ABSTRACT

The main objective of this work is to study the numerical
solution of fractional ordinary differential equations using G-spline
interpolation functions. Two numerical approaches are used, the first
approach utilize the explicit linear multistep methods which can be
applied easily for linear and nonlinear problems while the second
approach is a modified approach by using the implicit linear multistep
methods for solving nonlinear fractional ordinary differentia equations
which has so many difficulties in their solution. This is done by
suggesting a new criterion by using the chain rule derivatives of

fractional order.
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CHAPTER ONE
FUNDAMENTAL CONCEPTS

There are several reasons for studying the subjct
approximation theory and their methods, rangingmfra need to
represent functions in computer calculations to imterest in
mathematical view of the subject and among sucHicgtipons of the
subject is to solve ordinary differential equatiarssng certain types of

spline functions.

Also, differential equations in general, and fractl differential
equations in particular plays an important rolemathematical physics,
therefore their solution is of great importance abhmay be so difficult
in some cases, [Brauer, 1973]. Hence approximatbads by G-spline

functions may be used to solve such types of egusti

This chapter presents the most fundamental conesptsiotions
in G-spline functions and fractional calculus theorcluding fractional

ordinary differential equations.

1.1 G-SPLINE INTERPOLATION

Just over 138 years ago, since Lagrange in 187@drastructed
the polynomial of minimal degree such that the polyial assumed has
prescribed values at a given knots and the devesiof certain orders of
the polynomial also assumed to have prescribedegal the knots,
[Burdern, 1997], [DeBoor, 1978].
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In 1968, Schoenberg extended the idea of Hermitsgbnes to
specify that the orders of the derivatives spegifieay vary from knot to
knot. Schoenberg used the term "G-spline" instefdgeneralized
splines, because the natural spline term "genedhlgpline" already

described an extension in a different directiochf@&nberg, 1968].

G-splines are used to interpolate the Heremitetifk data
(problem), which is abbreviated by HB-problem, tlaga in this problem
are the values of the function and its derivatilgas without Hermite's
condition that only consecutive derivatives be us#deach knot,
[Ahlberg, 1967].

Again, Schoenberg has defined G-splines as smaetie\pise
polynomials, where the smoothness is governed éyritidence matrix
E, and then he proved that the G-spline functisatisfies what is called
the "minimum norm property"”, [Powell, 1981], which used for the
optimality or best approximation of the G-splinenétions, which is

given mathematically by the following inequality:

[t ™0 T dx > [[sm (] dx

| |

where the function S is called a G-spline functonl it is a polynomial
spline of degree 2m 1 over the interval | and f is any interpolation
function to the problem under consideration. If tmdy polynomial that
solve the homogeneous HB-interpolation problendéntically the zero
polynomial, then the problem is said to be m-paoised will see later
the consideration of the HB problem that the m-@adiproblem will play

an important role for the uniqueness of the sotutb the HB-problem
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(that is if the HB-problem is m-poised, then thisra unique G-spline of

degree 2m- 1 that solves the HB-problem).

1.1.1 The HB-Problem:

As it is mentioned above in the introduction oftget 1.1, that
the G-spline functions are calculated using thept@blem. Therefore it
IS convenient to discuss the HB-problem. First df we give the
tractable formal definition of the natural G-splimgerpolation, with

knots:
X1 <Xo<...<X%

to be distinct and reals and ketbe the maximum of the orders of the

derivatives to be specified at the knots.

Definition (1.1), [Schoenberg, 1968]:

The incidence matrix E is defined by:

L i @, ) Ce
0, it () 0e
foralli=1,2,...,k;j=0,1, ...,a, where e= {(i, j)} is chosen in such a
way that i takes the values 1, 2, ..., k; one or ntiones, while jOI {0, 1,

...,a}and j=a is attained in at least one element (i, j) of e.

Assume also that each row of the incidence matranét the last

column of E should contain some element equals.thet y\) be
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prescribed real numbers for each (ij)e. The HB-problem is to find

f(x) O C%, which satisfies the interpolatory condition:
) =y, for (i, [) D1 € covoveieiece e (1.1)

The matrix E will likewise describes the set of .€dsl) if the set

e defined by:

e={(,]) | a=1}

then the integer:
n=2 3
N

really is the number of interpolatory conditionguiged to constitute the
linear system following from eqgs.(1.1).

Therefore, at each knot »f the resulting linear system from
egs.(1.1), the value of f{xis prescribed and may be also a certain
number of consecutive derivativéqx) forj=1, 2, ...,a; — 1; where Q;
denotes the number of the required derivatives ;atfor each |,
[Shoenberg, 1968].

Definition (1.2), [Schoenberg, 1968]:

Let m be a natural number, then the HB-problem)(ik. kaid to

be m-poised provided that:
P(X) O Mg
p(x)=0,if (i,)) Oe

then:
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p(x)=0

wherell,; is the set of all polynomials of degree at mosiim .

Lemma (1.1), [ Schoenberg, 1968]:

If the HB-problem (1.1) is m-poised and<lm’ < m, then the
HB-problem (1.1) is also poised.

The next remark is of great importance in deterngrthe poised

number of HB-problem.

Remarks (1.1), [Schoenberg, 1968]:

1. If the system (1.1) is non normal then the systérh) may be m-

poised for some value of m <n.
2. The condition that (1.1) is m-poised can be exme@ss follows:

If:

Vv

m-1 X
P = 2 a,
V:O V-

then ¢’(x;) = 0, for (i, j) O e, becomes:

m-1 Xv—j
D a, OB =0, for (i,j) 0 e
v=0 :

where:

x4, if v=-j=0
(v—j)! |0, if v=-j<0
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Therefore, (1.1) is m-poised if and only if the matwith entries

V=i

V=) has rank m, where¥ 0, 1, ..., m— 1; refers to the column
v—)!
V)
of the matrix of entriesz'i_)l, while each (i, j)J e indicates a row
v—)!

of the same matrix.

1.1.2 Interpolation by G-Spline:

Here, we shall assume that the HB-problem giveeds/(1.1) is
m-poised anda < m < n, wheren, as it is mentioned previously in
section (1.1.1), is the highest derivative thateswp in the interpolation

problem.

The definition of G-spline function is facilitateay defining a

matrix E* which is obtained from the incidence matt by adding m-

a — 1 columns of zeros to the matrix E, i.e., IetzE['a:j], where (i= 1,

2,...,k;j=0,1,...,m 1), and:

* aij’ if JSG
% 0, if j=a+la+2,...m-]

Ifj =a + 1, then E*=E.

Definition (1.3), [Ahlberqg, 1967]:

A function S(x) is called natural G-spline for tkieots %, Xy, ...,
Xk and the matrix E* of order m provided that it shés the following

conditions:
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(1) SO0 Mo in (X, Xu1), =1, 2, ..., k= 1.
(2) S(X) 0 Mpeyin (-o0, X;) and in (x, ).

(3) S(x)0 C™ (-, o).

(4) If &;=0, then $™™(x) is continuous atxx; that is, $™(x-0)

= 2™ x,+0), where x+ 0 and x— O refers to the right and left

hand limits of the function@™ at the knot x

Next, we shall show that the set of natural spfungctions is a
special case of the set of G-spline functions. $é&eof all natural G-
splines interpolation polynomials of a given fupatiwith knots x, X,

..., Xk IS denoted by:
Sm :S(E*, X1y X2y «uny Xk)

and it is easily seen tha}, is a non empty set and this is shown by the

inclusion relation:
I_Im—l D Sm

Indeed, if S(x)J M1, then S(x) satisfies all conditions from (1)

to (4) of definition (1.2) above. A special caseant{1.1) is given by:
fxi) = i, F'(x) =, ., TP (x) = yi(ui_l), 1=1,2,..,k

then the HB-problem is reduced to the usual Hermpiteblem in

approximation theory.

It is clearly thatn =max {a; -1}, i=1,2,...,k, andmaxa; < m< n;
|

S@™iYx) is continuous at x x;, for j = aj, ..., m— 1. In other words,
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SY(x) is continuous at x x;, forv=m, m + 1, .,.., 2m a; — 1 together

with condition (3), of definition (1.3) we concludeat:
SO C™ ™ near x= X, i =1, 2, vovy Keveoreoeeeeeeeeeeeeeeenn, (1.2)

Conditions (1), (2) of definition (1.3) and eq.ZLshows thag,,

is identical with the natural spline function ofgidee 2m- 1 having x
(i =1, 2, ..., kKl a multiple knot of multiplicitya;, wherea; < m,

[Ahlberg, 1967].

Another special case, the Lagrange problem whiatursc by
assuming that ek + 1 and e {(i, 0),i =0, 1, ..., k}. In this case, m
k and we can show thdt, is identical with the class of natural spline
functions of degree 2m 1 having knots ¢ Xy, ..., X, [Burden, 1997].

