ABSTRACT

In this thesis, some properties and basic definitions
of fractional integral and derivatives of Riemann-Liouvill
are presented , to construct the optimality conditions of
mixed order unconstrained and constrained variational
problems with continuous and discontinuous functional,
on fixed and moving boundaries ,based on the classical
product rule for Riemann-Liouvill, Several tested example
are presented to demonstrate the implementation of the

optimality necessary conditions.
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Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

CHAPTER THREE

Optimality Necessary Conditions Of Fractional Variation Proflem
Alomg Movable Boundaries

3.1 Introduction

In this chapter we concern on the constructing the optimality and
the necessary conditions for unconstrained and constrained fractional
variation problems with continuous and discontinuous functional where
the independent variable along movable boundaries having one or
different multi fractional order derivatives on one and different multi-

dependent variables , by using the formula(1.10).
3.2The Functional Of Continuous With Movable

Boundaries

In this section we shall construct the optimality necessary
conditions, when the functional integrand is continuous having non-

integers orders , also functional having non-integer and integer orders.

3.2.1 Unconstrained Problem Having Only Non-integer Order

First , we shall consider the problem of the form :

Vy)=[, ' F(x,y,y@) dx ..(3.1)
where;

0 < a < 1, and with given prescribed boundaries conditions.
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Consider one of the end points is variable (say (x1,y1)) , i.e. (Xg,y1) can

move turning into (x; + x4,y + 8y,), then for a>0 noninteger

M= [T (xy + 8y, ¥ @ + 8y@)dx - [ F(x,y,y@) dx

— ™ x1+6xq
= fx() (X;y + 5}’ ;y(a) + 6y(a)) dx + fx1 F(x,y + Sy ’y(a) +

Sy @) dx — f;:)l F(x,y,y®) dx

= f;l1+5x1 F(x,y + 8y ,y(a) + 8y(“))dx + f,:)l[F(x,y iy ,y(a) +
5y @) — F(x,y,y@)] dx (32)

The first term of the right - hand side of the equation (3.2) can be

transform with the aid of the mean value theorem given we get:

+6
IXI xl F(x!y + 6y,y(a) + 6y(a))dx = Fx=x1+06x18X1 J

X1
where (0 <6 < 1)

Furthermore , by virtue of continuity of the function F,

F | x=x1+08x1 F(x, y’y(“)) |X=X1 t&1,
Where;
E1-0 as 6x;-0 and 6y, -0

Consequently;

[AUE (x,y + 8y, ¥y @ + 5y @)dx = F(x, Y, ¥@) | oy, 8%; ++(3:3)

X0

The second term of the right-hand side of eq. (3.2) , can be transformed

by using Taylor formula to get :

LF(xy + 8y, 5@ + 8y®@) — F(x,y,y®)] dx
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= [ Fy(£3,Y)8y + Fy (xy,y )8y @)dx + Ry

Where R; is infinitesimal of higher order than 8y orédy® then

= f;,l (Fy 8y + Fy8y@)dx = fx’j)l(Fy 8y + F,wD@8y)dx

Using (1.10) , for the second term, in which 8y a-differentiable , we have

8 = F(X,,¥9) | 4oy, 8%1 + [ (Fy = 25 F ) 8y dx

dx® "'y

Since the value of the functional are only along extremals (i.e. dv = 0)

consequently , we have the following necessary condition :

FX,Y, Y @) | xex, = 0 ..(344a)

a

d F,w =0 ...(3.4b)

Y ax®

F

second, (3.1) can be extended, to different multi fractional-order ai>0

, and non integer (i=1,2,3,...m) , by the following problem :
v(y) = [, FO,y, 50, .., y©@m) dx ...(3.5)

consider one of the end points is variable (say (xi,y1)) , i.e. (X3,y1) can

move turning into (x4 + x4 ,y1 + 6y4), then

Av = f;;l F(x,y + 8y,y) + gy@),  y@m) 4 syl@m)y dx +
fx1+6x1 F(x,y + Sy , Sy ’y(al) + 6y(a1), ...,y(am) +

X1

8y(am) )dx — fxi)l F(x’ y, y(al)’ - y(am)) dx

Av = f;lﬁsxl F(x,y + 8y,6y,y @) + §y@), ., y@m) + gy@m) Ydx +
f;(;l[F(x,y + 6y ,y(al) + 6y(a1), . y(am) +

sy@m)) — F(x,y,y@, ...,y )] dx +(3.6)
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The first term of the right- hand side of the equation (3.6) can be
transform with the aid of the mean value theorem to get :

x1+6xq F X, + S ,8 ) (aq) + ) (al), . (am) + o (am) dx =
. y +6y,8y,y y y y
F | x=x1+98x16x1 )

where0 < 6 <1

Furthermore , by virtue of continuity of the function F,

F | x=x1+08x1 = F(X’ y’ y(a)’ e ’y(am)) | X=X1 + £1 '
Where;
E1~-0 as 6x;,-0 and 6y, —~ 0

Consequently;

[ (xy + 8y, Y@ + 8y(@, ., yl@m) + sylem))dx =

F(X' \/ y(a), ,y(am)) | x=x18X1

The second term of the right-hand side of eq. (3.6) , can be transformed

by using Taylor formula to get :

[ F(ay + 8y, y@0 + 8y, ., yem + gylen)) —

F(x,y,y@, .. y@m)) dx

:fxx(')l Fy(x, y, y(al), ey y(am))(sy + Fy(al) (X’ y’ y(al)’ v y(am))6y(a1) + e

Fy(“m) (X, y, y(al), e y(“m))ay(am) dx + R1

Where R; is infinitesimal of higher order than &y ordy@v, ..,
Sy@m) then
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:fx’;l(Fy 6)’ + Fy(al)é‘y(aﬂ + .+ Fy<am)6y(“m))dx — f;;l(Fy 8}’ 4

Fy(al)D(“l)Sy + -+ Fy(am)D(“m)Sy)dx

Using (1.10) , for the second term , in which 8y a-differentiable , we

obtain :

ov = F(X} y, y(“l) y(am)) | <= X18X1 + f (F — ﬂFy(al) —_ e —

dx%1
dem

dx%m

F am) 8y dx

Since the value of the functional are only along extremals (i.e. 5v =0)

consequently , we have the following necessary conditions :

F(x,y,y@, .., y@m) [, =0 ..(37a)
d%i
Fy_zlnldaF(“l)_O (37b)

Third, the problem (3.5) can extended, further more to multi dependent

variable , for the following problem : a;>0 non integer

V10 V) = [ FE Y, o, Y Y3 ¥ i,y dx .(3.8)

consider one of the end points is variable (say (x3,y1)) , i.e. (X3,y1) can
move turning into (x; + dx4,y; +8y,), by variants on dependent

variable and fixing the remaining dependent variables, then

+6
Av = [0 F (%Y1 +8Y1, Y2+ 8Y2, 0, Yu + 8y, ¥70 +

5},(“1), L (@m) _|_6y(0£m), ,y(“1) +
(a1)

8ye, e Y Sy )dx = [ (Y, o, Y ¥ Y Y,y dix

37



Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

hv = [, F(x Y1+ 8Y1, o Yn + 8y, Y + Sy, Ly +

Y™, Y5+ Sy, i Sy )z + [N (xy1 +

8Y1 s wes Y+ 8Yn Y1+ 8L,y Y,y

Syw ), Yy Sy )dx — [T F (%Y, o Y 5 v VS, v ™) dx =
L F (214 8Y1, 0 Y + 80 30 + 8y, Ly 4

8y(am)’ . y1(1d1) + 6y1(1d1)’ ;yn m)ay(am))dx + f:(;l [F (x, y1 _|_

8}’1 yr Yn +
Syn ,+8y(a1), .,yifm + 8y“ ) 'yn (a1) + 6)’(“1), Yy m)6y(“m)
FXY, oo, Vi Y0, o,y y 0 ylom)y d ..(3.9)

The first term of the right- hand side of the equation (3.9) can be

transform with the aid of the mean value theorem to get :

x1+6x Ay
[ (2,1 + 81,0 Y+ 8y, ¥7 0 + 8Y7L Ly +

X1
Y™,y + 8y, Ly + Sy )dx = F | exyrosn 881

where0 <608 <1

Furthermore , by virtue of continuity of the function F,

F | x=x1+08x, = F(x' Y1 Y ygal)' ,ygam),y;aﬂ, - Yn m)) |X =X1 + 81 ]

Where;
E1~-0 as 6x;-0 and 6y, -0

Consequently;
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L F (214 8Y1, 0 Yn + 80 Y0 + 8y, Ly +

X1
sy, Ly 4 sy ylem) 4 gylem)y gy —
FOOY1 e Y Y ¥y, y ) |, 8% .(3.10)

The second term of the right-hand side of eq. (3.9) , can be transformed

by using Taylor formula to get :

fxi)lF(x'yl +8y1""'yn +6yn’yga1) +

8},5“1)’ ...,ygam) + 6ygam)’ ...,y,(f“) + 6)’,(1“1), _"’yglam) + ‘ngzam)) _

F(x,y1, -, ¥n yi“”. e yi“’"), 3’1(1“1); oy y;am))) dx

=f;,1 Fy(x,y1, -, Yn yi‘“), ...,yg“’"),y,(fl), o, ylEmy = f;;l(pyl Sy, + -+

Fynayn + Fygal) 6)’;“1) + e+ Fygam) 6y§“m) + -+ Fy(a1)8y£la1) 4t
Fy;am) Syf,“"’))dx + R,
Where R; is infinitesimal of higher order than &y or8y®? for all i
=f;)1(Fy1 6y + -+ Fy 8y, + Fygal)é'ygal) + -+ Fygam)é'yg“’") ot
F @ )8y(“1) +4+F @ )5y(am))dx

Yn 1 n Ya m n
= fx’;l(Fyl 8y, +--+F, 8y, + Fygal)D(a1)6y1 4ot Fygam)D(“m)é'yl n
e Fy(“l)D(m)ayn 4o Fy(am)D(“m)tsyn)dx

Using (1.10) , for the second term , in which 8y a-differentiable , we

obtain :

39



Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

617 =F (x, y1; ---;yn; ygal ) ;ygam). y;al); lyglam)) | X=X18X1 +

d®m d*1
(“m) - - dxal

fxxl(F + ot Fy —LLF oy —

F F e —
a1y  dxem ¥y v

d%m

F (am)) oydx

d%1 dom d®1

817_J'XI(F Fygal) — Fygam))(yyl (F ~ T —F 1(:11) _— e —

d®m

F (am)) Syn dx

Since the value of the functional are only along extremals (i.e. v =0)

consequently , we have the following necessary condition :

F(x:yli' ;Yn;yg 1)' 'yg m)'y1(1a1)' ,ygl“m)) |X=X1 =0 (311 a)
d%i .
Fy — XM~ F oo =0, (=120 ..(3.11b)

3.2.2 Unconstrained Problem Having Integer and Non-integer
Order

First , we shall consider the problem of the form :
v(y) = [ F(xy,y,y®) dx ..(312)

Where one of the end point is variable (say (x4, y1) i.€. (x4, y1) can move
turning in to (x4 + éx4,y1 + 6y1) ,0 < a <1 and with given prescribed
boundaries conditions.

Av =

[T F(x,y +8y,y +8Y,y@ + 5y @) dx — [P F(x,y,y,y@) dx
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X0

F(x,y,y ,y(“))]dx ...(3.13)

First term of the right-hand side of equation (3.13) will be transformed

with aid of the mean value theorem , we get :

fx1+8x1 F(x,y +8y,y +8y,y@ + 6y@)dx = F(x,5,Y,y®)|x—x, 6%

...(3.14)

The second term of the right-hand side of equation (3.13) can be
transformed by using Taylor formula to get

fle[F(xry'ylly(a)) dx — F(x,y,y',y(“))]dx =

fx]i)l[Fy(xi Yy, y’: y(a))(Yy dx + Fy’ (x, Y, y’,y(a))ay’ +

Fyo(xyy,y®)sy@]dx

Integrate the second term by part , and using (1.10) for the third term in
which 8y is a-differentiable , we obtain

F, 6y] +fx1( %Fy' +;—;Fy(a))8y dx

Since the value of the functional are only along extremes (i.e.dv =0 )
consequently we have

F —EF}, +d aFy@ 0 ...(3.15)

And therefore
f;,l (Fy8y + F 8y + F @8y )dx = F 8y |y, ...(3.16)

Observe that 6y|,—,, does not mean the same as &y, , the increment
of y, , for &y, is the change of y-coordinate is afree end point , when it is
moved from (xq,y1) t0 (X1 + 6 x1,y1 + 6 y1) where ; &y|,_,, is the
change y-coordinate of an extremal produced at the point (x = x;) when
this extremal changes from that passed through the points ( xq, y¢) and
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(x41,y1) to another one passing through (xg,y,) and (x; + & x4,y1 +
6y1).

