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Chapter  One
Introduction

1-1 What is nuclear structure ?

Nuclear structure physics has been an active field of research since the 
discovery of the nucleus.  Rutherford found that most of all matter was concentrated 
in a very small core at the center of the atom in 1911 [1]. Perhaps the next great 
milestone was the discovery of the neutron by the associate and doctoral student of 
Rutherford, Chadwick in 1932 [2]. It is noteworthy that by this time special relativity, 
quantum mechanics, and the relativistic formulation of quantum mechanics were 
already developed. The existence of the positron was postulated by  Dirac in his 
relativistic formulation of quantum mechanics in 1928 [3, 4] and it was subsequently 
discovered in 1932 by  Anderson [5], the same year the neutron was discovered. I 
would thus list the finding of the neutron as a relatively modern discovery. The proton 
and neutron have since been used as the fundamental building blocks in describing the 
nature of the atomic nucleus to this day.

A number of models have been developed to describe the large array of 
phenomena and properties displayed by atomic nuclei. The liquid drop model, first 
proposed by Gamow in 1928 [6], viewed the nucleus as drop of liquid whose 
constituent particles were held together by surface tension. This model was able to 
describe some bulk properties of nuclei. Using the ideas of the liquid drop model, 
von Weiz¨acker developed a semiempiral mass formula [7] to predict nuclear masses. 
A large breakthrough in nuclear theory came in 1949 when Maria Goeppert-Mayer [8] 
and independently Jensen, Haxel and Suess [9] were able to explain the magic 
numbers in nuclei, where nuclei would exhibit an increased stability, by including a 
spin-orbit interaction term in a Hamiltonian that considered all nucleons to be orbiting 
essentially freely in an average field created by all the other nucleons. The magic 
numbers correspond to closed shells in nuclei analogous to the filling of electron 
shells in atoms. Excited states were found that correspond to the excitation of a 
nucleon into an orbit of a higher lying shell as predicted by the model. The shell 
model, as this model is called, has been one of the most fundamental ways to describe 
atomic nuclei. It has since been used extensively in the analysis of experimental data.

Apart from the single-particle excitations found in nuclei, another type of 
excitation, collective excitation, was soon explained. In 1950, Rainwater observed 
that spherical nuclei could easily be deformed [10]. This led the way in the 1950’s for 
more ground breaking work done by  Bohr and Mottelson [11, 12] and also  Hill and 
Wheeler [13] when they presented models for collective motion in nuclei. These 
models used shapes to parameterize the nucleus and used their dynamics to derive the 
collective phenomena that was observed. Since the discoveries of single-particle and 
collective motion, these have been the two ways in which excitations in nuclei have 
been classified. The interplay between single-particle and collective degrees of 
freedom has long been and continues to be an active field of study. One example is 
perhaps a variation of the shell model, which was proposed by Nilsson in 1955 [14] 
where he considered the average potential of the shell model to be deformed. This 
lead to the idea of changing shell structure with deformation.
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In 1975, the Interacting Boson Model (IBM), the model used in the present 
work, was proposed by Iachello and Arima [15] , where interacting bosons are used to 
describe collective excitations in nuclei. From the symmetry properties of the model’s 
boson hamiltonian, three types of idealized nuclei were found whose properties can be 
calculated analytically. These three limits of nuclei can be used as benchmarks with 
which to classify different nuclei. It was found that different regions of the nuclear 
chart exhibit properties that are similar to one of these idealized limits.

The above account of nuclear physics is very brief and highlights only a few 
of the main accomplishments in nuclear physics in the twentieth century. Although 
brief, it can be seen that there is not one single comprehensive theory in nuclear 
physics, but several models tailored to describe specific phenomena. A quote taken 
from the book of  Eisenbud and Wigner [16] published in 1958 describes the state of 
nuclear theory in the following way :

 "Internucleon forces are not yet completely known and it is clear that they have a 
complex character. Even the consequences of a simple interaction are difficult to 
obtain for a system containing a large but finite number of particles. A good deal of 
effort has been expended, therefore, in the search for simple models in terms of which 
the broad regularities satisfied by nuclei could be understood. This search has led to a 
number of interesting but only partially successful models; these have proved very 
fruitful for the stimulation of experimental research, and for the development of 
further ideas on nuclear structure. One can hope that future  investigations will clarify 
the limitations of these models and provide an  understanding of the validity of 
different models for different groups of phenomena".

Although written in 1958, the ideas set forth in this quote still serve as an 
description of present day research in nuclear physics. It is with the aim of better 
understanding the “broad regularities satisfied by nuclei” and “understanding the 
validity of different models for different groups of phenomena”  that the topic of this 
present work is introduced. One of the broad regularities in nuclei that will be 
investigated is the existence of a certain class of collective excitations called mixed-
symmetry states defined within the Interacting Boson Model. The data obtained from 
the experimental investigations of these states will help elucidate the extent of the 
validity of the Interacting Boson Model.

1.2 Historical Survey

1- Kr isotopes
The even–even 76-90Kr are the members of the chain existing around the mass 

region 80≅A  and they are settled away from both the proton closed-shell number at 
28 and neutron closed shell at 50. The interacting boson model-2 (IBM-2) has 
recently been applied to many light isotopes of  Kr  with emphasis on the energy 
levels and on the  electromagnetic transition rates.

Several theoretical and experimental studies of even-even Kr isotopes have 
been carried out: Kaup and Gelberg [17] , have performed systematic analysis of Kr 
isotopes in IBM-2, reproduced energy levels. Helleister et al., [18] studied the energy 
levels and Electric transition probabilities and made comparison with experimental 
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data. Meyer et al., [19] investigated the nuclear structure of the 82Kr isotope, using 
ion-beam spectroscopy studies and compared the experimental data with the results of 
IBM-2. 

Glannatiempo et al., [20] studied the life-time of the +
20  level in the 80Kr 

isotope and compared the result with the calculated value of IBM-2. Deibaksh et al., 
[21] have performed IBM-2 calculations on Kr isotopes , using two-different 
approaches. The first approach based on the energy of bosons as ,νπ εε =  and the 
second approach was based on the difference between  the energy of proton boson and 
energy of neutron boson νπ εε ≠ . The results of  IBM-2 were found to be in good 

agreement with  experimental data except for the state  +
32  . Giannatiempo et al., 

[22] have studied the symmetry property of the bands in 74-82Kr isotopes by calculating 
F-spin and the dn  component of the wavefunction of the states of these bands.

Shi Zhu-Yii et al.,[23] have studied Kr isotopes by using a microscopic 
sd IBM-2 +2q.p. approach; the levels of the ground-band, γ -band and partial two-
quasiparticle bands for 72-84Kr isotopes were calculated. The data obtained are in good 
agreement with the experimental results, and successfully reproduce the nuclear shape 
phase transition of  72-84Kr isotopes at zero temperature. The ground-state band is 
described successfully up to +=18πJ  and Ex=10 MeV. Based on this model, the 
aligned requisite minimum energy has been deduced. The theoretical calculations 
indicate that no distinct change of nuclear states is caused by the abruptly broken pair 
of a boson, and predict that the first backbending of Kr isotopes may be the result of 
aligning of two quasi-neutrons in orbit 2/9g , which gains the new experimental 
support of the measurements of  g- factors in the 78-86Kr isotopes.

Al-Khudair and Gui-Lu [24] studied  the level structure of  76-82Kr isotopes 
within the framework of IBM-2 , and performed that the += 2πJ  (one-phonon mixed 
symmetry state) and    +++= 3,2,1πJ  (two-phonons mixed symmetry states), and 
have been identified by analyzing the wavefunction of  M1 transition. 

Turkan et al., in 2006 [25]  determined the most appropriate Hamiltonian that 
is needed for present calculations of nuclei in the 80≅A  region by the view of 
Interacting Boson Model-2 (IBM-2). After obtaining the best Hamiltonian parameters, 
level energies and B(E2) probabilities of some transitions in 88-90Kr nuclei were 
estimated. Results were compared with previous experimental and theoretical data 
and it was observed that they are in good agreement.

Turkan et al., in 2009 [26]  studied The quadrupole moments of  76,78,80,82,84,88Kr 
and 74,76,78,80,82Se isotopes in terms of the interacting boson model (IBM), and it was 
found that a good description of them can also be concluded in this model. Before the 
quadrupole moments were calculated, the positive-parity states and electromagnetic-
transition rates (B(E2)) of even-mass Kr nuclei have also been obtained within the 
framework of IBM. It was seen that there is a good agreement between these results 
and the previous experimental data. The quadrupole moments of the neighboring Se - 
isotopes were also obtained and it was seen that the results are satisfactorily agree 
well with the previous experimental data.
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2- Xe Isotopes
 

The Interacting Boson Model enables one to classify the nuclei according to 
the dynamical symmetries of the IBM Hamiltonian. Three symmetries are most 
relevant for the description of excited states of quadrupole-collective nuclei: U(5) for 
vibrational nuclei [27],  SU(3) for axially deformed nuclei [28], and O(6) for 
deformed nuclei with soft triaxiallity [29]. In the A = 130 mass region, the Xe isotopes 
exhibit excitation spectra close to the O(6) symmetry. After some theoretical 
investigations [30,31,32,33,34], it was concluded that the xenon isotopes should lie in 
a transitional region from U(5)- to an O(6)-like structure as the neutron number 
decreases from the closed shell N=82. This was later supported by Casten and 
von Brentano [35] who presented the evidence for an extensive region of nuclei near 
A= 130 resembling the O(6) symmetry. The evolution of the one-quadrupole phonon 

+
m2   state with F-spin value F = Fmax − 1  in a U(5)-O(6) transition is still unknown. 

Thus Xe was a good candidate for exploring this U(5)-O(6) transitional region.

The low-lying states showing a rich collective structure in this region, were 
investigated extensively in terms of various models, such as the interacting boson 
model (IBM) [35,36,37,38,39,40,41], the fermion dynamical symmetry model 
(FDSM) [42,43], the pair-truncated shell model (PTSM) [44,45] and the nucleon-pair 
shell model [46,47,48,49].

The Xe , region with the mass number ≈A 120–130 has recently been 

studied experimentally and interpreted by several models [50,51,52,53]. In ref.[54], 
the general Bohr Hamiltonian (GBH) is applied to describe the low-lying collective 
excitations in even–even isotopes of Te, Xe, Ba, Ce, Nd and Sm, and the low-lying 
collective states of even–even nuclei were investigated along the region of 
50 < Z, N < 82. The ground state properties of   even–even Xe isotopes have been the 
subject of theoretical [55] and experimental studies [56-63] involving in-beam γ-ray 
spectroscopy.

Maras et al.,[64] have investigated, the ground state, quasi beta and quasi 
gamma band energies of  114,116,118,120Xe isotopes by using both IBM-1 and IBM-2 
versions of the interacting boson model (IBM). In calculations, the theoretical energy 
levels have been obtained by using PHINT and NPBOS program codes. The results 
compared with the experimental data in respective tables and figures. It was seen that 
the obtained theoretical results were in good agreement with the experimental data.

Laurent Coquard [65] have studied the evolution of the one-quadrupole 
phonon +

M12  mixed-symmetry state in Xe isotopes and showed that collective nuclei 
are characterized by rotational and vibrational states due to a common and, therefore, 
“collective” behavior of the two constituents of the nucleus: protons and neutrons. 
The evolution of the collectivity (spontaneous deformation) is governed by the 
proton-neutron interaction in the valence shell. Nuclear states, that are particularly 
sensitive to the proton-neutron interaction in the valence shell, are the so called mixed 
symmetry states. In their work they determined the fundamental evolution i.e., the 
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one-quadrupole phonon +
M12  state, in a transitional region from vibrational nuclei 

(134Xe) to γ-soft nuclei reflecting the O(6)-like structure of the    IBM-2 (124,126Xe). 
Projectile-Coulomb excitation of  Xe isotopes has been performed at Argonne 
National Laboratory (ANL) using the Gammasphere array for the detection of γ-rays. 

Turkan and  Maras in 2011 [66], have studied  the energy levels and transition 
probabilities B(E2) of some even-even Te (Z=52, N=68-80 and N=84) and even-even 
Xe nuclei (Z=54, N=68-80 and N=84-88) by using the interacting boson model (IBM-
1 and IBM-2). The results were compared with some previous experimental and 
theoretical values. It was seen that an acceptable degree of agreement between the 
predictions of the model, (IBM-1 and IBM-2) and experiment was achieved.

Eid and Diab [67] in 2012 studied the potential energy surfaces, ( )γβ,V , for 
a series of Xenon isotopes 122−134Xe . The relatively flat potential to 130Xe and energy 
ratio )2(/)4( 11

++ EE = 2.2 show E(5) symmetry to the nucleus which is lying in the 
transition region from γ -soft to vibrational characters. The interacting boson model 
(IBM − 1) has been used in calculating levels energies and electromagnetic transition 
probabilities B(E2)′s. Backbending is observed for 122−130Xe. The calculated values 
were compared to the available experimental data and showed a reasonable 
agreement.

3- Nd Isotopes

Neodymium isotopes are the members of the chain of nuclei around 140≈A  
and they represent an ideal case for studying the influence of the shape transition from 
spherical to deformed nuclei. The nuclei around mass 140 have many interesting 
features such as high-spin isomers, backbending phenomena, even–odd energy 
staggering of quasi-bands caused by a soft triaxial deformation, and features recently 
referred to as ‘chiral bands’. These nuclei belong to a typical transitional region 
between spherical and deformed shapes.

It has been recognized that in order to be able to judge any model on the 
nuclear structure of even–even Nd nuclei, more accurate theoretical details are 
necessary. This has led to a wealth of theoretical studies , that were performed in the 
last 15 years, with many probes and the B(E2) values of some low-lying collective 
states were obtained.

Manio and Ventura [68 ] have studied the even-even 136-154Nd in the IBM . 
They discovered all three limiting cases of the IBM   and transitional nuclei between 
the limits in the isotopic chain. Chuu et al., [69]  studied the 148Nd nucleus in the 
interacting boson model in the context of an N=88 isotones. Gupta [70] studied the 
144-150Nd isotopes in IBM-1.  In this study the level structure is analyzed taking into 
account of the available experimental information, with respect to the symmetries of 
IBM-1. The level energies, B(E2) values, and interband B(E2) ratios were compared 
with available data The adopted level schemes of 144-150Nd and the varying limitations 
of the interacting boson model in these isotopes were discussed.
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Eurogam-I and Gammasphere experiments have established new level scheme 
for  152-156Nd isotopes [71]. New experimental levels in 146-150Nd isotopes were also 
obtained [72]. Static's moments have been measured over the years  [73].

Long Guilu et al.,[74] studied the spectra and E2 properties of  146-156Nd using 
the IBM-2. They found that 146-150Nd are in the transition from vibrational to rotational 
(SU(5) to SU(3)). From 152Nd onward the  isotopes are nearly perfect rotors. Possible 
deformation saturation is discussed in the interacting boson model. 
 

It was recently shown that a signature of phase transition is observed in the 
chain of  Sm, Mo and Nd isotopes, where isotopes are 152Sm,104Mo and 150Nd 
[74,75,76]. 150Nd display the predicted features of the X(5) symmetry and marks 
critical point. However, more detailed studies and experiments are needed to get ideas 
about this signature. 

           In 2007 Turkan and Inci [77] studied some even–even neodymium nuclei using 
IBM-2. In their study, they determined the most appropriate Hamiltonian that is 
needed for their calculations of nuclei in the A ≈ 130 region, by the view of projection 
of  IBM-2 parameters onto IBM-1. The interacting boson model has been widely used 
for describing the quadrupole collective states of the medium heavy nuclei and no 
distinction is made between proton and neutron variables, when the first version 
IBM-1 is applied. So, triaxiality can be described explicitly, through the introduction 
of cubic terms in the boson operators. However, the microscopic foundations state is 
very important to describe the proton and neutron variables explicitly. This is also a 
generalized definition of the second version of the IBM-model ,IBM-2 model. Using 
the best-fitted values of parameters in the Hamiltonian of the IBM-2, they calculated 
the energy levels and B(E2) values for a number of transitions in 144,146,148,150,152,154Nd. 
The results were compared with the previous experimental and theoretical data which 
showed. Many B(E2) values, that are still not known so far, are stated and the set of 
parameters, used in these calculations, are the best approximation that has been 
carried out so far. It has turned out that the interacting boson model is fairly reliable 
for the calculation of spectra in the entire set of 144,146,148,150,152,154Nd isotopes.

Inan et al., [78] in 2008 studied the X(5) symmetry which take place when 
moving continuously from the pure U(5) symmetry to the SU(3) symmetry and it 
implies a definite relations among the level energies and among the E2 transition 
strengths. It was recently shown that a signature of phase transition is observed in the 
chain of  Sm, Mo and Nd isotopes, where 152Sm, 104Mo and 150Nd display the predicted 
features of the X(5) symmetry and mark therefore the critical point. However, more 
detailed studies and experiments are needed to get ideas about this signature. Without 
entering into detail they have firstly compared the results obtained in their previous 
study [15] of  144-154Nd with that of the limits in X(5) symmetry and then given a clear 
description about the validity of the Hamiltonian parameters used in the study. At the 
end, they  have concluded that some of the Nd isotopes display X(5) symmetry 
features. 

6



Chapter One                                                                                                            Introduction

Turkan and Inci [79] compared some predictions between Davidson-like 
potentials and Interacting Boson Model: X(5) behavior of even–even 128−140Nd 
Isotopes, they denote that the level scheme of the transitional nuclei 128−140Nd also 
presents the characteristic X(5) pattern, not only in the ground-state band, but also in 
some low-lying bands. An adequate point of the model leading to the X(5) symmetry 
was therefore confirmed. They have also carried out calculations of positive-parity 
states of even-mass Nd nuclei within the framework of the interacting-boson model, 
and then the calculated energy values were compared with the experimental data 
along with the Davidson potential predictions. By comparing transitional behavior in 
the Nd nuclei with the predictions of an X(5) critical symmetry, and investigated an 
achievable degree of agreement between the predictions of the model leading to this 
symmetry and the interacting-boson model IBM-1 and IBM-2. Their rsults agree well 
experimental predictions. 

4 - Ge Isotopes

Even-even Ge isotopes, with Z = 32 and 32 ≤ N ≤ 50, have a collective 
quadrupole excitation strongly dependant on the number of nucleons outside the 
closed shells 28 and 50, and the neutron-proton interaction is known to have a great 
influence on nuclear properties. These isotopes are part of an interesting region 
including Se and Kr, which has and is likely to attract many experimental and 
theoretical works [80–83]. Hsieh et al., [84]  found that the spectra of those nuclei can 
not be explained in terms of simple versions of the rotational or vibrational models, 
with shape coexistance, for and there is a transition from spherical to weakly 
deformed shape with different types of deformations.

The previous work of configuration mixing by Duvail et al., [85]  using a 
version of the IBM-2 with configuration mixing, has shown that a good description of 
the stable Ge nuclei can be obtained. In this work they applied the standard,    two-
particle two-hole, IBM-2 with configuration mixing to the stable nuclei and 
extrapolate the model predictions to the recently explored radioactive neutron-rich 
isotopes 78-80Ge and the single-closed shell nucleus 82Ge.

Padilla-Rodal et al., [86] showed that the low energy spectra, electric 
quadrupole transitions, and quadrupole moments for the Ge isotopes can be 
determined in the framework of the IBM-2 with configuration mixing. These 
calculated observables reproduce well the available experimental information 
including the newly obtained data for radioactive neutron-rich 78-82Ge isotopes. Using 
a matrix formulation, a geometric interpretation of the model was established. The 
two energy surfaces determined after mixing, carry information about the deformation 
parameters of the nucleus. For the even-even Ge isotopes the obtained results are 
consistent with the shape transition that takes place around the neutron number N = 
40.

The irregular neutron-dependence of important observables such as the 
excitation energy of the +

20  states, the relative values of the electric transition 
probability and the population cross sections in two-neutron-transfer reactions. 
Vergnes et al., [87] have suggested that a structural change takes place around N = 40 
for Ge isotopes. In combination with the measurement of the electric quadrupole 
moments associated with the +

12 and +
22  states [88,89], thies experimental data have 
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been taken as evidence of a shape transition and the coexistence of two different kinds 
of deformations for this isotopic chain [90].

Turkan and  Maras [91]  have been studied the sufficient aspects of model 
leading to the E(5) symmetry and proved by presenting E(5) characteristic of the 
transitional nuclei 64-80Ge. The positive parity states, of even-even Ge nuclei within the 
framework of Interacting Boson Model (IBM) , have been calculated and compared 
with the Davidson potential predictions along with the experimental data. It can be 
said here that the set of parameters used in these calculations are the best 
approximation that has been carried out so far. Hence, the Interacting Boson Model is 
fairly reliable for the calculation of spectra in such set of Ge isotopes.

Subber [92] has been used Interacting Boson Models IBM-1and IBM-2, to 
calculate energy levels and nuclear properties of the even-even 64-80Ge isotopes. 
Energy levels of the low lying states of these nuclei were produced, the electric 
quadruple reduced transition probabilities also were calculated as well. Mixing ratios 
δ(E2/M1) for transitions with ΔI = 0, 0≠I  are calculated. All these results were 
compared with the available experimental data and other IBM their versions 
calculations. Satisfaction  agreements were obtained.

In this work, we have carried out the level scheme of the transitional nuclei 
64-80Ge showing the characteristic E(5) pattern in their some low-lying bands. The 
positive parity states of  Ge isotopes also stated within the framework of the 
Interacting Boson Model. By comparing transitional behavior in the Ge isotopes with 
the predictions of an E(5) critical symmetry, an achievable degree of agreement has 
been obtained. Configuration mixing of bosons have been used to study the nuclear 
structure and electromagnetic properties  of  Ge isotopes. 

