Appendix 1

Al
DERIVATION OF THE X-RAY FORM FACTOR

An X-ray beam is incident in the direction definbyg the unit
vector s,. We shall consider radiation scattered in thectioa defined

by the unit vector [7]
The path difference between the rays is:

OR-QP =r.S-r.§ .. (A.1-1)
Phase difference 2/]_nx path difference

Where A is the wavelength of the incident radiation
Then

) .. (A1-2)

wn

Phase difference 27ﬂr‘.( 5-

Hence the scattered amplitude from an elemdfitof electron

density p(r) is given by:

27, o
Scattered amplitude p(r)e’  dr .. (A1-3)
= p(r)e" dr ... (A.1-4)
2 d=s-5,

Wherek = — ,
A

Thus, the total scattered amplitude is obtainedhtsgration over
the whole electron density distribution as:

Total scattered amplitude j o(r)e* dr ... (A.1-5)
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Appendix 1

Let us write the atomic scattering factd(s)from an electron
distribution of densityo(r )ass=kd

For closed shell atoma(r) is spherically symmetrical.
The angular integrations can then be performedpbsscal polar
coordinates,d,¢.

Then the volume element become&dr sné&d@d¢, and since

sr = srcos@ we can integrate overfrom O to 272to obtain.

f(s)=27]r*p(r )dr [e*=** sn@dd .. (A1-6)

The integration ovét can be carried out, with the result

()= [ S5 pfr Yo A1)
Butp(r)4n2:D(r) .. (A8)
Then
f(S)=TD(r)Sinsrdr .. (A.1-9)
0 Sr

v

Fig.(A.1-1)x-ray scattering
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The solution of equation (A.1-9) by mathematicalgsis is:
For K-shell

D(r)=> > NN e @ apnm ... (A.1-10)
]
sin(sr)=sr—(sr) +(sr) _ .. (A.1-11)
3 5!
By substituting equation (A.1-11) and (A.1-10) guation (A.1-9)
o Sr- (sr) + (&) _ .
f(s):I{ZZcicjNiNje“‘*“’r‘”‘*“")} 3 . S dr
oL i ]
.. (A.1-12)
xzz_‘,z:cichiNj ... (A.1-13)
m={ +{, .. (A.1-14)
p=n+n ... (A.1-15)

_Foeamegq _(S1)° ()
f(s)-x{re (1 3 + g Ydr

0 SZ S4
= xf [r Pe™ — = P2 ™ + = P }dr
0 3 St

_ P _s(p+2)! s (p+4)
mrt 3 mee 5 mP*®
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. 2(k))! 524
f(S)=xLZ:(;(—1) (é(i;+(1)!):ni2<k>ﬂ} ... (A.1-16)

B o (n, +n, +2(k)) 52
f(s) —ZZ}:C.C]N.N,LO( 1) (2(k)+1)!(5i +Zj)ni+nj+z(k)+1

.. (A.1-17)
The total scattering form factor is given by:
For Li-like ions
F(S)ou ={I DT(n)Sm(Srl)drl} ... (A.1-18)
0 S

D (1,) = 3 [Dracs (1) + Dy (1) + Dy (1)

» (n+n +2(p)ps
f(s)= ZZZCC NN |:p2;)( 1) (2(k()+1)!(Z *(_Z)))n+n,+z(p)+1}

+szdNN{Z( pr_nen r2p))st D

= (2(k)+1)'(5 +Z) +2(p)+l

... (A.1-19)

For Be-like ions

f(S)uw =4{I D, (r,) Sinérsrl ) drl} ... (A.1-20)

1
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(1) = D1+ Do (1) * D (1) Do)+ Dy (5) + D1, )

@+n+ﬂ@)M) }
(Ak)+)(g +¢, )

n+n+ﬂ@)“)
2 (2(k)+1)' (¢ +¢, )

f(s)= BZZCCNN[ (-2)°

p=

+3) > dd NN,
i

]

.. (A1-21)
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Appendix 2

A.2
DERIVATIONS THE TWO-PARTICLE DENSITY 7. (12)

FOR KKy, KoL, , KLy, KoLy, KoLy and, L,L,

The two-particle density function, . (12)for the individual shells for Li-

Like ions can be written as [51]:

r(12)=23 A

i<j

And for Be-like ions can be written as:

r12)=2Y AA

i<]j

i j I, (12) Shell
1 2 r,(12) K,K,
1 3 I:(12) KL
2 3 r(12) K,L,
1 4 I.(12) K,L,
2 4 ra(12) KL,
3 4 r.(12) LL,
A =¢(1)¢(2)-¢,(1)e(2) AR1)

In this work A =A, due to the S-state symmetry.
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(1) KK, Shell:

r(12)=>laWe(2)- a0a2)f (A22)

o= S0, (0aR.(2)A2) - 2. (DAVR(2)a(2) (A2
Since :

¢1s(1) = Rls (1)Yls(1)

$..(2)=R.(2)Y.(2) ...(A.2.5)

After integrated over all spins in equation (A)Zad substituted
equation (A.2.5) into (A.2.4) we get:

I (spinlesg =[R (1Y (LR, (2. (2)) ...(A.2.6)

now we can integrate over all angular part to get:

M, (12)=R, (1R, (2) s

(2) K,L, Shell:

ru12)=[aWe(2) - ea@) A28

ru(12)=2[4.(Va(¢..(2)a(2) - 4. (Da(Dp. (2)a2)
(A.2.9)
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¢1s(1)¢25( 2) - ¢25 (1)¢1s( 2)
NG

I(12)= [0(1)0(2)]2[ } ...(A.2.10)

since

#..(1) = R(1)¥, (1)

¢.(2) = R(2).(2)

..(A.2.11)
9,,(1) = R (1)Y,,(1)

#,.(2) = R (2)V,((2)]

And
[a(1)B(1)do =0
[a()a(1)do =1
[B(Da(1)do =0

[ B(1)A(L)do =1 (A2.12)

by substituted the equation (A.2.11) into (A.2.10)d integrated over all

spins using equation (A.2.12) we get:

ri(spinless =~ [R.(1N (LR, (2),.(2) - R. (1N, (1R.(2), ()]

(A.2.13)

Since

Y. .(6,0)=Y,(6,¢) . (A2.14)

ri12)=_[%.@r. (I [R(LR.(2)-R.AR.(2]
...(A.2.15)

Now we can integrate over all the angular parhst we can get:
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[R(AR.(2)-R,(LR,(2)
Flg(lZ){ 7 } ..(A.2.16)
r'02) = S [ROR.@ + R ORL@
- 2R, ()R, )R, DR (2)]
(A.2.17)
(3) K,L, Shell:
ra(12)=-[pWe(2) - e e 2)] (A218)

[,4(12)= % [4..(1)B(1),.(2)a(2) - ¢,.(La(1)p,.(2)3(2))}
(A.2.19)

By substituted equation (A.2.11) into (A.2.19) anegrated over all spins
using equation (A.2.12) we get:

ri(spinlesy = [RL(L)V: (LR (2 )V (2) + RLLNA(LRL(2 )i (2)

...(A.2.20)

Using eq.(A.2.14) and integrate over all angulat fmaget:

ra12) =2 [RRL2)+ RUORAD)] a2z

(4) K, L, shell
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r(12)=2laWe(2)- aLa)] (A2.22)

(12)=2[6. (a4, (2)8(2) - 4. (DAL (2a(2)]
(A.2.23)

By substituting equation (A.2.11) into (A.2.23) antegrated over all

spins using equation (A.2.12) we get:
I.(spinless :%[Ri(l)Yé(l)Ri(Z Y2(2)+ RA(ANA(LRE(2 )Y (2)]

(A.2.24)

using equation (A.2.14) and integrate over all dagpart to get:

r.(12)= [ROR(2)+RAR(2)] 229

(5) K ,L, Shell:
r.(12)="lg(1e(2) - g.e(2)f (A2.26)

(12)=2 [ (VAW (2)8(2) - 4. (DALY, (2)A2)]

(A.2.27)
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By substituting equation (A.2.11) into (A.2.27) antegrated over all

spins using equation (A.2.12) we get:

ri(spinlesy = [RE (LI (LRE (2 VE(2) + RE(LV(LRL(2 NE(2)]

