Abstract

One of the recent discoveres in nuclear Physitiseexistance of

Halo nuclei .
Therefore, halo nuclei are very weakly-bound exstigtes of nuclear
matter in which the outer one or two valence nutse@sually neutrons),
anda nuclear core with normal nuclear density is sunced by a region
of dulite nuclear matter, referred to as the neutralo. Such nuclei occur
from light to heavy masses and have been the sulijecalarge number
of theoretical studies to try and understand themumber of theoretical
models have been proposed over the years.

In this thesis the structure of light halo nucieiexamind through a
fully microscopic variational model, where the RaxXclusion princple
explicity satisfied and semi-realistic nucleon-ragi interactions are
used. The model is an extension of previous wor&aged shell nuclei.
The wavefunction is obtained from a starting oerehce state, which
includes the required symmetries nd provides astationally invariant
description of the system in terms off several uredated clusters.
Medium to long-rang linear and short-range nondmecorrlation
operators are then applied to obtained a good wiag&bn, these models

are important to solve the Shrodenger equation.
The model developed is then used to examine thieintite, °He,

"Be and “Be. By making use of one-and two-body density distiitns a
gualitative picure of the matter distribution irethucleus is obtained.
The analysis provided indicates for a bound state requires
spin-orbit force, something that we don't inclutdevertheless working
in the L-S coupling scheme have shown that ourehal capable of
producing bound states for open-shell sysytemgtifically altering the
central term of the semi-realistic interactionsugse. And to find the

relashonshipe between the energy and the widthelf,sand find the



behavioer of nuclei from throught the relatiosteeen energy and
distance to the center of mass of alpha parti¢dd &nd 8Be are known
halo nuclei. The general behaviour obtained wag tha energy
approached a minimum, as the separation between stheeral
constituents increased. This could be monitored dmgerving the
spherically averaged one—and two—body densityidigtons. We could
clearly see that the energy was minimized as thee-loody distribution
broadened with the center shifting a way from thgin. The two—body
density distribution separated into two parts: annfeody similar to the
alpha—particle and a small tale effect. We usedrahgnic scaling in
order to distinguish the two parts.

Despite the fact our interaction is not adegder the light halo
nuclei of 6He and 9Be we demonstrated that our mode produce
bound state for such open—shell systems by modijfthe inter—nucleon

force.in this thesis used programes in Fortran.(77)
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Chapter Five Neutron Halo Nuclei

5-1 introduction

In previous chapters we discussed the structuctuster like model as well as
the technical requirements such as the inclusionS0{4) symmetry and the
evaluation of expectation values by Monte Carlo@arg. In this chapter we apply
the cluster model in the simplest cases where pfamomena observed.
Hansen and Jonson[Han87] have proposed a "neuditohinodel of 11Li to account
for these observations. In the case of 6He thertewtrons are more tightly bound
and the structure is called "neutron skin"

The structure of nuclei far from stabilitycaclose to the particle drip lines is
very rich. In neutron-rich nuclei, in particulaxxatic phenomena include the weak
binding of the outer most neutron, pronounced éffe€the coupling between bound
states and the particle continuum, regions of nuelé¢h very diffuse neutron
densities and the formation of neutron skin and #luctures.

Weekly bound systems provide a sensitive test ef mlclear force, and the
neighborhood of the drip lines provides a unique/prg ground for the development
of our understanding of these interactions whieharfundamental importance.

It can be shown how the three-body system aobsm@n the bound side of the drip
line lies a variety of rather intriguing substruets. Amongst them there are the
Borromean nuclei which possess the property thatenof the two-particle
subsystems are bound, and it requires three-bodglatons to bind the system. An
example of such a nucleus would 6He(4He+n+n).

Equally, it is possible to have three-bodgteyns in which only two of the
constituents are bound, but the 4He+n (5He) suésysare not.

The comparison between these nuclei and Ba&aonsystems allows a detailed
understanding of the three-body correlations tadieeved.

As we have illustrated in the case of alpheiple the role of state-dependent
correlations is to lower the binding structure dokes not seem to effect any of the
structure of the systemOne important issue in the model is the absentleeo$pin-
orbit component from the nucleon force. For thisasmn a preliminary of

experimental results is provided for the casestarest.
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Chapter Five Neutron Halo Nuclei

5-2 Experimental resultsfor °He, °He, ®Be and °Be
As an example arkle, °He, ®Be and®Be. Therefore, it is useful to include some

of the experimental results for these nuclei foogsat the ground state properties.
These are summarized in table (5-1) and are takem [fTun, Nat] and show table (5-
2) .

The nucleus ofHe is bound by about -28 MeV with a difference of @b20
MeV between the 0 ground and first excited state’.0°He is unbound by
-0.798 MeV and is observed aSJd:3—2_,T:% resonance. There is aIsoia
resonance that lies 1.27 MeV. In this illustratieat tspin-orbit coupling for single
particle is required in order to produce the obsdmesonance, since both can result

from the coupling of ars=1/2 with anL=1 state giving a valence neutron in the
0pl/2 and0p3/2 . The next resonance state Tee is a%and occurs at 16.84 MeV

.In the case of’He we have a Borromean structure as a result of tttetfat®He is

unbound, while th8He ground state is a stablé€ Ifound state.

Table 5-1: Some simple ground state properties ohe nuclei °He, °He, ®Be and °Be. We
indicate the ground or resonance states in the form. For the lowest lying resonances give
the difference in MeV from threshold, while in thecases where the nucleus is unbound the

decay channel is indicated.

Lowest .
Nucleus Ground state J Isospin (T) Decay channe
resonances
5

He 3/2 (-0.798MeV) | 172 (1.27MeV)

0" 2" (1.797MeV)
0" (0.09MeV) 2" (3.06MeV)
3/2 1/2 (1.68MeV)
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Table(5-2) Cluster decomposition of nuclei

Configuration Cluster Model Isospin (T)

1§25 2P *He+n
1S 25 2F “He+n+n
1§25 2F “He+'He
1S 25 2P “He+'He+n

for decay into an alpha-particle and two newrte +2n and thu$He is weakly
bound. The first resonance e 37 =2* lie 1.797 MeV above the ground state and
has a strongly decay to tftde +n channel. The next resonance statélft& occur at
5.6 MeV and has uncertain spin assignn&ntl’,0". Therefore it seems reasonable
to consider®He as a weakly bound three-body system wherée algha-particale
ground state is accompanied by two weakly boundraes. Then the total spin of
the two valance neutrons has only two possibleas®a0,1 and thus the total orbital
momentum is confined to the positive parity stdte® andL=1, both with positive
parity.

The nucleu8Beis also unbounded and is observed as a resonattoe $cattering
of two alpha—particles, just 0.09 MeV above tHe* “He threshold. There is another
low-lying resonance that occurs at 3.06 MeV,=2"'and is part of the deformed
band. , so that we find positive parity. We analize later on within the frame work

of our cluster model.

°Be is another interesting nucleus with a sta%_le ground state and with orbital
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. . 1 . . .
isospinT =~ . Since’Be and®He are unboundBe is again a Borroman nucleus, made

from two alpha—particles and a neutron. There rsumber of known resonance

states, the lowest of which is%; at 1.68 MeV and lies just above tfge + n

threshold by a few KeV. The next resonances%ér@.429 MeV),% (2.8 MeV) and

> (3.05 MeV).These resonance decay to’Be+ n configuration, which indicates

that the’Be ground state is not far from the three-body petra+ n with S= 1/2
The ground state orbital momentum is then 1 assigned to the neutron relative to
the two alpha—particles, which explains the negaparity.

The experimental results provide strong evidence tlee importance of
spin—orbit coupling in binding the light halo nucté °He and®Be. For example the

splitting of theL = 1 level intog and % occurs both inHe and®Be. However, we

will need (and do) to justify the implications ¢ietabsence of a spin—orbit force.

5-3- Application and discussion of results
One major characteristic of nuclear halo nudahe weak binding energy of the

halo nucleon.

The model is then used to examine the nudiej “He, °Be and’Be. By making
use of one-and two-body density distributions alitateve picure of the matter
distribution in the nucleus is obtained. The analysovided indicates for a bound
state one requires spin-orbit force, something tiratdon’t include. Nevertheless
working in the L-S coupling scheme have shown that model is capable of
producing bound states for open-shell sysytemsrbfically altering the central

term of the semi-realistic interactions in use.

5-3-1 °He
Although experimentallyHe is not a bound system we can use it as a starting

point to test our cluster model. In the J-TICI(Zthod the wavefunction is given by
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equation (3-36);

A1]i 2%

w=y| B [21°]

LM /|S=4M,,T=4M,

where the two necessary ingredients are tfe¥emce state and the correlation
operator entering the wavefunction that will take torm:

[41]i

— E\vI[41] gyref
L,ML>_FYi DMy (5-2)

Where CDLML Is the reference function, whli‘é[“] IS an operator projecting it

to theith basis state of the!4"! irrepresentation. d&. while the correlation operator
has the same form as in the case of alpha—particle

The choice we make for the reference stdig, of the alpha—particle by
adding a part representing the weakly bound neuté@me way to do this that
preserves translational invariance to assign coatds to the extra particle relative to

the alpha—particle center—of mass. Therefore dfexence state fGHe look like

R (0 Y78 () WO 6-3)
where
I :—(r; +r, +ry” +r4*)—r5* .................... G-4)
Fas = (T gm o veeeeeeeeenmmnne e e e -5

The purpose of the function(r,.) is to localize the additional neutron with
respect to the alpha-particle center-of-mass, Mﬁl@;s)
v (s )= RESVE (6,9 6-6)

that assigns angular wavefunction (spherical harchotdependence to the same

neutron with respect to the alpha-particle cenfanass. And R(r);) radial

wavefunction.

A possible choice fof(r,;) is in terms of spherical shells

f(ras,d,w)=ex;{—a2(r"5%)2] ........................ 6-7)
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where a is the Harmonic oscillator parameter appearingha reference state
of the alpha-particle. The parameter d represent'distance" of the shell from the
center-of-mass of the alpha-particle, whilestands for the "width" of the shell. This

Is a structure that has been used before in [Gudbg]parameters,« and the set of

parameters entering the Jastraw factor of the latiwa operator are variational
parameters. The correlation operator is given athéncase of the alpha-particle,
where the linear coefficients used for the expansaoe minimized by a linear

eigenvalue problem.

The value of the energy was obtained foratamns ofd and « for theL=1 state.
In the case of the spin and isospin quantum numtiene is there is only the
possibility of §= 1/2 ,T = 1/2). It can be clearly seen that for a paracwalue of
the "distance" parametdr there is no variational stationary point but lae ‘twidth"
« and despite the value dfthe energy approaches the same value, i.e., thaglr
parameter is the "widthéa . when we move fronh = 1 to some other value &f
there is no change in the overall behaviour ofgt@mind state energy and the same
asymptotic behaviour is observed for larges is illustrated in figure 5-1. The only
difference between the different values lofis for relatively small values of the

parametersl ande .

At
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Figure (5.1): The ground state energy for the staténdependent J-TICI(2) calculation of°He
for different values of L using the S3 interaction. The broken line corresponds to the laha-
particle ground —state energy for the same type afalculation. The value of« is in relative

units (i.e scaled fm) since is multiplied by the hanonic oscillator parameter «a .

The fact there is no variational minimum that bound, state exits fGHe
within our approximation. For this purpose, we caake use of the spherically
averaged one and two-body density distributionothiced for the alpha-particle
(equations (2-55) and (2-56)). The results olet@ifor the density matrices with the
3 are shown in figures (5-2) and (5-3).

We expect that the parametdrand « will be associated with the separation of
the additional neutron from the alpha-particleuitnely the value of. is associated

with the "freedom" that we assign to the additiomalitron in the model state, that is

Ao
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centered adl, when this is acted upon by the correlation operte resulting picture
can be different. The spherically averaged one bddygsity distribution p,(r)
measures the probability of finding a nucleon distéancer from the center-of-mass.
We expect that when the additional neutron is mawedy from the center (in terms
of d andw ), that the overall one-body probability distrikartiwill be effected.

The effect of changingand« is displayed one the right hand graph of figuées (
2) and (5-3), respectively.

Spherically averaged density distribution

‘ 1 ' ! 1 x 1 .
’7 Two-body ] K One-body

- - alpha—parj{ic&g

Figure (5.2) The one — bodyand two — body densitlistribution for *He (using the S3 interaction) for

a number of values of the width parameter w.

Figure (5-3) shows the increasing value of waldens the distribution from the
origin. A similar behavior is illustrated in figei(5-4) for the case of the parameter
but the influence ofl on the one-body density distribution is less gjrtman that of

.
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Log,  (p,(0)
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Figure (5.3) The tail of the two — body density disibution for °He (using the S3 interaction)

for a number of values of the width parameter w ad the entire graph plotted on a
logarithmic scale.

Figure (5-4) also illustrated the effect of adglorbital momentum to the additional
nucleon relative to the alpha-particle, where bgiiagl orbital momentum we get less
distribution close to the center-of- mass.

The effect of the variational parameters om ttho-body density distribution is
more subtle. The separation of the additional noaufrom the alpha-particle on the
two-body density appears as a small change inghawour of the tail

AY



Chapter Five Neutron Halo Nuclei
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Figure (5.4) The one-body spherically averaged dsity distribution for °He (using the S3
interaction) for a number of values of the distancgparameter d and orbital momentum L. The
value of w was kept constant

In the J-TICI(2) formalism the wavefunction of afjon (5-2) has the property

that the correlation operatcﬁr Is invariant under the exchange of particles. Times
antisymmetrized reference function is the sameafbthe required integrals of the
Hamiltonian and overlap matrix elements. This carab advantage over the RGM—
like method where the reference function is appnated by a linear expansion and
each matrix element requires it own—antisymmetiopat particularly when a
numerical method like Monte—Carlo integration igdisThe results obtained &8
interaction are equivalent to the ones obtainedHerJ-TICI(2) method. However,
we shall a band on this method since carrying betantisymmetrization for every
matrix element is an unnecessary complexity that realuce the efficiency of our
numerical algorithm.

Despite the fact thatHe provides a non bound structure the calculation has

AA
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provided as with the important lesson that theatam of the energy with respect to
the variational parameters ahds different between a reference function.
5.3.2 *He
Contrary to the case 6He, where there is only a single choice for the péation
symmetry, We study the 6He(4He+n+n) under an ic@m assumption for 4He. 6He
represent (based ) on core+n+n microscopic threlg-latuster modek,which is a
typical Borromean system.[KiyO1]

®He has two options for the wavefunction of equa. §3+2sulting in two distinct

spin—isospin configurations with= 1. The two wavefunctions can be represented as:

[421i\  [22 07
LIJ(O’l) =
Zi: L’ML>S:0,T:1ML ............. (5-8)
Wy = Z [4,12]i [313]i
~IL,M_/|S=0,M,T=1M,/ e (5-9)

The above wavefunctions can be assigned devahaes for the total orbital
momentunL.
We can construct a reference statéHarsimilar to that of°He, that looks like

where

r =%(rf +r,7 1y +r4*)—r5* .................... 6-1))

ab
a6

r :%(rf +r, 1y +r4*)—r6* .................... 6-12

The purpose of the functions(r,;) and f(r, )is to localized the additional
neutrons with respect to the alpha—particle cenfemass.y}(r;) as a angular

wavefunction (spherical harmonic)

4o )= 3 ZChumth by i) 5-19
12 m,m,

L - : :
Where G m.l,m, are the Clebsh-Gordan coefficients, while te are linear

A4
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variational coefficients. The function(r,,) describes the relative motion of the two

neutrons with respect to each other.
As in the case oHe a possible choice for thé(r, )and f(r, ) is in terms of

spherical shells:

f(r,q,d,,,)= ex;{—az%J ........................ 6-14)
f(r,e.dy, )= exr{—aZ(r"F’_TdZ)j .................. 6-15)
Fog = [ gn — F g leeeeeemammrrmreeeeennirre e e e e e .6-16)

wherea is the Harmonic oscillator parameter appearinghan reference state
of the alpha—particle. The "distance" parametigrd, and the "width" parametes
and w, localized each particle individually. In the cadef (r.,) we choose the similar

parametrization:

f(r56,d3,a%):exr{—02(r56_7d3)2] ........................ 6-17)

The intuitive picture of the structure provided the reference function is
relatively straight forward as is illustrated igdre (5-5).

d _,
Alpha-particle__ Fo5 _O

\ I'se
lo d
& 6 3

Fig. 5-5: Artists impression of°He

When compared witfHe the calculation foPHe is substantially more complicated.
The variational non-linear parameters enteringréfierence function increase from

justd and « to {d,, d;, d3} and {w,, w,, w,}. Furthermore, the linear expansion used

to approximate the correlation operator becomesdail in order to accommodate the

coefficients &, that superimpose different coupled configuratiorfs oobital

9.
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momenta(,,1,) into a totalL. The behavior of the energy with respect to thelner

of coefficients ath is displayed in figure (5-6), for a restricted nwenlof the

variational parameters.

Figure (5.6) The dependencce of the ground-state engy of °He with respect to the number of

L
linear coefficients & |, . The results were taken using the S3 interaction.

We carried out the calculation féide with state—independent correlations for
various sets of quantum numbersS andT. Although there exits a dependence of
the energy on the various configurations, this leagpat a small values of the width

parameterse, andw, andw, where the value for the energy is well above thdhe

alpha—particle without passing through a statiomyt or going below the alpha—
particle limit.
Instead of using reference function of equatiofrl@ we can use a related

form that corresponds to an alpha—particles caaélaith adi—neutron structure:

O =, f(r,e00;, @) f (re. 0y, 0, )y (rsg) ...................... 6-18

1)
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feg =1~ —%(r; +r6*) .................................... (5-19

where the functionf (rs) y5 (r.-) can be through of as thd—neutron. The
functions f(r, )and f(r,;) have the same structure as before, but instead of

correlating each individual.

Neutron with the alpha—particle independenté correlate thei—neutron with
the alpha—particle. This description of the modekesis compatible with all the
spin/isospin configurations as long as the requreanutation symmetry is included
in thedi—neutron part,

We use the above structure to illustrate téleabior of®He since it provides a
restricted configuration, where the key variatigrerameters aré, ,d, andw, , w,.
The results for the ground state energy for8h@ , T=1 andL=0 configuration using

the S3 interaction are shown in figure (5-7).

