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Theoretical Considerations 

2.1 Many electron system 

All atoms except Hydrogen atom and certain ions of the light elements, 

contain several electrons, this will lead to arise a difficulty, that is the 

impossibility of describing the motion of each individual electron because of, in 

addition to considering the electrical interaction of each electron with the 

nucleus, there is a mutual interaction among the electrons with each other, so 

that, Hamiltonian operator in the Schrödinger equation have an added cross term 

as [22] 
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The first term in (2.1) represents the kinetic energy operators for the N-

electrons, the second is the potential energy for the attractions between the 

electrons and the nucleus of charge Z and the last is the potential energy of the 

inter electronic repulsions[23]. The restrictions j > i avoids counting the same 

inter electronic repulsions twice, and avoids terms like 
iir

e 2

 . 

The Schrödinger equation for the atom is not separable because of the inter 

electronic repulsion terms 
ijr

e 2

 

This equation is not exactly soluble because of two problems: 

1-The spin-orbital magnetic interaction phenomenon 

2-the repulsive interaction between each pair of electrons that called cross-term 

(i.e.
ijr

e 2

)that avoid equation (2-1) to be separable equation(i.e. set of equations 

involving coordinates of only one electron ,which can be solved exactly). 
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The first problem are tackled by the neglecting for the spin-orbital magnetic 

interaction, so that, the total wavefunction will be product of the special part of 

the wavefunction with the spin part   

 )(),,(),,,( srsr δφθψφθψ ×⇒  

Where ),,( φθψ r  is the radial & angular part of the wavefunction 

          )(sδ is the spin part of the wavefunction 

 

The second problem will be tackled by using method called “central field 

model” [24] 

 

 

2. 2 Central Field Model 

This method assumed that the electron to be subjected to a potential V that 

represent the combined effect to a potential of the nucleus and all the other 

electrons .if further one takes a spherical averaged over the latter ,so that ,V is a 

function of r only and not of the angle (i.e. V(r)).. 

One arrives at the central field model .so that, the radial part to be separable 

from the angular part. 

     The angular part will be assumed to have same solution of the hydrogen atom 

as a spherical harmonics )(cos.)( θϕ m
l

imm
l peconstY = , where )(cosθm

lp are the 

associated Legender Polynomials ( 2,1.0 ±±=m , ml ≥ ), so that the spatial 

wavefunction will write as: 

 ),()(),,( φθφθψ YrRr =   

    Radial part will be different from the hydrogen atom because of V(r) no 

longer have simple coulombs form.  

    The problem of calculating potential Vi(r) for electron of order i is tackled by 

using computational technique called “self-consistent field” [25]. 
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2.3 Self-consistent field 

    Self consistent field (SCF) method of calculating atomic wavefunction for 

atomic structure was originated by Hartree, improved by Fock, and used by most 

every one. 

    The basses of the method is to guess the wavefunction for all the electrons in 

the system .then one electron is selected and the potential in which it more is 

calculated by freezing the distribution of all the other electrons treating them as 

the source of the potential. The Schrödinger equation for the electron is solved 

for this potential and so a new wavefunction for the electron is obtained. This 

procedure is repeated for the electron is obtained. This procedure is repeated for 

all electrons in the system, using the electrons in the frozen orbital as the source 

of potential, when the cycle is completed as shown in Fig. (2-1) on possesses 

asset of orbital for all the electron of the system, and general these will differ 

from the original, guessed set. Now the cycle is repeated but improved 

wavefunction generated by the first  cycle are used as the initial guess, complete 

cycle generates a new set of improved function .This sequence is continued until 

passing asset of orbital through the cycle leads to no change the orbital are then 

self consistent.  

    But because of the electrons are indistinguishable particle and the electrons 

under rule of Pauli Exclusion Principle that states “No more than one electron 

may occupy particular state”. 

    This means that sign of wavefunction will be changed under changing the 

labels of electrons and it will be called symmetric wavefunction. 

)1()2()2()1()1,2()2,1( baba ψψψψψψ −=⇒−=  

so that wavefunction for fermions (electrons) will written as: 

)]1()2()2()1([
2

1
)2,1( baba ψψψψψ −=  

Where ½ is the normalization constant [26]. 
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For many electron systems “Slater determinant” are used to include “Pauli 

Exclusion Principle”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig.(2-1) Self consistent cycle [25] 
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2.4 Slater determinant 

    According to Pauli principle the wavefunction for system of electrons must 

change sign where the coordinates of any two electrons are interchanged , so 

that, from mathematical point of view, determinate will solve this problem, as 

Slater  Pointed out in the 1920s, so that, many body wavefunctions wrote  be of 

the form: 
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=Ψ (2.2) 

where: 

!

1

N
is the normalization constant and the component of one particle function 

)(iiφ  is referred to as Spin-orbital . Any spin-orbital may be written as the 

product of a space functioniϕ  and a spin function α or β. 

The numbers in the parentheses denote the particle, and the subscripts 1,2...N 

denote the eigenstate. The interchange of any two particles causes the sign of ψ  

to change, since it involves the interchange of corresponding two columns, and 

also when two electrons occupy the same spin orbital, i.e. two columns of the 

determinate are identical, the wavefunction is equal to zero. [26] 

  )(),,()( srii δφθϕφ =   (2.3) 

and )(iϕ  is the spatial part 

        )(sδ   The spin part  

 ),()(),,( φθφθϕ YrRr =  (2.4) 

)(rRp :r is the radial part of special part of the total wavefunction 

),( φθY :is the angular part of the special part of the total wavefunction [26] 
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  The last wavefunction called “Roothan-Hartree-Fock (RHF) wavefunction” 

[27], [28]. 

. 

2.5 Roothaan-Hartree-Fock (RHF) Wavefunction 
Analytical self consistent field atomic wavefunction in the radial atomic 

orbital are expanded as a linear combination of a complete set of known 

function ,called basis function  

                                               ∑=
M

p
pp rcrR )()( χ   

M: is the Number of states 

pc :is an expanded coefficient [29] 

 

2.6 Slater Type Orbital (STO) 

    Atomic orbital in many-electron atoms have completed dependence on 

position which can be represented accurately by listing there amplitude 

numerically for many purposes its desirable to have an analytical function rather 

a table of numbers, and the Slater atomic orbital are analytical function based on 

the numerical results, but defined to reproduce them with moderate accuracy, 

each orbital have radial, dependence given by: 

 rn
p erNr p ζχ −−×= )1(

)(  (2.6) 

 

Where  

N  is the normalization constant and is equale to: 

 

then ),(][),,(
)1( ϕθφθϕ ζ YerNcr

M

p

rn
p

p
∑

−−×=  (2.7) 

And ppn ζ,  are constants [29]. 
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But wavefunction ),...,3,2,1( Nψ itself, however, has no direct physical 

significant, But there is an interpretation made by Max Born [30]in 1926 used 

the probability density 2
),....2,1( Nψ ,that reflects the possibility of body 

presence, this lead to: 

 

 

    

 

  ×  

 

 

For many electron systems this treatment will be more complicated, so that, 

there is a quantum mechanical technique to reduce this calculation to easing 

states called “Second  order reduced density matrix ( )nmHF xx ,Γ ”  

 

2.7 Second Order Reduced Density Matrix ( )nmHF χχ ,Γ  
Lödin in its researches  has shown that for given wavefunction ),...,3,2,1( Nψ  there 

exist a unique orbital basis, so that, called natural spin orbital (NSO) of that 

),...,3,2,1( Nψ and has shown that the reduced density matrix provide available tool 

to analyzing the properties of the wav function, the 2nd order density matrix 

( )nmHF xx ,Γ  is expressed in term of normalized wavefunction [31].   

 ( ) ( )∑=Γ N
ji

mn
ij

mn
ijnmij AAxx

p

*

2

1
,  (2.9) 

 ( ) ( )∑Γ=Γ∴
ji

nmijnm xxxx
p

,,  (2.10) 

where, 

 ( ) ( ) ( ) ( )[ ]mnnmA jiji
mn
ij φφφφ −=  (2.11) 

(2-9) 

).....2.1().....2.1(),....2,1(
2

NNN ψψψ ×= ∗
(2-8) 
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i  and j  represents spin orbital labels and m , n refer to electron labels, the 

density ( )nmHF χχ ,Γ  for each pair ),( ji  is normalized for unity. 
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Atomic Properties  

3.1 Overview 

    This chapter is designed to show calculation of nuclear magnetic shielding 

constant σ  for 1s2,1s2 2s and1s22s2 configurations . 

  These calculations must go through calculating, ),( nm xxΓ′ , )(rD and >< nr1  

before calculating the aimed property (i.e.σ ). 

    Another properties are calculated for checking the calculations and for discuss 

the results such as )0(ρ and 1r∆ . 

The steps of calculating the aimed property is shown in Fig.(3.1)  

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig.(3.1) Steps of calculating the nuclear magnetic shielding constant 
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3.1 Second Order Reduced Density Matrix 

For any N-electron atomic system, the two particle density can be written as: 

[32, 33 and 34,] 

( ) ( ) ( )∫ ΨΨ






=Γ NNNnmHF dxdxxxxxxxx
N

xx ...,...,,,...,,
2

, 132121
* (3.1) 

As usual, Nx  represents combined space and spin coordinates of electron N 

and ( Ndxdx ...1 ) indicates integration summation over all N electrons except m 

and n. 