.(A.2.28)

using equation (A.2.14) and integrate over all dagpart to get:

I (12) =%[R1";(1)R225(2)+ RZ(1)R2(2)
~2R, (1R, (1)R,,(2)R.(2)] .(A.2.29)

(6) L, L, shell:

r.(12)=3leawe2)- e e 2)f (A230

F(12) =218, (Da()e..(2)A(2) - 2. (VAL (2)a(2)]

.(A.2.31)

Since :

.(D)=R, (1))

..(A32)

?..(2)=R,(2),(2)
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After integrated over all spins in equation (AD.and substituted
equation (A.2.32) into (A.2.31) we get:

. (spinlesg =[R (LN, (LR (2),.(2)]  --(A233)

now we can integrate over all angular part to get:

I.,(12)= R (1R, (2) ..(A.2.34)
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Chapter Three Sfigures
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Figure (3-1) variation of one particle radial deies for the K-shell of
Li-like ions (Li, B€", B™) and Be-like ions (Lj Be, B).
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Figure (3-2) variation of the individual shells atiie total of the one

particle radial density for the Li atom.
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Figure (3-3) variation of the individual shells atiie total of the one

particle radial density for the Béon.
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Figure (3-4) variation of the individual shells atiie total of the one

particle radial density for the'Bion.
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D(r)

Figure (3-5) variation of the individual shells atiie total of the one

particle radial density for the Lion.
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Figure (3-6) variation of the indiviuual shells attie total of the one

particle radial density for the Be atom.
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Figure (3-7) variation of the individual shells atiie total of the one

particle radial density for the'Bon.
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Figure (3-8) variation of the wial one particlelied densities of Li-like
ions (Li, B€, B™).
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1.5 I

D(r)

Figure (3-9) variation of the totar one particlelied densities of Be-like
ions (Li, Be, B).
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D(r)

0.5

Figure (3-10) variation of the total one particélial densities of Li-like
ions (Li, B€, B™) and for Be-like ions (Lj Be, B).
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25 T

f(9)

Figure (3-11) variation of scattering form factoitlws for the K-shell of
Li-like ions (Li, B€", B™") and Be-like ions (Lj Be, B).

f(s)

Figure (3-12) variation of the individual shellsdathe total scattering form

factors with s for Li atom.
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CH — Kl

Figure (3-13) variation of the individual shellsdathe total scattering form

factors with s for Beion.

f(s)

Figure (3-14) variation of the individual shellsdathe total scattering form
factors with s for B ion.
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f(9)

0.5 1 1.5

Figure (3-15) variation of the inter shells scattgrform factor with s for
Li-like ions (Li, B€", B™).

f(s)

Figure (3-16) variation of the total scatteringriofactor with s of Li-like
ions (Li, B€, B™).
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fls) 2

Inter shells
l. Lp

Figure (3-17) variation of the individual shellsdathe total scattering form

factors with s for Liion.

f(9)

Figure (3-18) variation of the total scatteringnfiofactor with s for Li atom

and Li ion.
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Figure (3-19) variation of the individual shellsdathe total scattering form

factors with s for Be ion.

f(9)

Figure (3-20) variation of the total scatteringnfoiactor with s for Be atom
and Bé ion.
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Figure (3-21) variation of the individual shellsdatie total scattering form

factors with s for Bion.

f(s)

Figure (3-22) variation of the total scatteringnfofactor with s for B ion

and B™ ion.
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25 | |

f(9)

Figure (3-23) variation of the inter shells scattgrform factor with s for
Be-like ions (Li, Be, B).
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Figure (3-24) variation of L L shells scattering form factor with s for Be-
like ions (Li, Be, B).
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f(9)

Figure (3-25) variation of the total scatteringnfofactor with s of Be-like
ions (Li, Be, B).
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Chapter Three

Tables

Table (3-1) datafor Li atom.[53]

LEi

n l 4 Cis Cas

1 0 4.3069 0.141279 -0.022416
1 0 2.4573 0.874231 -0.135791
3 0 6.7850 -0.005201 0.000389
2 0 7.4527 -0.002307 -0.000068
2 0 1.8504 0.006985 -0.076544
2 0 0.7667 -0.000305 0.340542
2 0 0.6364 0.000760 0.715708

Table (3-2) datafor Be" ion.[47 ]

Be'

n ¢ Z Cls CZs

1 0 4.0 091711 -0.19922
3 0 1.081 -0.00129 0.00045
3 0 4.68 0.07960 -0.01081
3 0 3.40 0.04314 0.00728
3 0 1.97 -0.00331 0.42943
3 0 131 0.00178 0.61599

Table (3-3) datafor B™ ion.[47 ]

B+
- |
n 4 4 Ci Cos
1 0 5.0 0.93299 -0.23270
3 0 12.0 -0.00151 0.00050
3 0 5.97 0.06390 -0.00787
3 0 4.28 0.03661 0.00451
3 0 2.70 0.00409 0.42344
3 0 1.863 0.00192 0.62350




Chapter Three

Tables

Table (3-4) datafor Be atom.[53]

Be

n 14 4 Cis Cys

1 0 5.7531 0.285107 -0.016378
1 0 3.7156 0.474813 -0.155066
3 0 9.9670 -0.001620 0.000426
3 0 3.7128 0.052852 -0.059234
2 0 4.4661 0.243499 -0.031925
2 0 1.2919 0.000106 0.387968
2 0 0.8555 -0.000032 0.685674

Table (3-5) datafor B* ion.[56]

B+
e

n 14 4 Cis Cos
1 0 4.42994 0.92801 -0.20288
1 0 7.86336 0.08063 -0.01942
2 0 1.58241 0.0032 0.7349
2 0 4.01022 -0.00081 -0.09218
2 0 1.25021 -0.00198 0.34527

Table (3-6) datafor Liion.[56 ]

Li’

n ¢ Z Cls CZs

1 0 247472 0.89760 -0.10034
1 0 4.69209 0.11212 -0.01100
2 0 0.26763 -0.00003 0.39768
2 0 0.53399 0.00016 0.56089
2 0 1.01192 -0.00108 0.20478
2 0 1.66285 0.00750 -0.07906
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Chapter Three Tables

Table (3-7) the maximum and the locations of one particle radia density
distribution for the K-shell for Li-like ions (Li, B€", B™) and Be-like ions
(Li", Be, BY).

] el |

Table (3-8) the maximum and the locations of one particle radia density
distribution for theindividual shells and total of Li-likeions (Li, Be', B™).

1.4057
0.71658
0.13687
0.71658
0.13687
0.94629

0.091246

1.9518
1.0112
0.242
1.0112
0.242
1.3247
0.16133

2.4872
1.3014
0.34302
1.3014
0.34302
1.6967
0.22868
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Table (3-9) the maximum and the locations of one particle radia density
distribution for the individual shells and total of Li" ion.

Shell D(r;) Maximum Location

1.4063
0.70977
0.084794
0.70977
0.084794
0.70977
0.084794
0.70977
0.084794
0.013881
0.16958
0.70977
0.084794
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Table (3-10) the maximum and the locations of one particle radial density
distribution for the individua shells and total of Be atom.

Shell D(ry) Maximum L ocation

1.9448
0.99711
0.1982
0.99711
0.1982
0.99711
0.1982
0.99711
0.1982
0.053109
0.39593
0.99711
0.1982
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Table (3-11) the maximum and the locations of one particle radial density
distribution for the individual shells and total of B” ion.

