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1-1 What is nuclear structure ?

Nuclear structure physics has been an active field of research since the
discovery of the nucleus. Rutherford found that most of all matter was concentrated
in a very small core at the center of the atom in 1911 [1]. Perhaps the next great
milestone was the discovery of the neutron by the associate and doctoral student of
Rutherford, Chadwick in 1932 [2]. It is noteworthy that by this time special relativity,
quantum mechanics, and the relativistic formulation of quantum mechanics were
already developed. The existence of the positron was postulated by Dirac in his
relativistic formulation of quantum mechanics in 1928 [3, 4] and it was subsequently
discovered in 1932 by Anderson [5], the same year the neutron was discovered. I
would thus list the finding of the neutron as a relatively modern discovery. The proton
and neutron have since been used as the fundamental building blocks in describing the
nature of the atomic nucleus to this day.

A number of models have been developed to describe the large array of
phenomena and properties displayed by atomic nuclei. The liquid drop model, first
proposed by Gamow in 1928 [6], viewed the nucleus as drop of liquid whose
constituent particles were held together by surface tension. This model was able to
describe some bulk properties of nuclei. Using the ideas of the liquid drop model,
von Weiz acker developed a semiempiral mass formula [7] to predict nuclear masses.
A large breakthrough in nuclear theory came in 1949 when Maria Goeppert-Mayer [8]
and independently Jensen, Haxel and Suess [9] were able to explain the magic
numbers in nuclei, where nuclei would exhibit an increased stability, by including a
spin-orbit interaction term in a Hamiltonian that considered all nucleons to be orbiting
essentially freely in an average field created by all the other nucleons. The magic
numbers correspond to closed shells in nuclei analogous to the filling of electron
shells in atoms. Excited states were found that correspond to the excitation of a
nucleon into an orbit of a higher lying shell as predicted by the model. The shell
model, as this model is called, has been one of the most fundamental ways to describe
atomic nuclei. It has since been used extensively in the analysis of experimental data.

Apart from the single-particle excitations found in nuclei, another type of
excitation, collective excitation, was soon explained. In 1950, Rainwater observed
that spherical nuclei could easily be deformed [10]. This led the way in the 1950’s for
more ground breaking work done by Bohr and Mottelson [11, 12] and also Hill and
Wheeler [13] when they presented models for collective motion in nuclei. These
models used shapes to parameterize the nucleus and used their dynamics to derive the
collective phenomena that was observed. Since the discoveries of single-particle and
collective motion, these have been the two ways in which excitations in nuclei have
been classified. The interplay between single-particle and collective degrees of
freedom has long been and continues to be an active field of study. One example is
perhaps a variation of the shell model, which was proposed by Nilsson in 1955 [14]
where he considered the average potential of the shell model to be deformed. This
lead to the idea of changing shell structure with deformation.
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In 1975, the Interacting Boson Model (IBM), the model used in the present
work, was proposed by lachello and Arima [15] , where interacting bosons are used to
describe collective excitations in nuclei. From the symmetry properties of the model’s
boson hamiltonian, three types of idealized nuclei were found whose properties can be
calculated analytically. These three limits of nuclei can be used as benchmarks with
which to classify different nuclei. It was found that different regions of the nuclear
chart exhibit properties that are similar to one of these idealized limits.

The above account of nuclear physics is very brief and highlights only a few
of the main accomplishments in nuclear physics in the twentieth century. Although
brief, it can be seen that there is not one single comprehensive theory in nuclear
physics, but several models tailored to describe specific phenomena. A quote taken
from the book of Eisenbud and Wigner [16] published in 1958 describes the state of
nuclear theory in the following way :

"Internucleon forces are not yet completely known and it is clear that they have a
complex character. Even the consequences of a simple interaction are difficult to
obtain for a system containing a large but finite number of particles. A good deal of
effort has been expended, therefore, in the search for simple models in terms of which
the broad regularities satisfied by nuclei could be understood. This search has led to a
number of interesting but only partially successful models; these have proved very
fruitful for the stimulation of experimental research, and for the development of
further ideas on nuclear structure. One can hope that future investigations will clarify
the limitations of these models and provide an understanding of the validity of
different models for different groups of phenomena'.

Although written in 1958, the ideas set forth in this quote still serve as an
description of present day research in nuclear physics. It is with the aim of better
understanding the “broad regularities satisfied by nuclei” and “understanding the
validity of different models for different groups of phenomena” that the topic of this
present work is introduced. One of the broad regularities in nuclei that will be
investigated is the existence of a certain class of collective excitations called mixed-
symmetry states defined within the Interacting Boson Model. The data obtained from
the experimental investigations of these states will help elucidate the extent of the
validity of the Interacting Boson Model.

1.2 Historical Survey

1- Kr isotopes

The even—even "**Kr are the members of the chain existing around the mass
region 4 [180 and they are settled away from both the proton closed-shell number at
28 and neutron closed shell at 50. The interacting boson model-2 (IBM-2) has
recently been applied to many light isotopes of K» with emphasis on the energy
levels and on the electromagnetic transition rates.

Several theoretical and experimental studies of even-even Kr isotopes have
been carried out: Kaup and Gelberg [17] , have performed systematic analysis of Kr
isotopes in IBM-2, reproduced energy levels. Helleister et al., [18] studied the energy
levels and Electric transition probabilities and made comparison with experimental
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data. Meyer et al., [19] investigated the nuclear structure of the **Kr isotope, using
ion-beam spectroscopy studies and compared the experimental data with the results of
IBM-2.

Glannatiempo et al., [20] studied the life-time of the O3 level in the ¥Kr
isotope and compared the result with the calculated value of IBM-2. Deibaksh et al.,
[21] have performed IBM-2 calculations on Kr isotopes , using two-different
approaches. The first approach based on the energy of bosons as &€, =&,, and the
second approach was based on the difference between the energy of proton boson and
energy of neutron boson &€, # £, . The results of IBM-2 were found to be in good

agreement with experimental data except for the state 25 . Giannatiempo et al.,

[22] have studied the symmetry property of the bands in "**K7 isotopes by calculating
F-spin and the 72, component of the wavefunction of the states of these bands.

Shi Zhu-Yii et al.,[23] have studied K7 isotopes by using a microscopic
sd IBM-2 +2q.p. approach; the levels of the ground-band, }/-band and partial two-
quasiparticle bands for "**Kr isotopes were calculated. The data obtained are in good
agreement with the experimental results, and successfully reproduce the nuclear shape
phase transition of **Kr isotopes at zero temperature. The ground-state band is
described successfully up to J™ =18" and E,=10 MeV. Based on this model, the
aligned requisite minimum energy has been deduced. The theoretical calculations
indicate that no distinct change of nuclear states is caused by the abruptly broken pair
of'a boson, and predict that the first backbending of Kr isotopes may be the result of
aligning of two quasi-neutrons in orbit &, , which gains the new experimental
support of the measurements of g- factors in the "**Kr isotopes.

Al-Khudair and Gui-Lu [24] studied the level structure of "**Kr isotopes
within the framework of IBM-2 , and performed that the J”* =2" (one-phonon mixed
symmetry state) and J 7 =1",2",3" (two-phonons mixed symmetry states), and
have been identified by analyzing the wavefunction of M/ transition.

Turkan et al., in 2006 [25] determined the most appropriate Hamiltonian that
is needed for present calculations of nuclei in the 4 [180 region by the view of
Interacting Boson Model-2 (IBM-2). After obtaining the best Hamiltonian parameters,
level energies and B(E2) probabilities of some transitions in ***°Kr nuclei were
estimated. Results were compared with previous experimental and theoretical data
and it was observed that they are in good agreement.

Turkan et al., in 2009 [26] studied The quadrupole moments of 7078825485k

and 7707880826, isotopes in terms of the interacting boson model (IBM), and it was
found that a good description of them can also be concluded in this model. Before the
quadrupole moments were calculated, the positive-parity states and electromagnetic-
transition rates (B(£2)) of even-mass Kr nuclei have also been obtained within the
framework of IBM. It was seen that there is a good agreement between these results
and the previous experimental data. The quadrupole moments of the neighboring Se -
isotopes were also obtained and it was seen that the results are satisfactorily agree
well with the previous experimental data.
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2- Xe Isotopes

The Interacting Boson Model enables one to classify the nuclei according to
the dynamical symmetries of the /BM Hamiltonian. Three symmetries are most
relevant for the description of excited states of quadrupole-collective nuclei: U(5) for
vibrational nuclei [27], SU(3) for axially deformed nuclei [28], and O(6) for
deformed nuclei with soft triaxiallity [29]. In the 4 = 130 mass region, the Xe isotopes
exhibit excitation spectra close to the O(6) symmetry. After some theoretical
investigations [30,31,32,33,34], it was concluded that the xenon isotopes should lie in
a transitional region from U(35)- to an O(6)-like structure as the neutron number
decreases from the closed shell N=82. This was later supported by Casten and
von Brentano [35] who presented the evidence for an extensive region of nuclei near
A= 130 resembling the O(6) symmetry. The evolution of the one-quadrupole phonon

2, state with F-spin value F = F,. — 1 in a U(5)-O(6) transition is still unknown.
Thus Xe was a good candidate for exploring this U(5)-O(6) transitional region.

The low-lying states showing a rich collective structure in this region, were
investigated extensively in terms of various models, such as the interacting boson
model (IBM) [35,36,37,38,39,40,41], the fermion dynamical symmetry model
(FDSM) [42,43], the pair-truncated shell model (PTSM) [44,45] and the nucleon-pair
shell model [46,47,48,49].

The Xe , region with the mass number A ~ 120-130 has recently been

studied experimentally and interpreted by several models [50,51,52,53]. In ref.[54],
the general Bohr Hamiltonian (GBH) is applied to describe the low-lying collective
excitations in even—even isotopes of 7e, Xe, Ba, Ce, Nd and Sm, and the low-lying
collective states of even—even nuclei were investigated along the region of

50 <Z, N < 82. The ground state properties of even—even Xe isotopes have been the
subject of theoretical [55] and experimental studies [56-63] involving in-beam y-ray
spectroscopy.

Maras et al.,[64] have investigated, the ground state, quasi beta and quasi
gamma band energies of ''*!'¢!1%120X% jsotopes by using both IBM-1 and IBM-2
versions of the interacting boson model (IBM). In calculations, the theoretical energy
levels have been obtained by using PHINT and NPBOS program codes. The results
compared with the experimental data in respective tables and figures. It was seen that
the obtained theoretical results were in good agreement with the experimental data.

Laurent Coquard [65] have studied the evolution of the one-quadrupole
phonon 2, mixed-symmetry state in Xe isotopes and showed that collective nuclei

are characterized by rotational and vibrational states due to a common and, therefore,
“collective” behavior of the two constituents of the nucleus: protons and neutrons.
The evolution of the collectivity (spontaneous deformation) is governed by the
proton-neutron interaction in the valence shell. Nuclear states, that are particularly
sensitive to the proton-neutron interaction in the valence shell, are the so called mixed
symmetry states. In their work they determined the fundamental evolution i.e., the
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one-quadrupole phonon 2}, state, in a transitional region from vibrational nuclei
("**Xe) to y-soft nuclei reflecting the O(6)-like structure of the IBM-2 ('**'*Xe).
Projectile-Coulomb excitation of Xe isotopes has been performed at Argonne
National Laboratory (ANL) using the Gammasphere array for the detection of y-rays.

Turkan and Maras in 2011 [66], have studied the energy levels and transition
probabilities B(E2) of some even-even Te (Z=52, N=68-80 and N=84) and even-even
Xe nuclei (Z=54, N=68-80 and N=84-88) by using the interacting boson model (IBM-
1 and IBM-2). The results were compared with some previous experimental and
theoretical values. It was seen that an acceptable degree of agreement between the
predictions of the model, (IBM-1 and IBM-2) and experiment was achieved.

Eid and Diab [67] in 2012 studied the potential energy surfaces, V(B ), for
a series of Xenon isotopes '****Xe . The relatively flat potential to *°Xe and energy
ratio £(4,)/ E(2;)= 2.2 show E(5) symmetry to the nucleus which is lying in the
transition region from J/-soft to vibrational characters. The interacting boson model
(IBM — 1) has been used in calculating levels energies and electromagnetic transition
probabilities B(E2)'s. Backbending is observed for '*"*°Xe. The calculated values
were compared to the available experimental data and showed a reasonable
agreement.

3- Nd Isotopes

Neodymium isotopes are the members of the chain of nuclei around 4 =140
and they represent an ideal case for studying the influence of the shape transition from
spherical to deformed nuclei. The nuclei around mass 140 have many interesting
features such as high-spin isomers, backbending phenomena, even—odd energy
staggering of quasi-bands caused by a soft triaxial deformation, and features recently
referred to as ‘chiral bands’. These nuclei belong to a typical transitional region
between spherical and deformed shapes.

It has been recognized that in order to be able to judge any model on the
nuclear structure of even—even Nd nuclei, more accurate theoretical details are
necessary. This has led to a wealth of theoretical studies , that were performed in the
last 15 years, with many probes and the B(£2) values of some low-lying collective
states were obtained.

Manio and Ventura [68 ] have studied the even-even **'**Nd in the IBM .
They discovered all three limiting cases of the IBM and transitional nuclei between
the limits in the isotopic chain. Chuu ef al., [69] studied the '**Nd nucleus in the
interacting boson model in the context of an N=88 isotones. Gupta [70] studied the
1#190Nd isotopes in IBM-1. In this study the level structure is analyzed taking into
account of the available experimental information, with respect to the symmetries of
IBM-1. The level energies, B(E2) values, and interband B(E2) ratios were compared
with available data The adopted level schemes of '*'**Nd and the varying limitations
of the interacting boson model in these isotopes were discussed.
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Eurogam-I and Gammasphere experiments have established new level scheme
for **Nd isotopes [71]. New experimental levels in "**'*°Nd isotopes were also
obtained [72]. Static's moments have been measured over the years [73].

Long Guilu ef al.,[74] studied the spectra and E2 properties of '“*'*Nd using
the IBM-2. They found that '**"**N{d are in the transition from vibrational to rotational
(SU(5) to SU(3)). From '2Nd onward the isotopes are nearly perfect rotors. Possible
deformation saturation is discussed in the interacting boson model.

It was recently shown that a signature of phase transition is observed in the
chain of Sm, Mo and Nd isotopes, where isotopes are *2Sm,'*Mo and “*°Nd
[74,75,76]. "°Nd display the predicted features of the X(5) symmetry and marks
critical point. However, more detailed studies and experiments are needed to get ideas
about this signature.

In 2007 Turkan and Inci [77] studied some even—even neodymium nuclei using
IBM-2. In their study, they determined the most appropriate Hamiltonian that is
needed for their calculations of nuclei in the 4 = 130 region, by the view of projection
of IBM-2 parameters onto IBM-1. The interacting boson model has been widely used
for describing the quadrupole collective states of the medium heavy nuclei and no
distinction is made between proton and neutron variables, when the first version
IBM-1 is applied. So, triaxiality can be described explicitly, through the introduction
of cubic terms in the boson operators. However, the microscopic foundations state is
very important to describe the proton and neutron variables explicitly. This is also a
generalized definition of the second version of the IBM-model ,IBM-2 model. Using
the best-fitted values of parameters in the Hamiltonian of the IBM-2, they calculated
the energy levels and B(E2) values for a number of transitions in '44!46148130.152134 \77.
The results were compared with the previous experimental and theoretical data which
showed. Many B(E2) values, that are still not known so far, are stated and the set of
parameters, used in these calculations, are the best approximation that has been
carried out so far. It has turned out that the interacting boson model is fairly reliable
for the calculation of spectra in the entire set of #6143 jgotopes.

Inan et al., [78] in 2008 studied the X(5) symmetry which take place when
moving continuously from the pure U(5) symmetry to the SU(3) symmetry and it
implies a definite relations among the level energies and among the E2 transition
strengths. It was recently shown that a signature of phase transition is observed in the
chain of Sm, Mo and Nd isotopes, where '**Sm, '*Mo and "°Nd display the predicted
features of the X(5) symmetry and mark therefore the critical point. However, more
detailed studies and experiments are needed to get ideas about this signature. Without
entering into detail they have firstly compared the results obtained in their previous
study [15] of "**"**Nd with that of the limits in X(5) symmetry and then given a clear
description about the validity of the Hamiltonian parameters used in the study. At the
end, they have concluded that some of the Nd isotopes display X(5) symmetry
features.
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Turkan and Inci [79] compared some predictions between Davidson-like
potentials and Interacting Boson Model: X(5) behavior of even—even ' °Nd
Isotopes, they denote that the level scheme of the transitional nuclei '** '*°Nd also
presents the characteristic X(5) pattern, not only in the ground-state band, but also in
some low-lying bands. An adequate point of the model leading to the X(5) symmetry
was therefore confirmed. They have also carried out calculations of positive-parity
states of even-mass Nd nuclei within the framework of the interacting-boson model,
and then the calculated energy values were compared with the experimental data
along with the Davidson potential predictions. By comparing transitional behavior in
the Nd nuclei with the predictions of an X(5) critical symmetry, and investigated an
achievable degree of agreement between the predictions of the model leading to this
symmetry and the interacting-boson model IBM-1 and IBM-2. Their rsults agree well
experimental predictions.

4 - Ge Isotopes

Even-even Ge isotopes, with Z =32 and 32 <N <50, have a collective
quadrupole excitation strongly dependant on the number of nucleons outside the
closed shells 28 and 50, and the neutron-proton interaction is known to have a great
influence on nuclear properties. These isotopes are part of an interesting region
including Se and Kr, which has and is likely to attract many experimental and
theoretical works [80—83]. Hsieh et al., [84] found that the spectra of those nuclei can
not be explained in terms of simple versions of the rotational or vibrational models,
with shape coexistance, for and there is a transition from spherical to weakly
deformed shape with different types of deformations.

The previous work of configuration mixing by Duvalil et al., [85] using a
version of the IBM-2 with configuration mixing, has shown that a good description of
the stable Ge nuclei can be obtained. In this work they applied the standard, two-
particle two-hole, IBM-2 with configuration mixing to the stable nuclei and
extrapolate the model predictions to the recently explored radioactive neutron-rich
isotopes "**Ge and the single-closed shell nucleus *Ge.

Padilla-Rodal et al., [86] showed that the low energy spectra, electric
quadrupole transitions, and quadrupole moments for the Ge isotopes can be
determined in the framework of the IBM-2 with configuration mixing. These
calculated observables reproduce well the available experimental information
including the newly obtained data for radioactive neutron-rich "**Ge isotopes. Using
a matrix formulation, a geometric interpretation of the model was established. The
two energy surfaces determined after mixing, carry information about the deformation
parameters of the nucleus. For the even-even Ge isotopes the obtained results are

consistent with the shape transition that takes place around the neutron number N =
40.

The irregular neutron-dependence of important observables such as the
excitation energy of the O] states, the relative values of the electric transition

probability and the population cross sections in two-neutron-transfer reactions.
Vergnes et al., [87] have suggested that a structural change takes place around N =40
for Ge isotopes. In combination with the measurement of the electric quadrupole

moments associated with the 2,"and 2 states [88,89], thies experimental data have
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been taken as evidence of a shape transition and the coexistence of two different kinds
of deformations for this isotopic chain [90].

Turkan and Maras [91] have been studied the sufficient aspects of model
leading to the E(5) symmetry and proved by presenting E(5) characteristic of the
transitional nuclei **Ge. The positive parity states, of even-even Ge nuclei within the
framework of Interacting Boson Model (IBM) , have been calculated and compared
with the Davidson potential predictions along with the experimental data. It can be
said here that the set of parameters used in these calculations are the best
approximation that has been carried out so far. Hence, the Interacting Boson Model is
fairly reliable for the calculation of spectra in such set of Ge isotopes.

Subber [92] has been used Interacting Boson Models IBM-1and IBM-2, to
calculate energy levels and nuclear properties of the even-even **Ge isotopes.
Energy levels of the low lying states of these nuclei were produced, the electric
quadruple reduced transition probabilities also were calculated as well. Mixing ratios
Oo(E2/M1) for transitions with A7=0, I #0 are calculated. All these results were
compared with the available experimental data and other IBM their versions
calculations. Satisfaction agreements were obtained.

In this work, we have carried out the level scheme of the transitional nuclei
#-%0Ge showing the characteristic E(5) pattern in their some low-lying bands. The
positive parity states of Ge isotopes also stated within the framework of the
Interacting Boson Model. By comparing transitional behavior in the Ge isotopes with
the predictions of an E(5) critical symmetry, an achievable degree of agreement has
been obtained. Configuration mixing of bosons have been used to study the nuclear
structure and electromagnetic properties of Ge isotopes.

1.3 Scientific Motivation
The aims of the present work are as follows:

1- To study the nuclear structure and electromagnetic transitions B(E?2),
B(M1), mixing ratio X£2/M1)  monopole transitions, isomer shifts and isotopic
shifts for even-even Kr, Xe, Nd and Ge isotopes by means of the Interacting Boson
Model -2 (IBM-2).

2- A certain class of collective states arise in the the Interacting Boson Model
called mixed-symmetry states , which can be thought of as states in which the protons
and neutrons oscillate out of phase with respect to one another. This mode of
excitation should be sensitive to the proton-neutron interaction in the valence shell
because of its isovector character. Seeing how these states evolve as a function of
proton and neutron number can give insight into the strength of the proton-neutron
interaction for a given mass region. The proton-neutron interaction in the valence
shell of nuclei has been attributed as being responsible for the formation of
collectivity in Kr and Xe , Nd and Ge isotopes .

