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ABSTRACT 

 

The main aim of this work is divided into four objects. These 

are summarized as follows: 

 

The first objectives, is to study the ordinary differential 

equations with deviating arguments. 

 

The second objectives, is to derive an estimate of the magnitude 

of the solutions for special types of linear and nonlinear ordinary 

differential equations with deviating arguments in order to solve them 

by any suitable methods.  

 

The third objectives, is to devote the existence of a unique 

bounded solution for special types of the partial differential equations 

with deviating arguments. 

 

The fourth objectives, is to give an estimate of the magnitude of  

solutions for special types of 1st order and 2nd order partial differential 

equations with deviating arguments.  
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Conclusions and Recommendations 

 

 From the present study, we can conclude the following : 

(1) The mathematical modelling for many real life applications that described    

as differential equations with deviating arguments is more realable than as 

differential equations. 

 

(2) The estimation of the magnitude of the solutions for the linear differential 

equations with deviating arguments is a necessary tool for finding the  

solutions.   

 

(3) The integral inequalities play an important rule for estimating the 

magnitude of the solutions for the linear and nonlinear differential 

equations with deviating arguments. 

 

  Also, for future work we can recommend the introduction of the 

following open problems: 

 

(1) Discuss the existence of a unique bounded solution for the 3rd order, 4th 

order and nth order partial differential equations with deviating arguments.   

 

(2) Extend the Laplace transform method to be used for solving the linear 

partial delay differential equations. 
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(3) Linearize the nonlinear ordinary differential equations with deviating 

arguments into ones that are linear which can be solved by the Laplace 

transform method.  
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1.1 Introduction:  

The ordinary differential equations with deviating arguments play an 

important rule in many real life applications say in mixing of liquids, 

population growth and control systems, [Driver R.,1977].  

 

In this chapter we give some basic concepts of the ordinary 

differential equations with deviating arguments. 

 

This chapter consists of four sections: 

In section two, a simple classification of the ordinary differential 

equations with deviating arguments is introduced with some properties of 

the solutions. Moreover, the initial value problems for the ordinary 

differential equations with deviating arguments are discussed. 

 

In section three, some theorems that guarantee the existence of a 

unique solution for special types of the ordinary differential equations with 

deviating arguments are devoted. 

 

In section four, some methods that can be used to solve special types 

of the ordinary differential equations with deviating arguments such as the 

method of steps and the Laplace transform method are presented.   

 

1.2 The Ordinary Differential Equations with Deviating Arguments: 

 In this section we give some basic concepts of the ordinary 

differential equations with deviating arguments. These concepts include the 

classification of the differential equations with deviating arguments, the 

initial value problems for the ordinary differential equations with deviating 

arguments and some properties of the linear ordinary differential equations 

with deviating arguments. 
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First, recall that the differential equation with deviating arguments is  

a differential equation in which the unknown function enters with several 

different values of the argument, [El'sgol'ts L., 1964]. For example: 
 

)))((),(,()( ttxtxtftx τ−=′ ; 

 

))(),(),(),(,()( 21 ττ +′′+=′ txtxtxtxtftx ; 

 

))(),2(),(,()( 3txtxtxtftx =′ ; 

 

))(),(),(,()( ττ +−=′ txtxtxtftx ; 

 

))(),(),(),(),(,()( τττ −′′−′−′=′ txtxtxtxtxtftx . 

 

Sundry differential equations with deviating arguments occur as long 

ago in the works of  Euler but the systematic study of these equations was 

first undertaken in the twentieth century, to meet the demands of applied 

science, in particular in the theory of automatic control, the theory of self-

oscillating systems, the study of problems connected with combustion in 

rocket motion, the problem of long-range planning in economics, a series of 

biological problems, and in many other areas of science and technology, 

[El'sgol'ts L. and Norkin S., 1973].   

 

Similarly as in the ordinary differential equations, the classification 

of differential equation with deviating arguments depends mainly on the 

linearity of the differential equation, order and degree of the differential 

equation whether the differential equation with deviating arguments is 

homogeneous or nonhomogeneous and so on, [El'sgol'ts L. and Norkin S., 

1973]. 
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The general form for the nth order ordinary differential equation with 

deviating arguments is:  
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where F  is a given function and ))(),...,(),(,( )( xyxyxyx n
ijij ′=ττ  is a 

known function for each m1,2,...,j  and  ,...,1,0 == ni . 

 

 Other literatures write the above equation in the following form: 
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where ))(),...,(),(,( )( xyxyxyxkk n
ijij ′=  is a known function for each 

m1,2,...,j  and  ,...,1,0 == ni , [El'sgol'ts L. and Norkin S., 1973].           

 

  In this work, we concerns with the special case of the above equation 

in which )(xijij ττ =  for each m1,2,...,j  and  ,...,1,0 == ni  and in this case, 

the above equation takes the form: 
 

),()),(()),...,(()),((),(,( 00201 xyxxyxxyxxyxyxF m ′−−− τττ  

    )),((),()),(()),...,(()),(( 2111211 xxyxyxxyxxyxxy m ττττ −′′′′−′−′−′  

    )),((),()),...,(()),...,(( 1
)()(

222 xxyxyxxyxxy n
nn

m τττ −−′′−′′  

    0(x)))()),...,(( )(
2

)( =−− nm
n

n
n xyxxy ττ                                                (1.1)                                  

 

If  )()( xxij ττ =   for each ni ,...,1,0=  and mj ,...,2,1=  then eq.(1.1) is 

said to be the nth order ordinary differential equation with single deviating 
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argument, otherwise it is with multiple deviating arguments. On the other 

hand, if  ijij x ττ =)( , where ijτ  is a known constant for each ni ,...,1,0=  and 

mj ,...,2,1= , then eq.(1.1) is said to be the nth order ordinary differential 

equation with constant deviating arguments, otherwise it is with variable 

arguments, [El'sgol'ts L. and Norkin S., 1973]. 

  

Moreover, if 0)( ≥= ijij x ττ  for each m1,2,...,j  and  ,...,1,0 == ni , 

where  ijτ  is a known nonnegative real number then eq.(1.1) is said to be 

the nth order ordinary differential-difference equation (or the nth order 

ordinary delay differential equation), [El'sgol'ts L., 1964]. In this case, 

eq.(1.1) reduces to: 
 

),...,(),(),(),(),...,(),(),(,( 121100201 τττττ −′−′′−−− xyxyxyxyxyxyxyxF m     
    ),(),...,(),...,(),(),(),( )(

222211 xyxyxyxyxyxy n
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So, if  0)( >=ττ xij  for each m1,2,...,j  and  ,...,1,0 == ni  where τ  is 

a known positive real number, then eq.(1.1) is said to be with single delay, 

otherwise it is with multiple delays, [El'sgol'ts L. and Norkin S., 1973]. 

 

Also, eq.(1.1) is said to be the nth order ordinary differential equation 

with retarded  arguments in case the nth derivative of the unknown function  

y  enter with the identical values of the argument and this value is not less 

than the arguments of  y  and its derivatives. For example: 
 

0(x)   ,)))((),(,()( ≥−=′ ττ xxyxyxfxy ; 

 

0   ,))(),(),(),(,()(y >+′′+=+′′ ττττ xyxyxyxyxfx ; 
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0   x,))(),2(),(,()(y ≥−=′ −xexyxyxyxfx . 

 

Moreover, eq.(1.1) is said to be the nth order ordinary differential 

equation with advanced arguments in case the nth derivative of the unknown 

function  y  enter with identical values of the argument and the common 

value is not greater than the argument in the function  y  or any of  its 

derivatives that enter in this equation. For example: 
 

0(x)   ,)))((),(,()( ≥+=′ ττ xxyxyxfxy ; 

 

0   x,)2(),(),2(),(,()( ≥′′=′′ xyxyxyxyxfxy ; 

 

0   ,))(),(),(),(,()(y >+′′+=′′ τττ xyxyxyxyxfx . 

  

 It is possible that on some set of values of the independent variables 

a certain equation should appear as an equation with retarded  argument 

while on another set it is an equation with advanced argument or perhaps  

belongs to neither of these types. For example )2()()( xyxyxy +=′  is a1st 

order differential equation with retarded argument for  0≥x   and an 

equation with advanced argument for 0≤x . 

 

 All remaining types of the ordinary differential equations with 

deviating arguments given by eq.(1.1) are called the nth order ordinary  

differential equations of neutral type. For example: 
 

 ))(),(),(,()( ττ +−=′ xyxyxyxfxy , 

where  0
)(

≠
−∂

∂
τxy

f
 and  0

)(
≠

+∂
∂

τxy

f
; 

 

and  
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))(),(),(),(),(,()( τττ −′′−′−′=′′ xyxyxyxyxyxfxy , 

 

where  0
)(

≠
−′′∂

∂
τxy

f
, [El'sgol'ts L., 1964]. 

 

Next, eq.(1.1) is said to be the nth order linear ordinary differential 

equation with deviating arguments in case F  takes the form: 
 

)())(()( )(

0 0

xfxxyxa pj
p

n

p

m

j
pj =−∑∑

= =
τ                                                          (1.2) 

 

where  pja  , 0)(
0

=xpτ   is a known function of    x  for each n0,1,...,p =  and 

0,1,...mj = , f  is a known function of  x , [El'sgol'ts L. and Norkin S., 

1973]. 

 

 Second, we described the initial value problems for special types of 

the ordinary differential equations with deviating arguments. 

  

Let us first consider the simplest delay differential equation with 

retarded argument: 
 

( ))(),(,)( τ−=′ xyxyxfxy                            (1.3) 

 

where τ   is assumed to be known positive constant, the basic initial value 

problem consists in the determination of a continuous solution )(xy  of  

eq.(1.3) for 0xx > , under the condition that 

 

00   x),()( xxxxy ≤≤−= τϕ , 
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where )(xϕ  is a given continuous function called the initial function. The 

closed interval ],[ 00 xx τ−  on which the initial function is given, is called 

the initial set and denoted by 
0xE ; the point  0x   is called the initial point, 

[El'sgol'ts L., 1964]. 

 

For the nth order delay differential equation with single retarded 

argument: 
  

))(),(),...,(),(),(),(,()( )1()1()( τττ −−′′−= −− xyxyxyxyxyxyxfxy nnn , 

 

where  τ   is assumed to be known positive constant, the initial conditions in 

the fundamental problem are the same, 
  

00   ),()( xxxxxy ≤≤−= τϕ , 

 

where )(xϕ  is continuously differential (n-1) times if the solution has  

continuous derivatives up to the order (n-1) inclusive, [El'sgol'ts L., 1964]. 

 

For )(xττ = , then for the 1st order ordinary delay differential 

equation with deviating argument: 
 

)))((),(,()( xxyxyxfxy τ−=′ , 
 

the initial function )()( xxy ϕ=  in the fundamental problem must be defined 

on a so-called initial set 
0xE consisting of the point 0xx =  and of those 

values of the differences )(xx τ−  for β≤≤ xx0  which are less than 0x , if 

the solution is defined for values β≤≤ xx0 . For example, for the equation 

 

∞<≤−=′ xxxyxyxfxy 0   )),sin(),(,()( 2  
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 the initial set 0E  consisting of all points of the interval ]0,1[− , [El'sgol'ts 

L., 1964]. 

 

Also, the nth order ordinary delay differential equation with variable 

delay 0)( ≥xτ , 

 

)))((),()),...,((),()),((),(,()( )1()1()( xxyxyxxyxyxxyxyxfxy nnn τττ −−′′−= −−

 

normally determines an (n-1)-fold continuously differentiable solution 

β≤≤ xxxy 0   ),( , and the initial conditions are as described above, 

)()( xxy ϕ=  on 
0xE where the function )(xϕ  is continuously differentiable 

(n-1) times except when the set 
0xE  for β≤≤ xx0  consists of the single 

point or when the point 0x  is isolated in the set 
0xE . If the exceptional case 

occurs, then at the point 0x , it is necessary to define the values of the 

derivatives on the right-hand side up to the order (n-1) inclusive, [El'sgol'ts 

L., 1964]. 

 

Third, we give some properties of the solutions for the linear ordinary 

differential equations with deviating arguments. To do this, recall that the 

general form of the nth order linear ordinary differential equation with 

variable deviating arguments is given by eq.(1.2), the equation 

  

      ∑∑
= =

=−
n

p

m

j
pj

p
pj xxyxa

0 0

)( 0))(()( τ                                                          (1.4) 

is called the homogeneous linear equation corresponding to eq.(1.2). The 

solution of eq.(1.2) or eq.(1.4) will be denoted by )(xyϕ  such that 

1-n0,1,...,   , )()( )()( == l
ll xxy ϕ . 
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The above homogeneous linear ordinary differential equation with 

deviating have the following properties: 
 

(i) A linear combination of solutions of eq.(1.4) with arbitrary constant 

coefficients )()(
1

xyxyc
k

i
i i ϕϕ =∑

=
 is also a solution, where 

i
yϕ  is solution 

of  eq.(1.4) such that  1-n0,1,...,    , )()( )()( == l
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(ii)   If all coefficients )(xa pj   and deviations  )(xpjτ   are real, then the real 

and imaginary parts of complex solution are also solutions of this 

equation.     

 

The nonhomogeneous linear ordinary differential equation with 

deviating arguments given by eq.(1.2) satisfy the following properties: 
 

(i) The sum  )()(
1

xyxy ϕϕ +   of a solutions )(xyϕ   of eq.(1.2) and a solution 

)(
1

xyϕ  of the corresponding homogeneous equation is a solution 

)(
1

xy ϕϕ+ of eq.(1.2) defined by the initial function 1ϕϕ + . 
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function ∑
=

=
k

i
i xx

1

)()( ϕϕ . This property remains valid for ∞→k  if the 

series )(
1

xy
i

i∑
∞

=
ϕ  converges and admits  n  successive differentiation. 

 

(iii)  If all coefficients )(xa pj  and derivations )(xjτ  are real, then the real 

part  )(xu  and the complex part )(xv  of the solution 

)()()( xivxuxy i +=+ ψϕ   of eq.(1.2) are solutions of the equations 
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       respectively, where )()( xyxu ϕ=  and )()( xyxv ψ= , [El'sgol'ts L. and 

Norkin S., 1973]. 

 

1.3 Existence and Uniqueness Theorems of the Solution for the     

Ordinary Differential Equations with Deviating Argu ments: 

In this section, we give some basic theorems that are necessary for 

establishing the existence and the uniqueness for special types of  linear and 

nonlinear ordinary differential equations with deviating arguments. 

 We start this section by the following theorem. This theorem gives 

some necessary conditions to ensure the existence of a unique solution for 

the 1st order delay differential equation of  retarded argument with single 

variable delay. 

   

Theorem (1.1), [El'sgol'ts L., 1964]: 

Consider the differential equation with retarded argument 
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)))((),(,()( xxyxyxfxy τ−=′                                                                   (1.5) 

 

with the initial condition )()( xxy ϕ=  on the initial set 
0xE  where the 

continuous function 0)( ≥xτ  and )(xϕ  is a given continuous function. 

Then the above initial value problem has a unique continuous  solution for 

hxxx +≤≤ 00   if the function f   is continuous in the neighborhood of the 

values ))(,( xx ϕ  for  
0xEx ∈  and satisfies in this neighborhood a Lipschitz  

condition in the second and third arguments and h  is sufficiently small. 