Figure(5.7) The ground-state energy ofHe for the reference function of equa. (5.18). the
S3interaction was used, while S=0, T=1 and L=0. Thearameter d1 is related to the
separation of the di-neutron from the alpha-particke, while d2 is the separation between the
two neutrons of the di-neutron. The width parameterw is in relative units since is multiplied
by the harmonic oscillator parameter.
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Figure (5-7) indicates that the system becomeddesdized. This is valid both when
thedi—neutron is moved away from the alpha—particle vkdeping the two neutron
at a fixed distance from each other, and in theose situation where trdt—neutron

is kept at a fixed distance from the alpha—particig the two—neutrons are separated
from each other. In figure (5-8) we display theutessfrom the § =0,T = 1) spin—
iIsospin configuration and fdr=0 , using theés3 interaction. The choice made for the

distance and width parameters is that whikre d, , whiled; anda = w,=w,=w, are

valid.

6
He selected results
L=0 S=0 T=1

I I

e
e d3=3
d1=d2=0 — d3=0

—~ — alpha-particle |

Figure(5.8) The ground — state energy for the statimdependent J-TICI(2) calculation of *He as
function of w for L=0, S=0,T=1 using the S3 intaction. d1 and d2 correspond to the value of the
‘distance’ parameter for each of the two weakly bond neutrons (corresponding to the instance
between them and the alpha-particle). d3 correspals to the ‘distance’ parameter describing the
separation between the two weakly-bound neutronsnlthis configuration d1=d2 and a single ‘width’
parameter is used for each pointThe broken line corresponds to the alpha-particle gound-state
energy for the same type of calculatiorThis can lead to a 0 + state when spin — orbit colipg is
used.
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Chapter Five Neutron Halo Nuclei
Furthermore, when we move to the=1 , T= 1) spin—isospin configuration a very
similar behaviour is observed as illustrated inufey (5-9). The set of quantum
numbers$=0,T=1)and §=1,T = 1) are the only ones in our approximation that

correspond to two—neutrons (or two—proton becatisharge independence) added

to an alpha—particle.

-=- d3=6
s d3=3
— d3=0
— - alpha-particle

Figure (5.9) The ground-state energy for the statindependent J-TICI(2) calculation of°"He

as function of w for L=1; (11=12), S=1, T=1 using the S3 interaction. d1 and d2 correspond to the value
of the ‘distance’ parameter for each of the two wedy bound neutrons (corresponding to the instance
between them and the alpha-particale). d3 correspais to the ‘distance’ parameter describing the
separation between the two weakly-bound neutronsnlthis configuration d1=d2 and a single ‘width’
parameter is used for each point. This can lead ta 0- state when spin-orbit coupling is used, rather

than to a O+.

We can again refer to the spherically avedtagee—and two—body density
distributions to get an idea of the structure paded by the wavefunction. These are
displayed in figures (5-10) and (5-11)
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dl=1 d2=1 dl=1d2=3

T T

— w=2
- w=4

Figure (5.10) The one — body density distributiondr ®He. The wavefunction was obtained for
the S3 interaction, while S=0,T=1 and L=0. The pameter d1 and d2 are the ones of equation
(5.21) d1 is related to the distance of the di — n&on from the alpha- particle, while d2 to
distance between the two neutrons. W is the widthgsameter.

In the case of the two—body density, the logarit graphs of figure (5-11) clearly
demonstrate the tail effect on the alpha—partiobdability distribution.

alpha-particle
w=2
ceow=4
- ow=4
--ow=12

Log, (p,()

ol vl ol el o

Lo

Figure(5.11) The two —body density distribution fo ®He . The wavefunction was obtained for
the S3interaction, while S=0, T=1 and L=0. The coiguration is the same as that of figure
(5.10)

q0
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5.3.3%Be

Within our approximation the case of two algaaticles, corresponds to the

nucleus ofBe. Although,®Be is not a bound system we wish to examine it sce
adding one more neutron we halRe that is a bound halo nucleus. This will be
examined later on. The choice we make for the eefer state ofBe is to add
together two translationally invariant alpha-pdetievavefunctions correlated by a
function depending on the relative distance betwdlem two alpha-particles

centers-of mass. The reference function can has/éotim :

O =, D, F(Fyn)Y (Fgzz ) 6-20)
where
raz :%(rf +r, +rg” +r4“) .................................. 6-2)
ro :%(rs* +rg o +r8*) .................................. 6-22
Ll P P 6-23

The purpose of the functiof(r, ) is to correlate the two alpha with each other ahil
y"(r;:,) is a angular wavefunction(spherical harmonic),

Vo (6 )= 1 Y (6, @) G-24)

The assigns angular dependence to one alphialpavith respect to the other.
Thus the reference function f8Be is the same as that ofHe with the only

difference thatgis replaced by, . The choice we make for(r,s) is again in terms

of spherical shells, where

f(ram,d,a)):exr{—az@J ........................... B-25

A selection of the results that can be obtainedHerground stale energy as a
function of d and w are displayed in figure (5-TR\o different values for the orbital
momentum were used (L=0). Again we made use oSthateraction. The pattern
appearing is similar to that of 5He. For smallues of the width« the energy
depends on the values of d and L. however,cadbecomes large enough the

dependence on the other parameters vanishes. Fodiee there is not a stationary

a1
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value but the energy approaches the limit corredipgntwo non-interacting alpha-
particles. Therefore, we can conclude that in tfié&Cl(2) approximation 8Be is not a

bound system.

OWR O

a-partical

X

Figure (5.12) The ground-state energy for the statmdependent J-TICI(2)calculation of °Be for L=0
using the S3 interaction. The broken line correspats to twice the alpha-particle ground-state energy
for the same type of calculation. The value of w i® relative units (i.e. scaled fm) since is multifeed by

the harmonic oscillator parameter

Again we can make use of one-and two-body densityibution to get an idea
of the structure provided by the different variaab parameters. The results for the
spherically averaged one-and two-body density iigtions are displayed in figures
(5-13) and (5-14), for orbital momentum valueslLef0 , the density distributions
were taken for a fixed value of the distance patantk. althoughd does effect the
density distributions, as in the case of the endigy width « is the driving

parameter.
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Chapter Five Neutron Halo Nuclei

This is an indication that the two alpha-partictesfer to be separated from each
other. When orbital momentum is present the onerlol@ahsity distribution becomes
broader, something that further indicates the bneakf the®Be nucleus into two
alpha particles. This is not unexpected since tlesgmnce of the orbital momentum
provides a distribution around the axis of symmaing thus reducing the probability

of finding a nucleon at the center-of-mass.

Figure (5.13) the one-body spherically-averaged dsity distribution of °Be . The
wavefunction was obtained using the S3 interactiorfor the L=0 state. The density
distributions were obtained for the several valueof w for a fixed valued of d. The arrow

indicates increasing values of w.

In the case of the two-body distribution we get @aenpronounced tail effect
than the previous cases’éfe and®He. This is indicated in figure (5-14) furthermore,
the presence of orbital momentum provides secondsyima to the distribution
indication that the system tend to break into dattstructures, as is illustrated in the
figure (5-14).

aA
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Figure (5.14) the logarithmic spherically averagedwo-body density distribution of °Be

For the L=0 states. The wavefunction was obtainefdr the S3 interaction.

5.3.4 °Be
We can obtain the nucleus e by adding one neutron to the configuration

rel
CD L,ST

of °Be. When we add one more nucleon e.g, 9Be then assilplity for
IS:

Where's is coordinate of the additional nucleon with respedhe system center of

mass, while'=s and ez are it's coordinates with respect to the two hakgparticles.
Increasing the number of weakly bound neutronstlyreamplicates the structure of

rel
Pist as well as the required coupling. However, we wiilly deal with three cluster

systems where the number of weakly bound neutrensrestricted to two.
Furthermore, working with an alpha particle notfooed in the scalar O+ state would
involve further implications.
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This case is very similar to that %fle where instead of an alpha-particle and two
neutrons, we have two alpha-particles and one oeufihe reference function can be
composed from that of equa. (5-20) fiBe by adding a term correlating the

additional neutron with the two alpha-particles:
O = (D, D, (1) T (Fase) Fo(Faze )Y (Faias Tz Fo™ Jervrrrrmrrrrrrneeeennnnnnnn (5-27)

where

O 0 6-28

The functionsf, , f, and f, are of identical from and like before are giverterms
of spherical shells, each characterized by a @iffeset of variational parameters.
and f, adjust the position of the weakly bound neutrothwespect to each of the
alpha-particles, whilef, adjusts the separation between the two alphaefestiThe
inclusion of orbital momentum is more complicatdthrt before. The function
describes the angular momentum dependence of dvefunction and in general
depends on the coordinates of the two-alpha-pastiend that of the additional
neutron in a translationally invariant way.

There are two possible schemes for the inclusiorargjular dependence
corresponding to two distinct physical situatio®e possibility is where we have
the orbital momentum of the additional neutron wikpect to the center-of-mass of

the®Be subsystem®Be =®Be +n) . In this case

y (ragz, o o ): Vi (rp* ) ................................................... 6-29

g =ry — % (r;1 + r;z) ............................................................................... 6-30

There is no restriction as a rest of permutatianragtry in the possible values
of L arising from this coupling.

On the other hand we can have the orbital momeuwfuime additional neutron
with respect to one of the alpha-particles and teenple this to the orbital

momentum of the other alpha-particle , i.e.,
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y (raj1 T ) = [y:}ﬂ(ra*lg)D y2 (r(;2 )]:A ................................................... 6-3)
1 9
= rz;Z = r;z _gériﬂ

In general the orbital momentum is a lineaxpansion over different
combinations of, andl, that can be coupled ta this coupling must be symmetric
with respect to the two alpha-particles.

In figures (5-15) and (5-16) we illustrate ttesults from the ground state energy
and the spherically averaged density distributicgspectively. Again we made a
selection for the variation parameters that is tmice for the behavior we used the

variation parameters tH#3 interaction and sét=0.

Figure(5.15) The ground-state energy ofBe using the S3 interaction for L=0. The paramets d1 and
d2 are related to the separation of the additionaheutron from each of the two alpha-particle, whiled3
is the separation between the two alpha-particleIhe width parameter w is in relative units since is

multiplied by the harmonic oscillator parameter.
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Figure(5.16) The one — and two- body sphericallyv@raged density distribution of Be . The
waefunction was obtained using the S3 interactiorof the L=0 the density distributions were obtained

for several values of w.

As in the case ofHe the calculation indicates thdBe by two correlated alpha-
particles is not a bound structure, at least withinapproximating

5.4 Three-body correlations

As we have seen the trail form of our wavefuncticas not adequate to bind
the nuclei of’He and®Be, unless we artificially changed the potential fiimre. We
expect that the major reason for this is the albsericspin-isopin coupling in our
Hamiltonian. However, there exist further improverse in the correlation
mechanism and the reference state , that might ialsleence the results. The
reference function is confined to include an alphaticle 0 state in our calculation
and it would be interesting to examine the effettimproving the correlation

mechanism.
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The linear TICI(2) part of the correlation operatmnsists of pair correlation
between all particles, while the non-linear Jastpast consists of products of pair
correlation functions. We can enrich the correlatrmechanism by adding linear
three-body correlations.

As discussed in chapter 2 the J-TICI(2) methodullicgent for the alpha-

particle. Nevertheless we examine the inclusioauncluster-like model since it can
provide further evidence of what might be necesdarya successful calculation.
The purpose is to examine whether the inclusioningar three body terms can
radically change the results obtained for the J{HRIOmethod.
Figure (5-17) illustrates through some selectedfigaration the effect that three
body correlations have on the variational behawgfdhe calculation. We can clearly
see that the overall behaviour is not changed, idespme local changes in the
binding energy .

— - J-TICI(2)
— J-TICI(2) + J-TICL(3)

Figure(5.17) The®He grround-state energy in the J-TTIIICI(2) calculation and the J-TICI(2) with
added three-body correlations (JJ-TICI (2)+J-TICI(3)), for different values of the width parameter w

. The results were obtained for the S3 interactian

VoY
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We can see that although the three body correlationtribute to the total result, this
is only by a very small amount. Both figures (5-and (5-18) demonstrate that the
contribution of linear three body correlation wilht radically change the results, i.e.,

produce a bound wavefunction.

J-TICI(2) J-TICI(2) + J-TICI(3)

Figure(5.18) The ground-state energy for the J-TIC{2)+J-TICI(3) calculation of "He as a result of the
total number of linear components used. The firstdur components (left-hand side of the vertical
broken line) include only two-body correlations whie the remaining components (right-hand side of
the broken line) include the added three-body cordation. The results were obtained for the S3

interaction.

We extended the variation method discussed ipteh&8 beyond the alpha-
particle. Although the number of variation paramgtis in some case considerably
large, we could restrict the calculation into stddcsets of these parameters. Despite
the restrictions the results we obtained are canatu Furthermore, we could make
use of the one and two body density distributiangét a qualitative picture of the
wavefunction.

The general approximation scheme can be surnethas follows:
i- One major approximation in the model is the alphaticle that is kept in the'0

state. In terms of the many body trail wavefunctionmplies that a restricted
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configuration is available. This can be illustratederms of the Young tableau.

The reference state should in general be a suptqgmosf several of the above
structures. Our approximation for the alpha-paetiokstricts the calculation to a
single structure. Inclusion of a multi referenca ba examined in the future.

li- We have restricted the calculation to include oldgal scalar semi-realistic
interactions. It is possible that a more realistpe of interaction will alter the results.
However, inclusion of the further types of interans in the results is not a problem
at all, since it only involves a small change ia ttumerical algorithms.

iii- We examined two body and a naive three body adrosl mechanism. There is
still the possibility of improving the correlationechanism. We avoided using state-
dependent correlations, a part from the casgHef, where the effect is shown in
figure (5-19) , where we can see that dependenes dot effect the nature of the

results.

I

| —— state-dependent |
|— state-independent |

Figure(5.19) The ground state energy ofHe using the S3 interaction for state-dependent ahstate-
independent correlations. The width parameter w isin relative units since is multiplied by the

harmonic oscillator parameter

Although state-dependent correlations lower thélibig energy they do not provide a

AIe)
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linear correlation mechanism beyond that of pairalations but rather improve the
choice for such terms. It is likely that inclusiofhstate—dependence in the correlation
mechanism will not provide a variational statignpoint. The reason for avoiding
state- dependence is due to the efficiency ohtimaerical algorithm when these are
present. Furthermore, it is not difficult to wraecomputer program that can lead with
the state—dependence. Never the less no conclsg@ement can be made for the
correlation mechanism and it can be one of theoreasontributing to the failure of

our approximation.



Chapter One The Nuclear Many-Body Problem and Halo Nuclei

1-1 Introduction

Although nuclear physics has a long tradition tkace theory of nuclear forces is
not yet knows and thus a number of different phezrartogical models are in use. At low
energies{ 1 MeV) the nucleus behaves like a quantum objedtreas been the subject of
theoretical studies since the birth of quantum raaads.

Recent advancements in experimental techniquesgrabed extreme types of nuclear
structures not previously known, termed “exotic IaticAmongst such structures are the
“halo” nuclei and occur all over the periodic talignging from light to heavy nuclei, This
research is restricted to the case of light nuclei.

The lightest nuclei can be treated by calcog¢athe full many-particle wavefunction
with a Hamiltonian where interaction fits the nwienucleon interaction [BerO4].

Before studying the approximation method, dssaug the nuclear Hamiltonian and
the difficulties involved in determining its eigstates In Ref.[Car90] found the
traditional description of the nucleus as a systémon-relativistic nucleons interacting.

In a microscopic methods are based on basic ptexigf quantum mechanics, such as

the treatment of all nucleons, with exact antisyinization of the wavefunctions. [Des04]

The Hamiltonian of an A- nucleon system is

Where Tis the kinetic energy of nucleon i alig is an effective nucleon-nucleon
interaction.[Des01]

The solutions of the schroedinger equation [GRr9
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1-2 Methods of the Nuclear Many-Body Problem
As result of the complexity of the many-bodyolgem it is usually only
approximately solved but these may not always sy ¢a interpret in physical terms
[AlmO4].
There are a large number of methods availablattacking the many-body problem
and it is beyond our scope to give a general datsani of such methods
In general these are methods that can be wssdite the many-body schrodinger

equation in a non-relativistic approximation [Cgr90

1-2-1 The Resonating — Group Method
The resonating-group method allows treatingtreas in a fully microscopic.

In a fully microscopic description of nuclear reans the physics must in principle be
entirely derived from a many body Hamiltonian insab the nucleons of the system.

However, since the corresponding schrodinger eguatiannot be solved exactly
models [Hes02]. In the RGM, the many-nucleon wanefion is taken to be totally
antisymmetric and describes the motion of nuclegnosiped into clusters [Tan01]. The
resonating-group method (RGM) provides an accunaieroscopic description of
collisions between light nuclei [Hes02].

Two important subjects in the field of the microgic RGM. These subjects are (1)
the study of reaction mechanisms in nuclear systant (2) the study of exchange effects
in nuclear reactions [Yos94]. The RGM is devisegitovide approximate wavefunctions
of a many-body problem involving a microscopic Hiomian H depending on the
coordinates, moment a and spins of nucleons [Hesld#k Hamiltonian contains the
kinetic energies of all nucleons and potentialsidlly effective potentials) acting between
them.

The scattering of two nuclei is described in pawtiave by the RGM wavefunction

Yem = N, &y, " (Wrty(r)  (1-3)
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Where N is an anti symmetrization operator. Theriml wave function®1 (i=1,2) of

the colliding nuclei (also named clusters). Thetoea=({.r) is relative coordinate
between the cluster centers of mass. The relativetibn U(r) is unknown
When the trail function in equa.(1-3) is introdugada variational calculation, obtains
the RGM equation.
Huwu, =ENu, (1—4)

With the conditiori1(0) =0 the Hamiltonian operatét is defined by

Hu = 1(®, 0.y, |H|¥y)
And the overlap kerné¥: by
Niwy = 1(P1 P ™¥pm)
[Hes02]
1-2-2 The Generation- Coordinate Method
A numerical procedure is introduced which alows to extract a collective
Hamiltonian. The starting point is a microscopicnydoody approach, namely the GCM.
[Gal81]
For an A-particle system, a trial wave functio constructed of the form

probme in a "construction potential’. This potent@depends upon a "generator

coordinate", a. the collective wave function, f@),"generator function”, is folded in®
to produced a system wavefunction that depends opbn the coordinates, xi, of the
particles.

In typical cases when the generator functiamtaios one or more nodes, it generates

nodes in the system wavefunctih of the kind that describe collective kinetic energ
The energy of the system is extreme with respechtace of the generator function. f(a)

no Hamiltonian ever appears except the A-partidenbtonian.
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All nucleons are treated on the same basis whatheor above closed shells. The
appropriate variational calculation leads to aregndl equation or "generator wave
equation"” for f(a) [Jam57].