New classes of symmetries have also been defined to describe the nucleus -3
at the phase transitional point. These are the symmetries of the geometric Bohr
Hamiltonian and are denoted as E(5) and X(5). There has been a lot of work going on
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in finding out the nucleus belonging to different mass regions to obey these kinds of

critical point symmetry. There are many experimental signatures for the nucleus to lie

at the phase transitional point; these are listed in a very ordered manner by Clark
093

4- To study the configuration mixing character for Ge isotopes which are of
special interest because of the coexistence of two-sets of bands, of a very different
character in these isotopes when the IBM-2 configuration mixing provides a good
description of both states. Also the Interacting Boson Model (IBM) with configuration
mixing can be give a geometrical interpretation, when ones used in conjunction with a
(matrix) coherent-state method. This approach can also be used to study the geometric
aspects of shape coexistence in nuclei, as well as the phase space diagrams associated
to this phenomenon.

1.4 Qutline

Finally, a brief outline of the remainder of this work will be given. In Chapter
Two, some background on the collective models, briefly vibrational and rotational
models and in details the Interacting Boson Model, mixed-symmetry states and
configuration mixing will be presented. The results are discussed in Chapter Three.
Chapter four gives the concluding remarks and suggestions for future work.
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3.4 Ge Isotopes

3.4.1 Hamiltonian Interaction Parameters

Table (3-25) contains the IBM-2 Hamiltonian parameters (in MeV) used in the
present study to calculate the energies of the positive parity low-lying levels of o+
%Ge. N, =2 (first configuration or normal configuration 2x ) and N, changes from 4 to
7 for *7Ge and finally varies from 6 to 3 for "*Ge. The Hamiltonian parameter
values of IBM-2 were estimated by fitting to the experimental energy levels and it
was made by allowing one parameter to vary while keeping the others constant. This
procedure was carried out iteratively until an overall fit was achieved. The computer
program NPBOS [124], was used to make the Hamiltonian diagonal. In principle, all
parameters can be varied independently in fitting the energy spectrum of one nucleus.
As aresults calculations, we find that the structure of the spectra determined almost
by four quantities €, K , X{. and _X5,. These quantities may in general depend both
on the proton boson number N, and neutron boson number V,, guided by the
microscopic calculations of [114]. We have assumed that only € and K depend on
Nz and N, i.e., 8( N,.,N, V) , K(N N, .,) while X5, depends only on N; constant for all

isotopes and X{, on N, . Thus a set of isotopes have the same value of X7,. The
parameterization allows one to correlate a large number of experimental data.
Similarly, when a proton-proton interaction V3, and neutron-neutron interaction V., is
added, the coefficients C, are taken as C;(N,,) and C;(N,) i.e., the proton-
proton interaction will only depend on N; and neutron-neutron on N.

Table (3-25 ): IBM-2 Hamiltonian parameters (N, = 2), all parameters in MeV units except
.and y, are dimensionless

Isotopes 8 K Xv er COV CZV C4v CO Ves C2 T C4 7T El = 53 52
Ge-64 1.235 -0.220 1.250 | 0.7- 0.0 0.0 -0.33 0.0 0.0 0.0 0.061 -0.060
Ge-66 1.370 -0.235 1.200 | -0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.061 -0.055
Ge-68 1.401 -0.200 1.225 | -0.7 | -1.50 0.0 0.21 0.0 0.0 0.0 0.051 -0.040
Ge-70 1.425 -0.195 1.325 | 0.7- | -0.19 | -0.38 | 0.17 0.0 0.0 0.0 0.022 -0.039
Ge-72 1.300 -0.245 1.150 | -0.7 | -2.41 0.0 0.16 0.0 0.0 0.0 0.021 -0.030
Ge-74 1.090 -0.210 1.100 | -0.7 | -1.21 [ -1.21 | -0.22 0.0 0.0 0.0 -0.021 -0.029
Ge-76 0.945 -0.215 1.100 | 0.7- 0.0 0.0 -0.90 0.0 0.0 0.0 -0.021 -0.021
Ge-78 0.930 -0.215 1.100 | -0.7 0.0 0.0 -0.22 0.0 0.0 0.0 -0.011 -0.018
Ge-80 1.200 0.225 1.000 | -0.7 0.0 -0.9 0.0 0.0 0.0 0.0 -0.100 -0.013

The alternate configuration used for the germanium isotopes involves a two-
particle-four-hole excitation in the shell model proton space. This corresponds to two
proton boson particles and one proton boson hole in the IBM space. For simplicity,
the proton boson particles and hole are treated equivalently, even though the
underlying fermion pair degrees of freedom originate in different major shells.

The values of the parameters used for the present calculations are given in table
(3-26). The value of the parameter € for the N; =4 configuration, £*”, is changed
smoothly for all isotopes. The K trends for both configurations follow the microscopic
predictions. The values of X;,, § =¢, =4&; , a, =B, are kept constant for all
isotopes and _X{, is taken the same for the normal and intruder configurations. The

90
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variation of A as a function of the neutron number is linear, Our A values are larger
than the ones given in [85] because we are assuming that the intruder configuration
originates from the excitation of one proton pair across the Z = 28 shell gap instead of
a proton pair within the same valence space.

The parameter Co.., €5, and C,, inthe ¥\ interaction term, is varied
smoothly from one isotope to another. The same values are used for both configurations.
These parameters are used in NPMIX code to evaluate the energy levels after mixing.

Table (3-26 ): IBM-2 Hamiltonian parameters (N; = 4), all parameters in MeV units except ¥
.and y, are dimensionless

Isotopes | & « X0 | X |Cov |Cov | Cav | Core | Core | Curr |0, =5, < A
Ge-64 1.6 | -0260 | 125 | 1.39- 0.0 0.0 -0.33 0.0 0.0 0.0 0.118 0.055 4.3
Ge-66 1(.)5 -0.255 1.(;0 1.39- 0.0 0.0 0.0 0.0 0.0 0.0 0.118 0.055 4.0
Ge-68 1?4 -0.250 1.(;2 -139 | -1.50 0.0 0.21 0.0 0.0 0.0 0.118 0.055 3.8
Ge-70 1?3 -0.240 1.?32 1.39- 1 -0.19 | -0.38 0.17 0.0 0.0 0.0 0.118 0.055 3.0
Ge-72 1:.31 -0.240 1.51 5 1.39- 2,41 0.0 0.16 0.0 0.0 0.0 0.118 0.055 2.8
Ge-74 1?0 -0.230 120 -139 | -1.21 | -1.21 | -0.22 0.0 0.0 0.0 0.118 0.055 1.02
Ge-76 1?3 -0.240 120 1.39- 0.0 0.0 -0.90 0.0 0.0 0.0 0.118 0.055 0.04
Ge-78 1(.)2 -0.250 120 1.39- 0.0 0.0 -0.22 0.0 0.0 0.0 0.118 0.055 -0.99
Ge-80 1(.)1 -0.260 1.(())0 -1.39 0.0 -0.9 0.0 0.0 0.0 0.0 0.118 0.055 -1.22
Ge-82 1(.)2 -0.280 1.(())0 -1.39 0.0 0.0 0.0 0.0 0.0 0.0 0.120 0.055 -1.22

5 0

Having considered the spectrum in some detail, it is of interest to compare the
number of levels predicted with the number of free parameters used. There are ten
parameters in the IBM-2 Hamiltonian, Eq.(2-42), and three in the mixing Hamiltonian,
Eq.(2.75). Since the 4n parameters could conceivably all be different from those for
the 2m case, there are 23 possible parameters for each isotope, an enormous number.
However, six of these are not used: C,,', C,." and < s for both configurations. Four
parameters, X, both X;,s and <& are determined from microscopic calculations or
established from the Ge isotones. Also, X{, C,. and <& are identical for both
configurations. This reduces the number of free parameters to ten. Six of these are
constant across the shell: C32, Ci7 , &7, a3 and /A\. Hence, the only free

parameters which a allowed to vary from one isotope to another are £, k*7, k** and
C

ov .

With four free parameters per isotope, more than fourteen energy levels are predicted
(including the 2 ground state) for each germanium isotope.

3.4.2 Energy Spectra
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The calculated energy spectra, before mixing and after mixing, are presented
along with the experimental spectra in figures(3.23-31) before mixing. The figure
(3.32-40) includes the after mixing (intruder configuration).

We have applied the model describe in the previous section to the calculation
of the energy levels of the isotopic chain 5  Ge in major shell 28 and 50. The
results are shown in (figs. 3.23-31). A detailed comparison with experimental data is
shown in the figures. As it can be seen from these results, the agreement between the
experimental data and theoretical results are quite good and the general features are
reproduced well, especially for the members of the ground-state band. The value of
R4, as it is seen in table (3-30) it increases gradually from about 2.28 to 2.60. The
agreement between the experimental values and IBM-2 for E(4,)/ E(2]) ratios of

all Ge isotopes and the results show that R4, > 2 for all Ge isotopes. It means that
their structure seems to be varying from Harmonic Vibrator (HV) to along gamma
soft rotor (SU(5)—0(6)). So, the energy levels of the **°Ge nuclei can be situated
between the pure vibrational and rotational limit [20], are also trying to get a solution
of potentials for the £(5) and X(5) models of the Bohr Hamiltonian by comparing the
findings with the experimental data as well as the previous results.

Table (3-27): Values £'(J 1+ / 21+ ) for Ge Isotopes in normal configuration (N, = 2)

+ + + + + +

otopes E(4;/2)) E(6)/2}) E8;/2])
[Exp.[117 [ (EG5 | IBM-2 | [Exp.J117 [ (EG5 IBM-2 | [Exp.[117 (ES IBM-2
Ge-64 2.275 23 | 2225 3.8 5.3 3.318 5.7 5.3 5.253
Ge-66 2.273 23 | 2.184 3.8 5.2 3.623 - 5.2 5.730
Ge-68 2.233 22 | 2214 3.6 5 3.567 4.8 5.0 4.760
Ge-70 2.072 2.1 | 2.075 35 43 3.467 - 43 4.542
Ge-72 2.071 2.1 | 2.465 33 43 3.913 4.8 43 4.732
Ge-74 2.458 2.5 | 2.508 - 6.6 4.166 - 6.6 7.114
Ge-76 2.508 25 | 2.536 7 4.227 - 7 6.478
Ge-78 2.536 25 | 2.560 7 4.413 - 7 5.986
Ge-80 2.643 2.5 | 2619 7 3.607 - 7 4.885

The normal configuration for germanium involves N;=2 (sometimes denoted

as 2m, two proton bosons), counting from the Z = 28 closed shell. The neutron
configuration for #Ges, for example, is N, =2 (two neutron boson), counting from the
N =28 closed shell. The vibrational spectra can be calculated by diagonalizing the
IBM-2 Hamiltonian, Eq.(2.42), in the space of two proton and N, neutron s and d
bosons. In order to describe the rotational states, an alternative configuration must be
specified and a separate set of /BM calculations made, based on that configuration.
The alternate configuration used for the germanium isotopes involves a two-particle-
four-hole excitation in the shell model proton space. This corresponds to two proton
boson particles and two proton boson hole in the IBM space. For simplicity, the
proton boson particles and holes are treated equivalently, even though the underlying
fermion-pair degrees of freedom originate in different major shells.
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Figure (3-23): Comparison between experimental and calculated energy levels for “Ge. The experimental
data are taken from ref. [117].
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Figure (3-24): Comparison between experimental and calculated energy levels for *Ge. The experimental
data are taken from ref. [117].
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Figure (3-25): Comparison between experimental and calculated energy levels for “Ge. The experimental
data are taken from ref. [117].
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Figure (3-26): Comparison between experimental and calculated energy levels for Ge. The experimental
data are taken from ref. [117].
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Figure (3-27): Comparison between experimental and calculated energy levels for ?Ge. The experimental
data are taken from ref. [117].
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Figure (3-28): Comparison between experimental and calculated energy levels for *Ge. The experimental
data are taken from ref. [117].
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Figure (3-29): Comparison between experimental and calculated energy levels for *Ge. The experimental
data are taken from ref. [117].
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Figure (3-30): Comparison between experimental and calculated energy levels for *Ge. The experimental
data are taken from ref. [117].
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Figure (3-31): Comparison between experimental and calculated energy levels for *Ge. The experimental
data are taken from ref. [117].

Once IBM calculations have been done in model spaces with N;=2 and N;=4
to describe the vibrational and rotational states, respectively, the two calculations are
combined using Eq.(2-76).

For each isotope, separate IBM-2 calculations were done for the N,=2 and
N;=4 configurations, in which Eq.(2-42) was numerically diagonalized in the
appropriate space using the computer code NPBOS [124]. The matrix element of
H .. in Eq.(2-75) were then formed using wave functions of the two separate
configurations and the resulting mixing Hamiltonian was diagonalized by the
computer code NPMIX [112].

The calculated energy spectra, after mixing, are presented along with the
experimental spectra in figures (3.32-40). The figures includes the N;=4 ground state
rotational band up to J* =8, and the levels up to 3 MeV.

The N:=2 8" levels are well above the energy for which the IBM is
expected to be valid, since the pairing assumption breaks down at about 3 MeV.
Before mixing, the N;=2 and N;= 4 spectra look like good quasi-vibrational and
quasi-rotational spectra, respectively. After mixing, it can be seen that many of the
states have been moved dramatically.

The figures show other states in the N,= 4 configuration. The quasi-beta band
heads 0" and the quasi-gamma band heads 2" for **Ge mix strongly withthe N,
=4 ground state band (gsb) 0" and 2" states, respectively, as can be seen in  figures
(3.33-41). Similarly, the *7*Ge 4. states mix with the N,= 4 gsb 4" states. The **

Ge 3 states mix strongly with the corresponding N,=4 3" states. These latter states
are not shown in any of the figures, where, for simplicity, only the gsb, beta band and
gamma band, are presented for the N,= 4 configuration. Figures (3.33-41) also
shows the lowest set of 2" states. The Ge experimental spectrum is rich in levels
which have been assigned angular momentum 3 or 2 and positive (or no) parity.

A better fit to the quasi-gamma band head for each isotope could be obtained
with appropriate changes in the parameter C5,'. In the interest of a simple parameter
trend, this has not been done. The experimental 2" states close to the calculated
¢-82Ge 2" state at ~ 1.5 MeV. Curiously, there is an experimental 0" state at 0.961
MeV in *Ge. This state is included in figure (3-37), since it is thought to be outside
the IBM model space.

At the time these calculations were performed, there were no published
calculated data on *Ge levels. The IBM parameters for this isotope are based on
trends from the other isotopes, and the assumption that the effective middle of the
shell is at ®Ge. The extreme case for the situation is the neutron closed-shell nucleus
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S Ge s, , that has N, =0 in configuration mixing excitation (p-h) across the major
shell N = 50, therefore N, =2 and N, =1 in 5 Ge, .

All the calculated energy levels above 1.5 MeV are somewhat high. The
calculated 3" levels are quite high, except for “"*Ge. However, there is general
agreement with experiment for all the isotopes concerned.

A few comments on the uncertainties involved in the calculated energies are,
perhaps, appropriate, even though these uncertainties cannot be estimated in a
rigorous way. For the most part, the estimates given represent a change in energy due
to a change in one of the parameters by a given amount, usually one unit in the least
significant place.

The fitting of the N, =4 configuration for A~ 78 is speculative. The dominant
parameter is x*”. For *Ge, the determination of this parameter is based on one
experimental number, a possible 2" state at 0.612 MeV. A change of 1 keV in x*”
changes the rotational states by 10-20 keV. For A > 80, the values of x*” are based
solely on extrapolation.

The choice of the #Ge parameters is based on extrapolation and the
expectation that the parameters and energies should be roughly reflected about the
middle of the shell. Since this nucleus is the only one of the isotopes studied to have
neutron particle bosons, as opposed to hole bosons (e.g., the only nucleus below mid-
shell), the **Ge levels are somewhat speculative.

A conservative estimate of the uncertainty in the calculated energies of the
intruder (477) states in "°Ge is 10-20 keV. The low-lying vibrational states also
have an estimated uncertainty of 10-20 keV (considering a 5 or 10 keV change in €
or K ). The uncertainty in the higher levels is 40 keV or more. This is partly because
the higher energy states are more sensitive to the parameters and partly because, for the
most part, the parameters are not fitted to these states.

In many cases, the discrepancy between calculated and experimental energies
is deliberately greater than the above uncertainties, in order to simplify the parameter
trends. In other cases, especially for the higher energy levels, the discrepancy is
probably partly due to the fact that the model is too simple.
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Figure (3-32): Comparison between experimental and calculated energy levels for “Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-33): Comparison between experimental and calculated energy levels for “*Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-34): Comparison between experimental and calculated energy levels for ®*Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-35): Comparison between experimental and calculated energy levels for "Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-36): Comparison between experimental and calculated energy levels for ?Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-37): Comparison between experimental and calculated energy levels for “Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-38): Comparison between experimental and calculated energy levels for *Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-39): Comparison between experimental and calculated energy levels for *Ge (N, =4). The
experimental data are taken from ref. [117].

112



Chapter Three Results and Discussion

Figure (3-40): Comparison between experimental and calculated energy levels for **Ge (N, =4). The
experimental data are taken from ref. [117].
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Figure (3-41): Comparison between experimental and calculated energy levels for ¥Ge (N, =4). The
experimental data are taken from ref. [117].

3.4.3 Electric Transition Probability

The E2 transition operator, is given in Eq. (2.83). The effective boson charges
e,,and e_ were calculated by plotting [118] M, and M, which are given in Egs.
(3-2,3) against V,,/ N, (see figure (3-42)). For a mathematical simplicity we use the
values of the boson effective charges where €,, =€, =¢e, and e,, =e,, =e,, for all
Ge isotopes. The best fit of effective charges to * ™ Ge isotopes was obtained
e, =0.11095 eb and e, =0.05 eb . The results of the calculations are presented

in table (3-28). Looking through the table, one can easily recognizes that our
calculations reproduce the experimental data quite well.

(ezbz) R Mz(ezbz) Mi

SU(5)

O (6)

0.1 4

0.05 +

0 0.5 1 1.5 2 2.5 3

N,/N,

Figure (3-42): The plot of the quantity M; and M, versus €,, +e, N,/ N _for “®Ge Isotopes.
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Table (3-28): Electric Transition Probability for Ge isotopes in e’b? units

Isotopes Ji+ . J;, Exp. [117] Present Work Subber [92]
0,—2; (60) 0.0410 0.0351 0.0125
0,—2, (5)0.00015 0.0012 0.0028
2,—2, (210) 0.0620 0.0523 0.0166
Ge-64 0,—23 - 0.0033 0.0018
2,—23 - 0.0027 0.0012
2,—44 - 0.020 0.0121
4,—6; - 0.119 -
41—>42 - 0059 -
Q(21+) - -0.182 -
0,—2; (362)0.01896 0.0129 0.0212
0,—2, (6)0.00016 0.0014 0.0029
2,52, (1264)0.02686 0.0310 0.0283
Ge-66 0,525 - 0.0024 0.0018
2,—23 - 0.0281 0.0225
21—44 - 0.0335 0.0325
4,—6, - 0.127 -
4—4 - 0.052 -
Q(21+) - -0.170 -
0,—2; 0.01517 < 0.0182 0.0273
0,—2, (329)0.02912 0.0371 0.0048
2,—2, (4)0.00023 0.0004 0.0406
Ge-68 0,—2; (34)0.00086 0.00077 0.0038
2,523 - 0.0082 0.0076
2,—4, - 0.0529 0.0446
4,—6; - 0.129 -
41—>42 - 0050 -
Q(21+) - 0.0012 -
0,—2; (29)0.02287 0.0321 0.0340
0,—2, (68)0.03593 0.0301 0.0069
2,—2, (85)0.00171 0.00232 0.0500
Ge-70 0,—2; (189)0.0497 0.0618 0.0030
2,—23 - 0.0015 0.0010
2,—4 (11)0.04112 0.0681 0.0579
4,—6; - 0.134 -
4,—4, - 0.0481 -
Q(zr) +0.04(3) 0.037 -
0,—2; (3)0.040 0.039 0.0330
0,—2, - 0.0076 0.0099
2,—2, (12)0.114 0.129 0.0478
Ge-72 0,—2; - 0.0024 0.0017
2,523 - 0.018 0.0190
2,—4, (71)0.0641 0.048 0.0565
4,—6; - 0.141 -
4,—4, - 0.0479 -
Q(21+) -0.13(6) -0.122 -
0,—2; (3)0.060 0.065 (5)0.028
0,—2, 0.078 > 0.0671 0.0055
2,—2, (203)0.0997 0.0897 0.0470
Ge-74 0,525 - 0.0014 0.0017
2,—23 - 0.0047 0.0056
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2, -4, (55)0.0664 0.0605 0.0464
41—>61 - 0147 -
4,—4, - 0.0431 -
Q(21+) -0.192) -0.178 -
0,—2, (3)0.046 0.0498 0.026
0,—2, - 0.0032 0.0041
2,52, (96)0.0746 0.0687 0.0308
Ge-76 0,—2; - 0.0019 0.0011
2,2, - 0.0013 0.000
2,—4, (13)0.073 0.0587 0.0373
41—>6| - 0.152 -
4,—4, - 0.374 -
Q(zr) -0.19(6) -0.1885 -
0,—2, (30)0.044 0.0402 0.0230
0,—2, - 0.0041 0.0033
2,2, (238)0.0396 0.0298 0.0164
Ge-78 0,—2; - 0.0037 0.0040
2—2 - 0.00066 0.0007
2,:—4, 0.0218 < 0.029 0.0160
4,—6, - 0.160 -
4,—4, - 0.0341 -
Q(21+) - -0.178 -
0,—2, (5)0.028 0.021 0.034
0,—2, - 0.0019 0.0012
2,52, - 0.0023 0.0019
Ge-80 0,—2; - 0.00167 0.000
2,2, - 0.00023 0.000
2,—4, - 0.0042 0.0036
41—>6| - 0.163 -
4,—4, - 0.0310
Q(21+) - -0.168
0,—2, 9.467x10° 0.0008 -
0,—2, - 0.0023 -
2152 - 0.0025 -
Ge-82 0,—2; - 0.0021 -
2,525 - 0.00034 -
2,—4, - 0.0028 -
4,—6, - 0.0135 -
4,—4, - 0.0289 -
o) - o -

Calculation of electric transition properties gives us a good test of the nuclear

model prediction. The electromagnetic matrix elements between eigenstates were

calculated using program NPBTRN for IBM-2 model.

