1974] (and studied by
Parker (1985)andLeCun (1985)) it went largely unnoticed at that time
[Werbos, 1974]. According to the most recent stat@njDreyfus, 1990],
the first authors of theoptimization approach for multilayer
feedforward systemswere Bryson [Bryson, 1969] andKelley who
obtained a gradient solution for multistage netwtkning. In 1962
Dreyfus used a simple, new recursive derivation basederchain-rule
of differentiation to prove the Bryson-Kelley retsulind dealt explicitly
with the optimal control problem in its discretage form [Dreyfus,
1962]. Their work, however, has not been carriech&burity and adopted
for neural network learning algorithms.

Beginning in 1986-87 many new neural networks research
programs were initiated. The intensity of research the
neurocomputing discipline can be measured by a quickly growing
number of conference and journals devoted to tékel.filn addition to
many edited volumes that contain collections ofgoapseveral books
have already appeared. The list of application ttaat be solved by
neural networks has expanded from small test-sxaemples to large
practical tasks. Very-large- scale integrated neneawork chips have
been fabricated. At the time of this writing, edimaal offering have
been established to explore tlaetificial neural systems science
Although neurocomputing has an interesting history, the field is still in
its early stages of development. In 1988 Austicuised Rapid learning
with a hybrid neural network, Bolt, Austin studyethassessing the
reliability of artificial neural networks, Morgantugly safety critical
neural networks in 1995, Yan, Austin discussed thathematical

foundations of statistical parallelism in 1997, lged Austin study the
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evaluation of standard retrieval algorithms andrety neural approach
in 2000, in 2003 Hodge, Austin study the evaluatidrstandard spell
checking algorithm and a binary neural network2@94 Pears, Crook-
Dawkins study the robust dependable model-basadhiigcation for
mobile robots.

For more Details on Biological Neurons: see appendiA.

1.2 Some Neural Networks Concepts

The following are some Atrtificial Neural Networlefthitions that
are needed in the following section [Zurada, 198@ual, 1997] :

1. An artificial neural network: is a computational structure that is
inspired by observed processes in natural netwafrksological neurons
in the brain. It consists of simple computationalts, calledneurons,
which are highly interconnected. Each interconmechias a strength that
Is expressed by a number referred to agight.

2. Neuron: is the basic processing element of a neural n&twor
Includes weights and bias, a summing function amcatput transfer
function.

3. Bias: is a neuron parameter that is summed with theomesur
weighted inputs and passed through the neuron'sfénafunction to
generate the neuron's output.

4. Bias vector: a column vector of bias values for a layer of
neurons.

5. Connection: a one-way link between neurons in a network.

6. Weight matrix: is matrix connection strengths from a layer's
inputs to its neurons. The element of a weight matriX\V refers to the
connection strength from input j to neuron i.

7. Layer: is a group of neurons having connections to theesa

inputs and sending outputs to the same destinations
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8. Input layer: a layer of neurons receiving inputs directly from
outside the network.

9. Layer weight: the weights connecting layers to other layers.

10. Hidden layer: a layer of network that is not connected to the
network output.

11. Output layer: a layer whose output is passed to the world
outside the network.

12. Input space: the range of all possible input vectors.

13. Input vector: a vector presented to the network.

14. Input weights: the weights connecting network inputs to layers.

15. Input weight vector: the row vector of weighs going to a
neuron.

16. Weight input vector: the result of applying a weight to a layer's
input, whether it is a network input or the outptiinother layer.

17. Output vector: the output of a neural network. Each element of
the output vector is the output of the neuron.

18. Output weight vector: the column vector of weights coming
from a neuron or input.

19. Target vector: the desired output vector for a given input
vector.

20. Error vector: the difference between a network's output vector
In response to an input vector and an associatgdttautput vector.

21. Transfer function: the function that maps a neurons (or layers)
net outpui to its actual output.

22. Architecture: a description of the number of the layers in a
neural network, each layer's transfer function,tmber of neurons per
layer, and the connections between layers.

23. Learning: the process by which weights and biases are

adjusted to achieve some desired network behavior.

AR
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24. Training: a procedure whereby a network is adjusted to do a
particular job.

25. Learning rate: a training parameter that controls the size of
weight and bias changes during learning.

26. Learning rules: methods of deriving the next changes that
might be made in a network OR a procedure for nyouif the weights
and biases of a network.

27. Update: make a change in weights and biases. The update ca
occur after presentation of a single input vectorafter accumulating
changes over several input vectors.

28. Supervised Learning: a learning process in which changes in a
network's weights and biases are due to the iméose of any external
teacher. The teacher typically provides outputetsg

29. Unsupervised Learning: a learning process in which changes
In a network's weights and biases are not duedarttervention of any
external teacher. Commonly changes are a functibrthe current

network input vectors, output vectors, and previvagihts and biases.

1.3 Why Neural Network ?

Why have neural networks attracted particulaméitbt@ compared
with alternative techniques? For a given applicatid is of course
difficult to say that one identification techniquall outperform another
before they have both been evaluated. Nevertheless,desirable to
consider only one technique for all applicationthea than having to
evaluate several candidates on each new applica@arily because it
simplifies the modeling process itself, and alscaose it will enable
implementation of generic tools for control systeesign.

When searching for a single technique that in nueges of

practical interest performs reasonable well, certgipes of neural

VY
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network appear to be an excellent choice. In pagrcthe multilayer
perceptron network has gained an immense popul&rmym numerous
practical applications published over the past dedhere seems to be
substantial evidence that multilayer perceptornde@u possess an
impressive ability. Lately, there have also beemesdheoretical results
that attempt to explain the reasons for this swg;c@8arron, 1993]
[Judisky 1995].

1.3.1 Remarks

1. Artificial neural network solutions can now be irapilented on

special-chips and boards which offer considerabdyenthroughput per
dollar and more portability than conventional coneps or super
computers [Werbos, 1997].

2. Because the brain itself is made up of neural nesyartificial
neural network designs seem like a natural wayytact replicate brain-
like intelligence in artificial systems.(Advantagés) and (2) follow
directly from [Werbos, 1997]).

3. Designs are often much easier to use than thenearal
equivalents-especially when the conventional a#teves require first-
principles models which are not well developed.

4. Various universal approximation theorems suggestaitificial
neural network'san usually approximate what can be done with other
methods and that the approximation can be as gooésired, if one can
offered the computational cost of the accuracyirequ

5. Artificial neural networkdesigns usually offer solutions based
on "learning" which can be far cheaper and fadtantthe traditional
approach of elaborate prior research followed bgatking applications
until they work.

6. Theartificial neural network literature includes dassgo solve

a variety of specific tasks-like function approxima, pattern

VY
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recognition, clustering, feature extraction, angadety of novel control-
related capabilities of familiar linear methods (adtage (5) and (6) are
not unique to artificial neural networks; most bétalgorithms used to
adapt artificial neural networks for specific tastan also be used to
adapt other nonlinear structures, such as fuzzg legstems or physical
models based on first principles or econometric @ho&or example,
backpropagation-the most popular artificial neunatwork algorithm-
was originally formulated in 1974 as a general atgm, for use across a
wide variety of nonlinear systems, of which artdicneural networks

were discussed only as a special case [Werbos].1994

1.3.2 Remarks (General Advantages and disadvantages)

A. The general advantages of artificial neural network including:

1. Accessto existing sixth-generation computer hardware with
hung price-performance advantages.

2. Links to brain-like intelligence

3. Easy to use

4. Superior approximation of nonlinear function

5. Advantages of learning over tweaking including mhaag off-
line to be adaptive on-line (in control).

6. Availability of many specific designs providing Horear
generalizations of many familiar algorithms (amading algorithms
and applications are those for image and speegbrquessing,
function maximization or minimization, feature eadttion, pattern

classification, function approximation, identificat and control of

dynamical systems, data compression, and so on).

¢
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B. Disadvantages
1. Not exact

2. Large complexity of the network structure.

1.4 What is Neural Network?
1.4.1 Neuron Model: [Haward, 1996]

The neuron or node unit (as we defined in sectiwad), as it is
also called, is a processing element that takesrdar of inputs, weights
them, sums them up, and uses the result as thenangufor a singular
valued function, the activation function (trandi@nction).

The neuron model and the architecture of a nenetlvork
describe how network transforms its input into auntpat. Those
transformation can be viewed as a computation. oelel and the
architecture each place limitations on what a paldr neural network
can compute. The way a network computes its outjust be understood

before training methods for the network can be @xeld.

1.4.1.1 Simple Neuron:

A neuron with a single scalar input and no biashewn on the figure
(1.1a). The scalar inpulP is transmitted through a connection that
multiplies its strength by the weight, to form the productvp, again a
scalar. Here, the weighted inpup is the only argument of the transfer
functionf, which produces the scalar outaut

a=f(n)=f(wp) (1.1)

Yo
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Neuron without bias Neuron with bias
I | I I
W ; a W ; a
o O il PO— 2 | fl—
Input Input 1 l b
I I |
a= f(wp) a=f(wp+b)
(@) (b)
Figure (1.1)

Simple Neuron
And we can see the general neuron symbol in therdi (1.2)

below

X1
Input \ n
values X2 W2 >®—>

v
s
&

X o M Summing
function
weights
Figure (1.2)

General Neuron Symbol

The neuron on figure (1.1b) has a scalar la§ne may view the
bias as simply being added to the produgtas shown by the summing
function or as shifting the functidn to the left by an amourit the bias

Is much like a weight, except that it has a corsitgout of valuel. the

1
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transfer function net input, again a scalar, is the sum of the weighted
inputwp and the bia. this sum is the argument of the transfer function
(activation function)}. Examples of various transfer functions are given
in the next section. Note that and b are both adjustable scalar
parameters of the neuron.

a=f(n)=f(wp+b) (1.2)

As shown below in figure (1.3), the biass an adjustable (scalar)
parameter of the neuron. It is not an input. Howgetlee constant that
drives the bias is an input and must be treatexlials when considering

the linear dependence of input vectors.

Wo Bias

Transfer
Wi function  oytput
n y

) |~

Input
values y, —— w,

\
Xn —”| Wn /

weights

Summing
function

Figure (1.3)
Network with Bias Unit
1.4.1.1 Remark

The central idea of neural networks is that suatarpaters can be

adjusted so that the network exhibits some deswedinteresting
behavior. Thus, we can train the network to do diqdar job by
adjusting the weight or bias parameters, or perbiapsetwork itself will

adjust these parameters to achieve some desired end

AR
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1.4.1.2 Transfer Function (Activation function):

As we defined the transfer function (activationdtion) in section

three, the choice of it determines the neuron maleth that, there are

different kinds of the transfer function, for exde®

1. Hyperbolic tangent sigmoid transfer function: a squashing
function of the form shown below that maps the inpuhe interval
(1.-1)

f(n)=2/(1+exq - 2*n))-1 (L3

n

a = tansig(n)

Tan-Sigmoid Transfer Function

Figure (1.4)
Tangent-Sigmoid Transfer Function

2. Symmetric saturation linear transfer function: produces the
input as its output as long as the input i in tege -1 to 1. Outside that

range the output is -1 and +1 respectively.

3. Symmetric hard limit transfer function: a transfer that maps

inputs greater-than or equal-to O to +1, and d&éovalues to -1.

f(n)—l if n=0 (1.4)
-1 otherwise '

YA
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0 n

-1
a = hardlims(n)

Symmetric Hard Limit Trans. Funct.

Figure (1.5)

Symmetric Hard Limit Transfer function

4. Saturating linear transfer function: a function that is linear in

the interval (-1,+1) and saturates outside thisru#l to -1 or +1.

0 if n<0
f (n)=¢n if 0sn<1 (1.5)
1 if 1<n

a = satlins(n)

Satlins Transfer Function

Figure (1.6)

Saturating linear transfer function

5. Radial basis transfer function: the transfer function for a radial

basis neuron is:

radbas(n) = exp_n2 (1.6)

Y4
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Radbas Transfer Function

-0.833
a = radbas(n)

Radial Basis Function

Figure (1.7)

Radial Basis Transfer Function

6. Positive linear transfer function: a transfer function that
produces an output of zero for negative inputsamdutput equal to the

input for positive input.

f(n)z{n if n20 (1.7)

O if n<0O

"L

a = poslin(n)

Positive Linear Transfer Funct.

Figure (1.7)

Positive Linear Transfer Function

7. Log-sigmoid transfer function: a squashing function of the form

shown below that maps the input to the intervall{0,

_ 1
f (n)_m (1.8)
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a = logsig(n)

Log-Sigmoid Transfer Function

Figure (1.8)

Log-sigmoid Transfer function
8. Linear transfer function: a transfer function that produces its

input as its output.
f (n)=n On (1.9)

........... T/ n -

a = purelin(n)

Linear Transfer Function

Figure (1.9)

Linear Transfer function

9. Hard limit transfer function: a transfer that maps inputs greater-

than or equal-to 0 to 1, and all other values to 0.

f(n)={l It nz0 (1.10)

0 otherwise

Y)Y
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-1
a = hardlim(n)

Hard Limit Transfer Function

Figure (1.10)

Hard Limit Transfer Function

10. Competitive transfer function: accepts a net input vector for a
layer and returns neuron outputs of O for all near@xcept for the
"winner", the neuron associated with the most pesilement of the net

inputn,

11. Triangular basis transfer function: a function calculate its
output with according to
tribasln) =1- abs(n JAf =1<n<1;
s(n) (n) | (1.11)
=0 , otherwise

12. Class of sigmoid transfer function:

_ 1
f(n)_1+exp(—/1[h) (112)

Wherel is a positive constant (so-called steepness), eviatie

specifies a particular sigmoid function in thissda

13. Sigmoid transfer function :( with z, x, y parameters)

_ 1
f“0‘2+1+exq—xn+y) (1.13)

Yy
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14. Gaussian transfer function:

2
_ 1 _lin-u
f(n)—ﬁex{ 2[ > }
1.4.1.2 Remarks:

1. The hard limit transfer function is a special sigdanfunction,

(1.14)

obtained a&—w
2. The sigmoid function Hyperbolic tangent sigmoid and Log-

sigmoid) has historically been a very popular choice [Rinae, 1986].
1.4.1.3 Neuron with Vector | nput:

A neuron with a single R-element input vector i®wh below.
Here the individual element inputs

_ 1
P —[pl,pz,...,pR} (1.15)
Are multiplied by weights
T
W =|:W1’1 Wl’2 W]R:| (D16

and the weighted values are fed to the summingtifmmcTheir
sum is simplyWP, the dot product of the matri¥ and the vectoP.

a=f (WT P+b) (1.17)
pP1 [
P2
P3
o
Inputs n =IZ:;W1,- p, +b,
a=f (n)=f W™ P +b)

Figure (1.11a)
Neuron with Vector Input

Yy
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The neuron has a biaswhich is summed with the weighted inputs
to form the net input . This sum,n, is the argument of the transfer
function f.

R
n=> w,.p;+tb (1.18)

this expression can rewritten as :
n=wW P +b (1.19)

We have re-down the neuron with a single R-elermgnit vector
network in figure (1.11a) shown above, in a abiated form below in
figure (1.11b)

Input

1xR
P 1x1
R n
"W f(n)
Rx1 + >
] | b 1x1
1
1x1

R
n=w,p, +b,
i=1
R=no. of elements in input '
vector a=f (n)=f W™P+b)

Figure (1.11b)
Neuron with Vector Input

Here the input vectgr is represented by the solid dark vertical bahat t
left. The dimensions g are shown below the symbplin the figure as
Rx1.

P is a vector of R input elements. These inputs pagtiply the

single row, R column matri¥/. As before, a constant 1 enters the neuron
as an input and is multiplied by a scalar basThe net input to the
transfer functiorf is n, the sum of the bials and the producéVp. This
sum is passed to the transfer functigda get the neuron's outpatwhich

in this case is scalar. Note that if we had momntlbne neuron, the

network output would be a vector [Zurada, 1996].

Y¢
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a =f (wiT P) fori =12,..S (1.20)

where weight vectom contains weights leading toward title output

node, and is defined as follows

-
Wi=lwig w, o wig | (121
1.4.2 Network Architectures

1.4.2.1 Remarks

Before the training can be performed, some isswexl special

attention. Unfortunately, not all questions aralgasswered:

1. What type of relationships can be learned with watifayer
network.

2. How many hidden layers should the network have hod
many neurons should be included in each layer?

3. How should the transfer functions be chosen?.

In [Cybenko, 1989]it is shown that all continuous functions can
be approximated to any desired accuracy, in tefmbkeouniform norm,
with a network of one hidden layer of sigmoidaldden neurons and a
layer of linear output neurons. But it dose notlaxys how many neurons
to include in the hidden layer. This issue is adsleel in [Barron, 1993]
and a significant result is derived about the apipnation capabilities of
two-layer networks when the function to be appratead exhibits certain
smoothness. Unfortunately, the result is diffidoltapply in practice for
selecting the number of hidden neurons.

Due to the above mentioned results one might tthakthere is no
need for using more than one hidden layer and/amgidifferent types
of activation functions (transfer function). Thistmuite true as it may

occur that accuracy can be improved using more istgdted network

Yo
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architecture. In particular when the complexity tbé mapping to be
learned is high, it is likely that the performancan be improved.
However, since implementation, training, and stiaé$ analysis of the
network become more complicated, it is customarg@dply only a single
hidden layer of similar activation functions (trérsfunctions) and an
output layer of linear neurons, [Norgaard, 2000].

Now consider a single layer of neurons with dstail

1.4.2.2 Neurons Layers:

A one layer network witlR input elements anl neurons is shown

below in the following figure (1.12a).

1 M
— o 7 Where
> - L5 | P=[ppd]
1
P2 1l b=[b,,...,b]
R
Ps ny ni =leij pj +bi
J:
» » %
o | > a=f (W P +b)

Figure (1.12a)
One Layer Neural Network

The S neuron R input one layer network also cardiosvn in

abbreviated notation.
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Input
P SxR
p
| n
Rx1 s > o &
] | b Sx1 Sx1
R
Sx1 n=w,p, +b,
j=1
R=no. of elements in input vecto '
S=no. of Neurons in Layer T a=f (n)=f W'P+b)

Figure (1.12b)

One Layer Neural Network

In this network, each element of the input vector

P =[ Py Py - PR ] Is connected to each neuron input through the

weight matrix W. The ith neuron has a summand that gathers its
weighted inputs and bias to form its own scalapatm;. The various;

taken together form aelement net input vectar. Finally, the neuron
layer outputs from a column vectar= [al a ... aS]T. We show

the expression faoa at the bottom of the figure (1.12b).

The input vector elements enter the network thinotilge weight

matrix W.
Wl,l le Wl,R
W w . W
we| "2 M2z V2R w22
Ws1 Vs Ws r

Note that the row indices on the elements of im&if indicate the
destination neuron of the weight and the columiciaies which source is

the input for the weight. Thus, the indicesnip, say that the strength of

Yv
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the signal from the second input element to trst {imnd only) neuron is

W1 2. Such that

'R
M= 2 Wi P

J_

% = f[g W ij fori=12...,S
J:

1.4.2.2 Remarks

Jfori=12...,S

The following notations are used

1. weight matrices connected to inputgut weight.

2. weight matrices coming from layer outputsjer weight.

(1.23)

(1.24)

3. we will use superscripts to identify the soursecond index

and the destinationfi{st index) for the various weights and other

elements of the network. Further, we have re-drdtwm one layer

multiple input network shown above (Figure 1.1141b) in abbreviated

form below.
Input 1 R=no. of elements in input vector
SR S'=no. of Neurons in Layer

> 1w n-

Rx1 + > f, » 4

; L S'x1 Sx1

4 R

s'x1 n=>w,p, +ba=f(n)=f(w p+b)

Figure (1.12c)

One Layer Neural Network
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1.4.2.3 Multiple Layer of Neurons

The following is the architecturexf multilayered neural network,
figure (1.13) shows the notations of 3-layer neuralwork where the
network can have several layers. Each layer hagighivmatrixW, a
bias vectoib, and an output vect@. To distinguish between the weight
matrices, output vectors, etc., for each of thasers in our figures, we
will append the number of the layer as a superstoighe variable of

interest.

P1 [
P2
P3
Pr
o |W1’1
Input First Layer Second Layer Third Layer
Where

Figure (1.13a)

Three Layer Neural Network
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The same three layer network discussed previoalsly can be

drowning using our abbreviated notation.