The uniqueness of the G-spline function is ensimedsing the

following theorem:

Theorem (1.1), [ Schoenberq, 1968]:

If the HB-problem (1.1) is m-poised, then thereséxia unique

G-spline function:
S(X) ] Sm (E*, X1, Xo, ...y Xk)
such that:

)=y, for (i,j)Oe

We can to summarize the above results as follows:
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Under the assumption of theorem (1.1), define aplws
fundamental function l(x) U S, satisfying:

o, if (rs)#(,])

©) —
H oo ‘{1 (9=

If for f(x) O C%, then one can write:

f(x) = D FD LX) + R oo (1.3)
(i, )YJe

for which the right hand sum presents the G-splwerpolating f(x) at
the data of the HB-problem (1.1), and Rf is the agmer or the error

function occurred in the approximation.

Equation (1.3) is called th&-spline interpolation formula,
which is exact for all elements gf, and in particular for the elements of
M-1.

The following theorem shows the optimal property@Gspline
interpolation function is satisfied and it may balled theminimum

norm property. This theorem is given by [Schoenberg, 1968] amthér
illustrated by [Mohammed, 2006].

Theorem (1.2):

Let | = [Xo, Xk+1] SUCh that < X; < ... < X1 and let f(x)O C"(1),
with f™3(x) is absolutely continuous and”x) O L(I). If the HB-
problem (1.1) is m-poised, amd< m< n, and let S(x) be the unique G-

spline function satisfying the equations:

SVxi) =), (i,J) D e
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Then:

J[lE™eof ax > Jls™00f ax

Proof:

Since f(x) O C™(1), with f™%(x) is absolutely continuous and
f™ O L41), then:

[ [t ™ (x) - 5™ () ax = | [t ™ ) f aix -
| [
2[1 (5™ (x)dx + | (5™ (x)F dx
[ |
= | [t ™ ) f ax - 2 ™ () - S1™ () Js™ (x)lx -
| [

| (ST ()P X v (1.4)

|
To prove that:

3= [{F ™ (x) =5™ ())JS™ (X)X = 0. (1.5)
|
First, we write:

J= le(f (™ (x) -sm (x))s<m> (x)dx +
X0
f (f (M)(x) —S(m)(x)) SM (x)dx + ... +
X1
Xk+

j G‘ (M) (%) — M (x))s<m) (x)dx
Xk
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and integrating by parts repeatedly each of thossgrals according to

the following scheme for eactio, 1, ..., k:

XI Sm) (x) (f ™ (x) -s™ (x)) dx=5"™ (x)( 1™ (x) - S (x))

X

Xj+1

Xj
—S(m+1)(x)(f (m-2) (x) _S(m—Z) (X)]Xi+1 + ... %
Xi

ey jl S2M) (x)(F (x) - S(X)) dx

X

SEM D (x) (f (x) - S(x))

Xj

The last integrals on the right of the last formal® vanishes since
S(x) O Mym-1 In each interval, by condition (1) and (2) iniddfon (1.2)
from the "finite parts”, we obtain at each k=1, 2, ..., k, a sum of

terms:
m-1 )
> Fa)
=0
where:
A =jump at x= x; of S x)(f(x) - SP(x)),j =0, 1,..., m1

Since S(x)J C™*(x), by condition (3) of definition (1.2), we obteihat:

A = SP™(x, + 0)((x; + 0)— SP(x; + 0)) -
ST - 0)(f(x; - 0) - SV(x - 0))
= (f0(x)) - S”(x)) {S®™V(x; + 0)~ S*™(x; - 0)}

Then A(ij) =0, because:
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1. f0(x;) = (), (i, j) O e.
2. From definition (1.2), ™™ (x) is continuous at x x;.

Hence, eq. (1.5) is established and therefore @edypmes:

[ [t ™ (x) - 5™ (x) ax = | [t ™ ) f aix - [ (5™ ) f aix
| [ |

Then:

[l eaf ax = [ls™ e dx + [ ™ 00 -s™ o dx
| I I

and sincej (f M) (%) —sm (x))2 dx > 0. Therefore:
|

[ [t ™ ) f x> [ [s™ofdx.
| |

1.1.3 The Construction of G-Spline Functions, [Osama, 2007]:

The most difficulty in approximation by G-splinenfttions is the
constructing of the G-spline itself, because mastdtures give the
results directly without details, therefore the Inoet of construction will

be illustrated in details.

Next, the construction of the G-spline interpolatimrmula in
more efficient approach leading to a system of anly n equations is

given as follows:

From conditions (1), (2) and (3) of definition (LiBis clear that
the most suitable form of the G-spline function )S(rust take the

following form:
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k m-1

(X=Xj)%
S :Pm—l i
(X) (x)+i§1“j§cJ G =D

2m-j-1

where (x-.). is the truncated power basis defined by:

if X <X;
(x x: )2 L i x 2

and R..(x) U My, while g's are constants to be determined. Any
function of the form given by eq.(1.6) satisfie® tbonditions (1), (2)
and (3) of definition (1.3) except that:

S(X) O Mmeg 1 Xk S X (1.7)

and according to the definition of the truncatedveo basis, from
eq.(1.6), we can see thdt"8™(x) is continuous at x x; if and only if

¢; = 0, while condition (4) of definition (1.2) requiréhat $™(x) is
continuous if and only |faIJ = 0. Leaving out all such terms, one can

obtain:

(x=x)s" ~
S m-1 1T A~ . ANy tttUrrrrrrrrraaaassaaaasaniaaaaaas 1.8
O I (1.8)

In order to satisfy eq.(1.8), expand all binomialnts and
equating to zero those coefficients of, xx™?, ..., ¥™*, then the

following equations are obtained:

G (2m-j-1 .
2 - (m J j(—xi)V_J=0,V=0,1,...,m-1...(1.9)
IR

and also have the following additional equations:
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SPOG) = YP0OG), (1 1) 08 et (1.10)

Therefore, we get n + m equations from (1.9) andQ)Lin n + m
unknowns and writing the solution of the unique [ir& so as to
exhibit the P(x)), to get:

s= Y yLi(x)

(i,)ce

which is the final form of the G-spline approxinmatifunction. It is clear
that the final form of the G-spline function depsrah the fundamental

G-spline functions {(x), (i, j) U e.

Example (1.1), [Mohammed, 2006]:

As an illustration to the discussion given in sacti(1.1.3),

consider the following HB-problem of the generaiio

Given that:

TC R () o () L S 11)

and to find the G-spline function which interpolate.11). In this
problem we havex = 1, n= 3 and it is clear that it is a two-poised

problem as given by remark (1.1)(1).

The incidence matrix is given by:

0

m
I
R O

1
0
and the HB-set e will take the form:

e={(1, 0), (2, 1), (3, 0)}.
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Therefore, the G-spline interpolation function kze form:
_ 1 3,1 2 1 3
SX)=a +ax + Eclo(x +1); + Soaxi 6cso(x -1)3 .....(1.12)

Now, to find the fundamental G-spline functiong(k), L,:(X)
and Lgo(x), one must solve the following linear system alfjebraic

equations obtained from eq.(1.9) and eq.(1.10):

1c +lc =0

610 630

1 1 1

—Cio+ =Cp1— —=C3=0
210 221 230
Q- a=Y1

a+lc =y
q 210 Y2

3o+31+§0 "‘}C =Yy
5 10 5 21 = Y3
Hence, we get:
3
Cio= Eyl +3Y2— Vs
Cx1=—3y1— 6Y,+ 3y;
3 3
Cao=—_-Y1—3Y2+
30 2y1 Y2 2)/3

B0 Tyi- Syt oy
41 2 2 43

a =Sy -2y, + Sy
q 4-l 2 2 43
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Therefore, upon substitutingef 1, G, & and a back into eq.(1.12),

and writing S(x) in terms of,yy', and ¥, gives:
S(X) = YL 1o(X) + Y2l 21(X) + ysLs0(X)
where:

1 1 3 1
L) = 5 (1=3%) + (x +1)3 - 5 x2 - Y -1)3

1 1 1
Laa() == (1+%) +Z(x+1)i -3x2 - 5 (x-1)3

3 1 3 1
Laol) = 5 (1 +%) Z(x+1)i + Exi + 21(x—l)i

The approximate G-spline function for the functf@r) = x® with
knots % =-1, x; =0 and % = 1; is illustrated in figure (1.1).

1.0 —

—Jl— Thelnterpolation function
—@— Theexact function

y-coordinat

1.0 ' | ' | ' | ' |
-1.0 0.5 0.0 0.5 1.0
X-coordinate

Figure (1.1) Approximation by G-spline function for f(x) =x°.
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It is important to notice that, more accurate rssuhay be
obtained if the functions derivatives are given aeduired at the end

points or at other knot points.