The B(E2;2; — 0/) decreased for “**Ge as neutron number increased

toward the middle of the shell for the 7°7*Ge. While for the ***Ge as the value is

decreased toward the closed shell. The transition B(E£2;2; — 2;) has small value
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because contains admixture of M1. As a consequence of possible M1 admixture, this

quantity is rather difficult to measure.
The values of B(E2;2; — 0;), B(E2;27 —0)and B(E2;27 —2]) is
small because this transition from quasi-beta band to ground state band (cross over

transition).

The IBM-2 results are compared not only with experiment, but also with
predictions from the following other work by Subber [92] .

The quadrupole moment for first excited state in Ge isotopes are very well
described. The calculated values of Q(2;") indicated the ***Ge has prolate shape in
first excited states, while the ®"°Ge has a oblate shape in first excited states. The
>8Ge has a protate shape in 2, states.

The signs of Q(2,") are correctly predicted for the isotopes for which

experimental data are available. (These signs depend on X7,and X{ ). The calculated
magnitudes are close to the experimental values.

The intention of the present work is to give a good overall characterization of
a whole chain of isotopes with a simple set of parameters, rather than to give the best
possible fit to any one nucleus. Hence, it is not surprising that some of the
experimental results listed in table (3-28) are better fit with experimental data. On the
whole, the IBM results for E2 transition rates and quadrupole moments compared
well with the experimental results and with the predictions of other work for the Ge
isotopes .
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3.4.4-Magnetic Transition Probability

The magnetic transition operator 7(M1) were calculated using Eq.(2- 84), and

the boson gyromagnetic factors were estimated using the fact that & =Z/ 4 and the
relation (3-4), used to compute the 2" state & -factor. The value of the measured

magnetic moment £/ =2g =1.1(3) £4 [117] for ®*Ge, and the experimental mixing
ratio O(2; — 2;) =-0.2(0.1) [100] were used to produce satiable estimation for
the boson gyromagnetic factors. The values are (€27 = &4n = &7) & =0.562 L4, and
g =84 =8,) g, =0.397 14, . The results of the calculations are listed in

table (3-29).

Table (3-29): Reduced transitions probability B(M1) in L4, units for “*’Ge isotopes

Transitions B(M1)
64Ge 66Ge 68Ge 70(}e 72(;e 74(;e 76(;e 78(}e 80Ge 82(;e
2,—2, 0.0662 0.0288 0.0132 0.00043 0.0043 0.000421 0.00987 0.00011 0.00003 0.00004
21525 0.0378 0.0191 0.0002 0.002 0.0052 0.00051 0.0057 0.00005 0.00262 0.0017
2,—2; 0.0561 0.0442 0.0251 0.0045 0.00022 0.0020 0.0209 0.00012 0.00005 0.000033
2,—3; 0.0662 0.0432 0.00145 0.0389 0.00081 0.000421 0.00987 0.00011 0.00003 0.000027
2,—3 5x4510* 5.67x10* 2x10* 1.39x10* 1.77x10* 2.15x10* 2.34x10* 2.451x10* | 2.561x10* 2.7x10*
3,—3 2.5x10° 5.6x10* 1.02x10° 4.99x10° 2.43x10° 2.15x10° 6.53x10° 1.004x10° 1.28x10° 1.33x10°
0,—1; 0.451 0.560 0.755 0.799 0.823 0.896 0.9022 0.910 0.943 0.975
21—1, 0.0632 0.0641 0.0655 0.0753 0.0762 0.0811 0.0892 0.0994 0.149 0.254
+ - - 1.1(3 0.936(52 0.77(5 0.70(24 0.56(12 - 0.839(46 -
L027) (Bxp) 3) (52) B 24) (12) (46)
+
IBM-
/'1(2‘ ) 1.53 1.43 1.34 1.022 0.871 0.80 0.591 0.531 0.77 0.832
2

[Experimental data for magnetic dipole moment for first excited state are given from ref.[117

In phenomenological studies g, and g, are treated as parameters and kept
constant for a whole isotopes chain. The total g factor is defined by Many relations
could be obtained for a certain mass region and then the average g. and g, values for
this region could be calculated, and one of the experimental B(M1) values. It is found
that g, — g, = 0.176 uy . The estimated values of the parameter are g, = 0.562 uy and
g = 0.397 uy . These were used to calculate the magnetic transition probability
B(M1). These values were then generalized for all Ge isotopes. They are different
from those of the rare—earth nuclei, (g,—g, =0.654,), suggested by
Van Isacker et al., [108]. However they also used &, =144, and &, =04, to reduce
the number of the model parameters in their calculation of M1 properties in deformed
nuclei. The results of our calculations are listed in table (3-29). There is no

experimental data to compare with the /BM-2 calculations. As can be seen from the

table yields to a simple prediction that M1 matrix elements values for gamma to
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ground and transitions should be equal for the same initial and final spin. Also the size

of gamma to ground matrix elements seems to decrease as the mass number increases.

3.4.5-Mixing Ratio X£2/M1)

The 6(E2/M1) mixing ratios for some selected transitions in Ge isotopes are
calculated from the useful equations as above and with the help of B(E2) and B(MI)
values which are obtained from NPBEM (computer code which is subroutine of
NPBOS package program); the results are given in table (3-30). In general, the
calculated electromagnetic properties of the Ge isotopes do not differ significantly
from those calculated in experimental and theoretical work. However, there is a large
disagreement in the mixing ratios of (2, — 27), d3; - 2/) and d(3; - 2)),
due to the small value of M1 matrix elements.

Table (3-30): Mixing ratios 8(E2/M1) for Ge*™ in eb / L4, units

Isotopes Ji+ R J; Exp.[100,117] IBM —2 [Subber [92
252 - -4.450 -5.6
Ge-64 2 1
- 3.764 2.3
2, -2,
31 - 21 - 12 10.74
31 R 22 - 0.0921 -2.027
4, - 2, -
+8 2.276 -1.591
22 - 21 _3'5—26
Ge-66 23 . 21 - -2.980 -1.56
31 . 21 - 17.98 20.9
31 . 22 - 3.220 2.61
- -3.989
4, - 2,
2,2 (0.1)0.2- -0.811 -1.934
Ge-68 - 1 2.0 1.734
2, -2, - 2. L
31 R 21 (0.1)0.2- -1.77 -36.78
31 o 22 (0.3)0.2- -0.33 -0.31
-4.77
4, - 2,
2 2 (3.0)5.0- -10.19 -1.76
Ge70 ! 0.011 8
- . -5.7
2, -2,
31 . 21 (5-3+)2.2- -2.86 -0.35
31 . 22 (8)0.05- -0.087 -3.45
- 7.188
4, - 2,
13)10.3- -13.4 -3.89
2, - 2, a3
- - 10.32 -7.88
Ge-72 23 N 21
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3I N 2] - 11.6 3.92
31 N 22 4.0+~ 5.22 -3.67
4, - 2, - 9.66
2, -2, (4)3.4+ 3.96 -1.222

Ge-74 2, -2, (3)2.8- -3.21 7.44
3, -2, (5)0.34 0.661 3.02
3, -2, (H1.3+ 2.4 -5.789
4, 52, 0.9

Ge6 2, -2, (15)3.5+ 5.21 3.50
2, -2, - 3.4 -11.58
3, -2, - 17.2 2.44
3, > 2, - -7.34 -6.87
4, -2, - -0.411

Gens 2, -2, - 1.456 0.98
2, -2, - 21.90 29.5
3I N 2] - 2.11 1.96
3, -2, - -2.56 -1.2
4, - 2, - 5.108

Ge.80 2, > 2, - 2.64 1.6
2, — 2, - 0.002 -1.37
3, - 2, - -0.414 -0.511
3, -2, - 0.0115
4, -2, - 10
2, -2, - -1.06 -
2, -2, - 0.0019 -

Ge82 3, -2, - -0.411 -
3, > 2, - 2.25 -
4 8.318 N

|
S

3.4.6-Electric Monopole Matrix Element A(£0)

The expressions for A£0) matrix elements is given in Eq. (2-86). They
involve five parameters. Four of them, 43, ,., v, 3~ and [, , multiply the
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A A A A

matrix elements of n2 i n2 i n 4dn and 4y , respectively. The last parameter,

which occurs in the isotope shift expression only, is an additive constant, 5. . (Itis
the sum of Y& . and M4 ). The quantity X -values defined in Eq. (2-61).

The values of the parameters A3, ,., /3. and V5. are determined by fitting
to the experimental "*Ge isotope shifts, which are dominated by the 2z configuration.
The values of the parameters £3, ,, and A3, are subsequently determined to fit the
X- values for ?Ge . The parameter values are:

L35 ,=0.832fim? , [Fo,=-0.286fin’, [Fs,=-0.500 fin, [Fy.=0.182f?,
Y6,=-0.079 .......... (3-5)

There is good agreement between the calculated value and the experimental
result for both the EO transition in ?Ge isotope . However, rather different sets of the
EQ parameters can be found which give similar isotope shifts but different isomer
shifts. Therefore, in the absence of any experimental isomer shift data, it is not
possible to tell whether or not Eq.(3-5) represents the "best" possible set of EO
parameters.

It appears that all five 7(£0) parameters are necessary to obtain reasonable
results, unlike the £2 case, where e, = e, .
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Mixed Symmetry States-3.4.7

Another probable indication for the need for an increased Majorana force for
the germanium calculations is the presence of the mixed-symmetry 23 states in
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figures (3.24-32) at about 2 MeV. There is no experimental evidence for such states,
for *+%Ge, where 2 states could be non-collective.

The calculations shown in figures were done with the Majarona parameters, to
see what effect this larger Majorana force would have on the germanium 27n spectrum.
The parameter C,,, was also changed, as previously mentioned, and the parameters
&, C,,,and C,, adjusted to fit the gsb. The parameter set is given in table (3-25).
This calculation does not include configuration mixing.

The 1"and 23 levels have been shifted up out of the low energy spectrum, as
desired. However, the calculated 3, levels, which were already too high in

figures (3.24-32), have also been pushed up. These 3, levels, along with the 2" and
4" members of the quasi-gamma band, are shown on the figures. Recent microscopic
calculations for Ge [92] find &, changed from -0.06 MeV to -0.013 MeV, and

& =4&; changed from 0.061 MeV to -0.1 MeV, resulting in reasonable agreement
with experiment for the 3" levels. The 25 levels of Subber [92] are around 2 MeV,
however. It appears that an optimal set of Majorana parameters has yet to be found.
Such a set will likely involve & # <.

The newly found collective 1* state in '*°Gd [Bohle et al., [106]] indirectly
affects the germanium calculations because it suggests that the strengths of the
Majorana terms used in most of the IBM-2 calculations to date have been too small.
This 1" level was found at 3.1 MeV in an inelastic electron scattering experiment
(e,e"), which selectively excites collective states. In the IBM, 1" states are clearly not
totally symmetric; they cannot be obtained in IBM-1. Thus, they are quite sensitive to
the strength of the Majorana force.

The M1 state (as it is called) in *°Gd can be reproduced by IBM-2 with the
Majorana strengths & =0.2 MeV and & =4&;=-0.4 MeV [106]. In comparison, the
values of the parameters & =&, used by this worker and Subber work [92] are also
much smaller than those of Bohle et al., [106].

Although some of the germanium isotopes have low-lying 1" states, there is
no evidence that these states are collective. Therefore, the calculated 17 levels should
be higher in energy than those shown in figures, indicating that one or more of the
parameters < .-.5 need to be increased (in absolute value).
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Chapter Three
Results and Discussion
Kr Isotopes 3.1

Hamiltonian Interaction Parameters 3.1.1
Since the Hamiltonian contains many parameters it is unpractical and not very
meaningful to vary all parameters freely. Instead it is convenient to use the behavior
of the parameters predicted by a microscopic point of view as a zeroth-order
approximation. In a simple shell-model picture based upon degenerate single nucleon

levels [114] the expected dependence of & & _X{ and _X;,0n neutron (N .,) and

proton (N ,T) boson numbers can be expressed as:

Q,-N Q, 2N, o
€ =constant, K =K,K,, K, = |—2—Lk X, =———X, P=TLV. (3-
? Q,-1 ” JQ,-N,

1))

Here K.’ and X, are constants, and <2 is the pair degeneracy of the shell. We

see that while #< has always the same sign, X5 changes sign in the middle of the
shell.

In realistic cases the estimates of eq.(3-1) are expected to be valid only
approximately. In our approach we have imposed somewhat weaker constrains on the
parameters: (i) it is assumed that within a series of isotones (isotopes) X, (X;,) does
not vary at all; (ii) the parameters €K and X are assumed to be smooth functions
of (N,) .

Concerning the sign of X and X7, a complication arises. From very simple
microscopic consideration it follows that the Xs (which also determined to a large
extent the sign of the quadrupole moment of the first excited state 2, are negative in
the region where the valence shell is less than half filled (particle-boson) and positive
in the region where the valance shell is more than half filled (hole-boson).
Quantitatively, such a behavior was confirmed in other phenomenological
calculations with IBM-2. For example in a study of the Ba isotopes with 72 < N < 80
good fit to the energy levels was obtained with X, =0.90 [115]. Since in the naive
shell-model picture in the Kr region both neutrons and protons are hole-like and
therefore both Xs would be positive, there would be no way to obtain an SU(5) type
spectrum, which requires opposite signs of XC and X,. This indicates that the
situation is not so simple and that more complicated effects play a role , such as a
possible nonclosedness of the Z= 50 or the N = 82 core. Although the Hamiltonian
invariant under simultaneous change in sign of both X{, and X7.and thus equally
good fits to energy spectra can be obtained for both combinations X, =0 and X,, <0
. Namely, only with this choice the observed sign of the mass quadrupole moment of
the 2, state in Kr can be reproduced .

The remaining parameters play a less important role and are used mainly to
improve the fit with experiment . In this work only C,.. and C., representing part
of the d-boson conserving interaction between neutron bosons, were used as free
parameters independent of 2V ,,. Finally, the values of & and <& were vary from

33



Chapter Three Results and Discussion

isotope to another, < kept constant. The parameters used for the various isotopes
are shown in table (3-1) .

It is seen that parameters are constant or vary smoothly: within a series of
isotopes X7, does not vary, the variation in € is very small and there is a slight
decrease of the value of K for the lighter Kr isotopes. The change in character of the
spectra through a series of isotopes is essentially due to two effects: (i) the increase
of the value of X for "“™Kr and decreases for ¥*°Kr, and (ii) the decrease of the
number of neutron bosons V... We note that the behaviors of & & X and X,is a
qualitative agreement with microscopic considerations (see eq.(3-1)). It was found
that both C,. and C.. vary for the isotopes. Such a behavior agree with the trend
found in other regions [34]. The positive value of <& guarantees that no low-lying
anti-symmetric multiplets occur for which there is no experimental evidence.

Table (3-1): IBM-2 Hamiltonian parameters for Kr isotopes, all parameters in MeV units except
X-and _X_ are dimensionless

Isotopes Nn N 8 K )(v er COv CZV C4v COTI’ C"277 C47T é- é
6 4 | 5 | 0701 | -0.080 | 041 | -0.60 | -1.20 | 020 | 0.1 | -12 | 030 | 030 | 0.051 | 0.032
36&40
78 4 | 4 [ 0722|000 [ 052]-060]| -066 | 027 | 011 | -12 | 031 | 030 | 0.102 | 0.130
3616/'42
0 4 | 3 | 0890 | -0.081 | 0.60 | -060 | 022 | 0.11 | 0.1 | -048 | -021 | 005 | 0242 | 0.050
3616/44
=) 4 | 2 | 0960 | -0.081 | 070 | -060 | 0.11 | -0.82 | 037 | 143 | -0.18 | 0.07 | 0.182 | 0.050
s 4 1 | 0949 | -0.080 | 0.81 | -0.60 | 00 | 00 | 00 | 014 | 025 | 038 | 0.601 | 0440
36&48
= 4 1 | 0920 | -0.087 | 0.62 | 060 | 0.12 | 0.12 | 0.12 | 030 | -0.18 | 0.0 | 0.601 | 0.450
3616/‘52
% 4 | 2 [ 0862 [ 0992 | 059 [-060 | 011 | 011 | o011 | 017 | 017 | 017 | 0632 | 0510
36&54
< =0.11 MeV
3.1.2 Energy Spectra

The calculated excitation energies of positive parity levels to "*°Kr are given
in table (3-1) and displayed in figures.(3-1,2,3,4,5,6,7). The agreement between the
calculated and experimental values is satisfactory.

Using the parameters in table (3-1), the estimated energy levels are shown in
the figures, along with experimental energy levels. As can be seen, the agreement
between experiment and theory is quite good and the general features are reproduced
well. We observe the discrepancy between theory and experiment for high spin states.
But one must be careful in comparing theory with experiment, since all calculated
states have a collective nature, whereas some of the experimental states may have a

particle-like structure. Behavior of the ratio R,,» = E(4;)/E(2;") of the energies of

the first 4," and 2, states are good criteria for the shape transition [116]. The value
of R4, ratio has the limiting value 2.0 for a quadrupole vibrator, 2.5 for a non-axial
gamma-soft rotor and 3.33 for an ideally symmetric rotor. R., remain nearly constant
at increase with neutron number. The estimated values change from isotope to another
(see table 3-2)), this meaning that their structure seems to be varying from axial
gamma soft to quadrupole vibrator SU (5) — O(6) . Since Kr nucleus has a rather
vibrational-like character, taking into account of the dynamic symmetry location of
the even-even Kr nuclei at the IBM phase Casten triangle where their parameter sets
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are at the SU (5) — O(6) transition region and closer to SU(5) character and we used
the multiple expansion form of the Hamiltonian for our approximation.

The shape transition predicted by this study is consistent with the
spectroscopic data for these nuclei. ®*°Kr are typical examples of isotopes that
exhibit a smooth phase transition from vibrational nuclei (SU(5)) to soft triaxial rotors

(O(6)).

Table (3-2): Energy ratio R,,, = E(4,")/ E(2,") for Kr isotopes

Exp. [117] 2.44 2.459 2.327 2.345 2.375 2.121 3.043
IBM-2 2.49 2.467 2.312 2.354 2.329 2.116 3.043

In the Figures we show the results of our calculations for the energies of the
ground state band (2,",4,",6,,8,"and 10,") in the ™ K5~ isotopes . We observe
the discrepancy between theory and experiment for J”* =6",8"in Kr isotopes with

neutron bosons (N =42.,44,46.,48) . However, one must be careful in comparing
theory with experiment, since all calculated low-lying states have a collective nature.

The order of the O3 and 3,"is correctly predicted in 7~® K3 isotopes and
we remark that the energy of the 3, state is predicted systematically too high. This is

a consequence of the presence of a Majarona term M , in the Hamiltonian

(eq. (2-43)). We have chosen the parameters of the Majarona force in such a way that
it pushes up states which are not completely symmetric with respect to proton and
neutron bosons, since there is no experimental evidence for such states. However,
experimental information becomes available about these states with mixed symmetry,
this situation could possibly be improved. In the present case it would have been
possible to further higher its energy by constant the value of < .

The position of the 23 state relative to the O3 state especially in
® K, K and % K- isotopes. The moment of inertia of the ground state band
increases, the quasi y-band is pushed up, and also O} state becomes a member of a
K=0 B-band.
The energy spectra show that the first criterion for identifying the intruder O states.
For instance, in "“*®*%K} the experimental energies of the O states are lager than
those of the calculated O states. As a consequence, we suspect that these states are
intruder. On the contrary in "**Kr the experimental data are close to the calculated
states and thus they may be the collective O states. However, no final conclusion

can be drawn from the energies alone, since it is very likely that both intruder and
collective O™ states will occur in the same energy region.
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Figure (3-1): Comparison between experimental and calculated energy levels for °Kr. The experimental
data are taken from ref. [117].
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Figure (3-2): Comparison between experimental and calculated energy levels for *Kr. The experimental
data are taken from ref. [117].
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Figure (3-3): Comparison between experimental and calculated energy levels for *Kr. The experimental
data are taken from ref. [117].
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Figure (3-4): Comparison between experimental and calculated energy levels for *Kr. The experimental
data are taken from ref. [117].
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Figure (3-5): Comparison between experimental and calculated energy levels for *Kr. The experimental
data are taken from ref. [117].
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Figure (3-6): Comparison between experimental and calculated energy levels for *Kr. The experimental
data are taken from ref. [117].
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Figure (3-7): Comparison between experimental and calculated energy levels for *’Kr. The experimental
data are taken from ref. [117].