L
i
. f..l'___,_...-—gﬁflrl ; rj--!'-'l,?.f; ¢ -::Tj'.ﬁ,l'
: £
s
(a2
1
, A : :
1 1
| 1
i‘ o ____.__I._._—-l—-———.-—--
() iy oy v Ay e
Extremal Changes
Fig. (1)
BD=Fc — Ec

OY|x=x, = 6y1 — y (x1)8x4

Consequently , since the fundamental necessary condition for extremum
ov=20.Is

0V = F|y—y,6x1 + F,; 6y =0

= Flyey,0%1 + F,; (6y, — ¥ 6x,) =0

Therefore ,we have the following necessary condition :
(F =y Fylyex,8%1 4+ F) | 1x,6y1) = 0 ... (3.17)

If the variations 8x; and &y, are independent , then we have the
following conditions for extremum .

(F - y,Fy')Ixle =0 and Fy' |x=x1 =0 (318)
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If the variations éx; and &y, are dependent , for instance suppose that
the end point (x4,y1) can move along a certain curve y; = ¢p(x4) In
equation (3.17) we get:

(F - y,F}”)lxleaxl + Fy' |x=x1(¢(x1))6x1 =0
[F + (¢’ - y,)Fy' |x=x1]6x1 =0

Since 8x; Is arbitrary then the necessary condition ,which is called
"Transrersality Condition™ becomes:

F+ (@ (X) = Y)Fy lyeg, = 0 .(3.19)

second the problem (3.12) can be extended, to different multi integer

and non integer order a>0 , of the following problem :

V(Y10 ¥n) = [ FOY1 o Y Y1) Y ¥ YD) dx ..(3.20)

Where one of the end points is variable (say(x4,y1)) , i.e. (x1,y1) Can
move turninginto (x; + 8 x1,y1 + 8 y1)

8o = [T F @Y1+ 8Y1, o, Yo+ 8V + Y1+ 8V Y+ 8V Y +

8Y, 3+ 8y dx — [T F@ Y1, Yu Vo Y VY VD) dx
+6 I ! ’ !

= [N FQO Y1+ 8V Y+ 8V + Vi 8YL, o Yn + 8V 1 +

Y37, v+ 8yy) dx 4 [F( Y1+ 81, Yn + 8V + Y1 +

Y1, Y+ 8Yn, Y57 + Y7,y + 8y) —

F (x, yl, "',yn, y;, "',y;l, yga)l "'lygla))]dx ---(3-21)

The first term of the right-hand of equation (3.21) can be transformed
with aid of mean value theorem to get :
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+8 , , , ,
— f:ll TF, Y1+ 8Y1, o, Yn + 8Yn + Y1 + 8Y1, e, Y + SV, yga) N
83’5“), ...,y,(,“) + 5}7;‘1)) dx =
F (x’ yl' ---;.Vn' ylli "'Jyln; yga), ,y.fla)) |x=x18x1
...(3.22)

The second term of the right-hand side of eq. (3.22) can be transformed
by using Taylor formula , we get:

[P, Y1 + 8Y1, o Yn + 8Yn + Y1+ 8V 1, Yo + 8Yn, Y17 +
8Y 7, ¥+ 8y5) = F (2,31 Y Vs s Y Y175 o 50 )1 =
fx’:: F, 8y, +--+F, 6y, + Fy'lé‘y'l + -+ Fy;l6y'n,Fyg6y§“) + -+

F 5y ™) dx
Integrate the terms from Fy'16y'1 to Fy'nay'n by part , and using (1.10) for

terms Fy<a)6y§“) to Fy(@Sy,(f‘) in which &y,, ..., 8y, is a-differentiable
1 n

we obtain:

m o Fy oy S (Fy — L Fy ~LF ) dx
j=1 Yj yl X0 xo “J=1 Yi  dx"Yj dx“ y(a)

— , 1 X1 d , d*
v = lele‘sxl + er'lzl ijayj]xo + fxo }1:1 (ij - ;Fy]_ — mFy}(_a)) dx

Since the value of the functional are only along extremes (i.e. év = 0)

L _4a ,_d_ap =0
=10y T ax Y axe

By the same argument as that given on first problem of eqution(1.3) . we
obtain

8Yjlxmr, = 8Y; = ¥;(x1)8%1 (i=1,....n)
and consequently

8v =[F - Z}‘=1Fy}6yj] 5x, + Z}‘=1Fy}6yj] =0 ...(3.23)
X=X1

=x xX=x1
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If the variation éx4 , 8y, , ..., 8y, are independent then it follows from
the condition év =0

F_Z?=1Fy}5y1'] =0 Fy}] =0 ,(J=1,..,n) ...(3.24a)

X=X1 X=X1

If the boundary point can move along certain curve y; = ¢;(x,) for all
(i=1...n) then 8y; = @;(x1)8x4 and the conditions §v = 0 or

F—2i1Y; Fy}_] 0x1 + X Fy}_6y]- =0

X=X1

Turnsin to

F+ 3 (6= YpFy|  8x =0
1

and since éx4 is arbitrary , we have

[F + Y7, (¢; — y})Fy}] =0 ...(3.24b)

X=X1
This condition is called the Tranrersality Condition .
Third , we consider the functional of the form
v(y) = [[*F(x,y,y .y ,y®) dx ...(3.25)
y X0 Y.y .y

Where one of the end points is variable (say(xq,y1)) i.e. (x1, 1) can move
turning into (x; + 8 x1,y1 + 8 y1)

M= [y + 8y, +8Y .y + 8y YO + 8y @)dx -
[DFxyy.y,y®)dx

= fxx11+6x1 Fx,y+8y,y +8y,y +6y ,y@ + 8y @)dx +
fx’:,l[F(x,y +8y,y +8y .,y +8y ,y@ + 5y@) —

F(x,y,y,y ,y®)]dx ...(3.26)

The first term of the right-hand side of equation (3.26) can be
transformed with aid the mean value theorem ,we get :
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fxxlﬁaxl Fix,y+68y,y +8y.,y +6y ,y@ +6y®)dx =
F(x,3,9,9 )| e, 6x1

The second term of the right-hand side of equation (3.26) can be
transformed by using Taylor formula given by equation(1.5) we get :

LF(y+8y,y +6y.,y +8y ,y@ +6y@) -

F(x, y, y’, y” , y(a))]dx —
fx’? (Fy8y +F, 8y +F, 8y +F w8y )dx+R

Integrating by parts the second term of the integrated and doing the
same twice with the third terms and using (1.10) for the forth terms

X1 ) ’ _ , X1 o i ,
fxo F,6ydx=F, 6‘y]xﬂ fxO (o Fy 8y)dx
x1 . " _ . I x1 _ x1 i . 1] _ . xl
fxo F, 8y dx = F, &y ]xo fxo (; Fy 8y )dx=—[F, 6‘y]x0 +
X1 dz Y
fxo (@ Fy 6)’) dx
and then remembering that

! d dZ da
8Ylxx; = 0,8y |x2, =0 ,and Fy——F, ——= F; —— F =0

We obtain:
rd
6v = [F éxy + F, 6y +F, 8y — E(FYH ) 6Y]x=x,

Making use of relation 8y; =y (x1)8x; + [6y],—,, and applying this
result also to 8y,

8y1 =y (%1)6x1 + [6Y Jxex,
We obtain
ov =
' " rd
[F~YFy Y Fy +y (Fy)

F_’y” |x=x16y,1

d
6x1 + [Fy’ — E Fy” ]x=x1 6}71 +

X=X1
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Consequently , the fundamental condition of an extremum év = 0 takes
the form

’ " rd d
I) [F_yFy’_y Fy" +y E(Fy”)lxleaxl-l_[Fy'_EFy”]xleayl +
Fy" |x=x16y1 =0

If 6x;, 8y, and 6y'1 are independent , then their coefficients should
vanish at the point x = x; , if these is some relation between them |,

y1=¢(x1) and y; =p(x1) , then 8y; =¢ (x1)6x; and 8y; =
Y’ (x1)8x, and substitution , these values into formula(l) we have :

' " rd d ’
[F—;IIFy' -y Fy +y ;(Fy")+(Fy' - F,¢) +
Fy” Y ]x=x18x1 =0

l " rd d !

Hence [F-—yFy -y Fy +y —(Fy)+(Fy ——Fy¢) +
Fy” 1[’ ]x=x1 = 0

I If x;,, y; and y'1 are related through one equation qb(a\cl,yl,y'1 )=0
, then two of the variations éx, , 8y; and &y, are arbitrary and the
remaining one is give by the equation

b, 8%1 + Py, 8y1 + 8y =0

3.2.3 Constrained Problem Having Only Non-integer Order

First , we shall considering the problem of the form :
V(y)= fx’? F(x,y,y®)dx , suchthat ¢(x,y,y®)=0 ..(3.27)

where;

0 <a<1,Aisexistand with given prescribed boundaries conditions.
Our approach based on the theories presented in [15] ,we construct the

following auxiliary functional :

Z(x,y(x),yO(x)) =F + ¢
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Where A is a Lagrange multiplier , then the problem (3.27) can be
started as following:

V(Y)Y )=[ ) Z(xy,y @) dx .(3.28)

and one of the end points is variable (say (Xi,y1)) , i.e. (X1,y1) can move

turning into (x4 + 6x1 ,y41 + 6y,1), then

Av* = f;}lwxl Z(x,y + 8y, y@ + 6y @) dx — fx?Z(x, y,y®) dx

= f.:;l-l'sxl Z(x,y + 8y ,y(a) + 6y(a)) dx + fxx(.)l [Z(x,y + 6y ,y(a) 4
5y @) — Z(x,y,y®)]dx ...(3.29)

The first term of the right - hand side of the equation (3.29) can be
transform with the aid of the mean value theorem , we get :

é
[27Z(xy + 8y, ¥ + 8y @)dx = Zy— 105,81

X1
where (0 <6 < 1)

Furthermore , by virtue of continuity of the function F,

z | x=x1+06x; Z(xy, y(a)) | x=xy T €1,
Where;
E1-0 as 6x;-0 and 6y, -0

Consequently;

fx1+8x1 Z(x,y + 6)’ ,y(a) + 6y(“))dx — Z(x, y, y(d)) | x=x18X1 (330)

X1

The second term of the right-hand side of eq. (3.29) , can be transformed

by using Taylor formula we get :
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[ 2(xy + 8y, y@ + 8y@) dx - [7 Z(xy,y®) dx
=21 Z,(%,9,¥@)8y + Z,w(x,,y )8y @)dx + Ry

Where R; is infinitesimal of higher order than 8y ordy® then

:fle(zy 6)’ + Zy(a)Sy(a))dx = fle(zy Sy +7 )D(a)sy)dx

y@

Using (1.10) , for the second term , in which 8y a-differentiable, we

obtain:
80" = Z(%,9,¥) | ox, 621 + [['(Zy — 227 ) 8y dx
By using the Fundamental Lemma (1.3.1.1 )and since (év* = 0) we get :

Z(x;y;y(a)) |x=x1 =0

Z, - 5Z =0

y dx®

F, — ﬂlaFy(a) =0

dx®

Or (F+ )| e, =0 ..(331a)
(F + Ap)y — = (F + Ap) e = 0 ..(331h)
then

P(x,y,yD)=0

second, the problem (3.27) can be extended to different multi-

fractional order ai > 0 (i=1,2,..,m) of the following problem :
v(x,y,y@, .., y@m) = fx’;l F(x,y,y@v, .., y@m)dx ...(3.32)

Subject to
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di(x,y,y@, ..., y@m)) =0 . for (k=1,...,K)

Our approach based on the theories presented in [15] , we construct the

following auxiliary functional :
Z(x,y,y, ...,y@m)) = F + A¢

Where A is a Lagrange multiplier , then the problem (3.32) can be

started as following :
v = [ Z(xy,y @, ..,y m)dx ...(3.33)

and one of the end points is variable (say (Xi,y1)) , i.e. (X1,y1) can move

turning into (x4 + 6x1 ,y41 + 6y1), then

Av* — fx1+6x1 7

X0

(x,y + 8y ,y(al) + 6y(a1), ,y(al) + 6y(a1)) dx —

fx? Z(x,y,y9,..,y*m)dx

Av* = f:”xl Z(x,y + 8y ,8y,y @) + gy@n), .., yl@m) 4 gy@m) Ydx +
fle[Z(x,y + 6y, y@) 4 sylad) | ylam) 4

6y(am)) _Z(x, y, y(al), ".,y(am))] dx (334)