1.3 Scientific Motivation

 The aims of the present work are as follows:

1-  To study the nuclear structure and electromagnetic transitions B(E2), 
B(M1), mixing ratio )1/2( MEδ , monopole transitions, isomer shifts and isotopic 
shifts for  even-even Kr, Xe, Nd and Ge isotopes by means of  the Interacting Boson 
Model -2 (IBM-2).  

2- A certain class of collective states arise in the the Interacting Boson Model 
called mixed-symmetry states , which can be thought of as states in which the protons 
and neutrons oscillate out of phase with respect to one another. This mode of 
excitation should be sensitive to the proton-neutron interaction in the valence shell 
because of its  isovector character. Seeing how these states evolve as a function of 
proton and neutron number can give insight into the strength of the proton-neutron 
interaction for a given mass region. The proton-neutron interaction in the valence 
shell of nuclei has been attributed as being responsible for the formation of 
collectivity in Kr and Xe , Nd and Ge isotopes .

3 -New classes of symmetries have also been defined to describe the nucleus 
at the phase transitional point. These are the symmetries of the geometric Bohr 
Hamiltonian and are denoted as E(5) and X(5).  There has been a lot of work going on 
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in finding out the nucleus belonging to different mass regions to obey these kinds of 
critical point symmetry. There are many experimental signatures for the nucleus to lie 
at the phase transitional point; these are listed in a very ordered manner by Clark 

[93  .[

4- To study the configuration mixing character for Ge isotopes which are of 
special interest  because of the coexistence of two-sets of bands, of a very different 
character in these isotopes when the IBM-2  configuration mixing provides a good 
description of both states. Also the Interacting Boson Model (IBM) with configuration 
mixing can be give a geometrical interpretation, when ones used in conjunction with a 
(matrix) coherent-state method. This approach can also be used to study the geometric 
aspects of shape coexistence in nuclei, as well as the phase space diagrams associated 
to this phenomenon.

1.4 Outline

Finally, a brief outline of the remainder of this work will be given. In Chapter
Two, some background on the collective models, briefly vibrational and  rotational 
models and in details the  Interacting Boson Model, mixed-symmetry states and 
configuration mixing  will be presented. The results are discussed in Chapter Three. 
Chapter four gives the concluding remarks and suggestions for future work.  
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3.4 Ge Isotopes

3.4.1 Hamiltonian Interaction Parameters

Table (3-25) contains the IBM-2 Hamiltonian parameters (in MeV) used in the 
present study to calculate the energies of the positive parity low-lying levels of         64-

80Ge. Nπ =2 (first configuration or normal configuration 2π ) and Nν changes from 4 to 
7 for 64-72Ge and finally varies from 6 to 3 for 74-80Ge. The Hamiltonian parameter 
values of IBM-2 were estimated by fitting to the experimental energy levels and it 
was made by allowing one parameter to vary while keeping the others constant. This 
procedure was carried out iteratively until an overall fit was achieved. The computer 
program NPBOS [124], was used to make the Hamiltonian diagonal. In principle, all 
parameters can be varied independently in fitting the energy spectrum of one nucleus. 
As a results calculations, we find that the structure of the spectra determined almost 
by four quantities ε , κ , νχ  and πχ . These quantities may in general depend both 
on the proton boson number Nπ and neutron boson number Nν, guided by the 
microscopic calculations of  [114]. We have assumed that only ε  and κ  depend on 
Nπ and Nν i.e., ( )νπε NN , , ( )νπκ NN , while πχ  depends only on Nπ constant for all 

isotopes and νχ  on Nν . Thus a set of isotopes have the same value of πχ . The 
parameterization allows one to correlate a large number of experimental data. 
Similarly, when a proton-proton interaction Vππ and neutron-neutron interaction Vνν  is 
added, the coefficients LC  are taken as )( π

π NCL  and )( ν
ν NCL  i.e., the proton-

proton interaction will only depend on Nπ  and neutron-neutron on Nν.

Table (3-25 ): IBM-2 Hamiltonian parameters (Nπ = 2), all parameters in MeV units except  χπ 

and  χν  are dimensionless.

2ξ31 ξξ =π4Cπ2Cπ0Cν4Cν2Cν0CπχνχκεIsotopes

-0.0600.0610.00.00.0-0.330.00.0-0.71.250-0.2201.235Ge-64
-0.0550.0610.00.00.00.00.00.0-0.71.200-0.2351.370Ge-66
-0.0400.0510.00.00.00.210.0-1.50-0.71.225-0.2001.401Ge-68
-0.0390.0220.00.00.00.17-0.38-0.19-0.71.325-0.1951.425Ge-70
-0.0300.0210.00.00.00.160.0-2.41-0.71.150-0.2451.300Ge-72
-0.029-0.0210.00.00.0-0.22-1.21-1.21-0.71.100-0.2101.090Ge-74
-0.021-0.0210.00.00.0-0.900.00.0-0.71.100-0.2150.945Ge-76
-0.018-0.0110.00.00.0-0.220.00.0-0.71.100-0.2150.930Ge-78
-0.013-0.1000.00.00.00.0-0.90.0-0.71.0000.2251.200Ge-80

The alternate configuration used for the germanium  isotopes involves a two-
particle-four-hole excitation in the shell model proton space. This corresponds to two 
proton boson particles and one proton boson hole in the IBM space. For simplicity, 
the proton boson particles and hole are treated equivalently, even though the 
underlying fermion pair degrees of freedom originate in different major shells.

The values of the parameters used for the present calculations are given in table 
(3-26). The value of the parameter ε  for the Nπ =4 configuration, πε 4 , is changed 
smoothly for all isotopes. The κ  trends for both configurations follow the microscopic 
predictions. The values of πχ , 321 ξξξ ==  , 22 βα =   are kept constant for all 
isotopes and νχ  is taken the same for the normal and intruder configurations. The 
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variation of  ∆ as a function of the neutron number is linear, Our ∆ values are larger 
than the ones given in [85] because we are assuming that the intruder configuration 
originates from the excitation of one proton pair across the Z = 28 shell gap instead of 
a proton pair within the same valence space.

The parameter ν0C , ν2C  and ν4C  in the ννV  interaction term, is varied 
smoothly from one isotope to another. The same values are used for both configurations. 
These parameters are used in NPMIX code to evaluate the energy levels after mixing.

Table (3-26 ): IBM-2 Hamiltonian parameters (Nπ = 4), all parameters in MeV units except χπ 

and χν  are dimensionless.

∆kξ22 βα =π4Cπ2Cπ0Cν4Cν2Cν0CπχνχκεIsotopes

4.30.0550.1180.00.00.0-0.330.00.0-1.391.25
0

-0.2601.6
0

Ge-64

4.00.0550.1180.00.00.00.00.00.0-1.391.20
0

-0.2551.5
5

Ge-66

3.80.0550.1180.00.00.00.210.0-1.50-1.391.22
5

-0.2501.4
5

Ge-68

3.00.0550.1180.00.00.00.17-0.38-0.19-1.391.32
5

-0.2401.3
3

Ge-70

2.80.0550.1180.00.00.00.160.0-2.41-1.391.15
0

-0.2401.1
5

Ge-72

1.020.0550.1180.00.00.0-0.22-1.21-1.21-1.391.10
0

-0.2301.0
8

Ge-74

0.040.0550.1180.00.00.0-0.900.00.0-1.391.10
0

-0.2401.3
0

Ge-76

-0.990.0550.1180.00.00.0-0.220.00.0-1.391.10
0

-0.2501.2
0

Ge-78

-1.220.0550.1180.00.00.00.0-0.90.0-1.391.00
0

-0.2601.1
0

Ge-80

-1.220.0550.1200.00.00.00.00.00.0-1.391.00
0

-0.2801.2
5

Ge-82

       Having considered the spectrum in some detail, it is of interest to compare the 
number of levels predicted with the number of free parameters used. There are ten 
parameters in the IBM-2 Hamiltonian, Eq.(2-42), and three in the mixing Hamiltonian, 
Eq.(2.75). Since the 4π parameters could conceivably all be different from those for 
the 2π case, there are 23 possible parameters for each isotope, an enormous number. 
However, six of these are not used: π

ν
4
2C , π

ν
4
4C  and 3,1ξ  for both configurations. Four 

parameters,  νχ  both πχ ,s and 2ξ  are determined from microscopic calculations or 
established from the  Ge  isotones. Also,  νχ ,  ν0C  and  2ξ  are  identical  for both 
configurations.  This reduces the number of free parameters to ten. Six of these are 
constant  across  the  shell: π

ν
4
2C ,  π

ν
4
4C  , πε 4 ,  βα,  and  ∆. Hence,  the  only  free 

parameters which a allowed to vary from one isotope to another are πε 2 , πκ 2 , πκ 4  and 
ν0C .

 With four free parameters per isotope, more than fourteen energy levels are predicted 
(including the 2π  ground state) for each germanium isotope.

3.4.2 Energy Spectra
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The calculated energy spectra, before mixing and after mixing, are presented 
along with the experimental spectra in figures(3.23-31) before mixing. The figure 
(3.32-40) includes the after mixing (intruder configuration).

We have applied the model describe in the previous section to the calculation 
of the energy levels of the isotopic chain  Ge8064

32
−  in major shell 28 and 50. The 

results are shown in (figs. 3.23-31). A detailed comparison with experimental data is 
shown in the figures. As it can be seen from these results, the agreement between the 
experimental data and theoretical results are quite good and the general features are 
reproduced well, especially for the members of the ground-state band. The value of 
R4/2  as it is seen in table (3-30) it increases gradually from about 2.28 to 2.60. The 
agreement between the experimental values and IBM-2 for )2(/)4( 11

++ EE  ratios of 
all Ge isotopes and the results show that R4/2 > 2 for all Ge isotopes. It means that 
their structure seems to be varying from Harmonic Vibrator (HV) to along gamma 
soft rotor (SU(5)→O(6)). So, the energy levels of the 64-80Ge nuclei can be situated 
between the pure vibrational and rotational limit [20], are also trying to get a solution 
of potentials for the E(5) and X(5) models of the Bohr Hamiltonian by comparing the 
findings with the experimental data as well as the previous results.

                                         

Table (3-27): Values )2/( 11
++JE  for Ge  Isotopes in normal configuration (Nπ = 2)

)2/8( 11
++E)2/6( 11

++E)2/4( 11
++E

Isotopes
IBM-2E(5(Exp.[117[IBM-2E(5(Exp.[117[IBM-2E(5(Exp.[117[
5.2535.35.73.3185.33.82.2252.32.275Ge-64
5.7305.2-3.6235.23.82.1842.32.273Ge-66
4.7605.04.83.56753.62.2142.22.233Ge-68
4.5424.3-3.4674.33.52.0752.12.072Ge-70
4.7324.34.83.9134.33.32.4652.12.071Ge-72
7.1146.6-4.1666.6-2.5082.52.458Ge-74
6.4787-4.2277-2.5362.52.508Ge-76
5.9867-4.4137-2.5602.52.536Ge-78
4.8857-3.6077-2.6192.52.643Ge-80

The normal configuration for germanium involves Nπ = 2 (sometimes  denoted 
as 2π, two proton bosons), counting from the Z = 28 closed shell. The neutron 
configuration for 64Ge32 for example, is Nν =2  (two neutron boson), counting from the 
N = 28 closed shell. The vibrational spectra can be calculated by diagonalizing the 
IBM-2 Hamiltonian, Eq.(2.42), in the space of two proton and Nν neutron s and d 
bosons. In order to describe the rotational states, an alternative configuration must be 
specified and a separate set of IBM calculations made, based on that configuration. 
The alternate configuration used for the germanium  isotopes involves a two-particle-
four-hole excitation in the shell model proton space. This corresponds to two proton 
boson particles and two proton boson hole in the IBM space. For simplicity, the 
proton boson particles and holes are treated equivalently, even though the underlying 
fermion-pair degrees of freedom originate in different major shells.
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Figure (3-23): Comparison between experimental and calculated energy levels for 64Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-24): Comparison between experimental and calculated energy levels for 66Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-25): Comparison between experimental and calculated energy levels for 68Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-26): Comparison between experimental and calculated energy levels for 70Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-27): Comparison between experimental and calculated energy levels for 72Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-28): Comparison between experimental and calculated energy levels for 74Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-29): Comparison between experimental and calculated energy levels for 76Ge. The experimental 
data are taken from ref. [117].  

100



Chapter Three                                                                                           Results and Discussion

Figure (3-30): Comparison between experimental and calculated energy levels for 78Ge. The experimental 
data are taken from ref. [117].  
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Figure (3-31): Comparison between experimental and calculated energy levels for 80Ge. The experimental 
data are taken from ref. [117].  

Once IBM calculations have been done in model spaces with Nπ = 2 and Nπ = 4 
to describe the vibrational and rotational states, respectively, the two calculations are 
combined using Eq.(2-76).

For each isotope, separate IBM-2 calculations were done for the Nπ = 2 and 
Nπ = 4 configurations, in which Eq.(2-42) was numerically diagonalized in the 
appropriate space using the computer code NPBOS [124]. The matrix element of 

mixH  in Eq.(2-75) were then formed using wave functions of the two separate 
configurations and the resulting mixing Hamiltonian was diagonalized by the 
computer code NPMIX  [112]. 

The calculated energy spectra, after mixing, are presented along with the 
experimental spectra in figures (3.32-40). The figures includes the Nπ = 4  ground state 
rotational band up to 8=+J , and the levels up to 3 MeV. 

The Nπ = 2  8+ levels are we11 above the energy for which the IBM is 
expected to be valid, since the pairing assumption breaks down at about 3 MeV. 
Before mixing, the Nπ = 2 and Nπ = 4 spectra look like good quasi-vibrational and 
quasi-rotational spectra, respectively. After mixing, it can be seen that many of the 
states have been moved dramatically.

The figures show other states in the Nπ = 4 configuration. The quasi-beta band 
heads 0+ and the quasi-gamma band heads 2+  for  64-82Ge  mix strongly with the       Nπ 

= 4  ground state band (gsb) 0+ and 2+ states, respectively, as can be seen in    figures 
(3.33-41). Similarly, the 64-72Ge +

24  states mix with the Nπ = 4 gsb 4+ states. The 64-

72Ge  3+ states mix strongly with the corresponding Nπ = 4  3+ states. These latter states 
are not shown in any of the figures, where, for simplicity, only the gsb, beta band and 
gamma band, are presented for the Nπ = 4 configuration. Figures    (3.33-41) also 
shows the lowest set of 2+ states. The Ge experimental spectrum is rich in levels 
which have been assigned angular momentum 3 or 2 and positive (or no) parity. 

A better fit to the quasi-gamma band head for each isotope could be obtained 
with appropriate changes in the parameter π

ν
2
2C . In the interest of a simple parameter 

trend, this has not been done. The experimental 2+ states close to the calculated 
64-82Ge 2+ state at ~ 1.5 MeV. Curiously, there is an experimental 0+ state at 0.961 
MeV in 72Ge. This state is included in figure (3-37), since it is thought to be outside 
the IBM model space.

At the time these calculations were performed, there were no published 
calculated  data on 82Ge levels. The IBM parameters for this isotope are based on 
trends from the other isotopes, and the assumption that the effective middle of the 
shell is at 80Ge. The extreme case for the situation is the neutron closed-shell nucleus 
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50
82
32 Ge , that has 0=νN , in configuration mixing excitation (p-h) across the major 

shell N = 50, therefore 2=νN  and 1=πN  in 50
82
32 Ge .

  
All the calculated energy levels above 1.5 MeV are somewhat high. The 

calculated 3+ levels are quite high, except for 64-72Ge. However, there is general 
agreement with experiment for all the isotopes concerned.

 A few comments on the uncertainties involved in the calculated energies are, 
perhaps, appropriate, even though these uncertainties cannot be estimated in a 
rigorous way. For the most part, the estimates given represent a change in energy due 
to a change in one of  the parameters by a given amount, usually one unit in the least 
significant place.

The fitting of the 4=νN configuration for A~ 78 is speculative. The dominant 
parameter is πκ 4 . For 80Ge, the determination of this parameter is based on one 
experimental number, a possible 2+ state at 0.612 MeV. A change of 1 keV in πκ 4  
changes the rotational states by 10-20 keV. For A > 80, the values of πκ 4  are based 
solely on extrapolation.

The choice of the 82Ge parameters is based on extrapolation and the 
expectation that the parameters and energies should be roughly reflected about the 
middle of the shell. Since this nucleus is the only one of the isotopes studied to have 
neutron particle bosons, as opposed to hole bosons (e.g., the only nucleus below mid-
shell), the 82Ge levels are somewhat speculative.

A conservative estimate of the uncertainty in the calculated energies of the 
intruder ( π4 ) states in 70-76Ge is 10-20 keV. The low-lying vibrational states also 
have an estimated uncertainty of 10-20 keV (considering a 5 or 10 keV change in ε  
orκ ). The uncertainty in the higher levels is 40 keV or more. This is partly because 
the higher energy states are more sensitive to the parameters and partly because, for the 
most part, the parameters are not fitted to these states.

In many cases, the discrepancy between calculated and experimental energies 
is deliberately greater than the above uncertainties, in order to simplify the parameter 
trends. In other cases, especially for the higher energy levels, the discrepancy is 
probably partly due to the fact that the model is too simple.
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Figure (3-32): Comparison between experimental and calculated energy levels for 64Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-33): Comparison between experimental and calculated energy levels for 66Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-34): Comparison between experimental and calculated energy levels for 68Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-35): Comparison between experimental and calculated energy levels for 70Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-36): Comparison between experimental and calculated energy levels for 72Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-37): Comparison between experimental and calculated energy levels for 74Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-38): Comparison between experimental and calculated energy levels for 76Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-39): Comparison between experimental and calculated energy levels for 78Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-40): Comparison between experimental and calculated energy levels for 80Ge (Nπ =4). The 
experimental data are taken from ref. [117].  
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Figure (3-41): Comparison between experimental and calculated energy levels for 82Ge (Nπ =4). The 
experimental data are taken from ref. [117].  

3.4.3 Electric Transition Probability

The E2 transition operator, is given in Eq. (2.83). The effective boson charges 
πe  and νe  were calculated by plotting [118] M1 and  M2 which are given in Eqs. 

(3-2,3) against πν NN /  (see figure (3-42)). For a  mathematical simplicity we use the 
values of the boson effective charges where 242 eee == ππ   and 442 eee == νν , for all 
Ge isotopes. The best fit of effective charges  to Ge8064 −  isotopes was obtained 

11095.0=πe  eb  and 05.0=νe  eb . The results of the calculations are presented 
in table (3-28). Looking through the table, one can easily recognizes that our 
calculations reproduce the experimental data quite well.

Figure (3-42): The plot of the quantity M1 and M2 versus πννπ NNee /+ for 64-80Ge Isotopes.
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Table (3-28): Electric Transition Probability for Ge  isotopes in e2b2 units

Subber [92]Present WorkExp. [117]++ → fi JJIsotopes

0.01250.03510.0410) 60(21→01

Ge-64

0.00280.00120.00015)5(22→01

0.01660.05230.0620) 210(22→21

0.00180.0033-23→01

0.00120.0027-23→21

0.01210.020-41→21

-0.119-61→41

-0.059-42→41

--0.182-)2( 1
+Q

0.02120.01290.01896)362(21→01

Ge-66

0.00290.00140.00016)6(22→01

0.02830.03100.02686)1264(22→21

0.00180.0024-23→01

0.02250.0281-23→21

0.03250.0335-41→21

-0.127-61→41

-0.052-42→41

--0.170-)2( 1
+Q

0.02730.0182 ≤0.0151721→01

Ge-68

0.00480.03710.02912)329(22→01

0.04060.00040.00023)4(22→21

0.0038  0.000770.00086)34(23→01

0.00760.0082-23→21

0.04460.0529-41→21

-0.129-61→41

-0.050-42→41

- 0.0012-)2( 1
+Q

0.03400.03210.02287)29(21→01

Ge-70

0.0069 0.03010.03593)68(22→01

0.05000.002320.00171)85(22→21

0.00300.06180.0497)189(23→01

0.00100.0015-23→21

0.05790.06810.04112)11(41→21

-0.134-61→41

-0.0481-42→41

-0.037+0.04(3))2( 1
+Q

0.03300.0390.040)3(21→01

Ge-72

0.00990.0076-22→01

0.04780.1290.114)12(22→21

0.00170.0024-23→01

0.01900.018-23→21

0.05650.0480.0641)71(41→21

-0.141-61→41

-0.0479-42→41

--0.122-0.13(6))2( 1
+Q

0.028)5(0.0650.060)3(21→01

Ge-74

0.00550.0671 ≥0.07822→01

0.04700.08970.0997)203(22→21

0.00170.0014-23→01

0.00560.0047-23→21
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0.04640.06050.0664)55(41→21

- 0.147  -61→41

-0.0431-42→41

--0.178-0.19(2))2( 1
+Q

0.0260.04980.046)3(21→01

Ge-76

0.00410.0032-22→01

0.03080.06870.0746)96(22→21

0.00110.0019-23→01

0.0000.0013-23→21

0.03730.05870.073)13(41→21

-0.152-61→41

-0.374-42→41

--0.1885-0.19(6))2( 1
+Q

0.02300.04020.044)30(21→01

Ge-78

0.00330.0041-22→01

0.01640.02980.0396)238(22→21

0.00400.0037-23→01

0.00070.00066-23→21

0.01600.029 ≤0.021841→21

-0.160-61→41

-0.0341-42→41

--0.178-)2( 1
+Q

0.0340.0210.028)5(21→01

Ge-80

0.00120.0019-22→01

0.00190.0023-22→21

0.0000.00167-23→01

0.0000.00023-23→21

0.00360.0042-41→21

-0.163-61→41

0.0310-42→41

-0.168-)2( 1
+Q

-0.0008 9.467x10-321→01

Ge-82

-0.0023-22→01

- 0.0025 -22→21

-0.0021-23→01

-0.00034-23→21

-0.0028-41→21

-0.0135-61→41

-0.0289-42→41

-0.12-)2( 1
+Q

Calculation  of electric transition properties gives us a good test of the nuclear 

model  prediction.  The  electromagnetic  matrix  elements  between eigenstates  were 

calculated using program NPBTRN for IBM-2 model.