1.2 FRACTIONAL DIFFERENTIAL EQUATIONS

The subject of fractional calculus has a long stavhose
infancy dates back to the beginning of classicklutas and it is an area

having interesting applications in real life prabke

This type of calculus has its origin in the genesdion of the

differential and integral calculus, [Nishimoto, 199

1.2.1 Basic Concepts.

Here, some fundamental and necessary concepteddiatthe
subject of fractional calculus are given for contghess purpose in

order to avoid vague notions in this subject.

1- Gamma and Beta Functions, [Oldham, 1974]:

Undoubtedly, one of the basic functions encounterdchctional
calculus is the Euler's gamma functidiix), which generalizes the
ordinary definition of factorial of a positive irger number n and allows
n to take also any non- integer positive or negatnd even complex

values.

The gamma functionl(x) is defined using the following

improper integral:
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M(x) = j 00T, XD Coaeeeeeee e (1.13)
0

First of all, it is easy to show that the gammacftion for a

natural number can be proved also to satisfy:
1.M(1)=1.

2. (X +1)=xI(x).

3.IM(x+1)=x.
(3= S W

2 (2n)!
5. r(1+nj:(2n—)!\/ﬁ_

2 4"n!
6. (_X):—ncsc(nx)
' F(x+1)

I P B s o G

7.7 (nx) = ?L/E_[h:!)(n+ﬁj,mntli :

which enable us to calculate for any positive settie gamma function

in terms of the fractional part of x.

Also, an important function in fractional calculis the beta

function defined by:

1
B(p.q) :I Y (1- y)q_ldy, [CTe b O 14)
0
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2- Riemann-Liouville Formula of Fractional Derivatives,
[Oldham, 1974]:

Riemann and Liouville in (1832) introduced a diéwrtial

operator of fractional order g > O of the from:

t

1 4" G (1.15)

DYy(t) =
ty( ) r(m_ q) de : (t_ u)q—m+1

where m is the integer defined by-ni < g<s m.

The case of 0 < g < 1 seems to be particularly mamd, but

there are also some applications for g > 1.

1.2.2 Fractional Calculus:
Fractional differentiation and integration may be&fided using

several approaches depending on the used defirofiaifferentiations.

Therefore, presented next some of such types fafrdiftiation are:

1- Fractional Derivative:
The usual formulation of the fractional derivativgiven in

standard references such as [Samko, 1993], [OldH&£W4] is the
Riemann-Liouville differential equations which rewep initial values

expressed as fractional derivatives.
The Giinwald definition of fractional derivatives is:

t

-q
A _ iy (Nj Nfr(j_‘”f (t—j(in .................... (1.16)

dt9  N-w [(-q) S T(j+1) N

where q < 0 indicates fractional integration and @inrdicates fractional

differentiation.
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The Reiman-Liouvilli definition of fractional derative is given
by:

X

1 d" Y ) (1.17)
r(m-a)dx™ ; (x—u)™m*

Dy, Y(x) =

where m— 1 < g<s m.

Other types of fractional derivatives may be foumdOldham,
1974], [Al-Azawi, 2004].

2- Fractional I ntegration:

The common formulation for the fractional integcan derive
directly from a traditional expression of the rejgeaintegration of a
function. This approach is commonly referred tdRé&mann — Liouville

approach.

The Riemann-Liouville definition of fractional irgeal is given

by:

f@x) :%T (x= ) (t)dt (right hand integration) ..(1.18)

b
fq (x,b) :%j(t—x)q_lf (t)dt (left hand integration) ....(1.19)

where q < 0. Equations (1.18) and (1.19) may be amedbtogether to

give the following formula:

X

q — 1 y(u)
1%y(x) @ j o AU e, 20)

X0
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1.2.3 Fractional Derivative of Certain Functions, [Oldham, 1974]:

Here, some fractional derivatives usingi@Gwald definition will
be evaluated as an illustrative examples of fraetiaifferentiations.

Other functions derivative may be derived, suchtlas fractional

derivative of sinh{/x ), sin('x ), etc.

1- The Unit Function, [Oldham, 1974]:

Consider first the differintegral to order q of thanction f= 1,
for which it is convenient to reserve the speciatation, this function

will be referred to as the unit function.

From Riemann-Liouville formula with m 0, =0

dd (1 1 % 1
1 _ J

dx?  T(-a)y (x-u)*?
— 1 " —\y a1
= F(—q)-([(x u) ' ~du

_ 1 {_(x—u)‘q:lx
r(-a) a9 |,

1 B -q
s R r(xl—q)

r
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2- The constant Function, [Oldham, 1974]::

For the constant function=f ¢, where c is any constant including

zero, we have:

q g
c??(c) = c% @D=c g s 22)

3- Thefunction x°, p > -1

The function of fractional degree we consider Herex?, where
p is initially arbitrary, we shall see, howeveratip must exceedl for

differintegration to have the properties we demahthe operator.
For integer n of either sign, one can show that:

d"xP

—=p(p-D..(p- + DX ", n=1,2, ...
dx

and from the classical theory of calculus our festounter with non-
integer g, will be restricted to negative g so tbae may exploit the

Riemann-Liouville definition, thus:

X

%P _ 1 j yP
dx  T(=a)y (x-y)

g+1 dy’ 9 <0

letting y = xu, then the integral may be cast into the stahdam of

beta function:

dyP p-q 1
ddfo _ FX( q)jup(l— UYL AU, O Conreeeeeee, (1.23)
y -
0

rr



Chapter One Fundamental Concepts

To define the integral in eq. (1.23) is recognizedthe beta function
B(p + 1,—q) provided that both arguments are positive apdefiore:

qup Xp—q
a - B(p+1-q)
dx4 T(-q)
pP—q
S (1.24)
M(p-q+1)

4- The Exponential Function, exp(k —cx):

With k and c are arbitrary constants, the poweaesearxpansion:

_ > [c(x -a)]
k— = k— E — 0
exp(k— cx)= exp( cquo F(+1)

which is valid for all x- a

Differintegration term by term with respect to e¢{a), yields:

~q = [-c(x - )]j
={c(x-a} " exp(k- caZ - F-q+1) " (1.25)

d9 exp(k—- cx)_
d(x - calf

Since the incomplete gamma function is defined by:

—X

m C 4
r(x)dx—mgy‘ expt y) d

y (-n,y)=
o]

= expt )Z T (+c+D)

re
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Hence, the sum in eq. (1.25) may be expressed asxamplete
gamma function of argumentc(x — a) and parameterq. The final
result appears as:

d exp(k- cx)_ exp(k- cx{/*(_q

dx-a)f  [x-af e @)

wherey (-n,y)= V" for non negative integer n. The above result seems

to be reduced to the well-known formula for mukigifferentiation of

an exponential function:

d” expfr x) _ expf X)y* (=q.7)
dx? x4 ’

occurs on substitutingka= 0 and & 1 into the general result.

5- The Functions 1X and

By using the Maclaurian expansion of{X)™ and the technique

of term-by-term differentegration, one can arrive a

atfoxt :id_qxhq
dx3{1-x ) 5 dx“

o
As a formula expressing the effect O operator with the
X

- q : : "
lower limit zero on the)i—X function, subject to the condition that x not

exceeds unity in magnitude. Provided also thatagedas-1, the rules of

re
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subsection (1.2.3)(3) permit differintegration bétpowers of x and lead

to:

q q 00 i .
dr [ x :ZF(quﬂ)XJ
dx9|\1-x ) “ (j+1)

1=0
-1 .
‘F(q+1)2( j(—X)J
j=0

Identification of the sum as a binomial expansioodpices:

qd ( x4 j: rg+1)

dx(1-x) (1-x)™!

as the simple final result.

. . e . XP
In a similar manner, the technique for differingrg —— that

it will suffice to cite one intermediate and thedl result:

dq[ ] pqz M(j+p+1)x

dx“ r(j+p-g+1)

_Tp+1)B (p-a.at 1
r(p-q)[L- x*™*

together with the restriction, name

ly, 0 <x < 1andp >1, which were assumed during the derivation.

&4



CHAPTER TWO

SOLUTION OF FRACTIONAL
DIFFERENTIAL EQUATIONSUSING
EXPLICIT LINEAR MULTISTEP METHODS

Numerical and approximate methods may be sometimes

considered as the most suitable methods for solwlifterential

equations.

Finite difference equations may be used effectivalysolving
differential equations which has the utility of itsimplicity in
programming and its ability in solving various tgpef differential
equations, involving ordinary, partial, delay, tiaoal of linear and non

linear types, etc., [Lambert, 1973].