The first term of the right- hand side of the equation (3.34) can be

transform with the aid of the mean value theorem , we get :

x1+6xq 7 X,y + 6y ’ 8}’ ,y(al) + o (al), . (am) + o (am) dx =
X1 y y y
Z | x=x1+08x16x1 ’

where0 <6 <1

Furthermore , by virtue of continuity of the function F,
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| x=x1+06x1 = Z(X’ y’ y(a)’ e ’y(am)) | X=X1 + £1 7

Where;
E1~-0 as 6x;,-0 and 6y, —~ 0

Consequently;

[ 2(xy + 8y, Y@ + 8y(@, .., y@m) 4 sy(en))dx =

Z(X) Y; y(a); ---:y(am)) | X=X18X1 (335)

The second term of the right-hand side of eq. (3.34) , can be transformed

by using Taylor formula , we get :

[ @(xy + 8y, y@ + 8y, .., y@m) + §yam) —

Z(x, y’ y(al)’ . y(am))) dx

:fx?(zy oy + Zy(a1)6y(a1) + e+ Zy(“m)6y(am))dx +R1

Where R; is infinitesimal of higher order than &y ordy@v, ..,
Sy@m) (i=1,...,m) then

[2 /2y 8y + Zyap8Y ™ + - + Z a8y ) dx = [(Z,, 8y +

Zy(al)D(“l)Sy + -+ Zy(am)D(“m)é'y)dx
Using (1.10) , for the second term , in which 8y a-differentiable, we have:

@
m d’i

8v* = Z(x,y,y @, .., y@m) | ,_, 8%, + [, @y - S g Z @) 8y dx
J

, By using the Fundamental (1.3.1.1 )and since ( dv = 0 ) ,we have the

following necessary condition :

F+ 2 |4y, =0 ...(3.36 3)

51



Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

a
m d%i

(F+2¢)y — X%y 7 (F+ 1) @ = 0 ...(3.36 b)

As well as
¢p(xy,y @, .. y@m) =0 for (k=1,...,K)

Third , we shall discussed the necessary conditions for the general

form of the problem (3.32) including many dependent variables , multi-
fractional order derivatives , and fractional order constrains, in which

such problems can be started as follows :

V1 0 ¥n) = [o FOOY1 s Y V1™ 7y, ™) dx
..(337)

Subject to

br = [ FX Y1, Y y v, ylem) ylen | yemy dy = o ,

(k=1,...,K)

by variants one dependent variable and fixing the remaining , dependent
variables , , and extend to our problems , therefore , we construct the

following auxiliary functional :

2y, o Yo Y50,y 0 ylEmy = pyym 2

Where A, is a Lagrange multiplier , then the problem (3.37) can be

started as following:

(am)

V*(J’1, ---ryn) = f;:lz(xrylt ---;J’n:)’§a1): "'Jyl ) ""y1(1a1)' ""yglam))

...(3.38)
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And one of the end points is variable (say (X3,y1)) , i.e. (X3,y1) can move

turning into (x; + 6x4,y1 + 6y;), then
= [N 2@, y1 + 81, Y+ Oy + Y + 8y, Ly 4

8}7(“1), .,ynal) + 6yn“m)) dx —

[ Z(xy1 e Y 5 Yy v ™) dix

= fx1+6x1 Z(X, Y1+ Y1, s Yn + Oy + YV 1 8y, L,y 4

sy, Ly 4 sy@my gy fx [Z(x, Y1+ 8V, e Y + 6V, +

Y1 (a1) + 8y(am), .,y1(1“1) + 6_’)’,(1“1), ’yn (a1) + 6y(“m))

Z(%,Y1 0 Y VI, Y,y S, Ly ) d ..(3.39)

The first term of the right- hand side of the equation (3.39) will be

transform with the aid of the mean value theorem , we get :
[ 2@, y1 4 8Y1, s Yo + SYa + VS + 8y, Ly
sy . ylem) 4 gylemy gy = 7| x=x,+06x,0%1 , Where 0 < 6 < 1

Furthermore , by virtue of continuity of the function F,

_ ( (am) ( (am)
Z|x=x1+06x1_ Z(xlyli""yn'y1a1' 'y1 , 'lynall 'yna )|x=x1+
&1,

Where;

E1~-0 as 6x;,-0 and 6y, —~0

Consequently;
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[ 20,1 + Y1 s Y+ By + YD 4 Sy Ly 4

X1
Sys v, L yS + sy ™) dx =

(am) (am)

(ax
Z(x,yl,...,yn,y1 R eyl oyl ) |x=x15X1 ...(3.40)

The second term of the right-hand side of eq. (3.39) , can be transformed
by using Taylor formula , we get :

fx’;l [Z (x, Y1+ 68Y1, e, Yu + 8y + Y0 4 8y y0) 4

SYSY, ., yu ) + SyS™) da -

(am)

VA (x, yl, ...,yn, yial), ""yl ) e ,yglal), ’yglam))] dx

=2y, 81+ -+ 2y, BYutZ e By + e+

Zy(lam) 6)’2“'") +Zy§la1)5y1(1“1) + .. +Zy$l“m) Sygxm))dx +R1

Where R; is infinitesimal of higher order than &y; or6y]‘.“ for
(i=1,...,m,},1,...,n) then

[2(Zy, 8y1 + -+ Zynayn+zy§a1)6y§“1> bt

Zygam) 6ygam) +Zy(0l1) 8y£la1) + ... +Zy1(1am) Sy;am))dx

fle(zh oy + -+ Zyn5yn+Zy<1a1>D“15y1 +

+Zy(am)D“m6y1 +Zy(a1)D“16yn + - +Zy(am)D“m6yn)dx
1 n n

Using (1.10) in which éy a-differentiable , we obtain :

@
m d%i

ov' =12 | x=x18x1 + fx?[(zyl - Zi=1 dx%i (Fygai))) 6}71 (Zyn -
J

@
m d%i

i1 e (Fylgai))) Synldx
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using the Fundamental Lemma(1.3.1.1 ) and since ( év =0 ) ,we have

the following necessary condition :

(F+3M i A ) |xex, =0 ..(341a)
d%i .

[Fy,] = [XiE1 = Fylgaa] =0 ,(=1....n) ...(3,41 b)

As well as

O (x.yl. e Y YD,y Ly, ---,yff"")) | yex, = 0, for

(k=1,...,K)

3.2.4 Constrained Problem Having Integer Non-integer Orders

First, we shall consider the problem of the form :

v) = [ F,y,y,y) dx
Suchthat  ¢(x,y,y,y®)=0 ...(3.42)

Where one of end points is variable say (xq1,y1) 1.e. (x1,y1) can move
turning into (x; + d x4, y1 + 8 y1).

we construct the following auxiliary functional
Z(x,y,y,y®)=F + A¢

Where 4 is a Lagrange multiplier , then the problem (3.42) can be stated
as following:

vy, Y,y ) = [ Z(xyy,y@) dx ..(3.43)

and one of end points is variable say (xq{,y41) i.e. (x1,¥1) Can move
turning into (x4 + 8 x1,y1 + 8 y1).then

55



Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

Av* =

[F5% 7(x,y + 8,y + 8y, y@ + 5y @) dx — fx’;lz(x, y,y,y®) dx

X0

fxi1+6x1 Z(X,y + 6y, y’ + 6y’,y(0l) + 6y(a)) dx + fle[z(x; y, y’; y(a)) dx —
205,y y®dx ..(3.44)

The first term of the right-hand side of equation (3.44) can be

transformed with aid of the mean value theorem , we get :

+6 ' /
LU 2y + 8y, + 8y, 5@ + 8y @) dx = Zlrey, 050,671 ,

X1

where(0 < 6<1)

Furthermore , by value of continuity of the function
Z|yexys08r, = Z(£9,Y YO lxmx, + &1

Whereg; -0 as 6x;-0 and dy;—-0

Consequently

fx1+6x1 Z(x,y + 6y, y’ + 6y’,y(a) _|_ 6y(a)) dx = Z(x; y! y’l y(a))|x=x15X1

... (3.45)

The second term of the right-hand side of equation (3.44) can be
transformed by using Taylor formula given , we get:

L2y +8y,y +8y,y@ +8y @)~ Z(xy,y,y@)ldx =
[21(Zy8y + 2y 8Y + Z 8y @)dx + R1

Where R, is infinitesimal of higher order than &y or y®

Integrating by part for the second term and using (1.10) for the third
term , on which 8y is a-differentiable. we obtain :
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X1 @Y dx = g _dg.8_
f (2,8 +Z, 8y + Z 8y @)dx = [Z, 8yl[3L + [ (2, - 2,6
ﬂ y(a)) oy dx
The values of the functional are taken only along extremal

Z, —Lz.6-L

dx Yy dx Z,w=0

Then

f;j)l (Zy8y + 2, 8Y + Z w8y ) dx = Z, 8y,
The same procedure in the moving boundary we get:
8Ylx=x, = 8y1—y (X1)6 x4

ov' = Z|x=x16x1 + Zy' |x=x1(6y1 - y, (xl))6x1 = (Z - y,Zy')lxle‘sxl +
Zy' |x=x18y1

The fundamental necessary condition for an extremum dv = 0 takes the
form

(Z-YZ))yer, %1+ Z) |5=x,6y1 =0 ...(3.46)
If the variations x4 and & y; are independent, then it follows that
(Z-y'Z,)lyer, =0 and Zy |xex; =0

Z(x,y,Y,Y®)|yex, =0

d d“
y

7. %27 _2
Y ax"y dx®

Zy(a) =0
As well as

d(xy,y,y?9)=0

second, we shall consider the problem of the form :

V1Y) = [ FEYL o Y V1 s Y ¥4 o ) d

Subject to
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O (X1 YV V¥ ¥0) =0 (ELLK) L (34)

Where one of end points is variable say (xq1,y1) 1.e. (x1,y1) can move
turninginto (x; + d x1,y1 + 8 y1).

we construct the following auxiliary functional

Z(2y1 Y Vi Y I 00) = F R A

Where 4, is Lagrange multiplier , then the problem (3.47) can be stated
as following:

V'O V) = [ 26V e Y Y oo Y Vi YD dx L (3.48)

And one of end points is variable say (xq1,y1) 1.6. (x1,¥y1) Can move
turning into (x4 + 8 x1,y1 + 6 y1) then.

« +6 ’ / ’
Av” = f::)l XIZ(xlyl +6y1""iyn+6yn+y1 + 6y1""'yn+

8V ¥ + 86y, ..,y + 5y @) dx -

fx.x(:)l Z(x; Yo Yn yll, '"’y;’hyga), ,ygla)) dx

+6 , , , ,
= f;ll LZX Y1+ 8Y1, s Y+ Y + Y1+ 8V s Vi + 6y, YO+

Y,y + Yy dx + [TUZ(X,y1 + Y1, Yn + 8Yn + V1 +

8Y1 e Y + 8, YO + 8y, Ly + 6y P) -

Z (x;)’p "'Jyn;ylly "'Jyln:yga): ;y,(la))]dx (349)

The first term of the right-hand of equation (3.49) will be transformed
with aid of mean value theorem to get :

= [N Z(X 1+ 81 s Yo+ 8V + Y1+ 8V Y+ Sy Y +
Syga), o Y9 4 5y @y dx = Z|y—x,+08x,0%1 , Where (0<6<1)
Furthermore , by value of continuity of the function

Z|y—x,106x; = Zlx=x, + &1

Whereg; -0 as 6x;-0 and d8y;—-0
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Consequently

x1+6x
fx11+ 'ZOLY1+ 8Y1, e Yn + 8Yn + Y1+ 8YL, o Yn + Y ¥

8P, .,y + 6y ) dx = Z|y—y, 6%

The second term of the right-hand side of eq. (3.49) can be transformed
by using Taylor formula to get :

[HZ Y1 +8Y1 o Yn + 8Yn + Y1+ 8V, Yo + 8V, ¥ +

89, ¥+ 8y) = Z (%Y1 Y V1 s Y VYD, ,yf{"))]dx =
212y, 8y1+ -+ 2y, 80 + Z,;,8y1 + -+ 2y 8y, Z w8y + -+
1
(a)6y )) dx + R1
Where R; is infinitesimal of higher order than &y; or Sy} or Sy(“) for
(j=1,...,n)

Integrating the term’s fromZy'16y'1 to Zy'n6y;1 by part and using (1.10) in
which 8y is a;-differentiable. we obtain :

NAT) -]x1+f"12" Z, - 27, _ 27 o)dx
j=1%y;%Y; xo X0 “IFL\TYi T ax i daxe Ly

_ X1 d , . a
51) le X16x1 +Z] 1Z 6)1]] +f (Zy] Ezy] dxazy](.a))dx

Since év* = 0 along extremes , we have the following:

1o d d“ _
Z|x=x16X1 + Z}lzlly}Sy]] %0 + f (Zy] EZ},; — @Zy}(_@) dx =20

n (2, -2z, -7 o)dx=0
=1\ 2y~ Ly T e Ly

By the same argument as that given on first problem of this chapter ,we
obtain

6y,-|x=x1 = Syj - Y}(xl)(sxl ! (j:1,...,n)
And consequently

8v" = [Z = 5]y ¥j Fy lxez, %1 + [E]e1 Z) 8Yjlumx, =0
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If the variations , éx4, 8y4 ,..., 8y, are independent then it follows the
condition dv = 0 that:

[Z - Z}l=1 y; Zy}]x=x1 = 0 ’ Fy;.lx:xl = 0

If the boundary can move a long certain curve y; = ¢;(x,) for all
(i=1...n) then y; = ¢;8x, and the condition §v = 0 then

Z- ¥, y; Zy liex, %1 + X1 Zy 8Y; =0

Turninto

Z+ 30— D) Zy ]x=ry 0% = 0

And since éx; is arbitrary , we have

(Z+ X1 0 = D) Zy lx=zy = O .-.(3.50)

As well as

S (.71 0 Y Vs Y VS, 90) = 0
Third : we are consider the problem of the form
v = [ Fxyy,y ,y®) dx

Subject to

d(xy.y.,y . ¥y9)=0 ...(3.51)

Where one of the end points is variable (say(x4,y1)) i.e. (x1, 1) can move
turning into (x4 + & x1,y1 + 8 y4).

therefore , our approach based on the theories presented in [15] ,we
construct the following auxiliary functional

Z(x,y,y,y ,y®)=F+ ¢

Where 4;, is Lagrange multiplier , then the problem (3.51) can be stated
as following:

v = Zxyy,y y@) dx ... (3.52)
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AV* = f;;ﬁsxll(x,y +8y,y +8y,y +8y ,y*+ 8yMdx —

[ 2y Y,y ¥y @) dx

= fxxl1+5x1 Z(x,y + oy, y' + 6}’,,}’” +48 y" ,y(a) + 6y(“))dx n
fx?[z(x»y + 8}’; y’ + 8}7’ ,y” + 8y”,y(0l) + 6y(a)) _
Z(x,y,y,y ,y®)]dx ...(3.53)

Applying the mean value theorem and using the continuity of the
functions Zand y (x),y" (x), y*(x) , we have

M =Z(x,3,Y,Y YD) x=x, %1 + fx?(Zy6y +Z,8y +Z, 8y +
Zya6y“)dx + R

Where R is an infinitesimal of order higher than the maximum of the
absolute values |8x4|,|8y4].18y|,|8y | and |8y | . consequently ;

8V = Z|yor, 6%1 + f;;l (Z,8y +Z, 8y +Z, 8y +Z b6y @)dx

Integrating by parts the second term of the integrated and doing the
same twice with the third terms and using (1.10) for the forth terms, and
then remembering that

! d dZ da
6y|x=x1=0 1 6y|x=x1=0 and ZY_EZ}"‘F@Z”——Z” =0

y dxe =Y
We have :

rd
0v=1[26x1+Z,6y+2Z, 8y — E(Zy)&y]x:xl

Making use of relation 8y; =y (x1)8x; + [6y],—,, and applying this
result also to 8y,

8y1 =" (x1)8x1 + [6Y |yex,

We have:
ov =

'z, -y'Z, +y L(z, 8x1+[Z) -2 Z, yer. &
[Z_yzy -y 4, +y E( y )]x=x1 x1+[ Yy o ax “y ]x=x1 Y1t
Z | 1=z, 6y1=0 ...(3.54)
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If 6x;, 8y, and 6y'1 are independent , then their coefficients should
vanish at the point x = x4

’ " rd
Z-yZ, -y Z, +ty ~Zy, =0

Zy” lx=x, = 0
If there is some relation between them , for instance y; = ¢p(x1) and

y1=v¥(x;) , then &y;=¢ (x1)6x; and 8y; =9 (x)éx; and
substitution , these values into (3.53) we have :

! n ! d d ! !
yZy’ =Yy Zy” +y a(zy”) + (Zy' _a Zy")d) +Zyull) ]x=x1 =0

3.3 The Functional Of Discontinuous With Movable

boundaries

In this section , we shall construct optimality and necessary
conditions , when functional is discontinuous on (xx) , for (k=1,...,m)
having non-integers orders , functional having non-integers orders and

integers orders.

3.3.1 Unconstraint Problem

First, we consider the simplest problem
v(y) = [/ F(x,y,y®)dx

Where Fj(x,y,y@) is well defined functional on the interval (xs,y;)
and (xy, yr) is moving i.e. (xg,ys) is moving i.e. (xs, ys) an move turning
in to  (xf+8x5,yr,+6y;) 0<a<1 and with given prescribed

boundaries conditions.
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Since the Fundamental Lemma of the calculus of variation(1.3.1.1 )

cannot be applied , because of the discontinuities , it is more convenient
to calculate the extreme value of v(x,y(x),y®) along the curves
approximately so it is convenient to replace the integral of eq(2.32)by the

following

vy = [/ F(x,y,y®)dx

[o Fa(ey,ydx + X323 [[F Fiuxy,y ) dx + [/ Fo(x,y, y@)dx
...(3.55)

Then

Av =

[ Fi(6y,y@)dx + i3 [ Fixy,y@) dx + [ Fy(x,y +

8y, y® + 8§y @) dx — fx’;f F,(x,y,y*)dx

Av =

[7 Fa(x,y,y@)dx + Thch [ Fu(x,y,y @) dx+ [0 Fux,y +

8y, y® + 5y @) dx +
JFa(x,y + 8y, y®@ + 6y@) — Fy(x,y,y@)]dx ...(3.56)

The third integral term of the right-hand side of equation (3.56) will be
transformed with aid of the mean value theorem , we get:

+6.
fxyjrf N Fo(x,y + 8y, y@ + 8y @) dx = Fn|x=xf+95xf8xf :

where (0 <6 < 1)
Furthermore , by virtue of continuity of the functional F
Fn|x=xf+96xf6xf = Fn(x' YJy(a))|x=xf + 81 )

Where €, - 0 as éxy —» 0 and 8yy — 0 consequently ;
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5
fx’;ﬁ T Fa(x,y + 8y,y@ + 6y @) dx = F,(x,, Y ) lx=x, 6% ...(3.57)

The 4th integral term of the right-hand side of equation (3.56) can be
transformed by using Taylor formula theorem to we get:

[ (2,5 + 87,5 + 8y@) — Fo(x,y, y©)]dx

= [/ [(Fa)y (%, 3, ¥)8y + (Fp)ye(x,3,y@)8y@]dx + R

- fxif[(F")y(x' Y, y(a))ay + (Fn)y“(x; Y y(“))D(“)8y]dx

And
ov = fx";l(F1y oy + Flya6y(a))dx + ZZ;% ;:1(1?"}' Sy + Fkya5y(“))dx +

Fo(2,9,Y@) lxmr, 625 + [/ [(Fr)y (x5, 7)8y +
(Fp)ye(x,y,y)D®§yldx

Using (1.10) in which 8y a-differentiable , we have :

d“ _ d“
2 8v = [[1(F1, — 7= F1,0) 6y dx + 3323 [* (Fi, = 7= Fiya) 8y dx +
da
Fu(2,9, Y ) e, 8% + [/ (Fn)y = 7 (Fr)y«)8y dx

Since the value of the functional are only along extremals (i.e. v =0)

consequently , we have the following necessary conditions:

Fn(x;)’;y(a))lx=xf = 0 (358 a.)

((Fi)y — = (F)y«) = 0, forall k ...(3.58 b)

Second, (3.54) can be extended to different multi-fractional order a; > 0
(i=1,2,....m).

v= [T F(xy,y@,y@, . yom) dx ..(3.59)
Where Fi(x,y,y@0,y@)  y@m)) js well defined functional on the

interval (xg, y) and (xg, xg) is moving i.e. (x5, yy) is moving i.e. (xz, ¥5)
an move turning into (x; + &xs,y5 + 8yy) ,
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v(y) = [ F(xy,y,y@@, ., y@n) dx =

[7Fy(x,y,y@,y(@, . y@n)) dx +

Sia [y Fi(xy,y @,y ), . y@n) dx +

[ Faxy, y @,y ), .. ym) dx .(360)
then

Av =

[ Fy(x,y,y @, y@, . y@n)ydx +

TS Fi(xy,y @0, y@, . y@m) dx+ [T Fy (xy +

5y, y@ + gy@) y@) 4 gylan  y@m) 4 gylamydx —

[ Fy(x,y,y@0,y@), ., yl@m))dx

Xn

[ Fa(x,y,y ),y . y@m)dx +
— xXf+0x
SR L FuCoy,y @,y @,y ) dx+ [ Ry +

6}]} y(al) + 6y(a1),y(a2) + 6y(a2), . y(am) + 8y(am)) dx + IX[FH (x’y +

Sy’ y(al) + 6y(a1),y(a2) + 6y(a2), ’y(am) + 8y(am)) —
Fo(x,y,y@), y@2,  y@m))|dx ...(3.61)

The third integral term of the right-hand side of equation (3.61) will be
transformed with aid of the mean value theorem , we get:

fx'if+6xf Fn(x;y + 8}7’ y(al) + 6y(a1),y(a2) + 6y(a2), . y(am) +
8y @m)) dx = Fp|y—x,+05x,6%f , Where (0 <6 <1)

Furthermore , by virtue of continuity of the functional F
Fn|x=xf+06xf6xf = Fn(xi Y y(al): y(“Z), ---;y(am))lxzxf + 81 )

Where €, - 0 as &x; —» 0 and 8y; — 0 consequently ;

+6

Fo(x,y,y 0,y ., y@m)| . 6x; ...(3.62)

65



Cha pter Three Optimality Necessary Conditions Of Fractional Variation Problem Along Movable Boundaries

The 4th integral term of the right-hand side of equation (3.61) can be
transformed by using Taylor formula theorem , we get:

fxf[Fn (x,_'y + 8y, y(a1) + 5y(a1),y(az) + 5}’(“2), ,y(am) + 6y(am)) _
Xn
Fn(x, y, y(“l), y(az), . y(am))]dx

L I(Fa)y (2,3, 70, @2, .., y(@m) 5y +

(F‘n)yal (x’ y, y(al), y(az), e, y(am))ay(al) +

(Fp)yaz (2,3, y@0, y(@,  yl@m)gy@) 4 ... 4

(Fp)yam (2,3, @0, y(@), _ y(@m)) §y@m)]dx

6V =

[y (F1, 8 + F1 (a) 8y + Fy (u) 8y + = + Fy e 8y “m)dx +
Sh [, (Fi, 8Y + Fiya 8Y“V + Fi ) 6y“2 + - +
Fieyam 8y “m)dx + Fp(x,y, 50, y(2), . y@m)| _ 8x +
LTI )y 8 + (Fu) (e 8Y ) + (Fu) a8y + -+

(F 1)y ey 6y “m]dx ...(3.62)

Using (1.10) in which 8y a-differentiable , we get :

d*1 d*2
ov = IX1((F1)}’ dx® (Fl)y(“) - dx®1 ( l)y(al) dx®2 ( 1)ya2

(Fl)ymm)) 8y dx +

dx%m
d*2
Ek= X 1(( k)y dx al( k) (061) dx®2 (Fk)y(“Z) -t
dom
dx®m (Fk)y(am))6y dx + Fn(x, y; y(al); y(aZ); LA y(am)) |x=xf6xf +
dal daz dam
f;si((Fn)y — = 2o (Fn) (a0) = gy (Fa) y(a) = = g (F) y(am)) 8y dx

Since the value of the functional are only along extremals (i.e. v =0)

consequently , we have the following necessary conditions:

Fo(x,y,y0,y 2, . y@m)|,_, 6x,=0 ...(3.63 a)
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@
m d’i

((Fi)y — Zi=1m (Fk)y(ai)) =0, forallk ...(3.63 b)

Third (3.59) can be extended further more to multi-dependent variable .