    The factor 








2

N
 is the 2nd ordered density matrix normalized to the number of 

electron pairs within the system: 

 ( ) ( )[ ]!2!22
,

−
=


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



=Γ∫ N

NN
dxdxxx nmnmHF  (3.2) 

For that there is 








2

N
 number of state for atomic system of N electrons, this 

lead to 








2

N
 number of  ),( nmij xxΓ  , with ji < . 
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where 

 )]()()()([ nmnmA ijji
mn
ij φφφφ −=  (3.4) 

where )(miφ =(spatial part)×  (spin part)  

),( nmij xxΓ  Normalized to unity for each pair ),( ji . 

 

• 1s2 configuration: 

This configuration have one shell is K shell that contain 2-electrons, so that 
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 ( ) ( ) ( ) ( ) ( )[ ]212 2121
2

1
, ijjiKK φφφφβα −=Γ  (3.5) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]212 211121221111
2
1

, αββαβα ssssKK −=Γ  (3.6) 

 ( ) ( ) ( ) [ ]222
12 )2()1()2()1(2111

2

1
, αββαβα −=Γ ssKK  (3.7) 

• 1s2 2s configuration: 

This configuration have has two shells  intra-shell(K-shell) and inter-

shell(KL-shell), this configuration have 3- electrons, so that, 

 ( ) 3
!23!2

!3

2

3

2
=

−
=







=






N
pairs (3.8) 

( ) ( ) ( ) ( ) ( )αβααβα LKLKKKxxxx
ji

nmijnm ,,,,, 231312 Γ+Γ+Γ=Γ=Γ∴ ∑
p

 (3.9) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2
12 211121221111

2
1

, αββαβα ssssKK −=Γ  (3.10) 

( ) ( ) [ ]222 )2()1()2()1(2111
2

1 αββα −= ss  (3.11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2
13 112221222111

2

1
, αααααα ssssLK −=Γ  (3.12) 

( ) ( ) ( ) ( ) ( ) ( )22
2

21
2

12212211 αα




 −= ssss
 (3.13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2
23 112221222111

2
1

, αβαβαβ ssssLK −=Γ  (3.14) 

• 1s22s2configuration: 

This configuration of 4- electron has 6-pairs of electrons divided to intra and 

inter shells with 4-electrons, so that: 

( ) electrons of pairs6
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LLLKLK

LKLKKKxxxx
ji

nmijnm

,,,

,,,,,

342423

141312

Γ+Γ+Γ+

Γ+Γ+Γ=Γ=Γ∴ ∑
p  (3.15) 
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( ) ( ) ( ) ( ) ( )[ ]212 2121
2

1
, ijjiKK φφφφβα −=Γ  (3.16) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2111221221111
2
1 βαβα ssss −=  (3.17) 

( ) ( ) [ ]222 )1()2()2()1(2111
2
1 βαβα −= ss  (3.18) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2
13 112221222111

2

1
, αααααα ssssLK −=Γ  (3.19) 

( ) ( ) ( ) ( ) ( ) ( )22
2

21
2

12212211 αα




 −= ssss
 (3.20) 

( ) 22
23 ]

2

)2()1()2()1(
[]

2

)1(2)2(1)2(2)1(1
[,

βαβα
αβ

−+=Γ ssss
LK  (3.21) 

( ) ( ) ( ) ( ) ( )[ ]224 )1(1)2(21)2(22)1(11
2

1
, ββββββ ssssLK −=Γ  (3.22) 

( ) ( ) ( ) ( )[ ] 222 )2()1(11222211
2

1 ββssss −=  (3.23) 

( ) 22
14 ]

2

)2()1()2()1(
[]

2

)1(2)2(1)2(2)1(1
[,

βαβα
βα

+−=Γ ssss
LK  (3.24) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]234 222112222112
2
1

, αββαβα ssssLL −=Γ   

      222 )]1()2()2()1([)2(2)1(2
2
1 βαβα −= SS  (3.25) 

The total value 

[ ])3()1()1()1( 3
6

1
sKLsKLsLsktotal Γ+Γ+Γ+Γ=Γ  

(3.26) 

From calculating ( )mn xx ,Γ  for each shell for each configuration, equation of k-

shell is same for all studied configurations this will be repeated for ( )mn xx ,Γ  to 

other shells.  

3.2 Spin-less two-particle density )( nm xxΓ′  

Because of these calculations are neglecting the spin-orbit interaction the 

equation )( nm xxΓ  can be simplified to )( nm xxΓ′ as: 
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 ( ) ( ) 212121 ,, δδ ddxxxx ∫Γ=Γ′  (3.27) 

• 1s2 configuration: 

For ground state, K-shell can be described by Substituting equation (3-7) in (3-

27) 

 ( ) ( ) 212121 ,, δδ ddxxxx ∫Γ=Γ′  (3.27) 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫ −=Γ′ 21
222

12 12212111
2

1
, δδβαβαβα ddssKK  (3.28) 

 ( ) ( ) [ ]10212111
2

1 22 +×−= ss  (3.29) 

 ( ) ( )22 2111 ss=  (3.30) 

Since: ( ) ( )∫∫ == 12,11 2
2

1
2 δβδα dd  

Because of the normalized condition  

( ) ( ) ( ) ( ) 01221 ==∫∫ δβαδβα dd  

Because of the orthogonally condition  

• 1s21s-condition: 

( )βα KK ,12Γ′  for this configuration is equal to that of equation (3-30) 

For KL-shell Substitute equation (3-13) in (3-27) gives: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 21
222

13 2121122211
2

1
, δδαααα ddssssLK ∫∫







 −=Γ′  (3.31) 

 ( ) ( ) ( ) ( )[ ]221122211
2

1
ssss −=  (3.32) 

For KL-shell Substitute equation (3-14) in (3-27) gives: 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 21
2

23 112221222111
2

1
, δδαβαβαβ ddssssLK ∫∫ −=Γ′  (3.33) 

 ( ) ( ) ( ) ( )2222 1221
2

1
2211

2

1
ssss +=  (3.34) 
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• 1s22s2 configuration: 

( )βα KK ,12Γ′ , ( )αβ LK ,23Γ′ & ( )αα LK ,13Γ′ for this configuration is equal to that of 

equation (3-30),(3-32),(3-34). 

To calculate ( ) ,14 βα LKΓ′  substitute equation (3.24) in equation (3.27) 

( ) 21
22

14 ]
2

)2()1()2()1(
[]

2

)1(2)2(1)2(2)1(1
[ , δδβαβα

βα dd
ssss

LK ∫∫
+−

=Γ′  (3.35) 

( ) ( ) ( ) ( )2222 1221
2

1
2211

2

1
ssss +=  (3.36) 

To calculate ( ) ,24 βα LKΓ′   substitute equation (3-23) in equation (3-27) 

( ) ( ) ( ) ( ) ( )[ ]∫∫ −=Γ′ 21
222

24 )2()1(11222211
2

1
 , δδβββα ddssssLK  (3.37) 

 

 ( ) ( ) ( ) ( )[ ]211222211
2

1
ssss −=  (3.38) 

To calculate ( ) ,34 βα LLΓ′   substitute equation (3-24) in equation (3-27) 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫ −=Γ′ 21
222

34 21212212
2

1
, δδαββαβα ddssLL  (3.39) 

( ) ( )22 2212 ss=  (3.40) 

 

 

3.3 One particle Electron Density )(rD  

This property is very important )(rD  to study the electron in atom, which means 

the probability of finding electrons in each shell and it represents the density 

distribution of one electron in each shell an is defined as [35, 36 and37]  

 ( ) 212
0

2
2

2
112 ,D(r) ΩΩΓ′= ∫

∞

dddrrrxx nm  (3.41) 

 φθθ ddd )sin(=Ω   
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• 1s2-configuration: 

To calculate )(rD 1K  substitute equation (3-30) in equation (3-41) 

 ( ) 212
0

2
2

2
1121K ,)(rD ΩΩΓ′= ∫

∞

dddrrrKK βα  (3.42) 

              ( ) ( ) 212
2

2
2

1
0

22 2111 ΩΩ= ∫
∞

dddrrrss  (3.43) 

 
( ) ( ) ( ) ( )∫∫∫

∞

ΩΩ=
0

2
2

22
2
12122

2
111

2
1

2
11

2
1 ,, drrrRddyyrrR ssss φθφθ

 

(3.44) 

 = ( ) 2
11

2
1 rrR s  (3.45) 

 

Since: ( ) ( ) 1sin,sin,
2

0 0
22222

2
2

2

0 0
11111

2
1 ∫ ∫∫ ∫ ==

ππππ
φθθφθφθθφθ ddyddy ss  

Because of normalization condition 

( ) 1
0

2
2

2
2

2
2
2 =∫

∞

drrrR s  

Because of normalization condition 

Substitute (2-6) in (3-45) 

 

 ( ) ( )
( )

( ) ii
i

n

i

r

i

n
i

iK re
n

CrD 2
1

2
1

2
1

1

!.2

.2
∑ −

+

= ξξ  (3.46) 

Where 

     Ci, are the variation determined expansion coefficients (1s) 

      Ni are the normalization constant and is given by: 

      ξi: is the orbital components 
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• 1s21s-configuration: 

Dkk(r1) is equal to that in the 1s2-configuration in equation                   

 

Substitute equation (3-32) in (3-41) 

 ( ) 22
0

2
2

2
1131KL3 ,)(rD ΩΓ′= ∫

∞

ddrrrLK αα  (3.47) 

 ( ) ( ) ( ) ( )[ ] 211
2

2
2

1
212212211

2

1 ΩΩ−= ∫ dddrrrssss  (3.48) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2
11

2
2221

2
112

2

0
2

2
22

2
1

0
2

2
2

2
1122122112121122211

0
2

2
22

2
2222

2
111

22
1

2
11

)(
2

1

2
2
1

2
1

rrRdydydrrrR

drrrrRrRrRrRddyyyy

drrrRdydyrrR

ssss

ssssssss

ssss

∫∫∫

∫∫

∫∫ ∫

ΩΩΩΩ+

ΩΩΩΩΩΩ⋅−

ΩΩΩΩ=

∞

∞

∞

 
(3.49) 

