

Republic of Iraq Ministry of Higher education And Scientific Research AL-Nahrain University College of Science

# RELATIVISTIC COMPUTATION OF SOME SPECTROSCOPIC CHARACTERISTICS OF MEDIUM AND HIGH Z-ATOMS

A Thesis Submitted to the College of Science of AL-Nahrain University in Partial Fulfilment of the Requirement for the Degree of Doctor of Philosophy in Physics

## by ADNAN YOUSIF HUSSAIN

(M. Sc. 1998)

Jamada Al-Aker

1427

July

2006

## بسم الله الرحمن الرحيم

تبارك الذي بيده الملك و هو على كل شيء قدير (1) الذي خلق الموت والحياة ليبلوكم آيكم أحسن عملا و هو العزيز الغفور (2) الذي خلق سبع سموات طباقا ما ترى في خلق الرحمن من تفاوت فارجع البصر هل ترى من فطور (3) ثم ارجع البصر كرتين ينقلب إليك البصر خاسئا و هو حسير (4)

## صدق الله العظيم

## <u>الإهداء</u> إلى الذي لم ينسني في حمّائة أبي حفظة الله والى التي اطمع في رضاها حائما

أمي حغظما الله أهدي بحثي هذا

I certify that this thesis entitled "RELATIVISTIC COMPUTATION OF SOME SPECTROSCOPIC CHARACTERISTICS OF MEDIUM AND HIGH Z-ATOMS" was prepared by Mr. Adnan Yousif Hussain under our supervision at the college of science, AL-Nahrain university as partial fulfillment for the degree of doctor of philosophy in physics.

Signature:

Name: Dr. Ra'ad A. Radhi (supervisor) Date: /2006 /

Signature:

Name: Dr. Ahmad K. Ahmad (Head of Departement) Date: / /2006

We certify that we have read this thesis, entitled "*Relativistic Computation of Some Spectroscopic Characteristics of Medium and High Z-Atoms*" and as examining committee, examined the student *Adnan Yousif Hussain* on its contents, and that in our opinion it is adequate for the partial fulfillment of the requirements for the degree of Doctor of Philosophy of Science in Physics.

> Signature: Name: Dr. M. A. Habeeb Title: Chief Researchers (Chairman) Date: / /2006

Signature: Name: Dr. H. L. Mansour Title: Professor (Member) Date: / /2006 Signature: Name: Dr. A. J. Hamadi Title: Assistant Professor (Member) Date: / /2006 Signature: Name: M. E. Al Sandouk Title: Assistant Professor (Member) Date: / /2006 Signature: Name: A. K. Hamoudi Title: Assistant Professor (Member) Date: / /2006

Signature: Name: Dr. Ra'ad A. Radhi Title: Professor (Supervisor) Date: / /2006

Approved for Nahrain University, College of Science.

Signature: Name: Dr. LAITH ABDUL AZIZ AL-ANI Dean of College of Science, Nahrain University Date: / /2006

## ACKNOWLEDGMENTS

I would like to express my thanks to my supervisor Professor Ra'ad A. Radhi for suggesting the project, advice and constant encouragement.

My deepest appreciation is to Professor J. P. Desclaux (Departement de Recherch Fondamentale sur laMatiere Condencee Centre d'Etudes Nucleares deGrenoble , France) for much valuable help and helpful comments.

I am greatly indebted to Dr. Foaud Atia (The Abdus Salam International Center for Theoretical Physics, Italy) for his helping in providing the references.

I am very grateful to Dr. Chiranjib Sur (Indian Institute of Astrophysics) For his helping in providing the programs.

I am also indebted to Dr. Yong-Ki Kim (National Institute of Standards and Technology, Atomic Physics Division) for pointing out errors in derivation of the retardation term.

My Thanks are also to the Head and the staff of the physics Department for the support and placing the departmental facilities at our disposal.

> Adnan Yousif 2006

## ABSTRACT

A systematic study of the non-relativistic Hartree-Fock method and its relativistic version, Dirac-Fock method for the average of configuration have been presented. In the non-relativistic case, a fully derivation of the Hartree-Fock equations were presented and relativistic corrections (massvelocity, Darwin and spin-orbit terms) are treated as first-order perturbation. For the relativistic case, Dirac-Fock equations were derived, and Breit interaction operator is used as the relativistic correction for the interelectronic Coulomb interaction, and is treated as the first-order perturbation. Expressions for the matrix elements of the Breit interaction operator (magnetic and retardation terms) are given for the average of configuration. Numerical results of some atomic properties for the ground states of (Rb, Zr, Pd, Sn, Cs, Ba, Lu, Ir, Hg, Tl, Bi, Rn) atoms computed and compared with their corresponding experimental values. The relativistic effect on the orbital energies is important on the inner shells especially for the 's and 2s shells and this effect becomes more pronounced as Z increases. The contribution of Breit interaction is about 2% of the relativistic shift (mass-velocity and Darwin correction). The Hartree-Fock calculations and relativistic correction gives reasonably good approximation for heavy atoms while Dirac-Fock calculation and Breit interaction gives high precision calculations.

## CONTENTS

| ACKNOLEDGMENTS | I   |
|----------------|-----|
| ABSTRACT       | II  |
| CONTENTS       | III |
|                |     |

| CHAPTER 1.                   | 1 |
|------------------------------|---|
| 1-1- Introduction            | 1 |
| 1-2- Historical Perspectives | 2 |

| CHAPTER 2. THE HARTREE-FOCK THEORY5         |
|---------------------------------------------|
| 2-1-The Central Field Model                 |
| 2-2- The Average Energy of a Configuration7 |
| 2-3- The Hartree-Fock equations             |
| 2-4- Koopman's Theorem                      |
| 2-5- Off- Diagonal Energy Parameters        |
| 2-6- Relativistic Corrections               |

| CHAPTER 3.       | THE DIRAC-FOCK TH       | EORY23 |
|------------------|-------------------------|--------|
| 3-1- Dirac-Fock  | equations               | 23     |
| 3-2- The Relativ | istic Koopman's Theorem |        |
| 3-3- Off- Diagon | nal Energy Parameters   | 40     |

| CHAPTER 4. | <b>BREIT INTERACTION</b> | 41 |
|------------|--------------------------|----|
|------------|--------------------------|----|

| CHAPTER 5.          | NUMERICAL SOLUTIO                 | ON OF THE   |
|---------------------|-----------------------------------|-------------|
| HARTREE-FC          | OCK EQUATIONS                     | 61          |
| 5-1- Solution of th | ne Non-relativistic Hartree-Fock  | Equations61 |
| 5-2- Solution of th | ne relativistic Hartree-Fock Equa | ations66    |

| and DISCUSSION68 |
|------------------|
| 71               |
| 72               |
| 73               |
| 74               |
| 75               |
| 76               |
| 77               |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |

| CONCLUSIONS |  |
|-------------|--|
| FUTURE WORK |  |
| REFERENCES  |  |

## **CHAPTER 1**

### **1-1- INTRODUCTION**

It has been noted that an accurate solution of Schrödinger's equation is possible only for the hydrogen atom and single-electron ions [1]. A majority of the elements in the periodic table are many-electron systems where the motion of every electron is coupled to the motion of all the other electrons as well as to the nucleus. To study such systems we have to rely on some approximation methods. One widely used approximation method is the Hartree-Fock method. It is based on the rather natural approximation that every electron moves in the potential created by the nucleus plus the average potential of all the other electrons. This assumption leads to the independentparticle model, which essentially reduces the many-electron problem to the problem of solving a number of coupled single-electron equations. The singleelectron equations are solved in an iterative manner until a chosen level of self-consistent accuracy is achieved.

The Hartree-Fock approach is a method for obtaining approximate total wavefunctions for many-electron systems. It has been applied successfully to many areas of quantum mechanics including atomic, molecular, and solid-state systems [2].

It is well accepted that an accurate prediction of electronic properties of medium and heavy atoms cannot be achieved without the introduction of relativistic effects. To include these corrections the relativistic counterpart of Schrödinger's equation is considered which is the Dirac's equation, this is lead to Dirac-Fock method.

#### **1-2- HISTORICAL PERSPECTIVES**

In this section we try to trace some of the important developments that determined the directions taken by the field of the atomic structure theory.

Hartree published two important papers in 1928 [3,4]. In the first he described a numerical method for the solution of the radial equation with a non-coulomb central field; in the second he used these methods to find a field of force such that the distribution of charge given by the wavefunctions shall reproduce the field. He called this field the self-consistent field. The system of differential equations that he solved later became known as the Hartree equations or, as Hartree himself called them, "equation without exchange".

Soon after, in 1930 Fock pointed out that the Hartree wavefunction was invalid, as it did not satisfy the Pauli exclusion principle that the wavefunction must be antisymmetric with respect to electron interchange. Fock also showed that a Hartree product could be made antisymmetric by appropriately adding and subtracting all possible permutations of the Hartree product, thereby forming the Hartree-Fock (HF) wavefunction [5]. Later, Slater showed that the resulting wavefunction is simply the determinant of a matrix, called a Slater determinant [6]. The idea of the configuration average was discussed early by Shortley [7] and has been treated in detail by Slater [8].

In 1935 attempts to set up relativistic self-consistent field calculations were initiated by Swirles [9]. She showed that Dirac's equation could be able to carry through the relativistic version of Fock and Slater's formulation of the Hartree-Fock equations for a closed shell configuration.

After this, nothing much was done until the introduction of computers in the 1950's, with the exception of a relativistic Hartree calculation for  $cu^+$  by Willliams (1940) [10]. Similar calculations has been carried out by Mayers for Hg, this calculation required many hours of computer time [11]. After

this, Cohen (1960) published results for W, Pt, Hg and  $Hg^{++}$  in the same approximation [12].

Later, some relativistic self-consistent calculations were made by various authors, but most of these calculations either omitted the exchange term or made some approximations to avoid the numerical difficulties. For instance, Schonfelder computed for various atoms numerical wave functions without the exchange terms [13], and Liberman et al., calculated numerical wavefunctions for closed-shell configurations of some atoms by approximating the exchange term by Slater's method [14].

The problem was reformulated by Grant (1960, 1965) in terms of the algebra of tensor operators, and this has allowed the theory to be expressed in a simpler and more general form. He presented expressions for the relativistic Hartree-Fock equations for closed shell configurations, and also dealt with matrix elements of the magnetic part of the Breit operator [15,16]; the retardation part has since been treated by Kim in 1967 [17].

Desclaux [18] calculated highly accurate spinor energies, total energies, and other expectation values for closed shell atoms. He also published a program for calculation on multiconfiguration Dirac-Fock (MCDF) in 1975 [1<sup>q</sup>]. In 1980 Grant et al., published their MCDF code [ $\gamma \cdot$ ], the numerical methods they used are similar to those applied in Desclaux's code. Mrkus Reiher and Karsten Kind studied the effect of the inclusion of the frequency independent Breit interaction on Dirac-Fock total energies for He and Be-like ions [21]. C. Z. Dong et al., studied the M1 transitions of  $Ar^{13+}$  and  $Ar^{14+}$  using the multiconfiguration Dirac-Fock (MCDF) method [22].

Irimia and C. F. Fischer in 2004, performed multiconfiguration Hartree-Fock MCHF calculation with Breit-Pauli relativistic corrections to compute the energy levels and transition probabilities in Ar [23].

The purpose of this work is to study the various contributions to the energy for the relativistic and non-relativistic cases using Hartree-Fock method for some heavy atoms. In the non-relativistic case, the Schrödinger's Hamiltonian as non-perturbation and the one-electron relativistic corrections as a perturbation is used. In the relativistic case, Dirac-Hamiltonian as nonperturbation and the two-body Breit interaction correction from the quantum electrodynamics as a perturbation is used.

In chapter two, the non-relativistic many-body Hamiltonian, and the classification of the one and two body operators and the construction of the many-body wavefunction which built from central field wavefunctions are described. This followed by the derivation of the average energy of configuration and the Hartree-Fock equations.

In chapter three, the formulation of the relativistic Hamiltonian for manyelectron system, and the derivation of the Dirac-Fock equations are discussed. In chapter four, a full derivation of the matrix element of the frequency independent Breit interaction for both the magnetic and retardation parts is presented. A brief discussion on the numerical process to solve both the nonrelativistic and relativistic Hartree-Fock equations is presented in chapter five. Finally, results and discussions for several selected atoms are presented in chapter six.

## **CHAPTER 2**

### THE HARTREE-FOCK THEORY

#### **2-1- The Central Field Model**

For an N-electron atom with a nuclear charge Z, the non-relativistic Hamiltonian may be written [24] (in atomic units)

$$H = \sum_{i=1}^{N} h_0(\vec{r}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \frac{1}{r_{ij}}$$
(2-1-1)

where  $h_0(\vec{r})$  is the single-particle operator for the sum of the kinetic energy and the electron-nucleus interaction given by

$$h_0(\bar{r}) = -\frac{1}{2}\nabla^2 - \frac{Z}{r}$$
(2-1-2)

The term  $r_{ij}^{-1}$  represent the Coulomb repulsion among the electrons.

The Hamiltonian (2-1-1) is quite complex for any atom having more than a few electrons. As a further approximation it is then customary to assume that each electron moves independently of the other electrons in an average field caused by the nucleus and the electrons. This assumption leads to the independent-particle model, which provides an approximate description of the atom. The problem is considerably simplified if we assume that the average field is spherically symmetric. This is the well known central-field approximation [25]. The single-electron wavefunction  $\phi_{nlm,\mu}(\bar{r})$ , can then be written as a product of a radial function  $P_{nl}(r)$ , a spherical harmonic  $Y_{m_1}^{l}(\theta, \phi)$  and a spin function  $\chi_{\mu}^{1/2}$  [25].

$$\phi_{nlm_{l}\mu}(\vec{r}) = \frac{1}{r} P_{nl}(r) Y_{m_{l}}^{l}(\theta, \phi) \chi_{\mu}^{1/2}$$
(2-1-3)

where, *n* is the principal quantum number, *l* is the orbital angular momentum quantum number,  $m_l$  is the orbital magnetic quantum number, and  $\mu = \pm 1/2$ A non-relativistic total atomic wavefunction (Atomic State Function ASF),  $\Psi$  is an approximate solution of the Schrödinger's equation

$$H\psi = E\psi \tag{2-1-4}$$

where  $\boldsymbol{\psi}$  is the exact total wavefunction.

The total wavefunction for a bound state labeled  $\Gamma$  for an *N* electron atomic system is assumed to be expressed as a linear combination of configuration state functions CSF,  $\Theta$  ( $\gamma LS$ ) where  $\gamma$  represents the configuration and any other information required to uniquely identify a configuration state. Thus [26],

$$\Psi (\Gamma LS) = \sum_{r}^{n_c} c_r \Theta (\gamma_r LS)$$
(2-1-5)

where  $n_c$  is the number of CSFs included in the expansion and  $c_r$  are the configuration mixing coefficient for state  $\Gamma$ . Configuration state functions (CSF) themselves are formed by taking linear combinations of Slater determinants  $\Phi$ , so as to obtain eigenfunctions of the total orbital angular momentum operators  $L^2$ ,  $L_Z$  and total spin operators  $S^2$ ,  $S_Z$ .

$$\Phi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{a}(\vec{r}_{1}) & \phi_{b}(\vec{r}_{1}) & \cdots & \phi_{N}(\vec{r}_{1}) \\ \phi_{a}(\vec{r}_{2}) & \phi_{b}(\vec{r}_{2}) & \cdots & \phi_{N}(\vec{r}_{2}) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{a}(\vec{r}_{N}) & \phi_{b}(\vec{r}_{N}) & \cdots & \phi_{N}(\vec{r}_{N}) \end{vmatrix}$$
(2-1-6)

where a,b,... denote sets of four one-electron quantum numbers  $(nlm_1\mu)$ 

### **2-2- The Average Energy of a Configuration**

The energy of state  $\Gamma$  is given by

$$E_{\Gamma} = \left\langle \Psi \left( \Gamma LS \right) \middle| H \middle| \Psi \left( \Gamma LS \right) \right\rangle$$
  
=  $\sum_{r,s} c_r^* H_{rs} c_s$  (2-2-1)

where the Hamiltonian matrix element is given by

$$H_{rs} = \int_{0}^{\infty} \Theta^{\dagger}(\gamma_{r} LS) H \Theta (\gamma_{s} LS) d^{3}r$$
(2-2-2)

(\* denotes complex conjugate, † denote Hermitian conjugate)

The non-relativistic average energy of configuration represent the diagonal contribution to the Hamiltonian matrix, which can be written as [27]

$$E_{av} = \sum_{r} c_r^2 H_{rr}$$
(2-2-3)

The non-relativistic average energy of a configuration is defined as the center of gravity of all the states belonging to a given *LS* configuration, and given by [28]

$$E_{av} = \frac{\sum_{r} (2L_r + 1)(2S_r + 1)E(LS)_r}{\sum_{r} (2L_r + 1)(2S_r + 1)}$$
(2-2-4)

where  $L_r$  and  $S_r$  are respectively the orbital and the spin total angular momenta of a state  $(LS)_r$ ,  $E(LS)_r$  is the energy of a state  $(LS)_r$  and the *r* summation extends over the number of states in the configuration. From equations (2-2-3) and (2-2-4), we get

$$c_r = \sqrt{\frac{(2L_r + 1)(2S_r + 1)}{\sum_j (2L_j + 1)(2S_j + 1)}}$$
(2-2-5)

The Hamiltonian (2-1-1) includes one-electron operators of the type  $h_0(\vec{r}_i)$ , which act on the coordinates of one electron, and two electron operators of the kind  $r_{ij}^{-1}$ .

The matrix element of the one-electron operator  $h_0(\vec{r}_i)$  [29]

$$\left\langle \Phi \left| \sum_{i=1}^{N} h_{0}(\vec{r}_{i}) \right| \Phi \right\rangle = \sum_{a} \left\langle a \right| - \frac{1}{2} \nabla^{2} - \frac{Z}{r} \left| a \right\rangle$$

$$= \sum_{a} I(a, a)$$
(2-2-7)

where:

$$I(a,a) = \left\langle n_{a}l_{a}m_{l_{a}}\mu_{a} \right| - \frac{1}{2}\nabla^{2} - \frac{Z}{r} \left| n_{a}l_{a}m_{l_{a}}\mu_{a} \right\rangle$$
  
$$= \int_{0}^{\infty} P_{n_{a}l_{a}}(r) \left[ -\frac{1}{2}\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{2r^{2}} - \frac{Z}{r} \right] P_{n_{a}l_{a}}(r) dr$$
(2-2-8)

The matrix element of the two-particle operator  $r_{ij}^{-1}$ [29]

$$\left\langle \Phi \left| \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \mathbf{r}_{ij}^{-1} \right| \Phi \right\rangle = \frac{1}{2} \sum_{ab} \left( \left\langle ab \right| \mathbf{r}_{12}^{-1} \right| ab \right\rangle - \left\langle ab \right| \mathbf{r}_{12}^{-1} \right| ba \right\rangle \right)$$

$$= \frac{1}{2} \sum_{ab} \left( g_{abab} - g_{abba} \right)$$
(2-2-9)

In the above, subscripts i and j refer to individual electrons, while a and b stand for sets of one-electron quantum number.

 $g_{abab}$  and  $g_{abba}$  are called the direct and exchange matrix element of the Coulomb interaction  $r_{ij}^{-1}$  respectively, and is given by

$$g_{abcd} = \langle ab | \mathbf{r}_{12}^{-1} | cd \rangle$$
  
=  $\int_{0}^{\infty} \int_{0}^{\infty} d^{3}\mathbf{r}_{1} d^{3}\mathbf{r}_{2} \phi_{a}^{\dagger}(\vec{\mathbf{r}}_{1}) \phi_{b}^{\dagger}(\vec{\mathbf{r}}_{2}) \mathbf{r}_{12}^{-1} \phi_{c}(\vec{\mathbf{r}}_{1}) \phi_{d}(\vec{\mathbf{r}}_{2})$  (2-2-10)

The evaluation of  $E_{av}$  amounts to averaging over all possible sets of values of the one-electron magnetic quantum numbers  $m_l$  and  $\mu$  [30].

From equations (2-2-8) and (2-2-9),, the average energy of configuration is

$$E_{av} = \sum_{a} I(a,a) + \frac{1}{2} \sum_{ab} \left[ \left( g_{abab} \right)_{av} - \left( g_{abba} \right)_{av} \right]$$
(2-2-11)

Equation (2-2-11) can be rewritten as [30]

$$E_{av} = \sum_{a} q_{a} I(a,a) + \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) E_{aa} + \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} E_{ab}$$
(2-2-12)

where a and b run over all nl shells rather than one-electron quantum number within a shell, and q is the occupation number of the shell.

and where  

$$E_{aa} = (g_{abab})_{av} - (g_{abba})_{av}$$
 for equivalent electrons  $a = b$  (2-2-13)

$$E_{ab} = (g_{abab})_{av} - (g_{abba})_{av} \quad \text{for non - equivalent electrons } a \neq b \quad (2-2-14)$$

A general Coulomb matrix element  $g_{abcd}$  can be evaluated by using of the decomposition of  $r_{ij}^{-1}$  given [31]

$$\frac{1}{r_{12}} = \frac{1}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} C^{k}(1) \cdot C^{k}(2)$$

$$= \sum_{k=0}^{\infty} \sum_{q=-k}^{k} (-1)^{q} \frac{r_{<}^{k}}{r_{>}^{k+1}} C_{-q}^{k}(1) C_{q}^{k}(2)$$
(2-2-15)

where  $r_{\langle}$  is the lesser and  $r_{\rangle}$  the greater of the two distances  $r_1$  and  $r_2$  of the electrons from the nucleus, and where  $C^k$  is a tensor operator having components

$$C_{q}^{k} = \sqrt{\frac{4\pi}{2k+1}} Y_{q}^{k}(\theta, \varphi)$$
(2-2-16)

With the aid of the above decomposition, equation (2-2-10) becomes

$$g_{abcd} = \sum_{k=0}^{k} \sum_{q=-k}^{k} (-1)^{q} R_{k} (abcd) \langle l_{a} m_{l_{a}} | C_{-q}^{k} (1) | l_{c} m_{l_{c}} \rangle \\ \times \langle l_{b} m_{l_{b}} | C_{q}^{k} (2) | l_{d} m_{l_{d}} \rangle \delta(\mu_{a}, \mu_{c}) \delta(\mu_{b}, \mu_{d})$$
(2-2-17)

where  $R_k(abcd)$  is called Slater integral given by

$$R_{k}(abcd) = \left\langle P_{a} P_{b} \middle| \frac{r_{<}^{k}}{r_{>}^{k+1}} \middle| P_{c} P_{d} \right\rangle$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) P_{c}(r_{1}) \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{b}(r_{2}) P_{d}(r_{2}) dr_{1} dr_{2}$$
(2-2-18)

By using Wigner-Eckart theorem [32]

$$\langle l_1 m_1 | C_q^k | l_2 m_2 \rangle = [(2l_1+1)]^{-1/2} C(l_1, k, l_2; m_{l_k}, q, m_2) \langle l_1 | C^k | l_2 \rangle$$
 (2-2-19)

where,  $C(l_1, k, l_2; m_1, q, m_2)$  is the Clebsch-Gordan coefficient, and where  $\langle l_1 \| C^k \| l_2 \rangle$  is the reduced matrix element, given by

Equation (2-2-17) can be written in terms of the reduced matrix element

$$g_{abcd} = \sum_{k=0}^{k} \sum_{q=-k}^{k} (-1)^{q} R_{k} (abcd) C(l_{a}, k, l_{c}; m_{l_{a}}, -q, m_{l_{c}}) \\ \times C(l_{b}, k, l_{d}; m_{l_{b}}, q, m_{l_{d}}) \langle l_{a} \| C^{k} (1) \| l_{c} \rangle \langle l_{b} \| C^{k} (2) \| l_{d} \rangle$$

$$\times [(2l_{a}+1)(2l_{b}+1)]^{-1/2} \delta(\mu_{a}, \mu_{c}) \delta(\mu_{b}, \mu_{d})$$
(2-2-21)

From the above equation, the direct contribution

$$g_{abab} = \sum_{k=0} F_{k}(ab)C(l_{a},k,l_{a};m_{l_{a}},0,m_{l_{a}})C(l_{b},k,l_{b};m_{l_{b}},0,m_{l_{b}})$$

$$\times \langle l_{a} \| C^{k}(1) \| l_{a} \rangle \langle l_{b} \| C^{k}(2) \| l_{b} \rangle [(2l_{a}+1)(2l_{b}+1)]^{-1/2}$$
(2-2-22)

where:

$$F_{k}(ab) = R_{k}(abab) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) P_{a}(r_{1}) \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{b}(r_{2}) P_{b}(r_{2}) dr_{1} dr_{2}(2-2-23)$$

For the exchange contribution

$$g_{abba} = \sum_{k=0}^{\infty} G_{k}(ab) \left[ C(l_{a}, k, l_{b}; m_{l_{a}}, m_{l_{a}} - m_{l_{b}}, m_{l_{b}}) \right]^{2} \\ \times \left[ \left\langle l_{a} \right\| C^{k} \| l_{b} \right\rangle^{2} (2l_{a} + 1)^{-1} \delta(\mu_{a}, \mu_{b})$$
(2-2-24)

where:

$$G_{k}(ab) = R_{k}(abba) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) P_{b}(r_{1}) \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{b}(r_{2}) P_{a}(r_{2}) dr_{1} dr_{2}(2-2-25)$$

To carry out the averaging over all permissible values of the four magnetic quantum numbers, first, we sum over all permitted pairs of values of the two quantum numbers  $m_{l_b}\mu_b$ , and divide by the number of such pairs.

$$\sum_{m_{l_b}\mu_b} g_{abab} = \sum_{k=0}^{\infty} \sum_{m_{l_b}\mu_b} C(l_b, k, l_b; m_{l_b}, 0, m_{l_b}) C(l_a, k, l_a; m_{l_a}, 0, m_{l_a})$$

$$\times F_k (ab) \langle l_a \| C^k (1) \| l_a \rangle \langle l_b \| C^k (2) \| l_b \rangle [(2l_a + 1)(2l_b + 1)]^{-1/2}$$
(2-2-26)

we make use of the identities [30]

$$\sum_{m_{l_b}} C(l_b, k, l_b; m_{l_b}, 0, m_{l_b}) = (2l_b + 1)\delta(k, 0)$$
(2-2-27)

and

$$C(l_a, 0, l_a; m_{l_a}, 0, m_{l_a}) = 1$$
(2-2-28)

To obtain

$$\sum_{m_{l_b}\mu_b} g_{abab} = 2 F_0(ab) \langle l_a \| C^0(1) \| l_a \rangle \langle l_b \| C^0(2) \| l_b \rangle \left[ \frac{(2l_b+1)}{(2l_a+1)} \right]^{1/2}$$
(2-2-29)

where the sum over  $\mu_b$  just introduces a factor of two [25].

Similarly for the exchange term, we have [30]

$$\sum_{m_{l_b}\mu_b} g_{abba} = \sum_{k=0} G_k(ab) \left\langle l_a \right\| C^k(1) \left\| l_b \right\rangle^2 (2l_a + 1)^{-1}$$
(2-2-30)

Both equations (2-2-29) and (2-2-30) are independent of  $m_{la}\mu_a$  and so there is no need to average over these quantum numbers. Therefore, from equations (2-2-29) and (2-2-30), equation (2-2-13) becomes

$$E_{aa} = \frac{1}{(4l_{b}+1)} \left[ 2F_{0}(aa) \left\langle l_{a} \right\| C^{0} \left\| l_{a} \right\rangle^{2} - \sum_{k=0} F_{k}(aa) \left\langle l_{a} \right\| C^{k} \left\| l_{a} \right\rangle^{2} (2l_{a}+1)^{-1} \right]$$
$$= F_{0}(aa) - \frac{(2l_{a}+1)}{(4l_{a}+1)} \sum_{k>0} \left( \begin{matrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{matrix} \right)^{2} F_{k}(aa) \qquad (2-2-31)$$

where we have using equation (2-2-20), and  $F_k(aa) = G_k(aa)$ Similarly, for non-equivalent electrons

$$E_{ab} = F_0(ab) - \frac{1}{2} \sum_{k} \begin{pmatrix} l_a & k & l_b \\ 0 & 0 & 0 \end{pmatrix}^2 G_k(ab)$$
(2-2-32)

The expression for the average energy in non-relativistic case given in equation (2-2-12) becomes

$$E_{av} = \sum_{a} q_{a} I(a, a)$$

$$+ \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) \left[ F_{0}(aa) - \frac{(2l_{a} + 1)}{(4l_{a} + 1)} \sum_{k>0} \begin{pmatrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{pmatrix}^{2} F_{k}(aa) \right] \quad (2-2-33)$$

$$+ \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} \left[ F_{0}(ab) - \frac{1}{2} \sum_{k} \begin{pmatrix} l_{a} & k & l_{b} \\ 0 & 0 & 0 \end{pmatrix}^{2} G_{k}(ab) \right]$$

where the sum over k extends over all values permitted by the angular momentum selection rule  $|l_1 - l_2| \le k \le l_1 + l_2$  with the constraint that the sum  $l_1 + l_2 + k = even$ 

### **2-3- The Hartree-Fock equations**

We invoke the Variational principle to determine the radial wave functions.