V(y:l, ."'yn) = f.:sfF(x’ yl' ""yn' Ygal): ---;ygam); yglal)i ---Jyflam))dx

...(3.64)

by variant one dependent variable and fixing the retaining dependent

V(1 Yn) = [ FE YL Y Yy, v dx

...(3.65)
[P Y1 Y 3™ VX 7, ™ dx +
Ti [ Fe@ys o Yy e,y ™) dx +
fx’;f F,(x,y4, ...,yn,ygal), ...,yga’"),y,(lal), ...,ygl“m))dx ...(3.66)

Where Fi(2, Y1, o, Y, Y0, o, 0,y @0 y@my is well  defined
functional on the interval (xs,y;) and (xg, y¢) is moving i.e. (xg, yf) is
moving i.e. (xf, y¢) an move turning into (x; + éx, yr + 8yy) , then

M= [F @Y1 Yu Y™ Y YRy +

SR L Py oy vy yn ™) dx +
LT (2,91 + 8Y1, o, Y+ 8y Y30 + 8y, L yim 4

8yy™, ' + 8y, e,y ™ + 8y ™) dx -

x m) (am)
foFn(x;)’L---:}’n»}’gal);---»)’ga ryr(lal)""'yna )dx

Ay = [P (Y1, Y VL Y 0 ) +

TR ey o Yy ¥y ye ) dx +
[T Fa(®y1 + 81, Y+ 8 y{™ + 8Y{™, Ly (™ 4
8y, v + 8y ™,y + Sy ™) dx + [V [F(x,y1 +

6yY1, ., Yn + 6yn,yg“1) + 6y§a1), ...,yi“m) + Sygam),y;al) +
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6}7(“1), ,y;“m) + 6y(“m))
F (251 0, Y Y50, oy, y 0, Ly ) dx ...(3.67)

The third integral term of the right-hand side of equation (3.67) will be
transformed with aid of the mean value theorem , we get:

+6. am
[T Fy (X, Y1 + 81, s Y + 8V, ¥ + 8y, L ylEm) 4

Xf
6y(am); yn 1) + 6yn 1), ;)’1(1 ) + 6y(am)) dx = Fnlx:xf+06xf6xf ’

where (0< 6 <1)

Furthermore , by virtue of continuity of the functional F
Fn|x=xf+06xf6xf = Fn (x, yli ---;yn; }’gal ) ;yi m), y;al). ,_')’Elam)) |X=.X'f +
&1,

Where £, - 0 as &éx; — 0 and 8y; — 0 consequently ;

+6 m
LT Fu(X, 91+ 8Y1, 0, Yn + 8V y1™ + 8y, Ly +

8y(am);yn ai) + 8}7(“1), oV (am) + 6y(“m)) dx =

Fn (X,y1,---,yn,y1 B ’yg m),yglal)l, ,ygl m)) dx =
Fo (251 0 Y 5, o Y5, Y50,y |, 8 ...(3.68)

The 4th integral term of the right-hand side of equation (3.67) can be
transformed by using Taylor formula theorem to get:
LI (31 + 8Y1 s Yu + 8y Y30 + 8y, Ly + 8y, y (0 +
Sy(al) y (etm) + 6y(am)

yrJ)n

Fn (x,yl,.--,yn,yl ) :ygam);ygxl); lyflam))]dx

fof[(F")}ﬂ Oy; +--+ (Fn)yn6yn + (Fn) (a1>8yg“1) + -+

(Fn) <am>53’(“’") + ot (Fp) <a1>6y(“1) + o+ (Fp) <am>6y(“’")]d

Then
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ov =
fxxf[Fly 6y1 + -4+ Fl 8yn + F1 (a1)6yga1) + -4 Flygam)6y§am) 4ot
F, (“1)6)’1(1“1) +--+F, (am)é'y( m)]dx + Z;(l;% fyj(k_l(Fkyl 6y1 4+ -+

Fk ‘Syn + Fk (“1)6y1 ) + -t Fk (am)‘sy( om)

+o Fky;aﬁay,(,“l) +o
Fy (am)Sy( "‘))dx+

Fy (x, V1 Y VS VI VSV, Y™ ) i, 8% + [ (Fa, 81+
4 Fy, 8y, +F, (al)sy(“l) ++ Fy <am)6y1 4 .. 4+F, (al)sy(“l) +

4 Fp e 8Yn "’))dx

Using (1.10) in which 8y a-differentiable , we get :

x d*m
6v=[ '(F1, — o= F1 Y@ T g Py fem) Oy dX 4o+ (Fyy, —
d*1 d*1
axer F e = T o —F, yem )0y dx + Y=z ), 1( ky, ™ zeax Pk, (ay) —

d“m d*1
awam Fley(em)0y1 + - o+ [F (Fry, — o= Fi yan T

™ g 8 + Fplyex, 6% + [Y(F ‘“F
dx®m ky;am)) Yn n|x=xf Xf xn( Ny, dx%1 ny§“1)
Ly 5y, d F, —“F

axm Fny(em)) 0y1 A% + oot (Fuy, =2 By = =
dm

dxom Fnyglam))ayn dx

Since the value of the functional are only along extremals (i.e. v =0)

consequently , we have the following necessary conditions:
Fro (%310 Y V0, Y Y50, Y™ ) |on 82, = 0 ...(3.67 8)

[(Fa)y,] = Ziy 2 (Fi) @) =0, forallhand ] ..(367D)
J
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CHAPTER TWO

UntmaltySocesry Conditons O oacional Voo Problen
Ao fied Boundors

2.1 Introduction

In this chapter we concern on with the constructing of the optimality
the necessary conditions for unconstrained and constrained fractional
variation problems with continuous and discontinuous functional where
the independent variable along fixed boundaries having one or different
multi fractional order derivatives on one and different multi-dependent

variables ,by using the formula(1.10).
2.2 The Functional Of Continuous With Fixed

Boundaries

In this section we shall constructed the optimality necessary
condition, when the functional integrand is continuous having non-

integers orders ,also functional having non-integers and integer orders.

2.2.1 Unconstrained Problem Having only Non-integer Order

First , we shall consider the problem of the form :

v)=[, ! F(x,y,y®) dx e(2.1)
where;

0 < a <1, and with given prescribed boundaries conditions.
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It is also assumed that the higher integer and fractional order
derivatives of the function F (x, y, y(“)) exists, where « is real.

We already know that a necessary condition for an extremum of a
functional is that its first variation vanishes. We take any admissible
curve y = y*(x), neighboring to y = y(x) and we set up one-parameter
family of curves;
y(x,¥) = y(x) + P(y* (x) — y(x)) = y(x) + P8y.

When ¢ = 0, we have y = y(x), and when ¥ = 1 we have y = y*(x).
The variation 6y = y*(x) — y(x) is a function of the variable 1, this
function can be differentiated once or more and we have:
D*(8y) = ()@ = ()@ — y@ = 5y,
D"*(8y) = (5y)" = (y)" -y = gy,
Take on along the curve of the family y = y(x,1) only, then we have a
function of the variable VY :

v(yx,P) = ).
It is well known, the necessary condition that the function ¢ (1) has an

extremum for Y = 0 its derivative should vanish.
so(y(x¥)) = 7= Wﬂ@+wﬂ

v =¢H) = ¢(0) =0.

Since;
o) = j F(x,y(x, P), y @ (x, zp)) dx, . (2.2)
we have;
o) = f yx, ) + F o o— o —yD(x, ) | d ..(2.3)
J \Pay? oy

where;
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d
Fy =5 F (2 Y00 YO w), -2

Fyo = 5 F (2700 9), 79 0) 2.5)
y@ = ay(a) , Y(X, Yy R . . (2.

Because of the relations:

i} i}

P y(x, ) = ap (y(x) + Péy) = by, ..(2.6)
and
i @ (x, ) = i( @(x) +9Pé (a)) = Sy@ (2.7)
all}y , = 61[) y y = oy, .
it follows that:
o) = | (Fy (x v ),y ) oy

+F @ (x, y(x, ), y @ (x, 1/))) 6y(“)) dx, ..(2.8)
$(0) = f (Fy (2, y(2), Y@ (2)) 8y + Fyo (2, 3(2), Y@ (2) ) 8@ ) dix.

. (2.9)

As we have already remarked, ¢(0) is called a variation of the
functional and it is designated by 6v. The necessary condition for a

functional v to have an extremum is that its variation should vanish
ov =0.
Then

v = [ 'Fy8y +Fw8y® )dx = [['F,8y +F,wD8y)dx ...2.10)

Using (1.10) for the second term , in which 8y is a differentiable we have

X1 «
5v = J (Fy — 22 F )8y dx
X0

10
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Since the value of the functional are only along extremals (i.e. 6v = 0)

consequently §v = f;;l (Fy, — & F y@)8ydx =0

By using the Fundamental Lemma(1.3.1.1 ) we have the following

necessary condition
dll
Fy—wa(a) =0 ...(2.11)
second, we consider the problem of the form :
v() = [ F(xy,y@,y®) dx

for non integer, aandp, a>0, f >0, with given prescribed

boundaries conditions.

Then
8v = f;;l Fy, 8y + F w8y +F,;8y® )dx = f;j)l (Fy 8y +
F,D*8y + Fy(g)DﬁSy) dx ..(2.12)

Using (1.10) , for the second and third terms of (2.12) which 6y a-

differentiable we obtain :

a dP
ov = f:;l(Fy -4 Fy(a) — @Fy(/;))ﬁy dx

dx®

Since the value of the functional are only along extremals (i.e. v =0)

consequently we have :

dP

da
Fy—czFyo -3

F,p=0 ..(2.13)

Third, (2.1) can be extended, to different multi fractional-ordera; >0 ,

and non integer (j=1,2,3,...m) , of the following problem :

11
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v(y) = f;:)l F(x,y,y@, .. y@m)) dx ...(2.14)
Then
ov = f;zl Fy 8y + Y F 8y )dx =
f: (Fy 8y + 21 F D% 8y ) dx .e(2.15)
Using (1.10) , for the Fy(.x,-)D“iSy , for all j, in which 8y is a-

differentiable, we obtain:

d%m

dx%m

Sv = f;;l(Fy _ :;Lalle(al) _ . — Fy(am))Sy dx ...(2.16)

Since the value of the functional are only along extremals (i.e. v =

0) consequently , we have the following necessary condition :
Fy - Z]'=1 m Fy(aj) =0 ...(2.17)
Forth, the problem (2.14) can extended, further more to multi dependent

variable , for the following problem : ;>0 non integer

(am)

v(yl’ ""yn) = f;j)lF(x’yll ---;yn ) yg_al)r ---;)’1 ) ---;yglal); ---;yglam) )dx
...(2.18)

By variants one dependent variable and fixing the remaining dependent

variables ,we have

Then

f;)l(Fyl 8Y1,...Fy 8Yn , ...,Fyg“1)8yg“1), ...,Fyg“m)dyg“m), ...,Fy;al)ay,(lal), ...,Fy,(la'")8y£lam)) dx

[ (Fy, 89, Fy 89, Fy{"Vp*gy,, .., Fy' ™™ pngy,, ..., Fy D" gy, .,

Fyl“™ pangy Ydx .(2.19)

12



Chapter Two Optimality Necessary Conditions Of Fractional Variation Problem Along Fixed Boundaries

Using (1.10) , for the F,D%8y; , for all ij , in which 8y is a;-

differentiable, we obtain:

ov =

[y, = T g F )by, + -+ (Fy, = g F e ) 8, dx
...(2.20)

Since the value of the functional are only along extremals (i.e. 6v =

0 ) consequently , we have the following necessary condition :

[F yi] N [Zﬁl ;:'ii

2.2.2 Unconstrained Problem Having Integer And Non-integer
Order

ol=0  , (j=1,2,...,n) ...(2.21)
Yj

First , we shall consider the problem of the form :

v) = [, Fx,y,y,y®) dx ...(2.22)
where;

0 < a <1, and with given prescribed boundaries conditions.

v = f;:l F(x,y + 8y,y +8y,y® + 6y @) dx
= f;j Fy 8y + F 8y + F 0 8y™®) dx

Integrate the second term by part, and using the (1.10) for the third term

in which 8y a-differentiable ,we have
[ F 8y — L (F,)6y — L F 6y) dx
xg Y dx VY dxe " y@ y

d d*
f;;l(Fy —aFyl —@Fy(a) )éydx =0

13
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Since v =0 , along extremals , By using the Fundamental

Lemma(1.3.1.1). we have the following necessary condition

da
F —aFy —F,w=0 ...(2.23)

second the problem (2.24) can be extended, to different multi integer and
non integer order a;>0, (i=1,2,3,...n) , of the following problem :

v(y) = f;:l F(x,y,9,...y" y@), ., y@m) . (2.24)

dv=['F(x,y+8y,y +8y,y" +8y",y 0 + &y, ..., y@m +

5y(am)) dx

av—f Fy 8y + Y1 F 8y + Y F@8y@) dx

Integrate the term's from F,, 6y to F yn8y™ by parts and using the (1.10)
for the term in which &y is a,-differentiable Fya, 8y“t to F y(am)Sy(“m),

we have:

d%i
Jo (Fy + Zioa (= 1)"—F n =2 Flw)8y dx = 0

Since év=0 , along extremals , By using the Fundamental

Lemma(1.3.1.1 ). we have the following necessary condition

@
m d%i

F + Zk 1( 1)kd k yn - Zl 1@Fy(ai) =0 ...(2.25)
Third the problem (2.22) can be extended to multi-depended variables

(Y1, Yn)

X1
! ! k m m
=f FOOY1, o, Yo V1 s Vs s Vi oo ,)'5,),3'1 : ,yga ),y Ly )y dx
X0

14
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! ! k 14
80 = [ F(x,y1 +8Y1, ., Yn + 8Yn Y1 + ¥, ., 317 + 8¥1°, v +
6}’;1,. 'yglk) + 6y,(1k),y1 1) + 6y(a1), LY (am) + 6y(am), 'yn aq) +
Sy(“l), ,ym’") + 6y(“’")) dx
ov =

f;;l i=1Fy,6y; + it Y- 1Fy16)” + Xic1 Xj= 1F<a,>6y F(a]))dx

Integrate the term's from F 58y§ to F :_cSy{-‘ by part , and using the
(1.10) for the term's from F (al)é'yl “) ¢o F (am)(‘iy( m) in which oy, a;-

differentiable for all (i=1,...,n). We have

av—f [Fy1+2k (= 1)k —F x + Y1, aF(a,) 8y + - (Fy +
dx Y1 dx

d%i
+Zk 1( 1) ﬁFyk ZﬁlmFy;“i))ayn]dx

Since v = 0 along extremals By using the Fundamental Lemma(1.3.1.1

). we have the following necessary condition

md‘

ij +Zlk{=1(_1) ﬁFyk _Zl 1d a;

Fyou =0 ...(2.26)

2.2.3 Constrained Problem Having only Non-integer Order

First , we shall considering the problem of the form :
v(y)= f;}l F(x,y,y@) dx , such that ¢(x,y,y¥) = 0, where 1 is exist

...(2.27)
where;

0 < a <1, and with given prescribed boundaries conditions.

