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ABSTRACT

The main am of this work is divided into four objects. These

are summarized as follows:

The first objectives, is to study the ordinary differential

equations with deviating arguments.

The second objectives, is to derive an estimate of the magnitude
of the solutions for special types of linear and nonlinear ordinary
differential equations with deviating arguments in order to solve them

by any suitable methods.

The third objectives, is to devote the existence of a unique
bounded solution for specia types of the partia differential equations

with deviating arguments.

The fourth objectives, is to give an estimate of the magnitude of
solutions for special types of 1% order and 2™ order partia differential

equations with deviating arguments.



Conclusions and Recommendations

From the present study, we can conclude the following :
(1) The mathematical modelling for many real life applications that described
as differential equations with deviating arguments is more realable than as

differential equations.

(2) The estimation of the magnitude of the solutions for the linear differential
equations with deviating arguments is a necessary tool for finding the

solutions.
(3) The integral inequalities play an important rule for estimating the
magnitude of the solutions for the linear and nonlinear differential

eguations with deviating arguments.

Also, for future work we can recommend the introduction of the

following open problems:

(1) Discuss the existence of a unique bounded solution for the 3 order, 4"

order and n" order partial differential equations with deviating arguments.

(2) Extend the Laplace transform method to be used for solving the linear
partial delay differential equations.
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(3) Linearize the nonlinear ordinary differential equations with deviating
arguments into ones that are linear which can be solved by the Laplace

transform method.
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1.1 Introduction:

The ordinary differential equations with deviatiagguments play an
important rule in many real life applications say mixing of liquids,

population growth and control systems, [Driver B7,7].

In this chapter we give some basic concepts of ahdinary

differential equations with deviating arguments.

This chapter consists of four sections:

In section two, a simple classification of the oaty differential
equations with deviating arguments is introducethwsbme properties of
the solutions. Moreover, the initial value problerfe the ordinary

differential equations with deviating arguments @diseussed.

In section three, some theorems that guaranteetistence of a
unique solution for special types of the ordinaiffedential equations with

deviating arguments are devoted.

In section four, some methods that can be usedlte special types
of the ordinary differential equations with devmagiarguments such as the

method of steps and the Laplace transform methegr@sented.

1.2 The Ordinary Differential Equations with Deviating Arguments:

In this section we give some basic concepts of dndinary
differential equations with deviating argumentse3é& concepts include the
classification of the differential equations witleviating arguments, the
initial value problems for the ordinary differeritequations with deviating
arguments and some properties of the linear ordiddiferential equations

with deviating arguments.



First, recall that the differential equation witbwiating arguments is
a differential equation in which the unknown fuoctienters with several

different values of the argument, [El'sgol'ts 1964]. For example:
X (t) = f(t,x(t), x(t —7(t)));

X'(t) = f(t,x(t),x(t + 7)), X (), X(t +7,));

X'(t) = f (t,x(t), x(t/2), x(t%)) ;

X'(t) = f (t,x(t — 1), x(t),x(t +71));

X'(t) = f(t,xt),x't),x(t-7),xX(t-1),x"(t-7)).

Sundry differential equations with deviating argumseoccur as long
ago in the works of Euler but the systematic stafifhese equations was
first undertaken in the twentieth century, to méwet demands of applied
science, in particular in the theory of automatatcol, the theory of self-
oscillating systems, the study of problems conreetéh combustion in
rocket motion, the problem of long-range planningconomics, a series of
biological problems, and in many other areas oérsm and technology,
[El'sgol'ts L. and Norkin S., 1973].

Similarly as in the ordinary differential equatiornie classification
of differential equation with deviating argumentspends mainly on the
linearity of the differential equation, order andgdee of the differential
equation whether the differential equation with idémg arguments is
homogeneous or nonhomogeneous and so on, [Elsgolénd Norkin S.,
1973].



The general form for the"rorder ordinary differential equation with

deviating arguments is:

F (X Y(X), Y(X = Tg1), Y(X = Tg2)see s Y(X = Tg), Y (X), Y (X = T3), Y (X = T), .
Y'(X = T3n), Y (X), Y (X = T0), Y (X = Tp),0, Y (X = ) e Y (),
y(n) (X - Tnl)’y(n) (X - Tnz)’---’y(n) (X - Tnm)) =0

where F is a given function andr; =7 (X, y(x),y'(¥),....y"(x) is a

known function for each=0,,....n anc j=1,2,...m.

Other literatures write the above equation inftiewing form:

F (X, Y(X), Y(Ko1), Y(Ko2) e+ Y (Kom)s Y (), Y (Kip), Y (Kp2)s Y (K ), Y (X),
Y (Ka1), Y (Ka2)se oY (Koo Y™ (), Y (Kt ), Y (K)o P (K)) = 0

where k; =k; X, y(xX), Y (X),....y"(x)) is a known function for each

i =0L....n anc j=1,2,...m, [El'sgol'ts L. and Norkin S., 1973].

In this work, we concerns with the special casthe above equation

in which 7; =7;,(x) for eachi =01....n anc j=1,2,...m and in this case,

the above equation takes the form:

F (X Y(X), Y(X = 701(X)), Y(X = T (X)), Y(X = T (X)), Y (X),
Y (X=731(X)), Y (X = T12(X))s-0Y (X = T3 (X)), Y (X), Y (X = T22(X)),
Y (X = T22(0); 00" (X = T (X0, (0, Y (X = 70 (X)),
YO (X = T2 (), Y (X = (X)) = O (L1

If 7;(x)=7(x) foreachi=01...n andj=12..m theneq.(1.1)is
said to be the'horder ordinary differential equation with singleviing

Yt



argument, otherwise it is with multiple deviatinggaments. On the other

hand, if 7; (x) =r;;, wherez;; is a known constant for eack 01,....n and

j=12,...m, then eq.(1.1) is said to be th8 arder ordinary differential

equation with constant deviating arguments, otheswi is with variable

arguments, [El'sgol'ts L. and Norkin S., 1973].

Moreover, if T (X) =7 2 O for eachi=01...n anc j=1,2,...m,
where 7; is a known nonnegative real number then eq.(5.5pid to be

the " order ordinary differential-difference equation (dre 1" order
ordinary delay differential equation), [El'sgolts, 1964]. In this case,
eq.(1.1) reduces to:

F (X Y(X), Y(X = To1), Y(X = Tg2)se- 0, Y(X = Tg), Y (X), Y (X = T11), Y (X = Tp0)se0,
Y (X=T3m), Y (X), Y (X = T0), Y (X = T0) Y (X = To)seees YV (X),

y(n) (X - z-nl)’ y(n) (X - Tnz)’--wy(n) (X - Tnm)) =0

So, if 7;;(x) =7 > Ofor eachi =01,....n anc j=1,2,..m wherer is

a known positive real number, then eq.(1.1) is saide with single delay,

otherwise it is with multiple delays, [El'sgol'ts&nd Norkin S., 1973].

Also, eq.(1.1) is said to be th®& order ordinary differential equation
with retarded arguments in case tffederivative of the unknown function
y enter with the identical values of the argumemd this value is not less

than the arguments of y and its derivatives.éx@mple:
y'(¥) = f (X y(x), y(x=7(x))), 7(x)=0;

y' (x+1)= (X y(x),y(x+7),y(X),y(x+71)), 7>0;



y'(¥)=f(xy09,y(x2),y(x-e™)), xz0.

Moreover, eq.(1.1) is said to be th® arder ordinary differential
equation with advanced arguments in case fhaenivative of the unknown
function y enter with identical values of the @mgent and the common
value is not greater than the argument in the fancty or any of its

derivatives that enter in this equation. For exampl
y' () = f (X y(x), y(x+7(x)), 7(x)=0;
y'(¥) = (X y(x),y(2%), ¥ (x),y' (2x), x=0;

y'(¥) = £ (% y(x), y(x+71),y'(x),y'(x+71)), 7>0.

It is possible that on some set of values of titependent variables
a certain equation should appear as an equatidn reiarded argument
while on another set it is an equation with advdnaegument or perhaps

belongs to neither of these types. For examp(&) = y(xX) + y(x/2) is af'

order differential equation with retarded argumémt x>0 and an

equation with advanced argument fox O.

All remaining types of the ordinary differentiabeations with
deviating arguments given by eq.(1.1) are callegl ith order ordinary

differential equations of neutral type. For example

y(x) = (% y(X),y(x-1),y(x+1)),

of

and ———#0
oy(x+71)

where ———#0
dy(xX—71)

and



Y'(X) = (X, ¥(x), Y (X),y(x— 1),y (x=1),y"(Xx-1)),

where — ' 4 0, [El'sgol'ts L., 1964].
ay"(x—1)

Next, eq.(1.1) is said to be th® arder linear ordinary differential

equation with deviating arguments in cdsdakes the form:

n m

ZZ i QYP (x—7,(x) = f (%) (1.2)
p: :

where 7, (X) = 0, a,; is a known function ofx for eachp=0,1,...n and
]=0,1,...n, f is a known function of x, [El'sgol'ts L. and Norkin S.,

1973].

Second, we described the initial value problemmssfrecial types of

the ordinary differential equations with deviatiagguments.

Let us first consider the simplest delay differahtequation with

retarded argument:
y(9 = f(x y(x),y(x~1)) (1.3)

wherer is assumed to be known positive constant, the aisial value

problem consists in the determination of a contusugolutiony(x) of

eq.(1.3) forx> x,, under the condition that

Y(X) =9(X), Xo ~T<X<X,



where ¢(x) is a given continuous function called the inifi@hction. The

closed intervalx, —7,%, Jon which the initial function is given, is called

the initial set and denoted Hy, ; the point X, is called the initial point,

[El'sgol'ts L., 1964].

For the i order delay differential equation with single reed

argument:

yP (X)) = £ (% y(X), y(X=7),Y' (%), Y (X=7),...y"P (%), y" P (x- 1)),

where 7 is assumed to be known positive constant, thmim@onditions in

the fundamental problem are the same,
y(X) =@(X), X —T<X< X,

where ¢(x) is continuously differential (n-1) times if the lsbon has

continuous derivatives up to the order (n-1) insles[El'sgol'ts L., 1964].

For 7=1(x), then for the I order ordinary delay differential

equation with deviating argument:
y' () = (X y(x), y(x = 7(x))),

the initial functiony(x) = ¢(x) in the fundamental problem must be defined

on a so-called initial seE, consisting of the poinx=x, and of those

values of the differences—1(x) for x, < x< £ which are less thar,, if

the solution is defined for valueg < x< . For example, for the equation

Y (X) = (X, Y(X), y(X—sin? X)), 0< x<oo



the initial setE, consisting of all points of the intervft1,0], [El'sgol'ts

L., 1964].

Also, the ' order ordinary delay differential equation with iaéle

delayr(x) =0,

YO () = £ 0 y(%), y(x = 7(x)), Y (0, Y (x = 7(x)),.., Y (3, Y (x = 7(X)))

normally determines an (n-1)-fold continuously eiffntiable solution

y(X), X, <x< B, and the initial conditions are as described abov

y(x) = ¢(x) on E, where the functionp(x) is continuously differentiable
(n-1) times except when the sBf for x, < x< /3 consists of the single
point or when the poink, is isolated in the seE, . If the exceptional case

occurs, then at the point,, it is necessary to define the values of the

derivatives on the right-hand side up to the ofdet) inclusive, [El'sgol'ts
L., 1964].

Third, we give some properties of the solutionstif@ linear ordinary
differential equations with deviating arguments. dm this, recall that the
general form of the ‘horder linear ordinary differential equation with

variable deviating arguments is given by eq.(1#,equation

ZZml 5 Y P (x =7, (%) =0 (1.4)
et

is called the homogeneous linear equation correfipgrio eq.(1.2). The
solution of eq.(1.2) or eq.(1.4) will be denoted lyy(x) such that

yO(x) =g (x), £=0,1,..n-1.



The above homogeneous linear ordinary differerggliation with
deviating have the following properties:

() A linear combination of solutions of eq.(1.4) widbitrary constant

k
coefficientsZci Yy (X) = Y4 (X )is also a solution, wherg, is solution
i=1

of eq.1.4) such that y“(x)=¢(x), ¢=01,.., n-land

k
¢(x)=Zci¢i (X). This property is preserved fdr — oo, if the series

i=1

Zci Y, (X) converges and allows n successive differentatio
i=1

(ii) If all coefficientsa, (x ) and deviationsr ;(x )are real, then the real

and imaginary parts of complex solution are alstutsms of this
equation.

