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Abstract

The use of fractional orders differential and integral operatorsin
mathematical models has been increasingly widespread in recent years.
The non-linear multi-term fractional (arbitrary) order differential
equation has been considered. Its solution existences and uniqueness are
proved by transform it into a linear system of equations. Also, stability
theorem for such a differential equation is presented (by transform it
into an ordinary differential equations, aswell as, different examples, are
presented to verify our stability results.
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Chapter One Some mathematical concepts

1.1 I ntroduction

The concept of non-integer of integration can laedd back to the
genesis of differential calculus itself: The phdpser and creator of modern
calculus G.W.Leibniz made some remarks on the megaand possibility of
fractional derivative of order 1/2 in the late 1¢#mtury. However a rigorous
investigation was first carried out by Liouville B series of papers from
1832-1837, where he defined the first out castrobperator of fractional
integration. Later investigation and further deypsh@nts by among others
Riemann led to the construction of the integralddafiemann-Liouville
fractional integral operator, which has been a ablel cornerstone in
fractional calculus ever since [Munkhammar, 2005].

Prior to Liouville and Riemann, Euler took the fistep in the study of
fractional integration when he studied the simp@secof fractional integrals
of monomials of arbitrary real order in the heucisashion of time; it have
been said to have lead him to construct the gammaetibn for fractional
powers of the fractional [Lavoie , 2000].

An early attempt by Liouville was later purified the Swedish
mathematician Holmagren, who in 1865 made importantributions to the
growing study of fractional calculus.

Today there exist many different forms of fractipméegral operators,
ranging from divided-difference types to infiniters types, but the
Riemann-Liouville Operator is still the most freqtlg used when fractional

integration is performed [Samko, 1993].
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There are many interesting applications of fraalooalculus, for
example in physics it is used to model anomaloufusion and in
Hamiltonian chaos fractional partial differentiauations can be used
[Meerschaert, 2004].

Other applications to physics involve fractional amanics and
fractional oscillators [Achar, 2001].

Applications of fractional calculus in general adgmpear in speculative
option valuation in finance and are related to &b leeavy tails in electrical

engineering [Meerschaert, 2004].

In this chapter we give the definitions of the R&m-Liouville
fractional integrals and fractional derivatives @rfinite interval of the real
line and present some of their properties in spatesummable and
continuous functions. More detailed information mdpe found in
[Munkhammar, 2005].
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1.2 Fractional calculus

This section presents some of the most basic apdriant concepts in
fractional calculus which are necessary for undeding the subject of

fractional calculus.

Gamma and Beta Functions [Oldham, 1974]:

One of the basic notions in fractional order ddfgial equations,

which are necessary in calculating and proving soeselts in fractional
derivatives are the gamma and beta functions.rSaddition, these functions
play an important role in physical applications.

The basic definitions of gamma function of a pwsitinteger nis

defined by the following improper integral:
r(n = [x"edx
0

It is easily seen that the following properties aatisfied on gamma

function.

1. If n=1/2,then I‘(%)z /7T, which is easily to prove by considering:
r(n) = j "l *dx
0
And letting x = t? then dx = 2tdt, that lead's to

< 2 < 2
r(n) = j {2267t gy =2j {21t g
0 0

Putn =%, we have
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rit)= zjtoe“zdt =2| e at
0 0
Therefore:
R (y24 2
[r&N% =4[ [e Y Ddxay
00

where
X =r cosfd
y =rsingd
dxdy =rdrd&

7T/ 200 5
=4j je‘r rdrd@
00
=77

Which is equivalent td (1/2) = /7.

2. Another form of gamma function is given by:
< 2
rn=2[y*" e dy
0

Which also can be proved easily by lettirg yzand substituting in general

form of gamma function.

Another type of functions is called the beta fuofiwhich are defined
by the following integral:

1
A(mn) = jxm‘l(l— x)"Ldx, n,m>0
0

Similarly, as in gamma function, some propertias be seen in beta

function, which can be summarized as follows:
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1. B(m,n) = B(n,m),Since if we letx =1-t,then dx = —dt and hence using

the definition of beta functions:

1
B(m,n) = j xML (1 x)"Laix
0
0
= - j L-t)™ 1"t
1

1

= I @-t)™ "t
0

= B(n,m)

I.e., beta function is symmetric.

2. Another form of beta function is given by:

nl2
A(mn) =2 j sin?™ 1 gco"19de
0

Which is easily to prove by considering the transfation X =sin’ 6 and

hencedx = 2sindco<ddéf and therefore:

nl2
B(m,n) = j sin?™29(1-sin? §)"12sindcosddd

in?" 2 gco" 2 gsinfcosfdd

0
/2
=2 Is
0
T2
=2 j sin?™1gco"19de
0
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4. An important relationship connecting between ganama beta functions
Is given by:
_F(mr(n)

(m+n)

A(m,n)

Which also could be proved easily, since:

< 2
r(m)= ZJ x2M 1™ dx
0

r(n) = Zj y2”_1e_y2dy
0

Therefore:

r(mr(n)=4 I j x2M=1y 20100+ gy
00

And using polar transformation, the last doublegnal takes the form:

72{200

2
F(mr(n) =4 [2M2n=2 M1 g5in2" 1 g~ rdrdg
00
7T{20<: ,
=4 | [r2™21coM™ L gsin® 1 ge™ " rdrdg

00

l2 (%)
=2 J.coszm_1 ﬁsinzn_lﬁdﬁJ[ZIr2(m+”)_1e_r2er
0 0
= B(m,n)l"(m+n)

Hence:

_F(mr(n)
- (m+n)

A(m,n)
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1.3 Definitions and Theories [Samko, 1993]:

Riemann's modified form of Liouville's fractionategral operator is a

direct generalization of Cauchy's formula for afola integral

QD — X

2 1 % @)
£ if(xn)dxldxzmdxn_(n—l)!i(x—t)l‘” dt. (1.1)

By n-fold here means that the integration is de@ibp-times. As an

example letf(x)=x, n=3 and a=0 (To remove residue-terms) then (1.1)

becomes
X X1 X2 1 X t
[ | [xadxadxodx == | o, (1.2)
00 0 25 (x-t)

and by integration one gets

X 4
2t aw=X (1.3)
2!O(X_t) 4l

Which gives the 3-fold integral of (x) = xwhich equals the LHS of
(1.2). Since(n-1)!=T (n), Riemann realized that the RHS of (1.1) might have

meaning even when takes non-integer values. Thus perhaps it wagalatu

to define fractional integration, denoted by as follows.

