ABSTRACT

Computational program "Crystal-2" in Visual Ba6i© was designed
and applied to identify the specification for threrystal structures includes
the lattice parameters (a, b, c), the axial andtesp, y), the Filling
Factor(FF) foe CdS, the Average Grain Size (AG$)XIdS, and the Elastic
Strain €) for CdS and CdTe.

This program will give us a complete descriptionavystal structure
for three crystal structures material by insertanglata which include the
values of Miller indices (hkl), the diffracted arg|®) from ASTM data for
cadmium sulfide, beryllium and compare the caladatalues with the
values of ASTM data used material.

This program is includes many special calculaidor a certain
material such as cadmium sulfide that used to ex@the cubic system and
calculated lattice parameters were found to be5#82 A, b~ 5.83 A and
c~ 5.81 A and there is a drift error aboutDr 4.365314x10° A when is
compared with the published values, and to examitfgorhombic system
by using ASTM data for cadmium sulfide as exampke ¢alculated values
were found to be @4.169 A, b~ 2.791 A and & 5.413 A, with a drift error
about D~78.2801410™ A, also the tetragonal system is also examined for
beryllium and the calculated values were founde@b 1.36 A, b~ 1.36 A,
and c= 3.58 A with a drift error D= 5.743535x 10 A, and the average
grain size is also calculated for CdS by using $loherrer's formula ,the
filling factor is determined for Cadmium Sulfidendathe elastic strain by
using the Hall-Williamson method for CdS and CdTe.
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Appendix -1-
A computational program to determine some of crystal
structur e specification.

Public TTH(100) As Single
Public H(100) As Single
Public K(100) As Single
Public L(100) As Single
Public TH(100) As Single
Public Alpha(100) As Single
Public Beta(100) As Single
Public Gamma(100) As Single
Public A1(100, 101) As Single
Public X(100) As Single
Public Delta(100) As Single
Public AL(100) As Single
Public BE(100) As Single
Public GA(100) As Single
Public DIS As Single

Public w, y, r As Single

Public a, b, c As Long

» Calculations of the lattice parameters (a, b, c):
Private Sub Command1_Click()
Textl.Text = 30
Text2.Text = 0.00001
Text3.Text = 1.7889
N = Val(Textl.Text)

d = Val(Text2.Text)

lemda = Val(Text3.Text)

Pl =4* Atn(1)

M=4

TTH(1) = 23.19: H(1) = 1: K(1) = 1: L(1)

TTH(2) = 25.26: H(2) = 0: K(2) = 2: L(2)

TTH(3) =27.3: HB) =1: K@) =1: L(3) =

TTH(4) = 28.85: H(4) = 0: K(4) = 0: L(4)

TTH(5) = 29.18: H(5) = 0: K(5) = 2: L(5)
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TTH(6) = 37.28: H(6) = 1: K(6) = 1: L(6
TTH(7) = 38.75: H(7) = 0: K(7) = 2: L(7
TTH(8) = 39.35: H(8) = 2: K(8) = 0: L(8
TTH(9) = 43.38: H(9) = 1: K(9) = 3: L(9
TTH(10) = 47.42: H(10) = 2: K(10) = 2: L(10) =0
TTH(11) = 49.56: H(11) = 2: K(11) = 0: L(11) = 2
TTH(12) = 49.56: H(12) = 2: K(12) = 2: L(12) = 1
TTH(13) = 51.33: H(13) = 0: K(13) = 2: L(13) = 3
TTH(14) = 52.03: H(14) = 0: K(14) = 4: L(14) =0
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Forl=1ToN

TH() =TTH()/ 2

Next |

Forl=1ToN

TH1 = TH(l) * PI/ 180

ALpha(l) = (lemda * H(I)) ~ 2

Beta(l) = (lemda * K(I)) * 2

Gamma(l) = (lemda * L(I)) * 2

Delta(l) = (0.5 * Cos(TH1) * 2) * ((1 / Sin(TH1)) 1/ TH1
Next |
S11=0:S12=0:S13=0:S14=0:S15=0
S21=0:5S22=0:S23=0:S24=0:S25=0
S31=0:S32=0:S33=0:S34=0:S35=0
S41=0:542=0:S43=0:S44=0:S45=0
Forl=1ToN

T =TH(I) *P1/180

z=Sin(T) "2

S11 =S11 + AlLpha(l)~ 2

S12 = S12 + ALpha(l) * Beta(l)

S13 = S13 + ALpha(l) * Gamma(l)

S14 = S14 + ALpha(l) * Delta(l)

S15 =S15 + AlLpha(l) * z

S22 = S22 + Beta(l) * 2

S23 = S23 + Gamma(l) * Beta(l)

S24 = S24 + Delta(l) * Beta(l)

S25 = S25 + z * Beta(l)

S33 =S33 + Gamma(l) * 2

S34 = S34 + Gamma(l) * Delta(l)

S35 = S35 + Gamma(l) * z

S44 = S44 + Delta(l) ~ 2

S45 = S45 + z * Delta(l)

Next |

'Generate Matrix of size M AND M+1 COLUMNS

AL(1, 1) = S11: A1(1, 2) = S12: Al(1, 3) = S13: Al4) = S14: A1(1, 5) = S15
AL(2, 1) = S12: A1(2, 2) = S22: A1(2, 3) = S23: &14) = S14: A1(2, 5) = S25
A1(3, 1) = S13: A1(3, 2) = S23: A1(3, 3) = S33: B14) = S34: A1(3, 5) = S35
AL(4, 1) = S14: Al(4, 2) = S24: Al(4, 3) = S34: Al4) = S44: A1(4, 5) = S45