3.1.3-Electric Transition Probability
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The effective boson charges €, and e, were calculated by plotting [118] M
against N,/ N, where

M, =(l/N,)[NB(E22 — 0] Peb=c,+e,N, /N, (for the SU(3) limit ...
2 for the O(6) limit....
M, =1/ N )Y pE22r - org eb=e_+e,N,/N, ( ©
OV +4 0

where B(E2) is the reduced transition probability, /V,,and /V,, are the boson
numbers of proton and neutron respectively, V=N, + N, is the total boson number.
The difference between the effective charge and the charge of the single nucleon is
referred to as the polarization charge. The value of effective charge may depend
somewhat on the orbit of the nucleon. In particular, the polarization effect decreases
when the binding energy of the nucleon becomes small.

Figure (3-8) represent the relation between ’NB (E2;2] - 0] /N ,ZT]

1/2
and

2
¢y +e,N, | N, for the SU(S) limit, %%B(Ezﬁf 0 /N,ig and

e,+e,N,/N,

for O(6) limit. The linearity is indeed present giving e,, =0.0288 b and

e, =0.209 &b inthe SU(5) limit ande,, =0.0575 eb and e, =0.1047 &b in the
O(6) limit .The best fit of effective charges to *™® Kj- isotopes was obtained

e, =0.04315 eb and e, =0.15685 eb .This result gives a clear indication that the
rotational contribution in nuclear motion in this region is very high.

We use used these results of effective charges to calculate the electric transition
probabilities using the NPBEM code. The results are presented in table (3-3).

@)y M3z ) My

0.05 -~

N?!' /NL'

Figure (3-8): The plot of the quantities M, and M; versus €,, +¢e,N,,/ N _for " Kr Isotopes.

It is well known that absolute gamma ray transition probabilities offer the
possibility of a very sensitive test of nuclear models and the majority of the
information on the nature of the ground state has come from studies of the energy
level spacing. The transition probability values of the exited state in the ground state
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band constitute another source of nuclear information. Yrast levels of even-even
nuclei (/; =2,4,6,.....) usually decay by E2 transition to the lower lying yrast level
with Jf =J, 2,

In table (3-3) we show the B(E2;2] — 0,) and B(E2;4] — 2)values,
which are of the same order of magnitude and display a typical decrease towards the
middle of the shell.

As a consequence of possible M1 admixture the B(E2;2; — 2;) quantity is

rather difficult to measure. For Kr isotopes, we give the different, conflicting
experimental results and we see that no general feature be derived from them, from
these values seems to increase for 7 g3- and decrease for 2 g5 .

In the table we show B(E2;2; — 0,") values. Experimentally the results are

radically different for the K7 isotopes . In the some Kr isotopes the value seems to
increased towards the middle of the shell, whereas in another K7 isotopes is
decreased. Our calculations could not reproduce these contradictory features
simultaneously.

The quantity B(E2;0; — 2,), which is shown in table (3-3), provides a
second clue for identifying intrude O states. If the experimental B(E2;0; — 2")
value largely deviates from the results of our calculation, it is very likely the observed
O states does not correspond to the collective state, but it is rather an intruder state.
In # K3- isotope, there is a good agreement between experimental and calculated
B(E2;0; — 2))value. This confirm our earlier statement about the nature of the
lowest O 7 state in this isotope.

The electric transition probabilities from the mixed-symmetry state J =17 to
the symmetric states (2,",2) is weak collective E2 transition. The E2 transition
between the 1+ and the 2;" ground state is small, whereas E2 transitions are large

between fully-symmetric states and between mixed-symmetry
states.

To conclude this section on the E2 properties, we give the results for the
quadrupole moments Q(2,") of the first excited 2 *state in table (3-3) (see equation

(2-41)). We show complication of theoretical results. The general features of these
results is clear, namely an increased in the negative quadrupole moment with
increasing neutron number.
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Jsaa

3.1.4-Magnetic Transition Probability

The B(M1) reduced transition probabilities were calculated using Eq.(2-54),
and the boson gyromagnetic factors £,,, £, were estimated using the fact that
g =Z/ A4 and the relation [119 ]
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N N
= T4 L 3-4
g gnNﬂ+N g, ( )

v

and one of the experimental B{M1;2] — 2;) =0.0429 L4 [24] for 7 K- isotope,
was used to produce a suitable estimation for the boson gyromagnetic factors. These

values are &, =0.782 f4 and g, 6 =0.328 4 . They are different from those of
the rare—earth nuclei, (g, —g, =0.6544,), suggested by Van Isacker et al., [120]

also used &, =144 and &, =04, to reduce the number of the model parameters in
their calculation of M1 properties in deformed nuclei. The results of our calculation
are listed in table (3-4). A good agreement between the theory and the available
experimental data is achieved. As can be seen from the table yields to a simple
prediction that M1 matrix elements values for gamma to ground band and transitions
should be equal for the same initial and final spin. Also the size of gamma to ground
band matrix elements seems to decrease as the mass number increases.

The results shows that the transitions between low-lying collective states are
relatively weak. This is because of the increase of the anti-symmetric component in
the wave functions introduced by F-spin breaking in the Hamiltonian. The magnitude
of M1 values increases with increasing spin for ¥ ~ & and ¥V = V transitions and we
see:

1- By fitting B(M1) from 2, to 2. we always get small value for
g,—8&, compared with the value basis on the microscopic calculations
8,8 =1.

2-  There are evidences that M1 small mode exists in all spectra.

3- one can not make decisive conclusions related to the agreement
between theoretical and experimental data from the above table due to the
lack of experimental data. However both experiments and theory predicts
small M1 component which is due to symmetry and forbiddances of band
crossing gamma transitions.

4-  The ¥V - V MI matrix elements are larger than the ¥ » & M1 matrix
elements by a factor of 2 to 3. Again, this agree qualitatively with the

perturbation expressions derived in ref. [121] .

46



Chapter Three Results and Discussion

5-  The size of the ¥ - & MI matrix elements seems to decrease with

increasing mass. Specially, a change in ¥ = & M1 strengths occurs when

the gamma band crosses the beta band.
The M1 properties of collective nuclei are certainly very sensitive to various, even
small, components in the wave functions either of collective or non-collective
character. In the 7 K3 isotopes it was shown that the inclusion of excitations
across the major shell and two quasi-particle states is important. One excepts that
also for ¥~ k3~ isotopes (which are near to closed shell for neutron) similar effects
come into play. As above analysis suggests they can manifest in considerable
renormalization of IBM-2 boson g-factors from their slandered values. The magnetic
dipole moment for first excited state is given by

H2D) = gl + 8Lyl 3—5)

where g,(g.) is the g-factor for the correlated proton (neutron) boson and Z,(L,)
is the corresponding angular momentum operator. According to the microscopic

foundation of the model, £,(£.)is expected to depend, in first approximation on

proton (neutron) number N, (N, )only, &€, =&,(N,) and g =g,(&,). The IBM-

2 calculations for £&2,")are listed in table 4, we see a good agreement with

experimental data.

It is clear that the two effects contribute to the dependence of the magnetic
moments on proton and neutron number: the dependence of £,,and &£.on proton
and neutron number and the variation of the matrix elements of the operator L,(L,)

with V,and V.. As will be better shown below, the former effect is related to the
shell structure of the orbits, while the latter is related to the average number of proton

and neutron boson taking part in the collective motion.
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3.1.5-Mixing Ratio X£2/M1)
We evaluate the mixing ratio X£E2/M1) for Kr isotopes, which depends on

the equation (2-55). These are compared with experimental and theoretical results in
table (3-5), where one can see good agreement with estimated and experimental
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values. The variations in sign of the £2/M1 mixing ratios from one isotope to
another for the same class of transitions, and within a given nucleus for transitions
from different spin states, suggest that a microscopic approach is needed to explain
the data theoretically. For such reason, the sign of the mixing ratio is not taken into
consideration. Sign convention of mixing ratios has been explained in detail by
Lang et al., [100] .

These results exhibit disagreement in some cases, with one case showing
disagreement in sign. However, it is a ratio between very small quantities and any
change in the dominator that will have a great influence on the ratio. The large
calculated value for 2, — 2; is not due to a dominant E2 transition, but may be under
the effect of very small M1 component in the transition. Moreover, the large predicted

value for transition 2; — 2, in *’Kr compared with experimental value may be

related to high predicted energy level value of the IBM-2; £(25) =1.287 MeV,

while the experimental value is 1.256 MeV. We are unable to bring the energy value
of this state close to experimental value simply by changing the Majorana parameters.

49



Chapter Three Results and Discussion

3.1.6-Electric Monopole Matrix Element A(£0)
The EO transition occurs between two states of the same spin and parity by

transferring energy and zero units of angular momentum, and it has no competing
gamma ray. The EQ transition is present when there is a change in the surface of the
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nucleus. For example, in nuclear models where the surface is assumed fixed, £0
transitions are strictly forbidden, such as in shell and IBM models. Electric monopole
transitions are completely under the penetration effect of atomic electrons on the
nucleus, and can occur not only in 0" — 0" transition but also, in competition with
gamma multipole transition, and depending on transition selection rules that may
compete in any AJ = 0 decay such as a 2" — 2" or any J; = J; states in the scheme.
When the transition energy greater than 2m,c* , monopole pair production is also
possible.

The EO0 reduced transition probability is given in equation (2-60). The
parameters in equation (2-57) can be predicted from the isotope shift [117] (see table
(3-7)), since such data are not available for Kr isotopes, we calculate these parameters
by fitting procedure into two experimental values of isotopic shifts (equation (2-62)).
The parameters which were subsequently used to evaluate the /A £0) -values were;
Bor = 0.062 fm* , By, = —0.021 fm* and y,,=0.032 fm* . From the table (3-6), in general
there is no experimental data to compare with the IBM-2 calculations.

The monopole matrix element is important for nuclear structure and the
model predictions due to their sensitivity for the nuclear shape. We conclude that
more experimental work is needed to clarify the band structure and investigate an
acceptable degree of agreement between the predictions of the models and the
experimental data.

We also find good agreement between the calculated and experimental values
for isotopic shifts for all krypton isotopes (table 3-7).

Table (3-6): Monopole matrix elements p(E0) for Kr isotopes in e.b

']i+ —>J; 76er 78[6" 80[6" SZK}” 84[6" 88er 90[6”
0, -0, 0.0431 0.0551 0.070 0.0750 0.0082 0.0094 0.075
0, — 0, 0.0067 0.00073 0.00080 0.00083 0.00089 0.00092 0.0009
0, -0, 3.18*10-3 0.0045 0.00034 0.00089 0.00094 0.0099 0.0102
2, -2, 0.0002 0.0034 0.0056 0.0076 0.0096 0.0099 0.013
2, -2, 0.00034 0.0041 0.00046 0.00052 0.00065 0.00067 0.00070
2, -2, 0.0021 0.0027 0.00351 0.00395 0.00519 0.00531 0.00872

Table(3-7): Isotopic Shifts for Kr Isotopes

Nucleus A < ]/’2 > Sin?
By [117 ] IBM-2
CKry e K : -0.009
K o K - 00143
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0 g 2 K -0.028(5) -0.0298
2 g S -0.040(4) -0.055
% K = K 0.071(3) 0.0810
% Ko = Ko 0.379(7) 0.431
S Ko 2 Kirs, 0.751 0.655

Mixed Symmetry States-3.1.7

One of the advantage of the IBM-2 is ability of reproducing the mixed
symmetry states. These states are created by a mixture of the wave function of
protons and neutrons that are observed in most even-even-even nuclei. This mixed
symmetry states (MSSs) has been observed in many nuclei. In more vibrational and
y—soft nuclei this mixed symmetry states (MSSs) have been observed in many
nuclei. In more vibrational and gamma soft nuclei. We expect the lowest MSS with
J =2% state, while in rotational nuclei observed as the J7 =1* state. In "**°Kr

isotopes we see that when the states J’* =27,2; and 3,  are strongly dominated
by the F=F,.., the strongest contribution to the J"* =27,37 states is the one with

F=F,.-1. We can see the J” =27,3] states as a mixed symmetry states in " Kr
isotopes.

In this work, we proposed that the 275 state decays to the first excited state
with an energy 1.598 MeV in "°Kr with a mixing ratio X£2/M1) =1.189 which
means it is dominated by the M1 transition, with B(M1) equal to 0.0031 ££ . In "*Kr

isotope, for the third J = 2" state at energy 1.685 MeV excitation is close to the
experimental data for 1.755 MeV . The energy is well reproduced by the calculation,
where the choice of the Majarona parameters plays a crucial role. This state is quite

pure F,.-1 with R = J‘FZ‘J >/ Fo (Fx 1) =50%  The excitation energy of
35 state is 2.399 MeV with mixing ratio S(E2/M1;3] — 2]) =2.565,

B(M1;3; — 27)=0.00301 Lt . In the *’K7 , the calculation predicted the 27 state at
2.251 MeV with R=83% .

In other 27880 k7. isotopes the states 25 and 3, are mixed symmetry

states their excitation energies are close to available experimental data and the values
of R =73%75%,72% and 80% respectively .

In all ™ Kz isotopes that the second 3 states to be the lowest J”* =3*
mixed symmetry states with two phonon excitation. The low-lying levels with angular
momentum greater than 3™ with a large mixed symmetry states component are
predicted in this work.

The energy fit to several levels is very sensitive to the parameters in the
Majorana term which also strongly influence the magnitude and sign of the multipole
mixing ratios of many transitions. In particular we find that the calculated energies of
a number of states are affected in a very similar way and these might be considered to
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have a mixed-symmetry origin, or contain substantial mixed-symmetry components.
Those with a mixed-symmetry origin have no counterpart in /BM-1. The energy

dependence of the 25 and 2 levels is consistent with the mixed-symmetry

character of the 25 level being shared with neighboring states.

The influence of the parameters on these states is shown in table (3-1). The
< term strongly affects the energies of all of the levels considered to have a mixed-
symmetry character or to contain mixed-symmetry components . In obtaining this
value of the & and <& terms were maintained at their best-fit values. The mixing
ratio data, discussed in the above section have a strong dependence on & and show
that & cannot be zero in our fit.

The 17 level is strongly affected by changing <&, while the 3, level
energy depends on the < value. The 25 mixed-symmetry state and the
predominantly symmetric 25 and 2 levels are largely unaffected by changing <,
or < in contrast to their dependence on <& .

Most experimentally observed low-spin levels, apart from 1™ states below
2.5 MeV; have their counterpart in the /BM-2 level spectrum although the energy
match is not good in every case. It also appears that we may identify the members of
the family of mixed-symmetry states corresponding to the [N-1,1] representation
[122,123]. The small £2/M mixing ratios are consistent with this interpretation but
level lifetimes are required for a firmer identification.

In Kr isotopes, all hitherto discovered MSSs have been reviewed in [123]. It
has been shown that the lowest lying MSSs is the one quadrupole phonon MSS labeled

as 2145 , 31as and characterized by a weakly-collective E2 transition probability to
the ground state and a large M1 transition to the 2" state.

Table (3-6) contains the calculated A£0) values. In general there is no
experimental data to compare with the IBM-2 results. It must also be remarked that

the comparatively large AX£0) values for transitions from the 25 mixed-symmetry
state and from the 2;" and 2 states indicate that substantial £0 components occur
in these decays from mixed-symmetry states. The £0 matrix element describing such
decay is proportional to £3,-and £3., although the /5 values are small, their sign
difference results in the £0 matrix being greatest.
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Nd Isotopes 3.3
Hamiltonian Interaction Parameters 3.3.1

The isotopes chosen in this work are A=144, 146, 148, 150, 152, 154 due to
the presence of available experimental data for energy levels, the electromagnetic
transition probability, the mixing ratios and monopole transition values. We have
N, =5, (10 protons outside the closed shell 50), and 2V, varies from 1 for Nd'* to 6
for Nd"**, measured from the closed shell at 82. While the parameters &> /& and
X.» as well as the Majorana parameters <, > with k =1,2,3, were treated as free
parameters and their values were estimated by fitting with the experimental values.
The procedure was made by selecting the traditional value of the parameters and
allowing one parameter to vary while keeping the others constant until the best fit
with the experimental obtained. This was carried out until one overall fit was
obtained. The best values for the Hamiltonian parameters are given in table (3-17).

This parameters was carried out iteratively until an overall fit was achieved.
Having obtained wavefunctions for the states in '**"'**Nd after fitting the experimental
energy levels in IBM-2, we can calculate the electromagnetic transition rates between
states using the program NPBOS [124]. The Hamiltonian sets of parameters which
have been varied along the isotopic chain are shown as a function of the neutron
number for Nd isotopes in table (3-17).

Table (3-17): IBM-2 Hamiltonian parameters for "“*'*/Nd isotopes, all parameters in MeV units
except X, ,and X[, are dimensionless.

Isotopes N, N, N E K X, Xor & =& &
;1)4 M84 5 1 6 0.86 -0.093 -1.19 -1.18 0.012 -0.09
2)6 Nl “ 5 2 7 0.82 -0.096 -1.11 -1.18 0.012 -0.09
16‘(1)8 Ned « 5 3 8 0.70 -0.082 -1.11 -1.18 0.012 -0.09
16%0 Ned o 5 4 9 0.51 -0.080 -1.11 -1.18 0.012 -0.09
16%2 Ned o 5 5 10 0.42 -0.070 -1.11 -1.18 0.012 -0.09
16(5)4 Ned o 5 6 11 0.44 -0.069 -1.11 -1.18 0.012 -0.09

c, =¢,, =¢C,, =00, C,,=¢C,,=C,,=0.0

Energy Spectra 3.3.2

Concentration was made on the 2," to make a reasonable fit to experimental
data. A sample of experimental and theoretical decay scheme is presented in figures
(3-16,17,18,19,20,21). As one can see an overall a good agreement was obtained for
the gamma and beta bands for '**"**Nd isotopes. The results in the figures show a
comparison between experimental and theoretical energy levels in '*'**Nd isotopes,
the agreement is very good for the 2, and 4,, but the model does not able to predict the
8, and this may be due to the high spin of this state. Actually this has slim effects on
calculations of transitions probability.
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The behavior of the ratio of the energies £(4;)/ E(2;) are good criterion for
the shape transition (see table( 3-18)). From the table (3-18), the systematic of basic
observables in "**Nd isotopes showing E(4,)/ E(2]") values increased gradually

with increasing neutron numbers, and the agreement between the experimental values
and the calculated ones. The calculated values change from about 1.885 to about
3.281. It means that their structure seems to be varying from very near-harmonic
vibrator (HV) SU(5) limit to rotation nuclei (SU(3) characters ) .

Table (3-18): Energy ratio R, ,, = E(4,)/ E(2]") for "“*'*Nd isotopes

€@ /2 | WI22Nd | 26Nd. | “2Nd., | 120Nd. | 132Nd., | 22N d.,
Exp. [117] | 1.887 2.297 2.493 2.930 3.263 3.230
IBM-2 1.885 2.300 2.490 2.930 3.255 3.281
X(5) 291 291 291 291 291 291

From the table (3-18), the '**'**Nd shows a nuclear structure is spherical
(near harmonic vibrator), '*Nd being a transitional nucleus (O(6) limit)). As it is seen
from the table (3-18) the calculated and experimental energy values for *’Nd are very
close to X(5) predictions. Around N = 90, the positions of the excited 0 states are also
close to the X(5) prediction and we note that the spacings in the excited sequence
follow the expected behavior. It is regarded as a transitional nucleus, since it exhibits
both the features of vibrational nuclei, like a two phonon triplet at approximately

twice the excitation energy of 2,  as well as the features of rotational nuclei, like an

intrinsic quadrupole moment and an enhanced B(E2) value of the 2, state.
:[For X(5) critical point symmetry these signatures are listed below [93
. The energy ratio £(4,)/ E(2;) should be approximately 2.91 -1

The position of the first excited collective O state is approximately 5.67 times -2
the

.energy of the 2" state

Clearly there are many examples of nuclei with yrast energies that closely

follow the X(5) prediction. However, most of these can be excluded on the basis of
their deduced yrast B(E2;J—J-2) values. Indeed, from the available data, the only
nuclei that remain candidate is the "’Nd. For this subset of isotope, the properties of
the excited states, and the transitions from them, can be examined in more detail. For
''Nd the position of the O3 level is significantly lower than the X(5) prediction and
little further information is known about states in the relevant excited sequences. For
the N = 90 isotones, the positions of the O levels are close to the X(5) prediction

of E(03) ~5.67 E(2,") but the energy spacing of sates in the excited sequence are
much lower than predicted. However, the X(5) picture can be applied to a limited
number of transitional nuclei, where it is able to reproduce properties of the yrast
.states

The nucleus "°Nd have been very well studied and are quite close to X(5), and
the existing data for the others suggest they are good candidates. Further data in these
cases would be very useful. The "*'**Nd taken the rotational shape to deformed rotor
shape .
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Figure (3-16): Comparison between experimental and calculated energy levels for '*“Nd. The experimental
data are taken from ref. [117].
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Figure (3-17): Comparison between experimental and calculated energy levels for '**Nd. The experimental
data are taken from ref. [117].
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Figure (3-18): Comparison between experimental and calculated energy levels for '*Nd. The experimental
data are taken from ref. [117].
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Figure (3-19): Comparison between experimental and calculated energy levels for '’Nd. The experimental
data are taken from ref. [117].

Figure (3-20): Comparison between experimental and calculated energy levels for ' Nd. The experimental
data are taken from ref. [117].
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Figure (3-21): Comparison between experimental and calculated energy levels for '*Nd. The experimental
data are taken from ref. [117].
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3.3.3 Electric Transition Probability

The effective boson charges €, and e, were calculated by plotting
[118] M; (SU(5) limit) in Egs. (3-1) and M; (for SU(3) limit) is given by the
equation:

5N NPT
M, :(1/Nn)%mB(E252l -0 E[ eb=e +e,N,/N:  (For SU3) limit........... (3-5

against N,/ N, The linearity is indeed present giving €, =0.3778 &b and
e, =0.0946 b inthe SU(5) limit and e,, =0.33 &b , and e, =0.075 &b in the
SU(3) limit. The best fit to '* ™>* A& isotopes was obtained e,, =0.3538 &b and

e, =0.0848 &b . We use used these results of effective charges to calculate the electric
transition probabilities B(E2)s using the NPBEM code. The results are presented in table
(3-19).

