Abstract

The NTRU [Number theory research unit] cryptosysiena relatively
new public key cryptographic algorithm that wastfintroduced in 1998, and
that key runs are much faster than conventionalipkiey algorithms such as
RSA, ECC. The main advantage of this cryptosysteits ihigh speed generation
keys, which is often the most important part oflpukey cryptography.

The security of NTRU cryptosystem comes from theeraction of the
polynomial mixing system with the independence efiuction modulo two
relatively prime integers' p and q.

This thesis introduces the concepts behind NT&RUa new public key
cryptosystem. NTRU features are reasonably shasilyecreated keys, high
speed, and low memory requirement. These featurase nt favourable in
mobile communication systems, broadcast and datetiannels for its low cost
hardware needs.

NTRU encryption and decryption use a mixing systeuggested by
polynomial algebra combined with a clustering pipte based on elementary
probability theory.

Also an approach variant of the NTRU public keyptogsystem called
Matrix NTRU cryptosystem is proposed and has béenva to be much faster
and have higher efficiency than the classical NTdRyptosystem.

The thesis describes the NTRU Signature Scheme withanced
document encoding, signature, verification, withoypsion of documented
algorithms and examples.

The test and performance analysis performed usingCawith the
following specification (processor 1.7 dual coresnmory 512 MB with windows

XP-SP2 operating system), and all programs areloeed in Visual Basic. .
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1.1Introduction:
In this chapter we shall describe the public keyptography,

mathematical basic material and lattice that us@fitRU cryptosystem.

1.2 Public-K ey Cryptogr aphy:

The idea of symmetric or private key, cryptosystemsthat the
communicating parties agree on common keys whiely tise to encrypt their
messages to each other. The same key is usedrygptja®. to unscramble the
encrypted message. Eavesdroppers, who can capeirexthanged encrypted
messages, are unable to understand the messdgag as the key used remains
secret.

One of the weak points of these private key sysisrkey agreement.
Clearly, before the parties are able to communisatairely, they must have a
way to agree on their key. But how this is possibédl exchanged messages can
be eavesdropped by adversaries. The developmeontuilexity theory since the
50’s has made it possible to solve the problemnevalutionary way. The main
idea was to split the key, one public key for eptign and one private key for
decryption. For instance Pamycould then encrypt his/her messages to party
by usingB'’s public encryption key. AB’s decryption key is private, onB can
decrypt the messages. In theory, the knowledgehef éncryption key is
sufficient to determine the decryption key. Howevéne system can be
constructed in such a way, that the amount of wedkiired for cryptanalysis is
beyond the scope of any realistic adversary.

For a long time, the speed of the best symmetnyptosystems was
superior to all suggested public key cryptosystdiesice it was not sensible to
encrypt large amounts of data with public key systelnstead, one used public
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key systems to exchange a key for a fast symmetystem. With the
development of computers and algorithms, the pukdig cryptosystems have
been used more and more.

To explain the ideas of complexity theory we muastaduce some definitions.

Definition 1.1: [44]

Let P=O(f(n)) be the set of all polynomials comprises all pusiti

functions g(n) for which there exists constanggndc such thatg(n) < cf(n)

when n= ny , whereP is called also the set of problems that can beesbiu
polynomial time using a deterministalgorithm. That is, those problems for
which there is an integérsuch that all instances of sim@f the problem can be
solved in timd)(nk), such problems are called tractable; all otheblems are

called intractable.

Definition 1.2: [44]

Problems that have a polynomial time non-determmislgorithm

constitute the seNP. That is, for every problem itNP we can check in
polynomial time whether a given candidate is atsotuto the problemP [1 NP

but it is not known whethdf = NP .

Definition 1.3: [44]
A problem inNP is called NP-completeif finding a polynomial time

algorithm for that problem would mean that thera igsolynomial algorithm for
all problems inNP and thus we would have = NP. These are clearly the
hardest problems iNP.

The idea oNP-completeness was introduced by Cook in 1971 [40].
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1.2.1 The one way function
Definition 1.4: [44]
A function fis called one-way if f(x) can be efficiently compdtwhenx

Is given.

The one-way functions is the main building blockgublic key cryptosystems,
informally, but no efficient algorithm exists tanfi x such that f(x) 3y when y is
given. In other words, the problem of computing i&in P, but the problem of

inverting fis INnNP \ P.

Despite several decades of intense researchndtiknown whether one-
way functions exist or not. But there are some goaatlidates which are widely
used in practice. As there does not exist a prbohe wryness, it is possible that
somebody someday will find a fast algorithm to iitbem. One-way functions
cannot be used as cryptosystems: it is impossibldecrypt. An additional
property is needed. A trapdoor one-way functiom isne-way function which
can be inverted in polynomial time if some addiibmformation, the trapdoor,
Is known. These functions suit public key systemgqrtly: the trapdoor acts as
the private decryption key. For more detailed defins consult [33].

The first proposal [36] for a public key cryptosmst by Merkle and
Hellman in 1978 was based on a knapsack problens problem isNP-
complete so, at first glance, a cryptosystem basedt seemed sufficiently
difficult to break. Unfortunatel\NP-completeness only means that the hardest
instances of the problem are difficult. It turnad that on average the knapsack
problem was relatively easy, which made it unsi&afor cryptographic
applications.

The earliest public key system still in use is tR8A cryptosystem
developed by Ronald Rivest, Adi Shamir and LeonaAdleman [36] the
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underlying hard problem in RSA is the integer faiz@tion problem. It is
relatively easy to multiply two large integers; evine “school algorithm” is
efficient enough, as it works in time O°(nOn the other hand, it is very difficult
to determine the factorization of a large integepecially if it is a product of
two large prime numbers. Integers with 300 digite well beyond the best
factorization algorithms known today. Although tfaetoring problem is not
known to be arNP-complete problem, it is commonly considered hardugh
for cryptographic purposes.

Another popular candidate one-way function is madekponentiation.
Given a, e and n, the valugraod ncan be computed in time O*nFor the
inverse problem, also known as the discrete Idgariproblem, no polynomial
time algorithm is known. The famous El-Gamal cngystem is based on this
fact [42]. The same system can also be appliedareliiptic curve group [9].
From a theoretical point of view it would be petfddoreaking a cryptosystem
required solving amNP-complete problem. However, for practical reasaik,
instances of the problem that may occur in crydiam should be hard.
Therefore a minimal requirement is that the probienguestion is hard on
average. In [28] Miklos Ajtai showed that certaatitice problems are hard on
average, provided they are hard in the worst case consequence, it seems a
good idea to base a public key system on such gmubl

The NTRU encryption system [12] from 1998 is basadhe difficulty of
finding a short vector in a lattice, or alternatwéhe closest lattice vector to a
given vector. The main advantage of NTRU is itsespeavhich is comparable to
the fastest symmetric systems.

In addition to ordinary message encryption, pukég cryptography also
has other applications. From a practical point ¢fwy perhaps the most
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important one is the ability to sign digital docurtee Some properties required
from a digital signature are impossible to be fidél, or require a so-called
trusted third party using symmetric cryptosystems.

The idea is that each signer again creates a pagys: one private key
needed to sign documents, and one public key netededrify the validity of
signatures. There are signature protocols related most public key
cryptosystems, including RSA, El Gamal and NTRU sble [1].

The main advantage of NTRU over other public keyptwsystems is its
speed: it is comparable to the fastest symmetyiptosystems available. As an
example, consider table (1.1) taken from the difidNTRU Cryptosystems
website [46].

NTRU 251 RSA 1024 ECC 163
Public key (bits)] 2008 1024 164
secret key (bits)| 251 1024 163
plaintext 160 702 163
(block)
Cipher text| 2008 1024 163
(block)
Encryption 22727 1280 458
speed(block/seqd)
Decrypt speed 10869 110 702
(block/sec)

Table (1.1) level comparison between NTRU, RSA and ECC
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1.3 Mathematical Background for the NTRU Cryptosystem:

In this section we tried to collect some of basatenial on the integer set,

abstract algebra, polynomial ring and lattice.

1.3.1 Integer set:
The set of integers {...,-3,-2,-1, 0, 1, 2, 3 ...} smbted by the symbal.

Definition 1.5: [abstract]
Let a,b be integers , wita# 0. Then a divides b if there exists an integer

¢ such thab=ag if a divides b, then this is denoted by a/b .

Theorem1:-[5]

If a,bdZ withb>0, then there exist unique integers q and r such tha
a=gb+r, O<r<b.
Corollary 1:- (Division Algorithm) [5].

If a,b00Z,withb# 0,then there exist unique integers g and r such that
a=qr+b, 0<r<|b.

Moreover, g and r are unique the reminder of tivésitin is denoted by a

mod b, and the quotient is denoted by a div b.

Definitionl1.6: [5]

If a,b0Z,we say that an integer d is common divisor of a and
daanddb .
Definitionl1.7: [5]

Let a and b be an integers, not both of which are.z
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The greatest common divisor of a and b, denotedgtgia,b) is a positive

integer d such that

1- d is common divisor

2- Wheneverqaandqb, thendd.

It's to observed that if a=b=0 , then every integera common divisor of a and
b. The notion of greatest common divisor of a arakensense only when we
require that at least one of a and b different froeno, with the expectation
gcd(0,0) =0.

Definition1.8: [5]

An integer p>2 is said to be prime if it's only positive divisoare 1 and

p .other wise p is called composite.

Definitionl.9:

For N>1, let ¢(n) denote the number of integers in the interval[l,n]

which are relatively prime to n . The functigns called the Euler phi function .
The Euler phi function is a map: N — N given by
¢(n) ={mON[L<m< N andgcd(m,n) =1}
Definition 1.10: [9]
For an arbitrary integer a, let [a] denote theadetll integers congruent to

a modulo n:
[a] ={x 0 Z/x =a(moch)}
={x0O Z|x =a+ knforsomeintegek}.
[a] is called the congruence class ,modulo n ,detexd by a and refer to a as
a representative of this class .

By way of illustration, that we are dealing witbngruence modulo 3.then
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[0] ={x 0 Z|x = 3k forsomek 0Z]
={...,-9,-6,- 30369,...}.
Also
[1] ={x D Z|x =1+ 3kforsomek 0UZ}
={...,-8,-5—- 214,710,...}.
Similarly
To return to the general case of congruence maduket
Z,={[0],[1,[2],...,[n -1].
Several properties of the collectiopthat we shall require later appear in the
next theorem
Theorem 2:-[5]
Let n be a positive integer andh® defined above then
1- for each [al0Zn, [a}0]
2- if aldZ,,andbU[a]thenb] =[a]; that is , any element f the congruent
class [a] determine the class .
3-forany p],b]0Z where[a] Z[b],[d n[H =0
4-0{[a]|[a]0Z,} =Z

Conclusion remark (1) (Properties of congruence)

(1) a=b(mod n) if and only if a and b leave the same neler when divided
by n,

(2) a=a(mod n) ( reflexivity) .

(3)If a=b (mod n) then ba (mod (n), (Symmetric).

(4)If a=b(mod n) and bc(mod n), then ac(mod n) ,(transitivity) .

B)If a=a(mod n) and bbymod(n), then a+ba+b;(mod n), and

a*b=a*b,(mod n).
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The equivalence class of an integer is the sell oftagers congruent to A
modulo n . From properties (2), (3), and (4) abalvean be seen that for a fixed.
The relation of congruence modulo n. Partitions $e¢Z into equivalence
classes. Now, if azgr, where &r< n, then &r(mod n). Hence each integer a is
congruent modulo thus a and r are in the same alguge class, and so r may

simply be used to represent this equivalence class.

Definition 1.11: [5]
The integers modulo n ,denotg Zis the set of( equivalence classes of )

integers{0,1,2,...,n-1}.Addition, subtraction and tmplication in Z, are
performed modulo n.
Definition 1.12: [5]

Let ad Z,. The multiplicative inverse of a modulo n is aremer X1Z,

such that ax1(mod n) .if such an x exists, then it is uniqud anis said to be

invertible, or a unit, the inverse of a is dendbgd’.

Definition 1.13: [5]
Let a, bhlZ, .Division of a by b modulo n is the product of adals’

modulo n, and is only defined if b is invertible dudo n.

Concluson Remark (2):

(1)If aLIZ,. then a is invertible if and only if gcd(a,n)=1 .

(2)Let d=gcd(a,n) .The congruence equatiorl@mod n) has solution x if and
only if d divided b, in which case there are dlyad solution between 0 and n-
1, these solutions are all congruent modulo n/d .

(3) (Chinese remainder theorem, CRT) If the integgm,,....nc are pair wise
relatively prime , then the system of simultaneonisgruence [30]
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X = as(modn,)
X = a,(modn,)

X = a, (modny)

Has a unique solution modulo nsm,...n,.
1.3.2 Binary Operation:
Definition 1.14:

A Binary operation * on a set S is a mapping frorS3o S. that is,* is a

rule which assigns to each ordered pair of elemfeos S an element of S.

Definition 1.15: [5]

A group is a pair (G,*) consisting of a non empéy & and a binary operation

* defined on G, satisfying the requirements
(1) G is closed under the operation *.
(2) The group operation is associative. That i®&) = (a*b)*c for a,b,cG.

(3) G contains an identity element e for a grouprapon * , and

(4) Each element a of g has an inveastJG to*.
The group G is commutative if a*b=b*a for all a)®.
Note that multiplicative group notation has beerdudor the group
operation .if the group operation is addition sthige group is said to be additive

group , the identity element is denoted by 0, #xednverse of a is denoted —a .

-10 -
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Example (1.1):

(Z4, +4) is @ commutative group

+4 [0] [1] 2] [3]

[0] [0] [1] 2] [3]

[1] [1] 2] [3] [0]

[2] 2] [3] [0] [1]

[3] [3] [0] [1] 2]

Definition 1.16: [5]

A group G is finite if|G| is finite .The number of elements in a finite

group represents its order.
Definition 1.17: [5]
A group G is cyclic with generator a if G=(a) fome a_IG

Thus to say that a group is cyclic means that eacits member can be
expressed as an integral power of some fixed eleaiggroup. Any cyclic group
G= (a) is commutative since

anam :an+m — m+n _ _m n

a =a a

For arbitrary integer n and m.

Definition 1.18: [5]
A ring is an order triple( R,+,*) consisting ofn@n empty set R and two

binary operation + ,* defined on R such that

1- (R, +) is a commutative group

2- (R,*) is a semi group

3- The operation * is distributive over the opesati. That is
a*((b+c)=(a*b)+(a*c)and (b+c)*a=(bya(c*a)foralla, b, ciR.

-11 -
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Definition1.19: [5]

An element a of a commutative ring with identity dalled a unit or an

invertible element if there is an elementiR such that a * b =e.

* The set of units in aring R form a group undertiplitation called the group

of units of R.

Definition 1.20 [5]

Let RandR’be two rings .By a ring homomorphism froRintoR'is meant a

functionf :R - R’ such that
f(a+b)=f(a)+f(b), f(a*b)=f(a)*f(b)
For every pairs of elements alR . A homomorphism that is also is a one- to-

one mapping is called an isomorphism

Definitinl.21: [5]
Aring F is said to be field provided that thet 5-{0} is a commutative

group under the multiplication of F ( the identdfythis group will be written as
1).
Concluson Remark (3):

R is a field (under the useful operation of additemmd multiplication mod n) if

and only if n is prime number.

1.3.3 (Polynomial Rings):
Definition 1.22 [5]

If R is commutative ring, then a polynomial in timeleterminate x over

the ring R is an expression of the form

P(X) = ppX" ..ot PoX° + PyX + g

-12 -



Chapter One Basic Concept Of the NTRU Cryptosystem
. @Fagwemdar w1

Where eachp, 0 Rnd r=0. The elemenp; is called the coefficient ok' in
P(x). The largest integer m for which,, # . @s called the degree of P(x)
denoted deg (P(X))pnyis called the leading coefficient of P(x). if P(x)
pg (constant poly) angy # ,&hen P(x) has degree 0. If all coefficient ofxp (

are 0, then P(x) is called the zero polynomial aadlegree. For mathematical
convenience is defined to e The polynomial f(x) is said to be monic if its
leading coefficient is equal to 1 [8].