J'da'(xl,...xn;a)HDCD(xl,...xn;a'):Ejda'¢(xl,...xn;a)db*(xl,...,xn)f(a') ............. (L-5)

That is known as the “Hill-wheeler equation”, iethollective wavefunction occurring
in the Griffin —Hill ~Wheeler integral equation gowly varying, the equation can be
transformed into a schrodinger equation [Ban72k fibmerical treatment of the Griffn —
Hill-wheeler equation is studied in a solvable mMd@al78]

The properties of the subspace of the many-bodyertilspace, which are associated
with the use of the generator coordinate methodoimnection with one-parameter and
with two conjugate parameter families of generatates [Jam57]. The RGM and GCM
are exactly equivalent [Hes02].

The GCM equation is an integral transform of theMR@ne. Differences only appear
in the difficultly of derivation of the integral keels of both methods and in the techniques
of numerical resolution. The derivation of the G®&ernals is much simpler because if

can be based on well-known properties of slategrdehants [Hes02]

1-2-3 No Core Shell Models
The no-core shell model (NCSM) is an ab initionfiguration interaction (CI)
approach based on effective interactions derivedhfrealistic two- and three-nucleon
interactions [Rod06,Dea ].

The no-core shell model is abased on a new vamiatidthe well known shell model for
nuclei. Historically shell — model calculations lealkeen made assuming a closed inert
core of nucleons with only a few active valenceleos. The interaction of these valence
nucleons with the core and with other valence mrmgecould not be described by
microscopic interactions, as they have been deedlémr few-nucleon systems, until 1990
with the development of the NSCM, which treatsralcleons in the nucleus as active
particles. One starts with the relative Hamiltonfanall a nucleons and add the Harmonic

— Oscillator (Ho) centor-of-mass potential
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Him=Tea + V.. ....... (1-6)
p: )
HES =+ ) Vi ()

Where Yxn can be any realistic nucleon — nucleon potential.
Where

Q _Harmonic Oscillator frequency

P - momentum

M - mass of nucleons

The modified Hamiltonian facilitates the use of t@venient HO basis. The strong
correlations of the bare nucleon—nucleon interactimwever, lead to slowly converging

results in the HO basis. This problem can be solgdieriving an effective A-body

H

Hamiltonian, " in a truncated (model) space from the full HO spddee model space

and the excluded space are such Riatdoes not have any matrix elements between the

two. For practical purposé'sleff must be further approximated.
In general the no-core shell model is a microscapigroach for a calculating nuclear

property [Nar0O, BarO3]

1-2-4 Correlation Basis Function Theory

The correlated basis function (CBF) theory is ohéhe most promising many-body
tools currently under development to attack theblenm of dealing with the complicate
structure (short range repulsion and strong stafgemdence) of the nuclear interaction.
The CBF has a long record of applications in cosddmmatter physics. In nuclear physics
the most extensive use of CBF has been done initmfnhuclear and neutron matter
[Fab00].

We solve the many-body schrodinger equation by gqushre variational principle
[Fab00].
(P|HI¥)

SE[¥P]=S )
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A set of correlated basis wavefunctiof§1,2,...A), may be built by applying a many-

body correlation operator, F(1,2,...A), to the moblasis functions‘;5 (1,2,...A) [ Fab01,
Ari96, Fab97]

Y(1,2,..A)=F(12..A®(1,2,..4) (1-8)
Where the operator F is intended to take care efdymamical correlations, where as

the model wavefunctior®, include anti symmetrization effects [Fab99, Bis07

A correlated wavefunction having spin-isopspin dwj@nt, central and tensor
correlations has been used within the correlatstsldanctions (CBF) theory.

Furthermore, the CBF. With state dependent coroslatwas used to investigated the
ground-state properties of the closed shell nub#€ and 40Ca using realistic nucleon-

nucleon interaction including tensor componentabf~, Ale03]

1-2-5 Greens Function Monte Carlo

Monte Carlo methods are procedures used to inastifpe sampling distributions of
various statistics and to determine the effectwiofating underlying assumptions. The
Monte Carlo method can be used to closely appraeirtiee solutions to many probability
problems [Dav ].

Monte Carlo methods as applied to few and many-bgaggntum systems, and in
particular to few-body problems in nucleon phy$€ar90].

The first application of Monte Carlo Methods to Hicinteracting with realistic
potentials was a Variational Monte Carlo (VMC) ed#tion. We describe this method in
some detail in chapter four [Bar03].

The first step to model a nucleus is a VMC caldotatto obtain an approximate
solution of the many-body schrodinger equation. Thasis of the variational
approximation is the fact that the real groundestaavefunction of a Hamiltonian has the

lowest energy ¢ of all possible wavefunctions and thus a normadlizeil function'v has

an energy
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(W |H|W)
(vlvy — % (1-9)

Variation of the expansion coefficient Ck of a ltfainction W, =2, Ck | K of states
|K>. with specific spin and isospin in to minimizee expectation value of the Hamiltonian
from the nuclear model, leads to the approximaligtisn. This is the n used as the starting
point for the GFMC calculations, which are basedhenpropagation of the wavefunction
under the Hamiltonian, that means [Rod06].

W limy ., exg=(H" = E)T|W, e 1-10)

GFMC takes the VMC trial state and evolves it imgmary time[Car06].

The evaluation oéxd- (H® - E,)r|is made by introducing small time steyr,=7/n and

n is the total number of integrated steps. In limit ¥ois the ground state wavefunction
with exact eigen energy Eo.
W(r)exd- (H7-E)Ar} W, =G™W, oo 1-11)
Where G is the short-time green's function.
In general , Monte Carol methods is applied inrthelear physic and particular for the
evaluation of realistic interactions but at thenigeare restricted to light nuclei due to the

complexity of the many-body problem.

1-3 Halo Nuclei and Neutron Dripline

A many the isotopes of the lightest elements inrthelide chart, halo nuclei are the
most exotic ones. These halo nuclei consist of rapaxt core nucleus consistent to the
classical picture plus one or several weakly bonadeons orbiting the inner core with
relatively large distances [Gep ].

Therefore, halo nuclei are very weakly-bound exstates of nuclear matter in which
the outer one or two valence nucleons (usuallyroes). [Kha ].Several nuclei near the
drip lines have been found to have properties whiehstrikingly different from those of
their stable counter parts. These nuclei have@dtalcture in their ground states in which
loosely bound valence nucleons have a large spak##nsion with respect to the

respective core [Raj ].
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Nuclei are composed of two types of interactingriens, giving rise to a specific
degree of freedom, isospin. Therefore, there argieonaumbers for both neutrons and
protons. [Bec06] Here describe the neutron halo.

Most of the halo nuclei are located close torteatron drip line and are considered
as a core plus a pain of external neutrons [DesA&]neutron halos have been observed in
nuclei near the neutron drip line by reaction measents with intermediate and high-
energy radioactive nuclear beams [Tan96].

Therefore the neutron drip line is a concept irtipl@rand nuclear physics. An unstable
atomic nucleus beyond the neutron drip line widkddree neutrons. In other words, the
neutron drip line is the line on the Z N plane (esent the diagonal) .

In general halo structures are characterized lsralow (< 1 MeV) Separation energy
of the last neutron, and are therefore candidatesdlo nuclei. [21] A schematic of the

lightest nuclei with halo structures is shown o f-1) [Oza01]

&1
stable nuclei i
. ne neutron halo S| i .
) ) SR 37y nuclei of a special
- neutron-rich nuclei Biitromean aulei interest

|:| proton-rich nuclei @@ R Y

Figure (1-1): Thelightest known halo nuclei

Studies of resonances are indispensable for uraelisg the unique properties of drip-
line nuclei. Although it is easy to solve resonanoé two-body systems, resonances of

three-body systems such as the so-called Borrorsgstems are not simple, because
8
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various kinds of open channel structures appearekample 6He =4He +n+n which is a
typical Borromean system, the 9Li +n +n model ie fiirst stage presents a serious
problem of the binding energy of 11Li, since sugdubsystem 5He is not bound.

6He and 11Li can be described by a model involving effect of at least three
interactions, namely the interaction of each of thve weakly-bound neutrons with the
alpha-particle and the interaction between therewtrons, [Kiy01]. In this thesis we used
a cluster model of studying light nuclei, where main objective is its application to light

Borromean system.

1-4 Existing Models For Halo Nuclei

Different kinds of theoretical models are curreriling used to investigate the halo
structure. One of the early works on halo nucles wa intermediate between shell model
calculations and fully microscopic ones, is the catled “cluster-orbital shell model”
[Suz98, Suz90, Yo0s90]. This model employs a wawetfan of the alpha-cluster form but
uses a Hamiltonian which is not fully microscopic.

Over the past few years, a number of review agiab®vering the field of halo nuclei,
from both experimental and theoretical [Kha ].

The field of halo nuclei study of nuclear structwaknost twenty years after their
discovery. But the field actually begin in 1985 hwihe Berkeley experiments carried out
by Tanihata and his group in which they measuredinteraction cross sections of 9He
and 11Li isotopes and found much larger valuesterrms matter radii than would be
predicated by the normal A1/3 dependence [Kha ]

The empirical evidence suggests that neutron gapiays an important role for the
stability of nuclei near the neutron drip line bgrk$en and Jonsen in 1987 [Han87]

T. Otsuka et al., [Ots93], proposed a variatioradlismodel in order to describe the
structure of such nuclei. The model was appliedli8e, where by using a Skyrme
interaction the observed ground state of this nuscl@as reproduced correctly. In general
mean field approximations proved to be restrictakitity because of the weak binding of
the halo neutrons. It was realized that a moresteahpproach to the halo structure would

rely on microscopic many-body models. After abo891 a large amount of theoretical

9
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research treating halo structure in such a managbken going on. An account of all of
the current research is impossible, but an outinmain type of models used is described
in the rest of this section.

The approximate three-body approach is used tooexghe structure of 11Li. This
"Borromean" system is discussed with referenceh# dimilar system 6He for which
information on the binary subsystems is more cotepie 1992 by M.V. Zhukov, D.V.
Fedorov. In 1995 the P. Descouvemont study theelsilgleus is investigated in the three
cluster generator coordinate method, involving sgVE2Be+n+n configuration.

The 12Be core nucleus is described in the Harmosadlator mode with all possible
configurations in the p shell [Des95] , and so Bs@uvemont study in 1998 the 11Be
nucleus is investigated in the GCM using 10Be+nragsicopic wavefunction. The 10Be
wavefunction are defined in the Ho model with aihell configurations [Des]

More recent work offHe involves the improvement of the RGM three—clustere
function, to an “extended three—cluster model” [DeBhe aim is to improve the
description of the alpha—particle core, by assuntivag is composed of a three—cluster as
state and a single nucleon. This results in thiignen of at-t (triton-triton) configuration
in the initial @+n+n) model (pure three cluster model) allowing for @rec breakup
configuration caused by the halo neutrons. The roantlusion of this paper was that the
precise value of the energy as well as other ptigseof a halo nucleus require a realistic
treatment of the core.

This was based upon showing that-§ {nclusion affects the tail behavior of the core
thus effecting the binding of the halo nucleonse Thumber of existing many-body
methods and models for the few-body problem is leoge to summarize in just one
chapter. We have mentioned only a few and in paddrahose related to our problem. The
numerical accuracy and sophistication of the variguethods and models used is
constantly improving.

In chapter Chapter Two we examine the coupled etusethod and its truncation to a
linearized version.

This is enhanced by the addition of central Jasttokelations. We pay attention in the

inclusion of state-dependent correlations.
10



Chapter One The Nuclear Many-Body Problem and Halo Nuclei

The method is examined by applying it to the alphsicle, where comparison can be
made with other methods.

Chapter three describes the cluster model that el snake use of. Particular
emphasis is given to the inclusion of the corrgechreetry properties and in particular
permutation symmetry. Some types of semi-realigticleon-nucleons interactions are
discussed.

Chapter four deals with the numerical method. T&ia rather technical chapter. The
fact that we are using the VMC. Implies that theoeestimate is statistical. We ensure
that the statistics are “healthy”, in the sensd tha get a reliable error estimate. The
results of the cluster model for a few light nu@dee given in chapter five, while chapter

six contains the conclusion and a discussion fesiibe extensions of this research.

1-5 Motivations for this research
This thesis is aimed to an investigation of the -Ewergy nuclear many-body
problem by making use of a number of quantum maogh-bechniques.
In this thesis we will develop a cluster model nfdying light nuclei, where our main
objective is its application to light Borromean tgys, and study some physical properties

of the light nuclei,

11



Chapter Two Linearizedtial Wavefunction

2-1 Introduction
In this thesis we are concerned with the agpration of the few body Schrédinger
equation in terms of a linear variational probléihe most basic ingredient in such an
approximation is the construction of the trail wlanetion. One way of doing this is by
appropriately approximating some rather complicatsdally non-linear parameterization.
One type of such a parameterization is given bycthgled cluster model (CCM).

Cluster-structures are interesting phenomena ideaughysics. Alpha-clusters have
been broven to exist in light to heavy nuclei. ight nuclei, other clusters are also
expected to play an important role in nuclear stmec[Nak03].

The first part of this chapter gives a brief dgstton of the CCM wavefunction and the
ways of performing approximations appropriate to study.

Another type of non-linear parameterization of thany-body wavefunction that is
variational in nature is the Jastrow method [Ja§A879, Gua97]. We also provide a brief
discussion of this technique and ways of approxmgait.

The effectiveness of the approximation scheme lisstdated by considering the
calculation for the ground-state of the alpha-péetiFor this purpose we quote results
from a number of authors as well as our own, we alsamine the calculation of the one-
and two-body density distributions that can be usegrovide qualitative information

about the wavefunction.

2-2 Coupled Cluster method
The coupled cluster method (CCM) is a non-pedtivie microscopic method for
approaching the many-body problem.
Cluster methods are derived for open-shell manpifem systems, for energies,
wavefunctions, expectation values, and effectimadition operators [Bra67].
Coupled-cluster theory was first introduced in eaclphysics by Coester and Kummel
in the early 1960s. [Dea , Gua97]
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Chapter Two Lineaed Trial Wavefunction
Initial nuclear structure applications come in thigle 1970s with several papers from

the Bochum group [Dea].

During the last three years the scientist devel@pseét of powerful theoretical tools for
the description of nuclear properties in a manybddme work known as CC
theory[Dea05]

Coupled-cluster theory is size extensive, which msehat only linked diagrams enter
into a given computation. This is not true in tygishell-model particle-hole truncation
schemes. [Dea |

It is based on describing the correlations in temhsexponentiated independent
excitations, which are parameterized as multi-cpmtionally creation operators with

respect to some suitable reference state [Wal03]

2-2-1 Reference states
In the case of many-body problems it is oftemvamient to introduce the idea of

reference states. In general a set of referendesgta, >;i = 01...,D} is used, where the
orthonormality conditiorx c1>i|c1>j >=¢, can be assumed to be satisfied (since it can alway

be imposed). The reference states form the basadatflimensional subspace of the full
Hilbert space referred to as the “model space”.
In the case of the coupled cluster model (CCMYy#asoning behind the introduction of

these reference states is that thej®gt can act as starting functions, from which we can

construct the full wavefunction by the action ofretation operators. A non-degenerate
ground state corresponds to the case of a sinfgeeree stated =0 and is referred to as
the “single-reference” version of the CCM.
The reference state should be constructed to dleegyimmetries of the exact ground-
state; while the correlation operators of CCM carsbalar operators that do not carry
any numbers (this is not necessary but is the sishglase). Furthermore, it is always
convenient for such a state to have any analyscrg&ion. Since a large part of the
CCM will require calculations involving the refewn function alone. When
13



Chapter Two Lineaed Trial Wavefunction
considering a many-fermion system, a non-intergctimny-body wavefunction or

ground state can often be described by a Slaterrdetant. Such a state can serve as
the reference state. It is well known that in thagluage of second quantization a

Slater determinant can be written as

N
@, >:|_l|a;i|0> .................................... -1

Where N is the number of particles and tlag are fermions creation operators that

obey the usual anticommutation relations and afmel® by their action on the vacuum
state|0).

The occupied single particle stafes>;i =12,...,N} are referred to as hole states,

Once a reference state is provided in terms ohte6teterminate with respect to a set

of hole stateqy, >}, a more general determinant that mixes particie lanle states is

provided by Thouless theorem , where

The operators’ is a one—body operator which acts|¢h> to produce a one—

particle/one holel(p—1hH excitation. In the notation of particle/hole s&itt has the explicit

form

The new reference staL% 7 is non-orthogonal to the original sté&’e ”,

2.2.2 Theexp (S) expansion
The coupled-cluster method, also called the ex@(pansion.
The basic idea of coupled-cluster method is that torrelated many-body

wavefunctionw may be obtained by application of a correlatioerapor s, such that
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Where ¢> is a reference slater determinant chosen a aecient starting point

[Dea07, Wal 06]

n=1

Is the cluster correlation operator, sum of opesatd the form

1
Sp = (. Z <P1wPp|Snlo,. 0> a; a; ap (2—2)
B9 aren J
[Gua97]
As a result of the fermionic anticommutation pFdEes
laz.ar}=0,6,. fa,.a =0 (2-6)

The time—dependent Schrédinger equation for thargl state wavefunctiorhwﬂ ”is

where H is a many-body Hamiltonian. As described in thevimus section the exact
ground statelzwo ” can be expanded in terms of a model st%te? and states orthogonal to

[, ”, resulting from the dynamical correlations indutsdH . Thouless theorem allows
the inclusion of the simplest , correlations imterof 1p-1h excitations.

