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Abstract

Various compression methods have been proposed to achieve high
compression ratios and high image qualities in low computation time
relatively. In this research work a combined transform coding scheme
was proposed, the adopted system utilize both Discrete Cosine Transform
and Wavelet transform. The advantages of both transforms were taken
into consideration to encode the image. First, the system transform the
color components of the image from (RGB) to (YUV), the U and V bands
are downsampled due to their poor spatial resolution, and then the
wavelet transform is applied on each color band separately. Some spatial
coding steps are applied on detail coefficients (like hierarchal uniform
quantization, Run Length Encoding (RLE), shift coding) to gain more
compression. The approximate coefficients are coded by using (DCT),
uniform quantization, shift coding.

Also, some analysis tests were done to study the performance of the
established system, and the effects of the involved coding parameters on
the system were investigated. The test results indicated that the proposed
scheme give high compression ratio and good fidelity measures (MSE
and PSNR). Moreover, the proposed scheme was found need 0.7 second
to compress color images of size (256x256) without making significant

degradation in image quality.



List of Abbreviations

Abbreviation

Original
2-D Two Dimensions
BitRate Bit rate
BlkLen Block Length
CMY Cyan Magenta and Yellow
CPU Central Processing Unit
CR Compression Ratio
CRT Cathode Ray Tube
dB deci Bell
DCT Discrete Cosine Transform
DPCM Differential Pulse Code Modulation
DSP Digital Signal Processing
DWT Discrete Wavelet Transform
FBI Federal Bureau of Investigation
FHWT Forward Haar Wavelet Transform
HH High-High Band Coefficient
HL High-Low Band Coefficient
HSL Hue Saturation Lightness
HVS Human Visual System
HWT Haar Wavelet Transform
IDCT Inverse Discrete Cosine Transform
IHWT Inverse Haar Wavelet Transform
ISO International Standard Organization
IWT Inverse Wavelet Transform
JBIG Joint Bi-level Image Group
JPEG Joint Photographic Expert Group
LH Low-High Band Coefficient
LL Low-Low Band Coefficient
LS

Lifting Scheme




LTW

Lower-Tree Wavelet

LZW Lemple-Ziv Welch Coding
MAE Mean-Absolute Error
MSE Mean-Squared Error
NTSC National Television System Committee
PDF Probability Density Function
PSNR Peak Signal-to-Noise Ratio
RGB Red, Green, Blue
RLD Run Length Decoding
RLE Run Length Encoding
RMSE Root Mean Square Error
SPIHT Set Partitioning In Hierarchical Trees
SQ Scalar Quantization
STFT Short Time Fourier Transform
TC Transform Coding
TIFF Tagged Image File Format
VQ Vector Quantization
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Chapter One

General Introduction

1.1 The Need for Compression

The rapid developments in Internet and multimedia technologies have
led to exponential growth in the amount of information that is handled by
computers over the past decades. This information requires large amount of
storage space and transmission bandwidth that the current technology is
unable to handle technically and economically. One of the possible solutions
to this problem is to compress the information so that the storage space and
transmission time can be reduced.

A common characteristic that can be found in most images is that they
contain redundant information. This redundant information can be classified
as [Cro01]:

1. Spatial redundancy-correlation between neighboring pixels values
2. Spectral redundancy -correlation between different spectral bands
This thesis focuses on the compression of still images.

1.2 Image Compression

Compression is desired in many occasions. Usually, image compression
algorithms can bring about 10 fold of reduction in the file size without making
significant effect on the visual quality. On the other hand, the compression is
at the price of extensive processing and CPU power [Zhe05].

In general, image compression techniques can be broadly classified into:

1. Lossless compression
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2. Lossy compression

In lossless compression, every bit of information is preserved during the
decomposition process. The reconstructed image after lossless compression
Is an exact replica of the original one. Such scheme only achieves a modest
compression rate. It is used in applications where no loss of image data is
permitted lossless schemes only achieve a modest compression rates. It is
used in applications where no loss of image data can be compromised.

In lossy compression, a perfect reconstruction of the image is sacrificed
by the elimination of some amount of redundancies in the image to achieve

higher compression ratio. However, no visible loss of information should
perceive under normal viewing conditions [Cro01, Sah01].

In this thesis, the type of image compression scheme that will be
focused is the lossy compression scheme. The typical lossy image encoder

system consists of three main operations, as shown in Figure (1.1).

Original Transform Quantization Entropy — Compressed
Image Coding Image

Fig (1.1) Encoder of Image Lossy Compression Scheme

The transform operation is a linear transform that aims to reduce the
entropy of the coefficients of the image. This operation is reversible and
does not cause any loss of information to the image. An example of such a
transform operation is the discrete cosine transforms (DCT) or wavelet-based
subband coding.

The quantization operation is a lossy operation maps a large set of input
data to a smaller set of output data, attempting to remove redundancies in the

image. This process is irreversible and it introduces distortion. The two main

-2-
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types of quantization are scalar quantization and vector quantization.

The entropy coding operation, which is a lossless operation,
compresses the image data further without making loss in information. The
main idea here is to reduce the average number of bits to represent an
alphabet by assigning a shorter codeword to the most probable alphabet and
a longer codeword to the least probable symbol. Some common examples of
entropy coding are Run-Length Encoding, Huffman Encoding and
Arithmetic Encoding.

To reconstruct the image, the three main of the encoder, figure 1.1,
should be reversed (as shown in Figure 1.2). At each stage, an inverse

operation will be carried out.

Orginal Inverse i De-quantization Entropy Compressed
Image Transform 4 Decoding Imags

Fig (1.2) Decoder of Image Lossy Compression Scheme

1.3 Wavelet Based Compression scheme

In recent years, many studies have been made on wavelets. Wavelets
have been used in various fields (like biomedical applications, wireless
communications, computer graphics or turbulence) as know key solutions to
various relevant problems. Image compression is one of the most visible
applications of wavelets.

Wavelets are functions defined over a finite interval. The basic idea of
the wavelet transform is to represent an arbitrary function f(x) as a linear
combination of a set of such wavelets or basis functions. These basis functions

are obtained from a single prototype wavelet called the mother wavelet by
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dilations (scaling) and translations (shifts). The purpose of wavelet transform
IS to change the data from time-space domain to time-frequency domain which
makes better compression results. The simplest form of wavelets is the Haar
wavelet function.

As discussed earlier, for lossy image compression, loss of some
information is acceptable. Vector quantization requires many computational
resources for large vectors; fractal compression is time consuming for coding;
predictive coding has inferior compression ratio and worse reconstructed
image quality than those of transform based coding. So, transform based

compression methods are generally the best for image compression [Sah01].

1.4 Historical Background of Image Compression

Image compression algorithms have been the subject of research both in
academia and industry for many years. Today, while significantly improved
algorithms have been achieved and compression performance becomes better,
there is still room for new technologies. The first widely adopted international
image compression standard was JPEG which was introduced in the late
eighties [PeMi94]. JPEG is based on DCT followed by entropy coding based
on either Huffman coding or binary arithmetic coding [Sch98]. It has been
widely used whether in printing industry or Internet applications. For example
most images transmitted through the internet are JPEG compressed.

JPEG is intended for continuous tone images of more than one bit depth.
Algorithms for binary images work in a different way, JBIG-1 and JBIG-2 are
the standards covering this area.

JPEG and JBIG are part of other standards, such as facsimile
transmission standards [ITU93], the FlashPix file format [HaH096], the TIFF
file format [Ado92], and page description languages like PDF.
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In recent years researchers have been using the discrete wavelet
transform in compression systems. In 1983 Burt and Anderson [BuAd83]
were the first to introduce multiresolutional analysis in image compression.
While their approach seemed counter intuitive at the first glance, given that it
increased the number of samples to be coded, their results were promising.
Daubechies [Dau88] had studied the discrete wavelet transform and made it a
popular tool in the scientific community. Mallat [Mal89] was the first who had
pointed out to the connection between multiresolutional analysis and the
wavelet transform. Some of the first papers on wavelet image compression
presented excellent compression performance results and gave a lot of
intuition behind the use of the wavelet transform in image compression. A
number of researchers have described the same principles of wavelet image
compression by looking at it from a system perspective, using filter banks, and
subband decomposition, and refer to wavelet coding as subband coding.
Subband coding and wavelet coding essentially refer to the same system, their
description to the system is slightly different. In subband coding the emphasis
iIs in the frequency domain unlike wavelet coding where the emphasis is in the
space domain [VeKo095].

Numerous organizations have been using wavelet compression
algorithms as their own, internal compression standards. An example is the
FBI where there was a need for storing large data-bases of finger-prints and
JPEG did not satisfy their requirements. More recently there was a decision
taken by the 1SO to standardize a wavelet coder in JPEG2000. Until recently
all proposed wavelet coders would require buffering the whole images,
computing the wavelet transform in a frame buffer, and then applying a
quantization on the wavelet coefficients and entropy encoding the generated
indexes. Wavelet coders could indeed perform very well, but their complexity

was well above the complexity of the current JPEG standard [ChOr98].
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1.5 Related Works

1. Bethel (1997) [Bet97], has investigated the whole area of image
compression and optimized some of the techniques that applicable to
produce the best possible compressor. He refer that increasing the
complexity of the compression method could improve the rate
distortion performance of the method, but it does so at the expense of
the speed of the compressor. It was also found that the transform stage
of the compressor is not as important as an effective source coding
stage. He showed that the increase in computational complexity yields
better rate distortion performance, and hence a balance has to be
reached between the speed of a system and its performance. Also, He
showed that the transform stage of a compressor is not as important as
the compression methods used on the transformed data. Also, He
indicated that wavelet methods do not perform better than DCTs

method in terms of MSE when the compression is done correctly.

2. Chrysafis (2000) [Chr00], had studied some wavelet based image
coders. The refer that wavelet coders apart from offering superior
compression ratios have also very useful features, (e.g., resolution
scalability; he allow decoding a given image at a number of different
resolutions depending on the application). He started by presenting in a
simple manner a collection of tools and techniques to apply wavelet
filtering in 1images, ranging from boundary extension to fast
implementations, and continued by exploiting the use of rate distortion
theory to achieve very high compression ratios for a wavelet coder. His
results have been reported among the best in the literature. He applied
rate distortion theory on a per coefficient basis combining a theoretical

analysis with online probability estimation. After presenting the rate
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distortion algorithm he focused on techniques to reduce the complexity
of generic wavelet coders. One of the main contributions of this work is
the ability to compress an image with a wavelet coder without need to
buffer the complete image. The memory requirements of the proposed
approach are orders of magnitude lower than other algorithms proposed
up to date, which would require buffering of the entire image. This
limited low memory implementation was the key in enabling
widespread commercial use of wavelet image coding and has been
incorporated in the informative part of the upcoming JPEG2000
standard.

3. Xiao (2001) [Xia01], his project studied image compression using
wavelet transform. As a necessary background, the basic concepts of
graphical image storage and currently used compression algorithm are
discussed. The mathematical properties of several types of wavelets,
(including Haar, Daubechies, and biorthognal wavelets) are covered.
He analyzed the compression results to compare the wavelet types, and
found that the biorthognal wavelet gave a good compression results
than the other types.

4. Tan (2001) [TanO01], had studied and implemented some of the
operations used in a lossy compression scheme to compress two-
dimensional images. Basically he implemented a coding scheme
consists of three main operations: the transform, quantization and
entropy encoding operations. Higher compression ratios can be
achieved at the expense of the quality of the image by quantizing the
image coarsely or by using a more sophisticated entropy encoder such
as Huffman encoder. However, the computation time was increased
when Huffman encoder was used. One way of overcoming the long

computation time is to use the RLE before Huffman. Such a
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combination has shown an improvement over the Huffman encoder for
all types of implemented quantizers.

5. Grgic et al (2001) [Grg01], they examined a set of wavelet functions
(wavelets) for implementation in a still image compression system, and
they try to highlight the benefit of wavelet transform relating to today’s
methods. The paper discusses the important features of wavelet
transform in compressing still images, including the extent to which the
quality of image is degraded by the process of wavelet compression and
decompression. Image quality was measured objectively (using peak
signal-to-noise ratio or picture quality scale) and subjectively (using
perceived image quality). The effects of different wavelet functions,
Image contents and compression ratios were assessed. A comparison
with a discrete-cosine-transform-based compression system is given.
They found that wavelet-based image compression prefers smooth

functions of relatively short length.

6. Nanda (2003)[Nan03], had presented a novel method that incorporates
pre and post image processing for increasing the effective amount of
compression achieved on an image. Pre-processing is performed by low
pass filtering the image before compression, resulting in suppression of
high frequencies, and hence allowing for fewer coefficients to represent
the image. The post-processing is performed after the compression of
the filtered image, basically it is an image restoration algorithm based
on the gradient method that uses the information of the filter and the
compression process to reverse the effects of filtering and compression.
The method was tested for block-based compression on a number of
images. Research results indicated that the introduced method yields
considerable gain both from a subjective and an objective viewpoint,

especially at high compression ratios. The results demonstrate that the

-8-
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idea of low pass filtering the image before compression, and then
applying the image restoration algorithm on the reconstructed blurred

Image, does in fact an enhancement in the compression of images.

