
                                                                                                                                          Appendix 1 
 

 60 

A.1 

DERIVATION OF THE X-RAY FORM FACTOR 

 

An X-ray beam is incident in the direction defined by the unit 

vector 0s . We shall consider radiation scattered in the direction defined 

by the unit vector s  [7] 

The path difference between the rays is:  

0S.rS.rQPOR −=−                                                          … (A.1-1) 

Phase difference ×=
λ
π2 path difference 

Where λ is the wavelength of the incident radiation  

Then 

Phase difference )ss.(r 0

2 vvv −=
λ
π

                                       … (A.1-2) 

 

Hence the scattered amplitude from an element dr of electron 

density )(rρ  is given by: 

 

Scattered amplitude dre)r(
)ss.(r

i
0

2 vvv −
= λ

π

ρ                        … (A.1-3) 

 

 

                                 dre)r( r.dik
vv

ρ=                           … (A.1-4) 

 

Where 
λ
π2

=k           ,               0ssd
vvv

−=  

Thus, the total scattered amplitude is obtained by integration over 

the whole electron density distribution as: 

Total scattered amplitude ∫∝ dre)r( r.dik
vv

ρ                     … (A.1-5) 
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Let us write the atomic scattering factor )s(f from an electron 

distribution of density )r(ρ as kds =  

For closed shell atom )r(ρ  is spherically symmetrical. 

The angular integrations can then be performed by spherical polar 

coordinates φθ ,,r . 

Then the volume element becomes φθθ ddsindrr 2 , and since 

θcossrr.s =  we can integrate overφ from 0 to π2 to obtain. 

θθ
π

θρπ dsinedr)r(r)s(f cosisr

∫∫
∞

=
00

22                          … (A.1-6)  

 

The integration   overθ  can be carried out, with the result 

   ∫
∞

=
0

24 drr)s(f )r(
sr

srsin πρ                                        … (A.1-7) 

              But )r(Dr)r( =24πρ                                              … (A.1-8) 

Then 

∫
∞

=
0

dr
sr

srsin
)r(D)s(f                                                    … (A.1-9) 
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Fig.(A.1-1) x-ray  scattering 
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The solution of equation (A.1-9) by mathematical analysis is: 

For K-shell 

 

∑∑
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By substituting equation (A.1-11) and (A.1-10) in equation (A.1-9) 
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… (A.1-10) 

… (A.1-11) 

… (A.1-12) 

… (A.1-13) 

… (A.1-14) 

… (A.1-15) 
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The total scattering form factor is given by: 

For Li-like ions    
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For Be-like ions 
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… (A.1-16) 

… (A.1-17) 

… (A.1-20) 

… (A.1-18) 

… (A.1-19) 
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[ ])r(D)r(D)r(D)r(D)r(D)r(D)r(D LLLKLKLKLKKKT 1111111 6

1
βαβββααβααβα +++++=

 

 

 

( ) ( )( ) ( )

( ) ( )

( ) ( )( ) ( )

( ) ( )∑∑ ∑

∑∑ ∑













++
++

−+













++
++

−=

=
+++

=
+++

i j p
pnn

ji

p

jip

jiji

i j p
pnn

ji

p

jip

jiji

ji

ji

)!)k((

s!pnn
NNdd            

)!)k((

s!pnn
NNcc)s(f

0
12

2

0
12

2

12

2
13

12

2
13

ζζ

ζζ
 

 

 

 

 

 

 

 

 

… (A.1-21) 
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A.2 
DERIVATIONS THE TWO-PARTICLE DENSITY ),(HF 21Γ  

FOR KαKβ , KαLα , KβLα , KαLβ , KβLβ and, LαLβ 

 

The two-particle density function ),(HF 21Γ for the individual shells for Li-

Like ions can be written as [51]: 

  

  

 

And for Be-like ions can be written as:  

 

 

 

  

           i               j                   ),(ij 21Γ                  Shell 

  

  1               2                    ),( 2112Γ         βα KK  

            1               3                    ),( 2113Γ                αα LK  

            2               3                    ),( 2123Γ                αβ
LK  

            1               4                    ),( 2114Γ                βα LK  

            2               4                    ),( 2124Γ                ββ
LK     

            3               4                    ),( 2134Γ                βα LL       

 

 

                                          …                                                        … (A.2.1) 

 

In this work ijij AA ≡•  due to the S-state symmetry. 
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[ ]2

111112 22112211
2

1
)()()()()()()()( ssss αφβφβϕαϕΓ −=

(1) βα KK  Shell: 

[ ]2

122112 2121
2

1
21 )()()()(),( φφφφΓ −=  

 

    

  

Since : 

 

 

                                                                                                         …(A.2.5)     

 

 

 After integrated over all spins in equation (A.2.4) and substituted 

equation (A.2.5) into (A.2.4) we get: 

 

                      ….(A.2.6) 

 

now we can integrate over all angular part to get: 

 

               …(A.2.7) 

 

(2) αα LK  Shell: 

 

 

                         …(A.2.8) 

 

  

                                                                                                          ...(A.2.9) 
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…(A.2.2) 

…(A.2.4) 
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        …(A.2.10) 
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                                                                                                      …(A.2.11) 

                                                                                                      

 

 

And  

 

 

 

                                                           …(A.2.12)                                    

 

by substituted the equation (A.2.11) into (A.2.10)  and integrated over all 

spins using equation (A.2.12) we get: 

 

              

                                                                                                    ….(A.2.13) 
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                                                                   …(A.2.14) 
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Now we can integrate over all the angular part so that we can get: 
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                                                                                                      …(A.2.16) 

 

 

 

            

                           

                                                                                                     ….(A.2.17) 

 

 

(3) αβ LK  Shell: 

 

            …(A.2.18) 

 

 

  

                                                                                                        ..(A.2.19) 

 

By substituted equation (A.2.11) into (A.2.19) and integrated over all spins 

using equation (A.2.12) we get: 

 

                                                                                       

                                                                                                       …(A.2.20) 

 

Using eq.(A.2.14) and integrate over all angular part to get: 

 

                                                                                                      …(A.2.21) 

 (4) βα LK  shell 

2

1221
13

2

2121
21 







 −
=

)(R)(R)(R)(R
),(' ssssΓ

[ ]2

233223 2121
2

1
21 )()()()(),( φφφφΓ −=

[ ]2

122123 22112211
2

1
21 )()()()()()()()(),( ssss βϕαϕαϕβϕΓ −=

[ ])(Y)(R)(Y)(R)(Y)(R)(Y)(R)spinless( ssssssss 22112211
2

1 2
1

2
1

2
2

2
2

2
2

2
2

2
1

2
123 +=′Γ

[ ])(R)(R)(R)(R),( ssss

/ 2121
2

1
21 2

1

2

2

2

2

2

123 +=Γ



                                                                                                                                              Appendix 2 

 69 
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By substituting equation (A.2.11) into (A.2.23) and integrated over all 

spins using equation (A.2.12) we get: 
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using equation (A.2.14) and integrate over all angular part to get: 

 

 

 

 

(5) ββ LK  Shell: 
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...(A.2.22) 

..(A.2.23) 

...(A.2.24) 

...(A.2.25) 

...(A.2.26) 

...(A.2.27) 
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By substituting equation (A.2.11) into (A.2.27) and integrated over all 

spins using equation (A.2.12) we get: 
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using equation (A.2.14) and integrate over all angular part to get: 
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(6) βα LL  shell: 
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...(A.2.29) 
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 After integrated over all spins in equation (A.2.31) and substituted 

equation (A.2.32) into (A.2.31) we get: 

 

                    ….(A.2.33) 

 

now we can integrate over all angular part to get: 

 

             …(A.2.34) 
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Figure (3-1) variation of one particle radial densities for the K-shell of     

Li-like ions (Li, Be+, B++) and Be-like ions (Li-, Be, B+). 
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Figure (3-2) variation of the individual shells and the total of the one 

particle radial density for the Li atom. 
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Figure (3-3) variation of the individual shells and the total of the one 

particle radial density for the Be+ ion. 
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Figure (3-4) variation of the individual shells and the total of the one 

particle radial density for the B++ ion. 
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Figure (3-5) variation of the individual shells and the total of the one 

particle radial density for the Li- ion. 
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Figure (3-6) variation of the individual shells and the total of the one 

particle radial density for the Be atom. 
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Figure (3-7) variation of the individual shells and the total of the one 

particle radial density for the B+ ion. 
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Figure (3-8) variation of the total one particle radial densities of Li-like 

ions (Li, Be+, B++). 
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Figure (3-9) variation of the total one particle radial densities of Be-like 

ions (Li-, Be, B+). 
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Figure (3-10) variation of the total one particle radial densities of Li-like 

ions (Li, Be+, B++) and for Be-like ions (Li-, Be, B+). 
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Figure (3-11) variation of scattering form factor with s for the K-shell of 

Li-like ions (Li, Be+, B++) and Be-like ions (Li-, Be, B+). 