ForK1I=1ToM-1
ForI=K1+1ToM

A2 = Al(l, K1) / A1(K1, K1)
Forj=1ToM+1

AL(l, j) = AL(l,j) - A2* AL(KL,))
Next |

Next |



Next K1

ForiI=1To M
Forj=1ToM+1

If Abs(ALl(l, j)) <d Then AL(l,j)=0
Next j: Next |

X(M) = A1(M, M + 1) / AL(M, M)
ForK1=2To M

I=M+1-K1

s=0

Forj=1+1To M

s =s+ AL(l, j) * X()

Next |

X() = (A1(I, M + 1) - s) / A1(l, 1)
Next K1

A0 = X(1)

BO = X(2)

C0o=X(3)

do = X(4)
AP=1/(2*A0"0.5)
BP=1/(2*B0~0.5)
cp=1/(2*C0"0.5)
Text7.Text = Round(AP, 2)
Text8.Text = Round(BP, 2)
Text9.Text = Round(cp, 2)
Text4.Text = AP

Text5.Text = BP

Text6.Text = cp

a = Int(AP)
b = Int(BP)
¢ = Int(cp)

Text7.Text=a
Text8.Text=b
Text9.Text=c
Textl0.Text = dO
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End Sub

Private Sub Command2_Click()
Form3.Show
End Sub
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Private Sub Command3_Click()
End
End Sub

Private Sub Command4_Click()
Form1.Show
End Sub

Private Sub Textl_Click()
Dim H1 As Integer
Textl.Text = H1

End Sub

Private Sub Text2_Click()
Dim d As Integer
Text2.Text=d

End Sub

Private Sub Text3_Click()
Dim w1 As Integer
Text3.Text =wl

End Sub

» Calculations of the axial angles, @, v):
Private Sub Commandl1_Click()
Pl =4*Atn(1)
M=4
N = Val(Form2.Text1.Text)
a = Val(Form2.Text7.Text)
b = Val(Form2.Text8.Text)
¢ = Val(Form2.Text9.Text)
Forl=1ToN
TH1 = TH(I) * (P1/ 180)
H1=1:K1=3:L1=3
HA=Hl/a:KB=K1l/b:LC=L1/c
HKL=(HA"2+KB”"2+LC"2)"(0.5)
DIS =1 /HKL
E1l = DIS * (HA)
E2=(1-E172)705
E3=E2/E1l



AL(l) = Atn(E3)
H1=1:K1=3:L1=3
HA=Hl/aKB=Kl/b:LC=L1l/c
HKL = (HA”2+ KB A2+ LC"2)"(0.5)
DIS = 1/ (HKL)

F1 = DIS * (KB)

F2=(1-F172)"05

F3=F2/F1

BE(I) = Atn(F3)

H1=1:K1=3:L1=3
HA=Hl/aKB=Kl/b:LC=L1l/c
HKL = (HA”2+ KB A2+ LC"2)"(0.5)
DIS = 1/ (HKL)

V1=DIS *LC

V2 =(1-V172)"(0.5)

V3=V2/V1

GA(I) = Atn(V3)

RD =180/ P!

w = (AL(I) * 2) * RD
y = (BE(I) * 2) * RD
r=(GA(I) * 2) * RD

Form3.Textl.Text = (w)
Form3.Text2.Text = (y)
Form3.Text3.Text = (r)

Next |

If (a <> b) And (b <> c) And (w <>y) And (w <>And (y <>r) Then reply =
MsgBox(" Triclinic system ", voOKCancel, 4dt")

If reply = vbOK Then Form8.Show

If (a <> b) And (a <> c) And (b <> c) And (w = 98nd (w = y) And (r <> 90) Then
MsgBox (" Monoclinic system "), , "result"

If (@ <> b) And (a <> c) And (b <>c) And (w = y)m8l (w =r) Then MsgBox ("

orthorhombic system "), , "result"
If (@ =b) And (a<>c) And (w =y) And (w =r) TheMsgBox (" Tetragonal system
", , "result”

If (@ =b) And (a=c) And (w =y) And (w =r) Theaply = MsgBox(" cubic system
", vbOKCancel, " Result ")

If reply = vbOK Then Form7.Show

If (@ =b) And (a <>c) And (w =y) And (w = 90) Anr = 120) Then MsgBox
("Hexagonal system"), , "result"

If (a=b) And (a =c) And (w <> 90) And (y <> 98nd (r <> 90) And (w =r =y <> 90)
Then reply = MsgBox(" rhombohedral system’, voOKCancel, " Result ")
‘MsgBox ("9999999999"”), , "result”



End Sub

Private Sub Command2_Click()
Form4.Show
End Sub

Private Sub Command3_Click()
End
End Sub

Private Sub Commandl_Click()
« Calculations of the average grain size (AGS):
Imda = Val(Text13.Text)
Q = Val(Text14.Text)
band = Val(Text15.Text)
AGS = (0.9 *Imda / (band * Cos(Q)))
Textl.Text = AGS
'MsgBox (AGS), , "The Av. grain size ="
End Sub

Private Sub Command2_Click()
Form5.Show
End Sub

Private Sub Command3_Click()
End
End Sub

Private Sub Command4_Click()
Form3.Show

End Sub

Private Sub Text13_Click()
Textl3.Text = H2

End Sub

Private Sub Text14 Click()
Textl4.Text = n3

End Sub

Private Sub Text15 Click()