Shell D(ry) Maximum L ocation

2.4848
1.2888
0.30138
1.2888
0.30138
1.2888
0.30138
1.2888
0.30138
0.09976
0.60103
1.2888
0.30138
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Table (3-12) scattering form factor for the K-shell of Li-like ions (Li, Be",
B™) and for Be-likeions (Li", Be, BY).

f(SindiA)
] R R
: 2 2 2 2 2 2

1.3208 §1.5937 §1.7371§1.3211 §1.5897

0.5617 §0.9189 1.1918 §0.5619 §0.9160

0.2333§0.4763 0.7279§0.2334 §0.4747

0.1060 §0.2491 §0.4309 §0.1060 §0.2485

0.0531 §0.1366 §0.2581 §0.0531 §0.1364

* ref [33]
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Table (3-13) scattering form factor of the total and the individual shells for
the Li atom.

f(SindiA)
: 2 2 2 3

Table (3-14) scattering form factor of the total and the individual shells for

the for the Be" ion.

f(SindIA)
: 2 2 2 3

41



Chapter Three Tables

Table (3-15) scattering form factor of the total and the individual shells for

the for the B™ ion.

f(sindl))
: 2 2 2 3

Table (3-16) scattering form factor of the total and the individual shells for
thefor the Li ion.

: 2 2 2 2 2 2 4
0.6626 §0.6626 0.6626 §0.0040
0.2845 1 0.2845 0.2845§0.0070
0.1182 §0.1182 0.1182 §0.0030

0.0536 §0.0536 0.0536 §0.0012
0.0266 §0.0266 0.0266 §0.0002
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Table (3-17) scattering form factor of the total and the individual shells for
the for the Be atom.

f(sindi2)
R KL KL KL | | To |
. 2 2 2 2 2 2 4

0.777340.7773 -0.0351 j§1.5546

0.4709 §0.4709
0.2460 §0.2460
0.1288 §0.1288
0.0707 §0.0707 0.00495§0.1414

Table (3-18) scattering form factor of the total and the individual shells for

the for the B™ ion.

f(sinol))
a INB a o p Lo a =P pLp a =p
: 2 2 2 2 2 2 4

-0.0085 §§1.7228
0.0216 §1.2119
0.0353 §0.7629
0.0234 §0.4542
0.01410 §0.2722
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Table (3-19) Comparison the total energy.

I T

-1.4327 -1.4327
-14.277 -14.277

-23.37 -23.37
-7.428 -1.42
-14.5730 -14.5730
-24.237 -24.237




Chapter one Introduction and historical Review

1.1 Mechanism of x-ray Production

Many of electrons that strike matter do nothingcspeular at all. Most
of them undergo glancing collisions with the pdescof the matter, and in
the course of these collisions the electrons loss energy a little at a time
and thus merely increase the average kinetic engrgjye particles in the
material. The result is that the temperature of theet material is
Increased. It is found that most of the energyhefdlectron beam goes into
heating the target. Some of the bombarding elestroake solid hits and
lose most or all of their energy in just one codiis These electrons are
rapidly decelerated. When an electron loses a lamgeunt of energy by
being decelerated, an energetic pulse of electroetag radiation is
produced. This is an inverse photoelectric effectwhich an electron
produces a photon. It is found that electrons @iven energy produce
x-ray photons with a certain maximum energy. Boffleats confirm the

guantum view of radiation.

Looking at the collision process more closely, heere it is found
another very important kind of collision energy lkeange. The bombarding
electron may also give energy to electrons bounth¢otarget atoms. If
these atomic electrons are freed from their horamstions are produced.
Since x-ray producing electrons have energies ef ahder of many
thousands of electrons volts, it is very easy fmant to produce ions by
removing outer electrons. x-ray producing electnoay also have enough
energy to produce ions by removing inner electrioos the atom, even
down to the inner most or K-shell. Such an ion &ésw-energy hole in its
electronic structure, and this vacancy is promptlgd when one of its
electrons in a higher energy state falls to this-émergy level. When an
outer electron falls into such a vacancy, it wddiate a photon of this

energy. Such photons are in the x-ray region anve aave lengths which
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are fractions of angstroms. This mechanism, whiccoants for a
significant part of x-ray production, produces ygdaving particular wave

lengths which are characteristic of the target mealtg1]

1.2 The Scattering

When an electromagnetic wave impinges on a smdly abe charged
particles within the body experience forces dutheowave fields and are
set into oscillatory motion. They therefore radjateaccordance with the
oscillating multipole moments set up in the bodgeTesult is that energy
Is extracted from the incident wave and sent outsome angular
distribution over the entirdn solid angle around the body. This is called

scattering. [2]

1.3 Scattering of x-rays

When abeam of x-rays passes through a substamcelgittrons in this
substance are set into vibration and radiate x-nayall directions. The
radiation emitted by these electrons is called tecad or secondary

radiation. [3]

1.4 The x-ray Form Factor

Atoms are not mere mathematical points in spacepbssess finite
sizes which are of the same magnitude as the xvease lengths used in
diffraction studies. Moreover, the electrons areead throughout the
volume of the atom, with the result that not alltikeém can be expected to

scatter in phase.

Consider Figure (1-1) in which, for simplicity, tieéectrons are shown
as points arranged around the central nucleus.widwe scattered in the
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forward direction by electrons A and B are exattlphase on a wave front
such as XX', because each wave has traveled the d@tance before

scattering.

The other scattered waves shown in the figure, kiewéave a path
difference equal to (CB-AD) and thus somewhat dyth@ase along a wave
front such as YY', the path difference being ldssntone wave length
[4,5]. Partial interference occurs between the wsoadtered by A and B,
with the result that the net amplitude of the wagattered in this directions
Is less than that of the wave scattered by the sd@wtrons in the forward

direction.

Figure (1-1) X-ray scattering by an atom [5]

A quantity f(s), the atomic scattering factors, is used to descitie
"efficiency” of scattering of a given atom in a givdirection, which is

defined as a ratio of amplitudes [5,6]
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Amplitude of the wave scattered by an atom
Amplitude of the wave scattered by one electron

. (1-1)

From what has been said already, it is clear th@ equal to the
number of electros for any atom scattering in thevéard direction.

For the scattering angleincreases, however, the waves scattered by
individual electrons become more and more out oasphand f(s)

decreases.

The atomic scattering factor depends also on theeviengths of the
incident beam:
As a fixed value 06, f(s) will be smaller for the shorter wave lengths, sinc
the path differences will be larger relative to thiave length, leading to

greater interference between the scattered beams.

The scattering factor is sometimes called the féaator, because it
depends on the way in which the electrons areiloiged around the
nucleus.

Mathematically, the relation of x-ray form factffs) to the electron
distribution functionD(r) in the atom is expressed by the formula (see
appendix 1) [5]:

f(s)= J'D( )S”“‘”Blr . (1-2)

Where: 476 is called the momentum transfets'rzr—Sr is the spherical

Bessel function of zero order [7], asd Sin%

Since:
_ sinx
Jn X”( O )”(—) L (1-3)
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The form factor f(s) is related to the incoherent scattering function
S(s) by the following relationship [8]:

sinsty, 4 .. (1-4)

S(s)= N+2]f(r12) 2| f(s)

Where f(r,)is the electron-electron distribution function feach shell,

andN is the atomic charge.

In solids, the calculations of x-ray scatteringtéas have always been
based on the assumption that the total charge tgtezem be approximated
as a sum of atomic charge distributions on eadhcdasite. The total

scattering factof(s) is then a sum of atomic scattering factofs

multiplied by appropriate phase factors:

f(S)DZn fne—iS.Fn ---(1'5)
WhereS is a reciprocal lattice vector amgthe position of the nth atom in

the unit cell [8].

1 .5 Physical | mportance of Atomic Form Factor
The functionsf ('s)and S( s ) play important role in the theory of

scattering of x-rays and electrons by atoms as\d|

1- The total incoherent scattering cross sectigp of the photon by an
atom [9, 10].
O = r ?(1+co6)°2S(s) ... (1-6)

2- The differential cross—sectlo%IE for the elastic scattering of electrons

by an atom.
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doy _ 43, |, _ ¢ (17
o (ka0)4|z f(s)| (1-7)

Wherea, =7* / me* is the Bohr radius.

In this case, We may interpré{s)as representing the effective shielding
of the nuclear charge Z [9].

3- The nuclear magnetic shielding constapf11,12].

2 ©

2a [f(s)ds ...(1-8)

0-:
¢ 3T

2
Where:a ::— Is the fine structure constant and it is equal to
c

(7.297353*10) [13].
4- The coherent scattering intensity, which is reldatethe square absolute
form factor as:[14,15,16]

Icoh —‘f(s)‘z (1-9)

IcI

where:
|, is the classical expression for total intensityaafiation scattered by
a free electron initially at rest.