Input First Layer Second Layer Third Layer
I | | I
p
1
‘+->f1->a >+->f2->a2->+->f3 N
A
1] | b 1" b 1] | b
Where

Figure (1.13b)

Three Layer Neural Network

In figure (1.13a, 1.13b), thérst layer is called thénput layer
which connected with the inputs of the network, thied layer is called
the output layer referring to the fact that it produces the outputhe
network, and the second layer is known ashiluglen layer since it is in
some sense hidden between the external ifput®,, p, ] and the output
layer.

Note that the outputs of each intermediate layerthe inputs to

the following layer. Thus! is theoutput of thanput layer (first layer)
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al = fl(lwll p+blj 1.253
SO thata1 can be written as
1_ 1R 1
aj =fJ ZWJI pl+bJ ,fOFj=l,2,,S (125b)
whereal will be the input to théidden layer (second layer), and2 will

be the output of the hidden layer
a2 =t 2(|_W2;L al + bz) (1.26a)

which can be written as

-_fz{slw b} for i = 2
a > ak + ,fori=21,2...,S (1.26b)

where a2 will be the input of theoutput layer (third layer), andaSwill

be the output of the network

3_+¢3 2
a3=f (l_wa2 a +b3j (1.27a)
which can be written as
g2
a3 = §3 2 _ 3
k—f [21 i & +bk] ,fork=12...,S (1.27b)

such that the mathematical formula expressing ihajoing on in the

three-layer network takes the form

a%= 13 (Lwigp £ 2 (Lwpy 11 (1Wyg p+by)+ by bg) (1.28a)

which can be written as

2 gl 1
a, = f {Z { p|+bjj+blj+bk (1.28b)

wherej=12...s1, i=12...,52, k=12...,S°

AR
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The network shown above h&$ inputs,S' neurons in the first
layer, & neurons in the second layer, etc., it is commandiéferent
layers to have different numbers of neurons. A tawtsinput valu€el is
fed to the biases for each neuron. The three-lageral network is a

vector-matrix form as shown below
a3= 13 (Lwgy £ 2 Lwpy (1w p+by)+by)+bg)=y (1.29)
1.4.2.3.1 Remarks

1.Multiple layer networks are quite powerful. For teusce, a

network of two layers, where the first layer ismsm@d and the second
layer is linear, can be used to approximate anygtfan (with a finite

number of discontinuities) arbitrarily well [Zurade996].

2.The styles of approach of the two extremes are somat

different. The subject of artificial neural commgiis based on networks.
There are two extremes of the architectures of ribevorks: Feed
forward networks (input streams steadily through the network froset
of input neurons to a set of output ones) eeairrent networks (where
there is constant feedback from the neurons ohéteork to each other)
[Hophield, 1982]. This is mirrored in the differeasc between the
topologies such networks posses: one is the |lme tlae other the circle,
which cannot be topologically deformed into eacheot As is to be
expected, there are two extreme styles of communtati these networks.
In the feed forward case the input moves throughnistwork to become
the output; in the recurrent network the activiiileshe network develop
over time until it settles into some asymptoticwmaivhich is used as the
output of the network. The network thus relaxe® itltis asymptotic

State.

There are several kind of networks (see appeBlixso we will

discussed the feed forward networks because weg umseur work.
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1.4.2.4 Basic Neural Network Architectures

1. Feed forward Neural Network: The best known neural network
architecture is the multilaydéeed forward neural network (multilayer
perceptron). It is a static network that consists of a numbgftayers:
input layer, output layer and or moréhidden layers connected in a feed
forward way[Zurada, 1996]Each layer consists of a number of
McCulloch-pitts neurons. One single neuron makes the simple operat
of aweighted sum of the incoming singles andbias term (or threshold),
fed through dransfer function (activation functionf and resulting in the
output value of the neuron. A network with one leddayer is described

in matrix-vector notation as
a=Wf(V p+b) (1.30)

or in element wise notation:
nh .
a =rzlvvi ZVrJ pJ+br 1=1...,1 (1.31)

Here pOR"is the input andalR'the output of the network and the

nonlinear operatiohis taken element wise. The interconnection magrice
areWOR"™™ for the output layeM OR™™ for the hidden layerb O R™
Is the bias vector (thresholds of hidden neurong) wh the number of

hidden neurons.

For a network with two hidden layers one has

a=W f(v2 f(v1 p+b1j+b2j 12)
or
L L Y M RN G +|g£ZJ i=1..,1 (1.33)
a = e fl 2 ts lesj j *bs e .
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The interconnection matrices ard/JR™™ for the output layer,
V,OR™™ for the second hidden layer asi0R™™ for the first
hidden layer. The bias vectors adel1R™ b, [0R™for the second and

first hidden layer respectively. In order to delseria network with L
layers (L-1 hidden layers, because the input lg/ar'dummy’ layer), the

following notation will be used in the sequel
! | N
ol =t(e ) &= s ol (1.34)
J=1
Wherel =1,...,Lis the layer indexN, denotes the number of neurons in

layer| and p'is the output of the neurons at layeiThe thresholds are

considered here to be part of the interconnecti@triry by defining

additional constant inputs.

The choice of the transfer functioh may depends on the
application are. Typical transfer functions arevghan section four. For

applications in modeling and control the hyperbtdicgent function
tank(p) = (1-exg(- 2p))/L+exp(-2p)) (1.35)

Is normally used. In case of a 'tanh' the derieatif/the transfer function
isf =1- f2.The neurons of the input layer have a linear fens

function.
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Input Layer Hidden | aver

Output Layer
P3

P @ O\ : )
P @ .
./v@

() Where...
a'=f(Iw, p+b')

a’ = f2(LW,, a" +b?)

/

Input of the Bias

Figure (1.14)

A fully Connected Two Layer Feed forward Networkwi hree Inputs,
Two Hidden Neurons and Two Outputs

For more information about different networks swsh Radial

Basis function network, Recurrent neural networks) see appendiB.

1.4.3 Mathematical Theory of Neural Learning

We defined aearning rule in section three as a procedure for

modifying the weights and biases of a network. §Tgriocedure may also
be referred to as tmaining algorithm ). The learning rule is applied to
train the network to perform some particular tdsdarning rulers fall into
two broad categoriesupervised learningandunsupervised learning

In supervised learning, the learning rule is provided with a set of
examples (théraining set) of proper network behavior:

{po, td { P2, t2}, -y {Po Lo}
Wherepq is an input to the network, artglis the corresponding correct

(target) output. As the inputs are applied to the netwdhle network
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outputs are compared to the targets. The learnitg is then used to
adjust the weights and biases of the network ieot@ move the network
outputs closer to the targets.

In unsupervised learning, the weights and biases are modified in
response to network inputs only. There are no tasgguts available.
Most of these algorithms perform clustering operadi They categorize
the input patterns into a finite number of classéss is useful in such
applications as vector quantization [Rosenblat6119

Equivalently the supervised learning algorithm is guided by
specifying, for each training input pattern, thassl to which the pattern is
supposed to belong. That is, the desired respdnée metwork of each
training input pattern and its comparison with #wtual output of the
network are used in the learning algorithm for appiate adjustments of
the weights. These adjustments, whose purpose imitomize the
difference between the desired and actual outpaie made
incrementally. That is, small adjustments in theghts are made in the
desired direction for each training pair. This ssential for facilitating a
convergence to a solution (specific values of theigits) in which
patterns in the training set are recognized witiphhiidelity. Once a
network converges to a solution, it is then capalflelassifying each
unknown input pattern with other patterns that@dose to it in terms of
the same distinguishing features. While in @msupervised learning
algorithm, the network forms its own classificatiof patterns. The
classification is based on commonalities in certiatures of input
patterns. This requires that a neural network impgleting an
unsupervised learning algorithm be able to ident§mmon features

across the range of input patterns [Paual, 1997].

1
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1.4.3.1 Remark

Some theoretical results concerning the artific@liral networks

and its derivates, necessary mathematical backgsouand its
generalizations, etc, can be found with some deitaidppendidC and for
simplicity the information's have omitted from here

1.4.3.1 General Learning Equation:

A neuron has ability to modify its connection weigh

w =|:W1,W o Wy ] depending on the input  signals

P =[ Py P o Py } which it receives and the associated teacher lsigna

or error signals. The teacher or error signal ispnovided in some cases,
where a neuron modifies its weights depending onlyts state and input
signal. This is the case abn supervised learning and such a learning
scheme is sometimes callself-organization In order to build a general
theory of neural learning, we consider the follogvisituation [Amari,

1977]: A neuron receives input signgtdrom an information source,
to which it is to adapt. A set of training signalg ,a =1,2,...,k, may be

regarded as a set of examples from the informatoamce ( Figure 1.15).

neuron
Information Source

Figure (1.15)

Learning Scheme
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The probability or relative frequency qf, is denoted byP,, > P, =1.
Let a, be the teacher signal associated with inpgt. One may use the
error signale, instead ofa,, .

The environmental information sourdes, henceforth, specified by a

probability structure of signal pairs.

1={(pg.ay.Py)a=1...K 6)3
or more generally by
1 ={(p.,a P(p.a)} (1.37)

Where P(p,a) represents the probability distribution of a pigira) of an

input p and the associatedl . In some cases is missing, so that

1 ={(p.P(p)} (1.38)
1.4.3.2 Learning Neural Networks:

Learning behaviors of a single neuron are treatethé previous
part, where we fix the environmental informationuse |. When a
neural network modifies its behavior cooperativelgch neuron changes
its connection weights according to the learninguatigpn. The
environmental information sourdeof each neuron, however, is not fixed
but changes as the other neurons modify their adiome weights,
because the information sourtef one neuron is given by the behaviors
of other neurons in the network. Hence, we needoloe a set of the
mutually coupled learning equations.

We give an example of learning networks.

1.4.3.2.1 Backpropagation and its Generalization:

1. General Learning Scheme:
Let us consider a neural netwaxk which receive a vector input

signal p, processes it, and emits a vector outputLet S be the set of

modifiable parameters (connection weights and tioles). Which

YA
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specify the network. The output is determined alirection of input
pand the parameter valugsas

a=f(p,S) (1.39)
depending on the network architecture.

Let | be the information source of the network, whichtersignal
p with probability P(p), for each signalp there is an associated desired
output a=d(p). Amari in 1967formulated a general learning scheme of
neural networks in the following manner.

Let I(p,S) be a loss when inpup is processed by a network

whose parameter value @&eA simple example of the loss is the squared

error
1 2
|(p;S)=3[f (p:S)~d ()] 40)
Which is used in théack propagation learning rule. However, there
are many other types of reasonable loss. The exgpéass is given by
L(S)=(1(p;S)) = [P(p)I(p;S) dp (1.41)
The parameters which minimiz&(S) give the best network, which

satisfies

oL(S)
oS

The best parameters may be obtained bygthdient method.

=0 (1.42)

The learning rule is given by the gradient method s

St+1=5t'ct—al(gts;st) (1.43

WhereS; are the values d at timet and Pt is the input at. The

parametefS, approaches one of the local minimaldg). Amari in 1967

proposed, more than 39 years ago, this type of rgehearning and
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studied the trade-off between the speed and theaacyg of convergence.
He also applied the method to layered neural nddsv{ffigure 1.16), and

gave a general learning rule including that ofgbecalledhidden units.

Input Output
Layer

X1

a
X2
Where ...
a; = f(ZWji Qi)
a9 =fCv,.p)
0]

Hidden Layer

Figure (1.16)

Layered Neural Network

2. Back propagation of Layered Networks:
We show the famousack propagation rule as an example of the

general scheme. Here we use three layer netwoitggré=1.17),
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Outnut L ave

O
> o

Input Layer

O

Inputs p

Where ...
a; = f(ZWji qi)
Hidden Layer q=7fCQ.v,p)

Figure (1.17)

Back propagation learning

But the same rule holds for more general layeretvorks. For

input P, theith element of the hidden unite em'rq§= f(Zwik pk) and

thejth element of the output unit emits

a; = f(zvji qij: f(IZVji f(%wik ka (1.44)

Where W and v.. are the connection weights from the input layer to

ji
the hidden layer, and from the hidden layer todhgut layer. Threshold
values may be included in the above by adding & which emits a

constant value.

The modifiable parameters a®= (Vji’wikj' For the error loss

| = 0.5e2,e=\a—d\ ,

ollpy:S) _ (1.45)
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where
ollp;S)_ o
" =Py (1.46)
ik
Where
_ '
s —%Wji f {%Wikpk]rj (1.48)

are the learning signals @h andith elements of the output and hidden

units, respectively. Since the learning signaﬁsare determined blyack

propagation the error signals, this is called thmack propagation
method [D. E. Rumlhart, G. E. Hinton, and R. J. William¥988] ,
although there were many predecessors (e.g.,[S.riAma67], [P.
Werbos, 1974], [D. B. Parker, 1982])).

3. Details on Back propagation of Recurrent Networks: see

appendixC .
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3.1 Introduction
Based on the theoretical results obtained in @rapio, the following

illustrations and computational algorithm have beéeveloped. Two
illustrations concerning the nonlinear Pendulumteaaysand 3-dimentional
nonlinear system have also been simulated. The mcatheontrol results are

shown in Tables and Figures, supported by somelusahments.

3.2 Computational Algorithm

Based on the proof of the main problem (theorefl2theorem 2.7.2)
of chapter two, the following step-by-step compiotal algorithm have
been proposed.

Consider the general problem

X =Ax +Bf (x)x +Bg(x)u(t) B
where xOR", and the smooth functions ORM* ", gORM*™M such that
9(x)#0,0x, and g,(x)20, 0Oi=1..,m0=1..m, uOR™ is the

control, AOR™N BOR™M gre constant matrices.

To design a nonlinear neuro-controller ( a nordmeontroller) so that
the nonlinear uncertain dynamic control systemtabiized, the following

step-by-step procedure have been adapted.

Step (1): To test the controllability of (3.1), the pai®,B) should be
controllable and hav@(A, B)=|B, AB, ..., A"Blis of rank n.

Step (2): check the boundnees of the given functigfix) such that
9(x)#0,0x,g,(x)#0, Oi =1,...,m 0 =1...,m, And

lg(x)| >&, wheree >0, OR

Ao
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Step (3): the uncertain functionf (x) where its estimatorf(x), and a

functional error estimatiorf (x), such that

H f(x)- f (X)H = H ?(x)” <f (x)

For some known function bount], (x)

Step(4): set that the desired state  vectory,(t)OR",

v,0)=ly,, v,. ... y"]", and to check thaty,(t) is bounded and
continuous.

Step (5): using the result of step (1), to transform thstem in (3.1) into

block companion form by assumire=T x, wherez = [Zl zn_T, Such

m

: : : : 0 .
that T be anynxn invertible transformation matrix wheré {I 1 isa

m

unit matrix of dimension mT can be chosen such thait L = [L:B], where L
Is selected such that the inverse exists (see kef&.2.1), remark (2.6.2.2)
and example (2.6.2.1)), so that the system in @afh)be rewritten as
z=Az+Bh(z)+Bgu (3.2)
Where h(z) = f (T‘1 z) be a known functionsg JR™™ be a known function

and g¢(z2)#0,0z, ut)DR™ be the control, and assume that

[0 1 0 - 0
0 0 1 - 0
A= -1_| : : Do B-TR = T
A=TAT =i © & . 1| B=TB=[Op O - Ip
0 0 0 - 1
_0'1 0’2 0'3 O’n_

where A benxn matrix, B be nxm matrix andOpp,| iy, be theZero matrix
andUnit matrix of dimensiomnm respectivelya,,i =1,...,nare constants. So

that the system (3.2) can be rewritten as

—  z=TAT 1z+TBh(z)+TBgu()

AT
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[z ] o1 -0z ][ O0T7[ 0] 0
22 00 --0 Zy 0 0 0
S P R . 2N : N ) N :
zn—l 00 1 Z. 1 0 0 0
' Zn | [0 O -+ O] z | _hm(z)_ _gmu(t)_ a2 + a2, * ...+ a2
Wheregmz[gml gm2 gmm]’ u:[ul u2 um]T )
_Zl__Ol--- 0__21__ 0 17T 0
= ' : + : +
zn_l O O . 1 Zn_l O 0
2y | |0 0 - O] 2z | _hm(z)+alzl+azzz+,,,+anzn_  gmult)
Let
F(Z):hm(2)+0121+0222+...+an2n (3.3)
_Zl__Ol--- 0__21__0__0_
22 OO0 -0 Z, 0 0
2 I PR . N )

Zn 0 0 --- 0|l z F(2) _gmu(t)_

Hence

)

277 (3.4

=Z

Zn =gmult)+F(2)
y=4

Step (6): Define the filtered tracking errant) as follows
r, = KT e

Wheree, =z-y,, and Chose vectorK = lkl k2 kn _1 1]T.
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And find normr, as

Ir =2l t)

Such that the derivative of the filtered trackimgpe
r,=K"¢ and frome,=z-y,

We have that
= V.. whereY = T
f=F(z2)+gmult)+Y,, whereY ——ydn+i§l i €41

Step (7): Define the control of the system (34(}) as follows
u(t)= ul(t)+ u2(t)
Whereul(t)be the control input of the system (3.4), such that

u =W-d

2

WhereW is the tracking control law anﬁl2 Is the approximate function of
the u2(t) whose is the nonlinear control of the system (3uhich be

approximated by neural network.
Step (8): To find the tracking control lawV using the derivative of the
filtered tracking errorr(t) and substituting u(t)=ui (uy(t) +u,(t) where

1
u=—

,0i=1...,m suchthatu #0,0i=12....,m and u =W -0, we

mi

will get the following

1 [
W = -Flz)-Y, - kyr+a
gui () d V

Where we must chose

1. whereF be the fixed approximation of the functiorfal

2. k, is the feedback gain.

3. that a be the robust term chosen for the disturbancetieje which

can be defined as
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a(t)=-f_(z)sign(r)

1 r>0
0 r<oO

sign(r)={

wheresign(+)is the standard sign function.

Step (9) (Neural Network): Consider the two-layered feed forward neural

network have a2n input XNN = lyd : eJT , whose value are real number and

the hidden layer has neurons, the output layer hiasieurons.

so that the first layer feed forward neural netwoave

1. Aninput XNN =lyd,eJT.

2. The biasb we will chose it randomly and have an input vak(l]e= -1.
3. The weights matrixV which we chose it randomly too.

4. We chosing thelLog-sigmoid as the transfer function (activation

function) f to the first layer and to the hidden layer too igkhbe

explained in chapter one) because it is differéteiand commonly used

in many methods such as Back propagation method

)= = hered = 3 V. x.i=12
_m,w ere i—j2:1 in.,I—l, S 1

5. The output of the first layey can be found by

2n
qi(t)zf{ Y Vij(t)xj(t)]+bI wherei =1...,m
=1
And the hidden layer (second layer) have
1. The outputg of the input layer (first layer) will be the inpto the
hidden layer.

2. The ideal neural network weight matrix of the hiddayerw we chose it

randomly and it will be bounded by
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W] = wm
With wpy, known bounds.
3. The estimate neural network weight of the ideal ghtiw can be

provided by the neural network tuning algorithm

W=Sf (VT XNIN )r Im(2)—kr|w

Where S: be any constant representing the learning rétdsemeural
network.

k: be a small positive parameter.
4. The neural network weights approximation errorad®ivs

W=W-W

Where the neural network weights approximation remo and the
filtered tracking error are bounded by the probf theorem (1) of

chapter two as follows

1
k 2 1 2
JWER ER oW
N 2 Wm*én * 5Wm L 2
[Wg 2 where|W|. = |>w

Kk i

]

And

5. The output of the hidden layer can be written as
m _
yk(t)= f(iglwki (t)a (t)] wherek =1,...L

such that the output of the neural netwoyrll( Is the approximation function

Oz(t) of the nonlinear contrallz(t) of the system (3.4), hence

~

Us =Yk
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Step (10): Now we can find the control inptull(t) by

ul(t) =W - az(t)
such that the control inputs to the system (3.4) a@hsteps from (step (9))
will be repeated in close loop until the nonlinegstem in (3.4) approaches

zero (until the nonlinear system in (3.4) will ftable).
The solution of system (3.1), (3.4) and the neurgwork tuning

weights algorithm (W(t)) can be obtained using any suitable numerical
method. In this thesis a Rung-Kutta method of ordleusing MATLAB
version 6.5 and personal computer's (PIT 4), hagenbadapted. The

simulation have implemented step-by-step on tinerval t D[O, r] and step

size thi, N, is suitable positive natural number. The randomioer of

0
w,V are initially selected to belong (e 1 1). The initial conditions ofv are
randomly selected, the initial selection of dynaahisystem are suitable
selected or given. The adjusting of the weighisare adapted for each step
size h. The artificial neural network are designed foclealiscrete system
(for each step time) and collected as a whole prabior all time interval

tD[O, r] and the number of inputs, outputs, layer, notesdapendent on

number of divided time interval.