The nonhomogeneous linear ordinary differential agigun with
deviating arguments given by eq.(1.2) satisfy tilwing properties:
(i) The sum y,(X) +y, (x ) of a solutionsy, (x )of eq.(1.2) and a solution
Y, (X) of the corresponding homogeneous equation is atisol

Yy+4,(X) Of €0.(1.2) defined by the initial functiop+ ¢, .

k
(i) The sum qu,l (x) of solutions Yy (X)) of
i=1

iiam (Q)yP (x-15(x) = fi(x), i=1,2,..k, is a solution y,(x )of

p=0j=0

n m k
the equation Y > a ;(X)yP(x-7,(x))=>.f  with the initial
i=1

p=0j=0



k
functiong(x) =Z¢i (X). This property remains valid fok — o if the

i=1

seriesz Yy (X) converges and admits n successive differentiatio
i=1

(iii) If all coefficientsa,; (x )and derivations; (x jpre real, then the real

part u(x) and the complex partv(x) of the solution

Ypsiy (X) =U(X) +iv(X) of eq.(1.2) are solutions of the equations

Y-, (9P (x= 7, () =Ref (¥

m
j=0
=0

M- FM

Y a, 0y P (x =7, (x) =Im f (x)

m
J

o
1

respectively, where(x) =y,(x andv(x)=y,(x) [El'sgolts L. and

Norkin S., 1973].

1.3 Existence and Uniqueness Theorems of the Sobri for the

Ordinary Differential Equations with Deviating Argu ments:

In this section, we give some basic theorems thamacessary for
establishing the existence and the uniquenespémia types of linear and
nonlinear ordinary differential equations with ceung arguments.

We start this section by the following theoremisitheorem gives
some necessary conditions to ensure the existdngeaioique solution for
the T order delay differential equation of retardedusngnt with single

variable delay.

Theorem (1.1), [El'sgol'ts L., 1964]:

Consider the differential equation with retardegiusnent

Yo



y' (%) = f(x y(x), y(x = 7(x))) (1.5)

with the initial condition y(x) =¢(x) on the initial setE, where the

continuous functionz(x) =20 and ¢(x) is a given continuous function.

Then the above initial value problem has a uniqu&inuous solution for

Xq £ X<X,th if the function f is continuous in the neighborhood of the

values(x,¢(x)) for xUE, and satisfies in this neighborhood a Lipschitz

condition in the second and third arguments hand sufficiently small.

Proof:

We replace the above differential equation by tldlowing

equivalent integral equation with the same initiahditions:
Y() = B(%) + [ F(t, y(t), y(t - 7(t)))ct
X0

y(X) =¢(x) on the initial setk, .

Define the operatahk by

A(Y() = (%) + [ £t (), y(t — (1)) dit
X0

on the metric space of all continuous functionsegivn E, and on the

segment X, < X< X, +h with the uniform topology and with all the

functions coinciding withp(x) on E, in the metric

p(Y(x),z(x)) = sup |y(x)=2z(X),

Xg<X<Xgth

then

AR



P(A(Y(X), A(z(x))) = sup

XgSXSXg+h

J [ .y, y(t =) -  t,200), 2t - 7(0))] o
X0

<N sup
XgSX<Xg+h

[ [y - 26ty + |yt - 70) - 2t - 70)) ] ot

X0

< Nh{ sup |y(x) —z(x)|+ sup |y(x=7(x)) = z(x=7(x))

XoSXSXg+h XgSX<Xp+h

<2Nh sup |y(x) - z(X)|

XoSX<Xpt+h
= 2Nho(y(x),z(x))-

For hs% where O0<a <1, the operatorA defined above is

contractive. Therefore by the fixed point theoreme can get the initial

value problem for eq.(1.5) has a unique solutian.

Next, the generalization of the theorem(1.1) tovaéd for the T
delay differential equation of retarded argumentisviath multiple variable

delays.

Theorem (1.2), [El'sqgol'ts L. and Norkin S., 1973]:

Consider the differential equation with retardegiusnents

Y'(%) = (X, ¥(X), Y(X = 71(X)),.... Y (X = 71, (X))) (1.6)
with the initial condition

y(x) = ¢(x) on the initial sete, .

VY



If in eq.(1.6) all 7;(x) are continuous forx,<x<x,+h,h> @nd

nonnegative and the functioh is continuous in a neighborhood of the

point (X,,@(Xy), @ (X — 11(X%)),---@(Xo — T11(X,))) and satisfies a Lipschitz
condition in all arguments beginning with the getothe initial function

¢(x) is continuous ork, , then there exists a unique solution for theahit

value problem for eq.(1.6) fox, < x<x,+h where h is sufficiently

small.

Proof:
We replace eq.(1.6) by the following equivalenegral equation

y(X) = #(x) + I F(ty@, y(t —7,(1)),... y(t = 7,(1))) dt
X0

with the initial condition

y(x) =¢(x) on thenitial setE, .

Define the operatoA by

A(Y(X)) = P(%) + [ Tt (), Y(t =72 (). y(t — T, (1)) it
X0
A(y(x)) = y(x) =¢(x) on E,

on the metric space of all continuous functionskq_ such that onE,

all of these functions equat(x) and on the intervalx,,x, +h they are

sufficiently near tog(x, )in the metric

p(Y(X),2(x) = sup |y(x) -~ z(x)|

XgSXSXg+h

VY



In fact A(y(x)) is continuous if y(x) is continuous and defined for

Xg S X< X, +h, for sufficiently small h,. On the other hand, in the
neighborhood of the point

(X0, @(X0)s (%o = T1(X0)) -+ (Xo = T1n(%0))) »
[f(X, Y(X), Y(X - 7,(X)),... (X = T, (X)) <M .

Therefore,
[A(Y() = $(x)| < Mhy,
and if h, is sufficiently small,A(y(x)) belongs to the above metric space.

Moreover,

PIAY(), AZO) = sup | [1F (% Y9, Y(X=T3(X), - Y(X =T (X))

XoSXSXp+h Xo

= f (X, z(x),z2(x-1,(X)),....2(X— T, (x)))]d>4

<N sup fzm:\y(x—ri(x))—z(x—ri(x))\dx

XoSX<Xp+h X1 =0

<Nh(m+1) sup |y(x) - z(X)|

XogSX<Xpth

=Nh(m+1)0(y(x),z(x))

wherer,(x)= Q Thus h<m where O0<a<1, A is contractive.

Therefore by the fixed point theorem the initialueproblem for eq.(1.6)

has a unique solutionm

)¢



Remarks (1.1):

() Theorem(1.2) can be easily generalized to systef finite number of 1
order delay differential equation of retarded tygéh multiple variable
delays, [El'sgol'ts L., 1964].

(i) As seen before, the existence of a uniquetsmiuor special types of
delay differential equations is obtained with theé af the fixed point
theorem. On the other hand, the method of sucaesagigroximation can
be also used to get the same result, [Al-Kubeisg@4].

Next, we discuss the continuous dependence ofdh#i@n of the
differential equation with retarded arguments oe ihitial function. But

before that we need the following lemma.

Lemma (1.1), [Bellman R. and Cook K., 1963]:

If w(x) is positive and monotone nondecreasing, yifx) =0,

v(x) =0, if all three functions are continuous, and if

y() <w(x) + [ y(Ov(t)dt, asx<b (1.1)
then
fv(t)dt
y(x) sw(x)er* , asxs<b
Proof:

From ineq.(1.1) and sinog@ is monotone nondecreasing one can get

Yo
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w(X) W(X) w(t)

a a

Let g(x) = % then

g(X)v(x)
1+ j g(t)v(t)dt

< V(X).

By integrating the above inequality from1to x one can obtain

In{1+ [ g(t)v(t)dt} < fv(t)dt .

Thus
X fv(t)dt
YO g4 [atv(t)dt<er
W(X) "
hence
fv(t)dt
y(x)<sw(x)e* , asx<b. =

Now, we are in the position that can we give tHoWwing theorem.

Theorem (1.3):

1



The solution of the differential equation with metad arguments

given by eq.(1.6) with the initial functiog(x) = ¢(x) on the initial sete,

satisfying the conditions of the existence theof&r) is in continuously

dependent upon the initial function. Moreover, if
#:(X) = #,(¥)| <5, >0 on the initial setE, _,
then

TN (x-
‘y¢l(x)—y¢2(x)‘<dé(m+) (x%) X> X,

where y, is the solution of eq.(1.6) with the initial fura y, (x) = ¢, (x)

on the initial setEXO for 1=1,2.

Proof:

We replace eq.(1.6) by the equivalent integral &qona

Yo (0 =81(%) + [ (X Y5, (00, Vg, (X = T3(X)),101,Y g, (X = Ty (X))l
X

Vg, (0 = 8, 0%) + [ £ (%Y, (%, Y, (X = T3 (X)), Yy, (X = Ty (X)) lt
X0

then

SURY, ()~ Yo, 00] <16,0) = ,0) + N [ 2 5P|y, (= 7,(9) = v, (x— 7, () o
[%0.X] X1=0[%0:X]

\RY%



X

<&+ N(m+1)[sugy, (t) -y, @) dt

XO[tOvt]

Solving the polynomial inequality relative tosudy¢l(x)—y¢2(x)‘ by
[%0.X]

using lemma(1.1) we will have

N 1) (x—
[su?‘y¢l(x) - y¢2(x)‘sde (M%) - g
X0, X

Remark (1.2):

The previous theorem can be also modified to biel vai systems of

the T order ordinary differential equations with retadtdgguments.

1.4 Methods of Solution of Delay Differential Equabns:

Like, the ordinary differential equations, there enany methods that
can be used to solve the delay differential equati®ay, the method of
steps,[El'sgol'ts L. and Norkin S., 1973], the leag@ transform method,
[Bellman R. and Cook K., 1963], the linear multstaethod, [Al-Kubeisy
S.,2004], and the expansion methods, [Salih S4R00

In this section, we give two of such methods nantleé method of

steps and the Laplace transform method.

1.4.1 The Method of Steps, [El'sgol'ts L. and Norki S., 1973]:

The method of steps is the best well known thecaktnethod for

solving differential equations with deviating argemis.

This method can be described for the followingesas

YA



Case (1):

Consider the basic initial value problem for thengiest delay

differential equation with a retarded argument

y' (x) = £ (% y(x), y(x = 1)) (1.7)
with the initial function

y(X) =@(x) for X, —T<X<X,.

The solution of eq.(1.7) is determined from theadoun without delay

Yy(¥) = (% ¥(X),8(x~1)), XoSXSX5+7T

with the initial condition

(%) = #(%)

Next, assuming the existence of a solutid) = ¢, (x of )this initial

value problem on the intervgxk, , X, + 7 , §nalogously we obtain:
y(¥) = (% ¥(X), 8 (X~1)), Xo+TSXSX+27

with the initial condition

Y(X% +7) = ¢1(X +7)

Therefore,

Y'(X)=f(XY(X),8,(X—T)), Xo+NT<X<X, +(N+D7

with the initial condition

Y4



Y(Xo +N7) =@, (X, +NT)

where ¢, (x ) is the solution of the considered initial valuetgem on the

interval [X, + (] = D7, X, + T ].

Now, for illustration purpose, we will demonstratee method of

steps in the following example.

Example (1.1):

Consider the Lorder differential equation with a retarded argaotne

y'(X) =2y(x) +6y(x-1)
with the initial function
y(x)=x+1 x0[-1,0]

The solution of the initial value problem is detaned from the differential

equation without delay
y'(X) =2y(x) +6x, 0<x<1
with the initial condition
y(0)=1

The solution of the above initial value problem is
5 2X 3
X)=—e”" -3x—-—, 0sx<1
y(x) =3 5

Next, we determined the solution on the inteftal]from the differential

equation



Y (X) = 2y(x) +15*>Y —18x +9

with the initial condition
5, 9
D=—e"-—
yd >3
The solution of this initial value problem is

y(x) =ge2x _%762(x_1) +15xe** +9x

Case (2):

Consider the simplest delay differential equatioithwa variable

retarded argument:

y' () = f (X, y(x), y(x = 7(x))) (1.8)
with the initial function

y(x) =¢(x) on the initial setg, .

The solution of éq.(1.8) is determined from theatmun without delay
y'(¥) = (% y(X),4(x-7(x))) for X, <x<a(x)

with the initial condition

Y(%0) = (%)

The interval[x,,a(X, )]is the largest interval beginning with the poigt
for which x - 7(x) < x,. We observe thatr(x) is the inverse of the function

X —1(x), if this inverse exists.
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Next, we determine the solution on the interf@(x,),a(a(x, )]

from the equation:

y'(X) = (X y(xX),.(Xx = 7(X)))
with the initial condition
y(a(xy)) = #1(a(x))

where ¢,(x ) is the extension of the functiop(x) by the solution of
eq.(1.8) on the intervdlk,,a(x, )Rand the continuation of the process may

be reduced to the problem of integrating an equatibhout delay.

To illustrate this method in this case, see thim¥ahg example.

Example (1.2):

Consider the differential equation with retardegusnent:

y'(X) =2y(x) + y(x/2)

with the initial function

y(x) = x on the initial setg; =[% ,1].