The  )02;2( 11
++ →EB  decreased for 64-68Ge as neutron number increased 

toward the middle of the shell  for the 70-74Ge. While for the 76-82Ge as the value is 

decreased toward the closed shell. The transition )22;2( 12
++ →EB  has small value 
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because contains admixture of  M1. As a consequence of possible M1  admixture, this 

quantity is rather difficult to measure. 

The values of  )02;2( 12
++ →EB , )02;2( 13

++ →EB and )22;2( 13
++ →EB  is 

small because this transition from quasi-beta band to ground state band (cross over 

transition). 

The IBM-2 results are compared not only with experiment, but also with 
predictions from the following other work by Subber [92] .  

The quadrupole moment for first excited state in Ge isotopes are very well 
described. The calculated values of )2( 1

+Q  indicated the 64-66Ge has prolate shape in 
first excited states, while the 68-70Ge has a oblate shape in first excited states. The 
72-80Ge has a protate shape in +

12  states.

The signs of )2( 1
+Q  are correctly predicted for the isotopes for which 

experimental data are available. (These signs depend on πχ and νχ ). The calculated 
magnitudes are close to the experimental values.

The intention of the present work is to give a good overall characterization of 
a whole chain of isotopes with a simple set of parameters, rather than to give the best 
possible fit to any one nucleus. Hence, it is not surprising that some of the 
experimental results listed in table (3-28)  are better fit with experimental data. On the 
whole, the IBM results for E2 transition rates and quadrupole moments compared 
well with the experimental results and with the predictions of other work for the Ge 
isotopes .
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3.4.4-Magnetic  Transition Probability

The magnetic transition operator T(M1) were calculated using Eq.(2- 84), and 
the boson gyromagnetic factors were estimated using the fact that AZg /=  and the 
relation (3-4), used to compute the +

12   state g -factor. The value of the measured 

magnetic moment )3(1.12 == gµ Nµ  [117] for 68Ge, and the experimental mixing 

ratio )1.0(2.0)22( 12 −=→ ++δ  [100] were used to produce satiable estimation  for 

the boson gyromagnetic factors. The values are ( )42 πππ ggg == Ng µπ 562.0=  and 
)42 ννν ggg == Ng µν 397.0= . The results of the calculations are listed in 

table (3-29).

Table (3-29): Reduced transitions probability B(M1) in 2
Nµ  units for 64-82Ge isotopes

B(M1) Transitions
82Ge80Ge78Ge76Ge74Ge72Ge70Ge68Ge66Ge64Ge

0.000040.000030.000110.009870.0004210.00430.000430.01320.02880.066222→21

0.00170.00262 0.000050.00570.000510.00520.0020.00020.01910.037823→21

0.0000330.000050.000120.02090.00200.000220.00450.02510.04420.056123→22

0.0000270.000030.000110.009870.0004210.000810.03890.001450.04320.066231→21

2.7x10-42.561x10-42.451x10-42.34x10-42.15x10-41.77x10-41.39x10-42x10-45.67x10-45x4510-431→22

1.33x10-31.28x10-31.004x10-36.53x10-32.15x10-32.43x10-3 4.99x10-31.02x10-35.6x10-4 2.5x10-531→32

0.9750.9430.9100.90220.8960.8230.7990.7550.5600.45111→01

0.2540.1490.09940.08920.08110.07620.07530.06550.06410.063211→21

-

0.832

0.839(46)

0.77

-

0.531

0.56(12)

0.591

0.70(24)

0.80

0.77(5)

0.871

0.936(52)

1.022

1.1 (3)

1.34

-

1.43

-

1.53

)2( 1
+µ (Exp.)

)2( 1
+µ IBM-

2

Experimental data for magnetic dipole moment for first excited state are given from ref.[117 [

In  phenomenological  studies  gπ and  gν  are  treated  as  parameters  and  kept 

constant for a whole isotopes chain. The total  g factor is defined by Many relations 

could be obtained for a certain mass region and then the average gπ and gν values for 

this region could be calculated, and one of the experimental B(M1) values. It is found 

that gπ − gν = 0.176 μN . The estimated values of the parameter are gπ = 0.562 μN and 

gν = 0.397  μN .  These were used to  calculate  the  magnetic  transition  probability 

B(M1).  These values were then generalized for all Ge isotopes. They are different 

from  those  of  the  rare–earth  nuclei,  )65.0( Ngg µνπ =− ,  suggested  by 

Van Isacker et al., [108]. However they also used Ng µπ 1=  and  Ng µν 0=  to reduce 

the number of the model parameters in their calculation of M1 properties in deformed 

nuclei.  The  results  of  our  calculations  are  listed  in  table  (3-29).  There  is  no 

experimental data to compare with the IBM-2 calculations. As can be seen from the 

table  yields  to  a  simple  prediction  that  M1 matrix  elements  values  for  gamma to 
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ground and transitions should be equal for the same initial and final spin. Also the size 

of gamma to ground matrix elements seems to decrease as the mass number increases.

3.4.5-Mixing Ratio )1/2( MEδ

The δ(E2/M1) mixing ratios for some selected transitions in Ge isotopes are 
calculated from the useful equations as above and with the help of  B(E2) and B(MI) 
values which are obtained from NPBEM (computer code which is subroutine of 
NPBOS package program); the results are given in table (3-30). In general, the 
calculated electromagnetic properties of the Ge isotopes do not differ significantly 
from those calculated in experimental and  theoretical work. However, there is a large 
disagreement in the mixing ratios of  )22( 12

++ →δ , )23( 11
++ →δ  and )23( 21

++ →δ , 
due to the small value of  M1 matrix elements.

Table  (3-30): Mixing ratios δ(E2/M1) for Ge64-80  in Neb µ/   units

Subber [92[2−IBMExp.[100,117] ++ → fi JJIsotopes

-5.6-4.450-
12 22 →

Ge-64
2.33.764-

13 22 →
10.7412-

11 23 →
-2.0270.0921-

21 23 →
--

11 24 →
-1.5912.27618

265.3 +
−−12 22 →

Ge-66 -1.56-2.980-
13 22 →

20.917.98-
11 23 →

2.613.220-
21 23 →

--3.989-
11 24 →

-1.934-0.811-0.2)0.1(
12 22 →

Ge-68
-1.734-2.0-

13 22 →
-36.78-1.77-0.2)0.1(

11 23 →
-0.31-0.33-0.2)0.3(

21 23 →
--4.77

11 24 →
-1.76-10.19-5.0)3.0(

12 22 →
Ge-70

-5.780.011-
13 22 →

-0.35-2.86-2.2+)5-3(
11 23 →

-3.45-0.087-0.05)8(
21 23 →

-7.188-
11 24 →

-3.89-13.4-10.3)13(
12 22 →

Ge-72 -7.8810.32-
13 22 →
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3.9211.6-
11 23 →

-3.675.22 ≈+4.0
21 23 →

-9.66-
11 24 →

-1.2223.96+3.4)4(
12 22 →

Ge-74 7.44-3.21-2.8)3(
13 22 →

3.020.6610.34)5(
11 23 →

-5.7892.4+1.3)4(
21 23 →

--0.9-
11 24 →

3.505.21+3.5)15(
12 22 →

Ge-76
-11.583.4-

13 22 →
2.4417.2-

11 23 →
-6.87-7.34-

21 23 →
--0.411-

11 24 →
0.981.456-

12 22 →
Ge-78

29.521.90-
13 22 →

1.962.11-
11 23 →

-1.2-2.56-
21 23 →

-5.108-
11 24 →

-1.6-2.64-
12 22 →

Ge-80
-1.370.002-

13 22 →
-0.511-0.414-

11 23 →
-0.0115-

21 23 →
-10-

11 24 →
--1.06-

12 22 →

Ge-82

-0.0019-
13 22 →

--0.411-
11 23 →

--2.25-
21 23 →

-8.318-
11 24 →

3.4.6-Electric Monopole Matrix Element )0(Eρ

The expressions for )0(Eρ  matrix elements is given in Eq. (2-86). They 
involve five parameters. Four of them, −

πβ02 , −
νβ02 , −

πβ04  and −
νβ04 , multiply the 
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matrix elements of  
^
2 πdn  , 

^
2 νdn , 

^
4 πdn  and 

^
4 νdn , respectively. The last parameter, 

which occurs in the isotope shift expression only, is an additive constant,  νγ0 . (It is 
the sum of  νγ02  and  νγ04 ). The quantity X -values defined in Eq. (2-61). 

The values of the parameters  −
πβ02 , −

νβ02  and  νγ0  are determined by fitting 
to the experimental 72Ge isotope shifts, which are dominated by the 2π configuration. 
The values of the parameters −

πβ04  and −
νβ04  are subsequently determined to fit the 

X- values for 72Ge . The parameter values are: 

−
πβ02 = 0.832 fm2  ,  −

νβ02 =-0.286 fm2,   −
πβ04 =-0.500 fm2,  −

νβ04 = 0.182fm2,            

νγ0 = -0.079   ………..(3- 5)

 There is good agreement between the calculated value and the experimental 
result for both the E0 transition  in 72Ge isotope . However, rather different sets of the 
E0 parameters can be found which give similar isotope shifts but different isomer 
shifts. Therefore, in the absence of any experimental isomer shift data, it is not 
possible to tell whether or not Eq.(3-5) represents the "best" possible set of  E0 
parameters.
 

It appears that all five T(E0) parameters are necessary to obtain reasonable 
results, unlike the E2 case, where eπ = eν .
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جدول

    

3.4.7-Mixed Symmetry States

Another probable indication for the need for an increased Majorana force for 
the germanium  calculations is the presence of the  mixed-symmetry +

32  states in 
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figures (3.24-32) at about 2 MeV. There is no experimental evidence for such states, 
for 64-66Ge, where 2+ states could be non-collective.

The calculations shown in figures were done with the Majarona parameters, to 
see what effect this larger Majorana force would have on the germanium 2π spectrum. 
The parameter ν0C  was also changed, as previously mentioned, and the parameters 
ε , ν2C , and ν4C  adjusted to fit the gsb. The parameter set is given in table (3-25). 
This calculation does not include configuration mixing.

The  1+ and +
32  levels have been shifted up out of the low energy spectrum, as 

desired. However, the calculated +
γ3  levels, which were already too high in 

figures (3.24-32), have also been pushed up. These +
γ3  levels, along with the 2+ and 

4+ members of the quasi-gamma band, are shown on the figures. Recent microscopic 
calculations for Ge [92] find 2ξ  changed from -0.06 MeV  to -0.013 MeV, and 

31 ξξ =  changed from 0.061 MeV to -0.1 MeV, resulting in reasonable agreement 

with experiment for the 3+ levels. The +
32  levels of  Subber [92] are around 2 MeV, 

however. It appears that an optimal set of Majorana parameters has yet to be found. 
Such a set will likely involve  31 ξξ ≠ .

The newly found collective 1+ state in 156Gd [Bohle et al., [106]] indirectly 
affects the germanium calculations because it suggests that the strengths of the 
Majorana terms used in most of the IBM-2 calculations to date have been too small. 
This 1+ level was found at 3.1 MeV in an inelastic electron scattering experiment 
(e,e'), which selectively excites collective states. In the IBM, 1+ states are clearly not 
totally symmetric; they cannot be obtained in IBM-1. Thus, they are quite sensitive to 
the strength of the Majorana force.

The M1 state (as it is called) in 156Gd can be reproduced by IBM-2 with the 
Majorana strengths 2ξ =0.2 MeV and 31 ξξ = = -0.4 MeV [106]. In comparison, the 
values of the parameters 31 ξξ =  used by this worker and Subber work [92] are also 
much smaller than those of  Bohle et al., [106].

Although some of the germanium  isotopes have low-lying 1+ states, there is 
no evidence that these states are collective. Therefore, the calculated 1+ levels should 
be higher in energy than those shown in figures, indicating that one or more of the 
parameters 3,2,1ξ  need to be increased (in absolute value).
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Chapter Three
Results and Discussion

 3.1 Kr Isotopes

3.1.1 Hamiltonian Interaction Parameters  
Since the Hamiltonian contains many parameters it is unpractical and not very 

meaningful to vary all  parameters freely. Instead it is convenient to use the   behavior 
of the parameters predicted by a microscopic point of view as a zeroth-order 
approximation. In a simple shell-model picture based upon degenerate single nucleon 
levels [114] the expected dependence of νχκε ,, and πχ on neutron  ( )νN  and 

proton ( )πN  boson numbers can be expressed as:

ε = constant, νπκκκ = , )0(

1 ρ
ρ

ρρ
ρ κκ

−Ω
−Ω

=
N

,  
)0(2

ρ
ρρ

ρρ
ρ χχ

N

N

−Ω
−Ω

=   .,νπρ =    (3-

1)

Here  )0(
ρκ and )0(

ρχ  are constants, and ρΩ  is the pair degeneracy of the shell. We 

see that while ρκ  has always the same sign, ρχ  changes sign in the middle of the 
shell.

In realistic cases the estimates of eq.(3-1) are expected to be valid only 
approximately. In our approach we have imposed somewhat weaker constrains on the 
parameters: (i) it is assumed that within a  series of  isotones (isotopes) )( πν χχ  does 
not vary at all; (ii) the parameters κε,  and νχ   are assumed to be smooth functions 

of ( )νN  .

Concerning the sign of νχ  and πχ  a complication arises. From very simple 
microscopic consideration it follows that the s,χ (which also determined to a large 
extent the sign of the quadrupole moment of the first excited state  +

12 are negative in 
the region where the valence shell is less than half filled (particle-boson) and positive 
in the region where the valance shell is more than half filled (hole-boson). 
Quantitatively, such a behavior was confirmed in other phenomenological 
calculations with IBM-2. For example in a study of the Ba isotopes with 72 < N < 80 
good fit to the energy levels was obtained with 90.0≈νχ [115]. Since in the naïve 
shell-model picture in the Kr region both neutrons and protons are hole-like and 
therefore both  s,χ would be positive, there would be no way to obtain an SU(5) type 
spectrum, which requires opposite signs of  νχ  and πχ . This indicates that the 
situation is not so simple and that more complicated effects play a role , such as a 
possible nonclosedness of the Z= 50 or the N = 82 core. Although the Hamiltonian 
invariant under  simultaneous change in sign of both νχ  and πχ and thus equally 
good fits to energy spectra can be obtained for both combinations 0>νχ  and 0<πχ
. Namely, only with this choice the observed sign of the mass quadrupole moment of 
the  +

12  state in Kr  can be reproduced .
The remaining parameters play a less important role and are used mainly to 

improve the fit with experiment . In this work only ν0C   and ν2C  representing part 
of the d-boson conserving interaction between neutron bosons, were used as free 
parameters independent of πN . Finally, the values of 2ξ  and  1ξ   were vary from 
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isotope to another,  3ξ  kept constant. The parameters used for the various isotopes 
are shown in table (3-1) .

It is seen that parameters are  constant or vary smoothly: within a series of 
isotopes πχ  does not vary, the variation in ε  is very small and there is a slight 
decrease of the value of  κ  for the lighter Kr isotopes. The change in character of the 
spectra through a series of isotopes   is essentially due to two effects: (i) the increase 
of the value of νχ  for 76-84Kr and decreases for 88-90Kr, and (ii) the decrease of the 
number of neutron bosons νN . We note that the behaviors of νχκε ,, and πχ is a 
qualitative agreement with microscopic considerations (see eq.(3-1)). It was found 
that both  ν0C   and ν2C  vary for the isotopes. Such a behavior agree with the trend 
found in other regions [34]. The positive value of  2ξ  guarantees that no low-lying 
anti-symmetric multiplets occur for which there is no experimental evidence. 

Table (3-1): IBM-2 Hamiltonian parameters for Kr isotopes, all parameters in MeV units except 

πχ and νχ  are dimensionless

2ξ1ξπ4Cπ2Cπ0Cν4Cν2Cν0CπχνχκενNπNIsotopes

0.0320.0510.300.30-1.20.110.20-1.20-0.600.41-0.0800.70154
40

76
36 Kr

0.1300.1020.300.31-1.20.110.27-0.66-0.600.52-0.0900.72244
42

78
36 Kr

0.0500.2420.05-0.21-0.480.110.11-0.22-0.600.60-0.0810.89034
44

80
36 Kr

0.0500.1820.07-0.181.43-0.37-0.820.11-0.600.70-0.0810.96024
46

82
36 Kr

0.4400.6010.380.250.140.00.00.0-0.600.81-0.0800.94914
48

84
36 Kr

0.4500.6010.0-0.18-0.300.120.120.12-0.600.62-0.0870.92014
52

88
36 Kr

0.5100.6320.170.170.170.110.110.11-0.60059-0.9920.86224
54

90
36 Kr

3ξ = 0.11 MeV

3.1.2 Energy Spectra

The calculated excitation energies of positive parity levels to 76-90Kr are given 
in table (3-1) and displayed in figures.(3-1,2,3,4,5,6,7). The agreement between the 
calculated and experimental values is satisfactory. 

Using the parameters in table (3-1), the estimated energy levels are shown in 
the figures, along with experimental energy levels. As can be seen, the agreement 
between experiment and theory is quite good and the general features are reproduced 
well. We observe the discrepancy between theory and experiment for high spin states. 
But one must be careful in comparing theory with experiment, since all calculated 
states have a collective nature, whereas some of the experimental states may have a 
particle-like structure. Behavior of the ratio =2/4R )2(/)4( 11

++ EE  of the energies of 

the first +
14  and +

12  states are good criteria for the shape transition [116]. The value 
of R4/2 ratio has the limiting value 2.0 for a quadrupole vibrator, 2.5 for a non-axial 
gamma-soft rotor and 3.33 for an ideally symmetric rotor. R4/2 remain nearly constant 
at increase with neutron number. The estimated values change from isotope to another 
(see table 3-2)),  this meaning that their structure seems to be varying from axial 
gamma soft to quadrupole vibrator )6()5( OSU → . Since Kr nucleus has a rather 
vibrational-like character, taking into account of the dynamic symmetry location of 
the even-even Kr nuclei at the IBM phase Casten triangle where their parameter sets 
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are at the )6()5( OSU → transition region and closer to SU(5) character and we used 
the multiple expansion form of the Hamiltonian for our approximation.

The shape transition predicted by this study is consistent with the 
spectroscopic data for these nuclei. 88-90Kr  are typical examples of  isotopes that 
exhibit a smooth phase transition from vibrational nuclei (SU(5)) to soft triaxial rotors 
(O(6)).

Table (3-2): Energy ratio =2/4R )2(/)4( 11
++ EE  for Kr isotopes

)2(/)4( 11
++ EE 40

76
36 Kr 42

78
36 Kr 44

80
36 Kr 46

82
36 Kr 48

84
36 Kr 52

88
36 Kr 54

90
36 Kr

Exp. [117] 2.44 2.459 2.327 2.345 2.375 2.121 3.043
IBM-2 2.49 2.467 2.312 2.354 2.329 2.116 3.043

In the Figures we show the results of our calculations for the energies of the 
ground state band ( ++++

1111 8,6,4,2 and +
110 ) in the Kr9076−  isotopes . We observe 

the discrepancy between theory and experiment for ++= 8,6πJ in Kr isotopes with 
neutron bosons ( )48,46,44,42=N . However, one must be careful in comparing 
theory with experiment, since all calculated low-lying states have a collective nature. 

The order of the +
20   and +

13 is correctly predicted in Kr9076−  isotopes and 

we remark that the energy of the +
13 state is predicted systematically too high.  This is 

a consequence of the presence of a Majarona term πνM   in the Hamiltonian 
(eq. (2-43)). We have chosen the parameters of the Majarona force in such a way that 
it pushes up states which are not completely symmetric with respect to proton and 
neutron bosons, since there is no experimental evidence for such states. However, 
experimental information becomes available about these states with mixed symmetry, 
this situation could possibly be improved. In the present case it would have been 
possible to further higher its energy by constant the value of 3ξ  .

The position of the  +
32  state relative to the +

20  state especially in 
KrKr 8278 ,  and  Kr88  isotopes. The moment of inertia of the ground state band 

increases, the quasi γ-band   is pushed up,  and also  +
20  state becomes a member of a 

K = 0  β-band. 
The energy spectra show that the first criterion for identifying the intruder +0 states. 
For instance, in 76-82-84-88Kr the experimental  energies of the  +

20  states are lager than 

those of the  calculated +
20  states. As a consequence, we suspect that these states are 

intruder. On the contrary in 78-80Kr the experimental data are close to the calculated 
states and thus they may be the collective +

20  states. However, no final conclusion 
can be drawn from the energies alone, since it is very likely that both intruder and 
collective +0  states will occur in the same energy region.
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Figure (3-1): Comparison between experimental and calculated energy levels for 76Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-2): Comparison between experimental and calculated energy levels for 78Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-3): Comparison between experimental and calculated energy levels for 80Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-4): Comparison between experimental and calculated energy levels for 82Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-5): Comparison between experimental and calculated energy levels for 84Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-6): Comparison between experimental and calculated energy levels for 88Kr. The experimental 
data are taken from ref. [117].  
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Figure (3-7): Comparison between experimental and calculated energy levels for 90Kr. The experimental 
data are taken from ref. [117].  

