
AAbbssttrraacctt  ------------------------------------------------------------------------------------------    

 The NTRU [Number theory research unit] cryptosystem is a relatively 

new public key cryptographic algorithm that was first introduced in 1998, and 

that key runs are much faster than conventional public key algorithms such as 

RSA, ECC. The main advantage of this cryptosystem is its high speed generation 

keys, which is often the most important part of public key cryptography. 

The security of NTRU cryptosystem comes from the interaction of the 

polynomial mixing system with the independence of reduction modulo two 

relatively prime integers' p and q. 

   This thesis introduces the concepts behind NTRU as a new public key 

cryptosystem. NTRU features are reasonably short, easily created keys, high 

speed, and low memory requirement. These features make it favourable in 

mobile communication systems, broadcast and satellite channels for its low cost 

hardware needs.  

NTRU encryption and decryption use a mixing system suggested by 

polynomial algebra combined with a clustering principle based on elementary 

probability theory.  

Also an approach variant of the NTRU public key cryptosystem called 

Matrix NTRU cryptosystem is proposed and has been shown to be much faster 

and have higher efficiency than the classical NTRU cryptosystem. 

The thesis describes the NTRU Signature Scheme with enhanced 

document encoding, signature, verification, with provision of documented 

algorithms and examples. 

The test and performance analysis performed using a PC with the 

following specification (processor 1.7 dual cores,memory 512 MB with windows 

XP-SP2 operating system), and all programs are developed in Visual Basic. .  
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1.1Introduction: 

In this chapter we shall describe the public key cryptography, 

mathematical basic material and lattice that use for NTRU cryptosystem. 

 

1.2 Public-Key Cryptography: 

The idea of symmetric or private key, cryptosystems is that the 

communicating parties agree on common keys which they use to encrypt their 

messages to each other. The same key is used to decrypt, i.e. to unscramble the 

encrypted message. Eavesdroppers, who can capture the exchanged encrypted 

messages, are unable to understand the messages as long as the key used remains 

secret. 

One of the weak points of these private key systems is key agreement. 

Clearly, before the parties are able to communicate securely, they must have a 

way to agree on their key. But how this is possible if all exchanged messages can 

be eavesdropped by adversaries. The development of complexity theory since the 

50’s has made it possible to solve the problem in a revolutionary way. The main 

idea was to split the key, one public key for encryption and one private key for 

decryption. For instance Party A could then encrypt his/her messages to party B 

by using B’s public encryption key. As B’s decryption key is private, only B can 

decrypt the messages. In theory, the knowledge of the encryption key is 

sufficient to determine the decryption key. However, the system can be 

constructed in such a way, that the amount of work required for cryptanalysis is 

beyond the scope of any realistic adversary. 

For a long time, the speed of the best symmetric cryptosystems was 

superior to all suggested public key cryptosystems. Hence it was not sensible to 

encrypt large amounts of data with public key systems. Instead, one used public 
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key systems to exchange a key for a fast symmetric system. With the 

development of computers and algorithms, the public key cryptosystems have 

been used more and more.  

To explain the ideas of complexity theory we must introduce some definitions.  

 

Definition 1.1: [44] 

Let P= ))n(f(O  be the set of all polynomials comprises all positive 

functions g(n) for which there exists constants n0 and c such that )n(cf)n(g ≤  

when n  n0  , where P is called also the set of problems that can be solved in 

polynomial time using a deterministic algorithm. That is, those problems for 

which there is an integer k such that all instances of size n of the problem can be 

solved in time )n(O k , such problems are called tractable; all other problems are 

called intractable. 

 

 Definition 1.2: [44] 

Problems that have a polynomial time non-deterministic algorithm 

constitute the set NP. That is, for every problem in NP we can check in 

polynomial time whether a given candidate is a solution to the problem. NPP⊆  

but it is not known whether NPP =  . 

 

Definition 1.3: [44] 

A problem in NP is called NP-complete if finding a polynomial time 

algorithm for that problem would mean that there is a polynomial algorithm for 

all problems in NP and thus we would have P = NP. These are clearly the 

hardest problems in NP.  

The idea of NP-completeness was introduced by Cook in 1971 [40]. 
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1.2.1 The one way function  

Definition 1.4: [44] 

 A function f is called one-way if f(x) can be efficiently computed when x 

is given. 

The one-way functions is the main building blocks of public key cryptosystems, 

informally, but no efficient algorithm exists to find x such that f(x) = y when y is 

given. In other words, the problem of computing f(x) is in P, but the problem of 

inverting f is in NP \ P. 

 

Despite several decades of intense research, it is not known whether one-

way functions exist or not. But there are some good candidates which are widely 

used in practice. As there does not exist a proof of one wryness, it is possible that 

somebody someday will find a fast algorithm to invert them. One-way functions 

cannot be used as cryptosystems: it is impossible to decrypt. An additional 

property is needed. A trapdoor one-way function is a one-way function which 

can be inverted in polynomial time if some additional information, the trapdoor, 

is known. These functions suit public key systems perfectly: the trapdoor acts as 

the private decryption key. For more detailed definitions consult [33]. 

The first proposal [36] for a public key cryptosystem by Merkle and 

Hellman in 1978 was based on a knapsack problem. This problem is NP-

complete so, at first glance, a cryptosystem based on it seemed sufficiently 

difficult to break. Unfortunately NP-completeness only means that the hardest 

instances of the problem are difficult. It turned out that on average the knapsack 

problem was relatively easy, which made it unsuitable for cryptographic 

applications. 

The earliest public key system still in use is the RSA cryptosystem 

developed by Ronald Rivest, Adi Shamir and Leonard Adleman [36] the 



Chapter One                                 Basic Concept Of the NTRU Cryptosystem 
 

 - 4 - 

underlying hard problem in RSA is the integer factorization problem. It is 

relatively easy to multiply two large integers; even the “school algorithm” is 

efficient enough, as it works in time O (n2). On the other hand, it is very difficult 

to determine the factorization of a large integer, especially if it is a product of 

two large prime numbers. Integers with 300 digits are well beyond the best 

factorization algorithms known today. Although the factoring problem is not 

known to be an NP-complete problem, it is commonly considered hard enough 

for cryptographic purposes. 

Another popular candidate one-way function is modular exponentiation. 

Given a, e and n, the value ae mod n can be computed in time O (n3). For the 

inverse problem, also known as the discrete logarithm problem, no polynomial 

time algorithm is known. The famous El-Gamal cryptosystem is based on this 

fact [42]. The same system can also be applied in the elliptic curve group [9]. 

From a theoretical point of view it would be perfect if breaking a cryptosystem 

required solving an NP-complete problem. However, for practical reasons, all 

instances of the problem that may occur in cryptanalysis should be hard. 

Therefore a minimal requirement is that the problem in question is hard on 

average. In [28] Miklos Ajtai showed that certain lattice problems are hard on 

average, provided they are hard in the worst case. As a consequence, it seems a 

good idea to base a public key system on such problems. 

The NTRU encryption system [12] from 1998 is based on the difficulty of 

finding a short vector in a lattice, or alternatively the closest lattice vector to a 

given vector. The main advantage of NTRU is its speed; which is comparable to 

the fastest symmetric systems. 

In addition to ordinary message encryption, public key cryptography also 

has other applications. From a practical point of view, perhaps the most 
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important one is the ability to sign digital documents. Some properties required 

from a digital signature are impossible to be fulfilled, or require a so-called 

trusted third party using symmetric cryptosystems. 

The idea is that each signer again creates a pair of keys: one private key 

needed to sign documents, and one public key needed to verify the validity of 

signatures. There are signature protocols related to most public key 

cryptosystems, including RSA, El Gamal and NTRU; see table [1]. 

The main advantage of NTRU over other public key cryptosystems is its 

speed: it is comparable to the fastest symmetric cryptosystems available. As an 

example, consider table (1.1) taken from the official NTRU Cryptosystems 

website [46]. 

 NTRU 251 RSA 1024 ECC 163 

Public key (bits) 2008 1024 164 

secret key (bits) 251 1024 163 

plaintext  

(block) 

160 702 163 

Cipher text 

(block) 

2008 1024 163 

Encryption 

speed(block/sec) 

22727 1280 458 

Decrypt speed 

(block/sec) 

10869 110 702 

 

Table (1.1) level comparison between NTRU, RSA and ECC  
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1.3 Mathematical Background for the NTRU Cryptosystem: 

In this section we tried to collect some of basic material on the integer set, 

abstract algebra, polynomial ring and lattice.  

 

1.3.1 Integer set:  

The set of integers {…,-3,-2,-1, 0, 1, 2, 3 …} is denoted by the symbolZ . 

 

Definition 1.5: [abstract]  

 Let a,b be integers , with 0a ≠ . Then a divides b if there exists an integer 

c such that b=ac, if a divides b, then this is denoted by a/b . 

 

Theorem1:-[5] 

 If Zb,a ∈  with 0b > , then there exist unique integers q and r such that  

br0,rqba <≤+= . 

Corollary 1:- (Division Algorithm) [5]. 

 If ,0bwith,Zb,a ≠∈ then there exist unique integers q and r such that  

br0,bqra <≤+= . 

Moreover, q and r are unique the reminder of the division is denoted by a 

mod b, and the quotient is denoted by a div b. 

 

Definition1.6: [5] 

 If ,Zb,a ∈ we say that an integer d is common divisor of a and b if 

bdandad . 

Definition1.7: [5] 

Let a and b be an integers, not both of which are zero. 
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The greatest common divisor of a and b, denoted by )b,agcd(  is a positive 

integer d such that  

1- d is common divisor  

2- Whenever .dcthen,bcandac  

It's to observed that if a=b=0 , then every integers is a common divisor of a and 

b. The notion of greatest common divisor of a and make sense only when we 

require that at least one of a and b different from zero, with the expectation 

0)0,0gcd( = .  

Definition1.8: [5] 

 An integer p ≥2 is said to be prime if it’s only positive divisors are 1 and 

p .other wise p is called composite. 

 

Definition1.9:  

 For 1N ≥ , let )n(φ  denote the number of integers in the interval[1,n] 

which are relatively prime to n . The function φ is called the Euler phi function . 

 The Euler phi function is a map NN: →φ  given by  

}1)n,mgcd(andNm1Nm{)n( =≤≤∈=φ  

Definition 1.10: [5] 

 For an arbitrary integer a, let [a] denote the set of all integers congruent to 

a modulo n: 

}.kegerintsomeforknaxZx{

)}n(modaxZx{]a[

+=∈=

≡∈=
 

[a] is called the congruence class ,modulo n ,determined by a and refer to a as 

a representative of this class .  

 By way of illustration, that we are dealing with congruence modulo 3.then  
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,...}.9,6,3,0,3,6,9{...,

]Zksomefork3xZx{]0[

−−−=
∈=∈=

 

Also  

,...}.10,7,4,1,2,5,8{...,

}Zksomefork31xZx{]1[

−−−=
∈+=∈=

 

Similarly  

 To return to the general case of congruence modulo n, let  

].1n[],...,2[],1[],0{[Zn −=  

Several properties of the collection Zn that we shall require later appear in the 

next theorem  

Theorem 2:- [5]  

Let n be a positive integer and Zn be defined above then  

1- for each 
M at h Com poser  1. 1. 5
ht t p: / / www. m at hcom poser . com

[a]∈Zn , [a]≠∅ 

2- if ]a[]b[then]a[bandZa n =∈∈ ; that is , any element  f the congruent 

class [a] determine the class . 

    
3-for any [ ],[ ] [ ] [ ],[ ] [ ]  na b Z where a b a b∈ ≠ ∩ = ∅

 

     4- Z}Z]a[]a{[ n =∈∪  

Conclusion remark (1) (Properties of congruence) 

(1) a≡b(mod n) if and only if a and b leave the same reminder when divided 

by n,  

(2) a≡a(mod n) ( reflexivity) . 

(3)If a≡b (mod n) then b≡a (mod (n), (symmetric). 

(4)If a≡b(mod n) and b≡c(mod n), then a≡c(mod n) ,(transitivity) . 

(5)If a≡a1(mod n) and b≡b1mod(n), then a+b≡a1+b1(mod n), and 

a*b≡a1*b1(mod n). 
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The equivalence class of an integer is the set of all integers congruent to A 

modulo n . From properties (2), (3), and (4) above, it can be seen that for a fixed. 

The relation of congruence modulo n. Partitions the set Z into equivalence 

classes. Now, if a=qn+r, where 0≤r< n, then a≡ r(mod n). Hence each integer a is 

congruent modulo thus a and r are in the same equivalence class, and so r may 

simply be used to represent this equivalence class. 

 

Definition 1.11: [5] 

The integers modulo n ,denote Zn , is the set of( equivalence classes of ) 

integers{0,1,2,…,n-1}.Addition, subtraction and multiplication in Zn are 

performed modulo n. 

Definition 1.12: [5] 

Let a∈ Zn. The multiplicative inverse of a modulo n is an integer x∈Zn 

such that ax≡1(mod n) .if such an x exists, then it is unique and a is said to be 

invertible, or a unit, the inverse of a is denoted by a-1. 

 

Definition 1.13: [5] 

Let a, b∈Zn .Division of a by b modulo n is the product of a and b-1 

modulo n, and is only defined if b is invertible modulo n. 

Conclusion Remark (2): 

(1)If a∈Zn. then a is invertible if and only if gcd(a,n)=1 . 

(2)Let d=gcd(a,n) .The congruence equation ax≡b(mod n) has solution x if and 

only if  d divided b , in which case there are exactly d solution between 0 and n-

1, these solutions are all congruent modulo n/d . 

(3) (Chinese remainder theorem, CRT) If the integers n1,n2,….nk are pair wise  

relatively prime , then the system of simultaneous congruence [30]  



Chapter One                                 Basic Concept Of the NTRU Cryptosystem 
 

 - 10 - 

 

 

Has a unique solution modulo n=n1,n2,…nk.  

1.3.2 Binary Operation: 

Definition 1.14: 

A Binary operation * on a set S is a mapping from S * S to S. that is,* is a 

rule which assigns to each ordered pair of elements from S an element of S. 

 

Definition 1.15: [5] 

A group is a pair (G,*) consisting of a non empty set G and a binary operation 

* defined on G, satisfying the requirements   

(1) G is closed under the operation *. 

(2) The group operation is associative. That is a*(b*c) = (a*b)*c for a,b,c∈G. 

(3) G contains an identity element e for a group operation * , and 

(4) Each element a of g has an inverse Ga 1∈−  to*.  

The group G is commutative if a*b=b*a for all a, b∈G. 

Note that multiplicative group notation has been used for the group 

operation .if the group operation is addition , then the group is said to be additive 

group , the  identity element is denoted by 0, and the inverse of a is denoted –a . 

 

 

 

)n(modax

.

.

.

)n(modax

)n(modax

kk

22

11

≡

≡
≡
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Example (1.1): 

(Z4, +4) is a commutative group 

 

+4 [o] [1] [2] [3] 

[0] [0] [1] [2] [3] 

[1] [1] [2] [3] [0] 

[2] [2] [3] [0] [1] 

[3] [3] [0] [1] [2] 

 

Definition 1.16: [5] 

A group G is finite if G  is finite .The number of elements in a finite 

group represents its order. 

Definition 1.17: [5]  

 A group G is cyclic with generator a if G=(a) for some a ∈G  

Thus to say that a group is cyclic means that each of its member can be 

expressed as an integral power of some fixed element of group. Any cyclic group 

G= (a) is commutative since  

nmnmmnmn aaaaaa === ++  

 For arbitrary integer n and m. 

 

Definition 1.18: [5] 

 A ring is an order triple( R,+,*) consisting of a non empty set R and two 

binary operation + ,* defined on R such that  

1- (R, +) is a commutative group 

2- (R,*) is a semi group  

3- The operation * is distributive over the operation +. That is  

a * (b+c)= (a * b) + (a * c) and (b+c) * a = (b * a) + (c * a) for all a, b, c  ∈ R. 
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Definition1.19: [5] 

An element a of a commutative ring with identity R called a unit or an 

invertible element if there is an element b ∈ R such that a * b =e. 

• The set of units in a ring R form a group under multiplication called the group 

of units of R. 
 

Definition 1.20  [5] 

Let RandR ′ be two rings .By a ring homomorphism from RointR ′ is meant a 

function RR:f ′→  such that  

)b(f*)a(f)b*a(f,)b(f)a(f)ba(f =+=+  

For every pairs of elements a,bR∈ . A homomorphism that is also is a one- to- 

one mapping is called an isomorphism    

 

Definitin1.21: [5] 

 A ring   F is said to be field provided that the set F-{0} is a commutative  

group under the multiplication of F ( the identity of this group will be written as 

1) . 

Conclusion Remark (3): 

R is a field (under the useful operation of addition and multiplication mod n) if 

and only if n is prime number. 

 

1.3.3 (Polynomial Rings): 

Definition 1.22 [5] 

If R is commutative ring, then a polynomial in the indeterminate x over 

the ring R is an expression of the form  

                                 01
2

2
n

n pxpxp........xp)x(P ++++=   
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Where each Rpi ∈ and n≥ 0. The element ip is called the coefficient of ix  in 

P(x). The largest integer m for which 0pm ≠ . Is called the degree of P(x) 

denoted deg (P(x)), mp is called the leading coefficient of P(x). if P(x) = 

0p (constant poly) and 0p0 ≠ , then P(x) has degree 0. If all coefficient of P (x) 

are 0, then P(x) is called the zero polynomial and its degree. For mathematical 

convenience is defined to be∞ . The polynomial f(x) is said to be monic if its 

leading coefficient is equal to 1 [8]. 

Definition 1.23: [13] 

If R is commutative ring, the polynomial ring R(x) is the ring formed by 

the set of all polynomials in the indeterminate * having coefficients form R. the 

two operations are the standard polynomial addition and multiplication, with 

coefficient arithmetic performed in the ring R. 

 

Definition 1.24: [8]     

Let f(x) ∈ P(x) be a polynomial of degree at least 1. Then f(x) is to be 

irreducible over P if it cannot be written as the product of two polynomials in 

P(x), each of positive degree. 