 
 
 
 
 
                                                     
 
 
 
 
 
                                                                    
                                                                    
                                                                    
 
 
 
 
Figure (3-12) variation of the individual shells and the total scattering form 

factors with s for Li atom. 
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Figure (3-13) variation of the individual shells and the total scattering form 

factors with s for Be+ ion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (3-14) variation of the individual shells and the total scattering form 
factors with s for B++ ion. 
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Figure (3-15) variation of the inter shells scattering form factor with s for 

Li-like ions (Li, Be+, B++). 

 
 
 
 
 
 
 
                                        
                                                      
 
 
 
 
 
 
 
 
 
 
Figure (3-16) variation of the total scattering form factor with s of Li-like 

ions (Li, Be+, B++). 
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Figure (3-17) variation of the individual shells and the total scattering form 

factors with s for Li- ion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (3-18) variation of the total scattering form factor with s for Li atom 

and Li- ion. 
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Figure (3-19) variation of the individual shells and the total scattering form 

factors with s for Be ion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3-20) variation of the total scattering form factor with s for Be atom 

and Be+ ion. 
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Figure (3-21) variation of the individual shells and the total scattering form 

factors with s for B+ ion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (3-22) variation of the total scattering form factor with s for B+ ion 

and B++ ion. 
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Figure (3-23) variation of the inter shells scattering form factor with s for 

Be-like ions (Li-, Be, B+). 

 

 
 
 
Figure (3-24) variation of Lα Lβ shells scattering form factor with s for Be-

like ions (Li-, Be, B+). 
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Figure (3-25) variation of the total scattering form factor with s of Be-like 

ions (Li-, Be, B+). 
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Table (3-1) data for Li atom.[53] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-2) data for Be+ ion.[47 ] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-3) data for B++ ion.[47 ] 
 
 
 
 
 
 
 
 
 
 
 
 

Li  

s2C  s1C  ζ  l  n  

-0.022416 0.141279 4.3069 0 1 
-0.135791 0.874231 2.4573 0 1 
0.000389 -0.005201 6.7850 0 3 
-0.000068 -0.002307 7.4527 0 2 
-0.076544 0.006985 1.8504 0 2 
0.340542 -0.000305 0.7667 0 2 
0.715708 0.000760 0.6364 0 2 

 

Be+ 

s2C  s1C  ζ  l  n  

-0.19922 0.91711 4.0 0 1 
0.00045 -0.00129 1.081 0 3 
-0.01081 0.07960 4.68 0 3 
0.00728 0.04314 3.40 0 3 
0.42943 -0.00331 1.97 0 3 
0.61599 0.00178 1.31 0 3 

 

B++ 

s2C  s1C  ζ  l  n  

-0.23270 0.93299 5.0 0 1 
0.00050 -0.00151 12.0 0 3 
-0.00787 0.06390 5.97 0 3 
0.00451 0.03661 4.28 0 3 
0.42344 0.00409 2.70 0 3 
0.62350 0.00192 1.863 0 3 
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Table (3-4) data for Be atom.[53] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-5) data for B+ ion.[56]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-6) data for Li- ion.[56 ] 
 

Be 

s2C  s1C  ζ  l  n  

-0.016378 0.285107 5.7531 0 1 
-0.155066 0.474813 3.7156 0 1 
0.000426 -0.001620 9.9670 0 3 
-0.059234 0.052852 3.7128 0 3 
-0.031925 0.243499 4.4661 0 2 
0.387968 0.000106 1.2919 0 2 
0.685674 -0.000032 0.8555 0 2 

 

B+ 

s2C  s1C  ζ  l  n  

-0.20288 0.92801 4.42994 0 1 
-0.01942 0.08063 7.86336 0 1 
0.7349 0.0032 1.58241 0 2 

-0.09218 -0.00081 4.01022 0 2 
0.34527 -0.00198 1.25021 0 2 

 

Li- 

s2C  s1C  ζ  l  n  

-0.10034 0.89760 2.47472 0 1 
-0.01100 0.11212 4.69209 0 1 
0.39768 -0.00003 0.26763 0 2 
0.56089 0.00016 0.53399 0 2 
0.20478 -0.00108 1.01192 0 2 
-0.07906 0.00750 1.66285 0 2 
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Table (3-7) the maximum and the locations of one particle radial density 

distribution for the K-shell for Li-like ions (Li, Be+, B++) and Be-like ions 

(Li-, Be, B+). 

 D(r1) 
Maximum 

Location 
r1 

Li 1.4057 0.36 
Li- 1.4063 0.36 
Be+ 1.9518 0.27 
Be 1.9448 0.27 
B++ 2.4872 0.21 
B+ 2.4848 0.21 

 

Table (3-8) the maximum and the locations of one particle radial density 

distribution for the individual shells and total of Li-like ions (Li, Be+, B++). 

 

Z Shell D(r1) 
Maximum 

Location 
r1 

 
3 
 

Kα Kβ 1.4057 0.36 
Kα Lα 0.71658 0.36 

0.13687 3.09 
Kβ Lα 0.71658 0.36 

0.13687 3.09 
Total 0.94629 0.36 

0.091246 3.09  

 
4 

Kα Kβ 1.9518 0.27 
Kα Lα 1.0112 0.26 

0.242 1.86 
Kβ Lα 1.0112 0.26 

0.242 1.86 
Total 1.3247 0.27 

0.16133 1.86 

 
5 

Kα Kβ 2.4872 0.21 
Kα Lα 1.3014 0.21 

0.34302 1.35 
Kβ Lα 1.3014 0.21 

0.34302 1.35 
Total 1.6967 0.21 

0.22868 1.35 
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Table (3-9) the maximum and the locations of one particle radial density 

distribution for the individual shells and total of Li- ion. 

 

 

Shell D(r1) Maximum Location  

r1 

Kα Kβ 1.4063 0.36 

Kα Lα 0.70977 0.36 

0.084794 3.69 

Kβ Lα 0.70977 0.36 

0.084794 3.69 

Kα Lβ 0.70977 0.36 

0.084794 3.69 

Kβ Lβ 0.70977 0.36 

0.084794 3.69 

Lα Lβ 0.013881 0.3 

0.16958 3.69 

Total 0.70977 0.36 

0.084794 3.69 
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Table (3-10) the maximum and the locations of one particle radial density 

distribution for the individual shells and total of Be atom. 

 

 

 

Shell D(r1) Maximum Location 

r1 

Kα Kβ 1.9448 0.27 

Kα Lα 0.99711 0.26 

0.1982 2.05 

Kβ Lα 0.99711 0.26 

0.1982 2.05 

Kα Lβ 0.99711 0.26 

0.1982 2.05 

Kβ Lβ 0.99711 0.26 

0.1982 2.05 

Lα Lβ 0.053109 0.22 

0.39593 2.05  

Total 0.99711 0.26 

0.1982 2.05 
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Table (3-11) the maximum and the locations of one particle radial density 

distribution for the individual shells and total of B+ ion. 

 

 

 

Shell D(r1) Maximum Location 

r1 

Kα Kβ 2.4848 0.21 

Kα Lα 1.2888 0.21 

0.30138 1.45 

Kβ Lα 1.2888 0.21 

0.30138 1.45 

Kα Lβ 1.2888 0.21 

0.30138 1.45 

Kβ Lβ 1.2888 0.21 

0.30138 1.45 

Lα Lβ 0.09976 0.17 

0.60103 1.46 

Total 1.2888 0.21 

0.30138 1.45 
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Table (3-12) scattering form factor for the K-shell of Li-like ions (Li, Be+, 

B++) and for Be-like ions (Li-, Be, B+). 