Definition 1.23: [13]

If R is commutative ring, the polynomial ring R(¢)the ring formed by

the set of all polynomials in the indeterminateavimg coefficients form R. the
two operations are the standard polynomial addiaod multiplication, with
coefficient arithmetic performed in the ring R.

Definition 1.24: [§]
Let f(x) LI P(x) be a polynomial of degree at least 1. The i to be

irreducible over P if it cannot be written as thredguct of two polynomials in

P(x), each of positive degree.

Theorem (2): (Division algorithm for polynomials) [5]

Let R be a commutative ring with identity and f(gfx) # Obe a polynomials in
R[x] ,with leading coefficient of g(x) an invertibdl element . The unique
polynomial g(x), r(x)LR[x] exist such that
f(x) =a(x)g(x) +r(x)
Where eitherr(x) =0ordec r(x) < decg(x).
Moreover, q(x) and r(x) are unique. The polynongé&k) is called the

guotient, while r(x) is called the reminder. Thenneder of the division is some

-13-
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terms denoted g(x) mod f(x), and the quotient medimes denoted g(x) mod

().

Definition 1.25:

If g(x), f(x) O P(x) then f(x) divides g(x), written h(>p g(x). If g(x) mod f(x) =

0.

Let h(x) be a fixed in polynomial in F(x). as withe integers one can define

congruencies of polynomial in F(x) based on divnshy h(x).
Definition 1.26:

If g(x), a(x) U P(x), then g(x) is said to be congruent to f(x)dul@ h(x) if h(x)
divides g(x) - f(x). This is denoted by g(x) =f(éghod h(x)).

Conclusion Remark (4): (properties of congruence)

For all g(x), f(x), g1(x), i(x), S(x) uP(x), the following are true

1. g(x)=f(x) (mod h(x)) if and only if g(x) and f(x)leavdéné¢ same reminder

upon division by h(x).

2. (Reflexivity) g(x) = g(x) (mod h(x)).
3. (Symmetry) if g(x)= f(x) (mod h(x)), then f(x)=g(x) (mod h(x)).

(Transitivity) if g(x) =f(x) (mod h(x)) and f(x)=S(x) (mod h(x)), then
9(x) =S(x) (mod h(x)).

S g(X)=gu(x) (mod g(x)) and f(xxf(x) (mod f(x)) then

9(x)+f(x)=qu(x)*f1(x) (mod h(x)) and g(x) f(x)=gx)f (x) (mod h(x)).

Let f(x) be a fixed polynomial in F(x). the equieake class of a
polynomial g(x)OP(x) is the set of polynomials in P(x) congrueng(r)
modulo h(x), from properties 2 and 3 and 4 abowvean be seen that the
relation of congruence modulo h(x) partitions P{®Rjo equivalence
classes. If g(X))P(x), then long division by h(x) yields unique
polynomials g(x), r(x)LIP(x). Such that g(x) =g(x) H(x)+r(x) where deg

-14 -
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r(x)< deg h(x) . Hence every polynomial g(x) is gament nodule h(x) to a
unique polynomial of degree less then deg h(x),pblgnomial r(x) will
be used as representative of the equivalence adaspolynomial

containing g(x).

Definition 1.27: (Finite Fields)

A finite field is a field F(x) which contains a fte number of elements. The

order of F(x) is the number of elements in F(x).

Conclusion Remark (5) (existence and uniqueness of finite fields)

1. If F(x) is a finite field then F (x) containg™ elements for some prime p

and integer m1.

2. For every prime power ordgs™ , there is a unique finite field of order

p™. This field is denoted by ", or some times by GR[").

In formally two fields are isomorphic if they aréricturally the same,
although the representation of their field elemen&y be different. Note that if
p is a prime then p is a field, and hence evely foé order p is isomorphic to p.

unless other write stated, the finite fiengWiII hence forth be identified with

P [6].

Definition1.28:

The non-zero element of, form a group under multiplication called the

multiplicative group of E, denoted E

Definition 1.29:

A generator of the cyclic groupfﬁs called primitive element or generator gf F

-15-
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1.3.3.1the Euclidean algorithm for polynomials
Zp[x] be the finite field of order p. the theory oémerator common divisors and
the Euclidean algorithm for integers carries owvea istraight forward manner to
the poly ring Z[x] (and more generally to the polynomial ring F(where F(x)
is any field).
Definition 1.30: [35]

Let g(x), h(x) LZp[X], where not both are 0. Then the greatest common

divisor of g(x) and h(x) , denoted gcd(g(x), h(39)the monic polynomial of
greatest degree in,X] which divides both g(x) and h(x). By definitiogcd (O,
0) =0.

Conclusion Remark (6)

Zp[x] is a unique factorization domain. That is evapn-zero polynomial f(x)J
Zp[X] has factorization.

f(x)=af(x)® f5(x)%2........... fi ()%
where thef(x) are distinct monic irreducible poly inps[X]. The g are positive

integers, and ad Zp[x]. furthermore, the factorization is unique up to

rearrangement of factors.

1.3.4 Modular Arithmetic:-
Modular arithmetic is simply division with remingavhere you keep the

reminder and throw every think else away. for exanthe expression 141
(modulo 13) means to divide 141 by 13 and keepéhender now 141 divided
by 13 gives a quotient of 10 and a reminder of 141(= 10*13+11), so 141
(module 13) is equal to 11. This is written as guoadity called congruence
141=11 (module 13)

-16 -
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In general, the expression a (module m) meansvidaela by m and keep
the remind, similarly a congruence a=b (modulo m).
Simply means that a and b leave the same reminklen whey are divided by m.
this is the same as saying that the differencaesaalmultiple of m. the integer m
Is called the modulus of the congruence.
Numbers and congruence with the same modulus mayltbed subtracted, and
multiplied just as is done with ordinary equatitor,example
g (modulo 17)+5(modulo 17)=14(modulo 17), and

g (modulo 17)*5(modulo 17)=45(modulo 17)

=11(dudo 17)
if a and m have no common factors then is alsoiplest find an inverse for a
(module m) , that is to find an integer b so thét=al(modulo m).
For example, the inverse of 7(modulo 17) is 5, sift5=35=1 (modulo 17).
There is a very fast algorithm called Euclidearoatgm, which can be used to
check if a and m have common factors and also topate the inverse of a
(modulo m) , if they do not have common factors.

1.3.5 Truncated polynomialsring:
The principal objects used by the NTRU encrypt mukéy cryptosystem

are polynomials of degree N-1 having integer cogffits:

P(X) =pg + piX + p2X2+,...,+pN_2XN_2 + pN_lxN'1

The coefficientsag ,a,...,ay-1are integers some of the coefficients are allowed

to be 0.
The set of all such polynomials is denoted by R.gblynomials in R are

added together in the usual way be simply addieq toefficients:

a(x) +b(x) = (@g +bg) + @ + by)x+,...+ @y-1 + by-1)x"
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They are also multiplied in almost the useful manmath one change. After
doing the multiplication the powex'\'should be replaced by 1, the power

x N*should be replaced by x; the powel*?should be replaced by?and so

on. [32].

Example (1.2):

Suppose N=3, and taken two polynomial

a(x) =1+ x +3x2 and b(x) =2-3x + x2 thena +b =3-2x +4x%(mod 3)
and

a(x)*b(x):2—x+4x2 —8x3 +3x* =2 - x +4x2 -8+ 3x =6+ 2X + 4x°>

(mod 3)

The following is the general formula for multiplgrpolynomials in R:

a.(X) * b(X) =Cq + C1X + C2X2+,...,+CN_2XN_2 + CN_lxN_l

Where thec™ coefficientsc, is given by the formula
Ck =aoby +abyg+,...tabg + 8. b1 + 8k obN-2F,. FaN 1D 41
this formula looks a little complicated but it riyalsn’t the coefficientc,is

simply the dot product of the coefficient of a @hd coefficient of b , except that
first coefficient of b are listed in revrse ordedaare rotated around k positions.
Using these addition and multiplication rules altieé familiar properties are
true. For example the distributive law a*(b+c) =a#&ic is true in modern
terminology, the above addition and multiplicatinrles make R into a ring.

which its call the ring of truncated polynomials. terms of modern abstract

algebra, the ring R is isomorphic to the quotiémg (Z(X)/X" —1).
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Example(1.3):

Let N=8 anda(x) =2+ x2 -3x*+x" and
b(x)=1+3x +2x° - x’ then a+b=3+3x +x2 -3x*2x>(mod 8)

a(x) *b(x) =5-x +x2 +6x3 - x4 +4x° -x° —x7(mod 8)

The NTRU encrypt public key cryptosystem uses fihg of truncated
polynomials R combined with the modular arithmetlogese are combined by
reducing the coefficient of a polynomials a modaiinteger q.

Thus the expression a (modulo g) means to redwcedéfficient of a modulo q.
That is divided each coefficient by g and takerdmainder similarly, the relation
a=b (modulo q) means that every coefficients ofdifierence a-b is multiple of
g.

Remark (1):

To make storage and computation easier it is caemerto just list the
coefficient of polynomial without explicitly writig the powers of x. for example
the polynomialP(x) = pg + PiX+,...PN_2X " 2 + Py L
Is conventionally written as the list of N numbers
P=(Po.PL:--:PN-2:PN-1)

Be sure to include zero in the list of some of ploavers of x are missing.

for example when N=8 the polynomi&(x) =2+ x? - 3x* + x"is stored as the

list (2,0,1,0,-3,0,0,1) but if N=10 , then a stoetdthe list (2,0,1,0,-3,0,0,1,0,0).

1.3.6 Invariability in truncated polynomialsrings:

Let R, = (Z2/92)[x]/(xN -1) be the ring of truncated polynomials

modulo g, we compute the probability that a randoohosen
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polynomialf (X) URis invertible inR,, and also the probability if (X)is
required to satisfi/(1) =1.

- Statements: - [22]

Fix an integer M2, for any positive integer g, let, denote the ring of
truncated polynomial modulo q .

Rq=(Z/a2)| [XMN =11t (1.1)
In this note we shall describe the invertible elatae

Rq ={f ORg=fy =1 for SOMegORg} «.oovvovivciieiiiciirce e, (1.2)

More that we are interested in the probability #watlement oR, is invertible

so in the ratio#R ¢ #R,
The first observation is that iff = g;q,with gcd (@;9,) =1, then the
Chinese reminder theorem tells us that

Rq =R XRpandRy =R XRgp cvvvevveiniesineenencenieciieiees e (1.3)

So that suffices to look at the case that q isvago@f a principle the following

theorem handless this case.

Theorem 3:- [22]

Let p be a prime, let q pk be a power of p, and let2? be an integer
with gcd (P, N) =1.
Define n>1 to be the smallest positive integer

Suchthatt™ =1  (MOd N) ....o.oiiiiiiiii i . (114)

And for each integer d/n. let

Vg :EZM(Q)gcd(N,Pe—l) .................................................. (1.5)
dirg e
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g 1 if d=1
WhereZM(g) =| 0 if 1<d<n
e/d N-1 if d=n

In particular, if N is prime, then rd=0. For alld<n so in this case

#Ry 1 1 (N-

ﬁz(l——)(l——)('\' D e, (1.7)
g p” pn

Remark (2):

There is a certain set of non-invertible elemertgtvis easy to describe.
To do this one can observe that the evaluation map

Rg - Z/aZ, f(X) > @) oo (1.8)

Is a well defined homomorphism of rings, so it indsi a group homomorphism
R, - (Z/q2)" itis well-known that [25]

(z/gz) 0{adz/qZ=gcd@a) =1} .oov voveereeeeeee e, (1.9)

So one can see thatfifl) has a factor in common with g then in cannot be

invertible. Thus in looking for invertible elemeat R, we should make our

random chosen intelligently by requiring thad(f (1),g) =1. In particular one
must avoid polynomials withi (1) = O.
For example, one might restrict attention to thésst of R and R*

consisting of polynomialg (x) satisfyindf (1) =1. These subset b{R (1) and
Rq* (@D can be denote respectively as f ranges oyerthe values of f(1) are

equidistributed inZ/gZ so that we see th#R , (1) =q_1#Rq :
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Similarly as f ranges ov&q*, the values off (1) are equi distributed in
(Z/qZ)*so#RQ* (1):¢(q)_1#Rq*, where ¢ is the Euler phi function. In

particular, ifq = PXisa power of a prime, thep(q) = P - P*Yand one to find
that the probability of intelligently chosen f bgininvertible is
#Rq @ _
#Rq(l)

#R,
(l_l)—l q
p° #R,

Since P tends to be small in application, this sigmificant saving for

example, if we also assume that N is prime, then

#Rq @) _ (1_i)(N—l)/n ~1_N-1
#R () n np"
Remark (3):

It is clear from theorem, that in order to maximitee probability of

getting a unit ilR,, we want to chose N and g so that the order n af P

q
(Z/NZ)* is as large as possible. the value of n is easotapute for specific
values of N and P, but for cryptographic purposs wanted to be large for a
single N and two different values of P(frequently2Rand P=3). Notice that the
possible orders of elements (@ / NZ)* are the divisors af(N), so If take N to

be prime, the possible orders are divisors of Nhis suggests N to be prime
such that N-1 has very few divisors.

For example, suppose that N is a prime of the fdiHr2M+1 with M is
also prime (the prime M is called a sophic Germaim@). Then the

corresponding n must be either M or 2M. .In pragtiE N >100 is taken to be
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then every p< 10 has corresponding n= M or 2M , laenice the probability that

randomly choseri satisfyingf (1) =1 will be invertible is at least [20]

LN (1.12)

1
Mp" pM

Since p=2 and M =50 the probability of choosing a non-invertible

polynomial is virtually 0 [22].

Example (1.5)

Table 1.2 [43] gives some representative valuesl aindp, the column

labelednp gives the smallest integer n such that

p" =1(modN).

N p np Prob, p np Prob,
11 2 10 00 3 5 | 10007
13 2 12 1¢°¢ 3 6 10°*
17 2 8 1% 3 16 107¢
19 2 18 10> 3 18 10°°
23 2 11 103 3 11 10*
47 2 23 107% 3 23 10
59 2 58 1¢H% 3 29 10+
71 2 35 10"¢ 3 35 o
107 2 10€ 103 3 53 10%°*
127 2 7 10°° 3 12¢ | 10°%
167 2 83 10%* 3 83 10%°

22¢ 2 57 10%%* 3 57 10°7¢
34¢ 2 34¢ 1010 3 174 | 10%°
502 2 251 107¢ 3 251 | 10™*
101¢ 2 101¢ 1097 3 50¢ | 10%%
109: 2 364 10H0% 3 7 10°%
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Table 1.2 Probability f (X) isnot Invertiblein Rpk

The column labeled “Prob p” is the probability tleatandom chosen in
Ry satisfyingf (1) =1 will fail to be invertible inR, , whereq = pY is any
power ofp.

(Theorem 1 and Remark (2) show that these proliekilare independent
of the exponerk). The values N=47,59,107,167,503,1019 corresponth¢
sophic Germain prim¢N —1)/2 = 2329.35.83,25150¢ and thus have especially

small probability of failure for all (small) prime. Converselyp =2 has order
7modulo N=27 , angb =3 has order 7 modulo N=1093 , so for these valugs of

and , the ringR,, has a comparatively large number of non-units.

1.4 L attices:

This section started by defining the inner prodwdét two vector

V=(V,Vo,....V;y) @and u= (u,Us,....uy) ,

(v,u):iviui :

i=1
The inner product is commutative and distributive.

The Euclidian norm or the length of a vector (v4,v,,...,v, IS dlefined

as
V=Jvv) = > v
i=1
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Let by,b,,...,.b, be alinearly independent vectorsRT" and letB be then xm
matrix with these vectors as rows .The lattice gateel by vectordy, ,b,,...,b,

or the basis matriB is the set

L(by,by,....b,) = L(B) :{Zn:a,-bi| a 0Z }

i=1
Of all linear combinations over integers of theibagctors .The dimension of
this lattice isdim(L(B)) = n < m.if m=n the lattice is called full dimension,
Informally, a lattice is a set of intersection poiof a regular, infinite n-
dimension grid.