2.1 FRACTIONAL DIFFERENTIAL EQUATIONS

A relationship involving one or more derivativestbé unknown
function y with respect to its independent variaklés known as an
ordinary differential equation. Similar relationghiinvolving at least
one differential of non integer order may be termasdextraordinary or
fractional differential equations, [Al-Authab, 2005

As with ordinary differential equations, the sitoat of
extraordinary (fractional) differential equationfem involves integrals

and contains arbitrary constants.

v
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The differential equations may involve Riemann-hiidle

differential operators of fractional order g > (hieh takes the form:

X

1 " y(uz AU e (2.1)
F(m-a)dx™ ¢ (x-u)¥™*

D3, Y(X) =

where m is an integer number and-h < g< m. Differential equations
involving these fractional derivatives have provedbe valuable tools in
the modeling of many physical problems. Also,” has an
m-dimensional singular kernel, and therefore onednt specify m
initial conditions in order to obtain a unique dan to the fractional

differential equation:

DHY(X) = (X, Y(X)), XZ X0 crvvvrreeeiiirrieieeeiiiiiireeeseiireeeseessnneeens (2.2)

with some given function f. In the standard math&rah theory, the
initial conditions corresponding to eq. (2.2) musinsists of the
following m-equations:
dak
dtdk

y(x)|X:X0 =B, K= 1,2, e, M (2.3)

where Ry, O k are given values.

In practical applications, these values are fretjyarot available
and so Caputo in 1967 suggested that one shouwdpoate derivatives
of integer-order of the function y as they are camiy used in initial
value problems with positive integer-order equatianto the fractional-

order equation, where the equivalent problem ig}i[K2006]:

DY = Tinea(W)] (X) =F (X, V(X)) e (2.4)

ry
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where T,_«(y) is the Taylor polynomial of order (m 1) for y, centered

at 0. Then, one can specify the initial conditionghe classical form, as:
Yy 0) =y, k=0,1, ..., M1, 2.5)

As in ordinary differential equations with positiveteger order,
the classification for fractional differential edioms may be given with
respect to several aspects, which is to be eitineal or nonlinear,

homogeneous or non-homogeneous, etc.

2.1.1 The Existence and Uniqueness Theorem, [Di&thel997]:

Looking at the questions of existence and uniquends the
solution of fractional differential equations, tf@lowing result may be
presented that are very similar to the correspandiassical theorems
known in the case of first-order ordinary diffei@hequations. Only the
scalar setting will be discussed explicitly; thengealization to vector-

valued functions is straight forward.

Theorem (2.1) (The Existence Theorem):

Assume that D=[0,x"1x[y? -0,y +a] with some real
number
x” > 0 and somex > 0, and let the function f : M - [, be a

continuous function. Furthermore, define:
X = min{x* (@r @+, )Vq}

Then, there exists a function y : [, 0 - [ , solving the initial value
problem (2.4)-(2.5).

rA
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Theorem (2.2) (The Unigueness Theorem):

Assume that D=[0,X 1x[y{? -a,y®¥+a], with some real

numberx > 0 and some > 0. Furthermore, let the function f : D -

[, be bounded function on D and fulfill a Lipschitzendition with

respect to the second variable y, i.e.,
If(x, y) = f(x, 2)[< Lly — 2|
with some constant L > 0 independent of x, y awdhich is called the

Lipschitz constant. Then there exists at most onetfony : [0x] O -

[J , solving the initial value problem (2.4)-(2.5).

2.1.2 Properties of Fractional Differentiation anthtegration:

Here, some properties related to fractional difiéegion and
integration are explained, those properties whicii provide our
primary means of understanding and utilizing fraaél differential

equations.

We start with those properties of most importance:

1- Linearity, [Oldham, 1974]:
By linearity of the differintegral operator, by vehi we mean:
Dq(lel + C2f2) = C]_qul + C2qu2 ............................................ (2..6)

where { and § are an arbitrary functions whilg and ¢ are an arbitrary

constants, since by using the Riemann-Liouvillefola:

r
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1 clf +C,f
DY(c,fy + Gof,) = 1“2 2 qy
_ 1 dm j.(- } cify
r(m-a)dx™| ; (x- u)OI w1 vy (X= u)q“m*1
1 Gfy
= du+
r(m-g)dx™ J (x-u)t 1
1 G fy
du = ¢,D%; + D%
r(m-q)dx™ ; I (x—u)® e S

2- Scale Change, [Oldham, 1974]:
By a scale change of the function f with respedht lower limit

a, we mean its replacement bxX(— Ba + a), wherg is a constant
termed the scaling factor, and hence the factoleaivative of order g

with Y =By — Ba + a, and X x + (a— 3a)/3, is given by:

df(Bx) _ d(Bx-pa+a)
[d(x-a)[* [d(x-a)f

_ 1 Gf(Ry-Ba+a)
— j = d
r-a); [x-y1°

1 B fnv/g

i r(—q) £ {IBX =Y/ [3}“*1

SN IRID

= ['(—q) _6[ [BX —Y] g+l

_aa_ AU (BX)
=B (2.7)
[d(BX -a)]"




Chapter Two ol&ion of Fractional Differential Equations Using
Explicit Linear Multistep Mabds

3- Leibniz's Rule:

The rule for differentiation of a product of twonfctions f and g
is a familiar result in elementary calculus. Ittegathat for a positive
integer n, then the differenitegration of the pradunction is defined in

general using the following binomial rule:

d"[fg] :i[f‘]ﬁ QG e (2.8)

dx" j=0 | an_j.d_Xj

The following product rule for multiple integrals also satisfied

d"[fg] :w[_”J "% dg (2.9)
[d(x-a)]" jZ:C:)j [d(x-a) "' [d(x-a)}

Now, when we observe that the finite sum in eq)(2ah equally

n
well extended to infinity (sincé j =0 for all j > n), we might expect
J

the product rule to be generalized to an arbitoader g as:

ﬂ:i@ " dlg (2.10)
[dix-a) =\ /[d(x-a)’ [d(x-a)}

Thus such a generalization is valid indeed for gder g and is
called the Leibniz rule.

Further generalization of Leibniz's rule due toe@dg[1972) is the
integral form (see [Oldham, 1974]):

[e¢]

d[fg] _ f rq+1) QY AE gt g
dx¢ F(@=-y=-A+1) (y+A+1) dxdV gxy*

—00

in which a discrete sum is replaced by an integral.

)
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4- The Chain Rule [Oldham, 1974]:

Among the most important derivatives of fractiowatler is the
chain rule, which will play an important role later solving non-liner

fractional differential equations.
The Chain rule for the first order differentiatimngiven by:

d
&g(f(x)) df—()g(f(x))—f(x)

which tacks a simple counterpart in the integrédudas.

Indeed if there were such a counterpart, the peooétegration
would pose no greater difficulty than does diffdéi&tion, since any
general formula for a special case of little hdpegt tan be held out for a

useful chain rule for arbitrary real number q.

Nevertheless, a formal chain rule in fractional eved may be

derived quit simply, which takes the form:

da =[x—a]'qcb+i( J [x-a]"® dlo
[dx-a)f r@-q  Zli)r(-a+1) dx

Now, we considesd = ®(f(x)) and evaluatel®(f(x))/dx!, in the

second term of the last equation as follows:

E )

wherez extends over all combinations of nonnegative ieteglues

of p1, P2, ..., B, such that:

s
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j _ i
Dkpc=j and Y p =m
k=1 k=1

Thus:

dd _[X—&l]_q
EEe——OTi = f
a-a T0)= gy @liea)+

[x —a] @ i ' (M) 10 p
;( ]F(J —q+1)’ Z Zl—l [T]
2.2 NUMERICAL SOLUTION OF FRACTIONAL

DIFFERENTIAL EQUATIONSUSING G-SPLINE
INTERPOLATION

In this section, the linear multistep methods baseds-spline
functions will be used for solving linear fractidmhifferential equations.
Therefore, first some basic concepts related ® tilaiined of numerical

analysis are given first.

2.2.1 Linear Multistep Methods, [Byren, 1972], [Ldyart, 1973]:

Consider the initial value problem for a single sfiorder

differential equation:

Y'(X) = (X, Y(X)), Y(X0) = Y0y X = X0 eevvrrneeereeernniieeereeennnneeeeennnns (2.11)

where f is a given continuous function andyg are fixed. We seek for a

solution in the range x xo, where ¥ is a finite scalar and assume that:

f(x, y) = O(@x)), as X1 - X

rr
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which means that there exist a positive constargukch that |f(x)E
Klp(x)|, for x sufficiently close to x Our most frequent use of this
notation will be in the context as f(k)o(i) and letting HKJ — 0, where

h is the step length associated with some numensathod. So
frequently, we shall write this, that will be imgteable always to
included the phrase “asth — 0", which is consequently to be taken as
read. However, it is important to quard againsttdraptation mentally
to debase the notation f(k)o(If) to mean “f(h) is roughly the same size
as W'. Then the problem has a unique continuously ciffidiable

solution, which will be denoted by y(x).