3.1.3-Electric Transition Probability
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The effective boson charges πe  and νe  were calculated by plotting [118] M 
against πν NN /  where

for the SU(5) limit  ….(3-2 (( )[ ] πννππ NNeebeENBNM /.02;2(/1
2/1

111 +=→= ++

for the O(6)  limit……(3-3 (
( ) πννππ NNeebeEB

N

N
NM /.02;2(

4

5
/1

2/1

112 +=




 →

+
= ++

 
where B(E2) is the reduced transition probability, πN and νN  are the boson 
numbers of proton and neutron respectively, νπ NNN +=  is the total boson number. 
The difference between the effective charge and the charge of the single nucleon is 
referred to as the polarization charge. The value of effective charge may depend 
somewhat on the orbit of the nucleon. In particular, the polarization effect decreases 
when the binding energy of the nucleon becomes small. 

Figure (3-8) represent the relation between [ ] 2/12
11 /02;2( πNENB ++ → and 

πννπ NNee /+  for the SU(5) limit, 
2/1

2
11 /02;2(

4

5





 →

+
++

πNEB
N

N
and 

πννπ NNee /+

 for O(6) limit. The linearity is indeed present giving 0288.0=πe eb  and 
209.0=νe  eb  in the SU(5) limit and 0575.0=πe eb  and 1047.0=νe eb  in the 

O(6) limit .The best fit of effective charges  to Kr9076−  isotopes was obtained 
04315.0=πe  eb  and 15685.0=νe  eb .This result gives a clear indication that the 

rotational contribution in nuclear motion in this region is very high.
We use used these results of effective charges to calculate the electric transition 

probabilities using the NPBEM code. The results are  presented in table (3-3). 

Figure (3-8): The plot of the quantities M1 and M2 versus πννπ NNee /+ for 76-90Kr  Isotopes.

It is well known that absolute gamma ray transition probabilities offer the 
possibility of a very sensitive test of nuclear models and the majority of the 
information on the nature of the ground state has come from studies of the energy 
level spacing. The transition probability values of the exited state in the ground state 
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band constitute another source of nuclear information. Yrast levels of even-even 
nuclei ( iJ  = 2,4,6,.....) usually decay by E2 transition to the lower lying yrast level 
with 2−= if JJ .

In table (3-3) we show the )02;2( 11
++ →EB  and )24;2( 11

++ →EB values , 
which are of the same order of magnitude and display a typical decrease towards the 
middle of the shell.

As a consequence of possible M1 admixture the )22;2( 12
++ →EB quantity is 

rather difficult to measure. For Kr isotopes, we give the different, conflicting 
experimental results and we see that no general feature be derived from them, from 
these values seems to increase for Kr807876 −−  and decrease for  Kr8482− . 

In the table we show  )02;2( 12
++ →EB values. Experimentally the results are 

radically different for the  Kr isotopes . In the some Kr  isotopes the value seems to 
increased towards the middle of the shell, whereas in another Kr  isotopes is 
decreased. Our calculations could not reproduce these contradictory features 
simultaneously. 

The quantity )20;2( 12
++ →EB , which is shown   in table (3-3), provides a 

second clue for identifying intrude +0 states. If the experimental )20;2( 12
++ →EB

value largely deviates from the results of our calculation, it is very likely the observed 
+
20  states does not correspond to the collective state, but it is rather an intruder state. 

In Kr82  isotope, there is a good agreement between experimental and calculated 
)20;2( 12

++ →EB value. This confirm our earlier statement about the nature of the 
lowest  +0 state in this isotope.

The electric transition probabilities from the mixed-symmetry state +=1J  to 
the symmetric states )2,2( 21

++  is weak collective E2 transition. The E2 transition 

between the +1  and the +
12   ground state is small, whereas E2 transitions are large 

between fully-symmetric states and between mixed-symmetry
states.

 
To conclude  this section on the E2 properties, we give the results for the 

quadrupole moments )2( 1
+Q of the first excited +2 state in table (3-3) (see equation 

(2-41)). We show complication of  theoretical  results. The general features of these 
results is clear, namely an increased  in the negative  quadrupole moment with 
increasing neutron number. 
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جدول

3.1.4-Magnetic  Transition Probability

The B(M1) reduced transition probabilities were calculated using  Eq.(2-54), 
and the boson gyromagnetic  factors πg , νg  were estimated using the fact that 

AZg /=  and the relation [119 ]
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)43(.......... −
+

+
+

=
νπ

ν
ν

νπ

π
π NN

N
g

NN

N
gg

and one of the experimental  ( )++ → 12 22;1MB = 0.0429 2
Nµ  [24] for Kr76  isotope, 

was used to produce a suitable estimation for the  boson gyromagnetic  factors. These 

values are  782.0=πg Nµ  and  328.0=νg  Nµ . They are different from those of 

the rare–earth  nuclei,  )65.0( Ngg µνπ =− ,  suggested by Van Isacker  et al.,  [120] 

also used Ng µπ 1=  and Ng µν 0=  to reduce the number of the model parameters in 

their calculation of  M1 properties in deformed nuclei. The results of our calculation 

are  listed  in  table  (3-4).  A good agreement  between the  theory  and the  available 

experimental  data  is  achieved.  As  can  be  seen  from the  table  yields  to  a  simple 

prediction that M1 matrix elements values for gamma to ground band and transitions 

should be equal for the same initial and final spin. Also the size of gamma to ground 

band  matrix elements seems to decrease as the mass number increases.

The results  shows  that the transitions between low-lying collective states are 

relatively weak. This is because of  the increase of the anti-symmetric component in 

the wave functions introduced by F-spin breaking in the Hamiltonian. The magnitude 

of  M1 values increases with increasing spin for g→γ  and γγ →  transitions and we 

see:  

1- By  fitting  B(M1)  from  γ2  to  g2 we  always  get  small  value  for 

νπ gg −  compared  with  the  value  basis  on  the  microscopic  calculations 

1=− νπ gg  .

2- There are evidences that M1 small mode exists in all spectra.

3- one  can  not  make  decisive  conclusions  related  to  the  agreement 

between theoretical and experimental data from the above table due to the 

lack of experimental  data. However both experiments and theory predicts 

small M1 component which is due to symmetry and forbiddances of band 

crossing gamma transitions.

4- The γγ →  M1 matrix elements are larger than the g→γ  M1 matrix 

elements  by a  factor  of   2  to  3.  Again,  this  agree  qualitatively with the 

perturbation expressions derived in ref. [121] .
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5- The size of the  g→γ  M1 matrix  elements  seems to decrease with 

increasing mass. Specially,  a change in  g→γ  M1 strengths occurs when 

the gamma band crosses the beta band.   

The  M1 properties of  collective nuclei are certainly very sensitive to various, even 

small,  components  in  the  wave  functions  either  of  collective   or  non-collective 

character.  In the  Kr9088−  isotopes it was shown that the inclusion of  excitations 

across the major shell and two quasi-particle states is important.  One excepts that 

also for Kr9088 −  isotopes (which are near to closed shell for neutron) similar effects 

come  into  play.  As  above  analysis  suggests  they  can  manifest  in  considerable 

renormalization of IBM-2 boson g-factors from their slandered values. The magnetic 

dipole moment for first excited state is given by 

)53....()2( 1 −+=+
ννππµ LgLg

where )( νπ gg  is the g-factor for the correlated proton (neutron) boson and )( νπ LL

is  the  corresponding  angular  momentum  operator.  According  to  the  microscopic 

foundation of the model,  )( νπ gg is expected to depend, in first  approximation on 

proton (neutron) number )( νπ NN only, )( πππ Ngg =  and )( ννν Ngg = . The IBM-

2  calculations  for   )2( 1
+µ are  listed  in  table  4,  we  see  a  good  agreement  with 

experimental data. 

It is clear that the two effects contribute to the dependence of the magnetic 

moments on proton and neutron number: the dependence of  πg and  νg on proton 

and neutron number and the variation of the matrix elements of the operator  )( νπ LL  

with πN and νN .  As will be better shown below, the former effect is related to the 

shell structure of the orbits, while the latter is related to the average number of  proton 

and neutron boson taking part in the collective motion. 
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 جدول

3.1.5-Mixing Ratio )1/2( MEδ

We evaluate the mixing ratio )1/2( MEδ for Kr isotopes,  which depends on 
the equation (2-55). These are compared with experimental and theoretical results in 
table (3-5), where one can see good agreement with estimated and experimental 
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values. The variations in sign of the E2/M1 mixing ratios  from one isotope  to 
another for the same class of transitions, and within a given nucleus for transitions 
from different spin states, suggest that a microscopic approach is needed to explain 
the data theoretically. For such reason, the sign of the mixing ratio is not taken into 
consideration. Sign convention of mixing ratios has been explained in detail by 
Lang et al., [100] .

These results exhibit disagreement in some cases, with one case showing 
disagreement in sign. However, it is a ratio between very small quantities and any 
change in the dominator that will have a great influence on the ratio. The large 
calculated value for ++ → 12 22  is not due to a dominant E2 transition, but may be under 
the effect of very small M1 component in the transition. Moreover, the large predicted 
value for transition ++ → 12 22  in 80Kr compared with experimental value may be 

related to high predicted energy level value of the IBM-2; )2( 2
+E  =1.287 MeV, 

while the experimental value is 1.256 MeV. We are unable to bring the energy value 
of this state close to experimental value simply by changing the Majorana parameters.
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جدول

3.1.6-Electric Monopole Matrix Element )0(Eρ

The E0 transition occurs between two states of the same spin and parity by 
transferring energy and zero units of angular momentum, and it has no competing 
gamma ray. The E0 transition is present when there is a change in the surface of the 
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nucleus. For example, in nuclear models where the surface is assumed fixed, E0 
transitions are strictly forbidden, such as in shell and IBM  models. Electric monopole 
transitions are completely under the penetration effect of atomic electrons on the 
nucleus, and can occur not only in →+0 0+ transition but also, in competition with 
gamma multipole transition, and depending on transition selection rules that may 
compete in any ΔJ = 0 decay such as a 2+ → 2+ or any Ji = Jf  states in the scheme. 
When the transition energy greater than 2moc2 , monopole pair production is also 
possible.

The E0 reduced transition probability is given in equation (2-60). The 
parameters in equation (2-57) can be predicted from the isotope shift [117] (see table 
(3-7)), since such data are not available for Kr isotopes, we calculate these parameters 
by fitting procedure into two experimental values of isotopic shifts (equation (2-62)). 
The parameters which were subsequently used to evaluate the )0(Eρ -values were; 
β0π = 0.062 fm2 , β0ν = −0.021 fm2 and γ0v=0.032 fm2 . From the table (3-6), in general 
there is no experimental data to compare with the IBM-2 calculations.

The monopole matrix element is  important for nuclear structure and the 
model predictions due to their sensitivity for the nuclear shape. We conclude that 
more experimental work is needed to clarify the band structure and investigate an 
acceptable degree of agreement between the predictions of the models and the 
experimental data.

We also find good agreement between the calculated and experimental values 
for isotopic shifts for all krypton  isotopes (table 3-7). 

Table (3-6): Monopole matrix elements  ρ(E0)  for Kr  isotopes in e.b

Kr90Kr88Kr84Kr82Kr80Kr78Kr76++ → fi JJ

0.0750.00940.00820.07500.0700.05510.0431
12 00 →

0.00090.000920.000890.000830.000800.000730.0067
13 00 →

0.01020.00990.000940.000890.000340.00453.18*10-3
23 00 →

0.0130.00990.00960.00760.00560.00340.0002
12 22 →

0.000700.000670.000650.000520.000460.00410.00034
13 22 →

0.008720.005310.005190.003950.003510.00270.0021
23 22 →

Table(3-7): Isotopic Shifts for Kr Isotopes

Nucleus ><∆ 2r  2fm

]117.[Exp IBM-2

42
78
3640

76
36 KrKr − - -0.009

44
80
3642

78
36 KrKr − - -0.0148
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46
82
3644

80
36 KrKr − -0.028(5) -0.0298

48
84
3646

82
36 KrKr − -0.040(4) -0.055

46
86
3648

84
36 KrKr − 0.071(3) 0.0810

52
88
3650

86
36 KrKr − 0.379(7) 0.431

54
90
3652

88
36 KrKr − 0.751 0.655

3.1.7-Mixed Symmetry States
                                                                                          

One of the advantage of the IBM-2 is ability of reproducing the mixed 
symmetry states. These states are created by a mixture  of the wave function of 
protons and   neutrons that are observed in most even-even-even nuclei. This mixed 
symmetry  states (MSSs) has been observed in many nuclei. In more vibrational and 

soft−γ  nuclei this mixed symmetry  states (MSSs) have been observed in many 
nuclei. In more vibrational and gamma soft nuclei. We expect the lowest MSS with

+= 2J  state, while in rotational nuclei  observed as the  +=1πJ  state. In 76-90Kr 
isotopes we see that when the  states  ++= 42 2,2πJ  and +

13   are strongly dominated 

by the F=Fmax, the strongest contribution to  the ++= 23 3,2πJ states is the one with 

F=Fmax-1. We can see the ++= 23 3,2πJ  states as a mixed symmetry states in 76-90Kr 
isotopes. 

In this work, we proposed that the +
32  state decays  to the first excited state 

with an  energy 1.598 MeV in 76Kr with a mixing ratio )1/2( MEδ = 1.189 which 
means it is dominated by the M1 transition, with B(M1) equal to 0.0031 2

Nµ  .  In 78Kr 
isotope, for the third J = 2+ state at energy 1.685 MeV excitation is close to the 
experimental data for 1.755 MeV . The energy is well reproduced by the calculation, 
where the choice of the Majarona parameters plays a crucial role. This state is quite 
pure Fmax-1 with  %50)1(/ maxmax

2 =+>=< FFJFJR , . The excitation energy of 
+
23  state is 2.399 MeV with mixing ratio 565.2)23;1/2( 12 =→ ++MEδ , 

2
12 00301.0)23;1( NMB µ=→ ++ . In the 80Kr , the calculation predicted the +

32  state at 
2.251 MeV with %83=R  . 

In other  Kr90888482 −−−  isotopes the states +
32  and +

23  are mixed symmetry 
states their excitation energies are close to available experimental data and the values 
of %72%,75%,73=R  and 80% respectively . 

In  all Kr9076−  isotopes that the second +3 states to be the lowest += 3πJ  
mixed symmetry states with two phonon excitation. The low-lying levels with angular 
momentum greater than +3 with a large mixed symmetry states component are 
predicted in this work. 

The energy fit to several levels is very sensitive to the parameters in the 
Majorana term which also strongly influence the magnitude and sign of the multipole 
mixing ratios of many transitions. In particular we find that the calculated energies of 
a number of states are affected in a very similar way and these might be considered to 
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have a mixed-symmetry origin, or contain substantial mixed-symmetry components. 
Those with a mixed-symmetry origin have no counterpart in IBM-1. The energy 
dependence of the +

22  and +
42  levels is consistent with the mixed-symmetry 

character of the +
32  level being shared with neighboring states.

The influence of the parameters on these states is shown in table (3-1). The 
2ξ  term strongly affects the energies of all of the levels considered to have a mixed-

symmetry character or to contain mixed-symmetry components . In obtaining this 
value of  the 1ξ and 3ξ  terms were maintained at their best-fit values. The mixing 
ratio data, discussed in the above section have a strong dependence on 2ξ  and show 
that 2ξ  cannot be zero in our fit.

The +1  level is strongly affected by changing 1ξ ,  while the +
13  level 

energy depends on the 3ξ  value. The +
32  mixed-symmetry state and the 

predominantly symmetric +
22  and +

42  levels are largely unaffected by changing 1ξ , 

or 3ξ  in contrast to their dependence on 2ξ .

Most experimentally observed low-spin levels, apart from +1  states below 
2.5 MeV; have their counterpart in the IBM-2 level spectrum although the energy 
match is not good in every case. It also appears that we may identify the members of 
the family of mixed-symmetry states corresponding to the [N-1,1] representation 
[122,123]. The small E2/M1 mixing ratios are consistent with this interpretation but 
level lifetimes are required for a firmer identification.

In Kr isotopes, all hitherto discovered MSSs have been reviewed in [123]. It 
has been shown that the lowest lying MSSs is the one quadrupole phonon MSS labeled 
as +

MS,12 , +
MS,13 and characterized by a weakly-collective E2 transition probability to 

the ground state and a large M1 transition to the +
12 state. 

Table (3-6) contains the calculated )0(Eρ  values. In general there is no 
experimental data to compare with the IBM-2 results.  It must also be remarked that 
the comparatively large )0(Eρ  values for transitions from the +

32  mixed-symmetry 

state and from the +
12  and +

22  states indicate that substantial E0 components occur 
in these decays from mixed-symmetry states. The E0 matrix element describing such 
decay is proportional to πβ0 and νβ0 , although the β values are small, their sign 
difference results in the E0 matrix being greatest.
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3.3 Nd  Isotopes

3.3.1 Hamiltonian Interaction Parameters
 

The isotopes chosen in this work are A=144, 146, 148, 150, 152, 154 due to 
the presence of available experimental data for energy levels, the electromagnetic 
transition probability, the mixing ratios and monopole transition values. We have

5=πN , (10 protons outside the closed shell 50), and νN varies from 1 for Nd144 to 6 
for Nd154, measured from the closed shell at 82. While the parameters ,ε ,κ  and 

,νχ as well as the Majorana parameters ,kξ with k =1,2,3, were treated as free 
parameters and their values were estimated by fitting with the experimental values. 
The procedure was made by selecting the traditional value of the parameters and 
allowing one parameter to vary while keeping the others constant until the best fit 
with the experimental obtained. This was carried out until one overall fit was 
obtained. The best  values for the Hamiltonian parameters are given in table (3-17).

This parameters was carried out iteratively until an overall fit was achieved. 
Having obtained wavefunctions for the states in 144–154Nd after fitting the experimental 
energy levels in IBM-2, we can calculate the electromagnetic transition rates between 
states using the program NPBOS [124]. The Hamiltonian sets of parameters which 
have been varied along the isotopic chain are shown as a function of the neutron 
number for Nd isotopes in table (3-17).

Table (3-17): IBM-2 Hamiltonian parameters for 144-154Nd isotopes, all parameters in MeV units 
except πχ and νχ  are dimensionless.

2ξ31 ξξ =πχνχκεNνNπNIsotopes

-0.090.012-1.18-1.19-0.0930.86615
84

144
60 Nd

-0.090.012-1.18-1.11-0.0960.82725
86

146
60 Nd

-0.090.012-1.18-1.11-0.0820.70835
88

148
60 Nd

-0.090.012-1.18-1.11-0.0800.51945
90

150
60 Nd

-0.090.012-1.18-1.11-0.0700.421055
92

152
60 Nd

-0.090.012-1.18-1.11-0.0690.441165
94

154
60 Nd

     0.0420 === ννν CCC ,   0.0420 === πππ CCC

3.3.2 Energy Spectra

Concentration was made on the 21
+ to make a reasonable fit to experimental 

data. A sample of experimental and theoretical decay scheme is presented in figures 
(3-16,17,18,19,20,21). As one can see an overall a good agreement was obtained for 
the gamma and beta bands for 144-154Nd isotopes. The results in the figures show a 
comparison between experimental and theoretical energy levels in 144-154Nd  isotopes, 
the agreement is very good for the 21 and 41, but the model does not able to predict the 
81 and this may be due to the high spin of this state. Actually this has slim effects on 
calculations of transitions probability.
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        The behavior of the ratio of the energies  )2(/)4( 11
++ EE  are good criterion for 

the shape transition (see table( 3-18)). From the table (3-18), the systematic of basic 
observables in 144-54Nd isotopes showing )2(/)4( 11

++ EE  values increased  gradually 
with increasing  neutron numbers, and the agreement between the experimental values 
and the calculated ones. The calculated values change from about 1.885 to about 
3.281. It means that their structure seems to be varying from very near-harmonic 
vibrator (HV) SU(5) limit to rotation  nuclei (SU(3) characters ) .

Table (3-18): Energy ratio =2/4R )2(/)4( 11
++ EE  for 144-154Nd isotopes

E(41 / 21(
84 86 88 90 92 94

Exp. [117] 1.887 2.297 2.493 2.930 3.263 3.230

IBM-2 1.885 2.300 2.490 2.930 3.255 3.281

X(5) 2.91 2.91 2.91 2.91 2.91 2.91

From the table (3-18), the 144-146Nd shows a nuclear structure is spherical 
(near harmonic vibrator), 148Nd being a transitional nucleus (O(6) limit)). As it is seen 
from the table (3-18) the calculated and experimental energy values for 150Nd are very 
close to X(5) predictions. Around N = 90, the positions of the excited 0+ states are also 
close to the X(5) prediction and we note that the spacings in the excited sequence 
follow the expected behavior. It is regarded as a transitional nucleus, since it exhibits 
both the features of vibrational nuclei, like a two phonon triplet at approximately 
twice the excitation energy of  +

12  as well as the features of rotational nuclei, like an 

intrinsic quadrupole moment and an enhanced B(E2) value of the +
12 state.

For X(5) critical point symmetry these signatures are listed below [93:[
1 -The energy ratio )2(/)4( 11

++ EE  should be approximately 2.91 . 

2 -The position of the first excited collective +
20  state  is approximately 5.67 times 

the 
     energy of the +

12  state .
Clearly there are many examples of nuclei with yrast energies that closely 
follow the X(5) prediction. However, most of these can be excluded on the basis of 
their deduced yrast B(E2;J→J-2) values. Indeed, from the available data, the only 
nuclei that remain candidate is the 150Nd. For this subset of isotope, the properties of 
the excited states, and the transitions from them, can be   examined in more detail. For 
150Nd the position of the +

20  level is  significantly lower than the X(5) prediction and 
little further information is known about states in the relevant excited sequences. For 
the N = 90 isotones, the  positions of the +

20    levels are close to the X(5) prediction 

of E( +
20 ) ~ 5.67 E( +

12 ) but the energy spacing of sates in the excited sequence are 
much lower than predicted. However, the X(5) picture can be applied to a limited 
number of transitional nuclei, where it is able to reproduce properties of the yrast 
states.