It is required that the average energy be stationary

$$\delta E_{av} = 0 \tag{2-3-1}$$

for small changes in the radial part of the wave function subject to the orthonormalization constraint

$$\int_{0}^{\infty} P_{nl}(r) P_{n'l}(r) dr = \delta(n, n')$$
(2-3-2)

Equation (2-3-1) with the condition (2-3-2) is equivalent to satisfying the equation [25]

$$\delta \left[ E_{av} - \sum_{a} q_{a} \lambda_{aa} N_{aa} - \sum_{b \neq a} q_{a} q_{b} \delta (l_{a}, l_{b}) \lambda_{ab} N_{ab} \right] = 0$$
(2-3-3)

where  $N_{ab}$  represent the overlap integral given by equation (2-3-2), and the parameter  $\lambda_{ab}$  are the Lagrange multipliers, which they have the effect of preserving the orthonormality.

The variation in the function  $P_a(r)$  is designate by  $\delta P_a(r)$  and it is required  $\delta P_a(0) = \delta P_a(\infty) = 0$ .

From equation (2-2-32) the variation of  $E_{av}$  due to a variation of  $P_a(r)$  only is

$$\delta E_{av} = q_a \delta I(a,a) + \frac{1}{2} q_a (q_a - 1) \delta E_{aa} + \sum_{b \neq a} q_a q_b \delta E_{ab}$$
(2-3-4)  
or

$$\delta E_{av} = q_a \delta I(a,a) + \frac{1}{2} q_a (q_a - 1) \left[ \delta F_0(aa) - \frac{(2l_a + 1)}{(4l_a + 1)} \sum_{k>0} \begin{pmatrix} l_a & k & l_a \\ 0 & 0 & 0 \end{pmatrix}^2 \\ \times \delta F_k(aa) \right] + \sum_{b \neq a} q_a q_b \left[ \delta F_0(ab) - \frac{1}{2} \sum_{k} \begin{pmatrix} l_a & k & l_b \\ 0 & 0 & 0 \end{pmatrix}^2 \delta G_k(ab) \right] (2 - 3 - 5)$$

Combine the above equation with equation (2-3-3) to give

$$q_{a}\delta I(a,a) + \frac{1}{2}q_{a}(q_{a}-1)\left[\delta F_{0}(aa) - \frac{(2l_{a}+1)}{(4l_{a}+1)}\sum_{k>0} \begin{pmatrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{pmatrix}^{2} \delta F_{k}(aa) \right] + \sum_{b\neq a}q_{a}q_{b}\left[\delta F_{0}(ab) - \frac{1}{2}\sum_{k} \begin{pmatrix} l_{a} & k & l_{b} \\ 0 & 0 & 0 \end{pmatrix}^{2} \delta G_{k}(ab) \right]$$
(2-3-6)  
$$-q_{a}\lambda_{aa}\delta N_{aa} - 2\sum_{b\neq a}q_{a}q_{b}\delta(l_{a},l_{b})\lambda_{ab}\delta N_{ab} = 0$$

It follows from the above equation that the expression to be varied depend upon the integrals I(a,a),  $F_k(ab)$ ,  $G_k(ab)$ , and the overlap integral  $N_{ab}$ . We consider first the variation of these integrals separately. Using equation (2-2-8) we obtain

$$\delta I(a,a) = \int_{0}^{\infty} \delta P_{a}(r) \left[ -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{2r^{2}} - \frac{Z}{r} \right] P_{a}(r) dr + \int_{0}^{\infty} P_{a}(r) \left[ -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{2r^{2}} - \frac{Z}{r} \right] \delta P_{a}(r) dr$$
(2-3-7)

integrating by parts and using the fact  $P_a(r)$  and  $\delta P_a(r)$  vanish at the origin and at infinity, one may have

$$\delta I(a,a) = 2 \int_{0}^{\infty} \delta P_{a}(r) \left[ -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{2r^{2}} - \frac{Z}{r} \right] P_{a}(r) dr \qquad (2-3-8)$$

In order to obtain the variation of  $F_k(ab)$  and  $G_k(ab)$  integrals it is convenient to introduce the Hartree function given by [25]

$$Y_{k}(ab, r_{1}) = r_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{a}(r_{2}) P_{b}(r_{2})$$

$$= \frac{1}{r_{1}^{k}} \int_{0}^{r_{1}} dr_{2} r_{2}^{k} P_{a}(r_{2}) P_{b}(r_{2}) + r_{1}^{k+1} \int_{r_{1}}^{\infty} dr_{2} \frac{1}{r_{2}^{k+1}} P_{a}(r_{2}) P_{b}(r_{2})$$
(2-3-9)
(2-3-9)

The  $F_k(ab)$  and  $G_k(ab)$  integrals in equations (22-2-23) and (2-2-25) becomes

$$F_{k}(ab) = \int_{0}^{\infty} dr_{1} P_{a}^{2}(r_{1}) \frac{1}{r_{1}} Y_{k}(bb, r_{1})$$

$$G_{k}(ab) = \int_{0}^{\infty} dr_{1} P_{a}(r_{1}) P_{b}(r_{1}) \frac{1}{r_{1}} Y_{k}(ab, r_{1})$$
(2-3-10)

Therefore

$$\delta F_k(ab) = 2 \int_0^\infty dr P_a(r) \delta P_a(r) \frac{1}{r} Y_k(bb, r) \qquad a \neq b \qquad (2-3-11)$$

$$\delta F_k(aa) = 4 \int_0^\infty dr P_a(r) \delta P_a(r) \frac{1}{r} Y_k(aa, r) \qquad a = b \qquad (2-3-12)$$

combine the above two equation to obtain

$$\delta F_{k}(ab) = 2(1 + \delta_{ab}) \int_{0}^{\infty} dr P_{a}(r) \delta P_{a}(r) \frac{1}{r} Y_{k}(bb, r)$$
(2-3-13)

similarly, the variations of the exchange integral and the overlap integral are

$$\delta \boldsymbol{G}_{k}(ab) = 2\left(1 + \boldsymbol{\delta}_{ab}\right) \int_{0}^{\infty} dr \, \boldsymbol{P}_{a}(r) \delta \, \boldsymbol{P}_{b}(r) \frac{1}{r} \boldsymbol{Y}_{k}(ab, r)$$
(2-3-14)

$$\delta N_{ab} = \left(1 + \delta_{ab}\right) \int_{0}^{\infty} dr \,\delta P_{a}(r) P_{b}(r)$$
(2-3-15)

With the expression for the variations of the integrals given above, equation (2-3-6) becomes

$$\int_{0}^{\infty} \delta P_{a}(r) \left[ -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{2r^{2}} - \frac{Z}{r} \right] P_{a}(r) dr + \left( q_{a} - 1 \right) \left[ \int_{0}^{\infty} dr P_{a}(r) \delta P_{a}(r) \frac{1}{r} Y_{0}(aa, r) - \frac{(2l_{a}+1)}{(4l_{a}+1)} \sum_{k>0} \left( \begin{matrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{matrix} \right)^{2} \int_{0}^{\infty} dr P_{a}(r) \delta P_{a}(r) \frac{1}{r} Y_{k}(aa, r) \right] + \sum_{b\neq a} q_{b} \left[ \int_{0}^{\infty} dr P_{a}(r) \delta P_{a}(r) \frac{1}{r} Y_{0}(bb, r) - \frac{1}{2} \sum_{k} \left( \begin{matrix} l_{a} & k & l_{b} \\ 0 & 0 & 0 \end{matrix} \right)^{2} \right)^{2} (2 - 3 - 16) \times \int_{0}^{\infty} dr \delta P_{a}(r) P_{b}(r) \frac{1}{r} Y_{k}(ab, r) \right] - \lambda_{aa} \int_{0}^{\infty} dr P_{a}(r) \delta P_{a}(r) - \sum_{b\neq a} q_{b} \delta(l_{a}, l_{b}) \lambda_{ab} \int_{0}^{\infty} dr \delta P_{a}(r) P_{b}(r) = 0$$

This integral will vanish for arbitrary  $\delta P_a(r)$ , only if the radial functions satisfy the equation [25]

$$\begin{bmatrix} -\frac{1}{2}\frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{2r^{2}} - \frac{Z}{r} \end{bmatrix} P_{a}(r) \\ + (q_{a}-1)\frac{1}{r} \begin{bmatrix} Y_{0}(aa,r) - \frac{(2l_{a}+1)}{(4l_{a}+1)}\sum_{k>0} \begin{pmatrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{pmatrix}^{2} Y_{k}(aa,r) \end{bmatrix} P_{a}(r) \\ + \sum_{b\neq a} q_{b} \begin{bmatrix} P_{a}(r)\frac{1}{r}Y_{0}(bb,r) - \frac{1}{2}\sum_{k} \begin{pmatrix} l_{a} & k & l_{b} \\ 0 & 0 & 0 \end{pmatrix}^{2} P_{b}(r)\frac{1}{r}Y_{k}(ab,r) \end{bmatrix} (2 - 3 - 17) \\ - \lambda_{aa} P_{a}(r) - \sum_{b\neq a} q_{b} \delta(l_{a},l_{b})\lambda_{ab} P_{b}(r) = 0$$

In this equation  $\lambda_{aa}$  serves as a single-electron eigenvalue. If we denote  $\varepsilon_a = \lambda_{aa}$  and  $\varepsilon_{ab} = \lambda_{ab}$ 

$$Y_{a}(r) = Z - (q_{a} - 1) \left[ Y_{0}(aa, r) - \frac{(2l_{a} + 1)}{(4l_{a} + 1)} \right] \times \sum_{k>0} \left( \begin{array}{cc} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{array} \right)^{2} Y_{k}(aa, r) - \sum_{b \neq a} q_{b} Y_{0}(bb, r)$$

$$(2-3-18)$$

and

$$X_{a}(r) = \sum_{b \neq a} q_{b} \left[ \sum_{k=0}^{\infty} {\binom{l_{a} \quad k \quad l_{b}}{0 \quad 0 \quad 0}}^{2} \frac{1}{r} Y_{k}(ab, r) + 2 \,\delta(l_{a}, l_{b}) \varepsilon_{ab} \right] P_{b}(r)$$
(2-3-19)

equation (2-3-17) becomes

$$\frac{d^2 P_a}{dr^2} - \frac{l_a(l_a+1) P_a}{r^2} + 2 \left[ \mathcal{E}_a + \frac{Y_a(r)}{r} \right] P_a(r) = -X_a(r)$$
(2-3-20)

This is the Hartree-Fock equation for the radial part of the orbitals in the subshell a. There is one HF equation (2-3-20) for each occupied subshell a.

### **2-4- Koopman's Theorem**

The value of  $\mathcal{E}_a$  has a direct physical significance. To see this, we multiply all terms of equation (2-3-20) from the left by  $P_a(r)$  and integrating, and using equations (2-2-8), (2-3-10), (2-3-18) and (2-3-19) this gives

$$\mathcal{E}_{a} = I(a,a) + (q_{a}-1) \left[ F_{0}(aa) - \frac{(2l_{a}+1)}{(4l_{a}+1)} \sum_{k>0} \begin{pmatrix} l_{a} & k & l_{a} \\ 0 & 0 & 0 \end{pmatrix}^{2} F_{k}(aa) \right]$$
  
+ 
$$\sum_{b \neq a} q_{b} \left[ F_{0}(ab) - \frac{1}{2} \sum_{k} \begin{pmatrix} l_{a} & k & l_{b} \\ 0 & 0 & 0 \end{pmatrix}^{2} G_{k}(ab) \right]$$
(2-4-1)

using equations (2-2-31) and (2-2-32), then

$$\mathcal{E}_{a} = I(a,a) + (q_{a} - 1)E_{aa} + \sum_{b \neq a} q_{b}E_{ab}$$
(2-4-2)

This quantity is the energy associated with an electron in subshell a according to (2-2-12).

The Hartree-Fock energy eigenvalue  $\mathcal{E}_c$  is related to the energy required to remove an electron from the subshell *c*. The energy of an ion is

$$E_{ion} = \sum_{a} I(a,a) - I(c,c) + \frac{1}{2} \sum_{ab} (g_{abab} - g_{abba}) - \sum_{a} (g_{acac} - g_{acca})$$
(2-4-3)

$$E_{ion} - E_{atom} = -I(c,c) - \sum_{a} \left( g_{acac} - g_{acca} \right) = -\mathcal{E}_{c}$$
(2-4-4)

Thus the removal energy, calculated with Hartree-Fock wave function for the atom, is the negative of the corresponding Hartree-Fock eigenvalue. This result is called Koopman's theorem [33].

### **2-5- Off- Diagonal Energy Parameters**

The off-diagonal energy parameters enter into the Hartree-Fock equations through an orthogonality constraint. We can a obtain relation to determine these parameters, by multiplying equation (2-3-20) by  $P_b$ , and integrating over r from zero to infinity, we get

$$\boldsymbol{\mathcal{E}}_{ab} = I(a,b) + \int_{0}^{\infty} \frac{1}{r} \left[ Z - \boldsymbol{Y}_{a}(r) \right] \boldsymbol{P}_{a} \boldsymbol{P}_{b} dr - \frac{1}{2} \int_{0}^{\infty} \boldsymbol{\eta}_{a}(r) \boldsymbol{P}_{b} dr$$
(2-5-1)

where

$$I(a,b) = \int_{0}^{\infty} P_{n_{a}l_{a}} \left[ -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{l_{a}(l_{a}+1)}{r^{2}} - \frac{Z}{r} \right] P_{n_{b}l_{a}} dr$$
(2-5-2)

and

$$\eta_{a}(r) = \sum_{b \neq a} q_{b} \left[ \sum_{k=0}^{k} {\binom{l_{a} \quad k \quad l_{b}}{0 \quad 0 \quad 0}}^{2} \frac{1}{r} Y_{k}(ab, r) \right] P_{b}(r)$$
(2-5-3)

#### **2-6- Relativistic Corrections**

There exists two approaches to include relativistic effects. One way is to treat the relativistic interactions as perturbations to the nonrelativistic Hamiltonian. This is done in the Pauli approximation, where relativistic effects are treated to order  $\alpha^2$  (where  $\alpha$  is the fine structure constant).

A more accurate way of treating the relativistic interactions is to approximate the Hamiltonian by a sum of single-particle Dirac Hamiltonians  $h_D(\bar{r})$  and the Coulomb interaction between the electrons,  $r_{12}^{-1}$ , as can be seen in the next chapter.

For the first approach, we starting from Dirac Hamiltonian for a particle moving in a central field V [34]

$$h_D(\vec{r}) = c\vec{\alpha} \cdot \vec{p} + \beta c^2 + V \tag{2-6-1}$$

Where  $\vec{p}$  is the momentum operator, *c* is the speed of light; in atomic units, c=137.0359895. The quantities  $\vec{\alpha}$  and  $\beta$  are (4×4) Dirac matrices:

$$\bar{\alpha} = \begin{pmatrix} 0 & \bar{\sigma} \\ \bar{\sigma} & 0 \end{pmatrix}, \ \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$
(2-6-2)

Where  $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$  is (2×2) Pauli spin matrices, which are given by

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(2-6-3)

, I and 0 the  $(2 \times 2)$  unit and zero matrices, respectively.

If  $\phi(\vec{r})$  is an eigenfunction of the one-electron Dirac Hamiltonian  $h_D(\vec{r})$  with eigenvalue  $\varepsilon$ , then

$$\phi(\vec{r}) = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \tag{2-6-4}$$

$$\varepsilon' = \varepsilon - c^2 \tag{2-6-5}$$

where  $\phi_1$  and  $\phi_2$  represent the large and small components of the wave function respectively.

The wave equation then becomes

$$-c(\vec{\sigma} \cdot \vec{p})\phi_2 + (\varepsilon' - V)\phi_1 = 0$$

$$-c(\vec{\sigma} \cdot \vec{p})\phi_1 + (\varepsilon' - V + 2c^2)\phi_2 = 0$$
(2-6-6)

eliminating  $\phi_2$  by substitute the second of the above equations into the first, gives:

$$\varepsilon'\phi_1 = \frac{1}{2}(\vec{\sigma} \cdot \vec{p})\left(1 + \frac{\varepsilon' - V}{2c^2}\right)^{-1}(\vec{\sigma} \cdot \vec{p})\phi_1 + V\phi_1 \tag{2-6-7}$$

expanded to the order of  $1/c^2$  to obtain

$$\varepsilon'\phi_{1} = \frac{p^{2}}{2}\phi_{1} - \frac{1}{4c^{2}}\left[\left(\vec{\sigma}\cdot\vec{p}\right)\varepsilon'\left(\vec{\sigma}\cdot\vec{p}\right) - \left(\vec{\sigma}\cdot\vec{p}\right)V\left(\vec{\sigma}\cdot\vec{p}\right)\right]\phi_{1} + V\phi_{1}$$
(2-6-8)

using [32]  $\vec{p}V = V\vec{p} - i\vec{\nabla}V$ , then equation (2-6-8) becomes

$$\varepsilon'\phi_1 = \frac{p^2}{2}\phi_1 - \frac{1}{4c^2} \Big[ p^2\varepsilon' - Vp^2 + i(\vec{\sigma} \cdot \vec{\nabla}V)(\vec{\sigma} \cdot \vec{p}) \Big]\phi_1 + V\phi_1$$
(2-6-9)

with the help of  $(\vec{\sigma} \cdot \vec{\nabla}V)(\vec{\sigma} \cdot \vec{p}) = \vec{\nabla}V \cdot \vec{p} + i\vec{\sigma} \cdot (\vec{\nabla}V \times \vec{p})$  equation (2-6-9) becomes

$$\varepsilon'\phi_{1} = \frac{p^{2}}{2}\phi_{1} - \frac{\varepsilon' - V}{4c^{2}}p^{2}\phi_{1} - \frac{1}{4c^{2}}\bar{\nabla}V.\bar{\nabla}\phi_{1} + \frac{1}{4c^{2}}\bar{\sigma}\cdot(\bar{\nabla}V\times\bar{p})\phi_{1} + V\phi_{1} \quad (2-6-10)$$

since V is spherically symmetric, then

$$\vec{\nabla}V = \frac{1}{r}\frac{dV}{dr}\vec{r}$$
;  $\vec{\nabla}V.\vec{\nabla} = \frac{dV}{dr}\frac{\partial}{\partial r}$ 

equation (2-6-10) becomes

$$\varepsilon'\phi_{1} = \frac{p^{2}}{2}\phi_{1} + V\phi_{1} - \frac{\left(\varepsilon' - V\right)^{2}}{2c^{2}}\phi_{1} - \frac{1}{4c^{2}}\frac{dV}{dr}\frac{\partial}{\partial r}\phi_{1} + \frac{1}{2c^{2}}\frac{1}{r}\frac{dV}{dr}(\bar{s}.\bar{l})\phi_{1} \quad (2-6-11)$$
where  $\bar{s} = \frac{1}{2}\bar{\sigma}$ ;  $l = \bar{r} \times \bar{p}$  and  $\varepsilon' - V = \frac{p^{2}}{2}$ 

The first and second terms on the right side of equation (2-6-11) give the nonrelativistic Schrödinger equation. The third term is called the mass-velocity term because it arises from the relativistic variation of mass with velocity [35]. The forth term is called the Darwin term which represents a relativistic correction to the potential energy [30]. The last term is the spin orbit term which represents the magnetic interaction energy between the electron's spin magnetic moment and the magnetic field due to the electron orbital motion [30].

Incorporating these relativistic effects within the format of the non-relativistic approach.

For the spin-orbit term, the matrix element is

$$\left\langle \Phi \left| \frac{1}{2c^2} \sum_{i=1}^{N} \frac{1}{r_i} \frac{dV_i}{dr_i} \left( \vec{s}(i).\vec{l}(i) \right) \Phi \right\rangle$$
(2-6-12)

Equation (2-6-12) involves summation over possible values of  $\mu_a$ , therefore, for any specific value of  $n_a l_a m_a$ , there will be one-electron matrix elements with  $\mu_a$  equal to both +1/2 and -1/2. Therefore these two matrix elements will be equal in magnitude but opposite in sign; thus the spin-orbit contribution to  $E_{av}$  is zero [30].

For mass-velocity term

$$E_{m} = \left\langle \Phi \left| \frac{1}{2c^{2}} \sum_{i=1}^{N} \left( \varepsilon_{i}^{\prime} - V_{i} \right)^{2} \right| \Phi \right\rangle$$
  
$$= \frac{1}{2c^{2}} \sum_{a} \int_{0}^{\infty} P_{a} \left( \varepsilon_{a}^{\prime} - V_{a} \right)^{2} P_{a} dr$$
(2-6-13)

and for the Darwin term

$$E_{D} = \left\langle \Phi \left| \frac{1}{4c^{2}} \sum_{i=1}^{N} \frac{dV_{i}}{dr} \frac{\partial}{\partial r} \right| \Phi \right\rangle$$
  
$$= \frac{1}{4c^{2}} \sum_{a} \int_{0}^{\infty} P_{a} \frac{dV_{a}}{dr} r \frac{d}{dr} (r^{-1} P_{a}) dr$$
(2-6-14)

where

$$V_{a} = \left(q_{a} - 1\right) \left[\frac{1}{r} Y_{0}(aa, r) - \frac{(2l_{a} + 1)}{(4l_{a} + 1)} \sum_{k>0} \left(l_{a} - k - l_{a}\right)^{2} \frac{1}{r} Y_{k}(aa, r)\right] + \sum_{b \neq a} q_{b} \left[\frac{1}{r} Y_{0}(bb, r)\right] - \frac{Z}{r}$$
(2-6-15)

From equation (2-6-13) and (2-6-14), the relativistic shift due to mass-velocity and Darwin term is:

$$\operatorname{Re} \operatorname{lativistic} \operatorname{shift} = E_m + E_D \tag{2-6-16}$$

## CHAPTER 3

## **DIRAC-FOCK THEORY**

#### **3-1- Dirac-Fock Equations**

Pauli approximation becomes less satisfactory for high atomic numbers where the use of perturbation theory starts to break down [37]. Therefore, a theory in which the one-body relativistic correction are treated in nonperturbative fashion must be used. This is achieved by using Dirac's equation. All relativistic single-particle effects, namely the mass correction, the Darwin term and the spin-own-orbit interaction are automatically included via the Dirac Hamiltonian (2-6-1).

The Hartree-Fock is extended to include relativistic effect. Starting with a relativistic many-body Hamiltonian  $[3^{\vee}]$ 

$$H = \sum_{i=1}^{N} h_D(\vec{r}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \frac{1}{r_{ij}}$$
(3-1-1)

This is known as the Dirac-Coulomb Hamiltonian.

Where  $h_D(\vec{r})$  is the single-particle Dirac Hamiltonian for an electron moving

in nuclear Coulomb potential 
$$\frac{Z}{r}$$
 and is given in equation (2-6-1)  
 $h_D(\vec{r}) = c\vec{\alpha} \cdot \vec{p} + (\beta - 1)c^2 - \frac{Z}{r}$ 
(3-1-2)

Where, the rest-mass energy term from the Dirac Hamiltonian has been subtracted in order to choose the zero of energy equal to the electron rest mass  $[3^{A}]$ .

The one-electron Dirac wave function  $\phi(\vec{r})$  satisfies the single-particle Dirac equation

$$h_D \phi(\vec{r}) = \mathcal{E} \phi(\vec{r}) \tag{3-1-3}$$

The one-electron, bound-state solution to the Dirac equation (3-1-3) having the form  $[3^{9}]$ 

$$\phi_{n\kappa m}(\vec{r}) = \frac{1}{r} \begin{pmatrix} P_{n\kappa}(r) \Omega_{\kappa m}(\theta, \varphi) \\ i Q_{n\kappa}(r) \Omega_{-\kappa m}(\theta, \varphi) \end{pmatrix}$$
(3-1-4)

where  $P_{n\kappa}(r)$  and  $Q_{n\kappa}(r)$  are the large and small components of the oneelectron radial wavefunctions respectively, and satisfy the orthonormality condition [ $\xi \cdot$ ]

$$\int_{0}^{\infty} \left[ P_{n\kappa}(r) P_{n'\kappa}(r) + Q_{n\kappa}(r) Q_{n'\kappa}(r) \right] dr = \delta(\mathbf{n}, \mathbf{n}')$$
(3-1-5)

where  $\delta(n,n')$  is the Kronecker delta.

The angular function  $\Omega_{\kappa n}(\theta, \varphi)$  is the spherical spinor, which is defined by the equation  $[\mathfrak{l}]$ 

$$\Omega_{\kappa m}(\theta, \varphi) = \sum_{\mu} C(l, 1/2, j; m - \mu, \mu, m) Y_{m-\mu}^{l}(\theta, \varphi) \chi_{\mu}^{1/2}$$
(3-1-6)

Here *n* is the principal quantum number, and  $\kappa$  is the Dirac quantum number which is related to the total angular momentum quantum number *j* and the orbital angular momenta quantum numbers *l* and  $\overline{l}$  of large and small components, respectively by [1<sup> $\gamma$ </sup>]

$$j = |\kappa| - \frac{1}{2}$$

$$l = \left|\kappa + \frac{1}{2}\right| - \frac{1}{2}$$

$$\bar{l} = \left|-\kappa + \frac{1}{2}\right| - \frac{1}{2}$$
(3-1-7)

The Dirac spinors which is defined by equation (3-1-4) are used to build the configuration state functions (CSF)  $\Theta$  ( $\gamma JM$ ) by taking linear combination of Slater determinants, so as to obtain eigenfunctions of the total angular momentum operators  $J^2$  and  $J_Z$  [ $\xi \gamma$ ]

$$\Phi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(\vec{r}_1) & \phi_b(\vec{r}_1) & \cdots & \phi_N(\vec{r}_1) \\ \phi_a(\vec{r}_2) & \phi_b(\vec{r}_2) & \cdots & \phi_N(\vec{r}_2) \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \phi_a(\vec{r}_N) & \phi_b(\vec{r}_N) & \cdots & \phi_N(\vec{r}_N) \end{vmatrix}$$
(3-1-8)

where the subscripts  $a, b, \dots$  denote the set of the wave function  $n \kappa m$ .

An atomic state function (ASF)  $\Psi$  ( $\Gamma JM$ ) can now be formed from  $\Theta$  ( $\gamma JM$ ) for state  $\Gamma$  with total angular momentum JM in the following way [43,44]:

$$\Psi (\Gamma JM) = \sum_{r}^{n_c} c_r \Theta (\gamma_r JM)$$
(3-1-9)

where  $n_c$  is the number of CSFs included in the expansion and  $c_r$  are the configuration mixing coefficient for state  $\Gamma$  such that  $\sum_{r}^{n_c} c_r^2 = 1$ .

The total relativistic atomic energy is

$$E_{\Gamma} = \left\langle \Psi \left( \Gamma JM \right) \middle| H \middle| \Psi \left( \Gamma JM \right) \right\rangle$$
  
=  $\sum_{r,s} c_r^* H_{rs} c_s$  (3-1-10)

where the Hamiltonian matrix element is given by

$$H_{rs} = \int \Theta^{\dagger}(\gamma_r JM) H \Theta (\gamma_s JM) d^3r \qquad (3-1-11)$$

The relativistic average energy of configuration represents the diagonal contribution to the Hamiltonian matrix which can be written as [42]

$$E_{av} = \sum_{r}^{n_c} c_r^2 H_{rr}$$
(3-1-12)

As in the non-relativistic case, the relativistic average energy of configuration is defined as the center of gravity of all the J-levels belonging to a given relativistic (jj)-configuration, and is given by [28]

$$E_{av} = \frac{\sum_{r} (2J_{r} + 1)E(J_{r})}{\sum_{r} (2J_{r} + 1)}$$
(3-1-13)

where  $E(J_r)$  is the energy of the level  $J_r$  and the *r* summation extends over the total number of *J*-levels in the relativistic (jj)-configuration.

From equations (3-1-12) and (3-1-13), we get

$$c_r = \sqrt{\frac{(2J_r + 1)}{\sum_r (2J_r + 1)}}$$
(3-1-14)

In relativistic case each nonrelativistic configuration split up into several relativistic (jj)-subconfiguration, and therefore, at this point it is useful to introduce the concept of extended average energy (EAL), which has the property that exactly reduces to the nonrelativistic average energy. The EAL is defined as the sum of the relativistic subconfiguration average energy defined in equation (3-1-13), sum that includes all the relativistic (jj)-subconfigurations arising from a single nonrelativistic configuration. In the sum, each of the relativistic (jj)-subconfiguration is weighted by its degeneracy [45].

$$E_{EAL} = \frac{\sum_{r} w_r (E_{av})_r}{\sum_{s}^{n_L} (2J_s + 1)}$$
(3-1-15)

with

$$w_r = \sum_i \left( 2J_i + 1 \right)$$

Where the summation over s is run over all the values of the J-levels in all relativistic (jj)-subconfigurations and the summation over i is run over the values of the J-levels in the given subconfiguration r.