( ) ( ) 2
11

2
2

2
1

2
11 2

1

2

1
rrRrrR ss +=  (3.50) 

Substitute (2-6) in (3-50) 

( ) ( )
( )[ ]

( ) ( )
( )[ ]

( )jii n

j

r

ij

n
j

j
n

i

r

ii

n
i

iKL re
n

Cre
n

CrD
2

1
2

2

1

1
22

1
2

2

1

1
2

13
11

!.2

.2

2
1

!.2

.2

2
1

∑∑
−

+
−

+

+= ξξ ξξ

 

(3.51) 

Since: 

 

 

( ) ( )∫ =ΩΩΩ 122221 dyy ss  

Because of the quantum number are equal in the two subshells 

(i.e. 0,,0, 21 =→=→ lsls mlymly ) 

( )∫ 2
2

2
2

21 drrrR s = ( )∫ 2
2

22
2
2 drrrR s =1 

Because of normalization condition  
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( ) ( )∫
∞

0
2

2
22122 drrrRrR ss =0 

Because of the principle quantum number for 1s-subshell (i.e. n=1) not 

equal to that of 2s-subshell (i.e. n=2) this lead to the apply the orthogonal 

condition.  

Substitution equation (3-34) in (3-41) 

 ( ) 2121
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2
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 ( ) ( ) 2
1

2
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2
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1
2
1

rrRrrR ss +=  (3.55) 

Note that the later equation (3-55) is equal to that of (3-50) 

)(rD)(rD 1KL31KL1 =  

 

• 1s22s2configuration: 

The one particle radial density distribution for k-shell is equal to that for k-shell 

for 1s2 configuration as in equation (3-41). 

 Substitute equation (3-40) in (3-41) 

 ( ) ( ) 212
2

2
2

1341 , ΩΩΓ′= ∫ dddrrrLLrDLL βα  (3.56) 
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One-particle radial density for KL-shell has 4-states in these shells will 

represent a probable states for D(r): 

  

( ) ( ) 211
2

2
2

113 , ΩΩΓ′= ∫ dddrrrLKrDKL αα                                         (3-58) 

 

The result of this integral is equal to the result of equation (3-47). 

The 2nd probable state gives for the interaction of 1x & 4x  

 ( ) ( ) 2
2

2
2

1141 , drrrLKrDKL ∫ Γ′=∴ βα  (3.59) 

 

Substitute equation (3-36) in (3-41) 

 
 

 

 

The third probable state for x2, x3 coupling 
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Substitute equation (3-34) in (3-41) 
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=
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Since: 
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The 4-th probable state for D(r) is  
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Substitute equation (3-36) in (3-55) 
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1
rrRrrR ss +=  

( ) ( )∫ =ΩΩΩ 122221 dyy ss  

Because of 0,,0, 21 =→=→ lsls mlymly  

The one-particle radial density D(r) for KL-shell has 4-probable states and 

all states are equals as in equations: 

(3-50), (3-54), 3-57), and (3-61). 
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Final forms of one particle radial density distribution for studied 

configurations will be given by applying STO-wavefunction, as follow: 

 ( ) ( )∑
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−−=
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iii erNCrR
1

1 ξ  (3.67) 

 

• for K-shell for N-electron system 

Substitute (3-62) in (3-42) 
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• for KL-shell for N-electron system 

    Substitute equation(3-62) in any one of equations(3-51), (3-54), 3-57), and (3-

61). 
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• for L-shell N-electron system 

Substitute (3-62) in (3-50) 

 ( ) ∑
=

−=
N

j

rn
jjLL

jjj erNCrD
1

2222
1

ξ
 (3.70) 

 

3.4 One particle Expectation Values <r1
n> 

The one particle expectation values <r1
n> is defined by equations [46, 42, 44, 47, 

48] 

 ( )∫
∞

>=<
0

1111 drrrDr nn  (3.71) 

When n is the power of <r1> and equal to (-2.-1.0.1.2) 

But for n=0, then ,<r1
n> =1,because of normalization condition : 
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Since 

( ) ( ) 1
0

11
0

1
0

1 == ∫∫
∞∞

drrDdrrrD  

The one particle expectation value depends directly with D(r1) for N-

electron system have the same form as in K-shell for 1s2, 2s21s and 1s2 2s2 

configurations and same thing in KL and LL shells for 1s2, 1s22s2 configuration, 

so that, states of <rn> for K, LL, and KL  will have same formula for any  in any 

4-electron systems that satisfy Hartree-Fock  condition. 

 

 

• For k-shell 

Substitute (3-45) in (3-71) 

By using integral Gamma-fuction 
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• For KL-shell for any N-electron system 

Substitute (3-50) in (3-71) 
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• For LL-shell for any N-electron system 

Substitute (3-57) in (3-71) 
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3.5 Electronic Density at Nucleus )0(ρ : 
The electron density at the nucleus can be evaluated using [39, 40,and41] 
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• For K-shell 

Substitute(3-46) in  (3-78) 
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For KL-shell substitute (3-57) in (3-78) 
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 For L-shell  
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3.6 Standard deviation of ∆r1 

The Standard deviation of ∆r1 is defined as [42 and 43] 

 2
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2
11 ><−><=∆ rrr  (3.82) 

For K-shell, substitute (3-73) into (3-82)with n=2, n=1 
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For KL-shell, substitute (3-75) in (3-82) 
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For LL-shell, substitute (3-77) in (3-82) 
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3.7 Nuclear Magnetic Shielding Constant σ : 

The Nuclear magnetic shielding constant, is determined from formula [3,4,5 and 

44] 

 ∑
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3
1ασ  (3.86) 

Where α: is the fine structure constant, whose value is taken [81] 

α=e2
⁄4πtoћc=7.29735308*10-3 

Final mathematical formula of nuclear magnetic shielding constant for 

studied configuration .  
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• For k-shell, substitute  (3-73)in (3-87) 
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• For KL-shell, substitute (3-75) in (3-87) 

( )
( )

[ ]
( )

( )
( )

[ ]
( )∑∑

=

+

=

+

−

−
+−=

N

j
n

j

j

n
j

j

N

i
n

i

i

n
i

ishellKL j

j

i

i n

n
C

n

n
C

1
2

1
2

1
2

1
22

2

!12

!.2

.2

2

!12
!.2

.2
6
1

ζ
ξ

ζ
ξασ  

For 1s22s configuration KL will have two states only KL(1S), KL(3S) but with 

1s22s2 4-states one fo(KL1S)& three fort (KL3S) 

For L-shell , substitute (3-77) in (3-82) 
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Results, Discussion and Conclusions  

4-1 Introduction 

This work has been designed to investigate the physical phenomena that 

reflected from tables and figures ,that contain the results which produced for 

main atomic properties such as, one-particle electronic density D(r1),one 

particle expectation value <r1
n>,when n=-2to2, one particle standard  deviation 

∆r1,nuclear magnetic shielding constant σ and  electronic density at the nucleus 

)0(ρ by using Data in appendix(C), for (He-isoelectronic series , Li-

isoelectronicseries,Li-1, Be). 

These results are arranged in two categories to direct the discussion for the 

results in the direction of the mean aim of this work (i.e. studying nuclear 

magnetic shielding constant σ for Z=2 to10). 

First category discuss all properties of the work except the nuclear magnetic 

shielding constant σ for (He-isoelectronicseries, Li-isoelectronic series, Li-1 ion, 

Be atom). 

      Second category rearranged the atomic systems in a new 5samples to 

investigate physical ideas behind results in tables and figures nuclear magnetic 

shielding constant σ, and these samples are: 

Sample 1: He-isoelectronic series. 

Sample2: Li-ioelectric series. 

Sample3: Li+1, Li and Li-1. 

Sample5: He, Li and Be.   

Sample4: individual K(1S),KL(1S),KL(3S) and L(1S) shells with in Be atom. 

Results of these calculations are checked by using three specific procedures  

1- Calculating total energy for all studied atomic systems, as in appendices (A 

and B.  

2- Checking normalization condition (i.e. checking <r0> =1). 

3- Comparing results with other published works.  
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Part A 
 
4. A.1 One-particle expectation value <r1

n> 
 
4. A.1.1 He-isoelectronic series: 

After analysis from Table (4.1) and figure (4.1and 4.2), one may be found 

many important behaviors such as: 

1-The largest value for one particle expectation value <r1
n> with power n=1, in 

is for He-atom and equal to 0.91911, because of this atom has the smallest 

atomic number (Z=2) with respect to other ions in this series, this lead to 

smallest coulombs attraction between the nucleus and the electron in the K-shell 

for this ground state elements (Z goes from 2 to 10). 

2- When Z increase the one particle expectation value <r1
n> increase when n 

equal to -1 ,-2 because of the increasing in Z will increase the attraction force 

between the electrons and the nucleus (i.e. total energy proportional directly 

with Z<r1
-1>will decrease when n goes from 1 to 2 due to the weakly attraction  

force between the nucleus in outer shells. 

3-For each Z, <r1
n> increase when n goes from -1 to -2, and decrease when n 

goes from 1 to 2. 

4-When n go to zero, the expectation value <r10> go to unity because of the 

normalization condition has been applied, this will certificate results in table 

(4.1).   