My @y, M3

0.35

5\3\3\
0.3 /

0.25 A S

0.2

0.1 +

0.05 +

N_/N,

Figure (3-22): The plot of the quantity M, and M; versus €,, +¢e,N,/ N _for *'%Nd isotopes.

In table (3-19), shows some B(E2) electric transition probabilities of levels for
even—even "*'"*Nd isotopes. The results of the present study were compared with
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experimental values and it was seen that they are in good agreement. We have
calculated E2 transition properties of '**"'3*Nd in the framework of IBM-2.

The calculated and theoretical B(E;2; — 0,), B(E;4, — 2|) and

B(E;6; — 4]) values are mostly in good agreement and increased with increasing

neutron number and they show similar distribution and display a typical increase
towards the middle of the shell. The enhancement of B(E2) values towards the middle
of the shell should be noted.

The large electric transition probability values in neodymium isotopes is the
main indicator of the vibrational behaviour of these isotopes.

In table (3-19), we show the results for B(E;2; — 0,) and B(E;27 — 0;)

values. This quantity is rather small since this transition is forbidden in all three limits
of IBM [27]. The results for the B(E;2; — 2.) values are shown. The experimental
.AInformation of this quantity is very limited, and this transition contain M1 admixture

For ""Nd (X(5) model) the strength of transitions between yrast states as
reflected in the B(E2;J—J-2) values should increase with angular momentum J at a
rate intermediate between the values for a vibrator and a rotor

The quadrupole moment for first excited state in "““">*Nd isotopes are very
well described. As mentioned above, the calculated values of Q(2]") indicated this
nucleus has prolate shape in first excited states.
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Jgaadl

(3-19)

3.3.4-Magnetic Transition Probability
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The M1 transition operator is given in Eq.(2-49), where the gyromagnetic
factors for bosons £,, and £, are estimated. The reduced E2 and M1 matrix
elements were combined in a calculation of mixing ratio X£2/M1) using the
relation which is given by Eq. (2-55).

Sambatora et al., [119 ] suggested a total &£ -factor which is given in Eq. (3-
state & -factor. The value of the measured magnetic

moment 4 =2g =0.35(3) £4 [117], and the experimental mixing ratio

4), used to compute the 2,

O(2; - 2)=-1.6(5) [100] were used to produce sutable estimation for the boson

gyromagnetic factors. The values are &, =0.413 £4, and &, =0.322 44, The results
of the calculations are listed in table (3-20).

Table (3-20): Reduced transitions probability B(M1) in ,Ll,z\, units for ““*Nd isotopes

BMLJ" — J))
J;’ N J;’_ EONE 4N d BN [EDN NP NP SN
21—2, 0.0006 0.00075 0.00087 0.00053 0.000412 | 0.000522 | 0.00063
1 1
21—2; 0.00011 0.00015 0.00021 0.00029 0.00033 0.000412 | 0.00052
0
2,23 0.00045 0.00056 0.00061 0.00062 0.00083 0.00088 | 0.00089
2
21—3, 0.00231 0.00439 0.00521 0.00431 0.0051 0.00530 0.0067
2,—3, 0.0047 0.0031 0.0081 0.009 0.018 0.0194 0.0210
3,553, 10°%2 0.0006 0.0010 | 0.0054 0.0057 | 0.00602 | 0.0073
0,—1, 0.732 0.747 0.824 0.902 0.932 0.986 1.340
L(20) (Exp. | 0350) 0.5802) 0.64(8) | 0.644(18) - - :
) 0.297 0.432 0.542 0.589 0.621 0.763 0.872
H(27) IBM-
2

[Experimental data are taken from refs.[ 117

From the results of B(M1), the transitions between low-lying collective states

in IBM-2 vanish is not necessarily a consequence of F-spin symmetry, but may be

related to the existence of other symmetries, like O(5) or SU(3).

The M1 excitation strength for the B(M1;17 — 0;") transition is proportional
to the factor g_ and depends only weakly on the strength of Majarona force.

The magnetic dipole moment for first excited state in even-even '****Nd
isotopes provide a sensitive test of the effective boson number in the IBM-2
framework, in Nd isotopes with N = 84-90, confirm the validity of assuming a
drastic change in number of proton boson when the number of neutron boson is
increased from 88 to 90.
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3.3.5-Mixing Ratio H(E2/M1)

The E2/M1 multipole mixing ratios for '**'**Nd isotopes, XE2/M1)  were
calculated for some selected transitions between states. The sign of the mixing ratio
must be chosen according to the sign of the reduced matrix elements. The equations
used are (2-52) for M1 transitions and (2-55) for the mixing ratios. The results are
listed in table (3-21). The agreement with available experimental data [100,117] is
more than good especially in the sign of the mixing ratio. However, there is a large
disagreement in the mixing ratios of some transitions, is not due to a dominate E2
transition, but may be under the effect of very small value of M1 matrix element.
However, it is a ratio between very small quantities and may change in the dominator
that will have a great influence on the ratio.
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(21-3) Jsall
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3.3.6-Electric Monopole Matrix Element A(£0)

Electric monopole (EO) transitions between nuclear levels proceed mainly by
internal conversion with no transfer of angular momentum to the ejected electron. For
transition energies greater than 2myc?, electron- positron pair creation is also possible;
two-photon emission is possible at all energies but extremely improbable. The EO
transition also occurs in cases where the levels have the same spin and parity (

I; =1, #0)  This means that the EQ transition competes with E2 and M1
components in these transitions.

The reduced matrix monopole transition is given in Eq.(2-60), the necessary
parameters of the monopole matrix element AXE0) are derived from the values of

P(E0;0; — 0)=1.8(2) [100] for **Nd and the value of the isomer shift for the
same isotopes S <r? >=1.62 fin> [131]. We obtain [3,,, =0.0426 fin*

B,, =0.0206 fin® and y,, =—45*107 fin® . Table (3-22) contain the calculated

AEO) values . In general there is no experimental data to compare with IBM-2
calculations.

Table (3-22): Monopole matrix element p(E0) for '“*Nd isotopes in e.b

J[+ _)J;— I44Nd 146Nd 148Nd ISONd 152Nd 154Nd
Exp. IBM-2 Exp. IBM-2 | Exp. IBM-2 | Exp. IBM-2 Exp. IBM-2 Exp. IBM-2
0. -0 1.82(6 1.976 - 0.072 - 0.078 - 0.083 - 0.086 - 0.098
2 1
)

0 0 - 3.18*10° - 0.0074 - 0.0077 - 0.0079 - 0.0084 - 0.0089
3 Y

0 0 - 0.070 - 0.0003 - 0.0008 - 0.0009 - 0.0009 - 0.0010
3 V2 4 9 3 6

2 2 - 0.0034 - 0.0055 - 0.0076 - 0.0079 - 0.0085 - 0.0089
2 T4

Experimental data are taken from ref. [100]

We notice that the theoretical values for the X (£0/ E2) ratio are small, for
some transitions (see table (3-23)) which means that there is a small contribution of
EO transition on the life time of the 0" states. There are two high values of
X (E£0/E2) in transitions from O3 to 0, in "*">*Nd isotopes means that this state
decay mostly by the EO and according to this one could say that the study of this state
give information about the shape of the nucleus, because the E0 transitions matrix
elements connected strongly with the penetration of the atomic electron to the
nucleus. So combination of the wavefunction of atomic electron, which is well

known, and the nuclear surface give good information of the nuclear shape.
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Table(3-23): X(EO0/E2) values for "““**Nd Isotopes

+ + 144 146 148 150 152 154
J5 = J; Nd Nd Nd Nd Nd Nd
1BM-2 1BM-2 1BM-2 IBM-2 IBM-2 1IBM-2
0. -0 4.560 6.980 10.672 13.0 18.0 16
2 1
0, — 0, 102%3.33 0.0046 0.0054 0.0075 0.0089 0.00076
0, — 0, 3.230 4.189 10.342 10.650 15.0 12.55
2 .2 4.220 8.620 9.451 11.0 23 27.870
2 1
To evaluate the isomer shifts for "**'**Nd isotopes, we depend on Eq.(2- 63).
The results of isomer shifts are listed in table (3-24). We notice the values of IBM-2
and the available experimental data are increased with increasing neutron number.
Table (3-24) : The isomer shifts & <r> fm’ for '**'5*Vd isotopes
isotopes 144 N 146 N 148 Nd 150Nd 152Nd 154Nd
Exp.[117] 0.162 0.164 - 0.167 - -
1BM-2 0.155 0.176 0.181 0.188 0.194 0.218

3.3.7-Mixed-Symmetry States

Collective excitations are a common phenomena in atomic nuclei. These
excitations arise from the coherent movement of many particles in the nucleus. A
special class of collective excitations, called mixed-symmetry states, which are
defined in the IBM-2, have been found in atomic nuclei and are interpreted
geometrically as an out of phase motion of protons and neutrons. Together with
collective excitations in which the protons and neutrons move in phase, these states
can be used as building blocks for a general description of collective phenomena in
nuclei. Mixed symmetry states are also sensitive to the strength of the residual proton-
neutron quadrupole interaction in the valence shell and thus their properties are
important in constraining the strength of this interaction. A number of one-quadrupole

phonon mixed symmetry (25 ) states have been found in vibrational nuclei in the

A=140-150 and 1," in the A=152-154 mass region. To better understand the
evolution of mixed-symmetry states in this mass region, experiments were done to
identify the 25 state in the isotopes “*'*'Nd and 1, state in '"*'**Nd isotopes.

The evolution of the energy of the 23 state in the N = 84 isotope shows in

increase in the proton-neutron interaction in the valence shell. The energy of these
states were fitted by performing an IBM-2 calculation, which shows that the evolution
in energy can be modelled with an appropriate set of terms in the IBM-2 Hamiltonian.

The 25 state in the N = 86 isotope shows a similar behavior to the corresponding

states in the NV = 88 isotope and show that the mixed-symmetry states are sensitive to
the residual proton-neutron interaction in this mass region.

88



Chapter Three Results and Discussion

The M1 transitions strengths for "**'*Nd are given in table (3-22). They are
increased with increasing neutron number, each corresponding to the large or small
values of mixing ratio . The larger M1 transition of
B(M1;27 — 27) =0.000520 s for '**Nd corresponding to & = 12.0 is favored due
to the fact that the other possible value of the B(M1) results in a
B(E2;2] — 2)=0.0018 ¢*b* which is much larger than can be accounted for from
any standard description of collective nuclei. Taking the values of the larger M1
transitions for the 17 — 0] transition for all **'**Nd isotopes as can be seen in table

(3-22) we find the 1," state is the dominant fragment of the 0, mixed-symmetry state.

The small values of the mixing ratio o suggest that there may be a strong M1
transition between 25 and 2. This would be consistent with transition from mixed

symmetry state to fully symmetry although, as we shall see, the boson number
enhancement factor is not present in the vibrational limit [130].

In the vibrational limit the ground state contains no d bosons and there are two
2" states with one d boson, corresponding to full symmetry and mixed symmetry

[130]. We shall associate these two states with the 25 and 2" states, respectively.
They are given in terms of the ground state |0 ™)

27) =i, +dzs 07

2:)={(N, /NN, ) 2 d)s, = (N, NN) P d s,

0")
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X e Isotopes 3.2
Hamiltonian Interaction Parameters 3.2.1

The computer program NPBOS [124] was used to make the Hamiltonian
diagonal. In principle, all parameters can be varied independently in fitting the energy
spectrum of one nucleus. However, in order to reduce the number of free parameters
and in agreement with microscopic calculations of Turkan et al., [66], only € and K
are vary as a function to both of N, and N, i.e. €=€&( N N, ) and K = K( N N, are
allowed. The other parameters depend only on N,or N,, i.e. Xn= X« Ny),

Xv=Xv (N,), Crn=CiA Ny) and Cr,= C.y ( Ny). Thus, in isotopes chain, X is kept
constant, C;,; and Cy , & =&, & are kept constant for all isotopes (see table (3-
8)).

The isotopes '**"**Xe have NV, =2 and V. varies from 6 to 1, while the
parameters €, K and X{, were treated as free parameters and their values were
estimated by fitting to the measured level energies. This procedure was made by
selecting the “traditional” values of the parameters and then allowing one parameter
to vary while keeping the others constant until a best fit was obtained. This was
carried out iteratively until an overall fit was achieved. The best fit values for the
Hamiltonian parameters are given in table (3-8).

Table (3-8): IBM-2 Hamiltonian parameters for ***/Xe isotopes, all parameters in MeV units
except X,and X are dimensionless

lsotopes N N N g K )(v Xr[ COV CZV C4v 1—253 52

77 | %4
124 2 6 8 0.70 | -0.145 | 0.0 | -0.80 | 0.10 | -0.10 | 0.0 0.12 -0.4
st X g
126 7, 2 5 7 0.70 | -0.155 | 0.20 | -0.80 | 0.30 0.0 0.0 0.12 0.4-
54 72

Xe 2 4 6 0.76 | -0.170 | 0.33 [ -0.80 0.30 0.10 0.0 0.12 0.4-
74

Xe 2 3 5 0.76 | -0.190 | 0.50 [ -0.80 | 0.30 | 0.10 | 0.0 0.12 -0.4
67

132 2 2 4 090 | -2.10 [ 090 | -0.80 | 030 [ 0.10 | 0.0 0.12 0.4-
4 &78

134 2 1 3 093 | -0.080 | 0.2 | -0.80 0.0 0.0 0.0 0.12 0.4-
4 )@80

3.2.2 Energy Spectra

The calculated and experimental energy levels are shown in figures
(3-9,10,11,12,13,14). The experimental data are taken from [117]. The IBM-2
parameters employed in the calculation are shown in table (3-8). Overall, the
evaluation of the parameters follows a smooth trend, according to the gradual changes
in nuclear structure of the isotopes.

The agreement between the theoretical and the experimental levels is, in
general, good except for some cases in high spin states, we believe that is due to the
change of the projection of the angular momentum which may be due to band
crossing and change in angular momentum.
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The calculated results show that R4, >2 for all '**'**Xe isotopes (see table (3-
9)) and it means that their structure seems to be varying from gamma-soft rotor O(6)
to along near-harmonic vibrator (HV) SU(5).

The energy levels of '**'**Xe appear to form a pattern typical for O(6)
symmetry (IBM-1 limits). Similarly to Refs [125,126], for each eigenstate with O(6)
quantum number ¢ = N a corresponding nuclear state can be found up to O(5)
quantum number 7 = 5 and angular momentum 10 [ , while the O3 state seems to be
the band-head of the excited O(6) family with o =N — 2.

Using this approach, we have quantitatively show that, in **'**Xe, the O(6)
symmetry is completely dissolved while the O(5) symmetry is only slightly perturbed.
It is therefore important the issue to be investigated further which requires more E2
transition rates for high-lying off-yrast states of nuclei that are currently being viewed
as close to the O(6) symmetry be measured and analyzed with the method we have
proposed here.

The most basic structural signature of the E(5) symmetry is a value of the ratio
Ru,=E(47)/ E(2;) of 2.20. This value is intermediate between the values for

spherical nuclei (2.00) and gamma -soft rotor (2.50). However there are large number
of nuclei in the mass region A~130 having the value for this ratio in the desired range.
Thus, an interpretation based only on the R4, can be ambiguous and additional
signatures need to be considered. Often, the decay properties of the lowest excited 0
states are used as an additional signature of the E(5) structure.

In the case of '**3%32Xe, the Ry, value 2.271, 2.270 and 2.163 respectively,
(see table (3-9)) lies very close to the ideal value for the E(5) symmetry indicating
that it lies more towards the SU(5) side.

A comparison of the key signatures for E(5) critical point symmetry is done
for the Xe isotopes obtained from the present work with the calculated E(5) values
and the values obtained as given in table (3-9). The values shown in the table, suggest
that the '*'3132Xe isotopes has many evidences of lying near the E(5) critical point

symmetry. The value of £(07)/ E(2)) for *>Xe is 3.73 lies very near to the ideal

value 3.59; also the value for the ratio £(03)/ E(03) 1.33 shows good resemblance
with the theoretical value for E(5) symmetry 1.18.

It has been observed that the positioning of the 0" states plays a crucial role in
determining the behavior of the nucleus near the critical symmetry. This can be seen
from the figures. These figures show the changes in positioning of the levels as the
neutron number changes for Xe isotopes respectively. It is clear from the figures that

the variation of the levels other than the O levels is smooth, where as there are

abrupt changes in the positioning of these two levels.
Our data and our analysis have emphasized the significance of the ordering of

the excited O3 and O configurations for assigning the structure of a nucleus near
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the E(5) critical point. Therefore, it is interesting to examine the behavior of the
observable Ay = [E( 05 )—E(O3))/E(2;"). It takes the values -1 (harmonic vibrator),

-0.56 (E(5)), 0 at the crossing point of the O3, configurations and becomes positive
towards the O(6) limit. Along the chain of Xe isotopes we consider the experimental
energies of the first and the second excited 0" states with dominant O3 or O
assignment. The assignments of their dominant character have been done for '**Xe
([125,126]), *Xe ([127]), "**Xe , **Xe [128], and this work, already in the literature.
The R4, ratios shown on top decrease monotonically as a function of neutron number
from 2.48 for **Xe to 2.04 for **Xe. The value of 2.20 expected for E(5) is crossed
between **Xe and **Xe. The 0" configurations cross between '**Xe and “’Xe . The
Ao+ value for '**Xe is positive. This rules out '**Xe as a candidate for a realization of
E(5) symmetry. We observe, however, that Ay, = —0.42 for **Xe making that nucleus
a promising candidate for a close match of E(5) predictions.

In general, the ground bands are fitted very well, The fitting in the gamma
bands are slightly worse but are still better than those for the beta bands. The fitting in
beta bands are not so good as those in the ground bands and gamma bands. Also it is
in the beta bands that IBM-2 show the most distinct improvements become smaller as
we go to lighter isotopes. This suggest that the interactions between unlike bosons are

relatively more important in system which are closer to the closed shells.

Table (3-9): Energy ratios for /***Xe isotopes

Isotopes | £(47)/ E(2)) E(07)/ E(2]) E03)/ E2)) E(07)/ E(03)
E(50 |IBM-2 [Exp. | E(5) | IBM-2 | Exp. | E(5) |IBM-2 [ Exp. | E(5) | IBM-2 | Exp.

124 22 | 2486 | 2482 | 3.03 | 3412 | 3584 | 359 | 5.008 | 4773 | 1.18 | 1467 | 133

4 ‘)@ 70

126 37, 22 | 2484 [ 2424 ] 303 | 2670 [ 3378 | 359 | 4853 | 4530 | 1.18 | 1.817 | 1.340

54 72

R 22 | 2272 [ 2332 3.03 | 3.649 [3.573 | 359 | 3.9233 | 4238 | 1.18 | 1.075 | 1.185

54 74

130 22 | 2272 [ 2247 | 3.03 | 3346 |3.080 | 359 | 3582 [3.759 | 1.18 | 1.124 | 1217

54 & 76

132 22 | 2163 [ 2157 | 3.03 | 2.696 |2.796 | 359 | 3471 [3372 | 1.18 | 1340 | 133

54 ‘)@ 78

B e | 22 205232043 303 - 1.931 | 3.59 - - 1.18 - -

[Experimental data are taken from ref.[65,100,117
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Figure (3-9): Comparison between experimental and calculated energy levels for '**Xe. The experimental
data are taken from ref. [117].

57



Chapter Three Results and Discussion

Figure (3-10): Comparison between experimental and calculated energy levels for '**Xe. The experimental
data are taken from ref. [117].
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Figure (3-11): Comparison between experimental and calculated energy levels for '*Xe. The experimental
data are taken from ref. [117].
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Figure (3-12): Comparison between experimental and calculated energy levels for *"Xe. The experimental
data are taken from ref. [117].
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Figure (3-13): Comparison between experimental and calculated energy levels for **Xe. The experimental
data are taken from ref. [117].
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Figure (3-14): Comparison between experimental and calculated energy levels for **Xe. The experimental
data are taken from ref. [117].

3.2.3 Electric Transition Probability
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The effective boson charges €,, and e, were calculated by plotting [118] M,
and M, which are given in eq. (3-2,3) against NV, / N, (see figure (3-16)) . The two
effective charges are taken to be e, = 0.13435 eb and e,= 0.1379 eb. The results of
the calculations are presented in table (3-10). Looking through the table, one can
easily recognize that our calculations reproduce the experimental data quite well.

The B(E2;2; — 0)) and B(E2;4; — 2;) values decreased as neutron

number increases toward the middle of the shell as the value of B(E2;2; — 2, ) has

small value because contains admixture of M1. As a consequence of possible M1

admixture, this quantity is rather difficult to measure. The value of B(E2;2; — 0;)
is small because this transition from quasi-beta band to ground state band (cross over
transition).

In table (3-10) the B(E2)'s we obtained between ground state band agree
almost perfectly with experiment. The agreement of the IBM-2 B(E2)'s with
experiment, for transitions from beta and gamma bands states to the ground band
states are also rather good, though no as good as they are for transitions within the
ground band states.