The vector space generated by vectgr$,,...,b, or B is

Span(by,b,,...,b,) =Spar(B)={Zn:aibi| a; OR } ,

i=1
Where it will be have all linear combination of tbasis vectors.
Note that if B'is the result of applying of the following operatito Bthen
L(B)=L(B"):
1- Swap the order of two rows iR
2- Multiply a row of Bby -1.
3- Add an integer multiple of a row to another rowsof

The first two cases are trivial, alsk(B') O L(B) in the third case,
Ietbj’ =b;+ch.jzk and bi' =b,for alli#zj, Now for all
302 ab =Y. ab +@-a0b, andthusL(B) OL(B) .

Definition 1.31: [44]

Let by,b,,...b, OR™ be linearly independent vectors
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The additive subgroupL(by,by,...bn) =Y biZ={> tibj| ty,t5,....ty, 0Z} of
R™ lattice with basis{b, ,b,,...,.b, }, the Rank or the dimension of the lattice is
rank(L):=n .

For examplez™ is a lattice of rank m, the standard unit vectre,,...,e,

forming a basis.
The determinant of a lattice(B) with basisb;,b,,...,b, is defined as

det(_(B)) = /det(6; ,b;)s<; zn) =+/det®BT).

If n=m we have

det(L(B)) =+/det®B") =|det(®),

Because basis vectors are linearly independent,bsges of the same

lattice have the same number of vectors. In theoviohg we show that the

determinant of a lattice does not depend on thecseh of the basis.

Theorem 4:-[44]
Let B and B' be nxm real matrices andL(B)=L(B’). then

detiL(B) =det(L(B")).

Proof: the rows of both matrices are two basedHersame lattice so we have
B=UB' and B'=VB for somaJ,V OZ™™. From these it will be obtained
| detU) |=| det(V) |=1, then we have

det(L(B)) =+/det@B™)

= /detvBBTVT)

= /det(vB(VB)"
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= /det(L(B))

The fundamental parallelepiped associated Vdths the set of points We see

thatv + P(B) ,vL(B), form a partition of the spacgpat(B).In other words,
for any ulJSpar(B) there exist a unique lattice point(JL(B) such
thatudv+P(B). If L =L(B) also writeP(L) = P(B).

| o : T el > X-Xis

Figure 1.1: A lattice of dimension 2 with two bases and two fundamental parallelepipeds.

A fundamental parallelepiped formsa partitioning of the space.

There are two famous computational problems otcéatthe Shortest
Vector Problem (SVP) and the Closest Vector Probhl€WMP) , In SVP one is

given a basig{b,b,,... by} , In CVP one is given a basigb;,b,,...,.b, and

target vectorv and must find the lattice vector in(b,,b,,...,b, c)osest tov.

Definition 1.32 :( Shortest Vector Problem) [28]

The problem of the shortest lattice vector in thenorm is
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1, -SVP=
{ kmnby,...by| kmnONBG b,,... b, 0Z™ X O L@ by, by {0, <k }

Where /7, — norm means general Euclidean norm.

The complexity of this SVP problem is unresolvetth8ugh some efforts
to show that/, — SVP is NP-hard problem have failed; this problem iswn to

be NP-hard with respect to randomized reductiorAptai [28]. However the

CVP problem is known to be NP-complete for any norm

Definition 1.33: (Closest Vector Problem)
The problem of the closest lattice vector in thg-norm is defined as

£2 -CVP:=

Given a lattice basidy ,b,,...,b,} 0Z™, the following tasks are thought to be
hard lattice problem:
» Find a short non- trivial lattice vector.
* Find a basis comprised of short lattice vector.

* Find for a givenzOSpar(b;,b,,..b,,) the closest lattice vector

In contrast, given a system of generatorl,b,,....b,0ZMfor a

latticeL ,n = rank(L), it is possible to construct a basis fon polynomial time.
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1.5 Digital Signature:

The notion of a digital signature may prove to bee cof the most
fundamental and useful inventions of modern crymphy. A signature scheme
provides a way for each user to sign messagesasahé signatures can later be
verified by anyone else. More specifically, eaclrusan create a matched pair of
private and public keys so that only he can creaggnature for a message
(using his private key), but anyone can verify dignature for the message
(using the signer's public key). The verifier cabnwince himself that the
message contents have not been altered since gsmageewas signed. Also, the
signer can not later repudiate having signed thssage, since no one but the
signer possesses his private key.

A digital signature scheme within the public kegrfrework, is defined as
a triple algorithm(G, 9, V) such that

* Key generation algorithnG is a probabilistic, polynomial-time algorithm
which on input a security parametér firoduces pairgP,S) whereP is called a
public key andS a secret key. (It will be used the notatic(ﬁ,S)DG(lk) to
indicate that the paifF,S) is produced by the algorithm G).

* Signing algorithm d is a probabilistic polynomial time algorithm whid

given a security parameter® la secret keyS in range G(1¥, and a

messagm D{O,l}kand produces as output striagvhich we call the signature
of m. (We use notatiors[] 5(1k .S m) if the signing algorithm is probabilistic,

otherwises = 5(1k),3m). As shorthand when the context is clear, the secre
key may be omitted and we will write[] (S, m)to mean meaning that s is the

signature of message m.).
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* Verification algorithmV is a probabilistic polynomial time algorithm which
given a public keyP, a digital signatures, and a messagm, re-turns 1
(i.e....."true”) or O (i.e.... “False”) to indicate wtleer the signature is valid. It
will be required thatV (P,s,m) asV(s,m) , to indicate verifying signaturgof
messagen when the context is clear

Note that if V is probabilistic, we can the requment on V to accept valid

signatures and reject invalid signatures with tpgbbability for all messages m,

all sufficiently large security parameter k, antiirs of keys (P,S) U G(lk).

The probability is taken over the coins of V andN®te also that the signed
message may be plaintext or encrypted, becausedhsage space of the digital

signature system can be any subsdbgf
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3.1 Introduction:

In this chapter improvements are introduced to pobahe NTRU
cryptosystem, Matrix NTRU leads to respectable dpegprovements at large
public key by comparing the results with the cleasNTRU. NTRU sign is
defined in the same EESS standard as NTRUEnNcrypin4he following we
outline the characteristics of NTRUSign.

3.2 Matrix NTRU Cryptosystem:

In this section, a new variant of the NTRU publeylcryptosystem is

proposed, the Matrix cryptosystem. Matrix NTRU werinder the same
general principles as the NTRU cryptosystem, extkat it operates in a
different ring with a different linear transformati for encryption and
decryption. In particular, it operates in the rin§ k by k matrices of
polynomials in O=Z[X]/(X"-1) whereas NTRU operates in the
ringZ[ X]/(X" -1).

The improved efficiency of the linear transformatim Matrix NTRU leads
to respectable speed improvements by a factadd(@f) over NTRU at the

cost of a somewhat larger public key [29].

3.2.1 Overview:
The Matrix NTRU cryptosystem operates in the ringdflk by k

matrices of elements in the ring=z[x]/(x" — .1¥he ring O consists of

polynomial with degree n-1 having integer coeffitge Multiplication and

addition of polynomial in R is done in the usualmmar, but exponents of X
are reduced modulo n. Matrix multiplication in Mdenoted by the use of the
symbol *. Besides n and k, Matrix NTRU also uses plarameters p, q 2 N.

The numbers p and g may or may not be prime, ay thust be relatively
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prime. In general, p is much smaller than q; irstthesis, for ease of
explanation, we stick to p = 2 or p = 3 and q ia tange of 2o 2.

When it is said perform a matrix multiplication mdd p (or q), it means that
we reduce the coefficients of the polynomials i@ thatrices modulo p (or q).
The width of an element MOMcan be defined to be
M|, =(Maxpioy minm cOffinm) - (min coffinm).................. (3.1)

polymin M
[11].The width of M is the maximum coefficient imyof its K polynomials
minus the minimum coefficient in any of its polyn@ats. A matrix M [OM is

short iﬂM\msP. When short matrices are multiplied together, vet g

matrix whose width may be greater than p but Isatnost certainly smaller

than q; we call this matrix pretty short. The defoms for width and

shortness apply similarly to polynomials in R. Fofll Mm:(max

coffinr) —(min coffinr). The polynomial r is said to be shorqrh; <P

It the size of an elememt OM will be defined to be

M[=1S poiysminm 2 (COFANM)Z ..o (3.2)

When defining some of the sets of short matricésvinethe following

notation used

o] -2=1].[e=1]

L(d) = hasonaveragéecoefficiets equatoi,withreset......... (CX))
coefficienequatoO

MOM I #0,eachpolynomidlin M

For example, if p = 3 and n = 5, then L(2) consistsall matrices of
polynomials, where on average each polynomial heseHicients equal to 1,

2 coefficients equal to —1, and 1 coefficient eqoaero. Or, if we have p = 2
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and n = 5, then L(2) consists of all matrices diypomials where on average
each polynomial has 2 coefficients equal to 1, &edefficients equal to zero.
The parameters for Matrix NTRU consist of the foategers (n, k, p, q),

described above and the five sets of matriced@ La, Ly, Lm) LIM.

These sets have the following meanings and composit

1. La consists of all matrice€[1M , such that C,, . . . ,G-;are linearly

independent modulo g; and for shogt c. . , ¢000 ,fcici is short |, Iy
1=0

have elements A, B and are used to consfrgtg, ¢ .

2. Ly and Ly consist of all matrice® OM constructed such that, for
k-1 )

C U L and short g...,c, OO, D=ZciC'. Additionally, matrices in L
i=0

must satisfy the requirement that they have ingnsedulo p and modulo g.
L; have the elemerit,g and it is used to compose the private keyhave
¢,¢ and it is used to generalize random matrices egpbr each encryption.
3. The set of messages,Lconsists of all matrices of polynomials with
coefficients modulo p. therefore it will be expregsas

polynomiain M havecoefficens

L(m)=<MOM betwee+_ p_—l—‘ anc[p—_ﬂ .......................... (3.4)
2 2

This means that each message contaif$ogp bits of information.

4. Ly has elements W and used to construct the public key

3.2.2 Key Generation:
To create a public/private key pair, the senderoshke two k by k
matrices A, BLI La. Next, the sender randomly selects short polynizmia

0q,01,...,0—1 OR and Bg,Bs,.--.Bk -1 I R then the sender constructs the

matricesf,g L by taking:
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k-1 k-1
f=> A" andg=> BB' .
i=0 i=0

The matrices f and g must have inverses modulodpnaomdulo g E, F,; and
G, Gy where
F*f =1(modq) and F,* f =1(mod q)

G,*g=1modqg) and G,*g=1(mod q)

The sender now has his private key, (f, g), alttomgoractice he will want to
store the inverses,fand G as well. Now the sender selects a random matrix
W LI Ly, and constructs the matrix.LhM by taking

h=Fy* W*Gg(moda).......oovvviiiiii (3.5)

The sender’s public key consists of three matrfbe#\, B).

3.2.3 Encryption:
To encrypt a message to send to the sender, teéveeaandomly

generates the short polynomi@lsq,,....¢x—1] . RThe receiver then

constructs the matriceg, ¢ 1L, by taking

9= QA and$=3 0 B.

=~
[iN

1l
o

The receiver then takes his messagelni,, and computes the
encrypted message
ESP(E*N* D) +M(MOCH). ettt e e e, (3.6)

The receiver sends to the receiver.

3.2.4 Decryption:
To decrypt, the sender computes

b= B =il o [ (3 1 To ol o) ISP (3.7)
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The sender translates the coefficients of the motyals in the matrix a

to the range —qg/2 to g/2 using the centering teqps as in the original
NTRU paper [12]. Then, treating these coefficieagsntegers, the receiver
recovers the message by computing

d=FE*a* G (MOdP) .....ovveiii (3.8)

3.2.5 Decryption Analysis:
In decryption, from eq (3.4), the sender has
a=f*(p(¢*h*¢)+m)*g)(mocq)
S *E*WEG, *¢*g)+ *nmrgmog)
Although matrix multiplication is not generally camtative,f and ¢

here do indeed commute:

f *cps(fg':aiAi)*(z@Ai) (mod q)

k-1

= Y aAQA (mod q)
i=0 i=j+I(modq)
k-1 ,

= Z; izj%%%A‘*'m (mod q)
k-1 )

= > .Ej+|<zm:o§ﬁ)Ala A’ (mod q)

k-1 ) k-1 )
= (;@.A') * (;aiA') =¢*f (mod q)
Similarly g*¢ =¢*g(mocq) , so the sender now has that
a=p(¢*w*¢)+f*m*g (mod q)
For appropriate choice}a{bo <@, then treating polynomials in this matrix, as

having coefficients i@. The sender can take those coefficients modulo p,

leavingf * m* g(mocp). The original message is then recovered by left —

multiplying by F, and right — multiplying by
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Remark (1):-

A matrix f in the ring M will be invertible modulo p and qonly if the
corresponding matrix departmedét: which is the ringr is also invertible
modulo p and gin practice, this impossible det (1) = ,0(the sum of the

coefficient values of the determinant polynomiatggal to 0), so we must re-
select one or more of the polynomial elements$ iih this condition was not
fulfilled.

3.2.6 Parameter Selection:
- Selection of pairs(f,g) and (¢, ¢) .

We defined, and d, suchthat, =L(d, )and L =L(d, ).
Since the matrices A and B are public, the secuotyf,g,¢ and ¢

necessarily depends on the difficulty of discovgrithe short polynomials

a,,B,,¢ andp,. For this reason, and for maximizing the numbepadsible

choices for these polynomials, therefore, one contyngelects.

d, =2 andd, =—.
p p

- Selection of A and B

A main concern in generating the matricesand ¢ (and likewise,

gand @) is that they must not only commute but they shaldd be short.

Shorter matrices ensure thpf¢* w* ¢) +f *m*g|_ will be smaller, which
will allow us to reduce q and valid cipher text Wwie decipherable. To
achieve this, we select A and B to be permutatiatrices. A permutation

matrix is a binary matrix (i.e. consisting of orthe scalars 0 and 1) such that

there is exactly one 1 in each row and column waitl®’s elsewhere. Since a
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and b have the additional requirement that the b AKT and
BC,....BX™ are both linear, we must have that:

1.1

k-1

ZA' ZB' = ......

This implies that each row and columnfofvill contain some permutation of

Op,.--,0k_1, Meaning that each; will appear k- times irf .

: : n
Using the column choice af, =d, =—, we have that
P

-1 k
f|=kZai|= )” ~g=|d=/d|

-Selection of W
Likewise, f and g should also be chosen to be short in order to keep

\p(¢*w*¢)+f *m*g\00 small. For security season, it important that

remains secret from the attacker. Therefore, irelotd maximize the space

ofw, make

--A[3)

The size of w is given by

= (p-Dnk®
p

Remark (2):- Note that when w is chosen in this manner, weragew| = |m.

this means that* w* g|=ff *m*g|
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Example (3.1)

N=4, k=4, p=2, q=164d; =1, d,=1
0100
0010

0001
1000

Let A,BOL,,

0100 0010
|0010 |0001

0001| ' 1000
1000 0100

Chooses short polynomials
a,=0 ,a0,=0,0,=0,0,=1 and By=0,3,=0 ,B,=0 ,B,=1

3 .
Constructingf wheref =) a A’
i=0

f =agA® + oAl +a,A% + aaA

0100
0010
0001
1 000

And constructing g wherg = 23: B.B'

9=B,B°+p,B" +p,B* +B,B’

0010
0oo01
g:
1000
0100
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0100 0100
0 0 0 0

Fo = 01 and = 01
0001 0001
1000 1000
0010 0010
0000 0001

G and =

l1 001 @_1000
0100 0100

Select a random matriwv JL,

0001
1000
0100
0010

Let W=

Construct the matrix h, wheire=f_*w*g_(mod q)

0010
0 1
= 8 8 0 (Public key consist of three matrices (h, A, B)

0100
For Encryption, we choose short polynomial
¢ =0 ¢=1,¢=1,¢=0 And ¢,=1,¢,=1,9,=0,¢,=0

Whered =3 6. A' = A° + A" +,A> +.A°
i=0

0110
0011
1001
1100

(I):

AN =) 0,8 = §,B°+§,B +¢,B° +0,B°
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2111
1211
1021
1112

(I):

The messagenlL

0011
1 1
Let m= 11
0110
1010

e(m) = p(¢.h.¢) + m(mocq)

6457
7755
4774
5476

e(m) =

To decrypt

a =f.e(m).g(mocq)
7744
4765
4576
7557

d(m) =f_ *a*g_ (modq)

6457
7755
d(m) = mod 2
(m) 4774( )

5476

0011
1111
0110
1010

d(m) =
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d (m) =m.