Definition (1.1) [Samko, 1993]:

If f(x)OC[a,b] "all continuous functions ifa,b]" then

X
19109 =— [ (1.4)

T(@)) (x-pL

where— oo < g < m,is called the Riemann-Liouville fractional integral

of ordera . In the same fashion fé a <1, we let
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X

1 olI (M g 05

a = _
Da f(X) = ri-a) an(x—t)a

Which is called the Riemann-Liouville fractionalrd&ative of order .
As an example of fractional integration and défsiation one can take
a=1/2 which is called the semi-integral if used 1M and semi-derivative if

used in (1.5). If takingf (x) = x and lettinga =1/2 in (1.4) then one obtains:

X

1 t
|2y - dt. 1.6
0 r(1/2)£(x_t)1/2 o

The integral may be found in [Samko,1993], heneerésult will be:

|12y — 1 3/2 _ 4 x3/2 1.7)

0 *Trera 3
N/

Since I (5/2) =Tﬂ. The fractional derivative forf (x) =x anda =1/2

(1.5) will be becomes:

X
pli2,- 1 I t q=9 12 2 1/2 (1.8)

= = X=——X ,
0 ra-1/2) 7 (x-pt2 " dx °

N

0
Since I 3/2) =/ /2.

The connection between the Riemann-Liouville fiawaail integral and
derivative, as Riemann realized, be traced badkeosolvability of Abel's
integral equation for arg< a <1,

X

1
””’Hmi

@(t)

(X_t)l_adt x>0, (1.9)
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>0
Where ®(t) ={ (@)
0

<0

Formally equation (1.9) can be solved by changintp t andtto s
respectively, further by multiplying both sidestbke equation by(x—t)™

and integrating of (1.9) with respect to we get

X t X
J‘ dt J‘ cD(S)CIS J- f(t)dt. (1.10)

=T
L(x-1) 5 t-9 7 (a)a (x-t)7

Interchanging the order of integration in the lbeind side by Fuibine's

theorem we obtain

[o()ds| dt = (@] O

. 1.11
(x-1)% -9 S (x-1)7 (1

a S
The inner integral is easily evaluated after theange of variable

t =s+7(x-5s) and use of the formulae of the beta-function:

Jx'(x—t)'” (t—s)“dt = } r’ta-r)?dr

(1.12)
=L(al-a)=T(a)l A-a).

Therefore we get

° 1 F f@)dt

(0) = ) 1.1

Jo@ds= o me (19
Hence after differentiation we have

D(x) = 1 dj f(t)dt (1.14)

CT-a)dtl (x-1)"
Thus if (1.9) has a solution it is necessarily givmy (1.14) for ang<a <1.
One observes that (1.9) is in a sensextloeder integral and the inversion

(1.14) is thea -order derivative.
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A very useful fact about the Riemann-Liouville ogiers is that they satisfy

the following important properties of fractionategrals.

Theorem (1.1) [Munkhammar, 2005]

For any f 00C[a,b]the Riemann-Liouville fractional integral satisfies

191850 =12*P1(x) (1.15)
for a>0,5>0.

Proof

The proof is rather direct, we have by definition:

@ Bem. 1 T dt ¢ f
ala s F(a)r(ﬁ)j (x—t)l_ai(t ~uyl-p o

and sincef (x) O C([a,b]) we can by Fubini's theorem interchange order of

a

integration and by setting=u + s(x —u) we obtain

Bern_ 1 T () _ i a+p
19 f(x)_r(a_l_ﬁ)j(x_u)l_a_ﬁdu—lg f(x).

a
The Riemann-Liouville fractional operator may in ngacases be
extended to hold for a larger setagfand a rather technical detail is that we

denotea =[a] +{a}, where[a]denotes the integer partaf and{a} denotes

the remainder. This notation is used for convereebserve the following

definition.
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Definition (1.2) [Samko, 1993]

If > 0 is not an integer then we define

_ qla]

a {a} ¢ — 1-{a}
g 1= S PR = 1O (1.16)
Thus
n X
pdfpg=—r L [T (1.17)

r(n-a)ax"; (x-t)2 "1’

a
for any f OC“™*([a,b]) if n=[a]+1. if on the other hand < O then the

notation

DY f=1,9f, (1.18)
may be used as definition.

Proposition [Munkhammar, 2005]

DZ f(x) exists for allf 0C®)[a,b Jand allxO[a,b] (for all

f 0clal*1a p] and alk O[a,b] ) if a< 0 (@> 0), respectively.

Proof:

write n =[a] +1 and apply Taylor's formula with remainder:

_n—lf(k)(a) K 1 ¢ f(n)
f(t)_é, @ +(n—1)!£(t—s)”'1

ds, Ot O[a,b].

Substituting this into the definition @5 f (x gnd simplifying the integrals

we obtain

AR
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dn n-1 (k)(a)
(Z . T(k+2-{a)

N 1
M(n+1-{a})

IJX _ a) k+1-{a}

DS f(x) = (1.19)

j £ (M (g)gx - )" gg).

Clearly, this n-fold derivative can be carried out for al[[a,b]. in

particular the integral is unproblematic sint&’ 0 C([a,b ai)d since the

k
exponentn—{a} is larger tham-1, so that%(x— s)"1 is integrable for
X

all k =0,2,...,n. This proves our claim.

For convenience in the later theorem we detieefollowing useful space.

Definition (1.3) [samko, 1993]

For a> 0 let 15[a,b] denote the space of functions which can be

represented by an Riemann-Liouville -integral adeara of someC[a,b] -
function.

This gives rise to the following manifesting theore

Theorem (1.2) [Munkhammar, 2005]

Let f OC[a,b]anda > 0. In the order thaff (x) 017 a 9(x Jor some

g C[a,b], it is necessary and sufficient that

a 7f0C"[a,b], (1.20)

wheren =[a] +1, and that

VY
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k
[ d f(x)J =0, k=012,...n-1 (1.21)
dx* x=a

Proof
= First assumé (x) 015 [a,b ;]then f(x) =1 ag(x)for someg L1C[a,b] .
Hence by (Theorem (1.1)) we have
la Tf0)=1a 713 9(x) =15 9(x)

X

_ 1 | g(t)
(=D (x-t)t™"

X X Xp-1
:I I jg(xn)dxldxz...dxn

a
This implies that (1.20) holds, and by repeatetedehtiation we also see that
(1.21) holds.
[0 Conversely, assume thatl1C[a,b] satisfies (1.20) and (1.21). Then by

Taylor's formula applied to the functibf™ f , we have

n-1

~9) "4 Ot O[a, b.