5-The <r1
-1> increase with increasing of the atomic number, the fast of 

increasing approximately constant  and equal [1.006, 1.0000, and 0.09999] per 

each element in the series this will be expressed in this equation: 

  <r1-1>i+1-<r1-1>i=∆i,i+1 

∆i,i+1=
-5109)000,0.0999(1.006,1.0 ×  

Where ∆i,i+1   represent the absolute value of  difference between two adjacent  

values of one particle expectation value . 
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Where i represent the order of the element in the series 

 

4. A.1.2 Li-isoelectronic series: 

   After analysis for tables (4.2, 4.3and 4.4) and figures (4.3, 4.4, 4.5, and 

4.6), many important behaviors can describe: 

1-The largest value for one particle expectation value <r1
n>KK with power n=1in 

this series is for Li atom and equal to 0.57312 (i.e. <r1> for Be+1=0.41500 and 

for B+2=0.32522) this happened because of this atom has the smallest atomic 

number (Z=3) with respect to other ions in this series. This leads to smallest 

coulomb, attraction between the nucleus and the electron in the K-shell for these 

ground state elements. 

2-For each Z, the one particle expectation value <r1
n>for k-shell are increasing 

when n goes from -1to -2 n and decrease when n goes from 1 to 2. 

3-Where n goes from -1 to -2 the one particle expectation value<r1
n> increase 

with the increasing of the atomic number Z along the series. 

4-For n go from 1, 2 the one particle expectation value <r1n> decrease by 

increasing the atomic number Z, due to the weakly attraction force between the 

nucleus and the electrons in outer shells as mentioned before. 

5-The values of the one particle expectation value for <r1n>KL1=<r1n>KL3 equal 

to that of KL(3S)-shells for all n for all selected ions since there is no difference 

between them. 

5-The expectation value for KL(1S) and KL(3S) shells increase when n goes 

from -1 to -2 and 1 to 2 for all Z. 

7-The total values of one particle expectation value for selected ions, represent 

the average value for different in atom and given by: 
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4. A.1.3 Four Electron Atoms (Li-1, Be): 

Table (4.5, 4.6) and figure (4.7, 4.8, 4.9 and 4.10), show many important 

behaviors such as: 

1-The one particle expectation value <r1
n>

 
for k-shell is decreases, when n goes 

from +1 to +2 and increase when n goes from -1 to -2. 

2- One particle expectation value <r1
-1> for K-shell greater than that for KL(1S), 

KL(3S) and the latest greater than that for L-shells in Li-1 ion and Be atom ,this 

behavior will lead to give energy in K-shell greater than that for energy of KL-

shell as in Appendix A and B. 

3-One particle expectation value <r1
n> for KL(1S) equal that for KL(3S) for Li-1 

ion and Be atoms. 

4-For n=0 expectation value go to unity (<r0>=1). 

5-Total expectation value of one particle expectation value, represent the
 

average value for different shells in atom and given by: 
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4. A.2 Electronic Density at Nucleus )0(ρ : 
 
4. A.2.1 He-isoelectronic series: 

    The results that shown in table (4.7) and figure (4.11 and 4.12), shows that: 

Electronic density at nucleus )0(ρ  increases with the increasing of atomic 

number Z because of the coulomb attraction force between the nucleus and the 

electrons. 

 

4. A.2.2 Li-sioelectric series: 

    From the analysis of table (4.11), many important notes can be captured: 
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1-Electronic density at nucleus )0(ρ  increase with increasing of the atomic 

number Z, this happened for all shells, in each atom in the sequence.  

2-Electronic density at nucleus )0(ρ  for K-shell greater than that for KL(1s), KL 

(3s) shells because of increasing of the distance between the electrons and the 

nucleus when the location of electrons changed from K-shell to KL-shell (in the 

two state singlet and triplet states). 

3-Electronic density at nucleus for (Li atom, Be+1ion&B+2 ion) of the Li-

isoelectronic series have the same value at the KL(1S) and KL(3S) ,because of 

DKL1 is equal to that of DKL3as in figure(4.5).  

4-Total electron density at the nucleus for each Z represents the average value 

for different shells at the atom in this series given by:
 

)]0(2)0([
3
1

)0( KLKKtotal ρρρ +=  

 

4. A.2.3 Four Electron atoms (Li-1, Be) 

After analysis for table (4.8, 4.9) and figure (4.13), many important behaviors 

can be captured: 

1-Electronic density at nucleus )0(ρ  for K-shell for Be atom is greater than that 

for Li-1, because of the atomic number for Be atom is greater than that for Li-1 

atom as shown in figure (4.7). 

2- Electronic density at nucleus )0(ρ   for K-shell is greater than that for KL 

(singlet, triplet states) for both atoms (Be, Li-1) because of the increasing in the 

distance between the nucleus and the electrons. 

3- Electronic density at nucleus ρ(0) for KL(1s)(singlet)is equal to that for 

KL(3s)for both atoms. 

4- Electronic density at nucleus )0(ρ  for L-shell for both atoms (Be, Li-1) 

approaches to each other at  outer shell as shows in figure(4.6) because of the L-

shell represents the farer shell than the nuclease ,so that ,the electronic cloud 
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will be focused farer the nucleus ,this can be expressed  one-particle radial 

density D(r1) as in the figure(4.9). 

5-Total value of electronic density at the nucleus )0(ρ  represents the average 

value for different shells in atom and given by: 

)]0()0(3)0()0([
6

1
)0(

)()( 31 LLSKLSKLKKtotal ρρρρρ +++=  

 

4. A.3 Standard Deviation ∆r1 

4. A.3.1 He-isoelectronic series: 

Table (4.1) shows many important behaviors ,such as standard deviation 

∆r1decrease  with increasing of the atomic number and start from (0.56986) for 

He-atom to (0.09087)forNe+8 ion.  

    Mathematically decreasing behavior appears as a result of direct 

proportionality with respect to one particle expectation value, this from 

mathematical point of view, but from physical point of view ,increases in the 

atomic number increases coulombs attraction force, this will lead to decrease  

one particle expectation value ,this means that  moving region for electrons will 

be smaller and smaller with increasing of atomic number Z ,and the uncertainty 

(i.e. ∆x∆p≥ћ/2) of finding the electronic position will decreases and the certainty 

of finding r1 will be increased . 

 

4. A.3.2 Li-isoelectronic series: 

From tables (4.2, 4.3 and 4.4) one may found some results.  

1-As mentioned for He-isoelectronic series standard deviation ∆r1 decrease with 

increasing of atomic Number for all shells in series. 

2- Standard deviation ∆r1 for K-shell is smaller than that for KL-shells (singlet, 

triplet states), physically when the region of freedom for electrons in their shells 

increases the probability of finding the exact position of this moving electron 

will be more harder, so that, the uncertainty of measuring the position of 
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electron will be increased, so, when electron move from K-shell to KL (singlet 

or triplet) ∆r1 will be increase. 

 

4. A.3.3 Four Electron Atoms (Li-1, Be). 

After analysis for tables (4.5 and 4.6), many important behaviors can be 

captured: 

1- Standard deviation ∆r1 for Be is smaller than for negative ions (Li-1) for all 

shells. 

2- Standard deviation ∆r1 for Be atom and Li -1 ion for both singlet and Triplet 

states are equal. 

3- Standard deviation ∆r1 for K-shell is smaller than that for L-shell and the 

latest is smaller than that for KL-shell (singlet, triplet) (i.e. ∆r1KK 

<∆r1LL<∆r1KL ). 

 

 

Part B 

4. B. Nuclear Magnetic Shielding Constant σ: 

4B.1.(sample1): He-isoelectronic series: 

 He-isoelectronic series is a group of atoms have 2-electrons in K-shell in 

ground state, and the atomic number expanded from 2 to10 with 1s2 electronic 

configuration. 

After analysis for table (4.10) and figures (4.14,4.15 and 4.16), many 

important phenomena can be detected: 

1- Nuclear magnetic shielding constant increase with increasing of the atomic 

number Z (2 to 10), physically this happened because of increasing with in  

D(r1) figure(4.3), in the same time peak D(r1)  is shifted toward nucleus with    
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because of the increasing in the D(r1) ,this will lead to magnetic shielding for 

nucleus.   . 

2-The fast of the increasing in the series approximately constant and is 

fluctuated between ( -5-5 103.549 ,103.550 ×× ) per each order of increasing, so that, 

after checking values of σ  He-isoelectronic series ,there is a relationship 

between  any two adjacent values  ,this behavior can be restricted by this 

relation  : 

1,1 ++ ∆=− iiii σσ  

 

 

This increasing have constant increasing for values of σ  along series this 

behavior can be expressed mathematically by : 

 
12

1

++

+

−
−

ii

ii

σσ
σσ

 These values approximately go to unity 

 (i.e. the fast of increasing is approximately constant). 

4- Indirectly when nuclear magnetic shielding constant σ increase the electronic 

density at the nucleus )0(ρ  increase in the density. 

5- Nuclear magnetic shielding constant increasing with the decreases of the 

energy. 

6-Nuclear magnetic shielding constant increases with decreases of the volume of 

electronic cloud that surround nucleus. 

 

4. B.2.(sample2): Li-isoelectronic series 

     Li-isoelectronic series is a group of atoms have same number of charges 

(i.e.3-electrons) with atomic number Z=3 to 5, these atoms in ground state with 

electronic configuration 1s22s1 (i.e. Z changes from 3to5, number of electrons 

constant) 

  

-5-5
1, 10,3.549103.550 ××=∆ +ii
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After analysis for table (4.11) and figure(4.17,4.18,4.19 and 4.20), many 

important phenomena can be detected: 

1- Nuclear magnetic shielding constant σ increase with increase of the number 

of electrons 3 to 5, because of magnetic field proportional directly with  

No. of electrons.  