 

Proof: 

We replace the above differential equation by the following 

equivalent integral equation with the same initial conditions:  
 

( )∫ −+=
x

x

dtttytytfxxy
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(x)y(x) ϕ=  on the initial set  
0xE . 

 

Define the operatorA  by 
  

dtttytytfxxyA
x

x
∫ −+=
0

 ))((),(,()())(( 0 τϕ  

on the metric space of all continuous functions given on 
0xE  and on the 

segment hxxx +≤≤ 00  with the uniform topology and with all the 

functions coinciding with )(xϕ  on  
0xE  in the metric 

  

)()(sup))(),((
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xzxyxzxy
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+≤≤

ρ , 

 

then 
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For 
N

h
2

α≤   where 10 << α , the operator A   defined  above  is 

contractive. Therefore by the fixed point theorem, one can get the initial 

value problem for eq.(1.5) has a unique solution.   ■ 

 

 Next, the generalization of the theorem(1.1) to be valid for the 1st 

delay differential equation of retarded arguments but with multiple variable 

delays. 

 

Theorem (1.2), [El'sgol'ts L. and Norkin S., 1973]: 

Consider the differential equation with retarded arguments 
  

)))(()),...,((),(,()( 1 xxyxxyxyxfxy mττ −−=′               (1.6) 

 

with the initial condition 
 

)()( xxy ϕ=  on the initial set 
0xE . 
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If in eq.(1.6) all )(xiτ  are continuous for  0h  ,00 >+≤≤ hxxx and  

nonnegative and the function f   is continuous in a neighborhood of the 

point )))(()),...,((),(,( 0001000 xxxxxx mτϕτϕϕ −−  and satisfies a Lipschitz 

condition in all arguments  beginning with the second, the initial function 

)(xϕ  is continuous on 
0xE , then there exists a unique  solution for the initial 

value problem for eq.(1.6) for hxxx +≤≤ 00   where h  is sufficiently 

small. 

 

Proof: 

We replace eq.(1.6) by the following equivalent integral equation 
  

dtttyttytytfxxy
x

x
m  )))(()),...,((),(,()()(
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10 ∫ −−+= ττϕ  

 

with the initial condition 
  

0xEset  initial on the   )()( xxy ϕ= . 

 

Define the operator A  by  
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on the metric space  of  all continuous functions on 
0xE  such that on  

0xE  

all of these functions equal )(xϕ  and on the interval ],[ 00 hxx +  they are 

sufficiently near to )( 0xϕ  in the metric 

  

)()(sup))(),((
00

xzxyxzxy
hxxx

−=
+≤≤

ρ  
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In fact ))(( xyA  is continuous if  )(xy   is continuous and defined for 

hxxx +≤≤ 00 , for sufficiently small 1h . On the other hand, in the 

neighborhood of the point 
  

)))(()),...,((),(,( 0001000 xxxxxx mτϕτϕϕ −− , 

Mxxyx m <− )))(()),...,(-y(xy(x),f(x, 1 ττ . 

  

Therefore, 
  

10)())(( MhxxyA <− ϕ , 

 

and if  1h   is sufficiently small, ))(( xyA  belongs to the above metric space. 

 

Moreover, 
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where 0)( 0 =xτ . Thus Nmh )1( +< α  where  10 << α , A  is contractive. 

Therefore by the fixed point theorem the initial value problem for eq.(1.6) 

has a unique solution.   ■  
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Remarks (1.1): 

(i) Theorem(1.2) can be easily generalized to systems of finite number of 1st 

order delay differential equation of retarded type with multiple variable 

delays, [El'sgol'ts L., 1964].    
 

(ii) As seen before, the existence of a unique solution for special types of  

delay differential equations is obtained with the aid of the fixed point 

theorem. On the other hand, the method of successive approximation can 

be also used to get  the same result, [Al-Kubeisy S., 2004]. 

 

Next, we discuss the continuous dependence of the solution of the 

differential equation with retarded arguments on the initial function. But 

before that we need the following lemma. 

 

Lemma (1.1), [Bellman R. and Cook K., 1963]: 

If )(xw  is positive and monotone nondecreasing, if ,0)( ≥xy  

0v(x) ≥ , if all three functions are continuous, and if  
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Proof: 

 From ineq.(1.1) and since w  is monotone nondecreasing one can get 
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By integrating the above inequality from a  to x one can obtain 
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xy )(

)()(1
)(

)(
, 

 

hence  

bxa     ,)()(
)(

≤≤≤
∫
x

a
dttv

exwxy .   ■ 

 

Now, we are in the position that can we give the following theorem. 

 

 

 

Theorem (1.3): 



Chapter One                       Some Basic Concepts of the Ordinary Differential Equations with Deviating Arguments  

 ١٧

The solution of the differential equation with retarded arguments 

given by eq.(1.6) with the initial function )()( xxy ϕ=  on the initial set 
0xE  

satisfying the conditions of the existence theorem (1.2) is in continuously 

dependent upon the initial function. Moreover, if  

 

0   ,)()( 21 ><− δδϕϕ xx   on the initial set  
0xE , 

 

then 
  

0
)()1( x   x,)()( 0

21
><− −+ xxNmexyxy δϕϕ  

 

where  
i

yϕ  is the solution of eq.(1.6) with the initial function )()( xxy ii
ϕϕ =  

on the initial set  1,2ifor     
0

=xE . 

 

Proof: 

We replace eq.(1.6) by the equivalent integral equations 
 

∫ −−+=
x

x
m dtxxyxxyxyxfxxy

0

1111
)))(()),...,((),(,()()( 101 ττϕ ϕϕϕϕ   

 

∫ −−+=
x

x
m dtxxyxxyxyxfxxy

0

2222
)))(()),...,((),(,()()( 102 ττϕ ϕϕϕϕ  

 

then 
 

 

 

dtxxyxxyNxxxyxy ii

x

x

m

i xxxx
 ))(())(( sup)()()()(sup

21

0 0
21

0 0 ],[
0201

],[
ττϕϕ ϕϕϕϕ −−−+−≤− ∫∑

=
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   dttytyN
tt

 )()( sup1)(m
x

x ],[
0

21
0

∫ −++≤ ϕϕδ  

 

Solving the polynomial inequality relative to  )()(sup
21

0 ],[
xyxy

xx
ϕϕ −   by 

using lemma(1.1) we will have 

 

))(1(

],[

0

21
0

 )()( sup xxmN

xx
exyxy −+≤− δϕϕ .   ■ 

 

Remark (1.2): 

The previous theorem can be also modified to be valid for systems  of  

the 1st order ordinary differential equations with retarded arguments. 

 

1.4 Methods of Solution of Delay Differential Equations: 

 Like, the ordinary differential equations, there are many methods that 

can be used to solve the delay differential equations, say, the method of 

steps,[El'sgol'ts L. and Norkin S., 1973], the Laplace transform method, 

[Bellman R. and Cook K., 1963], the linear multistep method, [Al-Kubeisy 

S.,2004], and the expansion methods, [Salih S., 2004]. 

  

In this section, we give two of such methods namely the method of 

steps and the Laplace transform method. 

   

1.4.1 The Method of Steps, [El'sgol'ts L. and Norkin S., 1973]: 

The method of steps is the best well known theoretical method for 

solving differential equations with deviating arguments. 

 This method can be described for the following cases: 
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Case (1): 

Consider the basic initial value problem for the simplest delay 

differential equation with a retarded argument 
 

))(),(,()(' τ−= xyxyxfxy                            (1.7)       

 

with the initial function  
 

00for  x   )()( xxxxy ≤≤−= τϕ . 

 

The solution of eq.(1.7) is determined from the equation without delay   
 

ττϕ +≤≤−=′ 00   x)),(),(,()( xxxxyxfxy  

 

with the initial condition 
  

)()( 00 xxy ϕ=  

 

Next, assuming the existence of a solution )()( 1 xxy ϕ=  of  this initial 

value problem on the interval ] x, [ 00 τ+x , analogously we obtain: 

 

τττϕ 2   x)),(),(,()( 001 +≤≤+−=′ xxxxyxfxy   

 

with the initial condition 
 

  

)()( 010 τϕτ +=+ xxy      

 

Therefore,  
 

τττϕ )1(   x)),(),(,()( 00 ++≤≤+−=′ nxxnxxyxfxy n  

 

with the initial condition 
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)()( 00 τϕτ nxnxy n +=+  

 

where )(xjϕ  is the solution of  the considered initial value problem on the 

interval ] x, )1([ 00 ττ jjx +−+ . 

 

Now, for illustration purpose, we will demonstrate the method of 

steps in the following example. 

 

Example (1.1): 

Consider the 1st order differential equation with a retarded argument 
 

)1(6)(2)( −+=′ xyxyxy                                                               

 

with the initial function 
  

[-1,0]   x,1)( ∈+= xxy  

                                                                 

The solution of the initial value problem  is determined from the differential 

equation without delay 
   

1x0   ,6)(2)( ≤≤+=′ xxyxy  

 

with the initial condition 
  

1)0( =y                                                                                           

 

The solution of the above initial value problem is 
  

1x0   ,
2

3
3

2

5
)( 2 ≤≤−−= xexy x  

 

Next, we determined the solution on the interval 2] , 1[ from the differential 

equation 
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91815)(2)( )1(2 +−+=′ − xexyxy x  

                                                                   

with the initial condition 
 

2

9

2

5
)1( 2 −= ey   

 

The solution of this initial value problem is 
  

xxeeexy xxx 915
2

57

2

5
)( )1(2)1(22 ++−= −−  

 

Case (2): 

Consider the simplest delay differential equation with a variable 

retarded argument: 
  

)))((),(,()( xxyxyxfxy τ−=′                                                                   (1.8) 

                                                                           

with the initial function  
 

)()( xxy ϕ=  on the initial set 
0xE . 

                                            . 

The solution of eq.(1.8) is determined from the equation without delay 
   

)(for  x   )))((),(,()( 00 xxxxxyxfxy ατϕ ≤≤−=′         

 

with the initial condition 
  

)()( 00 xxy ϕ=  

 

The interval )](,[ 00 xx α  is the largest interval beginning with the point 0x  

for which 0)( xxx ≤−τ . We observe that )(xα  is the inverse of the function 

)(xx τ− , if this inverse exists. 
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Next, we determine the solution on the interval ))](x( , )([ 00 ααα x  

from the equation: 
  

)))((),(,()( 1 xxxyxfxy τϕ −=′  

 

with the initial condition 
  

))(())(( 010 xxy αϕα =  

 

where )(1 xϕ  is the extension of the function )(xϕ  by the solution of 

eq.(1.8) on the interval )](,[ 00 xx α , and the continuation of the process may 

be reduced to the problem of integrating an equation without delay. 

  

To illustrate this method in this case, see the following example. 

 

Example (1.2): 

Consider the differential equation with retarded argument: 
 

)2()(2)( xyxyxy +=′  

                                                                        

with the initial function 
 

xxy =)(  on the initial set 1] , 
2

1
[1 =E . 

  
 

The solution of the above differential equation is determined from the 

differential equation without delay 
  

2x1   ,
2

)(2)( ≤≤+=′ x
xyxy                                                                                                                                                                     



Chapter One                       Some Basic Concepts of the Ordinary Differential Equations with Deviating Arguments  

 ٢٣

with the initial condition 
  

1)1( =y       

 

The solution of the above initial value problem is 
  

 

8

1

4

1

8

11
)( )1(2 −−= − xexy x  

 

Next, we determined the solution on the interval 4] , 2[  from the differential 

equation  
 

8

1

8

1

8

11
)(2)( 2 −−+=′ − xexyxy x  

                                                  

with the initial condition  
 

8

5

8

11
)2( 2 −= ey  

                                                                                    

The solution of the above initial value problem is 
  

32

3

16

1

8

11

32

17

8

11
)( 2)2(2)1(2 ++−+= −−− xeeexy xxx  

 

Case (3): 

Consider the 1st order differential equation with different deviating 

arguments: 
  

)))(()),...,((),(,()( 1 xxyxxyxyxfxy mττ −−=′                                        (1.9) 

 

with the initial function 
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)()( xxy ϕ=  on the initial set 
0xE . 

The solution of eq.(1.9) is determined from the equation without delay  
 

)(for  x   )))(()),...,((),(,()( 001 xxxxxxxyxfxy m ατϕτϕ ≤≤−−=′  

 

with the initial condition 
 

)()( 00 xxy ϕ=  

 

The interval )](,[ 00 xx α  is the largest interval with the left endpoint 0x  on 

which all of the differences m1,2,...,i   ,)( 0 =≤− xxx iτ . 

 

 Next, we determine the solution on the interval ))](x( , )([ 00 ααα x  

from the equation 
 

)))(()),...,((),(,()( 111 xxxxxyxfxy mτϕτϕ −−=′  

 

with the initial condition 
 

))(())(( 010 xxy αϕα =  

 

where )(1 xϕ  is the extension of the function )(xϕ  by the solution of 

eq.(1.9) on the interval )](x , [ 00 αx , and the continuation of the process may 

be reduced to the problem of integrating an equation without delay. 

 

 Next, we determine the solution on the interval ))]((),([ 00 xx ααα  

from the equation 
 

)))(()),...,((),(,()( 111 xxxxxyxfxy mτϕτϕ −−=′  

 

with the initial condition 
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))(())(( 010 xxy αϕα =  

 

where )(1 xϕ  is the extension of the function )(xϕ by the solution of eq.(1.9) 

on the interval )](,[ 00 xx α , and the continuation of the process may be 

reduced to the problem of integrating an equation without delay. 

  

 Here, the following example is very useful to understand the above. 

 

Example (1.3): 

Consider the differential equation with different deviating arguments 
 

)3()2(2)()( xyxyxyxy ++=′   

                                                                        

with the initial function   
 

xxy =)(  on the initial set 1] , 
3

1
[1 =E . 

 

The solution of the above differential equation is determined from the 

differential equation without delay 
 

3x1   ,
3

4
)()( ≤≤+=′ xxyxy  

                               

with the initial condition 
  

1)1( =y                                                                                                              

 

The solution of the above initial value problem is 
  

3

4

3

4

3

11
)( 1 −−= − xexy x
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Next, we determined the solution on the interval 9] , 3[  from the differential 

equation 
  

4
3

11

9

16

3

22
)()(

1
3

1
2 −+−+=′

−−
xx

exexyxy  

                                  

with the initial condition 
  

3

16

3

11
)3( 2 −= ey   

              

The solution of the this initial value problem is  
 

9

52

9

16

2

11

3

44

9

148

2

11

3

44

3

11
)(

1
3

1
2332

5
1 ++−−−+−=

−−−−−− xeeeeeexy
xx

xx
x

x  

 

Case (4): 

Consider the 1st order neutral differential equation with deviating 

argument 

  

))(),(),(,()( ττ −′−=′ xyxyxyxfxy                                                      (1.10) 

                                                           

with the initial function 
  

00for  x   )()( xxxxy ≤≤−= τϕ      

 

where ϕ   is a continuous function that have continuous derivatives. 

The solution  )(1 xϕ   of eq.(1.10) is determined from the equation without a 

deviating argument 
 

ττϕτϕ +≤<−′−=′ 00for  x   ))(),(),(,()( xxxxxyxfxy  

 

On the next step 
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τττϕτϕ 2for  x   )),(),(),(,()( 0011 +≤≤+−′−=′ xxxxxyxfxy                                                      

 

and so on. 