Consider the sequence of pointsH{xlefined by % = X, + nh,
n=0,1, ..., N, where N is a prespecified natural namthe parameter
h, which will always be regarded as constant, eixedpere otherwise
indicated, is called the step length. An esseptiaperty of the majority
of computational method for the solution of eq.(3.lis that of
discritization, that is, seeking for an approximatdution, not on the
continuous interval x< x < b, but on the discrete point set,{pn=0, 1,
..., (b= x0)/h}. Let y, be an approximation to the theoretical solution at
Xn, that is, to y(¥), and let § = f(x,, y,). If certain computational method
used for determining the sequence}{yakes the form of a linear
relationship between,y and f.;, for all j=0, 1, ..., k, where k is called
the step size of the method. This method is caledlinear multistep

method with step number k, or a linear k-step netho

Then the general form of a linear multistep methoth k steps

may thus be written as:

re
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k k
ZO(jyn+j :hZBan"‘J ....................................................... (212)
=0 =0

whereaq; andf3;, are constants to be determined. It is assumeat¥a0
and that not both ofiy and 3o, equals zero. Since eq. (2.12) can be
multiplied on both sides by the same constant withaltering the
relationship, the coefficients; and 3, are arbitrary to the extent of a
constant multiplier. This arbitrariness was removieg assuming

throughout thatr, = 1.

The linear multistep method (2.12) is said to bpliek if B¢ =0
and implicit if B¢ # 0, and the difference between the two methods is i

their accuracy in solving certain problem.

The local truncation error of (2.12), has the form:
Kk Kk

T= zan(Xnﬂ) _hZBjy'(Xnﬂ)
j=0 j=0

where y(x.) is the exact solution at,x= X, + jh. Expanding y(x,) and
Y'(Xn+j) in @ Taylor series expansion abopityelds:

T = Coy(xo) + Ghy' (o) + ... + GhPy®(x,) + ...
Then the order of of the linear multistep method22is p if G =C, =
...=C,=0, but G1 2 0.

Now, the first and second characteristic polynosadlthe linear
multistep method (2.12) are introduced for compiess purposes which

are defined ap(r) andao(r), respectively by:

o
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K .
p(r)=> a;r!

j=0

K .
ao(r) =) B;r’
j=0 J

Thus, for consistent methods, the first charadierpolynomial
p(r) always has a root at +1, where the consistersiceq.(2.12) is

equivalent to:

K K K
Da;=0 and D o =D B s (2.14)
j=0 j=0 j=0

The root r= +1 is called the principle root and always labedsd
r.. The remaining roots,rs= 2, 3, ..., k; are called the spurious roots
and arise only when the step size of the methaplaater than one, that
IS, when one choose to replace a first order diffeal equation by a

difference equation of order greater than one.
Now, the classification of linear multistep methodspends

mainly on the first characteristic polynomg@(r), and the classification

is as follows:

(1) If the zeros ofp are at r=1, r = O, then the method is called of
Adam's type and if the LMM is explicit, then it alled of Adam
Bashforth type, while if it is implicit then it igalled of Adam-

Moulton type, i.e., in Adam’s methods, we havefthikwing:
p(r) =r* —r**

=rY(r-1)=0

ra
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(2) If the zeros op are at r= -1, r=0 and r= 1, then the method is
called of Nystrom type if it is explicit and if thmethod is implicit,
then it is called of Milne-Simpson type, i.e., wavb:

p(r) =r* 1"
=rk2(r2-1)

=2 (r-1)(r+1)

The technique that will be used involves of writig(xy), the
exact solution of y=f(x, y), x U [a, b], y(a)=y, evaluated at x=a +
kh, k=0,1, ..., N; as:
Xk

Y% = Y(Xg) = j TS0 N2 19

Xq
and then replacing f by its G-spline interpolant.

Now, as a construction of linear multistep forméa solving
fractional ordinary differential equations in cowohen with G-spline
interpolation functions, suppose we want to corstam K order linear

multistep formula of the general type, [Byren, 1pT@sama, 2007]:

Pk _ .
Yok = Yrep = . 2 B D (X4, Ynai ) covveveeeieeeeceeeenas (2.16)
j=0i=0

where3; are obtained by approximation of linear functienalith the

sense of G-spline function, as:

ry
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Let | = [a, b] be a bounded interval containing the nodiats x,
X2, ..., % and let us consider a linear functio#l: C° [a, b]O - O , of

the form:

a b . a ] .
=y j a; )f D (x)dx + D3 by f D (%) s (2.17)
j=0a j=0i=1
where the #@x) are piecewise continuous functions in;l, Xl and ) are
real constants. Then the functional (2.13) mayg@@&imated using the

formula:

6= Bif V(%) + Rf oo, (2.18)
(i)Ce

Therefore, in order to find the approximatighgiven by eq.(2.18), one

can propose to determine the rgglswhere e is an HB-set.

The procedure associated with the names of NewtonCotes
will be followed for the evaluation of the coeffeits3; as follows:
There are rF Zaij of unknown parameter;, then formula
Ij
(2.18) is exact if fI M, (i.e., Rf = 0) and this is what we have to
require. Under this condition, formula (2.18) is thest approximation to
Lf.

For the derivation of this approximation, subsgatitto formula
(2.18), with Rf= 0, yields:

Vv

f)=2—,v=0,1,...,n1
v!

to get:

A
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and recall that the HB-interpolation formula isgmby:

i) = > FO(x)Ly(x), if f O My
(i.)Ce

and upon taking_ to the both sides of the last formula, gives:

ci= > W)Ly (x) , if f O Moy
(i)Ce

and hence in comparison with eq.(2.18), one mag:hav
Bi = LL;(x), (i,)) Ue

which produce the coefficient in the Newton-Cotse ahe best

approximation taZf.

Now, for eq. (2.16), yyis an approximation to y(x and
[Xn, X+l O [@, D] to this objective, one can pick k amdalong with the

m-poised HB-problem corresponding to the n valuebe set:
{60 =¢%), (,)) D e}
where¢(s) = f(x, + sh, y(x + sh)), for O< s< k.

Here e= {(i, j)} is chosen in such a way that it takes each of
the values 0, 1, ..., k one or more times andpj is attained in at least
one element (i, j) of e, the HB-problem is to firal function

P O C° which satisfies the N interpolatory conditions:

P =@ 0() D (2.20)

r4
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Instating that the HB-problem is m-poised, meansat tif

p U M1, wherell,; is the class of all polynomial is of degree-ra or
less, and ifpf) = 0 for (i, j) O e, then p(s¥ O for reasons will be com
more apparent, we now require that p <m < N.

At this point, the G-spline interpolant gomay be given in terms

of the fundamental G-splineg,Lby:

Sn(S)= Y Li(S)AY oo (2.21)

(i,j)Ce
whereL{(t) = &3, for all (t, r)0 e, and at this point, the set of knats
is stillA={0, 1, ..., k}. Now, in order to determine the caeféntsf; in
eq.(2.16), replace f in eq.(2.15) by its G-splimerpolation function and
make a change of variables, integrate and compgeerdsults with

ed.(2.15). As a consequence of the uniqueness ef Ghspline

interpolant, it then follows that:

Next, some illustrative examples are given to tlate the

method of solution and the accuracy of the results:

Example (2.1):

In this example, the 2-step explicit method basadGaspline
interpolation will be used to solve the linear franal differential

equation:
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3/2

A2)r o\ — _ 2X
y*H2(x) = y(X)+x2+r(5/2)

,¥(0)=0

where the exact solution is given for comparisorppse by y(x)= x°.
An HB-problem must be first chosen. The followirtgpce:
A={0, 1, 2}

is taken to be the knot points and let:

e={(0,0),(0,1),(1,0),(1,1), (2, 0)}

we shall seek for &) U S4(E*, A), with:

m

I
L
[ I
O O o

and for which:
K 0O)=¢"0),G,)0e
Integrating (s) over [1, 2] yields the following closed formula

Yn+2 = Yner + [N{Bood(Xns Yn) + Brod(Xn+1, Yns1)} + hz{ Boid' (Xn, Yn) +
B119' (Xn+1, Yn+)}]

where:

503

Boo = JLOO( ) ds= 3072

1748

Pro= I H109) 9= 3072

£
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2
150
= |Lq(S) ds= ——
Boz _I 01(S) 3072
2 1068
B11= ~[Lll(s) ds= 2077

and

3/2
(X, y)= D”{‘Y(X)+X2+ 2X }
9(x, y) r/2)

= y(x) - X° + 2X
gx,y)=y-x+2
and the fundamental G-spline functions are deflmed

Loo(S) = [128 — 4948 + 4118 + 2587 — 708 - 20(s- 1) -
140(s- 1P - 5(s- 2)/]/128.

Loi(S) = [64s— 1508 + 958 + 5s7 — 14s? — 4(s—1)] - 28(s-1¥
- (s- 2Y]/64.

Lio(S) = [118€ — 958 — 57 + 14 + 4(s—1Y + 28(s—-1F +
(s— 2)1/32.