The solution of the above differential equationdstermined from the

differential equation without delay

y’(x)=2y(x)+§, 1<x<2
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with the initial condition

y@ =1

The solution of the above initial value problem is

11 500 1. 1
X)="e -X-=
Y=g 4" 8

Next, we determined the solution on the intef\23l4] from the differential

equation

, 1,, 1 1
X)=2y(X)+—€ " ——X——
y()=2y(x)+3 5% 3

with the initial condition
11, 5
2)="e" ——
y(2) 3% 3
The solution of the above initial value problem is

HeZ(x—Z) _E—ex—z 1 3

11 2(x-1)
X)=—¢€ + +—X+—
y() 8 32 8 16 32
Case (3):
Consider the *1 order differential equation with different deviai
arguments:
y'(X¥) = £ (% Y(X), Y(X = 7,(X)) .., Y(X = T (X)) (1.9)

with the initial function
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y(X) =¢(x) on the initial setg, .

The solution of eq.(1.9) is determined from theadoun without delay

Y () = (% ¥(X),8(X = 1,(X)),... (X~ Tr(X))) for X, < X< a(X,)

with the initial condition

Y(%0) = (%)

The interval[x,,a(X, )]is the largest interval with the left endpoixf on

which all of the differenceg—r,(x)<X,, 1=1,2,..., m

Next, we determine the solution on the interf@(x,),a(a(X, 1 ))

from the equation
Y'(X) =T (% y(X), (X = 71(X)),...0: (X~ Tn(X)))
with the initial condition

y(@ (%)) = (a(x))

where ¢,(x ) is the extension of the functiop(x) by the solution of
eq.(1.9) on the intervdglk, ,a(x, ,)hnd the continuation of the process may

be reduced to the problem of integrating an equatibhout delay.

Next, we determine the solution on the interfalx,),a(a(X, 1 ))

from the equation
Y () = f (X, Y(X),h1(X = 1,(X)),... (X = Tn(X)))

with the initial condition
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y(@ (%)) =i (a(x))

where ¢, (x )is the extension of the functigf(x) by the solution of eq.(1.9)
on the interval[x,,a(X, )] and the continuation of the process may be

reduced to the problem of integrating an equatidhout delay.
Here, the following example is very useful to urstiend the above.

Example (1.3):

Consider the differential equation with differemviating arguments

Y'(X) = y(x) + 2y(x/2) + y(%/3)

with the initial function
_— 1
y(x) = x on the initial setg; =[§ 1],

The solution of the above differential equationdistermined from the

differential equation without delay
, 4
Y'(X) = y(X) +§x, 1<x<3

with the initial condition

y@ =1

The solution of the above initial value problem is

11 .4, 4 4
X)=—€ " ——X——
y(X) : 3573
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Next, we determined the solution on the intef&P] from the differential

equation

22 1 16 11 3
'(X)=y(X) +—e?> —-—x+—e —4
y'(X) = y(x) ) ) )

with the initial condition

11, 16

3
y(33

The solution of the this initial value problem is

X

11 4 44 x> 11,5 148 ., 44 31 11 31 16__ 52

y(x)=—e""-—e 2+—=e " -—e" 7 -—e? -—e3 +—Xx+—

3 3 2 9 3 2 9 9
Case (4):

Consider the %L order neutral differential equation with deviating
argument
y'(¥) = f (% ¥(x), y(X=1),y'(Xx-1)) (1.10)

with the initial function
y(X) =@(x) for x, -1 < X< X,

whereg is a continuous function that have continuousvaéres.
The solution ¢,(x ) of eq.(1.10) is determined from the equation autha

deviating argument
y'(¥) = (X y(x),0(x—1),8'(x=71)) for X <x<sx,+7

On the next step
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Y(X) = F (% y(X), 8 (X~ 1), (X 7)), for o +7<x<x+21

and so on.

The contract to an equation with a deviating argunoensisting of

the fact that the solution is not smoothed. In,fact only at the poink, is
the left derivativeg'(x, ) generally speaking, not equal go(x, bt also
at the pointx, +7, as is obvious from eq.(1.10). Thys(x wjll be in
general discontinuous at, + 7. Similarly y'(x) will be discontinuous at

x, + k7, (k=0,1,...).

To illustrate this approach in this case, consittex following

example.

Example (1.4):

Consider the differential equation with deviatimguament

y'(X) = y(X) +2y'(x = 2) +3y*(x - 2)
with the initial function
y(x) =x+1, -2<x<0

Then
Y'(X) = y(x) +2+3(x - 1)°

with the initial condition

y(0) =1
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The solution of the above initial value problem @x x< 2 is

y(X) = 6e* —5—3x?

Note that #(x)=x+1 on -2<x<0 and ¢(x)=6e*-5-3x> on
0<x<2. Sinceg'(0) = 1and ¢;(0) = 6 thereforey’ (0)doesn't exists. On
the next step, substitute the solutigh(x inNto the original delay

differential equation to obtain

y'(X) = y(X) +108?*7? + (-108x* + 432x — 600 ? + 27x* — 216x° +1386¢*
~5556x +10827

The solution of the above differential equationetbger with the initial

condition y(2) =6e” — 17is

y(x) = 6e* —1136@&* % -108**? + (36x° - 216x* + 600X)e* 2 + 27x° —
10&x® +171(x* - 213€x + 8691

Note that,

@,(x) =6e* —1136@ % - 21622 + (36x° — 216x% + 600X)e* 2 +
(108 — 432x + 600" + 54x — 324x° + 342k — 2136

on the interval< x<4.

Since ¢;(2) =6e° — 12 and ¢, (2) =6e* - 7268 thereforey' (2)doesn't

exists.

1.4.2 The LaplaceTransform Method:

It is known that the Laplace transform method is ofthe important

methods that can be used to solve the linear andidifferential equation
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with constant coefficients, [Brauer F. and Nohell9.73]. Here we use it to
solve the same types of ordinary differential emumst but with deviating
arguments. This method depends mainly on applyegmethod of steps
for the ordinary differential equations with dewmt arguments to
transform them to ordinary differential equatiomsl dhen use the Laplace

transform method to solve the resulting ordinaffedential equations.
To illustrate this approach, consider the followaxgamples.

Example (1.5):

Consider the % order differential equation with a retarded argotne

Y'(X) =2y(X) + 4y(x-2)
with the initial function
y(x) =x, x0[-2,0]

To find the solution in the first step interval 2Q), we apply the method of

steps, to get

Y'(X)=2y(X) +4x—-8, 0<x<2

and this is an ordinary differential equation o tf order.
Now, taking the Laplace transform produces

L(Y'(x)) =2L(y(x)) + 4L(x) 8L ()

SY(s) - y(0) = 2Y(s) + 4= —

8
? s

and so the Laplace transform of the solutigm) into Y(s) is given by
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Taking inverse Laplace transform, we have

AT G R T
a2l

Hence, the solution in the first step interval ilseq by

y(X) =, (X) =5-2x—5e”*, 0<x<2

In order to find the solution in the second siemetinterval [2,4], we

proceed similarly as in the first step with initfahction
$,(x) =5-2x-5e>, 0<x<2
and hence,

Y (X) = 2y(x) - 20e**? -8x + 36

with the initial condition

y(2) =1-5¢*
By making changing of independent variable 2 to move the initial time
to zero. Letw=x -2 thenw[][0,2], so that

y(W+2) =2y(w+2) —20e* —-8(w+2) + 36

and by considering

2(w) = y(x+2)



implies that

Z (W) = 2z(w) - 20e®" —-8(w+ 2) + 36
with z(0) =1- 5e*
Taking the Laplace transform of both sides, we have

Z(s) - 2(0) = 22(s) - 22 - 8 16,36
s-2 s s s

where Z(s) is the Laplace transform af(w), hence

1 4 12-5¢* 20
Z(S):——+—2+ - 5
S s s-2 (s-2

Taking inverse Laplace transform, we have

Z(W) = -11+ 4w+ (12-5e*) e?" - 20we®"

Hence, the solution in the second step time intg&/4] is given by
z(w) = y(X) = 11+ 4(x - 2) + (12— 5e*)e**? - 20(x - 2)e** 2.

Similarly, we proceed to the next intervals.

Example (1.6):

Consider the™? order differential equation with a retarded arguam
y'(X) =-2y(x-1)

with the initial function

R



y(x) =%, x0[-1,0]

To find the solution in the first step interval IQ), we apply the method of
steps, to get

y'(X)=-2x+ 2, 0<x<1

and this is an ordinary differential equation o tf order.
Now, taking the Laplace transform produces
L(y"(X)) = =2L(x) + 2L (1)

Y9 -0 -y (0) =5+

SZ

~

and so the Laplace transform of the solutigi) into Y(s) is given by

-2 2 1
Y(S)=——+ — +—
() s @ &

Taking inverse Laplace transform, we have

_~2 4 i -1 g -1 £
=) () ()
Hence, the solution in the first step interval ilseq by

3
y(x):¢1<x):—%+x2+x, 0<x<1

In order to find the solution in the second stepetinterval [1,2], we

proceed similarly as in the first step with initfehction
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¢1(x)=—%+x2+x, 0sx<1

and hence,

y'(% =§<x—1)3 - 2(x-1)% - 2(x 1)

with the initial conditions
5 :
y(@ =§ and y@= 2

By making changing of independent varialle 1 to move the initial time
to zero. Letw=x -1 thenw[0]], so that

y'(x+1) =§W3 - 2W* - 2w

and by considering
2(w) = y(x+1)

implies that
" 2 2
Z'(w) =§W3 - 2w? - 2w

with z(0)=g and 7(0)= 2

Taking the Laplace transform of both sides, we have

s?Z(s) - sz(0) - Z (0) =Q—i—i—£

s g2
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Taking inverse Laplace transform, we have

Z(W)=ﬂvv5 AW 2w e how
5 4 3 3

Hence, the solution in the second step time intgfva] is given by

(t-1° (t-1* (t-1° -1+ 5

2w) = y(x) =" 5 3 Y

Similarly, we proceed to the next intervals.

Remark(1.3):

The Laplace transform method can be directly usedolve the
linear ordinary differential equations with deviggi arguments with

constant coefficients (i.e., without using the noetlof steps), [Bellman R.
and Cook K., 1963].
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3.1 Introduction:

As seen before, the ordinary differential equatiath deviating

arguments is more general than the ordinary diffeseequations.

So, the partial differential equations with dewnatiarguments is

more general than the partial differential equation

So, in this chapter we give some basic conceptthefpartial

differential equations with deviating arguments.

Also, the method of successive approximation itk to ensure
the existence and uniqueness of a bounded solfdrospecial types of

the partial differential equations with deviatingyaments.

Moreover, an estimate of the magnitude of the gmistfor special
types of the ¥ and 29 order linear partial differential equations with

deviating arguments are introduced.

This chapter consists of four sections.
In section two, a simple classification of the pmrdifferential

equations with deviating arguments is given.

In section three, some existence and uniquenesweiie for
special types of the®land 2¢ order partial differential equations with

deviating arguments are introduced.

In section four, an estimate of the magnitude ef ¢blutions for
special types of the®land 2° order partial differential equations with
deviating arguments is derived. This section cassige main part of this

work.
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3.2 The Partial Differential Equations with Deviating

Arguments and Their Solutions:

It is known that the partial differential equatiowith deviating
arguments are differential equations in which th&nown function
(depends on two or more independent variablessgrartial derivatives
enter with several different values of the arguméBt'sgol'ts L. and
Norkin S., 1973]. For example

Uy t) +u(xt) = f (xtu(xt -1)
X

2
‘;2( t)+"2< x.t) = 2 (x 11)

In this work, we restrict our discussion for thetjza differential
equations with deviating arguments in which the nown function

depends only on two variables.

The general form for the™order partial differential equation with
deviating arguments is:

F[XW(XO t{x rl[x,t,u(xt) o~ %)t (xtU(xt) o ‘Z‘ED

au au au X — r{xt u(x,t),— ou auj,t r4(xt u(x,t),— ou au)
ax’ ot ' ax ox ' ot ox ot

ou ou du ou du )| _
p (x r{x,t,u(xt) o Ejt re(x,t,u(xt) 5 at m_o (3.1)
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where 7; is known function for each=12,...6. If 7, =0 for each

i=1,2,....¢, then eq.(3.1) reduces to the general form for therder

ou auj

partial differential equation. Ifr, (xt u(x,t),— r,, wherer, is a

known constant for each=12,...6, then eq.(3.1) is said to be the

general form for the *lorder partial differential equation with constant

deviating arguments, otherwise it is with variatéiating arguments.