Textl5.Text = n4
End Sub



Private Sub Command1_Click()

« Calculations of the filling factor (FF) and the stla strain £):
Pl =4*Atn(1)
R1 = Val(Text16.Text)
R2 = Val(Text17.Text)
nl = Val(Text18.Text)
n2 = Val(Text19.Text)
TV=a*b*c
vol=(4/3)*Pl*((R1)"~3)*nl
vo2=(4/3)*Pl*((R2)~3)*n2
FF = ((vol +vo2)/ TV) * 100
'MsgBox (FF), , "The filling factor ="
Textl.Text = FF

End Sub

Private Sub Command2_Click()
Form6.Show
End Sub

Private Sub Command3_Click()
End
End Sub

Private Sub Command4_Click()
Form4.Show
End Sub

Private Sub Text16_Click()
Text1l6.Text = NS
End Sub

Private Sub Text17_Click()
Textl7.Text = n6
End Sub

Private Sub Text18 Click()
Text1l8.Text = n7
End Sub

Private Sub Text19_ Click()

Textl9.Text = n8

End SubPrivate Sub Command1_Click()
Form9.Show

End Sub



Private Sub Command2_Click()
End
End Sub

Private Sub Command3_Click()
Form5.Show

End Sub

Private Sub Commandl_Click()
Form3.Show

End Sub

Private Sub Commandl_Click()
End

End Sub



4.1 Conclusion:

This chapter is demonstrating the main conclusaiitained from the
results which can be extracted from designing aprdar program that
determine the crystal structure. We improved thaymm from its original
formula and we conclude the following statements:

1. The accurate determination of the lattice pararadterb, c) by
using the least square method and fitting the esloy the
fitting least squares method, and the calculatibrthe axial
angles ¢, B, y) by using equation 2.8 axial angles and by
demanding the (hkl) for a certain plane.

2. The average grain size (AGS) by demanding the batdwand
the diffracted angle6) for the CdS X-ray chart by using
Scherrer's formula as in equation 2.25.

3. The filling factor (FF) by taking into account tmeimber of
atoms per unit cell and the radius atom those sbrtbie
material for CdS using equation 2.26 which is ia BCC.

4. The elastic straingf from Hall-Williamson method AS IN

EQUATION 2.29 by plot a graph betweenL’Z:ose)

2siné@
A
chart the peak are (100) and (002) and for CdTeayX-r

diffraction chart the peaks are (111) and (220).

and(

) for the most intense peak for CdS X-ray diffranti

4.2 Futurework:

1. Determine the lattice types for other crystal syste
2. Determine the structure factor.

43



1.1 Introduction:

A crystal is a solid materials which composed oftaia atoms
those are arranged in an ordering repetitive aaray posses a short and
along range order the general features of solicenads$ classified into
amorphous and crystalline the last one is diviesed polycrystalline and
single crystal [1].

1. Amorphous: are solid materials which have irregaaangement
of atoms over relatively large atomic distance, amdorphous
(meaning literally without form). Therefore amorpisomaterials
are characterized by atomic or molecular structthhat are
relativity complex and become ordered only with sodifficulty.
The producing of amorphous is very simple througffeidnt
technique such as different deposition techniqyeaally on the
substance has amorphously state. The orderingonpdrous solids
is limited to a few molecular distances represeigdhort range
order.

2. Crystalline
A: Single crystal: in which the arrangement of asoare
perfectly repeated or extend throughout the entirel
specimen without interruption, in other words, bspes
along range order and all unit cells interlockna same way
and have the same orientation, a photograph ofalesiagle

crystal is shown in figure 1.1.[1]



Fig.1.1 Explain a photograph of sevemagle crystal of fluorite CaH1].

B: Polycrystallines: which are composed of a caitat of
many different crystalline on it cell. Various sé&gin the
solidification of a polycrystalline are representedfigure
1.2 [1].

Initially, small crystals form at various positiotieese have random
crystallographic orientations so it contains a shad long range order in
both crystalline and amorphous solids forms dependshe ease with
which a random atomic structure can transform toralered state during
solidification. The above crystalline types ardidguished by the size of
ordered regions with the materials.

In polycrystalline, the solid is made-up of grawsich are highly
ordered crystalline regions of irregular size oréion. Single crystal has
long-range order, in which the special atomic agement extends
throughout the entire material. Many important @ies of materials are
found to depend on the structure of crystals [1fje Tproducing of
polycrystalline phase is simpler than the singlgstal and it can be
noticed in the powder technology and thin films andh alloys, whereas
its properties is better than the amorphous statasbnot efficient with

respect to single crystal, that is return to thergr and grain boundaries



fa) (h)

ic) (d)

Fig. 1.2 shows a schematic diagram of the stageghén solidification of a
polycrystalline materials.(a) small crystallite teai.(b) growth of the crystallites. (c)
Up on completion of solidification, grains havingegular shapes have formed, (d)

the grain structure as it would appear under therasacopic as dark lines [1]



1.2 Crystal structure of cadmium sulfide:

Cadmium sulfide (CdS) is an important II-VI compdun
semiconductor with an energy band gap of 2.42 &d,@n be used for
fabrication of optoelectronic devices such as laagga solar cells, laser
diodes, and optical switches, Group V-VI compouhnadge widely been
studied because of their excellent properties lgte®toconductivity,
photosensitivity and thermoelectric power.