Lii(s) = [-54€ + 63s + 5/ — 148 — 4(s-1) - 28(s-1f -
(s—2)1/32.

where:

£y
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(s- aﬂ:{(s_ aj', if s>a

0, if <

Table (2.1) presents the approximate results adamparison

with the exact solution with step size=1©.1:

Table (2.1)

Approximate and exact results of example (2.1).

Absolute error

£&r
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Example (2.2):

In this example, the 3-step explicit method basad@spline
interpolation method will be used to solve the dnefractional
differential equation:

3/2

r(/2)

yHAx) = —y(x) + X + y(0)=0

where the exact solution is given by y&x.
An HB-problem must be first chosen. The choice:
A={0, 1, 2}

is taken to be the knot points and let:
e={(0, 0), (0, 1), (1, 0), (1, 1), (2, O)}

we shall seek for &) O S4(E*, A), with:

m

I
e
[ I
O O o

and for which:
Y O=d"@),0)0e
Integrating (s) over [1, 3] yields the closed formula:

Yoz = Yne1 + [N{Bood(Xn, Yn) + Brod(Xn+1, Yns)} + hz{ Boid' (Xn, Yn) +
Bllg'(xnﬂ’ yn+l)}]

where:

£f
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2

Boo = [ Log(s) ds=2.859
1
2

BlO - J-L].O(S) ds=1.087
1
2

Bor = [Loy(s) ds=0.877
1

2
Bi1= j Ly4(s) ds=3.724
1

and

3/2
(X, y)= D”{‘y(x)+x2+ °x }
9(x, y) r(/2)

=y(x) - X* + 2x
gx y)=y-x"+2
and the fundamental G-spline functions are defimed

Loo(S) = [128 — 4948 + 4118 + 258/ - 708 - 20(s-1) -
140(s- 1P - 5(s- 2)/]/128.

Loi(S) = [645— 1508 + 958 + 5s — 145 — 4(s— 1Y - 28(s-1f
- (s- 2)]/64.

Lio(S) = [1182 — 958 — 557 + 148 + 4(s-1Y + 28(s-1F +

(s— 2)1/32.

£o
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Lii(s) = [-54€ + 63s + 5/ — 148 — 4(s-1) - 28(s-1f -
(s—2)1/32.

where:

(s-a) :{(s— a', if s>a

0, if <

Table (2.2) presents the approximate results adamparison

with the exact solution with step length=0.1:

Table (2.2)

Approximate and exact results of example (2.2).

Absolute error

P
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Remark (2.1):

It is noticeable that, as expected, that the 3-stefhod give more
accurate results than the 2-step method, and héecaccuracy of the
results may be improved by either increasing tkeesbf he method or
by altering the HB-set.

£y



CHAPTER THREE

NUMERICAL SOLUTION OF FRACTIONAL
DIFFERENTIAL EQUATIONSUSING
IMPLICIT LINEAR MULTISTEP METHOD

As it is known from the theory of numerical anasysespecially
from the theory of difference equations for solvioiglinary or partial
differential equations that the implicit numericalethods are more
accurate than explicit or semi-explicit methods, &l there is a major
disadvantage in using the implicit methods, sitds more difficult in
approximations and may take more computational tima® in explicit

or semi-explicit methods.

Therefore, this chapter is devoted to presentriicit methods
for solving fractional ordinary differential equatis, since such

problems require numerical methods that producesraocurate results.

3.1SOLUTION OF FRACTIONAL DIFFERENTIAL
EQUATIONSUSING IMPLICIT METHODS

As it is said above, in all numerical methods, iiciplmethods
give better results than explicit methods, but treeg either more
complicated or requires more computational times $blution obtained
from implicit methods are found in the same wayeaplicit method

when the ordinary fractional differential equatisrinear but when the

iA
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ordinary fractional differential equation is nordar, then additional
computations are needed which will increases thapbexity of the

problem under consideration.

The next example illustrates the simple applicatafnimplicit
methods in solving linear fractional differentiauations which will be

reduced to an explicit form.

Example (3.1):

Consider the linear fractional differential equatio

3/2

YI2(x) = y(x) + ¢ + 25 y(0)=0

r(/2)
where the exact solution is given by y&x°.

To construct such a method via G-spline interpolatian HB-

problem must be chosen. The choice:
A={0, 1, 2}

is taken to be knot points, and letting:
e={(0,0),(0,1),(1,0),(1,1), (2, 0)}

Then, to seek for£8) U S4(E*, 4), with:

I'I'I
I

e T =

(o R

O O O

and for which:
P iy=¢V Gy, G,j)0e

£9
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Integrating (s) over [1, 2] yields the closed formula:

Yn+2 = Vo1 + [N{Bood (X0, Yn) + Brod(Xn+1s Y1) + B2od(Xns2, Yne2)} +
hz{ BOlg’(Xna yn) + Bllg’(xnﬂ’ yn+l)}]

where the fundamental G-spline functions are ddfing
Loo(S) = [128 — 4948 + 4118 + 2587 — 708 - 20(s- 1) -

140(s- 1 - 5(s- 2)[]/128.

Loi(s) = [64s— 1508 + 958 + 5¢7 — 145 — 4(s—1)] - 28(s-1f
- (s- 2Y]/64.

Lio(s) = [118€ — 958 — 57 + 14 + 4(s—1Y + 28(s—-1F +
(s—2Y]/32.

Liy(S) = [-54€ + 63s + 57 — 1452 — 4(s—-1Y - 28(s—1f -
(s—2)1/32.

Loo(S) = [22¢ — 318 — 59 + 14s! + 4(s—1) + 28(s—-1f +

(s—2)/]/128.

where:
_|(s-a)', if s>a
s—a) =
( k {O, if <
and:
2 503
= |Loo(S) ds= ——
Boo { 00(S) 3075
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Bio= _['—10( ) de= égig
. 821
B2o = {'—zo(s) ds= 2072
. 150
Bor = _I'—m(s) ds= 2077
Z 1068
B = _['—11(5) ds= 2077

and

3/2
_ 2
a(x, y)=D1’2{ yTX +r(5/2)}

= y(x) — x> + 2x
gx, y)=y-x"+2

Table (3.1) presents the approximate results andamparison

with the exact solution, where the step size istal be = 0.1:

o
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Table (3.1)

The approximate and exact results of example (3.1).

Absolute error

3.2 IMPLICIT METHODS FOR SOLVING NONLINEAR
FRACTIONAL ORDINARY DIFFERENTIAL
EQUATIONS

Difficulties may be encountered in solving frac@bmifferential
equations wusing implicit methods in connection witB-spline
interpolation methods. These difficulties are doethe existence of

fractional derivatives of nonlinear terms that sqoee in the differential

ofr



Chapter Three Numerical Solution of Fractional Differential Equations Using
Implicit Linear Multistep Method

equation. This problem may be handled using theinchale for

fractional derivatives.

Two approaches are modified and used next forsglsuch type

of problems:

3.2.1 Predictor Corrector Method, [Lambert, 1973]:

Let us suppose that one may intend to use an imphear k-
steps method to solve the considered fractionainard initial value

problem. AT each step, one must solve gk \the nonlinear equation:

k-1 k-1
Yark t DO 0Ynei = DB (Xt Yo + DY Bifsi oo, (3.1)
=0 =0

where y.,; are known, in general. A unique solutiofnyexists and can

be approached arbitrarily closely by the iteration:

k-1 k-1
Yokt 2 0V = MBEXnek Vi )Hh Y Bifnej, 01,0 oo, (3.2)
j=0 j=0

wherey?, . is arbitrary.

At each step of this iteration (given by eq.(3.@parly involves

an evaluation of f(x Y5, ). Thus, we are concerned to keep to a

minimum number of times of iterations in eq.(32ppplied particularly

so when the evaluation of f at a given values sfatguments is time

consuming. Therefore, we would like to make theiahguessyﬂ+k as

accurate as possible. This is done by using sepangblicit method

or
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which are discussed in chapter two to estimatg yand taking this

predicted value to be the initial gueys%kk in the implicit rule.

The explicit method is called the predictor, ané timplicit

method is called the corrector.

We can now proceed in one of two different ways fhist
consists of continuing the iterations given by €8.2) until the

iterates have converged (in practice, until somieroon, such as

|yf,11k - yo.«| <€, wheree is a pre-assigned tolerance, of the order of

the local round-off error, say, is satisfied). Thegarding the value

yf,ﬁlk SO obtained as an acceptable approximation texhet solution

Yn+k Of €0.(3.1).

Since each iteration corresponds to one applicabbnthe
corrector, then this mode of operation will be edllof the predictor-
corrector method correcting to convergence. In thige, one cannot
tell in advance how much the iterations will be essary, that is, how
many function evaluations will be required at eatdp to reach a certain

accuracy.