 

Theorem (2): (Division algorithm for polynomials) [5] 

Let R be a commutative ring with identity and f(x) ,g(x) ≠ 0be a polynomials in 

R[x] ,with leading coefficient of g(x) an invertible element . The unique 

polynomial q(x), r(x) ∈R[x] exist such that  

)x(r)x(g)x(q)x(f +=  

Where either ).x(gdeg)x(rdegor0)x(r <=  

Moreover, q(x) and r(x) are unique. The polynomial q(x) is called the 

quotient, while r(x) is called the reminder. The reminder of the division is some 
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terms denoted g(x) mod f(x), and the quotient is some times denoted g(x) mod 

f(x). 
 

Definition 1.25: 

If g(x), f(x) ∈ P(x) then f(x) divides g(x), written h(x) g(x). If g(x) mod f(x) = 

0. 

Let h(x) be a fixed in polynomial in F(x). as with the integers one can define 

congruencies of polynomial in F(x) based on division by h(x). 

Definition 1.26: 

If g(x), a(x) ∈ P(x), then g(x) is said to be congruent to f(x) modulo h(x) if h(x) 

divides g(x) - f(x). This is denoted by g(x) =f(x) (mod h(x)).  

Conclusion Remark (4): (properties of congruence) 

 For all g(x), f(x), g1(x), h1(x), S(x) ∈P(x), the following are true  

1. g(x)≡ f(x) (mod h(x)) if and only if g(x) and f(x)leave the same reminder 

upon division by h(x). 

2. (Reflexivity) g(x) ≡  g(x) (mod h(x)). 

3. (Symmetry) if g(x) ≡  f(x) (mod h(x)), then f(x) ≡g(x) (mod h(x)). 

4. (Transitivity) if g(x) ≡ f(x) (mod h(x)) and f(x) ≡S(x) (mod h(x)), then 

g(x) ≡S(x) (mod h(x)). 

5. If g(x) ≡g1(x) (mod g(x)) and f(x)≡ f(x) (mod f(x)) then 

g(x)+f(x)=g1(x)+f1(x) (mod h(x)) and g(x) f(x)=g1(x)f (x) (mod h(x)). 

Let f(x) be a fixed polynomial in F(x). the equivalence class of a 

polynomial g(x) ∈P(x) is the set of polynomials in P(x) congruent to g(x) 

modulo h(x), from properties 2 and 3 and 4 above, it can be seen that the 

relation of congruence modulo h(x) partitions P(x) into equivalence 

classes. If g(x)∈P(x), then long division by h(x) yields unique 

polynomials g(x), r(x) ∈P(x). Such that g(x) =g(x) H(x)+r(x) where deg 
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r(x)< deg h(x) . Hence every polynomial g(x) is congruent nodule h(x) to a 

unique polynomial of degree less then deg h(x), the polynomial r(x) will 

be used as representative of the equivalence class of polynomial 

containing g(x). 

 

Definition 1.27: (Finite Fields) 

A finite field is a field F(x) which contains a finite number of elements. The 

order of F(x) is the number of elements in F(x). 

Conclusion Remark (5) (existence and uniqueness of finite fields) 

1. If F(x) is a finite field then F (x) contains mp  elements for some prime p 

and integer m≥ 1. 

2. For every prime power order mp  , there is a unique finite field of order 

mp . This field is denoted by Fmp , or some times by GF (mp ). 

In formally two fields are isomorphic if they are structurally the same, 

although the representation of their field elements may be different. Note that if 

p is a prime then p is a field, and hence every field of order p is isomorphic to p. 

unless other write stated, the finite field pF will hence forth be identified with     

P [6]. 

 

Definition1.28: 

The non-zero element of Fq form a group under multiplication called the 

multiplicative group of Fq, denoted Fq
*. 

 

Definition 1.29:    

A generator of the cyclic group Fq
* is called primitive element or generator of Fq. 
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1.3.3.1the Euclidean algorithm for polynomials 

ZP[x] be the finite field of order p. the theory of generator common divisors and 

the Euclidean algorithm for integers carries over in a straight forward manner to 

the poly ring ZP[x] (and more generally to the polynomial ring F(x), where F(x) 

is any field). 

Definition 1.30: [35] 

Let g(x), h(x) ∈ZP[x], where not both are 0. Then the greatest common 

divisor of g(x) and h(x) , denoted gcd(g(x), h(x)) is the monic polynomial of 

greatest degree in Zp[x] which divides both g(x) and h(x). By definition, gcd (0, 

0) =0. 

Conclusion Remark (6)  

ZP[x] is a unique factorization domain. That is every non-zero polynomial f(x) ∈ 

ZP[x] has factorization. 

                          k21 e
k

e
2

e
1 )x(f............)x(f)x(af)x(f =    

where the fi (x) are distinct monic irreducible poly in ZP[x]. The ei are positive 

integers, and a ∈ ZP[x]. furthermore, the factorization is unique up to 

rearrangement of factors. 

 

1.3.4 Modular Arithmetic:- 

 Modular arithmetic is simply division with reminder, where you keep the 

reminder and throw every think else away. for example the expression 141 

(modulo 13) means to divide 141 by 13 and keep the reminder now 141 divided 

by 13 gives a quotient of 10 and a reminder of 11 (141 = 10*13+11), so 141 

(module 13) is equal to 11. This is written as an equality called congruence         

141=11 (module 13) 
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In general, the expression a (module m) means to divide a by m and keep 

the remind, similarly a congruence a=b (modulo m). 

Simply means that a and b leave the same reminder when they are divided by m. 

this is the same as saying that the difference a-b is a multiple of m. the integer m 

is called the modulus of the congruence. 

Numbers and congruence with the same modulus may be added subtracted, and 

multiplied just as is done with ordinary equation, for example  

q (modulo 17)+5(modulo 17)=14(modulo 17), and  
 
q (modulo 17)*5(modulo 17)=45(modulo 17) 

                                             =11(modulo 17)  

if a and m have no common factors then is also possible to find an inverse for a 

(module m) , that is to find an integer b so that a*b= 1(modulo m). 

For example, the inverse of 7(modulo 17) is 5, since 7*5=35=1 (modulo 17). 

There is a very fast algorithm called Euclidean algorithm, which can be used to 

check if a and m have common factors and also to compute the inverse of a 

(modulo m) , if they do not have common factors. 

 

1.3.5 Truncated polynomials ring: 

The principal objects used by the NTRU encrypt public key cryptosystem 

are polynomials of degree N-1 having integer coefficients: 

1N
1N

2N
2N

2
210 xpxp,...,xpxpp)x(P −

−
−

− +++++=  

The coefficients 1N10 a,...,a,a − are integers some of the coefficients are allowed 

to be 0. 

The set of all such polynomials is denoted by R. the polynomials in R are 

added together in the usual way be simply adding their coefficients: 

.x)ba(,...,x)ba()ba()x(b)x(a 1N
1N1N1100

−
−− ++++++=+  
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They are also multiplied in almost the useful manner, with one change. After 

doing the multiplication the power Nx should be replaced by 1, the power 

1Nx + should be replaced by x; the power 2Nx + should be replaced by 2x and so 

on. [32]. 

 

Example (1.2):  

Suppose N=3, and taken two polynomial 

22 xx32)x(bandx3x1)x(a +−=++=  then 2x4x23ba +−=+ (mod 3)    

and 

22432 x4x26x38x4x2x3x8x4x2)x(b*)x(a ++−=+−+−=+−+−=    

(mod 3) 

 

The following is the general formula for multiplying polynomials in R: 

1N
1N

2N
2N

2
21o xcxc,...,xcxcc)x(b*)x(a −

−
−

− +++++=  

Where the thc coefficients kc is given by the formula 

1k1N2N2k1N1kok1k1kok ba,...,bababa,...,babac +−−+−+− +++++++=  

this formula looks a little complicated but it really isn’t the coefficient kc is 

simply the dot product of the coefficient of a and the coefficient of b , except that 

first coefficient of b are listed in revrse order and are rotated around k positions. 

Using these addition and multiplication rules al of the familiar properties are 

true. For example the distributive law a*(b+c) =a*b+a*c is true in modern 

terminology, the above addition and multiplication rules make R into a ring. 

which its call the ring of truncated polynomials. In terms of modern abstract 

algebra, the ring R is isomorphic to the quotient ring ( 1X/)X(Z n − ). 

 



Chapter One                                 Basic Concept Of the NTRU Cryptosystem 
 

 - 19 - 

Example(1.3): 

Let N=8 and 742 xx3x2)x(a +−+=  and 

54275 x2x3xx33bathenxx2x31)x(b −++=+−++= (mod 8) 

765432 xxx4xx6xx5)x(b*)x(a −−+−++−= (mod 8) 

The NTRU encrypt public key cryptosystem uses the ring of truncated 

polynomials R combined with the modular arithmetic, these are combined by 

reducing the coefficient of a polynomials a modulo an integer q.  

Thus the expression a (modulo q) means to reduce the coefficient of a modulo q. 

That is divided each coefficient by q and take the reminder similarly, the relation 

a=b (modulo q) means that every coefficients of the difference a-b is multiple of 

q. 

Remark (1): 

To make storage and computation easier it is convenient to just list the 

coefficient of polynomial without explicitly writing the powers of x. for example 

the polynomial 1N
1N

2N
2N1o xpxp,...,xpp)x(P −

−
−

− ++++=   

Is conventionally written as the list of N numbers 

)p,p,..,p,p(p 1N2N10 −−=  

Be sure to include zero in the list of some of the powers of x are missing. 

for example when N=8 the polynomial 742 xx3x2)x(P +−+= is stored as the 

list (2,0,1,0,-3,0,0,1) but if N=10 , then a stored as the list (2,0,1,0,-3,0,0,1,0,0). 

 

1.3.6 Invariability in truncated polynomials rings: 

Let )1x/(]x)[qZ/Z(R N
q −=  be the ring of truncated polynomials 

modulo q, we compute the probability that a random chosen 
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polynomial )x(f ∈ qR is invertible in qR , and also the probability if )x(f is 

required to satisfy 1)1(f = . 

- Statements: - [22] 

Fix an integer N≥ 2, for any positive integer q, let qR  denote the ring of 

truncated polynomial modulo q .  

]1X[)qZ/Z(R N
q −=  …………………………………………………...... (1.1) 

In this note we shall describe the invertible elements 

}Rgsomefor1fRf{R qgq
*

q ∈==∈=  ………………………………….(1.2) 

More that we are interested in the probability that an element of qR  is invertible 

so in the ratio q
* R#qR#   

The first observation is that if 21qqq = with gcd ( 21qq ) =1, then the 

Chinese reminder theorem tells us that  

121qq RRR ×= and *
2q

*
1qq RRR ×= …………………………………….(1.3) 

So that suffices to look at the case that q is a power of a principle the following 

theorem handless this case. 

 

Theorem 3:- [22] 

Let p be a prime, let q = kp  be a power of p, and let N≥2 be an integer 

with gcd (P, N) =1. 

Define n>1 to be the smallest positive integer  

Such that 1Pn =     (mod N) …………………………………………… … (1.4) 

And for each integer d/n. let 

∑ −=
d/e

e
d )1P,Ngcd()

e

d
(M

d

1
v  ………………………………………….. (1.5) 
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Where ∑
















=−
<<

=
=

d/e ndif1N

nd1if0

1dif1

)
e

d
(M  

vd

n/dg

*
g )

pd
1

1(
R#

R#
−∏=  ………………………………………………….. (1.6) 

In particular, if N is prime, then rd=0. For all 1<d<n so in this case  

n/)1N(

g

*
g )

pn

1
1)(

p

1
1(

R#

R# −−−= ………………………………………….... (1.7) 

Remark (2): 

There is a certain set of non-invertible elements which is easy to describe. 

To do this one can observe that the evaluation map  

,qZ/ZRq →  )1(f)x(f →  …………………………………………… (1.8) 

Is a well defined homomorphism of rings, so it induces a group homomorphism 

**
q )qZ/Z(R →  it is well-known that [25] 

( ) }1)q,agcd(qZ/Za{qZ/Z * ==∈≅  …. ……………………………. (1.9) 

  So one can see that if )1(f has a factor in common with q then in cannot be 

invertible. Thus in looking for invertible element of qR  we should make our 

random chosen intelligently by requiring that 1)g),1(fgcd( = . In particular one 

must avoid polynomials with .0)1(f =  

For example, one might restrict attention to the subset of Rq and Rq* 

consisting of polynomials )x(f satisfying 1)1(f = . These subset by )1(R( q  and 

)1(R *
q  can be denote respectively as f ranges over Rq, the values of f(1) are 

equidistributed in qZ/Z   so that we see that q
1

q R#q)1(R# −=  . 
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Similarly as f ranges over *
qR , the values of )1(f are equi distributed in 

*)qZ/Z( so *
q

1*
Q R#)q()1(R# −= φ , where φ  is the Euler phi function. In 

particular, if kPq =  is a power of a prime, then 1kk PP)q( −−=φ and one to find 

that the probability of intelligently chosen f being invertible is 

q

*
q1

q

*
q

R#

R#
)

p
1

1(
)1(R#

)1(R# −−=    

Since P tends to be small in application, this is a significant saving for 

example, if we also assume that N is prime, then  

n
n/)1N(

n

*
q

nP

1N
1)

P

1
1(

)1(R#

)1(R# −−≈−= −  

Remark (3):  

It is clear from theorem, that in order to maximize the probability of 

getting a unit in qR , we want to chose N and q so that the order n of P in 

*)NZ/Z(  is as large as possible. the value of n is easy to compute for specific 

values of N and P, but for cryptographic purpose n is wanted to be large for a 

single N and two different values of P(frequently P=2 and P=3). Notice that the 

possible orders of elements in *)NZ/Z( are the divisors of )N(φ , so If take N to 

be prime, the possible orders are divisors of N-1, this suggests N to be prime 

such that N-1 has very few divisors. 

For example, suppose that N is a prime of the form N=2M+1 with M is 

also prime (the prime M is called a sophic German prime). Then the 

corresponding n must be either M or 2M. .In practice, if N >100 is taken to be , 
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then every p< 10 has corresponding n= M or 2M , and hence the probability that 

randomly chosen f  satisfying 1)1(f =  will be invertible is at least  [20]  

MM p

2
1

Mp

1N
1 −=−−   …. …………………………………………………. (1.12)  

Since  2p ≥  and 50M ≥  the probability of choosing a non-invertible 

polynomial is virtually 0 [22]. 

 

Example (1.5) 

Table 1.2 [43] gives some representative values of N  andp , the column 

labeled np gives the smallest integer n such that  

).N(mod1pn ≡  

N p  np Probp N p  np Probp 

11 2 10 10-3.01 11 3 5 10-2.08 

13 2 12 10-3.6 13 3 6 10-2.5 

17 2 8 10-2.1 17 3 16 10-7.6 

19 2 18 10-5.4 19 3 18 10-8.5 

23 2 11 10-3.01 23 3 11 10-4.4 

47 2 23 10-7.22 47 3 23 10-11.2 

59 2 58 10-17.46 59 3 29 10-14.1 

71 2 35 1010.8 71 3 35 10-17 

107 2 106 10-31.9 107 3 53 10-25.5 

127 2 7 10-3.3 127 3 126 10-60.1 

167 2 83 10-25.2 167 3 83 10-39.3 

229 2 57 10-23.3 229 3 57 10-27.8 

349 2 348 10-104.7 349 3 174 10-83.3 

503 2 251 10-75.8 503 3 251 10-120 

1019 2 1018 10-306.4 1019 3 509 10-243.1 

1093 2 364 10-110.05 1093 3 7 10-5.53 
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Table 1.2 Probability )x(f  is not Invertible in kp
R  

 

The column labeled “Prob p” is the probability that a random chosen in 

qR  satisfying 1)1(f =  will fail to be invertible in qR  , where qpq =  is any 

power of p. 

(Theorem 1 and Remark (2) show that these probabilities are independent 

of the exponentk ). The values N=47,59,107,167,503,1019 correspond to the 

sophic Germain prime 509,251,83.35.29,232/)1N( =−  and thus have especially 

small probability of failure for all (small) prime p . Conversely, 2p =  has order 

7modulo N=27 , and 3p =  has order 7 modulo N=1093 , so for these values of p  

and  , the ring pR  has a comparatively large number of non-units. 

 

1.4 Lattices: 

This section started by defining the inner product of two vector 

)v,...,v,v(v m21=  and  )u,...,u,u(u m21=  , 

∑
=

=
m

1i
ii uv)u,v(  . 

The inner product is commutative and distributive. 

The Euclidian norm or the length of a vector )v,...,v,v(v m21= is defined 

as  

)v,v(v = ∑
=

=
m

1i

2
iv  
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Let n21 b,...,b,b  be a linearly independent vectors in mR  and let Bbe the mn ×  

matrix with these vectors as rows .The lattice generated by vectors n21 b,...,b,b  

or the basis matrix B  is the set   

)B(L)b,...,b,b(L n21 =  










∈= ∑
=

n

1i
iii Zaba  

Of all linear combinations over integers of the basic vectors .The dimension of 

this lattice is .mn))B(Ldim( ≤= if nm =  the lattice is called full dimension, 

Informally, a lattice is a set of intersection point of a regular, infinite n-

dimension grid. 

The vector space generated by vectors n21 b,...,b,b  or B  is  

)b,...,b,b(Span n21  








∈== ∑

=

n

1i
iii Raba)B(Span , 

Where it will be have all linear combination of the basis vectors.  

Note that if B′ is the result of applying of the following operation to B then 

:)B(L)B(L ′=  

1- Swap the order of two rows in .B  

2- Multiply a row of Bby -1. 

3- Add an integer multiple of a row to another row ofB . 

The first two cases are trivial, also )B(L)B(L ⊆′  in the third case, 

let kj.cbbb kjj ≠+=′  and ,bb ii =′ for all ji ≠ , Now for all 

∑ ∑ ≠
′−+′=∈

ki kjkiiiii b)caa(baba,Za and thus  )B(L)B(L ′⊆  . 

Definition 1.31: [44] 

Let m
n21 Rb,...,b,b ∈  be linearly independent vectors  
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The additive subgroup }Zt,...,t,tbt{Zb:)b,...,b,b(L m21iiin21 ∈== ∑∑ of 

mR  lattice with basis }b,...,b,b{ n21  , the Rank or the dimension of the lattice is 

rank(L):=n . 