3.3.1 Application ( Nonlinear System of Pendulum Type):

For solving nonlinear system of " Pendulum Typend @0 verify the
effectiveness of the neural network we will shoewd some successive
steps for this purpose.

Consider the nonlinear system of Pendulum type as

9
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X =%
X5 = =53 = 2%, +u (3.5)
y=%1
Whereu is the control of the system, which we definedithe algorithm
above step (8) as

u=u, +u,
whereu1 = is the control input to the system above and
u,= Is the nonlinear control which we fined it by theneral neural

network approximation property.

Then we have
f(x)=-5x2-2x, ,g(x)=1. 3.6)

Step (1): since the system in (3.5) is already in compafom, so sefl =1

and go to the next step.

Step (2): The numerical solution haven been obtained udthorder Rung-

Kutta explicit, for the time intervat =[0,100] and step sizen =120 for

0

N, =20 on MATLAB version (6.5), and the following symisohave been

used

where
I = stands for number of dividing time interval.

Tack the initial condition of the system in (3.5)»a(0) =0, x,(0)=1. We get

the following

ay
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Results of uncontrolled systefu=0) (3.25) without using neural

network at timet 1[0,100] and step siz&é=5

t i x,(i) %, (i)

0 1 0 1.000
5 2 0.1831 -0.0191
10 3 0.1312 20.0061
15 4 0.1087 20.0034
20 5 0.0950 -0.0022
25 6 0.0856 -0.0016
30 7 0.0785 -0.0012
35 8 0.0730 20.0010
40 9 0.0685 20.0008
45 10 0.0647 20.0007
50 11 0.0615 20.0006
55 12 0.0588 -0.0005
60 13 0.0564 -0.0005
65 14 0.0542 -0.0004
70 15 0.0523 -0.0004
75 16 0.0506 20.0003
80 17 0.0490 20.0003
85 18 0.0476 20.0003
90 19 0.0463 20.0003
95 20 0.0451 -0.0002
100 21 0.0440 -0.0002

Table (3.1)

ay
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Solution of the system (3.5}, (t),t 00,100 without using neural network
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x,(t), %, (t), t 0(0,200) without using neural network

Step(3):Consider the desired trajectory are given by
X Oll(t) =sin(t) = sin(t =ih) = sin(ih)

xd2(t)=cos(t)=co t =ih)=codih)
wherey, =(x,,(t), x,,(t)) , with time t[[0,200], and step siz&=5.

q0
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Desired Trajectory with 0[0,100] and step sizé =5

t

X dl(i) =sin(ih)

X4 pli)=cos(ih)

0 1 0 1.0000

5 2 -0.9589 0.2837
10 3 -0.5440 -0.8391
15 4 0.6503 -0.7597
20 5 0.9129 0.4081
25 6 -0.1324 0.9912
30 7 -0.9880 0.1543
35 8 -0.4282 -0.9037
40 9 0.7451 -0.6669
45 10 0.8509 0.5253
50 11 -0.2624 0.9650
55 12 -0.9998 0.0221
60 13 -0.3048 -0.9524
65 14 0.8268 -0.5625
70 15 0.7739 0.6333
75 16 -0.3878 0.9218
80 17 -0.9939 -0.1104
85 18 -0.1761 -0.9844
90 19 0.8940 -0.4481
95 20 0.6833 0.7302
100 21 -0.5064 0.8623

Table (3.2)

a1
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Step (4): Find the tracking errors, (t), e, (t) at time intervalt =[0,100such

that

The evaluation of the tracking errofg(i)e(i)) at time interval

t =[0,100],and step sizé =5are as follows

ay
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Errors (el(t),ez(t)) of the System (3.5) Without Using Neural Network

t i e (i) e, (i)

0 1 0 0

5 2 1.1420 -0.3028
10 3 0.6752 0.8330
15 4 -0.5416 0.7563
20 5 -0.8179 -0.4103
25 6 0.2179 -0.9928
30 7 1.0665 -0.1555
35 8 0.5011 0.9027
40 9 -0.6767 0.6661
45 10 -0.7862 -0.5260
50 11 0.3239 -0.9656
55 12 1.0585 -0.0226
60 13 0.3612 0.9520
65 14 -0.7726 0.5621
70 15 -0.7216 -0.6337
75 16 0.4384 -0.9221
80 17 1.0429 0.1101
85 18 0.2237 0.9841
90 19 -0.8477 0.4478
95 20 -0.6382 -0.7304
100 21 0.5504 -0.8625

Table (3.3)

aA
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The output of the system (3.5) and the error withming neural network

Step (5): Find the filtered tracking errar(t) asr(t)=K €t), K =[2,1]

2
sizeh=5, r(t)=r(t=ih)5r(i)=2(x (|)+S|n(|h))+(x (i) - codih))

and elt) = lel(t) e (t)]T such thatr(t) at time intervalt =[0,100],and step

19
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Filtered Tracking error with1[0,100, h=5

t i r(i)

0 1 0

5 2 1.9811
10 3 2.1834
15 4 -0.3269
20 5 -2.0462
25 6 -0.5570
30 7 1.9776
35 8 1.9050
40 9 -0.6872
45 10 -2.0984
50 11 -0.3178
55 12 2.0944
60 13 1.6743
65 14 -0.9832
70 15 -2.0768
75 16 -0.0453
80 17 2.1959
85 18 1.4315
90 19 -1.2476
95 20 -2.0067
100 21 0.2382

Table (3.4)

The norm ofr(t) is approximated using the numerical results wigch

depends on the simulation such that the nofth=|r(t) = 7.1271
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Step (6): Chose the tracking control law of the system (&¥%)using the
derivative of the filter tracking error and by stibuting that

u,(t)=wW(t)-q,(t) so that we can chost as follows

_’]_ ~
W=—"|-F
g(x)( )

Where we can find/ d from the algorithm step (6)above as

Yy = sin(t) - 2(codt)) + 2x2(t)

Yyq +a+kvr)

supposer- (x) = —2><i2 - 2X,, ky =1. And Consider the robust term have the

w3 a2
form a—5x1 2x1.

so that the tracking control laW/(t)=W(t =ih)=W(ih)=W(i) wherei =
stands for number of dividing time interval. Whéne behavior of nonlinear

part of tracking control lawV is shown in the following figure too.

5T

2.5

| s
5
-l
>
G_
—
<>
<

—2.5T

-5+

Figure (3.5)

The behavior of the tracking control |ay

And the simulated on time intervall[0,100| for step sizeh =5 as follows
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The Tracking Control LawW ) results witht 0[0,100 for h=5

Step (7): Since the control input as we defined above is

u, (t)=w(t) -0, (t)

Tracking control law
t i (W(i))
0 1 2.0000
5 2 3.5381
10 3 1.0605
15 4 -2.4902
20 5 -2.1387
25 6 1.5609
30 7 3.2765
35 8 0.5277
40 9 -2.7646
45 10 -1.8973
50 11 1.8757
55 12 3.1394
60 13 0.0752
65 14 -2.9341
70 15 -1.5834
75 16 2.1866
80 17 2.9696
85 18 -0.3607
90 19 -3.0372
95 20 -1.2292
100 21 2.4696
Table (3.5)
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WhereW(t)= be the tracking control law

Gz(t)s be the approximate function for the nonlinear rmirmz(t).
such that we will going to finﬁz(t) by using the general neural network

approximation property as follows.

Step (8) (Neural Network): Consider the two-Layered feed forward neural

network have four, ten, one neurons at the inpdtldn and output layers

respectively.

S

1. The inputs for the first layer aney N = 1 ez]

[Xdl Xd2
For t1[0,100] using step sizé=5.
Remark:

Since the simulation are implemented step-by-digpending on the
divided time interval, the number of input to adi&l neural network as well
as the number of outputs are depending on the nuwibéivided time
interval and this is the very important problem egpng in continuous
neural network.

Such that the inputs of the network have the folhgaresults

Xy = [sin(t=ih). codt =ih) %@=m)‘b@=mﬁ

=  =lsin(ih), codih) el(i) e2(i )
Such that, the simulation of the neural networkuispwill be shown in the
table (3.6) with time intervai[1[0,100] using step sizé=5.

Yo
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Inputs to the First Layer Neural Network\, with t[[0,100)

and step sizé=5

t i xdl(i) xdz(i) e2(i)

0 1 0 1.0000 0

5 2 -0.9589 0.2837 1.1420 -0.3028
10 3 -0.5440 | -0.8391 0.6752 0.8330
15 4 0.6503 -0.7597|  -0.5416 0.7563
20 5 0.9129 0.4081 -0.817¢ -0.410B
25 6 -0.1324 0.9912 0.2179 -0.9928
30 7 -0.9880 0.1543 1.0665 -0.1555
35 8 -0.4282 | -0.9037 0.5011 0.9027
40 9 0.7451 -0.6669|  -0.6767 0.666]
45 10 0.8509 0.5253 -0.7864 -0.526D
50 11 -0.2624 0.9650 0.3239 -0.965p
55 12 -0.9998 0.0221 1.0585 -0.022p
60 13 -0.3048 |  -0.9524 0.3612 0.9520
65 14 0.8268 -0.5625|  -0.7726 0.5621
70 15 0.7739 0.6333 -0.7216€ -0.6337
75 16 -0.3878 0.9218 0.4384 -0.92211
80 17 -0.9939 | -0.1104 1.0429 0.1101
85 18 -0.1761 | -0.9844 0.2237 0.9841
90 19 0.8940 -0.4481|  -0.8477% 0.4478
95 20 0.6833 0.7302 -0.6384 -0.730¢
100 21 -0.5064 0.8623 0.5504 -0.8625

Table (3.6)
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2. Let the bias are selected randomly distributed betwekhand+15,

whereb(j), j=12,... 10, j = depends on the number of the neuron in the
hidden layer(j =10)in this application, the bias will be chosen aofws:
The biasb to the First Layer Feed forward Neural Network

Bias
b

Table (3.7)

with input to the bias has the valuﬁ =-1.

3. Consider the first layer feed forward weights
Vij wherei =1,...10, j =1,...4,(in this application) whera, j = representing
the number of neurons on the hidden layer andrthetilayer respectively.
Such that/;  will be chosen randomly distributed between -1 ahds

The First Layer Feed forward Neural Network WeigWits

i The first layer neural networ¥,

1 -1 1 0 -
2 1 B ! -
3 1 0 ° -
4 -1 1 ! °
5 1 . ° N
6 0 1 0 °
7 -1 0 0 °
8 0 ! ° §
9 -1 1 ! °
10 1 ! : N

Table (3.8)
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4. We chose thé og-sigmoid transfer functionf (activation function)

(which be explained in chapter one) because iifisrdntiable and

commonly used in many methods such as Back propagaethod
t(1)

noted that 4,(t)=A (t,)=A(jh)=A(j), wherei=12,...10, i= stand for

4
=, where A. = V.. x.,1=1...10
1+exg- A) I jzzl ij ] R

number of evaluates in valié), j=stand for number of divided time
interval. Such that the result dfon the time intervat =[0,100 with step

sizeh=5, the evaluation are as shown in table (3.9)
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The values of the sigmoid functioh(1) att[0,100] and step siz&=5

t 0 [AG) [AG)]4G) | AG)AG)H AG) T AG)H [ AG) ] AG) | ()
O 1 |3.00 |[4.00 2.00 |3.00 |3.00 |-6.00 |2.00 |6.00 |-6.00 |-4.00

5 | 2 10596 |4.413 1.041}4.67 |4.372]-6.23 |3.55 | 3.182]-6.302 | -3.403
10| 3 |2.613 | 6.672|1.456| 5.381| 6.216| -8.540| 5.347| 2.941| -5.167 |-1.198
15| 4 |4.948 | 6.516] 2.650| 4.109| 4.865| -8.407| 3.974| 5.432| -5.243 | -1.375
20| 5 |4.320]4.181] 2.912| 2.679| 2.268| -6.086| 1.363| 7.139 -6.410 | -3.723
25| 6 |1.656|3.016| 1.867|3.141| 2.148| -4.930 1.233| 5.640 -6.992 | -4.898
30| 7 10.789]4.690 1.012| 4.833| 4.678|-6.611} 3.756| 3.099] -6.155 | -3.231
35| 8 12.973]6.806) 1.571|5.331| 6.234|-8.733] 5.307| 3.167} -5.097 | -1.1206
40| 9 |5.087|6.331 2.745| 3.921 4.587| -8.264| 3.656| 5.754| -5.339 | -1.598
45 | 10 | 4.111 | 3.948 2.850| 2.623| 2.097| -5.884| 1.162| 7.162| -6.526 | -3.986
50| 11 | 1.448|3.069) 1.737|3.297| 2.331|-5.008| 1.394| 5.378] -6.965 | -4.869
55| 12 | 0.919 | 4.955| 1.002| 4.977| 4.955| -6.896| 4.013| 2.963| -6.022 | -2.980
60 | 13 | 3.286 | 6.904| 1.695| 5.257| 6.209| -8.848| 5.265| 3.381| -5.048 | -1.039
65 | 14 | 5.161 | 6.124] 2.826| 3.735| 4.297|-8.070) 3.351| 6.037| -5.437 | -1.821
70| 15|3.861 | 3.733] 2.773| 2.592| 1.959| 5.680 | 1.011} 7.128| -6.633 | -4.421
75| 16 | 1.251 | 3.156| 1.612| 3.466| 2.544| -5.105| 1.594| 5.095| -6.922 | -4.793
80 | 17 |1.073 | 5.220| 1.006| 5.104| 5.214| -7.171 4.263| 2.852| -5.889 | -2.7305
85| 18 | 3.584 | 6.968| 1.823| 5.160| 6.144| -8.920| 5.192| 3.615| -5.015 | -0.983
90 | 19 | 5.189 | 5.895| 2.894| 3.554| 4.001| -7.849| 3.048| 6.293| -5.552 | -2.057
95 | 20 | 3.591 | 3.539| 2.683| 2.586| 1.856| -5.493| 0.901| 7.051 -6.730 | -4.415
100| 21 | 1.080 | 3.275] 1.493| 3.644| 2.781| -5.231| 1.825| 4.805| -6.8625| -4.6809

Table (3.9)

5. the output of the first layer feed forward neuretwork is given by

qi(t)=f{

4
> .
j=1 "

)

V.(t)x.(t)}bI wherei =1...10
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The result is as follows in table (3.16)J[0,100] and step sizé=5.

t g [ali) @) | o) | ali) | ali) | a(i)] o) | (i) | a(i) | ali)
0 | 10952/ 0.982] 0.880] 0.952| 0.952]0.002| 0.880| 0.997| 0.002|0.0180
5 | 2 | 0.644| 0.988] 0.739] 0.990| 0.965 | 0.002| 0.9722| 0.960| 0.001 | 0.0322
10| 3 |0.931] 0.998| 0.810| 0.995| 0.9980.002| 0.995 | 0.949 | 0.005 | 0.2320
15| 4 | 0.993| 0.998| 0.934 | 00.983 0.992|0.002| 0.981| 0.995 | 0.005 | 0.201
20| 5 [0.986] 0.985| 0.948| 0.935| 0.966 | 0.002| 0.796| 0.992| 0.001 | 0.0023
25| 6 [0.839] 0.9533 0.866| 0.958| 0.895| 0.007] 0.774 ] 0.996| 0.009|0.0074
30| 7 10.687) 0.990| 0.733] 0.992| 0.890|0.001} 0.9772] 0.956| 0.002 | 0.038
35| 8 |0.951] 0.998]0.8280] 0.995 | 0.980 | 0.002| 0.995 | 0.959 | 0.0061| 0.2459
40 | 9 |0.993[0.9982] 0.936 | 0.9806) 0.0899] 0.900] 0.9748| 0.0968| 0.1048 01682
45| 10| 0.983] 0.981 | 0.945| 0.932| 0.890 | 0.002| 0.761| 0.999| 0.001 | 0.018
50 | 11 |0.809| 0.955| 0.850 | 0.964 | 0.911 | 0.006| 0.801| 0.995| 0.009 | 0.007
551 12 | 0.714| 0.993| 0.731 | 0.993| 0.993| 0.001} 0.982| 0.950| 0.002 | 0.048
60 | 13 | 0.963] 0.999| 0.844 | 0.994| 0.998| 0.000| 0.994| 0.967| 0.006 | 0.2613
65| 14 | 0.994| 0.997| 0.944 | 0.976| 0.986 | 0.000} 0.966| 0.997| 0.004 | 0.139
70| 15]0.979] 0.976| 0.941 | 0.930| 0.876| 0.003] 0.733| 0.992| 0.001 | 0.0146
75| 16 |0.777] 0.959] 0.833| 0.969 | 0.9270.006| 0.831| 0.993| 0.001| 0.008
80 | 17 | 0.745] 0.994| 0.732 | 0.9940] 0.9946 0.00 | 0.9861] 0.9455 0.002 | 0.061
85| 18 |0.973] 0.999| 0.861| 0.994 | 0.9970.001| 0.994| 0.973| 0.006]| 0.272
90 | 19 |0.994| 0.997| 0.947| 0.972| 0.982[0.000] 0.954| 0.998 | 0.003| 0.113
95| 20| 0.973] 0.971| 0.936| 0.930| 0.864 | 0.004| 0.711 | 0.991| 0.001| 0.011
100| 21 | 0.746] 0.963| 0.816| 0.974 | 0.941 | 0.005| 0.861 | 0.991 | 0.001| 0.009
Table (3.10)

Now we must produce the hidden layer to the feed forward neural

network which have the following:
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1. the hidden layer (second layer) for the neueivork have an input whose
already the output of the first layer (input layg), wherei =1...,1C)

2.The neural network weights to the hidden layeecdésd layer) is
vv(t)=[w1(t) w2(t) w3(t) wlc(t)J which we are chose it randomly
between -1 and +1 as follows such that
w(t)=w(t,)=w(jh)=w(j)i=12...10, i= stand for number of
evaluates in valuevt), j =stand for number of divided time interval. Such
that the result ofvon the time intervat =[0,100 with step sizeh=5, the

evaluation are as shown in table (3.11).

Y9
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[0,100] with

The hidden layer feed forward neural network wesgitt

=5
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Table (3.11)
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Where the norm oft) is bounded by the valuey, (W(t)<wy) (the norm

approximated by matrix norm nested of continuousnTo suppose
thatw, = 7, such thafw(t) =4.6944.

3.Consider the hidden layer estimated neural né&twaights can be found

by solving the neural network tuning algorithm
A T A~
w=Sf (V XNN jr g(x)—k S|r|w
And suppose tha =5, k =1. with initial conditions; (0),i=12...10,

i = stand for number of evaluates in valift) (number of the neurons in the
hidden layer).