The nucleus 150Nd have been very well studied and are quite close to X(5), and 
the existing data for the others suggest they are good candidates. Further data in these 
cases would be very useful. The 152-154Nd  taken the rotational shape to deformed rotor 
shape .

74



Chapter Three                                                                                           Results and Discussion

Figure (3-16): Comparison between experimental and calculated energy levels for 144Nd. The experimental 
data are taken from ref. [117].  
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Figure (3-17): Comparison between experimental and calculated energy levels for 146Nd. The experimental 
data are taken from ref. [117].  
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Figure (3-18): Comparison between experimental and calculated energy levels for 148Nd. The experimental 
data are taken from ref. [117].  
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Figure (3-19): Comparison between experimental and calculated energy levels for 150Nd. The experimental 
data are taken from ref. [117].  

Figure (3-20): Comparison between experimental and calculated energy levels for 152Nd. The experimental 
data are taken from ref. [117].  
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Figure (3-21): Comparison between experimental and calculated energy levels for 154Nd. The experimental 
data are taken from ref. [117].  
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3.3.3 Electric Transition Probability
The effective boson charges πe  and νe  were calculated by plotting 

[118] M1  (SU(5) limit) in Eqs. (3-1) and M3  (for SU(3) limit) is given by the 
equation:

For SU(3) limit………..(3-5(( ) πννππ NNeebeEB
N

N
NM /.02;2(

32

5
/1

2/1

113 +=




 →

+
= ++

 against πν NN / . The linearity is indeed present giving 3778.0=πe eb  and 
0946.0=νe  eb  in the SU(5) limit and 33.0=πe eb , and 075.0=νe eb  in the 

SU(3) limit. The best fit to Nd154144 −  isotopes was obtained 3538.0=πe  eb  and 
0848.0=νe  eb . We use used these results of effective charges to calculate the electric 

transition probabilities B(E2),s using the NPBEM code. The results are  presented in table 
(3-19). 

Figure (3-22): The plot of the quantity M1 and M3 versus πννπ NNee /+ for 144-154Nd isotopes.

In table (3-19), shows some B(E2) electric transition probabilities of  levels for 
even–even 144-154Nd isotopes. The results of the present study were compared with 
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experimental values and it was seen that they are in good agreement. We have 
calculated E2 transition properties of 144−154Nd in the framework of IBM-2. 

The calculated and theoretical )02;( 11
++ →EB , )24;( 11

++ →EB  and 

)46;( 11
++ →EB  values are mostly in good agreement and increased with increasing 

neutron number and they show similar distribution and display a typical increase 
towards the middle of the shell. The enhancement of B(E2) values towards the middle 
of the shell should be noted.    

The large electric transition probability  values in neodymium isotopes  is the 
main indicator of the vibrational  behaviour of these isotopes.

In table (3-19), we show the results for )02;( 12
++ →EB  and )02;( 13

++ →EB 
values. This quantity is rather small since this transition is forbidden in all three limits 
of IBM [27]. The results  for the )22;( 12

++ →EB  values are shown. The experimental 
information of this quantity is very limited, and this transition contain M1 admixture.

For 150Nd (X(5) model) the strength of transitions between yrast states as 
reflected in the B(E2;J→J-2) values should increase with angular momentum J at a 
rate intermediate between  the values for a vibrator and a rotor.

The quadrupole moment for first excited state in 144-154Nd isotopes are very 
well described. As mentioned above, the calculated values of )2( 1

+Q  indicated this 
nucleus has prolate shape in first excited states. 
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الجدول 

)3-19(

3.3.4-Magnetic  Transition Probability
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The  M1 transition operator is given in Eq.(2-49), where the gyromagnetic 
factors for bosons  πg  and νg  are estimated. The reduced E2 and M1 matrix 
elements were combined in a calculation of mixing ratio )1/2( MEδ  using the 
relation which is given by Eq. (2-55). 

Sambatora et al., [119 ] suggested a total g -factor which is given in Eq. (3-
4),  used to compute the +

12   state g -factor. The value of the measured magnetic 

moment )3(35.02 == gµ Nµ  [117], and the experimental mixing ratio 
)5(6.1)22( 12 −=→ ++δ  [100] were used to produce sutable estimation  for the boson 

gyromagnetic factors. The values are Ng µπ 413.0=  and Ng µν 322.0=  .The results 
of the calculations are listed in table (3-20).

Table (3-20): Reduced transitions probability B(M1) in 
2
Nµ  units for 144-154Nd  isotopes

2);1( Nfi JJMB µ++ → 
++ → fi JJ 154Nd152Nd152Nd150Nd148Nd146Nd144Nd

0.00063
1

0.0005220.0004120.000530.00087
1

0.000750.000622→21

0.00052
0

0.0004120.000330.000290.000210.000150.0001123→21

0.00089
2

0.000880.000830.000620.000610.000560.0004523→22

0.00670.005300.00510.004310.005210.004390.0023131→21

0.02100.01940.0180.0090.00810.00310.004731→22

0.00730.006020.00570.00540.00100.00062*10-531→32

1.3400.9860.9320.9020.8240.7470.73211→01

-

0.872

-

0.763

-

0.621

0.644(18)

0.589

0.64(8)

0.542

0.58(2)

0.432

0.35(3)

0. 297

)2( 1
+µ (Exp.

)

)2( 1
+µ IBM-

2

Experimental data are taken from refs.[ 117[

From the results of  B(M1), the  transitions between low-lying collective states 
in IBM-2 vanish is not necessarily a consequence of F-spin symmetry, but may be 
related to the existence of other symmetries, like O(5) or  SU(3).

The M1 excitation strength for the )01;1( 11
++ →MB  transition is proportional 

to the factor  2
νg  and depends only weakly on the strength  of  Majarona force.

The magnetic dipole moment for first excited state in even-even 144-154Nd 
isotopes provide a sensitive test of the effective boson number in the IBM-2 
framework,  in Nd isotopes with N = 84-90, confirm the validity of assuming  a 
drastic change  in number of  proton boson when the number of  neutron boson is 
increased from 88 to 90.    
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3.3.5-Mixing Ratio )1/2( MEδ

The E2/M1 multipole mixing ratios for 144-154Nd isotopes, )1/2( MEδ , were 
calculated for some selected transitions  between states. The sign of the mixing ratio 
must be chosen according to the sign of the reduced matrix elements. The equations 
used are (2-52) for M1 transitions and (2-55) for the mixing ratios. The results are 
listed in table (3-21). The agreement with available experimental data [100,117] is 
more than good especially in the sign of the mixing ratio. However, there is a large 
disagreement in the mixing ratios of some transitions, is not due to a dominate E2 
transition, but may be under the effect of very small value of  M1 matrix element. 
However, it is a ratio between very small quantities and may change in the dominator 
that will have a great influence on the ratio. 
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3.3.6-Electric Monopole Matrix Element )0(Eρ

Electric monopole (E0) transitions between nuclear levels proceed mainly by 
internal conversion with no transfer of angular momentum to the ejected electron. For 
transition energies greater than 2m0c2, electron- positron pair creation is also possible; 
two-photon emission is possible at all energies but extremely improbable. The E0 
transition also occurs in cases where the levels have the same spin and parity (

)0≠= fi II . This means that the E0 transition competes with E2 and M1 
components in these transitions. 

The reduced matrix monopole transition is given in Eq.(2-60), the necessary 
parameters of the monopole matrix element )0(Eρ  are derived from the values of 

)2(8.1)00;0( 12 =→ ++Eρ  [100] for 144Nd and the value of  the isomer shift for the 

same isotopes 22 62.1 fmr >=<δ  [131]. We obtain  2
0 0426.0 fm=πβ , 

2
0 0206.0 fm=νβ  and 23

0 10*45 fm−−=νγ . Table (3-22) contain the calculated 
)0(Eρ  values . In general there is no experimental data to compare with IBM-2 

calculations.

Table (3-22): Monopole matrix element  ρ(E0) for 144-154Nd  isotopes in e.b
154Nd152Nd150Nd148Nd146Nd144Nd++ → fi JJ

IBM-2Exp.IBM-2Exp.IBM-2Exp.IBM-2Exp.IBM-2Exp.IBM-2Exp.
0.098-0.086-0.083-0.078-0.072-1.9761.82(6

)12 00 →
0.0089-0.0084-0.0079-0.0077-0.0074-3.18*10-3-

13 00 →
0.0010-0.0009

6
-0.0009

3
-0.0008

9
-0.0003

4
-0.070-

23 00 →
0.0089-0.0085-0.0079-0.0076-0.0055-0.0034-

12 22 →
Experimental data are taken from ref. [100]

We notice that the theoretical values for the )2/0( EEX  ratio are small, for 

some transitions  (see table (3-23)) which means that there is a small contribution of 

E0  transition on the life time of the 0+ states. There are two high values of 

)2/0( EEX  in transitions from +
20  to +

10  in 144-154Nd isotopes means that this state 

decay mostly by the E0 and according to this one could say that the study of this state 

give information about the shape of the nucleus, because the E0 transitions matrix 

elements connected strongly with the penetration of the atomic electron to the 

nucleus. So combination of the wavefunction of atomic electron, which is well 

known, and the nuclear surface give good information of the nuclear shape.
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Table(3-23): X(E0/E2) values  for 144-154Nd Isotopes
154Nd152Nd150Nd148Nd146Nd144Nd++ → fi JJ
IBM-2IBM-2IBM-2IBM-2IBM-2IBM-2

1618.013.010.6726.9804.560
12 00 →

0.000760.00890.00750.00540.00463.33*10-2

13 00 →
12.5515.010.65010.3424.1893.230

23 00 →
27.8702311.09.4518.6204.220

12 22 →

To evaluate the isomer shifts for 144-154Nd isotopes, we depend on Eq.(2- 63). 
The results of  isomer shifts are listed in table (3-24). We notice the values of  IBM-2 
and the available experimental data are increased with increasing neutron number. 

Table (3-24) : The isomer shifts δ <r2> fm2  for 144-154Nd isotopes

154Nd152Nd150NdNd148Nd146Nd144isotopes

--0.167 -0.164 0.162 Exp.[117]
0.2180.1940.1880.1810.1760.155IBM-2

3.3.7-Mixed-Symmetry States

Collective excitations are a common phenomena in atomic nuclei. These 
excitations arise from the coherent movement of many particles in the nucleus. A 
special class of collective excitations, called mixed-symmetry states, which are 
defined in the IBM-2, have been found in atomic nuclei and are interpreted 
geometrically as an out of phase motion of protons and neutrons. Together with 
collective excitations in which the protons and neutrons move in phase, these states 
can be used as building blocks for a general description of collective phenomena in 
nuclei. Mixed symmetry states are also sensitive to the strength of the residual proton-
neutron quadrupole interaction in the valence shell and thus their properties are 
important in constraining the strength of this interaction. A number of one-quadrupole 
phonon mixed symmetry ( +

32 ) states have been found in vibrational nuclei in the 

A= 140-150 and +
11  in the A=152-154 mass region. To better understand the 

evolution of mixed-symmetry states in this mass region, experiments were done to 
identify the +

32  state in the isotopes 144-150Nd and +
11  state in  152-154Nd isotopes.

The evolution of the energy of the +
32  state in the N = 84 isotope shows in 

increase in the proton-neutron interaction in the valence shell. The energy of these 
states were fitted by performing an IBM-2 calculation, which shows that the evolution 
in energy can be modelled with an appropriate set of terms in the IBM-2 Hamiltonian. 
The +

32  state in the N = 86 isotope shows a similar behavior to the corresponding 
states in the N = 88 isotope and show that the mixed-symmetry states are sensitive to 
the residual proton-neutron interaction in this mass region.
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            The M1 transitions strengths for 144-145Nd are given in table (3-22). They are 
increased with increasing neutron number, each corresponding to the large or small 
values of  mixing ratio δ. The larger M1 transition of 

2
13 000520.0)22;1( NMB µ=→ ++  for 154Nd corresponding to δ = 12.0 is favored due 

to the fact that the other possible value of the B(M1) results in a 
22

13 0018.0)22;2( beEB =→ ++ , which is much larger than can be accounted for from 
any standard description of collective nuclei. Taking the values of the larger M1 
transitions for the ++ → 11 01  transition for all 144-154Nd isotopes as can be seen in table 

(3-22) we find the +
11   state is the dominant fragment of the 01 mixed-symmetry state. 

The small values of the mixing ratio  δ suggest that there may be a strong M1 
transition between +

32  and +
12 . This would be consistent with transition from mixed 

symmetry state to fully symmetry  although, as we shall see, the boson number 
enhancement factor is not present in the vibrational limit [130].  

In the vibrational limit the ground state contains no d bosons and there are two 
+2  states with one d boson, corresponding to full symmetry and mixed symmetry 

[130]. We shall associate these two states with the +
32  and +

12 states, respectively. 

They are given in terms of  the ground state +0    
 

( ) ++++ += 0
1

21 ππνν sdsd
N

( ) ( ){ } ++++ −= 0//2 2/12/1
3 ππππνννπ sdNNNsdNNN
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3.2 X e  Isotopes

3.2.1 Hamiltonian Interaction Parameters  

The computer program NPBOS [124] was used to make the Hamiltonian 
diagonal. In principle, all parameters can be varied independently in fitting the energy 
spectrum of one nucleus. However, in order to reduce the number of free parameters 
and in agreement with microscopic calculations of  Turkan et al., [66], only ε and κ 
are vary as a function to both of  Nπ  and Nv  i.e. ε = ε( Nπ, Nv ) and κ = κ( Nπ, Nv) are 
allowed. The other parameters depend only on Nπ or Nv,  i.e. χπ = χπ( Nπ), 
χν = χν ( Nv),  CLπ = CLπ( Nπ)  and CLν = CLv ( Nv). Thus, in isotopes chain, χπ  is  kept 
constant, CLπ   and C4ν  , 31 ξξ = , 2ξ are kept constant for all isotopes (see table (3-
8 )).

The isotopes 124−134Xe have 2=πN  and νN  varies from 6 to 1, while the 
parameters ε , κ  and νχ  were treated as free parameters and their values were 
estimated by fitting to the measured level energies. This procedure was made by 
selecting the “traditional” values of the parameters and then allowing one parameter 
to vary while keeping the others constant until a best fit was obtained. This was 
carried out iteratively until an overall fit was achieved. The best fit values for the 
Hamiltonian parameters are given in table (3-8).

Table (3-8): IBM-2 Hamiltonian parameters for 124-134Xe isotopes, all parameters in MeV units 
except πχ and νχ  are dimensionless

2ξ31 ξξ =ν4Cν2Cν0CπχνχκεNνNπNIsotopes

-0.40.120.0-0.100.10-0.800.0-0.1450.70862
70

124
54 Xe

-0.40.120.00.00.30-0.800.20-0.1550.70752
72

126
54 Xe

-0.40.120.00.100.30-0.800.33-0.1700.76642
74

128
54 Xe

-0.40.120.00.100.30-0.800.50-0.1900.76532
67

130
54 Xe

-0.40.120.00.100.30-0.800.90-2.100.90422
78

132
54 Xe

-0.40.120.00.00.0-0.800.2-0.0800.93312
80

134
54 Xe

0.0420 === πππ CCC

3.2.2 Energy Spectra

The calculated and experimental energy levels are shown in figures 
(3-9,10,11,12,13,14). The experimental data are taken from [117]. The IBM-2 
parameters employed in the calculation are shown in table (3-8). Overall, the 
evaluation of the parameters follows a smooth trend, according to the gradual changes 
in nuclear structure of the isotopes.

The agreement between the theoretical and the experimental levels is, in 
general, good except for some cases in high spin states, we believe that is due to the 
change of the projection of the angular momentum which may be due to band 
crossing and change in angular momentum. 
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The calculated results show that R4/2 >2 for all 124-134Xe isotopes (see table (3-
9)) and it means that their structure seems to be varying from gamma-soft rotor O(6) 
to along near-harmonic vibrator (HV) SU(5).

The energy levels of 124-126Xe  appear to form a pattern typical for O(6) 
symmetry (IBM-1 limits). Similarly to Refs [125,126], for each eigenstate with O(6) 
quantum number σ = N a corresponding nuclear state can be found up to O(5) 
quantum number τ = 5 and angular momentum 10 , while the +

30 state seems to be 
the band-head of the excited O(6) family with σ = N − 2.

Using this approach, we have quantitatively show that, in 124,126Xe, the O(6) 
symmetry is completely dissolved while the O(5) symmetry is only slightly perturbed. 
It is therefore important the issue to be investigated further which requires more E2 
transition rates for high-lying off-yrast states of nuclei that are currently being viewed 
as close to the O(6) symmetry be measured and analyzed with the method we have 
proposed here.

The most basic structural signature of the E(5) symmetry is a value of the ratio 
R4/2= )2(/)4( 11

++ EE  of 2.20. This value is intermediate between the values for 
spherical nuclei (2.00) and gamma -soft rotor (2.50). However there are large number 
of nuclei in the mass region A~130 having the value for this ratio in the desired range. 
Thus, an interpretation based only on the R4/2 can be ambiguous and additional 
signatures need to be considered. Often, the decay properties of the lowest excited 0+ 

states are used as an additional signature of the E(5) structure.

In the case of 128-130-132Xe, the R4/2 value 2.271, 2.270 and 2.163 respectively, 
(see table (3-9)) lies very close to the ideal value for the E(5) symmetry indicating 
that it lies more towards the SU(5) side. 

A comparison of the key signatures for E(5) critical point symmetry is done 
for the Xe isotopes  obtained from the present work with the calculated E(5) values 
and the values obtained as given in table (3-9). The values shown in the table, suggest 
that the 128-130-132Xe isotopes has many evidences of lying near the E(5) critical point 
symmetry. The value of )2(/)0( 13

++ EE for 132Xe  is 3.73 lies very near to the ideal 

value 3.59; also the value for the ratio )0(/)0( 23
++ EE  1.33 shows good resemblance 

with the theoretical value for E(5) symmetry 1.18. 

It has been observed that the positioning of the 0+ states plays a crucial role in 
determining the behavior of the nucleus near the critical symmetry. This can be seen 
from the figures. These figures show the changes in positioning of the levels as the 
neutron number changes for Xe isotopes respectively. It is clear from the figures that 
the variation of the levels other than the +

20  levels is smooth, where as there are 
abrupt changes in the positioning of these two levels.

Our data and our analysis have emphasized the significance of the ordering of 
the excited +

30 and +
20  configurations for assigning the structure of a nucleus near 
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the E(5) critical point. Therefore, it is interesting to examine the behavior of the 
observable Δ0+ = [E( +

20 )−E( +
30 )]/E( +

12 ). It takes the values -1 (harmonic vibrator), 

-0.56 (E(5)), 0 at the crossing point of the +
2,30  configurations and becomes positive 

towards the O(6) limit. Along the chain of  Xe  isotopes we consider the experimental 
energies of the first and the second excited 0+ states with dominant +

30 or +
20  

assignment. The assignments of their dominant character have been done for 124Xe 
([125,126]), 126Xe ([127]), 128Xe , 130Xe [128], and this work, already in the literature. 
The R4/2 ratios shown on top decrease monotonically as a function of neutron number 
from 2.48 for 124Xe to 2.04 for 134Xe. The value of 2.20 expected for E(5) is crossed 
between 130Xe and 132Xe. The 0+ configurations cross between 128Xe and 130Xe . The 
Δ0+ value for 128Xe is positive. This rules out 128Xe as a candidate for a realization of 
E(5) symmetry. We observe, however, that Δ0+ = −0.42 for 130Xe making that nucleus 
a promising candidate for a close match of E(5) predictions. 

In general, the ground bands are fitted very well, The fitting in the gamma 
bands are slightly worse but are still better than those for the beta bands. The fitting in 
beta bands are not so good as those in the ground bands and gamma bands. Also it is 
in the beta bands that IBM-2 show the most distinct improvements become smaller as 
we go to lighter isotopes. This suggest that the interactions between unlike bosons are 
relatively more important in system which are closer to the closed shells.

Table (3-9): Energy ratios  for 124-134Xe isotopes

Isotopes )2(/)4( 11
++ EE )2(/)0( 12

++ EE )2(/)0( 13
++ EE )0(/)0( 23

++ EE
E(5) IBM-2 Exp. E(5) IBM-2 Exp. E(5) IBM-2 Exp. E(5) IBM-2 Exp.

70
124
54 Xe 2.2 2.486 2.482 3.03 3.412 3.584 3.59 5.008 4.773 1.18 1.467 1.33

72
126
54 Xe 2.2 2.484 2.424 3.03 2.670 3.378 3.59 4.853 4.530 1.18 1.817 1.340

74
128
54 Xe 2.2 2.272 2.332 3.03 3.649 3.573 3.59 3.9233 4.238 1.18 1.075 1.185

76
130
54 Xe 2.2 2.272 2.247 3.03 3.346 3.080 3.59 3.582 3.759 1.18 1.124 1.217

78
132
54 Xe 2.2 2.163 2.157 3.03 2.696 2.796 3.59 3.471 3.372 1.18 1.340 1.33

80
134
54 Xe 2.2 2.0523 2.043 3.03 - 1.931 3.59 - - 1.18 - -

Experimental data are taken from ref.[65,100,117[
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Figure (3-9): Comparison between experimental and calculated energy levels for 124Xe. The experimental 
data are taken from ref. [117].  
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Figure (3-10): Comparison between experimental and calculated energy levels for 126Xe. The experimental 
data are taken from ref. [117].  
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Figure (3-11): Comparison between experimental and calculated energy levels for 128Xe. The experimental 
data are taken from ref. [117].  
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Figure (3-12): Comparison between experimental and calculated energy levels for 130Xe. The experimental 
data are taken from ref. [117].  