For example mZ  is a lattice of rank m, the standard unit vector m21 e,...,e,e   

forming a basis. 

The determinant of a lattice )B(L  with basis n21 b,...,b,b  is defined as  

))b,bdet(())B(Ldet( nj,i1ji ≤≤=  ).BBdet( T=  

If mn =  we have  

)BBdet())B(Ldet( T= .)Bdet(=  

Because basis vectors are linearly independent, two bases of the same 

lattice have the same number of vectors. In the following we show that the 

determinant of a lattice does not depend on the selection of the basis. 

 

Theorem 4:-[44] 

Let B  and B′  be mn×  real matrices and ).B(L)B(L ′=  then 

)).B(Ldet()B(Ldet( ′=  

Proof: the rows of both matrices are two bases for the same lattice so we have 

BUB ′=  and VBB =′  for some mnZV,U ×∈ . From these it will be obtained 

1)Vdet()Udet( ==  , then we have  

)BBdet())B(Ldet( T=  

                  )VVBBdet( TT=  

                   T)VB(VBdet(=  
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                   ))B(Ldet( ′=  

The fundamental parallelepiped associated with B  is the set of points We see 

that )B(Pv + , ),B(Lv ∈  form a partition of the space ).B(Span In other words, 

for any )B(Spanu∈  there exist a unique lattice point )B(Lv∈  such 

that )B(Pvu +∈ . If )B(LL =  also write ).B(P)L(P =  

 

 

          
Figure 1.1: A lattice of dimension 2 with two bases and two fundamental parallelepipeds.  

A fundamental parallelepiped   forms a partitioning of the space.  

 

There are two famous  computational problems on lattice :the Shortest 

Vector Problem (SVP) and the Closest Vector Problem (CVP) , In SVP one is 

given a basis }b,...,b,b{ n21  , In CVP one is given  a basis  }b,...,b,b{ n21  and 

target vector v  and must find the lattice vector in )b,...,b,b(L n21  closest to v . 
 

Definition 1.32 :( Shortest Vector Problem) [28] 

The problem of the shortest lattice vector in the 2l -norm is  
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





≤∈∃∈∈

=−

kx}0{)b,....b,b(Lx,Zb,....,b,b,Nn,m,kb,...,b,n,m,k

:SVP

2
2n21

m
n21n1

2l

 

Where −2l  norm means general Euclidean norm. 

The complexity of this SVP problem is unresolved .Although some efforts 

to show that SVP2 −l  is NP-hard problem have failed; this problem is known to 

be NP-hard with respect to randomized reduction by Ajitai [28]. However the 

CVP problem is known to be NP-complete for any norm. 

 

Definition 1.33: (Closest Vector Problem)  

The problem of the closest lattice vector in the 2l -norm is defined as 

=− :CVP2l        







≤−∈∃∈∈ kxz:)b,......,b,b(Lx,Zz,b,......,b,b,Nn,m,k/)z,b,......,b,n,m,k( 2

2n21
m

n21n1  

Given a lattice basis m
n21 Z}b,...,b,b{ ∈ , the following tasks are thought to be 

hard lattice problem: 

• Find a short non- trivial lattice vector. 

• Find a basis comprised of short lattice vector. 

• Find for a given )b,...b,b(Spanz n21∈  the closest lattice vector 

In contrast, given a system of generators m
n21 Zb,...,b,b ∈ for a 

latticeL , ),L(rankn ≥  it is possible to construct a basis for L in polynomial time. 

 

 

 

 



Chapter One                                 Basic Concept Of the NTRU Cryptosystem 
 

 - 29 - 

1.5 Digital Signature: 

The notion of a digital signature may prove to be one of the most 

fundamental and useful inventions of modern cryptography. A signature scheme 

provides a way for each user to sign messages so that the signatures can later be 

verified by anyone else. More specifically, each user can create a matched pair of 

private and public keys so that only he can create a signature for a message 

(using his private key), but anyone can verify the signature for the message 

(using the signer's public key). The verifier can convince himself that the 

message contents have not been altered since the message was signed. Also, the 

signer can not later repudiate having signed the message, since no one but the 

signer possesses his private key. 

A digital signature scheme within the public key framework, is defined as 

a triple algorithm )V,,G( δ  such that  

* Key generation algorithm G is a probabilistic, polynomial-time algorithm 

which on input a security parameter 1k, produces pairs ),( SP  where P is called a 

public key and S a secret key. (It will be used the notation )1(G)S,P( k∈  to 

indicate that the pair )S,P(  is produced by the algorithm G). 

* Signing algorithm δ  is a probabilistic polynomial time algorithm which is 

given a security parameter 1k, a secret key S in range G(1k), and a 

message k}1,0{m∈ and produces as output string s which we call the signature 

of m. (We use notation )m,S,1(s kδ∈  if the signing algorithm is probabilistic, 

otherwise )m,S),1(s kδ= . As shorthand when the context is clear, the secret 

key may be omitted and we will write )m,S(s δ∈ to mean meaning that s is the 

signature of message m.). 
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* Verification algorithm V is a probabilistic polynomial time algorithm which 

given a public key P, a digital signature s, and a message m, re-turns 1 

(i.e.….”true”) or 0 (i.e.… “False”) to indicate whether the signature is valid. It 

will be required that )m,s,P(V  as )m,s(V  , to indicate verifying signature s of 

message m when the context is clear ). 

Note that if V is probabilistic, we can the requirement on V to accept valid 

signatures and reject invalid signatures with high probability for all messages m, 

all sufficiently large security parameter k, and all pairs of keys ).1(G)S,P( k∈  

The probability is taken over the coins of V and S. Note also that the signed 

message may be plaintext or encrypted, because the message space of the digital 

signature system can be any subset of }.1,0{  
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3.1 Introduction: 

In this chapter improvements are introduced to enhance the NTRU 

cryptosystem, Matrix NTRU leads to respectable speed improvements at large 

public key by comparing the results with the classical NTRU. NTRU sign is 

defined in the same EESS standard as NTRUEncrypt [4]. In the following we 

outline the characteristics of NTRUSign. 

 

3.2 Matrix NTRU Cryptosystem: 

In this section, a new variant of the NTRU public key cryptosystem is 

proposed, the Matrix cryptosystem. Matrix NTRU works under the same 

general principles as the NTRU cryptosystem, except that it operates in a 

different ring with a different linear transformation for encryption and 

decryption. In particular, it operates in the ring of k by k matrices of 

polynomials in )1X/(]X[Z N −=ℜ  whereas NTRU operates in the 

ring )1X/(]X[Z N − .   

The improved efficiency of the linear transformation in Matrix NTRU leads 

to respectable speed improvements by a factor of )K(O  over NTRU at the 

cost of a somewhat larger public key [29]. 

 

3.2.1 Overview: 

The Matrix NTRU cryptosystem operates in the ring M of k by k 

matrices of elements in the ring )1x/(]x[z N −=ℜ . The ring ℜ consists of 

polynomial with degree n-1 having integer coefficients. Multiplication and 

addition of polynomial in R is done in the usual manner, but exponents of X 

are reduced modulo n. Matrix multiplication in M is denoted by the use of the 

symbol *. Besides n and k, Matrix NTRU also uses the parameters p, q 2 N. 

The numbers p and q may or may not be prime, but they must be relatively 
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prime. In general, p is much smaller than q; in this thesis, for ease of 

explanation, we stick to p = 2 or p = 3 and q in the range of 28 to 211. 

When it is said perform a matrix multiplication modulo p (or q), it means that 

we reduce the coefficients of the polynomials in the matrices modulo p (or q). 

The width of an element Μ∈M can be defined to be  

)mincoff(maxM Minmploy=∞  - )mincoff(min Minmpoly ……………… (3.1)  

[11].The width of M is the maximum coefficient in any of its k2 polynomials 

minus the minimum coefficient in any of its polynomials. A matrix ∈M M is 

short if PM ≤∞ . When short matrices are multiplied together, we get a 

matrix whose width may be greater than p but is still almost certainly smaller 

than q; we call this matrix pretty short. The definitions for width and 

shortness apply similarly to polynomials in R. For ℜ∈r  ∞r =(max 

(min)rincoff − ).rincoff  The polynomial r is said to be short if .Pr ≤∞  

It the size of an element ∈M M   will be defined to be 

∑ ∑= 2
mmin.polys )inM.coff(M  ………………………………….. (3.2) 

When defining some of the sets of short matrices below, the following  

notation used 

)3.3.........(

0toequaltcoefficien

resetwith,itoequaltscoefficiendaverageonhas

Min1polynomialeach,0i,
2

1p
.....

2

1p
iforM

)d(L


























≠




 −





 −−=Μ∈

=

 

 

For example, if p = 3 and n = 5, then L(2) consists of all matrices of 

polynomials, where on average each polynomial has 2 coefficients equal to 1, 

2 coefficients equal to −1, and 1 coefficient equal to zero. Or, if we have p = 2 
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and n = 5, then L(2) consists of all matrices of polynomials where on average 

each polynomial has 2 coefficients equal to 1, and 3 coefficients equal to zero. 

The parameters for Matrix NTRU consist of the four integers (n, k, p, q), 

described above and the five sets of matrices (Lf, LФ, LA, Lw, Lm) ⊂ M. 

These sets have the following meanings and compositions: 

1. LA consists of all matrices MC∈ , such that C0,C1, . . . ,Ck−1 are linearly 

independent modulo q; and for short c0, . . . , ck−1 ℜ∈ ,∑
−

=

1K

0I

i
iCc  is short , LA 

have elements A , B and are used to construct ϕφ,,g,f  . 

2. Lf and LФ consist of all matrices Μ∈D  constructed such that, for 

C ∈ LA and short c0,…,ck−1 ℜ∈ , ∑
−

=
=

1k

0i

i
iCcD . Additionally, matrices in Lf 

must satisfy the requirement that they have inverses modulo p and modulo q. 

L f have the element g,f  and it is used to compose the private key, LФ have 

ϕφ,  and it is used to generalize random matrices applied for each encryption. 

3. The set of messages Lm consists of all matrices of polynomials with 

coefficients modulo p. therefore it will be expressed as 

.
2

1p
and

2

1p
between

scoefficenthaveMinpolynomial
M)m(L




















 −





 −−Μ∈= ……………………. (3.4) 

This means that each message contains nk2 log2p bits of information. 

4. LW   has elements W and used to construct the public key. 

 

3.2.2 Key Generation: 

To create a public/private key pair, the sender chooses two k by k 

matrices A, B ∈ LA. Next, the sender randomly selects short polynomials 

R,...,, 1k10 ∈ααα −  and R,...,, 1K10 ∈βββ −  then the sender constructs the 

matrices ∈g,f L f by taking: 
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∑
−

=
=

1k

0i

i
iAf α  and ∑

−

=
=

1k

0i

i
iBg β  . 

The matrices f and g must have inverses modulo p and modulo q Fp, Fq, and 

Gp Gq where 

)q(mod1f*Fg ≡   and  )q(mod1f*Fp ≡  

)q(mod1g*Gp ≡   and  )q(mod1g*Gq ≡  

 
The sender now has his private key, (f, g), although in practice he will want to 

store the inverses Fp and Gp as well. Now the sender selects a random matrix 

W ∈ Lw, and constructs the matrix h ∈ M by taking 

).q(modG*W*Fh qq≡ …………………………………..……………. (3.5) 

The sender’s public key consists of three matrices (h, A, B). 

 

3.2.3 Encryption: 

To encrypt a message to send to the sender, the receiver randomly 

generates the short polynomials R,...,, 1k10 ∈φφφ − . The receiver then 

constructs the matrices  φ∈ϕφ L,  by taking 

∑
−

=
φ=φ

1k

0i

i
iA  and .B

1k

0i

i
i∑

−

=
ϕ=ϕ  

The receiver then takes his message m ∈ Lm, and computes the 

encrypted message 

).q(modm)*h*(pe +ϕφ≡ ……………………………………………. (3.6) 

The receiver sends e  to the receiver. 

 

3.2.4 Decryption: 

To decrypt, the sender computes 

)q(modg*e*fa ≡ ……………………………………….……………. (3.7) 
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The sender translates the coefficients of the polynomials in the matrix a 

to the range −q/2 to q/2 using the centering techniques as in the original 

NTRU paper [12]. Then, treating these coefficients as integers, the receiver    

recovers the message by computing 

)p(modG*a*Fd pp≡ …………………………………………………… (3.8) 

 

3.2.5 Decryption Analysis: 

In decryption, from eq (3.4), the sender has 

                     )q(mod)g*)m)*h*(p(*fa +ϕφ≡  

           )qmod(g*m*f)g**G*W*F**f(p pq +ϕφ≡   

Although matrix multiplication is not generally commutative, f and ϕ  

here do indeed commute: 

∑ ∑
−

=

−

=
ϕα≡φ

1k

0i

1k

0i

i
i

i
i )A(*)A(*f         (mod q) 

∑ ∑
−

= +≡
φα≡

1k

0i )q(modlji

l
l

j
j AA                   (mod q) 

∑ ∑
−

= +=

+ αϕ≡
1k

0i )k(modlji
j

lj
lA                    (mod q) 

∑ ∑
−

= +≡
αφ≡

1k

0i )k(modlji

j
j

l
l AA                  (mod q) 

 ∑ ∑
−

=

−

=
φ≡αφ≡

1k

0i

1k

0i

i
i

i
i f*)A(*)A(  (mod q) 

Similarly  )q(modg**g ϕ≡ϕ  , so the sender now has that 

g*m*f)*w*(pa +ϕφ≡  (mod q) 

For appropriate choices, .qa ≤∞ , then treating polynomials in this matrix, as 

having coefficients inZ . The sender can take those coefficients modulo p, 

leaving )p(modg*m*f . The original message is then recovered by left – 

multiplying by Fp and right – multiplying by Gp. 
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Remark (1):-  

A matrix f  in the ring M will be invertible modulo p and q , only if the 

corresponding matrix department ,detf  which is the ring R  is also invertible 

modulo p and q. In practice, this impossible if 0)1(detf = , (the sum of the 

coefficient values of the determinant polynomial is equal to 0), so we must re-

select one or more of the polynomial elements in f  if this condition was not 

fulfilled. 

 

3.2.6 Parameter Selection: 

- Selection of pairs ( g,f ) and ( ),ϕφ . 

We define fd  and φd  such that )d(LL ff =  and  ).d(LL φφ =  

Since the matrices A and B are public, the security of φ,g,f  and ϕ  

necessarily depends on the difficulty of discovering the short polynomials 

iii ,, φβα  and iϕ . For this reason, and for maximizing the number of possible 

choices for these polynomials, therefore, one commonly selects. 

p

n
df ≈  and .

p

n
d ≈φ  

 

- Selection of A and B 

A main concern in generating the matrices f  and ϕ (and likewise, 

gand )ϕ is that they must not only commute but they should also be short. 

Shorter matrices ensure that ∞+ϕφ g*m*f)*w*(p  will be smaller, which 

will allow us to reduce q and valid cipher text will be decipherable. To 

achieve this, we select A and B to be permutation matrices. A permutation 

matrix is a binary matrix (i.e. consisting of only the scalars 0 and 1) such that 

there is exactly one 1 in each row and column with all 0’s elsewhere. Since a 
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and b have the additional requirement that the sets 1ko A,...,A −  and 

1ko B,...,B −  are both linear, we must have that: 

























==∑∑
−

=

−

= 1....1

......

1....1

BA .
.
.

1k

0i

i
1k

0i

i  

This implies that each row and column of f  will contain some permutation of 

,,..., 1k0 −αα  meaning that each iα  will appear k- times in f . 

Using the column choice of ,
p

n
ddf ≈≈ φ  we have that 

.g
p

nk)1p(
kf

2

i
2 ϕφα ≈≈≈−≈≈  

-Selection of W 

Likewise, f  and  g  should also be chosen to be short in order to keep 

∞+ g*m*f)*w*(p ϕφ  small. For security season, it important that w  

remains secret from the attacker. Therefore, in order to maximize the space 

ofw , make 

.
p

n
lL w 















=  

The size of w is given by 

.
p

nk)1p(
w

2−=  

 
Remark (2):- Note that when w is chosen in this manner, on average .mw ≈  

this means that .g*m*f*w* ≈ϕφ  
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Example (3.1) 

N=4, k=4, p=2, q=16, fd =1, φd =1 










=

1

0

0

0

H  

0

0

0

1

 

0

0

1

0

 










0

1

0

0

  , 

Let HLB,A ∈  










=

1

0

0

0

A  

0

0

0

1

 

0

0

1

0

 










0

1

0

0

     , 










=

0

1

0

0

B  

1

0

0

0

 

0

0

0

1

 










0

0

1

0

 

Chooses short polynomials 

00 =α   , 01 =α , 02 =α , 13 =α   and  00 =β  , 01 =β   , 02 =β   , 13 =β  

Constructing f  where ∑
=

α=
3

0i

i
iAf  

3
3

2
2

1
1

0
0 AAAAf αααα +++=  

=f










1

0

0

0

  

0

0

0

1

  

0

0

1

0

 










0

1

0

0

 

And constructing g where i
i

3

0i

Bg β=∑
=

 

3

3

2

2

1

1

0

0 BBBBg β+β+β+β=  










=

0

1

0

0

g  

1

0

0

0

 

0

0

0

1

 










0

0

1

0
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Fp = 










1

0

0

0

 

0

0

0

1

 

0

0

1

0

 










0

1

0

0

         and         Fq =










1

0

0

0

 

0

0

0

1

 

0

0

1

0

 










0

1

0

0

 

Gp 










0

1

0

0

 

1

0

0

0

 

0

0

0

1

 










0

1

0

0

          and          Gq = 










0

1

0

0

 

1

0

0

0

 

0

0

0

1
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







0

0

1

0

 

Select a random matrix WLW ∈  

Let 










=

0

0

1

0

W  

0

1

0

0

 

1

0

0

0

 










0

0

0

1

 

Construct the matrix h, where )q(modg*w*fh qq=  










=

0

1

0

0

h  

1

0

0

0

 

0

0

0

1

 










0

0

1

0

 (Public key consist of three matrices (h, A, B) 

For Encryption, we choose short polynomial 

,00 =φ  11 =φ  , 12 =φ  , 03 =φ    And   10 =ϕ  , 11 =ϕ  , 02 =ϕ  , 03 =ϕ  

Where 3
3

2
2

1
1

0
0

3

0i

i
i AAAAA ϕ+ϕ+ϕ+ϕ=ϕ=ϕ ∑

=
 










=ϕ

1

1

0

0

 

1

0

0

1

 

0

0

1

1

 










0

1

1

0

 

And ∑
=

ϕ+ϕ+ϕ+ϕ=ϕ=ϕ
3

0i

3
3

2
2

1
1

0
0

i
i BBBBB  
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








=ϕ

1

1

1

2

 

1

0

2

1

 

1

2

1

1

 










2

1

1

1

 

The message mLm∈  

Let 










=

1

0

1

0

m  

0

1

1

0

 

1

1

1

1

 










0

0

1

1

   

)q(modm).h.(p)m(e +ϕφ=  










=

5

4

7

6

)m(e  

4

7

7

4

 

7

7

5

5

 










6

4

5

7

 

To decrypt 

)q(modg).m(e.fa =  










=

7

4

4

7

a  

5

5

7

7

 

5

7

6

4
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







7

6

5
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)q(modg*a*f)m(d pp=  







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5

4

7

6

)m(d  

4

7

7
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7
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
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5
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 (mod 2) 
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
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0

)m(d  

0
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1
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1

 










0

0

1

1
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d (m) =m. 