2- Fast of increasing is approximately constant and fluctuated   between 

( 5104.0058× ),( 5103.9982 × ) per each order of increasing as mentioned for  

He-isoelectronic series in the previous discussion, the increasing of σ can be 

described mathematically as:     

1,1 ++ ∆=− iiii σσ  

55
1, 103.9982or  104.0058 ××=∆ +ii  

And 

12

1

++

+

−
−

ii

ii

σσ
σσ

 This value approximately goes to unity (i.e. the fast of increasing is 

approximately constant) 

4-From Figures (4.18, 4.19 and 4.20), we can see that shielding constant in Li-

isoelectronic series shared between K-shell and KL (singlet, triplet) shells. 

5-Nuclear magnetic shielding constant σ for KL(1S)-shell equal to that of 

KL(3S)-shell because of, D(r1)KL1equale to that of D(r1)KL3,<r1
n>KL1 equal to that 

of <r1
n

 >KL3 

6-The nuclear magnetic shielding constant for KK(1S) is smaller than that for 

KL(1S),KL(3S).  

7-Total values of nuclear magnetic shielding constant for (Li,Be+1 ,and B+2) 

Will shared between K-shell and both KL(singlet and triplet) shells  with 

percentage of sharing as:     

Li: K-shell=46.978%, Total KL=53.022% . 

Be+1: K-shell=46.19127%, Total KL-shell=53.8088%. 
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B+2: K-shell=45.776%, Total KL-shell=54.219% . 

Where KL-shells=KL(1S)+KL(3S),since KL(1S)= KL(3S). 

    This means that a percentage of magnetic shielding will be transferred from 

K-shell to KL-shells (singlet and triplet), but this transformation is little.      

8-As mentioned for He-isoelectronic series, nuclear magnetic shielding constant 

σ increase with decreasing of total energy, because of both total energy and σ 

have a direct proportionality with <r1
-1>. 

 9- Nuclear magnetic shielding constant σ increases with decreasing of volume 

of electronic cloud of the atom, because of the volume of the electronic cloud 

decreases with the increasing of Z. 

10- The increasing of the K-shell in (sample1) He-isoelectronic series is faster 

than that for Li-isoelectronic series (i.e. 1, +∆ ii  for K-shell=0.177 for Li but for 

He-isoelectronic series to 3.550) because of sharing by KL(1S)& KL(3S) state in 

Li-isoelectronic seriese . 

 

 4. B.3.(sample3): Positively and Negatively Ionization for Li Atom 

(Li+1ion and Li-1ion): 

This sample have two ions with same atomic number (Z=3), with different 

number of electrons ,the analysis produced shows that : 

1- Total value of nuclear magnetic shielding constant for Li from table (4.11) is 

-51010.145 × shared between two shells K-shell and KL(1S), KL(3S) shells. 

2-When Li positively ionized (i.e. Li+1) (i.e. Z =3 and Number of electrons=2), 

the all shielding will done by 2-elelctron in K-shell with shielding constant of 

value -5109.5411× . 

3-The 3-rd electron, that located in the KL ( 31 KLKLKL σσσ +=  ) in Li-1 ion will 

add   -5100.60392 × , to the total value of nuclear magnetic shielding constant, 

for K-shell (since 1+>
LiLi σσ ) and ( 5100603921

−×=−− LiLi
σσ ). 
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4-From table (4.9) and (4.11) the 4-th electron that located in the L-shell in the 

Li-1ion will add 51027452.0 −×   (since LiLi
σσ >−1 ) to total value of the shielding 

for K-shell and KL-shell ( 31 KLKLKL σσσ += ) and 51027452.01
−×=−− LiLi

σσ  

5-The increasing from Li+1 to Li-1 is not constant. 

6-In Li-atom<r1>KL1=<r1>KL3=2.2232, but when Li is ionized negatively the 3-rd 

electron affected with the addition of new electron, and Li-1 <r1>KL1=<r1>Kl3 and 

equal to 3.16016, so that, the addition of new electron will make the single 

electron in KL (triplet and singlet states) distant from nuclease, and σ will 

decrease in KL (singlet, triplet states). 

 

4. B.2. (Sample4) Individual shells with in  Be Atom: 

    This sample atomic number Z= 4, number of electrons=4, and after analysis 

for table (4.8) and figure ( 4.22,4.23), many important phenomena can be 

detected such as: 

1- Nuclear magnetic shielding constant is shared among four shells, K-shell, KL 

(singlet, triplet) and L-shell in the atom, so that, the percentage of sharing for 

each individual shell is    : 

For K-shell=43.786%. 

For L-shell=6.214 %. 

For KL-shells=KL(1S)+KL(3S)=50 %( Because of KL(1S)= KL(3S)) 

Since: 100][ ×
total

shell

σ
σ

 

2- Nuclear magnetic shielding constant will decreases when go from K-shell to 

L-shell through KL(singlet and triplet states) ,this decreasing had been restricted 

be same relation that restrict the increasing for the total value of σ for He-

isoelectronic series and Li-isoelectronic series as mentioned in previous 

discussions.  
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4. B.2. (Sample5): Parallel Increasing of Atomic Number and 

Number of Charges for He, Li and Be Atoms: 

    Atomic number in this sample Z=2, 3, 4, number of charges=2, 3 and 4 

From figure (4.17) nuclear magnetic shielding constant for this sample linearly 

increases with increase of Z and number of electrons. 

 

 

 

4-2 Conclusions: 

After analysis for results that introduced in this work, many ideas are 

detected and they can be summarized as follow: 

1- Nuclear magnetic shielding constant σ   have a restricted increasing with 

increasing of Z, along series as in [He-isoelectronic series, Li-isoelectronic 

series] for fixed number of charges  

2- Nuclear magnetic shielding constant σ  have a restricted increasing with 

increasing of number of electrons for [He-isoelectronic series, Li-isoelectronic 

series] for fixed atomic number Z in each atom. 

3- Nuclear magnetic shielding constant σ   have unrestricted increasing with 

increasing of both Z and number of charges for He, Be and Li. 

4- There is a relation, restricts the values of σ   for ions and atoms in He-

isoelectronicserise, Li-isoelectronic serise , can be described as:  

1,1 ++ ∆=− iiii σσ . 

5-The same relation, that restricts He-isoelectronicserise, Li-isoelectronic serise 

will restricts the decreasing for values of  σ   with in the individual shells of Be 

atom. 

6-There restricted behavior restricts the increasing of values of <r1
-1> along He-

isoelectronic series and this behavior can be described mathematically with a 

relation have same form of the relation that  restricts values ofσ  as: 
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 <r1
-1>i+1-<r1

-1>i=∆i,i+1  

7-There is a small change in total value of  σ  when the Li atom is positively and 

negatively ionized (Li-1, Li+1), but there is larger change in the total value of the 

σ  when the atomic number (Z) is changed with constant number of electrons as 

in (Li, Be+1&B+2). 

8-Shielding effect usually shared between shells, within many electron atoms. 

9-when Z increases in each sequence the uncertainty decreasing (i.e. ∆r1 

decrease). 
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Suggestions for future work 

 

We suggest some studies as flows: 

1-Astudy for the nuclear magnetic shielding constant by using correlated 

wave function and finding the difference with the results of using the 

uncorrelated wave function. 

2- Using the graphical integration to find the nuclear magnetic shielding 

constant from practical data of x-ray forming factor.  

3-Study for the nuclear magnetic shielding constant for Be-isoelectronic 

series, Z=4 to 10. 
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1. INTRODUCTION 

1.1 Extra Nucleus Magnetic Generators within Atomic Structure  

The building of the atom naturally contains charged units are “electrons and 

protons” that are negatively and positively charged respectively. 

These charged particles do not have a static state but they are moving 

particle and obeying the Heisenberg uncertainty principle )2/( h≥∆∆ px . 

This will produce a magnetic phenomena affect the behavior of these 

charged particles with each other and affects the nearest atoms if the atom is a 

unit of building for bigger structure such as molecules or solids. 

 

1.2 The Nuclear Magnetic Shielding Phenomenon 

High precision measurement of nuclear magnetic moments for light nuclei 

such as H and He by the Rabi resonance method [1] have proved its necessarily 

to take in  account the faint shielding  of their magnetic field in the nuclear  

region by the Larmor precession of outer electronic shells.  

Dr. H.L. Anderson was the first to turn the attention of physicists of the 

world to importance of this problem [2]. 

Theoretically an applied electronic or magnetic multipole field induces an 

electric and magnetic multipole moments in closed shell atom or ion this 

induced moment is proportional to the applied field. 

The induced electric or magnetic moments give rise to secondary field 

which has the special symmetry of the applied field., so that, for one- electron 

atom, the diminution of homogeneous external magnetic field 

 AH
vv

×∇=  (1.1) 
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2

1
rHA
vvv

×=  (1.2) 

Where: 

A
v

 is magnetic vector potential   

H
v

is the vector quantity of the external applied field  

rv is distance between nucleus and electron inside atomic system   

At the center of the atom can be obtained from the Biot-Savart law 

 3

)(
)/(

r

Vr
ceH

vv
v ×=∆  (1.3) 

Expressing e by V
v

by the aid of the equation  

 AcePVm
vvv

)/(+=  (1.4) 

And averaging over a stationary state of atom, usually the ground state. 

If the angular momentum Pr
vv ∧ is Zero, there remains from (1.3) 

 3
22 )(
)/(

r

Ar
mceH

vr
r ×=∆−  (1.5) 

 ]
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22

r

rHr
mce

vvv ××=  (1.6) 

On averaging over spherically symmetric state, the result is 

 .
2

3
1

)( Av
H

r

a

H

H ><=∆− α  (1.7) 

 Where Ha is the Bohr radius and α  the fine structure constant. 