 

The contract to an equation with a deviating argument consisting of 

the fact that the solution is not smoothed. In fact, not only at the point 0x  is 

the left derivative )( 0xϕ ′ , generally speaking, not equal to )( 01 xϕ ′  but also 

at the point τ+0x , as is obvious from eq.(1.10). Thus )(xy′  will be in 

general discontinuous at τ+0x . Similarly )(xy′  will be discontinuous at 

0,1,...)k (  ,0 =+ τkx . 

 

To illustrate this approach in this case, consider the following 

example. 

 

Example (1.4): 

Consider the differential equation with deviating argument 
 

)2(3)2(2)()( 2 −+−′+=′ xyxyxyxy  

 

with the initial function 
  

0x2-   ,1)( ≤≤+= xxy  

  

Then 

2)1(32)()( −++=′ xxyxy  

                                                                          

with the initial condition 
  

1)0( =y                                                                                              
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The solution of the above initial value problem for 20 ≤≤ x  is 
 

2356)( xexy x −−=                                                                         

 

Note that 1)( += xxϕ   on  02 ≤≤− x   and  2
1 356)( xex x −−=ϕ   on  

20 ≤≤ x . Since 1)0( =′ϕ   and  6)0(1 =′ϕ , therefore )0(y′  doesn't exists. On 

the next step, substitute the solution )(1 xϕ  into the original delay 

differential equation to obtain 
  

108275556            

138621627)600432108(108)()(' 23422)2(2

+−
+−+−+−++= −−

x

xxxexxexyxy xx

 

The solution of the above differential equation together with the initial 

condition 176)2( 2 −= ey  is 

 

869121361710108          

27)60021636(108113606)(
23

2223)2(22

+−+

−++−+−−= −−−

xxx

xexxxeeexy xxxx

 

 

Note that, 
  

2136342032454)600432108(           

)60021636(216113606)(
222

223)2(22
2

−+−++−

++−+−−=
−

−−−

xxxexx

exxxeeex
x

xxxxϕ
 

 

on the interval 42 ≤≤ x . 
 

Since 126)2( 2
1 −=′ eϕ   and  72686)2( 2

2 −=′ eϕ , therefore )2(y′  doesn't 

exists. 

 

1.4.2 The LaplaceTransform Method: 

It is known that the Laplace transform method is one of the important 

methods that can be used to solve the linear ordinary differential equation 
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with constant coefficients, [Brauer F. and Nohel J., 1973]. Here we use it to 

solve the same types of ordinary differential equations but with deviating 

arguments. This method depends mainly on applying the method of steps 

for the ordinary differential equations with deviating arguments to 

transform them to ordinary differential equations and then use the Laplace 

transform method to solve the resulting ordinary differential equations. 

 

To illustrate this approach, consider the following examples. 

  

Example (1.5): 

Consider the 1st order differential equation with a retarded argument 
 

)2(4)(2)( −+=′ xyxyxy                                                               

 

with the initial function 
  

[-2,0]   x,)( ∈= xxy  

                                                                 

To find the solution in the first step interval [0,2], we apply the method of 

steps, to get  
 

2x0   ,84)(2)( ≤≤−+=′ xxyxy  

 

and this is an ordinary differential equation of the 1st order. 
                                                                                          

Now, taking the Laplace transform produces 
 

)1(8)(4))((2))(( LxLxyLxyL −+=′  

 

ss
sYyssY

81
4)(2)0()(

2
−+=−  

 

and so the Laplace transform of the solution )(xy  into )(sY  is given by 
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)2(

525
)(

2 −
−−=

sss
sY  

  
Taking inverse Laplace transform, we have  
 










−
−







−






= −−−

2

1
 5

!1

!1

11
 5)( 1

2
11

s
L

s
L

s
Lxy  

 

Hence, the solution in the first step interval is given by         
 

2x0   ,525)()( 2
1 ≤≤−−== xexxxy ϕ  

 

 In order to find the solution in the second step time interval [2,4], we 

proceed similarly as in the first step with initial function  
 

2x0   ,525)( 2
1 ≤≤−−= xexxϕ  

 

and hence, 
 

36820)(2)( )2(2 +−−=′ − xexyxy x  

                                                                   

with the initial condition 
 

451)2( ey −=   

By making changing of independent variable 2−x  to move the initial time 

to zero. Let 2−= xw  then ]2,0[∈w , so that 

 

36)2(8e 20)2(2)2( 2w ++−−+=+′ wwywy  

 

and by considering  
 

)2()( += xywz  
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implies that 
 

36)2(8e 20)(2)( 2w ++−−=′ wwzwz  

 

with  4e 51)0( −=z  

 

Taking the Laplace transform of both sides, we have  
 

ssss
sZzssZ

36168

2

20
)(2)0()(

2
+−−

−
−=−   

 

where )(sZ  is the Laplace transform of )(wZ , hence  

 

2

4

2 )2(

20

2

512411
)(

−
−

−
−++−=

ss

e

ss
sZ  

 

Taking inverse Laplace transform, we have 
 

ww weeewwZ 224 20 )512(411)( −−++−=  

 

Hence, the solution in the second step time interval [2,4] is given by  
 

)2(2)2(24 )2(20)512()2(411)()( −− −−−+−+−== xx exeexxywz . 

 

Similarly, we proceed to the next intervals. 

  

Example (1.6): 

Consider the 2nd  order differential equation with a retarded argument 
 

)1(2)( −−=′′ xyxy                                                               

 

with the initial function  
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[-1,0]   x,)( ∈= xxy  

 

To find the solution in the first step interval [0,1], we apply the method of 

steps, to get  
 

1x0   ,22)( ≤≤+−=′′ xxy  

 

and this is an ordinary differential equation of the 1st order. 
                                                                                          

Now, taking the Laplace transform produces 
 

)1(2)(2))(( LxLxyL +−=′′  

 

ss
ysysYs

22
)0()0()(

2
2 +−=′−−  

 

and so the Laplace transform of the solution )(xy  into )(sY  is given by 

 

234

122
)(

sss
sY ++−=  

  
Taking inverse Laplace transform, we have  
 








+






+






−= −−−
2

1
3

1
4

1 !1
 

!2!3
 

!3

2
)(

s
L

s
L

s
Lxy  

Hence, the solution in the first step interval is given by         
 

1x0   ,
3

)()( 2
3

1 ≤≤++−== xx
x

xxy ϕ  

 

 In order to find the solution in the second step time interval [1,2], we 

proceed similarly as in the first step with initial function 
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1x0   ,
3

)( 2
3

1 ≤≤++−= xx
x

xϕ  

 

and hence, 
 

)1(2)1(2)1(
3

2
)( 23 −−−−−=′′ xxxxy  

                                           

with the initial conditions 
 

3

5
)1( =y    and  2)1( =′y  

 

By making changing of independent variable 1−x  to move the initial time 

to zero. Let 1−= xw  then ]1,0[∈w , so that 

 

wwwxy 22
3

2
)1( 23 −−=+′′  

 

and by considering  
 

)1()( += xywz  

 

implies that 

 

wwwwz 22
3

2
)( 23 −−=′′  

 

with  
3

5
)0( =z    and   2)0( =′z  

 

Taking the Laplace transform of both sides, we have  
 

234
2 244

)0()0()(
sss

zszsZs −−=′−−   
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where )(sZ  is the Laplace transform of )(wZ , hence  

 

2
3

5244
)(

456
++−−= s

sss
sZ  

 

Taking inverse Laplace transform, we have 
 

wwwwwZ 2
3

5

!3

2

!4

4

!5

4
)( 345 ++−−=  

 

Hence, the solution in the second step time interval [1,2] is given by  
 

3

5
)1(2

3

)1(

6

)1(

3

)1(
)()(

345

+−+−−−−−== t
ttt

xywz . 

 

Similarly, we proceed to the next intervals. 

 

Remark(1.3): 

 The Laplace transform method can be directly used to solve the 

linear ordinary differential equations with deviating arguments with 

constant coefficients (i.e., without using the method of steps), [Bellman R. 

and Cook K., 1963]. 
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3.1 Introduction: 

As seen before, the ordinary differential equations with deviating 

arguments is more general than the ordinary differential equations. 

 

So, the partial differential equations with deviating arguments is 

more general than the partial differential equations. 

 

So, in this chapter we give some basic concepts of the partial 

differential equations with deviating arguments.  

 

Also, the method of successive approximation is devoted to ensure 

the existence and uniqueness of a bounded solution for special types of 

the partial differential equations with deviating arguments.  

 

Moreover, an estimate of the magnitude of the solutions for special 

types of the 1st and 2nd order linear partial differential equations with 

deviating arguments are introduced. 

 

This chapter consists of four sections. 

In section two, a simple classification of the partial differential 

equations with deviating arguments is given. 
 

In section three, some existence and uniqueness theorems for 

special types of  the 1st and 2nd order partial differential equations with 

deviating arguments are introduced. 
 

In section four, an estimate of the magnitude of the solutions for 

special types of the 1st and 2nd order partial differential equations with 

deviating arguments is derived. This section consists the main part of this 

work.     
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3.2 The Partial Differential Equations with Deviating 

Arguments and Their Solutions: 

It is known that the partial differential equations with deviating 

arguments are differential equations in which the unknown function 

(depends on two or more independent variables) or its partial derivatives 

enter with several different values of the argument, [El'sgol'ts L. and 

Norkin S., 1973]. For example 
 

))1,(,,(),(),( −=+
∂
∂

txutxftxutx
x

u
 

 

),1(2),(),( 2

2

2

2

2

2

tx
t

u
tx

t

u
tx

x

u −
∂
∂=

∂
∂+

∂
∂

 

 

 

In this work, we restrict our discussion for the partial differential 

equations with deviating arguments in which the unknown function 

depends only on two variables. 

 

The general form for the 1st order partial differential equation with 

deviating arguments is: 
 

,,),,(,,,,),,(,,),,(,, 21




















∂
∂

∂
∂−









∂
∂

∂
∂−

t

u

x

u
txutxt

t

u

x

u
txutxxutxutxF ττ  

     ,,),,(,,,,),,(,,,, 43 
















∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

∂
∂

∂
∂

t

u

x

u
txutxt

t

u

x

u
txutxx

x

u

t

u

x

u ττ  

 

     0,),,(,,,,),,(,, 65 =




















∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

t

u

x

u
txutxt

t

u

x

u
txutxx

t

u ττ      (3.1) 
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where iτ  is known function for each 6,...,2,1=i . If  0=iτ  for each 

1,2,...,6i = , then eq.(3.1) reduces to the general form for the 1st order 

partial differential equation. If  ii t

u

x

u
txutx ττ =









∂
∂

∂
∂

,),,(,, , where  iτ  is a 

known constant for each 6,...,2,1=i , then eq.(3.1) is said to be the  

general form for the 1st order partial differential equation with constant 

deviating arguments, otherwise it is with variable deviating arguments. 

 

 Also, the general form for the 1st order linear partial differential 

equation with deviating arguments can be obtained by reducing eq.(3.1) 

to the following form: 
 

+−−
∂
∂+

∂
∂+

∂
∂

)),(),,((),(),(),( 21321 txttxx
x

u
txa

t

u
txa

x

u
txa ττ    

 

++−−
∂
∂

),(),()),(),,((),( 5434 txutxatxttxx
t

u
txa ττ  

 

),()),(),,((),( 656 txgtxttxxutxa =−− ττ                                           (3.2) 

 

if 0643 === aaa , then eq.(3.2) reduces to the general form of the 1st  

order linear partial differential equation. 

 

Moreover, the general form for the 2nd order partial differential 

equation with deviating arguments is: 
 

 
  

,,),,(),,(,,),,(),,(,,
2

2

2

654321 tx

u

x

u
tx

t

u
tx

x

u

t

u

x

u
txutxutxF

∂∂
∂






∂
∂−−

∂
∂−−

∂
∂

∂
∂

∂
∂−− ττττττ

      

   0),(),,(),,(, 12112

2

109

2

872

2

2

2

=



−−

∂
∂−−

∂∂
∂−−

∂
∂

∂
∂ ττττττ tx

t

u
tx

tx

u
tx

x

u

t

u     (3.3)  
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where 








∂
∂

∂∂
∂

∂
∂

∂
∂

∂
∂=

2

22

2

2

,,,,),,(,,
t

u

tx

u

x

u

t

u

x

u
txutxii ττ  is a known function for 

each 12,...,2,1=i . 

 

If  iτ  is a known constant for each  12,...,2,1=i , then eq.(3.3) is 

said to be the general form for the 2nd order partial differential equation 

with constant deviating arguments, otherwise it is with variable deviating  

arguments. 

 

So, the general form of the 2nd order linear partial differential 

equation with deviating arguments is: 
  

+−−
∂
∂++

∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂
∂

),( 212

2

21112

2

1

2

12

2

1 ττ tx
x

u
auf

t

u
e

x

u
d

t

u
c

tx

u
b

x

u
a  

 

+−−
∂
∂+−−

∂
∂+−−

∂∂
∂

),(),(),( 872652

2

243

2

2 ττττττ tx
x

u
dtx

t

u
ctx

tx

u
b  

 

),(),(),( 121121092 txgtxuftx
t

u
e =−−+−−

∂
∂ ττττ                              (3.4)                                                    

 

where  g  and  ,,,,,, ijjjjjj fedcba τ  are assumed to be known functions 

of  x  and t  only for each 1,2j  , 12,...,2,1 ==i . 

 

A special case eq.(3.4) is the following partial differential equation 

with deviating arguments is: 
 

),(),( 212

22

2

2

txgtxhufu
t

u
e

x

u
d

t

u
c

tx

u
b

x

u
a =−−++

∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂
∂ ττ      (3.5) 

 

where 21,,,,,,,,, ττghfedcba  are known functions of x and t . Moreover 
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(i) if 042 >− acb , then eq.(3.5) is said to be of the hyperbolic type. 
 

(ii) if  042 =− acb , then eq.(3.5) is said to be of the parabolic type. 
 

(iii) if 042 <− acb , then eq.(3.5) is said to be of the elliptic type. 
 

  

So, one can easily recognize the linear and the nonlinear nth order 

partial differential equation with deviating arguments. 

 

 Next, it is known that, many methods can be used to solve the 

partial differential equations, say separation of variables, Laplace 

transform method, [Farlow S., 1982], finite-difference method, [Farlow 

S., 1982] and [Smith G., 1965], etc. 

  

 One of the important methods that can be used to solve the partial 

differential equations with deviating arguments is the separation of 

variables. El'sgol'ts L. and Norkin S. in 1973 and El'sgol'ts L. in 1964 

used the separation of variables to solve the following problems: 
 

(i) the generalized diffusion equation: 
     

    ),( ),( ),(
2

2
2

2

2
2 τ−

∂
∂+

∂
∂=

∂
∂

tx
x

u
btx

x

u
atx

t

u
 

 

     where τ  and  b, ,  a  are constants, 0>τ  together with the initial and 

boundary conditions 
 

     0t),u(   0,t)u(0,   and   t0   , x0for     ),(),( ==≤≤≤≤= ll τϕ xtxtu .  
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(ii) the generalized wave equation: 
     

     ),( ),( ),(
2

2
2

2

2
2

2

2

τ−
∂
∂+

∂
∂=

∂
∂

tx
x

u
btx

x

u
atx

t

u
 

 

     where τ  and  b, ,  a  are constants, 0>τ  together with the initial and    

boundary conditions  
     

     0t),u(   0,t)u(0,   and   t0   ,x0for     ),(),( ==≤≤≤≤= ll τϕ xtxtu . 