 

3.2.7 Comparison between basic NTRU and Matrix NTRU 

Here the theoretical operating characteristics of Matrix NTRU will be 

compared with those of NTRU, as shown in Table 4.1. The properties are 

listed in terms of the parameters (N, p, q) for NTRU and the parameters (n, k, 

p, q) for Matrix NTRU. These should be compared by setting 2nkN = since 

this equates to plain text message blocks of the same size. 

As indicated in the table, the total time for encryption and decryption is 

2

k
times faster for Matrix NTRU than for basic NTRU. Matrix NTRU has a 

larger public key length as a result of the need to store the matrices A and B, 

but a smaller private key length due to the particular nature of the private keys 

f  and g . 

For example, compare the NTRU “high” security level of (N, p, q) = 

(107, 3, 128) with the Matrix NTRU parameter choices of (n, k, p, q) = (10, 5, 

2, 256). 

 

Characteristic NTRU Matrix NTRU 

Plain Text Block N log2 p bits nk2 log2 p bits 

Encrypted Text Block N log2 p bits nk2 log2 p bits 

Encryption Speed O(N2) operations O(n2k3) operations 

Decryption Speed O(N2) operations O(n2k3) operations 

Message Expansion logp q-to-1 logp q-to-1 

Private Key Length 2N log2 p bits 2nk2 log2 p bits2 

Public Key Length N log2 q bits 3nk2 log2 p bits3 

 

Table 4.1 Comparison between Matrix NTRU and NTRU public key cryptography  
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Conclusion Remark (1): 

1-Since Matrix NTRU performs two-sided multiplications, the constant factor 

will be about twice that of standard NTRU. 

2- A key length of 2nk log2 p+2k2 log2 k bits can be achieved by storing f and 

g not as matrices but as the 2k polynomials found in the matrices along with 

their positions in the matrices. 

3-A key length of nk2 log2 q + 2k log2 k bits can be achieved by storing A and 

B not as matrices but as the positions of each of the k in the two matrices. 

4- For message security, dg is replaced by d for NTRU whereas df is replaced 

by dg for Matrix NTRU. For ease of comparison, we fix p = 3. The definition 

of dg and d used in NTRU is elaborated in [11]. 

 

3.3 NTRU Sign Signature Scheme: 

The NTRU cryptosystem was first presented by Hoffstein, Pipher and 

Silverman at CRYPTO'96 It is a ring-based cryptosystem operating in the 

polynomial ring Zq[x] /(xN - 1), where N is the security parameter. NTRU has 

received considerable attention because of its encryption and decryption 

speed and the ease of creating public-key/secret-key pairs, which makes it 

practical to change keys frequently. Its security is based on the hard 

mathematical problem of finding short and/or closed vectors in a certain class 

of lattices, called NTRU lattices. Since the advent of NTRU encryption 

scheme, several related signature schemes such as NSS [15] and R-NSS [16] 

have been proposed. A fast authentication and digital signature schemes 

called NSS, based on the same underlying hard problem and using keys of the 

same form, was presented at EuroCrypt 2001 [3]. However, this scheme was 

broken by Mironov and Gentry et al., [8, 4]. In their Euro crypt presentation, 

the authors of NSS sketched a revised version of NSS (called R-NSS) and 

published it in the preliminary cryptographic standard document EESS [3]. 

Although R-NSS was significantly stronger than the previous version (NSS), 
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Gentry and Szydlo proved that key recovery attack could be mounted [3]. The 

source of these weaknesses of NSS and R-NSS was an incomplete linking of 

the NSS method with the approximate closest vector problem in the NTRU 

lattice. In other words, the weaknesses of NSS and R-NSS arose [12] from the 

fact that the signer did not possess a complete basis of short vectors for the 

NTRU lattice LNT h. Later on, Hofstein et al. proposed a new NTRU based 

signature scheme called NTRU Sign. Unlike previous signature schemes, the 

link in NTRU Sign between the signature and the underlying approximate 

closest vector problem is clear and direct: the signer must solve an 

approximate CVP problem in the lattice i.e., produce a lattice point that is 

sufficiently close to a message digest point. 

 

3.3.1 Overview of NTRU Sign: 

In this section, we will describe the NTRU Sign digital signature 

scheme. 

In NTRU encryption scheme, basic operations in the ring 

R = Z[x] / (xN - 1), where N is the security parameter. A polynomial 

R)x(v ∈   can be represented by a vector v of its coefficients as follows: 

)v,...,v,v(xav 1N10

1N

0i

i
i −

−

=
== ∑  

For the sake of simplicity, the same notation for the polynomial v(x) and the 

vector v it will be used. The product of two polynomials v and u in R is 

simply calculated by v*u=c, where the kth coefficients ck is 

.uvuvuvc
)N(modkji

ji

1N

1ki
ikNi

k

0i
ikik ∑∑∑

≡+

−

+=
−+

=
− =+=  

 
Hereafter, we sometimes write a polynomial v(x) as simply a. In some steps, 

NTRU Sign uses the quotient ring Rq = Zq[x] / (xN -1), where the coefficients 

are reduced by modulo q, where q is typically a power of 2, for example 128. 

The multiplicative group of units in Rq is denoted by qR* . The inverse 
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polynomial of q
*Rv ∈  is denoted by 1a− . If a polynomial v has all coefficients 

chosen from the set {0, 1}, we call this binary polynomial. The security of 

NTRU Sign scheme is based on the approximately closest vector problem in a 

certain lattice, called NTRU lattice. In this scheme, this is based on the 

approximately closest vector problem in a certain lattice, called NTRU lattice. 

In this scheme, the signer can sign a message by demonstrating the ability to 

solve the approximately closest vector problem reasonably well for the point 

generated from a hashed message in a given space. The basic idea is as 

follows: The signer's private key is a short basis for an NTRU lattice and his 

public key is a much longer basis for the same lattice. The signature on a 

digital document is a vector in the lattice with two properties: 

*-The signature is attached to the digital document being signed. 

*-The signature demonstrates an ability to solve a general closest vector 

problem in the lattice. 

The way in which NTRU Sign achieves these two properties may be briefly 

summarized as follows: 

 

3.3.2Key Generation:  

The private key includes a short 2n-dimensional vector denoted by     

(f; g). The public key is the large n-dimensional vector h that specifies the 

NTRU h
NTL that is, h is generated from f and g by 

)q(modg*fh 1−≡  ………………………………………………………………... (3.9) 

 The private key also includes a complementary short vector )G,F(  that is 

chosen so that )g,f(  can generate the full NTRU lattice LNT
h. 
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3.3.3Signing: 

 The digital document to be signed is hashed to create a random vector 

)m,m( 21 modulo q. The signer uses the secret short generating vectors to find 

a lattice vector (s, t) that is close to )m,m( 21 . 

Verification: The verifier uses the public key h to verify that (s; t) is indeed 

the lattice LNT
h, and he verifies that (s, t) is appropriately close to )m,m( 21 . 

NTRU Sign algorithm uses the centered norm concept instead of Euclidean 

norm in the verification step to measure the size of an element .Ra∈  

 

Definition 3.1: 

  Let v(x) be a polynomial in ring R = Z[x] / (xN -1). Then the centered 

norm of v(x) is defined by 

∑ ∑∑
−

=

−

=

−

=
−=−=

1N

0i

2
1N

0i
i

2
i

1N

0i

2
0i

2 )a(
N

1
v)mv()x(v  

Where ∑
−

=
=

1N

1i
i0 a

N

1
m is the average of the coefficients of v(x) 

The centered norm of an n-tuple (v1, v2,…,vn) with v1,v2….,vn∈ R can be 

defined by the formula 

2
n

2
2

2
1

2
n21 v,...,vv)v,........,v,v( +++=  

Note that the signature on a document D is a vector (s, t) in NTRU Lattice 

LNT
h, which is very close to m. To solve an approximately closest vector 

problem in the lattice, a signer uses a secret \short basis" defined as shown 

below: 

Definition 3.2: A basis {(f; g), (F; G)} is called a short basis in LNT
h if  

)N(OG,Fand),N(Og,f ==  

Where N is half dimension of NTRU Lattice LNT
h . 

Remark (3):- 

 c
2

c
22

c uvuv +≈+  
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Let )v,...,v,v(v n21=  and )u,...,u,u(u n21= . , it will be had  

∑ ∑
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n

1i
ji

n

1i
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n

1
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1
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             s2uv c
2

c
2 ++= for some s. 

On the other hand  

∑ ∑
= =








 −
n
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n

0j
ji v

n

1
v ∑ ∑
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n

1
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If the vectors are random enough, the quantity s is very close to 0. 
 

3.4 NTRU Sign scheme: 

In this section we describe NTRU Sign key generation and the NTRU 

Sign signing and verification protocols. 

The system parameters of NTRU Sign include 

N: a (prime) dimension. 

q: a power of 2. 

df ; dg: key size parameters. 

Norm Bound: a bound parameter of verification. 

 

3.4.1 Key generation:  

Letf be a polynomial in R with fd randomly selected coefficients set to 

1 and the rest is set to 0. Let f be such that there exist an inverse 1f −  such 

that )q(mod1f*f 1 ≡− . Let gbe a polynomial in R with gd arbitrary selected 

coefficients set to 1 and the reset to 0 and let qmodg*fh 1−≡ . 

First we find polynomial ∈11 G,F R such that 

1F*gG*f 11 =−  ………………………………………………………. (3.10) 
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First note there are polynomials ]X[Zk,k,v,u 21 ∈   such that 

,R)1x(*ku*g

,R)1x(*kv*f

g
N

2

f
N

1

=−+

=−+
……………………………………………. (3.11) 

In ]x[Z , fR  and gR  are integers. If fR and gR  are co-primes we can apply 

the Extended Euclidian algorithm to obtain integers α  and β satisfying 

.1RR gf =β+α ………………………………………………………... (3.12) 

Putting above three quantities we have    

1xmod1g*)u(f*)v( N −≡β+α  ……………………………………. (3.13) 

Now we have found the polynomial uF1 β−=  and vG1 α=  . 

Denoting that 1qFF =′  and .qGG 1=′  Let 


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
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......

g...ggf...ff

g.......ggf...ff
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And =
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Theorem 3.1 [44] 

Matrices fgB  and hB  generate the same lattice, i.e. ).B(L)B(L hfg =  

Proof: Using previous notation, let 














=

→→

→→

43

21

UU

UU
U  
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.fU

andqFU

,
q

h*fg
U

,h*FGU

4

13

2

111

=
−=

+−=

−=

 

We have 

.ggG*fg*qFG*Ug*U

and0gF*ff*qFF*Uf*U

,hG*h*fG*gg*h*fg*GG*Ug*U

,1F*h*fF*gf*h*Ff*GF*Uf*U

1143

1143

111121

111121

=+−=′+
=+−=′′+

=+−−=′+
=+−−=′+

 

Thus 
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.BUB hfg =  

Furthermore, .1F*)h*fg(f*)h*FG()Udet( 111 =+−+−=  

These equations together imply that h
NT

hgf L)B(L)B(L == . 

The private signing key will consist of small basis for the lattice fgB , however, 

the polynomial F′  and G′  are not small enough for this purpose. 

 

3.4.2 Signing: 

The signature of a message  m  will be a lattice vector close to( )mm 21 , 

where 2m( ) is the message reprehensive of m . Here “close to” means that the 

distance is at most some predefined limit, namely NormBound. 

The process of signing mstarts by computing, using some selected hash 

function. This method is public as it needs to be done by verifiers of the 

signature as well. 

Let 








−=
q

m*F
B 1  and 







=
q

m*f
b 1  

The signature s of the message is 

.pmodb*FB*fs +≡ ………………………………………………. (3.14) 

 

3.4.3 Verification: 

Suppose that we want to verify that s is the signature of messagem , 

and that the public verification key of the signer, h is known. 

The first task is to compute 

qmods*ht ≡ …………………………………………………………. (3.15) 

Where )ts(  is the lattice point. It only remains to be checked that the 

centered norm of  )mm()ts( 21−  

Is at most the size of the NormBound constant. 
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3.4.4 Verification Analysis: 

The signer wants to find a lattice point near the vector 

)mm(J 21=  

It can be seen that the secret short basis of the lattice is derived directly from 

).G,F,g,f  If the secret basis is short, it is also orthogonal and the lattice point 

(s  )t  = (B )b  




F

f
  
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
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g
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 ]



−
q/f

q/g





F

f
 


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







F

f
 





G

g
 ………………………………… (3.16) 

Is near .J  

Next we will approximate the centered norm of F andG . The polynomials f  

and g  were chosen to satisfy Nc//g////f// cc ≈≈ , that it will have 

*)x(f)x(F)x(F −′= 








+
′+′

−−

−−

)x(g*)x(g)x(f*)x(f

)x(G*)x(g)x(F*)x(f
11

11
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)x(G*)x(g)x(F*)x(f
*)x(f)x(F

11
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++
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,)x(A*)x(f
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)x(G*)x(f*)x(g)x(F*)x(f*)x(f
)x(F

11

11

+
+

′+′
−′= −−

−−

… (3.17) 

Where the coefficients of A are in interval ]
2

1
,

2

1
[− . Substituting 

qF*gG*f +′=′  Into the equation above we get 

.)x(A*)x(f
)x(g*)x(g)x(f*)x(f

)x(qg
)x(F

11

1

+
+

= −−

−

…………………. (3.18) 

Because 
c

1
cc

1
c )x(g)x(g)x(f)x(f −− =≈=  Remark (3) gives 
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2

c

12
c

1

c

11 )x(g*)x(g////)x(f*)x(f)x(g*)x(g)x(f*)x(f −−−− +≈+  

2

c

1)x(g2 −≈ . 

In addition, if the coefficients of A  are uniformly distributed in the 

interval 




−
2

1
,

2

1
, the centered norm of A is approximately .

12

N
 

This is due to the fact that the square of the average coefficients is  

∫
−

2

1

2

1

2dxx =
12

1 . 

The centered norm of )(xF  has an upper limit which is approximately 
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q
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)x(gq
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1
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. 

The same approximation holds for .G  

It’s shown that Ncgf cc ≈≈  and .
12

cN
GF cc ≈≈  

that have ( ) 







=−

GF

gf
aA)mm()ts( 21  

Where the coefficients of a  and A  are in interval 




−
2

1
,

2

1
, assuming that 

these coefficients are uniformly distributed on this interval. The centered 

norms of a and A  are approximately
12

N
. Such that it will be  had  

2
c

2
c

2
c21 G*ag*AF*af*A)mm()ts( +++=−  

c
2

2
22

c
2

c G*ag*AF*af*A +++≈  
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)
12

Nc

12

N
Nc

12

N
(2

22
2 +≈  

.
72
Nc

6
Nc 3222

+≈  

With these parameter sets, the square root of this quantity is equal to 216 and 

45.0c =  and NormBound is equal to 300. 

Example (3.3): 

Given a short basis (4, 2), (-1, 2), and using this basis, we can calculate a 

lattice point )t,s(  close to )5,0(  : 

Let 
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Figure 3.1: A Lattice with two bases )21(v,)24(v( 21 −==  and 

)90(u,)21(u 21 =−= . The message representative 5m1 =  and 2s= . 

 

With the same method and a longer basis )90(,)21( − , we can only find a 

point which is farther away from )50( : 

















8

1
0

8

2
1

)50(  )10()
8

5
0( ≈=  

( )80
80

21
)10( =







 −
 

However, any body with this kind of basis can verify that )ts(  belong to the 

lattice: .9modt52*2h*s =≡−=  

 

3.5 NTRUSign Algorithm: 

The NTRUSign domain parameters N, q 

Input: 

— The signer’s NTRUSign private key vector f 

— The signer’s NTRUSign basis completion vector F 
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— The message representative, which is a polynomial m 

Output: the signature, which is a polynomial s,                           

Operation:  The signature s shall be computed by the following or an 

equivalent sequence of steps: 

1. Compute or retrieve the basis completion polynomial F 

2. Compute the polynomial B = –F*m1 in Z[X]/(X N – 1) (only need to 

store 2*log2q bits per coefficient) 

3. Set integer j := 0 

4. While j < N do 

a. Set Bj := floor[Bj/q + .5] 

b. Set j := j + 1 

5. Compute the polynomial b = f*m1 in Z[X]/(XN – 1) (only need to store 

2log2q bits per coefficient) 

6. Set j := 0 

7. While j < N do 

a. Set bj := floor[bj/q + .5] 

b. Set j := j + 1 

8. Set polynomial s := b *F + B*f in (Z/qZ)[X]/(XN – 1) 

9. Output s 

 

3.6NTRU Verification Algorithm:  

The NTRUSign verification is used to indicate if a signature on a 

message representative satisfies the appropriate verification conditions or not.  

There is only one NTRUSign verification primitive specified in this standard. 