5- The total scattering intensity, which is relatedtih@ square absolute

form factor and incoherent scattering function g4

ot — S( S) + ‘f ( S )‘2 ...(1-10)
6- The differential cross-sectio%j%of electrons summed over all

inelastic collisions with an atom , when the momemtof the incident

electron is very large compared to the momentunstex ,is [9]:

do,
— ™ —45%/(ka. )*Z .. (1-11)
=44, )' 289
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7- The Geometrical structure factof hkl ) which is related with the form

factor by:
F(h)=3 f(s)e T (112
- e -
Where: ( ) ; (S)

@, Is the phase difference, afitkl) is called Miller indices

To summarize, when a monochromatic beam of x-raxfees an atom,
two scattering process occur. Tightly bound elewroare set into
oscillation and radiate x-rays of the same wavdleag that of the incident
beam. More loosely bound electrons scatter path®fincident beam and

slightly increase its wavelength in the process.

1.6 Historical Review

Freeman andWood (1958) calculated an atomic scattering factor for
iron by using self consistent field wave functigh8].

Slverman and Obta (1962) have derived two sum rules relating
coherent x-ray scattering data to the diamagneitoterar shielding constant
and to the self-energy of the charge distributibthe scattering [19].

Rusal and Tiwari (1963) calculate the nuclear magnetic shielding
constants and x-ray atomic scattering factor foo,twhree, and four
electron systems using the best analytical selistent field functions of
Roothaan, Sachs, and Weiss, and compared the edpaatues with the
ones already published [20].

Chipman and Jennings (1963) have calculated the atomic scattering
factor of Ne, Ar, Kr, and Xe by using Hartree- Kowave function and
compared the results with the experimental val@és [

Bartell and Gavin (1964) have studied the effects of electron

correlation in x-ray and electron diffraction frahme comparison of elastic
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and inelastic scattering factors, which were caad from Hartree-Fock
wave functions and from wave functions explicitiycluding electron
correlation [22].

Bartell and Gavin (1965) have calculated the electron-electron and
electron-nuclear radial distribution function #f,,) and D(r) for ground
states of helium like systems (Z=2 to 8) by usimgrelated and un
correlated wave functions published by Roothaaraletand calculated
elastic and inelastic scattering factors [16].

Chattar and Svamy (1966) have estimated the relativistic effects in
X-ray scattering form factors from Xenon and cormeplathe results with
Hartree-Fock values and experimental measurem28ajs [

Frank and Arlinghaus (1967) have calculated the crystal charge
density for copper and aluminum and used it to timel scattering factors
by using the augmented-plain-wave method. Thederaevere compared
with those determined from Hartree-Fock atomic walitons [24].

Banyard (1968) has analyzed and compared five wave funstior H
, and he studied the two-particle radial denBifg1,r2)and the one particle
radial densityD(r1) for the coherent x-ray scattering contributigs) and
the <r*> where -2 <k <2 [25].

Kimandlnokuti (1968) have calculated the atomic form factor drel t
incoherent-scattering function of the helium atoronf several wave
functions of differing accuracies. The form factoalculated from the
Hartree-Fock wave function is in very close agresnwath that from the
20-term Hylleraas wave function for all values lo¢ imomentum transfer.
The incoherent-scattering calculated from the datee wave functions,
gives values at small momentum transfers, apprarim®% lower than
that of the Hartree-Fock wave function [9].

Banyard and Baker (1969) have studied the electron correlation in an

Iso electronic series possessing electrons withpamallel spinsH ~, He,
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andLi’. They have used three wave functions, two introduareelation,

one by configuration interaction, the other by uthg Hylleraas-type
correlation factors and the third function was loasa the Hartree-Fock
approach. The correlation within the wave functisndemonstrated by
presenting two-particle density difference maii3(r1,r2) relative to the
uncorrelated approach, and graphs of the radiadiyed(r).

The coherent x-ray scattering contributifis), and < r"> results are
compared throughout with those from a more accwates function [26].

Benesch and Smith (1970) determined correlated x-ray scattering
factors for theé’S ground state of the Lithium atom and correlatedtson
scattering amplitudes are also obtained with infilseBohr approximation.
For purposes of comparison, scattering factors wenguted from various
independent particle model wave functions [15].

Brown (1970) calculated the atomic form factors and herent-
scattering functions for helium isoelectric sequeticrough Z=10 with
correlated ground-state wave functions. The resglsnpared with
published accurate calculations for helium [27].

Brown (1971) calculated the atomic form factors and Ierent-
scattering functions for the lithium and berylliuisoelectric sequence
through Z=8 with correlated ground-state wave fioms [28].

Sngh andSmith (1971) studied the convergence of the Z-1 expansion
of the nuclear magnetic shielding constaaind the x-ray form factofs)
within the Hartree-Fock approximation for the grdwstate of two-, three-,
four- electrons of atoms and ions [29].

Benesch et al (1972) have studied the convergence of the Z-1
expansion of the nuclear magnetic shielding constad the x-ray form
factor f(s) and total scattered x-ray intensities from exglictorrelated
wave functions and then applied to such wave fonatecently constructed

for the ground state of He-like ions from tHrough Md*° [30].
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Thakkar andSmith (1978) have derived the integral formula necessary
to compute x-ray intensities from explicitly coattd wave functions and
then applied to such wave function recently corséd for the ground state
of He-like ions from Hthrough Md™ [14].

Pucci andMarch (1982) have calculated the scattering form fat{®r
for x-ray from atomic ions with atomic ions withaslksed shells and the
<r">where -X n< 2 for the Ar, Kr, Xe and Kn [31].

Oxley and Allen (2000) calculated the atomic scattering factors for
K-shell ionization for elements in the range Z=@abn) to Z=50 (Tin)
and for L-shell ionization in the range Z=20 (cahli) to Z=60
(Neodymium). The calculations are based on redtty Hartree-Fock
wave functions for the atomic bound states and reletElater wave
functions. The results are presented in tabulamfeuch that accurate
values of the scattering factors can be obtained chpic spline
interpolation for incident electron energies betw&6 and 400 KeV [32].

Mohamed Nasr (2004) calculated the x-ray scattering factordiased

shell atoms for He-like ions (He, .iBe’* and B") and Li- like ions
(Li, Be* and B") using Hartree Fock wave function (uncorrelated)
published by Clementi and Rotti (1974) and Confaglan interaction wave
function (correlated) published by Weiss (1961)][33

1.7 The aim of thiswork

The research aims are to study and evaluate tlagsxform factor
for K-shell and total atom for Li-like ions (Li, BeB*) and also for
Be-like ions (Be, Li B) using the uncorrelated wave function by Hartree-
Fock of Clementi and Rotti. The importance of thentioned factor is due

to its relation with many important atomic propesti
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2.1 The Single Electron Atom

By the early 1900's it had become clear that cdat®lectrodynamics
was inadequate to account for the behavior of eithe electromagnetic
field or of elementary particles. In 1900 Max Plahad shown in his study
of black-body radiation that it is necessary to rgize the energy of
electromagnetism in order to avoid the "ultra-viatatastrophe”, and he
introduced the fundamental constant h. In 1905 tEinsmade the even
more radical proposal that in some respects el@cgnetic wave energy
propagates as if it consists of small packets (@)t with many of the
characteristics of particles, with each photon hgan energy E related to

the wave frequency by E = v.

In 1913 Niels Bohr developed a new representatidheohydrogen by
combining classical concepts with a few additiopaktulates that were
suggested by the nascent quantum concepts of P&ntlEinstein. First,
he assumed that the angular momentum of an electrorbit around the
nucleus must be an integer multiple f(Planck's constant h divided by
2m). It follows that only a certain set of discreteeggy levels may occur.
Second, he assumed that an electron radiates eoelgwhen it makes a
transition from one stable orbit to another of lovemergy. IfAE is the
difference in energy levels, then he assumed tretransition resulted in
the emission of a photon with this amount of engeqd hence with the
frequencyv = AE/h in accord with Einstein's postulate. Armed viliese
postulates, Bohr reasoned that an electron of massbiting a proton (of

much greater mass) at radius r would satisfy thssotal force balance.