On the other hand, the accepted valuqfﬁfk being independent

of the initial gueseyﬂ+k, the local truncation error and the weak stability
characteristics of the overall method are precisabge of the corrector

alone; the properties of the predictor are of npartance.

Let P indicate an application of the predictor, Csiagle
application of the corrector, and E an evaluatibfhia terms of known

values of its arguments.

o¢
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Suppose that we comput§22+k from the predictor method,
evaluatef,?Jrk = f(xn+k,y2+k) and apply the corrector one time to get
y}Hk; the calculation so far is denoted by PEC. A fertbvaluation of
frll+k = f(xn+k,y},+k) followed by a second application of the corrector

yields yﬁ+k, and the calculation is now denoted by PECEC, (&C¥.
Applying the corrector m-times is similarly denoteyl P(ECY'. Since m

is fixed, we accepy?,, as the numerical solution at.x At this stage,

the last computed value we have fgg s 1> = f(Xn Yin), and we

have a further decision to make, namely, whethenairto evaluate
foie = f(Xnso Yovk)- If this final evaluation is made, the mode ismno

denoted by P(ECE, and if not, by P(EC) This choice clearly affects
the next step of the calculation, since both ptediand corrected values

for ynee1 Will depend on whethei™,, is taken to bé ™, or 1.

Note that, for a given m, both P(EXE) and P(EC) modes apply
the corrector the same number of times, but themdorcalls for one

more function evaluation per step than the latter.

We now define the above modes precisely; It wilhtaut be and
vantage us if the predictor and the corrector apasately of the same
order, and this requirement may wall make it neamgs$or the step
number of the predictor to be greater than thathef corrector. The
notationally simplest may to deal with this conengy is to let both

predictor and corrector have the same step numbeutkin the case of

X4
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the corrector, to release the condition, that nathlw, and 3, shall

vanish.

Let the linear multistep method used as predictodéfined by

the characteristic polynomials:

Kk .
PE)=>ad, a =1
j=0
............................................... (3.3)
* k=1 * i
o (&)= ZB]EJ
j=0
and that used as corrector by:
k .
p@E) = 08 ok=1
j=0
.................................................. (3.4)
k-1
o(g) = ZBjEJ
j=0

Then the modes P(ECH and P(EC) just described above are

formally defined as follows form 1, 2, ...:

The P(EC)E by:

k-1 k-1

0 * _ * _

yn+k+zajyrr?+j = hZijrTH Faek = fno Yk
j=0 j=0

..(3.5)
s k-1
Yﬁ+k+ijyrr?+j =hBif S +h) Bifatj  Frek =T (Xnsko Yek)
=0 =0

foralls=0,1, ..., m— 1.

The P(ECY by:

o1
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k-1 k-1
0 * _ * _
yn+k+ijyrr?+j = hZijrrlnﬂ'  Fark = fXnso Yiek)
j=0 j=0

k-1 k-1

s+l m _ S m-1

Yok D 0Ynsj =B ni +h D Byfol;
j=0 j=0

foralls=0,1, ..., m 1.

Note that as mil — o, the results of computing with either of the
above modes will tend to those given by the modeafecting to
convergence. In practice, it is unusual to use a@ari@r which m is
greater than 2, [Al-Authab, 2005].

Example (3.2):

In this example, the method of predictor correcb@thod will be
used to solve nonlinear fractional differential atjons.
Consider the nonlinear ordinary fractional diffdarahequation:

3/2

2y = —v2(x) + X* +
Yy X)) = =yA(x) r5/2)

, y(0)=0

where the exact solution is given by y&x-.
Consider the following set of knot points:
A={0, 1, 2}

and let:
e={(0,0),(0,1),(1,0), (1, 1), (2, 0)}

and to seek for £s) O S4(E*, A), with:

oy
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ITI
I
L
(= T
O O o

and for which:
S O=d@),()0e
Integrating (s) over [1, 2] yields the following closed formula

Yn+2 = Yner + [D{Bood (Xn, Yn) + B1o9(Xn+1, Yn+1) + B20d(Xn+2, Yne2) } +
hz{ BOlg’(Xm yn) + Bllg’(xnﬂ; yn+1)}]

whereBoo, B1o, B2o, Bor andPByo are as in example (3.1), and

3/2
2.4
o(x, y)=Dl’{ Yo +r(5/2)}

/ / / 2X3/2
- pt 2[—y2(x)] + Dt 2(X4) + D2 r(5/2)

The most difficulty in this stage is the evaluati@nD"-y*(x)],

so the chain rule formula will be used to find teeult, so:

Let f(y) =y, ¢(u) = ", whered(f) = y*

Now

dd k (q x)
@w)_r(l )¢() Z(J’jr(j-qﬂ)

@Zmeﬂlaﬂ]

Hence:

on
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1/2 ~1/2 1/2 1-3
S0 = oy [
dx r1-1/2) r-5+1
1/2 xz_

2 T2-1+1)

172  x¥

3)r(3-1+1)

1

X—1/2 1 XE 1 X3/2

yH+= (2y)-=

r/2)y° 2r(@3/2) 8I(5/2)
1 X5/2

16T (7/2)

(9'F) +

N~

(¢'f + ¢@Uf 1)) +

N

N[~

(¢rf(3) + %(Z)f(l)f(Z) + ¢(3)(f r)3)

(2yx0 + 2x1) +

(2yx0 + 3x2 + Ox1)

1
xy2 X2 1 x3/2

r2’ " TaI2)Y  arGi)

Therefore:

X—1/2 2+ X 1 X3/2

ra/2y @2’ 4areie)

1
2

D™ (y*(x))

and as a result:

_—xvz X2 ! x>/ 24x7’2
ax,y)= y - + 2X
ra2)  T@2) 4r(5/2) rQ/2)
Also:
3/2 2
g(x,y)= r(1/2)( "2yg(x y) yj
3/2
w112 + 12
r(3/2)( 9xy)*+3 j ars2)
24><z
2 52 4
rQ/2)

o9
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The fundamental G-spline functiongelLo1, L1o, L11 and Ly are

defined as in example (3.1).

The following results which are presented in tal®e2) are
obtained using Mathcad computer software and itspavison with the

exact solution.

Table (3.2)

The approximate and exact results of example (3.2).

Absolute error
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3.2.2 Newton-Raphson Method:

The problem that is considered here is:

y(a)(x) - f(x’ y)1 y(XO) - yO! X2 Xo
where f is nonlinear,xand y are given. The problem is so difficult to
solve and hence upon applying any implicit rule, tbsulting difference

equation obtained upon using k-steps linear maftismethod is

nonlinear in y.y, i.e., the difference equation may take the form:

I(Xn Vi Vet -1 York) = 0, Y(X0) S Y0 vvvvvnvmmmnrnnrrnriieiininninnnnnnnnn, (3.7)

which must be solved using the usual methods fdorirgp nonlinear
equations of one variablg.y at each stagenyyn:1, ..., Ya+k-1 are given
from the previous stages of the numerical solutibrs remarkable here
to recall that the considerable method used foviisglthe nonlinear
difference equation is the Newton-Raphson method #rwen the

numerical solution of eq. (3.7) will take the form:

st1 _ ,,S
yn+k - yn+k

S S
_ g,(xr;;yr;,--.iyrsﬁk)’ S= O, 1’
g (Xn,yni"'1y§+k)

The next example illustrate the above method aftswi:

Example (3.3):

In this example, we will discuss the results ofhgsthe implicit
method for solving nonlinear fractional differemtequations by using

Newton-Raphson method.

Consider the nonlinear ordinary fractional diffdarahequation:

7



Chapter Three Numerical Solution of Fractional Differential Equations Using
Implicit Linear Multistep Method

3/2

rs/2)

yYAx) = —y*(x) + x* + y(0)=0

where the exact solution is given by y&x°.
LetA={0, 1, 2} are taken to be the knot points and let:
e={(0,0), (0, 1), (1, 1), (2, 0)}

in order to seek for &) [ S4(E*, A), with:

ITI
I

e

(@ T N

O O o

and for which:
SPM=d @), ()0e
Integrating (s) over [1, 2] yields the closed formula:

Y2 = Ynsr + [N{Bood (Xn, Yn) + B1o9(Xn+1, Yn+1) + B2od(Xns+2, Yns2) } +
hz{ BOlg'(Xm yn) + Bllg’(xnﬂ’ yn+l)}]

whereBoo, B1o, B2o, Bor andPByo are as in example (3.1), and

3/2
2.4
o(x, y)=Dl’{ yorx +r(5/2)}

vz x% 1 332 YU
= y© - y+ — + + 2X
rawz’ T@I2)°  4r(Gi2) roe/2)

Therefore:

T
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i 1 .
g(x,y)= —(ZX 1’Zyg(x,y)-a X 3’2y2j -

ras2)
1 3/2

12 (x. +_X1/2j+ W12 4
( I+ SN r e

M(3/2)
24><z

2
(9/2)

with the fundamental G-spline functions as in exian(p.1).