7. lbraheem (2004) [Ibr04], had introduced an image compression system
based on wavelet transform coding. In his project, some additional
coding techniques were implemented such as Differential Pulse Code
Modulation (DPCM), and S-shift coding to improve the compression
performance. His test results indicated that the degradation in image
quality was kept as minimum as possible. He got minimum MSE with
good PSNR (from 24 to 40), and Cr (from 2 to 5).

8. Kotteri (2004) [Kot04], had designed and implemented image
compression by using biorthognal tap9/7 DWT, and applied uniform
scalar quantization on wavelet coefficient. He utilized the fidelity
measure (MSE and PSNR) to asses the quality of the compressed
image. To avoid wasting in computation he improved the efficiency of
the filter bank.

9. Oliver & Malumbres (2006) [OIMa06], in their paper a very fast
variation of the Lower-Tree Wavelet (LTW) image encoder was
presented. LTW is a fast non-embedded encoder with state-of-the-art
compression efficiency; it employs a tree structure as a fast method for
coding wavelet coefficients. It is faster than other encoders like SPIHT or
JPEG 2000. The alternative Huffman-based encoder presented in this
paper serves to largely reduce the execution time, at the expense of loss
in coding efficiency. Experimental results show that this encoder is more
efficient than other very fast wavelet encoders, like the recently proposed

progress (which is surpassed in up to 0.5 dB), and faster than them (from

-9-
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4 to 9 times in coding). Compared with the JPEG 2000 reference
software, the encoder is from 18 to 38 times faster, while PSNR is similar

at low bit-rates, and about 0.5 lower at high bit-rates.

1.6 Aim of Thesis

In this research work a combined transform coding scheme is proposed,
this scheme utilizes both Wavelet transform and DCT, the first will be
considered as the main core engine of the compression system, while the
second transform will be used as secondary coding tool. The advantages of
both transforms will be taken into consideration to encode the portioned
regions of the image. The requirement of low complexity is taken into

consideration in designing the scheme of the proposed system.

1.7 Thesis Layout
Beside to this chapter the remaining part of thesis consists of the
following four chapters:

e Chapter Two: this chapter discusses the image compression techniques

in details, including Wavelet transform, and discrete cosine transform.

e Chapter Three: this chapter includes in details the designed and

implemented image compression models. All the developed algorithms
that used in this research work are presented.

e Chapter Four: this chapter contains the result of the conducted tests on

some samples of images that used as test material in this work. The
used performance criteria are the fidelity measures (MSE, PSNR)

beside the compression ratio.

e Chapter Five: this chapter includes the derived conclusions and some

suggestions for future works.

-10 -



Chapter Two

Theoretical Background

2.1 Introduction

Image compression technique is especially important for compact
storing and fast communication of the image. To reach this target a lot of
research work appears yearly in the literature. Some of them involved with
the use of sub-block DCT coding and others include DWT coding.
Although the sub-block DCT method is efficient for the image compression
a block artifact sometimes appears when the low average bit rate is
employed. This is the inherent shortcoming of the sub-block DCT method.
In order to avoid this defect the DWT method is exploited. But the DWT
itself is not so efficient unlike DCT; the resulting reconstructed image is not
necessarily good for a high picture quality coding. In this work, a combine
scheme makes use of both DWT and DCT.

In this chapter, some relevant concepts to image compression
discipline given. Also some of the common image compression techniques

are illustrated.

2.2 Classification of Compression Techniques
Compression process takes an input X and generates a representation
X, that hopefully requires fewer storage sizes. While the reconstruction
algorithm operates on the compressed representation X, to generate the
reconstruction Y.
Based on the difference between the original and reconstructed
versions, data compression schemes can be divided into two broad classes,

see figure (2.1). The first is lossless compression, at which Y is identical to
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X. While the second is lossy compression, which generally provides much
higher compression than lossless compression but makes Y not exactly as X
[Addo0].

Image Compression

Method
A 4 A 4
Lossless Compression Lossy Compression
Methods Methods
.| Run Length Veqtor_
> Encoding Quantization
Huffman Predictive
Coding Coding
»| Arithmetic Transform
Coding DCT based based image |«
Transform compression
LZW Wavelet <« | Fractal image
Transform compression

Fig (2.1) The most popular image compression methods [Add00]

There are two primary types of image compression methods. Some
compression methods preserve the data, while the other allows some loss of
data. Therefore, image compression techniques are classified into two
categories [Umb98]:

1. Lossless compression methods.

2. Lossy compression methods.

-12-
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2.3 Lossless Compression Methods

Lossless compression techniques provide the guarantee that no pixel
difference will occur between the original and decompressed image, in
other words lossless schemes result in reconstructed data that exactly
matches the original. It is generally used for applications that cannot allow
any difference between the original and reconstructed data. The most
popular lossless compression methods are: Huffman coding, Arithmetic

coding, S-shift coding, and Run length coding [Avc02].

2.3.1 Huffman Coding

Huffman compression [Huf62] is designed to reduce the bits
representation for a data source, such that its bit rate should be close to the
entropy of the data source. The entropy is determined by using the

following equation:

E =ZX:P(X)|092(P(X)) ................................................. (2.1)

Where, P(x) is the probability density distribution of symbol x.

Huffman encoder represents the common data symbols with short
codewords and the rare data symbols with long codewords. The average
effect of this method is to reduce the redundancy of each compressed
symbol to a minimum. Huffman encoder determines the codewords
(compression symbols) by forming a data tree from the original data

symbols and their associated probabilities.

-13-
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2.3.2 Arithmetic Coding

Arithmetic coding [Nel96] was introduced in 1976. It works by
treating a stream of data symbols as a whole and does not replace individual
data symbols with compressed versions. The coder is always implemented
in binary. An arithmetic coder takes upper and lower limits, and defines a
range between these upper and lower limits to be equivalent to a symbol
with the probability of [0, 1]. Symbols are encoded by modifying the range
of the arithmetic coder. Implementations of arithmetic coding are very
complicated and need to overcome the precision problem. The other

disadvantage is its decoding speed.

2.3.3 S-Shift Coding

The idea of this method is to encode a set of numbers by codewords
whose bit length is less than the bit length required to represent the
maximum value of the set. While the numbers whose values are large may
encode using sequence of codewords, each sequence may consist of many
short-length codewords, the values of the codewords are determined

according to the following equation [Gon00]:

X Z W AW oo, (2.2)

m r

Where,
X is the number to be coded.
n is the number of codewords that used to encode the number X.
W, is the lowest value which cannot be coded by using a single
codeword.

W, is the value of the last word used to encode X.

-14-
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The values of W,,, W,, and n are determined using the following equations:

W =2 =L e e, (2.3)
W= X MO W e et e e e e e e e eenans (2.4)
NS X IV Wi et e e e (2.5)

Where b is the number of bits used to represent each single s-codeword.
The performance of Huffman coding and shift coding are better when

the histogram of the sequence of coded numbers is highly peaked. The

performance of shift coding is better than Huffman and arithmetic coding

when the histogram has long tails [1br04, Gon00].

2.3.4 Run Length Encoding

Run length encoding is a lossless algorithm that only offers decent
compression ratios in specific types of data. It is based on the idea of
encoding a consecutive occurrence of the same symbol. This is achieved by
replacing a series of repeated symbols with a count and the symbol.

For example, if the data contains large number of consecutive zeros,
the data size can be greatly reduced using RLE. On the other hand, if the
content of the data is random, then this encoding technique might increase
the data size.

To allow RLE to be used in encoding the consecutive runs of other
characters, a control symbol could be added to the RLE pair as shown in
Figure (2.2) the following example illustrates the use of this control symbol.

Original data :{12 131313 1314141414000009990}

Encodeddata: 12 | 4 13| |l 4 14 | 5 00 9 9 9 0
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CTEL Count Symbal
(1 byte) (1 byte) (1 byte)

Figure (2.2) RLE symbols (2)

For this type of RLE encoder, the compression takes place when the
number of consecutive characters is more than three. Such characters will
be replaced with the RLE symbol (shown in Figure 2.2). If the number of
consecutive characters is less than two, then the characters will not be
encoded as runs of numbers. In the decoding process, the encoded data will
be expanded according to the count of characters in the encoded-symbols. It
Is important to know that there are many different run-length encoding
schemes. The above example has just been used to demonstrate the basic
principle of RLE encoding. Sometimes the implementation of RLE is
adapted to the type of data that are being compressed. This algorithm is
very easy to implement and does not require much CPU horsepower. RLE
compression is only efficient with files that contain lots of repetitive data.
These can be text files if they contain lots of spaces for indenting, the line-
art images that contain large areas of constant colors are far more suitable.
Computer generated color images (e.g. architectural drawings) can also give

fair compression ratios [Sch01, Dat01].

2.4 Lossy Compression

Lossy compression involves elimination of "less important"
information with respect to the “"goodness™ of the reconstructed data in the
process of compression.
The most popular lossy compression methods are:

1. Predictive Coding.
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2. Quantization.

3. Transform Coding.

4. Sub-Band coding.

5. Fractal Image Compression.

Similar to the DCT based image compression techniques; the image
compression techniques based on wavelet transform are lossy. This involves
eliminating the wavelet transform coefficients which are "less important™ in
contributing to the image's appearance and keeping the rest. More
specifically, the coefficients with higher magnitudes are more important

than coefficients with lower values [WanQ0].

2.4.1 Predictive Coding

Predictive coding has been used extensively in image compression.
Predictive image coding algorithms are used primarily to exploit the
correlation between adjacent pixels. They predict the value of a given pixel
using the values of the surrounding pixels. Due to the correlation property
among adjacent pixels in image, the use of a predictor can reduce the
amount of bits needed to represent image. Predictive coding can be
implemented as a lossy image compression technique, but is not as
competitive as transform coding techniques, because predictive techniques
have inferior compression ratios and lead to worse reconstructed image
quality when they compared with those produced by transform coding
[Say00].

2.4.2 Quantization
Quantization involved in image processing. Quantization techniques
generally compress a range of values to a single quantum value. By

reducing the number of discrete symbols in a given stream, the stream
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becomes more compressible. There are two main types of quantization
methods:
1. Scalar Quantization (SQ)

It is used to reduce the number of bits needed to store each individual
of a set of real numbers. This can be done by dividing each number by a
quantization factor and approximate it to the nearest integer before it is
stored. To retrieve the number again, the stored quantized integer (called
Quantization Index) should multiplied by quantization factor. Quantization
process is not lossless, because the retrieved number doesn’t have the exact
value of the original; the degree of closeness depends on the value of the
quantization factor [Aal96].

2. Vector Quantization (VQ)

Scalar quantization can be improved using vector quantization
(VQ); Vector Quantization (VQ) is also a lossy compression method. It
uses a codebook containing pixel patterns with corresponding indexes, each
represent one of them. The main idea of VQ is to represent arrays of pixels
by an index in the codebook. In this way, compression is achieved because
the size of the index (in bits) is usually a small fraction of that of the block
of pixels.

The main advantages of VQ are the simplicity of its idea and the
possible efficient implementation of the decoder. Moreover, VQ is
theoretically an efficient method for image compression, and superior
performance is gained for large vectors. However, in order to use large
vectors, VQ becomes complex and requires many computational resources
(e.g. memory, computations per pixel) in order to efficiently construct and
search a codebook. More research on reducing this complexity needs to be
done in order to make VQ a practical image compression method with

superior quality [Say00].
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2.4.3 Transform Coding (TC)

Although the prediction is a prediction-residual coding method can
be made two dimensional, it is very hard to fully exploit the two
dimensional correlation using only prediction. A better way is to transform
the pixels in the image domain into another domain, where the
representation is more natural and therefore more compact. This
representation should preferably be such that some coefficients give the
bulk of the energy in the image, while others are very likely to be very
small or zero. When the latter ones are small, it signifies that the correlation
that was expected is present. To have this kind of representation there is a
need to decorrelate the coefficients with a reversible transformation (at least
almost reversible), while still maintaining the same amount of total energy
in the basis coefficients. Various fast algorithms were developed to perform
the necessary transformations like [Nis98]:

1. Fourier Transform
2. Cosine Transform

3. Wavelet Transform

2.5 Image Redundancy

The common characteristic of most images is that the neighboring
pixels contain redundant information [Sah0l]. Digital image data
compression can be performed by removing all redundancies that existed in
an image data, so it takes up less storage space and require less bandwidth
to be transmitted. There are many types of redundancies, among these are

the following:

A. Interpixel Redundancy: Interpixel redundancy implies that the

intensity value of a pixel can be predicated from its neighboring
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pixel, because the values of adjacent pixels tend to be highly
correlated [ShSu00]. It is the result of the fact that in most images the
brightness levels do not change rapidly, but change gradually, so that
the adjacent pixels tend to be relatively close to each other in value
[Gon02]. This kind of redundancy can be removed by transforming
the image into a state where the interpixel redundancy can be
discovered and eliminated, and this kind of transformation process is
called a mapping. Sometimes the interpixels redundancy is called
geometric redundancy, spatial redundancy or interframe redundancy

(for video and motion image).