 

 

 

 

sinθ/λ 

f(sinθ/λ) 

Li Be+ B++ Li- Be B+ 

0.0 2 2 2 2 2 2 

0.2 1.3208 1.5937 1.7371 1.3211 1.5897 1.7312 

0.2* 
1.32 1.59 1.73    

0.4 0.5617 0.9189 1.1918 0.5619 0.9160 1.1903 

0.4* 
0.56 0.918 1.19    

0.6 0.2333 0.4763 0.7279 0.2334 0.4747 0.7276 

0.6* 
0.233 0.476 0.72    

0.8 0.1060 0.2491 0.4309 0.1060 0.2485 0.4307 

0.8* 
0.106 0.249 0.43    

1 0.0531 0.1366 0.2581 0.0531 0.1364 0.2580 

1* 
0.053 0.136 0.25    

 

* ref.[33] 
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Table (3-13) scattering form factor of the total and the individual shells for 

the Li atom. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Total 

0.0 2 2 2 3 

0.2 1.3208 0.6640 0.6640 1.3245 

0.4 0.5617 0.2883 0.2883 0.5692 

0.6 0.2333 0.1196 0.1196 0.2363 

0.8 0.1060 0.0544 0.0544 0.1074 

1 0.0531 0.0274 0.0274 0.0540 

 

 

Table (3-14) scattering form factor of the total and the individual shells for 

the for the Be+ ion. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Total 

0.0 2 2 2 3 

0.2 1.5937 0.7732 0.7732 1.5701 

0.4 0.9189 0.4775 0.4775 0.9370 

0.6 0.4763 0.2503 0.2503 0.4885 

0.8 0.2491 0.1310 0.1310 0.2556 

1 0.1366 0.0718 0.0718 0.1401 
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Table (3-15) scattering form factor of the total and the individual shells for 

the for the B++ ion. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Total 

0.0 2 2 2 3 

0.2 1.7371 0.8775 0.8775 1.7461 

0.4 1.1918 0.6079 0.6079 1.2038 

0.6 0.7279 0.3859 0.3859 0.7500 

0.8 0.4309 0.2301 0.2301 0.4456 

1 0.2581 0.1382 0.1382 0.2673 

 

 

Table (3-16) scattering form factor of the total and the individual shells for 

the for the Li- ion. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Kα Lβ
 Kβ Lβ

 Lα Lβ
 Total 

0.0 2 2 2 2 2 2 4 

0.2 1.3211 0.6626 0.6626 0.6626 0.6626 0.0040 1.3252 

0.4 0.5619 0.2845 0.2845 0.2845 0.2845 0.0070 0.5690 

0.6 0.2334 0.1182 0.1182 0.1182 0.1182 0.0030 0.2364 

0.8 0.1060 0.0536 0.0536 0.0536 0.0536 0.0012 0.1072 

1 0.0531 0.0266 0.0266 0.0266 0.0266 0.0002 0.0533 
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Table (3-17) scattering form factor of the total and the individual shells for 

the for the Be atom. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Kα Lβ
 Kβ Lβ

 Lα Lβ
 Total 

0.0 2 2 2 2 2 2 4 

0.2 1.5897 0.7773 0.7773 0.7773 0.7773 -0.0351 1.5546 

0.4 0.9160 0.4709 0.4709 0.4709 0.4709 0.0258 0.9419 

0.6 0.4747 0.2460 0.2460 0.2460 0.2460 0.0171 0.4919 

0.8 0.2485 0.1288 0.1288 0.1288 0.1288 0.0091 0.2576 

1 0.1364 0.0707 0.0707 0.0707 0.0707 0.00495 0.1414 

 

 

 

Table (3-18) scattering form factor of the total and the individual shells for 

the for the B+ ion. 

 

 

sinθ/λ 

f(sinθ/λ) 

Kα Kβ Kα Lα
 Kβ Lα

 Kα Lβ
 Kβ Lβ

 Lα Lβ
 Total 

0.0 2 2 2 2 2 2 4 

0.2 1.7312 0.8614 0.8614 0.8614 0.8614 -0.0085 1.7228 

0.4 1.1903 0.6060 0.6060 0.6060 0.6060 0.0216 1.2119 

0.6 0.7276 0.3814 0.3814 0.3814 0.3814 0.0353 0.7629 

0.8 0.4307 0.2271 0.2271 0.2271 0.2271 0.0234 0.4542 

1 0.2580 0.1361 0.1361 0.1361 0.1361 0.01410 0.2722 
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Table (3-19) Comparison the total energy.   

 

 Other works Present work  

-7.4327 Ref.[53] -7.4327 Li 
-14.277 Ref.[47] -14.277 Be+ 

-23.37 Ref.[47] -23.37 B++ 

-7.42 Ref.[56] -7.428 Li- 

-14.5730 Ref.[53] -14.5730 Be 
-24.237 Ref.[56] -24.237 B+ 
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1.1 Mechanism of x-ray Production  

Many of electrons that strike matter do nothing spectacular at all. Most 

of them undergo glancing collisions with the particles of the matter, and in 

the course of these collisions the electrons loss their energy a little at a time 

and thus merely increase the average kinetic energy of the particles in the 

material. The result is that the temperature of the target material is 

increased. It is found that most of the energy of the electron beam goes into 

heating the target. Some of the bombarding electrons make solid hits and 

lose most or all of their energy in just one collision. These electrons are 

rapidly decelerated. When an electron loses a large amount of energy by 

being decelerated, an energetic pulse of electromagnetic radiation is 

produced. This is an inverse photoelectric effect in which an electron 

produces a photon. It is found that electrons of a given energy produce      

x-ray photons with a certain maximum energy. Both effects confirm the 

quantum view of radiation. 

  

Looking at the collision process more closely, however, it is found 

another very important kind of collision energy exchange. The bombarding 

electron may also give energy to electrons bound to the target atoms. If 

these atomic electrons are freed from their home atoms, ions are produced. 

Since x-ray producing electrons have energies of the order of many 

thousands of electrons volts, it is very easy for them to produce ions by 

removing outer electrons. x-ray producing electrons may also have enough 

energy to produce ions by removing inner electrons from the atom, even 

down to the inner most or K-shell. Such an ion has a low-energy hole in its 

electronic structure, and this vacancy is promptly filled when one of its 

electrons in a higher energy state falls to this low-energy level. When an 

outer electron falls into such a vacancy, it will radiate a photon of this 

energy. Such photons are in the x-ray region and have wave lengths which 
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are fractions of angstroms. This mechanism, which accounts for a 

significant part of x-ray production, produces x-rays having particular wave 

lengths which are characteristic of the target material. [1] 

 

1.2 The Scattering  

When an electromagnetic wave impinges on a small body, the charged 

particles within the body experience forces due to the wave fields and are 

set into oscillatory motion. They therefore radiate, in accordance with the 

oscillating multipole moments set up in the body. The result is that energy 

is extracted from the incident wave and sent out in some angular 

distribution over the entire 4π solid angle around the body. This is called 

scattering. [2] 

 

1.3 Scattering of x-rays 

When abeam of x-rays passes through a substance, the electrons in this 

substance are set into vibration and radiate x-rays in all directions. The 

radiation emitted by these electrons is called scattered or secondary 

radiation. [3]   

                  

1.4 The x-ray Form Factor 

Atoms are not mere mathematical points in space but possess finite 

sizes which are of the same magnitude as the x-ray wave lengths used in 

diffraction studies. Moreover, the electrons are spread throughout the 

volume of the atom, with the result that not all of them can be expected to 

scatter in phase. 

 

Consider Figure (1-1) in which, for simplicity, the electrons are shown 

as points arranged around the central nucleus. The wave scattered in the 
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forward direction by electrons A and B are exactly in phase on a wave front 

such as XX', because each wave has traveled the same distance before 

scattering. 

 

The other scattered waves shown in the figure, however, have a path 

difference equal to (CB-AD) and thus somewhat out of phase along a wave 

front such as YY', the path difference being less than one wave length     

[4,5]. Partial interference occurs between the wave scattered by A and B, 

with the result that the net amplitude of the wave scattered in this directions 

is less than that of the wave scattered by the same electrons in the forward 

direction. 

 

 
A quantity f(s), the atomic scattering factors, is used to describe the 

"efficiency" of scattering of a given atom in a given direction, which is 

defined as a ratio of amplitudes [5,6] 

Figure (1-1) X-ray scattering by an atom [5] 
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electron oneby   scattered wavethe of Amplitude

 atom anby   scattered wavethe of Amplitude
f(s) =

 

         

 

  

From what has been said already, it is clear that  f(s) equal to the 

number of electros for any atom scattering in the forward direction. 

For the scattering angle θ increases, however, the waves scattered by 

individual electrons become more and more out of phase and  f(s) 

decreases. 

 

The atomic scattering factor depends also on the wave lengths of the 

incident beam: 

As a fixed value of θ, f(s) will be smaller for the shorter wave lengths, since 

the path differences will be larger relative to the wave length, leading to 

greater interference between the scattered beams. 

 

The scattering factor is sometimes called the form factor, because it 

depends on the way in which the electrons are distributed around the 

nucleus. 

Mathematically, the relation of x-ray form factor f(s) to the electron 

distribution function D(r) in the atom is expressed by the formula (see 

appendix 1) [5]: 

                             ∫
∞

=
0 4

4
dr

sr

srsin
)r(D)s(f

π
π

 

Where: Sπ4  is called the momentum transfer, 
sr

srsin  is the spherical  

Bessel function of zero order [7], and λ
θsinS =  

Since:        

                                                                                             … (1-3)     

… (1-1) 

… (1-2) 

)
x

xsin(n)
dx
d

x
(nxnJ 1−=
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The form factor )s(f  is related to the incoherent scattering function 

)s(S by the following relationship [8]: 

                                                                                                           

                                                                                              … (1-4)     

 

Where )r(f 12 is the electron-electron distribution function for each shell, 

and N is the atomic charge. 