Also, the general form for the®Jorder linear partial differential
equation with deviating arguments can be obtainededucing eq.(3.1)

to the following form:
() 50 + 2, () 2+ 3 (60 S0 (X =Ty (X~ (x) +
a4(xt) (x I3(X,t),t =7, (Xx1)) + as(x,t)u(x,t) +

as (X, u(x — 15 (X,t),t =75 (X,1)) = g(x,t) (3.2)

if a;=a,=a5=0, then eq.(3.2) reduces to the general form ofithe

order linear partial differential equation.

Moreover, the general form for thé“2order partial differential

equation with deviating arguments is:

du du du d%u 9%
FI x,t,u(x,t),u(x-1,,t—-7,),—,—,— -T X=Ts,t=Tg),—,——,
( (U7t =1), 0 8 S x, t- 1), T (x- 7 ) Fvetwen

6 u 0% d%u d2u
at a 2( 7!t Tg) X (X T9,t Tlo) atz (X_Tll’t_TlZ)J :0 (3-3)
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du du 9%u 9%u 9%

wherer, =7;| X,t,u(Xt), — — ——F
Ox Ot 0x° oxot ot

J is a known function for

eachi =1,2,...12.

If 7, is a known constant for each=12,...12, then eq.(3.3) is

said to be the general form for th® Brder partial differential equation
with constant deviating arguments, otherwise wiih variable deviating

arguments.

So, the general form of thé“rder linear partial differential

equation with deviating arguments is:

02U+blazu+ 02U+da_u+ a_u_l_fu_l_a@(x_r t_r)+
* ox> oxot G otz | Lox & PYOR 2 52 Lt=T,
02u aZu au
0y gt T T TG g (X T T Tg) + - (X T7 U= Tg) +
ou i
& 5 (X~ To)t =Tg) + TU(X =13, = 735) = g(x.1) (3.4)

where a;,b;,c;,d;,e;, f;,7; and gare assumed to be known functions

of x andt only for eachi =1,2,...12, j=1,2.

A special case eq.(3.4) is the following partidfetiential equation
with deviating arguments is:
0u ,0%u 0%  ,0u  du
+ +

a C +d—+e—+ fu+thu(x-r7,,t—7,) =9g(xt 3.5
o’ oxdt ot ox ot (x-ntmn) =gt (39)

wherea,b,c,d,e, f ,h,g,7,,7, are known functions okandt. Moreover
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(i) if b?> —4ac >0, then eq.(3.5) is said to be of the hyperbolietyp

(i) if b? —4ac=0, then eq.(3.5) is said to be of the parabolic type

(iii) if b? —4ac<0, then eq.(3.5) is said to be of the elliptic type.

So, one can easily recognize the linear and théimear " order

partial differential equation with deviating argums

Next, it is known that, many methods can be useddlve the
partial differential equations, say separation driables, Laplace
transform method, [Farlow S., 1982], finite-difface method, [Farlow
S., 1982] and [Smith G., 1965], etc.

One of the important methods that can be usedlt@ she partial
differential equations with deviating argumentstie separation of
variables. El'sgol'ts L. and Norkin S. in 1973 dfltsgol'ts L. in 1964

used the separation of variables to solve thewiollg problems:

(i) the generalized diffusion equation:

ou , 0°U

, 0°U
E(X,t)=a W(X,t)"‘b W(X,t_z—)

wherea ,b, anc 7 are constants; >0 together with the initial and

boundary conditions

u(t,x)=¢(t,x) for 0s<x</, 0<st<r anc u(0.t)=0, u(/t)=0.

Yo



(i) the generalized wave equation:

d°u , 0°U , 0°U
—xt)=a"—(Xxt)+b" —(Xt-7
ot? ) 6x2( ) axz( )

wherea ,b, anc 7 are constantss >0 together with the initial and

boundary conditions

u(t,x)=¢(t,x) for 0Osx</, 0<t<r anc u(0t)=0, u(/t)=0,

Also, Vandewalle S. and Gander M. in 2003 usedrtiethod to
solve the parabolic partial delay differential erzs.

3.3 Existence and Uniqueness of Solution for Special Types

of the Partial Delay Differential Equations:

The partial differential equations with deviatinggaments appear
in mathematical models for many real life applicat say in dynamics
of gas absorption, [Poorkarimi H. and Wiener J87]9and arise from
many biological, chemical, and physical systemscWlare characterized
by both spatial and temporal variables and exhuatious spatio-
temporal patterns. The systematic study of suchatmpus from the
dynamical systems and semigroups point of view bagahe 70s, and

considerable advances have been achieved sincdend, 1996].

This section concerned with the existence and thigueness of

the solution for special types of partial delayfeliéntial equations.
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3.3.1 Existence and Unigueness of Solution for 1% order

Partial Delay Differential Equations:

In this section, we discuss the existence and thgueness of a
bounded solution for special types of tiédtder linear and nonlinear
partial delay differential equations. This sectammsists of the main part

of this work.

We start this section by recalling thé' brder partial delay

differential equation:
g—ltj (x,t) + a(x, t)u(x,t) =c(x,t,u(x,t),u(x,t — 7)) (3.6)
together with the following initial function

u(x,t) =@(x,t), 0<x<l, -r<t<0, >0 (3.7)

where a and ¢ are given functions of x andt, and c is a known

function of x, t, u(x,t) anc u(x,t-r7).

The following theorem shows that eq.(3.6)-(3.7) l@sinique
bounded solution. To the best of our knowledges, tiheorem seems to be

new.

Theorem(3.1):
Consider eq.(3.6)-(3.7). Assume the following cotiodis:

() ¢(x,t) is continuous of0,1] x[-7,0];
(i) a(x,t) is continuous IM ={(x,t)\ 0<x<1, t=0} and satisfies

a(x,t)=2m>01in 4;
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(ii) c(x,t,u,v)is continuous and bounded &[] x[1 and satisfies the

Lipschitz condition

c(x,t,u,v) —c(x.t,u*, V)| < Lju —u*; (3.1)
iv) S<1.
m

Then there exists a unique continuous solutiorhefgroblem given by
ed.(3.6)-(3.7) defined i and bounded there.

Pr oof :

On the interval0O<t<r, eq.(3.6) becomes
g—f(x,t) +a(x,tu(x,t) =c(xt,u(xt),d(x,t —1)). (3.8)

Integrating eq.(3.8) frond to t, we obtain

—}a(x,s)ds t —}a(x,e)de
u(x,t) =u(x,0)e © + Ie s c(x,s,u(x,s),@(x,s—r))ds (3.9)
0

To prove existence-uniqueness, we apply to eq.(88) method of

successive approximations. Put

—}a(x,s)ds

u, (x,t) =u(x,0)e ° :

then, since

u(x,0)| =|¢(x,0)| <N,

anda(x,t) >m>0, we have
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for some constani .

Furthermore,
JaWﬂme t ﬁauﬂme
U, (xt) =u(x,0)e ° +je . C(%,5U; (%,9), B (x5~ 7))ds,
0
and

lu, (%,t) = uy (x,t)[ < 't[e‘m(“s) c(X,S,U; (X,9),§(x,5—T))|ds
0

< Me—m(t—s)
m

B:M(l—e_mt)<M ,
m m

wherelc(x,t,u,v)| <M , for each(x,t,u,v)OAx O x .

Also, by virtue of ineq.(3.1),

ﬁauﬂme

us(x,t) —u,(x,b) < [e lc(X,5,U, (X,9),§(X,S— 7)) -
0

c(X,S,U; (X,9),(x,s—17))|ds

U jaxa)do
< j Les U, (X, S) = Uy (x,9)|ds
0

t -}mde
<Lfes |u,(xs) = uy(x9)ds
0

t 2
< LMJ'e‘m(t‘s)dss M1 (1-e™) <M(Lj ,
my m m Lim
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and similarly,

3
M(L
U, (X)) —us (X )| <—| — | .
o) ~us(x0) <
Continuing this procedure gives the estimate

ML)
‘un+1(x’t)_un(xst)‘<T(a) ) n=112;---

and since

UG = Uy (1) + D (Uneg (1) = Uy (X,1)),

then

For the solution of eq.(3.6)-(3.7) on the intervalt < 2r, we have

t
-Jax9)ds  t —ja(xg)de
u(x,t) =u(x,0)e ° + Ie s c(x,s,u(x,s),u® (x,s—r))ds,
0

whereu® (x,t) is the solution of eq.(3.6)-(3.7) fér<t<r.

Repeating the above calculations yields

L
u(x,t) <N +% m

1_

Therefore,




Next, recall that the®lorder partial delay differential equation:

g_l: (x,t) + a(x, t)u(x,t) = c(x,t,u(x,t),u(x, g(t)), (3.10)

together with the following initial function
u(x,0) =¢@(x), 0<x<1, (3.11)

wherea and ¢ are given functions of x andt and c is a known

function of x, t, u(x,t) andu(x,g(t)).

The following theorem shows that eq.(3.10)-(3.1&¥ la unique
bounded solution. To the best of our knowledgss, tineorem seems to

be new.

Theorem(3.2):
Consider eq.(3.10)-(3.11). Assume the followingditians:

() ¢(x) is continuous of0,1];
(i) a(x,t) is continuous IM ={(x,t)\ O<x<], t= O} and satisfies
a(x,)=2m>01in A;
(ii) c(x,t,u,v) is continuous o\ x [1 x [ with ¢(x,t,0,0) bounded on
A, and satisfies a Lipschitz conditionunanc v.
(iv) g(t) is continuous of0, ) anc O<g(t)<t.

(V) 2L <1.
m

Then there exists a unique continuous solutiorhefgroblem given by
ed.(3.10)-(3.11) defined in and bounded there.
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Pr oof:

Integrating eq.(3.10) from to t, we obtain

—}a(x.s)ds t —}a(x,e)de
u(x.t) =g(xje ° +[es c(x,5,u(x,),u(x,g(s)))ds
0

To prove existence-uniqueness, we apply to eq.J3hE2method of

successive approximations. Put

—}a(x,s)ds

u (x,1) = g(x)e ° ,

then, since

ux0)|=lp()| <N,

anda(x,t) =2m>0, we have

t
mds

luy (x,t)] < Ne® =Ne™<N ,

with some constant N.

Furthermore,

—ja(x.S)dS t —}a(x,e)de
U (x.t) = p(x)e ° +es C(%,S,U; (%,5), U (%, 9(s)))ds,

and

lu, (%,t) = uy (x,t)[ < 't[e‘m(“s) [c(%,S,Uy (X,9), Uy (%, 9(S)))|ds.
0

Now,

AY



IC(X,5,Ug (%,9),U; (X, 9(9)))| < [c(X, S, Uy (X,5), Uy (X, 9(S))) — € (X ,5,00)| +|c (X ,5,00)|

< L(supu, (x,t)] + supu, (x, g(1))]) + sugc (x £ 00)| =

Therefore,

U, (08— (e s L a-e ™y <M
m m

Also,

—ja(x,S)ds t —}a(x,e)de
Us (x,1) =g(x)e ° +[es C(X,8,U; (X,8),U, (X, 9(8)))ds,

and

t —ja(x 6)de

U —u (] sfe s JexS,Uy (%,9), Uy (%, 9(S) — C(x,5,Uy (%,9), Uy (X, G()))| ds
0

Ja(xg)do
es L (u, (%, S) = Uy (%, 9)| +]u, (%, () = Uy (x, (9))|)dis

<

O ——) ~+

< % L(supu, (x,t) =ty (x, )] +supu, (x, (1)) -t (x, g (1))])

By virtue of 0<g(t)<t, we have
suplu, (x, 9(t)) = uy (X, 9(1))] < sup, (X, 1) = Uy (X))
Hence,

lus (x,t) = uz(xt)\<—(2Lsuqu2(Xt) ul(xt)\) 2LM M(ZL)

2L

Similarly,

AY



M (2L
u,(x,t) —u.(xt)<—| — | ,
) ~us 0] < [ 2
and
‘u +1(X’t)_u (X’t)‘<M & n’ n:1,2,...
A A 2L m
Since
U(X,t) = ul(X1t) + Z(un+1(x1t) - un (X’t)) ’
=1
then
M 2L
u(xt)<N+—| —"-|, 0sx<l1,t=0
<0 ZL[l-ZmL]

which proves the boundednessugk,t) in the domainA. =

3.3.2 Existence and Uniqueness of Solution for 2" Order

Partial Delay Differential Equations:

In this section, we use the method of successipeoapnations to
guarantee the existence of a unique bounded solfdgrespecial types of
linear and nonlinear"2order partial delay differential equations, namel

the hyperbolic type.

We start this section by recalling thé®®rder partial delay

differential equation:

d2u

oxot

(x,t) + a(x,t)g—i(x,t) =c(x,t,u(x,t),u(x,t = 1)) (3.13)

together with the initial and boundary functions

A&



u(x,t) =@(x,t), 0sx<l,-r<t<0 .X3)

u@Ot) =u, ), t=0 (3.15)

whereg is a given function ofx and t andu, is a known function of

t.