In O'f(t) J. |na() (_1)'
Let us writep(t) = j—: | 279 £ (t); then note thay 0 C[a,b] by (1.20). Now,
t

by Definition (1.1) and (Theorem (1.1)) the abogkation implies
la Tt =131 =12~ 71540,

and thus

'Y
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|Q‘a(f—|g¢)so.

By a general fact about uniqueness of any solutdgkbel's integral

equation, and note that we havea > 0, this impliesf =15 ¢, and

thusf O15[a,b]

Theorem (1.3) [Munkhammar, 2005]
If @ >0 then the equality

D15 f(x) = f(X) (1.22)
holds for anyf DC[a]+1[a,b ] however the equality

19DS f(x) = f(X) (1.23)
holds iff satisfies the condition in Theorem (1.2), otherwise

n-1
12D f()=f()-
k=0

(x=a)
Ma-k) ax" k2t

-k-1 -k-1
i d” (I Il (x)) (1.24)

holds.
Proof

By Definition we have

n X t
Dg ac 1 d j dt f(s)ds

- : 1.25
a F(@)r(n-a) gx" (X_t)a—n+1a(t _gla (1.25)

a
Since the integrals are absolutely convergent waogeFubini's Theorem
and interchange the order of integration and &ftafuating the inner integral
we obtain

1 d" ]‘ f(s)

DY19f =
TETM) ok (x-9" L

ds. (1.26)

V¢
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Then (1.22) follows from (1.26) by Cauchy's form(dal). Sincef in (1.23)

satisfies the conditions in Theorem (1.2) ahd]C[a]+1([a,b it ipllows
immediately by (1.21) that (1.22) will hold (Becauthe residue terms of
integration will vanish). If on the other hand anyunction

f DC[a]+1([a,b]) does not satisfy the condition (1.21) given in Tieeo
(1.2)

the residue terms out side the integral will nslagpear like in (1.22), but as
integration is deployed (1.24) is obtained by irtcrc
Perhaps the second part of Theorem (1.3) is whatesurprising, and this

gives rise to the following interesting corollary.

Corollary [Munkhammar, 2005]

Leta >0,n0Z" andf (x) OC“*™([a,b]). Then

_ D (xg) K
f(x)—k:;n r?a+k+1) (x=%0)7 X + Ry (%), (1.27)

for alla< x, < x<b,where

Ra(¥) =15 ""Dg " (x) (1.28)

is the remainder.

One obtains (1.27) by deployirg to D5 in (1.19) and rearrange some.
Heuristically when lettingh and mtend to infinity, and iff is a sufficiently

good function one obtains the Taylor-Riemann exjmenswvhich is a

fractional generalization of Taylor's theorem. To@cept of studying the

Vo
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Riemann-Liouville operator fora =21 leads us to the following useful
theorem

An interesting property of the Riemann-Liouville evptors is that
certain non-differentiable functions such as Werass-function and
Riemann-function seem to have fractional derivatweall order$0,l], see
[Faycal, 2001] [Samko, 1993] for investigations ram-differentiability and
its relation to fractional calculus. This adds e fproblem that the relation
between the ordinary derivative and the fractional
derivative is not entirely obvious, but the followgi theorem might give a

picture on some of their covariance.

Theorem (1.4) [Munkhammar, 2005]

If f DCl[a,b], f(a)=0 anda 0[0J]], then DY f(x Js non-negative iff is
increasing orja, x].

Proof

Since fDCl[a,b e can deploy (1.19) if one lets=[a]+1=1then it

reduces to two terms and appears likes:

(@ (e,

a —
Pa 100 ri-a) ri-a)

)j(f'(s)(x—s)‘”ds (1.29)
a

SincelN(1-a) >0 for all a0[0,]] and x>a and then since the fact that
f(a)=0 was given, we conclude that the first term is negative. This

leaves us to prove that the integral in the sectmth is non-negative.

Observe thatf'(s) = 6n[a,x]since f was increasing. Furthéx-s)"? > 0

Y 1
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for sO[a,x]which implies that the integral is non-negativeisTbompletes

the proof.

1.4 General Properties [Samko, 1993]:

In this subsection, those properties of diffeegral operators will be

examined which we might expect to generalize otassformulas for
derivatives and integrals. It is those propertigsich will be provide our
primary means of understanding and utilizing tlaetional order differential
equations:

Upon those properties are the following:

(1) DZcf (x) = cDY f ().

Proof:
n X
DYcf (x) = 1 d (x—y)""9 7L (t)cdt
F(n-a)dx"y
n X
SO . (x=y)""7 L (t)dt

F(n-a) dx" g
=cDY f(x), when a > 0.
(2) DR{ f1(x) + f2(x)} = DY f1(x) + Dy f5(x).
Proof
1 d" g
F(n-a)dx" g

X

[ (=™ a0+ (-9 )t
0

DE{ f1(x) + f2(x)} = (x= )" () + fo ()t

_ 1 d"
F(n—a) dx"

ARY%
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X

-t d [(x=y)"" 772, (t)dt +
r(n-a)d" )

X

L 4% ey,
r(n-a) oy 2

=Dy f1() + Dy f2(x).
So, from propertie§l) and(2), we can generalize the fractional differential

to be:

szzn:ci fi (X) :Zn: ¢i Dy i (X)

=1 i=1

Which is called the linear property.

YA
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Chapter Three stability of fractional
Differential equations

3.1 I ntroduction

Stability is an asymptotic qualitative criteriohtbe control circuit and
Is the primary and necessary condition for the exrfunctioning of every
control circuit. The existing methods developedaofor stability check are
mainly for integer-order systems. However, for fi@cal order systems, it is
difficult to evaluate the stability of linear systeby simply examining its
characteristic equation either by finding its doamhroots or by using other
algebraic methods. At the moment, direct checkhefdtability of fractional
order system using polynomial criteria (e.g., R&uthr Jury's type) is not
possible, because the characteristic equationecdybtem is, in general, not a
polynomial but a pseudopololynomial function ofdtianal powers of the
complex variables.

Problems of stability appeared for the first timaemechanics during the
investigation of an equilibrium state of a systelnsimple reflection may
show that some equilibrium state of a system aeletwith respect to small
perturbations, where as other balanced stategugjthavailable in principle,
cannot be realized in practice.