For many electron system with spherically symmetric state  

 ∑
=

><=∆−=
N

i
Av

i

H

r

a

H

H

1
.

2

3

1
)( ασ  (1.8) 

σ  is the nuclear magnetic shielding constant where ir  is the distance  between 

the nucleus and electron with label “i ” 

N is number of electrons inside atom [3, 4, 5] 
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Since: 

.Av
i

H

r

a ><  Average value of (
1−

iH ra ) 

Hii arr /=  

 

1.3 The Importance of Studying the Nuclear Magnetic Shielding 

Constant 

The studying of the nuclear magnetic shielding constant may be used many 

applications but the most famous applications are: 

 

1- Finite Nuclear Size: 

Interest in atomic shielding factor results from there effect for reducing the 

apparent coupling of the nuclear multipoles with external applied fields. 

The magnetic dipole is of particular interest in this regard since 

measurements of nuclear magnetic moment are sufficiently precise to warrant 

inclusion of shielding correction. Experiments to measure nuclear magnetic 

moments involve the interaction energy   of the applied field with the nuclear 

magnetic moment. For a nucleus described by a state function in 

),....,( 1 Arr
rrΨ magnetic field B(ri),the interaction energy is: 

( )[ ]∑∫
=

∗ Ψ×+×Ψ−=
A

i
AiisilAANI rrrBSigIigrrrdrdE

1
11

3
1

3 ),...,()()(),...,(....
rrrrrrrµ   

                                                                                                                       (1.11) 
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Where 
Mc

e
N 2

h=µ  is the nuclear Bohr magneton, )(igs  is the gyro magnetic 

ratio of the nucleon, and )(igl is one for proton and Zero for neutron;iI
r

 is the 

orbital angular momentum, and iS
r

is the spin. 

After many simplifications, the interaction energy given as: 

 )1( δσσµ −−⋅−= BEI

rr
 (1.11) 

where σ  is the dipole shielding factor  

      δσ : Additional contribution correction to the nuclear magnetic shielding 

factor [5] 

 

 

2- Checking the Experimental and Theoretical Data of the x-ray 

form Factor  

The experimental data of the formula that results relating x-ray forming 

factor with nuclear magnetic shielding constant that produced by the “Yukio  

Obata” 

 σαπ )/(2/3)( 2

0

=∫
∞

dkkf  (1.12) 

Where )(kf  :is the form factor 

            K= 00 &),)(/2( SSSS
rrrr

−λπ  are unite vectors along the direction of the 

diffraction and incident beam,λ  is the wave length of radiation. 

By making the graphical integration, for the experimental results of x-ray 

scattering. the integration will solved easily ,and compared with other side of the 

formula [6]. 
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1.4 Historical Development  

From 40s of the 20th century to the middle of the first decade of 21st 

century, many researchers (physists and chemists) were trying to calculate the 

nuclear magnetic shielding constant by using different Quantum mechanical 

methods that represent the form of the wave function, different published Data 

for wave functions, different mathematical tools and different computers. 

So that, the historical growth of development for calculations are detected as 

follows:     

 

 

 

 

 

1941 W. E. Lamb ,JR [2] 
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-Main work: 

1-An equation has been derived to describe the induced magnetic 

shielding constant at nuclease that put under influence of an 

external magnetic field  in term of H
r

& Z (where H
r

 is the 

external magnetic field). 

2-the correction on g-factor calculations  

 -Method that used: 

The Fermi-Thomas atom models are used. 

 

 

1950 

 

E. Hylleraas and S. Skavlem [1] 

-Main work: 

1-The nuclear magnetic shielding constant are calculated for He 

atom 

2-The nuclear magnetic shielding constant for the atom H2 

-Method that used:: 

Wave function that used in this calculations for He atom are: 

1)1st  order Approximation  

2)2nd  order approximation    

 3)3rd  order approximation  

 4) Ψ= Ψ(r1a,r1b, r2a, r2b, r12, rab) 
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1958 F. T.Ormand and F.A. Matsen [3] 

-Main work: 

The nuclear magnetic shielding constant for: 

1)Two-electron system (He,H-1,Li+1,Be+2) 

2)Three electron system (Li,Be+1) 

3)4-electron system(Be)  

- Method that used: 

 wave function that used are: 

1-open configuration wave function 

2-closed configuration wave function 

1959 T.P.Das and R.Bersohn [7] 

-Main work: 

nuclear magnetic field was found for the H2-molcule 

- Method that used: 

The Variation method are used in these calculations 

 

1961 G.G.Hall [8] 

-Main work: 

For isoelectronic sequence 

1) σ determined theoretically 

2) σ determined experimentally 

 



Chapter One                                                                                                             Introduction  

8 

-Method that used: 

The energy was the start point in this calculation and in two 

categories: 

1) Non-relativistic energy for theoretical calculations 

2) Relativistic energy for experimental calculations  

 

1962 J. N. Silverman and Y.Obata  [6] 

-Main work: 

He found sum rule relating coherent X-ray scattering Data to the 

diamagnetic nuclear shielding constant & σ was computed for Br 

atom 

-Method that used: 

Graphical integration of the experimentally determined X-ray 

scattering factor curve for Br 

-Computers that used: 

Assembly program for one-electron operators developed for the  

IBM360/75 computer  

 

 

 

 

 

  

1963 M.L.Rustgi and  P.Tiwari [4] 
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-Main work: 

The nuclear magnetic shielding constant for two ,three & four 

electron system : 

1) He-isoelectric series(He,Li+1,Be+2) 

2)Li-isoelectric series (Li,Be+1) 

3)Be-atom 

 

-Method that used: 

1) The best SCF wave function of Roothan,sachs & Weiss are 

used, and the method of E.Q.Hyllaraas and Skav.lem are used 

2) The method of Silverman and Obata for calculating  the nuclear 

magnetic  shielding constant by using X-ray form factor.  

-Computers that used: 

The university of southern California Honey well 800 electronic 

computer 

 

1964 M. R. Baker,C. H. Anderson and N. Ramsey[9] 

-Main work: 

Diamagnetic shielding constant for atom is specific molecules are 

calculated such as: 

(1)F in HF   (2)F in F2    ( 3)N  in N2 
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1969 F.D.Feiock and W.R.Johnson [5] 

-Main work: 

The nuclear magnetic shielding constant for  

1) Atoms of atomic No. (Z=1to92) 

2)All shells of natural Hg-atom 

3)For some atoms of He-isoelectronic series 

4)Comparison are made with non-relativistic coupled HF 

calculated  

-Method that used : 

the closed-shell atomic system based on relativistic Hartree-Fock 

salater (RHFS) electron theory 

-Computer that used: 

 UNIVAC-1107 COMPUTER AT Notre Dame 

 

1972 R. Benesch [10] 

-Main work: 

 He did work on the convergence of the Z-1 expansion of the 

nuclear magnetic shielding constant σ for 2,3 &4-electronic 

system ,for these atoms &ions: 

1)He-isoelectronic series ,Z=2 to10 

2)Li-isoelectronic ,Z=3to10  

3)Be-isoelectronic series Z=4 to10  

 

-Method that used:  
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The Z-1series expansion of Hartree-Fock equations are used. 

 

-Computer that used: 

1) IBM360/75 computer at the University of Water100 

2) IBM 360/50 computer at Queen University. 

 

 1976 M.L. Sachdeva and S.P.Puri[11] 

-Main work: 

The nuclear magnetic shielding constant are evaluated for Cs+1,Cs 

-Method that used: 

1)Self consistent field Hartree-Fock wave function by Roothan 

expansion  

2)Virial theorm are used in these computations 

1977 C. F.Bunge [12] 

-Main work: 

The nuclear magnetic shielding constant are determined for Be 

ground state atom with uncertainty 2% 

  -Method that used:  

An external configuration interaction (CI) wave function one used 

 

1982 E.Klempt, R.Schuze and H.Walf [13] 

-Main work: 

The nuclear magnetic shielding constant are determined  of protons 
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for(HBr and H2O) 

 

-Method that used: 

THE High resolution NMR are used for these determinations  

 

1988 F. W.king [14]   

-Main work: 

High accurate calculations are made for nuclear magnetic shielding 

constant σ for Be+1 and the accuracy make them useful bench mark 

for more approximate computational schemes.  

 -Method that used:  

Extensive variational calculations on the 2S ground state of  

Be+1,using four term expansion of Hyleraas-type functions 

-Computer that used: 

Supper computer time by Cray research, Inc. at the computer 

center of university Wisconsin-Ean. 

 

1989 F. W. King [15] 

-Main work: the nuclear magnetic shielding constant σ for same 

members of the Li-isoelectronic series 2S ground state for these 

atoms: (Li,B+1,N,O,F&Ne)   

-Method that used:  

Extensive Variation calculations using Hyleraas-type functions are 

used 
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1991 F. W.King [17] 

-Main work: 

The nuclear magnetic shielding constant σ are calculated for some 

low-lying exited 2S state of Li-isoelectronic series 

 -Method that used:  

-Computer that used: 

The computerized calculation was made at : 

1)University of Wisconsin-Ean clair computer center  

2)National center for supper computer application. 

 

1990 F. W.King [16] 

-Main work: 

The nuclear magnetic shielding constant σ determined for some 

low-lying exited state 2S states of Li-isoelectronic series  for  

3≤Z≤10 ,the 32S,42S &52S state are studied for Li and Be and 32S 

& 42S state for the other ions 

-Method that used: 

Hyllaraas basis set are used. 