The absorption coefficient of the order of 104 @51cm-1 the low
intensity and broad diffraction peak shows thatakaleposited thin films
are either nanocrystalline and/or amorphous in reatfthe diamond
structure may be viewed as two fcc structures dega from each other
by one-quarter of a body diamond. The cubic cadnsuitfide structure
result when Cd atoms are placed on one fcc lattime S atoms on the

other fcc lattice, as in figure 1.3 the coordinates Cd atoms

are 00Q 011;101;110; the coordinates of the S atoms are
22'2 222
111 133 313 331

___! ___! ___! T [2]'
444 444" 444" 444



o Cd

Fig.1.3 Crystal structure of cubic @mam Sulfide [2]

1.3 Crystal structure of cadmium telluride:

Polycrystalline thin-film CdTe has applications dtee its near-
optimum band gap, high absorption coefficient, egldtive ease of film
formation. CdTe deposited by a variety of techngjaeer a wide range
of deposition temperatures, bonding in the lI-vVddi-V compound
semiconductors such as CdiRrere is no clear evidence for the valence
electron distribution in the valenadectrons in CdTe represents the

localized nature of the valence electron.



Experimental observations for the localized va¢ealectrons in CdTe is
not easy because of the difficulties in growinghhguality single phase
single crystals because of its large X-ray absonpeffects and large
numbers of core electrons relative to only a fevenee electrons. CdTe
single crystal growth has mostly been focused ernptieparation of bulk

crystals of appreciable size and on epitaxial §eldowever control of

the electrical properties of this material has yeit been achieved as in
figure 1.4 [3].

e Te
o Cd

Fig.1.4 crystal structurecatimium telluride CdTe [3].



1.4 Crystal structure of beryllium:

Beryllium is a unique metal with unusual properties
technological and scientific importance. Its phgéijgroperties are useful
to the nuclear power industry (as a neutron mudtiplberyllium exhibits
an unusually high Debye temperature that leads targe specific
conductance and has thus been identified as a tbgpéuctor” with
favorable properties for efficient transmissionedéctrical power. This
combination of unique properties and unusual befrasontribute to the
characterization of beryllium as an “anomalous” aheGcientifically
beryllium has been the subject of a great deaht#rest because of its
simple atomic configuration and anomalous behaviaryllium have

hcp, bec, and liquid phase as in figure 1.5 [4].

liqui Be
2000 - C]UId

3
o B (bcc)
E 1000-

1 a (hep)

0 I | I ]
0 20 40
Pressure (GPa)

Fig.1.5 Phase diagram of beryllium ltlep, bcc, and liquid phase lines [4].



Fig.1.6 Phase diagram of bagilithe a) hcp, b) bcc [4]



1.5 Laue's Diffraction Law:

Laue's equations for diffraction are deal with td#fraction
between atoms, and it is equivalent to Bragg'sftawdiffraction. There

are three Von Laue equations for a crystal with gatameters (a, b, c),

a(cosa —cosa,) =hA
b(cosB —cosB,) = ki (1.2)

c(cosy —cosy,) =14

Wherea _, B., andy, are the angles of the incident ray, ang, andy
are the angles of the reflected ray. &qscoss,,cosy, are the direction
cosines or orthogonal of the incident ray andacososs, cosy are the

direction cosines or orthogonal of the reflecteglirathe crystal axis So,

we must also satisfy

cos a, +cos B +cosy, =1
(1.2)
cos’ a +cos B+cos y=1

Using that the angle between the incident andatefteray is (R)

2¢0s26 = cosa cosa, + COSB oS, + Cosycosy, (1.3)

By squaring equation (1.3) we get



h?2?

2

=CoS a —2c0oSacosa, +cos a,

a
k2A?
7 =cos [ -2cosBcosp. +cos S, (1.4)
2132
= cosy - 2cosycosy, +cos y,
C
So that
h2 k2 |2
{¥ o +C_2}|2 =1-2(cosacosa, +cosfcospB, +cosycosy,) +1 (1.5)
h? k% |2 2 _ 1.6
¥+F+c_2/] = 2(1-c0s26) (1.6)
h2 k2 |2 .
{¥+F+C—2}AZ = 4sin* @ (1.7)

Taking into account the square root of the equaiib.7) one can

conclude the following equation

2 2
A{h_+k_+c—}2 = 2sing (1.8)

Which is the same as Bragg equation mentioned tfer drder of
diffraction by considering that for tetragonal asrthorhombic structure



dhkl = (19)
a? b* ¢
So, only at a certain location will be constructimterference — get a set
of bright spots in the diffraction pattern and, twlbts of patience and

effort, can use them to deduce the crystal laiingcture [5].



3.1 Introduction:

In this chapter the efficiency of this programswexamined by the
application for many materials data and discusesrésults conclude in
comparable with the standard values investigatgutemious references. For
some materials the most important role containsstieeessful of the main
program construction represented by the calculaifdhe lattice parameters
(a, b, c), and the axial angles between thenp( y), those parameters give
more details about the identification of the crysgstem. In order to
develop this program from the last program appireg@revious references
[6]. The values of filling factor, the average graize and the elastic strain
from a certain input data concluded from X-ray thapplied by

diffractometer apparatus were calculated for cenmaaterials.