 

In solids, the calculations of x-ray scattering factors have always been 

based on the assumption that the total charge density can be approximated 

as a sum of atomic charge distributions on each lattice site. The total 

scattering factor )s(f  is then a sum of atomic scattering factors nf  

multiplied by appropriate phase factors: 

  

 

Where S
v
 is a reciprocal lattice vector and nr

v  the position of the nth atom in 

the unit cell [8]. 

 

1 .5 Physical Importance of Atomic Form Factor 

The functions )(f S and )(S S play important role in the theory of  

scattering of x-rays and electrons by atoms as follows: 

1- The total incoherent scattering cross section inchσ of the photon by an 

atom [9, 10]. 

  

2- The differential cross-section 
Ωd

d elσ  for the elastic scattering of electrons 

by an atom. 

 

…(1-5) 
∑

−≅ n
nr.Si

n eff )S(
rv

∫
∞

−+=
0

2

12
12

12
12 )s(fdr

sr

srsin
)r(f2N)s(S

)()cos1(
2

1 222
0 sZSrinch θσ +=

                 
… (1-6) 
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Where 22

0 em/a eh=  is the Bohr radius. 

In this case, We may interpret )s(f as representing the effective shielding 

of the nuclear charge Z [9]. 

3- The nuclear magnetic shielding constant dσ [11,12]. 

 

 

Where: 
c

e2

h
=α  is the fine structure constant and it is equal to 

 (7.297353*10-3) [13].  

4- The coherent scattering intensity, which is related to the square absolute 

form factor as:[14,15,16] 

 

 

where: 

clI is the classical expression for total intensity of radiation scattered by  

a free electron initially at rest.                                       

5- The total scattering intensity, which is related to the square absolute 

form factor and incoherent scattering function as [17]: 

 

6- The differential cross-section 
Ω

σ
d

d inel of electrons summed over all 

inelastic collisions with an atom , when the momentum of the incident 

electron is very large compared to the momentum transfer ,is [9]: 

 

 ZS(s))/(ka4a
dΩ

d 4

0

2

0

inel =
σ

                 … (1-7) 

                 
…(1-8) 

               
…(1-9) 

          …(1-10) 

                 … (1-11) 

2

cl

coh )s(f
I
I =

2
)s(f)s(S

I

I

cl

tot +=

∫
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=
0

2

)(
3

2
dssfd π

ασ

( )
2

4
0

2
0 )(

4
sfZ

ka
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7- The Geometrical structure factor )hkl(F  which is related with the form 

factor by: 

 

Where: 

nφ   is the phase difference, and (hkl) is called Miller indices 

 

To summarize, when a monochromatic beam of x-rays strikes an atom, 

two scattering process occur. Tightly bound electrons are set into 

oscillation and radiate x-rays of the same wavelength as that of the incident 

beam. More loosely bound electrons scatter part of the incident beam and 

slightly increase its wavelength in the process. 

  

1.6 Historical Review  

Freeman and Wood (1958) calculated an atomic scattering factor for 

iron by using self consistent field wave functions [18]. 

Silverman and Obta (1962) have derived two sum rules relating 

coherent x-ray scattering data to the diamagnetic nuclear shielding constant 

and to the self-energy of the charge distribution of the scattering [19]. 

RUSIGI and Tiwari (1963) calculate the nuclear magnetic shielding 

constants and x-ray atomic scattering factor for two, three, and four 

electron systems using the best analytical self-consistent field functions of 

Roothaan, Sachs, and Weiss, and compared the reported values with the 

ones already published [20]. 

Chipman and Jennings (1963) have calculated the atomic scattering 

factor of Ne, Ar, Kr, and Xe by using  Hartree- fock wave function and 

compared the results with the experimental values [21]. 

Bartell and Gavin (1964) have studied the effects of electron 

correlation in x-ray and electron diffraction from the comparison of elastic 
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and inelastic scattering factors, which were calculated from Hartree-Fock 

wave functions and from wave functions explicitly including electron 

correlation [22].  

Bartell and  Gavin (1965) have calculated the electron-electron and 

electron-nuclear radial distribution function of f(r12) and D(r) for ground 

states of helium like systems (Z=2 to 8) by using correlated and un 

correlated wave functions published by Roothaan et al, and calculated 

elastic and inelastic scattering factors [16]. 

Chattar and Swamy (1966) have estimated the relativistic effects in    

x-ray scattering form factors from Xenon and compared the results with 

Hartree-Fock values and experimental measurements [23].  

Frank and Arlinghaus (1967) have calculated the crystal charge 

density for copper and aluminum and used it to find the scattering factors 

by using the augmented-plain-wave method. These factors were compared 

with those determined from Hartree-Fock atomic calculations [24]. 

Banyard (1968) has analyzed and compared five wave functions for H-

, and he studied the two-particle radial density D(r1,r2)and the one particle 

radial density D(r1) for the coherent x-ray scattering contribution f(s) and 

the < rk > where  -2 ≤ k ≤ 2 [25]. 

Kim and Inokuti (1968) have calculated the atomic form factor and the 

incoherent-scattering function of the helium atom from several wave 

functions of differing accuracies. The form factor calculated from the 

Hartree-Fock wave function is in very close agreement with that from the 

20-term Hylleraas wave function for all values of the momentum transfer. 

The incoherent-scattering calculated from the correlated wave functions, 

gives values at small momentum transfers, approximately 5% lower than 

that of the Hartree-Fock wave function [9]. 

Banyard and Baker (1969) have studied the electron correlation in an 

iso electronic series possessing electrons with anti parallel spins, H - , He, 
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and Li+. They have used three wave functions, two introduce correlation, 

one by configuration interaction, the other by including Hylleraas-type 

correlation factors and the third function was based on the Hartree-Fock 

approach. The correlation within the wave function is demonstrated by 

presenting two-particle density difference maps ∆D(r1,r2) relative to the 

uncorrelated approach, and graphs of the radial density D(r). 

The coherent x-ray scattering contribution f(s), and < r n> results are 

compared throughout with those from a more accurate wave function [26]. 

Benesch and Smith (1970) determined correlated x-ray scattering 

factors for the 2S ground state of the Lithium atom and correlated electron 

scattering amplitudes are also obtained with in the firs Bohr approximation.  

For purposes of comparison, scattering factors were computed from various 

independent particle model wave functions [15]. 

Brown (1970) calculated the atomic form factors and incoherent-

scattering functions for helium isoelectric sequence through Z=10 with 

correlated ground-state wave functions. The results compared with 

published accurate calculations for helium [27]. 

Brown (1971) calculated the atomic form factors and incoherent-

scattering functions for the lithium and beryllium isoelectric sequence 

through Z=8 with correlated ground-state wave functions [28]. 

Singh and Smith (1971) studied the convergence of the Z-1 expansion 

of the nuclear magnetic shielding  constant σ and the x-ray form factors f(s) 

within the Hartree-Fock approximation for the ground state of two-, three-, 

four- electrons of atoms and ions [29]. 

Benesch et al (1972) have studied the convergence of the Z-1 

expansion of the nuclear magnetic shielding constant and the x-ray form 

factor f(s) and total scattered x-ray intensities from explicitly correlated 

wave functions and then applied to such wave function recently constructed 

for the ground state of He-like ions from H- through Mg+10 [30]. 
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Thakkar and Smith (1978) have derived the integral formula necessary 

to compute x-ray intensities from explicitly correlated wave functions and 

then applied to such wave function recently constructed for the ground state 

of He-like ions from H- through Mg+10 [14].  

Pucci and March (1982) have calculated the scattering form factor f(s) 

for x-ray from atomic ions with atomic ions with classed shells and the      

< r n > where -2 ≤ n ≤ 2 for the Ar, Kr, Xe and Kn [31]. 

Oxley and Allen (2000) calculated the atomic scattering factors for    

K-shell ionization for elements in the range Z=6 (Carbon) to Z=50 (Tin) 

and for L-shell ionization in the range Z=20 (calcium) to Z=60 

(Neodymium). The calculations are based on  relativistic Hartree-Fock 

wave functions for the atomic bound states and Hartree-Slater wave 

functions. The results are presented in tabular form such that accurate 

values of the scattering factors can be obtained by cubic spline 

interpolation for incident electron energies between 50 and 400 KeV [32].  