The relativistic average of energy is defined by [46]

$$E_{av} = \sum_{a} I(a,a) + \frac{1}{2} \sum_{ab} \left[ \left( \left\langle ab \left| \frac{1}{r_{12}} \right| ab \right\rangle \right)_{av} - \left( \left\langle ab \left| \frac{1}{r_{12}} \right| ba \right\rangle \right)_{av} \right] \right]$$

$$= \sum_{a} I(a,a) + \frac{1}{2} \sum_{ab} \left[ \left( g_{abab} \right)_{av} - \left( g_{abba} \right)_{av} \right]$$

$$(3-1-16)$$

Where the averaging over all possible sets of values of magnetic quantum numbers  $m_a$  and  $m_b$ .

Here the Coulomb matrix elements  $g_{abcd}$  are to be evaluated using Dirac single-particle wave function (3-1-4) rather than non-relativistic single-particle wave function.

Where I(a, a) is the one-electron energy integral for the Dirac Hamiltonian (3-1-2), given by

$$I(a,a) = \langle n_a \kappa_a m_a | h_D | n_a \kappa_a m_a \rangle$$
(3-1-7)

$$= \int_{0}^{\infty} dr \left\{ c Q_a \left( \frac{dP_a}{dr} + \frac{\kappa_a}{r} P_a \right) - c P_a \left( \frac{dQ_a}{dr} - \frac{\kappa_a}{r} Q_a \right) - \frac{Z}{r} \left( P_a^2 + Q_a^2 \right) - 2 c^2 Q_a^2 \right\}$$
where we have used [29]

where we have used [29]

$$\vec{\sigma}.\vec{P}f(r)\,\mathbf{\Omega}_{\kappa m}(\theta,\varphi) = i \left[\frac{df}{dr} + \frac{\kappa+1}{r}f(r)\right]\mathbf{\Omega}_{-\kappa m}(\theta,\varphi) \tag{3-1-18}$$

and where  $g_{abab}$  and  $g_{abba}$  are the direct and exchange matrix element of the Coulomb operator respectively, and is given by
$$g_{abcd} = \int_{0}^{\infty} \int_{0}^{\infty} d^3 r_1 d^3 r_2 \phi_a^{\dagger}(\vec{r}_1) \phi_b^{\dagger}(\vec{r}_2) \frac{1}{r_{12}} (1,2) \phi_c(\vec{r}_1) \phi_d^{\dagger}(\vec{r}_2)$$
(3-1-19)

The expression for the average energy given in equation (3-1-16) can be rewritten as

$$E_{av} = \sum_{a} q_{a} I(a,a) + \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) E_{aa}^{C} + \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} E_{ab}^{C}$$
(3-1-20)

where

$$E_{aa}^{C} = (g_{abab})_{av} - (g_{abba})_{av} \qquad \text{with} \quad a = b$$

$$E_{ab}^{C} = (g_{abab})_{av} - (g_{abba})_{av} \qquad \text{with} \quad a \neq b$$
(3-1-21)

and where q is the occupation number of the subshell.

A general Coulomb matrix element  $g_{abcd}$  can be decomposed by using equation (2-2-15)

$$\frac{1}{r_{12}} = \frac{1}{\left|\vec{r}_1 - \vec{r}_2\right|} = \sum_{k=0}^{\infty} \frac{r_{k}} C^k(1) \cdot C^k(2)$$
(3-1-22)

and using equation (3-1-4) in the form

$$\phi(\vec{r}) = \begin{pmatrix} u(\vec{r}) \\ v(\vec{r}) \end{pmatrix}$$
(3-1-23)

Where u and v are large and small component of the electron wavefunction respectively.

Equation (3-1-19) becomes

$$g_{abcd} = \langle u_a u_b | \frac{1}{r_{12}} | u_c u_d \rangle + \langle u_a v_b | \frac{1}{r_{12}} | u_c v_d \rangle$$

$$+ \langle v_a u_b | \frac{1}{r_{12}} | v_c u_d \rangle + \langle v_a v_b | \frac{1}{r_{12}} | v_c v_d \rangle$$
(3-1-24)

Treating the first term of the above equation, by using equations (3-1-22) and (3-1-4)

$$\langle u_{a}u_{b} | \frac{1}{r_{12}} | u_{c}u_{d} \rangle = \sum_{k=0}^{k} \langle P_{a}P_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | P_{c}P_{d} \rangle$$

$$\times \langle \Omega_{a}\Omega_{b} | C^{k}(1) \cdot C^{k}(2) | \Omega_{c}\Omega_{d} \rangle$$
(3-1-25)

Using the definition of the spherical spinor (3-1-6), then the above equation becomes

$$\langle u_{a} u_{b} | \frac{1}{r_{12}} | u_{c} u_{d} \rangle$$

$$= \sum_{k=0}^{k} \langle P_{a} P_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | P_{c} P_{d} \rangle \langle Y_{m_{a}-\mu_{a}}^{l_{a}} Y_{m_{b}-\mu_{b}}^{l_{b}} | C^{k}(1) \cdot C^{k}(2) | Y_{m_{c}-\mu_{c}}^{l_{c}} Y_{m_{d}-\mu_{d}}^{l_{d}} \rangle$$

$$\times \sum_{\mu_{a}\mu_{c}} C(l_{a}, 1/2, j_{a}; m_{a} - \mu_{a}, \mu_{a}, m_{a}) C(l_{c}, 1/2, j_{c}; m_{c} - \mu_{c}, \mu_{c}, m_{c}) \delta(\mu_{a}, \mu_{c})$$

$$\times \sum_{\mu_{b}\mu_{d}} C(l_{b}, 1/2, j_{b}; m_{b} - \mu_{b}, \mu_{b}, m_{b}) C(l_{d}, 1/2, j_{d}; m_{d} - \mu_{d}, \mu_{d}, m_{d}) \delta(\mu_{b}, \mu_{d})$$

The matrix element of the scalar product of the spherical tensor operators can be decomposed by applying Wigner-Eckart theorem to give [46]

$$\left\langle Y_{m_{a}-\mu_{a}}^{l_{a}} Y_{m_{b}-\mu_{b}}^{l_{b}} \middle| C^{k}(1) \cdot C^{k}(2) \middle| Y_{m_{c}-\mu_{c}}^{l_{c}} Y_{m_{d}-\mu_{d}}^{l_{d}} \right\rangle$$

$$= (-1)^{l_{a}+l_{b}-m_{a}-m_{b}+\mu_{a}+\mu_{b}} \frac{\left\langle l_{a} \middle\| C^{k}(1) \middle\| l_{c} \right\rangle}{\sqrt{2k+1}} \frac{\left\langle l_{b} \middle\| C^{k}(2) \middle\| l_{d} \right\rangle}{\sqrt{2k+1}}$$

$$\times C(l_{a},k,l_{c};m_{a}-\mu_{a},m_{c}-m_{a}+\mu_{a}-\mu_{c},m_{c}-\mu_{c})$$

$$\times C(l_{b},k,l_{d};m_{b}-\mu_{b},m_{d}-m_{b}+\mu_{b}-\mu_{d},m_{d}-\mu_{d})$$

$$(3-1-27)$$

with

Equation (3-1-26) becomes

$$\langle u_{a}u_{b}|\frac{1}{r_{12}}|u_{c}u_{d}\rangle = \sum_{k=0} \langle P_{a}P_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|P_{c}P_{d}\rangle$$

$$\times \sum_{\mu_{a}} (-1)^{l_{a}-m_{a}+\mu_{a}}C(l_{a},1/2,j_{a};m_{a}-\mu_{a},\mu_{a},m_{a})$$

$$\times C(l_{c},1/2,j_{c};m_{c}-\mu_{a},\mu_{a},m_{c})\frac{\langle l_{a}\|C^{k}(1)\|l_{c}\rangle}{\sqrt{2k+1}}$$

$$\times C(l_{a},k,l_{c};m_{a}-\mu_{a},m_{c}-m_{a},m_{c}-\mu_{a})$$

$$\times \sum_{\mu_{b}} (-1)^{l_{b}-m_{b}+\mu_{b}}C(l_{b},1/2,j_{b};m_{b}-\mu_{b},\mu_{b},m_{b})$$

$$\times C(l_{a},1/2,j_{a};m_{d}-\mu_{b},\mu_{b},m_{d})\frac{\langle l_{b}\|C^{k}(2)\|l_{d}\rangle}{\sqrt{2k+1}}$$

$$\times C(l_{b},k,l_{d};m_{b}-\mu_{b},m_{d}-m_{b},m_{d}-\mu_{b})$$

$$(3-1-29)$$

Now introducing a coefficient

$$d^{k}(jm, j'm') = \frac{\langle l \| C^{k} \| l' \rangle}{\sqrt{2k+1}} \sum_{\mu} (-1)^{l-m+\mu} C(l, 1/2, j; m-\mu, \mu, m) \times C(l', 1/2, j'; m'-\mu, \mu, m')$$

$$\times C(l, k, l'; m-\mu, m-m', m'-\mu)$$
(3-1-30)

Equation (3-1-29) becomes

$$\langle u_a u_b | \frac{1}{r_{12}} | u_c u_d \rangle = \sum_{k=0}^{k} \langle P_a P_b | \frac{r_{<}^k}{r_{>}^{k+1}} | P_c P_d \rangle$$

$$\times d^k (j_a m_a, j_c m_c) d^k (j_b m_b, j_d m_d)$$
(3-1-31)

From [46], it is find that

$$d^{k}(jm, j'm') = (-1)^{m+1/2} \frac{\left[\left(2j+1\right)\left(2j'+1\right)\right]^{1/2}}{(2k+1)}$$

$$\times C(j,k,j';\frac{1}{2}0\frac{1}{2})C(j,k,j';m,m'-m,m')$$
(3-1-32)

Similarly for the rest terms of equation (3-1-24)

$$\langle v_{a}u_{b}|\frac{1}{r_{12}}|v_{c}u_{d}\rangle = \sum_{k=0} \langle Q_{a}P_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|Q_{c}P_{d}\rangle$$

$$\times d^{k}(j_{a}m_{a},j_{c}m_{c})d^{k}(j_{b}m_{b},j_{d}m_{d})$$

$$\langle u_{a}v_{b}|\frac{1}{r_{12}}|u_{c}v_{d}\rangle = \sum_{k=0} \langle P_{a}Q_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|P_{c}Q_{d}\rangle$$

$$\times d^{k}(j_{a}m_{a},j_{c}m_{c})d^{k}(j_{b}m_{b},j_{d}m_{d})$$

$$\langle v_{a}v_{b}|\frac{1}{r_{12}}|v_{c}v_{d}\rangle = \sum_{k=0} \langle Q_{a}Q_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|Q_{c}Q_{d}\rangle$$

$$\times d^{k}(j_{a}m_{a},j_{c}m_{c})d^{k}(j_{b}m_{b},j_{d}m_{d})$$

$$(3-1-35)$$

$$\times d^{k}(j_{a}m_{a},j_{c}m_{c})d^{k}(j_{b}m_{b},j_{d}m_{d})$$

Combine equations (3-1-31), (3-1-33), (3-1-34) and (3-1-35) into equation (3-1-24), then we have

$$g_{abcd} = \sum_{k=0}^{\infty} d^{k} (j_{a}m_{a}, j_{c}m_{c}) d^{k} (j_{b}m_{b}, j_{d}m_{d}) R_{k}^{(abcd)}$$
(3-1-36)

Where  $R_k(abcd)$  is the relativistic Slater integral defined by

$$R_{k}(abcd) = \int_{0}^{\infty} dr_{1} \left[ P_{a}(r_{1}) P_{c}(r_{1}) + Q_{a}(r_{1}) Q_{c}(r_{1}) \right]$$

$$\times \int_{0}^{\infty} dr_{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} \left[ P_{b}(r_{2}) P_{d}(r_{2}) + Q_{b}(r_{2}) Q_{d}(r_{2}) \right]$$

$$= \int_{0}^{\infty} \frac{1}{r_{1}} Y_{k}(bd, r_{1}) \left[ P_{a}(r_{1}) P_{c}(r_{1}) + Q_{a}(r_{1}) Q_{c}(r_{1}) \right] dr_{1}$$
(3-1-37)

where

$$Y_{k}(bd, r_{1}) = r_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} \left[ P_{b}(r_{2}) P_{d}(r_{2}) + Q_{b}(r_{2}) Q_{d}(r_{2}) \right]$$
(3-1-38)

The summation over k in equation (3-1-36) is limited by rules on  $d^k$  coefficients which can be derived from the triangular condition of the Clebsch-Gordan coefficients of equation (3-1-32) and from equation (3-1-30), respectively

$$\max(|j_a - j_c|, |j_b - j_d|) \le k \le \min(j_a + j_c, j_b + j_d)$$
(3-1-39)

$$l_a + l_c + k = even$$

$$l_b + l_d + k = even$$
(3-1-40)

From equation (3-1-36), the direct part

$$g_{abab} = \sum_{k=0}^{\infty} d^{k} (j_{a}m_{a}, j_{a}m_{a}) d^{k} (j_{b}m_{b}, j_{b}m_{b}) F_{k}(ab)$$

$$= \sum_{k=0}^{\infty} a^{k} (j_{a}m_{a}, j_{b}m_{b}) F_{k}(ab)$$
(3-1-41)

Where, we have used

$$a^{k}(j_{a}m_{a}, j_{b}m_{b}) = d^{k}(j_{a}m_{a}, j_{a}m_{a})d^{k}(j_{b}m_{b}, j_{b}m_{b})$$
  
=  $(-1)^{m_{a}+m_{b}+1}\frac{\left[\left(2j_{a}+1\right)\left(2j_{b}+1\right)\right]}{(2k+1)^{2}}C(j_{a}, k, j_{a}; \frac{1}{2}0\frac{1}{2})C(j_{a}, k, j_{a}; m_{a}, 0, m_{a})$   
  $\times C(j_{b}, k, j_{b}; \frac{1}{2}0\frac{1}{2})C(j_{b}, k, j_{b}; m_{b}, 0, m_{b})$  (3-1-42)  
and

ana

$$F_k(ab) = R_k(abab)$$
  
Using equation (3-1-39) and (3-1-40), the permitted values of k are:

$$k = 0, 2, 4, \dots, \min\left((2 j_a - 1), (2 j_b - 1)\right)$$
(3-1-43)

For the exchange contribution, we obtain

$$g_{abba} = \sum_{k} \left[ d^{k} (j_{a} m_{a}, j_{b} m_{b}) \right]^{2} G_{k} (ab)$$
  
=  $b^{k} (j_{a} m_{a}, j_{b} m_{b}) G_{k} (ab)$  (3-1-44)

Where we have used

$$b^{k}(j_{a}m_{a}, j_{b}m_{b}) = \left[d^{k}(j_{a}m_{a}, j_{b}m_{b})\right]^{2}$$
(3-1-45)  
$$= \frac{\left[\left(2j_{a}+1\right)\left(2j_{b}+1\right)\right]}{(2k+1)^{2}}C(j_{a}, k, j_{b}; \frac{1}{2}0\frac{1}{2})^{2}C(j_{a}, k, j_{b}; m_{a}, m_{b}-m_{a}, m_{b})^{2}$$

and

## $G_k(ab) = R_k(abba)$

The range of k for the exchange integral is limited by the following conditions:

$$\left|j_{a}-j_{b}\right| \leq k \leq j_{a}+j_{b} \tag{3-1-46}$$

and

$$l_a + l_b + k = even \tag{3-1-47}$$

To perform the averaging, the sum over the magnetic quantum numbers  $m_a$  and  $m_b$  in equation (3-1-41) is carried out first, we have

$$\sum_{m_b} g_{abab} = \sum_{m_b} \sum_{k=0}^{k} a^k (j_a m_a, j_b m_b) F_k(ab)$$
(3-1-48)

using the identity [35]

$$\sum_{m_b} a^k (j_a m_a, j_b m_b) = (2j_b + 1)\delta_{k0}$$
(3-1-49)

to obtain

$$\sum_{m_b} g_{abab} = (2 j_b + 1) F_0(ab)$$
(3-1-50)

Similarly, for the exchange term in equation (3-1-44)

$$\sum_{m_b} g_{abba} = \frac{1}{2} \left( 2 j_b + 1 \right) \sum_{k=0} \Gamma_{j_a k} j_b G_k(ab)$$
(3-1-51)

where we have used [46]

$$\sum_{m_b} b^k (j_a m_a, j_b m_b) = \frac{1}{2} (2 j_b + 1) \Gamma_{j_a k j_b}$$
(3-1-52)

with

$$\Gamma_{j_{a}k j_{b}} = 2 \begin{pmatrix} j_{a} & k & j_{b} \\ 1/2 & 0 & -1/2 \end{pmatrix}^{2}$$
(3-1-53)

From equations (3-1-50) and (3-1-51), the quantities  $E_{aa}^{C}$  and  $E_{ab}^{C}$  given in equation (3-1-21) become

$$E_{aa}^{C} = (g_{abab})_{av} - (g_{abba})_{av} \quad \text{with } a = b$$
  
$$= \frac{1}{2j_{a}} \left[ (2j_{a} + 1)F_{0}(aa) - \frac{1}{2}(2j_{a} + 1)\sum_{k=0} \Gamma_{j_{a}k} j_{a} F_{k}(aa) \right] \quad (3-1-54)$$
  
$$= F_{0}(aa) - \frac{1}{2} \frac{(2j_{a} + 1)}{2j_{a}} \sum_{k>0} \Gamma_{j_{a}k} j_{a} F_{k}(aa)$$

$$E_{ab}^{C} = (g_{abab})_{av} - (g_{abba})_{av} \qquad \text{with } a \neq b$$
  
$$= F_0(ab) - \frac{1}{2} \sum_{k=0} \Gamma_{j_a k} j_{b_b} G_k(ab) \qquad (3-1-55)$$

Substitute equations (3-1-54) and (3-1-55) into equation (3-1-20), then we get

$$E_{av} = \sum_{a} q_{a} I(a,a) + \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) F_{0}(aa)$$
  
$$- \frac{1}{2} \sum_{a} \frac{q_{a} (q_{a} - 1)}{2 j_{a}} \left[ \frac{1}{2} (2 j_{a} + 1) \sum_{k>0} \Gamma_{j_{a}k} j_{a} F_{k}(aa) \right]$$
  
$$+ \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} \left[ F_{0}(ab) - \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}k} j_{b} G_{k}(ab) \right]$$
(3-1-56)

where I(a, a) is given in equation (3-1-17).

Again, as in the non-relativistic case, we require that  $E_{av}$  be stationary with respect to variations in the radial functions  $P_{n_a\kappa_a}$  and  $Q_{n_a\kappa_a}$ . This requirement is combined with the orthonormalization condition (3-1-5)

$$N_{n_a \kappa_a, n_b \kappa_a} = \int_0^\infty \left[ P_{n_a \kappa_a} P_{n_b \kappa_a} + Q_{n_a \kappa_a} Q_{n_b \kappa_a} \right] dr = \delta(n_a, n_b)$$
(3-1-57)

Introducing Lagrange multipliers  $\lambda_{n_a \kappa_a, n_b \kappa_a}$  the variational condition is [29]

$$\delta \left\{ E_{av} - \sum_{a} q_{a} \lambda_{aa} N_{n_{a}\kappa_{a} \cdot n_{a}\kappa_{a}} - \sum_{b \neq a} \delta(\kappa_{a}, \kappa_{b}) q_{a} q_{b} \lambda_{ab} N_{n_{a}\kappa_{a} \cdot n_{b}\kappa_{a}} \right\} = 0 \quad (3 - 1 - 58)$$

The variations  $\delta P_{n_a \kappa_a}$  and  $\delta Q_{n_a \kappa_a}$  are required to vanish at the origin and infinity.

Using the abbreviation  $P_{n_a\kappa_a} = P_a$ 

We consider first the variations of the integral  $I_a$  in equation (3-1-17), we get

$$\delta I(a,a) = 2c \int_{0}^{\infty} dr \left[ \left( P'_{a} \delta Q_{a} - Q'_{a} \delta P_{a} \right) + \frac{\kappa_{a}}{r} \left( P_{a} \delta Q_{a} + Q_{a} \delta P_{a} \right) - \frac{1}{c} \frac{Z}{r} \left( P_{a} \delta P_{a} + Q_{a} \delta Q_{a} \right) - 2c Q_{a} \delta Q_{a} \right]$$
(3-1-59)

where we have used

$$P'_a = \frac{d}{dr} P_a$$
,  $Q'_a = \frac{d}{dr} Q_a$ 

From equation (3-1-20), the following variation in the average energy due to variation of  $P_a(r)$  and  $Q_a(r)$  is obtained, while the remaining orbitals are held constant

$$\delta E_{av} = q_a \delta I(a,a) + \frac{1}{2} q_a (q_a - 1) \delta E_{aa}^c + \sum_{b \neq a} q_a q_b \delta E_{ab}^c$$
(3-1-60)

The variation of the  $F_k(ab)$  integral with respect to variation of the radial function  $P_a(r)$  and  $Q_a(r)$  is:

for non-equivalent electrons  $a \neq b$ 

$$\delta F_{k}(ab) = 2 \int_{0}^{\infty} \left[ P_{a}(r) \delta P_{a}(r) + Q_{a}(r) \delta Q_{a}(r) \right] \frac{1}{r} Y_{k}(bb, r) dr \qquad (3-1-61)$$

and for equivalent electrons a = b

$$\delta F_{k}(aa) = 4 \int_{0}^{\infty} \left[ P_{a}(r) \delta P_{a}(r) + Q_{a}(r) Q_{a}(r) \right] \frac{1}{r} Y_{k}(aa, r) dr \qquad (3-1-62)$$

In general,

$$\delta F_k(ab) = 2(1 + \delta_{ab}) \int_0^\infty \left[ P_a(r) \delta P_a(r) + Q_a(r) \delta Q_a(r) \right] \frac{1}{r} Y_k(bb, r) dr \quad (3 - 1 - 63)$$
  
Similarly, the variation of the exchange integral  $G_k(ab)$ 

$$\delta G_k(ab) = 2(1 + \delta_{ab}) \int_0^\infty \left[ \delta P_a(r) P_b(r) + \delta Q_a(r) Q_b(r) \right] \frac{1}{r} Y_k(ab, r) dr (3 - 1 - 64)$$

With the expressions for the variations of the integrals given in (3-1-63) and (3-1-64), we obtain

$$\delta E_{aa}^{C} = 4 \int_{0}^{\infty} \left[ P_{a}(r) \delta P_{a}(r) + Q_{a}(r) \delta Q_{a}(r) \right] \times \frac{1}{r} \left[ Y_{0}(aa,r) - \frac{(2j_{a}+1)}{2j_{a}} \sum_{k>0} \Gamma_{j_{a}k} j_{a} \frac{1}{2} Y_{k}(aa,r) \right] dr$$
(3-1-65)

and

$$\delta E_{ab}^{C} = 2 \int_{0}^{\infty} \left[ P_a \,\delta P_a + Q_a \,\delta Q_a \right] \frac{1}{r} Y_0(bb, r) dr$$

$$- \sum_{k=0} \Gamma_{j_a k} j_b \int_{0}^{\infty} \left[ \delta P_a P_b + \delta Q_a Q_b \right] \frac{1}{r} Y_k(ab, r) dr$$
(3-1-66)

From equations (3-1-59), (3-1-65) and (3-1-66), equation (3-1-60) becomes  $\delta F =$ 

$$\begin{aligned} & \sum E_{av} - \frac{1}{2c} \frac{1}{q_a} \int_0^{\infty} dr \left\{ \left( P'_a \,\delta Q_a - Q'_a \,\delta P_a \right) + \frac{\kappa_a}{r} \left( P_a \,\delta Q_a + Q_a \,\delta P_a \right) \right. \\ & \left. - \frac{1}{c} \frac{Z}{r} \left( P_a \,\delta P_a + Q_a \,\delta Q_a \right) - 2c \,Q_a \,\delta Q_a \right\} + 2 \,q_a \left( q_a - 1 \right) \int_0^{\infty} \left[ P_a \,\delta P_a + Q_a \,\delta Q_a \right] \\ & \left. \times \frac{1}{r} \left[ Y_0 \left( aa, r \right) - \frac{\left( 2 \, j_a + 1 \right)}{2 \, j_a} \sum_{k > 0} \Gamma_{j_a k \, j_a} \frac{1}{2} Y_k \left( aa, r \right) \right] dr \right] \\ & \left. + 2 \sum_{b \neq a} q_a \,q_b \int_0^{\infty} \left[ P_a \,\delta P_a + Q_a \,\delta Q_a \right] \frac{1}{r} Y_0 \left( bb, r \right) dr \right] \\ & \left. - \sum_{b \neq a} q_a \,q_b \sum_{k = 0} \Gamma_{j_a k \, j_b} \int_0^{\infty} \left[ \delta P_a \,P_b + \delta Q_a \,Q_b \right] \frac{1}{r} Y_k \left( ab, r \right) dr \end{aligned}$$

substitute the above equation into equation (3-1-58), and dividing by  $2q_ac$ , we get

$$\int_{0}^{\infty} dr \left[ \left( P_{a} \delta Q_{a} - \delta P_{a} Q_{a} \right) + \frac{\kappa_{a}}{r} \left( P_{a} \delta Q_{a} + Q_{a} \delta P_{a} \right) \right]$$

$$- 2c Q_{a} \delta Q_{a} - \frac{1}{c} \int_{0}^{\infty} \frac{dr}{r} \left[ Z - (q_{a} - 1)Y_{0}(aa, r) - \sum_{b \neq a} q_{b}Y_{0}(bb, r) \right]$$

$$+ \frac{1}{2} \frac{(q_{a} - 1)(2j_{a} + 1)}{2j_{a}} \sum_{k > 0} \Gamma_{j_{a}k j_{a}} Y_{k}(aa, r) \left[ (P_{a} \delta P_{a} + Q_{a} \delta Q_{a}) \right]$$

$$- \frac{1}{2c} \sum_{b \neq a} q_{b} \sum_{k = 0} \Gamma_{j_{a}k j_{b}} \int_{0}^{\infty} \frac{dr}{r} Y_{k}(ab, r) \left( \delta P_{a} P_{b} + \delta Q_{a} Q_{b} \right)$$

$$- \frac{1}{c} \lambda_{aa} \int_{0}^{\infty} (P_{a} \delta P_{a} + Q_{a} \delta Q_{a}) dr$$

$$- \frac{1}{c} \sum_{b \neq a} \delta (\kappa_{a}, \kappa_{b}) q_{b} \lambda_{ab} \int_{0}^{\infty} (\delta P_{a} P_{b} + \delta Q_{a} Q_{b}) dr = 0$$

$$(3-1-68)$$

Introduce the function

$$Y_{a}(r) = Z - (q_{a} - 1)Y_{0}(aa, r)$$

$$-\sum_{b \neq a} q_{b}Y_{0}(bb, r) + \frac{1}{2} \frac{(q_{a} - 1)(2j_{a} + 1)}{2j_{a}} \sum_{k>0} \Gamma_{j_{a}^{k}j_{a}}Y_{k}(aa, r)$$
(3-1-69)

equation (3-1-68) becomes

$$\int_{0}^{\infty} dr \left[ \left( P_{a} \delta Q_{a} - \delta P_{a} Q_{a} \right) + \frac{K_{a}}{r} \left( P_{a} \delta Q_{a} + Q_{a} \delta P_{a} \right) \right] \\ - 2c Q_{a} \delta Q_{a} - \frac{1}{c} \int_{0}^{\infty} \frac{dr}{r} Y_{a}(r) \left( P_{a} \delta P_{a} + Q_{a} \delta Q_{a} \right) \\ - \frac{1}{2c} \sum_{b \neq a} q_{b} \sum_{k=0} \Gamma_{j_{a} k j_{b}} \int_{0}^{\infty} \frac{dr}{r} Y_{k}(ab, r) \left( \delta P_{a} P_{b} + \delta Q_{a} Q_{b} \right)$$
(3-1-70)
$$- \frac{1}{c} \lambda_{aa} \int_{0}^{\infty} \left( P_{a} \delta P_{a} + Q_{a} \delta Q_{a} \right) dr \\ - \frac{1}{c} \sum_{b \neq a} \delta \left( \kappa_{a}, \kappa_{b} \right) q_{b} \lambda_{ab} \int_{0}^{\infty} \left( \delta P_{a} P_{b} + \delta Q_{a} Q_{b} \right) dr = 0$$

The coefficient of  $\delta Q_a$  and  $-\delta P_a$ 

$$\boldsymbol{P'}_{a} + \frac{\boldsymbol{K}_{a}}{r} \boldsymbol{P}_{a} - \left[2c + \frac{1}{c} \left(\boldsymbol{\varepsilon}_{a} + \frac{\boldsymbol{Y}_{a}(r)}{r}\right)\right] \boldsymbol{Q}_{a} = \boldsymbol{X}_{a}^{P}(r)$$
(3-1-71a)

$$Q'_{a} - \frac{\kappa_{a}}{r} Q_{a} + \frac{1}{c} \left( \varepsilon_{a} + \frac{Y_{a}(r)}{r} \right) P_{a} = -X_{a}^{Q}(r)$$
(3-1-71b)

where we denote

$$\mathcal{E}_a = \lambda_{aa}$$
,  $\mathcal{E}_{ab} = \lambda_{ab}$ 

and

$$X_{a}^{P}(r) = \frac{1}{c} \sum_{b \neq a} q_{b} \left[ \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}^{k} j_{b}} \frac{Y_{k}(ab, r)}{r} + \delta(\kappa_{a}, \kappa_{b}) \varepsilon_{ab} \right] Q_{b}$$
(3-1-72)

$$X_{a}^{Q}(r) = \frac{1}{c} \sum_{b \neq a} q_{b} \left[ \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}^{k} j_{b}} \frac{Y_{k}(ab, r)}{r} + \delta(\kappa_{a}, \kappa_{b}) \varepsilon_{ab} \right] P_{b}$$
(3-1-73)

equations (3-1-71) are called Dirac-Fock equations.