3.2.7 Comparison between basic NTRU and Matrix NTRU

Here the theoretical operating characteristics atrd NTRU will be
compared with those of NTRU, as shown in Table e properties are
listed in terms of the parameters (N, p, q) for NOT&d the parameters (n, k,
p, q) for Matrix NTRU. These should be comparedsbtting N = nk*since
this equates to plain text message blocks of thee saze.

As indicated in the table, the total time for emtign and decryption is
gtimes faster for Matrix NTRU than for basic NTRU.alix NTRU has a

larger public key length as a result of the neestdoe the matrices A and B,
but a smaller private key length due to the paldicnature of the private keys
f andg.

For example, compare the NTRU “high” security lesE(N, p, q) =

(107, 3, 128) with the Matrix NTRU parameter chsicé (n, k, p, q) = (10, 5,
2, 256).

Characteristic NTRU Matrix NTRU
Plain Text Block N logp bits nK log2 p bits
Encrypted Text Block N log, p bits nk log2 p bits
Encryption Speed O operations 0O(n2k3) operations
Decryption Speed O(N?) operations 0O(n2k3) operations
Message Expansion lpg-to-1 log, g-to-1
Private Key Length 2N log p bits 2nk log2 p bit$
Public Key Length N logq bits 3nkK’ log2 p bits

Table 4.1 Comparison between Matrix NTRU and NTRU public key cryptography
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Conclusion Remark (1):

1-Since Matrix NTRU performs two-sided multiplicais, the constant factor
will be about twice that of standard NTRU.

2- A key length of 2nk logp+2K log, k bits can be achieved by storing f and
g not as matrices but as the 2k polynomials foumthé matrices along with
their positions in the matrices.

3-A key length of nk2 logg + 2k log k bits can be achieved by storing A and
B not as matrices but as the positions of eachektin the two matrices.

4- For message security, dg is replaced by d foRMTvhereas ds replaced
by d, for Matrix NTRU. For ease of comparison, we fix 8. The definition
of dy and d used in NTRU is elaborated in [11].

3.3 NTRU Sign Signature Scheme:
The NTRU cryptosystem was first presented by HeiifstPipher and

Silverman at CRYPTO'96 It is a ring-based crypttsysoperating in the
polynomial ring Z[X] I(x" - 1), whereN is the security parameter. NTRU has
received considerable attention because of itsyption and decryption
speed and the ease of creating public-key/seckepkas, which makes it
practical to change keys frequently. Its secury based on the hard
mathematical problem of finding short and/or clogsedtors in a certain class
of lattices, called NTRU lattices. Since the advehtNTRU encryption
scheme, several related signature schemes sucB%$18] and R-NSS [16]
have been proposed. A fast authentication and adligignature schemes
called NSS, based on the same underlying hard gmobhd using keys of the
same form, was presented at EuroCrypt 2001 [3]. ¢d@n this scheme was
broken by Mironov and Gentry et al8, 4]. In their Euro crypt presentation,
the authors of NSS sketched a revised version & Kalled R-NSS) and
published it in the preliminary cryptographic stardi document EESS [3].
Although R-NSS was significantly stronger than ginevious version (NSS),
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Gentry and Szydlo proved that key recovery attaxkdbe mounted [3]. The
source of these weaknesses of NSS and R-NSS wasanplete linking of
the NSS method with the approximate closest veatoblem in the NTRU
lattice. In other words, the weaknesses of NSSRxNES aros¢l?] from the
fact that the signer did not possess a completrs lbhshort vectors for the
NTRU lattice I .. Later on, Hofstein et aproposed a new NTRU based
signature scheme called NTRU Sign. Unlike previsigaature schemes, the
link in NTRU Sign between the signature and theanlythg approximate
closest vector problem is clear and direct: theneigmust solve an
approximate CVP problem in the lattice i.prpduce a lattice point that is

sufficiently close to a message digest point.

3.3.1 Overview of NTRU Sign:
In this section, we will describe the NTRU Sign ithy signature
scheme.
In NTRU encryption scheme, basic operations inrthg
R=2Z[x] / (X" - 1), where Ns the security parameter. A polynomial

v(X)OR can be represented by a vector v of its coeffisiastfollows:
N-1
V= ax' =(Vg,Vq, Vo)
i=0
For the sake of simplicity, the same notation fa polynomialv(x) and the
vector v it will be used. The product of two polynials v and u inR is

simply calculated by v*u=c, where th& koefficients ¢ is

k N-1
C, =Z;4V‘ u. + ZviuN+k—i = Zviuj'
i=

i=k+1l i+ E k(modN)

Hereafter, we sometimes write a polynomi@) as simplya. In some steps,
NTRU Sign uses the quotient ring R Z,[x] / (x"-1), where the coefficients
are reduced by modubp whereq is typically a power of 2, for example 128.

The multiplicative group of units in Ris denoted bR’,. The inverse
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polynomial ofv [ R*q is denoted bg™. If a polynomialv has all coefficients

chosen from the set {0, 1}, we call this binary padynial. The security of

NTRU Sign scheme is based on the approximatelyestogector problem in a
certain lattice, called NTRU lattice. In this schenthis is based on the
approximately closest vector problem in a certattide, called NTRU lattice.

In this scheme, the signer can sign a messagerhgrarating the ability to

solve the approximately closest vector problemaraily well for the point

generated from a hashed message in a given spleebdsic idea is as
follows: The signer's private key is a short bdésisan NTRU lattice and his
public key is a much longer basis for the samackttThe signature on a
digital document is a vector in the lattice withotproperties:

*-The signature is attached to the digital docuniexng signed.

*-The signature demonstrates an ability to solvgeaeral closest vector
problem in the lattice.

The way in which NTRU Sign achieves these two pripe may be briefly

summarized as follows:

3.3.2Key Generation:
The private key includes a shorb-8imensional vector denoted by

(f; g). The public key is the largedimensional vectoh that specifies the
NTRU LNTqthat is, his generated frohandg by

The private key also includes a complementrgrt vector(F,G) that is

chosen so thaff ,g) can generate tHall NTRU lattice L.,
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3.3.3Signing:
The digital document to be signed is hashed tatera random vector
(m,,m,)modulo g. The signer uses the secret short gengragictors to find

a lattice vector (s, t) that is close(to,,m, . )

Verification: The verifier uses the public keytd verify that (s; t) is indeed

|l\lT

the lattice L', and he verifies that (s, t) is appropriately elos(m,;,m, ).

NTRU Sign algorithm uses the centered norm conoegtéad of Euclidean

norm in the verification step to measure the sizancelemene R.

Definition 3.1:
Let v(x) be a polynomial in ring R = Z[x] / {¥1). Then the centered

norm of v(x) is defined by
, N2 , N, N
VO™ =D (vi =mg)“ =D v, _N(Zai)
i=0 i=0 i=0

N-1
Wherem, = %ZQ is the average of the coefficients of v(x)

=
The centered norm of an n-tupfe;, V,...,v,) with vi,vo....,vp,0 R can be
defined by the formula

(R TA e Y e VA VA
Note that the signature on a documBnis a vector (s, t) in NTRU Lattice
LNT., which is very close tan. To solve an approximately closestctor
problem in the lattice, a signer uses a secretri\diasis" defined as shown
below:
Definition 3.2: A basis {(f; g), (F; G)}is called a short basisli"", if
el = O/N).andF, 6] = o(N)
Where N is half dimension of NTRU Lattic€'l, .
Remark (3):-

2 2
v+ ul? =M%+l
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Let v=(vq,Vs,...,vV,) @andu = (uq,Us,,...,u, ). , it will be had
n

2
1 n

HV+UH2 =Z(Vi +Ui _EZ(VJ +Uj)]
j=0

=0

O I R O ()

:HVHZC + HUH2c + for somes.

On the other hand

If the vectors are random enough, the quastisyvery close to O.

3.4 NTRU Sign scheme:
In this section we describe NTRU Sign key genematiad the NTRU

Sign signing and verification protocols.

The system parameters of NTRU Sign include
N: a (prime) dimension.

g: a power of 2.

d;; dy. key size parameters.

Norm Bound: a bound parameter of verification.

3.4.1 Key generation:

Letf be a polynomial iR with d; randomly selected coefficients set to

1 and the rest is set to 0. LEbe such that there exist an invefsé such

thaf * f* =1(modq). Let gbe a polynomial irR with d_arbitrary selected

coefficients set to 1 and the resetto O and#&f **gmod . (

First we find polynomialF;,G, R such that
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First note there are polynomialsv,k ,k, [0  Z[Xduch that

frv+ky*(xN -1)=R;,
grutky* (XN - =Ry,
In Z[x], Ry andR, are integers. IRy andR_ are co-primes we can apply

the Extended Euclidian algorithm to obtain integerand S satisfying

Putting above three quantities we have

(V) * f +(BU) *g=IMod X" =1 ..ot (3.13)
Now we have found the polynomi&l =-f andG;=av.

Denoting thatF =qF andG' =qG, .Let

_fo fl..- fN_l go gl ....... gN_l
fn-1fo fn-2 ON-190--OnN-1

f~g°
Bfg :(FI G"}:
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1 h, h,....h
1 hN—1 ho hN—1
1 h, h, h,
| ;
And Bh=( gj=
o q q
q
0
q

Theorem 3.1 [44]

MatricesB,, and B, generate the same lattice, ilgB, ) =L(B, ).

Proof: Using previous notation, let

U= Ulﬁ UZﬁ
U, ~ U,

Where

U, =G, -F *h,
q 1

U, = -gF, and

u,=f.

U, =

We have

U*f+U,*F=G,*f-E*h*f -g*F +f *h*E =1,
U *g+U,*G' =G, *g-f,*h*g-g*G, +f *h* G, =h,
U *f+U,*F =—qgk*f +f *gFk =0 and
U,*g+U,*G'=—gE *g+f *gG, =g.

Thus
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UB, =B,.
FurthermoredetU) = (G, -F*h) *f + (-g+f *h) *F, =1.
These equations together imply théBy ) =L(By,) = LNT.

The private signing key will consist of small balisthe lattices,, , however,

fg?

the polynomialF andG' are not small enough for this purpose.

3.4.2 Signing:

The signature of a message will be a lattice vector close to{, m, , )
where (m,) is the message reprehensiverof Here “close to” means that the
distance is at most some predefined limit, nanNaymBound.

The process of signingnstarts by computing, using some selected hash
function. This method is public as it needs to lomed by verifiers of the

signature as well.
Let

—_ * *
B{ F ml} andb={f ml}
q q

The signatures of the message is
SEf*B+F D MOCP..o i (3.14)

3.4.3 Verification:
Suppose that we want to verify thatis the signature of message
and that the public verification key of the signeis known.
The first task is to compute
EE N S MOCH e (3.15)

Where (s t) is the lattice point. It only remains to be chetkdat the
centered norm of(s t)—(m, m, )

Is at most the size of tidormBound constant.
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3.4.4 Verification Analyss.
The signer wants to find a lattice point near thetor
J=(m, m,)
It can be seen that the secret short basis ofattied is derivedlirectly from

f,g,F,G). If the secret basis is short, it is also orthod@ma the lattice point

=), 2]

F G

={(m, m;) ng f_/gq/q] ](fF 25]

=[(m, m,) U: gj ](fF ng ....................................... (3.16)

Is neard.
Next we will approximate the centered normFobndG . The polynomiald
and g were chosen to satishf //_=//g//,=cJ/N, that it will have
F(x) = F() ~f () r(x__) e (X)}

f(x7) * 1(x) +9(x™) *g9(x)
F(x™) * F(x) +9(x™) *G'(x)
f(x7)* f(x) +9(x™) *g(x)

=F,(X)_f(x‘)*f(x)* F(x) +g(x) * (%) * G'(X) 00 * AK). ... (3.A7)
f(x7) * f(x) +9(x™) *9(x) o

=F(x)-f(x)* +f(x) + A(X)

Where the coefficients ofare in interva{l—%,%] . Substituting

f *G'=g*F +q Into the equation above we get

F(x) = q9(x™)
FOO) * 100 +9(x™) *9(x)

Becaussif (x)|, =Hf (x_l)HC =|a(x)). =Hg(x_1)HC Remark (3) gives

FF(X) * AX)ererreereinren. (3.18)
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10 * 160+ 90y * g0 = [0 * 100>+ 11gxh * 00 2

- oo

In addition, if the coefficients ofA are uniformly distributed in the
: -11 : : / N
mterval[;,g] the centered norm &k is approximately, I

This is due to the fact that the square of theagecoefficients is

The centered norm af(x) has an upper limit which is approximately

qu(x‘l) i @ N o
o] 2 TR o i ™

The same approximation holds fer

N
It's shown thatff|_ =|g|_ =cV/N and|F_=|G| = N

N

that have(s t) — (m, m,)=(A a)(];:i]

Where the coefficients oh and A are in interv{—%,ﬂ, assuming that

these coefficients are uniformly distributed onstlmterval. The centered

norms ofa and A are approximate\#g. Such that it will be had
|69~ (my my)| 2 =|A*f +a*F 2 +[A*g+a* G|

2 2
=|a*f] %+l H 7 +[A* g2+ 6%
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N c*N?
+)
12 12
c’N®  c’N°
= + .
6 72
With these parameter sets, the square root ofjthastity is equal to 216 and

= 2(ﬂ c’N
12

¢ =0.45 andNormBound is equal to 300.

Example (3.3):
Given a short basis (4, 2), (-1, 2), and using basis, we can calculate a

lattice point(s,t) close td0,5) :

Let

4 2
U=

-1 2

2 =2
4_[10 10
)

10 10|

_2_

0 10l 5 2
05|10 10|12 “y=1 2) and
09 D= 9= 2

10 10

4 2
a 3{4 J:@ 5)
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y-axis
A

»
|

X-axis

Figure 3.1: A Lattice with two bases (vi=(4 2),vo=(-1 2) and

u=@@0 -2),u,=@0 9).Themessagerepresentative m, =5 ands= 2.

With the same method and a longer b@sis- 2),(0 , V@ can only find a

point which is farther away fro(®@  5)

2
gl . 5
0 5 J =0 =01
8
1 -2
© 1){0 8}—(0 8)

However, any body with this kind of basis can wetifat (s t) belong to the

lattice: s*h=2*-2=5=t moc9.