The initial conditions to the neural network tungorithm equation

W,(0) | W,(0) | W,(0) | W,(0) | W (0) | W,(0) | W& (0) | W4 (0) | W,(0) | s,(0)

0 0 0 0 0 0 0 0 0 0

Table (3.12)

The solution of the neural network estimated  weight
W(t) =W (t, )= W (jh)=w(j),i=12... 10, i = stand for number of evaluates
in value W(t), j =stand for number of divided time interval. Sucht ttiee
result of Won the time intervat 0[0,100 with step sizeh=5, the solution

are as shown in table (3.13).
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Results of the neural network estimated weigh(t$ t 00,100 with step

sizeh=5

to b W) ) | () | () | i) | (i) | () | i) | (i) | ()
0 1 0O |0 0 0 0 0 0 0 0 0

5 2 -0.10 | -0.48 |-0.08 | -0.54 | -0.59 | 0.002 | -0.75 | -0.37 | -0.005| -0.220
10 3 -0.10 | -0.48 | -0.08 | -0.54 | -0.59 | 0.002 | -0.75 | -0.37 | -0.005| -0.220
15 4 -0.10 | -0.48 |-0.08 | -0.54 | -0.59 | 0.002 | -0.75 | -0.37 | -0.005| -0.220
20 | 5 | -0.10 |-0.48 |-0.08 | -0.54 | -0.60 | 0.002 | -0.75 | -0.37 | -0.005| -0.220
25 | 6 | -0.10 |-0.48 |-0.08 | -0.54 | -0.59 | 0.002 | -0.75 | -0.36 | -0.005 | -0.220
30 | 7 | -0.10 |-0.48 |-0.08 |-0.54 |-0.60 | 0.002 | -0.76 | -0.37 | -0.005 | -0.220
35| 8 | -0.10 |-0.48 | -0.08 | -0.54 | -0.60 | 0.002 | -0.76 | -0.37 | -0.005 | -0.220
40 9 -0.10 | -0.48 |-0.08 | -0.54 | -0.59 | 0.002 | -0.75 | -0.37 | -0.005| -0.220
45 | 10 | -0.10 |-0.48 |-0.08 | -0.54 | -0.60 | 0.002|-0.75 | -0.37 | -0.005] -0.220
50 | 11 | -0.10 |-0.48 | -0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005 | -0.220
55 | 12 | -0.10 |-0.48 | -0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005 | -0.220
60 | 13 | -0.10 |-0.48 |-0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005| -0.220
65 | 14 | -0.10 |-0.48 |-0.08 |-0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005| -0.220
70 | 15 | -0.10 |-0.48 |-0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005| -0.220
75 | 16 | -0.10 |-0.48 |-0.08 | -0.54 | -0.60 | 0.002| -0.75 | -0.37 | -0.005 | -0.220
80 | 17 | -0.10 |-0.48 |-0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005 | -0.220
85 | 18 | -0.10 |-0.48 |-0.08 | -0.54 | -0.60 | 0.002| -0.75 | -0.37 | -0.005 | -0.220
90 | 19 | -0.10 |-0.48 | -0.08 | -0.54 | -0.59 | 0.002| -0.75 | -0.36 | -0.005 | -0.220
95 | 20 | -0.10 |-0.48 |-0.08 |-0.54 | -0.60 | 0.002| -0.76 | -0.37 | -0.005 | -0.220
100, 21 | -0.10 |-0.48 |-0.08 |-0.54 | -0.59 | 0.002| -0.75 | -0.37 | -0.005 | -0.220

Table (3.13)

4. we can find the neural network weights approxiomaerror w(t) by the

following W=w(t)-w{t), "R = W (t=jh)=®(jh)=@j),i =12... 10
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divided time interval.
t 0[0,100] with step sizen =5, the solution are as shown in table (3.14).

i = stand for number of evaluates in valagt), j =stand for number of

The neural network weights approximation enr) t0[0,100), h=5

Such that the result @fon the time interval

vt W) W) | (i) | W) | () | Weli) | i) | (i) | (i) | Wio(i)
0 1 0 0 -1.00 | O 0 -1.00 | O -1.00 |-1.00 | O

5 2 | 0.104 |0.4810.088|0.549|0.599 | -0.00 | 0.759| 0.370 |-0.99 | 0.220
10 | 3 | 0.104 | 0.481]0.089]0.541|0.599|-1.00 | 0.759| 0.370 | -0.99 | 0.220
15 | 4 | 0.104 | 0.480]0.088)0.540| 0.599| -0.00 | 0.758| 0.370 | 0.005 | 0.220
20 | 5 | 0.104 1 0.481-0.91 | 0.541 0.600|-0.00 | -0.24 | 0.370 |-0.99 | 0.220
25 | 6 | 0.104 1 0.480|-0.91 | 0.540) 0.599| -0.00 | 0.758| -0.630|-0.99 | 0.220
30 | 7 -0.89 |0.481}|0.089|0.541|-0.39 | -0.00 | 0.760} -0.629| 0.005 | 0.220
35 | 8 | 0.104 1 0.480|0.088| 0.540 -0.40 | -1.00 | 0.758| -0.630| 0.005 | 0.220
40 | 9 | 0.104 | 0.481}0.089|0.541}-0.39 | 0.100| 0.760| 0.370 | 0.005 | 0.220
45 | 10| 0.895 | 0.480}0.088|0.540|-0.40 | -1.00 | 0.758| 0.370 | 0.005 | 0.220
50 | 11| 0.101 |0.4810.089|0.541 -0.40 | -0.00 | -0.24 } 0.370 | 0.005 | -0.77
55 | 12| 0.194 |0.480 0.088| 0.540| 0.599| -0.00 | 0.759} 0.370 |-0.99 | 0.220
60 | 13| 0.101 1 0.481 -0.91 | 0.540) 0.599| -0.00 | 0.759| -0.629|-0.99 |-0.77
65 | 14| 0.104 1 0.481-0.91 | -0.45  -0.40 | -1.00 | 0.759]|-0.629|-0.99 | 0.220
70 | 15| -0.09 | 0.480|0.088| 0.540  -0.40 | -0.00 | 0.758| 0.370 |-0.99 | 0.220
75 | 16| 0.104 1 0.481 -0.91 | 0.541 0.600| -0.00 | 0.759| 0.3707| 0.005 | -0.77
80 | 17| -0.88 |0.480 0.088|0.540  -0.40 | -0.00 | 0.758} 0.3699| -0.99 | -0.77
85 | 18| 0.104 |-0.51 -0.91 |0.541 0.600|-1.00 |-0.23 } 0.370 | 0.005 | -0.77
90 | 19| -0.89 |-0.51  0.088|0.540 0.599]| -0.00 | 0.758} 0.369 |-0.99 | 0.220
95 | 20| 0.104 1 0.4810.089| 0.541 0.600| -0.00 | -0.24 | -0.629|-0.99 | 0.220
100, 21| 0.104 | 0.481|-0.91 | 0.541} 0.599|-1.00 | -0.24 } 0.370 | 0.005 | -0.79

Table (3.14)

VY




Chapter Three Applications

The adjusting of the neural network depending @napproximated weights
W(t) by the equality

1
k 2 1 2
_ S WE + En F S Wi _
W 2| 14— —2—|  where|; = ﬁwﬁ

Where k =1, ¢, =0.0001 and wp,=7as we defined it above. [if the above

equality false we will restart the computations tbé network from the

begging (i.e. go back to neural network steps, §2¢pAnd whenever the
equality true we will stop the training of the netk and compute the output
of the networky(t)]. So that norm ofi(t) =8.1828 > 2.6458 .

5. we will tack the Log-sigmoid transfer function (a@ettion function) .

()=

“1vexd-1)

6. the output of the neural network is given by
10 _ .
yk(t): f(_zlwki (t)a (t)], wherek =1, i =1,...10.
=
Suppose that
y.(t)=y.(t,)=v.(in)=y.(j), i=stand for number of divided time

interval. Such that the result gft)on the time intervat 00,100 with step

sizeh=5, the solution are as shown in table (3.15).



Chapter Three Applications

The output of the neural netwotkl[0,100] with step sizen=5

t j y, (i)
0 1 L, YYYe
5 2 GATA
10 3 1Al
15 4 +,YAoey
20 5 o TAAY
25 6 L EAV)Y
30 7 FARRN
35 8 LA
40 9 AR
45 10 STUA
50 11 O VIAY
55 12 GEVYA
60 13 1087
65 14 ,YAYA
70 15 o YYle
75 16 +,0TAT
80 17 AREY
85 18 FCARA!
90 19 +,Y1Ae
95 20 FLARN
100 21 (FARRE

Table (3.15)

AR
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08T
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1 1 1 1 ]
0 40 80 120 160 200
t

Figure (3.6)

The output of the neural netwotk

Step(9): We can now find the control input of the systenb)3with using
0,(t) =y, (t).and we definedy,(t) in step (7) asi,(t) =u,(t;)=u,(jh)=u,(i),

j =stand for number of divided time interval. Sucht tife result ofu, (t)on
the time intervak {0,100 with step sizeh =5, the solution are as shown in

table (3.16). is given by
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The control input of the system (3.8)1[0,100| with step sizen=5

t j u, (i)

0 1 1.6225

5 2 2.9036
10 3 0.3920
15 4 -2.7754
20 5 -2.8268
25 6 1.0738
30 7 2.6760
35 8 0.0641
40 9 -3.4536
45 10 -2.4991
50 11 1.1074
55 12 2.7277
60 13 -0.5794
65 14 -3.2170
70 15 -1.8198
75 16 1.6180
80 17 2.2392
85 18 -0.8949
90 19 -3.3057
95 20 -1.7438
100 21 V,A0AT

Table (3.16)
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Step (10): display the control inpuul(t) in the system (3.5) (step(1)) and

find new the results and the error of the nonlirgestem with using neural
network.
Where

x(t)=x(t=jh)=x(jh)=x(j)

= ¢ (t)=sin(t)=sin(t = jh)=sin(jh)

And

%(t)= x,(t= jh)=x,(jh) = x(j)

= ¢,(t)=codt)=codt = jh) =coqjh)

j =stand for number of divided time interval. Sucht tife result ofu, (t)on
the time intervalt 1[0,100 with step sizen=5, the solution are shown in

table (3.17) as follows
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The Results and the error of the system (3.5)wsthguineural network
t0[0,100] with step sizen=5

Now, the figures down shows the effectiveness sihgineural network and

t j X (t) g t)

0 1 0 0

5 2 1 0.0907
10 3 1.6225 1.4814
15 4 -1.0937 | -0.3369
20 5 -19.3412 | -18.3823
25 6 0.0003 0.0003
30 7 3.6154 3.6153
35 8 -0.0000 | -0.0000
40 9 -2.3629 | -2.3629
45 10 0.0000 0.0000
50 11 6.5962 6.5962
55 12 0.0000 0.0000
60 13 -1.4350 | -1.4350
65 14 0.0000 0.0000
70 15 0.0000 0.0000
75 16 0.0000 0.0000
80 17 0.0000 0.0000
85 18 0.0000 0.0000
90 19 0.0000 0.0000
95 20 0.0000 0.0000
100 21 0.0000 0.0000

Table (3.17)

who the system (3.5) will be stable as follows

RR!




Chapter Three Applications

0 20 N N w0 80 100

X 8T

-16+

t

Figure (3.7)
The solution of the system (3.%)(t),t 1(0,100)) with using neural network

0 20 N\ N w0 80 100

-4+

t

Figure (3.8)
The error of the system (3.5) with using neuraivoek

Y.
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Updating weights
Xo A
W(t) = w(t) - W(t)
[ Xd1
) w(t) — W(t) — wit)—~O—
d
I nputs l]z(t)
€1
a, = U(WU(VT X + B, ))
&
Input layer Hidden layer Output layer
where

(thebias=b, =|b,,....,b,, ) (theinputtotheneural network are= x=[x,,,x,,.€,.¢,])
(theweightsinthelst layer ) v. ,i =1,...10,(i =theno.of neuronsinthehiddenlayer )

ij?

j =1,...4,(j =theno.of neuronsintheinputlayer)
q = 0(24: v, X, ) (g =theoutput of the firstlayer)
=

(theweightsof thehiddenlayer )w, ,where
k =1,(k =theno.of theneuronsintheoutputlayer),and i =1,...10

theesti mated weights W which found by solving = w=sqg - ksﬂrHvAv)
(theerorr weightsw = w — W)

(theoutputof theneural network 4, = iwm q, D
i=1

Figure (3.9)
Architectural graph of two-layered neural netwoflapplication
(3.2.1)

YY)
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3.2.2 APPLICATION:

Consider the nonlinear system

X | [-0428 -0339 0 X 015 015
S _ _ _ £u3 _
Xy | = 2939 -1011 O Xo |+ 1.011 u(t)+ 1.011 D[ 5xl 2x2 x3j
% 0 1 0] x, 1 0

(3.8)

where n=3, m=1, such that

XDR3:>x=[x1 x2 x3]T

~0428 -0339 0
AOR3 A=|-2039 -1011 0
0 1 0

015
BOR*1 B=|-1011
1

g()OR = g(x)=1
x1 — B3 _ _
f()OR™ = £(x)= 5X = 2X, =X,
Step (1): we need to translate the system by define

T
z=TX, Wherez=[z1 Z, 23}

Such that we have a new system
z=TAT 1z+TBgu(t)+TBf

Where we consider thadt is as follows

YYY
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~31728 -04707 -1.1447 0000 04944 015
T=| 27414 04067 0 |T1=| 0 -08735 -1011
-23688 -13406 O -18736 -1011 1

0o 1 0 0
and we have that TAT 1=|0 0 1 |, TB=|0
0 05636 -14390 1

The following transform system is derived.
952
2, =24
2= 520 -12264

y=4

=2

(3.9)

> —1.43923 +u(t)

Step (2) From the system above (3.9)we have
_ - _£,3_ _
9(z)=1 and we have that (2)= -5z 12264z, -1.439%,.

Step (3): The numerical solution haven been obtained uRngg-Kutta of

order 4 , for time intervat =[0,100 and step sizén =200

for N, =20 on

MATLAB version (6.5), then the following symbolave been used
z(i)=z(t=ih)=z(ih)=z(i)
z(i)=z(t=ih)=z(ih)= (i)
z(i)=z(t=ih)=z(ih)=z(i)

Where

I = stands for number of dividing time interval.

Tack the initial condition of the system in (3.9) s a

z,(0)=0, z,(0)= 02,2,(0) = 05. We get the following evaluation

YYY
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The solution of non controllar =0 system (3.9) without using neural
networkt [1[0,100| with step sizen=5

t i z(i) 2,(i) (i)
0 1 0 0.2000 0.5000
5 2 -0.2707 -0.1324 0.2075
10 3 -0.0282 0.000 -0.0178
15 4 -0.0423 0.0008 -0.0001
20 5 -0.0403 0.0003 0.000
25 6 -0.0390 0.0002 -0.000
30 7 -0.0378 0.0002 -0.000
35 8 -0.0368 0.0002 -0.000
40 9 -0.0358 0.0002 -0.000
45 10 -0.0349 0.0002 -0.000
50 11 -0.0340 0.0002 -0.000
55 12 -0.0332 0.0002 -0.000
60 13 -0.0325 0.0002 -0.000
65 14 -0.0318 0.0001 -0.000
70 15 -0.0312 0.0001 -0.000
75 16 -0.0305 0.0001 -0.000
80 17 -0.0300 0.0001 -0.000
85 18 -0.0294 0.0001 -0.000
90 19 -0.0289 0.0001 -0.000
95 20 -0.0284 0.0001 -0.000
100 21 -0.0280 0.0001 -0.000

Table (3.18)
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0.1T1

1 1 1 1 1
—0.0125 20 20 60 80 100

73 -0.13T

—0.24T

—0.35—

t

Figure (3.10)
The solution of the system (3.93,(t),t 0(0,100)) without using neural

network
0.56T
0.331
73
22 o111
Z3 W |
26 40 B0 519 100
-0.12T
-0.35—
t

Figure (3.11)
the solution of the system (3.9, (t), z,(t), z,(t),t 0(0,200)) without using

neural network
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Step (4): Consider the desired trajectory are given by
zdl(t) =sin(t) = z,(t)=z,(t=ih)=z,(ih)=sin(ih)
zdz(t)=cos(t) = z,,(t)=z,,(t=ih)=z,(ih)=codih)
245076 = z.0)=2,=in)=z,(n)=e"

where y, =(z,(t), z,,(t),z,,(t)),such that = stands for number of dividing

time interval, and with step size=5.

AR
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The desired trajectorydl(t), Zd2(t)’ zd3(t) witht 0[0,100], and step size

h=5
t i | z.@)=sin(h) | z,(i)=codih) | z,,(i)=e>"
0 1 0 1.0000 1.000
5 2 -0.9589 0.2837 0.000
10 | 3 -0.5440 -0.8391 0.000
15 | 4 0.6503 -0.7597 0.000
20 | 5 0.9129 0.4081 0.000
25 | 6 -0.1324 0.9912 0.000
30 | 7 -0.9880 0.1543 0.000
35 | 8 -0.4282 -0.9037 0.000
40 | 9 0.7451 -0.6669 0.000
45 | 10 0.8509 0.5253 0.000
50 | 11 -0.2624 0.9650 0.000
55 | 12 -0.9998 0.0221 0.000
60 | 13 -0.3048 -0.9524 0.000
65 | 14 0.8268 -0.5625 0.000
70 | 15 0.7739 0.6333 0.000
75 | 16 -0.3878 0.9218 0.000
80 | 17 -0.9939 -0.1104 0.000
85 | 18 -0.1761 -0.9844 0.000
90 | 19 0.8940 -0.4481 0.000
95 | 20 0.6833 0.7302 0.000
100 | 21 -0.5064 0.8623 0.000

Table (3.19)

YYY
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Step (5): Find the tracking errors, (t) e, (t).e;(t) at time intervat =[0,100

and step sizé=5

el(t) = zl(t) -sinlt) = el(t) = el(t =i)= el(i h)= el(l)
= el(i) = zl(i)—sin(i h)

e5(t)=2,(t)-codt) = e2(t) = e2(t =i)= e2(| h)= e2(|)
= e2(i)= 22(|)— codih)

e3(t) = 23(t) e e (b)= e3(t =i)= e3(i h)= e3(|)

Wherei = stands for number of dividing time interval, battthe simulation

are shown as below in table (3.20).

YYA
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Errors (el(t),ez(t),es(t)) of the System (3.9) Without

t i |e()=sin(n) | eg(i)=codih) | efi)=e™"

0 1 0 -0.8000 -0.5000

5 2 0.6882 -0.4161 0.2075
10 3 0.5159 0.8391 -0.0178
15 4 -0.6926 0.7605 -0.0001
20 5 -0.9533 -0.4078 0.000
25 6 0.0933 -0.9910 -0.000
30 7 0.9502 -0.1540 -0.000
35 8 0.3914 0.9039 -0.000
40 9 -0.7809 0.6671 -0.000
45 10 -0.8858 -0.5251 -0.000
50 11 0.2284 -0.9648 -0.000
55 12 0.9665 -0.0220 -0.000
60 13 0.2723 0.9526 -0.000
65 14 -0.8586 0.5626 -0.000
70 15 -0.8050 -0.6332 -0.000
75 16 0.3572 -0.9216 -0.000
80 17 0.9639 0.1105 -0.000
85 18 0.1466 0.9844 -0.000
90 19 -0.9229 0.4482 -0.000
95 20 -0.7117 -0.7301 -0.000
100} 21 0.4784 -0.8622 -0.000

Table (3.20)

Using Neural Network with time intervalJ[0,100], step sizen=5

yya
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Figure (3.12)
The output of the system (3.9) and the error ofsifstem without using

neural network

Step (6): Find the filtered tracking errorr(t) as r(t)=K et),
1)
wherek =[2,11], e(t) =| ¢,(t), e,(t) e4(t) |

= r(t)=2(z,(t) + sin(t) + (2, (t) - codt) + (z,(t) -¢™>)

Such that

r(t)=r(t=ih)=r(ih)=r(i) wherei= stands for number of dividing time
interval such that =[0,100| and step sizé=5.

The simulation are shown as below

VY.
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Filtered tracking erroat time interval =[0,100 and step sizé =5.r(t)

t i r(i)

0 1 -1.3000

5 2 1.1678
10 3 1.8530
15 4 -0.6248
20 5 -2.3143
25 6 -0.8040
30 7 1.7464
35 8 1.6867
40 9 -0.8946
45 10 -2.2967
50 11 -0.5081
55 12 1.9111
60 13 1.4972
65 14 -1.1547
70 15 -2.2433
75 16 -0.2072
80 17 2.0383
85 18 1.2778
90 19 -1.3977
95 20 -2.1535
100 21 0.0946

Table (3.21)

The norm ofr(t) is approximated using the numerical results wigch

depends on the simulation such that the noft= [r(t)| = 7.0568

AR
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Step (7): chose the tracking control law of the system (Rg)using the
derivative of the filter tracking error and by stibuting that

u,(t)=wW(t)-q,(t) so that we can chos as follows

1 R
w=—[-F
g(z)( )

Where we can find/ d from the algorithm step (6)above are defined as

Y4 +a+kvr)

Y, =-5¢ 4 sin(t) + 2z, (t) - 2codt) + 23(t)

_ e B_52 1 _
,~143%,, a=5z"-2z, ky =L

so that the tracking control lawv(t)=W(t =i)=W(ih)=W(i), wherei=

And supposeF(z)= —2212 ~1.2264z

stands for number of dividing time interval sudfattt 0[0,100 and step

size h=5.The simulation are shown as below in table (2.22):

Y YY
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The Tracking Control LawW/ ) resultst 0[0,100 for h=5

The behavior of nonlinear part of tracking contih W is shown in the

following figure.

t i Tracking control law
(W(i)
0 1 5.7648
5 2 2.7886
10 3 0.719
15 4 -2.7955
20 5 -2.4116
25 6 1.310
30 7 3.0424
35 8 0.3071
40 9 -2.9740
45 10 -2.0973
50 11 1.6839
55 12 2.9548
60 13 -0.1031
65 14 -3.1067
70 15 -1.7508
75 16 2.0239
80 17 2.8112
85 18 -0.5151
90 19 -3.1880
95 20 -1.3766
100 21 2.3254
Table (3.22)
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Step (8): Since the control input as we defined above is

ul(t) =W -0,
WhereW = be the tracking control law

Gz(t) = be the approximate function for the nonlinear mﬂrmz(t)

which we will going to find it by using the generaural network

approximation property.