In this chapter, some important basic concepth@fttability of the
system of integer order differential equations@esented. A theorem on
identifies the stability of the system of fractiboader differential equation
(2.1) and (2.2) is presented with its proof.

Yo
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3.2 Basic Concept and Definitions [Rao, 1980]
Consider the following ordinary differential equais
X' = F(t, X) (3.1)

With the initial dat(t,) = x,, whereF(t, x) with ncomponents is a real

continuous vector-valued function defined on a donia in RV plane.
Let x(t) = x(t,t,, X, )be a solution of (3.1) through the initial pofit X, , )
existing to the right df = ONow we define the various of stability for the

solution x(t,t,, X, ) of (3.1) [Rao, 1980] [Sanchez, 1983].

Definition (3.1) [Matignon, 1996]

A solutionx(t) of (3.1) is said to be stable if for eagl» O there exists a

positive numbe = d(x,,& $uch that any solutioR = x(t,t,,X,) of (3.1)

satisfies thax(t) — x(t)[ < &,t 2 t, whenevex, — x,| < J. For example in 2-

deminsional spad@z, our can see the behavior of stable trajecto(¥ig.

(3.1)).

X(t ’tO'_ 9

Fig. (3.1)

A\l
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Otherwise the solution x(t) is said to be unstable. For example in 2-

deminsional spad@z, our can see the behavior of unstable trajectory i
(Fig. (3.2)).

10:%0)

Fig. (3.2)

Yv
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Definition (3.2) [Matignon, 1996]
A solutionx(t)is said to be asymptotically stable if it is stabiel if there

exist a numberd, > Such any solutiorx(t) of (3.1) satisfies the condition

that |X(t) = %,(t)| - Oast — o whenevefX, - x,| <J. For example in 2-

deminsional spadéz, our can see the behavior of asymptotically stable

trajectory in (Fig. (3.3)).

X(t,t0, %o) ‘

Fig. (3.3)

YA
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Geometrically this definition has the following enpretation
[ Matignon, 1996]:
3

We consider the spher{ xj2 = & with the arbitrary small radiués . If the
=1
3
motion is stable then one can find another sp@v%j =0, with radius
=1

JJ ,such that starting at any poiM inside or on the surface of the-

sphere, the image poir¥l will always remain inside the -sphere, never

reaching its external surface (Fig. 3.4)

~\

\/]

Fig. (3.4)
If the perturbed motion is unstable, then irrespectof how close the
reference origin the poinMymay be, in time, at least one trajectory of the
reprentative pointM will cross thed-sphere from inside to out side. From
practical point of view the stability of the unpetted motion means that
when the initial perturbations are small enougle prerturbed motion will

defer from unperturbed motion by Avery slight ambutowever, if the

AR
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Unperturbed motion is unstable then the perturbedam will deviate from

it, no matter how small the initial perturbationyrize.

3.3 Stability of Linear System [Braur, 1970]

First it's often a useful trade-off to replaceféedential equation of

order higher than one by a first-order system atkpense of increasing the
number of unknown functions. This is done in a ukefy; for example,
consider the scalar nth order nonhomogeneous lorearary differential

equation

x4+ oy x4+ g (X + P (D)X= g (1) (3.2)

herex = x(t) is unknown scalar functiorg(t) and p; ¢ )for (i =1,....n) are

given continuous functions.

By letting

X=X - X=X =X
Xo =X - Xo =X = X3
X3 — XII N XI3 — XI" — X4

Xn = X" i =xW == (€)%, == Proa(®)Xo = Pa ()X (1) + g (t)

We can easily show that equation (3.2) is equivakenthe 1% order

nonhomogeneous linear system

X' = A(t)x + G(t) (3.3)
Where
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0 1 0 0
0 0 1 0
At) =
0 0 0 0 1
“Pn(t)  —Pp-2(t)  —Pn-2(b) = py(t)
and
0
0
G{t)=| :
0
g(t)

And equivalently system (3.3) could be written aléofvs

X = (A+B(t))x+G(t) (3.4)
010 0
0 01 0
A=|: 0 O 0],
0 0O 0
0 0O 0
0 0 0 0
0 0 0 0
G() = : 0 0 0
0 0 0 0
=Pn(t) —Pn-2(®) —Pp-20) -+ —pi(t)

)
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Where A is nxn constant matrix,B(t)is nxn continuous matrix for

0<t <o andG(t) is nx1 continuous vector function fA¥<t <co

If G(t) equal to zero then we get the following homogeniousar

system
X' = (A+B(t))x (3.5)
3.4Theorem(3.1)

The solutiony(t) of
D"x(t) = f (t,x(t), Dx(t), D2x(t),...,D™x(t)), t >0 and

DIx(0) =0, j=012,...n-1
Is stable iffa,]+1<n .

[a,]+1=k, 1=12,...m

Proof

The non linear multi fractional (arbitrary) ordeli(ferential equation

(2.1) can be rewritten as
D"y(t) = ciDImy(t) + caDIMLy(t) + ..+ ¢ DILy(t) + y(t)  (3.6)
Using the definition:

D% y(t) = | ki —ai y(ki) (t),

tki—ai—l
T(k-a)
_ 1 1 y

(ki —a;) 7

y9 )

“ (1), ((k —a; -1)<0)

Y
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Sincda,,] +1<n, we can renamg& =1,....n— then (3.6) becomes

yM (@) +a )y "TH () +a (1) y "2 (1) (3.7)
+..t+ta,(t)y'(t)-y(t)=0
Where

1 1
F(k, —O'i) tai +1-k

aki (t) =-

The substitution

X =Yy
X, =Y
X3 — y"

_ (=2
Xn—l - y(n )
X, =y

Transforms (3.7) into an n-dimensional first orlileear homogeneous system

X' = A(t)X, (3.8)
Where
0 1 0 0 0
0 0 1 0 0
AD=|: z J (3.9)
0 0 0 0 1
1 an—l (t) an—2 (t) an—3 (t) al (t)

Is a given matrix function and

X(t) = (4 (1), %, (1) = (YO, Y'(©),., Y (1)

is an unknown vector function.

R
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first, we must prove that all solutions of (3.8¢ dounded. The system (3.8)
can be written as
X =(G+H(t))x (3.10)

Where

G= : ,
0 00O 1
1 00O 0
0 0 0 0 0
0 0 0 0 0
Ht=|: : : :
0 0 0 0 - 0
0 An-q (t) An-2 (t) an-3 (t) -] (t)

Treating H (t)x(t) an inhomogeneous term and applying the variation o
constants formula, we find that every soluti(h) of equation (3.10) satisfies

the linear integral equation
t
x(t) = y(t)+J'q>(t—s)B(s)x(s)ds, (3.11)
0

where y(t) is the solution ofx’ = Gx such thaty(0) = x(0) = x, and @ is the
matrix solution of®’ = G® with ®(0) =1.