A somewhat plausible justification for Bohr's quaation postulate

came in 1924 when Louis de Broglie developed tlea ithat particles of

AR
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matter on the smallest scale exhibit wave-like props, analogous to
Einstein's suggestion that electro-magnetic wavesiba particle-like
properties. The de Broglie wavelength for the nmiattave corresponding

to a particle with momentum p As= h/p.

However, despite the plausibility of this approagbhr's model of the
hydrogen atom, even with de Broglie's justificatimmd with subsequent
refinements by Sommerfeld, is now considered olspleaving been
superceded by a more thorough-going wave mechdaissoped by Erwin
Schrddinger in 1925. (This new theory was subsefyuestmown to be
essentially identical to the "matrix mechanics" eleped by Werner
Heisenberg in 1924.).

Schrodinger's wave mechanics postulates that aicfaartis
characterized by a complex-valued wave functr,y,z,t)whose squared
norm at any point equals the probability densitythe particle to be found
at that point. (The probability interpretation aftBddinger’s wave function
was first proposed by Max Born.) In addition, Schn@jer postulated that,
in a region where there is a potential fi®lgk,y,z,t) the wave functiort¥ of

a particle is governed by the equation

2 2 2 2
h al,zu+al,zu+al,zu +Vl/J=iha—l’U .. (2-1)
2m| ox ay 0z ot

It's possible to give a plausibility argument fobistequation, but here
we will just take it as given. If we express theatsgl Laplacian (the
guantity in the square brackets) in terms of potardinates and consider

just the radial part, this equation is

VY
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_i{%i(rZMH +V(r,t)w(r,t)=ihaw—(r’t) .. (2-2)
2m| r* or or ot

One expression of the Pauli Exclusion Principlethat (no two
electrons in the same atom can be in the same wuastate). This means
that no two electrons can have the same set oftguorastates of energy,
angular momentum magnitude, angular momentum @tiem; and

orientation of intrinsic spin.

Pauli's Principle is based on the fact that any ¢nwen electrons are
indistinguishable from one another and thus chandhe designations
between two or more electrons in different quanstates should have no
observable effect. Furthermore, in describing ta@evfunction of an atom,
which is the product of the wave functions of timelividual electrons.
Quantum Physics mandates that the wave functi@if igsf the atom or
electron) is also not observable. On the other hdresquared magnitude
of the atom's wave function is observable, i.e. abdgp of being
experimentally measured. Inasmuch as taking a squat of the squared
magnitude of any given wave function will yield &g (+) or minus (-)
sign, the wave function of an atom or elementartigla can either be
symmetric with respect to exchanging the designations of wfoits

constituent parts (the + sign), amti-symmetric (the - sign).

The Pauli Exclusion Principle then specifies thevevdunctions of
1 . .
electrons, protons and other so-called spgq particles to be anti-

symmetric. Thus when two electron designationssanéched in the same
atom or molecule, the total wave function of thenaor molecule changes
sign [1,2].

VY
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2.2 The Hartree and Hartree-Fock Approximation

In 1928 Hartree assumed that each electron mov&sciman averaged
potential arising from the nucleus and the othectebns, and solved
Schrddinger's equation for an electron moving iat thotential [34]. He
chose the wave function of the desired quantum rurmbthat potential
and assumed that this wave function is producenh ffee product of one

particle wave function for N-electrons system, i.e.
¢(123..N)=2,(1)0,(2)2,(3).. 2, (N) - (2-3)

Where @;(i) depend on the space and spin coordinates of @heictr
One major source of difficulty with the total waftenction written in the
form of the equation (2-3) is the so-called antmsyetry. This arises from
the fact that the Hartree product function incdiyedescribes the electron-
electron interactions. Electrons have spin +1/2tiesf and particle with
non-integer spins are called fermions, which araratterized by the
property of anti-symmetry, where upon when two fiems ( electrons ) of
the same spin are interchanged the wave functiamgds sign. So the
Hartree approximation does not obeys this imporfaoperty. To avoid
this difficulty and, in particular, to let the Hege product satisfy the Pauli
exclusion principle and take into account the itidguishability of
electrons, the total wave function is written asirggle Slater determinant
[35].

Slater pointed out in the 1920s that choosing tlemyrbody wave
functions to be of the form [36,37] :

¢
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@, (1)@, (1)...... 0, (1)
@,(2)®,(2)....2,(2)
w(2.N)=— | . .- (2-4)

JND)

;pl( N )®,(N )---éN( N)

Where, the normalization constant and the compoménbne particle

function @ (i) is referred to as spin-orbital. Any spin orbitabynbe

written as the product of a space functpmand a spin function or p.

The number in the parentheses denote the pardictethe subscripts
(1,2,...,N denote the eigen state. The interchange of amy pgarticles
causes the sign ol to change, since it involves the interchange ef th
corresponding two columns, and also when two eastoccupy the same
spin orbital, i.e. two columns of the determinate aentical ,the wave
function is equal to zero [38].

This observation leads to more familiar expressiminthe pauli principle,
which states that each orbital may be occupiednby @ane spin-up and one

spin-down electron.

In the Hartree theory, the one-electron orbital&inguup the product
wave function to minimize the energy were varietiere now the?' s in
the Slater determinant (2-4) must be varied to thet best possible
approximation to the ground-state energy. Whenishaone, it will be seen
that a new set of self-consistent field equatiomerge, which differ from
Hartree's equations by the appearance of non-cs&rms in the self-
consistent field.

These are the exchange terms, arising because aihtisymmetry of

the wave function (where electrons with parallehs@re present) [39].

Yo
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Probably the most widely used and most generallgcessful
approach to many-particle quantum mechanics isrntiependent particle
model, which at its beast is represented by thetrétFock (HF)
approximation [40].

Physically this approximation amounts to treat timerparticle
interactions is only an average fashion, (i.e.heparticle is assumed to
move in only the field of all the other particlestioe system).

Mathematically, the method consists of approxingtithe state
function as an antisymmetrized product of one plrtfunction (spin-
orbital).

The idea of the Hartree-Fock self consistent fl@8CF) is that each
electron is viewed as traveling in a potential. Pogential is produced by
the interactions between the electron-electromtdrest and all the other
electrons, and the averaging is over the motiaihede other electrons.

Self-consistency enters in that each electron, upbich successive
concentration is made, is itself helping to thelagaus average field for
each other electron, so that orbits must be fourat are compatible
ultimately for all the electrons simultaneously]41

Subjecting such a function to the variation priteilgads to the well-
known SCF equations for the one particle functiéy.[

The HF approach is a method for obtaining approtemiatal wave

functions for many-electron systems.

It has been applied successfully to many areasuahtym mechanics
including atomic, molecular, and solid-state systamclear, elementary
particle fields.

The method is based on both the central field appration electrons and
the variation principle. In the central field appiroation electrons are

assumed to move independently of each other irvarage field due to the

Y1
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nucleus; the other electrons are with additionaliagtion that the average
potential is spherically symmetric.

In practice the Hartree-Fock equations are solwadarically by iteration
until self-consistent solutions are obtained.

The infinite set of solutions of the HF solutiosrhs a complete set of one
electron functions.

The infinite set of n x n determinantal wave-funos constructed by
taking different combinations of n HF solutionsrfola complete set of

n-electron anti-symmetric wave functions.

The exact solutions of Schrodinger's many eleceguoation may be
expressed as linear combinations of these detemtaih&ave-functions
[42]. This approximation with the variation printedeads to the restricted
HF equations.

So that the single-electron orbital can then bétarias a product of a
radial function, a spherical harmonic, and a spimcfion. This is

well-known central-field approximation [1].

The Hartree-Fock wave function also takes some wadtcoof
correlation between electrons of unlike spin. Qdrse correlation reduces
the energy of the system by keeping electrons agual the Hartree-Fock
method is a better approximation than the Hartreethod which
completely ignores correlation.

The HF energy is an upper bound to the ground steegy .

The energy difference E(exact) — E(H.F) is callked torrelation energy

and is a significant measure of the accuracy oHhaeree-Fock method.