## **3-2- The Relativistic Koopman's Theorem**

We multiply equation (3-1-71a) by  $CQ_a$  and equation (3-1-71b) by  $-CP_a$ and using (3-1-72) and (3-1-73), yield

$$c P_{a}'Q_{a} + c \frac{\kappa_{a}}{r} P_{a}Q_{a} - 2c Q_{a}^{2} - \frac{Y_{a}(r)}{r} Q_{a}^{2} - \frac{1}{2} \sum_{b \neq a} q_{b} \sum_{k=0} \Gamma_{j_{a}k} j_{b} \frac{Y_{k}(ab,r)}{r} Q_{a} Q_{b}$$
$$= \varepsilon_{a} Q_{a}^{2} + \sum_{b \neq a} \delta(\kappa_{a}, \kappa_{b}) q_{b} Q_{a} Q_{b} \varepsilon_{ab} \qquad (3-2-1)$$

$$-c P_{a}Q_{a}' + c\frac{\kappa_{a}}{r}P_{a}Q_{a} - \frac{Y_{a}(r)}{r}P_{a}^{2} - \frac{1}{2}\sum_{b\neq a}q_{b}\sum_{k=0}\Gamma_{j_{a}k}j_{b}\frac{Y_{k}(ab,r)}{r}P_{a}P_{b}$$
$$= \varepsilon_{a}P_{a}^{2} + \sum_{b\neq a}\delta(\kappa_{a},\kappa_{b})q_{b}P_{a}P_{b}\varepsilon_{ab} \qquad (3-2-2)$$

adding, and integrating over r from zero to infinity, we get

$$\varepsilon_{a} = c \int_{0}^{\infty} dr \left[ (P_{a} Q_{a} + \frac{\kappa_{a}}{r} P_{a} Q_{a}) - (P_{a} Q_{a}^{'} - \frac{\kappa_{a}}{r} P_{a} Q_{a}) - 2c Q_{a}^{2} \right] \qquad (3 - 2 - 3)$$
  
$$- \int_{0}^{\infty} \frac{Y_{a}(r)}{r} (P_{a}^{2} + Q_{a}^{2}) dr - \frac{1}{2} \sum_{b \neq a} q_{b} \sum_{k=0} \Gamma_{j_{a}^{k} j_{b}} \int_{0}^{\infty} \frac{Y_{k}(ab, r)}{r} (P_{a} P_{b} + Q_{a} Q_{p}) dr$$

by using equation (3-1-69)

$$\varepsilon_{a} = I(a,a) + (q_{a}-1) \left[ F_{0}(aa) - \frac{1}{2} \sum_{b \neq a} \frac{(2j_{a}+1)}{2j_{a}} \sum_{k>0} \Gamma_{j_{a}k j_{a}} F_{k}(aa) \right] + \sum_{b \neq a} q_{b} \left[ F_{0}(ab) - \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}k j_{b}} G_{k}(ab) \right]$$
(3-2-4)

and finally from equation (3-1-21), yield

$$\mathcal{E}_{a} = I(a,a) + (q_{a} - 1)E_{aa}^{c} + \sum_{b \neq a} q_{b}E_{ab}^{c}$$
(3-2-5)

This quantity is the energy associated with an electron in subshell according to (3-1-20), which is equal to the relativistic configuration-average binding energy of an electron in the subshell *a* [29].

The Dirac-Fock energy eigenvalue  $\mathcal{E}_c$  is related to the energy required to remove an electron from the subshell c. The energy of an ion is:

$$E_{ion} = \sum_{a} I(a,a) - I(c,c) + \frac{1}{2} \sum_{ab} (g_{abab} - g_{abba}) - \sum_{a} (g_{acac} - g_{acca})$$
(3-2-6)

$$E_{ion} - E_{atom} = -I(c,c) - \sum_{a} \left( g_{acac} - g_{acca} \right) = -\mathcal{E}_{c}$$
(3-2-7)

Thus, the removal energy, calculated using Dirac-Fock wave function for the atom, is the negative of the corresponding Dirac-Fock eigenvalue. This result is called Koopman's theorem [29].

### **3-3- Off- Diagonal Energy Parameters**

As in the nonrelativistic case, we can obtain relation to determine the offdiagonal energy parameters, by multiplying equation (3-1-71a) by  $Q_b$  and equation (3-1-71b) by  $P_b$ , subtract and integrating over r from zero to infinity, we get

$$\frac{\mathcal{E}_{ab}}{q_{b}} = I(a,b) + \int_{0}^{\infty} \left[ \frac{1}{r} (Z - Y_{a}(r)) (P_{a} P_{b} + Q_{a} Q_{b}) - c(\xi_{a}^{P} Q_{b} + \xi_{a}^{Q} P_{b}) \right] dr (3 - 3 - 1)$$
  
where

$$\xi_{a}^{P}(r) = \frac{1}{c} \sum_{b \neq a} q_{b} \left[ \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}^{k} j_{b}} \frac{Y_{k}(ab, r)}{r} \right] Q_{b}$$
(3-3-2)

$$\xi_{a}^{Q}(r) = \frac{1}{c} \sum_{b \neq a} q_{b} \left[ \frac{1}{2} \sum_{k=0} \Gamma_{j_{a}^{k} j_{b}} \frac{Y_{k}(ab, r)}{r} \right] P_{b}$$
(3-3-3)

and

$$I(a,b) = c \int_{0}^{\infty} dr \left[ Q_{b} (P_{a}^{'} + \frac{\kappa_{a}}{r} P_{a}) - P_{b} (Q_{a}^{'} - \frac{\kappa_{a}}{r} Q_{a}) - 2c Q_{a} Q_{b} \right] - \int_{0}^{\infty} \frac{Z}{r} (P_{a} P_{b} + Q_{a} Q_{b}) dr$$
(3-3-4)

# **CHAPTER 4**

## **BREIT INTERACTION**

The relativistic Hamiltonian which we have used so far has been constructed in a simple manner; we have taken the non-relativistic form, and replaced the terms corresponding to the single-particle interactions by their relativistic equivalents, leaving the two-particle interaction terms unchanged. A correct relativistic treatment of the many-electron problem is much more complicated than this; the main effect neglected is contained in the Breit interaction. The correction to the Coulomb repulsion between two electrons due to the exchange of a virtual photon is referred to as the Breit interaction [47].

The Breit interaction is given by [48,49]

$$B_{\omega}(i,j) = -\frac{\bar{\alpha}(i) \cdot \bar{\alpha}(j)}{r_{ij}} \cos(\omega r_{ij}) + \left(\bar{\alpha}(i) \cdot \bar{\nabla}(i)\right) \left(\bar{\alpha}(j) \cdot \bar{\nabla}(j)\right) \frac{\cos(\omega r_{ij}) - 1}{\omega^2 r_{ij}}$$

$$(4-1)$$

where  $\omega$  is the frequency of the virtual photon exchanged between the interacting electrons.

The Breit operator may be written in its long wavelength limit (independent frequency)  $[\circ, \circ\rangle, \circ\rangle$ 

$$B_{0}(i,j) = -\left[\frac{\vec{\alpha}(i)\cdot\vec{\alpha}(j)}{r_{ij}} + \frac{1}{2}\left(\vec{\alpha}(i)\cdot\vec{\nabla}(i)\right)\left(\vec{\alpha}(j)\cdot\vec{\nabla}(j)\right)r_{ij}\right]$$
(4-2)

where the Taylor series expansion of the cosine is used where the magnetic (Gaunt) term

$$g^{M}(i,j) = \frac{\bar{\alpha}(i) \cdot \bar{\alpha}(j)}{r_{ij}}$$
(4-3)

and the retardation term

$$g^{R}(i,j) = \frac{1}{2} \left( \bar{\alpha}(i) \cdot \bar{\nabla}(i) \right) \left( \bar{\alpha}(j) \cdot \bar{\nabla}(j) \right)_{r_{ij}}$$
(4-4)

We deal first with the magnetic term.

Using the definition of the  $\bar{\alpha}$ -Dirac matrix in equation (2-6-2), then equation (4-3) becomes

$$g^{M}(1,2) = \begin{pmatrix} 0 & \vec{\sigma}(1) \\ \vec{\sigma}(1) & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \vec{\sigma}(2) \\ \vec{\sigma}(2) & 0 \end{pmatrix} \frac{1}{r_{12}}$$
(4-5)

The energy correction due to the magnetic term is:

$$E^{M} = \left\langle \Phi \left| \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} g^{M}(i, j) \right| \Phi \right\rangle$$
  
$$= \frac{1}{2} \sum_{ab} \left( \left\langle ab \right| g^{M}(1, 2) \right| ab \right\rangle - \left\langle ab \right| g^{M}(1, 2) \right| ba \right\rangle \right)$$
  
$$= \frac{1}{2} \sum_{ab} \left( g^{M}_{abab} - g^{M}_{abba} \right)$$
  
(4-6)

Where  $g_{abab}^{M}$  and  $g_{abba}^{M}$  are the direct and exchange matrix element of the magnetic term respectively, which, in general, can be written as:

$$g_{abcd}^{M} = \int_{0}^{\infty} \int_{0}^{\infty} \phi_{a}^{\dagger}(\vec{r}_{1}) \phi_{b}^{\dagger}(\vec{r}_{2}) g^{M}(1,2) \phi_{c}(\vec{r}_{1}) \phi_{d}(\vec{r}_{2}) d\vec{r}_{1} d\vec{r}_{2}$$
(4-7)

Where  $\phi(\vec{r})$  is given by equation (3-1-4).

A general matrix element of the magnetic term can be evaluated by inserting equations (3-1-23) and (4-5) into equation (4-7).

$$g_{abcd}^{M} = \langle u_{a} u_{b} | M | v_{c} v_{d} \rangle + \langle u_{a} v_{b} | M | v_{c} u_{d} \rangle + \langle v_{a} u_{b} | M | u_{c} v_{d} \rangle + \langle v_{a} v_{b} | M | u_{c} u_{d} \rangle$$
(4-8)

where

$$M = (\bar{\sigma}(1) \cdot \bar{\sigma}(2)) \frac{1}{r_{12}}$$
(4-9)

Using equation (3-1-22) to expand the *M* -operator in the form

$$M = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \Big( C^{k}(1) \cdot C^{k}(2) \Big) (\bar{\sigma}(1) \cdot \bar{\sigma}(2))$$
(4-10)

Dealing with the first term in equation (4-8)

From equation (3-1-4) and (4-10), the first term becomes

$$\langle u_{a}u_{b}|M|v_{c}v_{d}\rangle = -\sum_{k} \langle P_{a}P_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|Q_{c}Q_{d}\rangle$$

$$\times \langle \Omega_{a}\Omega_{b}|(C^{k}(1).C^{k}(2))(\bar{\sigma}(1)\cdot\bar{\sigma}(2))|\Omega_{-c}\Omega_{-d}\rangle$$
(4-11)

Using equation (3-1-6), then equation (4-11) becomes

$$\langle u_{a} u_{b} | M | v_{c} v_{d} \rangle = -\sum_{k} \langle P_{a} P_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | Q_{c} Q_{d} \rangle$$

$$\times \sum_{\mu_{a} \mu_{c}} C(l_{a}, 1/2, j_{a}; m_{a} - \mu_{a}, \mu_{a}, m_{a}) C(\bar{l}_{c}, 1/2, j_{c}; m_{c} - \mu_{c}, \mu_{c}, m_{c})$$

$$\times \sum_{\mu_{b} \mu_{d}} C(l_{b}, 1/2, j_{b}; m_{b} - \mu_{b}, \mu_{b}, m_{b}) C(\bar{l}_{d}, 1/2, j_{d}; m_{d} - \mu_{d}, \mu_{d}, m_{d})$$

$$\times \langle Y_{m_{a} - \mu_{a}}^{l_{a}} Y_{m_{b} - \mu_{b}}^{l_{b}} | C^{k}(1) \cdot C^{k}(2) | Y_{m_{c} - \mu_{c}}^{\bar{l}_{c}} Y_{m_{d} - \mu_{d}}^{\bar{l}_{d}} \rangle \langle \chi_{\mu_{a}}^{1/2} \chi_{\mu_{b}}^{1/2} | \bar{\sigma}(1) \cdot \bar{\sigma}(2) | \chi_{\mu_{c}}^{1/2} \chi_{\mu_{d}}^{1/2} \rangle$$

Using Wigner-Eckart theorem, then the matrix element of the scalar product of the tensor operators becomes  $[1^{\vee}]$ 

$$\left\langle l_{a}, m_{a} - \mu_{a}; l_{b}, m_{b} - \mu_{b} \right| C^{k}(1) \cdot C^{k}(2) \left| \bar{l}_{c}, m_{c} - \mu_{c}; \bar{l}_{d}, m_{d} - \mu_{d} \right\rangle$$

$$= (-1)^{l_{a} - m_{a} + \mu_{a} + l_{b} - m_{b} + \mu_{b}} \frac{\left\langle l_{a} \right\| C^{k}(1) \left\| \bar{l}_{c} \right\rangle}{\sqrt{2k + 1}} \frac{\left\langle l_{b} \right\| C^{k}(2) \left\| \bar{l}_{d} \right\rangle}{\sqrt{2k + 1}}$$

$$\times C(l_{a}, k, \bar{l}_{c}; m_{a} - \mu_{a}, \mu_{a} - m_{a} - \mu_{c} + m_{c}, m_{c} - \mu_{c})$$

$$\times C(l_{b}, k, \bar{l}_{d}; m_{b} - \mu_{b}, \mu_{b} - m_{b} + m_{d} - \mu_{d}, m_{d} - \mu_{d})$$

$$With$$

With

and

$$\left\langle \chi_{\mu_{a}}^{1/2} \chi_{\mu_{b}}^{1/2} \middle| \vec{\sigma}(1) \cdot \vec{\sigma}(2) \middle| \chi_{\mu_{c}}^{1/2} \chi_{\mu_{d}}^{1/2} \right\rangle = 2(-1)^{1-\mu_{a}-\mu_{b}} \delta(\mu_{a} + \mu_{b}, \mu_{c} + \mu_{d}) \\ \times C(\frac{1}{2} 1 \frac{1}{2}; \mu_{a}, \mu_{c} - \mu_{a}, \mu_{c}) C(\frac{1}{2} 1 \frac{1}{2}; \mu_{b}, \mu_{d} - \mu_{b}, \mu_{d})$$

$$(4-15)$$

Therefore equation (4-12) can be written as:

$$\langle u_{a}u_{b}|M|v_{c}v_{d}\rangle = -2\sum_{k} \langle P_{a}P_{b}|\frac{r_{s}^{k}}{r_{s}^{k+1}}|Q_{c}Q_{d}\rangle$$

$$\times \sum_{\mu_{a}\mu_{c}}\sum_{\mu_{b}\mu_{d}}C(l_{a},1/2,j_{a};m_{a}-\mu_{a},\mu_{a},m_{a})C(\bar{l}_{c},1/2,j_{c};m_{c}-\mu_{c},\mu_{c},\mu_{c},m_{c})$$

$$\times C(\frac{1}{2}1\frac{1}{2};\mu_{a},\mu_{c}-\mu_{a},\mu_{c})C(\frac{1}{2}1\frac{1}{2};\mu_{b},\mu_{d}-\mu_{b},\mu_{d})(-1)^{l_{a}-m_{a}+1/2}(-1)^{l_{b}-m_{b}+1/2}$$

$$\times C(l_{a},k,\bar{l}_{c};m_{a}-\mu_{a},\mu_{a}-m_{a}-\mu_{c}+m_{c},m_{c}-\mu_{c})\frac{\langle l_{a}||C^{k}(1)||\bar{l}_{c}\rangle}{\sqrt{2k+1}}$$

$$\times C(l_{b},1/2,j_{b};m_{b}-\mu_{b},\mu_{b},m_{b})C(\bar{l}_{d},1/2,j_{d};m_{d}-\mu_{d},\mu_{d},m_{d})$$

$$\times C(l_{b},k,\bar{l}_{d};m_{b}-\mu_{b},\mu_{b}-m_{b}+m_{d}-\mu_{d},m_{d}-\mu_{d})\frac{\langle l_{b}||C^{k}(2)||\bar{l}_{d}\rangle}{\sqrt{2k+1}}$$

The summations over  $\mu_a \mu_c$  and  $\mu_b \mu_d$  in the above equation can be performed by using the formula [1<sup>V</sup>]

$$\sum_{\mu\mu'} (-1)^{l-m+1/2} C(l,1/2, j; m - \mu, \mu, m) C(l', 1/2, j'; m' - \mu', \mu', m')$$

$$\times C(l,k,l'; m - \mu, m' - m + \mu - \mu', m' - \mu') C(\frac{1}{2} l \frac{1}{2}; \mu, \mu' - \mu, \mu') \qquad (4-17)$$

$$= \sum_{J} C(jJj', m, m' - m, m') [3(2j+1)(2j'+1)(2k+1)]^{1/2} \begin{cases} l & 1/2 & j \\ l' & 1/2 & j' \\ k & 1 & J \end{cases}$$
Where 
$$\begin{cases} l & 1/2 & j \\ l' & 1/2 & j' \\ k & 1 & J \end{cases}$$
 is the 9-j symbol.

Equation (4-16) becomes

$$\langle u_{a}u_{b}|M|v_{c}v_{d}\rangle = -2\sum_{kJ} \langle P_{a}P_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|Q_{c}Q_{d}\rangle$$

$$\times C(j_{a}J j_{c},m_{a},m_{c}-m_{a},m_{c})e_{J}^{k}(j_{a}l_{a},j_{c}\bar{l}_{c})$$

$$\times C(j_{b}J j_{d},m_{b},m_{d}-m_{b},m_{d})e_{J}^{k}(j_{b}l_{b},j_{d},\bar{l}_{d})$$

$$(4-18)$$

Where

$$e_{J}^{k}(jl,j'l') = [3(2j+1)(2j'+1)]^{1/2} \langle l \| C^{k} \| l' \rangle \begin{cases} l & 1/2 & j \\ l' & 1/2 & j' \\ k & 1 & J \end{cases}$$
(4-19)

The integer *J* takes only the values k-1, k, k+1 to satisfy the triangular conditions of the 9-j symbols, and the allowed values of k are determined from those of the Clebsch-Gordan coefficients in equation (4-14)

$$|l - l'| \le k \le l + l'$$
  
and  
$$l + k + l' = even$$
 (4-20)

The rest of the terms in equation (4-8), may now be deduced from equation (4-18)

$$\langle u_{a}v_{b}|M|v_{c}u_{d}\rangle = 2\sum_{kJ} \langle P_{a}Q_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|Q_{c}P_{d}\rangle$$

$$\times C(j_{a}J j_{c}, m_{a}, m_{c}-m_{a}, m_{c})e_{J}^{k}(j_{a}l_{a}, j_{c}\bar{l}_{c}) \qquad (4-21)$$

$$\times C(j_{b}J j_{d}, m_{b}, m_{d}-m_{b}, m_{d})e_{J}^{k}(j_{b}\bar{l}_{b}, j_{d}, l_{d})$$

$$\langle v_{a}u_{b}|M|u_{c}v_{d}\rangle = 2\sum_{kJ} \langle Q_{a}P_{b}|\frac{r_{<}^{k}}{r_{>}^{k+1}}|P_{c}Q_{d}\rangle$$

$$\times C(j_{a}J j_{c}, m_{a}, m_{c}-m_{a}, m_{c})e_{J}^{k}(j_{a}\bar{l}_{a}, j_{c}, l_{c}) \qquad (4-22)$$

$$\times C(j_{b}J j_{d}, m_{b}, m_{d}-m_{b}, m_{d})e_{J}^{k}(j_{b}l_{b}, j_{d}\bar{l}_{d})$$

$$\langle v_a v_b | M | u_c u_d \rangle = -2 \sum_{kJ} \langle Q_a Q_b | \frac{r_{<}^k}{r_{>}^{k+1}} | P_c P_d \rangle$$

$$\times C(j_a J j_c, m_a, m_c - m_a, m_c) e_J^k(j_a \overline{l}_a, j_c, l_c)$$

$$\times C(j_b J j_d, m_b, m_d - m_b, m_d) e_J^k(j_b \overline{l}_b, j_d, l_d)$$

$$(4-23)$$

Therefore, equation (4-8) becomes

$$g_{abcd}^{M} = 2\sum_{kJ} C(j_{a}J j_{c}, m_{a}, m_{c} - m_{a}, m_{c})C(j_{b}J j_{d}, m_{b}, m_{d} - m_{b}, m_{d})$$

$$\times \left\{ - \langle P_{a}P_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | Q_{c}Q_{d} \rangle e_{J}^{k}(j_{a}l_{a}, j_{c}\bar{l}_{c}) e_{J}^{k}(j_{b}l_{b}, j_{d}, \bar{l}_{d}) + \langle P_{a}Q_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | Q_{c}P_{d} \rangle e_{J}^{k}(j_{a}l_{a}, j_{c}\bar{l}_{c}) e_{J}^{k}(j_{b}\bar{l}_{b}, j_{d}, l_{d}) + \langle Q_{a}P_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | P_{c}Q_{d} \rangle e_{J}^{k}(j_{a}\bar{l}_{a}, j_{c}, l_{c}) e_{J}^{k}(j_{b}\bar{l}_{b}, j_{d}\bar{l}_{d}) + \langle Q_{a}Q_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | P_{c}P_{d} \rangle e_{J}^{k}(j_{a}\bar{l}_{a}, j_{c}, l_{c}) e_{J}^{k}(j_{b}\bar{l}_{b}, j_{d}\bar{l}_{d}) - \langle Q_{a}Q_{b} | \frac{r_{<}^{k}}{r_{>}^{k+1}} | P_{c}P_{d} \rangle e_{J}^{k}(j_{a}\bar{l}_{a}, j_{c}, l_{c}) e_{J}^{k}(j_{b}\bar{l}_{b}, j_{d}\bar{l}_{d}) \right\}$$

For the direct part of the magnetic interaction, we put a=c, b=d in equation (4-24), then we get

$$g_{abab}^{M} = \sum_{k} f^{k} (j_{a} m_{a}, j_{b} m_{b}) F_{k}^{M} (a, b)$$
(4-25)

Where

$$f^{k}(j_{a}m_{a}, j_{b}m_{b}) = 2\sum_{J}C(j_{a}J j_{a}; m_{a}, 0, m_{a})C(j_{b}J j_{b}; m_{b}, 0, m_{b})$$

$$\times \left\{ -e^{k}_{J}(j_{a}l_{a}; j_{a}\bar{l}_{a})e^{k}_{J}(j_{b}l_{b}; j_{b}\bar{l}_{b}) + e^{k}_{J}(j_{a}l_{a}; j_{a}\bar{l}_{a})e^{k}_{J}(j_{b}\bar{l}_{b}; j_{b}l_{b}) - e^{k}_{J}(j_{a}\bar{l}_{a}; j_{a}l_{a})e^{k}_{J}(j_{b}\bar{l}_{b}; j_{b}l_{b}) - e^{k}_{J}(j_{a}\bar{l}_{a}; j_{a}l_{a})e^{k}_{J}(j_{b}\bar{l}_{b}; j_{b}l_{b}) \right\}$$

$$(4-26)$$

$$+ e^{k}_{J}(j_{a}\bar{l}_{a}; j_{a}l_{a})e^{k}_{J}(j_{b}l_{b}; j_{b}\bar{l}_{b}) - e^{k}_{J}(j_{a}\bar{l}_{a}; j_{a}l_{a})e^{k}_{J}(j_{b}\bar{l}_{b}; j_{b}l_{b}) \right\}$$

and

$$F_{k}^{M}(a,b) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) Q_{a}(r_{1}) \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{b}(r_{2}) Q_{b}(r_{2}) dr_{1} dr_{2}$$
(4-27)

From the symmetry relation [27]

$$\boldsymbol{e}_{J}^{k}(j_{b}l_{b};j_{a}\bar{l}_{a}) = \left(-1\right)^{1+k+J} \boldsymbol{e}_{J}^{k}(j_{a}\bar{l}_{a};j_{b}l_{b})$$
(4-28)

It is noticed that  $f^{k}(j_{a}m_{a}, j_{b}m_{b})$  vanishes unless k + J is even. From equation (4-20),  $l + \bar{l} + k$  must be even and since  $l + \bar{l}$  is odd [1<sup>V</sup>], k must be odd. Hence J = k and we have

$$f^{k}(j_{a}m_{a}, j_{b}m_{b}) = -8C(j_{a}k j_{a}; m_{a}, 0, m_{a})C(j_{b}k j_{b}; m_{b}, 0, m_{b}) \times e^{k}_{k}(j_{a}l_{a}; j_{a}\bar{l}_{a})e^{k}_{k}(j_{b}l_{b}; j_{b}\bar{l}_{b})$$
(4-29)

For the exchange part

$$g_{abba}^{M} = 2\sum_{kJ} (-1)^{1+k+J} \left[ C(j_{a}J j_{b}, m_{a}, m_{b} - m_{a}, m_{b}) \right]^{2} \\ \times \left\{ G_{k}^{M} (ab, ab) \left[ e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right]^{2} + G_{k}^{M} (ba, ba) \left[ e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) \right]^{2} - 2 G_{k}^{M} (ab, ba) e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right\}$$
(4-30)

Where

$$G_{k}^{M}(ab,cd) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) Q_{b}(r_{1}) \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{c}(r_{2}) Q_{d}(r_{2}) dr_{1} dr_{2}$$
(4-31)

From equation (4-6), the configuration average energy correction due to the magnetic term is:

$$E_{av}^{M} = \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) E_{aa}^{M} + \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} E_{ab}^{M}$$
(4-32)

Where

$$E_{aa}^{M} = \left(g_{abab}^{M}\right)_{av} - \left(g_{abba}^{M}\right)_{av} \quad \text{with} \quad a = b \tag{4-33}$$

$$E_{ab}^{M} = \left(g_{abab}^{M}\right)_{av} - \left(g_{abba}^{M}\right)_{av} \quad \text{with} \quad a \neq b \tag{4-34}$$

Where the averaging over  $m_a$  and  $m_b$ 

From [<sup>٤</sup>], we obtain

$$\sum_{m_{b}} f^{k} (j_{a} m_{a}, j_{b} m_{b}) = 0$$
(4-35)

and hence

$$\sum_{m_b} g^M_{abab} = 0 \tag{4-36}$$

The averaging over the exchange part is:

$$\sum_{m_{b}} g_{abba}^{M} = 2 \sum_{kJ} (-1)^{1+k+J} \left\{ G_{k}^{M} (ab, ab) \left[ e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right]^{2} + G_{k}^{M} (ba, ba) \left[ e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) \right]^{2} - 2 G_{k}^{M} (ab, ba) e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right\}$$

$$(4-37)$$

Where, from [17]

$$\sum_{m_b} \left[ C(j_a J j_b, m_a, m_b - m_a, m_b) \right]^2 = 1$$
(4-38)

From equations (4-36) and (4-37), equations (4-33) and (4-34) becomes

$$E_{aa}^{M} = \frac{1}{j_{a}} \sum_{kJ} (-1)^{1+k+J} F_{k}^{M} (a,a) \left\{ 2(-1)^{1+k+J} \left[ e_{J}^{k} (j_{a}l_{a}, j_{a}\bar{l}_{a}) \right]^{2} - \left[ e_{J}^{k} (j_{a}l_{a}, j_{a}\bar{l}_{a}) \right]^{2} - \left[ e_{J}^{k} (j_{a}l_{a}, j_{a}\bar{l}_{a}) \right]^{2} \right\}$$

$$(4-39)$$

Where, equation (4-28) is used, and the fact that

$$\boldsymbol{F}_{k}^{M}(a,a) = \boldsymbol{G}_{k}^{M}(aa,aa) \tag{4-40}$$

Equation (4-39) will not vanish only if k + J is even. From equation (4-20),  $l + \overline{l} + k$  must be even and since  $l + \overline{l}$  is odd [1<sup>V</sup>], k must be odd. Hence J = k and we have

$$E_{aa}^{M} = \frac{4}{j_{a}} \sum_{k(odd)} \left[ e_{k}^{k} (j_{a}l_{a}, j_{a}\bar{l}_{a})^{2} F_{k}^{M}(a, a) \right]$$
(4-41)

and

$$E_{ab}^{M} = -\frac{2}{2j_{b}+1}\sum_{kJ}(-1)^{1+k+J} \left\{ G_{k}^{M}(ab,ab) \left[ e_{J}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) \right]^{2}$$
(4-42)

 $+G_{k}^{M}(ba,ba)\left[e_{J}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b})\right]^{2}-2G_{k}^{M}(ab,ba)e_{J}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b})e_{J}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b})\right\}$ 

From equation (4-32), (4-41) and (4-42) the configuration average energy correction due to the magnetic term is:

$$E_{av}^{M} = 2\sum_{a} q_{a} (q_{a} - 1) \frac{1}{j_{a}} \sum_{k(odd)} \left[ e_{k}^{k} (j_{a}l_{a}, j_{a}\bar{l}_{a}) \right]^{2} F_{k}^{M} (a, a)$$
  
-  $\sum_{a} \sum_{b \neq a} q_{a} q_{b} \frac{1}{2 j_{b} + 1} \sum_{kJ} (-1)^{1+k+J} \left\{ G_{k}^{M} (ab, ab) \left[ e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right]^{2} (4 - 43) + G_{k}^{M} (ba, ba) \left[ e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) \right]^{2} - 2 G_{k}^{M} (ab, ba) e_{J}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) e_{J}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right]^{2}$ 

Dealing now with the retardation term.