 

Also, Vandewalle S. and Gander M. in 2003 used this method to 

solve the parabolic partial delay differential equations.  

 

3.3 Existence and Uniqueness of Solution for Special Types  

of the Partial Delay Differential Equations: 

The partial differential equations with deviating arguments appear 

in mathematical models for many real life applications say in dynamics 

of gas absorption, [Poorkarimi H. and Wiener J., 1987], and arise from 

many biological, chemical, and physical systems which are characterized 

by both spatial and temporal variables and exhibit various spatio-

temporal patterns. The systematic study of such equations from the 

dynamical systems and semigroups point of view began in the 70s, and 

considerable advances have been achieved since then, [Wu. J, 1996]. 

 

This section concerned with the existence and the uniqueness of 

the solution for special types of partial delay differential equations. 
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3.3.1 Existence and Uniqueness of Solution for 1st order 

Partial Delay Differential Equations: 

In this section, we discuss the existence and the uniqueness of a 

bounded solution for special types of the 1st order linear and nonlinear 

partial delay differential equations. This section consists of the main part 

of this work. 

 

 We start this section by recalling the 1st order partial delay 

differential equation: 
 

)),(),,(,,(),(),(),( τ−=+
∂
∂

txutxutxctxutxatx
t

u
                                 (3.6) 

 

together with the following initial function 
 

0   , 0t-   , 1x0   ),,(),( >≤≤≤≤= ττϕ txtxu                                       (3.7)      

 

where a  and ϕ  are given functions of  x  and t , and c  is a known 

function of  )-tu(x,   and   t)u(x,    t,, τx . 

  

The following theorem shows that eq.(3.6)-(3.7) has a unique 

bounded solution. To the best of our knowledge, this theorem seems to be 

new. 

 

Theorem(3.1): 

Consider eq.(3.6)-(3.7). Assume the following conditions: 
 

(i) ),( txϕ  is continuous on ]0,[]1,0[ τ−× ; 
 

(ii) ),( txa  is continuous in 0}  t,10 ),{( ≥≤≤=∆ xtx  and satisfies 

     0),( >≥ mtxa  in ∆ ; 
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(iii) ),,,( vutxc is continuous and bounded on ℜ×ℜ×∆  and satisfies the   

       Lipschitz condition                     

       *)*,,,(),,,( uuLvutxcvutxc −≤− ;                                             (3.1)                                                   
 

(iv) 1<
m

L
. 

 

Then there exists a unique continuous solution of the problem given by 

eq.(3.6)-(3.7) defined in ∆  and bounded there. 

 

Proof: 

 On the interval  τ≤≤ t0 , eq.(3.6) becomes 
 

)),(),,(,,(),(),(),( τϕ −=+
∂
∂

txtxutxctxutxatx
t

u
.                                (3.8) 

 

Integrating eq.(3.8) from 0 to t , we obtain 
 

dssxsxusxceexutxu
t dxadssxa

t

s

t

)),(),,(,,()0,(),(
0

),(),(
0 τϕ

θθ
−+= ∫

∫−∫−
        (3.9)                  

 

To prove existence-uniqueness, we apply to eq.(3.9) the method of 

successive approximations. Put 
 

∫−
=

t
dssxa

exutxu 0
),(

1 )0,(),( , 
 
 

then, since 
 

Nxxu ≤= )0,()0,( ϕ , 

 

and 0),( >≥ mtxa , we have  
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NNeNetxu mt
mds

t

≤=≤ −∫−
0),(1 . 

 

for some constant N . 
 

Furthermore, 
 

dssxsxusxceexutxu
t dxadxa

t

s

t

)),(),,(,,()0,(),( 1
0

),(),(

2
0 τϕ

θθθθ
−+= ∫

∫−∫−
, 

 

and 
 

dssxsxusxcetxutxu
t

stm )),(),,(,,(),(),( 1
0

)(
12 τϕ −≤− ∫

−−  

                                  

                                
m

M
e

m

M
e

m

M mttstm <−=≤ −−− )1(0
)(  ,   

 

where Mvutxc ≤),,,( , for each ℜ×ℜ×∆∈),,,( vutx . 

 

Also, by virtue of ineq.(3.1), 
 

 

∫ −−≤−
∫−t dxa

sxsxusxcetxutxu

t

s

0
2

),(

23 )),(),,(,,(),(),( τϕ
θθ

 

 

dssxsxusxc )),(),,(,,(                                 1 τϕ −  

 

                           dssxusxu ),(),(Le 12

t

0

)da(x,-
t

s −≤ ∫
∫ θθ

 

 

       dssxusxu ),(),(eL 12

t

0

md-
t

s −≤ ∫
∫ θ

 

                          

                         
2

mt-

0

)(

m

L
)e-1(

1

m

M
L

m

M
L 







<≤≤ ∫
−−

L

M

m
dse

t
stm , 
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and similarly, 
 

3

34 ),(),( 






<−
m

L

L

M
txutxu . 

 
 

Continuing this procedure gives the estimate 
 

1,2,...n   ,),(),(1 =






<−+

n

nn m

L

L

M
txutxu  

 

and since  
 

 

∑
∞

=
+ −+=

1
11 )),(),((),(),(

n
nn txutxutxutxu , 

  

then 

m
L

m
L

1 -1
 N),(

L

M

m

L

L

M
Ntxu

n

n

+=






+≤ ∑
∞

=
 

 

For the solution of eq.(3.6)-(3.7) on the interval ττ 2≤≤ t , we have  
 

dssxusxusxceexutxu o
t dxadssxa

t

s

t

)),(),,(,,()0,(),( )(

0

),(),(
0 τ

θθ
−+

∫
= ∫

∫−−

, 

 

where ),()( txu o  is the solution of eq.(3.6)-(3.7)  for τ≤≤ t0 . 

  

Repeating the above calculations yields 
 
 

1x0   ,2t   ,
1

),( ≤≤≤≤
−

+< ττ
m
L

m
L

L

M
Ntxu . 

 

Therefore, 
 

 

1x0   , 0   t, ),( ≤≤≥
−

+<
Lm

M
Ntxu .   ■    

 



Chapter Three                                                                 The Partial Differential Equations with Deviating Arguments  

 ٨١

Next, recall that the 1st order partial delay differential equation: 
 

 

))(,(),,(,,(),(),(),( tgxutxutxctxutxatx
t

u =+
∂
∂

,                              (3.10) 

                         

together with the following initial function 
 

1x0   , )()0,( ≤≤= xxu ϕ ,                                                                   (3.11) 

                                                     

where a  and ϕ  are given functions of  x  and t  and c  is a known 

function of  t)u(x,      t,,x  and ))(,( tgxu . 

  

The following theorem shows that eq.(3.10)-(3.11) has a unique 

bounded solution. To the  best of our knowledge, this theorem seems to 

be new. 

 

Theorem(3.2): 

Consider eq.(3.10)-(3.11). Assume the following conditions: 
 

 

(i) )(xϕ  is continuous on [0,1]; 

(ii) ),( txa  is continuous in { }0  t,10  ),( ≥≤≤=∆ xtx  and satisfies 

    0),( >≥ mtxa  in ∆ ; 
 

(iii) ),,,( vutxc  is continuous on ℜ×ℜ×∆  with )0,0,,( txc  bounded on 

       ∆ , and satisfies a Lipschitz condition in   vand  u . 
        
(iv) )(tg  is continuous on tg(t)0  and  ) , 0[ ≤≤∞ . 
 

(v) 1
2 <
m

L
. 

 

Then there exists a unique continuous solution of the problem given by 

eq.(3.10)-(3.11) defined in ∆  and bounded there. 
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Proof: 

Integrating eq.(3.10) from 0 to t , we obtain 
 

 

dssgxusxusxceextxu
t dxadssxa

t

s

t

)))(,(),,(,,()(),(
0

),(),(
0 ∫

∫−∫−
+=

θθ
ϕ           (3.12) 

 

To prove existence-uniqueness, we apply to eq.(3.12) the method of 

successive approximations. Put 
 

∫−
=

t
dssxa

extxu 0
),(

1 )(),( ϕ  , 
 

then, since 
  

Nxxu ≤= )()0,( ϕ , 
 

 

and 0),( >≥ mtxa , we have 

 

NNeNetxu mt
mds

t

≤=≤ −∫−
0),(1 , 

 

  

with some constant N. 
 

Furthermore, 
  

dssgxusxusxceextxu
t dxadssxa

t

s

t

)))(,(),,(,,()(),( 11
0

),(),(

2
0 ∫

∫−−

+
∫

=
θθ

ϕ , 

 

and 
 

dssgxusxusxcetxutxu
t

stm )))(,(),,(,,( ),(),( 11
0

)(
12 ∫

−−≤− . 

    

Now, 
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)0,0,,()0,0,,()))(,(),,(,,()))(,(),,(,,( 1111 sxcsxcsgxusxusxcsgxusxusxc +−≤
                                                                                                               

( ) MtxctgxutxuL =++≤ )0,0,,(sup))(,(sup),(sup 11

          

Therefore, 

m

M
e

m

M
txutxu mt <−≤− − )1(),(),( 12 . 

 

 

Also, 
 

dssgxusxeextxu
t dxadssxa

t

s

t

)))(,(),,(us,c(x, )(),( 22
0

),(),(

3
0 ∫

∫−−

+
∫

=
θθ

ϕ , 

  

 

and  
 

 

dssgxusxusxcsgxusxusxcetxutxu
t dxa

t

s  )))(,(),,(,,()))(,(),,(,,(),(),( 1122
0

),(

23 −≤− ∫
∫− θθ

 

    ( )dssgxusgxusxusxu ))(,())(,(),(),(Le 1212

t

0

)da(x,-
t

s −+−≤ ∫
∫ θθ

 

                 

                 ( )))(,())(,(sup),(),(sup
m

1
1212 tgxutgxutxutxuL −+−≤  

 

By virtue of  ttg ≤≤ )(0 , we have 

 

),(),( sup))(,())(,( sup 1212 txutxutgxutgxu −≤− . 

 

Hence, 
 

( )
2

21223
2

2

2
),(),(sup2

1
),(),( 







=<−≤−
m

L

L

M

m

LM
txutxuL

m
txutxu . 

 

Similarly, 
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3

34
2

2
),(),( 







<−
m

L

L

M
txutxu , 

 

and 
  

1,2,...n   ,
2

2
),(),(1 =







<−+

n

nn m

L

L

M
txutxu  

 

Since  

∑
∞

=
+ −+=

1
11 )),(),((),(),(

n
nn txutxutxutxu ,  

then 

               

0  t1,x0   , 
12

),(
2

2

≥≤≤










−
+<

m
L

m
L

L

M
Ntxu

 

which proves the boundedness of ),( txu  in the domain ∆ .  ■ 

 

3.3.2 Existence and Uniqueness of Solution for 2nd Order 

Partial Delay Differential Equations: 

In this section, we use the method of successive approximations to 

guarantee the existence of a unique bounded solution for special types of 

linear and nonlinear 2nd order partial  delay differential equations, namely 

the hyperbolic type. 

 

 We start this section by recalling the 2nd order partial delay  

differential equation: 
 

 

)),(),,(,,(),(),(),(
2

τ−=
∂
∂+

∂∂
∂

txutxutxctx
x

u
txatx

tx

u
                         (3.13) 

 

 

together with the initial and boundary functions 
  

 



Chapter Three                                                                 The Partial Differential Equations with Deviating Arguments  

 ٨٥

0t-  1,x0  , ),(),( ≤≤≤≤= τϕ txtxu                                                  (3.14) 
 

 

 0  t, )(),0( 0 ≥= tutu                                                                            (3.15) 
 

 

where ϕ   is a given function of  x  and  t  and 0u  is a known function of  

t . 

 

The following theorem gives necessary conditions for the existence 

and uniqueness of a bounded solution to the problem given by eq.(3.13)-

(3.15). 

 

Theorem(3.3), [Poorkarimi H. and Wiener J., 1987]: 

Consider eq.(3.13)-(3.15). Assume the following conditions: 
 

 

(i) )(0 tu  is bounded and continuously differentiable on 0≥t ; 
 

(ii) ),( txϕ  and  ),( tx
x∂

∂ϕ
 are continuous on ]0,[]1,0[ τ−×  and 

      )0()0,0( 0u=ϕ ; 
 

(iii) ),( txa  is continuous in { }0  t, 10 ),( ≥≤≤=∆ xtx  and satisfies  

      0),( >≥ mtxa  in ∆ ;  
 

(iv) ),,,( vutxc  is continuous and bounded on ℜ×ℜ×∆  and satisfies the      

       Lipschitz condition 
 

      *)*,,,(),,,( uuLvutxcvutxc −≤−                                                (3.3) 
 

 

Then there exists a unique continuous solution of the problem given by 

eq.(3.13)-(3.15), defined in ∆  and bounded there. 
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Proof: 

Let ),(),( tx
x

u
txw

∂
∂= , then  

 

)),(),,(,,(),(),(),( τ−=+
∂
∂

txutxutxctxwtxatx
t

w
                              (3.16) 

 
 

To solve this equation, we use the method of successive integration. On 

the interval τ≤≤ t0 , eq.(3.16) becomes 
 

 

)),(),,(,,(),(),(),( τϕ −=+
∂
∂

txtxutxctxwtxatx
t

w
. 

 

 

Integrating the above equation from 0 to t , we obtain  
 

dssxsxusxceex
x

txw
t dxadssxa

t

s

t

)),(),,(,,()0,(),(
0

),(),(
0 τϕϕ θθ

−+
∂
∂= ∫

∫−∫−
  (3.17

  

and by integrating eq.(3.17) from 0 to x , one can get 
 

 

+
∂
∂+=

∫−

∫ ξξ
ξ
ϕ ξ

detutxu

t
dssax

0
),(

0
0 )0,()(),(         

      

           ∫ ∫ −
∫−x t da

dsdssusce

t

s

0 0

),(

)),(),,(,,(  ξτξϕξξ
θθξ

.                          (3.18) 

 

To prove existence-uniqueness, we apply to eq.(3.18) the method of  

successive approximations. Put  
 

 

ξξ
ξ
ϕ ξ

detutxu

t
dssax ∫−

∫ ∂
∂+= 0

),(

0
01 )0,()(),( , 

 

then, since 
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Kx
x

tu ≤
∂
∂≤ )0,(  , N)(0
ϕ , 

 

and 0),( >≥ mtxa , we have  
 

ξξ
ξ
ϕ ξ

detutxu
x dssa

t

∫
∫−

∂
∂+≤

0

),(

01
0)0,( )(),(  

             

  ∫ +≤+≤
x

KNKdN
0

ξ . 

  

Let KNA +=  , then Atxu ≤),(1 . 

 

Furthermore, 
   

+
∂
∂+= ∫

∫−
ξξ

ξ
ϕ ξ

detutxu
x dssa

t

0

),(

02
0)0,()(),(  

                         

     

    ξτξϕξξ
θθξ

dsdssusce
x t da

t

s )),(),,(,,( 1
0 0

),(

−∫ ∫
∫−

, 

 

and 
 

 

x
m

M
dsdssetxutxu

x t da
t

s <−≤− ∫ ∫
∫−

ξτξϕξξ
θθξ

)),(),,(us,,c(  ),(),( 1
0 0

),(

12 , 

 

where Mvutxc ≤),,,( , for each ℜ×ℜ×∆∈),,,( vutx . 