3.5 NTRUSIgn Algorithm:
The NTRUSIgn domain parameteédsq

Input
— The signer's NTRUSIgn private key vecfor

— The signer's NTRUSIgn basis completion vedtor
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— The message representative, which is a polynamial
Output the signature, which is a polynomial s,

Operation The signatures shall be computed by the following or an
equivalent sequence of steps:
1. Compute or retrieve the basis completion polynoffial
2. Compute the polynomial B = —F*mih Z[X]/(X" — 1) (only need to
store 2*logq bits per coefficient)
Set integej := 0
4. Whilej <Ndo
a. SetB; := floor[Bj/q + .5]
b. Setj:=j+1
5. Compute the polynomidd = f*m, in Z[X]/(X" — 1) (only need to store
2log,q bits per coefficient)
6. Setj:=0
7. Whilej <Ndo
a. Setb; := floor[b/q + .5]
b. Setj:=j+1
8. Set polynomial s := b *F + B*f inZ/qZ)[X]/(X" - 1)
9. Outputs

3.6NTRU Verification Algorithm:

The NTRUSIgn verification is used to indicate ifsgnature on a

message representative satisfies the appropriafeagon conditions or not.
There is only one NTRUSign verification primitivpegified in this standard.
— The NTRUSIgn parametel§ g

— The NTRUSIgn security paramefsor mBound

Input
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— The signer's NTRUSign public key h
— The signature to be verified, which is a polynahsi

— The message representatifer whichsis alleged to be a signature
Output: A message indicating that the signature is eithard” or “invalid”

Operation A signature s shall be verified by the followiogan equivalent
sequence of steps:

1. Compute the polynomial t := h*s i@Z{gZ)[X]/(X " — 1)

2. Compute the polynomial €2 := i - t iZ/GZ)[X[/(X" — 1) (setting
coefficients in the range O to q — 1)

3. Let maxrange be the largest integer such that e2 = maxrange for
some |, k in the range 0 to g — 1 and no coefficadne2 has values
between gzand e2

4. Let e2 be the largest coefficient of e2 and,eBe the smallest
coefficient of e2

5. Setintegerj:=q- ez ez,

6. If ] > maxrange

a. Set integer shift := m
7. Else
a. Set integer shift ;= j
8. Setj:=0
9. While j <N do
a. Set e2:= e2 — shift (mod q)
b. Setj:=j+1

10.Let maxrange be the largest integer such thatss= maxrange for

some j, k in the range 0 to g — 1 and no coeffica@ns has values

between sand g
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11l et s be the largest coefficient of s angllse the smallest coefficient
of s

12Setj:=q—st Sn

13.f j > maxrange

a. Set shift:=m

14 Else
a. Set shift .=
15Setj:=0

16 While j <N do
a. Set $:= 5 — shift (mod q)
b. Setj:=j+1
17Set):=0
18.Set integers ssum, e2sum, squaresum := 0
19While j <N do
a. Set ssum :=ssum + s
b. Set e2sum := e2sum +;e2

c. Set squaresum := squaresum’+s2’

d. Setj:=j+1
20.Compute the value CenteredNorm := sqrt((N*squaresussuri —
e2sum)/N)

21.1f CenteredNorm > NormBound
a. Output "invalid"

22 Else
a. Output "valid"

- 87 -



Chapter Three Advance NTRU Cryptosystem
4 T s el

Example (3.4):

Here is an example of how to generate another gigandrom a given
message-signature pair. Let parameters be as dafngéfficient Embedded
Security Standards (EESS) [4]; 8 251, gq= 128, df = 73, dg= 71, and
NormBound = 300. The binaryprivate keyf, g and complementary private
key F; G satisfying
f*G-g*F=q are as following:

f(d =73

0,1,0,12,0,1,1,1,0,0,1,0,11,0,0,0,0,1,0,0,0,0,1,1,,10,1
0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,1,1,0,0,0
0,0,0,1,1,0,0,1,0,0,0,101,1,0,0,1,1,1,0,0,1,1,,10,0
0,0,0,0,0,1,0,1,0,1,0,100,0,0,0,0,1,0,0,1,1,0,11,1
0,0,0,0,1,0,0,0,1,0,0,011,1,0,1,0,0,1,0,1,0,0,0,0,0
0,1,0,0,0,1,0,1,0,0,0,100,1,0,1,1,0,1,0,0,1,0,0,0
0,0,0,0,0,0,1,0,0,0,1,000,0,1,1,0,0,1,0,1,0,00L0

010’0’11010’0’011’0’011’m”01010’0’110!0’010’1’011m"l
010111010lOl01010lO!O1Olm!10101010101010501110!111m10

g(d,)=73

1,0,1,0,1,0,0,0,0,0,0,0000,0,1,0,0,0,0,0,1,1,1,0,0
1,0,12,0,1,0,2,2,12,0,1,201,1,12,0,2,0,0,0,0,0,0,,00,0
0,0,0,2,2,12,12,0,2,2,0,011b,0,2,1,0,0,0,1,0,0,0,0,0,0
6,1,0,0,0,0,0,1,12,0,0,00,0,0,0,1,0,0,1,1,1,1,0,0,1
6,1,12,0,0,1,12,0,0,0,0,1700,12,0,1,1,0,0,0,0,0,0,0,0
0,0,12,0,0,0,0,0,0,0,2,17200,0,0,1,0,12,2,0,0,0,0,10,0
6,1,0,0,0,0,0,0,0,0,0,1®©0,0,0,12,0,1,0,0,0,0,0,00,0
0,0,0,12,0,0,0,0,0,0,2,00,0,0,0,0,0,0,0,0,0,0,1,,0,0
0,0,0,0,0,1,0,0,0,0,0,01,0,0,1,12,0,1,0,1,0,0,0,00,0

F
-1,4,-1,1,-1,0,-1,1,-4,5,-3,8,1,0,-1,0,3,5,2,0,2,-3,-1,0
,3,-2,2,-2,2,2,2,3,1,-2,5,0,1,4,2,-3,0,1,2,2,0,1,4,,2,
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3,0,-2,12,1,3,2,0,-12,1,-3,n,2,-5,0,0,4,2,-1,2,-2,1,2,1,

0,4,0,12,-1,1,0,3,0,5,4,-1,-3%,1,0,12,0,2,2,-1,0,-1,3,,-2,
-2,-1,0,2,0,0,3,1,5,-3,1,8,0,-2,0,-2,2,-3,-3,-1,2,1,®,7
2,-1,3,4,3,-1,4,3,3,4,3,8,-1,1,-2,0,-2,0,2,2,3,3,3,0,
1,2,1,3,3,0,-7,0,0,-2,0,0,2,2,3,-1,3,1,-3,3,1,2,2,-1,4
,-3,1,2,-1,-2,5,0,3,1,0,48,2,2,4,1,1,-1,1,2,1,-3,2,3,
0,3,0,-2,0,-1,0,-1,-2,3,-3,8,3,1,-1,-1,1,-1,1,0,-1,4,5
1,3,-1,0,6,5,0,-2,1,2,3,0,10,1,1,2,0

G
1,-2,3,2,1,2,2,-3,1,0,-1,22,4,-3,2,0,-1,2,1,0,-1,-1,,-2,0
,-2,2,1,0,4,0,0,1,-1,1,2,%,-1,3,-3,2,2,-2,1,1,4,-2,3,-1
,3,0,2,2,4,-2,12,-1,2,1,0,-2,1,4,3,0,-1,-2,-2,1,4,4,0,
3,-1,2,1,2,4,1,3,0,0,1,0,-3,4,4,3,-2,-2,-2,1,-2,0,1,-3,
-3,2,1,1,4,-1,2,1,3,1,1,0,8,1,2,3,2,3,0,5,0,2,3,-3,2,
1,2,0,1,3,2,0,0,-2,-1,-1,4,3,-2,4,1,2,0,2,0,4,2,5,0,1
,-1,1,-1,0,12,3,0,0,2,0,2,8,1,2,-1,3,2,5,2,0,1,0,-0,1,
1,1,3,4,3,2,0,-1,4,2,3,4,-1,-1,-2,0,2,2,4,0,0,2,3,-3
,-1,0,2,4,-1,0,2,-1,12,2,0,,-2,0,-4,0,2,0,-1,4,0,0,-3,,4,1
,2,3,-3,2,2,2,2,3,-1,4,4,a,5,2,2,0,

The public keyh =f ™ *g(mod q)is

-23,36,-50,-28,-4,-17,14,-16,-48,40,-39,1,14,-55,8,-62,-42 ;5
-49,64,-63,9,35,18,-44,-14,-2 ,;b/,-4,-7,-30,49,27,62,-28 , 465 -1
-16,41,42,-53,-22,-42,-29,15,-3¥%,-52,39,-23,56,43,53,-22,50,
37,-51,60,-31,52,-16,-34,-5,371,;65,-50,-3,61,40,-42,25,-57, 20
-45,-1,36,-6,62,17,54,32,-55,3%,12,-49,-30,2,-30,-62,-34, -27
15,25,22,-37,31,64,49,56,-10,,-15-43,18,-63,-16,-29,6,-4, 11,
34,-61,-47,22,15,47,14,-18,6,;88,26,34,-39,19,25,-60, 28, -16,
-12,39,-35,38,-43,2,8,24,-18, 2, 26,-16,3,15,-7,32,-38,-28,41
45,8,0,57,29,1,6,23,-18,24,88,-36,17,-33,60, 30,43, -38, -56
38,-33,-24,3,58,-10,56,-37,4,;62,23,57,-52,5,19,64,-41, 34,
45,-23,21,55,-29,-7,49,19,9,-414,10,-46 ,57,-49,17,-22,-31, -25,
36,-12,-9,10,-31,58,-20,13,55,29,-36,44,-61,-25,11,-21,-6,8,
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-61, -45, 48,-52, 12,52 ,30,-12,-2,-592 , 48 ,-58 ,-26 ,-52 ,-22 ,1 -49,19,29,0

Let the messagm,,m, be signed to be

m,

26,8,30,-48,64,-10,3,41,-41,%,-31,62,19,40,-14,49,-12,-59% -2
,7,-47,-37,22,-61,-29,-48,17 ,44,2,2,8,-32,18,7,22,-43,-16 ,46
36,-29,-50,33,54,54,-46, 39, -220 7450, 50, -22,-22,8,-18,13, 24,63,
-10,24,1,56,-33,33,10,39,-10,3®,,-28,4,-7,-14,-28,-17,-24,-9,
-42,19,16,-27,5,58,15,-51,-25,;36¢,-26,18,-3,40,10,28,8,-44,2
63,53,25,-29,-8,-46,21,28,1,685,,24,17,36,61,-43,30, 12, -29,-60
40,-57,-21,-6,4,-45,-61,-32,270;85,26,-52,-5,61,4,13,18,-32Q -
,16,-12,38,-31,-41,34,-9,53,-%, 58, -43,33,-27,15,-27,-8,19,5,
-45,43,-25,46,55,35,42,-5,-17,24 ,-3,-52,-50,-30, -19, -26, -60 ,,36
-38,-15,-3,-44,7,-35,-7,-43,3,5D,-56,-60,19,-17,50,9, -47, 28], -
,1,-41,31,62,-28,45,-32,17,-488;-12,-19,22,49,2,-36,-50, 59, ;14
18,45,-39,26,49,44,-56,35,-11,-38,-7,28,22,-41,26,58,-60,58, 1
,-41,-34,63,5,53,47,-58,-47,683;3,15,46,29,-24,31,0

ma
9,-15,1,63,12,64,-9,-25,21,164 ;15,20,59, -40, 43, -40, -41 , -161, -5
,-58,-9,-34,-61,-7,34,19,-26, €0,,-59,-57,-20,6,-59,56,5, -3, ;33
-38,-53,-33,41,31,-39,-63,10,-14Q,59,0,-34,-15,30,-30,42,0, 53,
-48 ,63,48,-43,-58,-36,28,-53,-482,9,-13,-6,21,18,-29,-12, 44, ;28
63,-35,-4,57,29,27,-22,-5,61,:40,50,-28,58,33,-6,64,62,-433 -5
,-48,-10,21,4,49,-23,-43,-45,2084,-9,27,-34,52,20,60, 14,63, -9,
10, -46,-14,-5,-9,-20,-36,49 ,-289,-58,-9,-22,-3,-53, 46, -19, -161 -
,1,-46,-60,56,45,-30,44,1,-34,-7,21,-61,17,-58,-1,-56, -14 , 29,
,30,53,64,-43,-33,-4,-31,-51,42,-48,-22,40,-44,-30,21,-9, -543 -
,21,6,21,-23,10,-26,-16,-56, -B%, 36,-25,0, 25,-26,21,56, 35,55,
-59,12,12,-43,54,-12,-22,-40, -3, -27,-34,-10, 44,51 ,32,-11, -39,
-49,-3,7,50,-31,46,-14,58,-45,;%D,55,62,55,2,9,-52,-8,61,:10
16 ,-59,-41, 54 ,-29,13 ,33,-42, -20 , -487, ;-4 , 19, 55,-18 ,52, 36,32, 45,56, 0
Now observe a valid signaturés,t) , which is made by a valid signer
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26,26,40,-43,-52,0,16,38,-37,29,-9,-41,43,-56,4,-60,-12,-512 -
,21,-40,-34,45,-43,-16,-9,28,881,,8,0,3,-12,24,1,33,-44,-4 ,59
52,-25,-51,36,58,57,-33,29,-130,;5%42,-59,2,0,18,-16, 28,32, -52,
,36,-4,58,-20,55,39,41,8,46,;34,6,14,6,-22,3,-17,-1,-19, &Y,
,-19,11,-53,36,-52,-36,-27,45,;¥A,-3,61,28,30,14,-42,14,-60,61
16,-34,12,-41,40,36,-11,-54,-39,39,37,-59,-48,55,29,-11, -45,50
-41,-16,9,21,-46,-37,-48,46,-34,466,-34,-9,-30,23,39,22,-29,;:36
7,5,33,-24,-33,40,0,41,-6,30Q ;645 , 27,-15,31,-12,11,23,15,;25
32,-6,43,-55,32,42,17,-10,15,24,-44,-38,-10,0,-9,-61,54, -26, -
6,-33,14,-26,-3,-29,35,53,60,680,-5,-5,-63,16,-26, 28, -43,2252
47 ,-52,-33,56,-32,18,-36,-20,7,48,55,17,-14,-27,-32,-14,29,49 ,
-26,36,53,53,-38,52,6,-18,20, 89, 33,-28,32,64,-49,-53,10,-21,
-30,-57,15,47,57,-58,-43,54,-61, 2,54 ,35,-16,56, 0

t =s* h(mocq)
12,5,9,-48,-14,-38,6,-16,52, %D, 23,17, -58, -27,-56,-25,-21, 6Q ;5
54,7 ,-29,-28,-5,46,20,-17,5,:620,-60,-22,22,-63,-62,20, 3, -30,
-37,-33,-19,46,41,-44,-40,8,6,;280,15,-27,1,45,-23,58, 15, -57,
-41,-62,61,-23,-37,-11,34,-39,-315,14,2,8,17,34,-29,8,57,-29,
-52,-27,2,45,30,46,-18,5,-55, ;292,52 ,-18,-58,37,21,-57, -39, ;29
-53,-56,-9,33,21,-60,-7,-40,-28,544 ,-3,46,-20,62,33,-62,40, ;56
-3,24,-44,3,10,-3,-13,-45,62,;182,-47 ,-6,-14,7,-50,-60, -2, B]-
7,-29,-46,-48,50,-21,54,8,1,9,3%,-60,16,-41,21,-37,-1,25, 54,
,-52,-58,-29,-30,-7,-29,-38,-59 ,,507 , -21, 44 ,-29,-20, 45,3, -47 , ;19
38,10,30,8,36,-17,9,-40,-4,6@,49,10,53,-3,53,-61, 36,-59,-35,
23,21,-34,-63,-4,-14,-20,-48 ,466;-24,2,44,-54 ,49 ,-6,-23,-49,0,
11,-56,-23,54,5,-46,-27 ,-22 , 526 ;547 , 54,16, 25,-28,20,-56, 11, 18
-25,-41,-57 ,-31,13, 24 ,-20 ,-11, -41, -1®, 34 -62 ,-5,-51,60, 33,47 ,-56, 0

Obviously, the above signatu(gt) is valid and its norm value
|s=my|® +[t - m,| = 48203< 90000,

Where[s—m,|* = 25335 and|t - m,|*=22868 respectively.
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2.1 Introduction:

In this chapter we shall present the original NTRYyptosystem as
described in [12]. In the past couple of years, sheandards (such as
recommended parameters, message generation amab8ogg encryption /
decryption processes) were changed several timgsvdihprobably change
again, but the underlying principles remain the esalhwill concentrate on
those. First, it would be discussed how the systanrks, describe the key
generation / encoding / decrypting processes vgiraghms, then, analysis of
NTRU system and security which show a few succéssfacks and the way
NTRU was changed to circumvent them. The concerdrain attacks

according to some circumstances show some propesatis.

2.2Inver se truncated Polynomial Rings:

The inverse modulo q of polynomial (a) is a polymangA) with the
property that a*A=1(modulo q).
Not every polynomial has an inverse modulo q, big €asy to determine the
inverse, if a has an inverse, we explain how todu$&lmost Inverse
Algorithm” [38] to compute the NTRU public key psif22].
Gives an efficial way to compute the inverse of gadynomial a(x) in the
ring (z/2z) (x)/ (m(x)) provided that gcd (a(x), x =1 and m (0) =-1.
The following IOP describe the necessary steppdéoforming the inverse of
truncated polynomial, the almost inverse algorithorks for the polynomial

m(x) =X-1 by the NTRU public key cryptosystem.