5/2+2

The following results and its comparison with th@& solution

are obtained using the Mathcad computer software.

Table (3.3)
The approximate and exact results of example (3.3).

Absolute error

T



CONCLUSIONSAND RECOMMENDATIONS

From the present study, the following conclusioragy ine drown:

1. Implicit LMM’s has more accurate results than egplLMM'’s in solving

fractional differential equations.

2. Theory of approximation theory may be used effatyivior solving

several problems given in operator form.

Also, we can recommend the following problems tdufe work:

1. Using other interpolating functions of approximatitheory in solving
fractional differential equations with LMM’s methsdsuch as cubic

spline functions, B-spline functions, tensor spliete.

2. Using Runge-Kutta methods instead of LMM'’s for soty fractional

differential equations.

3. Solving fractional partial differential equationsing similar approach

followed in this work.

4. Solving integral equations with fractional integralsing similar approach

followed in this work.

¢



CONTENTS

INTRODUCTION ..o

CHAPTER ONE: FUNDAMENTAL CONCEPTS.........ccvee....
1.1 G-Spline Interpolation..........ccccuveceeveeccecsee e
1.1.1 The HB-Problem........ccccooviriiinniereeeee e

1.1.2 Interpolation by G-Spline.......ccccvvceivevrceiiennieee,

1.1.3 The Construction of G-Spline Functions.................

1.2 Fractional Differential Equations..........cccccccevcveveevieenenne
1.2.1 BaSiC CONCEPLS......ccverereeiereieeser e esieeseeesie e

1.2.2 Fractional CalCuluS..........ccoevvveinieieeecee e,

1.2.3 Fractiona Derivative of Certain Functions.............

CHAPTER TWO: SOLUTION OF FRACTIONAL
DIFFERENTIAL EQUATIONSUSING EXPLICIT

LINEARMULTISTEPMETHODS.........ccoooveree
2.1 Fractional Differential EQUaLions...........ccccocuvvieeieriieeninnns

2.1.1 The Existence and Uniqueness Theorem..........cccccceeneens

2.1.2 Properties of Fractional Differentiation and Integration

2.2 Numerical Solution of Fractional Differential Equations

Using G-Spline Interpolation............cccevveeeviieeeieeeciee e,

2.2.1 Linear Multistep Methods..........cccooeviieiniiiieieceee



Contents

CHAPTER THREE: NUMERICAL SOLUTION OF
FRACTIONAL DIFFERENTIAL EQUATIONSUSING
IMPLICIT LINEAR MULTISTEP METHOD ................. 48

3.1 Solution of Fractional Differential Equations Using Implicit
IMELNOUS......c.eeeiee e 48

3.2 Implicit Methods for Solving Nonlinear Fractional Ordinary

Differential EQUatioNS...........cccovevieiiie e 52

3.2.1 Predictor Corrector Method..........coccvevevvieniiniiecceee e 53
3.2.2 Newton-Raphson Method ...........cccocveveinieniennie e 61
CONCLUSIONS AND RECOMMENDATIONS......cccooeeeenirenens 64

REFERENCES...... .o 65



With ll Love and Respects



INTRODUCTION

Fractional calculus is that field of mathematicsstidy which
grows out of the traditional definitions of the @alus integral and
derivative operators in which the same by fractioedgonents is an
outgrowth of exponents with integral value. Considlee physical
meaning of the exponent. According to our primacha®! teacher
exponents provides a short notation for what iem®ssly a repeated
multiplication of numerical value. This conceptiigself is easy to grasp
and straight forward. However, this physical defoms can clearly
become confused when considering exponents of meger value,
[Loverro, 2004].

When the analytical solution of fractional diffetiah equations
goes for more complicated problems, the procedusslotion becomes
more and more complicated till a very complex gitrais encountered
in some problems. Thus, am analytical solution rhayimpossible to
evaluated and one should consult a numerical tgakento solve the

fractional differential equation, [Kalil, 2006].

Fractional differential equations are used to dbscmany
phenomenas of physical interest. Fractional diffea¢é equations
contain derivatives of non integer order; thereftirere is no general
agreement on how the numerical and approximatethadstshould be
interpreted and used in solving differential equadi in general, and
fractional differential equations, in particulaorBe see this analysis as

the key word and wish to embed the subject entirelygorous modern
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analysis, others suggest that the numerical methoelshe vital word
and the algorithm is the only respectable yield.n&tcal methods
usually produces errors and we say that any nualetechnique is a
good one if the error approach quickly or rapidbeg to zero and the
method requires a minimum computer capacity ansltiese consuming
as possible, [Oldham, 1974].

In resent years, the theory of this class of equathad become
an independent trend and the literatures on thigesticomprise over
1000 titles.

Sometimes, numerical methods for solving ordinaffecential
equation are more reliable than analytic methosise@ally in fractional
differential equations, since such type of equatibas some difficulties
in their methods of solution, which could not badlied easily, [Burden,
1997], [Atkinson, 1989].

Although, approximation algorithms are used thramghthe
subject of science and in many industrial and cortieddields. Some of
this theory has become highly specialized and atistrWork in
numerical analysis and in mathematical softwar&kages is one of the
main links between these two extremes, for purpieséo provide
computer users with efficient programs for geneaglproximation
calculations, in order that useful advances insiiigject can be applied,
[Kalil, 2006].

In addition, spline functions have transformed agpnation
techniques and theory, because they are not onlyeceent and suitable
for computer calculations, but also they providdiropl theoretical

solutions to the estimation of functions from liedtdata, [Kalil, 2006].
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Moreover, splines can be considered as mathematiodéls that
associate a continuous representation of a curveudiace with a
discrete set of points in a given space. Splinenditis an extremely
popular form of a piecewise approximation usingioas forms of
polynomials of degree n or more general functiars,an interval in
which they are fitting functions at specified psinknown as control

points or nodes or knots.

The polynomial used can change, but the derivatokeshe
polynomials are required to match up to degreelnat each side of the
knot, or to meet related interpolatory conditioBsundary conditions,

are also imposed on the end points of the interjffslishammed, 2006].

It is near 60 years ago since I. J. Schoenberg@doted the
subject of "spline functions" as a method for apprating functions
which are so complicated or hard to be used iniegpdns. Since then,
splines have proved to be enormously importantanous branches of
mathematics, such as approximation theory, nunleraaalysis,
numerical treatment of ordinary, integral and péartdifferential

equations and statistics, etc., [Schoenberg, 1968].

The purpose of this work is to use an approximatation of
ordinary fractional differential equations usingdar multi-step methods

with the cooperation of G-spline interpolation ftions.
This thesis consists of three chapters.

In chapter one entitled “Fundamental Concepts” enes the
most important used concepts and notations retatékis work, where

this chapter consists of two sections. In sectibd)( the theory of G-



I ntroduction

spline interpolation functions is given, includitige Hermit-Berkhoff

problem and the construction of the G-spline funtdi as well as, with
some of the most important related theorems andtititive examples.
In section 1.2, the theory of fractional calculussbeen summarized

with some examples illustrating the fractional datives.

In chapter two, which is entitled “Solution of Ftanal
Differential Equations Using Explicit Linear Multep Methods”, we
give the G-spline interpolation for approximatinget solution of
fractional differential equations using linear nmsliep methods. This
chapter consists of two sections, section 2.1 isowel to study
theoretically the fractional differential equationahile section 2.2
presents the basic concepts of linear multistefhoakst in general and in
particular the explicit linear multistep method &wlving the fractional

ordinary differential equations with an illustratiexamples.

Chapter three, entitled, “Numerical Solution of dtranal
Differential Equations Using Implicit Linear Multesp Method” is
devoted to improve the accuracy of the results fdplyang the implicit
linear multistep methods for solving fractional oty differential
equations. This chapter consists of two sectionssaction 3.1 the
implicit methods are explained for solving fractbn ordinary
differential equations while section 3.2 presem® tapproaches for
solving implicitly nonlinear fractional ordinary ffierential equations
either by predictor corrector methods or by usingwhdn-Raphson
method for solving nonlinear algebraic equationsittype of nonlinear
problems has so many difficulties in the evaluatainthe fractional

derivatives.
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The results are given either by a tabulated formlwstrated by
figures with their comparison with the exact result both cases, where
the results are obtained using the computer softwhitathcad

professional 2001.i.
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ABSTRACT

The main objective of this work is to study the muimal solution of
fractional ordinary differential equations usings@ine interpolation functions.
Two numerical approaches are used, the first appratlize the explicit linear
multistep methods which can be applied easily foedr and nonlinear
problems while the second approach is a modifiedraach by using the
implicit linear multistep methods for solving namdar fractional ordinary
differential equations which has so many difficedtiin their solution. This is
done by suggesting a new criterion by using theinchale derivatives of

fractional order.
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