 

Also, by using the Lipschitz condition given by ineq.(3.3), one can get 
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ξξξ

ξτξϕξξ

τξϕξξ

θθ

θθ

dsdsusuLe

dsdssusc

ssetxutxu

x t dxa
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x t dxa
t
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0 0
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e
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
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Lx
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and similarly, 
 

!3

1
),(),(

3

34 






<−
m

Lx

L

M
txutxu . 

 

Continuing this process gives the estimate 
  

 

1,2,...n  , 
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),(),(1 =
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and since 
 

 

∑
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1
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i
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then             
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nm

Lx

L

M
Atxu . 

 

 
  

For the solution of eq.(3.13)-(3.15) on the interval ττ 2≤≤ t , we have 
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ξτξξξξτξ
ξ

θθξξ
τ dsdsususcede

u
tutxu o

x t dax dssao
t

s

t

)),(),,(,,( ),()(),( )(

0 0

),(

0

),()(

0 −+
∂

∂+= ∫ ∫∫
∫−∫−

 

 

where ),()( txu o  is the solution of eq.(3.13)-(3.15) on τ≤≤ t0 .  

 

Repeating the above calculations yields 
 

                       ττ 2t  1,x0   , ),( 1 ≤≤≤≤+≤ m

Lx

e
L

M
Atxu , 

 

where 
  















∂
∂+= ∫

∫−

∆
ξτξ

ξ
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ξ
de

u
tuA

x dssao
t
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),()(

01  ),( )(sup . 

 

To evaluate  ),(
)(

τx
x

u o

∂
∂

, we use eq.(3.17) from which 
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, 

 

thus 
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)(
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M
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dseMKex
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+=

+≤
∂

∂
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                 ( )
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M
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M
Ke mmm +<−+= −−− τττ 1 , 

 

and 

                   
m

M
KeNA m ++≤ − τ

1 . 
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In the region ττ 3t2  , 1x0 ≤≤≤≤ , we have 
 

m

Lx

e
L

M
Atxu +≤ 2),( , 

 

where 

  
m

M
e

m

M
KeNA mm +++≤ −− ττ2

2 . 

 

Finally, it is easy to see that 
 
 

                       ττ 1)(ntn  1,x0   ,),( +≤≤≤≤+≤ m

Lx

n e
L

M
Atxu , 

              

with 
 

τ
τττ

m
i
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n

i

imnm
n

em

M
KNe

m

M
KNe

m

M
KeNA −

∞

=

−
−

=

−−

−
++=++<++≤ ∑∑

1

1

0

1

0
 
 

Thus all values nA  are uniformly bounded, and the proof is complete.   ■ 

  

Next, recall that the hyperbolic partial delay differential equation: 
 

 

))(,(),,(,,(),(),(),(
2

tgxutxutxctx
x

u
txatx

tx

u =
∂
∂+

∂∂
∂

                           (3.19) 

 

together with the initial and boundary conditions: 
 

 

 

1x0   ),()0,( ≤≤= xxu ϕ                                                                      (3.20) 

 
 

0   t),(),0( 0 ≥= tutu                                                                            (3.21) 

 

where a  is a known function of  x  and t , ϕ  and 0u  are known functions 

of x  and t  respectively and c  is a known function of t)u(x,    t,,x , 

g(t))u(x, . 
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The following theorem gives necessary conditions to ensure the 

existence of a unique  bounded solution of eq.(3.19)-(3.21). 

 

Theorem (3.4), [Poorkarimi H. and Wiener J., 1987]: 

Consider eq.(3.19)-(3.21). Assume the following conditions: 
 

 

 (i) )(tuo  is bounded and continuously differentiable on 0≥t ; 
 

(ii) )(xϕ  is continuously differentiable on ]1,0[ ; 
  

(iii) ),( txa  is continuous in { }0t, 10 ),( ≥≤≤=∆ xtx  and satisfies   

      0),( >≥ mtxa  in ∆ ;             

 

(iv) ),,,( vutxc  is continuous on ℜ×ℜ×∆ , with )0,0,,( txc  bounded on    

    ∆ , and satisfies a Lipschitz condition in u  and v ; 
  

(v) )(tg is continuous on tg(t)0  and  ),0[ ≤≤∞ . 

 

Then there exists a unique continuous solution of the problem given by 

eq.(3.19)-(3.21) defined in ∆  and bounded there. 

 

Proof: 

Let ),(),( tx
x

u
txw

∂
∂= , then eq.(3.19) becomes 

 

)))(,(),,(,,(),(),(),( tgxutxutxctxwtxatx
t

w =+
∂
∂

                              (3.22) 

 

Integrating eq.(3.22) from 0 to t  to obtain 

 

dssgxusxusxceexwtxw
t dxadssxa

t

s

t

)))(,(),,(,,()0,(),(
0

),(),(
0 ∫

∫−∫−
+=

θθ
      (3.23)                                  
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Integrating the above equation from 0 to x  gives 
 

 

+′+= ∫
∫−

ξξϕ
ξ

detutxu
x dssa

o

t

0

),(
0)()(),(            

           

             ξξξξ
θθξ

dsdsgususce
x t da

t

s )))(,(),,(,,( 
0 0

),(

∫ ∫
∫−

.                          (3.24) 

 
 

  

To apply to eq.(3.24) the method of successive approximations, we 

construct a sequence { }),( txui , for which the following estimates are 

satisfied in ∆ : 
 

       ξξϕ
ξ

detutxu

t
dssax

o

∫−

∫ ′+= 0
),(

0
1 )()(),( , 

       

      AKNdetutxu
x dssa

o

t

=+≤′+≤ ∫
∫−

1
0

),(

1
0)()(),( ξξϕ

ξ
, 

 
 

where Ntuo ≤)(  and 1)( Kx ≤′ϕ . 

 

Also,  

ξξξξ
θθξ

dsdsgususcetxutxu
x t da

t

s )))(,(),,(,,( ),(),( 11
0 0

),(

12 ∫ ∫
∫−

+= , 

and   

         ξξξξ
θθξ

dsdsgususcetxutxu
x t da

t

s )))(,(),,(,,( ),(),( 11
0 0

),(

12 ∫ ∫
∫−

≤− . 

Now, 
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Mtxctgxutx

sxcsxcsgususcsgususc
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Hence  
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M
)))(,(),,(,,(sup

1
),(),( 11
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12 ≤≤− ∫ ξξ . 

 

Also, 

dsdsgususcetxutxu
x t da

t

s ξξξξ
θθξ

)))(,(),,(,,( ),(),( 22
0 0

),(

13 ∫ ∫
∫−

+= , 

 

and  
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∫−x

0

t

0
22

),(

23 )))(,(),,(us,,c(  ),(),(u sgusetxutx

t

s
da

ξξξ
θθξ

 

 

                                          ξξξξ dsdsgususc )))(,(),,(,,( 11  

 

         ( ) ξξξξξ dtgutgututu
m

Lx

∫ −+−≤
0

1212 ))(,())(,(),(),(

  

 

Since  ttg ≤≤ )(0 , we have 

 
  

                 ),(),(sup))(,())(,(sup 1212 txutxutgxutgxu −≤− . 
 

Hence, 
  
 

( ) ξξξ dtutuL
m

txutxu
x

),(),(sup2
1

),(),( 12
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23 −≤− ∫  

 

                                    
!2

12
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2ML
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
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L

Mx
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Similarly, 

ξξ d
m

LM

m

L
txutxu

x






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34
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and 
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),(),(1 nm

Lx

L

M
txutxu

n

nn 






≤−+ . 

 

Since 
 

                    ∑
∞

=
+ −+=

1
11 )),(),((),(),(

n
nn txutxutxutxu , 

 

then 

0  t, 1x0   , 
2

),( ≥≤≤+≤ m

Lx

e
L

M
Atxu . 

 

which proves the boundedness of ),( txu  in the domain ∆ .   ■ 

 

Remark (3.1):  

 The method of successive approximations can be also used to 

ensure the unique bounded solution for special types of  nonlinear delay 

parabolic partial differential equations, [Poorkarimi H. and Wiener J., 

1999]. 

 

3.4 An Estimate of the magnitude of Solutions for Partial 

Delay Differential Equations: 

 In this section, we generalize the estimation of the magnitude of 

the solutions for linear ordinary differential equations with deviating 
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arguments to include the linear partial  differential equations with 

deviating arguments. This section consists the main part of this work. 

 

 We start this section by deriving an estimate of the magnitude of 

the solution for special types of the 1st order linear partial delay 

differential equations. To the best of our knowledge, this theorem seems 

to be new. 

 

Theorem(3.5): 

Let  ),( txu  be a solution of the partial delay differential equation  

 

),(),(),( 100 txftxubtxub
t

u
a =−++

∂
∂ τ                                              (3.25) 

 

which is of class 1C  on ),[]1,0[ ∞−× τ . Suppose that f   is of class 0C  on  

),[]1,0[ ∞−× τ and that 

  
 

0  t, 1x0   , ),( 2
1 ≥≤≤≤ tcectxf , 

 

where 1c  and 2c  are positive constants. Let 

  

),(max
0
10 

txum
t

x
≤≤−
≤≤

=
τ

, 

 

Then there are positive constant 3c  and 4c  depending only on 2c  and the 

coefficients in eq.(3.25) such that 
 
  

ττ -  t, 1x0   , e)(),( 45 c
13 ≥≤≤+≤ tcecmctxu   
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Proof: 

Integrating eq.(3.25) from 0 to t , we obtain 
  

∫∫∫ +−−−=
ttt

dssxfdssxubdssxubxuatxua
00

1
0

000 ),(),( ),()0,(),( τ  

 

 

Therefore, 
 
  

tc
tt

e
ac

c
dssxu

a

b
dssxu

a

b
mtxu 2

02

1

0

1

0

0 ),(),(),( +++≤ ∫∫
−− ττ

. 

 

Let 
0

10
5

02
3 c  and   ,

1
 , 1max

a

bb

ac
c

+
=









= . Then 

 

0   t,),()(),( 513
2 ≥++≤ ∫

−

dssxucecmctxu
t

tc

τ

                                     (3.4) 

 

 

Since 0t-  , 1x0for     e),( 2c
3 ≤≤≤≤≤≤ τtmcmtxu   ineq.(3.4) holds for 

all τ-   tand   1x0 ≥≤≤ . It therefore follows from lemma (1.1) that 
  
 

ττ −≥≤≤+≤ +   t, 1x0  , )(),( )(
13

525 tccc eecmctxu . 

 

which proves the theorem.   ■ 

 

Corollary(3.1):  

Let ),( txu  be a solution of the partial delay differential equation  

 

),(),(),( 100 txftxubtxub
t

u
a =−++

∂
∂ τ                                              (3.26) 
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which is of class 1C  on ),0[]1,0[ ∞× . Suppose that f   is of class 0C  on  

),0[]1,0[ ∞× and that 

  
 

0  t, 1x0   , ),( 2
1 ≥≤≤≤ tcectxf , 

 

where 1c  and 2c  are positive constants. Let  

 

),(max
0 

10 
txum

t
x

τ≤≤
≤≤

= , 

 

Then there are positive constant 3c  and 4c  depending only on 2c  and the 

coefficients in eq.(3.26) such that 
 
  

0  t, 1x0   , )(),( 4
13 ≥≤≤+≤ tcecmctxu .   ■  

 

Next, an estimate of the magnitude of solutions for special types of  

the 2nd order linear partial delay differential equations is discussed below. 

But before that we need the following lemma. 

 

Lemma (3.1), [Bainov D. and Simeonov P., 1992]: 

 Let t)b(x,   and   ),( txu  be nonnegative continuous functions 

defined  for 21   t, αα ≥≥x . 

 Assume that ),( txa  is positive nondecreasing continuous function 

in each of the variables  21   t, αα ≥≥x . 

 

If  
 

21   t,for  x   ,),(),( ),(),(
1 2

ααθθθ
α α

≥≥+≤ ∫ ∫
x t

dsdsusbtxatxu  

 

 

then 
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21

),( 

  t,for  x   ),(),( 1 2 ααα α
θθ

≥≥
∫ ∫

≤

x t

dsdsb

etxatxu . 

 

Proof: 

Since ),( txa  is a positive nondecreasing in each of the variables 

21   t, αα ≥≥x  then 

 

21   t,for  x   
),(

),(
),(1

),(

),(

1 2

ααθ
θ
θθ

α α

≥≥+≤ ∫ ∫ dsd
sa

su
sb

txa

txu x t

. 

 

Let 
),(
),(

),(
txa

txu
txv = , then  

 

21   t ,for  x   ),(),( 1),(
1 2

ααθθθ
α α

≥≥+≤ ∫ ∫ dsdsvsbtxv
x t

 

 

Let dsdsvsbtxw
x t

θθθ
α α
∫ ∫+=
1 2

),(),( 1),( , 

 

then ),(),( txwtxv ≤ . Moreover  

 

∫∫ ≤≤
tt

x dxwxbdxvxbtxw
22

),(),(),(),(),(
αα

θθθθθθ . 

 

the function ),( txw  is nondecreasing in t  and  

 

∫≤
t

x dxbtxwtxw
2

),(),(),(
α

θθ , 

thus 
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   ∫≤
t

x dxb
txw

txw

2

),(
),(

),(

α

θθ . 

 

Integrating both sides of the above inequality from   x  to1α   yields: 

 

∫ ∫
≤

x t

dsdsb

etxw 1 2

),(

),( α α
θθ

. 

 

Since ),(),( txwtxv ≤ , this implies that 

 

21

),(

  t,for  x   ),(),( 1 2 ααα α
θθ

≥≥
∫ ∫

≤

x t

dsdsb

etxatxu .   ■ 

 

 

Next, we are in the position that we can give the following 

theorem. To the best of our knowledge, this theorem seems to be new. 

 

Theorem(3.6): 

let ),( txu  be a solution of the partial delay differential equation 

  

),(),(1

2

0 txftxua
tx

u
a =−+

∂∂
∂ τ                                                           (3.27) 

 

which is of class 1C  on ),0[]1,0[ ∞× . Suppose that f  is of class 0C  on  

),0[]1,0[ ∞× and that  

 
 

0  t, 1x0   , ),( 2
1 ≥≤≤≤ tcectxf , 

 

where 1c  and 2c  are positive constants. Let 
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),0(max

),(max

0
2

0
10

1

tum

txum

t

t
x

≥

≤≤
≤≤

=

=
τ  

 

Then there are positive constant 3c   and 4c  depending only on  2c  and 

the coefficients in eq.(3.27) such that 
 
  

0  t, 1x0   , )(),( 4
1213 ≥≤≤++≤ tcecmmctxu   

 

Proof: 

Integrating eq.(3.27) from 0 to x , we obtain 
 
  

∫∫ +−−
∂
∂=

∂
∂ xx

dstsfdstsuat
t

u
atx

t

u
a

00
100 ),(),(),0(),( τ  

 

 

Again, integrating the above equation from τ   to t , we get 
  

 

+−−−+= ∫ ∫
t x

dsdsuauatuaxuatxua
τ

θτθττ
0

10000 ),( ),0(),0(),(),(  

 

 

                    ∫ ∫ ≥
t x

dsdsf
τ

τθθ
0

  t,),(  

 

Therefore, 
 

           

)u(s,  )u(0, t)u(0, )u(x, ),(
0

10000 ∫ ∫ +−+++≤
t x

dsdaaaatxua
τ

θτθττ

                  ∫ ∫
t x

dsdsf
τ

θθ
0

),(      
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∫ ∫ ∫ ∫++++≤
t
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x
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t
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x

0
11020100 )f(s,  ),(  a),( θθθθ dsddsdsuamamamtxua  

         

              ∫ ∫∫ ∫ ++++≤
t x

c
t x

decdsdsuamamam
0 0

1
0 0

1102010
2 ),(  a θθθ θ   

    

              τθθ ≥++++≤ ∫ ∫    t,),(  a 2

2

1

0 0
1102010

tc
t x

e
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c
dsdsuamamam . 