3.2 The ldentification of crystal structure:

When the beam of X-ray with wavelength)(incident on a surface of
a certain material whether if it is thin film or lkumaterials, there are many
diffracted angles (2), applied as a function of different scatteringgirsity
which represent the planes contains in the crgstatture defined by Miller
indices. Through the intensity the diffraction agy(29) and the dependent
Miller indices the lattice parameters of the cri/staucture can be calculated
based physically on the concept of Bragg's law. d&a applied for (CdS)
thin film as shown in table 3.1 [24]. The prograroguce the following data
(a, b, ¢) and 4,B,y) and defining the type of crystal structure in
comparable with the data obtained from the ASTMaddueet labeled by the
card number 10-0454 [24].
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The proof of the successful our program represebtethe following
points:
1) The coincidence of the calculated values (a,b,dh viheoretical
values.
2) The minimization of the drift error (D) that emp the accuracy of
calculated lattice constant with the theoreticdliga.

3) The investigation of angles between axis, £, y), those emplized

the type crystal structure mentioned above.

Table 3.1 Indicates the ASTM data of CdS represebyecard number 10-0454 [24].

L =1.5418A

a=b=c = 5.8

a=p=y=90°

2° intensity| hkl | 26° intensity| hkl

26.506 100 | 111 |81.004| 30 422
30.807 40 20086.905 30 511
43.960 80 22097.060f 5 440
52.132 60 311102.89] 20 531
54.581 10 22211399 5 620
64.029 20 400 120.54) 5 533
70.357 30 331 141.86] 10 711
72.802 10 420
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The calculated values of CdS are a=548% = 5.83A, ¢ = 5.81A, and a
drift error D= 4.365314x10°°, and the calculated angles ae=3 =y =

90°), for a cubic system.

The expert on another type of Bravais lattice sashorthorhombic
system was applied through the data that listethlme 3.2 for cadmium
sulfide (CdS) those were mentioned in the ASTM-cauwiber 40-1049
[25]. The operating of the program exhibited thelculated lattice
parameters as follow: a=4.169 b=2.791A, c=5.413A, with a drift error
about D=8.2801410*A, and the angles between axis,f3,y), are

defined asa = 3=y=90°, for orthorhombic system.
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Table 3.2 includes the ASTM data of CdS represebyechrd number 40-1049 [25].

A =1.54056A

a=3.711A

b =2.201A

c=6.719A

B° intensity]  hkl 2° intensity hkl

24.807 62 100| 77.855 2 204
26.507 91 002 | 80.237 9 300
28.182 100 101 | 83.252 14 213
36.620 29 102 | 86.308 7 302
43.681 48 110 | 91.495 8 205
47.839 50 103 | 96.162 3 220
50.882 8 200 | 102.26 5 222
51.824 31 112 | 102.87 6 116
52.796 15 201 | 104.52 2 304
54.584 5 004| 107.64 9 215
58.278 3 202| 112.33 4 107
60.839 3 104| 115.85% 7 313
66.772 15 203| 118.4% 3 400
69.264 5 210| 120.16 2 401
70.862 8 211 126.28 2 216
72.382 4 114| 135.48 4 403
75.478 9 105| 141.21 4 321
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The Tetragonal phase of Beryllium (Be) also useduoh a way to
prove the successful of our program through theeddent of ASTM-Card
number 01-1291[49], for Beryllium (Be) listed irbta 3.3 [26]. It was clear
that the obtained results were a=186b=1.36A, and c= 3.584, with
a drift error D=+5.74353%10" A.

Table 3.3 include the ASTM data Of Beryllium (Bedpresented by card number
01-1291 [26].

(\)=1.54056A

a=b=2.2854,

c=3.584A

D° intensity hkl

46.034 20 100
50.976 14 002
52.879 100 101
70.783 12 102
85.015 12 110
98.082 12 103
103.62 2 200
106.71 8 112

The presence of difference between the calculatddes and the
ASTM values and that because the Be is hexagonadepland also the
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calculated values of the angles,(3,y) are not equaling 90° because the

equation that we used to calculated the axial ancg@ only be used for the

cubic, tetragonal and the orthorhombic system andhfat we have a large

value of the drift error in the calculated valudable 3.4 includes a

comparison between the crystal-2 calculated vabfiegrtain material with

their ASTM data values such &a,,S,,Ca,,)TiO, [27 ], Ag,Se, [28 ] and

(Ce,Zn,, 1O [29 ].

Table 3.4 includes the crystal-2 and the ASTM value

sample Crystal-2 ASTM data
a =3.90 A a=3.910 A
(Ba,,S,,Ca,,)TiO, | b =3.93 A b=3.910A
c=3.93A c=3.910A
D = +4.901616x10° A a=p=y=90°
a=p=y=90° Cubic system.
Cubic system.
a =10.438 A a =10.388 A
b=12.989 A b=12.981A
Ag,Se, c=6.083 A c = 6.0499 A
D = +1.402066x10° A a=p=y=90°
a=p=y=90° Orthorhombic system.
Orthorhombic system.
(Ce,Zn,, 10QU a =8.924 A a =8.930 A
b =8.920 A b =8.930 A
c=21.377 A c=21.36 A
D = +4.846672x107 A a=p=y=90°
a=pf=y=90° Tetragonal system.