The correlation energies for atoms are of the ooflarfew electron volts.
Roothaan-Hartree-Fock (RHF) or analytic self cstest-field atomic

wave function are approximation to conventional tHe-Fock wave

AR
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functions in which the radial atomic orbits are amged as a finite
superposition of primitive radial functions.
Since Roothaan's papers and through the early $9RHF calculations
yielded the most accurate atomic HF energies [43,44

The Hartree-Fock wave function for two or more-&ieas is defined

as a single Slater determinants as follow [47]:

@ (L)a(l).......... oy (1)B(1)

...(2.5)

Woe (12,..N)= ﬁ

@ (N)a(N)...g\ (N)B(N)

Where ¢ is the spatial part of the spin-orbital; asndndp refer to the two
components of the spin parts (up and down).

The orbitals in turn, are written as an expansiorsome set of analytic
basis functions [48]

¢ = 2.0 X0 ...(2.6)

Where:c, are taken as those which minimize the total enargythe basis

function X i is the standard Slater-type orbitals and is glwen

anmg(r,ﬁ,qo):Rnl(r)Ylmg(ﬁ,qo) .. (2.7)

And Rnl(r):NnIrn_le_Z'r ... (2.8)

Where: N Is the normalization constant and is given as [31]

YA
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n+1

N _(2¢) 2 ...(2.9)
nl — 1
[(2n) 1?2

and { is the orbital exponents.

3.2 Atomic properties
3.2.1 Two electron density matrix

The function/{1,2) represents the probability of finding two elecon
simultaneously at position 1 and 2. For any N-etecttomic system, the

two-particle density,. (X, ,X, )can be written as [39, 49, 50]

N *
I (XX ):(ij‘#(x1 Xy X e X T (XX, X e X, )X X
.. (2.10)

Where x, represents the combined space and spin coordioftgsctron

n, and dx ..dx, indicates integration summation over all N-elesso

N
except m and n. The fact{rzl ensures that the second order density

matrix is normalized to the number of electron pathin the system:

[ e (%%, )X, dX, =(N]= \! .. (2.12)
2 ) [20(N=2)]

Where:

N
(2} =6 for the Be-like ions.

N
( Zj = 3 for the Li-like ions.

And (%% )=3 (X X,) .. (2.12)

i<j
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For Be-like ions
roTotal=/,+/,+/ ,+ ,+, +I, .. (2.13)

For Li-like ions
[ Total=/,+ /[, + /[, ... (2.14)

Then for eacH’; can be expressed as

Iy (X, X, F%iﬁx}""(ﬁ\}"" ) ... (2.15)

Where
A" =g(m)g (n) - g (m)g(n) .- (2.16)
and ¢ isith occupied normalized HF spin-orbital.

By substituting equation (2.16) in equation (2.1%g can written

I (XX, ) as follow:

O SEE N TR ICORTICRVICH Y cEY)

i<j
thei andj label occupied spin-orbital amad n refer to electron labels [51].
From the above equation the two-electron densityeach individual

electronic shell in HF can be written as follows:

For K-shell:

Io(K Ky )= R12S (1)R125(2) ... (2.18)

Where prime means integrdlover spin, (see appendix?2).

ForKL inter-shdl:

, 1,02 102 2 o2
I K L) =7 TR (RS (2)+RE (DRI(2)

TR DR (IR R, ()] = I (K L5 . (2.19)
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y — 1 =
FodK gy =~ IR (DR (2)+R_ (DR, (2)] =11 AKHp) .. (2.20)

ForL-shdll:

r.(LL,) =R (DR.(2) - (&21)

(see appendiA.2.)

3.2.2 Two-Particle Radial Density Distribution Function
The two-particle radial density distributi@n(r,, r,) in each individual

electronic shell is defined by :[26]

D(ry. 1) =M (1, yrir2de, Q, - (2.22)
Where /" (r,,r,) is a spinless function armi(r,, rp) tell us how the motion
of the two different electrons are correlated assalt of their interactions,
d@ =sing dg d¢, andk =1or 2

Also:

000 _ ... (2.23)
é(j)D( rlsy )drldr2 =1
That means the two-particle radial density expogsbi(rl,r2) dr,dr,

IS a measure of the probability of finding two etens such that

simultaneously their radial coordinates are inrdmeger, to r, +dr, and
r,tor, +dr,.

Substituting equation (2.18) into equation (2.2£¢, get the two-particle
radial density distributio(r,,r, ) for K-shell

— i p2 2 2.2
D( rs ) =] Rls( rl )RJs( r2)rl r dQlI)2
_ p2 2 -
= Rls( rl)r1 jY]S( Ql )Yls( Ql )sm@ldeldqol.
R ) Y (2, ). (2, )sing,dé,dg,

AR
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Where:
[Yi (2, Y, (2,)d, =1

jY;(QZ Y.(2,)Q, =1

D(r,,r,)=Ri(r, RL(r,)r’r} for K-shell ... (2.24)

Following the same procedure above by substituéiggation (2-21)
into equation (2.22) we get the two particle radiansity distribution

D(r,,r,) for L-shell singlet state, which can be written as

D(r,,r,)=R:(r, Re(r,)r’r} ... (2.25)

By substituting equations (2.19) and (2.20) respelt into equation
(2.22) we get the two-particle radial density dimition for KL-inter shells
Where

[Yo(2, )Y, (2, )2, =1

JYau(2, Yo (2, )2, =1

ForK,L,=K,L,

D(rr) =[5 (Ru(r Rul(r) + R(r, (1)
= Ru(1, Ry (1, Ry (1, R (1] r2r -+ (2.26)
For K,L,=K,L,

(1.1, )= %[Rfs (LRZ(2)+R: (LRA(2))2r2 . 2.27)

Yy
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3.2.3 One Particle Radial Density Distribution Function

The One Particle Radial Density Distributibxirl) is very important
for studying the electrons in an atom, which me#res probability of
finding electrons in each shell. It representsdaesity distribution of one

electron in each shell, and is defined as [2653249]

man

D(r,)=[[r'Ar, )@ =4m(r,)r,’ . (2.28)

Where:
A1) = NJW (%%, X0 X, (X%, X 00X, Jdo, dxdx, .. dx ...

... (2.29)
X denotes a combined spatial and spin coordinate %4(x, ,X, ,X,..X, )

is normalized wave function.

Evaluation of D(rl) from equation (2.22) by the integration over two-

particle density with respect i, yields,

D(r, )= [D(r,.1, ), .. (2.30)
The total values of the function D(rl) for diffeteshells in an atom
are given by:
For Li-like
=7 ]
Dr(ry) =3 Dyars( 1)+ Dkaa( 1)+ Dyaa(ry) ... (2-31)
For Be-like

D(1)=2[Drcs 1)+ Do 1) * Do)+ D 1)+ Dea )+ Do 1)

.. (2-32)
the evaluation of the one-particle distributidd(r,) is useful for the
determination of (a) the corresponding contributiorthe x-ray scattering

factor, and (b) one-particle expectation vajue) where-2<k<2 .
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The one-particle density distribution in each indoal electronic shell
for K-shell can be calculated by substituting egqurat{2.24) into equation
(2.30), i.e.