The **%132Xe isotopes has many evidences of lying near the E(5) critical point
symmetry, the theoretical and experimental signatures are listed below [75]:

1- B(E2;4] — 2;)value should be approximately 1.5 times the

B(E2;2] - 0;) value.

2- There should be excited O states lying at approximately 3—4 times the

energy of the 2, state.

3-The decay of the O3 should reflect its multiphonon structure. There is an

allowed E2 transition to the 2 level, but no allowed transition to the 2"

level.

4- The decay of the O3 state should also be characteristic of E(5). There is an
allowed transition to the 2" level with strength of approximately 0.5 the

B(E2;27 - 0;) value.

What one finds, therefore, is the 0" —2* —2" sequence characteristic of an
0O(6)—SU(5) nuclei identified several times in Xe isotopes. The agreement between

the IBM-2 calculations and experimental transition probabilities is remarkable. For
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the levels of in figures (3-9,10,11,12,13,14) all transitions which are calculated to be
intense are the strongest observed, all forbidden transitions are weak or unobserved,

but usually <<10 percent of the strongest transition.
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Figure (3-15): The plot of the quantity M; and M, versus €,, +¢e,N,,/ N, for **'*Xe Isotopes.
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3.2.4-Magnetic Transition Probability

We also investigated M1 transition rates and the magnetic moment of the first
excited 27 state, using the boson M1 operator which is given in Eq.(2- 52),
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indicating that the M1 transition properties are exclusively determined by the
gyromagnetic factors £,-and £. . The boson gyromagnetic factors were estimated
using the fact that & =Z/ 4 and the relation (3-4). Taking the number of bosons for
2Xeas NV,,=2and N,=5,and experimental value

B(M1;2; —2)=4.35x10"" 1, [65], we obtained 0.428 = 0.285 g, +0.714 g,
which places limits on the gyromagnetic factors. We used the value g, =0.810 £4,
and g, =0.342 £4, in equation (2-49) to calculate the M1 matrix elements.

The resulting IBM-2 calculation for B(M1), together with experimental values
are shown in table (3-11). The results for the transitions feature for gamma band to
ground band are claimed to have a collective origin. Several trends are apparent from
the data in table (3-11): (i) the magnitude of the M1 matrix elements increased with
spin both gamma band to ground band transitions, in agreement with spin
dependence. (ii) the size of gamma band to ground band matrix element seems to
decrease with increasing mass number. (iii) The gamma-beta band M1 transitions are
larger than gamma band to beta band transition by a factor of 2 to 3.

These three aspects of M1 data shown in table (3-11) are reproduced by the
calculation through a smooth variation of the parameters € and X with a few
exceptions good agreement between the theory and experimental data is achieved.

Magnetic dipole moment for first excited state is given in table (3-11), it has
been shown that data on £42;") in "**"*Xe isotopes provide a sensitive test of the
effective proton boson number in the IBM-2 framework, in '**'*Xe isotopes, conform
the validity of assuming a drastic change in /V, when the number of neutron
increased.
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BEEEN

3.2.5-Mixing Ratio X£2/M1)
We evaluate the mixing ratio X£E2/M1) for ***Xe isotopes, depends on the

equation (2-55). The resulting of IBM-2 calculation for X£2/M1) together with
experimental values are shown in table (3-12).
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The results for the ¥ » &and ¥ - V mixing ratios , the sign of the mixing
ratios is not arbitrary . For large majority of the ¥ — & transitions considered in table
(3-12) to the experimentally known s are negative ; the sign are not known for
Y = V. According we have assumed that all () — g) values are negative and used
it as a constraint on the parameters X and XG.. Specially, it implies that

X, —Xn=>0.

The experimental ¥ ~ & M1 transition probability in table (3-11) have been
obtained by recourse to the IBM-2: the XE2/M1) mixing ratios from the
complication of Lang et al., [100] from this work are combined with the
B(E2;27 — 0") values and the conventional band mixing parameters. Note that in a

few cases the asymmetric errors on the measured mixing ratio values have been
incorporated in the M1 matrix elements by shifting the central value slightly to ensure
that the overall error range denoted is correct .

For ¥V - V transitions the intraband B(E2) values have been estimated by
assuming that the intrinsic E2 matrix elements in the ground and gamma bands are
equal. Then combining these B(E2) values with the E2/M1 mixing ratios to the
tabulated M1 transitions shown in table (3-11). We note that in the IBM-2 the
intrinsic E2 matrix element of the gamma band is smaller than that of the ground band
due to the finite-dimensionality of the boson space.
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Jsaa

3.2.6-Electric Monopole Matrix Element A(£0)

Monopole transitions are known to be pure penetration effect where the
transition is caused by an electromagnetic interaction between the nuclear charge and
atomic electrons penetrating the nucleus. EO transition could to pure for
A =J,—J,=000J=J, =0 when J is the total angular momentum of the
nuclear state.
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Monopole matrix element is not easy to measure so in order to get information
about the nuclear structure, one can measure B(E2) and the state X(E2/E0), then could
be calculated which is found for SU(5) nuclei very small. The E0 reduced transition
probability is given in equation (2-60). The parameters in equation (2-60) can be
predicted from the isotope shift [117] (see table (3-13)), since such data are not
available for Xe isotopes, we calculate these parameters by fitting procedure into two
experimental values of isomeric shifts (equation (2-63)). The parameters which were
subsequently used to evaluate the A£0) -values were; fo. = 0.063 eb , fo, = 0.235
eb and v0,=0.032 fm*. From the table (3-13), in general there is no experimental data
to be compared with the IBM-2 calculations.

Table (3-13): The Monopole matrix element p(E0) for "**"*’Xe isotopes

J,'+ _’J; 124 )(e 126 )(e 128& 130)@ 132 )@ 134 &
02 N 01 -10.3x10° -0.432x10° | 2.25x10° 2.631x10° | 2.744x10° 2.871x10°
0, -0, 0.743x10”° | 1.240x10° | 4.220x10° | 3.981x10° | 4.761x107 4.992x10°
0, -0, 0.872x107 | -0.543x10° | 6.155x10° | 6.213x107 12.2x10° 12.624x10°
22 N 2l -0.876x10” | 0.439x10° | 3.987x10° | 9.431x10° | 11.43x10° 13.289x10°

As pointed out previously [128], a large X (£0/ E2) value is not necessarily
a signature of a /3-vibrational state. For instance our calculated X (£0/ E2) value

for 2; — 2, transition. However, it be kept in mind that a large results from the

vanishing B(E2) values, specially in the case of higher bands whose structure may be
quite different from that of the lower bands. Because of the possibility of accidental
cancellations in the calculation of a sum of terms with different signs, only the correct
order of magnitude can be expected from present calculation of a large number of
states and matrix element.

In the present X (£0/ E2) branching ratios are used to extract the

B(E2;0; - 07) and p’(0; - 0;) values associated with O3 states. Our results
are shown in table (3-14). In to complete the monopole values of **'**Xe isotopes,
the measurements of EQ matrix elements of excited O3 states in these isotopes are in
progress. The ratio of the reduced transition probabilities,

X =B(E0;0; - 0,)/B(E2;0; — 0;) is in the range from 0.000125 to 0.034 which
is close to transitional rotor value. However, the assumed two-phonon O} state is
strongly pushed to high in energy, which is explained as being due to gamma-soft.

The most conspicuous features of the O3 states in '**"**Xe is strongly
enhanced E2 decay to the O," state. This may be connected with intriguing question

of the possible deformation of the excited O™ state: the large B(E2) values could
alternatively be interoperated to imply a vibrational structure associated e.g., with
mixed bands.

Table (3-14) : The branching ratio X(E0/E2) for **"**Xe isotopes
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J+ J+ 124& 126& 128 Xé 130 & 132 & 134&
i Yy
02 R O1 3.4x10 2.45x10? 2.81x102 8.33x10* 1.25x10* 1.77x10*
0, -0, 8.77x10* 5.05x107 4.31x107 8.96x107 5.35x10% 5.35x10
0, -0, 1.86x10° 2.83x1072 1.94x102 1.53x10 1.4x10* 1.38x10*
22 N 21 2.45x10* 9.5x10° 1.17x10* 4.6x10° 1.23x10° 1.1x10*

The isomeric shift, which is the difference between the mean square radius
(5 ¢ r2 > of an excited state and the ground state in a given nucleus [102]. In table

(3-15), we compared the calculated isotopic shifts with experimental data. [117].

Table (3-15) : The isomer shifts 5<r*> fm* for '**"**Xe isotopes

Exp.[117] -0.25 -0.22 -0.20 -0.15 -0.10 -
IBM-2 -0.23 -0.19 -0.18 -0.13 -0.11 -0.8

Mixed Symmetry States-3.2.7

The existence of the mixed symmetry states is recognized as a manifestation of a
new nuclear mode consisting of oscillations of the angle between symmetry axes of
the deformed valance neutron and valance proton. The occurrence of the mixed
symmetry state in even-even nuclei is a well established fact [130], and they lie
usually high in energy. In even-even nuclei, the identification is based on the
measurement of M1 and E2 transitions to symmetry states, and strong from these
states, weakly collective E2 transitions to symmetric states, and strong M1 transitions
.can take place via the bosons

At this point, the following issue arises: Does the fundamental isovector
quadrupole collective mode (2vs) fragment along the path from vibrational nuclei
towards y-unstable rotors in such a way that associated strength gradually escapes
detection or does it slowly dissolve and finally completely disappear in **'**Xe? Both
hypotheses could explain the observed experimental behavior. In the first case, it is
possible we only observe the lowest fragment of the MSS, which does not necessarily
carry the largest part of the total M1 strength, because the experimental technique we
used was limited to a certain excitation energy. In the second case, the states with
mixed-symmetry character at the U(5) limit gradually lose their isovector character
toward mid-shell and the M1 strength finally disappears. This scenario would require
an yet as unknown mechanism. The former case can be discussed in the framework of
a simple two-state mixing model.

According to the two-state mixing scheme outlined in Refs. [90,143], the
observed 2, and 2}, states arise through the mixing of the unperturbed proton and
neutron 2" configurations (their energies are labeled here as ¢, and ¢, , respectively)

in which the proton-neutron coupling matrix element increases as a function of the
product NN, .

71



Chapter Three Results and Discussion

In the figures (3-9,10,11,12,13,14) we show the mixed symmetry states
J" =1}, and 2}, . These results are obtained with a Majarona force & =&, =0.12
MeV and & =—0.4 MeV, which was determined so as to obtain the mixed
symmetry J;*=1",2" levels with a pronounced mixed proton-neutron symmetric
wavefunction. In the '**Xe there is no mixed symmetry states below 2.3 MeV and in
the Xe no mixed symmetry state below 2.1 MeV. The levels J;" =1;, and 2}, in
128-134% e isotopes are close in excitation energy (AE~150 MeV). In the table (3-16) the
energy and the magnetic transition probability from the mixed symmetry state 2, to

2" in """ Xe isotopes

Table (3-16): Energy levels and B(M1;2;, — 2;) for **"Xe

isotopes MSS Energy B( MI;ZL IR 21+)
Exp. (MeV) IBM-2 (MeV) Exp. ( l’é) IBM-2 ( l‘&/)

28 xo 2r 2.127 2.276 0.042(12) 0.033

30 xp 22‘ 2.150 3.141 0.15(4) 0.20

32 xp 27 1.986 1.896 0.020(6) 0.033

3% xo 27 2.262 2.577 0.020(5) 0.056

In summary, low lying excited states of **"**Xe have been investigated with
IBM-2. The 2, levels have been identified. This allowed us to trace its evolution
along the Xe isotopic chain from close to the N = 82 neutron shell closure out towards
mid- shell. We observe the energy of the 2}, state increases and the 2, — 2;" M1

strength decreases as the number of valence neutron hole pairs (&, ) increases. The
decrease and disappearance of the M1 strength can be explained by two different

mechanisms: either the 2}, state fragments on the path from vibrators to y-unstable

rotors or the 2, state loses slowly its isovector character and finally completely
disappears towards mid-shell. It remains to be determined by future measurements
searching for higher-lying M1 transitions in these Xe isotopes which of the two
mechanisms is responsible for our observations. We have discussed the former case
by using a two-state mixing scheme, which suggests fragments of the 2, state may
exist at energies higher than 2.5 MeV in '24126128130.32% e 'Thjg fragmentation is also
supported by the upper limit of the 2" state at 2.718 MeV in '*Xe. Thus we also call
for the measurement of the multipole mixing ratio of the 2.275 MeV y-transition in
the nucleus '"*Xe.
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Chapter Two
Nuclear Collective Models

2.1 Collective Models - General nuclear deformation

The collective model starts essentially with the idea that in order to explain the
extremely large static electric quadrupole moments of nuclei lying between closed
shell some co-operative motion of nuclear matter, resulting in a permanent nuclear
deformation, is necessary. It is supposed that this deformation (which vanishes for
closed-shell nuclei ), is produced by a polarizing effect of the individual or intrinsic
motion of the nucleons outside closed shells. It is vital to the detailed development of
the collective model that it should be possible to envisage a clear separation between
the individual motion of the loose nucleons and the collective motion of the core. This
means that the single-particle energies associated with the shell-model states of the
nucleons should be large compared with the rotational and vibrational energies of the
core. It is then possible, by allowing some interaction between the two types of
motion, to present a unified picture of nuclear motion in which both shell-model and
collective features appear. This approach is a combination of the individual particle
type of model with the strong interaction type; it not only explains the large
quadrupole moments but also predicts a fine structure of the nuclear level spectrum
owing to energies associated with the vibrational and rotational motion of the core.

The most simplified model of the description of the nucleus would consider
that the distribution of nucleons is homogeneous and has no preferred direction in
space. The nucleus is then spherical. However, in order to minimize its potential
energy, the shape of the nucleus can deviate from its spherical shape and find a “new”
equilibrium with a deformed shape. For the magic numbers (8, 20, 28, 50, 82, 126),
the shape of a nucleus is in general spherical. Between these numbers most nuclei are
deformed. The electrical potential V created by the distribution of charges in the
nucleus at a distance R from the origin O can be expanded in multipoles [65]:

V(R) O % [ordr +% [z00rdr +% J'(322 —r2)o(rYdr ... . (2—1)

where » denotes the distance from one point in the nucleus to the origin of the axis O
and p(7) is the charge density. The first term corresponds to the total charge of the
nucleus. The second and third terms are the dipole and quadrupole terms respectively.
Most of the nuclei are ellipsoidal and therefore have an axial symmetry. In this case
the dipole term is zero which leaves the deformed nucleus as a quadrupole distortion
only. There can also be octupole and hexadecapole shapes. The shape of the nucleus
can then be parametrized from a spherical shape corrected by the spherical harmonics
Ya,[65]:

0 2 O
R(6,®) =R, I+ Y, (6,D) T oo, 2-2
(6, P) % ;#;GM e ( )% ( )

where R, is the radius of a sphere of the same volume. The term /4= 0 describes

volume variations, A= 1 the translation of the system. The term with A=2 corresponds
to quadrupole deformation and A=3 to octupole deformation. Using the transformation
from the laboratory frame to the intrinsic frame, the five a,—, parameters are reduced
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to three real parameters o, 022 = 02> and a1 = a2 -1 = 0. These variables can be
parametrized following the conventions of Hill and Wheeler [94]:

&, =xs (2-3)

where S represents the extent of the quadrupole deformation, while y gives the degree
of axial asymmetry. Most nuclei are axially symmetric, or close to it, at least in their
ground states. For an axially symmetric nucleus, the potential has a minimum at

y =0°. A common convention (Lund convention) for the ranges of the f and y
variables is that f >0, y = 0" for an axially symmetric prolate nucleus and that g > 0,
y=60" gives an axially symmetric oblate nucleus as it is shown in figure (2-1). Note
that for f < 0, y = 0", the nucleus is oblate. If y is not a multiple of 60°, one says that
the nucleus is triaxial.

spherical

abilate

Figure (2-1): Nuclear deformation in the (f,y) plane. The Lund conventions are used . The four cases
(y=1207,180", 240", 300°) correspond to the cases with y=0° and 60° but with different orientations of
their axis. The area 0°<y<60° (in grey) is then sufficient to describe the nuclear deformation.[65].

2.2 The Vibrational Model (VM)

Nuclei with relatively few particle outside closed shells have spherical
equilibrium form , and the collective motion takes the form of an oscillation of the
loose particle about the spherical surface .In this type of motion the nucleus possesses
a certain number of vibrational quanta or phonons of energy U<« and angular
momentum 07 in accordance with the quantum mechanical picture of the harmonic
oscillator. Since there is no stable deformation for these nuclei the static motion is not
in enhanced , as in the case of nuclei far from closed shell .

The simplest vibrational spectra are found for even— even nuclei in which
there is no contribution to the nuclear spin from the intrinsic motion. The basic
vibrational spectrum is due to quadrupole phonons and is given in the figure (2.2),
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together with permitted spin values ; in practice the degeneracy between the different
levels is resolved and the expectation is a 0" ground state, a 2" first excited state
( single phonon ) and then a triplet of states 0" 2" 4” formed by coupling two phonons.
Classically an octupole phonon has about the same energy as two quadrupole phonons

and this may produce a 3 state near to the triplet . The energies of these states vary
regularly according to the distance of the nucleus concerned from closed shell. The

vibration of permanently deformed nuclei include oscillations of the parameter (3 and
of a further parameter y which determines the relative deformation of the three axes of
the ellipsoid. The B — vibrations preserve an axis of symmetry, but y vibrations do

not . Rotational bands may be built upon each vibrational state.

Vibrations are one example of the collective behavior of the nucleons. In the
vibrational model, the A = 2 excitation (Eq. (2-2)) is seen as a one phonon excitation
(or quadrupole phonon) carrying two units of angular momentum (units %). In even-
even nuclei, adding a quadrupole phonon to the 0" ground state leads to the first
excited 2, state. A two-phonon coupling results in three states with angular
momenta: 07, 2", 4" while a three phonon excitation results in a quintuplet of states
with angular momenta: 07, 27, 3%, 4%, 6". This is shown in figure (2-2). The pure
harmonic vibrational model predicts that the two-phonon triplet states lies at twice the
energy of the 2" state while the three-phonon quintuplet states at three times the

energy of the 2," state. Consequently, one fingerprint of the vibrational model is the

energy ratio Ryr =E(4]7)/E(2{") =2.0. In realistic situations this ratio is

typically 2-2.5. Such nuclei often called “vibrators” are situated near closed shells (or
magic nuclei 8, 20, 28, 50, 82, 126). In the IBM framework, they correspond to the
U(5) dynamical symmetry.

Vilirator
i 47 ar a T
Iphonon - : 1 i b

Zphonon

o
-phonon ——

Figure (2-2): Low-lying levels in the pure harmonic vibrational model in even-even nuclei. .[65].

2.3 The Rotational Model (RM)
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A more nucleons are added outside the closed shell, the deformation of the
nucleus increases and eventually it gets permantly deformed. This implies a stability
of orientation, and such a nucleus in space can be described by a set of angles. The
rotational spectrum is characterized by:

(1) same parity for levels .
(ii) increase in angular momentum by 2[1 .
(ii1) spacing between adjacent levels increases with increasing spin.

In the discussion above we had assumed a nucleus without any intrinsic
angular momentum. In any text book of quantum mechanics it is shown that a particle
with spin J <1 cannot have an observable quadrupole moment. However, in the
figure (2-1) we have taken a nucleus without any spin, and have shown a permanent
deformation resulting into a quadrupole moment. This contradiction can be removed
by noting that a nucleus can have an intrinsic quadrupole moment due to the
permanent deformation, which gives rise to the rotational spectrum. However, the
observable quadrupole moment is zero since for spineless nucleus we cannot talk
about any particular (preferred) axis and so the quadrupole moment is averaged over
all directions resulting into a zero value.

Another collective approach is to view the nucleus as an axially symmetric
rigid rotating system along an axis perpendicular to the symmetry axis. Rotational
motion can be observed only in nuclei with non-spherical equilibrium shapes. These
nuclei are often called deformed nuclei. The rotational energy of such a rotating
system with total angular momentum J ~ is given by:

E, (J) :g—; T(T Ao ee ( 2-5)

where / is the moment of inertia (here for a rigid object) and only even J are allowed
in the ground state band. Increasing the quantum number J corresponds to adding
rotational energy to the nucleus, and the nuclear states form a sequence known as a
rotational band. Considering the low-lying excitation spectrum in even-even nuclei,
the low lying rotational energy levels are labeled by .7 77=0", 2", 4", 6",... and
E27)=60%/21,E(4;)=200%/21.... . The structure of a rotational band is shown
in  figure(2-3). An important result here is the signature for rotational behavior with
Ry, =E(4;" )/E(2,") =3.33. Such nuclei are often called “rotors” and they are found

in the mass ranges 150 < 4 < 190 and 4 > 220 (rare earths and actinides). In the IBM
framework, they correspond to the SU(3) dynamical symmetry.

1 Rotar

™
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Figure (2-3): Low-lying levels in the rotational model in even-even nuclei. .[65].

2.4 The Interacting Boson Model

The Interacting Boson Model (IBM) is a model for describing collective
excitations in atomic nuclei. It has been introduced by lachello and Arima in 1975
[15] and has been used to model a wide variety of nuclear properties and phenomena.
One of the advantages of the model is its use of the symmetries of the boson operators
introduced in the model, which allows for analytic expressions of the states and
expectation values for three different ideal limits of nuclei. In this chapter a brief
introduction and some background to the model will be presented. Most of the
presentation of this chapter follows the book of Iachello and Arima [36].