The retardation operator can be simplified by using the definition of the  $\alpha$ -Dirac matrix in equation (2-6-2), then equation (4-4) becomes

$$g^{R}(i,j) = \frac{1}{2} \begin{pmatrix} 0 & \left(\vec{\sigma}(i) \cdot \vec{\nabla}(i)\right) \\ \left(\vec{\sigma}(i) \cdot \vec{\nabla}(i)\right) & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \left(\vec{\sigma}(j) \cdot \vec{\nabla}(j)\right) \\ \left(\vec{\sigma}(j) \cdot \vec{\nabla}(j)\right) & 0 \end{pmatrix} r_{ij} (4-44)$$

The energy correction due to the retardation term is:

$$E^{R} = \left\langle \Phi \left| \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} g^{R}(i, j) \right| \Phi \right\rangle$$
  
$$= \frac{1}{2} \sum_{ab} \left\langle \left\langle ab \right| g^{R}(1, 2) \right| ab \right\rangle - \left\langle ab \right| g^{R}(1, 2) \right| ba \right\rangle \right)$$
  
$$= \frac{1}{2} \sum_{ab} \left( g^{R}_{abab} - g^{R}_{abba} \right)$$
  
(4-45)

Where  $g_{abab}^{R}$  and  $g_{abba}^{R}$  are the direct and exchange matrix element of the retardation term respectively, which, in general, can be written as:

$$g_{abcd}^{R} = \int_{0}^{\infty} \int_{0}^{\infty} \phi_{a}^{\dagger}(\vec{r}_{1}) \phi_{b}^{\dagger}(\vec{r}_{2}) g^{R}(1,2) \phi_{c}(\vec{r}_{1}) \phi_{d}(\vec{r}_{2}) d\vec{r}_{1} d\vec{r}_{2}$$
(4-46)

Where  $\phi(\vec{r})$  is given by equation (3-1-4).

A general matrix element of the retardation term can be evaluated by inserting equations (3-1-14) and (4-44) into equation (4-46), and we have

$$g_{abcd}^{R} = \langle u_{a} u_{b} | R | v_{c} v_{d} \rangle + \langle u_{a} v_{b} | R | v_{c} u_{d} \rangle$$

$$+ \langle v_{a} u_{b} | R | u_{c} v_{d} \rangle + \langle v_{a} v_{b} | R | u_{c} u_{d} \rangle$$

$$(4-47)$$

Where

$$R = \frac{1}{2} \left( \vec{\sigma}(1) \cdot \vec{\nabla}(1) \right) \left( \vec{\sigma}(2) \cdot \vec{\nabla}(2) \right)_{r_{12}}$$
(4-48)

The interelectronic distance  $r_{12}$  may be expanded as  $[\circ^{r}]$ 

$$r_{12} = \sum_{k} W_{k}(1,2) C^{k}(1) \cdot C^{k}(2)$$
(4-49)

Where

$$W_{k}(1,2) = \frac{r_{<}^{k}}{r_{>}^{k+1}} \left[ \frac{r_{<}^{2}}{(2k+3)} - \frac{r_{>}^{2}}{(2k-1)} \right]$$
(4-50)

Where  $r_{<} = \min(r_1, r_2)$  and  $r_{>} = \max(r_1, r_2)$ .

Equation (4-48), becomes

$$R = \frac{1}{2} \sum_{k} \left( \vec{\sigma}(1) \cdot \vec{\nabla}(1) \right) \left( \vec{\sigma}(2) \cdot \vec{\nabla}(2) \right) \left( C^{k}(1) \cdot C^{k}(2) \right) W_{k}(1,2)$$

$$(4-51)$$

Performing the scalar product between the tensor operators, we obtain

$$R = \frac{1}{2} \sum_{k} \sum_{pmq} (-1)^{p+m+q} \times (\sigma_{-p}(1) \nabla_{p}(1)) (\sigma_{-m}(2) \nabla_{m}(2)) (C_{-q}^{k}(1) C_{q}^{k}(2)) W_{k}(1,2)$$
(4-52)

From  $[1^{\vee}]$ , we get

.

$$C_q^k(i)\nabla_p(i) = \sum_{\omega} \frac{1}{\sqrt{2k+1}} C(k1\omega;000)C(k1\omega;q,p,q+p)C_{p+q}^{\omega}(i)\partial_{\omega}(i) \quad (4-53)$$

Where

$$\partial_{\omega}(i) = \frac{\partial}{\partial r_{i}} - \frac{k}{r_{i}} \qquad \text{if } \omega = k + 1$$

$$= \frac{\partial}{\partial r_{i}} + \frac{k + 1}{r_{i}} \qquad \text{if } \omega = k - 1$$

$$= 0 \qquad \text{otherwise} \qquad (4-54)$$

Therefore, equation (4-52) becomes

$$R = \frac{1}{2} \sum_{k\lambda\omega pmq} (-1)^{p+m+q} \frac{1}{(2k+1)} \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2)$$

$$\times C(k1\lambda;000) C(k1\lambda;-q,p,p-q) \sigma_{-p}(1) C_{p-q}^{\lambda}(1)$$

$$\times C(k1\omega;000) C(k1\omega;q,m,q+m) \sigma_{-m}(2) C_{q+m}^{\omega}(2)$$
(4-55)

In this context the differentiations apply to the  $W_k(1,2)$  and not to the wave function on which  $g^R$  operates.

Dealing with the first term in equation (4-47)

From equation (4-55), we obtain

$$\langle u_{a}u_{b}|R|_{\mathcal{V}_{c}\mathcal{V}_{d}} \rangle = -\frac{1}{2} \sum_{k\lambda\omega pmq} (-1)^{p+m+q} (2k+1)^{-1} \\ \times C(k1\lambda;000)C(k1\lambda;-q,p,p-q)C(k1\omega;000)C(k1\omega;q,m,q+m)$$

$$\times \langle P_{a}P_{b}|\partial_{\lambda}(1)\partial_{\omega}(2)W_{k}(1,2)|Q_{c}Q_{d}\rangle$$

$$\times \langle \kappa_{a}m_{a}|\sigma_{-p}(1)C_{p-q}^{\lambda}(1)|-\kappa_{c}m_{c}\rangle \langle \kappa_{b}m_{b}|\sigma_{-m}(2)C_{m+q}^{\omega}(2)|-\kappa_{d}m_{d}\rangle$$

$$= -2$$

$$\langle W_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}(2)|P_{a}($$

Where

$$\langle \kappa_a m_a | \sigma_p C_q^{\lambda} | \kappa_b m_b \rangle = \int_0^\infty \Omega_a^{\dagger} \sigma_p C_q^{\lambda} \Omega_b \sin \theta d\theta d\varphi$$
 (4-57)

Using equation (3-1-6), then equation (4-56) becomes

$$\langle u_{a}u_{b}|R|_{V_{c}V_{d}} \rangle = -\frac{1}{2} \sum_{k\lambda\omega\rho mq\mu_{a}\mu_{c}} \sum_{\mu_{b}\mu_{d}} (-1)^{p+m+q} (2k+1)^{-1} \times C(k1\lambda;-q,p,p-q)C(l_{a},1/2,j_{a};m_{a}-\mu_{a},\mu_{a},m_{a}) \times C(\bar{l}_{c},1/2,j_{c};m_{c}-\mu_{c},\mu_{c},m_{c})C(k1\lambda;000) \times \langle l_{a},m_{a}-\mu_{a}|C_{p-q}^{\lambda}(1)|\bar{l}_{c},m_{c}-\mu_{c}\rangle\langle 1/2,\mu_{a}|\sigma_{-p}(1)|1/2,\mu_{c}\rangle$$

$$\times C(k1\omega;q,m,q+m)C(l_{b},1/2,j_{b};m_{b}-\mu_{b},\mu_{b},m_{b}) \times C(\bar{l}_{d},1/2,j_{d};m_{d}-\mu_{d},\mu_{d},m_{d})C(k1\omega;000) \times \langle l_{b},m_{b}-\mu_{b}|C_{m+q}^{\omega}(2)|\bar{l}_{d},m_{d}-\mu_{d}\rangle\langle 1/2,\mu_{b}|\sigma_{m}(2)|1/2,\mu_{d}\rangle \times \langle P_{a}P_{b}|\partial_{\lambda}(1)\partial_{\omega}(2)W_{k}(1,2)|Q_{c}Q_{d}\rangle$$

$$(4-58)$$

Using Wigner-Eckart theorem, then the above equation becomes

$$\langle u_{a} u_{b} | R | v_{c} v_{d} \rangle = -\frac{1}{2} \sum_{k\lambda\omega pmq} \sum_{\mu_{a}\mu_{c}} \sum_{\mu_{b}\mu_{d}} (-1)^{p+m+q} (2k+1)^{-1} \\ \times C(k1\lambda;000)C(k1\omega;000) \frac{\langle l_{a} \| C^{\lambda}(1) \| \bar{l}_{c} \rangle}{\sqrt{2\lambda+1}} \frac{\langle l_{b} \| C^{\omega}(2) \| \bar{l}_{d} \rangle}{\sqrt{2\omega+1}} \\ \times C(l_{a},1/2,j_{a};m_{a}-\mu_{a},\mu_{a},m_{a})C(\bar{l}_{c},1/2,j_{c};m_{c}-\mu_{c},\mu_{c},m_{c}) \\ \times C(k1\lambda;-q,p,p-q)C(1/2,1,1/2;\mu_{a},-p,\mu_{c}) \\ \times C(l_{a},\lambda,\bar{l}_{c};m_{a}-\mu_{a},p-q,m_{c}-\mu_{c}) \\ \times C(l_{b},1/2,j_{b};m_{b}-\mu_{b},\mu_{b},m_{b})C(\bar{l}_{d},1/2,j_{d};m_{d}-\mu_{d},\mu_{d},m_{d}) \\ \times C(k1\omega;q,m,q+m)C(1/2,1,1/2;\mu_{b},-m,\mu_{d}) \\ \times C(l_{b}\omega,\bar{l}_{d};m_{b}-\mu_{b},m+q,m_{d}-\mu_{d}) \\ \times \frac{\langle 1/2 \| \sigma(1) \| 1/2 \rangle}{\sqrt{3}} \frac{\langle 1/2 \| \sigma(2) \| 1/2 \rangle}{\sqrt{3}} \langle P_{a} P_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | Q_{c} Q_{d} \rangle$$

Where

and

$$\langle 1/2 \| \boldsymbol{\sigma} \| 1/2 \rangle = \sqrt{6} \tag{4-61}$$

Because the triangular conditions of the Clebsch-Gordan coefficients in equation (4-59), the summation over p, q and m may be carried out, and their values are limited to

$$p = \mu_a - \mu_c$$

$$m = \mu_b - \mu_d$$

$$q = m_a - m_c = m_d - m_b$$
(4-62)

Therefore, equation (4-59) can be written as:

$$\langle u_{a}u_{b}|R|_{V_{c}V_{d}} \rangle = -\sum_{k\lambda\omega\mu_{a}\mu_{c}}\sum_{\mu_{b}\mu_{d}} (2k+1)^{-1} (-1)^{\mu_{a}-\mu_{c}+\mu_{b}-\mu_{d}+m_{a}-m_{c}} \\ \times C(k1\lambda;000)C(k1\omega;000) \frac{\langle I_{a}||C^{\lambda}(1)||\bar{I}_{c}\rangle}{\sqrt{2\lambda+1}} \frac{\langle I_{b}||C^{\omega}(2)||\bar{I}_{d}\rangle}{\sqrt{2\omega+1}} \\ \times C(I_{a},1/2, j_{a};m_{a}-\mu_{a},\mu_{a},\mu_{a},m_{a})C(\bar{I}_{c},1/2, j_{c};m_{c}-\mu_{c},\mu_{c},m_{c}) \\ \times C(k1\lambda;m_{c}-m_{a},\mu_{a}-\mu_{c},\mu_{a}-\mu_{c}+m_{c}-m_{a}) \\ \times C(I_{a},\lambda,\bar{I}_{c};m_{a}-\mu_{a},\mu_{a}-\mu_{c}+m_{c}-m_{a},m_{c}-\mu_{c}) \\ C(1/2,1,1/2;\mu_{a},\mu_{c}-\mu_{a},\mu_{c})\delta(m_{a}+m_{b},m_{c}+m_{d}) \\ \times C(I_{b},1/2, j_{b};m_{b}-\mu_{b},\mu_{b},m_{b})C(\bar{I}_{d},1/2, j_{d};m_{d}-\mu_{d},\mu_{d},m_{d}) \\ C(k1\omega;m_{d}-m_{b},\mu_{b}-\mu_{d},m_{d}-m_{b}+\mu_{b}-\mu_{d}) \\ \times C(I_{b},\omega,\bar{I}_{d};m_{b}-\mu_{b},m_{d}-m_{b}+\mu_{b}-\mu_{d},m_{d}-\mu_{d}) \\ \times C(1/2,1,1/2;\mu_{b},\mu_{d}-\mu_{b},\mu_{d})\langle P_{a}P_{b}|\partial_{\lambda}(1)\partial_{\omega}(2)W_{k}(1,2)|Q_{c}Q_{d}\rangle$$

The summations over  $\mu_a$  and  $\mu_c$  in the above equation can be performed by using the formula [1<sup>V</sup>]

$$\sum_{\mu_{a}\mu_{c}} (-1)^{\mu_{a}-\mu_{c}+m_{a}} C(l_{a},1/2,j_{a};m_{a}-\mu_{a},\mu_{a},m_{a})$$

$$\times C(k1\lambda;m_{c}-m_{a},\mu_{a}-\mu_{c},\mu_{a}-\mu_{c}+m_{c}-m_{a})$$

$$\times C(l_{a},\lambda,\bar{l}_{c};m_{a}-\mu_{a},\mu_{a}-\mu_{c}+m_{c}-m_{a},m_{c}-\mu_{c}) \qquad (4-64)$$

$$\times C(1/2,1,1/2;\mu_{a},\mu_{c}-\mu_{a},\mu_{c})C(\bar{l}_{c},1/2,j_{c};m_{c}-\mu_{c},\mu_{c},m_{c})$$

$$= \left[3(2\ j_{a}+1)(2\ j_{c}+1)(2\lambda+1)\right]^{1/2}C(j_{a}k\ j_{c};m_{a},m_{c}-m_{a},m_{c})\left\{\begin{array}{ll}l_{a}&1/2&j_{a}\\\bar{l}_{c}&1/2&j_{c}\\k&1&\lambda\end{array}\right\}$$

A similar relation also holds for the sum over  $\mu_b$  and  $\mu_d$ . With these results, equation (4-63) becomes

$$\langle u_{a} u_{b} | R |_{V_{c} V_{d}} \rangle = -\sum_{k\lambda\omega} (2k+1)^{-1} C(k1\lambda;000) C(k1\omega;000) \times C(j_{a},k,j_{c};m_{a},m_{c}-m_{a},m_{c}) e_{\lambda}^{k} (j_{a}l_{a},j_{c}\bar{l}_{c}) \times C(j_{b}k,j_{d};m_{b},m_{d}-m_{b},m_{d}) e_{\omega}^{k} (j_{b}l_{b},j_{d}\bar{l}_{d}) \times \langle P_{a} P_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | Q_{c} Q_{d} \rangle$$

$$(4-65)$$

Where, we have used the definition of the e-coefficient given in equation (4-19)

The rest of the matrix element of the retardation term, equation (4-47), may be now deduced from equation (4-65). The general expression for the matrix element of the retardation term is:

$$g_{abcd}^{R} = -\sum_{k\lambda\omega} (2k+1)^{-1} C(k1\lambda;000) C(k1\omega;000) \qquad (4-66)$$

$$\times C(j_{a},k,j_{c};m_{a},m_{c}-m_{a},m_{c}) C(j_{b}k,j_{d};m_{b},m_{d}-m_{b},m_{d})$$

$$\times \left\{ e_{\lambda}^{k}(j_{a}l_{a},j_{c}\bar{l}_{c}) e_{\omega}^{k}(j_{b}l_{b},j_{d}\bar{l}_{d}) \langle P_{a}P_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | Q_{c}Q_{d} \rangle \right.$$

$$\left. - e_{\lambda}^{k}(j_{a}l_{a},j_{c}\bar{l}_{c}) e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{d}l_{d}) \langle P_{a}Q_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | Q_{c}P_{d} \rangle \right.$$

$$\left. - e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{c}l_{c}) e_{\omega}^{k}(j_{b}l_{b},j_{d}\bar{l}_{d}) \langle Q_{a}P_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | P_{c}Q_{d} \rangle \right.$$

$$\left. + e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{c}l_{c}) e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{d}l_{d}) \langle Q_{a}Q_{b} | \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) | P_{c}P_{d} \rangle \right\}$$

The allowed values of  $\lambda$  and  $\omega$  in the above equation are limited to  $k \pm 1$ . The values of k are restricted by the triangular condition of the 9-j symbol and the Clebsch Gordan coefficient embedded in the *e*-coefficients

$$|l - l'| \le k \le l + l'$$
and
$$l + k + l' = even$$
(4-67)

From equation (3-3-66) the direct part of the retardation term is:

$$g_{abab}^{R} = -\sum_{k\lambda\omega} (2k+1)^{-1} F_{\lambda\omega k}^{R}(a,b) \times C(k1\lambda;000)C(j_{a},k,j_{a};m_{a},0,m_{a})C(k1\omega;000)C(j_{b}k,j_{b};m_{b},0,m_{b})$$
(4-68)  
$$\times \left\{ e_{\lambda}^{k}(j_{a}l_{a},j_{a}\bar{l}_{a})e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) - e_{\lambda}^{k}(j_{a}l_{a},j_{a}\bar{l}_{a})e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{b}l_{b}) - e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{a}l_{a})e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) + e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{a}l_{a})e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{b}l_{b}) \right\}$$

Where

$$F_{\lambda \omega k}^{R}(a,b) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) Q_{a}(r_{1}) \left[ \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) \right] P_{b}(r_{2}) Q_{b}(r_{2}) dr_{1} dr_{2}$$
(4-69)

Using the symmetry relation in equation (4-28), then equation (4-68) becomes

$$g_{abab}^{R} = -\sum_{k\lambda\omega} (2k+1)^{-1} F_{\lambda\omega k}^{R}(a,b) C(k1\lambda;000) C(j_{a},k,j_{a};m_{a},0,m_{a}) \\ \times C(k1\omega;000) C(j_{b}k,j_{b};m_{b},0,m_{b}) \Big\{ e_{\lambda}^{k}(j_{a}l_{a},j_{a}\bar{l}_{a}) e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) \\ -(-1)^{\omega+k+1} e_{\lambda}^{k}(j_{a}l_{a},j_{a}\bar{l}_{a}) e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) \\ -e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{a}l_{a}) e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) \\ +(-1)^{\omega+k+1} e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{a}l_{a}) e_{\omega}^{k}(j_{b}l_{b},j_{b}\bar{l}_{b}) \Big\}$$

$$(4-70)$$

From the triangular condition of the Clebsch-Gordan coefficient of the above equation, we obtain

$$\omega + k + 1 = even \tag{4-71}$$

It follows that the direct matrix element of the retardation term vanishes identically.

$$g_{abab}^{R} = 0 \tag{4-72}$$

For the exchange part of the retardation term is:

$$g_{abba}^{R} = \sum_{k\lambda\omega} (2k+1)^{-1} C(k1\lambda;000) C(k1\omega;000) \left[ C(j_{a},k,j_{b};m_{a},m_{b}-m_{a},m_{b}) \right]^{2} \\ \times \left\{ e_{\lambda}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{a}l_{a}) G_{\lambda\omega k}^{R}(ab,ab) \right. \\ \left. + e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b}) e_{\omega}^{k}(j_{b}l_{b},j_{a}\bar{l}_{a}) G_{\lambda\omega k}^{R}(ba,ba) \right.$$

$$\left. - \left[ e_{\lambda}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{\omega}^{k}(j_{b}l_{b},j_{a}\bar{l}_{a}) + e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b}) e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{a}l_{a}) \right] G_{\lambda\omega k}^{R}(ab,ba) \right\}$$

$$\left. + e_{\lambda}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b}) e_{\omega}^{k}(j_{b}\bar{l}_{b},j_{a}l_{a}) \right] G_{\lambda\omega k}^{R}(ab,ba) \right\}$$

Where

$$G_{\lambda\omega k}^{R}(ab,cd) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) P_{c}(r_{2}) \Big[ \partial_{\lambda}(1) \partial_{\omega}(2) W_{k}(1,2) \Big] Q_{b}(r_{1}) Q_{d}(r_{2}) dr_{1} dr_{2}$$
(4-74)

Kim  $[1^{\vee}]$  has remarked that this is a consequence of the fact that  $\phi_a^{\dagger}(\vec{r}_1)\phi_a(\vec{r}_1)$  and  $\phi_b^{\dagger}(\vec{r}_2)\phi_b(\vec{r}_2)$  necessarily represent static charge distributions so that their Coulomb repulsion cannot be retarded. On the other hand, the exchange matrix elements involve an interaction between charge distributions  $\phi_a^{\dagger}(\vec{r}_1)\phi_b(\vec{r}_1)$  and  $\phi_b^{\dagger}(\vec{r}_2)\phi_a(\vec{r}_2)$  which are necessarily non-stationary in time, unless, of course a=b.

When we carry out the differentiation of  $W_k(1,2)$  in the above radial matrix element, we find that

$$G_{(k+1)(k-1)k}^{R}(ab,cd) = -(2k+1)\int_{0}^{\infty} P_{a}(r_{1}) Q_{b}(r_{1}) \times \left[\int_{0}^{r_{1}} P_{c}(r_{2}) \left(\frac{r_{2}^{k+1}}{r_{1}^{k+2}} - \frac{r_{2}^{k-1}}{r_{1}^{k}}\right) Q_{d}(r_{2}) dr_{2}\right] dr_{1}$$

$$(4-75)$$

$$G_{(k-1)(k+1)k}^{R}(ab,cd) = -(2k+1) \int_{0}^{\infty} P_{a}(r_{1}) Q_{b}(r_{1}) \times \left[ \int_{r_{1}}^{\infty} P_{c}(r_{2}) \left( \frac{r_{1}^{k+1}}{r_{2}^{k+2}} - \frac{r_{1}^{k-1}}{r_{2}^{k}} \right) Q_{d}(r_{2}) dr_{2} \right] dr_{1}$$

$$(4-76)$$

and

$$G_{vvk}^{R}(ab,cd) = -2\frac{(2k+1)}{(2v+1)}G_{k}^{R}(ab,cd) \qquad \text{if} \qquad v = k \pm 1 \tag{4-77}$$

Where

$$G_{k}^{R}(ab,cd) = \int_{0}^{\infty} \int_{0}^{\infty} P_{a}(r_{1}) P_{c}(r_{2}) \frac{r_{<}^{k}}{r_{>}^{k+1}} Q_{b}(r_{1}) Q_{d}(r_{2}) dr_{1} dr_{2}$$
(4-78)

The summation over  $\lambda$  and  $\omega$  can be carried out, by substituting  $k \pm 1$  in equation (4-73), then we obtain

$$\begin{split} g_{abba}^{R} &= \sum_{k} (2k+1)^{-1} \Big[ C(j_{a},k,j_{b};m_{a},m_{b}-m_{a},m_{b}) \Big]^{2} \\ &\times \Big\{ \Big( C(k1(k-1);000) \Big)^{2} \Big[ \Big( e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k-1)(k-1)k}^{R} (ab,ab) \\ &+ \Big( e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b}) \Big)^{2} G_{(k-1)(k-1)k}^{R} (ba,ba) \\ &- 2 e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}l_{b}) G_{(k-1)(k-1)k}^{R} (ab,ba) \Big] \\ &+ \Big( C(k1(k+1);000) \Big)^{2} \Big[ \Big( e_{k+1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k+1)(k+1)k}^{R} (ab,ab) \\ &- 2 e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k+1)(k+1)k}^{R} (ab,ab) \\ &+ \Big( e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \Big] \\ &+ \Big( c(k1(k-1);000)C(k1(k+1);000) \Big[ e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a$$

using equations (4-75) and (4-76), we get

$$G_{(k-1)(k+1)k}^{R}(ab, cd) + G_{(k+1)(k-1)k}^{R}(ab, cd)$$

$$= (2k+1) \Big[ G_{(k-1)}^{R}(ab, cd) - G_{(k+1)}^{R}(ab, cd) \Big]$$
(4-80)

using the above relation with equation (4-77), equation (4-79) becomes

$$\begin{split} g_{abba}^{R} &= -2\sum_{k} \Big[ C(j_{a},k,j_{b};m_{a},m_{b}-m_{a},m_{b}) \Big]^{2} \\ &\times \Big\{ \frac{(C(k1(k-1);000))^{2}}{(2k-1)} \Big[ \Big( e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k-1)}^{R}(ab,ab) \\ &+ \Big( e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k-1)}^{R}(ba,ba) \\ &- 2 e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) G_{(k-1)}^{R}(ab,ba) \Big] \\ &+ \frac{(C(k1(k+1);000))^{2}}{(2k+3)} \Big[ \Big( e_{k+1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k+1)}^{R}(ab,ab) \\ &+ \Big( e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \Big)^{2} G_{(k+1)}^{R}(ab,ab) \Big] \\ &+ \Big( e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) G_{(k+1)}^{R}(ab,ba) \Big] \\ &- C(k1(k-1);000)C(k1(k+1);000) \Big[ e_{k-1}^{k}(j_{a}l_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \\ &\times \Big( G_{(k-1)}^{R}(ab,ab) - G_{(k+1)}^{R}(ab,ab) \Big) - \Big( e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \\ &\times \Big( G_{(k-1)}^{R}(ba,ba) - G_{(k+1)}^{R}(ba,ba) \Big) - \Big( e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \\ &+ e_{k-1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) e_{k+1}^{k}(j_{a}\bar{l}_{a},j_{b}\bar{l}_{b}) \Big) \Big( G_{(k-1)}^{R}(ab,ba) - G_{(k+1)}^{R}(ab,ba) \Big) \Big] \Big\} \end{split}$$

performing the sum over  $m_b$ , the above equation becomes

$$\begin{split} &\sum_{m_b} g^R_{abba} = -2\sum_k \left\{ \frac{\left(C(k1(k-1);000)\right)^2}{(2k-1)} \left[ \left( e^k_{k-1} (j_a l_a, j_b \bar{l}_b; k) \right)^2 G^R_{(k-1)} (ab, ab) \right. \\ &+ \left( e^k_{k-1} (j_a \bar{l}_a, j_b \bar{l}_b) e^k_{k-1} (j_a \bar{l}_a, j_b l_b) G^R_{(k-1)} (ab, ba) \right. \\ &- 2 e^k_{k-1} (j_a l_a, j_b \bar{l}_b) e^k_{k-1} (j_a \bar{l}_a, j_b l_b) G^R_{(k-1)} (ab, ba) \right] \\ &+ \frac{\left( C(k1(k+1);000) \right)^2}{(2k+3)} \left[ \left( e^k_{k+1} (j_a l_a, j_b \bar{l}_b) \right)^2 G^R_{(k+1)} (ab, ab) \right. \\ &+ \left( e^k_{k+1} (j_a \bar{l}_a, j_b l_b) \right)^2 G^R_{(k+1)} (ba, ba) \\ &- 2 e^k_{k+1} (j_a l_a, j_b \bar{l}_b) e^k_{k+1} (j_a \bar{l}_a, j_b l_b) G^R_{(k+1)} (ab, ba) \right] \\ &- C(k1(k-1);000) C(k1(k+1);000) \left[ e^k_{k-1} (j_a l_a, j_b \bar{l}_b) e^k_{k+1} (j_a \bar{l}_a, j_b \bar{l}_b) \right] \\ &- C(k1(k-1);000) C(k1(k+1);000) \left[ e^k_{k-1} (j_a \bar{l}_a, j_b l_b) e^k_{k+1} (j_a \bar{l}_a, j_b \bar{l}_b) \right] \\ &\times \left( G^R_{(k-1)} (ab, ab) - G^R_{(k+1)} (ab, ab) \right) - \left( e^k_{k-1} (j_a l_a, j_b \bar{l}_b) e^k_{k+1} (j_a \bar{l}_a, j_b l_b) \right) \right] \\ &+ \left( e^k_{k-1} (j_a \bar{l}_a, j_b l_b) e^k_{k+1} (j_a l_a, j_b \bar{l}_b) \right) \left( G^R_{(k-1)} (ab, ba) - G^R_{(k+1)} (ab, ba) \right) \right] \right\} \end{split}$$