Mohamed Nasr (2004) calculated the x-ray scattering factor for closed 

shell atoms for He-like ions (He, Li+, Be2+ and B3+) and Li- like ions       

(Li, Be+ and B2+) using Hartree Fock wave function (uncorrelated) 

published by Clementi and Rotti (1974) and Configuration interaction wave 

function (correlated) published by Weiss (1961) [33].     

 

1.7 The aim of this work 

The research aims are to study and evaluate the x-rays form factor 

for K-shell and total atom for Li-like ions (Li, Be+, B2+) and also for       

Be-like ions (Be, Li-, B+) using the uncorrelated  wave function by Hartree-

Fock of Clementi and Rotti. The importance of the mentioned factor is due 

to its relation with many important atomic properties. 
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2.1 The Single Electron Atom 
 

By the early 1900's it had become clear that classical electrodynamics 

was inadequate to account for the behavior of either the electromagnetic 

field or of elementary particles. In 1900 Max Planck had shown in his study 

of black-body radiation that it is necessary to quantize the energy of 

electromagnetism in order to avoid the "ultra-violet catastrophe", and he 

introduced the fundamental constant h. In 1905 Einstein made the even 

more radical proposal that in some respects electromagnetic wave energy 

propagates as if it consists of small packets (photons) with many of the 

characteristics of particles, with each photon having an energy E related to 

the wave frequency ν by E = hν. 

 

In 1913 Niels Bohr developed a new representation of the hydrogen by 

combining classical concepts with a few additional postulates that were 

suggested by the nascent quantum concepts of Planck and Einstein. First, 

he assumed that the angular momentum of an electron in orbit around the 

nucleus must be an integer multiple of h  (Planck's constant h divided by 

2π). It follows that only a certain set of discrete energy levels may occur. 

Second, he assumed that an electron radiates energy only when it makes a 

transition from one stable orbit to another of lower energy. If ∆E is the 

difference in energy levels, then he assumed that the transition resulted in 

the emission of a photon with this amount of energy, and hence with the 

frequency ν = ∆E/h in accord with Einstein's postulate. Armed with these 

postulates, Bohr reasoned that an electron of mass m orbiting a proton (of 

much greater mass) at radius r would satisfy the classical force balance. 

 

A somewhat plausible justification for Bohr's quantization postulate 

came in 1924 when Louis de Broglie developed the idea that particles of 
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matter on the smallest scale exhibit wave-like properties, analogous to 

Einstein's suggestion that electro-magnetic waves exhibit particle-like 

properties. The de Broglie wavelength for the matter wave corresponding 

to a particle with momentum p is λ = h/p. 

 

However, despite the plausibility of this approach, Bohr's model of the 

hydrogen atom, even with de Broglie's justification and with subsequent 

refinements by Sommerfeld, is now considered obsolete, having been 

superceded by a more thorough-going wave mechanics developed by Erwin 

Schrödinger in 1925. (This new theory was subsequently shown to be 

essentially identical to the "matrix mechanics" developed by Werner 

Heisenberg in 1924.). 

 

Schrödinger’s wave mechanics postulates that a particle is 

characterized by a complex-valued wave function Ψ(x,y,z,t) whose squared 

norm at any point equals the probability density for the particle to be found 

at that point. (The probability interpretation of Schrödinger’s wave function 

was first proposed by Max Born.) In addition, Schrödinger postulated that, 

in a region where there is a potential field V(x,y,z,t), the wave function Ψ of 

a particle is governed by the equation 
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It's possible to give a plausibility argument for this equation, but here 

we will just take it as given. If we express the spatial Laplacian (the 

quantity in the square brackets) in terms of polar coordinates and consider 

just the radial part, this equation is 

 

… (2-1) 
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One expression of the Pauli Exclusion Principle is that (no two 

electrons in the same atom can be in the same quantum state). This means 

that no two electrons can have the same set of quantum states of energy, 

angular momentum magnitude, angular momentum orientation, and 

orientation of intrinsic spin. 

 

Pauli's Principle is based on the fact that any two given electrons are 

indistinguishable from one another and thus changing the designations 

between two or more electrons in different quantum states should have no 

observable effect. Furthermore, in describing the wave function of an atom, 

which is the product of the wave functions of the individual electrons. 

Quantum Physics mandates that the wave function itself (of the atom or 

electron) is also not observable. On the other hand, the squared magnitude 

of the atom's wave function is observable, i.e. capable of being 

experimentally measured. Inasmuch as taking a square root of the squared 

magnitude of any given wave function will yield a plus (+) or minus (-) 

sign, the wave function of an atom or elementary particle can either be 

symmetric with respect to exchanging the designations of two of its 

constituent parts (the + sign), or anti-symmetric (the - sign). 

 

The Pauli Exclusion Principle then specifies the wave functions of 

electrons, protons and other so-called spin -
2

1
 particles to be anti-

symmetric. Thus when two electron designations are switched in the same 

atom or molecule, the total wave function of the atom or molecule changes 

sign [1,2]. 

… (2-2) 
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2.2 The Hartree and Hartree-Fock Approximation 

In 1928 Hartree assumed that each electron moves in such an averaged 

potential arising from the nucleus and the other electrons, and solved 

Schrödinger's equation for an electron moving in that potential [34]. He 

chose the wave function of the desired quantum number in that potential 

and assumed that this wave function is produced from the product of one 

particle wave function for N-electrons system, i.e. 

 

           ( ) ( ) ( ) ( ) ( )N...321N,...3,2,1 N321 ΦΦΦΦΨ =      

   

Where Φi(i) depend on the space and spin coordinates of electron i. 

One major source of difficulty with the total wave function written in the 

form of the equation (2-3) is the so-called anti-symmetry. This arises from 

the fact that the Hartree product function incorrectly describes the electron-

electron interactions. Electrons have spin ±1/2 entities, and particle with 

non-integer spins are called fermions, which are characterized by the 

property of anti-symmetry, where upon when two fermions ( electrons ) of 

the same spin are interchanged the wave function changes sign. So the 

Hartree approximation does not obeys this important property. To avoid 

this difficulty and, in particular, to let the Hartree product satisfy the Pauli 

exclusion principle and take into account the indistinguishability of 

electrons, the total wave function is written as a single Slater determinant 

[35].  

 

Slater pointed out in the 1920s that choosing the many body wave 

functions to be of the form [36,37] : 

 

 

… (2-3) 
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                                                                                              … (2-4) 

 

 

 

Where, the normalization constant and the component of one particle 

function )i(iΦ  is referred to as spin-orbital. Any spin orbital may be 

written as the product of a space function φ  and a spin function α or β. 

The number in the parentheses denote the particle, and the subscripts 

(1,2,...,N) denote the eigen state. The interchange of any two particles 

causes the sign of  ψ to change, since it involves the interchange of the 

corresponding two columns, and also when two electrons occupy the same 

spin orbital, i.e. two columns of the determinate are identical ,the wave 

function is equal to zero [38].  

This observation leads to more familiar expressions of the pauli principle, 

which states that each orbital may be occupied by only one spin-up and one 

spin-down electron.  

 

In the Hartree theory, the one-electron orbitals making up the product 

wave function to minimize the energy were varied, where now the s'Φ  in 

the Slater determinant (2-4) must be varied to get the best possible 

approximation to the ground-state energy. When this is done, it will be seen 

that a new set of self-consistent field equations emerge, which differ from 

Hartree's equations by the appearance of non-classical terms in the self-

consistent field. 

These are the exchange terms, arising because of the antisymmetry of 

the wave function (where electrons with parallel spins are present) [39]. 
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Probably the most widely used and most generally successful 

approach to many-particle quantum mechanics is the independent particle 

model, which at its beast is represented by the Hartree-Fock (HF) 

approximation [40]. 

Physically this approximation amounts to treat the interparticle 

interactions is only an average fashion, (i.e., each particle is assumed to 

move in only the field of all the other particles of the system). 

Mathematically, the method consists of approximating the state 

function as an antisymmetrized product of one particle function (spin-

orbital). 

  

The idea of the Hartree-Fock self consistent field (SCF) is that each 

electron is viewed as traveling in a potential. The potential is produced by 

the interactions between the electron-electron of interest and all the other 

electrons, and the averaging is over the motion of these other electrons.  

Self-consistency enters in that each electron, upon which successive 

concentration is made, is itself helping to the analogous average field for 

each other electron, so that orbits must be found that are compatible 

ultimately for all the electrons simultaneously [41]. 

Subjecting such a function to the variation principle leads to the well-

known SCF equations for the one particle function [40]. 

The HF approach is a method for obtaining approximate total wave 

functions for many-electron systems.  

It has been applied successfully to many areas of quantum mechanics 

including atomic, molecular, and solid-state systems nuclear, elementary 

particle fields. 