We know that any solutio(t) of X' =Gx can be expressed as

y(£) = ®(t) X%,

Ye
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Now, since alla,, { )be continuously differentiable function for t>Chén all

the solutions ofx' =Gx are bounded (by theorem 4.3.1 P (151) [Rao, 1980])
Let

C, = max(stijopﬂy(t)u,stijopﬂCD(t)H).

Hence, from (3.11), we have
t
X e+ [[HE)xS)ds
0

By (Gronwall-Reid-Bellman inequality) theorem [R&®80], we obtain for
allt=0

t o0
[x()] < c1 exples [[H (s)]ds] < ¢ expley [[[H (s)]ds]
0 0

It is clearly thatH (t)is continuous matrix fot = 0,satisfying either of the

conditions
IH()| - 0 as t - o (3.12)
t
[IH(9)]ds < (3.13)
0

Therefore, |x(t)| =M <co.

That means all solutions of (3.10) which is equewalto (3.8) are bounded.
Then by the definition of the stability
If O>0, then

Yo
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[x(t,t0, Xg) = x(t,tg, X0)|
=@ t)(Xo = x0)|if X0 = Xo| < O
< M|%o = Xo||
<MJ,let O=Mo

<[]

Hence all the solutions of (3.8) are stable.

3.5 Examples: -

We are consider 6-different examples accordingdifferent between
the fractional order derivatives, and showing hoe uge the definition of
Riemann-Liouville derivative to obtain an ordinamgteger differential

equation with variables coefficients.

Example (3.1)

Finds the stable solution of the equation

y@ ) =y (1) +3y @7 (t) + 10y(t) (3.14)

vy ©=0

with a; —a;_, = constant for all =0,1,2

Solution:-
D3y(t) = (DY +3D %) y(t) +10y(t) (3.15)
By using the definitions (2.1) and (2.2):

1
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D y(t) =%y(k‘)(t), ki =[a;]+1
i=12,...n-1
ki <n, n=3

D17 = {2-17-1 @

YO =517 =17 (t)

_ {~07 SO
(0.3

:F(Tl)t‘”y(z) ®, (3.16)

07 t1—0.7—1
D% y(t)=———

y) ra-07)”
t—0.7

r 03)

(t)

y'(t)

=———7 Y, (3.17)

Substituting (3.16) and (3.17) in (3.14), we get

Lo.? y'(t) +10y(t) (3.18)

1
yO M) =— - yP )+
- [ (03)t

I (03)t
The substitution
=y  SWN=Y =Y
Y2=Y = VY2=Y' =Y3
y3=Yy' =VY3=Yy"
Transform (3.18) into an 3-dimensional first orieear homogeneous

system

Yv
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y3 = y3 + yo +10y
roat® ° roaro”’ Tt
Y' = Ai)Y (3.19)
Where
0 1 0
At)=| 0 0 1
10 ° 0.7 - 0.7
roat*" o3t

The system (3.19) can be written as:

Y =(G+H()Y, whereG+H(t)=A(t)

0 10
G=/0 0 1]
10 0 0
0 0 0
H(t)=|0 0 0
0 3 1
roa3t®" roats’

Gis 3x3 constant matrixH (t) is continuous matrix dat> 0, and satisfies

the condition
H®)| -0 ast -

So the solution of (3.19) is stable.

YA
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Example (3.2)

Finds the stable solution of the equation
yO ) =y® ) + y*? ) + y(t)

y(i) 0)=0

with a; —a;_, = constant for all =0,1,2,3

Solution: -

D*y(t) = (D* +D*)y(t) + y(t)
By using the definitions (2.1) and (2.2):
DTy =y, K =[a]+1
Mk —a;) | |
i=12,...n-1
ki<n,n=4

3251

25,4y — L ®
D= y(t) r(3_2.5)y (t)

t 05

— 3
ros” Y

1
==y,

T

2151

15 0y — L @
Dy(t) re-15" (t)

t -05

_ @
ro5”

Y4

(3.20)

(3.21)
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Substituting (3.21) and (3.22) in (3.20), we get

Yy (1) = % yo ) +% Yy (1) + y(t)

The substitution

Yi=Y =YY =Y,
Yo=Y =Y, =Y =y,

n

Ys=Y' =Y3=Y'=y,
(4)

m

Ya=Y" =Y, =Yy

stability of fractional
Differential equations

(3.22)

(3.23)

Transform (3.23) into an 4-dimensional first ortieear homogeneous

system

, 1 1
y4=\/Hy4+\/Ey3+yl

Y' = At)Y
Where
: 1
AT G 47
o0 0 1|
Ya L0 1 1 | Ys
Ya Jmt Jmt \Ya

The system (3.24) can be written as:
Where
Y'=(G+H()Y, whereG+H(t)=A(t)

(3.24)
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vi) [(0 100 (00 O 0y
a 000100(1’ (1)y3
va) ({1 000 |%% 75 7 lva
Where
0100
0010
G = ,
000 1
1000
00 0 O
00 0 O
HO=lo0 0 o 0
1 1
00 —— =
I Im

Gis 4x 4 constant matrixH (t) is continuous matrix at> 0, and satisfies

the condition

So the solution of (3.24) is stable.

Example (3.3)

Finds the stable solution of the equation
yO ) =y 1) +y O 1) + y @ 1) + y(t)

y(i) 0)=0

with a; —a;_, = different arbitraries constants for ak 0,1,2

&)

(3.25)
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Solution:-
Dy(t) = (D™ + D% + D*)y(t) + y(t)

By using the definitions (2.1) and (2.2):

ki—aj-1
D y(t) :ﬁyw), k =[a,]+1

1=12..n-1
ki<n, n=3

L5 t 2151 -
Dy(t) =—— t
y(t) re-15" (t)
t—0.5 @
=—— vyt
ros)’ ®

1
~Jmt

y@ ().