The configuration average energy correction due to the retardation term is:

$$E_{av}^{R} = \frac{1}{2} \sum_{a} q_{a} (q_{a} - 1) E_{aa}^{R} + \frac{1}{2} \sum_{a} \sum_{b \neq a} q_{a} q_{b} E_{ab}^{R}$$
(4-83)

Where

$$E_{aa}^{R} = \left(g_{abab}^{R}\right)_{av} - \left(g_{abba}^{R}\right)_{av} \quad \text{with} \quad a = b \tag{4-84}$$

$$E_{ab}^{R} = \left(g_{abab}^{R}\right)_{av} - \left(g_{abba}^{R}\right)_{av} \quad \text{with} \quad a \neq b \tag{4-85}$$

Where the averaging over  $m_a$  and  $m_b$ 

From equations (4-82), (4-84) and (4-85) we get

$$E_{aa}^{R}=0$$

and

$$\begin{split} E_{ab}^{R} &= \frac{2}{(2j_{b}+1)} \sum_{k} \left\{ \frac{\left(C(k1(k-1);000)\right)^{2}}{(2k-1)} \\ \times \left[ \left( e_{k-1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k-1)}^{R} (ab, ab) + \left( e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) \right)^{2} G_{(k-1)}^{R} (ba, ba) \\ - 2e_{k-1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) G_{(k-1)}^{R} (ab, ba) \right] \\ + \frac{\left(C(k1(k+1);000)\right)^{2}}{(2k+3)} \left[ \left( e_{k+1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k+1)}^{R} (ab, ab) \right. \\ \left. + \left( e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k+1)}^{R} (ba, ba) \\ - 2e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) G_{(k+1)}^{R} (ab, ba) \right] \\ - C(k1(k-1);000)C(k1(k+1);000) \left[ e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{$$

From equation (4-83) and (4-86) the configuration average energy due to retardation term

$$\begin{split} E_{av}^{R} &= \sum_{a} \sum_{b \neq a} q_{a} q_{b} \frac{1}{(2 j_{b} + 1)} \sum_{k} \left\{ \frac{\left( C(k1(k-1);000) \right)^{2}}{(2k-1)} \right. \\ &\times \left[ \left( e_{k-1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k-1)}^{R} (ab, ab) \right. \\ &+ \left( e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k-1)}^{R} (ba, ba) \\ &- 2 e_{k-1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}l_{b}) G_{(k-1)}^{R} (ab, ba) \right] \\ &+ \frac{\left( C(k1(k+1);000) \right)^{2}}{(2k+3)} \left[ \left( e_{k+1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k+1)}^{R} (ab, ab) \right. \\ &+ \left( e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \right)^{2} G_{(k+1)}^{R} (ab, ab) \\ &+ \left( e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) G_{(k+1)}^{R} (ab, ab) \right] \\ &- C(k1(k-1);000)C(k1(k+1);000) \left[ e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \\ &\times \left( G_{(k-1)}^{R} (ab, ab) - G_{(k+1)}^{R} (ab, ab) \right) + e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \\ &\times \left( G_{(k-1)}^{R} (ba, ba) - G_{(k+1)}^{R} (ba, ba) \right) - \left( e_{k-1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) \\ &+ e_{k-1}^{k} (j_{a}\bar{l}_{a}, j_{b}\bar{l}_{b}) e_{k+1}^{k} (j_{a}l_{a}, j_{b}\bar{l}_{b}) \right) \right] \end{split}$$

# CHAPTER 5

## NUMERICAL SOLUTION OF THE HARTREE-FOCK EQUATIONS

In this chapter we try to present a brief description of the general scheme for the solution of the non-relativistic Hartree-Fock equations which lead to a system of second order differential equations, and then proceed with solution of the relativistic Hartree-Fock (Dirac-Fock) equation which lead to a system of pairs of first order differential equation.

### 5-1- Solution of the Non-relativistic Hartree-Fock Equations

Our object now is to obtain solutions of equations (2-3-20) by straightforward iterative scheme. From estimates of all the functions  $P_a(r)$ , we tabulate the functions  $X_a(r)$  and  $Y_a(r)$  for some particular choice a. The solution of the radial differential equations (2-3-20) then gives new estimate of the function  $P_a(r)$ . The process is then repeated with each function until the whole system is self-consistent to within the prescribed tolerance.

There are, therefore, three processes :

#### a-Tabulation of $X_a(r)$ and $Y_a(r)$ :

From equations (2-3-18) and (2-3-19), it is clear that  $Y_a(r)$  and  $X_a(r)$  depend completely on the function  $Y_k(ab,r)$ , and because this type of function occur frequently in Hartree-Fock calculations, it is desirable to determine them with maximum efficiency.

The  $Y_k(ab, r)$  function given by equation (2-3-9) can be rewritten as:

$$Y_{k}(ab,r) = r \int_{0}^{\infty} ds U_{k}(r,s) P_{a}(s) P_{b}(s)$$
(5-1-1)

where

$$U_{k}(r,s) = \frac{s^{k}}{r^{k+1}} \quad \text{if} \quad r \ge s$$
  
$$= \frac{r^{k}}{s^{k+1}} \quad \text{if} \quad r < s \qquad (5-1-2)$$

introducing the function

$$Z_{k}(ab,r) = r \int_{0}^{r} ds U_{k}(r,s) P_{a}(s) P_{b}(s) = \int_{0}^{r} ds \left(\frac{s}{r}\right)^{k} P_{a}(s) P_{b}(s)$$
(5-1-3)

Equations (5-1-1) and (5-1-3) can be regarded as solutions of a pair of differential equations [54]

$$\frac{dZ_k}{dr} + \frac{k}{r}Z_k = P_a(r)P_b(r)$$
(5-1-4)

$$\frac{dY_k}{dr} - \frac{k+1}{r}Y_k = -\frac{2k+1}{r}Z_k$$
(5-1-5)

with the boundary conditions

$$Z_{k} = 0 \quad \text{at} \quad r = 0$$

$$Y_{k} \to Z_{k} \quad \text{as} \quad r \to \infty$$
(5-1-6)

Because the bound orbitals exhibit a rapid variation near the origin and an exponential decay at large values of r it is more efficient to make the change of variable [2]:

$$t = \ln r \tag{5-1-7}$$

with grid points

$$\left. \begin{array}{c} t_i = t_0 + (i-1)h \\ or \\ r_i = r_0 \exp((i-1)h \end{array} \right\}, \ i = 1, \ 2, \dots, M$$
 (5-1-8)

where h is the step size.

with this transformation, equations (5-1-4) and (5-1-5) become

$$\frac{dZ_k}{dt} + kZ_k = e^t P_a P_b \tag{5-1-9}$$

$$\frac{dY_k}{dt} - (k+1)Y_k = -(2k+1)Z_k$$
(5-1-10)

both of which are of the form

$$\frac{df}{dt} + af = \phi(t) \tag{5-1-11}$$

where *a* is constant and  $\phi(t)$  is known tabulated function. Step by step integration of this equation in the direction of increasing (decreasing) *t* is stable for *a* positive (negative), so that we can integrate  $Z_k$  equation outwards from the initial value  $Z_k(ab,t_1)$ , and then  $Y_k$  equation inwards from some sufficiently large value  $t=t_m$  with  $Y_k(ab,t_m) = Z_k(ab,t_m)$ .

Equation (5-1-11) is equivalent to the relation [55]

$$f(t_{i+1}) = e^{-ah} f(t_i) + \int_{t_i}^{t_{i+1}} e^{a(x-t_{i+1})} \phi(x) dx$$
(5-1-12)

The integral is approximated by Adams method [56]

$$\int_{t_i}^{t_{i+1}} F(x) dx = \frac{h}{24} \left\{ -F(t_{i-1}) + 13F(t_i) + 13F(t_{i+1}) - F(t_{i+2}) \right\}$$
(5-1-13)

equation (5-1-12) becomes

$$f(t_{i+1}) = e^{-ah} f(t_i) + \frac{h}{24} \left\{ -e^{-2ah} \phi(t_{i-1}) + 13 e^{-ah} \phi(t_i) + 13 \phi(t_{i+1}) - e^{-ah} \phi(t_{i+2}) \right\}$$
(5-1-14)

The initial value needed to start the integration for  $Z_k$  can be obtained from[2]

$$Z_{k}(ab,t_{1}) = \frac{1}{l_{a}+l_{b}+k+3}e^{2t_{1}}P_{a}P_{b}$$

$$\times \left\{1 + \frac{Ze^{t_{1}}}{(l_{a}+l_{b}+k+4)}\left[\frac{1}{(l_{a}+1)} + \frac{1}{(l_{b}+1)}\right]\right\}$$
(5-1-15)
# **b-** Solution of the radial differential equation for $P_a(r)$ :

Now, we ought to solve the equations

$$\frac{d^2 P_a}{dr^2} - \frac{l_a (l_a + 1) P_a}{r^2} + 2 \left[ \varepsilon_a + \frac{Y_a(r)}{r} \right] P_a(r) = -X_a(r)$$
(5-1-16)

where  $Y_a(r)$  and  $X_a(r)$  are regarded as given tabulated functions, as well as the  $\mathcal{E}_{ab}$  parameter from equation (2-5-1). The boundary conditions are

$$P_a(0) = 0$$
 and  $P_a(r) \to 0$  as  $r \to \infty$ 

The change of variable  $t = \ln r$  gives rise to a second order differential equation of the form

$$\frac{d^{2}\overline{P}_{a}}{dt^{2}} - \left[ \left( l_{a} + 1/2 \right)^{2} - 2 \left( \varepsilon_{a} r^{2} + r Y_{a} \right) \right] \overline{P}_{a} = -r^{3/2} X_{a}$$
(5-1-17)

where  $\overline{P}_a = \frac{P_a}{\sqrt{r}}$ 

equation (5-17), has the form:

$$\frac{d^2F}{dt^2} + \phi(t)F = W(t)$$
(5-1-18)

Using Numerov,s method, which takes the form [55]

$$\begin{bmatrix} 1 + \frac{1}{12}h^{2}\phi(t_{i+1}) \end{bmatrix} F(t_{i+1}) = \begin{bmatrix} 2 - \frac{5}{6}h^{2}\phi(t_{i}) \end{bmatrix} F(t_{i}) - \begin{bmatrix} 1 + \frac{1}{12}h^{2}\phi(t_{i-1}) \end{bmatrix} F(t_{i-1}) + \frac{h^{2}}{12} \begin{bmatrix} W(t_{i+1}) + 10W(t_{i}) + W(t_{i-1}) \end{bmatrix}$$
(5-1-19)

The possible instability in the region where  $\phi(t) < 0$  ought to be avoided. Therefore it is required an outward integration for small r, and inward integration for large r [55].

Starting values of the outward integration are obtained from a series expansion [2]

$$P(r) = Ar^{l+1} \left( 1 - \frac{Z}{l+1}r + \alpha r^2 + O(r^3) \right)$$
(5-1-20)

$$Y_a(r) = y_0 r + O(r^3)$$
(5-1-21)

$$\eta_a(r) = r^{l+1} \{ x_0 + x_1 r + O(r^2) \}$$
(5-1-22)

where 
$$\alpha = \frac{\left\{Z^2 + (l+1)[(\varepsilon_a/2) + (y_0 + x_0)]\right\}}{(2l+3)(l+1)}$$

and where  $A, y_0, x_0$  and  $x_1$  are constants.

Numerov's method is then used step by step to the point  $t_j$  where the term  $\phi(t)$  becomes negative. The inward integration is treated as a boundary value problem[57].

we have thus obtained solutions of the equation (5-1-19) of the form

$$\begin{array}{ll}
F_i^{(0)} & \text{for } i \leq j \\
F_i^{(1)} & \text{for } i > j
\end{array}$$
(5-1-23)

which match at the point j, that is  $F_{j}^{(0)} = F_{j}^{(1)}$ , however, the two solutions will not agree, and must adjust the original estimates  $(A, \varepsilon_{a} \text{ and } \varepsilon_{ab})$  to satisfy the normalization and orthogonality until they give the same value at the matching point.

#### c- Self consistency

The solution  $P_a^{n+1}(r)$  can now be compared with the estimate  $P_a^n(r)$  used in computing  $Y_a(r)$  and  $X_a(r)$ . The new estimate is derived from the combination [2]

$$(1 - c_a) P_a^{n+1}(r) + c_a P_a^n(r)$$
(5-1-24)

where 
$$c_a$$
 is a constant.

Initial estimates are chosen to be hydrogenic orbitals with effective nuclear charge  $Z^* = (Z - \sigma)$ , where  $\sigma$  is the screening parameter.

#### **5-2- Solution of the Relativistic Hartree-Fock Equations**

The general scheme for the solution of the system of pairs of first-order differential equations is very similar to the non-relativistic case described above. The tabulation of the functions  $Y_a(r)$ ,  $X_a^P(r)$  and  $X_a^Q(r)$  involves the same numerical problems as in the non-relativistic calculations, and is carried out in the same way. The only important difference in the computational procedure is in the actual solution of equations (3-1-71):

$$P'_{a} + \frac{K_{a}}{r} P_{a} - \left[2c + \frac{1}{c} \left(\varepsilon_{a} + \frac{Y_{a}(r)}{r}\right)\right] Q_{a} = X_{a}^{P}(r)$$
(5-2-1a)

$$Q'_{a} - \frac{\kappa_{a}}{r} Q_{a} + \frac{1}{c} \left( \varepsilon_{a} + \frac{Y_{a}(r)}{r} \right) P_{a} = -X_{a}^{Q}(r)$$
(5-2-1b)

Now, we consider the solution of the above pair of differential equations. For the same reasons as in the non-relativistic case it is convenient to make the change of variable

$$t = \ln r \tag{5-2-2}$$

making this transformation, and omit the suffix a, equations (5-2-1) become

$$P' + \kappa P - \left[2c + \frac{1}{c} \left(\varepsilon r + Y(r)\right)\right] Q = r X^{P}(r)$$
(5-2-3a)

$$Q' - \kappa Q + \frac{1}{c} \left( \varepsilon r + Y(r) \right) P = r X^{Q}(r)$$
(5-2-3b)

Using the predictor-corrector method [58] to solve the system of two first order coupled differential equations

#### **Predictor :**

$$p(t_{i+1}) = y(t_i) + \frac{h}{720} \Big[ 1901y'(t_i) - 2774y'(t_{i-1}) + 2616y'(t_{i-2}) - 1274y'(t_{i-3}) + 251y'(t_{i-4}) \Big]$$
(5-2-4)

**Corrector :** 

$$C(t_{i+1}) = y(t_i) + \frac{h}{720} \Big[ 251p'(t_{i+1}) + 646y'(t_i) - 264y'(t_{i-1}) + 106y'(t_{i-2}) - 19y'(t_{i-3}) \Big]$$
(5-2-5)

**Final value :** 

$$y(t_{i+1}) = \frac{1}{502} \left[ 475C(t_{i+1}) + 27p(t_{i+1}) \right]$$
(5-2-6)

where y stands for either the large P or small Q radial wavefunction, y' and p' denotes the derivatives with respect to the tabulation variable.

As in the non relativistic case, the solution involves both an inward and outward integration for stability purposes. Starting values of the outward integration are obtained from a series expansion [46]

$$P(r) = Ar^{\lambda} (p_0 + p_1 r + O(r^2))$$

$$Q(r) = Ar^{\lambda} (q_0 + q_1 r + O(r^2))$$
(5-2-7)

where  $\lambda = [\kappa^2 - \alpha^2 Z^2]^{1/2}$  and where the coefficients  $p_0, p_1, q_0, q_1$ , etc., can be expressed in terms of the unknown value of *A*.

To begin the inward integration, we use the asymptotic form [58]

$$P(r) = p \exp(-\mu r)$$

$$Q(r) = q \exp(-\mu r)$$
(5-2-8)

where

$$\mu = \left( \mathcal{E} - \frac{\mathcal{E}^2}{4c^2} \right)^{1/2} \quad \text{and} \quad \mu p = \left( 2c - \frac{\mathcal{E}}{2c} \right)^{1/2} q$$

As a result of this process, we shall have two values of  $Q(t_j)$  which, in general, will not agree unless the values of  $A, \varepsilon_a$  and  $\varepsilon_{ab}$  are correctly chosen during the matching process.

# CHAPTER 6

# **RESULTS AND DISCUSSION**

After the iterative process has converged, the Hartree-Fock (non-relativistic and relativistic) wavefunctions can be used to compute the subshell energies for both calculations by using equations (2-4-1) and (3-2-4) respectively and compared with the corresponding experimental values [59,60]. Also the expectation values of the orbital mean radii  $r^{n}$  for both non-relativistic and relativistic cases, computed by using

$$\left\langle \boldsymbol{r}^{n}\right\rangle_{i;j}^{l} = \int_{0}^{\infty} \left[\boldsymbol{P}_{i} \boldsymbol{P}_{j}\right] \boldsymbol{r}^{n} d\boldsymbol{r}$$
(6-1)

$$\left\langle \boldsymbol{r}^{n}\right\rangle_{i;j}^{l} = \int_{0}^{\infty} \left[\boldsymbol{P}_{i} \boldsymbol{P}_{j} + \boldsymbol{Q}_{i} \boldsymbol{Q}_{j}\right] \boldsymbol{r}^{n} dr \qquad \text{if } l = 0$$

$$\left\langle \boldsymbol{n}\right\rangle^{l} = \int_{0}^{\infty} \left[\boldsymbol{p}_{i} \boldsymbol{Q}_{j} + \boldsymbol{p}_{i} \boldsymbol{Q}_{j}\right] \boldsymbol{n}^{n} dr \qquad \text{if } l \neq 0$$

$$(6-2)$$

$$\langle r^n \rangle_{i;j}^r = \int_0 [P_i Q_j + P_j Q_i] r^n dr$$
 if  $l \neq 0$ 

The non-relativistic and relativistic average energy of configuration given by equations  $(2-2-3^{\circ})$  and (3-1-56) respectively, the configuration average energy correction due to magnetic and retardation terms of the Breit interaction from equations (4-43) and (4-87) can be computed.

These properties were calculated using

These properties were tabulated for selected neutral ground state atoms ranging from Rb to Rn. The calculations were performed by using the programs [General Hartree-Fock Program modified by C. F. Fischer] and [GRASP: is an acronym for the General-purpose Relativistic Atomic Structure Package developed by Ian Grant and co-workers].

Where, in the tables below , we have used  $2p^*=2p_{1/2}$  , etc.

These atoms were classified according to their outermost shell, where the atoms  $(_{37}Rb, _{55}Cs, _{56}Ba$  and  $_{80}Hg$ ) represent the case in which the s-shell is the outermost shell, for open and closed shells. Each of these atoms had single relativistic configuration. For the atoms  $(_{40}Zr, _{46}Pd, _{71}Lu)$  and  $_{77}Ir$ , in which the d-shell is the outermost shell, the non-relativistic configuration is split up into two relativistic sub-configurations for the  $_{71}Lu$  atom, three relativistic sub-configuration for  $_{40}Zr$  atom, four relativistic sub-configurations for the  $_{77}Ir$  atom, and single relativistic configuration for  $_{46}Pd$  atom. For the atoms  $(_{50}Sn, _{81}Tl, _{83}Bi)$  and  $_{86}Rn$ , This case represent in which the p-shell is the outermost shell, the non-relativistic configuration is split up into two relativistic sub-configurations for  $_{81}Tl$  atom, single relativistic configuration for the  $_{86}Rn$  atom, and three relativistic sub-configurations for the  $_{50}Sn$  and  $_{83}Bi$  atoms.

The tables above display the following features:

- Along the considered range of atoms, the Dirac-Fock calculations gives higher binding energies for the s-subshells than the Hartree-Fock calculations whereas the binding energies of the Dirac-Fock calculations for the d and f-subshells are smaller than that for Hartree-Fock calculations. Furthermore, the data shows that the relativistic and non-relativistic binding energies for the p-subshells are approximately identical especially for the lower Z-atoms.
- The values of  $\langle r \rangle$  and  $\langle r^2 \rangle$  predicted from the Hartree-Fock calculations may be larger than those predicted from the corresponding Dirac-Fock calculations. Also, a contraction of all subshells, becoming more marked as Z increases. Whereas, the values of  $\langle 1/r \rangle$  predicted from Hartree-Fock calculations are smaller than those predicted from

Dirac-Fock calculations. Also, an expansion of the values of  $\langle 1/r \rangle$  as Z increases.

- The relativistic result indicates clearly that the energy for the 5s electron is larger than that for the 4f electron, and this result decreases as Z increases as shown for Rn-atom were the situation is reversed.
- The average energy of configuration predicted from Dirac-Fock calculations is about 1.4% to 8% larger than those predicted from the Hartree-Fock calculations.
- The effect of the Breit interaction is not large, since it is seen that the Slater integrals concerned contain two of the small components Q(r) as factors, and are, therefore, considerably smaller than that associated with the Coulomb interaction. The energy shift due to retardation part of the Breit interaction is about 10% of the energy shift due to the magnetic part throughout the considered range, and that the magnetic and retardation contributions are of opposite signs.
- The contribution of the relativistic effect due to mass-velocity term and Darwin term increasing the average energy of configuration predicted from Hartree-Fock calculation from 1% to 6% throughout the considered range.

## **6-1-** *Rubidium* <sub>37</sub> *Rb*

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 551.4573165    | 562.1446122873  | 558.8125         |
| 2s       | 75.04932265    | 77.50271454893  | 75.6             |
| 2p*      |                | 70.01638909688  | 68.52            |
| 2p       | 67.90620685    | 67.76410350875  | 66.3             |
| 3s       | 12.1331814     | 12.56013187422  | 11.84            |
| 3p*      |                | 9.818275532751  | 9.095            |
| 3p       | 9.48767595     | 9.464863829160  | 8.768            |
| 3d*      |                | 4.675845534557  | 4.110            |
| 3d       | 4.73226905     | 4.615814521106  | 4.05             |
| 4s       | 1.52354505     | 1.566303618300  | 1.077            |
| 4p*      |                | 0.8323037367485 | 0.54             |
| 4p       | 0.8100679      | 0.7962684443181 | 0.51             |
| 5s       | 0.13786685     | 0.1400454031414 | 0.1535           |

Table (6-1a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Rb*.

| anhahall | r(a.u.) |            | 1/r (    | a.u.)    | r**2    | r**2 (a.u.) |  |
|----------|---------|------------|----------|----------|---------|-------------|--|
| subshell | HF      | DHF        | HF       | DHF      | HF      | DHF         |  |
| ls       | 0.04128 | 0.04027724 | 36.49597 | 37.88202 | 0.00228 | 0.002185    |  |
| 2s       | 0.18174 | 0.17705799 | 8.16149  | 8.530965 | 0.03888 | 0.037032    |  |
| 2p*      |         | 0.15231097 |          | 8.466035 |         | 0.028477    |  |
| 2p       | 0.15693 | 0.15634115 | 8.11329  | 8.158655 | 0.03007 | 0.02.987    |  |
| 3s       | 0.51811 | 0.50724032 | 2.74124  | 2.834400 | 0.30767 | 0.295249    |  |
| 3p*      |         | 0.50946568 |          | 2.715626 |         | 0.302960    |  |
| 3p       | 0.52076 | 0.51924552 | 2.62914  | 2.644874 | 0.31606 | 0.314517    |  |
| 3d*      |         | 0.52078207 |          | 2.401879 |         | 0.330826    |  |
| 3d       | 0.52134 | 0.52444179 | 2.39426  | 2.382972 | 0.33104 | 0.335363    |  |
| 4s       | 1.49921 | 1.4727529  | 0.87631  | 0.897332 | 2.55722 | 2.469672    |  |
| 4p*      |         | 1.7034948  |          | 0.769573 |         | 3.355036    |  |
| 4p       | 1.73495 | 1.7391492  | 0.75206  | 0.751660 | 3.47783 | 3.498241    |  |
| 5s       | 5.63186 | 5.5449411  | 0.21776  | 0.221908 | 36.1790 | 35.10924    |  |

Table (6-1-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Rb*.

| HF/a.u.      | Relativistic shift /a.u. | Total energy/a.u. |
|--------------|--------------------------|-------------------|
| -2938.357453 | -38.95749849             | -2977.31495191    |
|              |                          |                   |
|              |                          |                   |

|              | Breit inte | eraction/a.u. | Total anargu/a u  |
|--------------|------------|---------------|-------------------|
| DHF/a.u.     | Magnetic   | retardation   | Total energy/a.u. |
| -2979.832904 | 1.73597290 | -0.16756788   | -2978.264499      |

Table (6-1-c): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Rb*.

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 650.711731     | 665.5491068874  | 661.676          |
| 2s       | 91.3847302     | 94.85119059383  | 93.0             |
| 2p*      |                | 86.50523607257  | 84.80            |
| 2p       | 83.4855444     | 83.32781985570  | 81.70            |
| 3s       | 16.0617975     | 16.70048789095  | 15.82            |
| 3p*      |                | 13.53564676378  | 12.65            |
| 3p       | 13.02650895    | 13.00951336481  | 12.15            |
| 3d*      |                | 7.454652491938  | 6.70             |
| 3d       | 7.52249905     | 7.359449571294  | 6.61             |
| 4s       | 2.4247528      | 2.512844449940  | 1.8              |
| 4p*      |                | 1.547748498484  | 11.05            |
| 4p       | 1.4925095      | 1.477990672895  | }1.05            |
| 4d*      |                | 0.2931393197296 |                  |
| 4d       | 0.31093785     | 0.2893931784083 | 0.25             |
| 5s       | 0.2086036      | 0.2153173625709 |                  |

**6-2- Zirconium**  $_{40}Zr$ 

Table (6-2-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for Zr.

| subshall | r(      | a.u.)      | 1/r (    | a.u.)    | r**2    | 2 (a.u.) |
|----------|---------|------------|----------|----------|---------|----------|
| subshell | HF      | DHF        | HF       | DHF      | HF      | DHF      |
| 1s       | 0.03814 | 0.03705297 | 39.49003 | 41.26185 | 0.00195 | 0.001851 |
| 2s       | 0.16696 | 0.16190180 | 8.89079  | 9.368531 | 0.03280 | 0.030970 |
| 2p*      |         | 0.13873339 |          | 9.306589 |         | 0.023627 |
| 2p       | 0.14372 | 0.14305894 | 8.84879  | 8.909105 | 0.02519 | 0.024997 |
| 3s       | 0.46656 | 0.45525703 | 3.05475  | 3.177189 | 0.24910 | 0.237511 |
| 3p*      |         | 0.45283467 |          | 3.064105 |         | 0.238825 |
| 3p       | 0.46444 | 0.46270301 | 2.94986  | 2.971786 | 0.25075 | 0.249149 |
| 3d*      |         | 0.44909719 |          | 2.754855 |         | 0.243277 |
| 3d       | 0.45010 | 0.45254411 | 2.74215  | 2.730461 | 0.24398 | 0.246878 |
| 4s       | 1.24517 | 1.2195720  | 1.06774  | 1.098426 | 1.75334 | 1.683124 |
| 4p*      |         | 1.3555066  |          | 0.978190 |         | 2.105134 |
| 4p       | 1.38482 | 1.3847391  | 0.95141  | 0.953747 | 2.19585 | 2.197372 |
| 4d*      |         | 2.1751453  |          | 0.612351 |         | 5.781382 |
| 4d       | 2.13621 | 2.1949795  | 0.62119  | 0.606373 | 5.55422 | 5.886855 |
| 5s       | 4.07776 | 3.9790241  | 0.30767  | 0.316827 | 19.0470 | 18.15065 |

Table (6-2-b): Comparison between Hartree-Fock and Dirac-Fock mean values for Zr.

| HF/a.u.      | Relativistic shift /a.u. | Total energy/a.u. |
|--------------|--------------------------|-------------------|
| -3538.968663 | -54.40456948             | -3593.3732329     |
|              |                          |                   |

|              | Breit inte | eraction/a.u. | Total anarov/a u  |  |
|--------------|------------|---------------|-------------------|--|
| DHF/a.u.     | Magnetic   | retardation   | Total energy/a.u. |  |
| -3597.113789 | 2.27528260 | -0.22334626   | -3595.061853      |  |

Table (6-2-c): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for Zr.