The ground state energy Eo are obtained by solsgtgof formally exact coupled
nonlinear equation

E, =<® e H%® [®, > .o, e-9)

The exponential character of equation (2.3) ismapoirtant characteristic of the CCM.
As a result of the commutation of the operatorequa. (2.4) the CCM exponential
parameterization obeys size-extensively [DeaO7]asdt of coupled non linear equations

for the unknown coefficients
15



Chapter Two Lineaed Trial Wavefunction
<o, ge H% o, >=0,

A very important property of equations (2.8) andj2arising from the exponential
representation employed by the CCM, is that theargn of the terms with in the

expectation value is of finite order. This is aulesf the nested commutator expansion for

the term(e_sDH Desm) which has the form

e~$Het = F +[A,5,]+ [ﬁ,§1]+%[[ﬁ,§ ],51]+%[[ﬁ,§2],52] +[[A5.]5)]

The above expansion is of finite order due to féett H is finite. Although the
equations for the ground state energy are of fiorger it is necessary for practical
purposes to further approximate due to the compledi the many body problem. The

simplest way of doing this is by performing a SUB{runcation. This implies that all

parameters{sl}. Which describe correlations of clusters of mdrant n particles—hole

pairs, are set to zero. Thus equation (2.4), wbaldpproximated in the SUB(3) truncation

by

2.2.3 Trandlational Invariance

A problem that can arise in the CCM formalism wipenforming a SUB(n) truncation
iIs due to possible symmetry violations. In genénal symmetries obeyed by the exact
system should also be present in the approximaysters, unless the effect on the
calculated quantity is with in same accepted limits

The CCM wavefunction is described in terms of theom of a cluster operator on
some reference function, which takes into accaumtréquired symmetry properties of the
system under consideration. In the applicationindef systems, one faces with the well-
known center of mass motion problem.

The proper treatment of the center of mass in theéwork of CCM was initiated at
the so-called SUB(2) leve of approximation. It bagn shown in these references that the

center of mass is properly removed using apprapgatbinations of one and two body
16



Chapter Two Lineaed Trial Wavefunction
operators, and describing the refrence functionterms of single-particle harmonic

oscillator wavefunctions.
In general the single particle HO wavefunction ipraduct of a radial part and an
angular part, which can be represented as

(r|nly =U (Y (B, D). @-11)

In the above equation the functithm (" s given in term of the Laguerre polynomial,

while Ym @ ®) js g spherical harmonic.

such reformulation of the CCM is called translasiltyy invariant, coupled-cluster
(TICC) method, [Gua97]

The CCM is most naturally formulated in the occiugrahumber representation

with the requirement of both translational and tiotal invariance. These are:
i- The S operator cannot occur on its own, otherwise it Moviolate translated

invariance. This requires the coefficier{t%} and {s.} to be coupled, resulting in the

transformation of the cluster operator as

The terms are easily excluded by the simple dewicéaking exp(1,2) operator in
normal-ordered form so that the TICC2 ansatz fentlavefunction can be finally written
as

|W,) =1expS*?) [ @)...c.cees (2-13

The reason for the inclusion of the normal orderdue to the fact higher powers of
S(1,2) occurring in the exponential would othervwageite the CM.

The above formulation based on the SUB(2) levepgdroximation can be extended to
higher order approximation [Dea07] To solve theredimger equation

HW>=gw> .. (2-14)

To obtain the equations for the amplitudes is tojgmt directly the shcrodinger

equation with the ansatz [Gua97]
HY:eSt?’ :|cb >=E: 542 o> L. (2-15)
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Chapter Two Lineaed Trial Wavefunction

And the ground state energy [Gua97]
E=<g|H:es0?:|¢p >

. The cluster operators used in CCM were originailsoduced by using the notation of
second gquantization. In the case of translatiomahriance, these cluster operators were
shown to have a general representation in coomlsyadce, depending only on the relative
coordinates of the involved particles.

This so-called translationally invariant configueat interaction method was applied in
ref [Gua96] to calculate at the SUB(2) level (o€T2 approach). The main conclusion of
this work is that the TICI2 methodology provideseaxry resonable starting point for the
calculation of the binding energies of light-to-med nuclei. For interactions and
correlations of theV4 form, as displayed in the\abequation, the TICI2 results are In
suitable agreement with ones provided by other atsilogies [Gua96]

<r{2r3r4|S(1’2)|cD0 >=2%'S,( )j SELL0|P, > . (2-17)

i<j
In the above equation the coordinate dependentteedfluster correlation function-2

is only on the relative coordinatés,

Although the functional form of the correlation ogrs could be derived for this
simple case, it is by no means guaranteed thawillibe possible for the general case, due
to the complexity of the many-body problems. Howewe can generalize the result
obtained as an approximation for the coordinateressgmtation of cluster operators
[Bis90, Bis93, Gua98], that will preserve translatinvariance.

An alternative was is to go to coordiante represtgort, where

i<j i<j k<l

1 |
W(r,,..., rN)=(1+2f(r”)+522f(rij)f(rk,)+...}b(rl ..... 1N TP (2-18)
This equation preserve the essential featuresefTtRC by an additional constraint
imposed a summation and denoted by a prime, indgdhat no repeated indices can

occur when multiple summations are required. THe) are the coordinate representations
18



Chapter Two Lineaed Trial Wavefunction
of the system and preserve the overall symmetrthefreference function. The above

correlation functions can be viewed as producinigpendent clusters on coordinate space.
The benefit in using the above formalism is in threedom it provides for
approximately choosing the functional form the etation operators, a according to the

problem in equation. For example in the case oh#gn (2.18) the easiest method is to

approximate the two body correlation functibfi) in terms of Gaussin non-orthogonal

functions [Bis93], of the form
f(r,) = Zaf A, €XPED, 1) e e-19

The finite value™=x indicates a truncation, as necessary for pract@@ulations. The
coefficients An can now be determined by a nuna¢galculation or in the case of a linear
approximation as the linear coefficients of a gaeheed eigenvalue problem. The
parameters bn,

Although alternative approach have been carriedioutrder to obtain an optimal
functional representation for the correlation fumes [Bis93], the particular choice of a
Gaussian expansion has been proven to be theTdestTICI is linearise a translational
invariant form of CCM

The TICI a voids the complications of the full dieisexpansion and was found to
provide a very reasonable staring point for thewation of binding energies of light-to-
medium nuclei [Gue98]. The wavefunction of both TI&nd TICI can be used to solve the
CCM equations (2.8) and (2.9). A variational appfodor the binding energy is also
possible, giving an upper bound to the estimateuign

Therefore, the simplest linear approximation fonany body wave function, is given
in the frame work of TICI(2) by

W(r,..r,) = (1+Z(rij )Jcbo({rij WD, (R 2 -20)

i<j

Provided that the reference state can be factor into the product of intrinsic and

center of mass part.
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Chapter Two Lineaed Trial Wavefunction
2.3 Jastrows method

Jastrows method was desinged for the tredtofeaquantum mechanical systems for
N identical particles.

Jastrow's method, which is essentially a combinatad cluster expansion and
variational techniques has further been studieliMaynoto and Yamada, Aviles and others
[Ali68]. In order to obtain a variational wavefurant using CCM we have to greatly
approximate, the full wavefunction as illustratacequation (2.20).

One way of significantly improving the structure aimany body wavefunction in the
case of extended strongly interacting system i$ dhaastrow [Jas95]. The method has
been adopted for finite systems and applied toral@u of light nuclei [Bis93].

2.3.1 The general approach

In a system of finite size the wavefunction locasizhe particles around the center-of-
mass. If the interaction is strongly repulsive lars distance the wavefunction should be

very small or even null when any of the relativetioke-particle distance<i, vanishes for
any pair (ij). Furthermore, when anyone of the ipla$ moves away from the rest the
independent particle motion should be preserved.

In the original Jastrow approach a correlgi@dicle wavefunction is decomposed as

e I LY L @-21)

<]

()

where “¢ is a starting function that incorporates all af 8ingle particle characteristic.

[Wal03]. And f, (r;) is the product of a Jastrow correlation factor

The choice for the factor® () will depend on the problem in question. The siraple

choice is to assume functional form for the which depend on several parameters. The

optimal choice for these parameters is the onertiaimizes the expectation value of the

Hamiltonian. However, according to the problem uestion the®s can incorporate state
dependence in terms of operators. A discussiortherinclusion of state dependence is
given in [Gua98].
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Chapter Two Lingaed Trial Wavefunction
The most general form for thk is

) 21+ 3 A G (1 YOS Yoo 2-22)
mp
O
where 9(i) are suitable function of the relative coordinatesjle the C» (i) are

operators acting on the pair (ij). A very commowick for the9r is in terms of Gaussians
G (ry) = eXp= BorZ) e 2-23

a

The correlation depth “mrand 9m are to be determined by the variational

problem[Gua98].

D ..
The operators®» () are, apart from the identity operator, can be eho® be the
exchange operators of spin, isospin and spin-igolsfiiels. This choice is suitable for a
scalar state-dependent potential, since the sammtops can be added, such as tensor

operators.

2.3.2 Jastrow-TI Cl variational wavefunction

The physical problem of describing many interactigigntical particles from a
microscopic point of view can be attacked usinguaniber of techniques. For a nuclear
system the Jastrow method describes the wavefumictiterms of the product of two-body
correlations between all pairs of nucleons actipgrua suitable reference state [Gua98].

This can be enhanced by combining TICC with ardaswariational function. This
way short rang correlations are accounted for gy thstrow factors while the TICC
correlation operators take abound of the mediutorig range effects. The easiest scheme
is that where Jastrow and TICI(2) are combined (BRlereferred to as the J-TICI (2)
scheme. Such a formalism is similar to that of tleerelated operators acting on the
wavefunction. In the J-TICI(2) formalism the varatal trial wavefunction is given by the

product of a linear TICI (2) operator (FL) with then-linear Jastrow factor() as

W) = FyFL® e @-24)

=M f. )(1+Z fT,Clz(ij)}DHo ______

1<]
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Chapter Two Lineaed Trial Wavefunction
where the latter equation is the specific form Wwallsmostly make use of in which a

Harmonic oscillator reference functioﬁ,HO, takes care of translational invariance.

The Jastrow factor depends only on the distancedset pair of nucleons [Bue04]

2-4 The alpha particle

It is consist of two protons and two neutrons lebtogether into a particle identical to
a helium nucleus it can be written 4He[Ale08]. Higha particle wavefunction is the most
important ingredient of the calculation scheme @nidhportant that an adequate structure
is provided. The fact that this wavefunction canotained in a separate calculation is
extremely convenient. One of the main assumptioreur model is that the alpha particle
will be described by a spin-isospin saturated stateby a 0+ ground state.

The alpha particle has been one of the startingtpdor the discussion and testing of
various microscopic methods and in particular ti@&MC Jastrow method and J-TICI. In
this section a comparison of this methods as appiiehe alpha particle is made.

2-4-1 TICC and TICl methods

One of the major concerns in the description ohtliguclei is the center-of-mass
motion. The TICC provides a unique way of dealintghwhis problem by employing HO
reference states that are separable into relatidecanter of mass parts. The bosonic 0+
state of "He was extensively described in [Bis90] in the TICICépproximation and its
linear version TICI(2), where the general expras&qua. (2-16) for the wavefunction was
derived. The calculations were performed in the b#3is in view of what they imply for
standard shell-model calculations. A sample ofréseilts is shown in table (2.1).
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Table 2.1:This table shows the results taken fromBis90] for the ground state energy in MeV of

*Hein the (TICC (2)) and (TICI (2)) calculation usingthe S3 (winger part) and MT-V potentials.
The correlation functions were expanded in terms othe oscillator basis and nmax is maximum

principle oscillator number at which the expansionof the correlation function was truncated.

83

nmax TICI(2) TICC(2) TICI(2)

A remarkable result is that for such a finite sgsi@s ‘He the relatively simple linear
version TICI of CCM can provide good results, eatnhe lowest level of approximation.
Although it was found that the TICC(2) calculatismmore efficient than its related shell-
model ones the final conclusion was that pursuinghscalculations in the oscillator
representation is not efficient due to convergeroblems.

The work of Ref.[Bis90] high lighted the fact thatorder to make such calculations
efficient it is necessary to concentrate on therdioate representation of the cluster
function. In the case of the linear TICI (2) theioml form of the correlation function equ.
(2-12) was obtained via an Euler-Lagrange approik92], a rather cumbersome
process. Instead, by making the simpler choicexpheding the correlation functions in
terms of Gaussian functions, identical result carobtained in much more efficient way

and certainly less computationally demanding [G&u91
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Further more the idea of the Gaussian basis caxteeded to give a variational TICC

calculation beyond TICI(2) by employing double Gsiae expansion and so on

[Gau91] for example the TICC(2) wavefunction has general form

Wia o =(1+Zf (Ij)+ZZf (ij)f(kl)J ............................... 2-25
f(ij) = Vi_axA» EXPEL,TE ) revirieeieeeieiseisee e 2-26)

In the description of He up to now the cluster operator were state indegen
For the TICI(2) method [Gue96] where the comietaoperator had the form
faj)="f(r)+f,)o o)+ f (70 )+, ()0 .07 )T 1) )i @2-27)
Whered and 7 are the spin and isospin matrices respectively. résalts given by
the authors are displayed in table 2.2, where tisegesignificant increase in the binding
energy for the case of S3 and MS3 potentials. Ehdlie to the fact that these potentials
contain different spin-isospin terms unlike the &1d MT-V potentials that contain only
purely redial (Wigner) and space-exchange (Major&rans.[Gua98]
Table 2-2.: These results for the ground-state engy of *He nucleus (expressed in MeV) were

taken from [48]. The TICI(2) approximation was used performed both with state independent
cluster operator (Sl) and state dependent ones (SD)

Potential

B B )

Method

TICI(2) SI -37.86 -25.41 -25.41 -29.45
TICI(2) SD -37.86 -28.19 -27.99 -29.45
The inclusion of state dependence on clugieraiors can be arbitrarily extended in

principle so as include any type of operators idelg non central ones. However, the

calculations become greatly complicated and pddrcin going beyond a spin-isospin
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saturated system. The inclusion of a tensor tertherstate dependence of the correlation

operator was achieved [Gue98],

2-4-2 Jastrow-TICl methods

We have seen that the application of clusteerator directly in coordinate

representation can be very powerful for the desioripof “‘He There is a close relation
between these correlations and the Jastrow fadfowge consider the state independent

case where the Jastrow wavefunctibnis parameterized by a single Gaussian, this can be

expanded as

Wy =[]l aexpg-brd ) (2-29

1<)

i (1-'- az e'brijz +a’ Z Z e_brijz e—brk2| + aee_(brlzﬁ---"'braz“)Jq)o

i<j i<j kd

Where the prime indicates that the labeladk!aare distinct from i and j.

Despite the restrictions in the coefficieriis lastrow variational wavefunction can
achieve better results than the state dependen(Z)I@r the high order state independent
cluster expansions.

This was done in Ref. [Gua98], where an exjpangp to two Gaussians was used,

examining both state dependent and state indepecdses for the ground state ‘dfe.
The same spin-isospin operators as in equatiom)22re used. These results are shown
in table (2.3).

25



Chapter Two Lineaed Trial Wavefunction
Table 2-3: Results from [Gua98] for the ground ste¢ energy of “He using the Jastrow

variational wavefunction. The SD stands for state ependent correlations, while the SI for state

independent ones.

Potential Correlation Energy (Mev

S3/MS3 -24.4042
S3 -25.3539

MS3 -25.3119
S3/MS3 -27.2136
S3 -29.9378

MS3 -29.7034
MT-I/ I,MT-V -29.0604
MT-I /1 -29.3460
MT-1/ IIl,MT-V -30.8752
MT-I /11 -32.0107

Rewrite the correlation factors with a simpletstdependence, the ansatz equa.(2-20)

becomes:[Gua98]

mo' o

£(if) :1+§e“*ﬂ'ﬂz [+ PG o .2-29

With central scalar and spin-exchange constituentig The state independent study is
performed, as usual, by setting

As long as central state-independent correlatisascancerned the TICI and Jastrow
methods provide similar results. When state dep&nideinclude in either the Jastrow or
TICI(2) methods there is a considerable improvemerthe calculation of the binding
energy.

The simplest way of doing this is by combining cahstate- independent Jastrow and
the state dependent TICI(2) methods. The alphaepadan be used as a model to examine

the effectiveness of such an approach. These a#ilon were performed in [Gue98] using
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a Jastrow correlation, parameterized by a singles&an, later on Buendia et al., [Bue06]

improved and extended the application of this metliging the variational Monte Carlo to

calculate the matrix elements

2-5Thelinear eigenvalue Problem
2-5-1- Matrix elements

The key ingredient of the J-TICI (2) approxtioa is the linear dependence on the
spin and isospin operators, something that givesra similar formalism to that of
state- independent approximation. For completenessgive a description of the
linear eigenvalue problem that arises since it Wél used all over this thesis. The
description is valid for an arbitrary system anchat confined to shell nuclei. For
simplicity we restrict our selves to central scatarrelations and to local scalar
interactions (to be discussed in detail later on).

In the linear J-TICI(2) approximation the wavefuantis given as[Bue04]
e T .2-30)

Whereo is the part wavefunction that carries all the reggiquantum numbers, while

F" is the linear operator of the TICI(2) approximatid-or compactness we have

absorbed the state independent Jastrow factor (sanmeequa. (2.22) but without the

state dependence) in the function giving

o, is the model function which will depend on thetsys in question. For the

o

alpha particle this is the'OHO ground state parameterized by a single naatin
parametet..