2.4.1 Interacting Boson Model-1 (IBM-1)

In this section, the Interacting Boson Model-1 (IBM-1) will be introduced.
Although the IBM-1 is not used explicitly in the analysis or direct interpretation of the
present work, it is helpful to use it to formulate the basic ideas and expressions in the
IBM and then extend it to the Interacting Boson Model-2 (IBM-2). In the IBM-1, the
number of bosons is given by the number of pairs of protons and pairs of neutrons
outside of closed shells. No distinction is made between proton type and neutron type
bosons.

The basic foundation of the Interacting Boson Model is that collective
excitations can be described with bosons. These bosons can be of two types, s and d
having and angular momentum of either L = 0 or L = 2 units of [, respectively. Both
bosons have positive parity. The number of bosons is determined by the number of
nucleon pairs or hole pairs that are outside of a closed shell. The reason for this comes
from the interpretation of the bosons as correlated nucleon pairs. The total number of
bosons N in the IBM is a conserved quantity. In the IBM-1, the nucleon or hole pairs
must be the same type of nucleon, meaning pairs consisting of a proton and neutron
are not included. The IBM-1 is applicable only to even-even nuclei.

The nuclear states are represented in the framework of second quantization.
The boson creation operators are given by s" and ¢, and the boson annihilation

operators by s and d,,, where ££=—2,—1,0,1,2 They satisfy the following
commutation relations:
[s, s] = [s", 5] =0,
[s, d,]=I[s", d] = [s, d'] = [s', d"] =0,
[dy, du]=[d",, d"v 10,
[du d' ] =80 vonveonn (2-6)

Since nuclear states studied in the laboratory almost always have a definite
angular momentum, which results from the Hamiltonian being rotationally invariant,
it is useful to use spherical tensors. These tensors transform as irreducible
representations of the rotation group. The boson creation operators transform as a
spherical tensors while the spherical tensor for the annihilation operator needs to be
defined as
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Two spherical tensors operators can be coupled as
D = |7 s ) |
T = [T VX T ]m

to form a new spherical tensor operator, where the product is defined as

T,,;”=[T”l T(lz)]([) Z<llm112m2|lm>T,flfl)T,£’;) ........ (2-9)

my ,my

where the symbol represents the Z<l mlm, |lm> Clebsch-Gordan coefficients.

my,ny

For example, to form a state with two bosons one would express it as

](L)

M

bt xp*

l,m / ,mﬂ

[0 U (2-10)

where L and M are the angular momentum and magnetic quantum number of
the state, respectively, whose values are restricted by the angular momentum
addition rules.

Operators in the IBM are constructed from the creation and annihilation
operators. Since the total number of bosons is conserved, all the terms in an operator
have the same number of creation and annihilation operators with the exception of
pair transfer operators.

The Hamiltonian operator is given by the expression:
H=E,+ 3 epbiby+ > %u@/ BB D s (2 —11)
a, a0y

One can then see that the Hamiltonian is invariant under rotations. Since the
Hamiltonian must be a scalar and Hermitian operator, it can be limited to the
following form:

— + + l % + 5\v) 5
H=es"s+&, mZd d- +J;’42(2J +1) cjéd d) éﬁd%{ =
Eww o g (s*a) B-ng %Efvo%d+d+)(o)ggé))+(S+S+)(O)E}&ET)%0

Ol 0 °F Ol 0°0Q[
_ oy
%ﬁ d* @%sgg (1) %w)”’ﬂsﬁg ................. (2-12)

0°'0F

where s™(s) is the creation (annihilation) operator for s-boson, d +(d N) is the
creation (annihilation) operator for d-boson, and the parentheses denote angular
momentum couplings. The parameters <., V,, t,, arerelated to the two-body
matrix element by [27] :
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<d J‘V‘d2J>

ds2|V]a*2)[s5/2)

ds2|V|ds2)(5) 2

<d 0|7 s? o> 1/2)"2 | (2-13)
{
<

s O‘V‘s20>

Another useful way to express the Hamiltonian that is used in many
practical applications of the IBM-1 is by using the multipole expansion:

where the multipole operators are given by:

nid d

/\

1dd-ss)
2

S

0z ld 1 +sxd\

With such a Hamiltonian, one is able to see more easily what the effect each multipole
degree of freedom has on the nuclear states and determine which ones are the most
important for a given set of nuclei.

Once the IBM-1 Hamiltonian is chosen, a basis of states needs to be chosen
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to find the corresponding energy eigenvalues and eigenstates. A basis may be
constructed from states created by applying the boson creation operators to the
vacuum state. This basis is represented as

To have states with definite angular momentum, the appropriate tensor
product of boson creation operators can be used to give the set

B:[pr bS] 0Y s (2—17)

a
It turns out that the angular momentum and magnetic quantum numbers are
not sufficient to label all the states of a basis. Additional quantum numbers are needed
to uniquely label the states. These additional quantum numbers can be found from the
representations of a Lie algebra and its subalgebras that are formed from the bilinear
products of creation and annihilation operators.

The Lie algebra U(6)

After having defined the boson operators and the tensor product, one
introduces now the transformation generators

~ |
G (s,s) =[S+ ) ]; : !

GP(d,s) =[d* =s |

5

G (s,d) =[s*xd | S
+ ~ [(0)

GO (d.d) =[d* xd" | 1
+ ~ [

GO(d.d)=[d" =d"]" .
+ ~ [t

GO (d,d)=[d* xa"|" S
+ ~ |

G (d.d)=|d" =xd"|}" ,
+ ~ ()

GW (d,d)=|d* xd" ]} .

total 36

The commutation relations of these operators among themselves are the same
as the commutation relation of the Lie algebra of the group U(6) of unitary
transformations in 6 dimensions (hence U(6)). Definitions of group, algebra, Lie
algebra, unitary group, orthogonal group are given in [95]. These operators G (in total
36 = 6%) are thus identified as the generators of the algebra U(6). Thus one says that
the Hamiltonian has the group structure of U(6). We will see later that one can
decompose this “parent” group U(6) into “smaller” imbricated subgroups. This
imbrication of groups is not always unique and reflects the symmetry of the
Hamiltonian.

The Three Dynamical Symmetries: U(5), SU(3), O(6)
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Now, one wishes to diagonalize the Hamiltonian. A clever way to do so, is to
know the states, which have “good” quantum numbers. The technique used is to
decompose the “parent” algebra U(6) into chain of subalgebras, each of them
characterized by different quantum numbers. A subalgebra is generated by a subset of
the generators of the full algebra U(6). For example, from the 36 generators G of
U(6) one considers only the generators using the d-bosons: G.;’ (d.d) with L =0, 1,
2, 3, 4. This new set of generators happens to close under commutation (i.e the
commutator of any two generators belonging to the subalgebra is expressible in terms
of generators belonging to the same subalgebra only). These 25 operators happen to
be the generators of the algebra U(5), the group of unitary transformation in 5
dimensions. It turns out that there are only three possible chains of subalgebra
decomposing the “parent” algebra U(6) and containing the required O(3) subalgebra:

ue) o U5 o

N Ny
ue6) > SU3) >
N, K
ue) > 0(6) )
0— T

o5 > 03 > 0@ () JET (2-18)
v L M

03) > 0@ (D)oo, (2-19)
L M

o5) 2 03B > 0@Q {IID) ........... (2-20 )
N L M

For each subalgebra, one can find operators which commute with all generators of this
subalgebra. Such operators are called Casimir operators and are usually labeled by C.
The general Hamiltonian from Eq.(2-9) can then be rewritten in terms of Casimir

operators:

H =e, +¢,G[U(6)] +¢,C,[U(6)] +nC,[0(6)] +& C|[U(5)] +aC,[U(5)] + BC,[0(5)]
+0,[SU (3)] +yC,[03)] + poC [O2)].coois . (2-21)

The Vibrational limit U(5) symmetry

The U(5) symmetry corresponds to the chain (I) (Eq.2-13) where the general
Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir perators
of the subalgebras involved in this chain (i.e # = 6 = 0). The basis states of this
symmetry are defined by | V.7, , Vv, L, M) with

N, [0,1,., N
vin,,n, —2,..,0
va 00,1, [v/3]

L el A+1,..,24-2,24

j, =V _3VA,

(2-22)
(ns=even) or 1 (n;=0dd) (2-23)
(2-24)
with (2-25)
(2-26)

where N is the total number of bosons, n, the number of d bosons, v is called the
seniority and is defined as the number of boson pairs not coupled to zero angular
momentum, v, is chosen as the number of d-boson triplets coupled to zero angular
momentum, L is the total angular momentum and M is its projection. By
construction, the U(5) Hamiltonian is diagonal in the U(35) basis with eigenvalues

ED(N,n, vy, LM)=E, +& n,+an,(n, +4) +2v (v +3) +2)L(L +1) +20M .......(2 —27)

with Ez = eg + etN + e2N(N + 5). One can then “construct” an energy spectrum
reflecting the U(5) symmetry for a given boson number N. Note that the ratio

Riyy= E(4])/ E(2]) is about 2 if the parameter £ =a, B y . The energy level
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pattern of the U(5) symmetry is similar to the one from a vibrational nucleus and
when N —oo, the U(5) limit corresponds to the anharmonic quadrupole vibrator
of the geometrical model [96].

The Rotational Limit SU(3) Symmetry

The SU(3) symmetry corresponds to the chain (II) (Eq.2-14) where the general
Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir
operators of the subalgebras involved in this chain (i.e # ="¢ = a = f = 0). The basis
states of this symmetry are defined by | V. (A 4. /<2, A7) with

where only the even values of L allowed for K=0 . For the magnetic substates M ,
one has M [+L..., L —1, L. By construction, the SU(3) Hamiltonian is
diagonal in SU(3) basis with eigenvalues :

A typical energy spectrum reflecting the SU(3) symmetry is shown in ref. [36]
+ + 10
(figure (2-2)). Note that, the ratio R,,, =E(4,)/ E(2) is exactly EY =3.33 . In the

case N — oo, the SU(3) limit corresponds to the axial symmetric rotor in the
framework of the geometrical model [96].

The ¥~ Unstable Limit O(6) Symmetry

The O(6) symmetry corresponds to the chain (III) (Eq. 2-15) where the general
Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir
operators of the subalgebras involved in this chain (i.e "¢ = a = 0 = 0). The basis states
of the O(6) symmetry are defined by the quantum numbers | NV, E T na, L, M )
whose values are given by:

O[LIN,N —2,..., 0 0 (N=even) or 1 (N=odd) (2-32)

r[0.1,.., O (2.33)
n, 00,1,...,[1/3] (2.34)
LU A a+1, ..., 24-2,24 with (2.35)
A =130, (2.36)

where 1 is the boson seniority, i.e, the number of boson pairs not coupled to zero
angular momentum and v, is the number of d-boson triplets coupled to zero angular
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momentum. The physical meaning of ¢ is more complex and is not discussed here. By
construction, the O(6) Hamiltonian is diagonal in the O(6) basis with eigenvalues:

ED (6,7, na, L, M) = Es +2n0(c +4)y+2pt(t +3)2yL(L +1)+2pM.  (2.37)

A typical energy spectrum reflecting the O(6) symmetry is shown in ref. [36]
(figure (2-3)). Note that the ratio R,,, =E(4;)/E(2]) is about 2.5 if y <<},
For N —o, the O(6) limit corresponds in the geometrical model to the y-soft (or y-
unstable) rotors of Wilets and Jean [97].

Electromagnetic transition operators
Besides excitation energy spectra, the IBM is also able to describe
electromagnetic transition rates as well. To do so, one needs to define the transition

operators in terms of boson operators. The general form for the electromagnetic
transition operator is given by

T =700+ S 1 babp e (2-38)

where L is the multipole of the transition. Since all of the boson operators have
positive parity, the all the transition operators also have positive parity. States of
nuclei have definite angular momentum and it is useful to use the spherical tensors
coupled to definite angular momentum to construct the transition operators. The
transition operators then become:

T =13, + ;fff)[bf Xb ]+ (2-39)
The transitions operator defined as

T(EO)=a,+ fn,,

A
where o, and 3, are the effective charges and Q is given by
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Critical Point Symmetry in Shape Transitions

Nuclear shapes have always been a point of discussion. In general, an atomic
nucleus is believed to have an ellipsoidal shape. The shape of the nucleus is
determined by five independent quantities, the two shape parameters ( and y) and the
three Euler angles (@R | 1t is believed to have perfect spherical shape when the
neutron number or the proton number of the nucleus is one of the magic number as
predicted by the shell model (for e.g. *Ca, ***Pb). However as the number of these
nucleons changes the shape of the nucleus also changes and it no longer remains
spherical. Thus shape transitions are to be seen in nuclei. These shape transitions in

atomic nuclei were studied extensively in the early 80"s in the framework of the IBM.

Dynamical symmetries of nuclear Hamiltonian are an inherent feature of
Interacting Boson Model (IBM), whose U(6) group structure leads to subgroup chains
denoted by U(5), SO(6) and SU(3), which describe vibrational, ¥ -soft rotational and
axially symmetric rotational, respectively. These three symmetries are depicted as the
three vertices of a (symmetry) triangle, shown in figure (2-4) [98]. Typical partial
level schemes of these symmetries are shown at their respective vertex. Most nuclei
do not directly manifest these symmetries exactly; however these symmetries provide
a sort of bench mark of structure and allow for a simple mapping procedure to locate
any collective nucleus in the triangle.

06)  42—15
y - soft Rotor

p—

0'—o0

| —
2—
b
4,2,0—2 £33
y — . " '
0us  xp) SU@) 00
Vibrator Rotor

.[Figure (2-4): Casten symmetry triangle along with the partial level schemes of the various limits. [98

:The basic idea is embodied in the Ising-like Hamiltonian
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H = Hsph +IH¢kf .
where #7 4, denotes the Hamiltonian of a higher symmetry (e.g. a spherical vibrator)
with the coupling constant € , whereas /74 has a lower symmetry of the deformed
field with coupling constant K . The resultant structure of the system is determined
solely by the ratio &€/« . If this ratio is large, the spherical solution dominates and if
this ratio is small then the nucleus is said to be deformed. The transition in shapes
takes place at a critical value (£/K),, . The IBM Hamiltonian in case of consistent
:Quantum formulation (CQF) can be written as

H =n, —0.0
the Hamiltonians described above has variation with respect to only one parameter
£/ K , thus only giving two extremes. The third dynamical symmetry is incorporated
as the quadruple operator Q is dependent on an internal parameter x, which
determines the axial symmetry and its stiffness. With these two parameters any point
in the symmetry triangle can be labeled. This is done in terms of polar coordinate,
where € which is related to £€/K represents the radial coordinate and y represents
the angular coordinate. Table (2-1) lists the values for these parameters for each of the
dynamical symmetries in IBM [99]. The Hamiltonian, described in the above
equation, along with the dependence on these parameters also depends on the boson
.number N3, defined as half the number of valence nucleons

Observables such as Rup, defined as the ratio of level energy for the 2" and 4*
levels, vary systematically across the triangle. The sudden change in the value for R4,
has been described in terms of phase transitional behavior, leading to a new class of
critical point symmetries that describe nucleus at the phase transitional point. These
are denoted by E(5) [ for a second order vibrator to }/-soft rotor transition] and X(5)
(for a first order vibrator to axial rotor phase transition).

Table (2-1): The values of the parameters &, Kk, and y for the three dynamical symmetries proposed by
IBM, ,63 represents the equilibrium value of shape parameter  when the potential energy
surface has a minimum Limit

limit E K X ye3
(UG & 0 - 0
(SO(6 E K 0 +1
0 K (= /27 V2
(UG 0 K (H/ 27 2

2.4.2 Interacting Boson Model-2 (IBM-2)

In the IBM-2 model the neutrons and protons degrees of freedom are taken
into account explicitly. Thus the Hamiltonian [34,36] can be written as,

H=H, +H, +V, e, (2-42)
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H=¢gd d, +edd, +V, +V, +KO, 0, +M, ... (2-43)

Here € is the d-boson energy, K is the strength of the quadrupole interaction
between neutron and proton bosons.

In the IBM-2 model, the quadrupole moment operator is given by:

0, =(sta +a*s )+ x (ara |2, (@-44).iiin

where P =T or V| Q4 is the quadrupole deformation parameter for neutrons

(P=V) and protons (P=7D  The terms »w and ¥ 7= are the neutron-neutron and
proton-proton d-boson interactions only and given by;.

_
1 + 5+\(2)
Vgo =J:Z42CL;J(2J+1)%§U d )p2 él%dg P (2-45)

The last term M ,, is the Majorana interaction, shfits the states with mixed
proton-neutron symmetry with respect to the totally symmetric ones. Since little

experimental information is known about such states with mixed symmetry, which
has the form:

M, ==S2& (draz)\aza; )" +&,(arsy —s2d; )P (drs; —s7d )P (2 —46)

k=1.
Electromagnetic Transitions and Quadrupole Moments in IBM-2

The general one-body E2 transition operator in the IBM-2 is

T@) =T (D) ¥ T, () o) (2-47)
(2) (2)
T(E2)=e,|s'd +d's [,72) + X, \d"d n(z) te, (s+d~ + d+s~)(f) +)(V( d'd” )52)
T(E2) =€, 0,,4€,0, s coeces coreeees (2—44)

where O is in the form of Eq.(2-40). For simplicity, the X5 has the same value as
in the Hamiltonian. This is also suggested by the single j-shell microscopy. In general,
the E2 transition results are not sensitive to the choice of €,. and €,,, whether €,,=
e,, or not. Thus, the reduced electric quadrupole transition rates between £; — {,
states are given by:

1

B(E2IY -1 )y=—|<I*|T(ED|I S ......... 2—48
(B2 = 17) =5 g [< T ED] A e )
The static quadrupole moment Q, is given by the equation:
_12 .05 E[z
=—ZR"GF—0O Leeeees . 2 —49
O, 10 St B ( )
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where Z is the atomic number, R is radius of the nucleus and /5 is the deformation
parameter. The electric quadrupole moment is given:

In the IBM-2, the M1 transition operator up to the one-body term (/ =1) is

|
T(M1) = [ %NM g g 2] (2-51)
where 7\ =10(d* d), and =1+ The g,, and £, are the boson

g-factors (gyromagnatic factors( in unit 44 (nuclear magneton) that depends on the
nuclear configuration. They should be different for different nuclei.

7(a1) [/n]/ﬂ Ltg) (L<1>+L<1)) ;(gn_gv)(LgT)ﬁLL(vl))é ..... (2-52)

The magnetic dipole moment operator is given by:

(a7a ), ~(a%d).)" (g =) ooeeenenn. (2-53)

the reduced magnetic dipole transition rates between /; — /, states are given by:

T(M1) =

Blm 1y~ 17) =ﬁ|<I}HT(M1)H1,*>|2 ......................... (2-54)

The reduced E2 and M1 matrix elements were combined in the calculation of the
mixing ratio 6(£2/M1) using the relation [100]:

+ CTAT(EN >
O(E2IMLL -+ )= 08 3B (M e} —
I T(MI|L > (2-55)

The EO (electric monopole transition) transition occurs between two states of
the same spin and parity by transferring the energy and zero units of angular
momentum, and it has no competing gamma ray. The E0 transition is present when
there is a change in the surface of the nucleus. For example, in nuclear models where
the surface is assumed fixed, EO transitions are strictly forbidden, such as in shell and

24



Chapter Two Nuclear Collective
Models

IBM-1 models. Electric monopole transitions are completely under the penetration
effect of atomic electrons on the nucleus, and can occur not only in 0" — 0 transition
but also, in competition with gamma multipole transition, and depending on transition
selection rules that may compete in any A/ =0 decay suchasa2" — 2" orany ;= I;
states in the scheme. When the transition energy greater than 2m,c* , monopole pair
production is also possible. The £0 reduced transition probability is written [101]

B(EO;I, —1,)=€’R;0(E0) 1, =1 .. (2 —56)

where e is the electron effective charge, Ry = 1.254'" fm is the nuclear radius and
p(EO0) is the monopole transition matrix elements. There are only limited cases of
p(E0) that can be measured directly.

The electric monopole transition operator is

T(EQ) =3, ,(d">d )Y +y (s"xs )P .. ... (2—57)
N, =5(d" xd )9 +(s* x5 )P o s ( 2—58)
T(EQ) =L3,(d"><d )Y +V N s cevceeee e (2-—59)

18(;p :ﬁ()p/\/g_}/()p

The monopole matrix element is given by:
z ' o g~|s
Py (E0) ~ R > 5, <fld} <d|i>.. (2 —60)
The two parameters fo., fov in equation (2-56) must be estimated.

In most cases we have to determine the intensity ratio of £0 to the competing £2
transition, X(E0/E2) [101]

X(EO/E2; 17 - I;)=e’R'O*(EQ;I —I;)/B(EZ1] — I )ccuers . (2-61)

where I;=1I; for [,=1; =0, and I; =2 for I,=I;= 0. The two parameters A3, and
A3, in equation (2-57) may be estimated by fitting the isotope shift, which is

different in the mean square radius A ¢ ’/2 > between neighboring isotopes in their

ground state. They are given by Bijker et al., [102]:

10 ol ) 2
h<r> '(%"’ ‘01>A <01"’ ‘01>A+1

A<r? >:.80~n[<01

dnd,

0, >NV —-<0,

dad,

0, >NV ] +ﬂ(;v[< 0, d:dVN

0, > T Yoy eesseeres cvvveess weesssnee e (2-62)

0, >N,,

_<01

dyd,

The isomer shift, which is the difference between the mean square radius (5 4 r2 >

of an excited state and the ground state in a given nucleus [102]:

K

O<r’==<y’ > —<r’ >
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d<r'> = x> - <0,

S<r? = 5A<21‘d;d;‘21 >_<01‘d;d;r‘01 =] +@v[<21‘d:d;‘21 >_<01‘d:d|:‘01 =]

The IBM-2 Basis States

The calculation of /BM-2 energy eigenvalues and eigenfunctions is usually
done numerically using the computer code NPBOS [103]. The resulting eigenvectors
can then be used to calculate transition rates and related properties using the computer
code NPBEM [103]. The relationship between the parameters of Eq. (2-39).