-Computer that used: 

The calculations was made at: 

1)Claire computer center at Wisconsin-Eau University 

2)National center  for supper computer application at the university 

of Illinois at Urbana Champaign 
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The Hylleraas-type wave functions are used  

-Computer that used: 

Super computer of the National center for supper computer 

application at the university of Illinois at Urbana champing. 

 

1995 J. Komasa ,W. Cenek and J. Rychlewski [18] 

-Main work: 

Nuclear magnetic shielding constant for 1S ground state Be atom. 

-Method that used: 

-Corrected Gaussian wave function are used with 1200 term 

-Variational theorm. 

1997 F. W. King  [18] 

-Main work: 

The nuclear magnetic shielding constant σ calculated for Li ground 

state atom. 

-Method that used: 

Hyllaraas wave function with 602 & 760 term. 

 

 

 

 

2002 B. K. Abass [19] 
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-Main work: 

The nuclear magnetic shielding constant σ is calculated for Li-1 

ground state atom. 

-Method that used: 

Clementi and Roetti wave function are used uncorrelated wave 

function  

-Computer that used: 

PC computer 

 

2004 M. A. AlKaabi [20] 

-Main work: 

The nuclear magnetic shielding constant σ is calculated for Li 

ground state atom. 

-Method that used: 

1) Correlated wave function arte used by using configuration 

interaction method where Weiss (1961) with correlated 2-particle  

density of AL-Bayati(1984) 

2) Uncorrelated Hartree-Fock (HF) wave function  

Computer that used: 

PC computer(pentume3) 
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Aim of work 

The aim of this work is to evaluate the total and individual values of nuclear 

magnetic shielding constant for five atomic samples in the way to finding a 

relation relates values of nuclear magnetic shielding constant through 2, 3- 

electron like ions , and a relation relates values of nuclear magnetic shielding 

constant for individual shells inside  4-electron structure. 
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Appendix(C) 
Data of wave functions 

 
 
1-Data that used is for He-isoelectronic series published by 
Clementi and Roetti[45] 
 

• Li+1 ion: 

n ζ  C 
1 2.45055 0.89066 
1 4.57259 0.12328 
1 6.67032 0.00088 

• Be+2 ion: 

n ζ  C 
1 3.43071 0.89855 
1 5.63150 0.09068 
1 7.35143 0.02158 

• B+3 ion: 

n ζ  C 
1 4.44422 0.93036 
1 7.90274 0.77860 
1 11.31380 0.00013 

• C+4 ion: 

n ζ  C 
1 5.44726 0.94428 

1 9.80425 0.06382 

1 14.61460 -0.00125 
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• N+5ion: 

n ζ  C 
1 6.45215 0.95445 

1 11.6988 0.05228 

1 19.74440 -0.00096 

 
 
 
 
• O+6 ion : 

n ζ  C 

1 7.45601 0.96175 

1 13.66210 0.04445 

1 22.59050 -0.00121 

 
 

• F+7ion: 

n ζ  C 

1 8.44950 0.96398 

1 15.20300 0.04150 

1 24.63050 -0.00103 

 
• Ne+8ion: 

 

n ζ  C 

1 9.45544 0.96961 

1 17.36970 0.03573 

1 27.77710 -0.00138 
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2-Data that used for three ions of Li-isoelectronic series published 

by Weiss for(Li atom,Be+1ion &B+3ion) [46] 

 
• Li atom: 

 

 
• Be+1 ion: 

 

 
• B+2 ion: 

 

n l ζ  C1 C2 
1 0 3.0 0.89116 -0.13923 
3 0 9.6 -0.00089 0.00039 
3 0 3.38 0.10842 -0.01706 
3 0 2.25 0.05032 0.01642 
3 0 1.24 -0.00087 0.39542 
3 0 0.757 0.00075 0.65346 

n l ζ  C1 C2 
1 0 4.0 0.91711 -0.19922 
3 0 10.81 -0.00129 0.00045 
3 0 4.68 0.07960 -0.01081 
3 0 3.40 0.04314 0.00728 
3 0 1.97 -0.00331 0.42943 
3 0 1.31 0.00178 0.61599 

n l ζ  C1 C2 
1 0 5.0 0.93299 -0.23270 
3 0 12.0 -0.00151 0.00050 
3 0 5.97 0.06390 -0.00787 
3 0 4.28 0.03661 0.00451 
3 0 2.70 -0.00409 0.42344 
3 0 1.863 0.00192 0.62350 
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3- Data that used for ground state Be and He atoms published by 
CARLOS.F. Bungee [29] 

• He atom 
 

n C ζ  
1 1.4595 1.347900 
3 5.3244 -0.001613 
2 2.6298 -0.100506 
2 1.7504 -0.270779 

 
 

 
 
• Be atom: 

 
 

 
 
 
 
 
 

n ζ  C1 C2 

1 5.7531 0.285107 -0.16378 

1 3.7156 0.474813 -0.155066 

3 9.9670 -0.001620 0.000426 

3 3.7128 0.052852 -0.059234 

2 4.4661 0.243499 -0.031925 

2 1.2919 0.000106 0.387968 

2 0.8555 -0.000032 0.685674 
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Data that used for ground state Li-1 ion published by Clementi 
[45]  
 
 

 
 
 
 
 
 

 
 
 

 
 

n ζ  C1 C2 

1 2.47472 0.89760 -0.10034 

1 4.69209 0.11212 -0.01100 

2 0.26763 -0.00003 0.39768 

2 0.53399 0.00016 0.56089 

2 1.01192 -0.00108 0.20478 

2 1.66285 0.00750 -0.07906 
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Appendix (A) 
Ground State Energy calculations 

 
 
 
    In theoretical atomic calculations the energy results used as a tool to 
certificate the results and the programs that used.  
So that, the energy are calculated in this work and the results are tabulated to 
certificate our results and the accuracy of the programs that used in these 
calculations. 
For any N-electron atomic wave function that satisfies the Viral theorem the 
energy expectation value is related to the potential energy by: 
<E>=1/2<V>................. (A.1) 
Where <E> the total expectation value of the energy ,<V>the total 
expectation value of the potential energy that simplified the sum of the 
electron –nuclear attraction energy &the inter electronic  repulsion energy 
[46],which given as: 

∑ ><+∑ ><−>=<
<

−−
N

ji
ij

N

i
i rrZV 11

……. (A.2)  

Where Z is the atomic no. of atom, N is the no. of electrons in 

atom >< −1

ir is the one particle expectation value and >< −1
ijr  is the inter 

particle expectation value with power n=-1. 
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Shell 
Present 
work  
Vee 

Present 
work  
Ven 

Present 
work  

V 

Present 
work  

T 

Present 
work  
Etotal 

Published 
work[46]  

Etotal 

KK 1.649877 -8.05503 -6.40515 3.202577 -3.202577 ----- 

KL(1S) 0.322679 -4.5456 -4.22292 2.111461 -2.111461 ----- 

KL(3S) 0.308384 -4.5456 -4.23722 2.11861 -2.11861 ----- 

Total 2.28094 -17.1462 -14.8653 7.43265 -7.43265 
 

-7.43272 

Table (A-1) Kinetic, Potential and Total Energy for Li 
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Shell 
Present 
work  
Vee 

Present 
work  
Ven 

Present work  
V 

Present 
work  

T 

Present 
work  
Etotal 

Published 
work[46] 

Etotal 

KK 2.91448 -23.4034 -20.4889 10.24446 -10.24446 ----- 

KL(1S) 0.76923 -13.8597 -13.0905 6.54523 -6.54523 ----- 

KL(3S) 0.71165 -13.8597 -13.1481 6.57402 -6.57402 ----- 

Total 4.39536 -51.1228 -46.7274 23.36372 -23.36372 
 

-23.37599 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table (A-2) Kinetic, Potential and Total Energy for B+2 
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Table (A-3) Kinetic, Potential and Total Energy for Be+1 

 

Shell 
Present 

work  
Vee 

Present 
work  
Ven 

Present 
work  

V 

Present 
work  

T 

Present 
work  
Etotal 

Published 
work[46] 

Etotal 

KK 2.27324 -14.7297 -12.4565 6.22824 -6.22824 ----- 

KL(1S) 0.51275 -8.57944 -8.06669 4.03334 -4.03334 ----- 

KL(3S) 0.54832 -8.57944 -8.03112 4.01556 -4.01556 ----- 

Total 3.33431 -31.8886 -28.5543 14.27715 -14.27715 
 

-14.27739 
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Shell 
Present 
work  
Vee 

Present 
work  
Ven 

Present 
work  

V 

Present 
work  

T 

Present 
work  
Etotal 

Published 
work[20] 

Etotal 

KK 1.650308 -8.05649 -6.40619 3.203093 -3.203093 ----- 

KL(1S) 0.238628 -4.40255 -3.92529 1.962645 -1.962645 ----- 

KL(3S) 0.231686 -4.40255 -3.93917 1.969587 -1.969587 ----- 

LL 0.162769 -1.675 -1.51223 0.756114 -0.756114 ----- 

Total 2.753704 -18.5366 -15.7829 7.891438 -7.42822 
 -7.42822  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table (A-4) Kinetic, Potential and Total Energy for Li -1 
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Shell 
Present 
work  
Vee 

Present 
work  
Ven 

Present 
work  

V 

Present 
work  

T 

Present 
work  
Etotal 

Published 
work[45] 

Etotal 

KK 2.272987 -14.7275 -12.4545 6.227257 -6.227257 ----- 

KL(1S) 0.480908 -8.4088 -7.92789 3.963944 -3.963944 ----- 

KL(3S) 0.455559 -8.4088 -7.95324 3.976619 -3.976619 ----- 

LL 0.343229 -2.09009 -1.74686 0.873432 -0.873432 ----- 

Total -33.6352 4.48915 -29.146 14.57302 
-14.57302 

 
-14.57301 

 