In order to obtain the g.s. energy coraghe mean value of the Hamiltonian
[Gua9s8].
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The potentiaﬁ Is a two-body operator that dependes on theivelapatial
coordinate and the spin-isospin degrees of freeafomach pair of nucleons.
The interaction employed here have V4 structureishwvill be transformed to an
exchange-operator basis as in the case of thela@iwre[Gua98]

V=V, +Vo+V, +V_.............. (2-34)
Apart fromv, the potential terms depesan the spino and isospirr variables. The

particular form of an individual term such@asis:

V, =30, (0 P (2-35)

i<j
with ry representing the radial distance between particlasdj, while B’ is an
operator that exchanges the spin labels of pasticland j accordance with the
interaction the correlation operator F takes thienfo

FP=F +F +F +F e, (2-36)

As a result of the TICI(2) formalism the individuafrms are parameterized as:
Fo=S (P (2-37)

i<j

Where k=0 fofe the identity operator k=1 and 2, F1 and F2 repriedee spin
and isospin operator

The function () and9:(Nare parameterized as a linear combination of Ganssi

N
f) =1 +Z C, e~
n=1
M
g':.[c:' [:T') — Z agj:‘ E—bmﬁr'z
m=1 (2-39)
(k)
Note that the expectation value of the Hamiltonimmuadratic form in“» and

therefore their optimum values can be obtaineddivirsy a generalized elgenvalue
28
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problem. The values of the non-linear parametarsate not very relevant as long as

one uses a significant number of Gaussians to ekpérn. The parameters of the

Jastrow correlation functiorg, andd, [Bue02]

The eigenvalue problem can be solved by lineaatrans of the expectation values
on the expansion components with the additionasitamt that the wavefunction has
a finite form:

0
ac

n

[CWHW> B, <WW>)20 D @ - 40)

Following [Bue06], the expectation value can betten as
(w|R|w) = [ dRy " Hy
= Zde<cDo ‘(FAL FAJ )+‘ R/Y0T><R/YO'T “_"\FAL FAJ ‘ q)0>
Where ther spatial pariR =R, (r) =R, (Y, (6,P)
And spin-isospin part, x,. =x,x,

In matrix form we have to solve av x4M dimensional generalized eigenvalue

problem of the form:

(Hg HY H? Hp |G Ny NJ N? N [C
He HZ H7 HZICo|_|Ng NJ N7 NZ|IC,
HI HI HI HI|C N NI NI NI |C,|-(4
HT HZ HT HZ|C,| NI NI N7 NZ|C,|

These will depend on the quantum numbers of theehrgidte and will be discussed in

detail in the next chapter

29



Chapter Two Lineaed Trial Wavefunction
2-5-2 The alpha particle

If we only consider the spin-isospin saturagtate corresponding to tHele the
calculation greatly simplifies. As a result of thgatial symmetry of théHe ground
state and the anti symmetry of the total wavefwmcfAnn05]

The exchange operator for the spatial coordinatebeadefined through the relation
P'PP" =-1
Since the wave function has to be antisymmetriceunide interchange of all

coordinates of particles 1 and . can be rewritten [Ann05]

PT - _Pr PU

therefore, the nucleon-nucleon interaction haddhma:
V=V, +V,
and thus the alpha particle wave function hasdimadar form:

e (o g e P 2-42)

where |y, )is just a Slater determinant of the spin and episogariables.
The spin-isospin saturated Slater determinant carexpressed by the action of a
normalized anti symmetrization operator on a sirgghte,
| Xor) = AF ==+, == > e, (2-43
= A0)

where (£,x) refers to the state of the isospin spid variables of a particular nucleon

~

(up or down). Both operatorjg0 and Fs commute with A

The expectation values of the spin exchange tmsrare:
(X |R710) (Xor |[R7RI|0): (Xor R RT P/ O, ... (2-44)
The key point in the above expectation valughas the action of the exchange operators

on the ket stat€0) will give zero unless the resultant ket stateifeent from|0) only by

30



Chapter Two Lineaed Trial Wavefunction
a permutation in which case the expectation vatuéhe parity of that permutation. A

sample of such expectation values is shown in t2ddle
Although the above way provides a systematic metifambtaining the expectation
values for the exchange operators the cost of ngssbme important simplifications.
Furthermore, on has to devise an efficient algoritto perform such a counting
process since the number of terms to be considerédapidly increase with the
number of particles. One major simplification tlaaises as a result of the saturated

spin-isospin structure of the alpha particle isfdw that:

Xor P | Xor) = Xor PRI Pl X ) =0 (2-45)

Table 2-4: some of the expectation values for th@is exchange operators of' He. <P> denotes

<)(07‘P‘ O>’With ‘O> :‘""“,"‘_,_"‘,— _>,, where for each pair (+ , %) the first symbol

denotes the isospin and the second the spin.

:

- 12 12

1 12 12 12
12 13 12 12 13
12 14 0 12 12 14
12 23 0 12 23 34
12 24 14 24 34
12 34 12 24 34

something not immediately obvious from theusoh of equations (2-76). These
results will be derived in detall in a later ané af central importance to the extension
of this method to more complicated systems whezectimplexity that can be avoided
is of crucial importance. The key concept is thecomeposition of the total
wavefunction into states of conjugates permutatsymmetry and the further

decomposition of these states into spin/isospiestaelonging to SU(2) symmetry.
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Chapter Two Lineaed Trial Wavefunction
As a result of the mentioned simplification the nwas of the generalized

eigenvalue problem reduce to :

K+ v, ) Y, _e (N oC
A (R +VO)Z C, "o No)\C,) @ (2-46)

glo ag

WhereK"andV, represent kinetic and potential block matrices. &&gied out the

above calculation using the VMC method for the igpaintegrals. The results
obtained for the ground state energy is givenliet&2-5) for a number of local scalar
interactions. The calculation is the same as tleepamformed by [Bue06]. This is due
to the fact that we made use of a better approxamafor the Jastrow factor,
containing two Gaussian components rather thanglesone. Furthermore, we used a

different set of variational parameters.

Table 2-5: The J-TICI(2) method was applied for theground state energy for*He(in MeV). A

central state independent Jastrow factor was usedgether with a state-dependent TICI(2)

part. The variational Monte Carlo Method was used.

) TICI(2) J-TICI (2)
Potential
Sl SD SI SD

S3 -25.4240.02 -28.74+0.02 -27.20+0.01 -31.38+0.01
MS3 - -28.76+0.02 - -31.36+0.01

Bl -37.93+0.02 - -38.400+0.03 -
MT -V | -29.44+0.05 - -30.91+0.03 -
MT =1/ lIl | -29.46+0.05 -31.10+0.05 -33.10+0.02 -33.19+0.03

In the case of the non-linear coefficientseanyy the expansion of the linear

correlation operator we made the choice of a geacrsries i.e.,
Jc R Y 2-47)



Chapter Two Lineaed Trial Wavefunction
as a result of the convergence properties. Thevimiraof the ground state energy

with the number of components used to expand theati correlation function is
shown in Figure 2.1 (for th&3 interaction). The same set of coefficients wasdus
both for the state—independent and the state—deptndes. In both cases the value
for the contribution to the ground—state energyveoges with a relatively small
number of components. However, when the Jastroweletions are considered the
convergence of the calculation becomes smoother effiect of the Jastrow factor can
be viewed as a better reference state for the labme operator to act on, since there
Is a difference of about 20 MeV between the resbitained with just a single

component (only Jastrow).

TICI(2) J-TICI(2)
T : ‘ T & J T | T
SIE

Figure 2-1: The behavior of the ground state energwith the total number of components used
to expand the correlation function was plotted forthe TICI(2) and J-TICI(2) calculations for

the S3 interaction. Sl corresponds to the state—irgpendent part while SD to the state one. The
linear SD components (right part of broken line) wee added to the linear SI components (left

part of broken line) [Bue0§].
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Chapter Two Lineaed Trial Wavefunction
2-5-3 Density Matrices

The representability problem consists in findingiatminsic characterization of the
range of the map from A-fremion wavefunctions tbdtly reduced density matrices.
The problem was originally studied by C.N.Yang inongection with
superconductivity [Yan62] and by A.J.Coleman in mection with quantum
chemistry[Col63], where it is receiving renewecknatst due to the fact that available
partial results are beginning to be successfullyi@ted in numerical computations
[Yan62].

If the wavefunctiony, is normalized and fulfills the antisymmetry canzh
appropriate for fermions a series of density ma#riof various orders can be defined

as.:

Mxfx)= N[w @23, N)W(L23...N)dxdx,.... %, g

PO (KX X, XX Xy ) = W' 123....N)W(123...N)

In the above equationg, represents all coordinates assigned to itheparticle
including spatiafr,), spin (s)and isospin(,)degrees of freedom, whitl represents
both the volume element for thid particle and any finite summations. The density

matrices are ant symmetric for each pair of inditiess they are symmetric for each
pair of particle labels.It is easy to show from thefinition that IS compact,

. . N .
selfadjoint, nonnegative, trace class, and hasetf%% (=number of p-tuples in the
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Chapter Two Lineaed Trial Wavefunction
system). (The latter comes from the widely but aoiversally used normalization

factor in the definition). [Vol05]
We are only interested in the diagonal elementisdéfas :

y(x) = y(x1|x1) ................................... e-49
M(X,X,) = I'(xlx2|x1x2) ......................... @ -50)

These are positive definite and have direct phyantarpretations.y(x,)duv,= number

of particlesx the probability for finding a particle within theelme du, around the
pointr, having the sping,), etc, when all particles have arbitrary positiamsl spin.
(%, X%,)du,du, = number of pairs the probability for finding one particle withineh
volume dy, and another within the volum#, at positionsg; andx, respectively.

From the diagonal second and first order densityrioes the pair correlation
function as

— F(X,X,) = Y )M(X,) 2_5
9(X,, X,) N D (2-5)

g(x,x,)du,du, is the difference between the conditional probgbibf finding a

particle is at y, with the probability of the finding the particlet y,and y,
independent of each other. The denominator acgsvesight, This difference can be
interpreted as the correlation between the positafrparticle pairs.

It would be nice if we could associate a pair odetvables with the pair correlation
function. In the general case the correlation betwsvo observablé andB is given
as:

AB )- (A)B
sy LRI -

In the case of the pair correlation function tipemtors in the place of A and B are
o(f, —1)9, J, and O(F, —T;)J, I since the diagonal elements of the one and two

body density matrices can be given as:
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Chapter Two Lingaed Trial Wavefunction
yx) = jw*(iz‘...N')a(r; —r7 o, W2 N X e-53

M(x.x,)= [W (12Nl - v ), oln —r o, Wi N Jax e e-54)
Therefore, we can make use of related quantitias can be very easily obtained

through Monte Carlo sampling. Instead of the pairelation function we can make

use of the spherically averaged one-and two-bodysites, normalized to unity,

defined for an N-body system as

1801 L L1y
,ol(r):<NiZ:1:r—2&—ri -R |‘ > . R _N;ri .................... (2-55
/2 1 L _
pz(r)—<N(N _1);r—25(r Lo |‘ > ...................................... 2-56)

Both p, and p,are translationally invariant quantities that can used in order to
provide quantitative information about a physicadtem and in general it is not easy
to obtain these quantities analytically startirgnrcorrelated wavefunctions.
It is known in the HO model that the c.m. of theleons makes HO. To remove this
motion it is necessary to introduce the intrinstorcinate (- -R~) instead of the
coordinategr,~).

N

WhereR"~ :in; is the c.m. of the nucleons

i=1

Figure (22) shows the difference in the density distribusionetween the
state—independent TICI(2) and the J-TICI(2) forsrali While figure (2-3) shows the
difference between state—dependent and statggendent correlations in both the
J-TICI(2) and TICI(2) methods. The presence of fastrow factor reduces the
probability of finding a pair of particles closedach other by introducing short—range
correlations, particularly in the presence of stdependent correlations. In the
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Chapter Two Lineaed Trial Wavefunction
presence of a Jastrow factor there is not anyfsigni difference between the density

distributions both in the state dependent casethoAgh the difference in binding
energy between the state dependent J-TICI(2) a@#A)l methods is relatively small
there is a significant difference in the short mrgffects of the two- body density

distribution, something that emphasizes the impoeaof the Jastrow correlation.

TICI(2)

~
-
N
~
=05
-
~
Q.

Figure 2-2: The alpha—particle spherically averagedone- body and two-body density
distribution for the TICI(2) and J-TICI(2) methods. The continuous line is for the one-body
distribution while the broken line is the two-bodyone. The purpose of this graph is to show the
difference between having and not having the Jastwo factor[Per55].
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J-TICI(2) TICI(2)

1 ' Y | *

— py@-SI
. pz(r)- SI
— . py(®-SD
R pz(r) -SD

Figure 2-3:The alpha- particle spherically averagedne- body and tow- body density distribution for
the TICI(2) and J-TICI(2) methods with (SI) and without (SD) state dependence. The continuous and

dotted lines are for O, and 0, without state dependence, while the broken and chailines correspond

to the state depended cases. The purpose of thisagh is to show the difference between state-
dependent and state- independent correlations, witbr without the Jastrow factor in reference.

The basic principle of the CCM is that the@xaave function can be obtained by
correlating a starting reference function. Thisrelation operator can be given
directly in coordinate representation. The tramsheatly invariant coupled cluster
method provides a parameterization of the corelatiperator in terms of functions

depending on the relative distance.
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Chapter Two Lineaed Trial Wavefunction
We can obtain several truncated forms forctireelation operator that can be used

in a variational calculation. The most general aonhal. Wavefunction consists of a
multilinear expansion of the correlation operator.

We are particularly interested in an economathod in terms of effort that does
not lack substantial accuracy. The simplest chwicald be to consider a linear form
for the correlation operator containing only pamrrelations. When compared with
higher order approximations this choice is ratherorp However, a further
improvement is to enrich the structure of the mfiee function.

The Jastrow correlation factor is such a choicemlloing the simplest
approximation of the CCM, namely the TICI(2), witie Jastrow correlation factor
leads to a variational calculation that is easibcesmsible both analytically and
numerically, termed as the J-TICI(2) scheme. Theghalparticle has provided a
reliable method for testing the accuracy of botk thethod to be used and the
numerical calculation. When compared with the stigilly exact GFM and DMC
methods the results obtained are in close agreement

Despite the complexity of such methods bothmplementation and computer
time, J-TICI(2) scheme was relatively easy andightaforward to apply. We
managed to slightly improve the previously obtaineslilts at no expense, provided a

numerical solution of the equations is performed.
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Chapter three Gtar — like model for light nuclei

3-1 Introduction

The linearized variational wavefunction developedthe alpha-particle can be
extended to include a number of additional nucleespecially neutrons, as well
as additional alpha-particles. This involves chaggihe reference state into one
compatible with the system in question. The chasfeuld be such that the
required permutation symmetry can be imposed. Euribre, the additional
particles should be introduced without violatingnsitional invariance.

Since there is adequate experimental proof (septehd) that halo nuclei are
weakly bound systems we can impose a cluster-likectsire without removing
any of the microscopic model, but by restricting thavefunction to a particular
subspace of the full many-body Hilbert space.

Clusters are a general phenomenon in nature. Tieepge of clusters has been
observed in subnuclear physics, nuclear physiaaniatand molecular physics.
Clusters have a strict determined symmetry and gé&wcal form, and are created
as a result of interactions between parts of dlsis[Bis93]

This can be achieved by assuming specific symmadnfigurations for the
variational wavefunctions. Furthermore, such anraggh is convenient as a
starting point, since it follows the previous dephent for the alpha- particle
naturally.

This chapter is composed of a description of theiciire of the cluster
wavefunction, the type of interactions used analtlaar extensive discussion for the
symmetry of the states. The inclusion of the rigetmutation symmetry is of

particular importance.

3-2 The J-TICI (2) formalism

The alpha—particle wavefunction describing thé d@round state can be
constructed in a very efficient way by the J-TIQI(@ethod. We can extend this
formalism beyond that of the alpha-particle. [Bis98 part from the increase in
the number of particles the main difference ishia teference function. In the case

of the alpha-particle the reference function foe thround-state is simply a
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Chapter three Gtar — like model for light nuclei

Harmonic Oscillator ground state, saturated in-spwspin. the wavefunction was
not an eigenstate of total angular momenduf in the case of spin—orbit absence)
but was a superposition of severhlstates. We shall adopt a formalism that
preserves the right quantum numbers.

We can firstly consider the case of a single alphaicle accompanied by a
numberK of nucleons that could be weakly bound. One pddgiks to assign to
the particles outside the alpha-particle spatiabrdimates relative to the

alpha-particle center-of mass. The reference fomeb ;. in the case of an alpha-

particle accompanied bhyneutrons can be written as :

IS X (FUURNN S SR RN (AU IO @-2

where (®5}) is a function that contains about the additionaicleons withr,;

referring to the set of coordinates assigned tottheeakly bound neutron relative
to the alpha-particle center-of- mass, whijjeare the relative coordinates between

the additional nucleons. A is antisymmetrizer andis the four-particle Harmonic

oscillator ground state or the alpha-particle wawmefion (that can be obtained
from a separate calculation).andT are the total angular momentum and isospin.
Translational invariance is preserved in a ratheifi@al way, since relative
coordinates are explicitly included, rather thanaoted through some separation
>

process for the wavefunctio® + and the choices we are going to make are more

intuitive than anything else. As described earlibe total wavefunction is
described by a correlation operator acting on aresice state. The correlation
operator (state-dependent or not) is a scalar caggmith all symmetry operators

of the Hamiltonian. All quantum numbers are carrmdthe references function
and despite the intuitive choice chPrJe,'T we shall explicitly impose the right

guantum numbers.
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Chapter three Gtar — like model for light nuclei

One choice for the wavefunctioﬁJrf'T could be as follows: the additional

nucleon can be assigned a wavefunction relatildcalpha-particle that will in
general be the product of a radial and an angudatr gescribed by an angular
momentumJ;. In order to preserve rotational invariance weeh&y couple the
angular momenta of the additional nucleons to al tahgular momentund.
However, the additional nucleons will be corredateith each other, something

that can imposed with the presence of a functiopedding on the relative
distances;. This way ®7; is composed of the angular and radial parts and ca
have the general form:

P = LAD, [ @, (1 )}

J

r T
R(rlz’ * u ’ rk—l,k) x|:El/Yﬂ':| ....(3-3)
M

M;

JM
The AJ i, Is a set of coefficients that must be truncatedofactical purposes.

R( fa,....h,....lk1,9 IS the wavefunction that correlates the additioraltrons with

each other. The functions, , which represent the extra neutrons, are compofsed

ij

a product of angular, radial and spin-isospin péotsexample
k . .
o, ()= D Ar, V' (6.9)0 x(o ))(r]iﬂ'i ........................... (3-4)
The angular brackets:

v'(8.4)0 x(@)]; zsc NS 20 (273 O (3-5)

JiM; -
Denote spin-orbit coupling an@kmyms are the Clebsh-Gordan coefficients

for SU(2). It must be emphasized that the coordsigt as well as the angles

and @, represent the coordinates and angels ofittheneutron relative to the

alpha-particles center-of-mass. The importancehisf ¢hoice is that we preserve
the translational invariance of the reference stata relatively simple manner.
where the undetermined coefficients will in genelgpend on the value of the

total angular momentum assigned to itheparticle. However when the spin-orbit
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term is not included in the interaction the relativavefunction takes the simpler
form
S

L r r T
Tk = ZAN[ 000 RG] (0], e
Ly,.Ly My S v

M

S

= ({F) X (ST) X, (ST) = [él)(a } % {Dl)( } (3°7)

M

where the relative wavefunctions are coupled total torbital momentunt.,
which § is the total spin. In thé-S coupling scheme the wavefunction can be
“inner product” of a spatial with a spin—orbit pasbmething that will be described
in detail later.

e = AlD, D, DD B-9)

The next step is to consider more than one alphielga For z-alpha—particles

andk additional nucleons the wavefunction of equat®i) changes to:

where @7, must be extended to include the correlations batwdifferent

alpha—particles a part from the ones between afréieles and weakly—bound
nucleons and between weakly-bound nucleons. Contoathe case above where
we have only one alpha—particle, this case is nhatkder to generalize and we
only consider the situation of two alpha—partickkne (corresponding t@e and

two alpha—particles with one additional nuclé@a.