D(r,)=[D(r,.1, )dr,
= [RY(r, RE(T, )rirzdr,
0

= RE(r )P [RE(r,)rfdr, = RZ(r )r}
0
Where
JRE(r,)ridr, =1
0

D(r,)=Ri(r)r? ... (2.33)
Following the same above procedure by substitugopgation (2.25) into

equation (2.30) for L-shell one would get,
D(r,)=R(r,)r/ .. (2.34)

The one-patrticle density distribution for KL-int&hells are equal due
to the orthogonality condition betweels@nd?2s) orbitals. It can be
evaluated by substituting equation (2.26) and (2.83pectively into
equation (2.30)

le.
ForK L,

D(r, )= [D(r,.r, )dr,

Y¢
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D(r,)== Rz(r ), jR (r,)r2dr, += Rz(r )’ ij(r )rz2dr,
- R0 R0 R, R,

——[R (r,)+RA(r))r; .. (2.35)
Where

jR (r,)rzdr, =1

jR (r, R2(r,)rzdr, =

The solution of equations (2.33), (2.34) and (235mathematical
analysis are:
For the K-shell is,

D(r,)=>>cc NN e “npnm ... (2.36)
i

For the L-shell is,

D(r,) =X 3 d d,N N e - (2.37)

For theK L,is,

D(HF%(Z; ¢, NiN, +szd NN, j (@t (vem .. (2.38)

Where:
G ,c; are the expansion coefficients ftgorbital

d, ,d, are the expansion coefficients #gorbital

N;, N, are the normalization constants given by equg@d®)

Yo
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3.2.5 Energy expectation values

The energy expectation value related to the paketiergy by: [54]

<E>:§<v> .. (2.39)

The potential energy is simply the sum of the et@thuclear attraction
energy and interelectronic repulsion energy, Thra ss proportional to the

expectation values df/ir; and1/r,, respectively. Therefore we may write:

= —7(1 1
Vo ==Zi) +(r,) .(2.40)
Where z is the atomic number, and [55]:
(rfy=[D(r,)r/dr, ... (2.41)
(rs) =] f(r,)rkdr, ... (2.42)

Here it's assumed th8X(r,) is normalized to the number of electrons and

f (r,)to the number of electron pairs [54]. The accuratyesults was

checked by determining the total energy, it is shawtable [4-19].
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3. RESULTS and DISCUSSIONS

This work has been arranged into two parts:
The first is for K-shell, and the second for tasébm for Li-like ions (Li
atom, Bé&, B*ions) and Be-like ions (Be atom, LiB" ions) which we
studied them partitionly as the individually shellsd totally. In both parts
we have evaluated and plotted the one—particletyeistribution function

D(r,), and the atomic form factor(s) .After that a comparison have been

made between the individual and corresponding shelldifferent ions.

Each particle distribution function in this workéeecked and normalized
to unity. The data used in this work are showralnds (3-1), (3-2), (3-3),
(3-4), (3-5) and (3-6).

All these properties have been studied by using trelFock

approximation and by using Mathcad computer program

3.1 The One-Particle Radial Distribution Function D(r1)
3.1.1 The One-Particle Radial Distribution Functions for
K-Shell

The one particle radial distribution function D(rl§ shown as a
function of rl in fig.(3-1) for K-shell of Li and &like ions. The shapes for
distribution functions are approximately the sanfieh® K-shell for Li
atom and Liion or Be atom with Beion and for B ion with B™ ion. The
curves for D(rl) are starting from zero, it meamat there is no probability
to finding the electron at the center of the atamg then increasing to
reach the maximum point after that it will decregsgradually to reach the
ending point. The maximum points of D(rl) for (LBe", B™) are
(1.4057, 1.9518, 2.4848) and for (LBe, B) are (1.4063, 1.9448, 2.4848).
The different in the maximum points and the endgo@ts with increasing

the atomic number Z are due to the attraction foo€ethe nucleus.
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The curve will shrink toward the nucleus when thenmac number Z

increases, and the peak will increase with deangasi the broadening
curve and the ending point, but the area undereticasves are the same
due to the normalization condition. The above itssalle tabulated in table

(3-7) for Li-like ions and for Be-like ions.

3.1.2 Total of One-Particle Radial Density Distribution

Function

The maximum values of D(rl) increase and the cgtwenk toward
the nucleus by increasing the atomic number Z du¢hé increase of
attraction force of the nucleus. The density distiion has two peaks for
Li-like ions and Be-like ions, one represents thaebpbility of finding the
electron in K-shell and the other represents tlobalility of finding the
electron in L-shell. Table (3-8) shows the maximpomts for Li-like ions
(Li, Be", B™) and (3-9), (3-10), (3-11) for Be-like ions {LBe, B). The
individual shells and the total of the one parti@dial density distribution
are shown in figs.(3-2), (3-3), (3-4) for Li-likens (Li, B€, B™) and
figs.(3-5), (3-6), (3-7) for Be-like ions (LiBe, B), where K-shell have
one peak which is greater than the peaks of therahells, and KL-inter
shells are equal in the values for the same elearahbf the atom and ions
of the same atomic number z. For Be-like ions, Kter shells and the total
of the D(r) are equal in the values, and there are two peaksshell, one
represents the probability of finding the electiorK-shell and the other
represents the probability of finding the electnoh.-shell.
Fig.(3-8) shows the comparison of the total onetigar radial density
distribution for Li-like ions, where the maximumlua of D(r;) increases
as the atomic number z increases (i.e. maximury B(r B > Be" > Li).

Fig.(3-9) shows the comparison of the total onetigar radial density
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distribution for Be-like ions, where the maximumueaof D(r) increases
as the atomic number z increases (i.e. maximun) B(rB" > Be > Li).
Fig.(3-10) shows the comparison of the total ondiga radial density

distribution for Li-like ions and Be-like ions.

3.2 Scattering Form Factor

3.2.1 General Discussions

In studying the scattering form factor for K shatld total for three
and four particle system it can be seen that, dhe factor starting at the
value which equals to the number of electrons at shell or atom when
the scattering angle equals to zero. It means timattotal scattering
happened, due to the constructive interferencéh@fxtray wave lengths
which is scattered from the electrons, and therdwaby decline with
increasing the scattering angle until to reach naimum value. The
slownees in the gradual decline and the minimuraaeshbre different from
one shell to another or from one element to anoffiee decreasing in the
values of scattering form factor when the scatteangle is increasing is
due to the partial destructive interference whdre path difference of
scattered waves from different electrons increages.the electrons of
K-shell where the attraction force toward the nuslés higher than with
the other electrons, the values of the scattemmgn ffactor will be greater
than of the other shells, and these values incdedise to the decreasing in
the path difference of the scattered waves. Fer isitells K L, , Ks L, of
Li like and K, L, , Kg L, , K, L , Kg Lg of Be like, the values of scattering
form factor after the maximum point will sharply alease followed by
curvature and then gradually decline, due to chdrggeibution at the inter
shell. Of the electrons of L shell of Be like , wlehe effective attraction

force toward the nucleus is lower than of the Kllsls® the electrons are
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far from the nucleus hence the values of the faaonol is lower than of the
K shell. The scattering form factor of the intree$ K, K; ,L, Ls are
similar in behavior of decreasing with increasihg scattering angle, but
they different from the inter shells,K,, , Ks L, , K, Lg , Kg Lg where the

inter shells are similar in behavior of decreasaniy increasing angle.

3.2.2 Detailed Discussion
3.2.2.1 Scattering Form Factor for K-shell

For any element of Li-like ions and Be-like ion® tbcattering form factor
starts from maximum value equal to 2, because thergwo electrons in
the K-shell.

Li atom and Liion: Li atom has three electrons and ldn has four
electrons and they have three protons in their aus;l but they
approximately have the same values of scatterimgp fiactor due to the
same charge distribution, where they decrease gligidafter the maximum
point with increase the scattering angle, as shimwing.(3-11) and table
(3-12).

Be atomand Bé ion: Be atom has four electrons and' Ben has three
electrons and they have four protons in their rusldout the values of
scattering form factor are approximately the same @ the same charge
distribution, as shown in fig.(3-11) and table B-1The gradual decline is
slowly with increasing the scattering angle in camgon with Li atom and
Li~ ion.

B and B ions: B ion has four electrons and'Bon has three electrons
and they have five protons in their nucleus, bet ¥ialues of scattering
form factor are approximately the same due to &meescharge distribution,
as shown in fig.(3-11) and table (3-12).The gradiedline is very slowly
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with increasing the scattering angle in compariswith the previous
elements.

Fig.(3-11) shows the comparison between the atdamnm factor for Li-
like and Be-like.

3.2.2.2 Total Scattering Form Factor
3.2.2.2.a Total Scattering Form Factor for Li-like lons

Li atom: table (3-13) and fig.(3-12) show the bdbawf atomic form
factor for KKs , K, L, , Ks L, shells and the total of the Li atom. Because
the curves KL inter shells undergo sharp droppmghe small values of
scattering angle, so the total scattering formoiaatll have sharp dropping
in the small momentum transfers.