B. Coding Redundancy: Gray levels are usually coded with equal-
length binary codes, and coding redundancy may exist in such codes.
For example, the 8 bit/pixel image allows 256 gray level values but
sometimes the actual image may contain only 16 gray level values,
then as a suboptimal coding only 4 bit/pixel is actually needed. Also,
more efficient coding can be achieved if variable-length coding is
employed. Variable-length coding assigns fewer bits to the gray
levels with higher occurrence probabilities in an image. The average
length required to represent a pixel within a compressed image using

variable-length coding method, is given by [Sal98]:

Where, ry is the gray level of an image.
P(ry) is the probability of occurrence of ry.
n(ry) is the number of bits used to represent each value of r.

K is the number of gray levels.
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In variable coding the symbol with a higher occurrence probability

Is coded using a short codeword [ShSu00].

C. Psychovisual Redundancy: Psychovisual redundancy originates
from the characteristics of the Human Visual System (HVS). The
human perception is not a constant pixel oriented mechanism. This
implies that every area in an image is not processed with same
amount of sensitivity, and the image areas which do not contribute to
the valuable visual content can be removed without a major loss in
quality for the human perceiver. The elimination of these
redundancies can be considered as a sort of quantization, which is an
irreversible process [Fri95]. For color images, this kind of
redundancy can be used to reduce the size of the chromatic
components, since the human eyes are less sensitive to the variation

in chromaticity than the variation in light intensity [ShSu00].

D. Spectral Redundancy: It is the correlation between different
spectral bands [ShSu00].

E. Temporal Redundancy: It is the correlation between different
subsequence frames in video subsequence [HafO1]. Since this thesis
will focus only on still image compression, so the temporal

redundancy is not taken into consideration.

2.6 The Color Space

A color space model is a method used to specify, creation and
visualization. A color is usually specified by using three coordinates or

parameters which describe the position of the color within the color space
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being used. There are various reasons for applying a color transformation.
The choice of an appropriate color space can be an important factor to
determine the results of processing on a color image (quality of image
segmentation, compression ratio). In practice, there is no ideal color space
for all image processing applications. Some of the more common computer

related color spaces are the following [FOR098]:

1. RGB (Red, Green, and Blue): This is an additive color system. It is
the most frequently used color space for image processing. Since
color camera, scanners and systems that use a CRT to display images
(like computer, television, video etc) are most often provided with
direct RGB signal input or output. This color space is the basic one,
which is, if necessary, transformed into another color space. As

shown in figure (2.3).

Cyan

White

Blue

Magenta

Yellow

Black

Red

Fig (2.3) Representation of Color in RGB Color Space [Rus06]

-22-



Chiapter Tue Theonetical Backyround

The main advantage of RGB color space in the applications
involving natural images is the existence of high correlation between
its components. But, this makes RGB space unsuitable for
compression [SaH098]. All gray colors are placed on the main
diagonal of this cube from black (R=G=B=0) to white
(R=G=B=Max).

2. CMY (Cyan, Magenta, and Yellow): This is subtractive based color
space. It is mainly used in printing and hard copy output. CMY is
fairly easy to implement but the perfect transfer from RGB to CMY
is very difficult [FOR098].

3. HSL (Hue, Saturation, Lightness): It has a wealth of similar color
spaces; alternative names include HIS (Intensity), HSV (Value), and
HCL (Chroma/Colorfulness). Most of these color spaces are non-
linearly transformed from RGB. Their advantage lies in the
extremely intuitive manner of specifying color. It is very easy to
select a color with desired hue and then modify it slightly by
adjusting its corresponding saturation and intensity [SaH098].

The separation of the luminance component from chrominance
(color) information is stated to have advantages in different image

processing applications.

4. YUV, YIQ, YC,C,, YCC (Luminance-Chrominance): These are the
television transmission color spaces, sometimes known as
transmission primaries. YUV and Y1Q are analogue spaces for NTSC
and PAL systems, respectively. While YC,C, is a digital standard.

These color spaces separate RGB into luminance information and are
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useful in compression application.
YUV color space is widely used in coding color images and
color video to convert from RGB to YUV spaces, the following

equations can be used: [Dun99]

Y =0.299R + 0.587G + 0.114B ... veevee e ee e (2.7)
U=0492(B = Y) 1 ove e oee oo, (2.8)
V Z0.877(R = Y) et e, (2.9)

Any errors in the resolution of the luminance (Y) are more
important than the errors in the chrominance (U, V) values. The
luminance information can be coded using higher bandwidth than the
chrominance information. Figure (2.4) presents an example of YUV
components, the Y-components shows more spatial details than U &

V components.

Original Y component U component 1" component

Fig (2.4) Example of YUV Space [Dun99]

YI1Q color space is useful in color image segmentation and it is
useful for color image coding, it is similar to YUV, except that its
color space is rotated 33 degrees clockwise, so that the component |
Is the orange- blue axis, and Q is the purple-green axis. The equations
to convert from RGB to YIQ are [Dun99]:
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| =0.596R — 0.275G — 0.321B ovvvvooovereeeeeeereesseeeseeeeseseeen (2.10)
Q=0.212R —0.523G + 0.311B ....vve e eeeeeees e (2.11)

YC,C, color space was used in compression schemes of both
video sequences and still images. For example JPEG image
compression employs YC,C, spaces. Greater compression is an
achieved when the spatial resolution for the color components Cy, and
C, are reduced, and then coarser quantization is applied on all
components for (Y, C,, C,). YC,C, color space was used by Kodak
for encoding images on photo CD system [SaH098]. The linear
transform from RGB to YC,C,, generates one luminance space Y and

two chrominance (C, and Cy) spaces:

C. :%+ 0.5 e (2.12)
R-Y

= 05 e 2.13
=16 (2.13)

2.7 Traditional Image Transforms

Transform is a powerful tool in many DSP application areas. It can
effectively be used to serve as an effective approach to image compression.
An image can be compressed by transforming its pixels (which are
correlated) to a representation where they are decorrelated. Compression is
achieved if the new values are smaller, on average, than the original ones.
Lossy compression can be achieved by quantizing the transformed values.
The decoder inputs the transformed values from the compressed stream and
reconstructs the (precise or approximate) original data by applying the
opposite transform. The term decorrelated means that the transformed

values are independent of one another. [Sal02]
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2.7.1 Fourier Transform (FT)

In Fourier transform the sinusoids are the basis functions. Such
functions have infinite energy across the domains, and it is valuable in
analyzing time invariant or stationary phenomena. It can be computed using

the following equation:
F(W) = [€XD(=WE)F (0L .. evvvovvees e (2.14)

A sudden change in the input signal causes significant changes in the
frequency components throughout the entire duration of the signal. Thus,
information about one instant of a signal cannot be obtained. Therefore this
transformation is not suitable for non-stationary, time-varying phenomena

whose frequency content changes with time [Gra95, Pol01]

2.7.2 Short-Time Fourier Transform

To overcome the above mentioned limitation of Fourier transform, a
window-version of Fourier transform known as Short Time Fourier
Transform (STFT) was developed. In STFT, the non-stationary signal is
divided into small segments, where each segment of the signal is assumed
to be stationary. Then STFT could be applied on these segments using the

following formula:

STET(t,w) = [eXp(—jWs)F (S)g(S — 1) oo (2.15)

But here a resolution problem appears. Once the size As of the STFT
window is chosen, the time-frequency resolution is fixed for the entire time-

frequency plane, Moreover, the resolution in time At and frequency Af can
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not be chosen arbitrarily small at the same time, because their product is

lower bounded by the Heisenberg inequality [Hub96]:

This inequality means that a trade off between time resolution and
frequency resolution should be done. That is, if a good frequency resolution
Is required then a poor time resolution should settle. Likewise, if a good
time resolution is needed then poor frequency resolution is settled.

The wavelet transform have been developed independently in applied
mathematics and signal processing. It is gradually substituting other
transforms in some signal processing applications. The wavelet transform
was substituted instead of STFT (which was extensively used in speech
signal processing) and discrete cosine transform (DCT) (which was widely
used for image compression) due to its better resolution properties and high

compression capabilities [Gra95, Pol01].

2.7.3 The Discrete Cosine Transform (DCT)

The DCT is a technique for converting a signal into elementary
frequency components. The discrete cosine transform (DCT) was first
applied to image compression in the work by Ahmed, Natarajan, and Rao
[Str99]. It is a popular transform used by the JPEG (Joint Photographic
Experts Group) image compression standard for lossy compression of
images. Since it is used so frequently, DCT is often referred to in the
literature as JPEG-DCT, which indicated that DCT is used in JPEG. JPEG-
DCT is a transform coding method consists of four steps. The source image

is first partitioned into sub-blocks of size 8x8 pixels in dimension. Then,
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each block is transformed from spatial domain to frequency domain using a
2-D DCT basis function. The resulting frequency coefficients are quantized
and finally output to a lossless entropy coder. DCT is an efficient image
compression method since it can decorrelate pixels in the image (because
the cosine bases are orthogonal) and compact most of the image energy into
a few transformed coefficients. Moreover, DCT coefficients can be
quantized according to some human visual characteristics. Therefore, the
JPEG image file format is very efficient. This makes it very popular,
especially in the World Wide Web. However, in JPEG2000 the wavelet
transform is used instead of DCT due to its better compression performance
[Cab02, Tru99].
The forward DCT formula is given by [Sal02]:

C. = 2 C.C.Hm_lP COS(M)COS(MJ .. (2.17)

! '\/mn I Jx:O y=0 Y 2m 2n
Where
if f=0
Cr = ) e (2.18)
1 otherwise

Cij represents the transform coefficients

0<i<n and 0< j<m are the indexes of the transform coefficients
Py is the value of the pixel (X, y)

n is the image width (number of columns).

m is the image height (number of rows).
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To turn the image back to its original domain the inverse transform

must be applied, the inverse DCT is given by:

2z § 1CICJC“COS(M)COS(Mj ....... (2.19)
Jmn & 2n 2m

3

T
o

Where
P’ is the reconstructed image.
0<x<n, 0<y<m are the image pixel's coordinates

C is the transformed image.

n, m is the number of pixels.

The main advantages of JPEG are its simplicity, satisfactory
performance, and the availability of a dedicated hardware for
implementation. However, because the input image is blocked, then
correlation across the block boundaries cannot be eliminated. This results in
noticeable and annoying “blocking artifacts” particularly at low bit rates as
shown in figure (2.5) [Sah01].

a. Original b. reconstructed

Fig (2.5) The original and reconstructed Lena image
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2.8 Wavelet Transform (WT)

During the last decade, the wavelet transform has gained the attention
of many researchers in the field of image compression. What makes this
transform a better choice than Fourier transform is its ability to localize in
frequency and time simultaneously. This is extremely useful when
analyzing time-varying or non-stationary phenomena that are commonly
found in images [Bur98]. In images, fine information content is generally
found in the high frequencies whereas the coarse information content exists
in the low frequencies. The multi-resolution capability of wavelet transform
is used to decompose the image into multiple frequency bands. The wavelet
transform has its roots in Fourier transform.

The fundamental idea behind wavelets is to analyze the signal at
different scales or resolutions, which is called multiresolution. Wavelets are
functions used to localize a given signal in both space and scaling domains.
A family of wavelets can be constructed from a mother wavelet. Compared
to Windowed Fourier analysis, a mother wavelet is stretched or compressed
to change the size of the window. In this way, big wavelets give an
approximate image of the signal, while smaller and smaller wavelets zoom
in on details. Therefore, wavelets automatically adapt to both the high-
frequency and the low-frequency components of a signal by different sizes
of windows. Any small change in the wavelet representation produces a
correspondingly small change in the original signal, which means local
mistakes will not influence the entire transform. The wavelet transform is
suited for non stationary signals (like, very brief signals and signals with

interesting components at different scales) [Hub95].

In the discrete wavelet transform, an image signal can be analyzed by

passing it through an analysis filter bank followed by a decimation
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operation. This analysis filter bank consists of a low pass and a high pass

filter at each decomposition stage [Gra95].

When a signal passes through these filters, it is split into two bands.
The low pass filter, which corresponds to an averaging operation, extracts
the coarse information of the signal. The high pass filter, which
corresponds to a differencing operation, extracts the detail information of
the signal. The output of the filtering operations is then decimated by two
[HiJaSe94].

The two-dimensional wavelet transform can be accomplished by
performing two separate one-dimensional transforms, as depicted in figure
(2.6). First, the image is filtered along the x-dimension and decimated by
two. Then, it is followed by filtering the sub-image along the y-dimension
and decimated by two. Finally, the image data contents are split into four
bands denoted by LL, HL, LH and HH after one-level decomposition (see
figure 2.6b) [Mul97].
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Further decompositions can be achieved by acting upon the LL

subband successively, and then the resultant image is split into multiple
bands, as shown in Figures (2.7c) and (2.7d) [StDeSa94, Bur98].
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(a) Original image (b) One level decomposition

U

L3 | HLz
HL 2 LL2 HL2
LH2 | HH3
Horizental Horizontal
HL 1 HL 1
LH 2 HH 2 LH 2 HH 2
Vertical Diagonal Wertical Diagona
LH1 HH 1 LH 1 HH 1

(d) Three level decomposition (c) Two level decomposition

Fig (2.7) Two-dimensional discrete wavelet transforms

In mathematical terms, the averaging operation (or low pass filtering)

Is the inner product between the signal and the scaling function whereas

the differencing operation (or high pass filtering) is the inner product
between the signal and the wavelet function [Cro01].