In the case of two alpha—particles the spatial ggatt of the wavefunction
o', becomes:

Rl () S (% W G-9)

Where
ol U EY= (N R X" WO 3-10)

43



Chapter three Gtar — like model for light nuclei

, T, 1S the coordinated vector between the two alph&igbes. This will be the

type of correlation that will be used between algaticles.

3.2.1. RGM- like wavefunction
The RGM provides an accurate microscag@scription of collisions

between light nuclei. The wavefunctions are basedan assumed simplified
structure for the colliding nuclei. They are fubytisymmetric and posses exact
angular momentum and parity quantum numbers. [Hes02

The RGM formalism is the technique developed ing@lj. In this method the
wavefunction is described by a similar referenaests in the J-TICI(2) model,
but instead of using a linear correlation operéterreference function is described
by a linear expansion, where each amplitude cooredpto a different set of the
variational parameters used to describe the separda¢tween individual clusters.

In our formalism this corresponds in expandingftirection @™ of equation (3-2)

in terms of a set of variational parameters. Wadl stescribe this in more detail in
chapter 5, when we consider individual cases.

Both the J-TICI(2) and RGM like methods will bepéipd in a later chapter.
The J-TICI(2) is a more natural consequence ofppavious work on the alpha—

particles.

3-3 Nucleon—Nucleon Interactions

The atomic nucleus turns out to be a complicategtacting many body system,
governed by the nucleon-nucleon interaction agtigele the nucleus [Ann05].

Although the effective nucleon-nucleon interact{astive in some limited part
of the full Hilbert space and within a nuclear med)

Will be largely different from the form of the fremicleon-nucleon interaction
[Ann05].

Although the description of the nuclear force pesblis beyond our purpose, a
general discussion of the basic characteristic h|f thost common realistic

interactions used is given below. The term “rei@ighteractions” refers to
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Chapter three Gtar — like model for light nuclei

interactions depending on all particles labels bbtained from an incomplete
theory in order to reproduce some experimentalltsesu

At first approximation realistic interactions areen as two—nucleon potential
terms. These potentials are builded by fitting deat properties and
nucleon—nucleon scattering data. An example ofbste type of potentials is the
Argonne V14 [Wir84] and its extended Version ArgenN18 [Wir95]. The
potential (V14) is written as a sum of 14 operammponents [Fab97]

V(i) :liup(rij)op(ij) ............................ 3-11)

Whereup(rij )are terms depending only on the relative distancketlhe0®(jj) are
operators. These are given as: [18]

or# (i) = ooy s ) el o M s S ok 612

ij?
where g~ andrz~ indicate the usual Pauli spin and isospin opesatad

S = 3(0’( I )(Jj“ .rijD)— O 07 et 3-13

J

— 0 -, 0 - - i
S =@ o0 —07.0)

The factorSis is the tensor operator. [Ann05, Bis07]
The non-local terms arise because of theusmoh of the non—local spin

orbit(L~ ES*)“- , WwherelL is the relative orbital angular momentum afd is the

total spin of the pair. [Fab97] In our calculatione shall only consider local
interactions, that is interactions independenthef iucleon velocities. Because of
transitional invariance, the interaction involvesilyo the relative distance

r.” =r.

! .~ —r; . [Ann05] Furthermore, it can be separated intermttions depending

only on the magnitude of -, termed central forces, and forces that deperalsat
on the direction.
The separation distancki = L5—=2fm pyt the actual interaction becomes

repulsive (in coordinate space) at distardees 0-° ™ [Ann0os).
These types of potentials are most realistic onesently present as result of
their rich operator structure, although a calcalatishould include as many

potential terms as possible, approximations arallystaken and a subset of the
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operators is taken. However this will require to aiglifferent type of realistic
interactions than the Argonne ones, which are adapgbr a smaller set of
operators.

The central forces are local forces since theyatadepend on the velocity, and

contain only scalar products of the major nucleamiables? and 7 - 7 -
[AnNO5].
Ve, ]) =V, () +V,(r)o .07 +V ()70 +V, (15)07 0717 T e G-14)

This form can be rewritten using certain exchangerators. One defines the
spin exchange operator R [Ann05].

P’ =%(1+ TR (3-15)

The central potential can be written in terms & Wigner, Majorana, Barlett and
Heisenberg components (denoted by their initigiisken the form:
Ve i) = Ve (1, )+ Vi (1, )PP+, (1 )R + v [ P (3-17)
In the case of projection operators, the poteigialefined in term of singlet or
triplet spin—isospin channels and even or odd ajpadrts [Ann05].
The coefficients of the different terms in (3-14Wda(3-17) fulfill the following

relation
Voo (1 ) =Volr )= Vo () =V )+ Vi (D (3-18 (Wigner force)
Vo (55 )= =8V 1 Jeeee (3-19) (Majorana force)
Vo lr )= 2V, (0 )= 2V (1 o, (3-20 (Bartlett force)
Volr )= =2V, (1 )+ 2V (1 Jereee, B-21) (Heisenberg force)

[AnNNO5]
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With the Yukawa type radial dependence for allaadbpendence\é)(r), Ve (r),
VU(I' ) andva'r (r )

= LA = Ul
e/’A e/IR

R 3-22)

V(r) is the strength of the radial dependence [/A]n0

The Afnan and Tang [Afn98] potentias3 and its modified version [Gua81]
MS3, are other examples of V4 potentials, wherarma sf three Gaussians is used
for each for each channel. The channels used &&3potential are the same as
the previous case, while the (MS3) potential isisi#jd to include channels of total
add paritywhich can be extended to include non-local termsspih—orbit
coupling, The Gongy [Gog70] potential is composéad &6 part and a spin-orbit
coupling part, containing both, first and secondeoiterms V8. It is given by:

V(i) = Vo (i) +Vis oS VL (1 )Ly oo (3-23

Where in term of exchange operators the genenal &dra V6 potential

V(ij) :Vc(rij ) +Vr(rij)Prij +Vj (rij)Pj +V0T (rij )Pclrj Prij +VT0 (rij )Sj +VTT (rij )Pijr
...(3-24)

And

L = (JF .J}])L2 —%[(JF.L* ).(JjD.L* )+ (JjD.L* )(JF.L* )] ................ B-25

Being a second order spin-orbit interaction. Thdialaparts of the Gogny
potential are expressed as summation of Gaussians.

In general there is a large number of realisticlemc-nucleon interaction. We
shall mainly make use to tI&8 and MS3 V4-type interactions. These provide any
easy ground for a first approximation and can derred to as semi—realistic
interactions since they are composed of Gaussiadsaee finite at zero nucleon
separation .

The nice analytic properties of these interactidmsiot imposes any immediate
problems for the numerical evaluation of the Hamnilan expectation value.

One of the focal points of all physics is symmetijhe nucleon-nucleon
interaction and all effective interactions usedractice have certain symmetries.
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They are invariant by translation (changing theneaof reference so that directions
are not altered), by rotation (turning the frameeaference around some axis), or
parity (changing the sense of axes) in the sersdhb interaction does not change

funder any of these operations [Kat08].

3-4- Symmetry and Quantum Mechanics

Symmetry considerations dominate modern fundameptaisics, both in
guantum theory and in relativity

The application of the theory of groups and thepresentations for the
exploitation of symmetries in the quantum mechamtshe 1920s undoubtedly
represents the second turning point in the twdntentury history of physical
symmetries. It is, in fact, in the quantum contést symmetry principles [Kat08].

Their most effective. Winger and Weyl were among filnst to recongnize the
great relevance of symmetry groups to quantum phyand the first to reflect on
the meaing of this. As Winger emphasized on mamasions, one essential reason
for the "increased effectiveness of invariance @piles in quantum theory"
(Winger, 1967, p.47) is the linear nature of thetestspace of a quantum physical
system, corresponding to the possibility of supsimp quantum states.

This give rise to, among other things, the posgodf defining states with
particularly simple transformation properties inetlpresence of symmetries
[Kat08].

3-4-1 The Concept of Symmetry

the term "symmetry" derives from the Greek worda gmeaning "with" or
'together') and metron (‘'measure’)

We arrive at a definition of the symmetry of gedmeal figure in terms of its
invariance when equal component parts are exchamgedrding to one the
specified operations. [Kat08]

The next key step was the generalization of thtsonao the group-theoretic

definition of symmetry, which arose following theneteenth-century development
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of the algebraic concept of a group, and the fa&t the symmetry operations of a
figure were found to satisfy the conditions formfing a group.

Finally, we have the resulting close connectionwieen the notion of
symmetry, equivalence and group

3-4-2 Symmetry of States

One important part of any quantum mechanical catmn is the inclusion of
the correct symmetry, since it will effect the egiaion value of any observable.
In most case the Hamiltonian of a system commuids avnumber of operators.
The set of operators with the Hamiltonian commuizs be the elements of finite
groups or the generators of continuous groups, (8Q(3), SU(2)) which are the
elements of Lie algebras, consider the set of gdhal transformation. The group
SO(3) of orthogonal transformation in 3-dimensionEne group-theoretic notion
of symmetry is the one that has proven so sucdessfinodern science. Note,
however, that symmetry remains linked to beautgularity) and unity: by means
of the symmetry transformations, distinct (but "&fuor, more generally,
"equivalent") elements are related to each othdrtarthe whole, thus forming a
regular "unity" [Kat08]. And if the determinaat the group U(2) equal to unity
then it is called special unitary SU(2).

According to the symmetry of the Hamiltonian easjpace of degenerate
eigenstates (eigenspace) belonging to some eigenwdlthe Hamiltonian can be
labeled by a distinct set of quantum numbers, whiolrespond to conserved
quantities. The properties of the states in a @adr eigenspace are important for
evaluation of expectation values of different openra

In the case of the nuclear many-body problem amtkcpéarly when the nuclear
forces do not depend strongly on the spin we cattenrthe wavefunction as the
product of an orbital function and a function oé tspin and isospin variables, this
is the case corresponding to the local-scalar &alistic interaction described
earlier. The spatial part will obey rotational imamce and will thus belong to the
SO(3) group. The spin-isospin has overall SU(4) mgtny that is described by
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Chapter three Gtar — like model for light nuclei

Wigner multiples [Win37], we shall discuss thisnore detail latter on in section
(3.4.5).

In addition to the individual symmetries of the sglaand spin-isospin parts we
require that the full wavefunction is antisymmetnic the exchange of particle
labels. This implies that the wavefunction belonggs a one-dimensional
representation of the permutation group. This dmmdirequires the orbital and
spin-isospin parts to belong to conjugate repregiems of the permutation group
instead of being confined to the antisymmetric dmeensional irrepresentations.
This is a subject that requires special attentidmerw exchange operators are
involved and we examine it in the next section.

3-4-3 Totally Antisymmetric Product Functions

As was already stated, in the absence of spin-acbiipling the total
wavefunction is constructed in a product spacdefspatial and spin-isospin parts.
We demand the full wavefunction to be totally ayrisnetric which in turn implies
that each space is invariant under the permutationp and the full wavefunction
is given by Clebsh-Gordan coefficients of the paganhan group. Since each state
Is also described by other continues symmetriesetimeust be a connection
between functions belonging to the irrepresentatidnthese groups and the
irrepresentation of the permutation group. [Jin98]

The first non-spactiotemporal symmetry to be intietl into microphysics, and
also the first symmetry to be treated with the meghes of group theory in the
context of quantum mechanics, was permutation syingnf@r invariance under the
transformations of the permutation group). This sytry "discovered" by W,
Heisenberg in 1926 in relation to the indistingaisiity of the "identical"
electrons of an atomic system.[Kat08]

For the moment we can describe in simple termgtbeess by which we can
construct a totally antisymmetric product functioBy S, we denote the

permutation group on order[Kat08]. The basis functions of irrepresentatioof

S, for the spatial part are th®; while those of the spin—isospin part are e
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Chapter three Gtar — like model for light nuclei

The “inner product” between the spatial and spiosggn part is the linear
combination of product of wavefunctions with defimisymmetry in the overall
degrees of freedom.

Thus a functionrw” belonging to the inner product space of the iespntation

o and 3 can be written as:

Na /7;?

W= D Co P XL e, (3-26)

j,k

where Cg;','ﬁk are the Clebsh-Gordian coefficients. There is uguahe

additional multiplicity label associated with that can ignore because it does not
appear in the spin-isospin state we shall consigjemd 7, are the dimensions of
a andg.

In order for the full wavefunction to be totallytmymmetric we wantw” to be
invariant with respect to permutations p a parifra phase factor () This
means thaw” belongs to the one—dimensional irrepresentatiof, afenoted as
W]

oLy SRRy C. S G- 27)

\/E | 7

, where [{]is the tableau consisting of a columnroboxes. For this case the

Clebsh—Gordan coefficients taken the simple form

And /\a,- is a phase factor that can be eite#r, while (o~ )denotes the
irrepresentation conjugate @ The action of a permutation P & gives
T Y (10 (3 F 6-29

D PITHCRIECY D

Whereu “(P), is a matrix element of théth irreducible representation f

which can be assumed to be real and orthogonal. ddreand thatw is

antisymmetric with respect te requires the condition
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Chapter three Gtar — like model for light nuclei

> AU (=) U (=) T o L S B-29

which in turn requires that :
AU (P)y =(-)"UT(P) e (3-30)

Therefore, having a totally antisymmetric wavefimctimplies having a linear

combination of products with the form:

Where the transformation of these sefsaand y* under a permutation is given
as:

PO =3 U(P); @, Px" =(-)" U P)y X 8-32

3-4-4 Representation of Groups

In general, if G is a symmetry group of a theorgaliing a physical system
(that is, the fundamental equations of the theorg @variant under the
transformations of G), this means that the statéeeosystem transform into each
other according to some "representation " of tlwgrG. in other words, the group
transformations are mathematically representechén state space by operations
relating the states to each other. In quantum nmechathese operations are
generally the operators acting on the state sgaatecbrrespond to the physical
observables, and any state of a physical systerbea®scribed as a superposition
of states of elementary systems, that is, of systém states of which transform
according to the "irreducible" representations le¢ symmetry group. Quantum
mechanics thus offers a particularly favourableneavork for the application of
symmetry principles. The observables representdhieraction of the symmetries
of the theory in the state space, and thereforenaatimg with the Hamiltonian of
the system, play the role of the conserved quastifiurthermore, the eigenvalue
spactra of the invariants of the symmetry groupvigle the labels for classifying
the irreducible representations of the group: os fict is grouded the possibility
of associating the values of the invariant propsrtharacterizing physical systems

wit the labels of the irreducible representatiorfs sygmmetry group, i.e. of
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Chapter three Gtar — like model for light nuclei

classifying elementary physical systems by studyirggirreducible representations

of the symmetry groups.[Kat08]

3-4-5 SU(4)Quantum Nnumbers
An antisymmetric wavefunction that is a linsaiperposition of spatial and

spin—isospin functions can be labeled by severahtyum numbers that are related
to the transformation of the spatial and spin isogparts under rotations in
coordinate, spin and isospin space.These are thigalomomentum quantum
numberL, the total spirt and the total isospii. Furthermore, additional quantum
numbers or labels are required to uniquely spehiystate of the system as a result
of permutation symmetry, The fact that we requne $pin—isospin functions to be
of conjugate permutation symmetry to the spatia wnplies some restrictions on
the possible sets of quantum numbers. We provide aaalysis of the
decomposition of the wavefunction since its impatrt@r the expectation value of
the Hamiltonian.

In the case of total angular momentdnthe requirement is that the spatial part

®’, belonging to thev irrepresentation ofS, is restricted to representations

compatible with the group SO(3). In our case theasion is simple since we shall
only couples pair of particles. This can be appbgdhe usual way of coupling two
integer representations of the SU(2) algebra, windI, quantum numbers, into
an irrepresentation. With. =1, +1, and definite parity(-1)-"". Therefore the
labels for spatial part are the irrepresentationSf. In general more labels are
needed to uniquely specify the spatial symmetrgesifor someL with the same
irrepresentation labels of, we can find several linear combinations of coamtin
tensor—product functions.This way the spatial fiomst of expansion equa.(3-31)

can be written as:

Apart from conjugate permutation symmetry to theatsp part, the
spin—isospin part belongs to SU(4) symmetry. Thig iresult of the fact that the
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Hamiltonian is invariant under rotations in spinveall as in isosopin space. The

invariance is expressed by the following commutatigations:

{ﬁ,isk(i)}:{Hiitk(i)}:{ﬁ,isk(i)tk(i)}o,k,l=12,3,...,n (334)

Here s (i) andt, (i) are thekth spin and isospin components, respectively, for

nucleoni. The first two commutators imply that the statas also be labeled by
the total spinS and isopspim of SU(2). Apart fromS andT the basis states have
one additional label. Resulting from the third coatation relation (3-34). This
additional label classifies the permutation symsn&drwhich the spin-isospin state
belongs, that has to be conjugate to that of th&apart.

The symmetry of the spin-isospin state leads t@#reeral problem of the direct
product Su(m)xSuU(n) of two unitary groups in a subgroups sbti(mn) [Itz96].
Therefore, we need theu(mn) O SU(m) x SU(n) irreducible basis. This is equivalent

to the inner products of two irrepresentationshef permutation grouf, into an

irrepresentation d§, [Jin98]. The spin-isospin function is given as:

M, )

X =[$M T ) = 3G, M, )
Pk

wherectl' | are the Clebsh—Gordon coefficients§ffor the Coupling to the
irreducible basigv] of [v,]x[v,].
In the case of the V4 interaction this is evideonf the fact that the exchange

operator®’, B’ and P can be used in the place of the terapso;, r,-.r; and

! J

(g .0;7)(ri1;).

NN
The total spin operatorsS” = (O S)?

i=1

and T? :(ZTiz)2
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Chapter three Gtar — like model for light nuclei

Correct permutation symmetry in the many-body warefion is equivalent to
having the right quantum numbers. The eigenfunstion for the SU(4)

Hamiltonian can be written as:

W=|[V],L,ST)= Z[L[V]‘ M)

s[V““MS,TMT>

where the eigenvalues depend on the set of Ia{LYell%'S'T}. The structure
provided by the permutation symmetry is expectatiaines.