Algorithm IOP (1): Inversein (2/22) (x) / (x"-1)

Input: a(x)

Output: b(x) =a(x} in (z/2z)(x)/(X'-1)

Step1 : initialization k:0,b(x)=1,c(x)=0 , f(x):=@(x):=x"-1
Step2 : do whilegE0
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Step3: f(x):=F(X)/X, C(X):=C(X)*X,K=K+1
Step4 : if f(x)=1 then return™b(x)(mod %X"-1)
Step5: if deg(f)<deg(g) then
Step6: exchange f and g and exchange b and c
Step7: f(x):=f(x) +g(x) (mod 2)
Step8: b(x) :=f(x)+c(x) (mod?2)
Step9: End while

Note that the numbep fn step 2 is the constant coefficients of f, and
that the return value "&b(x) (mod (X-1), in step 4 is simply b(x) with its
coefficients cyclically shifted k places. We alsoten that the speed of the
inversion Procedure can be significantly enhanced & number of
implementation tricks, such as expanding the omsrain b,c,f,g into inline

loop-unrolled code

In order to create NTRU public/private key pairsemeeds to compute

the inverse of a polynomial modulo p for primesestithan 2. Here is

adaptation of the almost inverse algorithm or préme p=3, since the
other value required for the standard NTRU paranssts.

Algorithm IOP (2): Inversion in (z/32) (x)/ (x"-1)

Input: a(x)

Output: b(x) =a(x} in (2/32) (x)/ ({*-1)

Step 1: Initialization k: =0, b(x):=1,c(x):=0,f(®a(x),g(x):=X-1
Step2: do whileg=0

Step 3:  f(x):=f(xX)/x , c(X):C(X)*x ,k=k+1

Step 4:  if f(x) =% 1 then return £%Xb(x) (mod X'-1)

Step 5: if deg(f) < deg(g) then
Step6 : exchange f and g and exahédnand c
Step7 : ifoEdo
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Step8 : f(x):=f(x)-g(x) (mod3)
Step9 : b(x):=b(x)-c(x) (mod3)
Stepl0: else

Stepll: f(x): f(x) +g(x) (mod3)
Stepl2: b(x): b(x) +c(x) (mod3)

Stepl3: end while

In this algorithm, all computation are done mody®), so all
coefficients are chosen from the set {-1, 0, 1}dAlthe £ 1's is in step4 are
chosen to have the same sign.

The creation of NTRU public / private key pairsesftrequires finding
the inverse of a polynomial f(x) modulo not onlypame , but also a prime
power , in particular a power of 2.However , onoceiraverse is determined
modulo a prime p , a simple method based on Nevtgoation allows one to
rapidly compute the inverse modulo p
The following algorithm converges doubly exponehtjan the sense that it

requires only about lg{y) steps to find the inverse a(x) modulo (p).

Algorithm 1OP (3): Inversion in (Z/pZ) (x) / (x"-1)

Input: a(x), p (a prime)

Output: B(x)=a(x)" in (Z/pZ)(x) /(X*-1)

Step1: Initialization k:=0 ,b(x):=1,c(x):=0, f(x)a€x),g(x):=X"-1
Step2: do whileg=0

Step3: if deg(f)=0 then

Step5:  b(x):='b(x) (mod p)

Step6: return X*b(x) (mod X'-1)

Step7: if deg(f)<deg(g) then

Step8: exchange f and g and exchange b and ¢
Step9: u: =fge™ (mod (p)
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Step 10: f(x):=f(x)-u*g(x0 (mod p)
Stepll: b(x):=b(x)-u*c(x) (mod p)
Stepl2: end while
The idea of "Almost inverse algorithm "[38] inverakgorithm " stars
with the vector (f, g) = (a, m). Then multipliemn(the right) by the following

matrices:
a{o 1}’ ﬂ{x-l o}’ " { 1 0}

10 0 1 -u 1

Note that the effect of these transformations is
f.9a=@.f), Fgp=(X"fg), (F.gn=(F-ug,Q)
So step 4 is matrif , step 9 is the matrix , and stepl1l is the matryy, Note
that in stepll , the value of u is chosen so thiag) fis divisible by X , so that
its constant term is 0) . In step4 divides by Xilum$ constant term is non-
zero appear, also, in step 9 makes sure that yleddf (g).

The net effect is that each time through the lobe total degree
deg(f)+deg(g) is reduced by at least 1, so evelytddbecomes a constant
(provided gcd (f,g) =1). Hence the algorithm terates in at most deg (a)

+deg (m) iterations.

Thus the algorithm produces a sequence of transtowomD,D........ D where
each D (i=1, 2,...,r) is one of, B, ory,, so that

(a, m)DD;....D.1D; = (x, *)

Wherey is a non-zero number modulo p, unfortunately,abefficients of the
product OD.,........ D, are not polynomials, because the marbxas X' as an

entry.

X*DiD;........ D; has coefficients that are polynomial, say
a *

X'DiD;....... Drz{ ' *}
m
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Now multiplying on the left by (a, m) yields

a *
(aa'+ mm') =(a, m){m' *}

So
a'= aX* (mod m)
The almost inverse algorithm construct this valaie while it is
applying the transformation,D,....D, starting from (a, m), then applying the

same transformation starting from ( b , ¢) =(1,@xcept that in place of

Ix?1 o (1 0
B{O }xs{ o

Sincep has been used k time at the end of the algoritfenvalue of(b , c) is

a *
(b, ¢) =(1,0)XD.Ds....... Dr=(1,0){m, *} =(a' *).
At the end of the algorithm, b has a value satmfyi
alu=X*( mod m)
Since the value af is simply § (the constant term of f, which actually equals
f at this stage of the algorithm), so that&=fy*X""*b.

see Example (2.1)

Example (2.1):

Let N =4, p=2, a=1+%x°
The inverse of s modulo 2 in Z(x)/{XL)
al=1+X-x’then al=[1, 0, 1,-1, 0]
G1=-1+X then G1=[-1,0, 0, 0, 1]
Let B1=1 thenB1=[1,O0, 0, 0, O]
C1=0 then C1=[0, 0, 0, 0, 0]
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Alcan not be divided by X because of the presefhoeimber one.

A2 = al+G1l = =x*+x*then a2=1]0, 0, 1,-1, 1]
G2=al=1+%-x3then G2 =[1, 0, 1,-1, 0]
B2=B1+C1=1then B2=[1, 0, 0, 0, O]

A2 can't be divided by X

A3=a2/x = x-¥+x> then a3=[0, 1,-1, 1, 0]
G3=G2=1+x-x° then G3 = [1, 0,1,-1, 0]
B3=B2=1 then B3=[1, 0, 0, 0, 0]

C3=C2.X=X then C3=0, 1, 0, 0, 0]

A4 can't be divided by X because the presence ofbar one.
A5=a4+G4 = -x-X then a5= [0,-1, 0,-1, O]
G5=a4=1-x+%then G5 =[1,-1, 1, 0, 0]
B5=B4+C4=1+% then B5 =[1, 0, 1, 0, O]
C5=B4=1then C5=[1, 0, 0, 0, 0]

A5 can't divide by X.

A6= a5/x =-1-X then a6=[-1, 0,-1, 0, 0]
G6=G5=1-x+xX then G6=[1,-1, 1, 0, O]
B6=B5=1+Xthen B6 =[1, 0, 1, 0, 0, O]
C6=C5.X=X then C6=[0, 1, 0, 0, 0]

A6 can't be divided by X because of the presenaeuofiber one.

A7=a6+G6 =-x then a7=[0,-1, 0, 0, 0]
G7=a6=-1+x+%then G7=[-1, 0,-1, 0, O]
B7=B6+C6=1+x+x then B7=[1, 1, 1, 0, 0]
C7=B6=1+X then C7 =[1, 0, 1, 0, O]

A7 can't be divided by X

A8=a7/x = -1then a8=[-1, 0, 0, 0, 0]
G8=G7=-1-X then G8=[-1, 0,-1, 0, 0]
B8=B7=1+x+X then B8=[1, 1, 1, 0, 0]

-36 -



Chapter Two Classical NTRU cryptosystem
4 T s el

C8=C7.X=x+X the C8=0, 1, 0, 1, 0]

Because a8 equal to constant the evaluation staptha inverse a is
A=X"**B8 (k equal to No of division times by x)

And for k=4

A=X**B8=B8=1+x+¥ then A=[1, 1, 1, 0, O]

2.3 NTRU PKCS Parameters:-
The basic collection of objects used by the NTRUblu key

cryptosystem is the ring R [12] that consist of talincated polynomials of

degree N-1 having integer coefficients :

P(x) =pg +p1x+p2x2 +.o F PN 2X e (2.1)
Polynomials are added in the usual way.

They are also multiplied more or else as usual gxitet X' are replaced by
1, X"is replaced by X and"%X? are replaced by %

A Full implementation of the NTRU public key crygistem is specified by a
number of parameteiThe NTRU PKCS have three parameters:

N the polynomial in the truncated polynomialginas degree N-1.

P small modulus .As the final step in decryptiohe tcoefficient 6 the
message is reduced modulo p.

g Large modulus, the coefficient of truncatetiypomials will be reduced

Modulo g.

2.4 Star Multiply:

This function performs the polynomial multiplicatiof a*b mod X-1.

As a note, the M in Step 9 is either p or q depamdipon which one is passed
into the function. In contrast to the guideling[14], the algorithm executes

Step 9 if the current coefficients of a[i] and b§te both non-zero. This,
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therefore, eliminates approximately a third of thperations, which are
unnecessary.
Also, for the case M = q, the algorithm assumes 2’ so the reduction is

performed by extracting the lower w bits.

2.4.1Star Multiply Algorithm: (a; b; ¢;N;M)
Input N, the coefficient modulus, M, and the two polymals to be
multiplied, a and b.

Output (a;b;c;N;M)

stepl: for k = 0to N-1 do

step2: c[k] =0

Step 3: for i=0 to k do

Step 4:  c(k) =c(k)+[a(i)*b(j)] mod M
Step 5: End for

Step 6: For i= k+1 to N-1 do

Step 7: c(k) =c(k)+[a(i)*b(j)] mod M
Step 8: End for.

2.5 Rand Polynomial:

The Random Polynomial function generates a randolynpmial, r,
whose coefficients are in the subset {-1, 0, 1}.
The user specifies the number of ones (NumOnesj)rendumber of negative
ones (Num Neg Ones) that will make up the randolynmmnial, r. Basically,
the algorithm works by randomly selecting a locat{position) between 0
and N in the random polynomial vector, r. For eaelected location, if the
value is zero the algorithm replaces the zero by 41 until all the specified

number of ones and negative ones have been emttoetie vector.
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2.5.1 Algorithm Random Polynomial (r;N, NumOnes, NumNegOnes)
Input N, NumOnes, NumNegOnes, and polynomial vectorb& made
random r.

Output random polynomial r.

Step 1: r=0

Step 2: while NumOnes <>0 or NumNegOnes <> 0 do

Step: position = rand () mod N

Step 4: if r(position)= 0 then

Step 5:  if NumOnes > 0 then

Step 6: r[position] = 1

Step 7: NumOnes = NumOnes - 1

Step 8:  else if NumNegOnes > 0 then

Step 9: r (position) = -1

Step 10: NumNegOnes = NumNegOnes- 1

Step 11: end if

Step 12: end if

Step 13: end while.

2.6 |nver se Polynomial Fq:

The Inverse Polynomial Fg function in is resporssiiolr generating the

inverse polynomial of the secret key, f, modulo q.

2.6.1 Algorithm Inverse Polynomial Fq(a; Fq;N; q)
Input: the polynomial to invert a(x), N, and g.
Output Fq (a;F:N;q)

Stepl: k=0

Step 2: fori=o0 to N

Step 3: ¢=-1, d=-1

Step 4: b (i) =0, c (i) =0
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Step 5: f (i) =a (i)

Step 6: if a (i) <>0 then

Step 7: ¢ki

Step 8: End if

Step 9: g (i) =0

Step 10: End for

Step 11: g (0) =-1, g (N) = 1, b(0) = 1=\

Step 12: loop

Step 13: while f (0) =0 do

Step 14: temp2=c (n-1)

Step 15: for i=1 to N-1 do

Step 16: f(i-1)=f(i)

Step 17: c(N+1-i)=c(N-i)

Step 18: end for

Step 19: f(n)=0, c(0)=temp2;=ak-1, k=k+1

Step 20: end while

Step 21: if ¢=0

Step 22: go to 46

Step 23: end if

Step 24: if ¢kdy then

Step 25: temp2=d

Step 26: ¢é-d, , d=temp2 , temp=f, temp=f, f=g , f=g , g=temp , perh,
b=c, c=temp

Step 27: end

Step 28: if f=f+g mod 2

Step 29: b=b+c mod 2

Step 30: end loop

Step 31: =0
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Step 32: k=k mod N

Step 33: fori =N -1 downto O do
Step 34: j=i-k

Step 35: if j<0 then j=j+n

Step 36: end if

Step 37: Ki)=b(i)

Step 38: end for

Step 39: v=2

Step 40: while v<q do

Step 41: v=v*2

Step 42: star multiply (agFtemp,i,N,v
Step 43: star multiply (agFtemp,i,N,v)
Step 44: end while

Step 45: for i =N-1 downto O do
Step 46: if K(i) <0 then

Step 47: Ki)=F4(i)+q

Step 48: end if

Step 49: end for

2.7 |nver se Polynomial Fp:

The Inverse Polynomial Fp function is responsiblegenerating the
inverse polynomial of the secret key, f, moduldrerse polynomial fis
based o R the pseudo-code for \Inversion in (Z=6B(X"-1)" provided in
[15].

2.7.1 Algorithm Inverse Polynomial Fp (a; Fp;N; p)
Input the polynomial to invert a(x), N, and p.

Output Fy(a;F;N;p)
stepl: k=0
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step 2: fori=oto N

step 3: ¢=-1, d=-1, b(i)=0 c(i)=0
step 4: f(i)=a(i)

step 5: if a(i)<>0 thendi

step 6: End if

step 7: g()=0

step 8: end for

step 9: g(N) =1 ,4N, b(0) =1
step 10: loop

step 11: while f(0)=0 do

step 12: for i=1 to N-1 do

step 13: f(i-1)=f(i) , c(N+1-i)=c(N-i)
step 14: end for

step 15: ¢(0)=temp2 s=bk-1 , k=k+1
step 16: end while

step 17: if ¢=0 go to 55

step 18: end if

step 19: if gkd, then

step 20: temp25d d=dy , d=temp2 , temp=f, f=g , g=temp , temp=b , b=c ,
c=temp

step 21: end if

step 23: if f(0)+3)mod3= (g(0)+3) mod 3 then
step 24: for i=0 to N-1 do

step 25: f(i)=(f(i)-g(i)) mod3

step 26: b(i)=(b(i)-c(i))mod 3

step 27: end for

step 28: else

step 29: for i=0toN-1 do
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step30: f()=(f(i)-g(i)) mod3

step31: b(i)=(b(i)-c(i))mod 3

step 32: end for

step 33: end if

step 34: end loop

step 35: =0 , k=k mod N

step 36: if f(0)+3)mod3=1 then

step 37: for i=0 to N-K-1 do

step 38: end for

step 39: for i=N-k to N-1 do

step 40: if f(0)+3)mod3

step 41: end for

step 42: end if

step 43 : for i=0 to N-k-1 do

step 44: result(i)=-1*(b(k+i-N)+3 mod 3

step 45: end for

step 46: for i=N-k to N-1 do

step 47: result(i)=-1*(b(k+i-N)+3 ) mod 3

step 48: end for

step 49: end if

Algorithms finds the inverse polynomial modulo aygw of 2, which is q. is
based off the pseudo-code for \Inversion in (Z/4X] = (X"-1)" and
inversion in (Z2z) [X] = (X"-1)" provided in [15].

2.8 Key Generating: - [12]

For generation the public key we must choose aamnsecret key of

binary Numbers (0, 1, 1, 0...) and as a polynorhiaRR with coefficient

reduced modulo p.
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2.8.1 Overview

The sender wants to create a public/private key foai the NTRU
Public Key Cryptosystem.

First randomly chooses two "small" polynomials fdag in the ring of
truncated polynomials R.

A "small" polynomial is small relative to a randgralynomial mod q.
In a random polynomial, the coefficients will in rggal be randomly
distributed mod qg; in a small polynomial, the caménts are much smaller
than q.

The sender must keep the values of the polynonialsd gprivate,
since anyone who knows the value of either one haéllable to decrypt
messages sent to the sender.

The sender next step is to compute the inversenoddulo g and the
inverse off modulo p.