15
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Our approach based on the theories presented in [15] , and extend to our

problems , therefore , we construct the following auxiliary functional :

Z (x,y(x),y P (x)) =F + A¢

Where A is a Lagrange multiplier exists , then the problem (2.27) can be

started as following :
v = f;}lZ dx
v = f;;l Z(x,y+ 5y,y(°‘) + Sy(“))dx
= [ Z,8y + Z 8y @)dx
X0 y y a
= [JI(F,8Y + Fyw8y™@) + A(9,8 + b8y ) dx
=[21(Fy + 26,)8Y + (Fyw + A,y @]dx
xo L\ Y y)OY y (@ y@ )0y

- fyz,l[(F}’ + A¢,)dy + (Fy(«x) + /1¢y(a))D“6y]dx
Using (1.10) in which 8y is a-differentiable , we obtain :

* a*
v = [J1[(Fy + A8y — —— (Fyw + A w)8y]dx

X0

A )18y dx

Since (6v* = 0) , along extremals , then
da
(Fy + 4¢,) — e (Fy(a) + A¢y(a)) = 0, and

d(x,y,y®)=0

16

* frkd de
ov' = [N(Zy — = Z,@)8yldx = [Fy+A) — o (Fyw +

...(2.28)

...(2.29)
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second , we shall discussed the necessary conditions for the general

form of the problem (2.27) including many dependent variables , multi-
fractional order derivatives , and fractional order constrains, in which

such problems can be started as follows :

(am)

v(yl' "'ryn)=f:;1 F (x' yl) "'Jynl )’gal), ---,)’1 ] ...,y;al), ...,yglam)) dx
...(2.30)

With
¢k (x) Y, Yn y(1a1)1 ---;ygam): yglal), ,yglam)> =0 ° k=1,...,K

By variants one dependent variable and fixing the remaining dependent

variables, then we shall construct the following auxiliary functional :

(am)

Z(%,Y1 0 Y Y, ¥, Y, Ly = F 4 SE At

Where A is a Lagrange multiplier , then the problem (2.30) can be

started as follows :
v = f;:)l Z dx

SV = f;;lZ(x, Y1+ 6Y1, ., Vn + 8y, ,yi“l) + 6y§“1), ...,yg“’") +

sy;™, ...,y,(fl) + 6‘y£l“1), ...,y;“m) + 8y,(1“"‘))dx
=f;:)1[(zy1 6yy+ -+ Zy, 8yn + Zy§“1>5ygal) ot Zyﬁ“’")aygam) toeet

2w 8Yn™ + o+ Zygam 8™ dx

dc
f;;l[(Fyl Oyq + 2i%q Fy<1ai) ma}’ﬂ + -+ (Fy, 0y, +

17
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i=1 F (al)d a 5}’n) + - +441(¢y, 6y, + Xiz 1¢ (al) T oy +

a

<+ (3,8 + T w0 3y O )]l

Using (1.10) in which éy is a-differentiable and since (6v* = 0) , along

extremals , then, we obtain :

*__ d%i d%i
SV =[[(Fy, = Za g F @0)8y1 + o+ (Fy, = X gz F @) 8yn +

+11(¢y1 - l 1dx"‘l ¢ (al))syl + - +4 (d’yn l 1dx"‘t ¢ (“l))syn]dx =0

@
m d%

6v*=f;)1[(Fy1 +/11¢y1) —_ Zi:lm (Fyiai) + Al¢y§ai)> 6}11 +

d%i
(P #nd o) = Bt e (F 0+ 0) 8 d% = 0

By using the Fundamental Lemma(1.3.1.1 ). we have the following

necessary condition

F]- — 2 APy | X, = 0 ...(2.31a)
d%i .

Fy]. + A; q)] <d o F (a) + A; ¢ (a,)> 0 , (j=1,...,n) ...(2.31b)

As well as

Bic (271 Y YT, PP, Y ) = 0,061, K) 231 0)

2.2.4 Constrained Problem Having integer And Non-integer
Orders

First, we shall consider the problem of the form :

v(y) = [} F(xy,y,y) dx +(2:32)

18
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where;

0 <a<1,Aisexist and with given prescribed boundaries conditions.

Such that

d(xyy,y9)=0

Our approach based on the theories presented in [15] , and extend to our

problems , therefore , we construct the following auxiliary functional :

Z (x,y(x),y (%), y?P(x) =F + ¢

Where A is a Lagrange multiplier , then the problem (2.33) can be

started as follows :
v = f;;lZ dx
vt = f;;lZ(x,y +6y,y + 8y, y® + 5§y @) dx

=[,'[(Fy8y + F)y8y' + F @8y @) + A, 8y + ¢/ 8y’ + ¢, 8y ] dx

Integrate the term's from F, 6y’ to by 6y’ by part and using the (1.10)
for the terms Fy(a)Sy(“) and (,by(a)Sy(“) in which 8y is o-differentiable

,we have

X d d* d d*
fxol(Fy - EF},I — ﬁFy(a) ) + A(¢y, — o by — T (,by(a))dy dx ...(2.34)

Since &v* = 0 along extremals and By using the Fundamental

Lemma(1.3.1.1 ). we have the following necessary condition
d d®
(Fy +Ay) — ——(Fyy + Apy) — = (F @ + AP @) = 0
with

d(x,y,y,y9)=0 ...(2.35)

19



Chapter Two Optimality Necessary Conditions Of Fractional Variation Problem Along Fixed Boundaries

second , we discuss the necessary conditions for the general form of the
problem (2.32) including different multi-fractional and integers orders .

with constrain
v = [ Fyy, .,y y@, .. y@m) dx
Such that

d(x,y,y, ...y y@), ., y@m) =0 ...(2.36)

Our approach based on the theories presented in [15] , and extend to our

problems , therefore , we construct the following auxiliary functional :
Z(x’ Y yll )yn; y(al), ey y(am)) =F + )’¢

Where A is a Lagrange multiplier , then the problem (2.36) can be

started as following :

v = f;::z dx

oV = f;;l Z(x,y+ 8y,y + 6y, y" + &y", y @) 4+ §y@) | y@m) 4
Sy@m)) dx

= f;;l(zycsy +Zy 8y + -+ ZypnbY" + Zyay Sy + - 4

Z yl@m) oy (“m)) dx

f;;l[(FySy + Fy’5y’ 4o Fyné'yn + Fy(a1)5y(“1) 4ot Fy(am)ay(am)) +

Mpy8y + §y 8y + -+ Pynby" + @8y + - + P Sy )] dix

20
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Integrate the term's from F o 8y® to ¢ »8y® by part and using the
(1.10) for the terms Fy(a]-) Sy(“i) and ¢y(a]-) Sy(“i) is aj-differentiable ,we

have

di
[5Zy ~ SRR L 2~ S L0 7 ) )8y dx

m d]

[ECFy + Ady) = Sheq (~D* - (P o+ 256 p) = Sy 20 (F oy +
49 @)]8y dx

Since 6v* = 0 and By using the Fundamental Lemma(1.3.1.1 ). we have

the following necessary condition

m d]

(Fy + A, — X 1(—1)k k(F Je+ AR — 3 1o (Fap) +

/1]-¢y(aj)) =0 ...(2.37)

¢(x, VY, Y, y(a1)’ ___,y(“m)) —0

Third , we shall discuss the necessary conditions for the general form of
the problem (2.37) including many dependent variables , multi-fractional
, integer order derivatives and multi-fractional and order constraints in

which such problems can stated as follows

v(y1; "'ryn) =
f.x..x(')lF(x)yll"'Jyn)y’l)"'!y’il!"'ly;'l!' Iyn !ygal)l Iygam)) )yglal)l 'Iyglam))dx

Subject to
¢r(xry1r'"iyniy,1' '"'yrll' "'Jy;v' lygln)'y1 ) :)’gam)' __’y1(1a1, ryglam))
0 , where (r=1,....,I) ...(2.38)
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Our approach based on the theories presented in [15], and extend to

our problems, therefore , we construct the following auxiliary functional:

Z(%,Y1 s Yo Vi s Vi s Vi o VO Y0, oy, y, Ly ) =

F + 25':1 /11'®r

Where A, is a Lagrange multiplier , then the problem (2.38) can be

started as following :
v = f;::z dx

Variants one dependent variable and fixing the remaining dependent

variables .

Sv* = f;lz(x, Y1+ 6Y1, 0, Vn + 6V, V1 + 8y, .., YL+ 6y, . yn +

5y., .. »Yn) + 5}’;”),)’1 (a1) 4 6y(a1), LY (am) | Sy(am)’ J’n @) 4

sy ylam) o gylam)y gy
t= [ / O
ov* = fxO Zy 8y1 + -+ Zy 8Yn + Zy 8y + -+ Zyn8y]Y + -+
4. (n) (@) ,
Zy;16yn + -+ Zy;") 5}7" + Zygal) 6y1 + - 4+

Zygam) 6}’1“"‘), -"'Zy(“ﬂ 5},1(1“1) + oo Zy,(f‘m) 6y1(1am)) dx

Now by performing the integrations by parts and using (1.10) in

which 8y is a;-differentiable , we obtain
ov* =

x1 n k dk m d%
fxo [(Zy, + Xk=1(—1) @(Zyllc) - Zi=1@ Zy<1ai) )6y ..+ (Z,, +

hea (DM (Z) — B e (2 w0 )8y dx
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ov* =

L [((Fyy + ko1 20 (@1)y,) +

B~ D45 (o + Thoa 2,:(80),8) — St F, o +
o1 () p)8Y1 o ([ Py, + S Ay @) +

Thar (¥ 5 (Fyg + Tt (D)) = Tl s F o +

XRENCARILATE

Since 6v* = 0 and By using the Fundamental Lemma(1.3.1.1 ). we have

the following necessary condition

[(ij + Z{ﬂ:llr(¢r)yj) +
g (DR (F o+ Bhoy Ay (D) ) — By o (F o+

11”=11T(¢T)ygaj))] =0 ...(2.39)
with
¢k (x’yl' '";yn;y;_; '"’yrll’ ""y;l' ' r}’;n);ygal); ;)’gam); ;J’Elal); ryglam)) =

0

2.3 The Functional Of Discontinuous With Fixed

Boundaries

In this section , we are constructed optimality necessary conditions ,
when the functional is discontinuous on (xy) , for (k=1,...,m) having non-
integers orders , functional having non-integers orders and integers

orders.