— The NTRUSign parameters N, q 

— The NTRUSign security parameter NormBound 

Input: 
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— The signer’s NTRUSign public key h 

— The signature to be verified, which is a polynomial s 

— The message representative i for which s is alleged to be a signature 

Output:  A message indicating that the signature is either “valid” or “invalid” 

Operation:  A signature s shall be verified by the following or an equivalent 

sequence of steps: 

1. Compute the polynomial t := h*s in (Z/qZ)[X]/(X N – 1) 

2. Compute the polynomial e2 := i - t in (Z/qZ)[X]/(X N – 1) (setting 

coefficients in the range 0 to q – 1) 

3. Let maxrange be the largest integer such that e2j – e2k = maxrange for 

some j, k in the range 0 to q – 1 and no coefficient of e2 has values 

between e2j and e2k 

4. Let e2l be the largest coefficient of e2 and e2m be the smallest 

coefficient of e2 

5. Set integer j := q – e2l + e2m 

6. If j > maxrange 

a. Set integer shift := m 

7. Else 

a. Set integer shift := j 

8. Set j := 0 

9. While j < N do 

a. Set e2j := e2j – shift (mod q) 

b. Set j := j + 1 

10. Let maxrange be the largest integer such that sj – sk = maxrange for 

some j, k in the range 0 to q – 1 and no coefficient of s has values 

between sj and sk 
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11. Let sl be the largest coefficient of s and sm be the smallest coefficient 

of s 

12. Set j := q – sl + sm 

13. If j > maxrange 

a. Set shift := m 

14. Else 

a. Set shift := j 

15. Set j := 0 

16. While j < N do 

a. Set sj := sj – shift (mod q) 

b. Set j := j + 1 

17. Set j := 0 

18. Set integers ssum, e2sum, squaresum := 0 

19. While j < N do 

a. Set ssum := ssum + sj 

b. Set e2sum := e2sum + e2j 

c. Set squaresum := squaresum + sj
2 + e2j

2 

d. Set j := j + 1 

20. Compute the value CenteredNorm := sqrt((N*squaresum – ssum2 – 

e2sum2)/N) 

21. If CenteredNorm > NormBound 

a. Output "invalid" 

22. Else 

a. Output "valid" 
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Example (3.4): 

Here is an example of how to generate another signature from a given 

message-signature pair. Let parameters be as defined in Efficient Embedded 

Security Standards (EESS) [4]; N = 251, q = 128, df = 73, dg = 71, and 

NormBound = 300. The binary private key f; g and complementary private 

key F; G satisfying 

qF*gG*f =−  are as following: 

)73d(f f =  

0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 

0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 

0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 

0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 

0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 

 

73)d(g g =  

1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 

1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 

0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 

0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 

0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 

0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 

 

F 

-1 , 4 , -1 , 1 , -1 , 0 , -1 , 1 , -4 , 5 , -3 , 3 , 1 , 1 , 0 , -1 , 0 , 3 , 5 , 2 , 0 , 2 , -3 , 1 , -1 , 0 

, 3 , -2 , 2 , -2 , 2 , 2 , 2 , 3 , 1 , -2 , 5 , 0 , 1 , 1 , 4 , 2 , -3 , 0 , 1 , 2 , 2 , 0 , 1 , -1 , 0 , 2 , 
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3 , 0 , -1 , 1 , 1 , 3 , 2 , 0 , -1 , 1 , -3 , 1 , 1 , 2 , -5 , 0 , 0 , -4 , 2 , -1 , 2 , -2 , 1 , 2 , 5 , 1 , 

0 , 4 , 0 , 1 , -1 , 1 , 0 , 3 , 0 , 5 , 4 , -1 , 3 , -1 , 1 , 0 , 1 , 0 , 2 , 2 , -1 , 0 , -1 , 3 , 2 , -2 , 

-2 , -1 , 0 , 2 , 0 , 0 , 3 , 1 , 5 , -3 , 1 , 3 , 3 , 0 , -2 , 0 , -2 , 2 , -3 , -3 , -1 , 2 , 1 , 0 , 0 , 7 

2 , -1 , 3 , -4 , 3 , -1 , 4 , -3 , 3 , 4 , 3 , 3 , 1 , -1 , 1 , -2 , 0 , -2 , 0 , 2 , 2 , 3 , 3 , 3 , 3 , 0 , 

1 , 2 , 1 , 3 , -3 , 0 , -7 , 0 , 0 , -2 , 0 , 0 , 1 , 2 , 2 , 3 , -1 , 3 , 1 , -3 , 3 , 1 , 2 , 2 , 1 , -1 , 4 

, -3 , 1 , 2 , -1 , -2 , 5 , 0 , 3 , 1 , 0 , 4 , 3 , 0 , 2 , 2 , 4 , 1 , 1 , -1 , 1 , 2 , 1 , -3 , 2 , 3 , 3 , 

0 , 3 , 0 , -2 , 0 , -1 , 0 , -1 , -2 , 3 , -3 , 1 , -3 , 3 , -1 , -1 , -1 , 1 , -1 , 1 , 0 , -1 , 0 , -1 , 5 

1 , 3 , -1 , 0 , 6 , 5 , 0 , -2 , 1 , 2 , 3 , 0 , 0 , 1 , 1 , 1 , 2 , 0 

 

G  

1 , -2 , -3 , 2 , 1 , 2 , 2 , -3 , 1 , 0 , -1 , -1 , 2 , 4 , -3 , 2 , 0 , -1 , 2 , 1 , 0 , -1 , -1 , 1 , -2 , 0 

, -2 , 2 , 1 , 0 , 4 , 0 , 0 , 1 , -1 , 1 , 2 , 7 , 3 , -1 , 3 , -3 , 2 , 2 , -2 , 1 , 1 , 4 , -2 , 0 , 3 , -1 

, 3 , 0 , 2 , 2 , -4 , -2 , 1 , -1 , 2 , 1 , 0 , -1 , -2 , 1 , 4 , 3 , 0 , -1 , -2 , -2 , 1 , 4 , -1 , 1 , 0 , 

3 , -1 , 2 , 1 , 2 , 4 , 1 , 3 , 0 , 0 , 1 , 0 , -1 , -3 , 4 , 4 , 3 , -2 , -2 , -2 , 1 , -2 , 0 , 1 , 1 , -3 , 

-3 , 2 , 1 , 1 , 4 , -1 , 2 , 1 , 3 , 1 , 1 , 0 , 0 , -3 , 1 , 2 , 3 , 2 , 3 , 0 , 5 , 0 , 2 , 3 , 3 , -2 , 2 , 

1 , 2 , 0 , 1 , -3 , 2 , 0 , 0 , -2 , -1 , -1 , 4 , 1 , 3 , -2 , 4 , 1 , 2 , 0 , 2 , 0 , 4 , 2 , 5 , 1 , 0 , 1 

, -1 , -1 , -1 , 0 , 1 , 3 , 0 , 0 , 2 , 0 , 2 , 3 , 5 , 1 , 2 , -1 , 3 , 2 , 5 , 2 , 0 , 1 , 0 , 0 , -1 , 1 , 

1 , -1 , -3 , -4 , 3 , 2 , 0 , -1 , 4 , 2 , 3 , -1 , 1 , -1 , -1 , -2 , 0 , 2 , 2 , 4 , 0 , 0 , 2 , 1 , 3 , -3 

, -1 , 0 , 2 , 4 , -1 , 0 , 1 , -1 , 1 , 2 , 0 , 4 , -2 , 0 , -4 , 0 , 2 , 0 , -1 , 4 , 0 , 0 , -3 , 1 , 0 , 1 

, 2 , 3 , -3 , 2 , 2 , 2 , 2 , 3 , -1 , 4 , 4 , 1 , 0 , 5 , 2 , 2 , 0 , 

 

The public key )q(modg*fh 1−=  is 

-23 , 36 , -50 , -28 , -4 , -17 , 14 , -16 , -40 , -4 , 40 , -39 , 1 , 14 , -55 , 8 , -62 , -42 , -21 , 6 

-49 , 64 , -63 , 9 , 35 , 18 , -44 , -14 , -2 , -17 , 5 , -4 , -7 , -30 , 49 , 27 , 62 , -28 , 46 , -15 

-16 , 41 , 42 , -53 , -22 , -42 , -29 , 15 , -24 , 37 , -52 , 39 , -23 , 56 , 43 , 53 , -22 , 50 , 

37 , -51 , 60 , -31 , 52 , -16 , -34 , -5 , 37 , -61 , -5 , -50 , -3 , 61 , 40 , -42 , 25 , -57 , 20 

-45 , -1 , 36 , -6 , 62 , 17 , 54 , 32 , -55 , 52 , 16 , 12 , -49 , -30 , 2 , -30 , -62 , -34 , -27 

15 , 25 , 22 , -37 , 31 , 64 , 49 , 56 , -10 , -15 , 1 , -43 , 18 , -63 , -16 , -29 , 6 , -4 , 11 , 

34 , -61 , -47 , 22 , 15 , 47 , 14 , -18 , 6 , -36 , 43 , 26 , 34 , -39 , 19 , 25 , -60 , 28 , -16 , 

-12 , 39 , -35 , 38 , -43 , 2 , 8 , 24 , -18 , 12 , 20 , 26 , -16 , 3 , 15 , -7 , 32 , -38 , -28 , 41 

45 , 8 , 0 , 57 , 29 , 1 , 6 , 23 , -18 , 24 , 48 , 38 , -36 , 17 , -33 , 60 , 30 , 43 , -38 , -56 

38 , -33 , -24 , 3 , 58 , -10 , 56 , -37 , 4 , -17 , 62 , 23 , 57 , -52 , 5 , 19 , 64 , -41 , 34 , 

45 , -23 , 21 , 55 , -29 , -7 , 49 , 19 , 9 , -41 , -14 , 10 , -46 , 57 , -49 , 17 , -22 , -31 , -25 , 

36 , -12 , -9 , 10 , -31 , 58 , -20 , 13 , 55 , 25 , 47 , -36 , 44 , -61 , -25 , 11 , -21 , -6 , 8 , 
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-61, -45 , 48,-52, 12 , 52 , 30 , -12 , -2 , -59 , -22 , 48 ,-58 ,-26 ,-52 , -22 ,1 ,-49 ,19 , 29 , 0 
 

Let the message 21 m,m  be signed to be 

1m  

26 , 8 , 30 , -48 , 64 , -10 , 3 , 41 , -41 , 14 , 51 , -31 , 62 , 19 , 40 , -14 , 49 , -12 , -59 , -24 

, 7 , -47 , -37 , 22 , -61 , -29 , -48 , 17 , 41 , 64 , 2 , 2 , 8 , -32 , 18 , 7 , 22 , -43 , -16 , 46 , 

36 , -29 , -50 , 33 , 54 , 54 , -46 , 39 , -22 , -40 , -50 , 50 , -22 , -22 , 8 , -18 , 13 , 24 , 63 , 

-10 , 24 , 1 , 56 , -33 , 33 , 10 , 39 , -10 , 32 , -42 , -28 , 4 , -7 , -14 , -28 , -17 , -24 , -9 , 

-42 , 19 , 16 , -27 , 5 , 58 , 15 , -51 , -25 , -36 , 37 , -26 , 18 , -3 , 40 , 10 , 28 , 8 , -44 , 2 , 

63 , 53 , 25 , -29 , -8 , -46 , 21 , 28 , 1 , 62 , -45 , 24 , 17 , 36 , 61 , -43 , 30 , 12 , -29 , -60 , 

40 , -57 , -21 , -6 , 4 , -45 , -61 , -32 , 27 , -40 , 35 , 26 , -52 , -5 , 61 , 4 , 13 , 18 , -32 , -50 

, 16 , -12 , 38 , -31 , -41 , 34 , -9 , 53 , -19 , 26 , 58 , -43 , 33 , -27 , 15 , -27 , -8 , 19 , 5 , 

-45 , 43 , -25 , 46 , 55 , 35 , 42 , -5 , -17 , -4 , 27 , -3 , -52 , -50 , -30 , -19 , -26 , -60 , 36 , 

-38 , -15 , -3 , -44 , 7 , -35 , -7 , -43 , 3 , 50 , 40 , -56 , -60 , 19 , -17 , 50 , 9 , -47 , 28 , -61 

, 1 , -41 , 31 , 62 , -28 , 45 , -32 , 17 , -45 , -28 , -12 , -19 , 22 , 49 , 2 , -36 , -50 , 59 , -14 , 

18 , 45 , -39 , 26 , 49 , 44 , -56 , 35 , -11 , -38 , -2 , -7 , 28 , 22 , -41 , 26 , 58 , -60 , 58 , 10 

, -41 , -34 , 63 , 5 , 53 , 47 , -58 , -47 , 62 , -63 , 3 , 15 , 46 , 29 , -24 , 31 , 0 

 

2m  

9 , -15 , 1 , 63 , 12 , 64 , -9 , -25 , 21 , 15 , -64 , 15 , 20 , 59 , -40 , 43 , -40 , -41 , -16 , -51 

, -58 , -9 , -34 , -61 , -7 , 34 , 19 , -26 , -1 , 60 , -59 , -57 , -20 , 6 , -59 , 56 , 5 , -3 , -33 , 

-38 , -53 , -33 , 41 , 31 , -39 , -63 , 10 , -14 , -40 , 59 , 0 , -34 , -15 , 30 , -30 , 42 , 0 , 53 , 

-48 , 63 , 48 , -43 , -58 , -36 , 28 , -53 , -45 , -32 , 9 , -13 , -6 , 21 , 18 , -29 , -12 , 44 , -28 , 

63 , -35 , -4 , 57 , 29 , 27 , -22 , -5 , 61 , -44 , 60 , 50 , -28 , 58 , 33 , -6 , 64 , 62 , -43 , -53 

, -48 , -10 , 21 , 4 , 49 , -23 , -43 , -45 , 29 , -64 , -9 , 27 , -34 , 52 , 20 , 60 , 14 , 63 , -9 , 

10 , -46 , -14 , -5 , -9 , -20 , -36 , 49 , -21 , -39 , -58 , -9 , -22 , -3 , -53 , 46 , -19 , -11 , -61 

, 1 , -46 , -60 , 56 , 45 , -30 , 44 , 1 , -34 , -7 , -1 , 21 , -61 , 17 , -58 , -1 , -56 , -14 , 28 , 57 

, 30 , 53 , 64 , -43 , -33 , -4 , -31 , -51 , 42 , 22 , -48 , -22 , 40 , -44 , -30 , 21 , -9 , -51 , -43 

, 21 , 6 , 21 , -23 , 10 , -26 , -16 , -56 , -18 , 35 , 36 , -25 , 0 , 25 , -26 , 21 , 56 , 35 , 55 , 

-59 , 12 , 12 , -43 , 54 , -12 , -22 , -40 , -56 , 33 , -27 , -34 , -10 , 44 , 51 , 32 , -11 , -39 , 

-49 , -3 , 7 , 50 , -31 , 46 , -14 , 58 , -45 , -57 , 50 , 55 , 62 , 55 , 2 , 9 , -52 , -8 , 61 , -10 , 

16 , -59 , -41 , 54 , -29,13 ,33,-42, -20 , -43 , -17 , -4 , 19 , 55,-18 , 52 , 36 , 32 , 45 , 56 , 0 

Now observe a valid signature  )t,s(  , which is made by a valid signer 
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s 

26 , 26 , 40 , -43 , -52 , 0 , 16 , 38 , -37 , 29 , 47 , -9 , -41 , 43 , -56 , 4 , -60 , -12 , -51 , -12 

, 21 , -40 , -34 , 45 , -43 , -16 , -9 , 28 , 53 , -51 , 8 , 0 , 3 , -12 , 24 , 1 , 33 , -44 , -4 , 59 , 

52 , -25 , -51 , 36 , 58 , 57 , -33 , 29 , -13 , -50 , -42 , -59 , 2 , 0 , 18 , -16 , 28 , 32 , -52 , -4 

, 36 , -4 , 58 , -20 , 55 , 39 , 41 , 8 , 46 , -37 , -4 , 6 , 14 , 6 , -22 , 3 , -17 , -1 , -19 , 20 , 37 

, -19 , 11 , -53 , 36 , -52 , -36 , -27 , 45 , -17 , 44 , -3 , 61 , 28 , 30 , 14 , -42 , 14 , -60 , 61 , 

16 , -34 , 12 , -41 , 40 , 36 , -11 , -54 , -34 , 30 , 49 , 37 , -59 , -48 , 55 , 29 , -11 , -45 , 50 , 

-41 , -16 , 9 , 21 , -46 , -37 , -48 , 46 , -34 , 47 , 56 , -34 , -9 , -30 , 23 , 39 , 22 , -29 , -36 , 

7 , 5 , 33 , -24 , -33 , 40 , 0 , 41 , -6 , 30 , -60 , -45 , 27 , -15 , 31 , -12 , 11 , 23 , 15 , -25 , 

32 , -6 , 43 , -55 , 32 , 42 , 17 , -10 , 15 , 34 , 21 , -44 , -38 , -10 , 0 , -9 , -61 , 54 , -26 , -9 , 

6 , -33 , 14 , -26 , -3 , -29 , 35 , 53 , 60 , 63 , -40 , -5 , -5 , -63 , 16 , -26 , 28 , -43 , 2 , -22 , 

47 , -52 , -33 , 56 , -32 , 18 , -36 , -20 , 7 , -9 , 48 , 55 , 17 , -14 , -27 , -32 , -14 , 29 , 49 , 

-26 , 36 , 53 , 53 , -38 , 52 , 6 , -18 , 20 , 19 , 37 , 33 , -28 , 32 , 64 , -49 , -53 , 10 , -21 , 

-30 , -57 , 15 , 47 , 57 , -58 , -43 , 54 , -61 , 6 , 25 , 54 , 35 , -16 , 56 , 0 

 

)q(modh*st =  

12 , 5 , 9 , -48 , -14 , -38 , 6 , -16 , 52 , 31 , 59 , 23 , 17 , -58 , -27 , -56 , -25 , -21 , 6 , -50 , 

-54 , 7 , -29 , -28 , -5 , 46 , 20 , -17 , 5 , -62 , -40 , -60 , -22 , 22 , -63 , -62 , 20 , 3 , -30 , 