The reconstruction of the image can be carried out by the following

procedure. First, the four subbands are up-sampled by a factor of two at

the coarsest scale, and the subbands are filtered in each dimension. Then

the sum of the four filtered subbands is determined to reach the low-low
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subband for the next finer scale. This process is repeated until the image is

fully reconstructed, as depicted in Figure (2.8) [\Val01].
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Fig (2.8) The two-Dimensional inverse discrete wavelet transform

2.9 Types of Wavelet Image Decompositions

This section discusses several ways for decomposing an image, each
involves a different algorithm and resulting in subbands with different
energy compactions. It is important to realize that the wavelet filters and
the decomposition method are independent. The DWT of an image can use
any set of filters and decompose the image in any way. The only limitation
Is that there must be enough data points in the subbands to cover all the
filter taps. The main decomposition types considered with wavelet

transform are described in the following sub-sections [Sal02].
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2.9.1 Line Decomposition

In this method the DWT is applied on each row of the image, resulting
in smooth coefficients on the left (subband L1) and detail coefficients on
the right (subband H1), as shown in figure (2.9). Then the subband L1 is
partitioned into L2 and H2, and the process is repeated until the entire
coefficient matrix is turned into detail coefficients. In the second stage of
this decomposition scheme, the wavelet transform is applied recursively to
the leftmost column, resulting in one smooth coefficient at the top left
corner of the coefficient matrix. This last step may be omitted if the used
decomposition method requires that the image rows be individually

compressed [Sal02].

Original Image L1 H1
L2 | H2 H1
v
L3L2
L3H2 L3L1 L3[H3| H2 H1
| |H3| H2| H1 < HiH2 H1 -
131 L3H]1

Fig (2.9) Line wavelet decomposition
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2.9.2 Quincunx Decomposition

Quincunx decomposition, as shown in figure (2.10), proceeds level by
level and decomposes subband L; of level i into subbands Hi.; and L;.; of
level i+l. It is efficient and computationally simple. On average, it achieves
more than four times energy compaction in comparison with the line
method. It results in fewer subbands than most other wavelet
decomposition, a feature that may lead to reconstruct images with slightly
lower visual quality. This method is not used much in practice, but it may
perform extremely well and may be the best performer in many practical
situations [Sal02].

L2
Original Image

L1 H1 > H1

H2

L4
H3 L3 | H3
H4
H1 H1
H2 H2

Fig (2.10) Quincunx Wavelet decomposition
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2.9.3 Pyramid Decomposition

The pyramid decomposition, as shown in figure (2.11), is by far the
most common method used to decompose images that are wavelet
transformed. It results in subbands with horizontal, vertical, and diagonal
image details. The three subbands at each level contain horizontal, vertical,
and diagonal image features at a particular scale, and each scale is divided
by an octave in spatial frequency (division of the frequency by two).
Pyramid decomposition turns out to be very efficient way of transforming
significant visual data to the detail coefficients. Its computational
complexity is about 30% higher than that of the quincunx method, but its
image reconstruction abilities are higher. The reasons for the popularity of
the pyramid method may be that it is symmetrical, and its mathematical

description is simple [Sa102].

Temporary H
Temporary L |« Original image > poraty
v v
LH1 LH1
l HL1 HH1
v

Temporary L | | Temporary H

\ 4 \4 A 4 l

LL2 LH2 HL2 HH2

Fig (2.11) Pyramid wavelet decomposition
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2.9.4 Standard Decomposition

The first step in the standard decomposition, shown in figure (2.12), is
to apply a discrete wavelet filter upon all rows of the image, obtaining
subbands L1 and H1. This step is repeated on L1 to obtain L2 and H2, and
so on for k times. This is followed by the second step where a similar

calculation is applied k times on the columns.

The result is to have one smooth coefficient at the top-left corner of the
coefficients matrix. This method is somewhat similar to line decomposition.
It has an important feature that is when a coefficient is quantized it may
affect a long and thin rectangular area in the reconstructed image. Thus,
very coarse quantization may result in artifacts in the reconstructed image

in the form of horizontal rectangles [Sal02].

A 4

A 4

Original image L1 H1 L2| H2 H1

L3H3HZ H1

A
A

Fig (2.12) Standard wavelet decomposition
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2.9.5 Full Wavelet Decomposition (Packet)

This type of decomposition is also called Wavelet Packet transform. It

is shown in figure (2.13).

Original image

LLLL| LLHL| HLLL| HLHL
LL HL
LLLH|LLHH (HLLH [HLHH <
LHLL|{LHHL {HHLL [HHHL
LH HH
LHLH|LHHH| HHLH HHHH
(b) Two decomposition level (a) One decomposition level

Fig (2.13) Full wavelet decomposition

Let us denote the original image by l,. It is assumed that its size is 2'x
2' when applying the 2-D discrete wavelet transform on it, it ends up with a
matrix I, partitioned into four subbands. The same 2-D DWT (i.e., using the
same wavelet filters) could be applied recursively on each of the four
subbands individually. The result is a coefficient matrix I, consist of 16
subbands. When this process is carried out r times, the result is a coefficient

matrix consists of 2" x 2" subbands, each of size 2" x 2.

The top-left subbands contains the smooth coefficients, depending on
the particular wavelet filter used, it may look like a small versions of the
original image. The other subbands contain detail coefficients. Each
subband corresponds to its frequency band, while each individual transform

coefficient corresponds to a local spatial region. By increasing the recursion
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depth r, the frequency resolution is increased at the expense of spatial

resolution [Sal02].

2.10 Haar Wavelet Transform (HWT)

The oldest and most basic wavelet system had been constructed from
the Haar basis function. The equations for forward Haar wavelet transform

and inverse Haar wavelet transform are given in the following subsections.
1. Forward Haar Wavelet Transform (FHWT) [Jia03]

Given an input sequence (X;) i1=0.....N-1, then FHWT produces L;
and H; (where i=0........ N/2 -1) by using the following transforms

equations:
A. If N iseven
N
L:% i=0....(N/2)-1
....................... (2.20)
H, =22 "% =0, (N/2)-1 >
J
B. If N is odd
N
X, + X, -
L =—2—22 i=0.... (N-1/2)-1
X, =Xy -
H=-%_—-2% i=0.... (N-1/2)-1
| 2 (N-¥2) > ................ (2.21)
L(N+1)/2 :\/EX(N -1)
H(N+l)/2:0
J
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2. Inverse Haar Wavelet Transform (IHWT) [Jia03]

The inverse one-dimensional HWT is, simply, the inverse to the

equations of FHWT; so, the IHWT equations are:

A. If N iseven
X, = LiJEHi, i=0....N/2-1
........................ (2.22)
L -H .
Xy =— -, 1=0....N/2-1
7 /
B. If N is odd
L +H . N
X, = Lo1=0....(N =-1)/2
2i \/E ( )/
L —-H .
X, == =00 (N=1)/2 N 2.23
- (N-1/2 4 (2.23)
Xya= \EL(NH)/Z
/

2.11 The Integer Wavelet Transform (TAP 5/3)

Wavelet transform operate on integer values to produce integer valued
wavelet coefficient. Integer wavelet transform have been effectively used
for lossless compression of images, the results of the invertible integer
wavelet transform are integer, while the computations are done with
floating point numbers. Due to rounding each filter output to an integer
value, then the transform maps integers to integers. This kind of transform
Is named IWT and its implementation is based on a simple lifting scheme
(LS) [DrLi01].
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2.12 Float Wavelet Transform (Tap 9/7)

The biorthogonal filter (Tap 9/7) was chosen as the basis of the
JPEG2000 lossy image compression standard for still images. The
coefficients of this filter are given as floating-point numbers. The float filter
can be lifted (factorized) in order to speed up the convolution step. It is
primarily suited to high visual quality compression. The use of floating-
point arithmetic in the DWT, and the associated rounding errors, make it
unsuitable for strictly lossless compression [Mah05].

The (9/7) floating-point wavelet transform is computed by executing
four "lifting" steps followed by two "scaling™ steps on the extended pixel
values Py through P, . Each step is performed over all the pixels in the tile

before the next step starts [Sal02].

2.13 Fidelity Criteria

Lossy compression techniques cause some information losses up to a
certain tolerated level. Thus the use of fidelity criteria is required to
measure or estimate the amount of losses. Two kinds of fidelity criteria are

normally used; they are objective and subjective measures [Umb98]:

a. Objective

It is measured, mathematically, as the amount of error in the
reconstructed image. They are useful as a relative measure for comparing
different versions of the same image. The error (e) between an original
(uncompressed) pixel value and reconstructed (decompressed) pixel value

can be defined as:

e(X,Y)=T'(X,¥) =T (X, ¥) eerii (2.24)

Where, f ' is the reconstructed image.
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f is the original image.

e is the error.

The total error (er) of a decompressed image (NxM) is expressed

mathematically as:

N-1M-1

SSTECGY) = FOGY)] e, (2.25)

= y:O

(e,)

x

The most widely used objective fidelity criteria are [Kom94]:
1. Mean Square Error (MSE)

1 NAm- 2

M Z (FOGY) = FOGY)) oo, (2.26)

LN

MSE =

<

2. Root Mean Square Error (RMSE)
It is square root of MSE. The smaller the value of the error metrics
(RMSE, MSE and MAD) the better the compressed image represents the

original image.

1 N-1 M-

M ;;(f'(x,y)—f(x,y)) ...................... (2.27)

LN

RMSE :\/

3. Peaks-Signal to Noise Ratio (PSNR)
PSNR express the ratio of the maximal signal power to that of the

error:

psNR = [Max(Fey) -Mint ey (2.28)
MSE
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Mostly, it is measured in units of decibel, thus the PSNR is given
as:

PSNR(dB) =10log,, {%} .................................. (2.29)

Where L is the number of grey levels

4. Compression Ratio (CR): It is a basic measure for the performance of
any compression algorithm. It is defined as the ratio of the original data (s,)

to the compressed data size (s.):

b. Subjective
Subjective fidelity criteria depends on human evaluation, the
evaluation can be classified into three categories [Gon02], [Umb98]:
1. Impairment test: where the test subject scores the images in terms
of how bad they are.
2. Quality test: where the test subject rates the images in terms of how
good they are.
3. Comparison test: this test provides a relative measure, which is the

easiest metric for most people to determine.
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Chapter Three

The Proposed Image Compression System

3.1 Introduction

In this chapter the layout of the proposed image compression scheme
Is investigated, and its implementation steps are illustrated. The techniques
used in this work are the Sub-Band Coding (using Wavelet transform) and
Transform Coding (using DCT). Both transforms show some advantages
and disadvantages and they perform in different ways within image
regions. In the proposed transform scheme most of the benefits of both
transforms are taken. The DCT shows the superior compression
performance when the image area has poor power concentration in high
frequency area, for this reason it is utilized to encode the low-low subband
of the wavelet domain. While, the subband coding mechanism is adopted
to encode the detail (high) subbands of the wavelet transform.

In this chapter, the implementation steps of the established image
compression system are given. The data of the color components (R, G,
and B) are transformed to (Y, U, and V) components, to take the
advantage of the existing spectral correlation and consequently to gain
more compression. Also, the low spatial resolution characteristic of the
human vision system to the chromatic components (U and V) is utilized to
increase the compression ratio without making significant subjective

distortions.

3.2 System Model

Digital image compression system consists of two units: the first unit

is called "Encoding unit", and the second one is called "Decoding unit".
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Each one of these two units consists of many parts, as shown in
Figure (3.1).

| R _ Y |
i G, U, !
; B _ v .| Down Sample :
i v2 |
| Uy W] Y |
' Quantization Detail r ¥ Vv .
! Coefficients Coefficients Wavelet !
° Transform
i Approx. i
—>  Mapping to Positive |, Coefficient |
i | i
e v s
i v :
g < Mapping to Positive
A. Encoder
Compression » Loading - Shift DeCOding !
Stream
Detail Coefficients Approx.
i Coeff.
Transformed v
Approx. DeQuantization
 Coefficients (Heirarical or
uniform)

3 et
J

Coefficients
U 1 ] 1 ] \ﬁ Yl
v \ 4

Save as P Color Transform from
Bitmap YUV to RGB

Reconstructed
Data

B. Decoder

Fig (3.1) The Encoder/Decoder of the proposed system

- 46 -



Chapten Tinee The Propoced Image Compression System

3.3 Encoding Unit

As shown in Figure (3.1a) this unit consists of thirteen modules
which are all together responsible for reducing the data size of the desired
color image, and generate compressed stream of data that represent the
image. In the following subsections a functional description and the

implemented steps for each module are given.

3.3.1 Image Loading

In this part, the color image data is loaded and put it in three arrays,
each has size (HxW), where H denotes the height of the image, and W
denotes its width. Figure (3.2) presents a typical RGB color image
(256 x256) with its three RGB color bands.