2.3.1 Unconstraint Problem

First, We consider the following simplest variation problem
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v(x,y(x), y@) = [T F(x,y,y) dx ...(2.40)
where;

0 < a <1, and with given prescribed boundaries conditions.
Since the Fundamental Lemma of the calculus of variation cannot be

applied , because of the discontinuities , it is more convenient to calculate
the extreme value of v(x, y(x), y(“)) along the curves approximately so it

is convenient to replace the integral of eq(2.40)by the following

[Py, y@)dx = [[F1(6y, ydx + i3 [0* Fi(xy,y@) dx +
S Fo(x,y,y®)dx ..(2.41)
Then

v = ['[(FD)y(x,y + 8y, y@ + 8y )8y + (F1) yw (x,y + 8,y +
8y N8y @ldx + TiZy [ [(Fi)y(x,y + 89,y + 8y@)8y +

(Fi)yw (%, y + 8y, y@ + 8y @) sy @] dx + f;f[(Fn)y(x,y + 8y, y@ +

8y D)8y + (Fu)y (x,y + 8y, y® + 8y @) 8y @]dx

On each integrand , integrate their second term by parts using (1.10) in

which &8y is a-differentiable , we obtain.

ov =

[2(F Dy = 5z (F1) o) 8y dx +

SRoE Lo ((Fy = 5 (FOy)8y dx + [ (F)y = 52 (Fa) )8y dx
...(2.42)

Since the value of the functional are only along extremals ( i.e.6v =0)

consequently , we have the following necessary conditions:
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((F1)y — :—; (F1)y@) = 0 , along the interval [X,X,) ... (2.432)

((Fr)y — :—; (Fi)y@) = 0, along the interval (X1 ,Xg) for (k=2,...,n-1)
...2.43 b)
((Frn)y — ;—; (F n)y(a)) = 0, along the interval (X, , X¢] ...(2.43 ¢)
second , we consider functional of the form
v(x,y(x),y@,y®) = f:f F(x,y,y®,y®)) dx ,where are a, > 0 and

non-integer ...(2.44)

We proceed as before with only single fractional order derivative , to get

the following:

v(y) = [ F(x,y,y®,y#) dx =
xf a B -1 (*k
[ JFi(ey, y@,y ) dx + X323 [,

[ Fo(x,y,y@,y®) dx ...(2.45)

F.(x,y,y9,y®)dx +

k-1

Then

v = [(FD)y(x,y + 8y, y@ + 8y @, y® + 8y 8y + (F1) o (x,y +
8y,y @ + 8y @,y B + syEN sy @ + (F1) i (x,y + 6y, y@ +

8y @,y ® + 8y ®)syPldx + X323 [1* [(Fi)y(x,y + 8y, y@ +

8y @,y ® + 5yEN8y + (Fio) (%, y + 8y, y@ + 8y @,y &) +
8Y®)8YD + (Fi) 0 (%, y + 8y, y@ + 5y, y® + 8y8)5y®)] dx +

[ [(F)y ey + 87,5 + 8@, y® 4 5y®)sy + (F,) oy +
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Sy(ﬁ))Sy(ﬁ)]dx

On each integrand , integrate their second term by part using (1.10) in

which 8y is a-differentiable , we obtain.

d” df -
v = [ H((F1)y — 5 (FOyw — 5 (Fy@) 8y dx + X353 [ F (Fi)y —
d* df d*
7 Fidy@ — 2 (Fi)y®) 8y dx + f:i’;((Fn)y — 2z (Fa)y@ —

dP
-7 (Fn) )8y dx -++(2.46)
Since the value of the functional are only along extremals ( i.e. 6v =0)

consequently , we have the following necessary condition:

F)o — 2 (FD)ow — L (Fy)us) = 0,along the interval

((F4 Y gpa T y@ T g1 y(ﬂ)) = 0,along the interval[x,, X1)
...(2.47 a)

d® dP )
(Fy — 7z (F)yw — 5 (F)y®) =0, along  the interval
(Xk-1 ,Xyg) for (k=2,...,n-1) ...(2.47b)
d- df )
((Fn)y = o= (Fn)y@ — 25 (Fn)y®) = 0, along the interval (xp , X¢]
...(2.47¢)

Third , we shall extended the problem (2.40) to different multi-fractional

order a; > 0 (i=1,2,...,m) of the following problem

v(y) = [/ F(x,y,y 0,y 2, .., y@m) dx ..(2.48)

V= fxtf F(x' y' y(al); y(QZ)J ---;y(am)) dx =

[Py, y @0,y y@m) dx +
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— X
Wz oy Fr(ry,y@),y@), . y@m) dx +

f;f F,(x,y,y@) y@2) _ y@m)yqdy ...(2.49)
Then

6v = f;:[(Fl)y(x,y + 8y, y@) 4 gylar) yla2) 4 gylaz) g lam) 4
5y@m)§y +

Y (Fp)yai (x,y + 8y, y@ + 8y, y(@2) 4 y(@), . ylam) 4
Syem)sy )dx + 2523 [0 [(Fi)y(xy + 8y, y@ + 8y, y(@) 4
sy, ., yl@m) 4 §yl@m)) §y + ¥ (F)yui(x,y + 8y, y ) +

8y y(@2) 4 §ylaz) y(@m) 4 §y@m))§yai] dx + f;f[(Fn)y(x,y +
8y, y@) + gy(@) yla2) 4 gy(@) ylam) 4 gylam)) 5y +

Y1 (Fn) @ (x,y + 8y, y @) + 6y @), y@) gy, ylm) 4
5y(am)) 5y(ai)] dx

On each integrand , integrate their second term by part using (1.10) in

which 8y is a-differentiable , we obtain.

@
m d%i

v = [ ((F1)y — T4 (F)y@) 8y dx + I35 [ (Fi)y —

o
m d%i

d%i
Y1 g Fidy@)8y dx + [7 (Fu)y = L 3 (Fu)ye0) 8y dix ...(2.50)

Since the value of the functional are only along extremals ( i.e. v = 0)

consequently , we have the following necessary condition:

o
m d%

((F1)y — Zi:1m (Fl)y(ai)) = 0 , along the interval [x;,x;) ...(2.51 a)

d% .
((Fr)y — Z}Zlm(F Ky@) =0 , along the interval (Xyx_q,Xy) for

(k=2,....n-1) ...(2.51 b)

o
m d%i

((Fp)y — Zi:lm (Fn)y@) = 0, along the interval (x,,X] ...(2.51¢)
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2.3.2 Constrained Problem

First , we are considering the functional of the form :

v = [/ F(xy,y®) dx . (2.52)

f:: F1 (x; Y }’(a))dx + Z;(l;% :;ck—l Fk(x, y, y(a)) dx + f;;lf Fn(x, y, y(a))dx
Subject to
¢(x,y,y®@) = 0, where 1 is exist ...(2.53)

Our approach based on the theories presented in [10] , and extend to our

problems , therefore , we construct the following auxiliary functional :

Zi(x, y(x),yP(x)) = Fi, + 1¢

Where A is a Lagrange multiplier , then the problem (2.52) can be

started as following :
v (y) = f:sf Z, dx ..(2.54)

Where F is discontinuous on (x;) , for (k=1,2,...,n) with a > 0, then Z;
also discontinuous on (x;) , and the fundamental Lemma of calculus of

variation cannot be applied , then it is more convenient to calculate the
value of v(x, y(x), y(“)) along polygonal curves approximately , so it is

convenient to replace the integral of(2.54)by the following:

v = f:sf Zi(x,y,y®) dx

Xk

(2267, ydx + 3533 [7* 2y, y @) dx + [ Z,(x,y, y@)dx

k-1

...(2.55)
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év = f::[(Zl)y(x,y + 8y, Y@ + 8y D)8y + (Z1)ye(x, ¥ + 8y, ¥y +

8y “N]dx + X323 [1* [(Zi)y(x,y + 8y, y@ + 8y @) + (Zi)ya(x,y +
8y,y@ + 8y )]dx + [7[(Zn)y(x,y + 8y, ¥ + 8y )8y +
(Zp)ye(x,y + 8y, y@ + 85y @)ldx ...(2.56)

Now , by performing integration by parts on each integrand , using
(1.10) for each sub —interval for the extreme (2.56) , to obtain the
following necessary conditions :

(F1)y + A9, — ;—; (Fy((x) + /1¢y(a)) = 0, along the interval [xg, x1)
...(2.57 a)

d® .
(Fr)y + A¢,, — o (Fp + /1¢y(a)) =0 , along the interval [x,_q,x})
for (k=2,...,n-1) ...(2.57b)

(Fn)y + 1¢,, — :—; (Fy@ + A¢y@) = 0 , along the interval (xy, xy, |
.(2.57 ¢)

As well as

¢(x,y,y@) =0

second, we shall discuss the necessary conditions to furthermore general
form of the problem (2.51) multi-dependent variables , and multi-
fractional order derivatives :

x m m
V(Y1) s Yn) = fxsf F(x,y1, e Y Y0, L ylem) Ly e )) dx

With fractional order constraints ...(2.58)

¢q = F(x, yl; .--;yn; )’gal); ---,)’gam); yglal); "-;yglam)) = 0 5 q=1”"’I

Variants one dependent variable and fixing the remaining dependent

variables , for all dependent variables
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Zk (x; )’1; ---;yn; J’gal ) ,ygam); }’;al); :3’51 m)) = Fk + 211”=1AT®1'

Where 4, is a Lagrange multiplier for r=1,...,1

, then the problem (2.58) can be started as following :
v = [ Z,dx ...(2.59)

Where F is discontinuous on (xj,) , for (k=1,...,n) with a > 0

Then (Z,) also discontinuous on (x) , and the Fundamental Lemma of
the calculus of variation cannot be applied , then it is more convenient to

calculate the value of
1% (x, Y1, >V yi“l ) ,y§ m),y;aﬂ’ ) y,ﬁ "‘)) along the polygonal curves
approximately , so it convenient to replace the integral of (2.59)

By the following :

VY1 ¥0) = [, Zi (x,yl, e Y Y, L ylem) e ,yﬁf‘"’)) dx =

f;‘: Zydx + Y23 ;{"_1 Zpdx+ | ;‘f Z, dx ...(2.60)

ov* =

fx [Xic1(Z1)y,8y; +Xit12j21(Z4) (a,)5y ]dx +

Yhos f;{k_l 21(Z1)y, 6y (Zi)y, + Xic1 2j= 1(Zk) (a)6y ]dx +

I Y (Z0)y, 8y + X1 T4 (Z0) (a,)6y(“’) ldx ..(2.61)
By using (1.10) for each sub-interval , and since v = 0

o' =

d%i d%i
fxtl[(zl)yl Yit1 5 (Z 1)yia,-)]5Y1 [(21)3;,, — 2it1 o (Z1)y1(1a,-)] Oy, +
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_ di
ZZ=% ka [(Zk)yl - Z:’i1 o (Zk)yiaj)]6y1 +

Xk-1

m d%i m d%i

(Zk)y, = Xit1 7= (Zk)y;“j)] 8yz .. [(Zn)yn = 2it1 g (Zn)yia,-) 0y, =0

Then we obtain the following necessary conditions :

@
m A%

(Fl)y]- + Z{ﬂ:l)‘r(d’r)yj = izlm(Fl)y@i) + Z1I~=1)lr(¢r)y§ai)] =0
J J
along interval [xg, x4) for all j ...(2.62 a)

o
m d%i

(Fidy, + Zhea Ay, = X e (FO oo + Bha (@) ] =0

along interval (x;_4, x;) for (k=2,...,n-1) and for all j ...(2.62 b)

@
m d%

(Fn)y]- + Z:ﬂ:llr((pr)yj - [ i=1m(Fn)y](_ai) + Zi:l)lr(d’r)y](ai)] =0 ’
along interval [x,, x] ...(2.62¢)
As well as the additional constraints

qb,.(x,yl, N A y‘lrl, ...,y‘lx’",yf’ll, ...,y,‘f’”) =0, forallr

2.4 Examples

We obtain the Euler-Lagrange equations for unconstrained and

constrained fractional variation problems.

Example(2.4.1)

As the first example, consider the following unconstrained fractional

variational problem:
L 11 RY
minimize Iyl =31 (,D%y) dx

Such that
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y(0)=0 and y(1)=1

this example with a = 1, for which the solution is y(x)=x. It can be shown

for this problem, the Euler-Lagrange equation is
D1y(,D%y) =0

It can be shown that for a > 1/2, the solution is given as

dt
(x—t)]1-«

y@) =(@-1 fy =5

Example(2.4.2)

As the second example, consider the following constrained fractional

variational problem:
minimize  J[y] =1 [} [y} + y3ldx
Such that
oDxy1=—-y1+Y2
y1=1
It can be shown for this problem, the Euler-Lagrange equation is
y1+1+,Dfl=0

y2—1=0
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CHAPTER ONE

Primarily

1.1Introduction

This chapter involves two sections. In section (1.2),we give some of the
most basic and important concepts in fractional calculus and Calculus of
variation. also some definitions, theorems, Lemmas and examples are

presented that needed then later.

1.2 Fractional Calculus

Definition (1.1) , [26]

The gamma function is defined by the following improper integral

and
Ir(z) = [, t“'etdt, z>0 ..(1.1)

As will be clear later, the gamma function is intrinsically tied to
fractional calculus by definition. The simple interpretation of the gamma
function is simply the generalization of the fractional for all positive real

numbers.