The following theorem gives necessary conditiomgte existence
and unigueness of a bounded solution to the proligen by eq.(3.13)-
(3.15).

Theorem(3.3), [Poorkarimi H. and Wiener J., 1987]:
Consider eq.(3.13)-(3.15). Assume the followingaitans:

() uy(t) is bounded and continuously differentiabletanO;

. 0@ :

(i) ¢(x,t) and a—(x,t) are continuous of01] x[-r,0] and
X

¢ (00) =y, (0);
(iii) a(x.t) is continuous i ={(x,t} 0< x<1, t>0} and satisfies
a(x,t)=m>01in A;
(iv) c(x,t,u,v) is continuous and bounded &x [1 x[1 and satisfies the
Lipschitz condition
c(x,t,u,v) = c(x,t,u*, V)| < Lju —u*| (B.3

Then there exists a unique continuous solutiorhefgroblem given by
ed.(3.13)-(3.15), defined ia and bounded there.

AO



Pr oof:

Let w(x,t) =?(x,t) , then
X

%_\;V(x,t) +a(x,t)w(x,t) = c(x,t,u(x,t),u(x,t — 7)) (3.16)

To solve this equation, we use the method of ssoeesntegration. On
the intervalO<t<r, eq.(3.16) becomes

%—\:V(x,t) +a(x,tw(x,t) = c(x.t,u(x,t),p(xt = 7)).

Integrating the above equation frdrto t, we obtain

0 —}a(x.s)ds t —}a(x,e)de
w(x,t) :&(X,O)e 0 +J'e s c(X,S,U(X,9),4(x,s—1))ds (3.17
0

and by integrating eq.(3.17) frothto x, one can get

—}a({,s)ds

W) = U () + | %me " g+

—}a({,e)de

c(¢,s,u(¢,s),9(¢,s—1))dsdS . (3.18)

[l

To prove existence-uniqueness, we apply to eq.J3hEBmethod of

successive approximations. Put

—}a({,s)ds

1 (%0 = Up(0) + | % E0e°  de,
0
then, since

AT



<K,

0
ug(t)[ < N, ‘a—f (x,0)

and a(x,t)=m>0, we have

—} a(&,s)ds

e’ dé

el <luo ]+ |22 €0

X
sN+jKd£sN+K.
0

Let A=N +K , then|u, (x.t) < A.
Furthermore,

—}a({,s) ds

U, (60) = Uy () + | % e dE+
0

ﬁa@ﬂme

C(Er S’ ul (E’ S)’¢(<(1 S— T))dwg ’

X t

[]e

00
and

—}a(.{,e)de

) -t <[ Jer o€ sy (€94 5= D)o < x,
00

where|c(x,t,u,v)| <M , for each(x,t,u,v) DA O x 0.

Also, by using the Lipschitz condition given by @i€.3), one can get

AY



t
Xt - (X

lus(x,t) = u, (X, t)\<j Ie : \C(E s,U,(£,5),6(&,5-1)) -

C(E1 S, ul (E’ S), ¢(51 S— T))‘def

a(x 0)de

<[ler Luy(.9) - (& 9)dsdé
00

Xt _f X
<He£( 9% Maalsolf

and similarly,

3
lus (x,t) —ug(x.t) < M(Hj %

Continuing this process gives the estimate

M(Lx\"1
s 06) =t )< ] 2 =12,

and since

UOGD) =, (1) + D) Uy (68) ~ Uy (1),

then

Lx

(o] n i
\u(x,t)\<A+ZM(Hj l—A+Mem 0<x<1,0<ts<r.
= Lim/) n L

For the solution of eq.(3.13)-(3.15) on the intérva t < 27, we have
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Ou(o) —}a({,s)ds X 1 —ja({é?)de

u(x,t) = uo(t)+j

F@ner  dex j jes c(¢,su(¢,9).u®(¢,s-1))dsdé

whereu® 1 )is the solution of eq.(3.13)-(3.15) @xt<7.

Repeating the above calculations yields

Moo
\u(x,t)\sA_ﬁTem , 0<x<1,7<t<2r,

where

A= su{\uo(t» +] ‘— (1)

—ja({ s)ds
er dé | .

u©
To evaluate

(x,7), we use eq.(3.17) from which

(0) —ja(x s)ds 7 —}a(x,a)da
au (x 7) —a—(x O)e © +Ie s c(x,5,u® (x,8),#(x,5—7))ds,
0

thus
ou©
(x 7)< Ke™ + MIe mr-s)ds
0
— Ke—mr +Me—m(r—s) (TJ
m
=Ke‘mr+M(1—e T)< Ke™ ,
m m
and
A<N+Ke™ +—
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In the region0<x <1, 2r<t<3r, we have

Lx

u(x,t)| < A, +%em,
where

A, <N +Ke™™ Mg M
m m

Finally, it is easy to see that

Lx
u(x,t) < A, +%em , 0<x<1,nrsts(n+1)r,

with
n-1 00 .
AnSN'l'Ke_an +Mze—lmT<N+K+MZe—ImT =N+K+M 1_
m 5 m 5 mi-e™

Thus all valuesA, are uniformly bounded, and the proof is complese.

Next, recall that the hyperbolic partial delay dréntial equation:

0°u ou _

—— (x1) +a(xt)—(x,t) =c(x,t,u(xt),u(x, g(t)) (3.19)

oxot oX

together with the initial and boundary conditions:

u(x,0) =¢(x), 0sx<l (3.20)
(3.21)

u(O,t) =uy(t), t=0

where a is a known function ofx andt, ¢ andu, are known functions

of x andt respectively andc is a known function ofx, t, u(x,t),

u(x,g().



The following theorem gives necessary conditionemsure the

existence of a unique bounded solution of eq.(3(321).

Theorem (3.4), [Poorkarimi H. and Wiener J., 1987]:
Consider eq.(3.19)-(3.21). Assume the followingditans:

() u,(t) is bounded and continuously differentiabletanO;
(i) ¢(x) is continuously differentiable dif,1];

(i) a(x,t) is continuous IM ={(x,t){ O<x<s1t=> O} and satisfies

a(x,)=2m>01in A;

(iv) c(x,t,u,v) is continuous oM\ x [1 x [, with c(x,t,0,0) bounded on

A, and satisfies a Lipschitz conditioninandv;

(V) g(t)is continuous of0,») anc 0<g(t)<t.

Then there exists a unique continuous solutiorhefgroblem given by
eq.(3.19)-(3.21) defined iA and bounded there.

Pr oof:
Let w(x,t) =%(x,t), then eq.(3.19) becomes
X
ow
ry (x,t) + a(x,t)w(x,t) = c(x,t,u(x,t),u(x,g(t))) (3.22)
Integrating eq.(3.22) from to t to obtain

-}a(x,S)ds t —}a(x,é?)de
W(X,t) = W(X,O)e 0 + Ie s C(X,S,U(X,S),U(X, g(S)))dS (323)

0

q)



Integrating the above equation frdro x gives

—} a(&,s)ds

WD =00 + [F e dE
0

—}a({,e)de

c(¢,s,u(¢,s),u(<,g(s)))dsds . (3.24)

I

To apply to eq.(3.24) the method of successive apmations, we

construct a sequendgl (x,t)}, for which the following estimates are

satisfied inA:

—} a(é,s)ds

U (1) =u,() + [#'(He®  dE,
0

—}a({,s)ds
g' (e dé<N+K; = A,

Uy ()] < Jus (O] + |
0

where|u, (t) < N and

¢'(X)‘ <K,.

Also,

Xt —}a(é,e)de

u(xt)=uxt+ | fes clE,su(E9),u (£ 9(s)dsdé
00

and

—}a(.{,e)de

up (1) —uy (x D)< | Je C(¢.5,U (£,9), (£, 9(s)))|dsdé
00

Now,
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C(€.5.U, (€9, 1y (£, 9(9)] <[c(€.5,U, (€.9), 1y (£,9(5)) ~ ¢ ¢ 5.00) +[c (x 5,00)

< L(supuy (x,t)| +supu (x, g())]) +supc x t 0,0) =M

Hence
U, (68) ~ U (D) € [ SUpe(€,5, (€,9), Uy (, G (I))] € x.
0 m m

Also,

Xt a({H)dH

Ug (X,t) = Uy (X,t) + J J es  c&,5U,(£,9),U,(¢,9(s)))déds,

and

a({ 6)de

us(xt) —u(xt)<f fes  [o(€ 5.,(£.9).U,(£,9(s) -

(&5, (€,9), (¢, 0() dslé
<[5 (U (6.0) ~ s (€.0)] + 3 (£,90) - s (£, 908
*Im 2($, 1S, 2($, 1 (S

Since 0<g(t) <t, we have

supu, (x, 9(1)) = Uy (X, 9(1))] < supu, (x,t) —uy (x.).

Hence,

2L supu, (£,1) - uy (&,1)])dE

lus (x,t) — U, (x,t)[ < j%

2ML

< x_zmgg
" m* 2 L 21




Similarly,

3 3
=2ML2X_31:&(3) Iy
3 Lim)3
and
2M (Lx\" 1
U, (Xt) —u,(xt) s—| — | —.
T e e
Since
U(X,t) = Ul(X,t) + Z(Un+1(x,t) - un (X’t)) ’
=1
then

Lx
\u(x,t)\sA+2TMem , 0sx<1, t=0.

which proves the boundednessugk,t) in the domaimrA. =

Remark (3.1):

The method of successive approximations can be ad¢ed to

ensure the unique bounded solution for specialstyfe nonlinear delay
parabolic partial differential equations, [PoorkairiH. and Wiener J.,
1999].

3.4 An Estimate of the magnitude of Solutions for Partial

Delay Differential Equations:

In this section, we generalize the estimationha tagnitude of

the solutions for linear ordinary differential egjoas with deviating

q¢



arguments to include the linear partial differahtequations with

deviating arguments. This section consists the parhof this work.

We start this section by deriving an estimatehef mmagnitude of
the solution for special types of the' brder linear partial delay
differential equations. To the best of our knowledthis theorem seems

to be new.

Theorem(3.5):

Let u(x,t) be a solution of the partial delay differentialiatjon

ao%+bou(x,t)+blu(x,t—r) = f (xt) (3.25)

which is of classC! on[01] x[-7,»). Suppose thaf is of classC® on

[0,1] X[-7,)and that

[f(xt)<ce?, 0sx<1, t=0,
wherec, andc, are positive constants. Let

m= maxu(x,t)|,
O=sx<1
-7<t<0

Then there are positive constantandc, depending only o, and the

coefficients in eq.(3.25) such that

u(x,t)scg(m+c)e¥e™ , 0sx<1, t=-r

q0



Pr oof:

Integrating eq.(3.25) from to t, we obtain

au(x,t) =ayu(x,0) - boju(x, s)ds— blju(x,s— r)ds +'t[ f (x,5)ds
0 0 0

Therefore,

u(x,t)| < m+ o | ﬂu(x s)\ds+ [ flux, s)\ds+
2| 2 Cz\ao\

}, and C5_‘b0\‘ao\‘ by . Then

Let c, =max 1,
" { Cfay|

u(x,t)| < cs(m+c;)e? +cq j\u(x, s)ds, t=0 (3.4)

=T

Since|u(x,t) s msmce® for 0sx<1,-7<t<0 ineq.(3.4) holds for

all 0sx<1 anc t=-r. It therefore follows from lemma (1.1) that
ux.t)| g (m+c,)e™ e 0<x<1, t>-7.

which proves the theoremm

Corollary(3.1):

Let u(x,t) be a solution of the partial delay differentialiatjon

ao%+bou(x,t) +bu(xt-1)=f(xt) (3.26)
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which is of classC* on[0] x[0,») . Suppose thaf is of classC® on

[0,]] x[0,0) and that

[f(xt)<ce?, 0sx<1, t=0,
wherec, andc, are positive constants. Let

m=maxu(x,t)|,
05xs)14 ( )‘
O<t<r

Then there are positive constatandc, depending only o, and the

coefficients in eq.(3.26) such that

u(x,t)<cs(m+c)e™ , 0sx<1,t=0. m

Next, an estimate of the magnitude of solutionssfucial types of
the 2% order linear partial delay differential equatiessliscussed below.

But before that we need the following lemma.

Lemma (3.1), [Bainov D. and Simeonov P., 1992]:

Let u(x,t) anc b(x,t) be nonnegative continuous functions

defined forx=za,, t=a,.
Assume thaf(x,t) is positive nondecreasing continuous function

in each of the variablex>a,, t=2a,.
If

X t
uxt)<a(xt)+ [ [b(s,O)u(s )déds, for xza,, t=a,

a ap

then

v



T jb(s,e)déds
u(x,t) < a(x,t)e™ for x=2a,, t2a,.