Step (9) (Neural Network): Consider the two-Layered feed forward neural

network have six, ten and one neurons at the impdden and output layers
respectively.

1.The inputs for the first layer are.

XN =] Zga ) 245000 zg4) egft), ), edt)]

For t 1[0, 100 with using step sizé =5.where
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Inputs to the First Layer Neural Network, Fort[[0,100 using step

sizeh=5

t i Zdl(i) ZdZ(i) zd3(i) el(l) e2(i) e3(|)

0 1 0 1.0000 1.000 0 -0.8000 | -0.5000
5 2 -0.9589 | 0.2837 0.000 0.6882 | -0.4161 | 0.2075
10 3 -0.5440 | -0.8391 | 0.000 0.5159 | 0.8391 | -0.0178
15 4 0.6503 | -0.7597 | 0.000 | -0.6926 | 0.7605 | -0.0001
20 5 0.9129 | 0.4081 0.000 | -0.9533| -0.4078| 0.000
25 6 -0.1324 | 0.9912 0.000 0.0933 | -0.9910 | -0.000
30 7 -0.9880 | 0.1543 0.000 0.9502 | -0.1540 | -0.000
35 8 -0.4282 | -0.9037| 0.000 0.3914 | 0.9039 | -0.000
40 9 0.7451 | -0.6669| 0.000 | -0.7809| 0.6671 | -0.000
45 10 0.8509 | 0.5253 0.000 | -0.8858 | -0.5251| -0.000
50 11 | -0.2624 | 0.9650 0.000 0.2284 | -0.9648 | -0.000
55 12 | -0.9998 | 0.0221 0.000 0.9665 | -0.0220| -0.000
60 13 | -0.3048 | -0.9524| 0.000 0.2723 | 0.9526 | -0.000
65 14 0.8268 | -0.5625| 0.000 | -0.8586| 0.5626 | -0.000
70 15 0.7739 | 0.6333 0.000 | -0.8050| -0.6332| -0.000
75 16 | -0.3878| 0.9218 0.000 0.3572 | -0.9216 | -0.000
80 17 | -0.9939| -0.1104| 0.000 0.9639 | 0.1105 | -0.000
85 18 | -0.1761 | -0.9844| 0.000 0.1466 | 0.9844 | -0.000
90 19 0.8940 | -0.4481| 0.000 | -0.9229| 0.4482 | -0.000
95 20 0.6833 | 0.7302 0.000 | -0.7117 | -0.7301| -0.000
100| 21 | -0.5064 | 0.8623 0.000 0.4784 | -0.8622 | -0.000

Table (3.23)
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2. Let the bias are selected randomly distributed betwekhand+15 as

whereb(j), j=12,... 10, j = depends on the number of the neuron in the
hidden layer(j =10)in this application, the bias will be chosen aofws:
The Biasb to the First Layer Feed forward Neural Network

Bias
b

Table (3.24)

with input to the bias has the valuﬁ =-1.

3.Consider the first layer feed forward weights

Vij wherei =1,...10, j =1,...6, wherei, jrepresenting the number of

neurons on the hidden layer and the input laygre&svely. Such thay,

will be chosen randomly distributed between -1 ahds

The First Layer Feed forward Neural Network WeigWts

i The first layer weighv/

1 -1 ' B \ . N
2 -1 ' ' ! * N
3 0 -1 -1 B ! \

4 -1 ‘ ' \ \ |

- - \ 1 x) ) 1
5 1 : \ -1 ! '

7 0 ' ' ! \ .

- T , \ 1 ~ -1
5 \ ) -1 ' ' =
10 -1 ' B ' . -

Table (3.25)
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4. We chose thé og-sigmoid transfer functionf (activation function)

(which be explained in chapter one) because iiffierdntiable and
commonly used in many methods such as Back propagaethod
f(A)=——— where A = S V. x.,i=1...10
1+exp- A) N
noted that A (t)=A,(t=jh)=A(jh)=A(j), wherei=12,...10, i = stand
for number of evaluates in valdé), j=stand for number of divided time

interval. Such that the result dfon the time intervat =[0,100 with step

sizeh =5, the evaluation are as shown in table (3.26)

Y'Y
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The values of the sigmoid functiori (1) witht =[0,100] ,h=5

to b AG) [ AG) | AG)AG) [ AG) AG) AG)] AG) ] AG) | ()
0 1 -4.50 |2.300|-10.7 | -2.80|-9.30|-1.80 |-7.80|3.500|2.500 |-8.500
) 2 -2.56 |1.479|-9.34|-1.48|-9.06 | -4.063 -8.10| 0.145) 1.1172 | -7.248
10 | 3 -2.92 |0.206|-9.53 | -1.94 | -8.95| -2.220| -6.67 | 0.958]| 0.634 | -7.438
15 | 4 | -5.34 10.281|-8.30|-4.32|-8.95|0.103 | -5.54 | 3.343| 1.890 | -8.650
20 5 -5.86 | 1.448]-8.04 | -4.86|-8.95|-0.541 -6.45| 3.866) 3.321 |-8.913
25 6 -3.77 | 2.030{-9.09 |-2.77|-8.96 | -3.216 -8.08 | 1.774) 2.858 |-7.868
30 7 -2.06 |1.191}-9.95|-1.06|-8.96 | -4.092 -8.10|0.061| 1.166 |-7.012
35| 8 -3.18 |0.132|-9.39 | -2.18|-8.96 | -1.915| -6.48 | 1.180| 0.668 | -7.571
40 9 -5.52 10.368| -8.21 | -4.52|-8.99 | 0.152 | -5.52 | 3.526) 2.078 | -8.745
45 | 10 | -5.73 | 1.560 -8.11|-4.73|-8.96 | -0.788 -6.63 | 3.736| 3.376 | -8.850
50 | 11 | -3.50 | 1.998|-9.22|-2.50|-8.96 | -3.455| -8.19 | 1.509| 2.702 |-7.737
55 | 12 | -2.03 |1.055]-9.96|-1.03|-8.96|-3.988| -7.98 | 0.033| 1.022 | -7.000
60 | 13 | -3.42 |0.079]-9.27|-2.42]-8.96|-1.624| -6.31 | 1.422| 0.742 |-7.695
65 | 14 | -5.68 | 0.469|-8.14 | -4.68 | -8.96 | 0.248 | -5.57 | 3.685| 2.2644 | -8.856
70 | 15 | -5.57 |1.664|-8.19|-4.57|-8.96|-1.054|-6.82 | 3.57/8| 3.107 |-8.77/3
75 | 16 | -3.25 |1.952]-9.35|-2.25|-8.96| -3.666| -8.27 | 1.255| 2.534 |-7.612
80 | 17 | -2.04 |0.919|-9.96 |-1.04 | -8.96 | -3.847| -7.85|0.042| 0.895 |-7.006
85 | 18 | -3.77 | 0.045|-9.14|-2.67 |-8.97|-1.338|-6.16 | 1.677| 0.839 |-7.823
90 | 19 | -5.81 |0.580|-8.07|-4.81)-8.97|0.265|-5.62 | 3.816| 2.445 | -8.894
95 | 20 | -5.39 |1.758]-8.28|-4.39|-8.97|-1.335] -7.01 | 3.395| 3.413 | -8.683
100 21 | -3.01 |1.890 -9.47|-2.01 -8.97|-3.847|-8.34|1.015| 2.356 | -7.493
Table (3.26)

5. the output of the first layer feed forward neuratwork is given by

qi(t)= f{

j=1

2 00

1]

YYA

J+bi wherei =1,... 10
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The result is as follows The output of the firgtdaneural network with
t =[0,200 with step sizeh=5

t g i) ali) | ali) | ali) | ali) | ali) | a(i) | ali) | ai) | ali)
0 | 1 |0.011/0.390 |0.00 |0.073 |0.000 | 0.141 | 0.000 |0.970 | 0.924 | 0.0002
5 2 10.071]0.814 | 0.000 | 0.184 | 0.000 | 0.016 | 0.000 | 0.536 | 0.753 | 0.000
10| 3 | 0.051] 0.551 | 0.000 | 0.125 | 0.000 | 0.097 | 0.001 | 0.722 | 0.653 | 0.000
15| 4 | 0.004| 0.570 | 0.000 | 0.012 | 0.000 | 0.525 | 0.003 | 0.965 | 0.868 | 0.000
20| 5 |0.002/0.809 | 0.000 | 0.007 | 0.000 | 0.367 | 0.001 | 0.979 | 0.965 | 0.000
25| 6 |0.022/0.883 | 0.000 | 0.058 | 0.000 | 0.038 | 0.000 | 0.855 | 0.945 | 0.0004
30| 7 |0.112/0.767 | 0.000 | 0.257 | 0.000 | 0.0164| 0.000 | 0.515 | 0.762 | 0.0009
35| 8 |0.039/0.533 | 0.000 |0.101 | 0.000 | 0.128 | 0.001 | 0.765 | 0.661 | 0.0005
40| 9 |0.004|0.591 | 0.000 | 0.010 | 0.000 |0.548 | 0.003 | 0.971 | 0.888 | 0.0002
45 | 10 | 0.003] 0.826 | 0.000 | 0.008 | 0.000 |0.312 | 0.001 |0.976 | 0.967 | 0.0001
50| 11 | 0.029] 0.880 | 0.000 | 0.075 | 0.000 | 0.030 | 0.000 |0.849 | 0.937 | 0.0004
551 12| 0.115] 0.741 | 0.000 | 0.262 | 0.000 | 0.018 | 0.000 | 0.508 | 0.735 | 0.0009
60 | 13 |0.031]0.520 | 0.000 | 0.081 | 0.000 | 0.164 |0.001 | 0.805 | 0.677 | 0.0005
65 | 14 | 0.003| 0.615 | 0.000 | 0.009 | 0.000 | 0.561 |0.0038| 0.975 | 0.905 | 0.0001
70 | 15 | 0.003] 0.840 | 0.000 | 0.010 | 0.000 | 0.258 [0.001 | 0.972 | 0.967 | 0.0002
75 | 16 | 0.037/ 0.875 | 0.000 | 0.0949] 0.000 | 0.024 | 0.000 | 0.778 | 0.926 | 0.0005
80| 170.114 0.714 | 0.000 | 0.260 | 0.000 | 0.020 | 0.000 | 0.510 | 0.710 | 0.0009
85| 18 | 0.024| 0.511 | 0.000 | 0.0643 0.000 | 0.207 | 0.002 | 0.842 | 0.698 | 0.0004
90 | 19| 0.003| 0.641 | 0.000 | 0.008 | 0.000 | 0.565 | 0.003 | 0.978 | 0.920 | 0.0001
95 | 20 | 0.004] 0.853 | 0.000 | 0.012 | 0.000 | 0.208 | 0.000 | 0.967 | 0.968 | 0.0002
100| 21 | 0.046| 0.868 | 0.000 | 0.117 | 0.000 | 0.020 | 0.000 | 0.734 | 0.913 | 0.0006

Table (3.27)

yya
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Now we must produce the hidden layer to the feed forward neural

network which have the following
1. the hidden layer (second layer) for the neueivork have an input whose

already the output of the first layer (input layg), wherei =1...,1C)

2.The neural network weights to the hidden layeecdésd layer) is

w(t)=| wyt) wyt) wylt) .. wft)] which we are chose it
randomly  between -1 and +1 as follows ,such that
w (t)=w (t=jh)=w(jh)=w(j),i=12...,10, i= stand for number of

evaluates in valuevt), j =stand for number of divided time interval. Such
that the result ofvon the time intervat =[0,100 with step sizen=5, the

evaluation are as shown in table (3.28).

AR
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The hidden layer weight(t) t =[0,100 with step sizeh=5

top 0 w) | w () | w(i) | wai) | weli) | wei) | wei) | wali) | weli) | wioi)
0 1 0 0 -1 0 0 -1 0 -1 -1 .
5 2 0 0 0 0 0 0 0 0 -1 0
10 3 0 0 0 0 0 -1 0 0 -1 0
15 4 0 0 0 0 0 0 0 0 0 0
20 5 0 0 -1 0 0 0 -1 0 -1 0
25 6 0 0 -1 0 0 0 0 -1 -1 0
30 7 -1 0 0 0 -1 0 0 -1 0 0
35 8 0 0 0 0 -1 -1 0 -1 0 0
40 9 0 0 0 0 -1 -1 0 0 0 0
45 10 -1 0 0 0 -1 -1 0 0 0 0
50 11 0 0 0 0 -1 0 -1 0 0 -1
55 12 0 0 0 0 0 0 0 0 -1 0
60 13 0 0 -1 0 0 0 0 -1 -1 -1
65 14 0 0 -1 -1 -1 -1 0 -1 -1 0
70 15 0 0 -1 0 0 0 0 0 0 -1
75 16 -1 0 0 0 -1 0 0 0 -1 -1
80 17 0 -1 -1 0 0 -1 -1 0 0 -1
85 18 -1 -1 0 0 0 0 0 0 -1 0
90 19 0 0 0 0 0 0 -1 -1 -1 0
95 20 0 0 0 0 0 0 0 0 0 0
100} 21 0 0 -1 0 0 -1 -1 0 0 -1

Figure (3.28)
Where the norm of(t) is bounded by the valuey, (wit)<wy,) (the norm

approximated by matrix norm nested of continuousnmo suppose
thatw,, = 7, such thafw(t)] =4.6944.
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3.Consider the hidden layer estimated neural né&twaights can be found

by solving the neural network tuning algorithm
A T -
W—Sf(V XNer g(x)—k Sr|w

And suppose that =5, k =1. with initial conditions

The initial conditions to the neural network tun@gorithm equation

W,(0) | W,(0) | W,(0) | W,(0) | W (0) | W,(0) | W (0) | 4 (0) | W,(0) | it,(0)

0 0 0 0 0 0 0 0 0 0

Table (3.29)

The solution of the neural network estimated  weight
Wt)=w (t = jh)=w(jh)=w(j),i=12...10, i= stand for number of
evaluates in valuei(t), j =stand for number of divided time interval. Such
that the result ofvon the time intervat 0[0,100 with step sizeh=5, the

solution are as shown in table (3.30).
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Results of the neural network estimated weigh(ts

to ] W) () | (i) | w(5) | () | (i) | e (5) | () | (i) | o)
0 1 |0 0 0 0 0 0 0 0 0 0

5 2 |-0.12 | 0.554| 0.000|-0.28 | 0.000| 0.575 | 0.002| 0.957| 0.798 | -0.00
10 3 [-0.12 | 0.554| 0.000| -0.28 | 0.000} 0.5752 0.002 | 0.957} 0.798 | -0.00
15 4 |-0.12 | 0.554| 0.000|-0.28 | 0.000} 0.579 | 0.002}0.957|0.798 |-0.00
20 5 [-0.12 | 0.553]|0.000| -0.28 | 0.000} 0.574 | 0.002}0.956| 0.797 |-0.00
25 6 |-0.12 ] 0.553]|0.000 -0.28 | 0.000} 0.5741 0.002|0.955] 0.796 | -0.00
30 7 |-0.12 | 0553 | 0.000|-0.28 | 0.000| 0.573 | 0.002| 0.955| 0.796 |-0.00
35 8 |-0.12 | 0.553|0.000|-0.28 | 0.000} 0.573 | 0.002| 0.955| 0.796 |-0.00
40 9 |-0.12 | 0.553|0.000|-0.28 | 0.000| 0.574 | 0.002| 0.955| 0.797 |-0.00
45 | 10 |-0.12 |0.553|0.000 -0.28 | 0.000| 0.574 | 0.002|0.956|0.797 |-0.00
50 11 |-0.12 | 0.554} 0.000|-0.28 | 0.000| 0.575 | 0.002| 0.957| 0.798 | -0.00
55 12 |-0.12 | 0.554} 0.000|-0.28 | 0.000| 0.575 | 0.002| 0.975| 0.798 | -0.00
60 13 |-0.12 | 0.554} 0.000|-0.28 | 0.000| 0.571 | 0.002| 0.957| 0.797 | -0.00
65 14 |-0.12 | 0.553} 0.000|-0.28 | 0.000| 0.574 | 0.002| 0.956| 0.797 | -0.00
70 | 15 |-0.12 | 0.553]|0.000|-0.28 | 0.000| 0.574 | 0.002| 0.955| 0.797 | -0.00
75 | 16 |-0.12 | 0.553]|0.000|-0.28 | 0.000| 0.573 | 0.002| 0.955| 0.796 | -0.00
80 | 17 |-0.12 | 0.553|0.000|-0.28 | 0.000| 0.573 | 0.002| 0.955|0.796 | -0.00
85 18 |-0.12 | 0.553} 0.000|-0.28 | 0.000| 0.574 | 0.002| 0.955| 0.796 | -0.00
90 19 |-0.12 | 0.553} 0.000|-0.28 | 0.000| 0.574 | 0.002| 0.956| 0.797 | -0.00
95 20 |-0.12 | 0.554| 0.000| -0.28 | 0.000| 0.574 | 0.002| 0.956| 0.797 | -0.00
100f 21 |-0.12 | 0.553|0.000|-0.28 | 0.000}0.574 | 0.002}0.956|0.797 |-0.00

Table (3.30)

following

Yoy

4. we can find the neural network weights approxiomaerror w(t) by the

W=w(t) - W) WORY = & (t)= Wt = jh)= % (jh) =% (j).i =12.... 10,
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i = stand for number of evaluates in valG#t), j =stand for number of

divided time interval.

Such that the result @fon the time interval

t 0[0,100] with step sizen=5, the solution are as shown in table (3.31).

The neural network weights approximation enndt)t {0,100, h=5

o0 w0 W) | W) W) | Wi) | (i) | W (0) | wli) | We(i) | W)
0 1 |-1.00 0 0 -1.00 | O 0 -1.00 | O 0 -1.00
5 2 10.124}-0.55 | -0.00 } 0.285|-0.00 | -1.57 | -0.00 | -1.95 | -1.79 | 0.00
10 3 |-0.87]-0.55|-0.00|0.285-1.00 | -0.57 | -0.00 | 1.957 -0.79 |-0.99
15 4 10.124|-1.55 | -1.00 | 0.285 -0.00 | -0.57 | -0.00 | -0.95 | -0.79 | 0.00
20 5 10.124}-0.55 |-1.00 } 0.285}-0.00 | -1.57 |-0.00 | -1.95 | -0.79 | 0.00
25 6 |0.124}-0.55|-0.00 | -0.71 |-0.00 | -0.57 }-0.00 |-0.95 | -1.79 |-0.99
30 7 |-0.87]-0.55]-0.00 }-0.71 }-0.00 | -1.57 |-0.00 |-1.95 | -1.79 |0.00
35 8 10.124}-0.55 |-1.00 }0.284}-1.00 | -1.57 |-1.00 | -0.95 | -0.79 |0.00
40 9 10.124}-0.55|-1.00 | 0.284 -0.00 | -0.57 | -0.00 | -1.95  -0.79 |-0.99
45 10 |-0.87 |-0.55}-1.00 |-0.71 |-1.00 | -0.57 |-0.00 | -1.95 |-0.79 | 0.00
50 11 | -0.87 |-1.55 | -0.00 | 0.285|-0.00 | -0.57 |-0.00 | -0.95 |-0.79 | 0.00
55 12 | 0.124}-0.55 | -0.00 | 0.285|-0.00 | -0.57 |-0.00 | -0.95 | -0.79 | 0.00
60 13 |-0.87 | -0.55 | -0.00 | 0.285|-0.00 | -0.57 | -1.00 | -0.95 | -0.79 |-0.99
65 14 |-0.87 |-1.55|-1.00 | 0.251|-1.00 | -0.57 |-0.00 | -0.95 | -0.79 | 0.00
70 15 |0.124}-0.55 |-1.00 | 0.28 |-1.00 | -0.57 |-0.00 | -0.95 | -1.79 |-0.99
75 16 |0.124}-0.55|-0.00 |-0.71 | -0.00 | -0.57 |-1.00 | -0.95 | -0.79 | 0.00
80 17 10.124}-1.55 | -0.00 | 0.284|-0.00 | -0.57 |-1.00 | -0.95 |-1.79 |-0.99
85 18 |0.124}1.553}-1.00 | 0.284|-0.00 | -1.57 |-1.00 | -1.95 | -0.79 | 0.00
90 19 |-0.87 |-1.55 | -0.00 | 0.284|-0.00 | -0.57 |-1.00 | -1.95 | -0.79 |-0.99
95 20 10.124|-0.55 | -1.00  0.285|-0.00 | -0.57 | -0.00 | -0.95 | -0.79 | -0.99
100, 21 |-0.87 |-0.55|-1.00 |-0.71|-1.00 | -0.57 | -0.00 | -1.95 | -0.79 |-0.99

Table (3.31)
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The adjusting of the neural network depending @napproximated weights
W(t) by the equality

1
k 2 1 2
_ S WE + En F S Wi _
W 2| 14— =2 —|  where = gwﬁ

Where k =1, ¢, =0.0001 and wy,=7as we defined it above. [if the above

equality false we will restart the computations tb&é network from the

begging (i.e. go back to neural network steps, $2¢pAnd whenever the
equality true we will stop the training of the netk and compute the output
of the networky(t)]. So that norm ofit) =8.1828 > 2.6458 .