Thus 
  

 

θθ dsdsu
a

a
e
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c
mmtxu

t x
tc

∫ ∫+++≤
0 00

1

02

1
21 ),(  2),( 2 . 

 

Let 
0

1
5

02
3 c   and   ,

1
 , 2max

a

a

ac
c =









= . 

 

Then 
   

θθ dsdsucecmmctxu
t x

tc
∫ ∫+++≤
0 0

51213 ),(  )(),( 2                               (3.5) 

 

Since τ≤≤≤≤≤≤ t0  , 1x0for      emc),( 2c
131

tmtxu  ineq.(3.5) holds for 

all 0   t1,x0 ≥≤≤ . 

Also, since 0for  t   ),0( 2
232 ≥≤≤ tcemcmtu  ineq.(3.5) holds for all 

0t ≥ . It therefore follows from lemma (3.1) that 
  
 

0  t, 1x0   ,)(),( )(
1213

52 ≥≤≤++≤ + tccecmmctxu .   ■ 
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 2.1 Introduction: 

 As seen before in chapter one, the Laplace transform technique is one 

of the important methods that can be used to solve the linear ordinary delay 

differential equations. 

 

 Also, it is known that, the Laplace transform of a function f , 

denoted by  L{ }f  or )(sF  is defined by 
  

dxxfesF sx )()(
0
∫
∞

−= , 

 

this improper integral converges absolutely for as >)Re(  in case the 

function f  possess bounds of the form 

  

axcexf ≤)(  

 

Therefore, the Laplace transform technique can be used to solve the linear 

ordinary delay differential equations in case the magnitude of the  solutions 

for such equations satisfy the above inequality. 

 

 The main purpose of this chapter is to devote some necessary 

conditions to estimate the magnitude of the solutions for the linear ordinary 

delay differential equations in order to find them. Also, an estimate of the 

magnitude of the solutions for special types of nonlinear ordinary delay 

differential equations is given.  

 

Moreover, an estimate of the magnitude of the solutions for systems 

of the 1st order linear delay differential equations is introduced. 
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This chapter consists of five sections. 

In section two, an estimate of the magnitude of only one solution for 

the 1st order linear delay differential equations is derived. 
 

In section three, an estimate of the magnitude of only one solution for 

the 1st order nonlinear delay differential equation is introduced. 
 

In section four, an estimate of the magnitude of two solutions for the 

1st order delay differential equation is obtained. 
 

In section five, an estimate of the magnitude of solutions for a system 

of  the 1st order delay differential equations. 

 

2.2 An Estimate of the Magnitude of One Solution of Linear 

      Ordinary Delay Differential Equations: 

In this section, we give an estimate of the magnitude of only one 

solution for the linear ordinary delay differential equations of single and 

multiple delays with constant coefficients. 

 

We start this section by deriving an estimate of the magnitude of  only 

one solution for special types of the 1st order linear ordinary differential 

equations with single delay with the aid of the lemma (1.1). 

 

Proposition (2.1), [Bellman R. and Cooke K., 1963]: 

  Let )(xy  be a solution of the delay differential equation 

  

)()()( 10 xfxybxya =−+′ τ                                              (2.1) 
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which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
  

0   x,e )( 2c
1 ≥≤ xcxf                

 

where 1c  and 2c  are positive constants. Let 
  

 

)( max
0

xym
x τ≤≤

= , 

 

then there are positive constants 3c  and 4c  depending mainly on  2c   and 

the coefficients in eq.(2.1) such that 
 

0   x,)()( 4
13 ≥+≤ xcemccxy  

 

Proof: 

 From eq.(2.1), we find that 
 

   ∫∫ ≥−−+=
xx

dttybdttfyaxya
ττ

τττ      x,)()()()( 100 . 

 

Therefore, 
 

τ
τ

τ

≥++≤ ∫∫
−

   x,)( )(
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1100
2 dttybdtecmaxya

xx
tc , 

 

hence 
  

τ≥++≤ ∫    x,)( )(
00

1

02

1 2 dtty
a

b
e

ac

c
mxy

x
xc . 

 

Let 
0

1
5

02
3 c   and   ,

1
  , 1max

a

b

ac
c =









= . 
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Then  
 

τ≥++≤ ∫    x,)( )()(
0

513
2 dttycemccxy

x
xc .                                             (2.1) 

 

Since xcmecmxy 2
3)( ≤≤   for τ≤≤ x0 , ineq.(2.1) holds for all 0≥x . It 

therefore follows from lemma (1.1) that 
 

0   x, )()( )(
13

52 ≥+≤ + xccemccxy .   ■ 

 

Next, using this proposition, we can prove this theorem. 

 

 Theorem (2.1): 

  Let )(xy  be the continuous solution of  

  

)()()( 10 xfxybxya =−+′ τ  

 

which satisfies the initial condition τ≤≤= x0   ),()( xgxy . Assume that g   

is ],0[ τoC , that f  is ),0[ ∞oC  and that 
  

0   x,e )( 2c
1 ≥≤ xcxf                

 

where 1c  and 2c  are positive constants. Then for any sufficiently large 

constant c , 
  

 

τ>+= ∫
−    x,)]()()[()(

)(
0

1

c

xs dssqspshexy , 

 

where  
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1
0

1100
1)()()( dxexgebegasp sxss

∫
−−− −=

τ
τττ , 

 

∫
∞

−=
τ

11
1)()( dxexfsq sx . 

 

Also, 
  

0   x,)]()()[()(
)(

1 >+= ∫
−

c

xs dssqspshexy , 

 

where  
 

1
0

100
1)()()( dxexgsaegasp sxs −−

∫+=
τ

ττ , 

 

provided g  is ],0[1 τC . 

 

Proof: 

See [Bellman R. and Cooke K., 1963].   ■ 

 

The following theorem is a generalization of the previous proposition 

which gives an estimate of only one solution for special types of the 1st 

order linear ordinary delay differential equation. 

 

Theorem (2.2), [Bellman R. and Cooke K., 1963]: 

Let )(xy  be a solution of the delay differential equation 

 

)()()()( 100 xfxybxybxya =−++′ τ                                    (2.2) 
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which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
  

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let 
 

)(max
0

xym
x τ≤≤

= ,  

 

then there are positive constants 3c  and 4c  depending only on  2c  and the 

coefficients in eq.(2.2) such that 
  

0   x,)()( 4
13 ≥+≤ xcemccxy . 

 

Proof: 

From eq.(2.2), we find that 
  

τττ
τττ

≥−−−+= ∫∫∫    x,)()()()()( 1000 dttybdttybdttfyaxya
xxx

. 

 

Therefore, 
  

τ≥
+

++≤ ∫    x,)( y(x)
00

10

02

1 2 dtty
a

bb
e

ac

c
m

x
xc . 

 

Let 
0

10
5

02
3 c   and   ,

1
  , 1 max

a

bb

ac
c

+
=









= . 

  

Then 
  

τ≥++≤ ∫    x,)( )()(
0

513
2 dttycemccxy

x
xc .                                           (2.2) 
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Since xcmecmxy 2
3)( ≤≤   for τ≤≤ x0 , ineq.(2.2) holds for all  0≥x . It 

therefore follows from lemma (1.1) that 
 

0   x, )()( )(
13

52 ≥+≤ + xccemccxy , 

 

which proves the theorem.  ■  

 

Next, using this theorem, we can prove the following theorem. 

 

Theorem (2.3): 

  Let )(xy  be the continuous solution of  

  

)()()()( 100 xfxybxybxya =−+++′ τ  

 

which satisfies the initial condition τ≤≤= x0   ),()( xgxy . Assume that g   

is ],0[ τoC , that f  is ),0[ ∞oC  and that 
  

0   x,e )( 2c
1 ≥≤ xcxf                

 

where 1c  and 2c  are positive constants. Then for any sufficiently large 

constant c , 
  

 

τ>+= ∫
−    x,)]()()[()(

)(
0

1

c

xs dssqspshexy , 

where  

  1
0

1100
1)()()( dxexgebegasp sxss

∫
−−− −=

τ
τττ , 

 

∫
∞

−=
τ

11
1)()( dxexfsq sx . 
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Also, 
  

0   x,)]()()[()(
)(

1 >+= ∫
−

c

xs dssqspshexy , 

 

where  
 

1
0

1000
1)()()()( dxexgbsaegasp sxs −−

∫++=
τ

ττ , 

 

provided g  is ],0[1 τC . 

 

Proof: 

See [Bellman R. and Cooke K., 1963].   ■ 

 

 Now, the following theorem is an extended theorem of the previous 

facts which gives the same result. To the best of our knowledge, this 

theorem seems to be new. 

 

Theorem (2.4): 

Let )(xy  be a solution of the delay differential equation 

 

)()()()()( 1010 xfxybxybxyaxya =−++−′+′ ττ                                    (2.3) 

 

which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC on ),0[ ∞  and 

that 
  

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let  
 

)(max
0

xym
jx τ≤≤

= ,  
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where Nj ∈ , then there are positive constants 3c  and 4c  depending only on 

2c  and the coefficients in eq.(2.3) such that 
         

τ1)(jx0   ,)()( 4
13 +≤≤+≤ xcemccxy . 

 

Proof: 

  From eq.(2.3), we find that 
 

ττττ
ττττ

j   x,)()()()()()( 10100 ≥−−−−′−+= ∫∫∫∫
xx

j

x

j

x

j

dttybdttybdttyadttfjyaxya

        
 

   ∫∫ ∫∫
−

−

−

−

−−′−+=
τ

τ

τ

τ ττ

τ
x

j

x

j

x

j

x

j

dttybdttybdttyadttfjy
)1(

1
)1(

010 )()()()()(a , 

 

Therefore,  
 

ττ 1)(jxj   ,)( 2)(
00

10

0

1

02

1 2 +≤≤
+

+++≤ ∫ dtty
a

bb
m

a

a
e

ac

c
mxy

x
xc  

 

Let 
0

10
5

020

1
3 c   and   ,

1
 , 21 max

a

bb

aca

a
c

+
=









+= . 

 

Then  
 

dttycemccxy
x

xc
∫++≤
0

513 )( )()( 2 .                                                     (2.3)  

 

Since  xcmecmxy 2
3)( ≤≤   for τjx ≤≤0 , ineq.(2.3) holds for all  

τ)1(0 +≤≤ jx . It therefore follows from lemma (1.1) that 

 

τ1)(jx0   ,)()( )(
13

52 +≤≤+≤ + xccemccxy .   ■ 
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Next, an estimate for the magnitude of only one solution for  special 

types of the 1st order linear ordinary delay differential equations with 

multiple delays is discussed below. To the best of our knowledge, this 

theorem seems to be new. 

 

Theorem (2.5): 

Let )(xy  be a solution of the equation 

  

)()()()()( 221100 xfxybxybxybxya =−+−++′ ττ ,                               (2.4) 

 

which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  

and that 
  

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let  
 

)( max
20

xym
x τ≤≤

= ,  

 

then there are positive constants 3c  and 4c  depending only on 2c  and the 

coefficients in eq.(2.4), such that 
  

0   x,)()( 4
13 ≥+≤ xcemccxy . 

 

Proof: 

From eq.(2.4), we find that 
  

∫∫ ∫∫ −−−−−+=
xx xx

dttybdttybdttybdttfyaxya
22 22

)()()()()()( 22110200
ττ ττ

τττ . 
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Therefore, 

2
0

2
0

10100    x,)( )( )( )(
22

122

2 τ
ττ

τττ

≥++++≤ ∫∫∫∫
−−

−

xxxx
tc dttybdttybdttybdtecmaxya  

 

thus 
 

∫ ≥
++

++≤
x

xc dtty
a

bbb
e

ac

c
mxy

0
2

0

210

02

1    x,)( )( 2 τ . 

 

Let 
0

210
5

02
3 c   and   ,

1
 , 1max

a

bbb

ac
c

++
=









= . 

 

Then  
 

2
0

513    x,)( )()( 2 τ≥++≤ ∫ dxxycemccxy
x

xc .                                  (2.4)  

 

Since xcmecmxy 2
3)( ≤≤   for  20 τ≤≤ x , ineq.(2.4) holds for all 0≥x . It 

therefore follows from lemma (1.1) that  
 

0   x,)(c)( )(
13

52 ≥+= + xccemcxy . 

 

which proves the theorem.  ■ 

 

 2.3 An Estimate of the Magnitude of One Solution of 

Nonlinear Ordinary Delay Differential Equations: 

As seen before, [Bellman R. and Cooke K., 1963] discussed an estimate 

of the magnitude of only one solution for linear ordinary delay  differential 

equations. 
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In this section, we give an estimate of the magnitude of only one 

solution for special types of the nonlinear ordinary delay differential 

equations with constant coefficients. To the best of our knowledge, this 

section seems to be new and consists of the main part of this work. 

 

We start this section by deriving an estimate of the magnitude of  only 

one solution for special types of  the 1st order nonlinear ordinary delay 

differential equations with constant coefficients, but before that we need the 

following lemma. 

 

Lemma (2.1), [Bainov D. and Simeonov P., 1992]: 

Let )(  ),( xaxy  and )(xk  be nonnegative continuous functions in 

],[ βα=J , and suppose 
 

J   x,)()()()( ∈+≤ ∫
x

p dttytkxaxy
α

,                           (2.5) 

 

where 10 << p . Then 

 

p-1q   ,)()()(

q

0

1

=







+≤ ∫ dttkzxaxy

x
p q

α
,                                           (2.6) 

 

where 0z  is the unique positive root of the equation 

 

∫ ∫∫ 







===−−

β

α α

β

α
dxdttbzaz

qx
p q )(kb   ,a(t)dta   ,0

1

.                         
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Proof: 

From Holder's inequality, we obtain 
 

pxqxx
p dttydttkdttytk q

















≤ ∫∫∫

ααα
)()()()(

1

. 

 

Then ineq.(2.5) implies 

  

qxpx

dttkdttyxaxy q
















+≤ ∫∫

αα
)()()()(

1

,                          (2.7) 

 

and integration of ineq.(2.7) from α  to β  gives 

 

dxdttkdttydttadtty

qxp

q∫ ∫∫∫ ∫ 















+≤

β

α α

β

α

β

α

β

α

)()()()(
1

 

 

If dxdttdttyz

q

q∫ ∫∫∫ 







===

β

α α

β

α

β

α

x

)(kb  ,a(t)dta  ,)(
1

, then the last inequality 

shows that the nonnegative number z  satisfies the inequality pbzaz +≤ . 

Analyzing this, we conclude that 0zz ≤  where 0z  is the unique positive 

root of the equation pbzaz += . Hence ineq.(2.7) implies ineq.(2.6).  ■ 

 

Now, we can prove the following proposition. This proposition gives an 

estimate of the magnitude of only one solution for a special type of 

nonlinear ordinary delay differential equations. 
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Proposition (2.2): 

Let )(xy  be a solution of the delay differential equation 

 

1p0   ),()()( 10 <<=−+′ xfxybxya p τ ,                                  (2.5) 

 

which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
 

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let 
  

)(max
0

xym
x τ≤≤

= ,  

 

then there are positive constants 3c  and 4c , depending only on  2c  and the 

coefficients in eq.(2.5) such that 
  

              β≤≤++≤ − x 0   ,)()( 1
0413

2 ppxc xzcemccxy , 

 

where 0z  is the unique positive root of the equation 

  

               0   ,0
2

)1(
)(

2

2
4

2

13 ≥=
−

−−+−
−

βββ pc z
p

ce
c

mcc
z

p

. 