Pr oof:

Since a(x,t) is a positive nondecreasing in each of the vaembl

X=2a,, t2a, then

U(Xt)<1+'”b(s g)ﬂdajs for x2a,, t2a,.
a(xt) ., aso)
Let v(x,t) —ﬂ, then
a(x,t)

X t
vxt)<1+ [ [b(sO)v(s,6)d@s for xzay, tza,

a ap

Let w(x,t) =1+ j j'b(s, B)v(s,6)d&ds,

a) ay

thenv(x,t) <w(x,t). Moreover

w, (X,t) < jb(x, O)v(x,0)dl < jb(x, O)w(x,6)do.

as ar

the functionw(x,t) is nondecreasing it and

w, (X,t) < w(x,t) jb(x, 6)do,

as

thus

QA



w, (x,t)
w(xt)

< j b(x,6)d8.

ar

Integrating both sides of the above inequality framto x yields:

X t

j j b(s,8)dé&ds
w(X,t) < e™?

Sincev(x,t) < w(x,t), this implies that
f _t[b(s,e)déds

u(x,t) < a(x,t)e™ for x2a,, tza,. =

Next, we are in the position that we can give tbdoWing

theorem. To the best of our knowledge, this theaeams to be new.

Theorem(3.6):

let u(x,t) be a solution of the partial delay differentialiatjon

@+au(xt—r)=f(xt) (3.27)
Yoot T | |

which is of clas<C* on[0,]] x[0,) . Suppose thaf is of classC® on

[0,]] x[0,0) and that

[f(xt)<ce?, 0sx<1, t=0,

wherec, andc, are positive constants. Let
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m, = maxu(xt)
O<t<r

m, =maxu(O,t)|

t=0

Then there are positive constasjyt andc, depending only onc, and

the coefficients in eq.(3.27) such that

u(x,t) <cg(m +m, +c)e* , 0sx<1, t=0

Pr oof :

Integrating eq.(3.27) from to x, we obtain

ao%(x,t) - ao% 1) - a1£U(S,t —7)ds +£ f(styds

Again, integrating the above equation framto t, we get

au(x,t) =aju(x,r) + a,u(0t) —a,u(0,7) - alj Tu(s,é? —7)dsdé@ +

T 0

f(s,0)dsdf, t>71

N —
O =%

Therefore,

[agu(x,t)] < [ag| [u(x,7)| + [ag| [u(0,0)] +|ag|[u(0.0)] +[ay[ | |u(s6 ~17)|dsd6 +
r 0

| (5,6)|dsd6

N —
O = %



t X t X
[agu(x,t)] <[ag|my +[ag|m, +[ag|m, +[ay|[ [ [u(s,O)|dsdé + | [ |f(s,8)|dsd@
00 00

t X t X
< [ag|m, +|ag|m, +[ag|m, +|a|[ [ |u(s,6)dsd6 + [ [c,e*’d6
00 00

t X
<[aolm, +[agim, +aglm +/a] [ ju(s.f)dsdg + e, t=7.
00

2

Thus

t X
u(x,t) < 2m, +m, + e + ‘_1 [ [ |u(s6)dsdé.
0 0

Cz‘ao‘

Let c3=max{2, 1 } and c5—‘al‘

Cz‘ao‘ ‘ao‘
Then

t X
u(x,t) < cy(my +my, +¢)e +c | |u(s,6)dsdd (3.5)
00

Since|u(x,t) s m <c;me” for 0<sx<1,0<t<7 ineq.(3.5) holds for
all 0sx<1, t=0.
Also, since [u(0,t) < m, <c;m,e® for t=0 ineq.(3.5) holds for all

t>0. It therefore follows from lemma (3.1) that

uxt)| < c(m +m, +¢)e 2" ", 0<x<1,t20. m



2.1 Introduction:

As seen before in chapter one, the Laplace tramsechnique is one
of the important methods that can be used to sbkdinear ordinary delay

differential equations.

Also, it is known that, the Laplace transform offunction f,

denoted by [f} or F(s) is defined by
F(s) = [e™>f (x)dx,
0

this improper integral converges absolutely fRe(s)>a in case the

function f possess bounds of the form
| (%) < ce™

Therefore, the Laplace transform technique candeel @o solve the linear
ordinary delay differential equations in case thegmtude of the solutions

for such equations satisfy the above inequality.

The main purpose of this chapter is to devote saomeessary
conditions to estimate the magnitude of the sohgifor the linear ordinary
delay differential equations in order to find thefdiso, an estimate of the
magnitude of the solutions for special types of m@ar ordinary delay

differential equations is given.

Moreover, an estimate of the magnitude of the swistfor systems

of the £ order linear delay differential equations is imiced.
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This chapter consists of five sections.

In section two, an estimate of the magnitude oy @me solution for

the T order linear delay differential equations is dedy

In section three, an estimate of the magnitudenbf one solution for

the T order nonlinear delay differential equation isaiLiced.

In section four, an estimate of the magnitude a swolutions for the

1% order delay differential equation is obtained.

In section five, an estimate of the magnitude dditsons for a system

of the £'order delay differential equations.

2.2 An Estimate of the M agnitude of One Solution of Linear

Ordinary Delay Differential Equations:

In this section, we give an estimate of the magl@twf only one
solution for the linear ordinary delay differentedjuations of single and

multiple delays with constant coefficients.

We start this section by deriving an estimate ef ttagnitude of only
one solution for special types of th& arder linear ordinary differential

equations with single delay with the aid of the hean(1.1).

Proposition (2.1), [Bellman R. and Cooke K ., 1963]:

Let y(x) be a solution of the delay differential equation

ay'(x) +by(x—7) = f(x) (2.1)

1



which is of classC! on [0, ). Suppose thaf is of classC® on[0,») and

that
[f(X)|<c e?, x=0

wherec, andc, are positive constants. Let

m=max|y(x)|,

Osx<r

then there are positive constamtsand c, depending mainly onc, and

the coefficients in eq.(2.1) such that

Y[ S c3(c, + m)e™, x20

Pr oof:
From eq.(2.1), we find that

3y(X) =3,y(T) + [ f(dt by [yt -)et, x=7.
Therefore,

[30y(¥)|<[agjm+c, [edt +|oy| [ [y()ot, x=7,
T 0

hence

LBl

\Wm<m+
C,|ag \ \

‘“y(t)\dt X>T.

Letc; = max{l, i} and c; = ‘bl‘
Coly| ‘ao‘
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ly(X)| < c5(c, + m)e + 05]( ly@®)et, x=7. (2.1)

Since |y(x)| s m<c,me?* for 0<x<r7, ineq.(2.1) holds for alk=0. It

therefore follows from lemma (1.1) that

y(X)| < c(c, +me =™ x20. =
Next, using this proposition, we can prove thisotieen.

Theorem (2.1):

Let y(x) be the continuous solution of

ay' () +by(x—7) = f(x)

which satisfies the initial conditiog(x) = g(x), 0<x<r. Assume thag

is C°[0,7], that f is C°[0,) and that
f(¥)|<c e, x=0

where ¢, and c, are positive constants. Then for any sufficierdlyge

constantc,

()= [€°h™(S)[po(s) + q(9ds, x>7,
(c)

where

YA



Po(S) = 8,9(7)e™ ~be™ [ g(x)e > dx,
0

q(s) = | f (x,)e™dx, .

Also,

y() = [€°h™(s)[p(s) + q(s)lds, x>0,
(c)

where
p(S) = 3,9(1)e™ + ags| g(x,)e >,
0

provided g is C'[0,7].

Pr oof:
See [Bellman R. and Cooke K., 1963

The following theorem is a generalization of theypous proposition
which gives an estimate of only one solution foedal types of the ®1

order linear ordinary delay differential equation.

Theorem (2.2), [Bellman R. and Cooke K ., 1963]:

Let y(x) be a solution of the delay differential equation

a,Y'(X) +byy(x) +byy(x —7) = () (2.2)

Y4



which is of classC! on [0, ). Suppose thaf is of classC® on[0,») and

that
[f(X)|<ce?, x=0,
wherec, andc, are positive constants. Let
m=maxy(x
maxy(x)|.

then there are positive constamtsand c, depending only onc, and the

coefficients in eq.(2.2) such that

ly(X)| < c5(c, + me™, x=0.

Pr oof:
From eq.(2.2), we find that

80y(x) = agy(r) + [  (Ddt ~by [ y(O)dt ~by [ y(t - )t x=7.

Therefore,
yo) < m+— ‘—j ly@ldt, x=7.
cz\ao\ [
Let c, =max{ 1, i} and c; = —‘bo‘ ‘bl‘
Cfay| |
Then

ly(X)| < c5(c; + m)e + c5f ly@)dt, x=7. (2.2)
0



Since |y(x)| < m<c;me”* for 0<x<r7, ineq.(2.2) holds for allx>0. It

therefore follows from lemma (1.1) that

Y| < c5(c, + el x>0,
which proves the theoremm
Next, using this theorem, we can prove the follaineorem.

Theorem (2.3):

Let y(x) be the continuous solution of

apy'(X) + +byy(x) + b y(x—7) = f(X)

which satisfies the initial conditioy(x) = g(x), 0<x<r. Assume thag

is C°[0,7], that f is C°[0,) and that
[f(x)|<c e”, x=0

where ¢, and c, are positive constants. Then for any sufficierdyge

constantc,

() = [€°h7(s)[po(s) + a(9ds, x>7,
(c)

where

Po(S) = 8,9(7)e™ ~be™ [ g(x)e > dx,
0

q(s) = [ f (x)e™dx, .

&)



y() = [€°h™(s)[p(s) + q(9)lds, x>0,
(c)

where
P(S) = a,9(7)e™ + (as + ) [ g ()& >l
0

provided g is C'[0,7].

Pr oof:
See [Bellman R. and Cooke K., 19634

Now, the following theorem is an extended theodnthe previous
facts which gives the same result. To the best wf loowledge, this

theorem seems to be new.

Theorem (2.4):

Let y(x) be a solution of the delay differential equation

oy (X) +ay (x-1) +hy(x) +by(x—7) = f(x) (2.3)

which is of classC* on [0, »). Suppose thaf is of classC°on [0,») and
that

f (¥)|<ce”, x=0,
wherec, andc, are positive constants. Let

m= max|y(x)|,

Osx<jr

&y



where | ON, then there are positive constan{sandc, depending only on

C, and the coefficients in eq.(2.3) such that

ly(X¥)| < c5(c, + me™, 0<sx<(j+1)r.

Pr oof:
From eq.(2.3), we find that

2oy(x) = aoy(Jr)+If(t)dt alfy(t r)dt - bjy(t)dt bljy(t r)dt, x=jr

]T

—aoy(m+j f(t)dt - a J y'(t)dt ~ b, f y(t)dt —b, J y(t)dt,

(j-Dr (j-Dr
Therefore,
ly(x)| < m+ Tl |e°2X + 2||:10|| m+ |b°||a+0||bl| j ly®ldt, jr<sx<(+1)r
2 0

Letc, = max{1+2‘ 3 1 } and cS—‘bO‘ ‘bl‘
Bl " Caley| 3

Then

V()| < C5(c + m)e +¢5 [ |yt . (2.3)
0

Since |y(x)| < m<c,me®* for 0<x< jr, ineq.(2.3) holds for all

O0<x< (] +1r. It therefore follows from lemma (1.1) that

y(X)| < c5(c, + e, 0<x<(j+1)r. m

¢y



Next, an estimate for the magnitude of only oneitsmh for special
types of the T order linear ordinary delay differential equatiowith
multiple delays is discussed below. To the besbwf knowledge, this

theorem seems to be new.

Theorem (2.5):

Let y(x) be a solution of the equation

8oy (X) + o y(X) + by y(x —71) +B,y(x = 7,) = f(X), (2.4)
which is of class<C* on [0,») . Suppose thaf is of classC® on [0,«)
and that
f (¥)|<ce”, x=0,
wherec, andc, are positive constants. Let

m= max|y(x)|,

O=sx<r,

then there are positive constamisand c, depending only orc, and the

coefficients in eq.(2.4), such that

CyX

ly(¥)| < cy(c, + m)e™™, x=0.

Pr oof:
From eq.(2.4), we find that

20y(X) = 8oY(7,) + [ f(t)dt =, [ y(t)dt = by [ y(t = 7;)dt ~b, [ y(t = 7,)dt.