-37 , -33 , -19 , 46 , 41 , -44 , -40 , 8 , 6 , -20 , -50 , 15 , -27 , 1 , 45 , -23 , 58 , 15 , -57 , 

-41 , -62 , 61 , -23 , -37 , -11 , 34 , -39 , -31 , -15 , 14 , 2 , 8 , 17 , 34 , -29 , 8 , 57 , -29 , 

-52 , -27 , 2 , 45 , 30 , 46 , -18 , 5 , -55 , -27 , -52 , 52 , -18 , -58 , 37 , 21 , -57 , -39 , -29 , 

-53 , -56 , -9 , 33 , 21 , -60 , -7 , -40 , -20 , 58 , -44 , -3 , 46 , -20 , 62 , 33 , -62 , 40 , -56 , 

-3 , 24 , -44 , 3 , 10 , -3 , -13 , -45 , 62 , -10 , -32 , -47 , -6 , -14 , 7 , -50 , -60 , -2 , 0 , -51 , 

7 , -29 , -46 , -48 , 50 , -21 , 54 , 8 , 1 , 9 , 4 , 37 , -60 , 16 , -41 , 21 , -37 , -1 , 25 , 59 , 34 

, -52 , -58 , -29 , -30 , -7 , -29 , -38 , -59 , 50 , -17 , -21 , 44 , -29 , -20 , 45 , 3 , -47 , -19 , 

38 , 10 , 30 , 8 , 36 , -17 , 9 , -40 , -4 , 60 , 44 , -9 , 10 , 53 , -3 , 53 , -61 , 36 , -59 , -35 , 

23 , 21 , -34 , -63 , -4 , -14 , -20 , -48 , 40 , -36 , -24 , 2 , 44 , -54 , 49 , -6 , -23 , -49 , 0 , 

11 , -56 , -23 , 54 , 5 , -46 , -27 , -22 , 52 , -56 , -47 , 54 , 16 , 25 , -28 , 20 , -56 , 11 , 18 

-25 , -41,-57 , -31,13 , 24 ,-20 ,-11 , -41 , -13 , 10 , 34 ,-62 , -5 , -51 , 60 , 33 , 47 , -56 , 0 

 
Obviously, the above signature )t,s( is valid and its norm value 

9000048203mtms 2
2

2
1 ≤=−+−  , 

Where 25335ms 2
1 =−  and 2

2mt − =22868 respectively. 
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2.1 Introduction: 

In this chapter we shall present the original NTRU cryptosystem as 

described in [12]. In the past couple of years, the standards (such as 

recommended parameters, message generation and scrambling, encryption / 

decryption processes) were changed several times and will probably change 

again, but the underlying principles remain the same. It will concentrate on 

those. First, it would be discussed how the system works, describe the key 

generation / encoding / decrypting processes with algorithms, then, analysis of 

NTRU system and security which show a few successful attacks and the way 

NTRU was changed to circumvent them. The concentrated on attacks 

according to some circumstances show some proposed results. 

   

2.2Inverse truncated Polynomial Rings: 

The inverse modulo q of polynomial (a) is a polynomial (A) with the 

property that a*A=1(modulo q). 

Not every polynomial has an inverse modulo q, but it is easy to determine the 

inverse, if a has an inverse, we explain how to used “Almost Inverse 

Algorithm” [38] to compute the NTRU public key pairs [22]. 

Gives an efficial way to compute the inverse of the polynomial a(x) in the 

ring (z/2z) (x)/ (m(x)) provided that gcd (a(x), m(x)) =1 and m (0) =-1. 

The following IOP describe the necessary steps for performing the inverse of 

truncated polynomial, the almost inverse algorithm works for the polynomial 

m(x) =xN-1 by the NTRU public key cryptosystem. 

 

Algorithm IOP (1): Inverse in (z/2z) (x) / (xN-1) 

Input: a(x)  

Output: b(x) =a(x)-1 in (z/2z)(x)/(xN-1) 

Step1 : initialization k:0,b(x)=1,c(x)=0 , f(x):=0,g(x):=xN-1 

Step2 : do while f0=0  
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Step3: f(x):=F(X)/X, C(X):=C(X)*X,K=K+1 

Step4 : if f(x)=1 then return xN-kb(x)(mod xN-1) 

Step5:    if deg(f)<deg(g) then 

Step6:     exchange f and g and exchange b and c 

Step7: f(x):=f(x) +g(x) (mod 2) 

Step8: b(x) :=f(x)+c(x) (mod2) 

Step9: End while 

Note that the number f0 in step 2 is the constant coefficients of f, and 

that the return value XN-Kb(x) (mod (xN-1), in step 4 is simply b(x) with its 

coefficients cyclically shifted k places. We also note that the speed of the 

inversion Procedure can be significantly enhanced by a number of 

implementation tricks, such as expanding the operation on b,c,f,g into inline 

loop-unrolled code. 

In order to create NTRU public/private key pairs, one needs to compute 

the inverse of a polynomial modulo p for primes other than 2. Here is 

adaptation of the almost inverse algorithm or the prime p=3, since the 

other value required for the standard NTRU parameter sets. 

 

Algorithm IOP (2): Inversion in (z/3z) (x)/ (xN-1) 

Input: a(x) 

Output: b(x) =a(x)-1 in (Z/3Z) (x)/ (xN-1) 

Step 1: Initialization k: =0, b(x):=1,c(x):=0,f(x):=a(x),g(x):=xN-1 

Step2: do while f0=0 

Step 3:      f(x):=f(x)/x , c(X):C(x)*x ,k=k+1 

Step 4:      if f(x) =± 1 then return ± xN-Kb(x) (mod xN-1) 

Step 5:          if deg(f) < deg(g) then 

Step6 :                exchange f and g and exchange b and c 

Step7 :               if f0=g0 
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Step8 :              f(x):=f(x)-g(x) (mod3) 

Step9 :              b(x):=b(x)-c(x) (mod3) 

Step10:             else 

Step11:             f(x): f(x) +g(x) (mod3) 

Step12:             b(x): b(x) +c(x) (mod3) 

Step13: end while 
 

In this algorithm, all computation are done modulo (3), so all 

coefficients are chosen from the set {-1, 0, 1}.Also, the ± 1’s is in step4 are 

chosen to have the same sign. 

The creation of NTRU public / private key pairs often requires finding 

the inverse of a polynomial f(x) modulo not only a prime , but also a prime 

power , in particular a power of 2.However , once an inverse is determined 

modulo a prime p , a simple method based on Newton iteration allows one to 

rapidly compute the inverse modulo pr.  

The following algorithm converges doubly exponentially, in the sense that it 

requires only about log2(r) steps to find the inverse a(x) modulo (p). 

 

Algorithm IOP (3): Inversion in (Z/pZ) (x) / (xN-1) 

Input: a(x), p (a prime) 

Output: B(x)=a(x)-1 in (Z/pZ)(x) /(xN-1) 

Step1: Initialization k:=0 ,b(x):=1,c(x):=0, f(x):=a(x),g(x):=xN-1 

Step2: do while f0=0 

Step3: if deg(f)=0 then  

Step5:    b(x):=f0
-1b(x) (mod p) 

Step6: return xN-kb(x) (mod XN-1) 

Step7:  if deg(f)<deg(g) then 

Step8:   exchange f and g and exchange b and c 

Step9: u: =f0g0
-1 (mod (p)  



Chapter Two                                                Classical NTRU cryptosystem 
 

 - 34 -  

Step 10: f(x):=f(x)-u*g(x0 (mod p)  

Step11: b(x):=b(x)-u*c(x) (mod p) 

Step12: end while 

The idea of "Almost inverse algorithm "[38] inverse algorithm " stars 

with the vector (f, g) = (a, m). Then multiplies (on the right) by the following 

matrices: 










−
=












=







=
−

1u

01
,

10

0x
,

01

10
u

1
γβα  

 

Note that the effect of these transformations is  

(f , g) α =(g ,f) ,    (f,g )β =(X-1 f,g) ,   (f ,g) γu =(f – u g , g)  

So step 4 is matrix β , step 9 is the matrix α , and step11 is the matrix γu, Note 

that in step11 , the value of u is chosen so that f-u g is divisible by X , so that 

its constant term is 0) . In step4 divides by X until us constant term is non-

zero appear, also, in step 9 makes sure that deg (f) ≥deg (g). 

The net effect is that each time through the loop the total degree 

deg(f)+deg(g) is reduced by at least 1, so eventually f becomes a constant 

(provided gcd (f,g) =1). Hence the algorithm terminates in at most deg (a) 

+deg (m) iterations. 

Thus the algorithm produces a sequence of transformation D1D2.......Dr, where 

each Di (i=1, 2,…,r) is one of α, β, or γu, so that 

 (a, m)D1D2….Dr-1Dr = (χ, *) 

Where χ is a non-zero number modulo p, unfortunately, the coefficients of the 

product D1D2……..Dr are not polynomials, because the matrix β has X-1 as an 

entry. 

Let k be the number of times that β appears in the product D1D2…..Dr. 

XkD1D2……..Dr has coefficients that are polynomial, say  

XkD1D2…….Dr= 








*'m

*'a
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Now multiplying on the left by (a, m) yields 

(a 'a + m )'m  =(a , m) 








*'m

*'a
     

                  = (a, m)XkD1D2…….Dr 

                  =Xk (α, *) 

So  

                       a'a = αXk (mod m) 

The almost inverse algorithm construct this value 'a  while it is 

applying the transformation D1D2….Dr starting from (a, m), then applying the 

same transformation starting from ( b , c) =(1,0) , except that in place of  

β= 






 −

10

0X 1

 , we apply  X β = 








X0

01
 . 

Since β has been used k time at the end of the algorithm the value of(b , c) is 

  (b, c) =(1,0)XkD1D2…….Dr=(1,0) 








′
′

*m

*a
=(a′  ,*) . 

At the end of the algorithm, b has a value satisfying  

                                 ab =α Xk( mod m) 

Since the value of α is simply f0 (the constant term of f, which actually equals 

f at this stage of the algorithm), so that a-1=f0=f0
-1XN-kb. 

see Example (2.1) 

 

Example (2.1): 

Let N =4, p=2, a=1+x2-x3 

The inverse of s modulo 2 in Z(x)/(XN-1) 

a1=1+x2-x3 then a1= [1, 0, 1,-1, 0] 

G1=-1+x4   then G1= [-1, 0, 0, 0, 1] 

Let B1=1    thenB1= [1, 0, 0, 0, 0] 

C1=0          then C1= [0, 0, 0, 0, 0] 
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 A1can not be divided by X because of the presence of number one. 

A2 = a1+G1 = x2-x3+x4 then   a2= [0, 0, 1,-1, 1] 

G2=a1=1+x2-x3 then G2 = [1, 0, 1,-1, 0] 

B2=B1+C1=1 then B2= [1, 0, 0, 0, 0] 

A2 can't be divided by X 

A3=a2/x = x-x2+x3 then a3= [0, 1,-1, 1, 0] 

G3=G2=1+x2-x3 then G3 = [1, 0,1,-1, 0] 

B3=B2=1 then B3= [1, 0, 0, 0, 0] 

C3=C2.X=X then C3= [0, 1, 0, 0, 0] 

A4 can’t be divided by X because the presence of number one. 

A5=a4+G4 = -x-x3 then a5= [0,-1, 0,-1, 0]  

G5=a4=1-x+x2 then G5 = [1,-1, 1, 0, 0] 

B5=B4+C4=1+x2 then B5 = [1, 0, 1, 0, 0] 

C5=B4=1 then C5 = [1, 0, 0, 0, 0] 

A5 can't divide by X. 

A6= a5/x =-1-x2 then a6= [-1, 0,-1, 0, 0] 

G6=G5=1-x+x2 then G6= [1,-1, 1, 0, 0] 

B6=B5=1+x2 then B6 = [1, 0, 1, 0, 0, 0] 

C6=C5.X=X then C6= [0, 1, 0, 0, 0] 

A6 can’t be divided by X because of the presence of number one. 

A7=a6+G6 =-x then a7= [0,-1, 0, 0, 0] 

G7=a6=-1+x+x2 then G7= [-1, 0,-1, 0, 0] 

B7=B6+C6=1+x+x2 then B7= [1, 1, 1, 0, 0]  

C7=B6=1+x2 then C7 = [1, 0, 1, 0, 0] 

A7 can't be divided by X 

A8=a7/x = -1 then a8= [-1, 0, 0, 0, 0]  

G8=G7=-1-x2 then G8= [-1, 0,-1, 0, 0] 

B8=B7=1+x+x2 then B8= [1, 1, 1, 0, 0] 
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C8=C7.X=x+x3 the C8= [0, 1, 0, 1, 0] 

Because a8 equal to constant the evaluation stops and the inverse a is 

A=XN-K*B8 (k equal to No of division times by x) 

And for k=4 

A=X4-4*B8=B8=1+x+x2 then A= [1, 1, 1, 0, 0] 

 

2.3 NTRU PKCS Parameters:-  

The basic collection of objects used by the NTRU public key 

cryptosystem is the ring R [12] that consist of all truncated polynomials of 

degree N-1 having integer coefficients :  

1N
2N

2
210 xp........xpxpp)x(P −

−++++=  .………………………….. (2.1) 

Polynomials are added in the usual way. 

They are also multiplied more or else as usual except that XN are replaced by 

1, XN-1 is replaced by X and XN+2 are replaced by X2. 

A Full implementation of the NTRU public key cryptosystem is specified by a 

number of parameter.  The NTRU PKCS have three parameters: 

N    the polynomial in the truncated polynomial ring has degree N-1. 

P small modulus .As the final step in decryption, the coefficient of the                                                 

message is reduced modulo p. 

q    Large modulus, the coefficient of truncated polynomials will be reduced                                         

      Modulo q.  

 

2.4 Star Multiply: 

This function performs the polynomial multiplication of a*b mod XN-1. 

As a note, the M in Step 9 is either p or q depending upon which one is passed 

into the function. In contrast to the guideline in [14], the algorithm executes 

Step 9 if the current coefficients of a[i] and b[j] are both non-zero. This, 
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therefore, eliminates approximately a third of the operations, which are 

unnecessary. 

Also, for the case M = q, the algorithm assumes q = 2w so the reduction is 

performed by extracting the lower w bits. 

 

2.4.1Star Multiply Algorithm: (a; b; c;N;M) 

Input: N, the coefficient modulus, M, and the two polynomials to be 

multiplied, a and b. 

Output: (a;b;c;N;M) 

step1: for k = 0 to N-1 do 

step2: c[k] = 0 

Step 3: for i=0 to k do 

Step 4:      c(k) =c(k)+[a(i)*b(j)] mod M 

Step 5: End for  

Step 6: For i= k+1 to N-1 do 

Step 7:       c(k) =c(k)+[a(i)*b(j)] mod M 

Step 8: End for. 

 

2.5 Rand Polynomial: 

The Random Polynomial function generates a random polynomial, r, 

whose coefficients are in the subset {-1, 0, 1}.  

The user specifies the number of ones (NumOnes) and the number of negative 

ones (Num Neg Ones) that will make up the random polynomial, r. Basically, 

the algorithm works by randomly selecting a location (position) between 0 

and N in the random polynomial vector, r. For each selected location, if the 

value is zero the algorithm replaces the zero by 1 or -1 until all the specified 

number of ones and negative ones have been entered into the vector. 

 

 

 



Chapter Two                                                Classical NTRU cryptosystem 
 

 - 39 -  

2.5.1 Algorithm Random Polynomial (r;N, NumOnes, NumNegOnes) 

Input: N, NumOnes, NumNegOnes, and polynomial vector to be made 

random r. 

Output: random polynomial r. 

Step 1: r=0  

Step 2: while NumOnes <>0 or NumNegOnes <> 0  do 

Step: position = rand () mod N 

Step 4: if r(position)= 0 then 

Step 5:     if NumOnes > 0 then 

Step 6:        r[position] = 1 

Step 7:        NumOnes = NumOnes - 1 

Step 8:     else if NumNegOnes > 0 then 

Step 9: r (position) = -1 

Step 10: NumNegOnes = NumNegOnes- 1 

Step 11: end if 

Step 12: end if 

Step 13: end while. 

 

2.6 Inverse Polynomial Fq: 

The Inverse Polynomial Fq function in is responsible for generating the 

inverse polynomial of the secret key, f, modulo q.  

 

2.6.1 Algorithm Inverse Polynomial Fq(a; Fq;N; q) 

Input: the polynomial to invert a(x), N, and q. 

Output: Fq (a;F:N;q) 

Step 1: k = 0 

Step 2: for i=o to N  

Step 3: dg=-1, df =-1 

Step 4: b (i) =0, c (i) =0 
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Step 5: f (i) =a (i) 

Step 6: if a (i) <>0 then 

Step 7: df=i 

Step 8: End if  

Step 9: g (i) =0     

Step 10: End for 

Step 11: g (0) =-1, g (N) = 1, b(0) = 1, dg=N 

 Step 12: loop 

Step 13: while f (0) =0 do 

Step 14: temp2=c (n-1) 

Step 15: for i=1 to N-1 do 

Step 16: f(i-1)=f(i)  

Step 17: c(N+1-i)=c(N-i)   

Step 18: end for 

Step 19: f(n)=0 , c(0)=temp2, df=df-1, k=k+1 

Step 20: end while   

Step 21: if df=0 

Step 22: go to 46   

Step 23: end if 

Step 24: if df<dg then  

Step 25: temp2=df 

Step 26: df=dg , dg=temp2 , temp=f , temp=f , f=g , f=g , g=temp , temp=b ,                                                                                                                              

             b=c, c=temp 

Step 27: end  

Step 28: if f=f+g mod 2 

Step 29: b=b+c mod 2 

Step 30: end loop 

Step 31: j=0 
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Step 32: k=k mod N 

Step 33: for i = N - 1 downto 0 do 

Step 34: j=i-k 

Step 35: if j<0 then j=j+n 

Step 36: end if  

Step 37: Fq(i)=b(i) 

 Step 38: end for 

Step 39: v=2 

Step 40: while v<q do 

Step 41: v=v*2   

Step 42: star multiply (a,Fq, temp,Fq,N,v 

Step 43: star multiply (a,Fq, temp,Fq,N,v) 

Step 44: end while 

Step 45: for i =N-1 downto 0 do 

Step 46: if Fq(i) <0 then 

Step 47: Fq(i)=Fq(i)+q  

Step 48: end if 

Step 49: end for 

 

2.7 Inverse Polynomial Fp: 

The Inverse Polynomial  Fp function is responsible for generating the 

inverse polynomial of the secret key, f, modulo p. Inverse polynomial  Fp is 

based o R the pseudo-code for \Inversion in (Z=pZ)[X]=(X N-1)" provided in 

[15 ].  