60



Chapter Three                                                                                           Results and Discussion

Figure (3-13): Comparison between experimental and calculated energy levels for 132Xe. The experimental 
data are taken from ref. [117].  
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Figure (3-14): Comparison between experimental and calculated energy levels for 134Xe. The experimental 
data are taken from ref. [117].  

3.2.3 Electric Transition Probability
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The effective boson charges πe  and νe  were calculated by plotting [118] M1 

and  M2 which are given in eq. (3-2,3) against πν NN /  (see figure (3-16)) . The two 
effective charges are taken to be eπ = 0.13435 eb  and  ev =  0.1379  eb. The results of 
the calculations are presented in table (3-10). Looking through the table, one can 
easily recognize that our calculations reproduce the experimental data quite well.

The )02;2( 11
++ →EB  and )24;2( 11

++ →EB  values decreased as neutron 

number increases toward the middle of the shell as the value of )22;2( 12
++ →EB has 

small value because contains admixture of  M1. As a consequence of possible M1 

admixture, this quantity is rather difficult to measure. The value of  )02;2( 12
++ →EB  

is small because this transition from quasi-beta band to ground state band (cross over 

transition).

In table (3-10) the B(E2),s  we obtained between ground state band agree 

almost perfectly with experiment.  The agreement of the IBM-2 B(E2),s with 

experiment, for transitions from beta and gamma bands states to the ground band 

states are also rather good, though no as good as they are for transitions within the 

ground band states.

The 128-130-132Xe isotopes has many evidences of lying near the E(5) critical point 

symmetry, the theoretical and experimental signatures are listed below [75]:                     

1- )24;2( 11
++ →EB value should be approximately 1.5 times the  

    )02;2( 11
++ →EB value.

2- There should be excited +
20  states lying at approximately 3–4 times the 

     energy of the +
12  state. 

3-The decay of the +
20  should reflect its multiphonon structure. There is an 

   allowed E2 transition to the +
22  level, but no allowed transition to the +

12  

level.

4- The decay of the +
30  state should also be characteristic of  E(5). There is an 

    allowed transition to the +
12  level with strength of approximately 0.5 the  

   )02;2( 11
++ →EB value. 

What one finds, therefore, is the +++ −− 220  sequence characteristic of an 

O(6)→SU(5)  nuclei identified several times in Xe isotopes. The agreement between 

the IBM-2 calculations and experimental transition probabilities is remarkable. For 
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the levels of in figures (3-9,10,11,12,13,14) all transitions which are calculated to be 

intense are the strongest  observed, all forbidden transitions are weak or unobserved, 

but usually <<10 percent of the strongest transition. 

Figure (3-15): The plot of the quantity M1 and M2 versus πννπ NNee /+ for 124-134Xe  Isotopes.
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جدول

3.2.4-Magnetic  Transition Probability

We also investigated M1 transition rates and the magnetic moment of the first 
excited  +2  state, using the boson M1 operator which is given in Eq.(2- 52), 
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indicating  that the M1 transition properties are exclusively determined by the 
gyromagnetic factors πg and νg . The boson gyromagnetic factors were estimated 
using the fact that AZg /=  and the relation (3-4). Taking the number of bosons for 
126Xe as πN = 2 and νN = 5 , and experimental value 

24
12 1035.4)22;1( NMB µ−++ ×=→  [65], we obtained 0.428 = 0.285 πg  +0.714 νg , 

which places limits on the gyromagnetic factors. We used the value Ng µπ 810.0=  
and   Ng µν 342.0=  in equation (2-49) to calculate the M1 matrix elements.

The resulting IBM-2 calculation for B(M1), together with experimental values 
are shown in table (3-11). The results for the transitions feature   for gamma band to 
ground band  are claimed to have a collective origin. Several trends are apparent from 
the data in table (3-11): (i) the magnitude of the M1 matrix elements increased with 
spin both gamma band to ground band transitions, in agreement with spin 
dependence. (ii) the size of gamma band to ground band matrix element seems to 
decrease with increasing mass number.  (iii) The gamma-beta band  M1 transitions are 
larger than gamma band to beta band transition  by a factor of 2 to 3.

These three aspects of M1 data shown in table (3-11) are reproduced by the 
calculation through a smooth variation of the parameters ε  and  χ  with a few 
exceptions  good agreement between the theory and experimental data is achieved.

Magnetic dipole moment for first excited state is given in table (3-11), it has 
been shown that data on )2( 1

+µ  in 124-134Xe  isotopes provide  a sensitive test of the 
effective proton boson number in the IBM-2 framework, in 124-134Xe isotopes, conform 
the validity of assuming a drastic change in νN  when the number of neutron 
increased. 
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جدول

3.2.5-Mixing Ratio )1/2( MEδ

We evaluate the mixing ratio )1/2( MEδ for 124-134Xe  isotopes, depends on the 
equation (2-55). The resulting of IBM-2 calculation for )1/2( MEδ together with 
experimental values are shown in table (3-12).

67



Chapter Three                                                                                           Results and Discussion

The results for the g→γ and γγ →  mixing ratios , the sign of the mixing 
ratios is not arbitrary . For large majority of the g→γ transitions considered in table 
(3-12) to the experimentally known s,δ  are negative ; the sign are not known for 

γγ → . According we have assumed that all  )( g→γδ  values are negative and used 
it as a constraint on the parameters νχ  and πχ . Specially, it implies that 

.0>− πν χχ

The experimental g→γ  M1 transition probability in table (3-11) have been 
obtained by recourse to the IBM-2: the )1/2( MEδ  mixing ratios from the 
complication of Lang et al., [100] from this work are combined with the 

)02;2( 13
++ →EB  values and the conventional band mixing parameters. Note that in a 

few cases the asymmetric errors on the measured mixing ratio  values have been 
incorporated in the M1 matrix elements by shifting the central value slightly to ensure 
that the overall error range denoted is correct .

For γγ →  transitions the intraband B(E2) values have been estimated by 
assuming that the intrinsic E2 matrix elements in the ground and gamma bands are 
equal. Then combining these B(E2) values with the E2/M1 mixing ratios to the 
tabulated M1 transitions shown in table (3-11). We  note that in the IBM-2 the 
intrinsic E2 matrix element of the gamma band is smaller than that of the ground band 
due to the finite-dimensionality of the boson space.
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جدول

3.2.6-Electric Monopole Matrix Element )0(Eρ
Monopole transitions are known to be pure penetration  effect where the 

transition is caused by an electromagnetic interaction between the nuclear charge and 
atomic electrons penetrating the nucleus. E0 transition could to pure for 

00 ==⇒=−=∆ fifi JJJJJ , when  J  is the total angular momentum of the 
nuclear state.
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Monopole matrix element is not easy to measure so in order to get information 
about the nuclear structure, one can measure B(E2) and the state X(E2/E0), then could 
be calculated which is found for  SU(5) nuclei very small. The E0 reduced transition 
probability is given in equation (2-60). The parameters in equation (2-60) can be 
predicted from the isotope shift [117] (see table (3-13)), since such data are not 
available for Xe isotopes, we calculate these parameters by fitting procedure into two 
experimental values of isomeric shifts (equation (2-63)). The parameters which were 
subsequently used to evaluate the )0(Eρ -values were;  β0π = 0.063 eb , β0ν = 0.235 
eb and γ0v=0.032 fm2. From the table (3-13), in general there is no experimental data 
to be compared with the IBM-2 calculations.

Table  (3-13): The Monopole matrix element ρ(E0) for 124-134Xe  isotopes

Xe134Xe132Xe130Xe128Xe126Xe124++ → fi JJ

2.871x10-32.744x10-32.631x10-32.25x10-3-0.432x10-3-10.3x10-3

12 00 →
4.992x10-34.761x10-33.981x10-34.220x10-31.240x10-30.743x10-3

13 00 →
12.624x10-312.2x10-36.213x10-36.155x10-3-0.543x10-30.872x10-3

23 00 →
13.289x10-311.43x10-39.431x10-33.987x10-30.439x10-3-0.876x10-3

12 22 →

As pointed out previously  [128], a large )2/0( EEX value is not necessarily 
a signature of a β -vibrational state. For instance our calculated )2/0( EEX value 
for ++ → 12 22  transition. However, it be kept in mind that a large results from the 
vanishing B(E2) values, specially in the case of higher bands whose structure may be 
quite different from that of the lower bands. Because of the possibility of accidental 
cancellations in the calculation of a sum of terms with different signs, only the correct 
order of magnitude can be expected from present calculation of a large number of 
states and matrix element.

In the present )2/0( EEX branching ratios are used to extract the 
)00;2( 12

++ →EB  and  )00( 12
2 ++ →ρ  values associated with +

20  states. Our results 
are shown in table (3-14). In to complete the monopole values of 124-134Xe  isotopes, 
the measurements of E0 matrix elements of excited  +

30  states in these isotopes are in 
progress. The ratio of the reduced transition probabilities, 

)00;2(/)00;0( 1212
++++ →→= EBEBX   is in the range from 0.000125 to 0.034 which 

is  close to transitional rotor value. However, the assumed two-phonon +
20  state is 

strongly pushed to high in energy, which is explained as being due to gamma-soft.

The most conspicuous features of the  +
30  states in 124-134Xe  is strongly 

enhanced E2 decay to the +
10  state. This may be connected with intriguing question 

of the possible deformation of the excited +0 state: the large B(E2) values could 
alternatively be interoperated to imply a vibrational structure associated e.g., with 
mixed bands.    

Table (3-14) : The branching ratio  X(E0/E2) for 124-134Xe isotopes
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Xe134Xe132Xe130Xe128Xe126Xe124++ → fi JJ

1.77x10-41.25x10-48.33x10-42.81x10-22.45x10-23.4x10 -2

12 00 →
5.35x10-45.35x10-48.96x10-34.31x10-35.05x10-28.77x10-4

13 00 →
1.38x10-41.4x10-41.53x10-31.94x10-22.83x10-21.86x10-3

23 00 →
1.1x10-41.23x10-34.6x10-51.17x10-49.5x10-32.45x10-4

12 22 →

The isomeric shift, which is the difference between the mean square radius 

>< 2rδ  of an excited state and the ground state in a given nucleus  [102]. In table 

(3-15), we compared the calculated isotopic shifts with experimental data. [117]. 

Table (3-15) : The isomer shifts δ<r2> fm2  for 124-134Xe isotopes

Xe134Xe132Xe130Xe128Xe126Xe124isotopes

--0.10-0.15-0.20-0.22-0.25Exp.[117]

-0.8-0.11-0.13-0.18-0.19-0.23IBM-2

       
3.2.7-Mixed Symmetry States

The existence of the mixed symmetry states  is recognized as a  manifestation of a 
new nuclear mode consisting of oscillations of the angle  between symmetry axes of 

the deformed valance neutron and valance proton. The occurrence of the mixed 
symmetry state in even-even nuclei is a well established  fact [130], and they lie 

usually high in energy. In even-even nuclei, the identification   is based on the 
measurement of  M1 and E2 transitions to symmetry states,  and strong from these 

states, weakly collective E2 transitions to symmetric states, and strong M1 transitions 
can take place via the bosons                                                                                          .

At this point, the following issue arises: Does the fundamental isovector 
quadrupole collective mode (2Ms) fragment along the path from vibrational nuclei 
towards γ-unstable rotors in such a way that associated strength gradually escapes 
detection or does it slowly dissolve and finally completely disappear in 124,126Xe? Both 
hypotheses could explain the observed experimental behavior. In the first case, it is 
possible we only observe the lowest fragment of the MSS, which does not necessarily 
carry the largest part of the total M1 strength, because the experimental technique we 
used was limited to a certain excitation energy. In the second case, the states with 
mixed-symmetry character at the U(5) limit gradually lose their isovector character 
toward mid-shell and the M1 strength finally disappears. This scenario would require 
an yet as unknown mechanism. The former case can be discussed in the framework of 
a simple two-state mixing model.

According to the two-state mixing scheme outlined in Refs. [90,143], the 
observed +

12  and +
M2  states arise through the mixing of the unperturbed proton and 

neutron +2  configurations (their energies are labeled here as επ and εν , respectively) 
in which the proton-neutron coupling matrix element increases as a function of the 
product NπNν .
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In the figures (3-9,10,11,12,13,14) we show the mixed symmetry states 
+= MiJ 1π  and +

M2 . These results are obtained with a Majarona force  12.031 ==ξξ  

MeV and 4.02 −=ξ MeV, which was determined so as to obtain the mixed 

symmetry ++= 2,1π
iJ  levels with a pronounced mixed proton-neutron symmetric 

wavefunction. In the 124Xe there is no mixed symmetry states  below 2.3 MeV and  in 
the 126Xe  no mixed symmetry state  below 2.1 MeV. The levels += MiJ 1π  and +

M2  in 
128-134Xe isotopes are close in excitation energy (∆E~150 MeV). In the table (3-16) the 
energy and the magnetic transition probability from the mixed symmetry state +

M2  to 
+
12  in 124-134Xe  isotopes 

                                      

Table (3-16): Energy levels and  )22;1( 1
++ →MMB  for 128-134Xe

)22;1( 1
++ →MMBEnergyMSSisotopes

IBM-2  ( 2
Nµ )Exp. ( 2

Nµ )IBM-2  (MeV)Exp. (MeV)   

0.0330.042(12)2.2762.127+
42Xe128

0.200.15(4)3.1412.150+
42Xe130

0.0330.020(6)1.8961.986+
32Xe132

0.0560.020(5)2.5772.262+
32Xe134

In summary, low lying excited states of 130,132Xe have been investigated with 
IBM-2. The +

M2  levels have been identified. This allowed us to trace its evolution 
along the Xe isotopic chain from close to the N = 82 neutron shell closure out towards 
mid- shell. We observe the energy of the +

M2  state increases and the +
M2 → +

12  M1 
strength decreases as the number of valence neutron hole pairs (Nν ) increases. The 
decrease and disappearance of the M1 strength can be explained by two different 
mechanisms: either the +

M2  state fragments on the path from vibrators to γ-unstable 

rotors or the +
M2  state loses slowly its isovector character and finally completely 

disappears towards mid-shell. It remains to be determined by future measurements 
searching for higher-lying M1 transitions in these Xe isotopes which of the two 
mechanisms is responsible for our observations. We have discussed the former case 
by using a two-state mixing scheme, which suggests fragments of the +

M2  state may 
exist at energies higher than   2.5 MeV in 124,126,128,130,132Xe. This fragmentation is also 
supported by the upper limit of the 2+ state at 2.718 MeV in 128Xe. Thus we also call 
for the measurement of the multipole mixing ratio of the 2.275 MeV γ-transition in 
the nucleus 128Xe.
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Chapter Two
Nuclear Collective  Models

2.1 Collective Models - General nuclear deformation

The collective model starts essentially with the idea that in order to explain the 
extremely large static electric quadrupole moments of nuclei  lying between closed 
shell some co-operative motion of nuclear matter, resulting in a permanent nuclear 
deformation,  is necessary.  It is supposed that this deformation (which vanishes for 
closed-shell nuclei ), is produced by a polarizing effect of the individual or intrinsic 
motion of the nucleons outside closed shells. It is vital to the detailed development of 
the collective model that it should be possible to envisage a clear separation between 
the individual motion of the loose nucleons and the collective motion of the core. This 
means that the single-particle energies associated with the shell-model states of the 
nucleons should be large compared with the rotational and vibrational energies of the 
core.  It  is  then  possible,  by  allowing  some  interaction  between  the  two  types  of 
motion, to present a unified picture of nuclear motion in which both shell-model and 
collective features appear. This approach is a combination of the individual particle 
type  of  model  with  the  strong  interaction  type;  it  not  only  explains  the  large 
quadrupole  moments but also predicts a fine structure of the nuclear level spectrum 
owing to energies associated with the vibrational and rotational motion of the core.

The most simplified model of the description of the nucleus would consider 
that the distribution of nucleons is homogeneous and has no preferred direction in 
space. The nucleus is then spherical. However, in order to minimize its potential 
energy, the shape of the nucleus can deviate from its spherical shape and find a “new” 
equilibrium with a deformed shape. For the magic numbers (8, 20, 28, 50, 82, 126), 
the shape of a nucleus is in general spherical. Between these numbers most nuclei are 
deformed. The electrical potential V created by the distribution of charges in the 
nucleus at a distance R  from the origin O can be expanded in multipoles [65]:

( ) )12..(..........)(3
1

)(
1

)(
1

)( 22
32

−−++∝ ∫∫∫ drrrz
R

drrz
R

drr
R

RV ρρρ

where r denotes the distance from one point in the nucleus to the origin of the axis O 
and ρ(r) is the charge density. The first term corresponds to the total charge of the 
nucleus. The second and third terms are the dipole and quadrupole terms respectively. 
Most of the nuclei are ellipsoidal and therefore have an axial symmetry. In this case 
the dipole term is zero which leaves the deformed nucleus as a quadrupole distortion 
only. There can also be octupole and hexadecapole shapes. The shape of the nucleus 
can then be parametrized from a spherical shape corrected by the spherical harmonics 

λµY [65]:

)22......(..........),(1),(
0

0 −







Φ+=Φ ∑∑

= −=λ

λ

λµ
λµλµ θαθ YRR

where R0 is the radius of a sphere of the same volume. The term  λ= 0 describes 
volume variations, λ= 1 the translation of the system. The term with  λ=2 corresponds 
to quadrupole deformation and λ=3 to octupole deformation. Using the transformation 
from the laboratory frame to the intrinsic frame, the five αλ=2,μ  parameters are reduced 
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to three real parameters α2,0, α2,2 = α2,−2 and α2,1 = α2,−1 = 0. These variables can be 
parametrized following the conventions of Hill and Wheeler [94]:

)32..(..............................cos0,2 −= γβα

)42..(..............................sin
2

1
2,22,2 −== − γβαα

where β represents the extent of the quadrupole deformation, while γ  gives the degree 
of axial asymmetry. Most nuclei are axially symmetric, or close to it, at least in their 
ground states. For an axially symmetric nucleus, the potential has a minimum at 
γ = 0◦. A common convention (Lund convention) for the ranges of the β and γ  
variables is that β >0, γ = 0◦ for an axially symmetric prolate nucleus and that β > 0, 
γ = 60◦  gives an axially symmetric oblate nucleus as it is shown in figure (2-1). Note 
that for β < 0, γ = 0◦, the nucleus is oblate. If γ  is not a multiple of 60◦, one says that 
the nucleus is triaxial.

Figure (2-1): Nuclear deformation in the (β,γ) plane. The Lund conventions are used . The four cases 
(γ=120◦,180◦, 240◦, 300◦) correspond to the cases with γ=0◦ and 60◦ but with different orientations of 
their axis. The area 0◦<γ<60◦ (in grey) is then sufficient to describe the nuclear deformation.[65].

2.2 The Vibrational Model (VM)

Nuclei with relatively few particle outside closed shells have spherical 
equilibrium form , and the collective motion takes the form of an oscillation of the 
loose particle about the spherical surface .In this type of motion the nucleus possesses 
a certain number of vibrational quanta or phonons of energy lω  and angular 
momentum l  in accordance with the quantum mechanical picture of the harmonic 
oscillator. Since there is no stable deformation for these nuclei the static motion is not 
in enhanced , as in the case of nuclei far from closed shell . 

The simplest vibrational spectra are found for even– even nuclei  in which 
there  is  no  contribution  to  the  nuclear  spin  from the  intrinsic  motion.  The  basic 
vibrational spectrum is due to quadrupole phonons and is given in the figure (2.2), 
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together with permitted spin values ; in practice the degeneracy between the different 
levels is resolved and the expectation is a 0+   ground state, a 2+   first excited state 
( single phonon ) and then a triplet of states 0+ 2+ 4+ formed by coupling two phonons. 
Classically an octupole phonon has about the same energy as two quadrupole phonons 

and this may produce a 3
-
  state near to the triplet . The energies of these states vary 

regularly according to the distance of the nucleus concerned from closed shell. The 

vibration of permanently deformed nuclei include oscillations of the parameter β and 

of a further parameter γ which determines the relative deformation of the three axes of 

the ellipsoid. The  β – vibrations preserve an axis of symmetry,  but γ vibrations do 

not . Rotational bands may be built upon each vibrational state.

Vibrations are one example of the collective behavior of the nucleons. In the 
vibrational model, the λ = 2 excitation (Eq. (2-2)) is seen as a one phonon excitation 
(or quadrupole phonon) carrying two units of angular momentum (units ħ). In even-
even nuclei, adding a quadrupole phonon to the 0+ ground state leads to the first 
excited +

12  state. A two-phonon coupling results in three states with angular 
momenta: 0+, 2+, 4+ while a three phonon excitation results in a quintuplet of states 
with angular momenta: 0+, 2+, 3+, 4+, 6+. This is shown in figure (2-2). The pure 
harmonic vibrational model predicts that the two-phonon triplet states lies at twice the 
energy of the +

12  state while the three-phonon quintuplet states at three times the 

energy of the +
12  state. Consequently, one fingerprint of the vibrational model is the 

energy ratio                  R4/2 =E( +
14 )/E( +

12 ) = 2.0. In realistic situations this ratio is 
typically 2-2.5. Such nuclei often called “vibrators” are situated near closed shells (or 
magic nuclei 8, 20, 28, 50, 82, 126). In the IBM framework, they correspond to the 
U(5) dynamical symmetry.

Figure (2-2): Low-lying levels in the pure harmonic vibrational model in even-even nuclei. .[65].

2.3 The Rotational Model (RM)
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A more nucleons are added outside the closed shell, the deformation of the 
nucleus increases and eventually it gets permantly deformed. This implies a stability 
of orientation, and such a nucleus in space can be described by a set of angles. The 
rotational spectrum is characterized by: 
(i) same parity for levels .
(ii) increase in angular momentum by 2 .
(iii) spacing between adjacent levels increases with increasing spin.