Be" ion: the values of atomic form factor are preseritetable (3-14) and
fig.(3-13) for the KK , K, L, , Kg L, shells and total of Bdon. The total
scattering form factor undergos sharp decline ia #mall values of
momentum transfers due to the sharp dropping inctitges KL inter
shells.

B ion: table (3-15) and fig.(3-14) show the behawbatomic form factor
for KiKp , K, L, , Ky L, shells and the total of the"Bon. The total
scattering form factor undergos sharp decline ia #mall values of
momentum transfers due to the sharp dropping inctimees KL-inter
shells.

Fig.(3-15) shows the comparison between the saagtéorm factor of Li-
like for (K, L, , K¢ L), where the behavior of the curve are approxirgatel
the same for the same element (i.e. for the saemeegit K L, = Kg L,).
Fig.(3-16) shows the comparison between the taattaring form factor

for Li-like ions, where the gradual decline will lsowly with increasing

)
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the scattering angle when the atomic number inegef<. after maximum
point, the values of the total scattering form dactvith increasing the

scattering angle for B> Be" > Li).

3.2.2.2.b Total Scattering Form Factor for Be-Likelons

The deference between the Li-like ions and Be-lixes is in the
number of electrons, in which Li-like ions haved@relectrons and Be-like
ions have four electrons.
Li"ion: fig.(3-17) and table (3-16) show the behawabatomic form factor
for KiKp , Ko Lo, Kg Lo, Ky Ly, Kg L Ly Lg shells and the total of the'Li
ion. Where the values of the inter shellglk , Kg L, , K, Lg , Kg L are
equal because there is no difference between thelstribution of charge.
Fig.(3-18) shows the effect of the ionization oa tbtal atomic form factor
for Li atom and Liion. Where each curve, starts from the value wisch
equal to the number of electrons and then mediaafdrm factor = 2.35
and s = 0.045, after that they have approximatedysame values.
Be atom: fig.(3-19) and table (3-17) show the bébrawf atomic form
factor for KKg , K, Lo, Kg Lo , Ko L, Kg Lg Ly L shells and the total of
the Be atom. Where the values of the inter shells K Ks L, , K, Lg , Kg
L are equal because there is no difference betwsen in distribution of
charge.
Fig.(3-20) shows the effect of the ionization oa thtal atomic form factor
for Be atom and Beion. Where each curve, starts from the value widch
equal to the number of electrons and then medteatarm factor = 1.945
and s = 0.117, after that they have approximatedysame values.
B ion: fig.(3-21) and table (3-18) show the behadibatomic form factor
for KKp , Ky Lo, Kp Ly, Ky L, Kg Ly L, Lg shells and the total of the'B
ion. Where the values of the inter shellglk , Kg L, , K, Lg , Kg L are

equal because there is no difference between thelistribution of charge.
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Fig.(3-22) shows the effect of the ionization oa tbtal atomic form factor
for B" ion and B" ion. Where each curve, starts from the value wiséch
equal to the number of electrons and then medteatarm factor = 1.864
and s = 0.173, after that they have approximatedysame values. .
Fig.(3-23) shows the comparison between the saagtéorm factor of Be-
like ions for K, L, , Kg Lo, Ky Lg , Kg Lg, where the behavior of the curve
are approximately the same for the same elementfdr. the same element
Ka Lo = Kp Ly = K, Lg = Kg Lp).

Fig.(3-24) shows the comparison between the saagtéosrm factor for the
L. Ls shells for Be-like ions, where the gradual declink be slowly with
Increasing the scattering angle when the atomic@unmcreases.
Fig.(3-25) shows the comparison between the taaftaring form factor
for Be-like ions, where the gradual decline will flewly with increasing
the scattering angle when the atomic number inegef<. after maximum
point, the values of the total scattering form dactith increasing the

scattering angle for B> Be > Li).
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Conclusion and Future Works

4.1 Conclusion

1.

From all these results we can conclude several important points as;

The values of the scattering form factor for the K-shell of the atom
and ions of the same atomic number are approximately have the
same values, and it will be greater than of the other shells.

The values of the scattering form factor for inter shellsK, L, , Kg L,
for Li-likeionsand K, L, , Kg Lo, K, Lg , Kg L for Be-like ions have
the same results for the same element, and for atom and ions of the
same atomic number Z.

After (6 = 0) for Li-like ions or Be-like ions the values of the
scattering form factor are increasing with increasing the atomic
number Z.

The values of the total scattering form factor will be the same for
Li atom and Li" ion after f(s)= 2.350 and s= 0.045

Be atom and Be" ion after f(s) = 1.945 and s= 0.117

B" ion and B ion after f(s) = 1.864 and s=0.173.

The values of the function D(rl) for the K-shell of the atom and ions
of the same atomic number are approximately have the same values.
The maximum values of the function D(rl) will increase and shrink
toward the nucleus when the atomic number Z isincrease.

The values of the function D(r1) for inter shellsK, L, , Ky L, for Li-
likeionsand K, L, , Kg Ly, K, Lg , Kg L for Be-like ions have the
same results for the same element ,and for atom and ions of the same
atomic number Z.

For Li-like ions the values of the total one particle radial density
distribution function are one third of the D(rl) for K-shell of the
same element.
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9. For Be-like ions the values of the total one particle radial density
distribution function are one quarter of the D(rl) for K-shell and

equal the values of inter shellsfor the same element.

4.2 Future Works

Thiswork can be extended to include other works, for position and
momentum space which are not considered such as:

1. A study of x-ray atomic scattering form factor for K-shell and total
atom for three and four electron system using configuration-
interaction (Cl) wave approximation.

2. A study of incoherent scattering of x-rays §(s) for K-shell and total
atom for three and four electron system using HF and Cl wave
approximations.

3. A study the total differential incoherent scattering cross section doi,.
of x-rays using HF and CI approximations.

4. A study the nuclear magnetic shielding constant, connected with
X-ray scattering factor for three and four electron system.

5. A study the differential cross section dogy for the elastic scattering of
electrons by electrons using HF and CI approximations.
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Abstract

The partitioning technique has been used to anayze the three and
four electron systems into three-pairs electronic wave functions for
Li-likeions (Li, Be", B™) and six-pairs electronic wave functions for Be-
likeions (Li", Be, B) by using Hartree-Fock wave functions of Clementi
and Ruotti.

In this work the atomic scattering factor f(s) for K-shell and total
atom for three and four electron systems are studied. The physical
importance of this factor appears in its relation with the several important
atomic properties such as, the coherent scattering intensity, the total
scattering intensity, the incoherent scattering function, the coherent
scattering cross section, the total incoherent cross section, the nuclear
magnetic shielding constant, the differential cross section of electrons
scattering from atom and the geometrical structure factor. Also the one
particle radial density distribution function D(r) has been studied, where
the atomic scattering factor f(s) is the Fourier transform of the electron

density p(r;) and D(r,)=4m(r,)r?. The accuracy of results was

checked by determining the total energy. All results are calculated in

atomic units.
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LIST OF SYMBOLS

Symbol Meaning
a Bohr radius
Cl Configuration interaction
G Constant
do, 4 | Total incoherent scattering cross section
de Solid — angle element
f(9) Coherent atomic form factor
h Planck’s constant
HF Hartree-Fock
hkl Miller indices
I Classical intensity
|, Thomson cross section
‘ Angular momentum quantum number
Mg Electron mass
m, Magnetic quantum number
R(r) Radial function
RHF | Roothaan-Hartree-Fock
M Classical electron radius
lo Electron-electron distance
S(s) Incoherent atomic form function
SCF Self-consistent field
S Momentum transfer
Y (@) Spherical harmonic (angular factor)
Z Atomic number
/(12) | two — electron density matrix
a Spin up
B Spin down




Orbital exponents

A Wavelength
Vv Frequency
s Spin function
Ocoh Coherent scattering cross section
a4 Nuclear magnetic shielding constant
T Elastic scattering cross section of electron bptam
Y Wave function
7/ Complex wave function
4 Orbital exponents
A Wavelength
vV Frequency
$ms Spin function
Ocoh Coherent scattering cross section
gy, Nuclear magnetic shielding constant
T Elastic scattering cross section of electron batam
Y Wave function
7/ Complex wave function
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