 

Proof: 

From eq.(2.5), we find that 
 

∫∫ ≥−−+=
x

p
x

dttybdttfyaxya
ττ

τττ    x,)()()()( 100 . 

Thus 
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     dttybdtecamxya
x

p
x

tc
∫∫ −++≤
ττ

τ )( )( 1100
2  

               

       dttybdtec
x

p
x

tc
∫∫
−

++≤
τ

τ 0
110 )( am 2 , 

 

hence 
  

    dtty
a

b
e

ac

c
mxy

x
pxc

∫++≤
00

1

02

1 )( )( 2 . 

 

 

Let 
0

1
4

02
3 c   and   ,

1
  , 1 max

a

b

ac
c =









= . 

 

Then 
               

         τ≥++≤ ∫    x,)( )c(m)(
0

413
2 dttycecxy

x
pxc .                                 (2.8) 

 

Since xcmecmxy 2
3)( ≤≤   for τ≤≤ x0 , ineq.(2.8) holds for all 0≥x .  

 

Thus 

0   x,)()()(
0

413
2 ≥++≤ ∫

x
pxc dttycecmcxy . 

 

By using lemma (2.1), one can get 
  

  p-1q   ,)()( 0413
2 =++≤ qpxc xzcecmcxy , 

 

where 0z  is the unique positive root of the equation ,0=−− pbzaz  

 

)1(e
)(

  )c(ma 22 c

2

13

0
13 −+=+= ∫

β
β

c

cmc
dxec xc , and 
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p-1q   ,
11

1

4

0

1

4
0 0

4

1

=
+

=
+

=







=

++

∫ ∫ q
c

q

x
cdxcb

qq
qx

q
β

ββ

.   ■ 

 

Next, the following theorem is an extension of the above proposition. 

 

Theorem (2.6): 

Let )(xy  be a solution of the delay differential equation 

 

1p0   ),()()()( 100 <<=−++′ xfxybxybxya pp τ ,              (2.6) 

 

which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
 

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let 
  

)(max
0

xym
x τ≤≤

= , 

 

then there are positive constants 3c  and 4c  depending only on 2c  and the 

coefficients in eq.(2.6) such that 
  

              β≤≤++≤ − x 0   ,)()( 1
0413

2 ppxc xzcemccxy , 

 

where 0z  is the unique positive root of the equation  

                

0   ,0
1

)1(
)( 1

4
2

13 2 ≥=
+

−−+−
+

βββ p
q

c z
q

ce
c

mcc
z . 
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Proof: 

From eq.(2.6), we find that 
 

∫∫∫ ≥−−−+=
x

p
x

p
x

dttybdttybdttfyaxya
τττ

τττ    x,)()()()()( 1000 . 

Thus 
  

dttybdttybdtecamxya
x

p
x

p
x

tc
∫∫∫ −+++≤
τττ

τ )( )()( 10100
2  

              

            dttybdttybdtec
x

p
x

p
x

tc
∫∫∫
−

+++≤
τ

τ 0
1

0
010 )( )(am 2 , 

 

hence  
 

dtty
a

bb
e

ac

c
mxy

x
pxc

∫
+

++≤
00

10

02

1 )( )( 2 . 

 

Let 
0

10
4

02
3 c   and   ,

1
  , 1 max

a

bb

ac
c

+
=









= . 

 

Then by following the same previous steps as  in proposition (2.2), one can 

get the same result.   ■  

 

Next, we generalize the previous theorem to be valid for 1>p , but 

before that we need the following lemma. 

 

 

 

 



Chapter two                    Estimaion of the Magnitude of the Solutions for Ordinary Delay Differential Equations     

 ٥٢

Lemma (2.2), [Bainov D. and Simeonov P., 1992]: 

Let k(x)  and  b(x)  a(x),  ),(xy  be nonnegative continuous functions in 

],[ βα=J  and let 1>p  be a constant. Suppose 
b

a
 is nondecreasing in J  

and 
  

J   x,)()()()()( ∈+≤ ∫
x

p dttytkxbxaxy
α

.                                                   (2.9) 

 

Then  
 

p
1 x   ,)()()()1(1)()(

1
1

βα
α

≤≤







−−≤

−

∫
−

px
p dttatbtkpxaxy ,                   (2.10) 

 

 

where 








<−∈= ∫
−

x
p

p dttatbtkpJx
α

β 1)()()()1(:sup 1 . 

 

Proof: 

Set dttytkxv
x

p )()()( ∫=
α

. Then for px βτα <≤≤ , ineq.(2.9) implies 

  

)()()()( xvxbxaxy +≤ ,                                   (2.11)                  

 

and 
 

[ ] [ ])()()()()()()()()()( 1 xvxbxaxvxbxaxkxyxkxv pp ++≤=′ −  
          

         

        [ ] 






 ++≤ − )(
)(

)(
b(x)v(x)a(x)k(x)b(x) 1 xv

b

ap

τ
τ

, 
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that is, 
 








 +≤′ )(
)(

)(
)()( xv

b

a
xRxv

τ
τ

,                                  (2.12) 

 

where [ ] 1)()()()()()( −+= pxvxbxaxbxkxR . 

 

From ineq.(2.12), one can get 
  

   [ ] α
τ
τ ≥≤

∫
−′

∫

   t,
)(

)(
)()()()(

1111 )()(
x

t

x

t
dttRdttR

e
b

a
tRetvtRtv .  

 

Thus 

1111 )()(

)(

)(
)()(

dttRdttR
x

t

x

t e
b

a
tRetv

dt

d ∫∫

≤














τ
τ

 

 

Integrating  over t  from α  to x  gives 
   

dtetR
b

a
evxv

x dttRdttR
x

t

x

∫
∫∫

≤−
ατ

τα α
1111 )()(

)(
)(

)(
)()( , 

 

which implies 
 

dtetR
b

a
xv

x dttR
x

t∫
∫

≤
ατ

τ 11)(

)(
)(

)(
)( . 

 

Therefore, 
  

τα
τ
τ

τ
τ α ≤≤≤+

∫

x   ,
)(

)(

)(

)(
)(

)(
x

dttR

e
b

a

b

a
xv . 

 

Hence, for τ=x  
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∫

≤+
x

dttR

exaxvxbxa α
)(

)()()()(                                            (2.13) 

 

From ineq.(2.13), we obtain 
 

  

[ ] ∫ −
−− ≤+

x
dttRp

pp exaxvxbxa α
)()1(

11 )()()()( , 
 

that is, 
 

∫ −
−≤

x
dttRp

p exaxbxkxR α
)()1(

1 )()()()( . 
 

 

Let )()1()( xRpxz −= , then 

 

)()()()1( 1
)(

xaxbxkpe p
dttz

x

−
∫−

−≤

′














− α . 

 

Integrating the above inequality from α  to x  yields 
 

∫
−

∫−
−≤−

x
p

dttz

dttatbtkpe

x

α

α )()()()1(1 1
)(

, 

 

from which we conclude that 
 

p
x

x
p

dttR

dttatbtkpe
−









−−≤ ∫

−
∫ 1

1

)()()()1(1 1
)(

α

α  

 

The above inequality, together with ineq.(2.11) and ineq.(2.13), implies 

ineq.(2.10).   ■ 
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Now, we are in the position that we can state the following 

proposition. This proposition gives an estimate of the magnitude of  only 

one solution for another types of nonlinear ordinary delay differential 

equations. 

 

Proposition (2.3): 

Let )(xy  be a solution of the delay differential equation 

 

1p   ),()()( 10 >=−+′ xfxybxya p τ                                    (2.7) 

 

which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
 

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let 
 

   )(max
0

xym
x τ≤≤

= ,  

 

then there are positive constants 3c  and 4c  depending only on  2c  and the 

coefficients in eq.(2.7) such that 
  

p

1

1

)1(

2

1
1

1
34

13 x0   ,)1(
)(

1)()( 22 β≤≤







−+−+≤

−
−

−− p
xcp

pp
xc e

c

mccc
emccxy  

 

where [ ] ][0,J   ,1)()1(:sup
0

)1(1
134

2 ββ =








<+−∈= ∫
−−

x
tcpp

p dtemcccpJx  and  

 

β  is any positive real number. 
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Proof: 

 By following the same previous steps as in proposition (2.2), one can 

get[[ 

0   x,)( )()(
0

413
2 ≥++≤ ∫ dttycemccxy

x
pxc , 

 

and by using lemma (2.2) with 1,b(x)  ,)()( 2
13 =+= xcemccxa 4ck(x) =  and  

0=α , one can get 
 

p
tcppp

x
xc dtemcccpemccxy

−
−−−









+−−+≤ ∫

1

1

)1(1
1

1
3

0
413

22 )()1(1)()(   

         

        p

1

1

)1(

2

1
1

1
34

13 x0   ,)1(
)(

1)(c 22 β≤≤







−+−+=

−
−

−− p
xcp

pp
xc e

c

mccc
emc , 

 

where [ ] ] , [0J   ,1)()1(:sup
0

)1(1
134

2 βτ =








<+−∈= ∫
−−

x
tcpp

p dtemcccpJx  and   

 

β  is any positive real number.   ■ 

 

The following theorem is a generalization of the previous proposition 

which gives the same result.  

 

Theorem (2.7): 

Let )(xy  be the solution of the delay differential equation 

  

1p   ),()()()( 100 >=−++′ xfxybxybxya pp τ                                        (2.8) 
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which is of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞  and 

that 
  

0   x,)( 2
1 ≥≤ xcecxf ,      

 

where 1c  and 2c  are positive constants. Let 
  

)( max
0

xym
x τ≤≤

= , 

 

then there are positive constants 3c  and 4c  depending only on 2c  and the 

coefficients in eq.(2.8) such that 
  

p
xcp

p
xc

p

e
c

mccc
emccxy β≤≤












−+−+≤

−
−

−

x0   ,)1(
)(

1)()(
1

1

22 )1(

2

1
1

34
13 , 

 

where ],0[   ,1)1(
)(

:sup 2)1(

2

1
1

1
34 βτ =









<−+∈= −
−−

Je
c

mccc
Jx xcp

pp

p  

and β  is any positive real number. 

 

Proof: 

By following the same previous steps as in theorem (2.6), one can get 
 

0   t,)()()(
0

413
2 ≥++≤ ∫

x
pxc dttycemccxy , 

 

and by using lemma (2.2) with 413 ck(x) 1,b(x) ,)()( 2 ==+= xcemccxa  and 

0=α , one can get 
  



Chapter two                    Estimaion of the Magnitude of the Solutions for Ordinary Delay Differential Equations     

 ٥٨

p

dtemcccpemccxy tcpp
x

pxc
−









+−−+≤ −−−

∫
1

1

22 )1(1
1

0

1
3413 )()1(1)()( . 

 

Thus 
  

p
xcp

pp
xc

p

e
c

mccc
emccxy β≤≤








−+−+≤

−
−

−−

x0   ,)1(
)(

1)()(
1

1

22 )1(

2

1
1

1
34

13   

 

 

where ],0[   ,1)1(
)(

:sup 2)1(

2

1
1

1
34 ββ =









<−+∈= −
−−

Je
c

mccc
Jx xcp

pp

p   

and β  is any positive real number. 

 

2.4 An Estimate of the Magnitude of Two Solutions of Linear 

Ordinary Delay Differential Equations: 

 In this section, we give an estimate of the magnitude of two solutions 

for linear ordinary delay differential equations with constant coefficients. 

 

 We start this section by the following proposition. This proposition 

appeared in [Bellmen R. and Cook K., 1963] without proof. Here we give 

it's proof.  

 

Proposition(2.4): 

         Let )(1 xy  and )(2 xy  be two solutions of the delay differential 

equation 
 

)()()( 10 xfxybxya =−+′ τ               (2.9) 

 



Chapter two                    Estimaion of the Magnitude of the Solutions for Ordinary Delay Differential Equations     

 ٥٩

which are of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞ . 

Let 
 

                          )()( max 21
0

xyxym
x

−=
≤≤ τ

,     

 

then there is a positive constant c , depending only on the coefficients in 

eq.(2.9) such that 

 

0   x,)()( 21 ≥≤− cxmexyxy .  

 

Proof: 

         Since )(1 xy  and )(2 xy  are solutions of eq.(2.9), then 
 

τττ
ττ

≥−−+= ∫∫    x,)()()()( 111010

xx

dttybdttfyaxya ,  

 

and 
 

τττ
ττ

≥−−+= ∫∫    x,)()()()( 212020

xx

dttybdttfyaxya . 

 

Thus  
 

dttytybyyaxyxya
x

∫
−

−+−≤−
τ

ττ
0

211210210 )()( )()( )()( , 

 

hence 
  

dttyty
a

b
mxyxy

x

∫ −+≤−
0

21
0

1
21 )()()()( . 

 

Let 
0

1

a

b
c = , then 
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τ≥−+≤− ∫    x,)()()()(
0

2121 dttytycmxyxy
x

.            (2.14) 

 

Since  )()( 21 mxyxy ≤−  for τ≤≤ x0 , ineq.(2.14) holds for all 0≥x . It 

therefore follows from lemma (1.1) that 

0   x,)()( 0
21 ≥=≤−

∫
cx

cdt

memexyxy

x

.   ■ 

 

Next, this proposition can be also extended to give the following 

theorem. This theorem appeared in [ Bellman R. and Cooke K., 1963] 

without proof. Here we give it's proof. 

 

Theorem (2.8): 

         Let )(1 xy  and )(2 xy  be two solutions of the delay differential 

equation 
 
  

)()()()( 100 xfxybxybxya =−++′ τ                       (2.10) 

 

which are of class 1C  on ),0[ ∞ . Suppose that f  is of class oC  on ),0[ ∞ . 

Let 
 

                      )()( max 21
0

xyxym
x

−=
≤≤ τ

,     

 

then there is a positive constant c  depending only on the coefficients in 

eq.(2.10) such that 
 

                  0   x,)()( 21 ≥≤− cxmexyxy .  
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Proof: 

By following the same previous steps as in proposition (2.4), one can 

get 
 

τ≥−+≤− ∫    x,)()()()(
0

2121 dttytycmxyxy
x

, 

where 
0

10

a

bb
c

+
= . 

 

The solution of the above inequality is 
 

0   x,)()( 21 ≥≤− cxmexyxy .   ■ 

 

Next, the following theorem is a generalization of the previous 

theorem which discussed an estimate of the magnitude of  two solutions for 

two 1st order delay differential equations with same differential operator. 

This theorem appeared in [Bellman R. and Cooke K., 1963] without proof. 

Here, we give it's proof. 

 

Theorem (2.9): 

         Let )(1 xy  and )(2 xy  be solutions of the delay differential equations 

  

 

)()()()( 1100 xfxybxybxya =−++′ τ             (2.11) 
 

 

)()()()( 2100 xfxybxybxya =−++′ τ                       (2.12) 
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respectively which are of class 1C  on ),0[ ∞ . Suppose that    and  21 ff are  

of class oC  on ),0[ ∞ . Let 
 

                      )()( max 21
0

xyxym
x

−=
≤≤ τ

,     

 

then there is a positive constant c  depending only on the coefficients in 

eq.(2.11)-(2.12) such that 
 

                  0   x,)()()()(
0

21
1

21 ≥







−+≤− ∫

− cx
x

edttftfamxyxy .  