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 873.3159525    | 900.1392435469  | 895.23           |
| 2s       | 127.9665877    | 134.4528922469  | 132.51           |
| 2p*      |                | 124.3014355370  | 122.43           |
| 2p       | 118.5311179    | 118.4120400492  | 116.66           |
| 3s       | 24.2091113     | 25.54368738440  | 24.62            |
| 3p*      |                | 21.49016949852  | 20.55            |
| 3p       | 20.3742918     | 20.42934235649  | 19.54            |
| 3d*      |                | 13.31983228320  | 12.5             |
| 3d       | 13.36344555    | 13.11044072465  | 12.30            |
| 4s       | 3.5873098      | 3.842502740962  | 3.17             |
| 4p*      |                | 2.520253271042  |                  |
| 4p       | 2.33008935     | 2.347288902157  | }1.07            |
| 4d*      |                | 0.3405483675449 |                  |
| 4d       | 0.3359993      | 0.3197920101766 | 0.306            |

## **6-3-** Palladium $_{46}Pd$

Table (6-3-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Pd*.

| aubaball | r(a.u.) |            | 1/r (    | 1/r (a.u.) |         | r**2 (a.u.) |  |
|----------|---------|------------|----------|------------|---------|-------------|--|
| subsnell | HF      | DHF        | HF       | DHF        | HF      | DHF         |  |
| ls       | 0.03310 | 0.03184288 | 45.48052 | 48.24487   | 0.00147 | 0.001370    |  |
| 2s       | 0.14355 | 0.13773109 | 10.35316 | 11.11257   | 0.02423 | 0.022430    |  |
| 2p*      |         | 0.11723214 |          | 11.05460   |         | 0.016882    |  |
| 2p       | 0.12298 | 0.12215664 | 10.32253 | 10.42200   | 0.01842 | 0.018204    |  |
| 3s       | 0.38930 | 0.37688010 | 3.68283  | 3.883676   | 0.17310 | 0.162560    |  |
| 3p*      |         | 0.36970714 |          | 3.779177   |         | 0.158880    |  |
| 3p       | 0.38231 | 0.38006786 | 3.58966  | 3.629061   | 0.16946 | 0.167713    |  |
| 3d*      |         | 0.35439535 |          | 3.447675   |         | 0.149635    |  |
| 3d       | 0.35614 | 0.35781413 | 3.42015  | 3.408186   | 0.15082 | 0.152388    |  |
| 4s       | 0.98596 | 0.95672639 | 1.37155  | 1.429692   | 1.10183 | 1.037855    |  |
| 4p*      |         | 1.0345489  |          | 1.306789   |         | 1.228897    |  |
| 4p       | 1.06857 | 1.0644817  | 1.25304  | 1.262114   | 1.31108 | 1.301720    |  |
| 4d*      |         | 1.5286007  |          | 0.896504   |         | 2.932442    |  |
| 4d       | 1.53306 | 1.5649343  | 0.89266  | 0.877628   | 2.95172 | 3.088464    |  |

Table (6-3-b): Comparison between Hartree-Fock and Dirac-Fock mean values for Pd.

| HF/a.u.      | Relativistic shift     | /a.u.       | Total energy/a.u. |
|--------------|------------------------|-------------|-------------------|
| -4937.921022 | -98.6531742            | 4           | -5036.57419711    |
|              |                        |             |                   |
|              | Breit interaction/a.u. |             | Total             |
| DIII7a.u.    | Magnetic               | retardation | energy/a.u.       |
| -5041.179824 | 3.68936474             | -0.37174935 | -5037.862209      |

Table (6-3-c): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for Pd.

**6-4-** Tin <sub>50</sub> Sn

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 1041.228093    | 1079.394674150  | 1073.53          |
| 2s       | 156.9822479    | 166.3260494435  | 164.14           |
| 2p*      |                | 154.8855614920  | 152.8            |
| 2p       | 146.493933     | 146.3720170634  | 144.44           |
| 3s       | 31.6036073     | 33.56634314677  | 32.5             |
| 3p*      |                | 28.87692561628  | 27.80            |
| 3p       | 27.21365225    | 27.27641298050  | 26.26            |
| 3d*      |                | 19.08751862976  | 18.13            |
| 3d       | 19.16798535    | 18.76168650354  | 17.82            |
| 4s       | 5.51704795     | 5.888774360434  | 5.01             |
| 4p*      |                | 4.251109059929  | ) 2 . DE         |
| 4p       | 3.9735609      | 3.960580408411  | }3.25            |
| 4d*      |                | 1.336228001524  |                  |
| 4d       | 1.37355275     | 1.294280184702  | }0.87            |
| 5s       | 0.47932165     | 0.5102032849392 |                  |
| 5p*      |                | 0.2575348850635 | 0.269            |
| 5p       | 0.24858345     | 0.2413649545043 |                  |

Table (6-4-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Sn*.

| auhahall | r(      | a.u.)      | 1/r (a.u.) |          | r**2 (a.u.) |          |
|----------|---------|------------|------------|----------|-------------|----------|
| subshell | HF      | DHF        | HF         | DHF      | HF          | DHF      |
| ls       | 0.03042 | 0.02904621 | 49.47479   | 53.09223 | 0.00124     | 0.001142 |
| 2s       | 0.13125 | 0.12491709 | 11.33067   | 12.33461 | 0.02024     | 0.018464 |
| 2p*      |         | 0.10590566 |            | 12.27712 |             | 0.013790 |
| 2p       | 0.11217 | 0.11123637 | 11.30644   | 11.43968 | 0.01530     | 0.015085 |
| 3s       | 0.35053 | 0.33728888 | 4.10401    | 4.374595 | 0.14025     | 0.130169 |
| 3p*      |         | 0.32872594 |            | 4.272539 |             | 0.012556 |
| 3p       | 0.34211 | 0.33955071 | 4.01598    | 4.070937 | 0.13557     | 0.133773 |
| 3d*      |         | 0.31149024 |            | 3.904087 |             | 0.011506 |
| 3d       | 0.31362 | 0.31498110 | 3.86321    | 3.851536 | 0.11638     | 0.117511 |
| 4s       | 0.85043 | 0.82201584 | 1.60224    | 1.682161 | 0.81647     | 0.763475 |
| 4p*      |         | 0.87111936 |            | 1.564521 |             | 0.866003 |
| 4p       | 0.90219 | 0.89857575 | 1.49130    | 1.504034 | 0.92806     | 0.921547 |
| 4d*      |         | 1.0811642  |            | 1.225215 |             | 1.381474 |
| 4d       | 1.08028 | 1.0957187  | 1.22157    | 1.207162 | 1.37671     | 1.419484 |
| 5s       | 2.58341 | 2.4799582  | 0.49102    | 0.516377 | 7.63161     | 7.042617 |
| 5p*      |         | 3.1762282  |            | 0.399572 |             | 11.73203 |
| 5p       | 3.28586 | 3.3059498  | 0.38344    | 0.382510 | 12.5269     | 12.71073 |

Table (6-4-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Sn*.

| HF/a.u.      | Relativistic shift     | /a.u.         | Total energy/a.u.  |  |  |
|--------------|------------------------|---------------|--------------------|--|--|
| -6022.914166 | -140.75083358          |               | -6163.66499962     |  |  |
|              |                        |               |                    |  |  |
| DHE/a u      | Breit inte             | eraction/a.u. | Total aparau/a u   |  |  |
| DHF/a.u.     | Magnetic               | retardation   | i otai energy/a.u. |  |  |
| -6171.862090 | 4.92727413 -0.50329172 |               | -6167.438108       |  |  |

Table (6-4-c): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Sn*.

## **6-5-** Cesium <sub>55</sub> Cs

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 1272.768824    | 1330.059813571  | 1323.0           |
| 2s       | 198.1437753    | 212.3960633624  | 210.0            |
| 2p*      |                | 199.2453587919  | 197              |
| 2p       | 186.3161698    | 186.2520882130  | 184.26           |
| 3s       | 42.6930285     | 45.78947928941  | 44.74            |
| 3p*      |                | 40.26461802883  | 39.15            |
| 3p       | 37.5959298     | 37.71052339219  | 36.67            |
| 3d*      |                | 28.12573610028  | 27.18            |
| 3d       | 28.226188      | 27.59139320075  | 26.67            |
| 4s       | 8.6954872      | 9.330613319766  | 8.48             |
| 4p*      |                | 7.262985612054  | 6.33             |
| 4p       | 6.7685309      | 6.737673932827  | 5.94             |
| 4d*      |                | 3.302461758338  | 2.89             |
| 4d       | 3.37953935     | 3.213745834889  | 2.81             |
| 5s       | 1.23160675     | 1.309148584373  | 0.83             |
| 5p*      |                | 0.7266858273581 | 0.48             |
| 5p       | 0.68347445     | 0.6593484481467 | 0.42             |
| бѕ       | 0.12366835     | 0.1282450820039 | 0.143            |

Table (6-5-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Cs*.

| subshell | r(a.u.) |           | 1/r (    | 1/r (a.u.) |         | r**2 (a.u.) |  |
|----------|---------|-----------|----------|------------|---------|-------------|--|
|          | HF      | DHF       | HF       | DHF        | HF      | DHF         |  |
| ls       | 0.02762 | 0.0261014 | 54.46797 | 59.408808  | 0.00102 | 0.0009246   |  |
| 2s       | 0.11853 | 0.1115467 | 12.55506 | 13.941277  | 0.01650 | 0.0147403   |  |
| 2p*      |         | 0.0941291 |          | 13.882531  |         | 0.0109109   |  |
| 2p       | 0.10103 | 0.0999758 | 12.53821 | 12.723509  | 0.01240 | 0.0127943   |  |
| 3s       | 0.31160 | 0.2972905 | 4.63353  | 5.0145036  | 0.11075 | 0.1011274   |  |
| 3p*      |         | 0.2877925 |          | 4.9149687  |         | 0.0962332   |  |
| 3p       | 0.30219 | 0.2992532 | 4.55191  | 4.6314064  | 0.10568 | 0.1038562   |  |
| 3d*      |         | 0.2705271 |          | 4.4768768  |         | 0.0864328   |  |
| 3d       | 0.27310 | 0.2741620 | 4.41455  | 4.4039434  | 0.08784 | 0.0886293   |  |
| 4s       | 0.72279 | 0.6947239 | 1.90341  | 2.0187276  | 0.58818 | 0.5440048   |  |
| 4p*      |         | 0.7215985 |          | 1.9105926  |         | 0.5916457   |  |
| 4p       | 0.75114 | 0.7471451 | 1.80409  | 1.8243695  | 0.64020 | 0.6341487   |  |
| 4d*      |         | 0.8306059 |          | 1.5876986  |         | 0.8015026   |  |
| 4d       | 0.83156 | 0.8408486 | 1.57837  | 1.5645559  | 0.80194 | 0.8212287   |  |
| 5s       | 1.83938 | 1.7700107 | 0.69941  | 0.7352554  | 3.80549 | 3.5293968   |  |
| 5p*      |         | 2.0289237 |          | 0.6369828  |         | 4.6849338   |  |
| 5p       | 2.11120 | 2.1192349 | 0.60628  | 0.6063363  | 5.06661 | 5.1155314   |  |
| бз       | 6.30590 | 6.0842662 | 0.19217  | 0.2005899  | 44.9894 | 41.979965   |  |

Table (6-5-b): Comparison between Hartree-Fock and Dirac-Fock mean values for Cs.

| HF/a.u.       | Relativistic shift /a.u. |               | Total energy/a.u.  |  |  |
|---------------|--------------------------|---------------|--------------------|--|--|
| -7553.9336560 | -211.26992752            |               | -7765.20358361     |  |  |
|               |                          |               |                    |  |  |
|               | Breit inte               | eraction/a.u. | Total anarou/a u   |  |  |
| DHF/a.u.      | Magnetic                 | retardation   | i otai energy/a.u. |  |  |
| -7780.914981  | 6.8659267 -0.71111793    |               | -7774.760172       |  |  |

Table (6-5-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Cs*.

| subshell | HF energy/a.u. | DHF energy/a.u. | Exp. energy/a.u. |
|----------|----------------|-----------------|------------------|
| ls       | 1322.093397    | 1383.977150772  | 1377.0           |
| 2s       | 207.1544644    | 222.5947350564  | 220.4            |
| 2p*      |                | 209.0873996004  | 206.7            |
| 2p       | 195.0559587    | 195.0091354104  | 193              |
| 3s       | 45.28085235    | 48.65515494626  | 47.5             |
| 3p*      |                | 42.95638562344  | 41.8             |
| 3p       | 40.0397901     | 40.16696796652  | 39.0             |
| 3d*      |                | 30.29759356108  | 29.26            |
| 3d       | 30.4023086     | 29.71163735695  | 28.7             |
| 4s       | 9.5564001      | 10.25804413848  | 9.3              |
| 4p*      |                | 8.099057200357  | 7.05             |
| 4p       | 7.54931795     | 7.513114694635  | 6.6              |
| 4d*      |                | 3.913477420946  | 3.4              |
| 4d       | 4.0014955      | 3.812526222378  | 3.3              |
| 5s       | 1.5127214      | 1.603661296667  | 1.43             |
| 5p*      |                | 0.9563926188673 | 0.61             |
| 5p       | 0.9038624      | 0.8726359864140 | 0.536            |
| бв       | 0.1575276      | 0.1631832615725 | 0.191            |

**6-6- Barium** <sub>56</sub> Ba

Table (6-6-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Ba*.

| subshell | r(      | a.u.)    | 1/r (    | a.u.)    | r**2 (a.u.) |          |
|----------|---------|----------|----------|----------|-------------|----------|
|          | HF      | DHF      | HF       | DHF      | HF          | DHF      |
| ls       | 0.02713 | 0.025572 | 55.46669 | 60.71073 | 0.00098     | 0.000888 |
| 2s       | 0.11627 | 0.109158 | 12.80034 | 14.27456 | 0.01587     | 0.014119 |
| 2p*      |         | 0.092030 |          | 14.21520 |             | 0.010433 |
| 2p       | 0.09907 | 0.097981 | 12.78481 | 12.98194 | 0.01192     | 0.011697 |
| 3s       | 0.30480 | 0.290277 | 4.73995  | 5.146513 | 0.10596     | 0.096414 |
| 3p*      |         | 0.280674 |          | 5.047176 |             | 0.091534 |
| 3p       | 0.29528 | 0.292268 | 4.65942  | 4.744569 | 0.10088     | 0.099058 |
| 3d*      |         | 0.263571 |          | 4.592031 |             | 0.511120 |
| 3d       | 0.26623 | 0.267239 | 4.52471  | 4.514436 | 0.08341     | 0.084147 |
| 4s       | 0.70159 | 0.673497 | 1.96457  | 2.088308 | 0.55397     | 0.511120 |
| 4p*      |         | 0.697544 |          | 1.981147 |             | 0.552587 |
| 4p       | 0.72696 | 0.722873 | 1.86673  | 1.888831 | 0.59929     | 0.593292 |
| 4d*      |         | 7.950169 |          | 1.658385 |             | 0.732729 |
| 4d       | 0.79633 | 0.804862 | 1.64750  | 1.633855 | 0.73389     | 0.750789 |
| 5s       | 1.72119 | 1.656664 | 0.75008  | 0.788835 | 3.31905     | 3.079802 |
| 5p*      |         | 1.870453 |          | 0.693735 |             | 3.961754 |
| 5p       | 1.94459 | 1.950565 | 0.66037  | 0.661079 | 4.27611     | 4.311018 |
| бѕ       | 5.25681 | 5.083188 | 0.23364  | 0.243395 | 31.2707     | 29.30057 |

Table (6-6-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Ba*..

| HF/a.u.        | Relativistic shift     | Г           | otal energy/a.u.  |  |  |
|----------------|------------------------|-------------|-------------------|--|--|
| -7883.54382577 | -228.13405946          | -           | 8111.6778852      |  |  |
|                |                        |             |                   |  |  |
| DHF/a.u.       | Breit interaction      |             | Total energy/a.u. |  |  |
|                | magnetic               | Retardation |                   |  |  |
| -8135.9844756  | 7.3108792015 -0.758969 |             | 4 -8129.432565    |  |  |

Table (6-6-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Ba*.

## **6-7-** *Lutetium* <sub>71</sub>*Lu*

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| ls       | 2167.731423    | 2342.044741753  | 2327.70                  |
| 2s       | 357.5722459    | 403.4314610494  | 399.64                   |
| 2p*      |                | 384.0666754525  | 380.46                   |
| 2p       | 341.4900667    | 342.9008597052  | 339.85                   |
| 3s       | 82.26871065    | 93.54236622599  | 91.58                    |
| 3p*      |                | 85.02725702380  | 83.21                    |
| 3p       | 74.86027695    | 76.09871579864  | 74.40                    |
| 3d*      |                | 61.88863915513  | 60.27                    |
| 3d       | 61.23635795    | 59.95946868506  | 58.40                    |
| 4s       | 16.9378601     | 19.69989598863  | 18.61                    |
| 4p*      |                | 16.19344719935  | 15.07                    |
| 4p       | 13.84504355    | 14.14372376181  | 13.21                    |
| 4d*      |                | 8.380158584436  | 7.53                     |
| 4d       | 8.26487015     | 7.997002286713  | 7.17                     |
| 4f*      |                | 0.8551588934254 |                          |
| 4f       | 1.0768588      | 0.7906609684398 | }0.25                    |
| 5s       | 2.31704075     | 2.702522890592  | 2.07                     |
| 5p*      |                | 1.62572187542   | ]1 02                    |
| 5p       | 1.37584735     | 1.357794295550  | }1.03                    |
| 5d*      |                | 0.1912606431807 | 0.199                    |
| 5d       | 0.24335145     | 0.1849517448900 |                          |
| бs       | 0.1988556      | 0.2225540696485 |                          |

Table (6-7-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Lu*.

| subshall |         | r(a.u.)     |          | (a.u.)    | r**2 (a.u.) |               |
|----------|---------|-------------|----------|-----------|-------------|---------------|
| subshell | HF      | DHF         | HF       | DHF       | HF          | DHF           |
| ls       | 0.02134 | 0.019312479 | 70.45377 | 82.249182 | 0.00061     | 0.00051178008 |
| 2s       | 0.09029 | 0.081165323 | 16.50701 | 19.909235 | 0.00956     | 0.0078487136E |
| 2p*      |         | 0.067484987 |          | 19.825137 |             | 0.0056551088  |
| 2p       | 0.07653 | 0.075057083 | 16.50609 | 16.948865 | 0.00710     | 0.0068593612  |
| 3s       | 0.22980 | 0.21156628  | 6.33417  | 7.3147248 | 0.06020     | 0.051314755   |
| 3p*      |         | 2.0179759   |          | 7.2139881 |             | 4.7440601     |
| 3p       | 0.22008 | 0.21580100  | 6.26857  | 6.4789729 | 0.05601     | 5.4056037     |
| 3d*      |         | 0.18986645  |          | 6.3498059 |             | 0042374101    |
| 3d       | 0.19390 | 0.19420574  | 6.16924  | 6.1728644 | 0.04399     | 0.044202480   |
| 4s       | 0.51624 | 0.47845602  | 2.70048  | 3.0343242 | 0.30035     | 0.25851157    |
| 4p*      |         | 0.48658497  |          | 2.9199403 |             | 0.26960649    |
| 4p       | 0.52639 | 0.51742620  | 2.60171  | 2.6778857 | 0.31476     | 0.30469106    |

| 4d* |         | 0.54258028 |            | 2.4499002  |          | 0.34198136 |
|-----|---------|------------|------------|------------|----------|------------|
| 4d  | 0.55138 | 0.55401470 | 2.38944    | 2.3875109  | 0.35242  | 0.35640081 |
| 4f* |         | 0.69420829 |            | 1.8658052  |          | 0.62264797 |
| 4f  | 0.67458 | 0.70807839 | 1.90014    | 1.8347633  | 0.58047  | 0.65060022 |
| 5s  | 1.29835 | 1.1922362  | 0.99640    | 1.1122093  | 1.89481  | 1.6008370  |
| 5p* |         | 1.3336889  | 0.89816557 | 0.98500352 |          | 2.0245651  |
| 5p  | 1.46259 | 1.4435760  | 0.87912    | 0.89816557 | 2.43174  | 2.3754966  |
| 5d* |         | 2.6948450  |            | 0.49603326 |          | 9.0469330  |
| 5d  | 2.48531 | 2.7796268  | 0.52663    | 0.47909852 | 7.52712  | 9.6085665  |
| бs  | 4.25876 | 3.9017398  | 0.28969    | 0.31988955 | 20.71043 | 17.431553  |

Table (6-7-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Lu*.

| HF/a.u.         | Relativistic shift/a.u. |             | Total energy/a.u.  |  |
|-----------------|-------------------------|-------------|--------------------|--|
| -13851.80800258 | -619.69839062           | 2           | -14471.50639321    |  |
|                 |                         |             |                    |  |
|                 | Breit inter             | action/a.u. | Total aparau/a u   |  |
| EAL DHF/a.u.    | Magnetic                | retardation | 1 otar energy/a.u. |  |
| -14574.3353     | 16.625395669            | -1.75788321 | -14559.46779       |  |

Table (6-7-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Lu*.

## **6-8- Iridium** <sub>77</sub> Ir

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| 1s       | 2566.492836    | 2816.769717273  | 2798.20                  |
| 2s       | 413.476324     | 497.9201070751  | 493.32                   |
| 2p*      |                | 475.7631479757  | 471.47                   |
| 2p       | 413.476324     | 415.8273157794  | 412.32                   |
| 3s       | 102.2296445    | 118.8670297820  | 116.68                   |
| 3p*      |                | 109.0356550315  | 107.0                    |
| 3p       | 93.9029701     | 95.72291221036  | 93.77                    |
| 3d*      |                | 79.60507469305  | 77.80                    |
| 3d       | 78.57743315    | 76.75682313619  | 75.0                     |
| 4s       | 22.4970606     | 26.65494750198  | 25.37                    |
| 4p*      |                | 22.47740708912  | 21.21                    |
| 4p       | 18.89059335    | 19.29180916935  | 18.17                    |
| 4d*      |                | 12.46064131309  | 11.44                    |
| 4d       | 12.31636715    | 11.86007812200  | 10.84                    |
| 4f*      |                | 3.103954818478  | 2.33                     |
| 4f       | 3.52924545     | 2.982581636810  | 2.22                     |
| 5s       | 3.55091525     | 4.255617370157  | 3.04                     |
| 5p*      |                | 2.851258280234  | 1.67                     |
| 5p       | 2.3440547      | 2.329384046235  | 1.27                     |
| 5d*      |                | 0.4960532284069 |                          |
| 5d       | 0.55622765     | 0.4492513531464 | 0.33                     |
| 6s       | 0.2465845      | 0.2995422282852 |                          |

Table (6-8-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Ir*.

| and also 11 |         | r(a.u.)     | 1/       | r (a.u.)   | r        | **2 (a.u.)    |
|-------------|---------|-------------|----------|------------|----------|---------------|
| subshell    | HF      | DHF         | HF       | DHF        | HF       | DHF           |
| ls          | 0.01967 | 0.017429738 | 76.44936 | 92.259207  | 0.00052  | 0.00041916051 |
| 2s          | 0.08288 | 0.072897930 | 17.99019 | 22.590037  | 0.00805  | 0.0063505819  |
| 2p*         |         | 0.060247054 |          | 22.487266  |          | 0.0045283876  |
| 2p          | 0.07015 | 0.068518345 | 17.99437 | 18.576810  | 0.00596  | 0.0057171979  |
| 3s          | 0.20934 | 0.18949192  | 6.96719  | 8.3049982  | 0.04995  | 0.041212949   |
| 3p*         |         | 0.17999796  |          | 8.1998192  |          | 0.037802924   |
| 3p          | 0.19987 | 0.19512633  | 6.90659  | 7.1892819  | 0.04619  | 0.044221819   |
| 3d*         |         | 0.17058506  |          | 7.0659465  |          | 0.034181991   |
| 3d          | 0.17511 | 0.17522768  | 0.19987  | 6.8318126  | 0.03582  | 0.035939337   |
| 4s          | 0.46267 | 0.42320190  | 3.02540  | 3.4806914  | 0.24101  | 0.20220510    |
| 4p*         |         | 0.42735371  |          | 3.3666553  |          | 0.20785373    |
| 4p          | 0.46839 | 0.45925150  | 2.93211  | 3.0331045  | 0.24885  | 0.23979800    |
| 4d*         |         | 0.47164604  |          | 2.8199513  |          | 0.25743278    |
| 4d          | 0.48027 | 0.48268898  | 2.73895  | 2.7381929  | 0.26620  | 0.26941527    |
| 4f*         |         | 0.52674481  |          | 2.3408129  |          | 0.33783880    |
| 4f          | 0.51719 | 0.53402559  | 2.36955  | 2.3083360  | 0.32375  | 0.34735517    |
| 5s          | 1.08800 | 0.99162982  | 1.20318  | 1.3610277  | 1.32628  |               |
| 5p*         |         | 1.0794631   |          | 1.2371984  |          | 1.3190533     |
| 5p          | 1.19054 | 1.1743397   | 1.09212  | 1.1176722  | 1.60241  | 1.5629590     |
| 5d*         |         | 1.6369936   |          | 0.80313031 |          | 3.1877203     |
| 5d          | 0.80152 | 1.7081034   | 0.80152  | 0.76853862 | 3.11470  | 3.4823189     |
| 6s          | 3.52372 | 3.0784249   | 0.35438  | 0.41361825 | 14.29196 | 10.923699     |

Table (6-8-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Ir*.

| HF/a.u.         | Relativistic shift/a.u. | Total energy/a.u. |
|-----------------|-------------------------|-------------------|
| -16806.03919934 | -872.03448532           | -17678.07368467   |
|                 |                         |                   |

|              | Breit inter | raction/a.u. | Total anargy/2 1  |  |
|--------------|-------------|--------------|-------------------|--|
| DHF/a.u.     | Magnetic    | retardation  | Total energy/a.u. |  |
| -17850.22677 | 22.13122787 | -2.34607469  | -17830.44162      |  |

Table (6-8-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Ir*.