3-5- Expectation values

We have to deal with the expectation value of aaraor O in the totally
antisymmetric wavefunction. A part from state deferce inO" in general we
have to consider the state dependence in the wastedn resulting from the
correlation operator as it was previously showndtia¢e dependence will appear in
terms of exchange operators.

| [ AT o 8-37)

For the matrix elements of the Hamiltonian and radrmatrices we require the
matrix elements of a single or a number of paingpichange operators with
respect to the wavefunction of equa. (3-36)

The expectation values require knowledge evaluaifdhe matrix elements for
the spin-exchange operators in the irrepresentaifoBn provided by the spin-

iIsospin states:

<S[V*]i|\/|S,T|\/|T P’ s[Vﬂ]‘MS,TMT>,

<S[‘7]‘MS,TI\/IT‘|:§U X S[Vﬁ]iMs’TMT> .................................... (3-38)

In order to avoid explicitly dealing with the diffnt particle pairs we shall
represent the above exchanges as a general paonutathe spin label that will

be denoted aB, and the associated function s These matrix elements are:

<s[“”]i|\/|S,T|\/|T

P,[s¥ Mg, TM, ) = > s U (PICEL v @-39)
J

1

=mz (7
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Chapter three Gtar — like model for light nuclei

where knowledge of the Clebsh-Gordan coefficientad aof the

irrepresentation of, are required. Similarly for isospin exchanges weeha

<S[V* J Mg, TM; pr‘ S[V” I M, TM, > = Z C‘[,'jl]]'ijy[vz]ku L‘,’Tﬁ] (P)Cll;l]]]i;[uz]m .............. 3-40)
K

=My (R)
The notatiom ¥ (P) is introduced for later convenience.

A part from purely spin or isospin exchanges wélvd to deal with mixed
exchanges, such as:

(st Img, ™, Rj”‘s[“*]i‘MS,TMQ, (st Img, ™,

st img ™, )

Pijg PkT

In general this will result in the product of twermutations, one in spin space

P, and one in isospin space. The prime is important since part from acting in

different spaces the two permutations will in gahdre different. For this mixed

case the matrix element become:

VI (VIR VIR (VIR

> clipau (Pl (P T B-41)

jkl

=mz/ (e.p)
Therefore the Clebsh—Gordan coefficients and theesentation matrices of the
symmetric group carry the action of the spin, isogmd spin—isospin permutation

on the fully antisymmetric wavefunction.

3-5-1 Spatial Integrals
As described in chapter 2, the variational prireifdr the ground state energy
leads to a4M x4M dimensional generalized eigenvalue problem (e/Meis the

number of components used to expand the correlatimmctions)
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Hg Ho HY HLTG Ng N2 NP NG
HY HZ HY HZICo|_|Ng NI N7 NZ|C,
He HZ HI HZLIC | PNy Ni NI N|lCo|we
H HZ HZ HZ|C.| [N NI N NZ|C,|

(3-42)
the Hamiltonian has the decomposition:

HA = K +VO +Vcr +Vr +V0T;Vk = ZUk(rij)F?jk crrnnennnn(3-43)
i<j
The kinetic energy operator and the Wigner—parthef potential,v, are the

only state—independent terms entering the Hamatanif we denote the different
particle pairs byr and ¢ (1=00r2)). the matrix elements of the kinetic energy

matrix become:
(K<) m= (V] LSTIF*KOFTVILST Yo (3-44)
with

(LM OKE ()

LML) = [ (1) BLOK OO, (1,5,)d0

The result is the same for the overlap and pote(iiagner part) matrices,
where in the formkK" is replaced by 1 while in the latter &g. In the case of

state—dependent operators, such as the spin—depqgraté of the interaction the
situation is similar:

(V%) =3 ML (RPIR(L M, [ (1), () £,7(r")

ij"rr

LM M L> ...(3-46)

The number of required integrals can be furtheuced by considering an
alternative form of expansion (3-37) for tket state:

W=|v,L,ST)= Z\ 12 IVIL> sV MS,T'V'T> = N[V]1>\[V~]l> ...(3-47)
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where A is an antisymmetrizer and for simplicity the quentnumbers are

ignored. Becausd\ is Hermitian and independent the expectation valti@an

operatoro” = FEO'DFK? becomes:

<OD> = {A<[I/]1|<[V~]1‘}ODA1 [I/]l>‘ [v~]1> .................. (3-49
()= {ab il Hlo bl 1

In all case the presence of state—dependent ciioredancreases the number of

the required integrals for a particular matrix eégn The number of required

integrals is proportional to the number of relaubwrdinates((@f). This can

be a serious draw back for large systems. The atbspéay of the integrals for the
matrix elements are in the most general form. Adicqy to the system under
examination there can be simplifications such a&sdase of the alpha—patrticle.

This with the cases 6He , °He , ®Be and®Be are examined in the next section.

3-5-2 Alpha—patrticle

In our approximation the correct permutation symgnéor the alpha-particle
ground-state is straight forward. Since the sppaal is totally symmetric the only
possibility to obtain an antisymmetric wavefunctiemby considering a totally
antisymmetric spin—isospin state.

The alpha particle represents the cdie:

In general the orbital momentum quantum number Lth8, spin and isospin
(S=0, T=0) for the alpha-particle

The tableau describing the symmetry of the wavefancis called Young

tableaus

@ =[[4],L=0S=0T=0)= [g] (1)>

[1°] 1
S=Q T=o/ e (3-49)
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141 2\& |27\ (2%
o >Z s:0>‘T:O> .......... (3-50)

i=1
where the spin—isospin part belongs in the innedyct space of a self

conjugate irreprepresentationQf

[1*] 1
s=o T=o/"” [T [T1 (3-51)

The only state dependence in the alpha—particleappin terms of spin (or

iIsospin) exchange operators. The expectation vafuspin exchange operators

' 1 3 [2°i]/ [2°] |, |[2°]i"
s=0, T=0/ 4\s=0/\T=0| ’|S=0

-y ulIp)=Tikl(p)

becomes:

4
] e P
S=0, T=0

ag ag

[2°]i'
1o o> ...... (3-52)

where the effect of a spin—permutation is the tratéhe permutation in the
irrepresentation of the spin—space. where thetoh¢he permutations depends on
the cycle structure. The non-zero traces of inteass those of the products of two
transpositions that can belong to either of twass#s: the first one is when the
transpositions do not commute and give a cyclecsira of order (e.g.P,P, =P,.)
that has a trace equal to (-1) and the second sn&hen the transpositions

commute (e.g. P,P,,) that gives a trace equal to 2.

The above result for the alpha-particle could h&een generalized to an
arbitrary spin-isospin stati% ]T'> of ann-particle system, provided that is given by

the inner product of spin and isospin parts beloggio a self conjugate

irrepresentation o, i.e.,

[IS/]'II'> _ Z|[”] 1] i A @-53
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Chapter three Gtar — like model for light nuclei

However this kind of simplification does not appeaeyond S, for the
SU(4) O SU(2xSU(2) classification. Because of the above simplificatithe
alpha-particle wavefunction in the SU(4) approxiimatshares no resemblance
with any other wavefunction of more than 4 parscl€he calculation of the matrix

elements is straight forward.

3-5-3 *He
The first case we have an alpha-particle accomgdanyea number of neutrons
is that of “He. In our approximation there is only one possipifior the tableau

describing the permutation symmetry of the spat@at:

[41]= [ || ceriiiienn(3-54)

The tableau describing the conjugate permutatiomsgtry for the spin-isospin

part is

2,3 = | cevrieiienen...(3-55)

There is only one possible decomposition of the-s@spin compatible with

SU(2)xSU(2) [Itz96]:

22y || | x || | [s=%,T=1j ............ (3-56)

This corresponds to an alpha—particle accompanie@ Isingle neutron (or
proton with charge independent interaction) siiig is the only configuration that
can be reduced to that of the alpha—particle byoxemg a neutron (or proton). The
simplification of exchange operators in term ofc&s can not be applied, but the
irrepresentations describing the spin and isospaes are identical the matrix
elements of spin and isospin exchange operatoreid@. This means that we can
either use spin or isospin exchange operators amdboth. The potential and

correlation operators reduce to
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V=V, +V_+V +V_ =V +V_+V_ ... B8-57)
FU=F +F +F " +F) o FJ+F +F i, B-58
3-5-4°He
The next case is that 8fle. There are two possible spatial states associatéd wi

the following partitions

[4,2] = [ ] 411 [T 111 ... (3-59)

The associated conjugate spin—isospin statq[sz%.n]é anq[3,13]i> respectively,
unlike the case ofHe only one of these spin—isospin states has a unique

SU(2)xSU(2) decomposition in terms of spin and isospin states.

3-5-5°Be and °Be
After introducing additional neutrons to an alphartigcle we can consider the
case of two alpha—particles and that of two-alphstigles accompanied by a
neutron. These two cases correspond to the riB#eind’Be respectively.
In our approximation there is only one possibifity the tableau describing the
permutation symmetry of tH8e spatial part:
44 L1t (3-60)

The tableau describing the conjugate permutatiomnsgtry for the

spin—isospin part is

4 I T (3-61)

There is only one possible decomposition of th@-spbspin state compatible

with SU2)xSU(2)

[2)) © % (S=0,T=0) oovrvvnn.. (3-62)
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The cas€Be s very similar of’He. By adding one more neutron to the above
configuration of’Be there is only one possibility for the permutat&ymmetry of

the spatial part:

[44 = . T IO (3-63)

The tableau describing theconjugate permutation symmetry of the
spin—isospin part is :

|
3.2 =144 (3-64)

There is only one possible decomposition of th@-gpbspin states compatible
with SU(2) xSU(2) with quantum numberiS=% ,T =%

The cluster-like variational model we wish to exaenipreserves the full
microscopic nature of the nuclear many-body probl@he approximations
imposed are of two types: One concerning the actaaefunction and the other
concerning the type of interaction used. In theéetabpproximation we restrict
ourselves in the study of central local interactiolthough such terms have been
examined for the closed shell alpha—particle, weakowish to pursue them at this
stage for the lightly bound systems to be examifhegrinciple is always possible
to include such terms

The approximations chosen for the wavefunctioessaich that lead to a linear
variational problem where the solution is well kmowhe J-TICI(2) method has
the advantage over the RGM-Like method that itioanrporate state—dependent
correlation. The fact that we are allowed to hawpia—isospin saturated structure
due to the exclusion of spin—isospin coupling. Tieisults in SU(4) symmetry for
the spin-isospin part of the wavefunction shouldeha decomposition in to SU(2)
irrepresentations. for the spin and isospin lalvetpectively, something related

with the permutation symmetry.
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The incorporation of the antisymmetry conditionpegpriate, for fermions has
been given spatial attention. It was shown thatcthraplexity greatly increases in
going from the alpha—particle tdHe, °He, ®Be and °Be Some simple
group—theoretical results can simplify the expeotatvalues. In general the
antisymmetry condition can be applied without aiffiadilty to the alpha—particle,
where only either spin or isospin exchange requiigelyond that there are no
radical simplications.

In any-case the present model is as an extendigirevious related work
concerning the closed shell alpha-particle into &énea of halo nuclei. A major
drawback can be the closed shell alpha—particlectstre since it restricts the
possible configurations of the reference functitm.practice the bound system

might require a superposition of different refererignction having to the alpha—
particle “broken”
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Chapter four Monte Carlo evaluation of expectain values

4-1 I ntroduction

As described in the previous chapters we will appnately solve the many-
body schrédinger equation through a linear vanmmtioprinciple. Although the
theoretical background is fairly simple a numerieafaluation of the matrix
elements is usually required, due to complexitythed many—body expectation
values, therefore to explain VM and MC [Gua96].

The most important task of the analysis providethis chapter is to ensure the
validity of the error estimate and in particularagsplied to the linear eigenvalue
problem, we shall make use of a number of statistoncepts, most of which can
easily be found in the literature such as [Kla86].

We also describe the application of a method thatised to improve the

performance of VMC.

4-2 Variational method

There are many problems of wave mechanics whichnod&rbe conveniently
treated either by direct solution of the wave equmat

Therefore, the variation method is one of the nmmwerful approximation
methods of quantum mechanics.Historically the VMiwds from a general
method putting in 1959 by Ritz[Bri35,Has ].

4-2-1 Mathematical Review of vairational method
The basic idea behind the variational method is éxpectation value of the

Hamiltonian gives the average energy of the systéma state corresponding to
the particular function used in evaluating the exgion value.
Clearly, this average energy must be greater th&gwal to the lowest energy

state of the system:

<H>=<V¥|HY¥>=E,

That the lowest energy state is lower bound orepectation value enable us

to choose a trail wavefunction containing a numbkparameters and then to
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minimize the expectation value by varying theseapwters; hence the name
vairational method. [Dic60, Han65].Let Schrodingguation of the system is
HY,=E¥, . (3-2

Where

En = true (exact) energy

.= true (exact) wavefunction

n=1,2,3..., and

E1<E2<E3,... <En, E1 = exact ground state energy

Let Pu be a trial wavefunction then
_ (@ H|ey

=010, (4:3)

H = {d}t'H"bt}, if ¢ is normalized sinc&'= forms a complete set of or the

normal eigenfunction state, we can exp&hdn terms oftu-i.e.

cbt = E anan
n
mi

*" is found by making differential equation

..... (4-4)

-

oH ow

da b , and then the values of a,b,c... are found to make

o

Emz'ﬂ = H(a,b,c,...)

-

H. .
™" is the best energy that can be found from

The improved wave function is found :
@, (improved) = ®,(a,b,c,...)

So, to obtain the best result of Hamiltanin mustcheose the trail wave

function approach to the form real wave function
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4-3 Monte Carlo method
Many problems are to complicated to analyse matheaily. However, some

of these processes can be analysed using a priopabdhnique known as the
Monte Carlo method [Joh03] Monte Carlo methodsusmed to solve problem by
using random numbers to simulate interaction pribtiab for various physical
processes [Cod01,Dav ].

The Monte Carlo method is now the most powerful aodnmonly used
technique for analyzing complex problems [Reu81].

Therefore, the Monte Carlo method is a numericalt&m to a problem that
models objects interacting with other objects agirttenvironment based upon
simple object — object or object environment relaghips. The Monte Carlo
method is essentially simple in its approach- aitgwh to a microscopic system
trough simulation of its microscopic interactions.

A solution is determined by random sampling of tleéationships, or the
microscopic interactions, until the result conver{fgie01]

The Monte Carlo method provides approximate sahsgtito a variety of
mathematical problems by performing statistical [glamy experiments on a
computer . The Monte Carlo method can be used deelyf approximate the
solutions to many probability problems [Dav |.

The terms "Monte Carlo methods" derives from thenameaof the town in
Monaco on the Mediterranean know for its gamblirgicos. Historically the
name Monte Carlo was used as a code name during ViDaA ].

In general, Monte Carlo method are used in mathemab solve various
problems by generating suitable random numbershedrving that fraction of the
numbers obeying some property or properties. Thiaadeis useful for obtaining

numerical solutions to problems which are too cocapéd to solve analytically

4-4 Variational Mote Carlo method
The first application of Monte Carlo methods to leutmteracting with realistic
potentials was a (VMC) [Bar03].
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The variational Monte Carlo algorithm is limited treating small systems
optimistically up to A=8. For the spin independenteractions in condensed
matter physics [Car90].

4-4-1 Nuclear Hamiltonian

Before studying the VMC methods discussing the earcHamiltonian and the
difficulties involved in determining its eigenstataVe will employ the traditional
description of the nucleus as a system of nonivedit nucleons interacting
through spin and isospin dependent nuclear interst The solutions of the
schroedinger equation equa.(1-1), Can then useadktg&rmine many properties of
the nucleus[Car90]. The two-body interaction canw#ten as a sum of spin-

isospin dependent operator Okij multiplied by fuoes of the pair separation rij

Vi, =X VEmin0*;, (4-5)
Where the operators‘Qare
o“(h=fo oy, (L5 )20 o0 ML s ket ] a-6)

Variational Monte Carlo (VMC) studies of light neclof ten employ a

generalized Jastrow form for the wavefunction
T
@ >=5(; {j) Fy|o>

Where ,® is antisymmetric slater determinant of one pagtithtes, and the

Fij are pair correlation operations[Car90].

4-4-2 variational Monte Carlo for light nuclel
variational Monte Carlo calculations of lightakei are somewhat more
complicated because of the spin-isospin dependearicéhe interaction and
wavefunction [Car90]. Variational Monte Carlo cdltions are constructed so that
they will be more efficient for better trial waveiction.
In fact, if the trial wavefunction is an exact engtate of the Hamiltonian
the energy's statistical error will be zero. Irstideal case every sample of H. used

the operator acting on the trial wavefunction O(R)

Yo" (RIOW(R)

o

W (r) Woe R (4'8)

O(R) =
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Chapter four Monte Carlo evaluation of expectain values

The initially the minimize energy in a variatiorelculation where O is the
Hamiltonian. In nuclear physics, the Hamiltoniandalso the wave function) will

depend up on the spin and isospin of the nucleBas]

4-4-3 The variational problem
The vairiational Monte Carlo method (VMC) is a wetlown method that can
be used to numerically evaluate expectation valpadijcularly when the number
of variables is large, such as in the many-bodylera
We are going to make use of the time—indepenfientodinger equation,
HW(X) = E(X).cverererererereeeenennans 4-9)

Where in general we approximatgx)as

W) =D Crf (M), (4-10)

The wavefunction is expanded in terms of a setooimalizable trial functions
linear in the coefficient€, andH is the Hamiltonian. In generat, denotes the set
of coordinates appropriate for the many-body Hamidn. However, for
simplicity spin—isospin digresses of freedom ar@orgd here. Multiplying
equation (4-9) on the left by the complex conjugagefunction and integrating

over the appropriate variable, the equation talke$drm

Sl foHofaak, =EX il f f,dQ)C e 4-11)
wheredQ is the volume element. The above equation canb®written as
z Cl:HknCn
E=a e, 4-12
ankanCn

whereH,, andN,, represent the Hamiltonian and overlap matrix elémesth

Hip = [ fHEAQu @-13

The coupled equations of the form.
D HECo=EY N.C =0, @-15)

That constitute a generalized eigenvalue problem.
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Chapter four Monte Carlo evaluation of expectain values

4-4-4 Error estimate

The matrix elements entering the eigenvalue probtaght well be evaluated
numerically leading to an error in the estimategervalue. In case where an error
estimate for individual matrix elements exists, th&al error for the eigenvalue
problem of equation (4-15) can be obtain from tmedr perturbation of the
eigenvalue problem
S (H+dH,)C, +C,) = (E+E)D (N, + N )C, + T, ). (4-16)

n

whereE is the unknown error. Multiplying on the right the same eigenvector

and keeping only first order terms leads to

ey Nl c (C,H,C, —EC.N.C,)errererrrrnee. (4-17)

kn™~n

with summation convention implied.