The method is based on both the central field approximation electrons and 

the variation principle. In the central field approximation electrons are 

assumed to move independently of each other in an average field due to the 
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nucleus; the other electrons are with additional assumption that the average 

potential is spherically symmetric. 

In practice the Hartree-Fock equations are solved numerically by iteration 

until self-consistent solutions are obtained. 

The infinite set of solutions of the HF solutions forms a complete set of one 

electron functions. 

The infinite set of n x n determinantal wave-functions constructed by 

taking different combinations of n HF solutions form a complete set of      

n-electron anti-symmetric wave functions.  

 

The exact solutions of Schrödinger’s many electron equation may be 

expressed as linear combinations of these determinantal wave-functions 

[42]. This approximation with the variation principle leads to the restricted 

HF equations.  

So that the single-electron orbital can then be written as a product of a 

radial function, a spherical harmonic, and a spin function. This is          

well-known central-field approximation [1]. 

 

The Hartree-Fock wave function also takes some account of 

correlation between electrons of unlike spin. Of course correlation reduces 

the energy of the system by keeping electrons a part and the Hartree-Fock 

method is a better approximation than the Hartree method which 

completely ignores correlation.  

The HF energy is an upper bound to the ground state energy .  

The energy difference E(exact) – E(H.F) is called the correlation energy 

and is a significant measure of the accuracy of the Hartree-Fock method.  

The correlation energies for atoms are of the order of a few electron volts. 

  Roothaan-Hartree-Fock (RHF) or analytic self consistent-field atomic 

wave function are approximation to conventional Hartree-Fock wave 
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functions in which the radial atomic orbits are expanded as a finite 

superposition of primitive radial functions.  

Since Roothaan's papers and through the early 1970 s, RHF calculations 

yielded the most accurate atomic HF energies [43,44]. 

The Hartree-Fock wave function for two or more-electrons is defined 

as a single Slater determinants as follow [47]:    

 

( )

)N()N(N)....N()N(1

....

....

....

)1()1(N..).........1()1(1

!N

1
N,...2,1HF

βφαφ

βφαφ

ψ =
                             

 

Where φ  is the spatial part of the spin-orbital; and α and β refer to the two 

components of the spin parts (up and down). 

The orbitals in turn, are written as an expansion in some set of analytic 

basis functions [48] 
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Where: nc  are taken as those which minimize the total energy and the basis 

function 
l

nlm
X  is the standard Slater-type orbitals and is given by: 
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Where: 
nl

N is the normalization constant and is given as [31] 

....(2.5)  

…(2.6)  

… (2.8) 

… (2.7) 
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and ζ is the orbital exponents. 

 

3.2 Atomic properties 

3.2.1 Two electron density matrix  

The function Γ(1,2) represents the probability of finding two electrons 

simultaneously at position 1 and 2. For any N-electron atomic system, the 

two-particle density )x,x( nmHFΓ can be written as [39, 49, 50] 

∫



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
= qpqp21

*

qp21nmHF dx...dx)x,...,x,x,x()x,...,x,x,x(
2

N
)x,x( ΨΨΓ  

 

Where nx  represents the combined space and spin coordinates of electron 

n, and qp dx...dx  indicates integration summation over all N-electrons 

except m and n. The factor 








2

N
 ensures that the second order density 

matrix is normalized to the number of electron pairs within the system: 
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… (2.10) 

…(2.9) 

… (2.11) 

… (2.12) 
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For Be-like ions 

               342423141312HFTotal ΓΓΓΓΓΓΓ +++++=    

For Li-like ions 

               231312HFTotal ΓΓΓΓ ++=  

Then for each ijΓ can be expressed as  

               ∑
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2
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Where 

               )n()m()n()m(A ijji

mn

ij φφφφ −=  

and iφ  is ith occupied normalized HF spin-orbital. 

By substituting equation (2.16) in equation (2.15) we can written 

)x,x( nmijΓ  as follow: 

            ∑
<

−=
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2

nimjnjminmij )]x()x()x()x([
2

1
)x,x( φφφφΓ  

the i and j label occupied spin-orbital and m, n refer to electron labels [51]. 

From the above equation the two-electron density in each individual 

electronic shell in HF can be written as follows: 

 

For  K-shell: 

                     )kK(12 βαΓ ′ )2(2
s1R)1(2

s1R=   

 

Where prime means integral Γ over spin, (see appendix A.2). 

For KL inter-shell:  
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... (2.13) 

… (2.14) 

… (2.15) 

… (2.16) 

… (2.17) 

… (2.18)  

... (2.19)  
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(see appendix A.2.) 

 

3.2.2 Two-Particle Radial Density Distribution Function 

The two-particle radial density distribution D (r1, r2) in each individual 

electronic shell is defined by :[26]  

                          21d2
2r

2
1r)2

r,
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r(')2r,1r(D ΩΩΓ∫∫=                           

Where )r,r(' 21Γ  is a spinless function and D (r1, r2) tell us how the motion 

of the two different electrons are correlated as a result of their interactions,  

kkkk ddsind φθθΩ =   and 2 or 1k =  

Also:  

                         12dr1dr
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That means the two-particle radial density expression D(r1,r2) 21drdr  

is a measure of the probability of finding two electrons such that 

simultaneously their radial  coordinates are in the range 1r  to 11 drr +  and 

2r  to 22 drr + . 

Substituting equation (2.18) into equation (2.22), we get the two-particle 

radial density distribution )r,r(D 21  for K-shell 
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... (2.20) 

... (2.22) 

… (2.23) 

... (2.21)   
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Where: 

∫ =111111 ΩΩΩ d)(Y)(Y s
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Following the same procedure above by substituting equation (2-21) 

into equation (2.22) we get the two particle radial density distribution 

)r,r(D 21  for L-shell singlet state, which can be written as: 

2

2

2
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2
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s221 rr)r(R)r(R)r,r(D =  

 

By substituting equations (2.19) and (2.20) respectively into equation 

(2.22) we get the two-particle radial density distribution for KL-inter shells  

Where     
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… (2.24) 

… (2.25) 

… (2.26) 

… (2.27) 



Chapter Two                                                                                                     Approximation Methods 

 

 ٢٣

3.2.3 One Particle Radial Density Distribution Function 

 The One Particle Radial Density Distribution D(r1) is very important 

for studying the electrons in an atom, which means the probability of 

finding electrons in each shell. It represents the density distribution of one 

electron in each shell, and is defined as [26, 52, 53, 49] 

          ∫ ∫ ==
π π

πρΩρ
0

2

0

2

111

2

11 r)r(4d)r(r)r(D   

Where: 

∫= ...dx...dxdxd)x,...x,x,x()x,...x,x,x(N)r( n321n321

*

n3211 σΨΨρ  

 

ix  denotes a combined spatial and spin coordinate, and )x...x,x,x( N321Ψ  

is normalized wave function. 

Evaluation of )r(D 1  from equation (2.22) by the integration over two-

particle density with respect to 2dr  yields, 

               ∫
∞

=
0

2211 dr)r,r(D)r(D  

The total values of the function D(r1) for different shells in an atom 

are given by: 

For Li-like   

[ ])r(D)r(D)r(D)r(D LKLKKKT 1111 3

1
αβααβα ++=    

For Be-like 

[ ])r(D)r(D)r(D)r(D)r(D)r(D)r(D LLLKLKLKLKKKT 1111111 6

1
βαβββααβααβα +++++=  

                                                                                              … (2-32) 

the evaluation of the one-particle distribution )r(D 1  is useful for the 

determination of (a) the corresponding contribution to the x-ray scattering 

factor, and (b) one-particle expectation value kr1  where 22 ≤≤− k  . 

… (2.28) 

… (2.29) 

… (2.30) 

… (2-31) 
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The one-particle density distribution in each individual electronic shell 

for K-shell can be calculated by substituting equation (2.24) into equation 

(2.30), i.e. 

2

11

2

s1
0

2

2

22

2

s1

2

11

2

s1

0
2

2

2

2

12

2

s11

2

s1

0
2211

r)r(Rdrr)r(Rr)r(R         

drrr)r(R)r(R         

          

dr)r,r(D)r(D
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=

=

∫

∫

∫

∞

∞

∞

 

Where  

1drr)r(R
0

2

2

22

2

s1 =∫
∞

 

                             2

11

2

s11 r)r(R)r(D =  

Following the same above procedure by substituting equation (2.25) into 

equation (2.30) for L-shell one would get, 

 

                            2

11

2

s21 r)r(R)r(D =  

 

The one-particle density distribution for KL-inter shells are equal due 

to the orthogonality condition between (1s and 2s) orbitals. It can be 

evaluated by substituting equation (2.26) and (2.27) respectively into 

equation (2.30) 

 

 

i.e. 