Ori‘ginal Red Green Blue
Fig (3.2) Lena Image and its RGB components

3.3.2 Color Transform

One of the main disadvantages of using RGB color space in some
Image processing applications is due to the fact that the contents of R, G,
B bands of the natural images are correlated to some extent, this makes the
RGB space unsuitable for compression.

Today the YUV color space is widely used for coding color images
and color video, taking into consideration that some previous studies

indicated that more than 80% of the color image information is holded by
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Y component, and 10% in each other two (i.e. U and V) components
[SaH098].

In this research project the loaded RGB color image was transformed
to YUV color space by using the equations (2.7- 2.9).

The inverse transform of YUV to RGB is done by using the following

equations:
R=Y +0.00000 U +1.40200V ....cviriiiiiiiiie e, (3.1)
G=Y —-0.34414U - 0.71417V ... oottt (3.2)
B=Y +1.77200U + 0.00000V .......coitiriiiiiiriieieiiienaeenn, (3.3)

In order to get an effective compression the (U, V) component have
been down sampled by 2. The adopted downsampling method was the
averaging method, where the average value of each (2x2) block is
determined, and taken as a value represent that block in the downsampled
image. Figure (3.3) shows the results of applying downsampling step on

the (U, V) color subbands of Lena image.

L i
T :
oty ay

Y-component U-component & its downsample V-component & its downsample

Fig (3.3) YUV component of Lena RGB color image

3.3.3 Wavelet Transform

In this proposed system Haar wavelet transform was applied on each
color transform band, individually. After each wavelet transform pass four
subbands (LL, LH, HL, and HH) are produced. The goal of wavelet
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transform is to map the image data into an alternative representation, in
this representation the image data is decomposed into subbands each hold
certain kind of image information; such that most of the image information
energy is concentrated in the lowest frequency subband (i.e., LL subband).

List (3.1) illustrates the implemented steps of Haar wavelet transform

Algorithm (3.1) Haar Wavelet transforms

Input:
T () is the array of the color transform coefficients
Wid is the image width
Hgt is the image height
Nopass is the number of wavelet transform levels or passes

OQutpult:
Tw () an array consists, at least, of four subbands (LL, LH, HL, HH)

Steps:
W=wid: H= Hgt
For all  where 1< | < NoPass
Hh=H div 2: Wh= W div 2
For Y=0 Hh—-1:Y1=2*Y :Y2=Y1+1
For X=0 Wh-1:X1=2*X:X2=X1+1
Tu(X, Y) =(T(XLYL)+T(X2,Y1)+T(XLY2)+T(X2,Y2))/2
Tu(X+Wh, Y) = (T(XLYD) +T(X2,YL) -T(XLY2)-T(X2,Y2))/2
Tu(X, YHHN) = (T(XLYD) -T(X2,YD)+T(XL,Y2)-T(X2,Y2))/2
Tu(X+Wh, Y+Hh) =(T(X1,Y1)-T(X2,Y1)-T(XLY2)+T(X2,Y2))/ 2
End Loop X
End Loop Y
End Loop |
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3.3.4 Quantization of Detail Coefficients

Image quantization is the process of reducing the number of possible
values of a quantity, and consequently reducing the number of bits needed
to represent it.

In our proposed system, the uniform quantization was adopted to
quantize the coefficients of each wavelet (detail) subband individually.
The quantization step used to quantize the coefficients of each subband

was determined according to the following equation:

Qa"*  for LH, HL in n™ level
Qstep = n-1 . th
QBa for HH in n" level

Where, n is the wavelet level number (i.e., the pass number), (Q,
o,B) are quantization parameters (such that, Q>1, o<1, B>1).
According to the above equation the value of the quantization step is
reduced with the increase of the wavelet level, and its value for HH-
subband is greater than its value for the corresponding HL and LH
subbands.

The quantization index for each wavelet (detail) coefficient is

determined by using the following equation:

Tq(x, y) = round [W} ........................................... (3.5)

step

Where,
Ty () is the array of the wavelet transform coefficients.

Tq () its quantization index array.

Algorithm (3.2) illustrates the implemented steps of the applied

uniform quantization method.
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Algorithm (3.2) Image Quantization

Input:
Tw () is the array of the wavelet transform coefficients.

W is the image width.

H is the image height.

Q is the initial quantization step for (LH, HL, HH)
,  are the quality numbers.

Output:
Quantization indices Tq()

Steps:
Wy=W: Hy=H
Forallj where 1< j < Nopass
Wp= (W, +1) div 2: Hy= (Hp+1) div 2
Wmi=Wy—1: Hm=Hn-1
Xs= Wi Xe= Wh1: Ys= 0: Ye=Hp—1
Qsep=Q * '™
Forallx,y where X;<x<X. and Ys <y<Y,
Ta(x, ¥) = Cint (Tu(X, y) / Qutep)
End loop X, y
Xs=0: Xe=Wn—1:Ys=Hpn: Ye=Hm
Forall x,y where X;<x<Xe and Ys <y<Y,
To(X, y) = Cint (Tw(X, ¥) / Qstep)
End loop x, y
Xs= Wi Xe= W1t Ys= Hn! Ye=Hm
If j =1 then Qstep = Qstep™ S
Forallx,y where X< x< X, and Ys <y<Y,
Tq(x, y) = Cint (Tw(X, ¥) / Qstep)
End loop X, y
w= Wn: Hp=Hp,
End loop j
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3.3.5 Run Length Encoding (RLE)

It is based on the idea of encoding a consecutive occurrence of the
same symbol. This is achieved by replacing a series of repeated symbols
with a count and the symbol. In the proposed system the indices coming
from the quantization process usually hold long runs of zeros. In the
quantization stage the wavelet coefficients are divided by large
quantization step value and the result rounded to the nearest integer, this
process causes the production of a sequence of small integer numbers
which holds long runs of zeros.

Algorithm (3.3) illustrates the implemented steps of the run length

encoding stage.

Algorithm (3.3) Run Length Encoding (RLE)

Input:
Tq () is the array of (LH, HL, HH) subbands from quantization

W is the image width
H is the image height

Output:
A () Vector consist Typ and Lng and TotBits needed.

Procedure:

W= Wid: H= Hgt
Foralll where 1 <1 < NoPasses
Wh =W div 2: Hh = H div 2
ForallJ wherel <J<3:L=-1
Select Case J
Case 1: Xy =Wh: Xo=W-1:Y;=0:Y,=Hh -1
Case 2: X;=0: Xa=Wh -1:Y; =Hh:Y,=H -1
Case 3: Xy =Wh: X, =W-1:Y;=Hh:Y,=H -1
End Select
To be continue
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If Tq(X1, Y1) = 0 Then
Typ=0:Lng=1:L=L+1L:A(L)=Typ
Else
Typ=1:Lng=0:L=L+1:A(L)=Typ
L=L+1:AL)=Ty(X,Y)
End If
Flg=0
ForallY where Y; Y Y,
If Flg =0 Then
Xs=Xi: Xe=Xy:Stp=1:Flg=1
Else
Xs=X: Xe=X;:Stp= :Flg=0
End If
For all X where Xs < X < Xe Step Stp
If X<>X1lorY<>0Then
If T¢(X, Y) =0 Then
If Typ=0ThenLng=Lng+ 1ElseLhg=1: Typ=0
Else
If Typ =0 Then
Typ=1lL=L+1:A(L)=Lng
L=L+1:A(L)=T4X,Y)
Else
L=L+1:A(L)=C
L=L+1:A(L)=TyeXY)
End If
End If
End loop X, Y
Forall K where 1< K< 2:M=K:P=-1
ForallN whereM N L Step2
P=P+1:B(P)=A(N)
End loop N
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Max = B (0)
ForallNwhere 1 < N< P
If Max < B (N) Then Max = B (N)
End loop N
NoBits = Log (Max) / Log (2)
If NoBits < Max Then NoBits = NoBits + 1
TotBits = TotBits + (P + 1) * NoBits
End loop K
End loop J
W=W/2:H=H/2

End loop |

3.3.6 Discrete Cosine Transform (DCT)

In this stage the low-low (approximation) subband of the wavelet
transformed image is firstly partitioned into (8x8) fixed blocks, then the
data of each block is decomposed using the DCT transform. The two
dimensional DCT was performed by applying equation (2.17).

Each block (8x8) of the approximate coefficients is DCT
transformed. The following code illustrates the implemented steps of the

DCT transformation stage.
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Algorithm (3.4) Discrete Cosine Transformation (DCT)
Input:

Tw () is the array of approximation coefficients

W is the image width
H is the image height
BIkSiz is the block size

Outpult:
C () is the transformed block of an (8x8) array of DCT coefficients

Procedure:
BIkSiz=8: Sum=0

W = Wid: H = Hgt
Co=1/8Sqr (2)
C2 =1/Sqr (2 * BIkSiz)
C1 =3.14159 / (2 * BIkSiz)
Foralll where 0 <1 < BIkSiz -1
ForallJ where 0 <J<BIkSiz -1
Forall Y where 0 <Y < BIkSiz—-1
Forall X where 0 < X < BIkSiz-1
Wl=(2*Y+1)*J*Cl
W2=02*X+1)*1*Cl
Sum = Sum + T, (X, Y) * Cos (W1) * Cos (W2)
If1=0ThenCi=CyElse Ci=1
IfJ=0ThenCj=CyElse Cj =1
C(,J)=C2*Ci*Cj*Sum
End loop X
End loop Y
End loop J
End loop |

3.3.7 DCT Coefficients Quantization
The produced DCT coefficients are real valued, and in order to

increase the compression, they must be quantized before storage.
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As a first step in this stage the uniform quantization was applied on

the AC-transform coefficients, C (i, j), using the following equation:

o C(,))

Cq(i,))= round[ — ] ..................................................... (3.6)
! QC(I7J)

Where, Q. (i, j) is the quantization step of the (i, j)" AC-

coefficients, and it is determined by the following equation:

Q1) =Quy Lt Y+ F=1)) v eeeeere e, (3.7)

Where,
Qiow 1S the lowest quantization step value for AC-coefficients

v is the increamentation rate

(i, j) are the frequency indices, whose values are within the range
[0..., Block length—1]

As a second step in this stage, the DCT coefficient (i.e, C (0, 0) is the

quantized using:

C, (0,0) = round[c(go’o)j ..................................................... (3.8)

DC

The way of applying the uniform quantization on DCT coefficients is
illustrated in code list (3.5)
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Algorithm (3.5) Quantization DCT Coefficients

Input:
C () is the transformed block of an (8x8) array of DCT coefficients

W is the image width
H is the image height
Qiow IS the quantization step of the AC-coefficients
Qoc s the quantization step of the DC- coefficient

y is the quantization parameter

Output:
Qoc () is the array of quantization of DCT coefficients

Procedure:

Foralll where 0 <1 < BIkSiz—1
ForallJ where 0 < J < BIkSiz—-1
If I =0and J=0then
Qoc (0, 0) = round (C (0, 0)/Qpc)
Else
Q= Qiow > (1+ y*(1 +J)
Qoc (I, J) = round (C (1, J) / Qoc)
End if
End loop J
End loop |

3.3.8 Mapping to Positive

In this stage, all the determined quantization indices of DCT
coefficients and the quantization indices of the detail subbands are mapped
to be positive, the following mapping equation was used to convert the

signed integer into positive integers:

._{20 IfC >0
2C+1 1fCc<0
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Where, C represents the signed integer value of the quantization
index. This kind of mapping insure that all coefficients values are mapped
as positive integers, and is to keep the optimal number of bits needed to
shift encode the quantized coefficients as small as possible, taking into
consideration that the histogram of the coded coefficients is highly peaked

around zero, see algorithm (3.6)

Algorithm (3.6) Mapping to Positive

Input:

Qoc () is the array of quantization of DCT coefficients
W is the image width
H is the image height

Output:

Positive quantization indices

Steps:
Foralll where 0 <1 < BIkSiz—-1
ForallJ where 0 < J < BIkSiz—-1
If Qpc (1, J) > 0 then
Qoc (1, J) = 2* Qoc (1, J)
Else If Qpc (I, J) < 0 then
Qoc (I, J) = 2* abs (Qoc (1, J)) + 1
End if
End loop J
End loop |

3.3.9 Zigzag and S-Shift Optimizer

In this stage the 2-dimentional array of the quantization indices of
DCT coefficients are arranged in one dimensional array by using Zigzag
scanning method. And before applying an adaptive shift coding method on

the array of coefficients its optimized coding parameters should
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determined using shift-optimizer. The values of the DCT quantization
indices are usually concentrated around zero, and their histogram is highly
peaked, so the use of shift encoder is very suitable, and can lead to good
compression (packing) result.

The mechanism applied to compute the optimal length (N), in bits, of
the shift codewords is based on scanning all possible codeword lengths,
starting from one bit and proceeding more till Nyax bits; the number (Npax)
represent the minimum number of bits required to represent the maximum
(Max) coefficient value in the set of DCT quantization indices. Also, the
number (Nna) 1S considered as the length (in bits) of the second
(auxiliary) codeword. The scan method was applied to test all possible
values of bits that can be assigned to the first (shortest) codeword, so the
tested range of the number of bits of the first codeword is [1, Nyax]. For
each possible codeword length (N) the total number of all bits, S[n],
required for encoding the quantization indices is determined by using the

following equations:

S (N) =N H(D) + (N N )STHG) oo (3.10)
Nimax =[109,(MaX) ] ..ooviiiiii e (3.11)
R = 2N (3.12)

Where H Is the lowest integer value greater than (.).