 

2.7.1 Algorithm Inverse Polynomial Fp (a; Fp;N; p) 

Input: the polynomial to invert a(x), N, and p. 

Output: Fp(a;Fp;N;p) 

step 1: k = 0 
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step 2: for i=o to N  

step 3: dg=-1 , df =-1, b(i)=0 c(i)=0 

step 4: f(i)=a(i) 

step 5: if a(i)<>0 then df=i 

step 6: End if 

 step 7: g(i)=0 

step 8:  end for 

step 9: g(N) = 1 , dg=N, b(0) = 1 

step 10: loop 

step 11:  while f(0)=0 do 

step 12: for i=1 to N-1 do 

step 13: f(i-1)=f(i) , c(N+1-i)=c(N-i)   

step 14: end for 

step 15: c(0)=temp2 , df=df-1 , k=k+1 

step 16: end while   

step 17: if df=0 go to 55 

step 18: end if 

step 19: if df<dg then 

step 20: temp2=df , df=dg , dg=temp2 , temp=f , f=g , g=temp , temp=b , b=c , 

c=temp 

step 21:  end if      

step 23: if f(0)+3)mod3= (g(0)+3) mod 3 then 

step 24: for i=0 to N-1 do 

step 25: f(i)=(f(i)-g(i)) mod3  

step 26: b(i)=(b(i)-c(i))mod 3 

step 27: end for 

step 28: else  

step 29: for i=0toN-1 do 
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step30: f(i)=(f(i)-g(i)) mod3 

step31:  b(i)=(b(i)-c(i))mod 3 

step 32: end for 

step 33: end if 

step 34: end loop 

step 35: j=0  , k=k mod N 

step 36: if f(0)+3)mod3=1 then 

step 37: for i=0 to N-K-1 do 

step 38: end for 

step 39: for i=N-k to N-1 do 

step 40: if f(0)+3)mod3 

step 41: end for 

step 42: end if 

step 43 : for i=0 to N-k-1 do 

step 44: result(i)=-1*(b(k+i-N)+3 mod 3 

step 45: end for 

step 46: for i=N-k to N-1 do  

step 47: result(i)=-1*(b(k+i-N)+3 ) mod 3  

step 48: end for 

step 49:  end if 

Algorithms finds the inverse polynomial modulo a power of 2, which is q. is 

based off the pseudo-code for \Inversion in (Z/2Z) [X] = (X N-1)" and 

inversion in (Z=prz) [X] = (XN-1)" provided in [15]. 

 

2.8 Key Generating: - [12]  

For generation the public key we must choose a random secret key of 

binary Numbers (0, 1, 1, 0…) and   as a polynomial,Rf ∈  with coefficient 

reduced modulo p.  
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2.8.1 Overview 

The sender wants to create a public/private key pair for the NTRU 

Public Key Cryptosystem. 

First randomly chooses two "small" polynomials f and g in the ring of 

truncated polynomials R. 

 A "small" polynomial is small relative to a random polynomial mod q. 

In a random polynomial, the coefficients will in general be randomly 

distributed mod q; in a small polynomial, the coefficients are much smaller 

than q. 

The sender must keep the values of the polynomials f and g private, 

since anyone who knows the value of either one will be able to decrypt 

messages sent to the sender.  

The sender next step is to compute the inverse of f modulo q and the 

inverse of f modulo p. 

Thus computes polynomials fq and fp with the property that 

   )q(mod1f*f q =  and )p(mod1f*f p = . (If by some chance these inverses 

do not exist, the sender will need to go back and choose another f. 

Now the sender computes the product 

)q(modg*f*ph q= …………………………………………………... (2.2) 

The sender's private key is the pair of polynomials f and fp. the sender's public 

key is the polynomial h. 

 

2.8.2 Create Key Algorithm (N; q; p; f; g; h; Fp; Fq) 

Input: p, q, N and random polynomials, f and g. 

Output: )q(modg*f*ph q=  

step1: Inverse Poly Fq(f; Fq;N; q) 

step 2: Inverse Poly Fp(f; Fp;N; p) 

step 3: Star Multiply (Fq; g; h;N; q) 
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step 4: for i = 0 to N - 1 do 

step 5: if h[i] < 0 then 

step 6: h[i] = h[i] + q   

step 7: end if 

step 8: h[i] = h[i] * p mod q 

step 9: end for  

See example (2.2) 

 

Example (2.2): 

As an illustration of the above discussion, the considered parameters 

are: 

                                            N=11 q=32 p=3 

Also needed to define a "small" polynomial more precisely (less than N=11). 

For the purposes of this example, the key generation can be done   by using 

the quantities df and dg. The polynomial f has df coefficients equal to +1, (df-1) 

coefficients equal to -1, and the rest equal to 0. 

Also, polynomial g has dg coefficients equal to +1, dg coefficients equal to -1, 

and the rest equal to 0. 

(The reason for the slight difference in form between f and g is that f 

has to be invertible, while g doesn't). For the purposes of this section, it will 

be taken as Case (I): 

df = 4 dg = 3. 

The sender needs to choose a polynomial f of degree 10 with four 1's 

and three -1's, and he needs to choose a polynomial g of degree 10 with three 

1's and three -1's. 

The chosen polynomial f and g are: 

108532

109642

xxxxx1g

xxxxXx1f

−−+++−=

−++−++−=
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Next computes the inverse fp of f modulo p and the inverse fq of f 

modulo q. 

The sender finds that: 

1098

1098765432
q

987543
p

x30x18x20

x30x18x20x22x16x15x4x16x6x95f

x2xx2xx2x2x21f

+++

++++++++++=

+++++++=

 
The final step in key creation is to compute the product 

).32(modx16x19x12x19

x15x24x12x20x22x258g*pfh

10987

65432
q

+++

+++++++==
 

So the sender's private key, in this case is the pair of polynomials f and 

fp, and his public key is the polynomial h. 

For the purpose of high security level we increase the degree N of the chosen 

polynomial  

Case (II):  Taken df=4, dg=3, N=12 

Now, the sender need to choose a polynomial of degree 12 with 

fourth’s 1 and three’s 1 and three’s -1  

Suppose the sender chooses:   

1210852

1211962

xxxxx1g

xxxxxx1f

−−+++−=

−++−++−=
 

Next he computes the inverse Fp of F modulo P and the inverse Fq of F 

modulo q. 

12109765432
q

12865
p

x11x17x28x3x8x19x27x21x6x59f

x2xxx2x2f

++++++++++=

+++=

     

Finally  )32(modg*pfh q=  
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)32(modx12x19

x23x14x31x19x20x30x27x2821h
1211

10976432

++

++++++++=
 

The sender’s private key is the pair of polynomial f and fp and his public key 

is the polynomial h. 

 

2.9 Encryption:  [12] 

The encrypted message is computed as 

)q(modmh*pre += ………………………………………………….. (2.3) 

Where the message Rm ∈ , and the random polynomial Rr ∈  has coefficients 

reduced modulo P. 

 

2.9.1 Overview  

The receiver wants to send a message to the sender using the sender's 

public key h. first puts the message in the form of a polynomial m whose 

coefficients are chosen modulo p, say between -p/2 and p/2 (in other words, m 

is a small polynomial mod q). Next it should be randomly chooses another 

small polynomial, r. This is the "blinding value", which is used to obscure the 

message (random value when encrypting). 

The sender uses the message m, her randomly chosen polynomial r, 

and the receiver's public key h to compute the polynomial 

).q(modmh*re +=               

The polynomial e is the encrypted message which the receiver sends to 

the sender. 

 

2.9.2 Encoding Algorithm (N; q; r; m; h; e) 

Input: N, q, Public Key h, message m, and random polynomial r. 

Output: )q(modmh*pre +=  

Step1: Star Multiply(r; h; e;N; q) 
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Step 2: for i = 0 to N -1 do 

Step 3: e[i] = e[i] + m[i] mod q 

Step 4: end for. 

 

Example (2.3): 

In this example, we shall consider the tow cases of example (2.2) 

We need to specify what we mean by saying r is “small” polynomial. We do 

this using the quantity dr. 

Where r has dr of coefficients: 

 

















−−
+

=
zeroaretsCoefficien,0

vearetsCoefficien,1

vearetsCoefficien,1

dr  

For the purposes of case of example (2.2)M , it will be taken dr = 3. 

Now, suppose the receiver wants to send the message 

109843 xxxxx1m ++−−+−=  

To the sender using the sender's public key 

1098765432 x16x19x12x19x15x24x12x20x22x258h ++++++++++=
 

For case ( )Π of example (2.2), the receiver wants to send the message  

12109843 xxxxxx1m +++−−+−=  to the sender using the sender 

public key  

1211

109765432

x12x19

x23x14x31x19x11x20x30x27x2821h

++

+++++++++=
 

First chooses a random polynomial r of degree 12 with three’s 1 and 

three’s -1, say she chooses  

11842 xxxx1r −−++−=    

Then the encrypted message e is: 
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).32(modx26x26

xxx24x11x6x15x6x20x17x35e

)32(modmh*re

1211

1097765432

++

++++++++++=

+=

 

Then send the encrypted message e to the sender. 

 

2.10 Decryption: [12]  

The decryption procedure requires three steps: 

(i) Constructing polynomial )q(mode*fa = …………………………. (2.4) 

(ii)Shift the coefficients of a to the range (-q/2, q/2).  

(iii) Calculating the polynomial )p(moda*fd p=  …………………… (2.5) 

The final step of decryption requires the user to compute the inverse 

polynomial Fp of the secret key f modulo p. The decryption process outlined 

above will recover message (d = m).   

 

2.10.1 Overview  

The sender has received the receiver’s encrypted message e and wants 

to decrypt it. It will be begin by using his private polynomial f to compute the 

polynomial 

)q(mode*fa = . 

Since the sender is computing a modulo q, he can choose the 

coefficients of a to lie between -q/2 and q/2. (In general, the sender will 

choose the coefficients of a to lie in an interval of length q. The specific 

interval depends on the form of the small polynomials.  

It is very important that the sender does this before performing the next step, 

the sender next computes the polynomial 

)p(modab = . 

That is, he reduces each of the coefficients of a modulo p. Finally the sender 

uses his other private polynomial fp to compute 
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).p(modb*fc p=  

The polynomial c will be the receiver's original message m. 

 

2.10.2 Decoding Algorithm (N; q; p; f; Fp; e; d) 

Input: N, q, p, secret key f, inverse polynomial Fp, and encrypted message                        

e . 

Output: )p(moda*fd p=  

Step 1: Star Multiply (f; e; a;N; q) 

Step 2: for i = 0 to N - 1 do 

Step 3: if a[i] < 0 then 

Step 4: a[i] = a[i] + q  

Step 5: end if 

Step 6: if a[i] > q=2 then 

step 7: a[i] = a[i] + q  

Step 8: end if 

Step9: end for 

Step 10: Star Multiply (a; Fp; d;N; p). 

 

Example (2.4): 

In this example we shall considered the result of examples (2.2) and 

(2.3) are valid, the sender has received the encrypted message 

10

98765432

x19

x6x25x7x30x16x14x24x26x1114e

+

+++++++++=
. 

from the receiver. The sender uses his private key f to compute 

).32(mode*fa =  

)32(modx7x3

x5x7x6x7x10x11x10x73a
109

8765432

−−

+++++−−−=
. 
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Note that when the sender reduces the coefficients of f*e modulo 32, he 

chooses values lying between -15 and 16, not between 0 and 31. It is very 

important that he choose the coefficients in this way. Next the sender reduces 

the coefficients of a modulo 3 to get 

).3(modxxxxxxxxab 10875432 −−++++−−==  

Finally the sender uses fp, the other part of his private key, to compute 

)3(modxxxxx1b*fc 109843
p ++−−+−== . 

The polynomial c is the receiver’s message m, so the sender has successfully 

decrypted the receiver’s message. 

-Now, if the sender received the encrypted message 

1211

1098765432

x26x26

xxx24x11x6x15x6x20x17x35e

++

++++++++++=
 

 From the receiver he uses his private key f to compute  

)32(modx5x3

x10x2x5x11x3x2x10x13x41e*fa
1211

109875432

++

−−++−−−−−==
 

Next the sender reduce the coefficients of a mod 3 to get  

1210987432 x2xx2x2x2x2xxx1ab ++−++−−−−== (mod3) 

Finally the sender uses fp the other part of his private key to compute  

)3(modxxxxxx1b*fd 12109843
p +++−−+−== . 

The polynomial d is the receiver message m so the sender has successfully 

decrypted the receiver's message. 

 

2.10.3 Decryption Analyses: 

The receiver's encrypted message e of the form e = r*h + m (mod q), 

but the sender doesn't initially know the values of r and m. The sender's first 

step is to compute f*e and reduce the coefficients modulo q. Remember that 
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the sender's public key h was actually formed by Multiplying pfq*g and 

reducing its coefficients modulo q. So although the sender doesn't know r and 

m, when he computes a = f*e (modulo q), he is actually performing the 

following computation: 

a = f*e (modulo q) 

   = f*(r*h + m) (modulo q)              [since e = r*h + m (modulo q)] 

   = f*(r*pf q*g + m) (modulo q)        [since h = pfq*g (modulo q)] 

   = pr*g + f*m (modulo q)                 [since f*fq = 1 (modulo q)] ……… (2.6) 

Now look back at the sizes of the various parameters. The polynomials 

r, g, f, and m all have coefficients that are quite small. This means that the 

coefficients of the products r*g and f*m are also quite small, at least in 

comparison to q. Since the prime p is also small compared to q, this means 

(assuming that the parameters have been properly chosen) that the coefficients 

of the polynomial pr*g + f*m already lie between -q/2 and q/2, so reducing 

the coefficients modulo q has no effect at all! 

In other words, when the sender computes a by first multiplying f*e 

and then reducing the coefficients modulo q, the polynomial a he ends up with 

is exactly equal to the polynomial pr*g + f*m. When the sender next reduces 

the coefficients of a modulo p to form the polynomial b, he is really reducing 

the coefficients of pr*g + f*m modulo p, so the b that he ends up with is equal 

to b = f*m (modulo p). 

Remember that the sender still doesn't know the value of m, but he now 

knows the value of b. So his final step is to multiply b by fp and use the fact 

that fp*f  = 1 (modulo p) to compute 

c = fp* b = fp* f*m = m (modulo p), 

which allows him to recover the receiver’s message m. 
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2.11 Parameter Choice:   

The recommended parameters for different levels of security are 

presented in Table 2.1. 

Also the sizes of the resulting keys are presented. The size of the public key is 

computed as N log2q, the number of coefficients times the number of bits 

needed to store each coefficient. The size of the private key is computed as 

2N log2 p, where the 2 comes from the fact that we should keep not only f, but 

also f−1 p to make decryption efficient. The parameters are suggested by 

NTRU Cryptosystems [46]. 

Table 2.1. Recommended parameter choices for different levels of security . Also, the 

resulting key sizes (in bits) are shown. 

Security level N p q df dg dr /f/+/f -1
p/ /h/ 

Moderate 167 3 128 61 20 18 530 1169 
Standard 263 3 128 50 24 16 834 1841 
Highest 503 3 256 216 72 55 1595 3521 
 
 

2.11.1 Successful Decryption: 

We need to choose the parameters carefully in order to be able to 

decrypt: the following condition needs to be verified often enough: 

                                   qm*fg*pr <++ ∝  …………………………. (2.7) 

(Recall that for ,Rf ∈  ∞f  denotes its width, (i.e. the maximum deference 

between two coefficients of f). The coefficients of f, r and g should be small 

enough for the previous inequality to hold with high probability. The authors 

of NTRU [30] define the following set: 

L(d1, d2) = {F ∈ R| F has d1 coefficients equal to 1, d2 equal to -1,the rest0}. 

Then they choose integer values for df , dg, dr and set 

  Lf = L (df, df - 1), Lg = L (dg, dg), Lr= L (dr, dr). 

Note that we cannot set Lf to be L (df , df ), for then, members f of Lf are 

surely not invertible: we would find f ′such that 1f*f =′ , but the choice of f 
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implies f(1) = 0 and hence f*f ′ (1) = 0 = 1, which is a contradiction. With 

this choice, the expectation of m*fgpr ++  is 0. 

Note that to simplify the equations in statistical analysis, we shall 

consider that f is taken in L (df , df ). Since N tends to be quite large, this will 

not play any major role. 

Also it will be assumed that q is odd, so that do not multiply cases. The 

procedure can be easily adapted to the case when p is even. Set 

Rm*fg*pra ∈+=  

The goal is to determine df , dr, dg so that the inequality 

                         
2

1q
a i

−≤  

Holds for each i, 0 ≤ i < N with high probability. It will be computed the 

variance of  ∑ ∑= tkkgi mfrpa
t

  

Using a simplified model: suppose that the sets {ri}, {g i}, {f i}, {m i} for 

i =0. ....N -1 consists of pair wise independent random variables.  

Note that, except for m, this is not strictly true, for knowing, for example, that 

the first 2df coefficients of f are all equal to 1 or -1 forces the remainder to be 

0. However: 

1. The procedure to generate our polynomials can be changed without 

modifying much the system to make the coefficients really independent from 

one another. 

2. Practical experiments with both polynomial generating procedures showed 

that it is not even needed: the deference is really negligible. 

Since, in practice N will be fairly large, we will use the normal law to model 

the sums in ai, invoking the central limit theorem. The distribution of Фk is as 

follows: 

Prob(Φk = 1) = Prob(Φk = -1) =
N

dΦ ,  Prob(Φk = 0) = 
N

d2N Φ−
. 
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Distributions of gk and fk are similar, with dr replaced by respectively dg and 

df . Finally, the distribution of m is 

Prob(ml = i) =
p

1
 , i=

2

1p +− , …, 0 , … , 
2

1p −
 

From this, we deduce distributions of the products ιgrk and ιmf k : 

Prob( 1gk =Φ ι ) = Prob( 1gk −=Φ ι ) = 
2

g

N

dd2 Φ , Prob( 0gk =Φ ι ) = 

N

d2N Φ−
. 