In the discussion above we had assumed a nucleus without any intrinsic 
angular momentum. In any text book of quantum mechanics it is shown that a particle 
with spin 1<J  cannot have an observable quadrupole moment. However, in the 
figure (2-1) we have taken a nucleus without any spin, and have shown a permanent 
deformation resulting into a quadrupole moment. This contradiction can be removed 
by noting that a nucleus can have an intrinsic quadrupole moment due to the 
permanent deformation, which gives rise to the rotational spectrum. However, the 
observable quadrupole moment is zero since for spineless nucleus we cannot talk 
about any particular (preferred) axis and so the quadrupole moment is averaged over 
all directions resulting into a zero value.
    

Another collective approach is to view the nucleus as an axially symmetric 
rigid rotating system along an axis perpendicular to the symmetry axis. Rotational 
motion can be observed only in nuclei with non-spherical equilibrium shapes. These 
nuclei are often called deformed nuclei. The rotational energy of such a rotating 
system with total angular momentum →J  is given by:

)52.......(..........).........1(
2

)(
2

−+= JJ
I

JErot



where I  is the moment of inertia (here for a rigid object) and only even J are allowed 
in the ground state band. Increasing the quantum number J corresponds to adding 
rotational energy to the nucleus, and the nuclear states form a sequence known as a 
rotational band. Considering the low-lying excitation spectrum in even-even nuclei, 
the low lying rotational energy levels are labeled by πJ =0+, 2+, 4+, 6+,... and 

,...2/20)4(,2/6)2( 2
1

2
1 IEIE  == ++  . The structure of a rotational band is shown 

in     figure(2-3). An important result here is the signature for rotational behavior with 
R4/2 = E( +

14  )/E( +
12 ) = 3.33. Such nuclei are often called “rotors” and they are found 

in the mass ranges 150 < A < 190 and A > 220 (rare earths and actinides). In the IBM 
framework, they correspond to the SU(3) dynamical symmetry.
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Figure (2-3): Low-lying levels in the rotational model in even-even nuclei. .[65].

2.4 The Interacting Boson Model 
The Interacting Boson Model (IBM) is a model for describing collective 

excitations in atomic nuclei. It has been introduced by Iachello and Arima in 1975 
[15] and has been used to model a wide variety of nuclear properties and phenomena. 
One of the advantages of the model is its use of the symmetries of the boson operators 
introduced in the model, which allows for analytic expressions of the states and 
expectation values for three different ideal limits of nuclei. In this chapter a brief 
introduction and some background to the model will be presented. Most of the 
presentation of this chapter follows the book of  Iachello and Arima [36].

2.4.1  Interacting Boson Model-1 (IBM-1)
In this section, the Interacting Boson Model-1 (IBM-1) will be introduced. 

Although the IBM-1 is not used explicitly in the analysis or direct interpretation of the 
present work, it is helpful to use it to formulate the basic ideas and expressions in the 
IBM and then extend it to the Interacting Boson Model-2 (IBM-2). In the IBM-1, the 
number of bosons is given by the number of pairs of protons and pairs of neutrons 
outside of closed shells. No distinction is made between proton type and neutron type 
bosons.

The basic foundation of the Interacting Boson Model is that collective 
excitations can be described with bosons. These bosons can be of two types, s and d 
having and angular momentum of either L = 0 or L = 2 units of   , respectively. Both 
bosons have positive parity. The number of bosons is determined by the number of 
nucleon pairs or hole pairs that are outside of a closed shell. The reason for this comes 
from the interpretation of the bosons as correlated nucleon pairs. The total number of 
bosons N in the IBM is a conserved quantity. In the IBM-1, the nucleon or hole pairs 
must be the same type of nucleon, meaning pairs consisting of a proton and neutron 
are not included. The IBM-1 is applicable only to even-even nuclei.

The nuclear states are represented in the framework of second quantization. 
The boson creation operators are given by s† and +

µd  and the boson annihilation 
operators by s and dμ, where 2,1,0,1,2 −−=µ . They satisfy the following 
commutation relations:

 [s, s] = [s†, s†] =0,
                                [s, dμ] = [s†, d] = [s, d†] = [s†, d†] =0,                       
                                                    [dμ, dμ`] = [d†

μ, d†
μ′ ] =0,  

                               [dμ, d†
μ′ ] = δμμ′ ……..(2-6)

Since nuclear states studied in the laboratory almost always have a definite 
angular momentum, which results from the Hamiltonian being rotationally invariant, 
it is useful to use spherical tensors. These tensors transform as irreducible 
representations of the rotation group. The boson creation operators transform as a 
spherical tensors while the spherical tensor for the annihilation operator needs to be 
defined as

)72........(..........)1( ,
~ −−= −

+
ml

ml
lm bb
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Two spherical tensors operators can be coupled as

[ ] )82........(..........
)()()()( 21 −×=

l

m
lll

m TTT

to form a new spherical tensor operator, where the product is defined as

[ ] ( ) ( ) )92........(2

2

1

1

21

21

,
2211

)()()()( −=×= ∑ l
m

l
m

mm

l

m
lll

M TTlmmlmlTTT

where the symbol  represents the ∑
21 ,

2211
mm

lmmlml  Clebsch-Gordan coefficients.

For example, to form a state with two bosons one would express it as

[ ]( )
)102..(....................0`` ,, −× ++ L

Mmlml bb

where L and M are the angular momentum and magnetic quantum number of
the state, respectively, whose values are restricted by the angular momentum
addition rules.

Operators in the IBM are constructed from the creation and annihilation 
operators. Since the total number of bosons is conserved, all the terms in an operator 
have the same number of creation and annihilation operators with the exception of 
pair transfer operators.

The Hamiltonian operator is given by the expression:

)112(..........
2

1

,,,,
0 −++= ++++ ∑∑ γδβααβδγ

γδβα
βα

βα
αβε bbbbubbEH

One can then see that the Hamiltonian is invariant under rotations. Since the 
Hamiltonian must be a scalar and Hermitian operator, it can be limited to the 
following form:
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where ( )ss+  is the creation (annihilation) operator for s-boson, ( )~dd +  is the 
creation (annihilation) operator for d-boson, and the parentheses denote angular 
momentum couplings. The parameters ,Jc  ,Jv ,Ju  are related to  the two-body 
matrix element by [27] :  
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Another useful way to express the Hamiltonian that is used in many 
practical applications of the IBM-1 is by using the multipole expansion:

)1 42(. . . . . . . . . ...... ^
4

^
4

^
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33

2/72/7
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0

^`
0 −++++++= −−+ TTTTaQQaLLaPPanEH ddε

where the multipole operators are given by:

                                                        
~^ .ddnd

+=   

               )..(
2

1 ~~~~^ ssddP −=

                                                         [ ] )1(~^ 1 0 ddL ×= +

                                [ ] [ ] ( )2~)2(~~^

2

7
dddssdQ ×−×+×= +++

                                             [ ] ( )3~^
3 ddT ×= +

                                             [ ] ( )4~^
4 ddT ×= + ……………..(2-15)

With such a Hamiltonian, one is able to see more easily what the effect each multipole 
degree of freedom has on the nuclear states and determine which ones are the most 
important for a given set of nuclei.

Once the IBM-1 Hamiltonian is chosen, a basis of states needs to be chosen
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to find the corresponding energy eigenvalues and eigenstates. A basis may be 
constructed from states created by applying the boson creation operators to the 
vacuum state. This basis is represented as

)162.....(....................0: −++
βαbbB

To have states with definite angular momentum, the appropriate tensor 
product of boson creation operators can be used to give the set

[ ] )172.....(....................0...:
)( −×× ++ l

m
bbB βα

It turns out that the angular momentum and magnetic quantum numbers are 
not sufficient to label all the states of a basis. Additional quantum numbers are needed 
to uniquely label the states. These additional quantum numbers can be found from the 
representations of a Lie algebra and its subalgebras that are formed from the bilinear 
products of creation and annihilation operators.

The Lie algebra U(6)

After having defined the boson operators and the tensor product, one 
introduces now the transformation generators

1[ ] )0(

0
~)0(

0 ),( ssssG ×= +
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[ ] )(
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µ dsdsG ×= +

1
[ ] )0(

0
~)0( ),( ddddG ×= +

µ

3
[ ] )(

1
~)1( ),(

µ
µ ddddG ×= +

5
[ ] )(

2
~)3( ),(

µ
µ ddddG ×= +

7
[ ] )(

3
~)2( ),(

µ
µ ddddG ×= +

9
[ ] )(

4
~)4( ),(

µ
µ ddddG ×= +

36total

The commutation relations of these operators among themselves are the same 
as the commutation relation of the Lie algebra of the group U(6) of unitary 
transformations in 6 dimensions (hence U(6)). Definitions of group, algebra, Lie 
algebra, unitary group, orthogonal group are given in [95]. These operators G (in total 
36 = 62) are thus identified as the generators of the algebra U(6). Thus one says that 
the Hamiltonian has the group structure of U(6). We will see later that one can 
decompose this “parent” group U(6) into “smaller” imbricated subgroups. This 
imbrication of groups is not always unique and reflects the symmetry of the 
Hamiltonian.

The Three Dynamical Symmetries: U(5), SU(3), O(6)
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Now, one wishes to diagonalize the Hamiltonian. A clever way to do so, is to 
know the states, which have “good” quantum numbers. The technique used is to 
decompose the “parent” algebra U(6) into chain of subalgebras, each of them 
characterized by different quantum numbers. A subalgebra is generated by a subset of 
the generators of the full algebra U(6). For example, from the 36 generators G of 
U(6)  one considers only the generators using the d-bosons: ( )ddG L ,)(

µ  with L =0, 1, 
2, 3, 4. This new set of generators happens to close under commutation (i.e the 
commutator of any two generators belonging to the subalgebra is expressible in terms 
of generators belonging to the same subalgebra only). These 25 operators happen to 
be the generators of the algebra U(5), the group of unitary transformation in 5 
dimensions. It turns out that there are only three possible chains of subalgebra 
decomposing the “parent” algebra U(6) and containing the required O(3) subalgebra:

U(6)       ⊃        U(5)      ⊃        O(5)     ⊃       O(3)     ⊃     O(2)           (I) ……………..(2- 18  ) 
  N                       nd                        ν                       L                   M

U(6)      ⊃       SU(3)     ⊃         O(3)     ⊃       O(2)                                 (II)……………..(2- 19  )
N (λ, μ)               K                          L                     M

U(6)      ⊃       O(6)       ⊃        O(5)      ⊃       O(3)     ⊃     O(2)          (III) ……….. (2-20  )
                  τ                           nΔ                    L                   M

For each subalgebra, one can find operators which commute with all generators of this 
subalgebra. Such operators are called Casimir operators and are usually labeled by C. 
The general Hamiltonian from Eq.(2-9) can then be rewritten in terms of Casimir  
operators:

[ ] [ ] [ ] [ ] [ ] [ ])5()5()5()6()6()6( 221
~

222110 OCUCUCOCUCeUCeeH βαεη ++++++=
         [ ] [ ] [ ] )212........(..........)2()3()3( 122 −+++ OCOCSUC ργδ

The Vibrational limit  U(5) symmetry
The U(5) symmetry corresponds to the chain (I) (Eq.2-13) where the general 

Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir perators 
of the subalgebras involved in this chain (i.e η = δ = 0). The basis states of this 
symmetry are defined by MLnN d ,,,,, ∆νν  with

NNd ,...,1,0∈                                                                     (2-22)
0,...,2, −∈ dd nnv         (nd = even) or 1 (nd =odd)             (2-23)  

[ ]3/,...,1,0 vv ∈∆                                                                  (2-24)

L   ∈ λ, λ +1, ..., 2λ−2, 2λ      with                                       (2-25)
λ = ν −3νΔ,                                                                         (2-26)
where N is the total number of bosons, nd the number of d bosons, ν is called the 
seniority and is defined as the number of boson pairs not coupled to zero angular 
momentum, νΔ is chosen as the number of d-boson triplets coupled to zero angular 
momentum, L is the total angular momentum and  M is its projection. By 
construction, the U(5) Hamiltonian is diagonal in the U(5) basis with eigenvalues

( ) ( ) )272.........(2)1(2)3(24,,,,, ~)( −++++++++=∆ MLLvnnnEMLnvnNE dddBd
I ργβναε

with EB = e0 + e1N + e2N(N + 5). One can then “construct” an energy spectrum 
reflecting the U(5) symmetry for a given boson number N. Note that the ratio 
R4/2 = )2(/)4( 11

++ EE  is about 2 if the parameter γβαε ,,~ ≥  . The energy level 
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pattern of the U(5) symmetry is similar to the one from a vibrational nucleus and 
when          N →∞, the U(5) limit corresponds to the anharmonic quadrupole vibrator 
of the geometrical model [96].

The Rotational Limit  SU(3) Symmetry

The SU(3) symmetry corresponds to the chain (II) (Eq.2-14) where the general 
Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir 
operators of the subalgebras involved in this chain (i.e η = ˜ε = α = β = 0). The basis 
states of this symmetry are defined by ( ) MLN ,,,,, κµλ  with

( ) ),0[(),...,2,42(),0,2(, nnn −∈µλ   evenn −  or (2,n-1) n odd]........(2-28)
)292.....(............................................................).........,min(,...,2,0 −∈ µλK

)302.(..................................................).........,max(,...,1, −++∈ µλKKKL  

where only the even values of  L  allowed for K=0 . For the magnetic substates M , 
one has .,1,..., LLLM −−∈  By construction, the SU(3) Hamiltonian is 
diagonal in SU(3)  basis with eigenvalues :

( ) ( )[ ] ( ) )312.....(2123
3

2
,,,,, 22)( −++++++++=∆ MLLEMLnNE Bd

II ργµλλµµλδνν

A typical energy spectrum reflecting the SU(3) symmetry is shown in ref. [36] 

(figure (2-2)). Note that, the ratio )2(/)4( 112/4
++= EER  is exactly 33.3

3

10 ≈ . In the 

case ∞→N , the SU(3) limit corresponds to the axial symmetric rotor in the 
framework of the geometrical model [96].   

The −γ Unstable Limit  O(6) Symmetry

The O(6) symmetry corresponds to the chain (III) (Eq. 2-15) where the general 
Hamiltonian from Eq.(2-9) can be simplified by considering only the Casimir 
operators of the subalgebras involved in this chain (i.e ˜ε = α = δ = 0). The basis states 
of the O(6) symmetry are defined by the quantum numbers MLnN ,,,,, ∆τσ  
whose values are given by: 

                     0,...,2, −∈ NNσ  0 (N=even) or 1 (N=odd)                           (2-32)
                     στ ,...,1,0∈                                                                (2.33)
                    [ ]3/,...,1,0 τ∈∆n                                                          (2.34)
                    L ∈  λ, λ+1, ..., 2λ−2, 2λ   with                                    (2.35)
                   λ = τ−3nΔ,                                                                    (2.36)

where τ is the boson seniority, i.e, the number of boson pairs not coupled to zero 
angular momentum and νΔ is the number of d-boson triplets coupled to zero angular 
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momentum. The physical meaning of σ is more complex and is not discussed here. By 
construction, the O(6) Hamiltonian is diagonal in the O(6) basis with eigenvalues:

      E(I I I) (σ,τ, nΔ, L, M) = EB +2ησ(σ +4)+2βτ(τ +3)+2γL(L +1)+2ρM.       (2.37)

A typical energy spectrum reflecting the O(6) symmetry is shown in ref. [36] 
(figure (2-3)). Note that the ratio )2(/)4( 112/4

++= EER  is about 2.5 if γ << β. 
For N →∞, the O(6) limit corresponds in the geometrical model to the γ-soft (or γ-
unstable) rotors of  Wilets and Jean [97].

Electromagnetic transition operators

Besides excitation energy spectra, the IBM is also able to describe 
electromagnetic transition rates as well. To do so, one needs to define the transition 
operators in terms of boson operators. The general form for the electromagnetic 
transition operator is given by

....
,

)(
0

)0(
0

)( ++= +∑ βα
βα

αβδ bbttT L
L

L

   …………..(2-38)

where L is the multipole of the transition. Since all of the boson operators have 
positive parity, the all the transition operators also have positive parity. States of 
nuclei have definite angular momentum and it is useful to use the spherical tensors 
coupled to definite angular momentum to construct the transition operators. The 
transition operators then become:

( ) ....][ '
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)0(

0 +×+= +∑ ll
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llL
L bbttT δµ   ……….(2-39)

The transitions operator  defined as

                                                         ,)0( ^
00 dnET βα +=

^
1)1( LMT β=

           
^''

1
^

1)2( QQET ββ +=
 

^
3)3( UMT β=

                                                
^

4)4( VET β= ………………………..(2-40)

where α0 and βL are the effective charges and ^'Q  is given by
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)4 12. . . . . . . . . (. . . . . . . . . .][ )2(^' −×= ++ ddQ

Critical Point Symmetry in Shape Transitions
 

Nuclear shapes have always been a point of discussion. In general, an atomic 
nucleus is believed to have an ellipsoidal shape. The shape of the nucleus is 
determined by five independent quantities, the two shape parameters (β and γ) and the 
three Euler angles ( )ΨΦ,,θ . It is believed to have perfect spherical shape when the 
neutron number or the proton number of the nucleus is one of the magic number as 
predicted by the shell model (for e.g. 40Ca, 208Pb). However as the number of these 
nucleons changes the shape of the nucleus also changes and it no longer remains 
spherical. Thus shape transitions are to be seen in nuclei. These shape transitions in 
atomic nuclei were studied extensively in the early 80‟s in the framework of the IBM.

Dynamical symmetries of nuclear Hamiltonian are an inherent feature of 
Interacting Boson Model (IBM), whose U(6) group structure leads to subgroup chains 
denoted by U(5), SO(6) and SU(3), which describe vibrational, γ -soft rotational and 
axially symmetric rotational, respectively. These three symmetries are depicted as the 
three vertices of a (symmetry) triangle, shown in figure (2-4) [98].  Typical partial 
level schemes of these symmetries are shown at their respective vertex. Most nuclei 
do not directly manifest these symmetries exactly; however these symmetries provide 
a sort of bench mark of structure and allow for a simple mapping procedure to locate 
any collective nucleus in the triangle.

Figure (2-4): Casten symmetry triangle along with the partial level schemes of the various limits. [98.[

The basic idea is embodied in the Ising-like Hamiltonian :
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.defsph HHH κ+=

where sphH  denotes the Hamiltonian of a higher symmetry (e.g. a spherical vibrator) 
with the coupling constant ε , whereas defH  has a lower symmetry of the deformed 
field with coupling constantκ . The resultant structure of the system is determined 
solely by the ratio κε / . If this ratio is large, the spherical solution dominates and if 
this ratio is small then the nucleus is said to be deformed. The transition in shapes 
takes place at a critical value crti)/( κε  . The IBM Hamiltonian in case of consistent 
Quantum formulation (CQF) can be written as:

QQnH d .−=
the Hamiltonians described above has variation with respect to only one parameter 

κε / , thus only giving two extremes. The third dynamical symmetry is incorporated 
as the quadruple operator Q is dependent on an internal parameter χ, which 
determines the axial symmetry and its stiffness. With these two parameters any point 
in the symmetry triangle can be labeled. This is done in terms of polar coordinate, 
where ζ  which is related to κε /  represents the radial coordinate and χ  represents 
the angular coordinate. Table (2-1) lists the values for these parameters for each of the 
dynamical symmetries in IBM [99]. The Hamiltonian, described in the above 
equation, along with the dependence on these parameters also depends on the boson 
number NB, defined as half the number of valence nucleons.
 

Observables such as  R4/2, defined as the ratio of level energy for the 2+ and 4+ 

levels, vary systematically across the triangle. The sudden change in the value for R4/2 

has been described in terms of phase transitional behavior, leading to a new class of 
critical point symmetries that describe nucleus at the phase transitional point. These 
are denoted by E(5) [ for a second order vibrator to γ -soft rotor transition] and X(5) 
(for a first order vibrator to axial rotor phase transition).

Table (2-1): The values of the parameters ε, κ, and χ for the three dynamical symmetries proposed by   

                     IBM, eβ represents the equilibrium value of shape parameter β when the potential energy  

                     surface has a minimum Limit.

limit ε κ χ
eβ

U(5( ε 0 - 0
SO(6( ε κ 0 1±

SU(3(
0 κ 7)2/1(− 2
0 κ 7)2/1(+ 2

2.4.2 Interacting Boson Model-2 (IBM-2)

In the IBM-2 model the neutrons and protons degrees of freedom are taken 
into account explicitly. Thus the Hamiltonian [34,36] can be written as,

vv VHHH ππ ++=     …………………………………..….(2-42)

22



Chapter Two                                                                                      Nuclear Collective 
Models

vvvvvv MQQVVddddH ππππνπππ κεε +++++= +++ .~   ……………(2-43)

Here ε  is the d-boson energy, κ  is the strength of the quadrupole interaction 
between neutron and proton bosons.

In the IBM-2 model, the quadrupole moment operator is given by:

.…………...…).2-44(  ( ) ( ) ( ) ( )
,

2~2~~
ρρρρρ χ ddsddsQ +++ ++=

where  πρ =  or ν , ρρQ  is the quadrupole deformation parameter for neutrons 
)( νρ =  and protons )( πρ =  . The terms ννV  and ππV  are the neutron-neutron and 

proton-proton d-boson interactions only and given by;.