For 
αα

LK  

 ∫
∞

=
0

2211 dr)r,r(D)r(D  

… (2.33) 

… (2.34)  
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The solution of equations (2.33), (2.34) and (2.35) by mathematical 

analysis are: 

For the K-shell is, 

∑∑ ++−=
i j

)nn(

1

r)(

jiji1
ji1ji reNNcc)r(D ζζ  

For the L-shell is, 

∑∑ ++−=
i j

)nn(

1

r)(

jiji1
ji1ji reNNdd)r(D ζζ  

For the ααLK is, 
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jijijiji1
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1
)r(D ++−








 += ∑∑ ∑∑ ζζ  

Where: 

ji c ,c  are the expansion coefficients for 1s orbital  

ji d ,d  are the expansion coefficients for 2s orbital 

Ni, Nj  are the normalization constants given by equation (2.9)  

 

 

 

 

… (2.35)  

… (2.36)  

… (2.37)  

… (2.38)  
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3.2.5 Energy expectation values 

The energy expectation value related to the potential energy by: [54] 

                                 ><>=< VE
2

1
                                                           … (2.39) 

The potential energy is simply the sum of the electron-nuclear attraction 

energy and interelectronic repulsion energy, This sum is proportional to the 

expectation values of 1/r1 and 1/r12 respectively. Therefore we may write: 

 

                                                                                                                           …(2.40)   

 

Where z is the atomic number, and [55]: 

                               ∫=〉〈 1

k

11

k

1 drr)r(Dr                                                       … (2.41) 

 

                               ∫=〉〈 12

k

1212

k

12 drr)r(fr                                                    … (2.42) 

Here it's assumed that D(r1) is normalized to the number of electrons and 

)( 12rf to the number of electron pairs [54]. The accuracy of results was 

checked by determining the total energy, it is shown in table [4-19]. 
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3. RESULTS and DISCUSSIONS 

This work has been arranged into two parts: 

The first is for K-shell, and the second for total atom for Li-like ions (Li 

atom, Be+, B2+ions) and Be-like ions (Be atom, Li-, B+ ions) which we 

studied them partitionly as the individually shells and totally. In both parts 

we have evaluated and plotted the one–particle density distribution function 

)( 1rD , and the atomic form factors )(sf .After that a comparison have been 

made between the individual and corresponding shells in different ions. 

Each particle distribution function in this work is checked and normalized 

to unity. The data used in this work are shown in tables (3-1), (3-2), (3-3), 

(3-4), (3-5) and (3-6). 

All these properties have been studied by using Hartree-Fock 

approximation and by using Mathcad computer program.   

 

3.1 The One-Particle Radial Distribution Function D(r1) 

3.1.1 The One-Particle Radial Distribution Functions for         

K-Shell 

The one particle radial distribution function D(r1) is shown as a 

function of r1 in fig.(3-1) for K-shell of Li and Be like ions. The shapes for 

distribution functions are approximately the same of the K-shell for Li 

atom and Li- ion or Be atom with Be+ ion and for B+ ion with B++ ion. The 

curves for D(r1) are starting from zero, it means that there is no probability 

to finding the electron at the center of the atom, and then increasing to 

reach the maximum point after that it will decreasing gradually to reach the 

ending point. The maximum points of D(r1) for (Li, Be+, B++) are    

(1.4057, 1.9518, 2.4848) and for (Li-, Be, B+) are (1.4063, 1.9448, 2.4848). 

The different in the maximum points and the ending points with increasing 

the atomic number Z are due to the attraction force of the nucleus.          
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The curve will shrink toward the nucleus when the atomic number Z 

increases, and the peak will increase with decreasing in the broadening 

curve and the ending point, but the area under these curves are the same 

due to the normalization condition. The above results are tabulated in table 

(3-7) for Li-like ions and for Be-like ions. 

 

3.1.2 Total of One-Particle Radial Density Distribution 

Function 

The maximum values of D(r1) increase and the curve shrink toward 

the nucleus by increasing the atomic number Z due to the increase of 

attraction force of the nucleus. The density distribution has two peaks for 

Li-like ions and Be-like ions, one represents the probability of finding the 

electron in K-shell and the other represents the probability of finding the 

electron in L-shell. Table (3-8) shows the maximum points for Li-like ions 

(Li, Be+, B++) and (3-9), (3-10), (3-11) for Be-like ions (Li-, Be, B+). The 

individual shells and the total of the one particle radial density distribution 

are shown in figs.(3-2), (3-3), (3-4) for Li-like ions (Li, Be+, B++) and 

figs.(3-5), (3-6), (3-7) for Be-like ions (Li-, Be, B+), where K-shell have 

one peak which is greater than the peaks of the other shells, and KL-inter 

shells are equal in the values for the same element and of the atom and ions 

of the same atomic number z. For Be-like ions, KL-inter shells and the total 

of the D(r1) are equal in the values, and there are two peaks in L-shell, one 

represents the probability of finding the electron in K-shell and the other 

represents the probability of finding the electron in L-shell.  

Fig.(3-8) shows the comparison of the total one particle radial density 

distribution for Li-like ions, where the maximum value of D(r1) increases 

as the atomic number z increases (i.e. maximum D(r1) for B++ > Be+ > Li). 

Fig.(3-9) shows the comparison of the total one particle radial density 
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distribution for Be-like ions, where the maximum value of D(r1) increases 

as the atomic number z increases (i.e. maximum D(r1) for B+ > Be > Li-). 

Fig.(3-10) shows the comparison of the total one particle radial density 

distribution for Li-like ions and Be-like ions. 

 

3.2 Scattering Form Factor 

3.2.1 General Discussions   

In studying the scattering form factor for K shell and total for three 

and four particle system it can be seen that, the form factor starting at the 

value which equals to the number of electrons at that shell or atom when 

the scattering angle equals to zero. It means that the total scattering 

happened, due to the constructive interference of the x-ray wave lengths 

which is scattered from the electrons, and then gradually decline with 

increasing the scattering angle until to reach the minimum value. The 

slownees in the gradual decline and the minimum values are different from 

one shell to another or from one element to another. The decreasing in the 

values of scattering form factor when the scattering angle is increasing is 

due to the partial destructive interference where the path difference of 

scattered waves from different electrons increases. For the electrons of     

K-shell where the attraction force toward the nucleus is higher than with 

the other electrons, the values of the scattering form factor will be greater 

than of the other shells, and these values increased due to the decreasing in 

the path difference of the scattered waves. For inter shells Kα Lα , Kβ Lα of 

Li like and Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ of Be like, the values of scattering 

form factor after the maximum point will sharply decrease followed by 

curvature and then gradually decline, due to charge distribution at the inter 

shell. Of the electrons of L shell of Be like , where the effective attraction 

force toward the nucleus is lower than of the K shell, so the electrons are 
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far from the nucleus hence the values of the form factor is lower than of the 

K shell. The scattering form factor of the intra shells Kα Kβ ,Lα Lβ are 

similar in behavior of decreasing with increasing the scattering angle, but 

they different from the inter shells Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ where the 

inter shells are similar in behavior of decreasing with increasing angle. 

 

3.2.2 Detailed Discussion 

3.2.2.1 Scattering Form Factor for K-shell 

For any element of Li-like ions and Be-like ions the scattering form factor 

starts from maximum value equal to 2, because there are two electrons in 

the K-shell.  

Li atom and Li- ion: Li atom has three electrons and Li- ion has four 

electrons and they have three protons in their nucleus, but they 

approximately have the same values of scattering form factor due to the 

same charge distribution, where they decrease gradually after the maximum 

point with increase the scattering angle, as shown in fig.(3-11) and table  

(3-12). 

Be atom and Be+ ion: Be atom has four electrons and Be+ ion has three 

electrons and they have four protons in their nucleus, but the values of 

scattering form factor are approximately the same due to the same charge 

distribution, as shown in fig.(3-11) and table (3-12). The gradual decline is 

slowly with increasing the scattering angle in comparison with Li atom and 

Li - ion. 

B+ and B++ ions: B+ ion has four electrons and B++ ion has three electrons 

and they have five protons in their nucleus, but the values of scattering 

form factor are approximately the same due to the same charge distribution, 

as shown in fig.(3-11) and table (3-12).The gradual decline is very slowly 
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with increasing the scattering angle in comparison with the previous 

elements. 

Fig.(3-11) shows the comparison between the atomic form factor for Li-

like and Be-like. 

 

3.2.2.2 Total Scattering Form Factor 

3.2.2.2.a Total Scattering Form Factor for Li-like Ions 

 

Li atom: table (3-13) and fig.(3-12) show the behavior of atomic form 

factor for KαKβ , Kα Lα , Kβ Lα shells and the total of the Li atom. Because 

the curves KL inter shells undergo sharp dropping in the small values of 

scattering angle, so the total scattering form factor will have sharp dropping 

in the small momentum transfers. 