Distributions of gk and fk are similar, with dr replaced by respectively dg and 

df . Finally, the distribution of m is 

Prob( im =ι ) = 1- p ,  i = i=
2

1p +− , …, 0 , … ,  

From this, we deduce distributions of the products ιφ gk and ιmf k : 

Prob( 1g1k =Φ )=Prob( 1gk −=Φ ι ) = 
2
g

N

dd2
, Prob( 0gk =Φ ι )=

2
g

2

N

dd4N Φ−
 

Prob( imf k =ι )= 
pN

d2 f 2df / pN if i ≠ 0 , Prob( 0mf k =ι ) =1/p(1+[(p-1)(N-2df) 

/ N] ) 

The expectations of both quantities are clearly 0. The variance is as follows: 

Var( ιgkΦ ) = 
2

g

N

dd4 Φ
 , Var( )mf k ι =

N6

)1p)(1p(d
i

pN

d4 f
2

1p

1i

2f +−
=∑

−

=
 

Hence, 

               0)a(E i = , 

Var(ai ) = 
6

)1p)(1p(d

N

ddp4
fg

2 +−+
Φ
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 Define ].a[Var i=σ the probability that a coefficients ai lies within needed 

bounds is then: 

Prob(
2

1q
ai

−≤ ) = Prob(
2

1q
a

2

1q
i

−≤≤+−
) 

                            = (2 Ф ( 1)
2

1q −−
σ

) 

where Ф denotes the distribution of the standard normal law. 

The probability of successful decryption assuming independence of 

coefficients (again, it is not strictly true, but it turns out that they are almost 

independent, and, anyway, we are underestimating the probability of 

successful decryption, which is safe) is then given by 

Prob(
2

1q
a

−≤∞ ) = Prob( 






 −≤≤+∧
−

= 2

1q
a

2

1q
i

1N

0i
) 

                              =Prob
N

i 2

1q
a

2

1q







 −≤≤+−
 

                              =
N

1)
2

1q
(2 







 −−Φ
σ

……………………………..….. (2.8) 

 
Where the wedge ∧  denotes a logical conjunction. 

Here is an illustration that the theoretical estimations are very close to 

what 

It will be obtained in practice (since our argument is not strictly rigorous). 
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Used the following parameter set: 

                       N = 64, p = 3, df = 25, dg = 17, dr= 8. 

For each q it will be generated random f, g, r, m according to the above 

parameters and checked if the inequality holds, repeating the procedure 1000 

times and storing the quotient 
)Attempts(#

)holdsinequality(#
 these are represented by 

red dots on the graph. The blue curve is the plot of Prob 






 −<∞ 2

1q
a  

according to the computations. It will be seen that, as noted above, by 

assumptions independence of the coefficients of a, the deference is slight and 

tends to disappear when approach high probabilities (the ones are Interested 

in). 

As an example, it will be computed the probabilities for recommended 

values of N, p, q, df , dg, dr. NTRU advertised these security parameters [12 ] 

Security level N p q df dg dΦ 

Moderate 107 3 64 15 12 5 

High 167 3 128 61 20 18 

Highest 503 3 256 216 72 55 

The probabilities computed using equation (2.7) as follows: 
 
Security level Prob(successful decryption) 
Moderate 0.999952 

High 0.999935 

Highest 0.999956 

 
Thus, the probability of decryption failure falls between 10-4 and 10-5. 
 

2.11.2 Message and Cipher text spaces: 

One of the criteria to measure the quality of a cryptosystem is the 

expansion coefficient  
/plog/

/clog/
 , where C is the cipher text space and P is the 

plaintext space. It Measures the number of bits of cipher text needed to 
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encode one bit of plaintext, and hence, the lower it is, the better (if the 

security level is adequate, of course). 

In our case, C = Rq and P = Rp.  

For NTRU, this coefficient is really easy to 

Compute;      
plog

qlog

plog

qlog

/plog/

/clog/
N

N

==  

Typically, for recommended NTRU parameters [12], p is kept constant 

(equal to 3) at all security levels as one can easily see from the table at the end 

of the last section. The security primarily depends on the parameter N. As N 

increases, the probability of successful decryption decreases (we discussed 

this in the previous section), hence q and the expansion coefficient must be 

larger too. Here is an illustration. 

Security level p q Expansion 

Moderate 3 64 3.8 

High 3 128 4.4 

Highest 3 256 5. 

 

2.11.3 Encryption/Decryption speed:  

There are deferent ways to assess the complexity of the encryption and 

decryption operations. Essentially, it depends tightly on implementation 

details and underlying hardware. As noted in [12], to speed up polynomial 

multiplications, one could use for example Fast Fourier Transforms. 

The main purpose of this section is to be able to give a comparison base 

between deferent versions of NTRU that we will consider later in this work. 

We will denote by elementary operation any addition, subtraction, 

multiplication, or division of integers. It will be considered that a division 

with remainder roughly takes one elementary operation (an integer division). 

To encrypt a message m 2 Lm, we need to compute 
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 mh*pre +=  
To compute r*h it will be need N2 integer multiplication (N for each 

coefficient of the result: remember that we are working modulo (xN - 1). 

Then we need N integer multiplications to get to pr * h, and N additions to 

compute e, which amounts in total to N2 +N integer multiplications and N 

additions. Therefore we need N (N + 1) elementary operations for encryption.  

To decrypt, we multiply e by f (N2 multiplications) to get a, reduce all 

coefficients modulo q (N integer divisions) and then multiply a by fp (N2 

more multiplications) to recover the initial message. Hence, we need N (2N + 

1) elementary operations for decryption. Where N is the number of the 

operations. 

 

2.12 Distinguish ability and Malleability [7]: 

Two common notions of security are indistinguishability of encryptions 

and no malleability. 

Indistinguishability vouches for the hardness of finding any information of the 

message underlying a certain cipher text. This captures a strong notion of 

privacy. Non-malleability, on the other hand, guarantees the inability of an 

adversary to produce encryptions of messages that are meaningfully related to 

the message underlying some challenge cipher text. We formalize this as 

follows, where n is some parameter describing the level of security of the 

cryptosystem. 

 

Definition 2.1:[7] 

Indistinguishability (IND). Let Π be a cryptosystem with encryption 

algorithm ξ, II is said to be distinguishable if there exists messages m0 and m1, 

and a polynomial time algorithm A, such that 

c
b n

2

1
b))m((A[pr −+≥=ζ  for n > n0 ………………………………..(2.9) 
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for every constant c ≥ 0 and some integer n0, when b is chosen randomly from 

{0, 1}. Otherwise Π is said to be indistinguishable. 

 

Definition 2.2:[7] 

Non-Malleability (NM). Let Π be a cryptosystem with encryption 

algorithm E. Assume that e is an encryption of m, and that R is a relation, 

with R(m,m) = 0 for all m, computable in polynomial time. Π is said to be 

malleable if there exists a polynomial time algorithm A such 

that )m()e(A ′= ζ , and 

c
rr n)]m,m(R[p)]m,m(R[p −+′≥′  for n > n0 ……………………...(2.10) 

For randomm′′ , every constant c ≥ 0 and some integer n0 , Otherwise II is 

said to be non – malleable . 

NTRU Encrypt is neither indistinguishable nor non-malleable. 

Consider two messages m0 and m1. Because r(1) = 0,   

)1(m)1(m)1(h)1(r)1(e iiii ≡+≡  (mod q) 

Since q is chosen to be at least 128, this gives an adversary a significant bias 

in distinguishing between encryptions of m0 and m1. To see that NTRU 

Encrypt is malleable, let e*xe ≡ (mod q) where e is an encryption of m. Then 

e*xe ≡′  
   m*xh*r*x +≡ …………………………………………………… (2.11) 
   mh*r ′+′≡  

For some ∈′r L(dr, dr). It follows that e′ is an encryption of m*xm ≡′ (mod 

q) because of these weaknesses NTRU Encrypt should not be used without 

some kind of modification making it secures in these senses too. Several 

padding schemes to overcome the problems have been proposed. A padding 

scheme usually consist which is obviously strongly related to m. 

Nguyen and Pointcheval [ 34 ] , analyzes several such systems and conclude 

that some of them are indistinguishable against adaptive chosen-cipher text 

attacks, by assuming intractability of finding l bits of an encrypted message, 
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for sufficiently large N and l. In such attacks the adversary has obtained 

access to the decryption machinery, and can decrypt any messages he likes, 

except the critical message received. As Proos [11] showed though, these 

results might not be true, because of the presence of decryption failures in 

NTRU Encrypt, which was neglected by Nguyen and Pointcheval. 
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Conclusions and Recommendations ---------- 
 
 
  From the present work, the following conclusions are drawn:  

1. NTRU Cryptosystem is malleable.   

2. Matrix NTRU have been presented in details, also suggested several 

parameters choices for Matrix NTRU that provide significant speed 

improvements over NTRU with relatively similar security levels. 

3. NTRUSign digital signature scheme have been described that can cause                  

significant problem in some real application if one is unaware of it.                                                                                  

Also word it is malleable. This notion allows an adversary to find new 

signature. 

 

 Also, we can recommend the following open problems for further work: 

1. Studying the attack against NTRU cryptosystem using lattice reduction 

algorithm.  

2. Using Chinese Remainder Theorem to improve NTRU cryptosystem, 

Matrix NTRU and to enhance the broadcast encryption. 

3. Attack the NTRUSign using annihilating polynomial to generate 2nd 

valid signature. 
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IINNTTRROODDUUCCTTIIOONN  ------------------------------------------------------------------------------------------    

 

There are many types of cryptosystems, namely the private key 

cryptosystem and the public key cryptosystem. The private key is an ancient 

invention, although no one knows when a secret writing had begun.  

Mesopotamia and Babylon tribes employed similar techniques to render 

cuneiform tablets unreadable to the uninitiated. These were made around 

1500 BC, they contained one of the earliest known examples, and they 

contained a code formula for making pottery glaze. 

The Greek used a code as early as 475 BC, and upper class in Rome 

usually used simple ciphers, during the region of Julius Caesar.  

The idea of the private key cryptosystem is that if you know how to 

cipher a message then you automatically know how to decipher the message, 

the method of the ciphering must be kept secret. 

The principle and the idea of the public key cryptosystem were 

introduced by Diff and Hellman [45] in 1976. Since then, several different 

protocols for public key cryptography have been presented; the RSA (Ron 

Rivest, AdiShamir, and Len Adleman) [37] in 1978, and ECC (Elliptical 

Curve Cryptosystem) in1985 [10]. 

At the end  of the second millennium and with the huge development of 

technology in the field of cell phones and satellite channels, the scientific 

companies dealing with this field needed to make communication products 

with processors and high security with low cost that can be marketed to many 

consumers. For that reason this issue was assigned to the groups of 

mathematical science for searching to find a new way. This new system is the 

NTRU cryptosystem (Number Theory Research Unit) that uses a high 

security level, high speed and small-size processors.  
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The public key cryptosystem NTRU was first introduced by Jeffrey 

Hoffstein, et-al in 1998 [12]. It operates in the ring of truncated polynomials 

given by z[x]/xN-1.  

    The security of the NTRU cryptosystem is based on the difficulty of 

finding short vectors in a certain lattice. The encryption process includes a 

random element, and therefore one message has several possible encryptions. 

The advantage of NTRU over other cryptosystems is that encryption 

and decryption is very fast and the key sizes are relatively small. Also the key 

generation is fast and easy. The first paper studying NTRU technology was 

published by Don Coppersmith and Adi Shamir (1997). In that paper real 

analysis of lattice attacks on NTRU) [15] was presented, they noted that the 

best way to attack the NTRU cryptosystem was via the techniques of lattice 

reduction, studied and proposed one such attack. This is completely analogous 

to noting that the best way to attack RSA [17] is via factoring the modulus (or 

that the best way to attack ECC) is via the Pollard rho method), and that 

different–size keys give different levels of security. The analysis in the paper 

contributes to establishing the appropriate key length for a desired security 

level. 

    In addition, the NTRU cryptosystem is featured in recent cryptography 

textbooks such as Paul Garetts making breaking codes. Stern and Nguyen 

2002, [33], two leading experts in the application of lattice techniques to 

cryptography.  

    Jeffery Hoffstein and Joseph Silverman [18] described adversity 

methods that may be used to increase the speed of NTRU Public key.  

  Joseph Silverman and William Whyte, (2003) [23] discussed how to analyze 

the probability of NTRU Encryption decryption failure, and demonstrated that 

there are parameter sets which reduce the probability of decryption failure to 

less than 2-80.  



   - III  - 

Jeffery Hoffstein et-al,(2003)[21]  discussed the best known lattice 

based attacks on NTRU cryptosystem and demonstrated that for 

recommended parameter sets with N=251 the strength against lattice attacks 

is at 280 . 

   Jeffery Hoffstein et-al introduced NTRU sign, a new family of 

signature schemes based on solving the approximate closest vector in the 

NTRU lattice [19].  

   Daniel Rosenberg (2004) [7] implemented lattice attacks using 

dimension–reduced and zero-forced lattice, reduced a modified version of the 

zero-forced lattice. 

    Tommi Meskanen (2005) [44] provide a unified presentation on the 

NTRU cryptosystem, the original content consists of an attack against one 

version of NTRU. Tools for the best known lattice reduction algorithm to 

better fit the NTRU environment are developed, thus giving more accurate 

security analysis. 

    Thaier Sadoon (2006) [43] introduced the general structure of NTRU 

cryptosystem and four improvements of the basic algorithm and included 

performance analysis of the basic algorithm NTRU and the methods. 

   , quantum age secure digital signature scheme NTRU sign. 

The aim of this thesis is to describe the NTRU cryptosystem, how it 

works, improving the NTRU cryptosystem using Matrix NTRU cryptosystem, 

and to fully describe the NTRU Signature Scheme. 

This thesis consist of three chapters, besides the present part 

    In chapter one, we introduce the basic concept of the public key 

Encryption problem as a code word for encryption. Also definition of NTRU 

cryptosystem as mentioned in abstract algebra, ring theory and number theory 

definitions are supported by examples, as well as, the lattice problem is 

considered as basics of NTRU.  



   - IV  - 

    In chapter two titled (Classical NTRU cryptosystem), we discuss the 

structure of NTRU cryptosystem without attack, and how the system works 

on different levels, with some algorithms discussed in detail, and supported 

by examples. 

Chapter three, titled (Advance NTRU Cryptosystem), deals with 

improvements to the NTRU cryptosystem made by using Matrix NTRU, 

which shows high speed improvements in comparison with classical NTRU 

cryptosystems. A new idea of NTRUSign is studied and applied to digital 

signature.   

 
 
 
 
 
 



List of Notations ------------------------ 
 
NTRU  Number theory Research Unit 

RSA     Rivest , Shamir , and Adelman 

ECC    Elliptic Curve Cryptoystem 

CRT   Chinese reminder theorem  

SVP    Shortest Vector Problem 

CVP   Closest vector problem 

NTRUSign  NTRU Signature Scheme 

NTRUEncrypt NTRU Encryption Scheme 

IOP    Inverse of Polynomial 

 gcd   greatest common divisor 

Zn   The integers modulo n 

)p(GF n   Finite field of order np  

p
1f −    The inverse of f modulo p 

q
1f −    The inverse of f modulo q 

.         Center norm 

2
.    norml2 −  

h
NTL     NTRU Lattice 
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���#  )1 أھ/ ).ا�� ھ!ا ا�-��م  ,

  أ)-�# 


���د ا�?���ود )��= ا������'�: ��
�)��: ا�-'>���ن )��1 ����ا7: ا�-����م ا�������9 ا  ��NTRU���م ا���ـ ���

��1
�د�1 ا�-���� p and q  .  


'�3ل  ���NTRUم ا�ـ )'�
ح ھ!ه ا(ط
و�#  �/ *4( :C��$ 
��<� ����D ح����E  3زه�ر) ���3��


Eت ذا���H�( Iج ا���?� ) ��E #���� #�

ة$��3K# و,��E ام  ة����,M� :$�� +��
D وھ!ه ا��.ا��

  .اKD.ة و��ت C( 1(3 �'�# ا������D+*4 ا���# ا�N>�(ت ا���-'�# و�-3ات ا��� اNذا�4 


�: ���م ا�ـ ���NTRU   ����

 ا���
�د ا�?�ود و)���أ ا��O��)�= ا���Oا� I�� ���
���م )���9 �


�# أ����N(ت �� I��.  


ت  ا����ت )>�3*�ت  NTRUاQ*�R اNط
و�# ���م ُ)?3ر �-��م ا�ـ �K5,�س واظE ا(��اد

Iا�� �K�3E  ا(����دي 

�# و��Eءة )1 ���م ا�����,.  

Q*�Rا ��E N#ھ!ه ا��ا��> W(���
)�=   NTRUا�
���4 $],����ام ا��ـ  ط
و�# وYZ ا,�3ب و$

 .ا)_�# )3^'# $�3ارز)��ت و ����
 ا�3^�[\*4 �?��1 

 dual 1.7ا��
�# ( اNداء $�,���ام ��,�# `�>�# ذات ا��3ا��Zت ا�����#   / *?� و�?��:�
cores  ة
E512، ا�!ا MB  م ا��3-�وز���،XP-SP2  #b� ل��
)  Visual Basic(،و$�,�

W(ا
�3
 ا��H�� 



  
  


َ�نِ إِ��  و�ِْ
َ◌أَن ��ْ��َ ِ�
��ََ� ��َ 

أَن� �َْ�َ�ُ� �َْ�فَ  و  َ
�ىــــــــ ـُ�َ 
ُ�ْ$َ#اُ% اْ�َ$َ#اء   ُ �� 

 �ــــ ـَاْ'وَْ&
وَأَن� إَِ�� رَ*()َ 

 َ/�ـــــــ ـَاْ�ُ.-,
 


ق � ا�����      � 
٤٢-٣٩ا���، ����رة ا��                                    
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