The value of (N) which leads to the lowest determined value of S (N)
Is considered as the optimal length of the first codeword.
The code list (3.7) illustrates the implemented steps to perform

zigzag method and determine the optimal length of the shift codewords.
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Algorithm (3.7) Zigzag and S-Shift Optimizer

Input:
Qbc () array of quantization indices of (LL) coefficients
W is the image width
H is the image height
BlkLen is the length of the block

Outpult:
Number of required bits (N, Nmax)

Steps:
Load the ScanOrder [O,..., 63]:
{0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,1
4,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,
46,53,60,61,54,47,55,62,63}
For all I where 0<1<63
X= ScanOrder [I] mod 8
Y=ScanOrder [I] div 8
Z (1) = Qoc(X, Y)
End loop |
"' Compute the maximum number of bits required to encode each DCT
Coefficients
Max = Z (0)
For all Z (i) coefficients (i) (where
If Max < Z (i) then Max = Z (i)
End loop i
""" Compute maximum number of required bits
Nmax = 1: K=1
While Max = K
K=2*K+1
Nmax = Nmax + 1
Wend

To be continue
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""" Compute the histogram H () of the quantized transform coefficients
SetH (i)=0
For all i where 0<i< Max
i=Z()
H@)=H() +1
End loop i

" Shift coding optimizer to compute the optimal number of required bits (N,Nmax)

Len = BlkLen * BlkLen
MinBits = Nmax * Len
N = Nmax
For all N where 1 < N < Npax—1
R=2"-1
Sm=0
For all J where 0 < J < Max
If J <R then
Sm=Sm+N*H(@)
Else
Sm=Sm+ (N + Nma) * H (J)
End if
End loop J
If Sm < MinBits then
MinBits = Sp,
End if
End loop N

3.3.10 Shift Encoder

In this stage, the input data are the quantization indices of (DCT)
coefficients of the LL-subband. The codewords produced by applying
shift-coding are send to the compression bitstream (which represents the

compressed data file), see algorithm (3.8).
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Algorithm (3.8) Shift Encoder

Input:

Z () 1D array of quantization indices of (LL) coefficients

Nmax umber of bits required to encode the largest number of bit required to
encode length binary representation

N the length (in bits) of the first shift codeword

BlkLen is the length of block

OQutput:

A set of integers whose lengths are either N or Npax

Procedure:

R=2"-1
For all I where 0 < | < BlkLen* BlkLen
If Z(I) <R then
Output the value Z (I) as an integer has a length N bits {Putword (Z(1), N}
Else
Output the value of max as an integer has a length N bits {Putword (R,N)}
Output the value of (Z (1) = R) as an integer has a length Npax bits
{Putword (Z (1) - R, Nmax)}
End if
End loop |

3.3.11 Shift Coding the Detail Coefficients

In this stage, all the determined RLE indices of the subbands (LH,
HL, HH) are mapped to be positive, equation (3.13) have been used to
convert the signed integer into positive integers. The mechanism applied
to compute the optimal length is same like that illustrated in section

(3.3.8). Algorithm (3.9) illustrates the implemented steps to perform
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positive mapping step and to determine the optimal length of the shift

codewords.

Algorithm (3.9) Mapping and S-Shift Optimizer

Input:
A () Vector consist RLE indices
L is the length of the vector A ()

Outpult:
Number of required bits (Np, Npmax)

Steps:
""" Do the positive mapping
Foralll where 0<I<L
IfA(I)>0thenA(l)=2*A(l)
Else IfA (1) <Othen A (l) =2*abs (A (I)) +1
End loop |
' Compute the maximum number of bits required to encode each DCT
Coefficients
Max = A(0)
For all A(i) coefficients (i) (whereQ <i< L)
If Max < A (i) then Max =A (i)
End loop i
""" Compute maximum number of required bits
Nmax = 1: K=1
While Max = K
K=2*K+1: Npax = Nmax + 1
Wend

To be continue
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""" Compute the histogram H () of the RLE coefficients

SetH (i)=0

For all i where 0 <i < Max
J=A@):HG=HQ>) +1

End loop i

""" Shift coding optimizer to compute the optimal number of required bits

(N,Nmax)
MinBits = Npmax * L
N = Nmax
ForallNwhere 1 < N < Npax—1
R=2"-1
Sm=0
For all Jwhere 0 < J < Max
IfJ<Rthen S, =Sn+N*H(J)
Else Sm = Sm+ (N + Npmax) * H (J)
End loop J
If Sm < MinBits then MinBits = Sy,
End loop N

3.3.12 Shift Encoding the Detail Subband

In this stage, the input data are the mapped indices of (RLE)
coefficients of (LH, HL, HH) subbands. The codewords produced by
applying shift-coding are send to the compression bitstream, which

represents the compressed data file, see code list (3.8).
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3.4 Decoding Unit

This unit consists of ten parts, as shown in figure (3.1b); it starts with

loading the compressed data and ends with output the reconstructed image.

The constructed decoding process implies the following stages:

1. Loading the compressed data as one dimensional array of bits.

2. Decoding the compressed data of LL coefficients: (i) Shift decoding

5.

the quantized indices of DCT coefficients, (ii) deZigzag the
quantized indices to convert to map the array of indices from 1D to
2D array, (iii) dequantize the quantization indices to get the DCT
coefficients of the LL coefficients, and then (iv) apply IDCT to

reconstruct the coefficients of LL subband.

. Decoding the compressed data of LH, HL, HH coefficients: (i) shift

decoding the quantized indices of RLE coefficients, (ii) run length
decoding (RLD) the detail subbands to get the quantization indices,
and then (iii) apply the hierarical dequantization process on the
subbands (LH, HL, HH) to get the wavelet coefficients.

Inverse wavelet transform: apply the inverse wavelet transform on
the constructed LL, LH, HL, HH coefficients to produce the
coefficients of Y, U, and V color components.

Inverse color transforms from the three components Y, U, V to the

color components (R, G, B) to produce the reconstructed image.

3.4.1 Shift Decoder and DeZigzag

Code list (3.10) illustrates the steps of the implemented shift

decoder.
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Algorithm (3.10) S-Shift Decoder and DeZigzag

Input:
A () 1D array holds the shift-codewords of (LH, HL, HH) subbands
Z () is 1D array hold the shift-codewords of LL subband
N is number of bits of the first (short) shift codeword

Ns is number of bits of the second (long) shift codeword

L is the length of input array
Output:

QD () 2D array output (quantization indices and DCT coefficients codewords)
A() holds the indices of RLE of (LH, HL, HH) subbands

Procedure:

R=2"-1
""" Shift Decoder for LL subband
Forall lwhere 0 <1 <L
E = GetBits (N) " load N bits from the compression stream
If abs (E) <R then
DA()=E
Else
DA (1) = E + GetBits (Ns)
End if
End loop |
Load the scan order [O,..., 63]array:
{0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,1
4,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,4
6,53,60,61,54,47,55,62,63}
For 1 =0to 63
X=ScanOrder (1) mod 8
Y= ScanOrder (1) div 8
QD(x,y) = DA (I)
End loop |
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""" Shift Decoder for LH, HL, HH subbands
Forall Iwhere 0 LI <L

S = GetBits (N) " load N bits from compression stream
If abs (S) <R then
A(l=S

Else
A (1) = S + GetBits (Ns)
End if
End loop |

3.4.2 DeQuantization

Code list (3.11) illustrates the implemented steps to perform the
dequantization of the DCT coefficients of the LL-subband.

Algorithm (3.11) Dequantization

Input:

QD () is a block of an 8x8 array of quantization indices of DCT coefficients
Qiow IS the lowest value of quantization step of AC() coefficients

Qoc is the quantization step of the DC coefficient

is the quantization rate parameter

Output:
D () is dequantized DCT coefficients

Procedure:

Forallly where 0 ly< BlkLen
For all Ix where 0 < Ix < BlkLen
Foralll where 0 | BlkLen
ForallJ where 0 J < BlkLen

If =0andJ=0then

Qq (1, ) = Qoc * Q(I, J)
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Else
Qq=Qiow + (1+ * (1 + 1))

D (Iv ‘]) = Qq* Q (I’ ‘])
End if

End loop J
End loop |
End loop Ix
End loop ly

3.4.3 Inverse Discrete Cosine Transform (IDCT)

The inverse transform turns the quantized DCT coefficients to LL-

subband coefficients. The code list (3.12) illustrates the implemented steps

to perform the inverse DCT.

Algorithm (3.12) IDCT

Input:

D () is dequantized DCT coefficients for LL subband

Output:

B () is array of quantization indices for LL subband

Procedure:
Set BIkSiz = 8: S,,=0
Co=1/Sqrt(2)

C1 =3.14159/ (2 * BIKSiz)
C2 =1/9Sqgrt (2 * BIkSiz)
where 0 <1 < BIkSiz—1
where 0 < J < BlkSiz—1
ForallY where 0 <Y < BIkSiz—1
Forall X where 0 < X < BIkSiz—1
WL=(Q2*Y+1)*J*C1

For all |

For all |

To be continue
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W2=02*X+1)*1*Cl
Sm=Sm+D(l,J) * Cos (W1) * Cos (W2)
If1=0ThenCi=CyElse Ci=1
IfJ=0ThenCj=CpElseCj=1

B(X,Y)=C2*Ci*Cj* Sy
End loop X
End loop Y
End loop J
End loop |

3.4.4 Run Length Decoding

Code list (3.13) illustrates the implemented steps to perform the Run
length decoding.

Algorithm (3.13) Run Length Decoding

Input:

A () is a vector consist of the type of the first run (i.e., zero or non zero), the length
of zero runs, and the value of non-zero elements.

W is the image width

H is the image height

L length of vector A ()

OQutput:
g () is the array of quantization indices for (LH, HL, HH) subbands

Procedure:
W1l=W:Hl=H
Foralll where 1< 1 < NoPass
Wh = W1 div 2: Hh = H1 div 2

To be continue
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ForJ=1To3
F=-1:M=0
IfA(0)=0ThenFlg=0Else Flg=1
While M <L
M=M+1:N=A (M)
If Flg = 0 Then
Forall K where 1< K<N:F=F+1:V(F)=0:Endloop K
Else
F=F+1:V(F)=N
End If
IfFlg=0ThenFlg=1Else Flg=0
Wend
Select Case J
Case 1: X1 =Wh: X2=W1-1:Y1=0:Y2=Hh -1
Case 2: X1 =0: X2=Wh—1:Y1=Hh:Y2=H1 -1
Case 3: X1 =Wh: X2=W1-1:Y1=Hh:Y2=H1-1
End Select
Flg=0:F=-1
For all Y where Y1<Y <Y2
If Flg =0 Then
Xs=X1:Xe=X2:Stp=1:Flg=1
Else
Xs=X2: Xe=X1:Stp=-1:Flg=0
End If
Forall X where Xs <X < Xe : Step Stp
F=F+1:9X,Y)=V(F)
End loop X
End loop Y
End loop J
Wh =Wh/2: Hh=Hh /2

End loop |
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3.4.5 The Dequantization of Detail coefficients

Code list (3.14) illustrates the implemented steps to perform the

dequantization of LH, HL and HH subbands coefficients.

Algorithm (3.14) Dequantization of Detail coefficients

Input:
q () is the array of the quantization indices for (LH, HL, HH) subbands

W is the image width
H is the image height
Q is quantization step for (LH, HL, HH) coefficients

a,f is quantization parameters

OQutpult:

Dimg () is the dequanted wavelet coefficients

Procedure:

Wn=W: H,=H
Forallj  where 1< j < NoPass
Wm1=Wn! Hmi= Hn
Wn= (Wn+1) div 2
Hn= (Hn+1) div 2
Xs= Wp: Xe=Wm1—1: Ys=0: Ye=Hpn-1
Quep=Q* '
Forall x,y where Xs<x<X, and Ys<y<Y,
Dimg(x, y) = a(X, y) * Qstep
End loop X, y
Xs=0: Xe=Wn-1: Ys=Hn! Ye=Hm -1
Forall x,y where X< x< X, and Ys<y<Y,
Dimg(x, y) = a(X, y) * Qstep
End loop X, y

To be continue
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Xs=Wn: Xe=Wmnt =17 Ys=Hn: Ye=Hn—-1
Ifj = 1 then Qstepz Qstep * ,B
Forall x,y where Xs<x<Xe and  Ys<y <Y,

Dimg(x, y) = a(X, ¥) * Qstep
End loop X, y
End loop j

3.4.6 Inverse Wavelet Transform
Code list (3.15) illustrates the steps of the implemented inverse

wavelet transform.