Thus computes polynomials fq and fp with the prop#rat

f*fy =1(modq) andf* f, =1(modp). (If by some chance these inverses

do not exist, the sender will need to go back dmabseanother f.
Now the sender computes the product
h=p*fa*g(Modqg) ... (2.2)

The sender's private key is the pair of polynonfialsd f, the sender's public

key is the polynomial h.

2.8.2 Create Key Algorithm (N; q; p; f; g; h; Fp; Fy)
Input p, g, N and random polynomials, f and g.

Output h=p* f, *g(modaq)
step: Inverse Poly Fq(f; F;:N; Q)

step 2: Inverse Poly,f; Fy;N; p)
step 3: Star Multiply (£ g; h;N; q)
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step4:fori=0toN-1do
step 5: if h[i] < 0 then

step 6: h[i] = h[i] + g

step 7: end if

step 8: h[i] = h[i] * p mod q
step 9: end for

See example (2.2)

Example (2.2):

As an illustration of the above discussion, thestdbered parameters

are:

N=113¢-p=3
Also needed to define a "small" polynomial morecigely (less than N=11).
For the purposes of this example, the key generaiam be done by using
the quantities dand ¢. The polynomial has d coefficients equal to +1, (g
coefficients equal to -1, and the rest equal to 0.
Also, polynomial ghas dcoefficients equal to +1 4atoefficients equal to -1,
and the rest equal to 0.

(The reason for the slight difference in form betwd and gis that f
has to be invertible, while doesn't). For the purposes of this section, it will
be taken a€ase (1):
d=4d=3.

The sender needs to choose a polynomadldegree 10 with four 1's
and three -1's, and he needs to choose a polyngrafadegree 10 with three
1's and three -1's.

The chosen polynomial f and g are:

f=—1+x+X%2=x*+x%+x2-x10

3 5 8 10

g:—1+x2+x +X¥ =X =X
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Next computes the inverse fp ofnfodulo p and the inverse fq of f
modulo g.
The sender finds that:
fo =1+2x+2x% +2x* +x> + 2" +x° +2¢°

fq =5+0x+6x” +16¢% +4x* +15° +16¢° + 22" +20¢° +18° +30*°

+20x8 +18¢2 +3x°

The final step in key creation is to compute thedpict

h=pfy* g=8+25¢+22" + 20x> +12x* +24x° +15x° +
19" +12x8 +19x° +16x1°%(mod32).

So the sender's private key, in this case is tireop@olynomials f and
fp, and his public key is the polynomial h.
For the purpose of high security level we increagedegree N of the chosen
polynomial
Case(I1): Taken ¢=4, dgs, N=12

Now, the sender need to choose a polynomial of ededr2 with
fourth’s 1 and three’s 1 and three’s -1

Suppose the sender chooses:

f=—1+x+x2=x%+x2+xtt-x1?

2 5 8 10 12

g=-1+xX"+x"+x°"—=Xx" —X

Next he computes the inversgdf F modulo P and the inversg &f F
modulo q.

fIO = 2x +2x° + x8 + x82x1?

fq =9+5x+6x"+21x° +27x* +19x° +8x°® +3x " +28x° +17x™* +11x™

Finally h = pf,* g(mod32)

- 46 -



Chapter Two Classical NTRU cryptosystem
4 T s el

h =21+ 28x + 27x* +30x> + 20x* +19x°® + 31x” +14x° + 23x*°
+19xM +12¢?(mod32)
The sender’s private key is the pair of polynorhiahd f, and his public key

Is the polynomial h.

2.9 Encryption: [12]

The encrypted message is computed as

E=Pr*N+mM(MOCO) ... ciee i e e (2.3)

Where the messagelR, and the random polynomialdR has coefficients

reduced modulo P.

2.9.1 Overview

The receiver wants to send a message to the sasugy the sender's
public key h. first puts the message in the formagbolynomial mwhose
coefficients are chosen modulo p, say betweenapd2p/2 (in other words, m
is a small polynomial mod q). Next it should bedamly chooses another
small polynomial, r. This is the "blinding valuathich is used to obscure the
message (random value when encrypting).

The sender uses the message m, her randomly clposgmomialr,
and the receiver's public keyttncompute the polynomial
e =r*h+ m(mocq).

The polynomial es the encrypted message which the receiver sends t

the sender.

2.9.2 Encoding Algorithm (N; q; r; m; h; )

Input N, g, Public Key h, message m, and random polyalom
Output € = pr* h+m(mocq)

Stepl: Star Multiply(r; h; e;N; q)
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Step 2:fori=0toN-1do

Step 3: e[i] = €[i] + m[i] mod q
Step 4: end for.

Example (2.3):

In this example, we shall consider the tow casesxample (2.2)
We need to specify what we mean by saying r is isrpalynomial. We do
this using the quantity,d

Where r has f coefficients:

1, Coefficiertsaret+ ve
d, =| —1,Coefficiertsare-ve

0, Coefficiertsarezero

For the purposes of case of example (2.@)will be taken ¢d= 3.
Now, suppose the receiver wants to send the message

m=-1+x3-x*-x8+x2 +x10°

To the sender using the sender's public key
h=8+25x +22x° +20x> +12x* + 24x> +15x° +19x " +12x® +19x° +16x*°

For case (I') of example (2.2), the receiver wants to send the message

3 4 8 9 10 12

m=-1+x"-x"-x"+x"+X +x° to the sender using the sender

public key
h=21+28x +27x% +30x3 + 20x* +11x° +19x® + 31x " +14x° + 23x*°
+19X11+12X12

First chooses a random polynomial r of degree 1k wiree’s 1 and

three’s -1, say she chooses

r=-1+x%+x%-x8-x

Then the encrypted message e is:
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e=r*h+m(moc32)
e=5+3x +17x% +20x3 + 6x* +15x° + 6x° +11x " +24x " +x° + x1°
+26x1 + 26x12(mod32).

Then send the encrypted message e to the sender.

2.10 Decryption: [12]

The decryption procedure requires three steps:

(i) Constructing polynomiabd =f *€(mocq) ..........cccoevvvievininnnnn, (2.4)
(i) Shift the coefficients of a to the range (-qif£2).
(iif) Calculating the polynomiat =f, *a(modp) ........................ (2.5)

The final step of decryption requires the user tmpute the inverse
polynomial K of the secret key f modulo p. The decryption pssceutlined

above will recover message (d = m).

2.10.1 Overview

The sender has received the receiver's encryptegage eind wants
to decrypt it. It will be begin by using his priegpolynomial fo compute the
polynomial
a=f*e(mocq).

Since the sender is computing modulo q, he can choose the
coefficients of ato lie between -q/2 and g/2. (In general, the semwadé
choose the coefficients of a to lie in an intereéllength g. The specific
interval depends on the form of the small polyndsiia
It is very important that the sender does this teefeerforming the next step,
the sender next computes the polynomial
b =a(mocp).

That is, he reduces each of the coefficients wioaulo p. Finally the sender

uses his other private polynomigltd compute
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¢ =f,*b(modp).

The polynomiak will be the receiver's original message m

2.10.2 Decoding Algorithm (N; q; p; f; Fp; € d)
Input N, g, p, secret key f, inverse polynomigl Bnd encrypteanessage
e.

Output d =f, *a(modp)

Step 1: Star Multiply (f; e; a;N; q)
Step2:fori=0toN-1do

Step 3:if a[i] < 0 then

Step 4: afi] = afi] + g

Step 5: end if

Step 6: if a[i] > g=2 then

step 7: afij=a[i] + q

Step 8: end if

Step9: end for

Step 10: Star Multiply (a; F£d;N; p).

Example (2.4):
In this example we shall considered the resultxangples (2.2) and

(2.3) are valid, the sender has received the eteypessage
e=14+11x + 26x7 + 24x> +14x* +16x> + 30x® + 7x” + 25x% + 6x°

+19x10 '
from the receiver. The sender uses his privatef keycompute
a="f*e(moc32).
a=3-7x-10x? —11x> +10x* + 7x> + 6x° + 7x” +5x®

-3x% - 7x%(mod32) |
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Note that when the sender reduces the coefficarite modulo 32, he

chooses values lying between -15 and 16, not betWweand 31. It is very
important that he choose the coefficients in theasywNext the sender reduces

the coefficients of anodulo 3 to get

2 3

b=a=-x-x%2+x2+x*+x° +x’ =x® -x¥(mod3).

Finally the sender useg the other part of his private key, to compute

c=fo*b=-1+x>-x*-x% +x% +x'°(mod3).

The polynomiak is the receiver's message m, so the sender hasssfally

decrypted the receiver's message.

-Now, if the sender received the encrypted message

e=5+3x +17x% + 20x3 + 6x* +15¢° + 6x° +11x " + 24x® + x® + x*°
+26x™ + 26x12

From the receiver he uses his private key f topnamn

a=f*e=1-4x -13x%-10x® - 2x* - 3x® +11x” +5x® - 2x® —10x™°
+3x! + 5x12(mod32)

Next the sender reduce the coefficients of a mtmdet
bza=1-x-x2-x3-2x*+2x" +2x8 - 2x% +x10 + 2x12(mod3)
Finally the sender usegthe other part of his private key to compute
d=f,*b= ~1+x3 —x* —x8+x% +x10 +x12(mod3).

The polynomial d is the receiver message m so é¢neles has successfully

decrypted the receiver's message.

2.10.3 Decryption Analyses:

The receiver's encrypted messagaf ¢he form e= r*h + m (mod q),
but the sender doesn't initially know the values ahd m. The sender's first

step is to compute f*and reduce the coefficients modulo q. Remember that
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the sender's public key was actually formed by Multiplying pfg and
reducing its coefficients modulo q. So althoughsbeder doesn't know r and
m, when he computes a = f{enodulo q), he is actually performing the
following computation:
a = f*e (modulo q)

=f*(r*h + m) (modulo q) [since e = rhm (modulo q)]

= f*(r*pf *g + m) (modulo q) [since h = pfg*@gmodulo q)]

= pr*g + f*'m (modulo q) [since f*fq = 1 (modudg] ......... (2.6)

Now look back at the sizes of the various paramsefEne polynomials
r, g, f, and mall have coefficients that are quite small. Thisame that the
coefficients of the products r*gnd f*m are also quite small, at least in
comparison to g. Since the prime p is also swathpared to g, this means
(assuming that the parameters have been propeseah thathe coefficients
of the polynomial pr*g + f*malready lie between -q/2 and /2, realucing
the coefficients modulo g has no effect at all!

In other words, when the sender computdsy dirst multiplying f*e
and then reducing the coefficients modulo g, tHgnmmmial a he ends up with
Is exactly equal to the polynomial pr*g + *m. Wh#re sender next reduces
the coefficients of anodulo p to form the polynomial b, he is really wethg
the coefficients of pr*g + ffmmodulo p, so the b that he ends up with is equal
to b = *m (modulo p).

Remember that the sender still doesn't know theevaf m, but he now
knows the value of b. So his final step is to nujtib by f, and use the fact
that £*f = 1 (modulo p) to compute
c = f,* b = f;* *m = m (modulo p),

which allows him to recover the receiver's message
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2.11 Parameter Choice:

The recommended parameters for different levelssegurity are

presented in Table 2.1.

Also the sizes of the resulting keys are presentbd.size of the public key is
computed as N lagg, the number of coefficients times the number ité b
needed to store each coefficient. The size of thefe key is computed as
2N log, p, where the 2 comes from the fact that we shkedp not only f, but
also f-1 p to make decryption efficient. The partre are suggested by
NTRU Cryptosystems [46].

Table 2.1. Recommended parameter choices for different levels of security . Also, the

resulting key sizes (in bits) are shown.

Security level | N | p q d dg d i+ | In/

Moderate 167 3 128 61 20 18 530 1169
Standard 263 3 128 50 24 16 834 1841
Highest 503 3 256 216 72 55 1595 3521

2.11.1 Successful Decryption:
We need to choose the parameters carefully in oiwldre able to

decrypt: the following condition needs to be vedfioften enough:

preg+f+*m_ <q .o (2.7)

(Recall that forf OR, [f|_ denotes its width, (i.e. the maximum deference

between two coefficients of f). The coefficientsfof and g should be small
enough for the previous inequality to hold withlnigrobability. The authors
of NTRU [30] define the following set:
L(d1, d2) = {FU R]| F has gcoefficients equal to 1,cqual to -1,the rest0}.
Then they choose integer values for d,, d and set

L= L (ch, ok - 1), Ly=L (chy d), L= L (ck, ).
Note that we cannot set ko be L (d, & ), for then, members f of;lare

surely not invertible: we would finfl' such thatf'* f =1, but the choice of f
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implies f(1) = 0 and hencé&'*f (1) = 0 = 1, which is a contradiction. With
this choice, the expectation pf +g+f *m is 0.

Note that to simplify the equations in statisti@alalysis, we shall
consider that f is taken in L{dd). Since N tends to be quite large, this will
not play any major role.

Also it will be assumed that g is odd, so that domultiply cases. The
procedure can be easily adapted to the case wiseaven. Set
a=prrg+f*m0R
The goal is to determing dd, d; so that the inequality

q-1
2

Holds for each i, G i < N with high probability. It will be computeché

variance of g =pY_fyg, > fm,

Using a simplified model: suppose that the sets{g i}, {f i}, {m} for

2] <

I =0. ....N -1 consists of pair wise independenidan variables.

Note that, except for m, this is not strictly tré; knowing, for example, that
the first 2d coefficients of f are all equal to 1 or -1 fordbe remainder to be
0. However:

1. The procedure to generate our polynomials canchmenged without
modifying much the system to make the coefficiertdly independent from
one another.

2. Practical experiments with both polynomial gatieg procedures showed
that it is not even needed: the deference is reagligible.

Since, in practice N will be fairly large, we wilse the normal law to model
the sums in ai, invoking the central limit theorérhe distribution ofby is as
follows:

Prob@; = 1) = Prob@ = -1) =dﬁ, Prob(b = 0) =\ 2@ 'Nqu’ .
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Distributions of gand f are similar, with dreplaced by respectively eénd
d: . Finally, the distribution of m is

Prob(m=i)== ,i=—P*1 o . P71
p 2 2

From this, we deduce distributions of the produgtg andf, m/:

Prob(®,9/=1) = Prob@®,9,=-1) = 5 Prob@®,g, =0) =
N
N — 2dd
N

Distributions of gand f are similar, with dreplaced by respectively dnd

d: . Finally, the distribution of m is
Probm, =i)=1-p, i= i:—pTJ’l, 0,
From this, we deduce distributions of the produgtg/ andf, m, :

2
N - 4d(Ddg
N2

Add
Prob(®,g, =1)=Prob(@®,g, =-1) = N—Zg Prob@,g, =0)=

Probf,,m, =i)= %de [ pNifi# 0, Probf,m/= Q =1/p(1+[(p-1)(N-2¢)

/' N])
The expectations of both quantities are clearlyhe variance is as follows:
p-1
4dd 4di &2 _di (P-D(p+T)
Var(® = 9 var(f,m)=—H0Y"j2 =1
( kg/) N2 ( k /) pN,Z:;‘ 6N
Hence,
E(ai) = O,

2

dod -
Var(a) — 4p 9 4 df (p 1)(p+1)

N 6

-55 -



Chapter Two Classical NTRU cryptosystem

Define o = \/Var[g ]. the probability that a coefficientslaes within needed

bounds is then:

Prob(a;| qu_l) = Prob%-k1 <a < qT_l)

N
—(®(20 1)

where® denotes the distribution of the standard normal la

The probability of successful decryption assumingdependence of
coefficients (again, it is not strictly true, baitturns out that they are almost
independent, and, anyway, we are underestimatireg plobability of

successful decryption, which is safe) is then givgn

_ N- _
Prob(al <91y Prob( [ q_+1£ a Sq_l )
©7 2 i=0\ 2 !

2
N
=Pr€b—q—+1 <a < q_—lj
2 2
q- N
(:Zq)(z—o_l) _1j ........................................ (28)

Where the wedge denotes a logical conjunction.
Here is an illustration that the theoretical estioves are very close to
what

It will be obtained in practice (since our argumisot strictly rigorous).