+071

ra-o07)°

t—O.?
r 03

-1
t%r (03)

D7y(t) = '(t)

y'(t)

y'(t)

¢y

stability of fractional
Differential equations

(3.26)

(3.27)
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+03-1

03 —_ t '
D wo~ﬂ;3§ym

t03
“ron’l

I TN
t%°r (0.7)

‘(t) (3.28)
Substituting (3.26), (3.27) and (3.28) in(3.25), g&t

y"(t) = % y(t) + y(t) + Y1)+ y(t)

t%3r (07) WW@@

)Y'(®) +y(t) (3.29)

Wm—jzﬂ%)(%rmn Okma

The substitution

i=Y =S =Y=Y,
Yo=Y =Y, =Y' =y;3

y3=Yy' =y3=Yy"

Transform (3.29) into an 3-dimensional first orieear homogeneous

system

' 1
ya(t) = \/7 ys(t) + (togr ©7) t°-7r (0.3))3/2 (t) + y, (1)
Y' = Ai)Y (3.30)
Where

¢y
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At) =

o O O

1 1
+

0

1
( ) =
t%r©07) t%r@©3 .t

The system (3.30) can be written as:
Y'=(G+H())Y, whereG+H(t)=A(t)

010
G=[0 0 1|
100
0 0 0
H(t)=|0 0 0 |
1 1 1
0 ( + )
t%r 07 t%r@©3° +mt

Gis 3x3 constant matrixH (t) is continuous matrix d@t> 0, and satisfies
the condition

So the solution of (3.30) is stable.

Example (3.4)

Finds the stable solution of the equation

Yy (1) =y ) +5y 4 (1) + 6y O () + 2y() (3.31)

y(i) 0)=0

with a; —a;_, = different arbitraries constants for ak 0,1,2,3

123
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Solution: -

D4y(t) = (D28 +5D12 +6D %O) y(t) + 2y(t)
By using the definitions (2.1) and (2.2):

ki—aj-1
D y(t) :ﬁyw), k =[a,]+1

i=12,...n-1
ki<n, n=4

)8 t3—2.8—1 3
D"y(t) = ———— t
y(t) ra-28” (t)
t—O
102

:Fﬁéﬁﬁgy®“) (3.32)

———yO)

2-12-1

12,04y — | )
D™y(t) re-12)” (t)

t -02 (2)()
“ro8’

—————(” 3.33
t°2r(08) 0 (5:39)

0
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06 tl— 06-1
D™ y(t) =

ra-oe)

t~ 0.6
“roa W
1
1981 (04)

y'(t) (3.34)
Substuting (3.32), (3.33) and (3.34) in (3.31),ge¢

@p=_ 1 0 > y@m+— 8  yiy+10
v F(O.2)t0'8y (t)+t0'2F(0.8)y (t)+t°-6r (0.4)y(t)+ YO

(3.35)

The substitution

Yi=yY =S =Y=Ys
Yo=Y =Y, =Yy =vy3

Y3=Y' =Vy3=Y'=y,
y@

m

Y4=Y"' =Yy4=

Transform (3.35) into an 4-dimensional first orieear homogeneous

system
V() = ya () * ——— Y3 (t) * ——— Y, (1) +10y5(0)
ro2)t° r©08)t° r04)t°
Y' = AQ)Y (3.36)

Where

€1
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0 1 0 0
0 0 1 0
Alt)=| o 0 0 1
10 6 5 1
roHt% rost® ro2t°8

The system (3.36) can be written as:
Y'=(G+H()Y, whereG+H(t)=A(t)

0 100
0 010
G= ,
0 00 1
10 0 0 O
0 0 0 0
0 0 0 0
H() =0 0 0 0 )
0 6 5 1
roat%® roat®? ro2)t°s

Gis 4x 4 constant matrixH (t) is continuous matrix at> 0, and satisfies

the condition
IH()| - 0 as t - o

So the solution of (3.36) is stable.

1Y
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Example (3.5): -

Finds the stable solution of the equation

YO =2y +yEPm+3y 1)+ v (3.37)
y (=0

with a; —a;_, = different arbitraries constants for al 0,1,2,34

Solution: -

Dy(t) = (2D3* + D %% +3D™) y(1) + y(t)

By using the definitions (2.1) and (2.2):

ki-aj-1

D y(1) =ﬁy<ma), k =[a]+1
i=12,...n-1
ki <n, n=5
34 t4—3.4—1 @
D>"y(t) :my (t)
S0 @ (3.38)
[ (0.6) '
-1 en
r (06)t% 0

EA
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t3—2.4—1
(3-24)
t04 (3)
F(06)y "

1
=Y.
r(06)t™

D*4y(t) = y9 )

2151
r(2-15)

t -05

_ y@t
T (0 5) ®

D*y(t) = y@(t)

1 ©
= t).

— Yy (t)
Substituting (3.38), (3.39), (3.40) in (3.37) wd:ge

2 1
yOO=—" vy +———yOm)+—=—

r (0.6)t% r (06)t %4
the substitution
YiI=Y =S WNEY =Y
Yo=Y =Y, =Yy =vy3
y3 — y" :> yl3 — y"l — y4
Va=y" =>Va=y¥=ys
ys =y = y5 = y©®

stability of fractional
Differential equations

(3.39)

(3.40)

y<2) (t) +3y(t)

(3.41)

Transform (3.41) into an 5-dimensional first orieear homogeneous

system

¢9
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V() = yg()+ y4(t)+%y3<t)+3y1(t)

r (06)t r (06)t%
Y' = Alt)Y (3.42)
Where
01 0 0 0
00 1 0 0
At=|0 0 O 1 0
00 O 0 1
30 = - 04 ‘ 04
Jmt roet® e

The system (3.42) can be written as:
Y'=(G+H()Y, whereG+H(t)=A(t)

01000

00100

G={0 0010

00001

30000
00 O 0 0
00 O 0 0
Ho=|0 O O 0 0
00 O 0 0
0o 1 1 2
Jmt roet® et
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Gis 5x5 constant matrixH (t) is continuous matrix dat> 0, and satisfies
the condition
I[H@t)| - 0 ast —» o

So the solution of (3.42) is stable.

Example (3.6): -

Finds the stable solution of the equation

yO ) =2y * () + y B (1) + 7y ED (1) + 2y(1) (3.43)
y(i) 0)=0

with a; —a;_, = different arbitraries constants for akF 0,1,2,3,4,5

Solution:-
D°y(t) = 2D ** + D% + 7D ) y(t) + 2y(t)
By using the definitions (2.1) and (2.2):

| gt
DAy(t)=—— Yy @), k =[a]+1
y() r(ki_ai)y (t), ki =[a;]+
1=12,...n-1
ki<n, n=6
D~ {5-44-1 o)
Y()—my (t)
— t~% y(5) (t) (3.44)
I (06)
1
=— Y.