¢¢



Therefore,

X_TZ

3o Y(X)| <|ag|m+c, [edt +[by|[ [y(O]dt +[o,| [ |y(®)dt+[by| [ |y®)t, x=7,
0 0

L) Iy

thus

YO s m+— e I +1of +‘b2u ly()dt, x=7,.
0

Cz‘ao‘ ‘ao‘
Let c, = max{l, 1 } and ¢ = ool + | + | .
Cz‘ao‘ ‘ao‘
Then
Y| < (e, + m)e +c [ [y(9fdx, x=7,. (2.4)

0

Since|y(x)|< m<c,me®* for 0<x<7,, ineq.(2.4) holds for alk= 0. It

therefore follows from lemma (1.1) that
y(X)| = c5(c, + el x>0,

which proves the theoremm

2.3 An Estimate of the Magnitude of One Solution of
Nonlinear Ordinary Delay Differential Equations:

As seen before, [Bellman R. and Cooke K., 1963julised an estimate
of the magnitude of only one solution for lineadioary delay differential

equations.

¢o



In this section, we give an estimate of the maglatwf only one
solution for special types of the nonlinear ordinatelay differential
equations with constant coefficients. To the bdsowr knowledge, this

section seems to be new and consists of the maimfthis work.

We start this section by deriving an estimate ef tiagnitude of only
one solution for special types of th& arder nonlinear ordinary delay

differential equations with constant coefficieriiat before that we need the
following lemma.

Lemma (2.1), [Bainov D. and Simeonov P., 1992]:

Let y(x), a(x) and k(x) be nonnegative continuous functions in

J =[a, f], and suppose
y(X) < a(x) +'Tk(t)yp(t)dt, x[dJ, (2.5)

where0< p<1. Then

X 4 q
y(x)sa(x)m{j k‘*(t)dt} . q=1-p, (2.6)

where z, is the unique positive root of the equation

B Bl x a
z-a-bzP =0, a=a(t)dt, bz'[{[kq(t)dt} dXx.

2



Pr oof:

From Holder's inequality, we obtain
X X ar g p
[k®)yPt)dt < { [ke (t)dt} { | y(t)dt} .

Then ineq.(2.5) implies

q

X PIx 1
y(x)sa(x)+“ y(t)dt} {j kq(t)dt} , (2.7)

and integration of ineq.(2.7) from to S gives

Pp

X 1 q
| { [ke (t)dt} dx

alLa

B B B
j y(t)dt < j a(t)dt + { j y(t)dt:|

B B Bl x 1 a
If z=[y(t)dt,a=[a(t)dt b= j{j kq(t)dt} dx, then the last inequality

shows that the nonnegative numhesatisfies the inequalitg < a+bz” .

Analyzing this, we conclude that < z, where z, is the unique positive

root of the equatiorz=a +bz®. Hence ineq.(2.7) implies ineq.(2.6.
Now, we can prove the following proposition. Thi®position gives an

estimate of the magnitude of only one solution &orspecial type of

nonlinear ordinary delay differential equations.

1A%



Proposition (2.2):

Let y(x) be a solution of the delay differential equation

ay' (X) +byP(x-7)=f(x), 0<p<1, (2.5)

which is of classC! on [0, ). Suppose thaf is of classC® on[0,») and

that
[f(X)|<ce?, x=0,

wherec, andc, are positive constants. Let
m=maxy(x)|,

O<x<rt

then there are positive constatsand c,, depending only onc, and the

coefficients in eq.(2.5) such that
(| < cs(c + m)e™ +¢,2, "X P, 0sx<p,

where z, is the unique positive root of the equation

z—m(e‘w _1)_04%2;) =0, 8=0.

2

Pr oof:
From eq.(2.5), we find that

3y(X) =3oy(r) + [ f(t)dt ~ b, [ yP(t ~7)dt, x=7.

Thus

A



|30 y(X)| < mag| + cje“ztdt + \bl\f Pt - )t

< mlag| + clj)secztdt + \bl\xjr‘yp(t)‘dt ,
T 0

hence
Yoo s m+— e +Mj Pt
Coly| 8ol s
Leu%=nm%#q 1 },andc4=Eﬂ.
Colay| 3|
Then
Y| < co(m+cy)e™ +c, [ |y(t) "dt, x=7. (2.8)

0

Since|y(x)| < m< c;me™* for 0< x<7, ineq.(2.8) holds for alk = 0.

Thus

y(0)| < cy(m+ )™ +c, [|y(t)dt, x=0.
0

By using lemma (2.1), one can get

CoX

y(X)| < c5(m+c)e? +¢,z,°x, q=1-p,

where z, is the unique positive root of the equatipn a—bz" = 0,

B
a= jc3(m +C,) eczxdx=ww°2ﬁ -1), and
0 2

€9



Next, the following theorem is an extension of #®ve proposition.

Theorem (2.6):

Let y(x) be a solution of the delay differential equation

ay (X) +byyP(¥) +by® (x-7) = f(x), 0<p<1, (2.6)
which is of classC! on [0, ). Suppose thaf is of classC® on[0,») and
that

f(¥)|<ce”, x=0,
wherec, andc, are positive constants. Let

m=masfy()|,

Osx<r

then there are positive constamtsand c, depending only ort, and the

coefficients in eq.(2.6) such that
|Y(X)| < (e, + m)e™* +¢,2,°x P, 0<x< B,

where z, is the unique positive root of the equation

g+l
z—m(e‘w —1)—04'8—2p =0, £=0.
q+1

C,



Pr oof:

From eq.(2.6), we find that

8,y(X) = agy(r) + [ f ()t —by [ yP(©)dt by [ yP(t - )dlt, x=7.

Thus

3, y(X)| < mag| + clj)secztdt + \bomyp(t)‘dt +‘blu)$ ‘yp(t - r)‘dt

< mlag| + cje%‘dt + \bomyp(t)\dt + \bl\xjr‘yp(t)‘dt,
T 0 0
hence

ly(x)| < m+ﬁe°2x +%f ‘yp(t)‘dt.
2 0

Letc; = max{ 1, i} and c, =M.
LN 2

Then by following the same previous steps as ap@sition (2.2), one can

get the same resultm

Next, we generalize the previous theorem to bedvai p>1, but

before that we need the following lemma.

o)



Lemma (2.2), [Bainov D. and Simeonov P., 1992]:

Let y(x), a(x), b(x) anc k(x) be nonnegative continuous functions in

J=[a,f] and let p>1 be a constant. Suppo%e IS nondecreasing id

and
y(x) <a(x) + b(x)J)sk(t)yp(t)dt, x0J. (2.9)
Then

y(x) < a(x){l— (p —1)Jx'k(t)b(t)ap'1(t)dt}llp , asx<f,, (2.10)

where B, = sup[xD J:(p —1)Fk(t)b(t)ap'1(t)dt <1} :

Pr oof :

Setv(x) = jk(t)yp(t)dt . Then fora < x<r1<f,, ineq.(2.9) implies

y(x) < a(x) + b(x)v(x), (2.11)
and

V(%) = k(x)y (%) < k()[a(x) +beIv)]" a(x) +b(x)v(x)]

=Kot vt 20 .

oy



that is,

V' (X) < R(x){ E ;+v(x)} (2.12)

where R(x) = k(x)b(x)[a(x) + b(x)v(x)|"™.

From ineq.(2.12), one can get

[Rw)dy a(r) jR(tl)dtl

't)-R t R :
v -Rovole  <RO e

tza.

Thus

TR(t)dt TR(t)dt
e T erp@ e
dt b(7)

Integrating ovet from a to x gives

IRy x R
v -vi@e <D rge
(1)

which implies

I R(t)dy

v(x)s =2 a(r) j R(t)e! dt .

Therefore,

a( T) a(r) e({ R(t)dt

0 50 S o)

. A<XST.

Hence, forx=r1

oy



TR()dt

a(x) + b(x)v(x) < a(x)e” (2.13)

From ineq.(2.13), we obtain

[a(x) +b(x)v(x)]p—1Sap_l(x)e(f](p—l)R(t)dt’

that is,

H(p-DR()ct
R(X) < k(x)b(x)a"™*(x)e

Let z(x) = (p—-DR(x), then

[ z(t)ct
[—e a ] < (p-Dk(X)b(x)a”*(x).

Integrating the above inequality from to x yields

atyd X

1-ec  <[(p-Dk(tbt)a*(t)dt,

from which we conclude that

1

TR()dt

e < 1—(p—l)Tk(t)b(t)ap‘l(t)dt -

The above inequality, together with ineq.(2.11) aneq.(2.13), implies
ineq.(2.10). m
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Now, we are in the position that we can state thkowing

proposition. This proposition gives an estimateh# magnitude of only
one solution for another types of nonlinear ordmdelay differential

equations.

Proposition (2.3):

Let y(x) be a solution of the delay differential equation

3y (X) +by’(x-7)=f(x), p>1 (2.7)
which is of classC! on [0, ). Suppose thaf is of classC® on[0,») and
that

[f(X)|<ce?, x=0,
wherec, andc, are positive constants. Let

m=maxy(x)|,

O<x<rt

then there are positive constamtsand c, depending only onc, and the

coefficients in eq.(2.7) such that

1

p-1 p-1 -1
ly(X)| < c5(c, + m)e%x{l— CaCs (21 +m) (elP DX —1)} " o<xs B
2

WherelgIO = sup{XD J:(p —1)'|-c4[c3(c:l + m)]p-le(p—l)thdt < J} , J=[0,4] and
0

[ is any positive real number.

oo



Pr oof:

By following the same previous steps as in prapmsi(2.2), one can
get

Y[ < ¢5(c + me +c, [ |y(t) dt, x=0,
0

and by using lemma (2.2) with(x) = c;(c, + m)e?*, b(x)= k(x)=c, and

a =0, one can get

1

x Tp
|y(X)| = c5(c, + m)e%x{l— (P-Dfcc"(c +m)Pe pl":Q‘dt} p
0

1

p-1 p-1 1-p
=c5(c, + m)eCQX{l_ CsCs (cp +m) (e( P-1)cyx _]_):| P , 0<x< ,Bp,
C,

where T, = su;{xD J:(p _1)'[C4[C3(C1 + m)] PlelP ot g < J} , J=[0, 8] and
0
[ is any positive real numbers

The following theorem is a generalization of theypous proposition

which gives the same result.

Theorem (2.7):

Let y(x) be the solution of the delay differential equation

3y (X) + by (x) +byP(x-7) = f(x), p>1 (2.8)

h



which is of classC! on[0,). Suppose thaf is of classC® on[0,») and

that
[f(X)|<ce?, x=0,
wherec, andc, are positive constants. Let

m=max|y(x)|,

O<x<rt

then there are positive constamisand c, depending only orc, and the

coefficients in eq.(2.8) such that

1

B C4C3p_1(cl +m) (e( p-1)cyx _1):|lp , 0<x< ,B

p 7

ly(¥)| < c5(c + m)e%x{l

C,

w) )
c,” (¢, +m)P
C,

wherer, =suy{xDJ . Ca (elPe* 1) < 1}, J=[0,4]

and £ is any positive real number.

Pr oof:

By following the same previous steps as in theaf2@), one can get
V()| < (e, + m)e +c, [|y(t) dt, t20,
0

and by using lemma (2.2) with(x) = c,(c, + m)e”*, b(x)=1,k(x) =c, and

a =0, one can get

ov



1

ly()| < c5(c, + m)e%x{l— (p ‘1)‘34.[03'0_1(01 +m) P el IC’1)C2tdt} o
0

Thus

1

p-1 p-1 1-p
|y(X)| < cy(c, + m)e%x{l— CaSs (21 +m) (elPex —l)} , 0sx<p
2

) 1
CC3" (c +m)P
C,

where 3, =sup[xD.J : (elP Ve —7) < 1}, J=[0,5]

and £ is any positive real number.

2.4 An Estimate of the Magnitude of Two Solutions of Linear

Ordinary Delay Differential Equations:

In this section, we give an estimate of the maglatof two solutions

for linear ordinary delay differential equationghvconstant coefficients.
We start this section by the following propositidihis proposition
appeared in [Bellmen R. and Cook K., 1963] withptdof. Here we give

it's proof.

Proposition(2.4):

Let y,(x) and y,(x) be two solutions of the delay differential

equation

ay'(x) +by(x—7) = f(x) (2.9)

oA



which are of clas€! on [0,»). Suppose thaf is of classC® on [0,).

Let

m= ngas-)r(‘%(x) - Y2(X)‘ ,

then there is a positive constant depending only on the coefficients in
ed.(2.9) such that

V2(X) = Y, (%) < me™, x=0.

Pr oof:

Sincey, (x )andy,(x )are solutions of eq.(2.9), then
210 = 8y (1) + [ T Ot ~by [ y,(t - Delt, x27,
and
3y Y,(X) =a,Y,(7) +T f (t)dt - bj y,(t—-7)dt, x=7.

Thus

X-T

2] |10 = Y5 (X)| < [ag| Y4 (7) = ¥, (7)) +[by] [ |y2(t) =y, (D)t

0

hence

V1 (¥) = Y, (X)| < m+ % j |ya(t) = y, (bt
0

by

Let c=—, then
2|
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V1) = Yo ()| < m+c |y, (t) = y, (D)dt, x=7. (2.14)
0

Since|y,(X) = y,(x)|sm for 0<x<7, ineq.(2.14) holds for alk=>0. It
therefore follows from lemma (1.1) that
Jodt

C
‘yl(X)—yz(X)‘SmeO =me™, x=0. =m

Next, this proposition can be also extended to ghes following
theorem. This theorem appeared in [ Bellman R. @odke K., 1963]

without proof. Here we give it's proof.