Algorithm (3.15) Inverse Wavelet Transform

Input:
Dimg () is the input array i.e., (wavelet coefficients)
W is the image width
H is the image height

NoPass is the number of wavelet transform levels or passes
Output:
T () is the array of the color transform coefficients of W*H
Procedure:

W1=W:Hl=H

Hm=H1-1:Wm=W1 -1

Put the two array B() of approximation coefficients and Dimg() of detail

coefficients in one array A()
For all  where 1 < 1 < NoPass -1
W1 =W1div2: Hl = H1div?2
End loop |
To be continue
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For | =NoPass—1 to 1 Step —1
Wh = W1 div 2: Hh = H1div 2
For all Y where 0 <Y < Hh -1
Y1=2*Y:Y2=Y1+1:Yy=Y +Hh
For all Xwhere 0 < X < Wh —1
X1=2*X:X2=X1+1: Xx =X+ Wh
T(XL, Y1) = (ACX, Y) + A (XX, Y) + A (X, Yy) + A (XX, Yy)) / 2
TX2, Y1) = (A (X, Y) + A (XX, Y) - A (X, Yy) - A (XX, Yy)) /2
T(XL, Y2) = (A (X, Y) - A (XX, Y) + A (X, Yy) - A (XX, Yy)) /2
T(X2, Y2) = (A (X, Y) - A (XX, Y) - A (X, Yy) + A (XX, Yy)) /2
End loop X
End loop Y
ForallY where 0<Y<H1-1
Forall X where 0<X<W1-1
A, Y)=T(X, Y)
End loop X
End loop Y
W1=W1*2:HI=H1*2
End loop |

3.4.7 Up Sampling

This stage implies the up sampling of (U, V) color components. The

applied steps of this stage could be expressed by the following simple

equations:
A (2X,2Y) T B (X, ) e e e (3.13)
ARXHL,2Y) B (X, Y) oo e e e (3.14)
ARX 2V 1) ZB (X, Y) ceriiii it e e (3.15)
ARX+H1L2Y+1D)=BGY) coriieiiiiiiccir (3.16)
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Where, A () is the up sampled component

B () is the down sample component

3.4.8 YUV to RGB Transform

After the reconstruction of (Y, U, V) color components, they must
transformed to the space (R, G, and B), and then the output will be the

reconstructed image.
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Tests and Results

4.1 Introduction

This chapter is devoted to present the results of some conducted
tests to study the compression performance of the suggested image
compression scheme, and to evaluate the effects of the involved coding
parameters on the overall system performance. Some of the well known
fidelity measures (i.e. MSE, PSNR) have been used to asses the quality of
the reconstructed image.

The proposed compression scheme had been established using
Visual Basic (version 6.0) programming language. The tests have been
conducted by using personal computer (processor Pentium 4, 2.6 GHz),

dual cash memory, and the operating system was windows XP.

4.2 Image Test Material
The

specifications of both test images are listed in table (4.1). Figure (4.1)

Two different images were adopted as test samples.

presents these images.

Table (4.1) The test images attributes

. . Sample
Width | Height :
Image | Type (pixels) (pixgls) Resolution
(bits/sample)
Lena |Bitmap| 256 256 24
Baboon | Bitmap | 256 256 24
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a. Lena Image b. Baboon

Fig (4.1) The original test images

4.3 Image Compression Performance Tests
The listed tables in this section illustrate the compression results of
the proposed system. In these tables the values of MAE, MSE, PSNR,
BitRate and compression ratio (CR) are listed. It is obvious that their
values are significantly affected by the system parameters (i.e., number of
wavelet passes, and the quantization parameters values). The effect of
each system parameter was investigated separately, and the relevant test

results have been listed in one of the following tables:

1. Table (4.2) shows the effects of the number of wavelet passes
(NoPass) on the compression performance. Figures (4.2), (4.3) show
some of the reconstructed images when the number of wavelet

transform pass was varied between (1- 4).
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Table (4.2) The effect of NoPass parameters
(Where, Quigh=30; Qiow=3; Alpha=0.6; Beta= 1.5; y=0.75; BlkLen=4)

Image | NoPass | MAE | MSE | PSNR CR BitRate
1 355 | 24.04 | 3432 | 16.816 | 1.427
] 2 472 | 41.02 | 32.00 | 29.248 | 0821
enha 3 556 | 54.45 | 30.77 | 33.793 | 0.710
4 6.06 | 63.12 | 30.13 | 34.092 | 0.704
1 3.96 | 3153 | 33.14 | 18.444 | 1.301
Baboon 2 552 | 54.25 | 30.79 | 33.631 | 0.714
3 6.37 | 70.32 | 29.66 | 38.718 | 0.620
4 6.80 | 79.13 | 29.15 | 39.056 | 0.615

NoPass =1, CR =16.82
MSE = 24.04
PSNR = 34.32
BitRate= 1.427

NoPass = 3, CR = 33.79
MSE = 54.45
PSNR = 30.77
BitRate=0.710

Fig (4.2) Samples of Lena reconstructed image when the number of wavelet
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NoPass =2, CR =29.25
MSE =41.02
PSNR = 32.00
BitRate=0.821

NoPass = 4, CR = 34.09
MSE = 63.12
PSNR = 30.13
BitRate=0.704

passes is varied
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NoPass =1, CR=18.44
MSE = 31.53
PSNR =33.14
BitRate=1.301

NoPass =2, CR = 33.63

MSE = 54.25
PSNR = 30.79
BitRate=0.714

NoPass = 3, CR =38.72
MSE = 70.32
PSNR = 29.66
BitRate=0.620

NoPass =4, CR = 39.06

MSE = 79.13
PSNR =29.15
BitRate=0.615

Figure (4.3) Sample of Baboon reconstructed image when the number of

wavelet passes is varied

2. Table (4.3) illustrates the effects of the quantization step (Qjow) ON

the compression performance, the value of Q,,, Was varied from 1 to

8. Figures (4.4), (4.5) show some of the reconstructed images.
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Table (4.3) The effect of Qow
(Where, NoPass=3 Quigh=30; Alpha=0.6; Beta=1.5; ¥ =0.75; BlkLen=4)

Image Qoww | MAE | MSE | PSNR CR BitRate
1 5.30 50.29 | 31.12 | 33.049 0.726

2 5.43 52.15 | 30.96 33.477 0.717

3 5.56 54.45 | 30.77 33.793 0.710

4 5.73 57.13 | 30.56 | 34.027 0.705

5 5.88 59.97 | 30.35 | 34.240 0.701

Lena 6 6.06 63.13 | 30.13 | 34.384 0.698
7 6.24 67.16 | 29.86 | 34.547 0.695

8 6.50 71.90 | 29.56 | 34.718 0.691

9 6.67 76.17 | 29.31 | 34.829 0.689

10 6.90 81.06 | 29.04 | 34934 0.687

11 7.07 85.98 | 28.79 | 35.009 0.686

1 6.14 65.74 | 29.95 | 37.729 0.636

2 6.25 67.58 | 29.83 | 38.318 0.626

3 6.37 70.32 | 29.66 | 38.718 0.620

4 6.51 73.12 | 29.49 39.041 0.615

5 6.67 76.13 | 29.31 | 39.267 0.611

Baboon 6 6.86 80.59 | 29.07 | 39.607 0.606
7 7.03 84.50 | 28.86 | 39.791 0.603

8 71.24 89.65 | 28.61 | 40.010 0.600

9 7.48 95.74 | 28.32 | 40.149 0.598

10 7.64 99.08 | 28.17 | 40.330 0.595

11 7.80 |102.96 | 28.00 | 40.463 0.593
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Qow =1, CR=33.05
MSE = 50.29
PSNR =31.12
BitRate=0.726

QLow =2, CR=33.48

MSE =52.15
PSNR = 30.96
BitRate=0.717

QLow =3, CR=33.79
MSE = 54.45
PSNR =30.77
BitRate=0.710

QLow =5, CR=34.24

MSE = 59.97
PSNR =30.35
BitRate=0.701

QLow=8,CR=34.72
MSE =71.90
PSNR = 29.56
BitRate=0.691

Figure (4.4) Samples of Lena reconstructed image for different values of Qjow
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QLow=1,CR=37.73
MSE = 65.74
PSNR = 29.95
BitRate=0.636

QLow =3,CR=38.72
MSE = 70.32
PSNR = 29.66
BitRate=0.620

QLow =2, CR=38.32

MSE = 67.58
PSNR = 29.83
BitRate=0.626

QLow =5, CR=39.27

MSE =76.13
PSNR =29.31
BitRate=0.611

QLow =8, CR=40.01
MSE = 89.65
PSNR =28.61
BitRate=0.600

Figure (4.5) Samples of Baboon reconstructed image for different values of

Qlow
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3. Table (4.4) shows the effects of the parameter (Increment rate (7))

on the compression performance. Figures (4.6) (4.7) show some of

reconstructed images when the value of y was varied from 0.25

to 2.

Table (4.4) The effect of (V)
(Where, NoPass=3; Qiow = 3; Quigh = 30; o= 0.6; BlkLen =4; B =1.5)

Image Y MAE | MSE | PSNR CR BitRate
0.25 5.35 50.87 | 31.07 | 33.290 | 0.721
0.50 5.44 52.22 | 30.95 | 33,574 | 0.715
0.75 5.56 5445 | 30.77 | 33.793 | 0.710
1 5.70 56.72 | 30.59 | 33.974 | 0.706
1.25 5.80 58.54 | 30.46 | 34.145 | 0.703
1.50 5.92 60.74 | 30.30 | 34.240 | 0.701
1.75 6.02 60.62 | 30.16 | 34.324 | 0.699
2 6.18 62.11 | 29.93 | 34.444 | 0.697
2.75 6.61 75.17 | 29.37 | 34.761 | 0.690
3.5 7.06 85.54 | 28.81 | 34.915 | 0.687
0.25 6.18 66.62 | 29.89 | 38.117 | 0.630
0.50 6.27 67.85 | 29.82 | 38.453 | 0.624
0.75 6.37 70.32 | 29.66 | 38.718 | 0.620
1 6.46 7218 | 2955 | 38.917 | 0.617
Baboon | 1.25 6.60 7490 | 29.39 | 39.142 | 0.613
1.50 6.74 77.71 | 29.23 | 39.298 | 0.611
1.75 6.85 80.24 | 29.09 | 39.495 | 0.608
2 7.02 84.38 | 28.87 | 39.647 | 0.605
2.75 7.47 95.56 | 28.33 | 39.993 | 0.600
3.5 7.85 | 106.07 | 27.87 | 40.322 | 0.595

Lena

-82-



Tests and ResultS

v=0. 25, CR=33.29

MSE = 50.87
PSNR = 31.07
BitRate=0.721

v=1.25,CR=34.15

MSE = 58.54
PSNR = 30.46
BitRate=0.703

y=0. 75, CR = 33.79

MSE = 54.45
PSNR = 30.77
BitRate=0.710

y=1. 75, CR = 34.32
MSE = 60.62
PSNR = 30.16
BitRate=0.699

vy=2,CR=34.44
MSE =62.11

PSNR =29.93
BitRate=0.697

Figure (4.6) Samples of Lena reconstructed image for different values

of y
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¥=0.25, CR = 38.12

MSE = 66.62
PSNR = 29.89
BitRate=0.630

y=1.25,CR=39.14
MSE = 74.90
PSNR =29.39
BitRate=0.613

¥=0.75, CR = 38.72

MSE = 70.32
PSNR = 29.66
BitRate=0.620

y=1.75, CR = 39.50
MSE = 80.24
PSNR = 29.09
BitRate=0.608

y=2, CR =39.65
MSE = 84.38

PSNR = 28.87
BitRate=0.605

Figure (4.7) Samples of Baboon reconstructed images for different values

of y
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4. Table (4.5) illustrates the effects of the quantization parameter
(Quigh) on the compression performance parameters, the value of

Qnigh Was varied from 5 to 50. Figures (4.8), (4.9) show some of

reconstructed images.

Table (4.5) The effect of Quign

(Where, NoPass=3; Qw = 3; Alpha=0.6; Beta= 1.5; 7=0.75; BlkLen=4)

Image | Quigh | MAE MSE | PSNR CR BitRate
5 3.12 16.61 | 35.93 | 8.265 2.904

10 3.66 22.64 | 3458 | 13.926 | 1.723

Lena 20 4.70 3795 | 32.34 | 23.207 | 1.034

30 5.56 54.45 | 30.77 | 33.793 | 0.710

40 6.29 71.34 | 29.60 | 44.004 | 0.545

50 6.93 87.38 | 28.72 | 55.633 | 0.431

5 3.34 22.32 | 34.64 | 8.930 2.688

10 4.01 29.98 | 33.36 | 14.200 | 1.690

Baboon 20 5.26 49.04 | 31.22 | 26.323 | 0.912
30 6.37 70.32 | 29.66 | 38.718 | 0.620

40 7.29 90.44 | 28.57 | 50.816 | 0.472

50 8.14 | 11292 | 2760 | 62.734 | 0.383
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Quigh =5, CR =8.27
MSE = 16.61
PSNR = 35.93
BitRate=2.904

Quigh =10, CR = 13.93

MSE = 22.64
PSNR = 34.58
BitRate=1.723

Qigh = 20, CR = 23.21
MSE = 37.95
PSNR =32.34
BitRate=1.034

Quigh = 30, CR = 33.79

MSE = 54.45
PSNR = 30.77
BitRate=0.710

Quigh = 40, CR = 44.00
MSE = 71.34
PSNR = 29.60
BitRate=0.545

Quigh = 50, CR = 55.63

MSE = 87.38
PSNR = 28.72
BitRate=0.431

Figure (4.8) Samples of Lena reconstructed images for different Quign values
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Quigh =5, CR=8.93
MSE = 22.32
PSNR = 34.64
BitRate=2.688

Qnigh = 10, CR = 14.20
MSE = 29.98
PSNR = 33.36
BitRate=1.690

Quigh = 20, CR = 26.32
MSE = 49.04
PSNR = 31.22
BitRate=0.912

QHigh = 30, CR=38.72
MSE = 70.32
PSNR = 29.66
BitRate=0.620

Quigh = 40, CR = 50.82
MSE = 90.44
PSNR = 28.57
BitRate=0.472

QHigh = 50, CR=62.73
MSE = 112.92
PSNR = 27.60
BitRate=0.383

Figure (4.9) Samples of the reconstructed Baboon images for different Qpign
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5. Table (4.6) shows the effect of the increasing the quantization
parameter (o). Figures (4.10), (4.11) show some of reconstructed

images when o was varies from 0.1 to 0.9.