" roe)t%

o)
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4-34-1

340y — L )
D=y(t) ra-3a’ (t)

04
r(06)
1
- AU
r 06)t°

—y®w (3.45)

17 t2—1.7—1 @

D™y({t) =———— t

y(t) re-17)” (t)
-07

@
rmay ®

1
=———y@. (3.46)
rO3)t™
Substituting (3.44), (3.45), (3.46) in (3.43) we:ge

©p=_2 O 1 @ T @42
v r 06)t%4 d (t)+r(o.6)t°-4y (t)+r(o.3)t°-7 Yo

(3.47)
the substitution

YI=Y SN E=Y =Y
Yo=Y = Yo=Yy =V
Y3=Y' =Yy3=Y"'=V,
Ya=y" =Yya=y®=vys
ys=yW = ys=y® = yq
Y6 =y = yg = y©

oy
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Transform (3.47) into an 6-dimensional first orleear homogeneous

system

2 1
Ye(t) =———2 Vo) + ————F7 V5(1) + ————= y3(1) + 2y, (1)
r 06)t% roee® > o3t !
Y' = Af)Y (3.48)
Where
01 o0 0 0 0
00 1 0 0 0
o0 o0 1 0 0
At)=1o0 o 0 0 1 0
00 0 0 0 1
3 0 ! 0.7 0 - 04 ‘ 04
r 03)t° rost® s

The system (3.48) can be written as:
Y'=(G+H())Y, whereG+H(t)=A(t)

w O O o o o
o O r O O O
O r O O O O

O O O O O B+
o O o o+ O
o O O+ O O

oy
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H(t) =

~NO O O O O
RO O O O O
NO O O O O

O O O OO o o
O O O ©o o o
o O O O O O

r (03)t%7 roet% ros)t
Gis 6x6 constant matrixH (t) is continuous matrix &t> 0, and satisfies

the condition
[H(®)] - 0 as t - e

So the solution of (3.48) is stable.

o¢
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Chapter Two existence and uniqueness solution
of fractional differential equations

2.1 Introduction

The use of fractional orders differential and im&dgoperators in
mathematical models has become increasingly widesbin recent year
[Diethelm , 2002] [Podlubny, 1999]. Several fornfsfractional differential
equations have been proposed in standard modets,ttaare has been
significant interest in developing their schemefutson [Edwards, 2002]
[Mainardi, 1997]. In this chapter, we consider anslioear multi-term
fractional (arbitrary) order differential equatiom, which its existence and
uniqueness solution is proved.

Applications for such equations arise, e.g., inio& areas of
mechanics [Podlubny, 1999], the Bagely-Torvik egqua{Diethelm , 2002]
and the Basset equation [Mainardi, 1997].A theomoving the existence

and uniqueness of the solution will be proved.

2.2 problem and Definitions

Consider the nonlinear multi-term fractional (ardmy) order

differential equations
D"x(t) = f (t, x(t), Dx(t), D2x(t),...,Dmx(t)), t>0 (2.1)
Subject to the initial values
D/x(0) =0, j=012,...n-1 (2.2)
Wheren, are real numbers (i=1,2,...,m), such that
O<a,<a,<..<a,<n, a0y, i=012...,n
and n is any positive integer number.

Now we give some definitions of the fractional arddferential and integral

operators, which are needed in our theory.

14
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Definition (2.1) [Simpson, 2001]

Let f (t) OC[a,b], BOR".the fractional (arbitrary) order integral of the

function f(t) of order which is defined by (1.4) can be written as

B =L S (s)ds, (2.3)
£ 7

When a =0 we can writel  f ()= Ig f(t) = ft)LPg(t), whered g(t) =
ﬂ -1

m fort >0,® g(t) =0 fort < Oand P(t) 5 — I(t) (the delta function) as

B0

Definition (2.2.) [Caputo, 1967], [Podlubny, 1996]

The fractional derivativéd“ of ordera [0(0,1] of the absolutely

continuous functiong(t) is which defined by (1.5) can be written as

DZ g(t) =%|g‘”g(t), t O[a,b). (2.4)

2.3 Existence and Uniqueness Solution

By a solution of the initial value problem (2.1nda(2.2) we mean a

function x£OC(I) and all its derivative up to order (n-1)are vamghat t =0.

andD =1 xC (I)whereC (I )is the class of all continuous column vectors

X(t) (defined by X (t) = (X, (t), X, (t),.... X (t))" )with the norm

X ‘Z\M‘Zmaﬁx.\

i=o tU!

XOc (1)
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By a solution of the systemX((t) = A(t) X(t) + B(t, X(t)),t >0) we mean a
column vectorX(t) JC (I )and X(0)=0.

Assuming that the functiorf (t, X, (t), X, (t),...,X,, t (3#tisfies Lipschitz

condition

£ (t, X0) Xsees Xm) = (Y0, Yirs Ym))|

m
< kY% (t) =y ()]
P

(2.5)

for (t, Xy, %,---»Xy) @and (t, yo, ¥1,-...Ym)d D,k > 0.

Theorem
Let f(t,x(t),Dx(t),D2x(t),...,.Dx(t))DC(D) and satisfies the Lipschitz
condition (2.5). If

1

;T i+17a gm, (am+1 =n)

Now set I=[0, T], where T is a suitable positivamber.
Then the nonlinear multi-term fractional (arbitrpoyders differential

equations (2.1) and (2.2) has one and only onaisoli [(IC(1), that satisfies

DYi xtC(l),i=0,1,2,...,m. wherez; are real numbers, s.t.

O<ai<as<..<am<n andnis any positive integer number.