The basis states used in the calculations are products of neutron and proton
basis states. The latter are U(3) basis states for neutron bosons and proton bosons, as
given in expression (2-20).

The complete /BM-2 basis state can be as .

(YU ) =[N =N, 4N,y Vs ipns Loy M Ui 1y Ve g Ly M5 M

=[‘[N]nd,v,nA,L,M>v‘[N]nd,v,nA,L,M>7T];/[

The basis states can be found by choosing states that transform as the
representations of the chain of algebras that can be derived from the U(6) algebra
formed by the bilinear pair of boson creation and annihilation operators. In the
IBM-2, the bilinear pairs of proton and neutron creation and annihilation operators
respectively form the algebras U ,(6) and U,(6) . There are several ways to
decompose and combine the two algebras into a chain of subalgebras and each way
will determine the basis. As in the IBM-1, the requirement for the chain is the
inclusion of the SO ,,.,.(3) algebra as it is related to a good total angular momentum
quantum number. The algebra SO ,.,.(3) is created from the sum of generators of the
algebras SO ,(3) and SO,(3).

As an example, one may take the two chains of algebras for protons and neutron,
U,(6) DU, (5) 0SO,(5) 0S5O, (3) 0SO,(2)
U,(6) OU,(5) OSO,(5) 050, (3) 050, (2)
These two chains can be combined at any point up except at SO ,...(2) since the
combined algebra SO ,,.,.(3) is needed. One of the possibilities is

(2—63)

26



Chapter Two Nuclear Collective
Models

Uo(6) DU (5) 0S0,,(5) SO, (3)~g

N, n,,, Vph L,

¢ - §0,,03)0 so0,@
u,6)0u,(5) 4dso,(s) DSOV(3)/v L M
NV ;v ACVZRLVN Lv

where the quantum numbers are labelled beneath the corresponding algebra. This is
the basis that is used in the /BM-2 program NPBOS.

Another set of bases can be obtained if one combines the algebras at a
different point such as

LN

U, (6) U ., (5) LSO, (5) LSO, (3) USO,.,(2)
U, (6)—Y

In general there are three chains that can be combined at U ,,.(6) to give three
different bases. In these chains, the proton and neutron bosons exhibit a symmetry and
this is the subject of the following section.

2.4.2.1 Mixed-Symmetry States (MSS’ s)

The low-energy spectrum of even-even nuclei is dominated by simple
collective excitation modes [96]. These correlations in the nucleon motion are induced
by the long-range quadrupole component of the nuclear force. In spherical nuclei with
few valence nucleons, surface vibrations evolve which can be described as bosons, so-
called phonons. In an ideal case the excitation spectrum of a vibrator nucleus is a
harmonic oscillator with equidistant level spacings U cc, where phonons can couple
to multiphonon states with different angular momenta and parities. For large numbers
of the valence nucleons an elliptically deformed equilibrium state becomes
energetically more favorable. Its vibrational modes can be divided into vibrations of

the deformation parameter Ve ('G-Vibrations) and the form parameter y ( y.
vibrations).

Multiphonon excitations of atomic nuclei are interesting collective structures
of the nuclear many-body system. Their existence enables us to judge the capability of
the corresponding phonon modes to act as building blocks of nuclear structure.
Possible deviations from harmonic phonon coupling occur due to the microscopic
structure of the underlying phonon modes and serve as a sensitive source of
information on the formation of collectivity in the nuclear many-body system. The
proton-neutron interaction in the nuclear valence shell has been known for a long time
as the driving force for the evolution of the low-energy nuclear structure. This has
been discussed in many ways, e.g., in terms of the evolution of collectivity in heavy
nuclei as a function of the product of valence proton and neutron numbers V,./V,,
[104]. Otsuka et al., have identified the proton-neutron interaction as being
responsible for the evolution of shell structure [105]. Therefore, it is interesting to
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study those nuclear excitations that are most sensitive to the proton-neutron
interaction in the valence shell. One class of states are collective isovector valence
shell excitations that are frequently called mixed-symmetry states (MSSs) in the
terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron scattering
experiments [106] on the deformed nucleus '*°Gd. A strong M1 excitation to a 1"
state close to 3 MeV excitation energy, the scissors mode, was observed. The scissors
mode has subsequently been studied mainly in electron and photon scattering
experiments on deformed nuclei. Data are available for many nuclei in the rare-earth
mass region and interpretations of the systematics of the centroid and the total
strength as a function of deformation have been put forward [107].

F-spin

The F-spin formalism is analogous to the isospin formalism of nucleons.
Proton bosons and neutron bosons have F =1/2 and the z-projection is £, =+1/2
for protons and #. =—1/2 for neutrons. For a system of N, proton bosons and N,
neutron bosons, the maximum F-spin is F' = Fy,c = (N + N, )/2 and

_INe TN _NatN,

z max 2

In the F-spin space, one can also define the creation and annihilation operators F. and
F_by

F, =s,s, + E P2 A R (2 —65)
Ve d7 Y7

F_=s)s, + z e - (2 —66)
T Yo asl s 974

The projection operator F. is given by

A state composed by N, proton bosons and N, neutron bosons with F-spin quantum
number F = F,, can be transformed by the successive action of the F-spin raising
operator F, into a state that consists of proton bosons only. This state has still a total
F-spin quantum number F = F,,, since the raising operator does not change the total
F-spin quantum number. This new state has only proton bosons and obviously stays
unchanged under a pairwise exchange of proton and neutron labels. Therefore,
IBM-2 states with F=F,, are called Full Symmetry States (F'SSs). These states
corresponds actually to the IBM-1 states which are all symmetric. All others states
with F-spin quantum numbers F < F,,, contain pairs (at least one) of proton and
neutron bosons that are antisymmetric under a pairwise exchange of protons and
neutrons labels. They are called Mixed-Symmetry States (MSSs).

A comprehensive review of the F-spin symmetry of the IBM-2 has been given
by Van Isacker ef al., [108]. One important result of the F-spin formalism is given by
the proton-neutron contribution to the matrix elements of any one-body operator
between FSSs:
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<P QbS] Fr - = N e v 2 —68)
where a, o , B, B are additional quantum numbers and €., .+ 5 is independent of p.
This major result tells us that there are no M1 transition between FSSs.

Both operators £2 and M1 can be divided into F-scalar (denoted by s) and
F-vector (denoted by v) parts

T(M1), = g”T"LgV (L, +L, ) (2—69)

T(M1), =%(L o — (2-70)

T

T(E2), =5n ;ev (0 +0 ) (2 =T1)
T(E2), == ;ev (08 =X ) (2 -72)
with
x =Xt X (2—73)
e, te,
¥ =K "X ( 2-74)
eIT _eV

From the previous discussion concerning the £2 and M1 decays of full
symmetric states and the mixed-symmetry states (here discussed in near vibrational
nuclei), we expect following signatures for mixed-symmetry one-phonon and two
phonon excitations for vibrational and transitional nuclei:

« The one-quadrupole-phonon 27,4 , state is the lowest-lying MSS in vibrational nuclei.

* The 2, state decays to the 2," state by a strong M1 transition

* A weakly collective E2 transition strength of a few 252 for the 2/, — 0;
transition.

In the IBM-1, geometrical shapes can be assigned to the algebras of the three
possible chains, which correspond directly to the description of nuclear shapes by
Bohr and Mottleson’s shape variables [11,12]. In the /BM-2, the mixed-symmetry
states correspond to a quadrupole vibration where the protons and neutrons oscillate
out of phase as shown in part (a) of figure (2-5). For deformed nuclei, the protons and
neutrons oscillate with respect to one another as the nucleus as a whole rotates as
shown in part (b) of figure (2-5). Because of this type of motion, the mixed-symmetry
states for deformed nuclei are also known as the scissors mode.
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Mixed-symmetry states can be identified by their unique signature, namely a
collective M1 decay to a fully-symmetric state. M1 transitions are forbidden between
fully-symmetric states and between mixed-symmetry states in the F-spin basis.

e
1SS | — SR TENE
! : )
M

B3 =—— Oj5)—= SU[%
oroEls oo sls

(b)

Figure: (2-5): Geometric interpretation of mixed-symmetry states are shown. The figure
represents a snapshot of the nucleus in time. Part (a) represents the out of phase vibration for
spherical nuclei and (b) represents the vibration of protons and neutrons with respect to each
other for prolate or oblate deformed nuclei [65].

2.4.2.2 Configuration Mixing of Bosons

Some nuclei near" closed shells appear to have both the vibrational structure
expected for a near-spherical shape, and rotational structure, which is typical of
deformed nuclei [109]. This phenomenon of shape coexistence involves two
configurations of the nucleus which have different numbers of active nucleons. In an
IBM description, the two configurations have different boson numbers; 2V, being the
same but V. different, or vice versa. The most common situation involves a
difference in NV, V(N ,T) of two bosons between the normal configuration and the
so-called intruder configuration, corresponding to a pair excitation across a shell or
sub-shell gap [109,110]. There is often evidence of mixing between the two
configurations, as shown in Chapter 3, for the Ge isotopes.
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Configuration mixing can be treated in the IBM-2 using a technique developed
by Duval and Barrett [111]. Separate IBM-2 calculations are done for the two
configurations and the results are then mixed using the interaction:

V

o =alsyxs:)” +plagxaz)” vhe........ (2-75)

where the intruder configuration is assumed to involve the proton shell. There are
three parameters in the mixing calculation, the mixing strengths @ and /A in
Eq.(2-72), and the pair excitation energy, A\, which gives the relative energies of the
two unperturbed configurations.

We first explain the essential ingredients of the model with specific reference
to the lead isotopes. The model space for three configurations is built from N, N+2,
and N+4 bosons and constitutes a boson representation of the shell-model
configurations that are dominant in the low-energy region of the Ge isotopes. The
N-boson states correspond to excitations of neutrons only, for which the proton shell
Z = 82 remains closed; they can be characterized as the Op-0h configuration. The
states with N +2 and N +4 bosons correspond to 2p-2h and 4p-4h excitations of the
protons across the Z = 82 shell gap coupled the valence neutrons in the N = 82-126
shell.

The total mixing Hamiltonian is then given by

H=H, +~H, +V, e e .. (2—76)

where H,, (H.) is the IBM-2 Hamiltonian for the first (second) configuration, as given
by Eq.(2-39), and an amount A\ has been added to the energies of the second
configuration.

The mixing Hamiltonian matrix, for a given angular momentum, is shown schematically
in the equation:

H' m 1'1 (H)

The non-diagonal matrix elements are
V, = ILV, |I,L=... ... ( 2—7)
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where ‘I ) L > is the ith eigenfunction of angular momentum L for the
l

configuration /,

17 ; L > is the Jjth eigenfunction of angular momentum L for the

configuration /7, and ¥, is given by Eq.(2.72). The diagonal parts are

and
AU ADA=ET A (2 —%0)

where A, is the actual energy eigenvalue, as determined by the computer code
NPBOS, E is the energy relative to the n ground state of the configuration in question,
A, is the ground state eigenvalue, and /\ is the pair-excitation energy. Note that
A, is the binding energy or deformation energy. It is intrinsically negative.

The unperturbed energies for the second configuration, relative to the ground
state of the first configuration, are given by

E! =E! +AHX| =X | ( 2—81)

where E" is the energy as given in the NPBOS output; the absolute value of the
ground state eigenvalue, A, is called the "binding energy" and is listed with the
energies in the NPBOS output; and the value of A\ is the NPMIX input parameter
EFIX.

The configuration mixing calculations are done using the computer code
NPMIX [112], which calculates the energy eigenvalues and eigenfunctions. The
computer codes NPBEMX and BEMIX [112] are subsequently used to calculate
matrix elements for transition rates and other properties.

Electromagnetic Transition Probability within configuration mixing

The E2 transition operator in configuration mixing, which is given in Eq.(2-47) can be
rewritten

T =T +T" +T D +TD s e (2-82)

T(E2) =e,(0,,, 05 e, (Qyyr 70U Do covies e (2-—83)

being O, the quadrupole operator defined in Eq.(2-40) for the normal (j = 2) and
intruder (j = 4) configurations. The values of the boson effective charges where

e, =e,,=e, and ¢, =e,, =e¢,, for a mathematical simplicity we put e, =e, =e. for
all isotopes, following the work of Sambataro and Molnar [113] on the Mo isotopes)
were determined by the experimental electric transition probability B(E2;2; — 0,")
values. The reduced transition B(E2) probability is given by the  Eq. (2-48).

The M1 transition operator in configuration mixing is given
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_ %l m 0 0 )
T(Ml)zp - l%ﬂ g27‘[L27T + g2v L2V ) t (g4nL4n t g4vL4v ) """""" (2 - 84)
and £,, = &4, = & =14, for a simplicity g,, =g, =g, =0L,
.(The reduced transition B(M1) probability is given by the Eq.(2-54

The expressions for A £0) matrix elements and isotope shifts are given in
Egs.(2-60) and (2-62). They involve five parameters. Four of them, /2 ,» £ v> 4

and /3, . multiply the matrix elements of 7;,,,1,,,,1,,, and 1, respectively.

The last parameter, which occurs in the isotope shift expression only, is an additive
constant, Y5, (It is the sum of Y% . and 6. in Eq.(2-62.)

The electric monopole transition in configuration mixing is given by the

equation
_ O OO O .0 oo O
T(EO0) = By lgrn + Bovlaz + Burlaarn + Boav sy + VorulNaon
O 0 0
F Voo Ny T VoureN i T Vosy Ny coveeeee covvveenne v (2-85)

The electric monopole transition matrix element is given by:

AE0;JT —J)) :% S S B <J|ni,

i=2,4p0=7T,V

T > s (2—86)
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Chapter Four
Conclusions and Suggestions for Future Work

Conclusions 4.1

In this work we have described various properties of the Kr, Xe, Nd and

.Ge isotopes in the framework of the IBM-2 model

1-

Kr isotopes :
a- From all figures of energy levels for "**’Kr Isotopes we found that
79Kt isotopes changed from the vibrational SU(5) limit to transitional
limit O(6) , because the value of the ratio E(4,)/ E(2,) is ( 2.44 —3.043)
b- The comparison of some B(E2), B(MI1), mixing ratios for these
isotopes with the experimental data show that these isotopes exist along
the SU(5)-O(6) side of the IBM triangle.
c- In " Kr isotopes we saw that when the states/”” =23,2, and 3, are
strongly dominated by the F=F ., the strongest contribution to the states
is the one with F=F,-1.
We also can see the states J’* =27 ,34re mixed symmetry states in

76 %K r isotopes .

Xe isotopes :
a- From all figures of energy levels for '**'**Xe Isotopes we found that
124134 e isotopes changed from the vibrational SU(5) limit to transitional
limit O(6) because the value of the ratio E (4,)/ E(21)is (2 $ 2.5).
b- The study of the electromagnetic properties of the states together it that
of energy spectra indicates that the following changes from an O(6)-like
structure to an U(5) like-structure.
c- Often, the decay properties of the lowest excited 0" states are used as
an additional signature of the E(5) structure. In the case of '**Xe, the Ryp
value 2.16 lies very close to the ideal value for the E(5) symmetry

indicating that it lies more towards the U(5) side.
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3- Nd isotopes :
a- From all figures of energy levels for '**"**Nd Isotopes we found that
14+1349Nd isotopes changed from the vibrational SU(5) limit to transitional
limit SU(3) , because the value of the ratio E (41)/ E(21) is
(1.885 9 3.281).
b- The X(5) analytic solutions for the critical point in the spherical to
axially deformed phase/shape transition is closely manifested empirically
in ’Nd and in other N=90 isotones.
c- THY; states in the N = 86 isotope show a similar behavior to the
corresponding states in the N = 88 isotope and show that the mixed-
symmetry states are sensitive to the residual proton-neutron interaction in

this mass region.

4- Ge isotopes :
a- From all figures of energy levels for ****Ge isotopes we found that *
2Ge isotopes changed from the vibrational SU(5) limit to transitional limit
O(6) , because the value of the ratio E (41)/E(21) is (2.28 9 2.60).
b- The E2 transition rates, isotope shifts and results are in good
agreement with those experimental values which are available, again

indicating that the prescription of two mixed configurations works well.

4.2 Suggestions for Future Work

The use of the IBM-2 basis can be used for other calculations in addition to
the energy levels and electromagnetic transitions. Same of these extensions are
suggested below :

1- One of the most significant recent developments in nuclear structure physics is
the prediction that a Supersymmetry Model (SSM) may be realized in nuclei. The
recognition of dynamical symmetries in even-even nuclei via the introduction of
bosons has reoriented our directions nuclear spectroscopy. Therefore this suggests to
use this model to study the level schemes in odd-even mass nuclei, and study the
non-collective motion in transitional and deformed nuclei.

2- Study of the hexadecupole degree of freedom in transitional nuclei, by
addition of a g-boson (L = 4), to test the important K* = 4" band and E4 transitions in

this region.
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3- Use the method to proposed of connecting of the interacting boson model and
shell model is called interacting boson model-3 (IBM-3) to describe the light nuclei
(v, T=1).

4- The 2, states found so far in the A = 140 mass region give us an interesting
glimpse into the behavior of mixed-symmetry states. The extent of the existence of
these states and also their purity would test the limits of the validity of describing
them as states of mixed proton-neutron symmetry. Efforts are continuing in the search

of mixed-symmetry states in this mass region.
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Abstract

Nuclear structure Properties and electromagnetic transitions of some
even - even Kr, Xe, Nd and Ge isotopes have been studied in this work, by using the
collective Interacting Boson Model-2 (IBM-2).

The Interacting Boson Model (IBM-2) has been very successful in describing
the collective properties of nuclei. This work concerns a systematic applications of the
model, involving configuration mixing of bosons.

There have been extensive IBM studies of low-lying positive parity bands,
which are based on the ground state and the quadrupole degree of freedom.

The results for energy levels, B(E2), B(M1), mixing ratios X£2/M1)
quadrupole and magnetic dipole moments and monopole transitions, were compared
with some previous experimental and theoretical values. It was found that an
acceptable degree of agreement between the predictions of the IBM-2 and the
experiment can be achieved.

The Kr isotope (Z = 36) lies in the transitional region closer to the vibrational
range of nuclei. Energy , levels B(E2), B(M1) and the mixing ratios 6(E2/M1) and
X(EO/E2) for selected transitions in this isotope were calculated in the framework of
the interacting boson model (IBM-2). All results were compared with experimental
data. Some experimental X(E0/E2) ratios were calculated from available experimental
data. Majorana parameters were found to have a great effect on the calculated energy
levels of the J" =23, 37, 2, and 1™ states which indicates they have mixed

symmetry properties.

The results of IBM-2 for Xe isotopes were compared with the theoretical
predictions assuming a critical point symmetry E(5) which leads to conclude that
128X e is not an E(5) isotope as previously suggested. In this case of the '*Xe the

observable R,,, =2.33 is intermediate between the value for E(5) (R4, , = 2-2) and

gamma soft limit (R,,, =2.5). The ratio suggests that '*Xe should lie between E(5)
and O(6).

Similar test using *°Xe as a most likely candidate amongst the Xe isotopes,
conclusively demonstrate a how well E(5) is realized in the best case. The energy
ratio confirmed that this isotope an E(5) critical point symmetry. The **Xe and "**Xe
show vibrational-like character (SU(5) limit).

Mixed symmetry states are also studied. It is found that some of the mixed
symmetry states with moderate high spins change very fast with respect to the
Majorana interaction. Under certain conditions, they become the yrast state or yrare
state. These states are difficult to decay and become very stable. This study suggests
that a possible new mode of isomers may exist due to the special nature in their proton
and neutron degrees of freedom for these isotopes.



The mixed-symmetry 2,, (23) states or at least a fragment of it have been
identified in Xe isotopes. This enables us to trace the evolution of the one-phonon
2 ,, states in the even-even xenon isotopic chain from the vibrators near N = 82 to
the  y-soft nuclei towards mid-shell.

We have studied the nuclear properties of Neodymium isotopes with

(A =144-154) in IBM-2. A good agreement results with the experimental data.
144130Nd lie in the transitional region (virational - rotational limit SU(5)—SU(3)). For
the "*"**Nd isotopes the energy ratio are well described by the rotational limit SU(3).
The X(5) symmetry would take place when moving continuously from the pure U(5)
symmetry to the SU(3) symmetry and it implies a definite relations among the level
energies and among the E2 transition strengths. It was recently shown that a signature
of phase transition is observed in the chain of Nd isotopes, "°Nd display the predicted
features of the X(5) symmetry and mark therefore the critical point. However, more
detailed studies and experiments are needed to get ideas about this signature. At the
end, we have concluded that some of Nd isotopes display X(5) symmetry features.

The 25,27 and 1™ are mixed symmetry states in Nd isotopes.

The even-even isotopes of germanium are of special interest because of the
coexistence of two sets of bands, of very different character, in the lighter nuclei. The
IBM-2 with configuration mixing provides a good description, both of states built on
the normal ground state and of those associated with a proton pair excitation across
the Z =28 closed-shell gap. Ge isotopes are studied, ranging from the middle of the
neutron shell to very near the doubly closed shell at **Ge. Same Hamiltonian is used
for all the nuclei studied, with parameters which are constant or smoothly varying.
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