 

Proof: 

From eq.(2.11)-(2.12), we find that 
 

∫∫∫ ≥−−−+=
xxx

dttybdttybdttfyaxya
τττ

τττ    x,)()()()()( 111011010  

 

and 
 

∫∫∫ ≥−−−+=
xxx

dttybdttybdttfyaxya
τττ

τττ    x,)()()()()( 212022020 . 

 

Thus 
 

dttyty
a

bb
dttftf

a
yyxyxy

xx

∫∫ −
+

+−+−≤−
0

21
0

10

0
21

0
2121 )()()()(

1
)()()()( ττ

 

τ≥−+−+≤− ∫∫
−

   x,)()()()()()(
0

21
0

21
1

021 dttytycdttftfamxyxy
xx

     (2.15) 

 

where 
0

10

a

bb
c

+
= . 
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Since τ≤≤≤− x0for     )()( 21 mxyxy , ineq.(2.15) holds for all 0≥x . It 

therefore follows from lemma (1.1) that  
 

 

0   x,)()()()(
0

21
1

021 ≥







−+≤− ∫

− cx
x

edttftfamxyxy .   ■ 

 

Remark (2.1): 

In theorem (2.9), if )()( 21 xfxf =  for each 0≥x , then this theorem 

reduces to theorem (2.8). 

 

Now, the following theorem is more general than the pervious 

theorem. 

 

Theorem (2.10): 

         Let )(1 xy  and )(2 xy  be solutions of the delay differential equation 

 

  

)()()()( 1100 xfxybxybxya =−++′ τ                       (2.13) 

 

and 
 

)()() ()() ()( 2111000 xfxybxybxya =−++++′ τεε                      (2.14) 

 

respectively which are of class 1C  on ),0[ ∞ . Suppose that    and  21 ff are  

of class oC  on ),0[ ∞ . Let 
 

                      

)(max

)()( max

2
0

2

21
0

1

xym

xyxym

x

x

τ

τ

≤≤

≤≤

=

−=
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then there are positive constant c  and ε  depending only on the coefficients 

in eq.(2.13)-(2.14) such that 
 

                  0   x,
 

)()()()(
0

2

0
21

1
121 ≥








+−+≤− ∫

− cx
x

e
a

m
dttftfamxyxy

τε
.  

 

Proof: 

From eq.(2.13)-(2.14), we find that 
 

∫∫∫ ≥−−−+=
xxx

dttybdttybdttfyaxya
τττ

τττ    x,)()()()()( 111011010 . 

 

and 
 

∫∫∫ ≥−+−+−+=
xxx

dttybdttybdttfyaxya
τττ

ττεετ    x,)()()()()()()( 21120022020

 

Thus 
 

τ
ε

ττ

τ

≥







−

+−
+

+−+−≤−

∫∫

∫∫

   x,)()(
a

                          

                         

)()()()(
1

)()()()(

x
2

0
2

0

0
21

0

10

0
21

0
2121

dttydtty

dttyty
a

bb
dttftf

a
yyxyxy

x

xx

 

   

                     +−+−+≤ ∫∫
−

dttytycdttftfam
xx

0
21

0
21

1
01 )()()()(  

        

     ττε ≥   x,
a

m 

0

2                                                                (2.16) 
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where { }  ,  max   and   10
0

10 εεε =
+

=
a

bb
c . 

 

Since τ≤≤≤− x0for     )()( 121 mxyxy , ineq.(2.16) holds for all 0≥x . It 

therefore follows from lemma (1.1) that  
 

 

0   x,
m 

)()()()(
0 0

2
21

1
0121 ≥








+−+≤− ∫

− cx
x

e
a

dttftfamxyxy
τε

.   ■   

 

Remarks (2.2): 

(i) If  0=ε  then 010 == εε  and hence theorem (2.10) reduces to theorem 

(2.9). 
 

(ii) If 0=ε  and )()( 21 xfxf =  for each 0≥x  then theorem (2.10)                      

reduces to theorem (2.8).  

 

2.5 An Estimate of the Magnitude of One Solution for                     

Systems Ordinary Delay Differential Equations: 

 In this section we derive an estimate of the solutions for special types 

of system of the1st order ordinary delay differential equations  with constant 

coefficients. 

 

 We start this section by generalizing theorem (2.2) to system of  the 

1st order linear ordinary delay differential equations. 
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Theorem (2.11):  

Let )(xy  be a solution of the system of  1st order delay differential 

equations 
 

)()()()(
1

0 xfxyBxyBxy
m

i
ii =−++′ ∑

=
τ ,                                (2.15) 

 

which is of class 1C  on ),0[ ∞  where iB   is  nn ×   matrix for each 

mi ,...,1,0= . Suppose that f   is 1×n  vector of  class oC  on ),0[ ∞  and that  

 

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let 
  

)(max
0

xym
mx τ≤≤

= , 

 

where  mτττ <<<< ...0 21   then there are positive constants 3c  and 4c  

depending only on 2c  and the coefficients in eq.(2.15) such that 

  

0   x,)()( 4
13 ≥+≤ xcemccxy . 

 

Proof: 

From eq.(2.15), we find that 
 

∫ ∑ ∫∫
=

+−−−=
x m

i

x

ii

x

m

m mm

dttfdttyBdttyByxy
τ ττ

ττ
1

0 )()( )()()( . 

 

Therefore, 
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dttyBdtdtec

dttyBdttyBdttfyxy

x

i

m

i
i

x
tc

i

x m

i
i

xx

m

mm

mmm

 )(  y(t) Bm          

          

 (   )(   )( )()(

1

x

0
01

1
0

2 ∫∑∫∫

∫ ∑∫∫

−+++≤

−+++≤

=

=

ττ

τττ

τ

ττ

  

 

        ∫∑∫
=

+++≤
xm

i
i

x
xc dttyBdttyBe

c

c
m

010
0

2

1 )( )( 2 . 

Thus  

m
002

1    x,)( )( 2 τ≥++≤ ∫∑
=

xm

i
i

xc dttyBe
c

c
mxy . 

 

Let ∑
=

=








=
m

i
iBc

c
c

0
5

2
3    and   ,

1
  ,  1max . 

 

Then  
  

m
0

513    x,)()()( 2 τ≥++≤ ∫ dttycemccxy
x

xc                                          (2.17) 

 

Since xcemcmxy 2
3)( ≤≤   for mx0 τ≤≤ , hence ineq.(2.17) holds for all 

0≥x . It therefore follows from lemma(1.1) that  
 

          0   x,)(c)( )(
13

52 ≥+= + xccemcxy . 

 

Next, the following theorem is an extension of theorem (2.3) to  

system include of the 1st order ordinary  delay differential equations. 
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Theorem (2.12):  

Let )(xy  be a solution of the linear system of  the 1st order ordinary 

delay differential equations 
  

)()]()([
0

xfxyBxyA iii

m

i
i =−+−′∑

=
ττ                                  (2.16) 

which is of class 1C  on ),0[ ∞  where iA  and miBi ,...,1,0  , =  are nn ×  

matrices  such that IA =0 . Suppose that f   is 1×n  vector of class oC  on 

),0[ ∞ and that 
  

0   x,)( 2
1 ≥≤ xcecxf , 

 

where 1c  and 2c  are positive constants. Let  
 

)(max
0

xym
mx τ≤≤

= , 

 

where  mτττ <<<< ...0 21  then there are positive constants 3c  and 4c  

depending only on 2c  and the coefficients in eq.(2.16) such that 

  

113 0   ,)()( 4 ττ +≤≤+≤ m
xc xemccxy . 

 

Proof: 

Since IA =0 , then eq.(2.16) can be rewritten as 

  

[ ]∑
=

=−+−′++′
m

i
iiii xfxyBxyAxyBxy

1
0 )()()()()( ττ . 

 

Therefore, 
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[ ]∫ ∑∫∫
=

−+−′−−+=
x m

i
iiii

xx

m

mmm

dttyBtyAdttyBdttfyxy
τττ

τττ
1

0 )()( )()()()(  

    

[ ] dttyBdttf
x

i

x m

i
iiimi

x

m

m mm

 )()-y(- )-y(xA-y(t)dtB-)()y(         
m

1 1
i0 ∫ ∑ ∫∑∫

= =
−−+=

τ ττ
τττττ

 

Therefore,  
 

 )()( )( )()(
1

0 +−−−++≤ ∫ ∑
=

imi

x m

i
im yxyAdttyByxy

m

ττττ
τ

 

             

               dttfdttyB
x

i

x m

i
i

mm

∫∫ ∑ +−
= ττ

τ  )( )(  
1

 

 

         +−−++≤ ∑∫
=

)()-y(x A y(t) Bm i

m

1i
i

x

0
0 imydt τττ  

          

           ∫∫ ∑ +







−

=

x
tc

x m

i
i

m

i

dtedttyB
τ

τ
2

1
0 1

c )(   

 

           [ ] )()(  )( m
1002

1 2
imi

m

i
i

xm

i
i

xc yxyAdttyBe
c

c τττ −+−+++≤ ∑∫∑
==

 

         

           1m
002

1
m

1i
i    ,)( A21 2 τττ +≤≤++






 +≤ ∫∑∑
==

m

xm

i
i

xc xdttyBe
c

c
m . 

 

Thus 
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1
002

1

1

   ,)( 21)( 2 τττ +≤≤++






 +≤ ∫∑∑
==

mm

xm

i
i

xc
m

i
i xdttyBe

c

c
mAxy  

 

Let ∑∑
==

=








+=
m

i
i

m

i
i Bc

c
Ac

0
5

21
3    and   ,

1
 , 21max . 

  

Then 
 

1m
0

513    ,)( )()( 2 τττ +≤≤++≤ ∫ m

x
xc xdxxycemccxy .                       (2.18) 

Since xcemcmxy 2
3)( ≤≤  for mx0 τ≤≤ , hence ineq.(2.18) holds for all 

10 ττ +≤≤ mx . It therefore follows from lemma(1.1) that 

  

1
)(

13 0   ,)()( 52 ττ +≤≤+≤ +
m

xcc xemccxy .   ■ 

 

Corollary(2.1): 

Let the hypotheses of theorem (2.12) be satisfied except the condition 

IA =0 . Assume that 00 ≠A , then there are positive constants 3c  and  4c  

depending only on 2c  and the coefficients in eq.(2.16) such that 

  

113 0   ,)()( 4 ττ +≤≤+≤ m
xc xemccxy . 

 

Proof: 

Since 00 ≠A , then eq.(2.16) can be rewritten as 

   

)()]()()()[()()(
1

1
0

1
0

1
0 xfxyBAxyAAxyBAxy

m

i
iiii =−+−′++′ ∑

=

−−− ττ , 

 

and hence the proof follows directly from theorem (2.12).   ■  
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 i

INTRODUCTION 

  

The differential equations with a deviating argument are  differential 

equations in which the unknown function and its derivative enter, generally 

speaking, under different values of the argument, [El'sgol'ts L. and Norkin S., 

1973]. 

 

These equations appeared in the literature in the second half of the 

eighteenth century by Kondorse in 1771, but a systematic study of equations 

with a deviating argument began only in the twentieth century (especially in 

the last forty years by Myshkis A. in the Soviet Union, Wright E. and 

Bellman R. in other countries) in connection with the requirements of applied 

science, [El'sgol'ts L. and Norkin S., 1973]. 

 

A topic of differential equations with deviating arguments which is in a 

rapid state of development. It was the Russian mathematician Krasovskii who 

found an accommodation for differential equations with deviating arguments 

as operators in function spaces. It is worth noting that the theory of 

differential equations with deviating arguments is not just a simple extension 

of the theory of ordinary differential equations, [Saaty T., 1967]. 

 

The differential equations with deviating arguments are integrable in 

closed form only under very specialized circumstances, and therefore 

qualitative and approximate methods are of the utmost importance in studying 

them, [El'sgol'ts L., 1964]. 

 

 Many researchers study the delay differential equations: 

 



 ii

Al-Saady A., 2000, gave a new approach for solving the delay differential 

equations. This approach depends mainly on the Gaussian quadrature 

numerical integration method and cubic spline interpolator functions for the 

unknown exact solution, 
 

Narie N., 2001, introduced the variational  formulations of  the delay 

differential equations and solved them by using the direct Ritz method, 
 

Al. Daynee K., 2002, evaluated the variational formulation of  the delay 

BVPs, using two approaches (variational problem with constraint and 

variational problem using Rayleigh quotient formula), as well as, the 

equivalence between the solution of the original problem in operator form 

fLy =  and the variational problem have been proved. 

 

Salih S., 2004, studied and modified some numerical and approximate 

methods for solving the nth order linear delay differential equations with 

constant coefficients, and  
 

Al-Kubeisy S., 2004, solved the  delay differential equations numerically by 

using the linear multistep methods. 

 

 The main purpose of this work is to derive an estimate of the magnitude 

of the solutions for special types of ordinary and partial delay differential 

equations in order to find them by any suitable methods, say the Laplace 

transform method.  

 

 This thesis consists of three chapters. 

 



 iii

In chapter one, we give some basic concepts of the ordinary differential 

equations with deviating arguments. These concepts include, classification, 

existence and uniqueness of solutions and methods of solutions of them. 

  

 In chapter two, an estimate of the magnitude of solutions (one and  

two) of the special types of linear and nonlinear ordinary delay differential 

equations is presented. 

 

 In chapter three, we devote the partial differential equations with 

deviating arguments and give some existence and uniqueness theorems for the 

solutions of them. Also an estimate of the 1st and 2nd order partial delay 

differential equations is derived. 
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ــــالهــــدف الرئيســــي مــــن هــــذا العمــــل يمكــــن تقســــيمه   محــــاور والتــــي يمكــــن تلخيصــــها    أربــــع ىإل

  :كالأتي

الزوايــــــــة    زاحــــــــاتالأ  ذات  الاعتياديــــــــةدراســــــــة المعــــــــادلات التغاضــــــــليه  هــــــــو   :الأولالهــــــــدف  

  .المنحرفة

الخطيـــــة  ت التفـاضـــــلية  عـــــادلاممـــــن ال  خاصـــــة لأنـــــواعالحلـــــول    هـــــو تخمـــــين قـــــيم :الثـــــانيالهـــــدف  

المنحرفـــــة حتـــــى نـــــتمكن مـــــن حلهـــــا بـــــأي    حـــــات الزوايـــــةا ز الأ  ذاتخطيـــــة  واللأ 

  .طريقه مناسبة

  مـــــن المعـــــادلات    خاصـــــة لأنـــــواعوجـــــود حـــــل وحيـــــد مقيـــــد    دراســـــةهـــــو تبنـــــي  : الثالـــــثالهـــــدف  

  .المنحرفة  حات الزوايةا ز الأ  ذات الجزئية التفـاضلية

التفـاضـــــلية الجزئيـــــة  عـــــادلات  ممـــــن ال  خاصـــــة الحلـــــول لأنـــــواع هـــــو تخمـــــين قـــــيم: الهـــــدف الرابـــــع

 .المنحرفة من ذوات الرتبة الأولى والثانية ايةالزو  تحاا ز الأ ذات
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