5.we will tack the Log-sigmoid transfer functiorc(@ation function) .

()=

“1rexd-1)

6.the output of the neural network is given by
10 _ :
yk(t)= f(_zlwki (t)a (t)], wherek =1, i =1,...10.
=

Suppose thaty,(t)=vy,(t=jh)=y,(jh)=y,(j), j=stand for number of
divided time interval. Such that the result gft)on the time interval

t 0[0,100| with step sizen=5, the solution are as shown in table (3.32).

V¢eo
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The output of the neural netwotkl[0,100] with step sizeh=5

t j y,(i)
0 1 VLEAY S
5 2 VYYY
10 3 ERT
15 4 Eo
20 5 VLYV
25 6 LYY,
30 7 LYo
35 8 Y10
40 9 VYVYA
45 10 YoM
50 11 LLYasy
55 12 YeYo
60 13 EeEY
65 14 GIAEY
70 15 LYee
75 16 YTE
80 17 Vv
85 18 VL YEAY
90 19 GYVYY
95 20 GAVYY
100 21 GEAY

Table (3.32)
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Step(9): We can now find the control input of the systen®)3with using
0, (t)=y, (t)and we defined it in step (7) aslt)=u,(t = jh) = u,(jh)=u,(j),
j =stand for number of divided time interval. Sucht tie result ofu, (t)on
the time intervak 00,100 with step sizeh =5, the solution are as shown in

table (3.33). is given by
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The control input of the system (3.8)1[0,100| with step sizen=5

j j u, ()

0 1 5.2837

5 2 2.4263
10 3 0.5140
15 4 -3.1970
20 5 -2.7792
25 6 0.9180
30 7 2.8410
35 8 -0.0581
40 9 -3.3468
45 10 -2.4554
50 11 1.2897
55 12 2.7523
60 13 -0.5073
65 14 -3.2909
70 15 2.1152
75 16 1.6599
80 17 Y,1vey
85 18 -0.8645
90 19 -3.5592
95 20 -1.5538
100 21 VYA

Table (3.33)
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Step (10): display the control inpuul(t) in the system (3.9) (step(1)) and

find new the results and the error of the nonlirgestem with using neural

network.

Where
z(t)=z(t=1i)=z(ih)=z(j)= &(t) =sin(t) =sin(t = j) =sin(jh)
z(t)=z(t=])=z(ih)=z(j)=el)=c 5() codt = j)=cogjh)
z(t)=z(t=)=z(ih)=z(j)=e )= =™ =™

j =stand for number of divided time interval. Sucht tie result ofu,(t)on

the time intervak ({0,100 with step sizeh =5, the solution are as shown in

table (3.34). is given by

EA!
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The results of the system (3.9) with using neuesvork on the time interval

t0[0,100| with step sizen=5

t j z(0) | 2,0) | ) | l) | &li) | &li)
0 1 0 0.2 0.5 0 -0.8 -0.5
5 2 0.2 0.7 48140 | -0.7093| 1.1161 | 4.8184
10 3 0.9 5.5190 | -0.5877| 0.7584 | 6.5089 | -0.5877
15 4 6.4190 | 4.9312 | -9.6414| 7.1758 | 5.5849 | -9.6414
20 5 0.0114 | -0.0047| -1.3274| 0.0123 | -0.0050| -1.3274
25 6 0.0066 | -1.3321| -6.7253| 0.0064 | -1.331 | -6.7253
30 7 -1.3255| -8.0574| 3.1233 | -1.3261| -8.0582| 3.1233
35 8 -0.000 | -0.000 | 1.1644 | -0.000 | -0.000 | 1.1644
40 9 -0.000 | -0.0116| 4.1252 | -0.000 | 0.10116| 4.1252
45 10 0.0012 | 0.4137 | 1.2848 | 0.0012 | 0.4137 | 1.2848
50 11 0.000 0.000 | -7.8930| 0.000 0.000 | -7.8931
55 12 0.000 | -0.000 | -3.5698| 0.000 | 0.000 | -3.598
60 13 -0.000 | -0.0357| -4.7038| -0.000 | -0.0357| -4.7038
65 14 -0.000 | -0.000 | 2.4587 | -0.000 | -0.000 | 2.4587
70 15 -0.000 | 0.000 | 2.2740 | -0.000 ; 0.000 | 2.2740
75 16 0.000 0.000 | 5.4442 | 0.000 0.000 | 5.4442
80 17 0.0000 | 0.000 | -7.4319| 0.0000 | 0.000 | -7.4319
85 18 0.000 | -7.4319| 0.000 0.000 | -7.4319| 0.000
90 19 -7.4319| 0.000 | 0.000 | -7.4319| 0.000 | 0.000
95 20 0.0000 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.000
100 21 0.000 | 0.000 | 0.000 | 0.000 , 0.000 | 0.000
Table (3.34)
The effectiveness of using neural network showmhi figures down and

who the system in (3.9) will be stable

VYo
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Figure (3.13)
The output of the system (3.9 (t),t 1(0,100)) with using neural network
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Figure (3.14)
The solution of the system (3.9 (t), z,(t), z,(t),t 0(0,100)) with using

neural network
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Figure (3.15)
The output of the system (3.92 (t),t 1(0,100)) and the error of the system

with using neural network
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Figure (3.16)
The solution of the system (3.93,(t),t 1(0,100)) and the error of the

system with using neural network
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Figure (3.17)
The solution of the system (3.93,(t),t 1(0,100)) and the error of the system

with using neural network
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Updating weights

W) = w(t) - Wit)

A

w(t) — W(t) — wit) >O—
I nputs l]z(t)
02 = WJ(VT XNN + bO)
Input layer Hidden layer Output layer
where

(thevias=h, =|b,,....b,))

(thei nputtotheneur alnetwor lare= z = [zdl, Y As,q,g,g])

(theweightsnthelstlayer) v, i =1...10(i =thenaof neurongnthehidderiayer)
j =1...6,(j =thenaof neuronsnthe nput ayer)

q = iv” zjj, (g =theoutpuiof thefirstlayer)
e

(thewei ght®f thehidderiayerw, ,k =1, (k =thenaof theneur ongntheoutpul ayer),
1=1...10

(theesti matedvei ghtsivwhichfoundoy solving=> V= sqg— kdr| )

(theer or rwei ghtsv=w-W)

(theoutpubftheneuralnetworKJZk = iwk qD

Figure (3.18)
Architectural graph of two-layer of neural networks

application(3.2.2)
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Chapter Two Nonlinear Neuro Controtle

Introduction
Today automatic control systems have become agrated part of our

life. They appear in every thing from simple eleaic household products to
air planes and spacecrafts. Automatic control systecan take highly

different shapes but common to them all is themcfion to manipulate a

system so that it behaves in a desired fashion.nvdiesigning a controller for

a particular system, it is obvious that a vitakmbediate step is to acquire
some knowledge about how the system will responeinwhis manipulated in

various ways. Not until such knowledge is availalal@n one plan how the
system should be controlled to exhibit a certaimavéor.

Control of nonlinear systems is a major applicatarea for neural
networks. The control design problem will be apptal in two ways: direct
design methods and indirect design methods. "Didestign” mean that a
neural network directly implements the controllEnerefore, a network must
be trained as the controller according to some kihcelevant criterion. The
indirect methods represent a more conventionalcgmbr, where the design is
based on a neural network model of the system tcob&olled. In this case

the controller is not itself a neural network, [Zda, 1996].

2.1 Remarks and Comments

To control a system is to make it behave in arddsmanner. How to
express this "desired behavior" depends primarnlyhe task to be solved, but
the dynamics of the system, the actuators, the une&nt equipment, the
available computational power, etc., influence fibrenulation of the desired
behavior as well. Although the desired behavioriobsly is very dependent

of the application, the need to rephrase it in mdtical terms suited for
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practical design of control systems seriously kntlie means of expression.
At the higher level it is customary to distinguiso basic types of problems:

Regulation problems. The fundamental desired behavior is to keep the
output of the system at a constant level regardiésse disturbances acting
on the system (e.g., controlling the temperature i@aom).

Servo problems. The fundamental desired behavior is to make the
output follow a reference trajectory closely (eapntrolling a robot), [Hertz,
1991].

2.1.1 Why Using Neural Networks in Control System?

How are neural networks useful for control systdesign? It is
practical to distinguish between the following cptees of controllers:

1. Highly specialized controllers that are relevant when the system to
be controlled is in some sense difficult to stailor when the performance is
extremely important.

2. General purpose controllers where the same controller structure
can be used on a wide class of practical systerhg. dontrollers are
characterize by being simple to tune so that afsatory performance can be
achieved with a modest effort.

Basically, neural networks are relevant in botbesa but they probably
have the biggest potential within general purpasarol. It is believed that
their ability to model a wide class of systems iany applications can reduce
time spent on development and offer a better pedoce than can be
obtained with conventional techniques like autoetinPID-controllers,
[Zurada, 1996].

2.2 Remarks and Comments

1. The multilayer perceptron (MLP) network (whichsdissed in

chapter one/section four) is straightforward to kEypfor discrete-time

123



Chapter Two Nonlinear Neuro Controtle

modeling of dynamic systems for which there is alimear relationship

between the system's input and output:

Input, u(t) |* System, S —‘ output, y(t)

Figure(2.1)
A dynamic system with oneinput u(t) and one output y(t)

Let t count the multiple of sampling periods so thé) specifies the present
output while y(t 1) signifies the output observed at the previous $iap
instant, etc, if it is assumed that the outputhaf dynamic system at discrete
time instances can be described as a functionnafaber of past inputs and
outputs

y(t)=9lylt-1)..., yt—n),ut-1),...,u(t —m) (2.1)
an multilayer perceptron network can be used fgr@amating S if the
inputs to the networl[< P, pz,...] are chosen as threpast outputs and tha
past inputs:

. nh n+m

yt\6)=glo, plt)] = jz=1W ZWip R O+w o W g (2.2)

Where Wj’ fj, pI (t)V\/I o are the weights matrix, the transfer function

(activation function), the inputs and the bias loé t multilayer perceptron
network respectively, andh, n+mare the number of the neuron in the hidden
layer, the number of neuron in the first layer bé tmultilayer perceptron
network, respectively, [Hertz.,1991].

2. The history of universal approximation by neuretworks started in
fact in 1900. When Hilbert formulated a list of 2Ballenging problems for
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the century to come. The famous 13-th problem ésftllowing conjecture
[Funahashi, 1989].

Conjecture [Hilbert,1900]. There areanalytic functions of three
variables which cannot be represented as a finperposition of continuous
functions of only two variables.

This conjecture was refused by Kolmogorov and Atno 1957, and
they proved the following Theorem:

3. Theorem Any continuous functiofi (X, ..., X,) of several variables

defined on the cube [0,1{n > 2) can be represented in the form
2n+l n
(=", £ )

wherey;, y; are continuous functions of one variable afdare monotone
functions which are not dependentfon
This Theorem was refined by Sprecher as follows:

4. Theorem: For each integen > 2, there exists a real, monotone
increasing functiony(x), y([0,1]) = [0,1], depending om and having the
property: for each preassigned number0 there is a rational number0 <g
< 9, such that every real continuous functiomofariablesf (x), defined on
[0,1]", can be represented as

f(x)= %[

=1

S A g%+ -D)+ | —1}

where the function is real and continuous aids a constant independent of
f.
5. A link between the Sprecher Theorem and neuralorés was first

revealed by Hecht-Nielsen in 1987. He pointed bat the Sprecher Theorem
means that: Any continuous mappifigx0[0]" - (fl(x),..., fm(x))lj RMis

represented by a form of a two hidden layer nenealvork with hidden units

whose output functions arg y (i= 1, ..., m), wherey is used for the first
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hidden layer,y; are used for the second hidden layer and is giwenhb
Sprecher Theorem fdi(x). However the fact that the functiong are highly

nonsmooth and the functiogsdepend on the specific functioinh and are not

representable in a parameterized form, was pathefcriticism made by
Girosi & Poggio, who claimed that Kolmogorov's regpentation theorem is
irrelevant for neural networks [Girosi, 1989]. 19 this was refuted by
Kurkova, who proved that Kolmogorov's Theorem igleéad relevant: by

using staircase-like functions of the forfa olo x+¢; | where o()isa

sigmoidal function, for; andy; in the two hidden layer network it is indeed
possible to approximate any continuous functiontably well [Kurkova
(1991), (1992)].

6. On the other hand in 1991 it was also shown indeeetly by
Hornik, Funahashi, and Cybenko, that a multilayeedf forward neural
network with one or more hidden layers is suffitisnorder to approximate
any continuous nonlinear function arbitrarily welh a compact interval,
provided sufficient hidden neurons are availablecdntrast to Kurkova, they
make use of advanced theorem from functional arsalyge will focus here
on the results presented in [Horink, 1989]. In orde understand the
following Theorem some preliminary definitions haweebe introduced. Let
Cl denote the set of continuous functioRS — R, p a metric to measure the

distance betweerii,gOC", Al the set of all affine functios from
R toR:{A(x): R = R:A(X)=wT x+b;x0 Rr}.
so called. networks angd IT networks are then defined as

Zr(G)z{f R » R: f(x):z?zlﬁj G(Aj(x)j;xDRf,ﬁj ORA, DAr}

Zﬂr(e)z{f ‘R & R: f(x)=zcj|:1,8j ﬂ'lgzlG(Ajk(x)j;xDRr,,Bj OR, AjkDAV}

whereG: R - R is a Borel measurable function. A functipnR— [0,1] is a
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squashing function ify is nondecreasing,lim/‘H_ooz,a(/l)=0 and
lim ,  %W)=1 and has a conuntable number of discontinuitiesnarks

that a3 " (G)network reduces to a stnandard classical multiléged forward
neural network with one hidden layer and activatibmction ¢ if
G=¢(> " (p)network).
The following definitions ar e necessary to what follows:

2.2.1 Definition:

A subsetS of a metric space (Xp) is p- dense in a subset T if
Ot OT ,0s OS suchthat p(t,s)<e.

2.2.2 Definition:

SOC" is uniformly dense on compact iff i€for all compact subsets
K OR'" the subseSis pk-dense in Cwith p«(f, g)=sup)GK\f(x)— a(x) .
A sequencgf,} converges to f uniformly on compact if for all
KOR": pk(f,, f) - Oasn - .

In our case T corresponds td @d S to >'(G) or YII'(G). The
following theorem then holds:

7. TheoremlLet G be any continuous nonconstant function fRto R.
Then YTI' (G) is uniformly dense on compact ih C

Hence) T1(G) feed forward networks are capable of arbityaaidcurate
approximation to any real-valued continuous funtiwer a compact set and

G may be any continuous nonconstant function here.
Now letp be a probability measure defined (@l ,B" ) with B" 0 R
a Borelo-field and M the set of all Borel measurable functions frehtoR.

Functions f,gOM" are called u-equivalent if
r. _ _ - g f r +.
,u{x OR' :f (x)—g(x)} =1. Then the metricp, M OM' - R"is

defined by o, (f ,g)=inf{£>0:,u{x If (x)—g(x)‘>£} <£}. Hence f
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and g are close in the metrijg, if and only if there is only a small probability
that they differ significantly and and g areu-equivalent if ,olu(f,g):o
[Hornik, 1989].

The following Theorem then holds
8. Theorem For every squashing functiopm and every probability

measure: on (R",B" ), " () is uniformly dense on compact @' andp,-
dense inM " [Hornik, 1989].
2.2.1 Remarks

1.The above theorem means that regardless of thendiorer of the

input space and for any squashing funcijgra feed forward neural network
with one hidden layer can approximate any contisutunction arbitrarily
well in the p, metric. In the proof of Hornik's Theorems a cent@ke is
played by the Stone-Weierstrass theorem.

2. In addition to the previous Theorems, more refintdéorems were
formulated by [Hornik, 1991]. More recently [Leshr®93] showed that a
standard multilayer feed forward network with adlbg bounded piecewise
continuous activation function can approximate aowtinuous function to
any degree of accuracy if and only if the netwoac8vation function is not a
polynomial.

3. The previous Theorems are existence theorems aeadnat
constructive in the sense that no learning algomsttare presented and they
give no or little information about the number adden unites to be used for
the approximation. Furthermore, no comparision sden between neural
networks and other universal approximators sugbhosiomial expansions in
terms of network complexity.

4. The latter problem is addressed by [Barron, 198 3jas been shown
that the parsimony of a neural network parametgomais surprisingly

advantageous in high-dimensional settings. Feesafia networks with one
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hidden layer of sigmoidal activation function aclgean integrated squared
error of ordelO (1/n), independent of the dimension of the input spatere
n denotes the number of hidden neurons. The underifuinction to be
approximated is assumed to have a bound on the rfiament of the
magnitude distribution of the Fourier transform ¢&thness property). On the
other hand for a series expansion witkerms, in which only the parameters
of a linear combination are adjusted (such as ticadil polynomial, spline
and trigonometric expansions), the integrated sgearor cannot be made
smaller thanO(1/n“?) whered is the dimension of the input, for functions
satisfying the same smoothness assumption. In dodérmulate Barron's

theorem, letf(x) denote the class of functions @&f for which there is a
Fourier representation of the form

f(x)=], expliwx) f (w)dw.
for some complex-valued functiofi(w) for which wf (w) is integrable, and

define

Cf :.[Rd

w ‘ ?(W)‘ dw.
Let =204 G z//(akx+ bk)+ ¢y With a, O rRA, b, ¢ OR denote a

linear combination of sigmoidal functions with sghbang function .
Furthermore let p denote a probability measure on the ball

B, ={x:|X < r}with radius r > 0. then the following theorem abbke proved.

5. Theorem For every functiorf with G finite, and everyn>1, there
exists a linear combination of sigmoidal functidpé), such that
2 K,
I, (F00= £, pos="
2
where kf =(2rcfj . Hence the effects of the curse of dimensionalrty

avoided in terms of the accuracy of approximat®arfon, 1993].
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6. Stability plays a very important role in contrdiebry. It is a
necessary condition for feasibility of the contsgktem that the closed-loop
system, consisting of a controller and the systerbd controlled, is stable.
Additionally, the controller must of course be dgsd in such a way that the
behavior of the closed-loop system satisfies varimguirements, e.g., with
respect to speed and damping.

Sometimes stability of the solution is not an intpat issue, what is
important to get a bounded output if the inputosifided. Examples of norms

used in these cases are

() [ o =sup|x{t)] (2.3)
1
X0) 1, =[ & X007 24
1
MO = (éo ()] pj P (2.5)

2.3 Feedback Linearization

In the area of nonlinear control theory, feedbdakarization is a
principle which has drawn much attention. The aggtion is restricted to
certain classes of systems, but these are actnailyyncommon in practice.
The advantage of feedback linearization is that the design can be used
generally, in the sense that the same principlebeansed on all systems of
the right type. Moreover, extensions have beenldped to take into account
possible model inaccuracies, design and assocsaaddity analysis is based
on quite well established theory. See for examfletine, 1991], [Isidori,
1995], [Khalil, 1996] and [Chen, 1991].
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2.3.1 The Basic Principle of Feedback Linearization

Feedback linearization is commonly discussed inoaticuous-time
framework. The fundamental assumption made abautsyistem is that the

model of the considered system can be writtenencmonical form
GO1 [ %0
w20 st 2.
xn(t)] | fx@]+Glx)]ut)]

with f and g being nonlinear functions of the statés now the actual time

and not a multiple of the sampling period. If thasm is not obtained directly
when modeling the system, it must be possible toveeit through an
appropriate diffeomorphic transformation [Slotid891].
The system can be linearized by introducing of fbBowing control
redefinition (it is assumed thaix(t)] # 0), [Khalil, 1991].

uft) = W(tzj X]Et[)X(t)] 2.7)
If complete knowledge about the states is availadtaer from measurements
or from an observer, a pole placement type desigeasily accomplished.
Selecting thevirtual control input, w, as the reference plus a linear

combination of the states results in a closed-®miem specified by

][0 1 0 0] 8

w=2< 00 T D el s
Bk e
B A A I

yt)=[t 0 - 0fx()

corresponding to the transfer function model

1
H_ (s)=
cl n-1
S +a0

(2.9)

n
+
S an_l
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The coefficients{ai }P:_& will specify the characteristic polynomial; i.¢he

poles of the linear time invariant closed-loop syst The connection to pole
placement control is thus obvious.