Theorem (2.8):

Let y,(x) and y,(x) be two solutions of the delay differential
equation
3y (X) + by y(X) +byy(x—7) = f(x) (2.10)

which are of clas€! on [0,»). Suppose thaf is of classC® on [0,).

Let

m=max|y, (x) = ¥5(x)

then there is a positive constantdepending only on the coefficients in
e(.(2.10) such that

V2 (%) = Y, (x)| < me™, x=0.



Pr oof:

By following the same previous steps as in propmsi(2.4), one can

get
Y1(X) = Yo ()| < m+ cﬂyl(t) —y,(t)dt, x=7,
0
wherec =M.
2|

The solution of the above inequality is

‘yl(x) B Y2(X)‘5 me”, x=0. m

Next, the following theorem is a generalization tbe previous
theorem which discussed an estimate of the magnibfickwo solutions for
two 1* order delay differential equations with same défeial operator.
This theorem appeared in [Bellman R. and Cookel863] without proof.
Here, we give it's proof.

Theorem (2.9):

Lety,(x )andy,(x ) be solutions of the delay differential equations

3,y (X) + byy(x) +byy(x—7) = f,(X) (2.11)

3,y (X) +byy(x) + b y(x—7) = f,(X) (2.12)

R



respectively which are of claggd® on [0,). Suppose thatf, and f, are

of classC® on[0,»). Let
m=max|y, (x) = 5 (x)]

then there is a positive constantdepending only on the coefficients in
eq.(2.11)-(2.12) such that

X

V1 (%) = y, (9 <| me+ ™ [| (1) = f,(Dfott [e™, x=0.

0

Pr oof:
From eq.(2.11)-(2.12), we find that

30Y1(9 =30u(1) + [ fiO)dt ~by [ vyt = by [ya(t - 1)et, x=>7

and

85y, (X) = a9y, (1) + [ (1)t — by [y, ()it = by [y, (t - 7)dlt, x27.
Thus

X b X
‘Y1(X) - Y2(X)‘ S ‘Y1(T) - Y2(T)‘ + é“ fi(t) - fz(t)‘dt + ‘ O“a-:“bl‘ I‘Y1(t) —Y> (t)‘dt
0 0

|Y1(X) - Y2(X)| < m+|ao|_1_” f () - fz(t)|dt +CI|Y1(t) - Y2(t)|dt, xz2r (2.15)
0 0

byl + o]

wherec =
2|

1y



Since |y,(X) = y,(x)|sm for 0sx <7, ineq.(2.15) holds for alk=0. It

therefore follows from lemma (1.1) that
V1 (X) = (9| <| m+ag| " [ 1,(0) = £, ()]t [€*, x=0. m
0

Remark (2.1):

In theorem (2.9), iff,(x) = f,(x )for eachx =0, then this theorem

reduces to theorem (2.8).

Now, the following theorem is more general than thervious

theorem.

Theorem (2.10):

Lety,(x )andy,(Xx ) be solutions of the delay differential equation

Y (X) + b Y(x) +byy(x=7) = f,(x) (2.13)
and
A,y (X) + (g + & ) Y(X) + (b, + &), y(x— 1) = f,(X) (2.14)

respectively which are of claggd® on [0,%). Suppose thaff, and f, are

of classC® on[0,»). Let

m, =max|y; (X) = Y, (X)

Osx<r

m, = ma)# Yo (X)‘

O<x<r

1y



then there are positive constantind £ depending only on the coefficients
in eq.(2.13)-(2.14) such that

X

PACESACIE ml+\a4‘lﬂf1(t)—f2(t)\dt+% &%, x20.

0 2|

Pr oof:
From eq.(2.13)-(2.14), we find that

39 Y1(X) = 3oy (7) + [ Fy(t)dt —loy [ yy (D)t — o, [y, (t =), x=7.
and

20Y,(X) = 85Y,(7) + [ F()dt = (b + &) [ y, (D)t = (b, + &) [ y,(t —)dlt, x=27

Thus

X b X
Y2(%) = Y, (0| <[ y1(7) = v, (7) +® IACERAG by +‘\bl\ [y2®) = > (Oft +
0 0

g

d
o

“a—[j\yz(t)\dt —ﬂyz(t)\dt}, X>T
0 X

< my +[ag| [ £,(t) = F )t + cf|y, (1) = y, (t)dt +

—= X2T (2.16)

¢



lbo| + by
2|

wherec = and £=max|¢,|,|&|}.

Sincey;(X) = ¥,(X)|sm, for 0<sx<r, ineq.(2.16) holds for alk=0. It

therefore follows from lemma (1.1) that

e )
EN

V103 = o (x)| < | my +Jag| " [| £,(t) = £, (0)[clt + x>0. m

Remarks (2.2):
(i) If £=0 then¢, =& = 0and hence theorem (2.10) reduces to theorem

(2.9).

(i) If £=0 and f(x)=f,(x) for each x=0 then theorem (2.10)

reduces to theorem (2.8).

2.5 An Estimate of the Magnitude of One Solution for
Systems Ordinary Delay Differential Equations:

In this section we derive an estimate of the sohgt for special types
of system of the’lorder ordinary delay differential equations witinstant

coefficients.

We start this section by generalizing theorem)(®o2Xsystem of the

1% order linear ordinary delay differential equations

10



Theorem (2.11):

Let y(x) be a solution of the system of* arder delay differential

equations

V() +Boy(¥) + > By(x-1,) = £ (x), (2.15)

i=1

which is of classC' on [0,0) where B is nxn matrix for each

i =0,...m. Suppose that is nx1 vector of clas€® on[0,») and that

|f ()< ce”, x=0,
wherec, andc, are positive constants. Let

m= max|y(x)|,

O=sx<rtp,

where 0<r,<r1,<..<r1, then there are positive constams and c,

depending only ore, and the coefficients in eq.(2.15) such that

CaX

ly(9)| < cs(c, + me**, x=0.

Pr oof:
From eq.(2.15), we find that

Y(X) = Y(T) = By [ YOt~ [ D B y(t-7)dt + [ f (0t

Tm Z-I"I"I I =1 Tm

Therefore,

11



IvOol [yl + [ 1 F @] |8l | Iylet + [ 318 yte -7

i=1

Tm

X X X m
<m+c IeCtht + HBOHI ly()] dt + jZHB, ||yt = ;)] dt
7 il

Tm 0

X m X
<m+ %e +[[Bo| ly®]att + 3 [1B[] | y)et
5 0 =1 0
Thus

m X
Iyool s me+ e+ S B [y, x>7,
i=0 0

2

Let c, = max{l, i}, and c; =Zm:HBi |-
G, i=0

Then

|ly(X)] < c5(c;, + m)e™ +cg I ly®|at, x=7, (2.17)
0

Since |y(x)| < m< mc,e® for 0sx <7, hence ineq.(2.17) holds for all

x=0. It therefore follows from lemma(1.1) that

[y(9] = cs(c, + me="®, x=0.

Next, the following theorem is an extension of tteeo (2.3) to

system include of the™order ordinary delay differential equations.

1y



Theorem (2.12):

Let y(x) be a solution of the linear system of theotder ordinary

delay differential equations

2IAY (x=1;) + By(x—1)] = f(x) (2.16)
i=0

which is of classC! on [0,00) where A and B, i=01...m are nxn
matrices such thaf, = | . Suppose thaf is nx1 vector of classC® on

[0,00) and that
|f ()< ce”, x=0,
wherec, andc, are positive constants. Let

m= max|y(x)].

where 0<r,<r1,<..<7, then there are positive constardg and c,

depending only o, and the coefficients in eq.(2.16) such that

|ly(¥)| < cs(c, + me™, 0sxs<rt, +1,.

Pr oof:

Since A, =1, then eq.(2.16) can be rewritten as

V() + Boy(9 + S [AY(x=1) + By(x=1)] = ().

i=1

Therefore,

TA



y(¥) = y(z,) + [ f(O)dt =B, [ yt)dt - | Y [AY(t-7,)+Byt-7,)]t
Im Tm Iy 171

=y(ry) + [ F(t)dt-B, | y(t)dt-iAi[y(x-ri)-y(rm-ri)]— | ﬁBiy(t—mdt
Therefore,

[yOIl <y +[Bol ] |yl + iIIA [[yx=7) = y(Tn =7+

i=1

[ S Byt -z)dt+ ] |f o)

Tm

<m+[Bol] Iy(ode+ S I ly(x-7) - (7, - 7))+

[ [S1avolae fea
o Li=l 7

sm+ C%e + 28I [yl + > JAl [yox=r)l vz =7 )]

2

m o m X
< {1+ 2> |A, Hm+c—e°2" +>'|B, Hj ly®|dt, r,<xs<r7,+71,.
i=1 i=0 0

Thus

14



m m X
1yl <| 1+ 2331AlIm+ e+ S Iywiat, 1y xsry o
i=1 2 i=0 0

Letc, = max{1+ 2>A| ,i}, and ¢, =Y [B.
i=1 C, i=0
Then
[y < ey + me + ¢ [ [y(dx, 7 <X<T,+75, (2.18)
0

Since |y(x)| < m< mc,e” for 0<x <7, hence ineq.(2.18) holds for all

0<x<r,, +1,. It therefore follows from lemma(1.1) that

ly(¥)] < cs(c, + el >, 0<x<r,+7,. m

Corollary(2.1):
Let the hypotheses of theorem (2.12) be satisfiex@ the condition

A, =1 . Assume thatA| # 0, then there are positive constamtsand ¢,

depending only orc, and the coefficients in eq.(2.16) such that

ly(X¥)| < cs(c, + m)e™, 0<X<T, +1,.

Pr oof:

Since|A| # 0, then eq.(2.16) can be rewritten as

V() + ATBLY(00 + D I(AA)Y (x 1)+ (A B)Y(x=1)] = £(9),

and hence the proof follows directly from theoréhi@). m
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INTRODUCTION

The differential equations with a deviating arguinare differential
equations in which the unknown function and itsiadive enter, generally
speaking, under different values of the argumétitsgol'ts L. and Norkin S.,
1973].

These equations appeared in the literature in doersl half of the
eighteenth century by Kondorse in 1771, but a syate study of equations
with a deviating argument began only in the twehtigentury (especially in
the last forty years by Myshkis A. in the Sovietidm Wright E. and
Bellman R. in other countries) in connection witle requirements of applied
science, [El'sgol'ts L. and Norkin S., 1973].

A topic of differential equations with deviatinggamments which is in a
rapid state of development. It was the Russian ema#ttician Krasovskii who
found an accommodation for differential equationthwleviating arguments
as operators in function spaces. It is worth notthgt the theory of
differential equations with deviating argumentsiad just a simple extension

of the theory of ordinary differential equationSapty T., 1967].

The differential equations with deviating argumeats integrable in
closed form only under very specialized circumstsncand therefore
gualitative and approximate methods are of the atnmoportance in studying
them, [El'sgol'ts L., 1964].

Many researchers study the delay differential 8qos:



Al-Saady A., 2000, gave a new approach for soltimg delay differential
equations. This approach depends mainly on the gEausquadrature
numerical integration method and cubic spline péator functions for the

unknown exact solution,

Narie N., 2001, introduced the variational forntidas of the delay

differential equations and solved them by usingdinect Ritz method,

Al. Daynee K., 2002, evaluated the variational folmion of the delay
BVPs, using two approaches (variational problemhwtionstraint and
variational problem using Rayleigh quotient formulas well as, the
equivalence between the solution of the originalbpgm in operator form

Ly = f and the variational problem have been proved.

Salih S., 2004, studied and modified some numerarad approximate
methods for solving the"horder linear delay differential equations with

constant coefficients, and

Al-Kubeisy S., 2004, solved the delay differenggluations numerically by

using the linear multistep methods.

The main purpose of this work is to derive annesate of the magnitude
of the solutions for special types of ordinary grattial delay differential
equations in order to find them by any suitable hods, say the Laplace

transform method.

This thesis consists of three chapters.



In chapter one, we give some basic concepts dafrtieary differential
equations with deviating arguments. These conceptade, classification,

existence and uniqueness of solutions and methotdwdions of them.

In chapter two, an estimate of the magnitude dfitems (one and
two) of the special types of linear and nonlineedirmary delay differential

equations is presented.

In chapter three, we devote the partial diffeangquations with
deviating arguments and give some existence arglianess theorems for the
solutions of them. Also an estimate of th& dnd 2¢ order partial delay

differential equations is derived.
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