Tetragonal system.
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3.3 Filling factor (FF):

The investigation of the above formula dependsgeit the number
of atoms per unit cell, the lattice parameterd(a;) and the ionic radius for
the used sample such as cadmium sulfide (CdS)alocellated value of the
filling factor of (CdS) is about 60.22% that medms CdS is BCC where the
value of the filling factor about 68% that meansiveee error about 7.78 %

between the calculated value and the theoretidakva

3.4 Averagegrain size (AGYS):

It was clear from chapter one, that the polycryistalsamples, such
as thin film or powder, specified by a differentapks of grain size
distributed randomly in the formation of the sampieder study. It is
necessary to calculate the average value of graelmsed on Scherrer's
formula represented by equation 2.25, Cadmium &uI{CdS) is used to
calculate the average grain size by take in to @uicthe most probable
intensity of a certain peak mentioned by the angiiffraction (), and the
calculated value of AGS for the CdS is about AG38.24A, at diffraction
angle6 =13.2°, and the band width was abqgt, = 0.0087 rad., with
A = 1.5405A. by compared the calculated value of the AGS ® @ith the
theoretical value which in range (85 — 2&}6[30].

3.5 Elastic Strain:

There are many physical parameters used to study th
mechanical properties of solid materials, one ekéhparameters defined by

elastic strain £). The theoretical formula that was dependent inresearch
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called Hall-Williamson method are used as mentionegquation 2.29 was
used to determine elastic strain for CdS and CtbreCdS, the most intense
reflections were (002) and (100) and for CdTe thesthintense reflections

were (111) and (220) so by plot a graph betweghz—,jose) and(zs/i‘ng)

define the slope which is equal to)( for CdS the value of the elastic strain
Is equal tee = 1.0621 as shown in figure 3.1, and for CdTe dlastic strain
is £ =1.6277 .

Table 3.4 includes the information of tkel§) X-ray diffraction chart [22].

B,,, cosd 2siné (hk)
) =)
0.0044 0.278 111
0.0054 0.296 002

Table 3.5 includes the information of tkelTe) X-ray diffraction chart [22].

B,,, cost 2siné8 (hk)

S =)

0.0033 0.266 111
0.0064 0.434 220
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Elastic Strain for CdS X-ray chart
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Fig. 3.1 Elas8train for CdS X-ray chart.

Elastic Strain for CdTe X-ray chart
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Fig.3.2 Elas$train for CdTe X-ray chart.
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2.1 Introduction:

The program investigated through oesearch project that is
dealing with the complete definition of crystalustture which named by
crystal-2. The process of calculations observed tha angles of Bragg
reflections determined by X-ray powder diffractiaeing various types of
analysis. These reflections have been assignedilbgr hdices in terms of
a particular crystal system, the program crystakaluates the dimensions
of the corresponding crystallographic unit celle thngles &,3,y ), the

average grain size, the filling factor and the tatastrain

2.2 The main construction of crystal-2:

To calculate the lattice parameters (ag)bwe used Cohen's Least
Squares method which is a mathematical methodishdépendent in the
main construction of the program, for the determamaof crystal lattice
parameters from a set of measured angles of diffim@and corresponding

Miller indices [6]. The considerance of calculagukition, ¢ . ) with the

practical angle of diffraction for a certain Millendices (hkl) when X-ray
beam with a wavelengtiA)irradiates a material is given by:

2 2 2
sin” 4. :[ A ey A 2, A Iz} (2.1)

4a* 4b* 4c?

Then the difference between the observed and eaémiican be
written, when more than one X-ray wavelength isstdered, as the angle of

diffractions can be represented by the followingadmn:
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sin? 8, ., =sin’ 8, —(Ah2A2 + Bk2A2 +CI 2% (2.2)

1 1

el F). Whereas X(,) refers to

Where (A,B,C) representztz,
a

an experimentally wavelength. The processing oh&qgn (2.2) showed the
presences of two parameters represented by a ‘&' (D), and the

extrapolation functiond) as appeared in equation (2.3)
Sin® 8., . =Sin* G, —(Ah?A? + Bk?A2 +CI?A2 + DO) (2.3)

The calculated value of (D) has been normally & wenall value may be
positive or negative sing.

The method of Least Squares method produced avalests of A, B,
and C that satisfy equation (2.3). The rearrang¢mieaquation (2.3) tends
to the following equation, by considering that thgguation is applied under
the minimum condition value of summation

Y [sin’6,, —(Aa +BB+Cy+DJ)]*> Wherer =h2%, B=k?*} andy=1%4;. If
consider that there is a set of equal values tetinemation denotes by (E)
then, the partial differentiation of equation caan represented by equation
(2.4)
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g—i =-2) a(sin’6,,, -~ Aa -BB-Cy~-DJ)

Z—E =-2> B(sin*8,, - Aa -BB-Cy-DJ)

2.4)

Z_CE: =-2> y(sin’ 8,,, - Aa -BB-Cy-DJ)

3_5 =23 &(sin” 8, — Aa - BB ~Cy~DJ)

By considering the equation (2.4) has a minimunueas we applied then

oo Eoo: Lo E
0A 0B oC ob

Hence

-2> a(sin’ g, ~Aa-BB-Cy-DJ) =0
-2> pB(sin®8,, ~Aa-BB-Cy-DJ) =0
3P

-2) y(sin*f,, —~Aa-BB-Cy-DJ) =0

-2 3(sin 8, —Aa -BS-Cy-DJ) =0
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1 1
D{(O.SXCOS2 6)xsin9+§} (2.6)

Where (D) is the drift error in the calculationstioé lattice parameters [19].