Proof
Let

X (t) = DT x(t), i =12,....m (2.6)

and

Y
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Xo(t) = x(t) (2.7)
From (2.6) we get

x (t) =197 % x (), i=012..m-1 ag=0 (2.8)
and

X (t) =1 "MD" "x(t) (2.9)

In which it can be written as

X (1) = 1779 £ (t, % (£), X (1), X, (1)) (2.10)
Using the definition of fractional derivative anguations (2.6), (2.7), (2.8)

and (2.9), we can easily obtain the following tfan®ing system

X (1) = A(t)X (1) + B(t, X (1)), t >0 (2.11)
Where
X (1) = (% (€)% (0), oo Xy (1) (2.12)
B(t, X (1)) = (0,0,...,1 ™9™ £ (X, (), X, (t),..., X, ()T (2.13)

0O At) 0 0 - 0
0 0 A 0 - 0

At)=|: L e (2.14)
0 0 .. 0 An(t)
0 0 o - 0 0 (M+1)x(m+1)

and A, (t)x,,(t) =197 %, (t),i = 012,....m-1, a, =0
if we write
FX(t) = A(t) X (t) + B(t, X(t)). (2.15)
whereF is a mapping fronC(l) to C(I).
Then for (t, Xy, X,-... X, )and (t, Yy, ¥, ¥,) D,

Yy
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We get
[FX(t) = FY (@) < [At)(XE) =Y (1) 2.16)
#1177 (8 (0,5 Xin) = (Y01 Y1 Ym))|
since fort >0andi =0,,2,...m-1
H| Ain1=0qj y (t)H —‘ 1 t(t u)ai+1_ai -1, (u)du
M= _ 41
" ‘l_(67i+1—ai)0 "
Il e
M(ai+1—aj +1)
further,
<a,, —a, +t1<a;,, +1<n+1 hence
r(a,i+1 _ai +1)
‘I aj+1-0j X1 (t)‘ <(n+1T aj+1-0j HXi+1H, (2.17)

m-1
|AXE®) =Y®)| = DA+t 1(t) = yi+2 ()]

i=0
m-1
= Zé) Hl 0i+1~0; (X +1() — Vi +1(t))H
i=
m-1
= Zé) ma%l ai+1~0j (X +1() = Vi +1(t))‘
i=

m-1 I
< Z (n+)T™+1 IH)(i+1_yi+1u
i=0

Yy
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-1
<(N+D|X®) -Y(Q)| mz Tain ™4 (2.18)
i=0

< (n+D)|X () =Y rﬁT"iﬂ‘“i

i=0
since
| (F (kX Xm) = T (Yo YY)
<k(n+D[X @ -Y(@)) T"m
m (2.19)
<k(n+D[X @) -Y@) DTN m
i=0
then

X -FY @] <(+Dk+DI T X -v|  (2.20)
i=0

Hence the mapg-:C (1) - C (I i3 a contracting (and then, it the fixed

point X = FX) providing

4 Ai+1- 0 1
EOT < n+1)(k+1) (2.22)

and hence, there exists a unique column vext@)1C (I whigh is the
solution of the system (2.10). Therefore, from {3.4nd the definition

ofC (), we deduce that there exists one and only on¢icolu

X(t) JC(1),and this solution satisfieB“ x(t) OC(l),i =12,...,m

Y¢
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DISCUSSION AND FUTURE WORK

We discusses the stability of multi fractional order (arbitrary)
differential equation with constant coefficient by transform it into a
system of integer order, We are consider 6-different examples according
the different between the fractional order derivatives, and showing how
we use the definition of Riemann-Liouville derivative to obtain an

ordinary integer differential equation with variables coefficients,

For futureworkswe consider the following problems:
1. A multi fractional arbitrary order differential equation with variable
coefficients.
2. A system of multi fractional arbitrary order differential equations
with constants and variable coefficients.
3. using, other conditions(such as liapunove function) to study the

stability solution for fractional order differential equations.
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Introduction

The subject of fractional calculus (that is, calsulof integrals and

derivative of any arbitrary real order) has gaigedsiderable popularity and
importance during the past three decades or so, maaly to its
demonstrated applications in numerous seeminglgrdivand widespread
fields of science and engineering. It does inde®dige several potentially
useful tools for solving differential and integeduations, and various other
problems involving special functions of mathemdtpaysics as well as their
extension and generalizations in one and more blasdTrujillo, 2006].

the concept of fractional calculus is popularly ietd to have
stemmed from a question raised in the year 1698Maxquis de L'Hopital
(1661-1704) to Gottfried Wilhelm Leibniz (1646-171&vhich sought the

n
meaning of Leibniz's (currently popular) notatignz for the derivative of

dx"
order nJ Ng := {012,...}when x:%. In his reply, dated 30 September 1695,

Leibniz wrote to L'Hopital as follows: "... This & apparent paradox from
which, one day, useful consequences will be drawn..."

Subsequent mention of fractional derivative wasienan some context
or the other, by (for example) Euler in 1730, Lagya in 1772, Laplace in
1812, Lacroix in 1819, Fourier in 1822, Liouville 1832, Riemann in 1847,
Greer in 1859, Holmgren in 1865, Grunwald in 186@&tnikov in 1868,
Sonin in 1869, Laurent in 1884, Nekrassov in 1888g in 1890, and Weyl
in 1917. In fact, in [Trujillo, 2006], entitled Traite du Calculus Differential
et du Calculus Integral " (Second edition; Coutdparis, 1819), S. F. Lacroix
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devoted two pages (pp. 409-410) to fractional dakushowing eventually
that

‘ N

<|\>\|—\

1
N
Sk

o
<
N[~

In addition, of course, to the theories of differaly integral, and
integro-differential equations, and special funactiof mathematical physics
as well as their extensions and generalizationsni@ and more variables,
some of the areas of present-day applicationsadftibrnal calculus include
Fluid Flow, Rheology, Dynamical Processes in Satifilar and Porous
Structures, Electrical Networks, Probability andtiStics, Control Theory of
Dynamical System, Viscoelasticity, ElectrochemisifyCorrosion, Chemical
Physics, Optics and Signal Processing, and so ilfé, 2006].

The first work, devoted exclusively to the subjetfractional calculus,
is the book by Oldham and Spanier [Oldham, 1974jliphed in 1974. One
of the most recent works on the subject of fra@laralculus is the book of
Podlubny [Podlubny, 1999] published in 1999, whagals principally with
fractional differential equations.

Stability is an asymptotic qualitative criteriontbf control circuit and
Is the primary and necessary condition for the exrfunctioning of every
control circuit. The existing methods developedaofor stability check are
mainly for integer-order systems. However, for fi@eal order systems, it is
difficult to evaluate the stability by simply exammg its characteristic
equation either by finding its dominant roots or bsing other algebraic

methods. We try to have the papers, [Matignon, 1@@6étignon, 1998]
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concerning the stability of fractional order diffetial equations but
unfortunately, we couldn't have them.

This work consists three chapters, in additiormmointroduction that
we display the development of fractional calculukile their definitions and
theories are presented in chapter one.

Chapter two present the problem of non linear nfudtctional order
differential equations with constant coefficiem, which its existence and
uniqueness solution is proved, while chapter thilessussed its solution
stability, by presenting a stability theorem fornAmear multi fractional

order differential equations with constant coe#idi.
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