Table (A-5) Kinetic, Potential and Total Energy for Be 
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Appendix (B) 
Inter particle expectation value<r12

n> 
 
To calculate the coulomb energy that restrict electron-electron interaction, 
the antiparticle expectation value <r12

n> must be calculated  
 

∫>=<
∞

0
12121212 )( drrfrr nn

 

 
Where n=1, 2, 0,-1 and-2 
 
By using the method of coulson and A.H.Neilson 1961 

12212121
0

21212112
12

1212

121

12 112

112

),(),(
2
1

)( rdrdrrrrrdrdrrrrrrf
r

rr

rr

r r

rr

r









∫ ∫Γ′∫ ∫ +Γ′=
∞ +

−−

+

 

 
 
 
This function is normalized to unity [47] 
 
 

1)( 12
0

12 =∫
∞

drrf  
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Table (B-1) One-particle expectation value >< nr12  and standard 

deviation∆r12 for He-isoelectric series 
 

Z symbol -2 -1 0 1 2 ∆r12 

2 He 1.84205 1.02577 1.00000 1.36213 2.36965 0.71712 

3 Li+1 4.72704 1.65174 1.00000 0.83659 0.88504 0.43029 

4 Be+2 8.94387 2.27706 1.00000 0.60583 0.46369 0.3109 

5 B+3 14.49501 2.9023 1.00000 0.47431 0.28372 0.24238 

6 C+4 21.37925 3.52744 1.00000 0.38978 0.1914 0.19866 

7 N+5 29.5256 4.15256 1.00000 0.3308 0.13775 0.16829 

8 O+6 39.14896 4.77773 1.00002 0.28734 0.10387 0.14597 

9 F+7 50.03141 5.40264 1.00003 0.25399 0.08113 0.12892 

10 Ne+8 62.24807 6.02762 1.00000 0.22756 0.0651 
0.11541 
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Table (B-3) particle expectation value <r12
n> and standard deviation∆r12  

for B+2 ion 
 
 

Shell -2 -1 0 1 2 ∆r12 

KK 14.9319 2.91448 1.00000 0.4838 0.29328 0.24335 

KL(1S) 0.62346 0.71165 1.00000 1.68878 3.29057 0.67809 

KL(3S) 1.17342 0.76923 1.00000 1.68313 3.29275 0.66226 

 

Shell -2 -1 0 1 2 ∆r12 

KK 4.71716 1.64988 1.00000 0.8395 0.89361 0.43456 

KL(1S) 0.11995 0.30838 1.00000 3.92703 18.17525 1.67186 

KL(3S) 0.19511 0.32268 1.00000 3.92175 18.17525 1.65943 

Table (B-2) One-particle expectation value <r12
n>and standard deviation∆r12 

for Li atom 
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Table (B-4) particle expectation value <r12
n> and standard deviation∆r12  

for Be+1 ion 

Shell -2 -1 0 1 2 ∆r12 

KK 8.1721 2.27324 1.00000 0.60717 0.46608 0.31213 

KL(1S) 0.327 0.51275 1.00000 2.33131 6.33399 0.96391 

KL(3S) 0.59024 0.54832 1.00000 2.32483 6.33399 0.94814 

 
 
 
 
 
 
 
 

Shell -2 -1 0 1 2 ∆r12 

KK 4.71906 1.65031 1.00000 0.83922 0.89275 0.43413 

KL(1S) 0.11016 0.23863 1.00000 5.78402 43.95767 3.2408 

KL(3S) 0.07382 0.23169 1.00000 5.78661 43.95768 3.23617 

LL 0.04423 0.16277 1.00000 8.31543 87.00189 4.22558 

 
 
 
 
 

Table (B-5) One-particle expectation value <r12
n> and  standard 

deviation∆r12 for Li-1 

for Li-1 
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Shell -2 -1 0 1 2 ∆r12 
 

KK 8.91469 2.27299 1.00000 0.60714 0.46591 0.31192 

KL(1S) 0.45121 0.48091 1.00000 2.68717 8.65907 1.19925 

KL(3S) 0.26454 0.45556 1.00000 2.69184 8.65906 1.18872 

LL 0.19042 0.34323 1.00000 3.75524 16.85231 1.65846 

Table (B-6) One-particle expectation value <r1
n> and standard 

deviation∆r12  
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Z symbol Vee Ven 
Present 
work 

V 

Published 
work[46] 

V 

Present 
work[46] 

 
T 

Published 
work[46] 

T 

Present 
work[46] 

E 
 

Published 
work[46] 

E 
 

2 He 1.01609 -6.72244 
-5.706 

 -5.723 
2.85317 

 
2.86166 -2.85317 

 
-2.86167 

3 Li+1 1.65174 -16.1255 
-14.474 

 -14.473 
7.2369 

 
7.2372 -7.2369 

 
-7.2364 

4 Be+2 2.27706 -29.4996 
-27.223 

 -27.2225 
13.61127 

 
 

13.61121 
 

-13.61127 
 

-13.61129 
 

5 B+3 2.9023 -46.8748 
-43.973 

 43.9730 
21.98625 

 
21.98682 -21.98625 

 
-21.98623 

6 C+4 3.52744 -68.2501 
-64.723 

 -64.7222 
32.36134 

 
32.36119 -32.36134 

 
-32.36119 

7 N+5 4.15256 -93.6258 
-89.473 

 -89.472 
44.73664 

 
44.73656 -44.73664 

 
-44.73616  

8 O+6 4.77773 -123.002 
-118.224 

 -11.8223 
59.11233 

 
59.11196 -59.11233 

 
59.11114 

9 F+7 5.40264 -156.375 
-150.972 

 -150.970 
75.48627 

 
75.48405 -75.48627 

 
-75.48612 

10 Ne+8 6.02762 -193.749 
-187.7216 

 -187.7198 
93.86079 

 
93.85872 -93.8608 

] 
-93.8611 

Table (A-6) Kinetic, Potential and Total Energy for He-isoelectronic 
series 



 
 
 
 
 
 
 
  

A Study for Nuclear Magnetic Shielding  
Constant for Z = 2 to 10 

 
A thesis 

 
Submitted to College of Science at Nahrain 

University in Partial Fulfillments of the 
Requirements for the Degree of Master of 

Science in Physics 
 

By 
 

Wissam Ahmed Al-Meshhedany 
(B.Sc. 2003) 

 
Supervised By 

 
Prof. Dr. Khalil H. Al-Bayati  

 
 

Republic of Iraqi 
Ministry Of Higher Education 

And Scientific Research 
Nahrain University 
College of Science 

 

2006 A.D. 1427 A.H. 



 IV

Abstract 

The nuclear magnetic shielding constantσ  has calculated for  He-

isoelectronic series (Z=2to10), Li-isoelectronic series (Z=3to5), Be and 

Li-1 by using  RHF method and Data published by Andrew W. Weiss 

1963) , Cleminty and Roetti (1974) . 

The calculations of σ must go through calculating many properties, so 

that, Electron radial density distribution )( 1rD and one particle 

expectation value >< nr1  are calculated, with power equal to -2, -1, 

0,1and 2. 

For checking the results the energy are calculated for all studied atoms 

and ions and all results are restricted with normalization conditions.   

Electronic density at the nucleus )0(ρ  and Stander deviation 1r∆  are 

calculated. 

All introduced results physically analyzed to find the idea behind these 

data.     

These calculations are mad by using mathcad program version 11 

By using PC (Pentium 4) and all results are in atomic unite (a.u.). 
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Meaning  Symbol  

Applied magnetic field  H
r

 
Magnetic vector potential  A

r
 

vector of distance between electron and nucleus r
r  

Electron charge e  
Induced magnetic field at  nucleus H

r
∆  

Mass of electron m  
Fine structure α  
Bohr radius  Ha  
Wave function ψ  
Interaction Energy for protons IE  
Bohr magneton Nµ  
Gyromagnetic ratio )(ig s  
Orbital angular momentum quantum number iI  
Magnetic field density B

r
 

Additional contribution correction for nuclear 
magnetic shielding constant δσ  

Nuclear magnetic shielding constant σ  
X-ray forming factor  )(kf  
Wave length λ  
Unit vector  0,SS

rr
 

Atomic number Z 
Distance between any tow electron for atomic 
structure 12r  

Electronic density at nucleus  )0(ρ  
Standard deviation  1r∆  
Total energy Etotal 

Hamiltonian operator Ĥ  
Spin wavefunction  )(sδ  
Radial part of wavefunction )(rR  
Angular part of wavefunction ),( φθY  
Spin orbital wavefunction iφ  
Spatial part of wavefunction ),,( φθϕ ri  

 List of Symbols 
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Hartree-Fock   HF 
Slater Type Orbital  STO 
Roothaan Hartree  Fock   RHF 
Slater Type Orbital wavefunction pχ  

associated Legender Polynomials m
lp  

Self-Consistent field SFC 

Expansion coefficient pC  

Orbital exponents pζ  

Expansion coefficient pn  

Normalization costant N  

Number of States M  

Second Order Reduced Density Matrix ),( nm xxΓ  

Spin-less two-particle density ),( nm xxΓ′  

One particle Electron Density )( 1rD  

Spin up α  

Spin down β  

Singlet state KL( 1S) 

Triplet state KL( 3S) 

Absolute value of the different between  
σi+1&σi   

1, +∆ ii  

Electron -electron potential energy Vee 

Electron -nucleus potential energy Ven 

Total potential energy V 

Kinetic energy T 

Standard deviation for r12 12r∆  

Expansion coefficient C1,C2 
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