Be+ ion: the values of atomic form factor are presented in table (3-14) and 

fig.(3-13) for the KαKβ , Kα Lα , Kβ Lα shells and total of Be+ ion. The total 

scattering form factor undergos sharp decline in the small values of 

momentum transfers due to the sharp dropping in the curves KL inter 

shells. 

B++ ion: table (3-15) and fig.(3-14) show the behavior of atomic form factor 

for KαKβ , Kα Lα , Kβ Lα shells and the total of the B+ ion. The total 

scattering form factor undergos sharp decline in the small values of 

momentum transfers due to the sharp dropping in the curves KL-inter 

shells. 

Fig.(3-15) shows the comparison between the scattering form factor of Li-

like for (Kα Lα , Kβ Lα), where the behavior of the curve are approximately 

the same for the same element (i.e. for the same element Kα Lα = Kβ Lα).  

Fig.(3-16) shows the comparison between the total scattering form factor 

for Li-like ions, where the gradual decline will be slowly with increasing 
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the scattering angle when the atomic number increases (i.e. after maximum 

point, the values of the total scattering form factor with increasing the 

scattering angle for B++ > Be+ > Li). 

 

3.2.2.2.b Total Scattering Form Factor for Be-Like Ions 

The deference between the Li-like ions and Be-like ions is in the 

number of electrons, in which Li-like ions have three electrons and Be-like 

ions have four electrons. 

Li - ion: fig.(3-17) and table (3-16) show the behavior of atomic form factor 

for KαKβ , Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ ,Lα Lβ shells and the total of the Li- 

ion. Where the values of the inter shells Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ are 

equal because there is no difference between them in distribution of charge. 

Fig.(3-18) shows the effect of the ionization on the total atomic form factor 

for Li atom and Li- ion. Where each curve, starts from the value which is 

equal to the number of electrons and then meet at the form factor = 2.35 

and s = 0.045, after that they have approximately the same values. 

Be atom: fig.(3-19) and table (3-17) show the behavior of atomic form 

factor for KαKβ , Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ ,Lα Lβ shells and the total of 

the Be atom. Where the values of the inter shells Kα Lα , Kβ Lα , Kα Lβ , Kβ 

Lβ are equal because there is no difference between them in distribution of 

charge. 

Fig.(3-20) shows the effect of the ionization on the total atomic form factor 

for Be atom and Be+ ion. Where each curve, starts from the value which is 

equal to the number of electrons and then meet at the form factor = 1.945 

and s = 0.117, after that they have approximately the same values.  

B+ ion: fig.(3-21) and table (3-18) show the behavior of atomic form factor 

for KαKβ , Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ ,Lα Lβ shells and the total of the B+ 

ion. Where the values of the inter shells Kα Lα , Kβ Lα , Kα Lβ , Kβ Lβ are 

equal because there is no difference between them in distribution of charge. 
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Fig.(3-22) shows the effect of the ionization on the total atomic form factor 

for B+ ion and B++ ion. Where each curve, starts from the value which is 

equal to the number of electrons and then meet at the form factor = 1.864 

and s = 0.173, after that they have approximately the same values.  . 

Fig.(3-23) shows the comparison between the scattering form factor of Be-

like ions for Kα Lα , Kβ Lα, Kα Lβ , Kβ Lβ, where the behavior of the curve 

are approximately the same for the same element (i.e. for the same element 

Kα Lα = Kβ Lα = Kα Lβ = Kβ Lβ). 

Fig.(3-24) shows the comparison between the scattering form factor for the 

Lα Lβ shells for Be-like ions, where the gradual decline will be slowly with 

increasing the scattering angle when the atomic number increases. 

Fig.(3-25) shows the comparison between the total scattering form factor 

for Be-like ions, where the gradual decline will be slowly with increasing 

the scattering angle when the atomic number increases (i.e. after maximum 

point, the values of the total scattering form factor with increasing the 

scattering angle for B+ > Be > Li-). 
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Conclusion and Future Works  

4.1 Conclusion 

From all these results we can conclude several important points as: 

1. The values of the scattering form factor for the K-shell of the atom 

and ions of the same atomic number are approximately have the 

same values, and it will be greater than of the other shells. 

2. The values of the scattering form factor for inter shells Kα Lα , Kβ Lα 

for Li-like ions and Kα Lα , Kβ Lα, Kα Lβ , Kβ Lβ for Be-like ions have 

the same results for the same element, and for atom and ions of the  

same atomic number Z. 

3. After (θ = 0) for Li-like ions or Be-like ions the values of the 

scattering form factor are increasing with increasing the atomic 

number Z. 

4. The values of the total scattering form factor will be the same for    

Li atom and Li- ion after f(s)= 2.350 and s= 0.045 

Be atom and Be+ ion after f(s) = 1.945 and s= 0.117 

     B+ ion and B++ ion after f(s) = 1.864 and s=0.173. 

5. The values of the function D(r1) for the K-shell of the atom and ions 

of the same atomic number are approximately have the same values. 

6. The maximum values of the function D(r1) will increase and shrink 

toward the nucleus when the atomic number Z is increase. 

7. The values of the function D(r1) for inter shells Kα Lα , Kβ Lα for Li-

like ions and Kα Lα , Kβ Lα, Kα Lβ , Kβ Lβ for Be-like ions have the 

same results for the same element ,and for atom and ions of the same 

atomic number Z. 

8. For Li-like ions the values of the total one particle radial density 

distribution function are one third of the D(r1) for K-shell of the 

same element. 
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9. For Be-like ions the values of the total one particle radial density 

distribution function are one quarter of the D(r1) for K-shell and 

equal the values of inter shells for the same element. 

 

  4.2 Future Works  

This work can be extended to include other works, for position and      

  momentum space which are not considered such as: 

1. A study of x-ray atomic scattering form factor for K-shell and total 

atom for three and four electron system using configuration-

interaction (CI) wave approximation. 

2. A study of incoherent scattering of x-rays S(s) for K-shell and total 

atom for three and four electron system using HF and CI wave 

approximations. 

3. A study the total differential incoherent scattering cross section dσinc 

of x-rays using HF and CI approximations. 

4. A study the nuclear magnetic shielding constant, connected with     

x-ray scattering factor for three and four electron system. 

5. A study the differential cross section dσel for the elastic scattering of 

electrons by electrons using HF and CI approximations. 

 



 I

 

Abstract 

 

The partitioning technique has been used to analyze the three and 

four electron systems into three-pairs electronic wave functions for       

Li-like ions (Li, Be+, B++) and six-pairs electronic wave functions for Be-

like ions (Li-, Be, B+) by using Hartree-Fock wave functions of Clementi 

and Rotti. 

 

In this work the atomic scattering factor f(s) for K-shell and total 

atom for three and four electron systems are studied. The physical 

importance of this factor appears in its relation with the several important 

atomic properties such as, the coherent scattering intensity, the total 

scattering intensity, the incoherent scattering function, the coherent 

scattering cross section, the total incoherent cross section, the nuclear 

magnetic shielding constant, the differential cross section of electrons 

scattering from atom and the geometrical structure factor. Also the one 

particle radial density distribution function D(r) has been studied, where 

the atomic scattering factor f(s) is the Fourier transform of the electron 

density ρ(r1) and 2
111 4 r)r()r(D πρ= . The accuracy of results was 

checked by determining the total energy. All results are calculated in 

atomic units.  
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Symbol                                         Meaning 

a Bohr radius 

CI Configuration interaction 

ci Constant 

inchdσ  Total incoherent scattering cross section 

Ωd  Solid – angle element 

)(Sf  Coherent atomic form factor 

h Planck’s constant 

H F Hartree-Fock 

h k l Miller indices 

lcI  Classical intensity 

ThI  Thomson cross section 

l  Angular momentum quantum number 

em  Electron mass 

l
m  Magnetic quantum number 

R( r ) Radial function  

R H F Roothaan-Hartree-Fock 

0r  Classical electron radius 

r12 Electron-electron distance 

S(S) Incoherent atomic form function 

SCF Self-consistent field 

S  Momentum transfer  

)(ΩΥ  Spherical harmonic (angular factor) 

Z Atomic number 

),( 21Γ  two – electron density matrix 

α  Spin up 

β  Spin down 
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ζ  Orbital exponents 

λ  Wavelength 

ν  Frequency 

msξ  Spin function 

hcoσ  Coherent scattering cross section 

dσ  Nuclear magnetic shielding constant 

le
σ  Elastic scattering cross section of electron by an atom 

ψ  Wave function 
*ψ  Complex wave function 
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