Discretization of nonlinear systems is a quiteoled action unless it
is done by crude approximations. Here a somewhagmatic approach will
be taken, similar to the one suggested in Chen K&malil (1991). It is

assumed that the system can be modeled as
y(t)= fly(t-1),..., y{t - n)ult - 2),...,u(t - m)]

(2.10)
+o[y(t-2),..., ylt—=n)ult-2),...,ult - m)] u(t -1)
or equivalently
'xl((t+1))' %) ]
Xolt+1 t
=2 )= ng() 2.11)
1) |0+ o)

y(t) = xn(t)
with the state vector being defined by
xt)=lytt-n+1),..., yit-1), y] 2.12)
Assuming the functiond and g are known. Introduction of the following

control redefinition will linearize the system aetsampling instants:

—f o yit—=n+1ult-1),...,ut—-m+1
B Em e e &4

Selecting the virtual control inpwt, as the reference plus an appropriate

linear combination of past outputs again allowsdorarbitrary assignment of
the closed-loop poles. The control design can lgaroded as a nonlinear

counterpart to pole placement with full zero calat&n.
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2.3.2 Feedback Linearization Using Neural Networkddels

In case that the system is unknown, a model candeed from data

by letting two separate neural networks approxintaefunctionsf and g

9(t/6)= f“[y(t-l),...,y(t-n),u( —2),...,u(t—m),€f}
(2.14)
r gyt -1yt - nhut - 2)....u(t -m).8g Jut )

Derivation of a training method for determinatiointhe weights in the

two networks used for approximating and gis straightforward. The

prediction error approach requires knowledge ofdlgvative of the model
output with respect to the weights. In order tocakdte this derivative, the
derivative of each network output with respecti® weights in the respective

network must be determined first

_of _ 9§
W, (t,ef j_ﬁ wg(t,erg)_ﬁ (2.15)

The derivative of the model output with respecttihe weights is then

composed of the derivatives of each network infotlewing manner
W, (t,ef j

With this derivative in hand, any training metha@as be used without further
modification [Chen, 1991].

2.3.1 Remarks

The controller is related to the model-referenoatmller discussed

PRI

} (2.16)

previously: a nonlinear controller is designed takenthe closed-loop system
behave linearly according to a specified trangiaction model.
Advantages and disadvantages of the neural-nkthased feedback

linearization method are briefly listed below.
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Advantages:
1. Implementation is simple.
2. Only a model of the system to be controlled is nesgl
3. Tuning of the closed-loop response can be madeouiitretraining
of the model. An outer feedback can be introducedtaining a
linear pole placement controller.
Disadvantages:
1. Restricted to a particular class of systems. Diffido resolve
whether an unknown system actually belongs todlaiss.
2. Model structure selection is very complicated bseatwo neural
network architectures must be chosen.

3. Lack of design parameters for tuning of the coirol

2.3.3 Feedback control action

1. The main reason for using feedback control istabiBze unstable
systems and to reduce the influence from possilgintbances and model
inaccuracies.

2. Using feedback to ensure that the system rapallgwWs changes in
the reference is not always good practice.

3. A rapid reference tracking obtained with feedbgekerally has the

side effect that the controller becomes highly gemsto noise.

Feedback linearization was proposed as a methoddsigning pole
placement type controllers for a particular clashanlinear systems. The
neural network used for modeling the system has@eaific structure in order
to implement the controller. But we use another hodt Coordinate
Transformation) to translate the systems in the main theorehimedgrem
2.7.1, Theorem 2.7.2) of this chapter, which we will be discuss it lve]dout

first we will show some remarks that we need gilat
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2.4 Controllability of Dynamical System

System analysis generally consists of two partangtative and
gualitative.

In quantitative study, we are interested in thacexesponse of the
system to certain input and initial conditions. Theantitative study is
concerned with the general properties of a syskengualitative properties of
linear dynamical equations is introduced here: rdiadility, which is very

important in the study of control.

2.4.1 Definition (Controllable system):

A system is said to be controllable at timé it is possible by means of
an unconstrained control vector to transfer théesgdrom any initial state
x(t,) to any other state in a finite time interval, [Jay¥968].

2.4.2 Definition (controllability):

A system x= f(x,u,t) is completely controllable if any initial state

x(t,) can be transferred to any final stadg) by means of some contra(t)
over a finite intervat, <t <t, [Kolman, 1984].

2.4.1 Theorem

Consider the linear time-invariant system:
x=Ax(t)+Bult) (2.17)

Where xOR"is the state vectory[JR"is the control, AOR™ andBOR™

are constant matrices.

The necessary and sufficient condition for the glete controllability

of the system (2.17) is thex nmmatrix p(A, B)E[B,AB,...,An_lB} has

rank n, [Chen, 1984].
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2.4.2 Theorem

A continuous time system described by (2.17) isngletely state

controllable if and only if the composite nxnm matrix

oA, B)E[B, AB, ..., An_lB} is of rank n [Ogata, 1996].

2.4.3 Definition:

Let A be annxn matrix andB be annxm matrix, then we say that

the pair(A,B) Is completely state controllable if the system:
x=Ax(t)+Bult)
Is completely state controllable, [Ogata, 1967].

2.5 Lyapunov Stability:

We present here the Lyapunov methods of stalaliglysis ( the first
method and the second method) which are applicablboth linear and
nonlinear system. Our attention will be devotedhe second of Lyapunov
method, which provides stability information on dar and non-linear
differential equations without solving them, hetite second method is called
the direct method of Lyapunov, the direct methodmsest useful for
investigating stability of non-linear systems. ieps sufficient conditions for
asymptotic stability of equlilibrium states of nbnear systems and gives
necessary and sufficient conditions for asymptsti&bility of equilibrium
states of time-invariant systems, [Jayc, 1968].

2.5.1 Definition (Equilibrium States):

Consider the dynamical systenx= f(x,t), a state x,, where

f(x.,t)=0,0t is called an equilibrium state of the system,d@g1967].
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2.5.2 Definition (Lyapunov Stability):

An equilibrium statex_ of the dynamical system= f(x,t) is stable (or
stable in the sense of Lyapunov) if for every 0, there exist®) >0(d(&,t,))
such that

[%, = x| < S implies|x(t;x,) - x| < &, for all t=t, (2.18)
Where|[| denotes the Euclidean norm of a vector, [Jayc8196
2.5.3 Definition (Asymptotic Stability):

An equilibrium statex, of the system x= f(x,t) is asymptotically

stable if:
1. It is stable in the sense of Lyapunov.
2. For allt,, there exists g(t,)>0 (possibly depending o) such that

[, — x| < p impliesthat |x(t,x,) - X,

L 0ast - (2.19)
[Jayc, 1968].
2.5.4 Definition (Asymptotic Stability in the Large

The nominal solution x,(t) of the system x(t)=f(x(t)t) is

asymptotically stable in the large if :

1. Itis stable in the sense of Lyapunov.
2. For anyx(t) and anyt,,[x(t) - x,(t)] - Oast - o.
A solution that is asymptotically stable in thege has the property that
all other solutions eventually approach it, [Jay@68].
2.5.1 Theorem (Stability of Time Invariant System):

The time-invariant linear system:
x(t) = A x(t)
is stable in the sense of Lyapunov if and only if :
a. All of the characteristic values & has non-positive real parts, and,
b. To any characteristic value on the imaginary axid wultiplicity m, there

correspond exactly m characteristic vectors ofntlag¢rix A, [Huibert, 1972].

oA
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2.5.2 Theorem:
The time-invariant system:
x(t) = A x(t)

Is asymptotically stable if and only if all of theharacteristic values

(eigenvalues) oA have strictly negative real part [Huibert, 1972].
2.5.3 The Direct Method of Lyapunov:

The second method of Lyapunov attempts to giverinétion on the

stability of equilibrium state of linear and nondar systems without any
prior knowledge of their solutions.
The essence of the second method of Lyapunov vsngin the

following theorem:

2.5.3.1 Theorem (Lyapunov Main Stability Theorem):

Consider the system:

x(t)= f(x(t)t)
and suppose thatt(0,t)=0,00t .

Suppose also, that there exists a scalar funcé@at) which has
continuous first partial derivatives. IW/(x,t) satisfies the following

conditions:

1. V(xt) is positive definite , namely V(0t), and

V(x,t)2a(/¥))= 0 forall x# 0,andallt,wherea is a continuous, non-
decreasing scalar function, such th40) = 0.

2. The total derivativeV is negative for all x20, and all tor

V(x,t)<-p|x|<0, forall x#0 andall t, whereyis a continuous, non-

decreasing scalar function such tix)=0.

3. There exists a continuous non-decreasing functismch that
B(0)=0 forall t,V(x,t)< 8|
4, a(ﬂxﬂ) approaches infinity s increases indefinitely, or
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a([x)) - e as ¥ - e
Then, the origin of the system=0 is uniformly asymptotically stable in the
large, [Ogata, 1996].
2.5.3.2 Theorem:

If there exists a scalar functiovi(x,t) with contiuous first partial

derivatives satisfying the following conditions:

V(x,t)>0, for all x#0in Qandall t

1) V(0,t)=0, forall t

(2.20)

V(x,t)<0, forallx#0in Qandallt

@ v(0,t)=0,0t

(2.21)

where Q is the region (can be the entire state space)¢ctwimcludes the
origin. Then, the origin of the systenx(t)= f(x(t)t) is uniformly
asymptotically stable, [Ogata, 1967].

2.6 Mathematical Preliminaries

2.6.1 Definition:

A norm is a function which assign to every veckin a given vector

space a real number denoted|kj; such that:
1. |X|= 0and|x| =0 if andonlyif x=0 2.22)
2. |ax|=|a| [¥|, aOR is a scalar anfl| is the absolute value af (2.23)

3.+ %< %] + . D%, (2.24)
4. (%) [s[x] x| (2.25)
The Euclidean norm of a vect&rlJR"is defined as:
n 2\¥2
=21 229

(8) The Euclidean norm af x n matrix is defined as:

n n 2 ]/2
Ml=(Z3fa 2260

i=1 j=1
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Wherea, | is the absolute value af

The Euclidean norm afi x n matrix is also defined as:
JA]= (A (AT A))? (2.26b)
Where A" is stands for the transpose @&f, A__ is standing for the
maximum eigenvalue dﬂ AT), [Chen, 1984].

2.6.2 Preliminary Remarks and Definitions:

Let R denote real numbelR" denote the real n vector, ariR™
denote the reamxn matrices. LetS be a compact simple connected set of

R". With map f :S —~ R", define C(S) as the space such thdt is
continuous. The initial condition is¢, =x(t,), let the equilibrium point

X,,andU_ be the neighborhood of.

1. Definition (Vector and Matrix Norms):

By | | is denoted any suitable vector norm. when it guired to be

specific, we denote thg-norm by | Hp The supremum norm of norm of
f(x), over S, is defined as

sup If (x)].f :S -~ R",xOX (2.27)
Given A = [a,j], BOO™" the Frobenius norm is defined by

Al =tr (A7 A)= 2] (2.28)
The Frobenius norm is compatible with the 2-nornthed

IAX, <[Al, [
The associated inner product(iA,B>F =tr (AT,B). SupposeA is positive
definite, then for an8 1R™"

tr(BAB")=0, (2.29)

r[A" (A - &) <|A (2.30)

Al ~[A

i



Chapter Two Nonlinear Neuro Controtle

and

Sfelath=v{ A (231)

[Lewis,1993].

2. Definition(Uniformly Ultimate Boundness )(UUB)):

Consider the non-linear system

x=g(xt) (2.32)
With state x(t)DD”. The equilibrium pointx, is said to be uniformly
ultimately bounded if there exists a compactSeét[]1", so that for allx, 1S
there exists an £>0, and a number T(g,x,) such that
Ix(t) - x.
x(t) remains within the ball of radius aroundx, [Lewis, 1999].
2.6.2.1 Remark

Leangs Shich and Yates et al in 1983. proposeeéthad to transform

<¢ forall t=t,+T. That is, after a transition period T, the state

system into block companion form as follows:

Consider the linear time-invariant system:

x=Ax+Bu (2.33)
wherexOR", uORM AQRM™N O RMM,

If the rank of the Dblock controllability test mixtr

oA, B)E[B, AB,..., An_lB} is n, then the system (2.33) is completely block

controllable companion form:

where

1y
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Om Im Om = Om Om]
Om  Om Im - Om Onm
Ac=TcATGL=| ; : EA: ;
Om  Om Om - Om Im
AR TApg TAp o TRy A

Where—A,,i =1,...n are constant values.
— — T
Bc=TcB=[0Om, Om» ---» Om Il
Xc =Tcx

The similarity transformation matriX; is given by[Leangs, 1983]:

.
Tcz[Tcl TLA T AZ . TclAn_l}
where

T.=Bl p7A B)

cl
2.6.2.2 Remark (Coordinate Transformation)

It is recalled that the state model for a systemoit unique, but depends
on the choice of a set of state variables. To sfynphalysis and design for a
system (2.33) can be written as:

X(t) = Ax(t)+ Bul(t)
it is often beneficial to define a new state vadealz by a coordinate
transformation:

Xx=Tz (2.34)
where T is a non-singular matrix.
The state model corresponding to these new statabl@ is found by
substituting (2.34) into (2.33).

T 2(t)=AT z(t)+Bu

2(t)=A z(t)+Bu (2.35)

where 4=T 14T, B=T 13

1y
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The definition of a new set of internal state abkes should evidently
not affect the eigenvalues or input-output behavtbrs may verified by

evaluating the characteristic equation of the fiamnsed system [John, 1990]:

s-A =‘s| —T_lAT‘ =‘T e —A)r‘ = ‘T ‘1‘ sl -A|[T]
=l - A T Ym)=[s - A

2.6.2.1 Example:

Choosing the nxninvertable transformation matrix T such that

0
TB {I } | is a unit matrix of dimension m, can be proposgqbeangs,

1986] [Huibert, 1972] [lan, 1986]).
It can be chosen such tha"t‘l=[L:B], whereL is selected such that the
inverse exists.

To show this consider the linear system
Xx=Ax+Bu (2.36)

X, | [-0428 -0339 0 X 015

X, |=|-2939 -1011 0| x, |+ -1011 u(t) (2.37)

X3 0 1 0 X3 1

where n=3, m=1, such that

x=po %y gl
-0.428 -0.339 0.15
A=|-2.939 -1.011 , B=| - 1.01f
0 1 0 1
suppose
2=Tx

wherez=[z, z, z|

¢



Chapter Two Nonlinear Neuro Controtle

such that we have a new system

z=TAT 1z+TB u(t)
) _ 0
Choose annxn invertable matrix T such thdiB = L }

The choice can be such thaf ™ =[L:B], wherelL is selected such that the

inverse exists. T is found to be:

-3.1728 -04707 -1.1447
T=| 27414 0.4067 0
—2.3688 -1.3406 0

and

0000 04944 015
1= 0 -08735 -1011
~18736 -1011 1

hence we get

0o 1 0 0
TAT 1=zl0 o0 1 | TB=|0
0 05636 —1.4390 1

Finally, the new system will be as follows

. (2.38)
23 =0.5636z

y=4

So far, we have discussed some necessary requitethat are needed

5~ 1.439z3 +u(t)

in what follows, and hence we are in position tesgnt and develop the main
results of this work. The representation of thenrtheorem are discussed as

follows:

10
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2.7 Main Problem
2.7.1 Theorem

Consider the non-linear system

X =Ax +Bg(x)u+Bf (x) (2.39)

where xOR", and the smooth function$ DRm,gDRm, uOR™ is the

control, AODR™N BORM™M are constant matrices. Assuming that
1. The pair(A,B) is controllable matrix.
2. The function g(x)=kgl(x), gz(x), gm(x)) is known such that

g(x)#0,0x, and|g(x)|>& where eOR"and g, (x)#0,0x,i =1,.. m.
. . _ [n—lj
3. Let the desired state be defined jaé((t)= Yg Yq 7 Yy , such

that Hyd (t)” <Q, for some scala®.

4. The uncertain nonlinear functioh(x) may be estimated bf/(x) such that
H f(x)- f(x)H EH ?(X)H < f(x) for some bounds functiofiy(x).
5. Let the filtered tracking error can be defined a
r=Kk'e (2.40)
Where et) = x(t)- v, (t) be the tracking errorfahe system in (2.39), and

K = [kl k2,...,kn_1,1j is approximate chosen coefficient vector.

6. Set the nonlinear neuro-controller by

u(t)=u, +u, (2.41)
Where
u, (x(t)) =W (x(t)) - 4, (x(t)) (2.42)

WhereW(t) Is chosen as the control law of the system (2.39Qi,u2is the

"
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nonlinear control function which we will approxineaby the general neural
network property.

7. Let the following structure of artificial neuraktwork have been adapter
where

- Consider two-layer neural network, consistingteb layers of tunable
weights. The hidden layer hasneurons, and the output layer haseurons.

- The first layer neural network have the input eVhiis chosed as
XNN [yd eF =|v,] j=12..,n; i=12...,L as the weights of the

first Iayer neural network which we will chose itandomly, and

OL]T as the bias of the first layer neural network whighwill

y = [b51,bys0
chose it randomly too.
- Chooseo(.) as any continuous sigmiodal function which be ahbtvation
function of the network in the first layer and inet hidden layer (second
layer).
- the output of the first layer will be definedfalowing

q =0V x, +b) i=12...,L (2.43)

- the input to the hidden layer (second layer)hef meural network will be the

output of the first layerd}).

-w is neural network adjusted weight (hidden layairakenetwork weights),

and it is assumed that they are bounded so|tiat wyy,, with wy, known

bounds. Andw are the estimated neural network weights whiclproeided

by the neural network tuning algorithm as

w= sa(vT XNN )r Bg - Ks|r| W 42)

wheres= sT

>0, any constant matrices representing the learrategsrof the
neural network.
K, small scalar positive design parameter.

Hence, the neural network weights approximatiooras

%%
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W=W-W (2.45)
- Neural network universal approximation propertefides that any
continuous function can be approximated arbitrakitgll using a linear
combination of sigmoidal functions, such that tiipait of the neural network

u,(x) can be defined as
u,(x)= w! J(VT XN b0)+ £(x) 48)
Where thee(x) is the neural network approximation error.

Implementer neural network,, is actually an approximation of the ideal

neural network (2.49) and is given by

A~ (T
U, =W a(v XNIN +b0) (2.47)
If the following conditions are satisfied
}ZWrzn +&p
Irlz = ——— (2.48)
vmin

or

1
_ \/§Wr2n+5n "';Wm °
W = (2.49)

Then the filtered error(t) and the neural network weights are (Uniformly
Ultimate Boundness).
Proof:
Let
z2=TX
wherezOR", and T is any suitable invertible matrix (The d®tan be such

that T = [L:B], wherelL is selected such that the inverse exists).

TA
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2=Tx=T(Ax+Bgu+Bf)
=T(AT‘1z+Bgu+ij

=TAT 1z+TBgu+TBf

Since(A,B) is controllable by theorem (2.4.1), we have

TAT 1=

0

0
0
a.

1

1 0
0 1
0 0
a, a3

0
0
1
an

Wherea,, a,,...,a, are sutable constant.