## **6-9-** *Mercury* <sub>80</sub> *Hg*

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| ls       | 2778.80244     | 3076.157554210  | 3055.23                  |
| 2s       | 470.7350853    | 550.5410728539  | 545.56                   |
| 2p*      |                | 526.8622564809  | 522.37                   |
| 2p       | 452.1803406    | 455.1452287241  | 451.61                   |
| 3s       | 113.1366448    | 133.1796109750  | 131.0                    |
| 3p*      |                | 122.6406246691  | 120.53                   |
| 3p       | 104.3408156    | 106.5418018949  | 104.67                   |
| 3d*      |                | 89.43372040739  | 87.68                    |
| 3d       | 88.1454023     | 86.01719722699  | 84.37                    |
| 4s       | 25.57341055    | 30.66500184950  | 29.42                    |
| 4p*      |                | 26.12428675636  | 25.0                     |
| 4p       | 21.698963      | 22.18751205796  | 21.0                     |
| 4d*      |                | 14.79580445872  | 14.0                     |
| 4d       | 14.60965375    | 14.05168540175  | 13.27                    |
| 4f*      |                | 4.472273593914  | 3.75                     |

| 4f  | 5.01242675 | 4.311084618092  | 3.3   |
|-----|------------|-----------------|-------|
| 5s  | 4.1820087  | 5.106219616269  | 4.47  |
| 5p* |            | 3.537751923932  | 3.0   |
| 5p  | 2.8508716  | 2.841583097980  | 2.16  |
| 5d* |            | 0.6497963810141 |       |
| 5d  | 0.7141968  | 0.5743919981951 | 30.25 |
| бѕ  | 0.26104675 | 0.3283017581484 | 0.383 |

Table (6-9-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Hg*.

| auhahall | r (a    | ı.u.)       | 1/r (a   | ı.u.)      | r**2 (a  | .u.)          |
|----------|---------|-------------|----------|------------|----------|---------------|
| subshell | HF      | DHF         | HF       | DHF        | HF       | DHF           |
| ls       | 0.01892 | 0.016579436 | 79.44732 | 97.671314  | 0.00048  | 0.00038043900 |
| 2s       | 0.07961 | 0.069188789 | 18.73183 | 24.055844  | 0.00743  | 0.0057307117  |
| 2p*      |         | 0.056998215 |          | 23.941119  |          | 0.0040642199  |
| 2p       | 0.06734 | 0.065632647 | 18.73846 | 19.400887  | 0.00549  | 0.0052465742  |
| 3s       | 0.20041 | 0.17973450  | 7.28399  | 8.8372200  | 0.04577  | 0.037101758   |
| 3p*      |         | 0.17040042  |          | 8.7288062  |          | 0.033908265   |
| 3p       | 0.19109 | 0.18611712  | 7.22576  | 7.5500790  | 0.04221  | 0.040245478   |
| 3d*      |         | 0.16225202  |          | 7.4291290  |          | 0.030916540   |
| 3d       | 0.16701 | 0.16704625  | 7.14355  | 7.1620827  | 0.03256  | 0.032642610   |
| 4s       | 0.43929 | 0.39893263  | 3.19313  | 3.7224000  | 0.21719  | 0.17967175    |
| 4p*      |         | 0.40155360  |          | 3.6084460  |          | 0.18349285    |
| 4p       | 0.44332 | 0.43398234  | 3.10267  | 3.2189562  | 0.22281  | 0.21406808    |
| 4d*      |         | 0.44158401  |          | 3.0138438  |          | 0.22532650    |
| 4d       | 0.45034 | 0.45248856  | 2.91956  | 2.9207164  | 0.23364  | 0.23636495    |
| 4f*      |         | 0.47673673  |          | 2.5570488  |          | 0.27331899    |
| 4f       | 0.46920 | 0.48316600  | 2.58352  | 2.5212134  | 0.26336  | 0.28070490    |
| 5s       | 1.01020 | 0.91491233  | 1.30258  | 1.4884478  | 1.14287  | 0.93907345    |
| 5p*      |         | 0.98712089  |          | 1.3642503  |          | 1.1018495     |
| 5p       | 1.09541 | 1.0791773   | 1.19287  | 1.2233091  | 1.35517  | 1.3185623     |
| 5d*      |         | 1.4312762   |          | 0.92005878 |          | 2.4196019     |
| 5d       | 1.43269 | 1.4988644   | 0.91032  | 0.87704474 | 2.40982  | 2.6649264     |
| 6s       | 3.32841 | 2.8419295   | 0.37607  | 4,5091349  | 12.79929 | 9.3432495     |

Table (6-9-b): Comparison between Hartree-Fock and Dirac-Fock mean values for Hg.

| HF/a.u.         | F/a.u. Relativistic shift/a.u. Total energy/a.u. |             | Total energy/a.u.  |
|-----------------|--------------------------------------------------|-------------|--------------------|
| -18408.99149576 | 76 -1024.21656420                                |             | -19433.20805995    |
|                 |                                                  |             |                    |
|                 | Breit interaction/a.u.                           |             | Total anargu/a u   |
| DHF/a.u.        | Magnetic                                         | retardation | i otai energy/a.u. |
| -19653.65019    | 25.353410795                                     | -2.68849576 | 19630.98458        |

Table (6-9-c) ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for Hg.

## **6-10- Thallium** <sub>81</sub>*Tl*

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| ls       | 2851.547193    | 3166.308184345  | 3144.5                   |
| 2s       | 484.5601593    | 569.1669046273  | 564.21                   |
| 2p*      |                | 544.9589610768  | 540.36                   |
| 2p       | 465.7267086    | 468.9044589310  | 465.35                   |
| 3s       | 117.1504551    | 138.4376961420  | 136.18                   |
| 3p*      |                | 127.6546623131  | 125.57                   |
| 3p       | 108.1967842    | 110.5244472696  | 108.70                   |
| 3d*      |                | 93.08040877486  | 91.36                    |
| 3d       | 91.7084766     | 89.45676913337  | 87.84                    |
| 4s       | 26.883433865   | 32.31139981174  | 31.08                    |
| 4p*      |                | 27.64462343548  | 26.51                    |
| 4p       | 22.91769375    | 23.42631013338  | 22.38                    |
| 4d*      |                | 15.84255936561  | 15.0                     |
| 4d       | 15.6529619     | 15.04553331168  | 14.20                    |
| 4f*      |                | 5.190097303497  | 4.51                     |
| 4f       | 5.7852471      | 5.014096150090  | 4.35                     |
| 5s       | 4.6187855      | 5.622767123731  | 5.01                     |
| 5p*      |                | 3.985032947972  | 3.66                     |
| 5p       | 3.2313775      | 3.216939791481  | 2.77                     |
| 5d*      |                | 0.8942155033847 | 0.57                     |
| 5d       | 0.9682785      | 0.8059087053937 | 0.5                      |
| бз       | 0.36111135     | 0.4495846047062 |                          |
| бр*      |                | 0.2112787916735 | 0.22                     |
| бр       | 0.19239735     | 0.1764633953805 |                          |

Table (6-10-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Tl* 

| auhahall | r(a. u. | .)          | 1/r (a.  | .u.)       | r**2 (a. | u.)           |
|----------|---------|-------------|----------|------------|----------|---------------|
| subshell | HF      | DHF         | HF       | DHF        | HF       | DHF           |
| ls       | 0.01869 | 0.016307686 | 80.44664 | 99.544738  | 0.00047  | 0.00036847149 |
| 2s       | 0.07858 | 0.068006602 | 18.97909 | 24.565949  | 0.00724  | 0.0055399369  |
| 2p*      |         | 0.055962349 |          | 24.446750  |          | 0.0039216248  |
| 2p       | 0.06646 | 0.064719990 | 18.98651 | 19.677184  | 0.00535  | 0.0051019848  |
| 3s       | 0.19759 | 0.17664201  | 7.38978  | 9.0210831  | 0.04449  | 0.035844090   |
| 3p*      |         | 0.16736324  |          | 8.9113966  |          | 0.032720167   |
| 3p       | 0.18833 | 0.18328002  | 7.33231  | 7.6713562  | 0.04100  | 0.039032159   |
| 3d*      |         | 0.15963844  |          | 7.5510169  |          | 0.029926565   |
| 3d       | 0.16448 | 0.16448286  | 7.25179  | 7.2723345  | 0.03157  | 0.031642624   |
| 4s       | 0.43194 | 0.39128757  | 3.24972  | 3.8058975  | 0.20996  | 0.17285319    |
| 4p*      |         | 0.39347005  |          | 3.6917550  |          | 0.17617847    |
| 4p       | 0.43549 | 0.42608730  | 3.16008  | 3.2818215  | 0.21497  | 0.20633416    |
| 4d*      |         | 0.43240183  |          | 3.0787293  |          | 0.21597364    |
| 4d       | 0.44121 | 0.44326555  | 2.97969  | 2.9816215  | 0.22416  | 0.22673201    |
| 4f*      |         | 0.46236886  |          | 2.6279989  |          | 0.25615651    |
| 4f       | 0.45539 | 0.46861498  | 2.65366  | 2.5908051  | 0.24723  | 0.26306176    |
| 5s       | 0.98219 | 0.88901477  | 1.34196  | 1.5364901  | 1.07922  | 0.88593861    |
| 5p*      |         | 0.95503300  |          | 1.4138987  |          | 1.0298521     |
| 5p       | 1.05962 | 1.0442453   | 1.23476  | 1.2662367  | 1.26566  | 1.2322683     |
| 5d*      |         | 1.3388539   |          | 0.97981021 |          | 2.0941789     |
| 5d       | 1.34120 | 1.3941057   | 0.96892  | 0.93798396 | 2.09050  | 2.2759320     |
| бs       | 2.96691 | 2.5778926   | 0.42173  | 0.49747485 | 10.07303 | 7.6217582     |
| бр*      |         | 3.5169952   |          | 0.36102694 |          | 14.476469     |
| бр       | 3.92625 | 4.0131578   | 0.31623  | 0.31299260 | 17.87610 | 18.831657     |

Table (6-10-b) Comparison between Hartree-Fock and Dirac-Fock mean values for *Tl*.

| HF/a.u.         | Relativistic shift/a.u. |             | Total energy/a.u.  |
|-----------------|-------------------------|-------------|--------------------|
| -18961.82482530 | -1079.2678211           | 12          | -20041.09264642    |
|                 |                         |             |                    |
|                 | Breit inter             | action/a.u. | Total aparau/a u   |
| DHF/a.u.        | Magnetic                | retardation | i otar energy/a.u. |
| -20280.14899    | 26.504299489            | -2.81043639 | -20256.45513       |

Table (6-10-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Tl*.

## 6-11- Bismuth 83 Bi

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| ls       | 3000.163695    | 3352.039012195  | 3328.15                  |
| 2s       | 512.8525685    | 607.7970736180  | 602.48                   |
| 2p*      |                | 582.4967654221  | 577.61                   |
| 2p       | 493.4598305    | 497.0931657494  | 493.33                   |
| 3s       | 125.415705     | 149.3877218463  | 147.0                    |
| 3p*      |                | 138.1044173532  | 135.89                   |
| 3p       | 116.1448459    | 118.7419931058  | 116.80                   |
| 3d*      |                | 100.6180725296  | 98.80                    |
| 3d       | 99.06714215    | 96.55142406126  | 94.83                    |
| 4s       | 29.59819615    | 35.75784275696  | 34.50                    |
| 4p*      |                | 30.83293021256  | 29.60                    |
| 4p       | 25.4483815     | 25.99901421086  | 25.0                     |
| 4d*      |                | 18.02529421073  | 17.04                    |
| 4d       | 17.828882      | 17.11319487489  | 16.17                    |
| 4f*      |                | 6.703887589064  | 6.0                      |
| 4f       | 7.41940175     | 6.495227183120  | 5.78                     |
| 5s       | 5.50820315     | 6.69118530790   | 5.85                     |
| 5p*      |                | 4.909504871763  | 4.30                     |
| 5p       | 4.00503835     | 3.976443483196  | 3.4                      |
| 5d*      |                | 1.389084564932  | 1.0                      |
| 5d       | 1.48743145     | 1.270617536207  | 0.89                     |
| бз       | 0.55816945     | 0.6868477023406 |                          |
| бр*      |                | 0.3384212953894 |                          |
| 6p       | 0.28618835     | 0.2610827027547 | 0.26                     |

Table (6-11-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Bi*.

| aubaball | r(a.u)  |             | 1/r (a.u.) |           | r**2 (a.u.) |               |
|----------|---------|-------------|------------|-----------|-------------|---------------|
| subshell | HF      | DHF         | HF         | DHF       | HF          | DHF           |
| ls       | 0.01823 | 0.015780292 | 82.44526   | 103.40543 | 0.00044     | 0.00034580866 |
| 2s       | 0.07660 | 0.065716921 | 19.47367   | 25.621493 | 0.00688     | 0.0051797704  |
| 2p*      |         | 0.053955294 |            | 25.492565 |             | 0.0036527607  |
| 2p       | 0.06475 | 0.062962804 | 19.48264   | 20.232288 | 0.00507     | 0.0048293534  |
| 35       | 0.19219 | 0.17067767  | 7.60157    | 9.3992799 | 0.04209     | 0.033480077   |
| 3p*      |         | 0.16151089  |            | 9.2868077 |             | 0.030491004   |
| 3p       | 0.18303 | 0.17783421  | 7.54562    | 7.9154819 | 0.03872     | 0.036755386   |
| 3d*      |         | 0.15463411  |            | 7.7961567 |             | 0.028076556   |
| 3d       | 0.15963 | 0.15957911  | 7.46834    | 7.4931312 | 0.02973     | 0.029773422   |
| 4s       | 0.41790 | 0.37662661  | 3.36364    | 3.9773019 | 0.19649     | 0.16015021    |
| 4p*      |         | 0.37800319  |            | 3.8627392 |             | 0.16260405    |
| 4p       | 0.42055 | 0.41101239  | 3.27571    | 3.4089561 | 0.20042     | 0.019196790   |

| 4d* |         | 0.41504373 |         | 3.2095221  |          | 0.19885233 |
|-----|---------|------------|---------|------------|----------|------------|
| 4d  | 0.42397 | 0.42584118 | 3.10040 | 3.1040405  | 0.20681  | 0.20909878 |
| 4f* |         | 0.43646732 |         | 2.7683686  |          | 0.22683600 |
| 4f  | 0.43042 | 0.44241489 | 2.79236 | 2.7282743  | 0.21956  | 0.23295962 |
| 5s  | 0.93008 | 0.84039179 | 1.42221 | 1.6358198  | 0.96610  | 0.79055807 |
| 5p* |         | 0.89564729 |         | 1.5166224  |          | 0.90361388 |
| 5p  | 0.99444 | 0.98011630 | 1.31982 | 1.3541794  | 1.11153  | 1.0824889  |
| 5d* |         | 1.2012479  |         | 1.0904069  |          | 1.6655843  |
| 5d  | 1.20462 | 1.2439741  | 1.07702 | 1.0483735  | 1.66728  | 1.7877964  |
| 6s  | 2.53935 | 2.2417493  | 0.49430 | 0.57481123 | 7.30706  | 5.7125770  |
| бр* |         | 2.7802116  |         | 0.45898240 |          | 8.9073112  |
| бр  | 3.13655 | 3.1865733  | 0.39851 | 0.39637608 | 11.29532 | 11.742169  |

Table (6-11-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Bi*.

| HF/a.u.         | Relativistic shift/a.u. | Total energy/a.u. |
|-----------------|-------------------------|-------------------|
| -20095.53020854 | -1196.13921144          | -21291.66941998   |

|              | Breit inter  | Tetel energy/a er |                    |
|--------------|--------------|-------------------|--------------------|
| DHF/a.u.     | Magnetic     | retardation       | i otai energy/a.u. |
| -21572.23210 | 28.926792665 | -3.06642773       | -21546.37174       |

Table (6-11-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for *Bi*.

## 6-12- Radon <sub>86</sub> Rn

| subshell | HF energy/a.u. | DHF energy/a.u. | Experimental energy/a.u. |
|----------|----------------|-----------------|--------------------------|
| ls       | 3230.312867    | 3644.805562231  | 3617.8                   |
| 2s       | 556.9131415    | 669.3866358768  | 663.56                   |
| 2p*      |                | 642.3552965030  | 637.4                    |
| 2p       | 536.6769975    | 541.0812900559  | 537.47                   |
| 3s       | 138.421886     | 166.9674992004  | 164.78                   |
| 3p*      |                | 154.9011522852  | 153                      |
| 3p       | 128.6715766    | 131.7246145612  | 130.08                   |
| 3d*      |                | 112.5611310987  | 111.1                    |
| 3d       | 110.7013669    | 107.7534919633  | 106.34                   |
| 4s       | 33.9207527     | 41.34873761635  | 40.33                    |
| 4p*      |                | 36.02085746636  | 34.17                    |
| 4p       | 29.49118815    | 30.11864807260  | 28.25                    |
| 4d*      |                | 21.54639343934  | 21.0                     |
| 4d       | 21.33131915    | 20.43710056305  |                          |
| 4f*      |                | 9.192674466125  |                          |
| 4f       | 10.10763175    | 8.926994059932  |                          |
| 5s       | 6.90581565     | 8.416808159130  |                          |
| 5p*      |                | 6.409030793993  |                          |
| 5p       | 5.2252085      | 5.175233686579  |                          |
| 5d*      |                | 2.189222179225  |                          |
| 5d       | 2.32631655     | 2.016139908905  |                          |
| бз       | 0.87399265     | 1.072703722240  |                          |
| бр*      |                | 0.5403444673918 |                          |
| бр       | 0.4280064      | 0.3838897263296 | 0.4                      |

Table (6-12-a): Comparison between Hartree-Fock and Dirac-Fock subshell energies compared with corresponding experimental values for *Rn*.

| subshall |         | r(a.u.)     | 1/r (a.u.) |            | r**2 (a.u.) |               |
|----------|---------|-------------|------------|------------|-------------|---------------|
| subsnell | HF      | DHF         | HF         | DHF        | HF          | DHF           |
| ls       | 0.01759 | 0.015026252 | 85.44322   | 109.50906  | 0.00041     | 0.00031469660 |
| 2s       | 0.07380 | 0.062454250 | 20.21571   | 27.302050  | 0.00638     | 0.0046877961  |
| 2p*      |         | 0.051093205 |            | 27.156313  |             | 0.0032862715  |
| 2p       | 0.06235 | 0.060484749 | 20.22695   | 21.071434  | 0.00470     | 0.0044577436  |
| 3s       | 0.18460 | 0.16223740  | 7.91979    | 9.9952145  | 0.03883     | 0.030273340   |
| 3p*      |         | 0.15324119  |            | 9.8778612  |             | 0.027476178   |
| 3p       | 0.17561 | 0.17019172  | 7.86610    | 8.2857118  | 0.03564     | 0.033676025   |
| 3d*      |         | 0.14763762  |            | 8.1674259  |             | 0.025590340   |
| 3d       | 0.15286 | 0.15273391  | 7.79337    | 7.8251083  | 0.02724     | 0.027260279   |
| 4s       | 0.39834 | 0.35609165  | 3.53610    | 4.2460235  | 0.17848     | 0.14318108    |
| 4p*      |         | 0.35642394  |            | 4.1306142  |             | 0.14458692    |
| 4p       | 0.39981 | 0.390063620 | 3.45080    | 3.6029106  | 0.18107     | 0.17287663    |
| 4d*      |         | 0.39127898  |            | 3.4081284  |             | 0.17659336    |
| 4d       | 0.40040 | 0.40201012  | 3.28236    | 3.2890205  | 0.18425     | 0.18617444    |
| 4f*      |         | 0.40332097  |            | 2.9757391  |             | 0.19226692    |
| 4f       | 0.39837 | 0.40895543  | 2.99705    | 2.9307994  | 0.18675     | 0.19754451    |
| 5s       | 0.86160 | 0.77550469  | 1.54390    | 1.7908823  | 0.82768     | 0.67220009    |
| 5p*      |         | 0.81802755  |            | 1.6767969  |             | 0.75190299    |
| 5p       | 0.91088 | 0.89731915  | 1.44839    | 1.4884392  | 0.92986     | 0.90465379    |
| 5d*      |         | 1.0562860   |            | 1.2435927  |             | 1.2765914     |
| 5d       | 1.06049 | 1.0901174   | 1.22608    | 1.1987798  | 1.28138     | 1.3599057     |
| 6s       | 2.15662 | 1.9195492   | 0.58551    | 0.67677525 | 5.23267     | 4.1600068     |
| бр*      |         | 2.2415261   |            | 0.57500865 |             | 5.7309278     |
| бр       | 2.54338 | 2.5826272   | 0.49527    | 0.49268289 | 7.37002     | 7.6506582     |

Table (6-12-b): Comparison between Hartree-Fock and Dirac-Fock mean values for *Rn*.

| HF/a.u.         | Relativistic shift/a.u. | Total energy/a.u. |
|-----------------|-------------------------|-------------------|
| -21866.77224332 | -1389.30383643          | -23256.07607976   |

|             | Breit inter  | Total anarov/a v |                   |  |
|-------------|--------------|------------------|-------------------|--|
| DHF/a.u.    | Magnetic     | retardation      | Total energy/a.u. |  |
| -23611.1925 | 32.878641287 | -3.48189413      | -23581.80         |  |

Table (6-12-c): ): Average energy of configuration and their corresponding corrections for Hartree-Fock and Dirac-Fock calculations for Rn.

#### **CONCLUSIONS**

The relativistic effect on the binding energies is important on the inner subshells especially for the 's and 2s-subshells and this effect becomes more pronounced as Z increases. For the other subshells, this effect is contracted due to the screening by the inner subshells. The contribution of the relativistic two body effect (Breit interaction) is about 2% of the relativistic single-particle effect (mass-velocity and Darwin correction). Finally the Hartree-Fock calculations and single-particle relativistic correction gives reasonably good results for heavy atoms while Dirac-Fock calculation and Breit interaction gives high precision calculations.

#### **FUTURE WORK**

This work can be extended to include the Breit interaction in the unperturbed Hamiltonian and introduced it in the self consistent field process. Also we can take into account the radiative corrections quantum electrodynamics (QED) (self energy and vacuum polarization corrections).

## **REFERENCES**

[1]- I. I. Sobel'man, Introduction to The Theory of Atomic Spectra, Pergamon Press Ltd. (1972).

[2]- C. F. Fischer, The Hartree-Fock Method For Atoms, John Wiley and Sons, Inc. (1977).

- [3]- D. R. Hartree, Proc. Cambridge Phil. Soc. 24(1928)89.
- [4]- D. R. Hartree, Proc. Cambridge Phil. Soc. 24(1928)111.
- [5]- V. Fock, Z. Physik 61(1930)126.
- [6]- J. C. Slater, Phys. Rev. 35 (1930) 509.
- [7]- G. H. Shortley, Phys. Rev., 50, 1072 (1936).
- [8]- J. C. Slater, Quantum Theory of Atomic Structure, Mc Graw-Hill, New York, (1960).
- [9]- B. Swrirles, Proc. Roy. Soc. A 152(1935)652.
- [10]- A. O. Williams, Phys. Rev. 58(1940)723.
- [11]- D. F. Mayers, Proc. Roy. Soc. A 241(1957)93.
- [12]- S. Cohen, Phys. Rev. 118(1960)489.
- [13]- J. L. Schonfelder, Proc. Phys. Soc. 87(1966)163.
- [14]- D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev. 137(1965)A27.
- [15]- I. P. Grant, Proc. Roy. Soc. A 262(1961)555.
- [16]- I. P. Grant, Proc. Roy. Soc. A 86(1965)563.
- [17]- Y. K. Kim, Phys. Rev. 154(1967)17.
- [18]- J. P. Desclaux, At. Data Nucl. Data tables 12(1973)311.
- [19]- J. P. Desclaux, Comput. Phys. Commun. 9(1975)31.

[<sup>Y</sup> · ]- B. J. McKenzeie, I. P. Grant and P. H. Norrington, Comput. Phys.

Commun. 21(1980)233

[21]- Markus Reiher and Karsten Kind, J. Phys. B: At. Mol. Opt. Phys. 34(2001)3133.

[22]- C.Z. Dong, S. Firtzsche, B. Fricke and W. D. Sepp, Physica Scripta. T92(2001)294.

[23]- A. Irimia and C. F. Fischer, J. Phys. B: At. Mol. Opt. Phys. 37(2004)1659.

[24]- Mitchel Weissbluth, Atoms and Molecules, Academic Press, Inc., New York, (1978).

[25]- I. Lindigren and J. Morrison, Atomic Many-Body Theory, Springer-

Verlag, Berlin Heidelberg, (1982).

[26]- C. F. Fischer, comput. Phys. Reports 3(1986)273.

[27]- C. F. Fischer, comput. Phys. Commun. 43(1987)355.

[28]- J. P., Desclaux, C. M. Moser, G. Verhaegen, J. Phys. B: Atom. Molec. Phys. 4(1971)296.

[29]- E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra,

Cambridge University Press, London, (1935).

[30]- R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California press, Ltd., London, (1981).

[31]- J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., Canada, (1975).

[32]- A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, New Jersy, (1960).

[33]- T. Koopmans, Physica 1(1934)104.

[34]- L. I. Schiff, Quantum Mechanics, McGraw-Hill, Inc., (1968).

[35]- Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and Two electron Atoms, Springer-Verlag, Berlin (1957).

[3<sup>7</sup>]- I. P. Grant, Comput. Phys. Commun. 17(1979)149.

[37]- S. Fritsche, Physica Scripta. T100(2002)37.

[3<sup>A</sup>]- F. A. Parpia, C. F. Fischer and I. P. Grant, Comput. Phys. Commun. 94(1996)249.

[3<sup>q</sup>]- V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaeevskii, Relativistic Quantum Theory, part 1, Pergamon Press Ltd., Heading Hill Hall, Oxford, (1971).

[<sup>t</sup>·]- K. J. Dyall, I. P. Grant, C. J. Johnson, F. A. Parpia and E. P. Plummer, Comput. Phys. Commun. 25(1989)425.

[٤] V. V. Karasiev, E. V. Ludena and Olga A. Shukruto, Phys. Rev. A 69(2004)052509-1.

[42]- I. P. Grant, B. J. McKenzeie, P. H. Norrington, D. F. Mayers and N.C. Pyper, Comput. Phys. Commun. 21(1980)207.

- [43]- S. Fritzsche and I. P. Grant, Comput. Phys. Commun. 92(1995)111.
- [44]- I. P. Grant and N. C. Pyper, J. Phys. B: At. Mol. Phys. 9(1976)761.

[45]- D. F. Mayers, J. de Physique, 11-12 (1970)C4-221.

- [46]- I. P. Grant, Adv. Phys. 19(1970)747.
- [47]- J. B. Mann and W. R. Johnson, Phys. Rev. A 4(1971)41.

[48]- Markus Reiher and Juergen Hinze, J. Phys. B: At. Mol. Opt. Phys. 32(1999)5489.

[49]- P. Indelicato G. C. Rodrigues, E. Lindroth, M. A. Ourdane, F. Parente,

J. P. Santos, P. Patte and J. Bieron, Physica Scripta. T92(2001)327.

[°·]- G. Breit, Phys. Rev. 34(1929)553.

[°<sup>1</sup>]- G. Breit, Phys. Rev. 36(1930)383.

[°<sup>γ</sup>]- G. Breit, Phys. Rev. 39(1932)616.

[°<sup>*r*</sup>]- S. S. Huang, Astrophysics. J. 108(1948)354.

[54]- C. F. Fischer, T. Brage and Per Jönsson, Computational Atomic Structure, Institute of Physics Publishing, Bristol, Philadelphia, (1997).

[55]- D. F. Mayers and F. O'Brien, J. Phys. B: At. Mol. Phys. 1(1968)145.

[56]- G. Dahlberg and A. Björck, Numerical Methods, Prentice Hall, New York, (1974).

[57]- C. F. Fischer, Can. J. Phys., 41(1963)1895.

[58]- J. P. Desclaux, D. F. Mayers and F. O'Brien, J. Phys. B: At. Mol. Phys. 4(1971)631.

[59]- J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39(1967)125.

[60]- C. E. Moore, Atomic Energy Levels I-III of Nat. Stand. Ref. Ser., Nat.Bur. Stand. (U. S.), 35. U. S. Government Printing Office, Washington D. C., (1971).

الاسم : عدنان يوسف حسين

العنوان : حي العامل \_ م ٨٠١ \_ ز ٢٤ \_ د ١٧

تاريخ المناقشه : ٢٥-٦-٢٠٠٦



اطروحة مقدمة الى كلية العلوم في جامعة النهرين كجزء من متطلبات درجة دكتوراه فلسفه في الفيزياء

هي جمادا الآخرة ١٤٢٧ه تموز ٢٠٠٦م <u>ا**لخلاصة**</u>

تم تقديم دراسة منتظمة لطريقة هارتري فوك غير النسبيه وكذلك نسختها النسبية (ديراك فوك) لمعدل التوزيع. بالنسبه للطريقة غير النسبية؛ فقد تم اشتقاق معادلات هارتري فوك فوك) لمعدل التوزيع. بالنسبه للطريقة غير النسبي (تاثير الكتله السرعه وتاثير دارون وتاثير وبشكل مفصل واخذ بنظر الاعتبار التصحيح النسبي (تاثير الكتله السرعه وتاثير دارون وتاثير تفاعل البرم المداري للاكترون) وقد اعتبر كرتبه اولى للاضطراب. اما بالنسبه للطريقة النسبيه؛ فقد تم اشتقاق معادلات هارتري فوك وبشكل مفصل واخذ بنظر الاعتبار التصحيح النسبي (تاثير الكتله السرعه وتاثير دارون وتاثير النسبيه فقد تم اشتقاق معادلات هارتري فوك وابشكل مفصل واخذ بنظر الاعتبار التصحيح النسبي (تاثير الكتله السرعه وتاثير دارون وتاثير الما بالنسبه للطريقه البرم المداري للاكترون) وقد اعتبر كرتبه اولى للاضطراب. اما بالنسبه للطريقه النسبيه؛ فقد تم اشتقاق معادلات ديراك فوك واخذ بنظر الاعتبار تاثير تفاعل بريت كتصحيح النسبي للتفاعل الكولومي وقد اعتبر كرتبه اولى للاضطراب. تم تقديم معادلات عناصر

المصفوفة لتفاعل بريت (الحد المغناطيسي والحد الارتدادي) لمعدل التوزيع. تم تقديم النتائج (Rb, Zr, Pd, Sn, Cs, Ba, Lu, Ir, Hg, لبعض خصائص الذرات في المستوى الارضي ,Rb, Zr, Pd, Sn, Cs, Ba, Lu, Ir, Hg وتمت مقارنتها بالنتائج العملية. التأثير النسبي على طاقات الاغلفة الذرية مهم وخصوصا على الاغلفة الداخلية 18 و 28 وهذا التأثير يكون محسوسا كلما ارتفع العدد الذري. يكون تأثير بريت حوالي %٢ من تأثير التصحيح النسبي (تاثير الكتله-السرعة وتاثير دارون). حسابات هارتري مغالية المسبي يعلى معابات ديراك فوك وتاثير الرون بريت تعطي حسابات ديراك فوك وتاثير النسبي معليه المارتي. وريت تعطي حسابات عالية الدقة.