Remark (1.1) , [9]

Riemann’s modified form of Liouville's fractional integral operator is
a direct generalization of the following Cauchy's formula for an n-fold

integral .
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f: f:I f:n_l f(xn)dxl de dxn = 1 fx f(t) dt

(n-1)!7a (x-t)1-n

. (1.2)

By n-fold here means that the integration is deployed n-times. Since
(n — 1)! = I'(n), Riemann realized that the right hand side of (1.2) might

have meaning even when n takes non-integer values. Definition(1.2),

Riemann-Liouville Fractional Derivatives ,[26]

Let f be a continuous function on [a , b], for all x € [a,b]. The left

(resp. right) Riemann-Liouville derivative at X is given by

. 1 d X f(

DEf) = s GO Ja Gperim At ..(1.3)
_ D" d,y b O

DEF() = 7 (o [ LD at (1)

With (n — 1 < a < n), and n is positive integer.

Definition (1.3) [23]

Let f € Ly[a,b], @ € R*. The fractional (arbitrary) order integral of

the function f of order a is defined as:

t(t-s)* 1

12f(t) = fa - f(s)ds, ...(1.5)

When a = 0 we can write, I°f(t) = I§f(t) = f(t) * ®,(t), where;

(td—l

I'(a) ,fort >0
q)a(t):i @

0 fort<o0

and (*) is the convolution operator.
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Definition (1.4 ) [28]

The fractional derivative ,Dfof order a € (0,1] of the absolutely

continuous function f(t) is defined as:
DEFE) =117 f(6), te[ab] (1.6)

1.2.1 Lemmas, and Corollary

In this subsection, we are presented the following two lemmas for

fractional integral and fractional derivatives.

Let L, =L,(a,b) be the class of Lebesgue integrable functions on

[a,b], a<b < (1<p<x).

Lemma (1.2.1.1) [18]

If Re(a) > 0 and Re(B) > 0, then the equations;

(118 1) = (157 £)@) and (51 1)0 = (G )@ .07
are satisfied at almost every point x € [a, b] for;

f€Ly(a,b) (1<p <),

If a+p>1.

Lemma (1.2.1.2) [18]

If Re(a) >0 and f € L,(a,b), (1 <p <x),then

(aD7 1 ) = F)and(Dy 1y ) = F(x). ...(1.8)
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Lemma(l1.2.1.3)[7]

Forallf, g € ZDg , we have

ff Di¥ fOg®dt = - ff fODLF g(t)dt ...(1.9)
Provided that f(a) = f(b) =0o0r g(a) = g(b) =0

Corollary(1.2.1.1).]6]

[ D fF(Hg®)dt = — [ f(£) DE g(t)dt ...(1.10)
Aslongas f(a) = f(b) =0o0r g(a) = g(b) =0.

This furmula gives a strong connection between th and Dj via

generalized integration by part. This relation is responsible for

emergence of DY in problem of fractional calculus of variation only

dealing with D%

1.2.2 Properties of Fractional [18]

In this subsection, we are presented some properties for fractional

integral and fractional derivatives.

Now, some additional important properties of the fractional

differential operator ,Df are presented for completeness purpose[20]:

1. The operator ,Df of order «= 0 is the identity operator.

2. The operator ,Df islinear, i.e.,

DE(cL f(®) + ¢ g(®)) = c1 WDE F() + 3 (DF g(t) , Where ¢;

and ¢, are constants.

3. The operator ,Df is homogenous;

oDt {c f(O)} = cDF f(D).
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n n

4 DEY fi) =) DEFID)
i=1

i=1

1.3 Calculus of Variation

1.3.1Basic Definitions and Theories

Basic Definitions and the theories will be given in this subsection

Definition (1.3.1.1 ),[9]

The variable v is called functional depending on a function y(x) ,
inwriting v = v(y(x)), if to each function, y(x) from a certain class of

functions, there corresponds a certain value of v.

Definition (1.3.1.2),/9]

The increment or variation &y of the argument y(x) of a

functional v(y(x)) is the difference of two functions 8y = y(x) — y;(x)
where y, (x) is admissible curve .

Definition (1.3.1.3),/9]

A functional v(yy(x)) is continuous along y = y,(x) in the sense of
closeness of order k, if for arbitrary positive number & there exists a

& > 0 such that, |v(y(x)) — v(yo(x))| < & whenever;
ly(x) —yo ()| <6, |[y(x) —Yo(x)| <95, ..,
ly(x) —yo® ()| < 5.

It is understood, that the function y(x) is taken from the class of

functions for which v(y(x)) is defined.
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Definition (1.3.1.4),/9]

The functional v(y(x)) is called a linear functional, if it satisfies

the conditions:
a. v(ecy(x)) = ev(y(x)), where ¢ is constant.

b. ”(}’1(?6) + }’Z(x)) = v(yl(x)) + v(yz(x)) :

Definition (1.3.1.5),/9]

A functional v(y(x)) takes on a maximum value along the curve
y =y,(x) , if all the values of this functional v(yy(x)) taken on along
arbitrary neighboring to y =y,(x), curves are not greater than
v(y,(x)), ie. v =v(y(x))—v(yo(x)) <0.If Av<0 and Av=0

only when

y = yo(x), then we say that the functional v(iy(x)) takes on an absolute
maximum along the curve y = y,(x). Similarly we define a curve

y = yo(x) along which the functional takes on a minimum value.

Theorem(1.3.1.1 ),/9]

If the variation of a functional v(y(x)) exists, and if v takes on a
maximum or minimum along y = y,(x), then dv=0 along y=

Yo(x).

Fundamental Lemma(l.3.1.1 )/34]:

Let G(x) be a fixed continuous function, defined on the interval

[x4,x,] and let:
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f nx)G(x)dx =0

where n(x) is any continuously differentiable function satisfying;
n(xy) =n(xz) =0

then G is identically zero on the interval [xq, x5].
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Conclusion

The necessary conditions have developed for unconstrained and
constrained fractional variational problems. One can see that, the
approaches and necessaries conditions for all the above cases
problems are same as in an integer order derivatives with fixed, while
the approaches and necessaries conditions are different from the
variational problems containing integer order derivatives on moving
boundaries, duo to using (1.10) instead of using standard integration
by parts in usual integer order derivatives. The result of a fractional
calculus of variations reduce to those obtained from calculus of
variations, in which, many of concepts of variations. Given the fact
that many systems can be modeled more accurately using fractional
derivative models, it is hoped that future research will continue in

this area.
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‘Future Work

We may look to construct;

1.The necessary optimality conditions fractional variational
problems with multi-independent variables.

2.The optimality sufficient conditions, for fractional
variational problems with one and multi-independent
variables.

3.The optimality sufficient conditions for fractional
variational problems with additional constraints (may have
integer or fractional order derivatives).

4. The optimality conditions using another approach than

we used In this thesis.
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Introduction

Introduction

The field of variations is of significant importance in various
disciplines such as science , engineering , pure and applied
mathematics. Calculus of variations has been the starting point for
various approximate numerical schemes, [7] .

Recent investigations, one can imagine obtaining the
formulations by minimizing certain functional which naturally
contain functional order derivative, and mathematical tools
analogous to calculus of variations will be needed to minimize these
functional. However , very little work has been done in the area of

fractional calculus of variations, [29] & [30].

The calculus of variations essentially is extension of minimizing
or maximizing a function of one variable to problems involves an
unknown function and its derivatives, the objective is to find a (not
necessarily unique) function that makes the integral stationary
within a given class of functions [16]. Functional are variable values
which depend on a variable running through a set of functions, or on
a finite number of such variables, which are completely determined
by a definite choice of these variable functions, means that the
functional are variable quantities whose values are determined by the

choice of one or several functions.

For instance, the length L of a curve joining two given points on

the plane is a functional and the area of a surface is a functional.

The variational calculus gives methods for finding the maximal
and minimal values of functional, and the variational problems are

problems that consist in finding maxima or minima of a functional.
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The variational calculus has been developing since 1696, and it
became an independent mathematical discipline with its own
research method after the fundamental discoveries of a member of

the Patersburg Academy of Sciences.

Fractional calculus is a branch of mathematics which deals with
the investigation and application of integrals and derivatives order.
Fractional calculus may be considered as an old and yet a novel topic,

actually, it is an old topic since starting from some spectrum of
Leibniz (1695-"1697 ) and Euler (1730) who said that the Z—Z can be

made when n is an integer as well as when n is fractional.

In fact, the idea of generalizing the notion of derivative to non-
integer order is found in the correspondence of Leibniz and Bernoulli
, L'Hopital and Wallis. Euler take the first step by observing that .the
result of the derivative evaluation of the power function has meaning
for non-integer order [21].

There are wide areas of applications for the fractional calculus,
such as viscoplasticity [29] and viscoelastic constitutive equations [34]
which are good applications. That is the constitutive equations
governing these phenomenon involve differential equations fractional
order. It is also applied in potential field data [7] where the use of
fractional gradients provides a much greater flexibility which is
generating enhanced analytic signal data. Also any application which
uses the computation of velocity and acceleration is an application of
fractional differ integration [27]. In physics there are wide
applications such as the pressure behavior of transport of different

Medias [15] and the diffusion equations [23] and [9]. In engineering,
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the fractional calculus is applied in Tensili-Flexral strength of

disorder materials and signal processing.

The study of problems of the calculus of variations with fractional
derivatives is rather recent subject, the main result being the
fractional necessary optimality condition of Euler-Lagrange to be
obtained [31]. More detals could be found in [29], [30] obtained a
version of Euler-Lagrange equations for problem of the Calculus of
Variations with fractional derivatives. More recently, Agrawal [1]
gave a formulation for varational problems with right and left
fractional derivatives in the Riemann-Liouville sense, and
constructed the optimality necessary conditions of fractional
variational problem of fixed boundaries, with non-fractional

constrain.

The fractional calculus of variations has born in 1996-1997 with
the work of F. Riewe: he obtained a version of the Euler-Lagrange
equations for problems of the Calculus of Variations with fractional
derivatives, combining the conservative and non-conservative
cases[29], [30].

Many authors and researchers studied fractional calculus of
variations such as:O. Agrawal in 2002, proved a formulation for
variational problems with right and left fractional derivatives in the
Riemann-Liouville sense[1], In 2004 the Euler-Lagrange equations of
Agrawal were used by D. Baleanu and T. Avkar to investigate
problems with Lagrangians which are linear on the velocities[4],
Klimek in 2005[19] , studied problems depending on symmetric
fractional derivatives for which Euler-Lagrange equations include

only the derivatives that appear in the formulation of the problem[7],
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El-Nabulsi in 2005 [10], introduced Riemann-Liouville fractional
integral functionals, depending on a parameter a, but not on
fractional-order derivatives of order a, and respective fractional
Euler-Lagrange type equations were obtained [10], Agrawal in 2006
investigate transversality conditions for fractional variational
problems[26], Baleanu and Agrawal in 2006, study variational
problems within Caputo's fractional derivatives[9], Agrawal in 2007,
studies fractional variational problems in terms of Riesz fractional
derivatives[2], El-Nabulsi and Torres in 2007 establish necessary
optimality conditions for fractional action-like integrals of
variational calculus with Riemann-Liouville derivatives of order (e,
B)[11], Frederico and Torres in 2007, give a formulation of Noether's
theorem for fractional problems of the calculus of variations[18],
Nadia J. Ismair in 2007, constructed the optimality necessary
conditions for fractional order calculus variational problems based
on the following definitions (1.4) and (1.5) [25] , EI-Nabulsi and
Torres in 2008, study fractional actionlike variational problems[11],
Bastos, Ferreira, and Torres in 2009, proved necessary optimality
conditions for fractional difference problems of the calculus of
variation[24], Mozyrska and Torres in 2009, introduced a new notion
of controllability in the memory domain for fractional continuous-
time linear control systems and solved the modifed energy fractional
optimal control problem[25], Almeida, Malinowska and Torres in
2010, developed a fractional calculus of variations for multiple
integrals with application to vibrating string[12], Almeida and
Torres in 2010, investigated a direct method for fractional
optimization problems[33], Frederico and Torres in 2010, proved a

fractional Noether's theorem in the Riesz-Caputo sense[13] ,finally,to

W
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the best of one knowledge Malinowska and Torres in 2010, proved
generalized natural boundary conditions for fractional variation
problem with Caputo derivatives[22].

This thesis consists of three chapters. chapter one presents the
basic concepts of fractional calculus based on Riemann-Liouville
definition and calculus of variation .

Chapter two presents the optimality necessary conditions for
unconstrained and constrained fractional variational problems with
continuous and discontinuous functional having one and different
multi fractional order derivatives on one and different multi-
dependent variables of one independent variable along fixed
boundaries.

Chapter three presents the optimality necessary conditions for
unconstrained and constrained fractional variational problems with
continuous and discontinuous functional having one and different
multi-fractional order derivatives on one and different multi-
dependent variable of one independent variable along movable

boundaries.

Vi
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