The rearrangement of last equations producing emsaf2.7) which are:
> Aa®+> BaB+Y Cyr+> Dad =) asin’ 6,

> AaB+> BB*+> CHy+> DBI = BSin® G,

D Aay+)> BBI+Y Cy*+> Dy =) ysin’ g,

D> Aad+) BB+ Cyd+> Dd* =) dsin® 6,

The mathematical solution of equation (2.7) giventhe accurate of
calculated values of A, B and C and reduced paennietpresented by a, b
and ¢ which is called the lattice parameters, a$ ageD the drift error.
These equations can be solved by the method mextiby a previous
reference [44]. The calculated values of axial asdt,3,y) in the unit cell
Is also obtained by the following equations; thies determination of lattice
constants and the angles, (,y) play an important role in the specification

the type of crystal structure belong to Bravaitidat

a =cos* (@)
a

[ =cos* (d—;() (2.8)

y=cost(d)
C
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To fitting the values we get by using the Least&quCurve- Fitting by
assuming that we will be given a table of (n + ainps which will be fitted
with a curve, having an equation of the form

P.(X)=a,x"+a, X" +........ +a,X° +a,x+a, (2.9)

Let us relax the requirements en(x) somewhat by permitting forms other
than just polynomials. In general, let us permd fitted curve to have form
P.(X)=a,0,(X)+a, .0, ,0)+.... +a,0, + 2,9, (2.10)

Where the functionsg, (x) and g,(x)are assumed to be some known

functions of (x).
We can easily return to an mth-degree polynomiakhaspecial case by
merely letting

g (X) = X"
Orra (¥) = X
9,9 =x"
9o(x) =1
The functions g,(x) must all be linearly independent. To prove this
statement, suppose that it were not true and tdmé g, (x) could be written
as a linear combination of songe(x) and g, (x) like this:
g, (X) =b;9;(x) +b, g, (x) (2.11)
For some constants, and b,. Then we could simply eliminate thg (x)

term from equation (2.10) altogether, and subgtitae right-hand-side of

equation (2.11) instead. This is equivalent to agdi andb, to the existing
coefficients a, and a,. We could eliminate any part of,(x) from the

expression fop, (x), equation (2.10) by adjusting and a, to compensate.
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We can now see that the functions

O (X) = X"
O () =X
9,(9) =x"
9o(x) =1
are linearly independent, since they can not bainét from each other by
linear combinations.
Let us return to the basic problem, we have a tab(a+1) points, and seek
equation (2.10) to match the (n+1) given pointsuich a way that, if we
formed a set of deviations. One for each tabulated
So = Pm(%0) = F(%)
S = Pm(X) — F(X)
S, = Pm(X2) — F(X;)
Sy = P (%) = f(X;)

Or, in general terms, the set of deviations
s =p,(x)-f(x) Fori=0,1,2, ....... , N (2.12)

The sum of the squares of these (n+1) deviatioosldibe a minimum:

Zn:(s)z =a minimum (2.13)

i=0

The summation in equation (2.5) can also be wrigen

> (502 = X [pa(x)~ F(X)] (2.14)
3 (8)7 = Y [8n00 () ot 28 (%)~ £ (X)] (2.15)

Let us find the partial derivative of the summatioith respect to each of

(m+1) variablesa,, and set each of these derivatives equal to zero:
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0 N\ (sy2 =
ag(d) =0
0 N\ 52
ag(@) =0
0 Sisy2
E;(Ji) =0

Or in general terms, we can write

%i(@)%o forj=0,1,2,....m (2.16)

J
The series has a finite number of terms, and saénvative of a sum is
equal to the sum of the derivatives of the ternmisTwe can write equation

(2.8) as

3 Q& n, 9 0 __ a0
- 0. 2 — — (O 2 = 20— =0
Or,

599 - g forj=0,1,2,m (2.17)
i 03,

The differentiation of any;, with respect ta, is easy when we note that

0, = Pp(X) = F(x)

:amgm(xi)+am—lgm—l(xi)+ ------ + ajgj(xi)+ ------- + aigl(xi)+aogo(xi)_ f(xi) (218)
When we differentiate with respect 49, we assume that every other term in

equation(2.10) is constant except the term comtgini, so that all other

terms drop out upon differentiating, and

a5, _ 9 a5 _
a_0+0+""+aajgj(Xi)+0+""+0+6_a,-_gj(m (2.19)
Now we substitute equation (2.19) into equatioril{®. and obtain the

(m+1) equations
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ié‘igj(xi)ZO forj=0,1,2,.....m (2.20)

Substituting equation (2.12) into (2.20), we have

n

YIpnx)-f(x)] g;(x)=0  forj=0,1,2,....m 2.21)

i=0
And then substituting equation (2.10) into (2.2¥) kave

n

D [AnGm (%) +ot 8,0, (%) + 2,95 (% ) — F(x)] ;%) =0

for j=0,1,....m (2.22)
Multiplying through on the left-hand side

i=0
forj=0,1, 2,...... , m

We now break up the left-hand side into separatessu

+aoig()(xi)gj (%) :i f(Xi)gj (%)

for j=0,1,2,.....,m (2.23)
equation (2.23) finally provides a useful resuld. Simplify the process a bit
and make it more suitable for computer solutionnate that the coefficient

of a_in the jth equation is
akj=zn:gk(xi)gj(xi) fork=0,1,2,.....m

]=0,1,2,...... , m (2.24)
since j and k in equation (2.24) can be interchdnge have also the result

that a,, =a, which reduces the work required to compute thesdficients

by about half.
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We now have a workable scheme for finding the legsares fit. Using
equation(2.23) we solve for the (m+1) unknown @a/kjch exist and are
unique if we choose the g(x) functions properlyd ahen substitute the
resulting values into equation (2.10) to give us tlesired expression for
Pm(X). [20]