Since in reality the errors in the Hamiltonian anekrlap matrix elements are
likely to be correlated. Away of dealing with thgroblem is through the
covariance matrix, which can be used to definet @fsencorrelated (independent)
observables whose errors can be added in quadrature

A real symmetric matrix of the from
GZ(H]_]_) . Cov G_IllHnn) cov HllNll) COV(H]:]_Nnm)

cov(—lmHll) - 6% (Hun) coV HnNig) ... COVOnNin)
C= COVN]_]_H]_]_) ...Cov (Nl]_H]_]_) GZ(N]_]_) ......... COV(N]_ann) .} (4-18)

coVlnH11) ... cov NpHn)  cov NpeNp) ... © (Nnn)

with dimensions (2n*)x(2n*). Where (nxn) is the dimension of the
Hamiltonian and overlap matrices. The diagonal el&s correspond to the
variance of the Hamiltonian and overlap matrix edatss” that is discussed later.
Diagonalizing the covariance matrix is equivaleat dbtaining a new set of

uncorrelated observables that each is a linear oatbn of the old ones.
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Chapter four Monte Carlo evaluation of expectain values

The conventional approach to calculating the esécharror is as follow
1. Assume that the calculation calls for the snorabf N particle

2. Calculate the mean value of (expectation vdBig01].

(0) =lim,_y™ T, O(KD) (4-19)

:%Zom) ......... .(4-21)

where thex represents the set of appropriate coordinatesatteatlistributed
according to a probability density(x) [BieOl

The expectation value O >corresponds to the average of the quartitpver
an infinite ensemble of statistically independeiails.

The random walk that is actually performed in siatioins provides an average
over a finite sequence of measurement. This sampdeage or mean will be
denoted byO . In the case dfl samples taken from a distribution.

3.Estimate the variance associated with the digioh of the xi [BieO1]

1
oy R 4-22
NRE ( )
with
02=<0?>-<0>% e, @4-23

The fact that there is a correlation between imhligi measurements
corresponds to the case where
<00, >2<0; ><O; > i 4-24

When the above is taken into consideration theamag of the mean becomes

0?(07)=<(0"-<0>)? >

1
:Fizj:@oioj >-<0 ><0; >.
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Chapter four Monte Carlo evaluation of expectain values

This described the deviation of the calculated mé&am the theoretical
expectation value, the true variance for the nozambe written as [Dan84].

0*(0) = | 0y +2) -
M PV D

Where
p, =<00, >-<0Q, ><0, > t=|i—j|

=<00,, >-<0, >0, > . icveerrrrrrenn (4-27)

i+t

the covariance between the means of two differeantities,O and ©'), since

cov(00") =(00')-(0)(0)
%;«oio;} -(0)o) .. (4-28)

1 ~ t
= +2 1-—
N {yo ;:1'( N )VI}
where similarity to equation (4-27) we define

y,=(00N)-(0)o}) .. (4-29)

4-4-5 Estimating auto- and cross correlation

An estimate for p, and y,can be obtained through the auto-and cross-

correlation coefficients.

The auto correlation coefficients are intrinsic gedies of the Marko chain,
closely related to the eigenvalues. They deterrtiieeerror limits on the sample
averages and also the optimal sampling intervajtlenit is important to have a
reasonable estimate for them |

The auto-correlation coefficientS; is defined in the case dbfsamples as:

C.(0) :i_lz_(o. oS V(o T X W %-30)

i
i=1

While the cross-correlation coefficients as

C.(0,07) = ﬁz_(o. o {(o T o X W @-31)

i
i=1
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The variabla will be referred to as the correlation time. These coefficients

provided biased estimators fgrand y,, in the sense that they underestimate the

actual values, this is expressed as

<C (0)>= 0, —F%(O) + D, oo, (4-32
<C,(0,07)>= P, =2 (O) Do, %-33

Where the term@, and A, are given as

2~ 1 _
A, =2(0%07) - N(N_t);jzlyij) .................... (4-34)
A, =2(co007) - N(I\]l-—t)z > Vi ) S @-35)

With
yij :<Oin >—<Oi ><Oj >
yIJ =<OiO'j >-<0 ><O'j >
However, in most applications the largest correfatime in p, andy, is finite,

meaning that equations (4-26) and (4-28) can beocappated by

— 1 u t
aZ(O)zN{ag "'22 (1_N)pt:| ... (4-36)
t=1
1 . T t
cofo",07) = N[COV(O, 0)+2) 2(- N)y’[:| ... (4-37)
t=1

The meaning of the above approximation for a randeaik is that the
correlation between different samples is of finilange in the sense
that< 00, >-<0Q,><0,> and <Q0, >-<0 ><0, > become zero for large
enough correlation timet =[i = j|. The parametefl in the above equations

represents a cut off parameter and is the maximomelation time that will be

taken into account. The significance of a finiteretation time is that the biases
and A, in equations (4-32) and (4-33) will become arbilyasmall for sufficiently

large number of samples
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Provided that %) is sufficiently small, the variance and covariance lban

Approximated by:

.
0.2 (O) ~ 0-3 + 2Z‘dtﬂCt
N
C . o?
=@+ 2%2 o (4-38)
0
_ c,+2Y ¢
cov(©,0) = =
C. C?
=@+ 2%)W0 ........ (4-39)
0

The above equations provide as with a way of m&aguhe strength of
correlations in a particular simulation through thermalized’ correlation

coefficients,C, /o} and C,/C,. these can be obtained for a particular simulai®n

a function of the correlation tinte

The variance of equation (4-38) and the normalergitd and cross correlation
coefficients of (4-30) and (4-31) were sampled @sctions of correlation-time.
This way done for the matrix elements of both thamitonian and overlap
matrices. The result is shown in figure (4-1). W see in the upper part of the
figure that the variance strongly depends on theetation coefficients, starting
from a minimum and finally converging. According tlee previous analysis this
indicates that despite the fact that the variangeedds on the correlation time.
There is a cutoff in the correlation coefficienthish implies that the dependence
on the correlation coefficient will be over a reged range of the correlation time.
This is backed up by sampling the correlation aoefifit rapidly decays as the
correlation time increases. According to the figuve can safely assume 50
samples as the value of the cutoff.

In the alpha-particle calculation we do not haveowledge of the exact

simulation variance, since this would require thpeetation value of the sample
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Chapter four Monte Carlo evaluation of expectain values

average. We assume that the value obtained thrthalapproximate equations

(4-38) and (4-30) is sufficiently accurate.

Since we can obtain the numerically exact valudHigrandN,,, we can use this
to construct an unbiased estimator for the varianod thus to obtain an
uncorrelated estimate for the variance of eachimatement. Such ashe variance
for the each matrix element. For example the vagdor the Hamiltonian matrix

element is given as

o*(H —
(N kn) = <(Hkn - Ekn)2>
L 4-40
=~ ( Il<n - Ekn)2 ( )
i=1

WhereE,, corresponds to the exact value while the summagioner a number

of distinct random walks withH |'<n denoting the distinct average obtainedtn

walk consisting ofN samples.

The approximation symbol becomes equality in thetlof largen.
Show figure (4-2) the relationship between the exatue of the variance and

the correlation time and comparision between tlatissical value and estimator

value
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Chapter four Monte Carlo evaluation of expectain values

Figure 4-1: The variance (upper part) and the normézed auto-and cross-correlation
coefficients (lower part) as a function of correlabn time . These results for the Hamiltonian and

overlap matrices of the alpha-particle J-TICI(2) cdculation.

— biased estimator
— — numerically exact

Figure(4.2) The (biased) variance estimate for diffrent matrix elements of the
Hamiltonian matrix as a function of the correlation time t, for a simple one-dimensional
model. The fact that the biased estimate approaches constant value with respect to t
indicates that there is a cutoff in the correlationcoefficients (as shown previously). The
dotted lines represent the value for the variance liained through an unbiased
measurement
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It must be noted that the more samples are disdaodethe largest the
correlation time is, the more time consuming tmewdation becomes. Therefore, in
general the most efficient approach that can giweeaa correct variance estimate
Is to take use both of intermediate moves and dnelation coefficient.

4-4-6 Variance reduction

In this section explain a method to reduce theaveme on the Monte Carlo
sample averages used is techniques is to redecéntk it takes to calculate a
result with a given variance. Hence, with the claiad result is associated an
estimated variance? [Bie0O1]

The so called 'zero variance principle' is a waynofeasing the efficiency of a
Monte Carlo algorithm by reducing the variance. Thethod is described in
[Ass99] where applications of the zero-variapgaciple were shown to be very
powerful. This variance reduction technique is exeru in order to establish its
application for the case of many-body clustedsis.

Although the variance reduction technique in ppieican reduce the variance
of an observable

In fig. (4-3) shows the relationship between thdaarece in the y-axis and the
number of component in x-axis for the alpha-pagtian the J-TICI(2)
approximation. Although there is a substantial ctide in the variance of the
alpha-particle calculation (about 80%), this is rotreduction that can be of

practical help. Having in mind that the error igag by the standard deviation we

have that its value changes with the number of mm:s%

Therefore, the variance reduction for the alphdigaris not sufficient for
adding the numerical calculation.

Furthermore, we attempted to apply the varianceatah technique beyond
the alpha-particle.g, the for’He and®He. In these case the wavefunction is no
longer given by a Obut by a more complicated antisymmetrized prodficipatial

and spin-isopin parts.
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alpha-particle J-TICI(2) calculation
* T * T

Figure(4.3) The variance of the various matrix elerant of the hamiltonian matrix for the
alpha-particle in the J-TICI(2) approximation as aresult of applying the ‘zero-variance’
principle. The variance was plotted against the nuimer of components used to approximate

the trial function.

In terms of accuracy we are interested in obtaitinegresults that are accurate
within (0.1%) (~10-50 KeV). Although the linear apgimation of the 'zero
variance principle' seems not to be of any substahelp for systems more
complicated than the alpha-particle. We can alwaysin the required accuracy
within reasonable time-limits. In principle we cduhave looked for a more
complicated approximation than the one at hand,tlistis beyond our purpose
since it over complicates an already complicatélarm.

Is a numerical Monte Carlo method used to find sohs to mathematical
problems which may have many variables) that careastily be solved. Its
efficiency relative to other numerical methods eages when the dimension of the
problem increases.

The error provided by the Monte Carlo method is stéditistical nature
(variance). This was analyzed in detail in the mbhody of this chapter. As

indicated by a number of results we can obtainliakie error estimate. The work
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provided by this chapter ensures a reliable nuraemethod and we are confident
that the results obtained are within the error lsyurthe work in this chapter
depends on the woke of the scientist N.Walet orfidhe of VMC method.
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Chapter 6 Conclusions and suggestions

6-1 Conclusions
The subject of this thesis was the appraxmsolution of the few—body

schrodinger equation in terms of a linear variaigroblem with application to light

nuclei. The most basic ingredient in such an appration is the construction of the

trail wavefunction. So, In this thesis study sorhggical properties of the light nuclei.

The ground state energy and the one —two body tlehsiave been calculated. The
variational wavefunction consists of three factaascentral Jastrow term, a spin-
isospin term and a model wavefunction. One typguch parametrization is given by
the Coupled—Cluster Model (CCM). The basic prineipf the CCM is that the exact
wavefunction can be obtained by correlating aistgqueference function.The CCM in

this study dependent on the alpha — partical, aagseopic CCM is well adapted to
halo nuclei.

In chapter 5 We could demonstrate the applicalef our model to open—shell
system by initially making use of the same semiligea interactions that bind the
alpha—particle. Although this could not produce tbtstate for 6He and 9Be our
calculations demonstrated the several aspectsrahodel.

We except that our sample version of the rarcieteraction is not adequate to
reproduce what is expected for halo nuclei from eexpental evidence. This
conclusion was drawn from the variational charaofethe results. Since could not
find any of the nuclei examined to be bound, te.poses a variational stationary
point. A part from the nuclei of 5He and 8Be th@enxmentally are unbound, those of
5He and 8Be are known halo nuclei. The general\betaobtained was that the
energy approached a minimum, as the separationebatwthe several constituents
increased. This could be monitored by observingshieerically averaged one—and
two—body density distributions. We could clearlg sbat the energy was minimized
as the one—body distribution broadened with theéereshifting a way from the origin.
The two—body density distribution separated into parts: a main body similar to the
alpha—particle and a small tale effect. We usedrdlgnic scaling in order to

distinguish the two parts.
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Chapter 6 Conclusions and suggestions

Despite the fact our interaction is not adegder the light halo nuclei of 6He and
9Be we demonstrated that our model can producedstate for such open—shell
systems by modifying the inter—nucleon force. TWes done by artificially altering
the Wigner part of the S3 interaction, where wel@¢mbtain bound states for both
5He and 6He.

In this study show the relationships between therggnand the width of shell , the
energy and the distance parameters and comparkediVé the calculation for 6He is
substantially more complicated, Since the numlbgrapameters is too many for the
entire set to be displayed in an eligible plot ¢ ipeneral behaviour of the 6He
calculation through some selected configuratiohat hevertheless are conclusive.
Although, this is one of the simplest possible gqunfations it is conclusive for the
case of (S=0, T=1) spin and isospin quantum nusab#re variational behaviour is
similsr to that of 5He, where for large enoughthe dependence on the distance
parameters becomes negligible, while the value tfeg ground state energy
approaches that of the alpha-particle as the vafug increases show in fig. {(5-
6),(5-7), (5-8), (5-9)}.

Finally one and two body densities obtained for thaclei studied with
approximations of the wavefunctions, the probapflitding two —particle in the short
range is very small this is caused by the corm@hafunction, but in one- body the
probability is large because the probability ofdiimg the particle approach to the
center is very large.

For the one—body density we can clearly see tieetfect of either moving the di—
neutron away from the alpha—particle or the twotmmeuaway from each other or
both shifts the average probability away from tlemter—of—-mass (the origin) and
furthermore broadens the distribution. This is agasimilar behavior to 5He. The talil
effects for 6He are more profound that those afrig(5-3) for 5He, particularly from
more localized configurations. The non—existenca wériational minimum suggests
an unbound structure. Furthermore, this is supgddrtethe fact that the value for the
ground-state energy never goes below that of {iieaalbarticle. Despite the fact that
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we have a rich configuration space, the importasicthe variational parameters is
only significant for a well localized system. Thalwe obtained for the binding energy
of a well localized wavefunction is well above thdtthe alpha-particle. Thus our
approximation of 6He as amtn+n (alpha-particle+neutron+neutron) system is not
adequate to construct the Borromen system in teerade of a spin—orbit force. show
fig.{(5-3)(5-10) and fig.(5-11)}.

The calculation for 9Be did not show any differeehavior from the previous cases.
Again there is not a variational stationary pointat the limit of large separation
between the two alpha-particles and the additioeakron the energy approaches its
minimum.

the error bars of figure (5-15) are considerabgygbr than any of the previous cases,
since we restricted the number of Monte-Carlo sasplue to the rapid increase in
computation time. Never the less , the restricead®ing did not effect the clarity of
the results , although in principle we could alwalfew for more computer time.

In that case we did not fully antisymmetrize thierence state between the two alpha-
particles. Although the remaining antisymmetry &wcthe wavefunction to be
unbound at relatively small separations, there apgpa strong minimum, including
that 8Be is bound. This is in contradiction from fwand when we correctly imposed
the full antisymmtry [figure (5-19)]. We worked ie L—S coupling scheme and
assumed that the alpha—particle remained irDthstate. The incorporation of the
antisymmetry condition, appropriate for fermiongshbeen given special attention
where it was found that the complexity greatly @ases in going beyond the alpha—
particle.

The general conclusion is that our simple versiba wariational approach to light
halo nuclei is capable of producing bound statabémpen—shell systems. However,
this required a small modification of the potenfiahction. In the case where direct
use of available semi realistic interactions wasienave could not find any of the
nuclei examined to be bound, i.e., to poses atvamial stationary point. A part from
the nuclei of 5He and 8Be are known halo nuclesekms that the absence of spin
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orbit coupling is critical for these nuclei. It se® that the absence of spin-orbit
coupling is critical for these nuclei.

In addition to the absence of spin-orbit termgha interaction that can alter the
symmetry and thus the binding energy of the growtate the form of the
wavefunction employed has a number of approximatiéthough , this is important
for the case of the light halo nuclei and is natassarily the major approximation for
the general many-body problem.

Therefore, the general conclusion is that weeha successful cluster like model
that can produce bound states of open—shell nuddspite the fact that in reality a
spin — orbit term might be necessary.

6-2 — Suggestions

The fact that our results, using the semiisBalV4 introduction introduced in
chapter 3 did not provide a bound state for the Imaiclei of interest was expected
since the experimental evidence points towardsnied for spin—orbit terms. A
possible future development is the inclusion afhsterms in the interaction. We can
both add more terms and investigate some morestieatypes of nucleon—nucleon
potentials. Future more, working with spin—orbitde will require rethinking the
inclusion of permutation symmetry and will increasleallowed configuration.

Another possibility is to include more struetun the reference function. In the
J-TICI (2) this can be achieved by providing a mliltear expansion where we
expand both the linear operator and the referentcetibn. However, such a
formalism is not as straight forward as the casa single 0 alpha—particle state,
since it is not clear what type of basis—functiondl be used. An adequate
alpha—particle Ostate can be obtained by correlating a Harmonidla®r ground
state. Extra nucleons can then be added by asgigroordinates relative to the
alpha—particle center—of—-mass. It is not clear flmevmodel will develop if we wish
to go beyond the alpha—particlé §tate. However, this is not the most immediate

future development.
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Chapter 6 Conclusions and suggestions

We avoided using state—dependent correlatimtsause of simplicity. Another
possibility for future work is to examine more absthe effect of these correlations,
so that a more economic approach can be found rfaluding them into our
calculations. As shown in chapter 3, the numbespaitial integrals required greatly
increases when state—dependence is included incdneelations. This makes
calculations of this type impractical when movimmgheavier systems. However, the
analysis performed for the alpha—particle greaiypéifies matters, by using some
simple results from the theory of the symmetricugroDespite the fact that this
simplification is lost when we move away from tHphea—particle, reconsidering the
problem might vyield further simplifications that earapplicable beyond the
alpha—patrticle.

A part from improvements in the current model can broaden our investigation
in order to examine the continuum states providgdobr formalism, such as
resonance states. This can be done using the metlooanplex scaling [Rei82]. This
reduces the study of resonance to that of bountbssty examining complex
eigenvalues. The complex scaling method has beanrsko be a powerful method
for solving resonance of three—body systems [KiyQthere®He and 'Li were
studied as three—body systems. By studying the wmbatates produced by our

model we can obtain further information about tttecture of the wavefunction.
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