Hence
g

“2

0 1 0

0 0 1

0 0 O

ay d, a3

0 1 0 0]
00 1 0
000 1
0 0 0 0|
0 1 0 0]
00 1 0
000 - 1
000 0 0

19

4

%2

@5
o
O
TB=| "
Im
171 Om 11 gl | | Om 11 fl |
Om 95 Om f5
+ Cooju)+| :
C)m—l gm—l C)m—l fm—l
1L !m Il 9m CIm ]l fm |
0 0] [ 0
0 0 0
o lu+| |+ :
0 0 0
Oml| | fml| |#F T2t tanz
o 1] 0
0 0
: + :
0 0
gmult)| | fm*ayz +a,z,+...+anpzy

(2)5
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Zl 010 --0 Zl 0 0
22 0 0 1 0 Z2 0] 0
= : |=l: i .. c |+ +
2 1 1000« 1|z, 0 0
| z7 | [0 0 O - O] zy | _gmu(t)_ F(2),

and hence, we have the following system
4=
=5
: (2.52)
Zq = gmult) + F(2)
y=4

with z=lzl, 22"“’ZnJ-rr1x1 , F:RM . R, an unknown smooth function;
Iy R . R , @ known smooth functiony(t) the control.
Define the state tracking erreg(t) as

er=2-Y, (2.53)
where vy, (t) is the desired state vector which we can defined a

n-1
yd(t)= Yq yd ij J

hence:>ez=z—yd ETx—yd

Differentiation yields
&, =T>‘<—yd (2.54)
Using equation (2.39) we get
éZ=T(Ax+Bgu+Bf)—yd
ET(A(eX—yd)+Bgu+Bf)—yd
ETAeX—TAyd +TBgu+TBf —yd

whereey =x -y, as we defined it above, and since
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oo [oola] [2] (a8
O g

TB = :m —TBg=| M :2 = . | TBf=| M :2 =
_|m_ _Im__gm_ _gm_ _Im__fm_ _fm_

And if we suppose that

uzém(u1+u2) (2.55)

Where by condition (2) abovg, (x)# 0,00 ..
The system (2.53) and the action (2.55) leadseddlowing

6, =T Aey +T y +| Uy +u, |+T Bf -y, (2.56)
and, from equation (2.42) we choose that

W=—TBf—Tyd+yd +T KBey -TKBey (2.57)
Such that equation (2.56) can be modified as

e, =T(A+KB)e, (2.58)
Since (A,B) is a controllable pair by condition (1). To make tconvergent

faster define the filtered tracking error of thestgyn (2.52) and by equation

(2.40) we have the following
r,=KT e, (2.59)
where K :[kl’kZ’“"kn—l’lJ is approximate chosen (filter coefficients

vector), so that -~ 0 asr - 0.Then the time derivative of the filtered error

can be written as
F=gmu(t)+F(z)+Yy (2.60)

_ ) n-1 . : . :
whereY, =-y"W + v k , andF(z) is defined in equation (2.51)

R =1

Similarly in terms of the filtered tracking errathe above system

ie|+1

dynamics (by using equation (2.41)), can be deedris follows

A
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r':gm[ul+u2]+F(z)+Yd (2.61)
Using condition (4) above and equation (2.60), tilaeking control law\W

which be chosen in equation (2.57) can be writen a
:——F“(z)—Yd—erm] (2.62)

where F is the fixed approximation of the functiongl, k, is the feedback

gain, and assuming that be the robust term chosen for the disturbance

rejection which can be defined as

a(t)=-f_(z)sign(r) (2.63)
where

_ 11 r>0

sugn(r)—{o <0 (2.64)

sign(-) Is the standard sign function. Using control lameqguations (2.62),
(2.42), (2.45), and substituting into equation {2 @we get
t=F(z)+TBg{W o(v' x,, +b,}+a-kr+e (2.65)

Setting that Lyapunov function candidate as
Vv =%r2 +%tr (\TVT s‘l\?v) (2.66)

where r is the filtered tracking error andv is the neural network
approximation error which is defined in equatiomg), such that

W=W-—W (2.67)
Where W is the neural network ideal weights, aidis the estimated neural
network weights which provided by the neural netwiming algorithm as
defined in equation (2.44), where

V =0V (r(t))/ot +oV (v (t))/ot =%—Y%+%%ﬂt~

= V=rr+tr (WT s_l\iT/) (2.68)

\Al
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Hence substitution equation (2.65) into equatia6§2yields

2 T T

V =—kyr +IF+rTBgW J(V xNN)+ra+r£+tr(\Tvs_lé)

=- Vr2 +r{|5+a+£}+tr(vT/T{s_]\7\7+ J(VT xNN)rTBg})

Applying the neural network tuning rules (equati¢2.44)), then the

(2.69)

derivative of Lyapunov function is simplified to
V =k, r? +r{|5+a+g}+ KHrHtr(vT/T v“v) (2.70)
Using equation (2.63) one has the following

. 2 ~T _ ~
VKl + Kl (T )=t + I e @7)

Using the inequality

~ ~ ~ ~ 2
X7 (=) | < R e -I%]E 2.72)
Using the inequality (2.72), such that the inegydR.71) can be written as
. 2 — 2
V'S K1+ KIF 19 [l ~1E )+ Irlen (2.73)

(From usingw|g < wy), and from inequality (2.73)we have that

. ~ — 2
V [0 K I K[l [ )+ 2

1 2 1 (2.74)
=uru{-kvmmuru—K(uva -2 +Zme+an}

which is guaranteed to remain negative as longcasdftions (2.48) (2.49)

above satisfied as following

Or

VY
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1
I S
F_

K

Such that, since/ (0)=0V (r)= 0andV (r)< C, which means that the
stable of the system for tracking filter is guaraatand if r - 0,ast — .
Thereforez - 0,ast - o and hencex - 0,ast - o« so that the stability of

the system (2.39), with using neural network cdfdras proven.

The advanced vision of system (2.39) is know predos'he more
related theorem based on theorem (2.7.1), is disdjsthe root of this
theorem also been submitted, the following requéetrand representation
are shown as below, the generalizing of vector ealufunction

fOR",g0OR"™ into fOR™ and gOR™™ respectively, are of the main
developed in this following theorem.
2.7.2 Theorem

Consider the nonlinear system

x=Ax+B f(x)x+Bg(x)u(t) (2.75)

where xOR", and the smooth functions D R™* ", g RM™M yorM is

the control, A R™N BOR™M are constant matrices. Assuming that

1. The pair(A,B) is controllable matrix.
2. The Functiong(x)ORM*M is known such thatg(x)#0,0x, and
lg(x)| > & where eDR"and g, (x)#0,0i =1...,m; 0j =1...,m.

n_
3. Let the desired state be defined jaé((t)= Vg Vg y(d J , such

that Hyd (t)” <Q, for some scala®.

A&
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4. The uncertain nonlinear functioh(x) may be estimated b§(x) such that
Hf - f(x H Hf H< fm(x) for some bounds functiofy,(x).
5. Let the filtered tracking error can be defined a

r=k'e (2.76)
Where elt)=x(t)- vy, (t) be the tracking error of the system in (3,7&nd

K = [k1 Koo K 1,1] is approximate chosen coefficient vector.

6. Set the nonlinear neuro-controller by

u(t)=u, +u, (2.77)
Where
u, (x(t)) =W (x(t)) - G,(x(t)) (2.78)

WhereW(t) be chosen as the control law of the system (2/4i8). u,be the

nonlinear control function which we will approxineaby the general neural
network property.

7. let the following structure of artificial neuraktwork have been adapter
where

- Consider two-layer neural network, consistingteb layers of tunable
weights. The hidden layer hasneurons, and the output layer haseurons.

- The first layer neural network have the input ethibe chosen as
XNN [yd eJT =|v,| j=12...n; i=12...,L as the weights of the

first Iayer neural network which we will chose itandomly, and

OL]T as the bias of the first layer neural network whiahwill

p = [b31.bys0
chose it randomly too.
- Chooseo(.) as any continuous sigmiodal function which be abtivation
function of the network in the first layer and inet hidden layer (second
layer).

- the output of the first layer will be definedfalowing

Yo
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q=0(V' x, +b,) i=12...,L (2.79)
- the input to the hidden layer (second layer)efmeural network will be the

output of the first layerd)).

-w is neural network adjusted weight (hidden layasraknetwork weights),

and it is assumed that they are bounded so |tat wy,, with wy, known

bounds. Andw are the estimated neural network weights whiclproeided

by the neural network tuning algorithm as

w= sa(vT Xy )T Bg = Ks|r| W .8Q)

NN)

wheres= sT

>0, any constant matrices representing the learrategrof the
neural network.
K, small scalar positive design parameter.
Hence, the neural network weights approximatioordg

W=W-—W (2.81)
- Neural network universal approximation propertefides that any
continuous function can be approximated arbitrakitgll using a linear
combination of sigmoidal functions, such that tinpaoit of the neural network

u,(x) can be defined as

N I
u2(x)—w a(v XNN +b0)+£(x) §2)

Where theg(x) is the neural network approximation error.

Implementer neural network,, is actually an approximation of the ideal

neural network (2.49) and is given by

A~ T [T
U, =W a(v XNN +b0) (2.83)

If the conditions down satisfied

Iz = —— (2.84)
Or

A
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1
) JZW%+£n+;wm 2
W = (2.85)

K

Then the filtered error(t) and the neural network weighfs are (Uniformly

Ultimate Boundness).

Proof:
Let

z=TX (2.86)
and zz[zl, 22, zn]T, whereT is any invertible matrix, (The choice

can be such thafT ™ = [L:B], wherelL is selected such that the inverse exists).
2=Tx=T|Ax+B f(x)x+Bg(x)u(t)
= T[A(T -1 z) +B f (z)(T 1 z) +B g(z)u(t)}
Let

mazf&%rﬂﬂ (2.87)

—  z=TAT 1z+TBh(z)+TBgu() 48)

Since(A,B) is controllable by theorem (2.4.1), we have

001 0 - 0 O]
0 0 1 - 0 Om
TAT 2= ¢ ¢ & | TB=| :
0 0 0 - 1 Om
a1 9y a3 o dn| m ]

where a,,a,,...,a, are constant. And_ standard for identity of order m.

hence

A%
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Zl 0 1 -~ O] Z 0 0 0

22 OO0 -0 Zy 0 0 0

2l U1 RS N U T U R Y :

z. 4| |0 O 1124 0 0 0
2y, | |00 - 0 2z | _hm(z)_ _gmu(t)_ a2 + 052, ...+ A7,
wheregm=[gml 9o gmm]’ u=[ul U, - Umr :
'zl“()l... o"zl'_ 0 17 o 7
Z, 00 - 0| 7 0 0

2 Coly ; 4 :

zr.]_l 00 - 1|z,4 0 0
27| [0 0 - O 2z | _hm(z)+alzl+azzz+...+anzn_ gmulft)]
Let

F(z)=hm(z)+alzl+a222+...+anzn (2.89)

_Zl__Ol--- O__Zl__O__O_

22 O 0 -0 Z, 0 0

P P | 0 P O

Zn_l O 0 -~ 1 Zn—1 0 0

zn | [0 0 - Of zn | [F(2)] [gmul)]

and hence, we have the following system
4%
27%3
: (2.90)
2y =F(2) + gpult)
y=4
with z=lzl, Zy, “"ZnJ-rrlxl , F:R" = R, an unknown smooth function;

Oy R" . R , @ known smooth functiony(t) the control.

Define the state tracking erreg(t) as

YA
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(2.91)

€z2=27Yy4
where y,(t) be the desired state vector which we can defirtedbyi
_ n-1
YaO=|yg Yq - ij J

=€z=2-Yy ETx—yd
Differentiation yields
e,=Tx-y,
Using equation (2.75) we get
e, =T(Ax+Bgu+Bfx)- Yy
ET(A(eX - yd)+ Bgu+ Bh(z))— Yy
=TAe -TAy, +TBg u+TBh(z)- Yy

whereey =x -y, as we defined it above, and since

O | Om i gty toet g U
TB= O.rn . TBgu= O:rn 921u1+"':+92mum
_Im_ _Im__gmlu1+' +gmm
where
gm = [gml’ ng’ te gmm]’ U(t): [ul’ u2’
and
0, ][h(z2)] [ 0]
TBh(z)= O hz:(z) -| 9

suppose that

vAa

(2.92)
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T (2.93)

mi m2 mm

where by condition (2) above (x)# 0,0 x0i =1...,m0j =1,...,m, and

=i ,Ui=1,...,m suchthatu #0,0i =12,...,m.

mi

The system (equation (2.91)) and the action (eqgnat2.93)) leads to the

following

éZ=TAeX—TAyd+[u1+uzj+TBh(z)—yd (2.94)
and, from equation (2.78) we choose that

W=-TBh(z)+TAy, +y  +TKBe, ~TKBe, (2.95)
Such that equation (2.94) can be modified as

e, =T(A+KB)e, (2.96)

Since (A,B) is a controllable pair by condition (1). To make tconvergent
faster define the filtered tracking error of thestgyn (2.90) and by equation
(2.76) we have the following

ry, = KT e, (2.97)

where K :[kl’kZ’”"kn—l’lJ Is approximate chosen (filter coefficients

vector), so that -~ 0 asr - 0.Then the time derivative of the filtered error

can be written as
F=gmult)+ F(z)+Yd (2.98)

_ . n-1 . . .
whereY, =-y '+ ¥ ke | andF(z) be defined in equation (2.89)

d d =1

Similarly in terms of the filtered tracking errabove system dynamics
(by using equation (2.77)), can be described dsvisl

+1
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d
Using condition (4) above and equation (2.98), tilaeking control lawwW

f=gmu [u1+u2J+ F(z)+Y (2.99)

which be chosen in equation (2.95) can be writken a

1 A
Wzgmui [—F(z)—Yd—er+a] (@

where F be the fixed approximation of the functiorfal, k, is the feedback

gain, and assuming that be the robust term chosen for the disturbance

rejection which can be defined as

alt)=-f_(z)sign(r) (2.101)
where

_ 11 r>0

sugn(r)—{o <0 (2.102)

sign(-) is the standard sign function. Using control lameguations (2.100),
(2.78), (2.81), and substituting into equation 93 @e get
t=F(z)+TBg{W o(v' x,, +b,}+a-kr+e (2.103)

Setting the Lyapunov function candidate as
Y, =%r2 +%tr(vT/T s \Tv) (2.104)

Where r be the filtered tracking error an& be the neural network
approximation error which we defined in equatior8{3, such that
W=W-W (2.105)
Wherew be the neural network ideal weights, ande the estimated neural
network weights which provided by the neural netwaming algorithm as
defined in equation (2.80).such that the differain yields
oV E_Lav éj‘ﬂ

\/=6V(r(t))/at+av(vv(t))/at=a—r Lt 7 Ca

= V=rr+ul@’ s 1) (2.106)

A
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Hence substitution equation (2.103) in equatiof(@&) yields

2 T T

V =—kyr +IF+rTBgW O'(V xNN)+ra+r£+tr(\Tvs_lé)

— 2 = ~T{ 1= T
= —kyr +r{F+a+£}+tr(W {s 1\N+(7(V XNN)rTBg})

Applying the neural network tuning rules (equat{@®B0)), the derivative of

(2.107)

Lyapunov function is simplified to
V =k, r? +r{|5+a+£}+ KHrHtr(vT/T v“v) (2.108)
=—ky :
Using equation (2.101) one has the following
. 2 - - ~
Vs, 2 K T @) g +IE + ey (2.100)
Using the inequality
~ <\ i~ ~12
tr| X7 (x=%)| <[] |4 [ (2.110)

Using the inequality (2.110) in the inequality (@9) can be written as

. 2 _ )
V Sl + Il [ [l - )+ e @111

(From usingw|g <wy), and from (2.111)we have that

: ~ ~2
V S 01 K]+ K w1 |

L (2.112)
=uru{—kvmmuru—K(MF 2| ke

which is guaranteed to remain negative as longcasdftions (2.84) (2.85)

above satisfied as following

Or
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Such that, sinc®(0)=0,V(r)=0andV(r)<0= the stable of the system for
tracking filter is guarantied and ifr - 0,ast - 0= 2z - 0,ast - cand
hencex - 0,ast — o so that the stability of the system (2.75), witing

neural network controller is proven.

2.7.1 Remark

The following are structure of the neuro-congoll
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CONCLUDING REMARKS

1. Theclassloop optimal control using neura network has been defined

and named as neurocontroller.

2. Since the weights are function of time as well as the solution and the
control of the nonlinear dynamical control system, some difficulties
have been faced for design neurocontroller. To over come this
difficulties, in this work, some divided difference scheme has been
adapted and then successive tuning weight and controller are

implemented.

3. The neurocontroller depends on the nature of artificial neural network
structure, number of inputs layers, number of hidden layers, number of
output layers as well as the way for which the weights are tuned. If the
number of hidden layers are increased , the numerical future becomes

more accurate.

4. Fromthe simulation, it is clear that the proposed scheme can
effectively compensate the uncertain nonlinearity in a class of
nonlinear control systems. Simulation results show that the proposed
uncertain compensation techniques for the illustrations can be
effective for a feedback-linearizable class of nonlinear systems so that
the stability is reach faster.

5. neural network istrained by the filtered tracking error, trying to
minimize the filtered tracking error.
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FUTURE WORK

- Neurocontroller for uncertain nonlinear Robotic dynamical control

systems may be developed.

- Neurocontroller plus neuro solution of some neural adjusting control
system may be developed.

- ldentification of uncertain dynamical control system based control

systemin artificial neural network base on our work must be devel oped.

- Fuzzy neurocontroller for uncertain of nonlinearity some may nonlinear

also dynamical control system be considered.
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I ntroduction

Neural networks constitute a very large research field, and it is
difficult to obtain a clear overview of the entire field. Several motives
originally lead researchersto study neural networks.

When designing a controller for a particular system, it is obviousthat a
vital intermediate step is to acquire some knowledge about how the system
will respond when it is manipulated in various ways. Not until such
knowledge is available, can one plan how the system should be controlled to
exhibit a certain behavior.

A common and practically oriented approach to control system design
IS to use physical insights about the system supplemented with a series of
practical closed-loop tests. In the tests, different parameters are treated until a
working controller is obtained. Another often-use approach is based on
conducting a simple experiment with the system to provoke a particular
response, [Khalil, 2002].

Control of nonlinear systems is a major application area for neural
networks. The control design problem will be approached in two ways: direct
design methods and indirect design methods. "Direct design" mean that a
neural network directly implements the controller. Therefore, a network must
be trained as the controller according to some kind of relevant criterion. The
indirect methods represent a more conventional approach, where the design
Is based on a neural network model of the system to be controlled. In this
case the controller is not itself aneural network, [Ogata, 1996], [John, 1990].

To control a system is to make it behave in a desired manner. How to
express this "desired behavior" depends primarily on the task to be solved,
but the dynamics of the system, the actuators, the measurement equipment,
the available computational power, etc., influence the formulation of the
desired behavior as well. Although the desired behavior obviously is very
dependent on the application, the need to rephrase it in mathematical terms



I ntroduction

suited for practical design of control systems seriously limits the means of
expression.

The work in this thesis is divided into three chapters; the first chapter
entitled "Introduction to Artificial Neural Network" gives the introductory
material that is necessary to understand the Artificial Neural Network subject
by giving historical background, some remarks and definitions on the neuron
model and the architecture of a neural network which describe how a
network transforms its input into an output. This transformation can be
viewed as a computation. The model and the architecture each place
limitations on what a particular neural network can compute. The way a
network computes its output must be understood before training methods for
the network can be explained. And we will discuss the learning rule of neural
networks which fall into two broad categories. supervised learning which
can be the training method are commonly used, and unsupervised learning
and an example of learning networks (Back propagation algorithm) had
been given.

In chapter two we have discussed some necessary requirements that
are needed in the main theorems of the work of this thesis and proposed an
artificial neural network-based scheme for control a class of nonlinear
systems, which can be transformed to the canonical form. Neural network
weights are tuned on-line, and the overall system performance is guaranteed
using Lyaounov function approach. The convergence of the neural network
learning process and the boundness of the neural network weights estimation
error are all rigorously proven.

Chapter three can be considered as an extension to the work of chapter
two. Where we give a general computational algorithm for our work and we
discussed two simulation examples. "Pendulum type" nonlinear system and a
proposed nonlinear 3-dimention concerning system, the numerical result are

shown in tables and figures.
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Numerical simulation are obtained using MATLAB version 6.5 and

using the personal computers PIT 4.



INTRODUCTION

Artificial neural networks form a class of systems that is inspired
by biological neural networks. They usually consist of a number of
simple processing elements, called neurons, that are interconnected to
each other. In most cases one or more layers of neurons are considered
that are connected in afeed forward or recurrent way. The strength of the
Interconnections is quantified by means of interconnection weights. Basic
features of neural architectures are that they work massively parallel, the
weights have to be learned from a set of examples and can be adapted.
Although artificial neural networks can perform human brain-like tasks
such as object and pattern recognition, speech recognition or associative
memory, there is still a huge gap between biological and artificial neural
nets. Nevertheless, although we are still far away from mimicking the
human brain, from an engineering point of view, it is certainly step to let
us inspire by biology. Indeed artificial neural networks have provided
good solutions to many problems in various fields. example include
classification problems, vision, speech, signa processing, time series
prediction, modeling and control, robotics, optimization, expert systems
and financial applications,[Zurada, 1996].

Many of the abilities one possesses as a human have been learned
from examples. Thus, it is only natura to try to carry this "didactic
principle" over to a computer program to make it learn how to output the
desired answer for agiven input. In asense the artificial neural network is
one such computer program; it is a mathematical formula with severa
adjustable parameters, which are tuned from a set of examples. These
examples represent what the network should output when it is shown a

particular input.
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