Table (4.6) The effect of o
(Where, NoPasss=3; Qow = 3; Quignh = 30; Beta= 1.5; 7=0.75; BlkLen=4)

Image o MAE MSE PSNR CR BitRate
0.1 3.99 28.64 | 3356 | 14.694 | 1.633
0.2 4.16 30.88 | 33.23 | 18.387 | 1.305
0.3 4.42 34.66 | 32.73 | 22.837 | 1.051
0.4 4.77 40.11 | 32.10 | 26.800 | 0.896
Lena 0.5 5.15 46.41 | 31.46 | 30.468 | 0.788
0.6 5.56 5445 | 30.77 | 33.793 | 0.710
0.7 6.07 65.12 | 29.99 | 36.275 | 0.662
0.8 6.55 76.06 | 29.32 | 38.994 | 0.615
0.9 6.99 87.62 | 28.70 | 41.071 | 0.584
0.1 4.35 36.15 | 32,55 | 15.083 | 1.591
0.2 4.53 38.76 | 32.25 | 19.055 | 1.260
0.3 4.83 42,97 | 31.80 | 23.977 | 1.001
0.4 5.26 49.74 | 31.16 | 29.011 | 0.827
Baboon | 0.5 5.75 58.08 | 30.49 | 33.927 | 0.707
0.6 6.37 70.32 | 29.66 | 38.718 | 0.620
0.7 7.03 84.17 | 28.88 | 43.574 | 0.551
0.8 7.71 | 100.65 | 28.10 | 48.509 | 0.495
0.9 8.46 | 121.29 | 27.29 | 52.809 | 0.454
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Tests and ResultS

o =0.1, CR=14.69
MSE = 28.64
PSNR = 33.56
BitRate=1.633

a =0.3,CR=22.84

MSE = 34.66
PSNR =32.73
BitRate=1.051

O =0.5, CR=30.47
MSE = 46.41
PSNR = 31.46
BitRate=0.788

a =0.6,CR=33.79

MSE = 54.45
PSNR = 30.77
BitRate=0.710

O =0.8, CR=38.99
MSE = 76.06
PSNR =29.32
BitRate=0.615

Figure (4.10) Samples of Lena reconstructed image for different values of o
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Tests and ResultS

0. =0.1, CR=15.08
MSE = 36.15
PSNR = 32.55
BitRate=1.591

a=0.5 CR=33.93
MSE = 58.08
PSNR = 30.49
BitRate=0.707

0. =0.3, CR=23.98
MSE = 42.97
PSNR = 31.80
BitRate=1.001

0. =0.6,CR=38.72
MSE = 70.32
PSNR = 29.66
BitRate=0.620

o =0.8,CR=4851
MSE = 100.65
PSNR =28.10
BitRate=0.495

Figure (4.11) Samples of Baboon reconstructed image for different values of

(0]
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Chapter Four Teots and BeoulsS

6. Table (4.7) shows the effects of the quantization parameter () on

the compression performance. Figures (4.12), (4.13) show some of

reconstructed images for different values of [ -coefficient (i.e.,

from 1.1t0 1.9)

Table (4.7) The effect of 3
(Where, NoPass=3; Qiow = 3; Quigh = 30; a0 = 0.6; ¥=0.75; BlkLen=4)

Image B MAE MSE PSNR CR BitRate

1.1 5.95 54.07 30.80 32.497 0.739
1.3 5.56 54.27 30.78 33.306 0.721
1.5 5.56 54.45 30.77 33.793 0.710
1.7 5.57 54.67 30.75 34.306 0.700

Lena | — 9 T 558 | 5485 | 30.74 | 34706 | 0692
25 | 550 | 5521 | 30.71 | 35431 | 0677

35 | 560 | 5559 | 30.68 | 35858 | 0.669

45 | 560 | 5570 | 30.67 | 36015 | 0.666

11 | 637 | 7032 | 2966 | 38.657 | 0.621

13 | 637 | 7032 | 2966 | 38.702 | 0.620

15 | 637 | 7032 | 2966 | 38.718 | 0.620

saboon | L7 | 637 | 70.33 | 29.66 | 38.725 | 0.620

1.9 6.37 70.34 29.66 | 38.725 0.620
2.5 6.37 70.34 29.66 | 38.771 0.619
3.5 6.37 70.34 29.66 | 38.771 0.619
4.5 6.37 70.34 29.66 38.771 0.619
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Tests and ResultS

B=1.1,CcrR=3250

MSE = 54.07
PSNR = 30.80
BitRate=0.739

B=1.5 CrR=33.79

MSE = 54.45
PSNR = 30.77
BitRate=0.710

=13 CR=3331

MSE = 54.27
PSNR = 30.78
BitRate=0.721

B=17,CR=3431

MSE = 54.67
PSNR = 30.75
BitRate=0.700

B=19cr=3471

MSE = 54.86
PSNR = 30.74
BitRate=0.692

Figure (4.12) Samples of Lena reconstructed images for different values of 3

coefficient
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Tests and ResultS

B=1.1,CR=3866

MSE = 70.32
PSNR = 29.66
BitRate=0.621

=15 CrR=3872
MSE = 70.32
PSNR = 29.66
BitRate=0.620

=13 CrR=3870

MSE = 70.32
PSNR = 29.66
BitRate=0.620

B=1.7 CcrR=3873

MSE = 70.33
PSNR = 29.66
BitRate=0.620

B=19, CR=3873

MSE =70.34
PSNR = 29.66
BitRate=0.620

Figure (4.13) Samples of Baboon reconstructed images for different values of

B coefficient
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Chapter Four

Tests and ResultS

7. Table (4.8) shows the effects of the block length (BlkLen) on
compression performance parameters. Figures (4.14), (4.15) show

some of the reconstructed images, where BlkLen was varied from 2

to 8 pixels.

Table (4.8) The effect of block length

(Where, NoPass=3; Qow = 3; Qnigh = 30; .= 0.6; 7=0.75; [3=1.5)

Image | BlkLen | MAE | MSE | PSNR CR BitRate
2 539 | 51.48 | 31.01 | 33.155 | 0.724

Lena 4 5.56 | 54.45 | 30.77 | 33.793 | 0.710

8 6.17 65.52 | 29.97 | 33.927 | 0.707

2 6.23 67.53 | 29.84 | 37.860 | 0.634

Baboon 4 6.37 70.32 | 29.66 | 38.718 | 0.620
8 6.98 | 83.39 | 28.92 | 39.010 | 0.615

BlkLen=2, CR = 33.16
MSE =51.48
PSNR = 31.01
BitRate=0.724

BlkLen=4, CR = 33.79
MSE = 54.45
PSNR = 30.77
BitRate=0.710

BlkLen=8, CR = 33.93
MSE = 65.52
PSNR = 29.97
BitRate=0.707

Figure (4.14) Samples of Lena reconstructed images for different block length

values
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BlkLen=2, CR = 37.86
MSE = 67.53

BlkLen=4, CR =38.72
MSE = 70.32

BlkLen=8, CR =39.01
MSE = 83.39

PSNR =29.84
BitRate=0.634

PSNR = 29.66
BitRate=0.620

PSNR = 28.92
BitRate=0.615

Figure (4.15) Samples of Baboon reconstructed images for different Block
Length values

8. Table (4.9) shows the effects of increasing the quantization step
(Qoc) parameter of the DC-coefficient on the compression
performance. Figures (4.16), (4.17) show some of reconstructed
Images, where Qp. was varied from 1 to 8.

Table (4.9) The effect of Qp. (Where, NoPass=3; Qiow = 3; Quigh = 30; oL = 0.6;
BlkLen =4; B =1.5; 7=0.75)

Image Qpc MAE MSE PSNR CR BitRate
1 5.55 54.25 30.79 33.648 0.713
2 5.55 54.29 30.78 33.718 0.712
3 5.56 54.43 30.77 33.752 0.711
Lena 4 5.56 54.45 30.77 33.793 0.710
5 5.58 54.68 30.75 33.810 0.710
6 5.58 54.86 30.74 33.816 0.710
7 5.61 55.28 30.70 33.851 0.709
8 5.63 55.58 | 30.68 | 33.863 | 0.709
1 6.36 70.00 | 29.68 | 38.520 | 0.623
2 6.36 69.99 | 29.68 | 38.619 | 0.621
3 6.37 70.19 29.67 38.649 0.621
Baboon 4 6.37 70.32 29.66 38.718 0.620
5 6.37 70.24 29.67 38.733 0.620
6 6.39 70.59 | 29.64 | 38.748 | 0.619
7 6.39 70.72 29.64 | 38.786 0.619
8 6.42 71.21 | 29.61 | 38.809 | 0.618
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Tests and ResultS

Qpc. =1, CR =33.65
MSE = 54.25
PSNR = 30.79
BitRate=0.713

Qp. =3,CR=33.75
MSE = 54.43
PSNR = 30.77
BitRate=0.711

Qpc =4, CR=33.79
MSE = 54.45
PSNR = 30.77
BitRate=0.710

Qb = 6, CR =33.82
MSE = 54.86
PSNR = 30.74
BitRate=0.710

Qbc =8, CR =33.86
MSE = 55.58
PSNR = 30.68
BitRate=0.709

Figure (4.16) Samples of Lena reconstructed images for different values

of Qpc
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Tests and ResultS

Qo. =1, CR=138.52
MSE = 70.00
PSNR = 29.68
BitRate=0.623

Qpbc = 3, CR =38.65
MSE = 70.19
PSNR = 29.67
BitRate=0.621

Qp. =4,CR =38.72
MSE =70.32
PSNR = 29.66
BitRate=0.620

Qp:.=6,CR=38.75
MSE = 70.59
PSNR = 29.64
BitRate=0.619

Qp. =8,CR=38.81
MSE =71.21
PSNR = 29.61
BitRate=0.618

Figure (4.17) Samples of Baboon reconstructed images for different values

of Qpc
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Chapter Four Teots and BeoulsS

4.4 Tables Notes

1.

The increase in the number of wavelet passes (level) causes increase

in compression ratio (CR), and decrease in quality.

. The increase in quantization step Q). causes decrease in the image

quality and increase in CR, and vise versa.

. The increase in quantization parameter y causes decrease in the

image quality and increase in CR, and vise versa.
The increase in quality factors o, B causes decrease in image

quality and increase in CR, and vise versa

. The increase in Low-Low block size causes increase in CR and

decrease in image quality.

. The increase in quantization step Qpc causes increase in CR, and

decrease in image quality.

. The increase in quantization parameter Qu;gn Causes increase in CR,

and decrease in image quality.
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Chapter Five
Conclusions and Future Works

5.1 Conclusions

From the test results presented in previous chapter, some remarks
related to the behavior and performance of the investigated image coding
scheme was stimulated. Among these remarks are the following:

1. The quantization parameters mainly affect MSE, PSNR, BitRate,
and CR. It was found that the suitable quantization parameters
values are (Qiow=3, Qmuigh=30, a=0.6, B=1.5, Qpc= 4, BlkLen=4)
they led to good PSNR (i.e., low distortion) and relatively high CR.
For these values of quantization parameters, the value of PSNR is
30.77 dB, CR is 33.793 for Lena image, while they are
PSNR=29.66 dB, CR=38.718 for Baboon Image.

2. The optimal values of the quantization parameters decrease with the
increase of number of wavelet passes.

3. The effect of DCT on CR decreases with the increase of wavelet
passes.

4. The time required to compress the image by this coding scheme is
(0.7) second and decoding is (0.655) second.



Cheapter Five Conclusions and Futune Werks

5.2 Future Works
The following suggestions are introduced for future work:

1. Utilize Fractal Method with wavelet transform, such that it is applied
on LH, HL, HH subbands.

2. Utilize Quadree coding instead of RLE to compress the image.

3. Using another types of entropy coding (like, LZW coding) instead of
shift coding.

4. The functionality of the proposed image compression could be
extended from still image to Video. With growing market of

multimedia applications this subject needs greater considerations.
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