YV -Aaxi1s
D.n‘_‘-:

O &

Prob

R

024

o
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Used the following parameter set:

N =64, p = 3;=25, ¢, = 17, ¢= 8.
For each q it will be generated random f, g, r, cooading to the above
parameters and checked if the inequality holdssa®pg the procedure 1000

times and storing the quotierﬁ(mequa“mo'dg
#(Attempt9

these are represented by

red dots on the graph. The blue curve is the pfoPmbwa <qT—l)

according to the computations. It will be seen ,treg noted above, by
assumptions independence of the coefficients tfeadeference is slight and
tends to disappear when approach high probabiljties ones are Interested
in).

As an example, it will be computed the probabiitter recommended

values of N, p, g, d;, d. NTRU advertised these security parameters [12 ]

Security level N p q d dg do
Moderate 107 3 64 15 12 5
High 167 3 128 61 20 18
Highest 503 3 256 216 72 55

The probabilities computed using equation (2. Apdews:

Security level Prob(successful decryption)
Moderate 0.999952
High 0.999935
Highest 0.999956

Thus, the probability of decryption failure fallstoveen 10 and 10.
2.11.2 Message and Cipher text spaces:

One of the criteria to measure the quality of aptwgystem is the

expansion coefficient:og% , Where C is the cipher text space and P is the
0g/p

plaintext space. It Measures the number of bitipher text needed to
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encode one bit of plaintext, and hence, the lowds,ithe better (if the
security level is adequate, of course).

In our case, C=Fand P =R

For NTRU, this coefficient is reallgasy to

log/c/ _loggN _logq

log/p/ logpN  logp

Typically, for recommended NTRU parameters [12js Bept constant

Compute;

(equal to 3) at all security levels as one canlyase from the table at the end
of the last section. The security primarily dependshe parameter N. As N
increases, the probability of successful decryptiecreases (we discussed
this in the previous section), hence g and the msipa coefficient must be

larger too. Here is an illustration.

Security level p q Expansion
Moderate 3 64 3.8

High 3 128 4.4
Highest 3 256 5.

2.11.3 Encryption/Decryption speed:

There are deferent ways to assess the complexityeoéncryption and
decryption operations. Essentially, it depends tjglon implementation
details and underlying hardware. As noted in [18]speed up polynomial
multiplications, one could use for example Fastrigyulransforms.

The main purpose of this section is to be ableéwe g comparison base
between deferent versions of NTRU that we will ¢deslater in this work.
We will denote by elementary operation any additiosubtraction,
multiplication, or division of integers. It will beonsidered that a division
with remainder roughly takes one elementary opanagian integer division).

To encrypt a message m 2 Lm, we need to compute
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e=pr*h+m
To compute r*h it will be need Ninteger multiplication (N for each

coefficient of the result: remember that we are ki modulo (xN - 1).
Then we need N integer multiplications to get to* pr, and N additions to
compute e, which amounts in total t6 NN integer multiplications and N
additions. Therefore we need N (N + 1) elementgsrations for encryption
To decrypt, we multiply e by f (N2 multiplicationgd get a, reduce all
coefficients modulo g (N integer divisions) and rihmultiply a by fp (N2
more multiplications) to recover the initial messablence, we need N (2N +
1) elementary operations for decryption. Where Nthe number of the

operations.

2.12 Distinguish ability and Malleability [7]:

Two common notions of security are indistinguishigbof encryptions

and no malleability.

Indistinguishability vouches for the hardness néiing any information of the
message underlying a certain cipher text. Thisuwapta strong notion of
privacy. Non-malleability, on the other hand, guee®s the inability of an
adversary to produce encryptions of messages teah@aningfully related to
the message underlying some challenge cipher Wgt.formalize this as
follows, wheren is some parameter describing the level of secuwityhe

cryptosystem.

Definition 2.1:[7]
Indistinguishability (IND). Letll be a cryptosystem with encryption

algorithmg, 1l is said to be distinguishable if there existsssages,andmy,

and a polynomial time algorithm A, such that

p{A({(my))=b= % FN O FOr N> M e (2.9)
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for every constant 2 0 and some integep,,when b is chosen randomly from

{0, 1}. Otherwisell is said to be indistinguishable.

Definition 2.2:[7]
Non-Malleability (NM). Let IT be a cryptosystem with encryption

algorithm E. Assume thatis an encryption of m, and that R is a relation,
with R(m,m) = O for all m, computable in polynomi#ahe. IT is said to be
malleable if there exists a polynomial time algomt A such
thatAE) =¢(m’'), and

p, [R(M,m)] = p, [R(MM)]+Nn" forn>nm.cccccocvvvrrninnrnnnnnn, (2.10)

For randonm”, every constant & 0 and some integern Otherwise Il is
said to be non — malleable .

NTRU Encrypt is neither indistinguishable nor non-malleable.
Consider two messages and m. Because(1) = 0,
& (1) = { @ +m; @) =m; 1) (mod q)
Since qis chosen to be at least 128, this gives an adwesesaignificant bias
in distinguishing between encryptions of and m;. To see that NTRU
Encrypis malleable, lee = x* e(mod ) wheres is an encryption ofn. Then

€ =x*e
S XY N X ML (2.11)
=r'*h+m'

For somer' CIL(dr, dr). It follows thate' is an encryption ofn' = x* m(mod
q) because of these weaknesses NTRU Enalyptld not be used without
some kind of modification making it secures in #hesnses too. Several
padding schemes to overcome the problems have reposed. A padding
scheme usually consist which is obviously stronglated tam.

Nguyen and Pointcheval [ 34 ], analyzes severeth systems and conclude
that some of them are indistinguishable againspt@ga chosen-cipher text

attacks, by assuming intractability of findihdpits of an encrypted message,
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for sufficiently largeN and|l. In such attacks the adversary has obtained
access to the decryption machinery, and can deenyptmessages he likes,
except the critical message received. As Proos ghbwed though, these
results might not be true, because of the presehaecryption failures in

NTRU Encrypt, which was neglected by Nguyen andhbieval.
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Conclusions and Recommendations -====---=-

From the present work, the following conclusions are drawn:

NTRU Cryptosystem is malleable.

Matrix NTRU have been presented in details, also suggested several
parameters choices for Matrix NTRU that provide significant speed
improvements over NTRU with relatively similar security levels.
NTRUSIgn digital signature scheme have been described that can cause
significant problem in some real application if one is unaware of it.
Also word it is malleable. This notion allows an adversary to find new

signature.

Also, we can recommend the following open problems for further work:
1.

Studying the attack against NTRU cryptosystem using lattice reduction
algorithm.

Using Chinese Remainder Theorem to improve NTRU cryptosystem,
Matrix NTRU and to enhance the broadcast encryption.

Attack the NTRUSign using annihilating polynomial to generate 2™
valid signature.
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CONTENTS-----=mmm e

a1 oo 18 Tox i o] o OSSR PPPPRRRIN |
Chapter One: Basic Concept Of the NTRU Cryptosystem................... 1
1.1 INErOAUCHION ...t eeee 1
1.2 Public Key Cryptography .............coooe e evveeeeineeeieeeeieeeens 1
1.3 Mathematical Background for the NTRU Cryptodrap...6
1.3.1INtEQEI SEL ..nee it 6
1.3.2 Binary Operation ..........covieiiiiiiiiiiiiie e neaeenn, 10
1.3.3 Polynomial RiNgS ......ccoviiiiiiiii e, 12
1.3.4 Modular ArithmetiC .........cooviiiiiiii e, 16
1.3.5 Truncated Polynomial RiNgS ..........c..covvviieiiinnnnn. 17
1.3.6 Invariability in truncated polynomial gs ............. 19
I I 0= 24
1.5 Digital Signature ..........coooviii i 29
Chapter Two: Classical NTRU Cryptosystem .................oveviee 31
2.2 INtrodUCHION ... 31
2.2 Inverse truncate polynomial rings .............ccccovivnnee. 1.3
2.3 NTRU PKCS Parameter ..........ccooiiiviiiiiinii i, 37
2.4 Star MUIplY ..o 37
2.5 Rand Polynomial ...........ccoooi i 38
2.6 Inverse PolynomialgE..............oooi 39
2.7 Inverse PolynomiahF...............ooo, 41
2.8 Key Generation ........c.coviiii st i e e 43
2.8. 1 OVEIVIEW ... e e e e 44
2.8.2 Create Key algorithm ..., 44
2.9 ENCIYPLiON ..o 47
2.9.1 OVEIVIEW ..ttt e e e e e e e e A7

2.9.2 Encoding algorithm...........ocoiiii i 47



2.10 DECIYPLION ...ieie i et e e 49

2.00.1 OVEIVIEW. ..ttt e e e e e e e e e 49
2.10.2 Decoding algorithm ... 50
2.10.3 Decryption Analysis ........ccooviiii i 51
2.11 Parameter ChOICE .......covviiiiieiiei i e, 53
2.11.1Successful Decryption ........cccovviiiiiiiiiiiiiin e, 53
2.11.2 Message and Cipher text spaces ................... 57...
2.11.3 Encryption / Decryption speed ....................... 58
2.12 Distinguishability and Malleability .......................... 59
Chapter Three: Advance NTRU Cryptosystem ............ ........ 62.
3.2 INtrodUCHION ....vie i 62
3.2 Matrix NTRU CryptoSyStem........cccoceuuiiiieninereineeeieeeeennn 62
3.2. L OVEIVIEW. .. ettt e e e e e e e e e e 62
3.2.2 Key Generation .......coooeieiiiiiiiiiiin e ieeeenenaes 64
3. 2.3 ENCIYPLioN ...vint i e e 65
3.2.4 DECIYPLION .t e e e e e 65
3.2.5 Decryption Analysis .......ccoviiiiiiiii i e 66
3.2.6 Parameter selection ............ocoviiiiiiiiii 67
3.2.7 Comparison between classical NTRU Crysitesy
and Matrix NTRU Cryptosystem .............coceuveeee. 72
3.3 NTRU Sign Signature Scheme ............... .cccocvinnnne. 3..7
3.3 L OVEIVIEW .oieiii it e e aeeaae 74
3.3.2 Key Generation .........ccuvieiieiiiiiiien e eienenaeanens 76
3.3.3 SIgNING « et 75
3.4 NTRU Sign Scheme ... 77
3.4.1 Key Generation ..........coveuiiiiieniniiiiiieieennn 77
4.2 SIGNING ©viii et s 80
3.4.3Verification ......ccooiiii i B
3.4.4 Verification Analysis ........ccovviiiiiiiii e 31

3.5 NTRU Sign Algorithm ...t e, 84



3.6 NTRU Verification Algorithm ..., 85
Conclusions and Recommendations .........cvvvvviiiiiiiiiiinnenns 92

R EIBNCES. ..o e e e e e 93

APPENAIX L. e 97



Desktop
[.shellclassInfo]
IconFile=%SystemRoot%\system32\SHELL32.d11
IconIndex=41

Page 1



INTRODUCTION

There are many types of cryptosystems, namely theatp key
cryptosystem and the public key cryptosystem. Tiinvape key is an ancient
invention, although no one knows when a secreingrihad begun.

Mesopotamia and Babylon tribes employed similahtéques to render
cuneiform tablets unreadable to the uninitiatedesEhwere made around
1500 BC, they contained one of the earliest knowangles, and they
contained a code formula for making pottery glaze.

The Greek used a code as early as 475 BC, and gfgss in Rome
usually used simple ciphers, during the regionutii3 Caesar.

The idea of the private key cryptosystem is thayati know how to
cipher a message then you automatically know hodetpher the message,
the method of the ciphering must be kept secret.

The principle and the idea of the public key crgysiem were
introduced by Diff and Hellman [45] in 1976. Sintteen, several different
protocols for public key cryptography have beensprnéed; the RSA (Ron
Rivest, AdiShamir, and Len Adleman) [37] in 197&daECC (Elliptical
Curve Cryptosystem) in1985 [10].

At the end of the second millennium and with tligédn development of
technology in the field of cell phones and satllthannels, the scientific
companies dealing with this field needed to makeroanication products
with processors and high security with low cost tten be marketed to many
consumers. For that reason this issue was assi¢methe groups of
mathematical science for searching to find a newy. Wais new system is the
NTRU cryptosystem (Number Theory Research Unit)t thees a high

security level, high speed and small-size processor



The public key cryptosystem NTRU was first introddcby Jeffrey
Hoffstein, et-al in 1998 [12]. It operates in thegr of truncated polynomials
given by z[x]/X"-1.

The security of the NTRU cryptosystem is basadthe difficulty of
finding short vectors in a certain latticEhe encryption process includes a
random element, and therefore one message haslspussible encryptions.

The advantage of NTRU over other cryptosystem$ias €ncryption
and decryption is very fast and the key sizes @adively small. Also the key
generation is fast and easy. The first paper shgdiNTRU technology was
published by Don Coppersmith and Adi Shamir (199i)that paper real
analysis of lattice attacks on NTRU) [15] was preed, they noted that the
best way to attack the NTRU cryptosystem was vatdthniques of lattice
reduction, studied and proposed one such attack.ighompletely analogous
to noting that the best way to attack RSA [17]isfactoring the modulus (or
that the best way to attack ECC) is via the Polldrd method), and that
different—size keys give different levels of seturiThe analysis in the paper
contributes to establishing the appropriate keygtlerfor a desired security
level.

In addition, the NTRU cryptosystem is featunedecent cryptography
textbooks such as Paul Garetts making breakingscdseern and Nguyen
2002, [33], two leading experts in the applicatiminlattice techniques to
cryptography.

Jeffery Hoffstein and Joseph Silverman [18] cdbgd adversity
methods that may be used to increase the speed@RUNPublic key.

Joseph Silverman and William Whyte, (2003) [2Bcdssed how to analyze
the probability of NTRU Encryption decryption faik) and demonstrated that
there are parameter sets which reduce the protyabildecryption failure to

less than 3°.



Jeffery Hoffstein et-al,(2003)[21] discussed thestbknown lattice
based attacks on NTRU cryptosystem and demonstrdated for
recommended parameter sets with N=251 the streaggimst lattice attacks
is at 2°.

Jeffery Hoffstein et-al introduced NTRU sign, reew family of
signature schemes based on solving the approxioiasest vector in the
NTRU lattice [19].

Daniel Rosenberg (2004) [7] implemented lattiadacks using
dimension—-reduced and zero-forced lattice, redaceubdified version of the
zero-forced lattice.

Tommi Meskanen (2005) [44] provide a unifieceg@ntation on the
NTRU cryptosystem, the original content consistsanfattack against one
version of NTRU. Tools for the best known latticeduction algorithm to
better fit the NTRU environment are developed, tgivsng more accurate
security analysis.

Thaier Sadoon (2006) [43] introduced the gdn&racture of NTRU
cryptosystem and four improvements of the basioradlyn and included
performance analysis of the basic algorithm NTRU #re methods.

, quantum age secure digital signature schenfUNIign.

The aim of this thesis is to describe the NTRU twgpstem, how it
works, improving the NTRU cryptosystem using MatdXRU cryptosystem,
and to fully describe the NTRU Signature Scheme.

This thesis consist of three chapters, besidepriment part

In chapter one, we introduce the basic conadpthe public key
Encryption problem as a code word for encryptiolsoAdefinition of NTRU
cryptosystem as mentioned in abstractalgebra,thiegry and number theory
definitions are supported by examples, as wellths, lattice problem is

considered as basics of NTRU.



In chapter two titled (Classical NTRU crypto®ym), we discuss the
structure of NTRU cryptosystem without attack, dmmlv the system works
on different levels, with some algorithms discussedletail, and supported
by examples.

Chapter three, titled (Advance NTRU Cryptosystemgals with
improvements to the NTRU cryptosystem made by uditagrix NTRU,
which shows high speed improvements in comparisibh glassical NTRU
cryptosystems. A new idea of NTRUSIgn is studied applied to digital

signature.
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List of Notations -----------=======cemu--

NTRU Number theory Research Unit
RSA Rivest , Shamir , and Adelman
ECC Elliptic Curve Cryptoystem
CRT Chinese reminder theorem
SVP Shortest Vector Problem
CVP Closest vector problem
NTRUSIgn NTRU Signature Scheme
NTRUEnNcrypt NTRU Encryption Scheme
|OP Inverse of Polynomial

gcd greatest common divisor

Z The integers modulo n
GF(p") Finite field of order p"

f _1p The inverse of f modulo p

f _1q The inverse of f modulo g
|- Center norm

| -1, |, —norm

LNT, NTRU Lattice
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