2.3Average Grain Size (AGYS):

The average grain size can be obtained, depenttseamathematical
formula applied in the program which is known a®é&cer's formula [21].
The x-ray chart of (CdS) as shown for exampleguirfe 2.1 and X-ray chart
of CdTe AS IN FIGURE 2.2[22] which exhibited a nuenbof peaks, by
evaluating the bandwidth of the most dense peatesepted with a higher

intensity of diffraction at a certain angledj2

094
B, cosd

AGS =

(2.25)

002>

Fig.2.1 Showed X-ray chart for CdS [22].
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(11

Fig.2.2 Showed X-ray chart for CdTe [22]

2.4 Filling Factor (FF):

The applying of a simple relation that was studgreelviously in solid
state physics which represented the packing rdtibeoatoms or molecules
with respect to the volume of the geometrical sh#tps necessary to apply
the number of atoms or molecules per unit cell, dbeupied volume by
atoms or molecules, the total vqurrTﬁ([bK)] of the geometrical unit cell,

then the filling factor can be obtained by thedaling equation [1]:

FF =[ volume occupid by atoms ] x100y (2.26)

total volume
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(il r3mxN
FF=|-3  [x100% (2)27
total

Where (r) represents the radius of the atom, and€presents the number

of atoms per unit cell.

2.5 The Elagtic Strain (g):

The elastic strain and the particle size can hiainkd from the Hall-
Williamson method [15].

B,,, cosf 089 sind

( 1 )" =( q )" +16¢e (T) (228)
Or,
By,cos8 _ 1 2siné
e D, +2¢&( ) (2.29)

B,,, cosd

The elastic strain can be obtained by plot a gtagtiveen( y

)y and

2sing

( )y and by equaling the slope witle) the value of the elastic strain

can be obtained and from intercept the particle san be obtained [23].
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2.6 program design:

A computer program crystal-2, is in visual basics@esigned and
applied to identify the information about crystalusture through the
calculations of

1- The lattice parameter (a, b, ¢) using equatiorb®.Evaluating the

values of A, B, and C where (A, B, C) represelc}%g( 4—iw Ilz).

2- The axial anglesd, 3, y) of unit cell by using equation 2.8.

3- The average grain size which can be evaluated from
scherrer's formula as in equation 2.25.

4- The filling factor can be evaluated from equati27, and the
elastic strain which can be evaluated from the -Mélliamson
method as in equation 2.28. This program consistgnany

calculations as shown in figure 2.3.
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START

A 4

INPUT, (2), (hkl), no. of data (N), accuracy
(D), (\), bandwidth(B), no. of atoms/cell & the
radius forf' sample , no. of atoms/cell & the
radius for 24 sample .

A 4

CALCULATE LATTICE PARAMETERS (a, b, ¢) USING
THE LEAST SQUARE FITTING METHOD.

A 4

DETERMINE (hkl) THAT USES TO AS INPUT TO
CALCULATE THE AXIAL ANGLES (a, B, ).

A 4

CALCULATE THE AXIAL ANGLES (a, B, v) BY USING
THE EQUATIONS:

a =cos*’ (d—h)
a

DETERMINE THE TYPE OF THE SYSTEM ACCORDING
TO THE VALUES OF (a, b, ¢) AND B, 7).
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CALCULATE AVERAGE GRAIN SIZE (AGS) FROM
SHERRER'S FORMULA.

A

CALCULATE THE FILLING FACTOR (FF) BY USING THE
EQUATION:

Gremxn
F=| 3 |x100/
total

A

CALCULATE THE ELASTIC STRAIN €) USING HALL-
WILLIAMSON METHOD:
p,,, cosd 089 sind@
( 1/2 )2 :( )2 +16€2(

A Y4
A d /1)

END

Fig. 2.3 The flonagram of crystal-2 program.
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2.7 Input data:
1. to determine a, b, ¢ and the axial angte$(y) we need to input:
for CdS the Bragg's angle, the miller indices, atihd atomic
displacement.
2. to determine the average grain size (AGS) we ne&tput
for CdSB,,,=0.0087 rad.§=13.2° and.=1.5405A.
3. to determine the filling factor (FF) we need toubp
for CdS the number of atoms per unit cell for Cdl & are N,=4,
N.=4,a =b =c =5.82 A, for cubic structure and ithaic radius for Cd
and S are ;=0.095 nm, r=0.184 nm.
4. to determine the elastic strai) (ve need to input
For CdSB,,, at (100) = 0.00698 rad. Aréd= 12.4° withA=1.5405A.
B, at (002) = 0.0087 rad. Arfl= 13.2° withA=1.5405A.
For CdTep,, at (111) = 0.00524 rad. Artd= 11.85° withi=1.5405A.
B, at (220) = 0.01047 rad. Artd= 19.55° withh=1.5405A.

2.8 Output:
The important outputs parameter includes:
a- The crystal structure:
1- The cell parameters (a, b, c).
2- The axial angleso( B, ).
b- The average grain size (AGS).
c- The filling factor (FF).

d- The elastic strairg].
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Table of symbols
a, band c = lattice parameters (constants).

a, pandy =the axial angles.

A = wavelength.

d,, = Interplanar distance.
0 = Bragg's angle

AGS = Average Grain Size
FF = Filling Factor

m
1

Elastic Strain.
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