( ) ( ) ( )
( ) ( )02~~2

2
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4.2.0

12
2

1

















+= ++

=
∑

ρ
ρρρρ ddddJCV L

J

…………………(2-45)

 The last term πνM  is the Majorana interaction, shfits the states with mixed 
proton-neutron symmetry with respect to the totally symmetric ones. Since little 
experimental information is known about such states with mixed symmetry, which 
has the form:

( ) ( ) ( ) ( ) ( ) )462.(..........)(2 )2(~~~~)2(~~
2

3.1

~~ −−−+−= ++

=

++∑ νπνπνπνππππππν ξξ dssddssdddddM
k

kk

k

Electromagnetic Transitions and Quadrupole Moments in IBM-2

The general one-body E2 transition operator in the IBM-2 is

)()()( lTlTlT v+= π …………………………..………….(2-47)

( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ]( )2
)2(~2~~

2
2~2~~)2( ννππππ χχ ddsddseddsddseET vv

++++++ +++++=

 ( ) )442.....(..............................2 −+= vvQeQeET ππ

where ρQ  is in the form of Eq.(2-40). For simplicity, the ρχ  has the same value as 
in the Hamiltonian. This is also suggested by the single j-shell microscopy. In general, 
the E2 transition results are not sensitive to the choice of νe   and πe , whether πe = 

νe  or not. Thus, the reduced electric quadrupole transition rates between fi II →  
states are given by:

)482.........()2(
12

1
);2(

2 −><
+

=→ ++++
if

i
fi IETI

I
IIEB

The static quadrupole moment Q0 is given by the equation: 

)492.......(..........
4

5

10

12
2/1

2
0 −





= β

π
ZRQ
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where Z is the atomic number, R  is radius of the nucleus and β is the deformation 
parameter. The electric quadrupole moment is given:

( ) ><







−



= IETI

II

II
QI 2

0

2

5

1 62
1

π
 …….(2-50)

  

In the IBM-2, the M1 transition operator up to the one-body term (l =1) is

( ) [ ] ( ) ( )( )212
1

4
31 ππππ LgLgMT v+=  …………………………(2-51)

where ( )
ρρ )(10

~
1 ddL +=  and ( ) ( ) ( )111

vLLL += π . The πg  and νg  are the boson 

g-factors (gyromagnatic factors( in unit nµ  (nuclear magneton) that depends on the 
nuclear configuration. They should be different for different nuclei.

( ) [ ] ( )( ) ( )( ) )522.......(
2

1

2

1
4

31 )1()1()1()1(2
1

−



 +−+++= νπνπνπππ LLggLLggMT v

The magnetic dipole moment operator is given by:

( ) ( ) ( )[ ]( ) ( )vv ggddddMT −−= ++
ππ

1~~77.01 ………….(2-53)

the reduced magnetic dipole  transition rates between fi II →  states are given by:

( ) ( ) 2
1

12

1
,1 ><

+
=→ ++++

if
i

fi IMTI
I

IIMB ………………..…..(2-54)

The reduced E2 and M1 matrix elements were combined in the calculation of the 
mixing ratio δ(E2/M1) using the relation [100]:

. . . .. . . . . . . . . .
)1(

)2(
)(8 3 5.0);1/2(

><
><

=→ ++

++
++

if

if
fi IMTI

IETI
M e VEIIME γδ

(2-55)

The E0 (electric monopole transition) transition occurs between two states of 
the same spin and parity by transferring the energy and zero units of angular 
momentum, and it has no competing gamma ray. The E0 transition is present when 
there is a change in the surface of the nucleus. For example, in nuclear models where 
the surface is assumed fixed, E0 transitions are strictly forbidden, such as in shell and 
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IBM-1 models. Electric monopole transitions are completely under the penetration 
effect of atomic electrons on the nucleus, and can occur not only in 0+ → 0+ transition 
but also, in competition with gamma multipole transition, and depending on transition 
selection rules that may compete in any ΔI = 0 decay such as a 2+ → 2+ or any Ii = If 

states in the scheme. When the transition energy greater than 2moc2 , monopole pair 
production is also possible. The E0 reduced transition probability is written [101]

)0();0( 24
0

2 EReIIEB fi ρ=→    )562....(.......... −= fi II

where  e  is the electron effective charge, R0 = 1.25A1/3 fm  is the nuclear radius and 
ρ(E0) is the monopole transition matrix elements. There are only limited cases of 
ρ(E0)  that can be measured directly. 

The electric monopole transition operator is
)572....(..........)()()0( )0(~)0(~

0 −×+×= ++
ρορρρ γβ ssddET

( ) ( ) )582.........(....................5
)0(~)0(~ −×+×= ++

ρρρ ssddN

)592.....(....................)()0( )0(~
0 −+×= +

ορορρρ γβ NddET

   ρρρ γββ 00
'
0 5/ −=

The monopole matrix element is given by:

)602(..........)0( ~'

02
−>×<= +∑ iddf

R

Z
Eif ρρρ

βρ

The two parameters  β0π ,  β0ν in equation (2-56) must be estimated.

In most cases we have to determine the intensity ratio of E0 to the competing E2 
transition,  X(E0/E2) [101]

)612........().........;2(/);0();2/0( 242 −→→=→ ++++++
iififi IIEBIIEReIIEEX ρ

where If = If
'  for Ii = If

'  =0, and If
' = 2  for  Ii = If = 0. The two parameters πβ0  and 

νβ0  in equation (2-57) may be estimated by fitting the isotope  shift, which is 

different in the mean square radius ><∆ 2r between neighboring isotopes in their 

ground state. They are given by Bijker et al., [102]:
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 The isomer shift, which is the difference between the mean square radius >< 2rδ  

of an excited state and the ground state in a given nucleus  [102]: 

  sgse rrr .
2

.
22 ><−>>=<<δ
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The IBM-2 Basis States

The calculation of IBM-2 energy eigenvalues and eigenfunctions is usually 
done numerically using the computer code NPBOS [103]. The resulting eigenvectors 
can then be used to calculate transition rates and related properties using the computer 
code NPBEM [103]. The relationship between the parameters of  Eq. (2-39).

The basis states used in the calculations are products of neutron and proton 
basis states. The latter are U(5) basis states for neutron bosons and proton bosons, as 
given in expression (2-20).

 The complete IBM-2 basis state can be as .

[ ] JMMLnvnMLnvnNNNJM dd ;,,,,;,,,, πππππνννννπν ∆∆+==Ψ

[ ] [ ][ ]J

Mdd MLnvnNMLnvnN πν ,,,,,,,, ∆∆=

The basis states can be found by choosing states that transform as the 
representations of the chain of algebras that can be derived from the U(6) algebra 
formed by the bilinear pair of boson creation and annihilation operators. In the 
IBM-2, the bilinear pairs of proton and neutron creation and annihilation operators 
respectively form the algebras )6(πU  and )6(νU . There are several ways to 
decompose and combine the two algebras into a chain of subalgebras and each way 
will determine the basis. As in the IBM-1, the requirement for the chain is the 
inclusion of the )3(νπ+SO  algebra as it is related to a good total angular momentum 
quantum number. The algebra )3(νπ+SO  is created from the sum of generators of the 
algebras )3(πSO  and )3(νSO .

As an example, one may take the two chains of algebras for protons and neutron,
)2()3()5()5()6( πππππ SOSOSOUU ⊃⊃⊃⊃
)2()3()5()5()6( ννννν SOSOSOUU ⊃⊃⊃⊃

These two chains can be combined at any point up except at )2(νπ+SO  since the 
combined algebra )3(νπ+SO  is needed. One of the possibilities is
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)3()5()5()6( ππππ SOSOUU ⊃⊃⊃

πN πdn ∆ππ nv , πL ⊃+ )3(νπS O )2(νπ+SO

)3()5()5()6( νννν SOSOUU ⊃⊃⊃ L       M

νN νdn ∆νν nv , νL

where the quantum numbers are labelled beneath the corresponding algebra. This is 
the basis that is used in the IBM-2 program NPBOS.

Another set of bases can be obtained if one combines the algebras at a 
different point such as

)6(πU

)2()3()5()5()6( νπνπνπνπνπ +++++ ⊃⊃⊃⊃ SOSOSOUU

)6(νU

In general there are three chains that can be combined at )6(νπ+U  to give three 
different bases. In these chains, the proton and neutron bosons exhibit a symmetry and 
this is the subject of the following section.

2.4.2.1 Mixed-Symmetry States (MSS, s)

The low-energy spectrum of even-even nuclei is dominated by simple 
collective excitation modes [96]. These correlations in the nucleon motion are induced 
by the long-range quadrupole component of the nuclear force. In spherical nuclei with
few valence nucleons, surface vibrations evolve which can be described as bosons, so-
called phonons. In an ideal case the excitation spectrum of a vibrator nucleus is a 
harmonic oscillator with equidistant level spacings ω , where phonons can couple 
to multiphonon states with different angular momenta and parities. For large numbers 
of the valence nucleons an elliptically deformed equilibrium state becomes 
energetically more favorable. Its vibrational modes can be divided into vibrations of 
the deformation parameter β ( β-vibrations) and the form parameter γ  (γ -
vibrations). 

Multiphonon excitations of atomic nuclei are interesting collective structures 
of the nuclear many-body system. Their existence enables us to judge the capability of 
the corresponding phonon modes to act as building blocks of nuclear structure. 
Possible deviations from harmonic phonon coupling occur due to the microscopic 
structure of the underlying phonon modes and serve as a sensitive source of 
information on the formation of collectivity in the nuclear many-body system. The 
proton-neutron interaction in the nuclear valence shell has been known for a long time 
as the driving force for the evolution of the low-energy nuclear structure. This has 
been discussed in many ways, e.g., in terms of the evolution of collectivity in heavy 
nuclei as a function of the product of valence proton and neutron numbers νπNN  
[104]. Otsuka et al., have identified the proton-neutron interaction as being 
responsible for the evolution of shell structure [105]. Therefore, it is interesting to 
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study those nuclear excitations that are most sensitive to the proton-neutron 
interaction in the valence shell. One class of states are collective isovector valence 
shell excitations that are frequently called mixed-symmetry states (MSSs) in the 
terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron scattering 
experiments [106] on the deformed nucleus 156Gd. A strong M1 excitation to a 1+ 

state close to 3 MeV excitation energy, the scissors mode, was observed. The scissors 
mode has subsequently been studied mainly in electron and photon scattering 
experiments on deformed nuclei. Data are available for many nuclei in the rare-earth 
mass region and interpretations of the systematics of the centroid and the total 
strength as a function of deformation have been put forward [107].

F-spin

The F-spin formalism is analogous to the isospin formalism of nucleons. 
Proton bosons and neutron bosons have 2/1=F  and the z-projection is 2/1+=zF  
for protons and 2/1−=zF  for neutrons. For a system of  Nπ proton bosons and Nν 

neutron bosons, the maximum F-spin is F = Fmax = (Nπ + Nν )/2 and

22 max
νπνπ NN

F
NN

Fz

+
≤≤

−
= ………(2-64)

In the F-spin space, one can also define the creation and annihilation operators F+  and 
F− by

)652(....................,, −+= ∑ ++
+ µν

µ
µπνπ ddssF

)662(....................,, −+= ∑ ++
− µπ

µ
µνπν ddssF

The projection operator Fz  is given by

      [ ++= ∑ ++
µν

µ
µπνπ ,,2

1
ddssFz

] )672........(,, −+∑ ++
µπ

µ
µνπν ddss

A state composed by Nπ proton bosons and Nν neutron bosons with F-spin quantum 
number F = Fmax can be transformed by the successive action of the F-spin raising 
operator F+  into a state that consists of proton bosons only. This state has still a total 
F-spin quantum number F = Fmax since the raising operator does not change the total 
F-spin quantum number. This new state has only proton bosons and obviously stays 
unchanged under a pairwise exchange of proton  and neutron labels. Therefore, 
IBM-2 states with F=Fmax are called Full Symmetry States (FSSs). These states 
corresponds actually to the IBM-1 states which are all symmetric. All others states 
with F-spin quantum numbers F < Fmax contain pairs (at least one) of proton and 
neutron bosons that are antisymmetric under a pairwise exchange of protons and 
neutrons labels. They are called Mixed-Symmetry States (MSSs).

A comprehensive review of the F-spin symmetry of the IBM-2 has been given 
by Van Isacker et al., [108]. One important result of the F-spin formalism is given by 
the proton-neutron contribution to the matrix elements of any one-body operator 
between FSSs:
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)682.........(,, ''' ,

'
max,,max −>=< +

ββααρβρβρ αα cNFbbF

where α, α' , β, β'  are additional quantum numbers and '' ,,, ββααc  is independent of  ρ. 
This major result tells us that there are no M1 transition between FSSs.

Both operators E2 and M1 can be divided into F-scalar (denoted by s) and 
F-vector (denoted by v) parts
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ee
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ee
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From the previous discussion concerning the E2 and M1 decays of full 
symmetric states and the mixed-symmetry states (here discussed in near vibrational 
nuclei), we expect following signatures for mixed-symmetry one-phonon and two 
phonon excitations for vibrational and transitional nuclei:

• The one-quadrupole-phonon 
+

Ms,12 , state is the lowest-lying MSS  in vibrational nuclei.

• The +
Ms,12  state decays to the +

12  state by a strong M1 transition 

( ) 2
1,1 12)1(2 NM sMT µ≈>< ++

 

• A weakly collective E2 transition strength of a few 22be  for the ++ → 1,1 02 Ms  
   transition.
 

In the IBM-1, geometrical shapes can be assigned to the algebras of the three 
possible chains, which correspond directly to the description of nuclear shapes by 
Bohr and Mottleson’s shape variables [11,12]. In the IBM-2, the mixed-symmetry 
states correspond to a quadrupole vibration where the protons and neutrons oscillate 
out of phase as shown in part (a) of  figure (2-5). For deformed nuclei, the protons and 
neutrons oscillate with respect to one another as the nucleus as a whole rotates as 
shown in part (b) of figure (2-5). Because of this type of motion, the mixed-symmetry 
states for deformed nuclei are also known as the scissors mode.
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Mixed-symmetry states can be identified by their unique signature, namely a 
collective M1 decay to a fully-symmetric state. M1 transitions are forbidden between 
fully-symmetric states and between mixed-symmetry states in the F-spin basis.

Figure: (2-5): Geometric interpretation of mixed-symmetry states are shown. The figure 
represents a snapshot of the nucleus in time. Part (a) represents the out of phase vibration for 
spherical nuclei and (b) represents the vibration of protons and neutrons with respect to each 
other for prolate or oblate deformed nuclei [65].

2.4.2.2 Configuration Mixing of Bosons

Some nuclei near" closed shells appear to have both the vibrational structure 
expected for a near-spherical shape, and rotational structure, which is typical of 
deformed nuclei [109]. This phenomenon of shape coexistence involves two 
configurations of the nucleus which have different numbers of active nucleons. In an 
IBM description, the two configurations have different boson numbers; νN  being the 
same but πN different, or vice versa. The most common situation involves a 

difference in ( )πν NN  of two bosons between the normal configuration and the 
so-called intruder configuration, corresponding to a pair excitation across a shell or 
sub-shell gap [109,110]. There is often evidence of mixing between the two 
configurations, as shown in Chapter 3, for the Ge  isotopes.
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Configuration mixing can be treated in the IBM-2 using a technique developed 
by Duval and Barrett [111]. Separate IBM-2 calculations are done for the two 
configurations and the results are then mixed using the interaction:

( ) ( ) )752.(..........
)0()0( −+×+×= ++++ hcddssVmix ππππ βα

where the intruder configuration is assumed to involve the proton shell. There are 
three parameters in the mixing calculation, the mixing strengths α  and β in 
Eq.(2-72), and the pair excitation energy, ∆, which gives the relative energies of the 
two unperturbed configurations.

We first explain the essential ingredients of the model with specific reference 
to the lead isotopes. The model space for three configurations is built from N, N+2, 
and N+4 bosons and constitutes a boson representation of the shell-model 
configurations that are dominant in the low-energy region of the  Ge  isotopes. The 
N-boson states correspond to excitations of neutrons only, for which the proton shell 
Z = 82 remains closed; they can be characterized as the 0p-0h configuration. The 
states with N +2 and N +4 bosons correspond to 2p-2h and 4p-4h excitations of the 
protons across the Z = 82 shell gap coupled the valence neutrons in the N = 82-126 
shell.

The total mixing Hamiltonian is then given by

)762...(....................21 −++= mixVHHH

where H1, (H2) is the IBM-2 Hamiltonian for the first (second) configuration, as given 
by Eq.(2-39), and an amount ∆ has been added to the energies of the second 
configuration. 

The mixing Hamiltonian matrix, for a given angular momentum, is shown schematically 
in the equation:

( ) )7 72(. . . . . . . . . .. . . . . . . . . .
1. . . . . . .

. . . . . . . .1
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



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




∆+
=

I I
m i x

m i x
I

V

V
H

λ

λ

The non-diagonal matrix elements are
)782.......(,......... −>=< LIIVLIV jmixiij
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where  >LI
i

 is the ith eigenfunction of angular momentum L for the 

configuration I,  >LII
j  is the jth  eigenfunction of angular momentum L for the 

configuration II, and mixV  is given by Eq.(2.72). The diagonal parts are

)792......(.......... −+= II
i

I
i E ολλ

and
)802......(.......... −+=∆+ IIII

j
II
j E ολλ

where nλ  is the actual energy eigenvalue, as determined by the computer code 
NPBOS, E is the energy relative to the n ground state of the configuration in question, 

ολ  is the ground state eigenvalue, and ∆ is the  pair-excitation energy. Note that 

ολ  is the binding energy or deformation energy. It is intrinsically negative.

The unperturbed energies for the second configuration, relative to the ground 
state of the first configuration, are given by

)812......(.......... −−+∆+= IIIII
n

II
n EE οο λλ

where EII is the energy as given in the NPBOS  output;  the absolute value of the 
ground state eigenvalue, ολ  is called the "binding energy" and is listed with the 
energies in the NPBOS output; and the value of ∆ is the NPMIX  input parameter 
EFIX.

The configuration mixing calculations are done using the computer code 
NPMIX [112], which calculates the energy eigenvalues and eigenfunctions. The 
computer codes NPBEMX and BEMIX [112] are subsequently used to calculate 
matrix elements for transition rates and other properties.

Electromagnetic Transition Probability within configuration mixing  

The E2 transition operator in configuration mixing, which is given in Eq.(2-47) can be 
rewritten

)822.........(....................)(
4

)(
4

)(
2

)(
2

)( −+++= lllll TTTTT νπνπ

)832.......(..........).........()()2( 444222 −+++= νπνπ QQeQQeET

being jQρ , the quadrupole operator defined in Eq.(2-40) for the normal  (j = 2) and 
intruder (j = 4) configurations. The values of the boson effective charges where 

242 eee == ππ   and 441 eee == νν , for a mathematical simplicity we put eee == 42 . for 
all isotopes, following the work of Sambataro and Molnar [113] on the Mo isotopes) 
were determined by the experimental electric transition probability )02;2( 11

++ →EB
values. The reduced transition B(E2) probability is given by the      Eq. (2-48). 

The M1 transition operator in configuration mixing is given 
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−+++= ννππννππρ π LgLgLgLgMT i
 

nggg µννν 042 === and nggg µπππ 142 === for a simplicity  

The reduced transition B(M1) probability is given by the Eq.(2-54.(

The expressions for )0(Eρ  matrix elements and isotope shifts are given in 
Eqs.(2-60) and (2-62). They involve five parameters. Four of them, πνπ βββ 040202 ,,

and νβ04  multiply the matrix elements of πνπ 422 ,, ddd nnn  and ν4dn  ,respectively. 

The last parameter, which occurs in the isotope shift expression only, is an additive 
constant, νγ0  (It is the sum of νγ02  and νγ04  in Eq.(2-62.) 

The electric monopole transition in configuration  mixing is given by the 
equation 

)852......(....................

)0(

404404202

202404404202202

−+++

++++=
∧∧∧

∧∧∧∧∧∧∧∧

ννππνν

ππννππννππ

γγγ
γββββ

NNN

NnnnnET dddd

The electric monopole transition matrix element is given by:

)862.....(..........);0(
4,2 ,

0 −><=→ +∧+

= =
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i

ifi JnJ
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Z
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ρβρ
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Chapter Four
Conclusions and Suggestions for Future Work

4.1 Conclusions

         In this work we have described various properties of the Kr, Xe, Nd  and 

Ge  isotopes  in the framework of the IBM-2 model.

1- Kr isotopes :

a- From  all figures of energy levels for  76-90Kr Isotopes  we found that 
76-90Kr isotopes  changed from the vibrational  SU(5)  limit  to  transitional 

limit O(6) , because the value of the ratio E(41)/ E(21) is ( 2.44         3.043 )

b- The  comparison  of  some  B(E2),  B(M1),  mixing  ratios   for  these 

isotopes with the experimental data show that these isotopes exist along 

the    SU(5)-O(6) side of the IBM triangle.

c- In 76-90Kr isotopes  we saw that when the states                and     are 

strongly dominated by the F=Fmax, the strongest contribution to  the states 

is the one with  F=Fmax-1.     

      We also can see the  states                    are mixed symmetry states in 
76-    90Kr isotopes . 

2- Xe isotopes : 

a- From  all figures of energy levels for  124-134Xe Isotopes  we found that 
124-134Xe isotopes changed from the vibrational SU(5) limit to transitional 

limit O(6) because the value of the ratio  E (41) / E(21) is ( 2        2.5 ).

b- The study of the electromagnetic properties of the states together it that 

of energy spectra  indicates that the following changes from an O(6)-like 

structure to an U(5) like-structure.

c- Often, the decay properties of the lowest excited 0+ states are used as 

an additional signature of the E(5) structure. In the case of  132Xe, the R4/2 

value  2.16  lies  very  close  to  the  ideal  value  for  the  E(5)  symmetry 

indicating that it lies more towards the U(5) side.

124

++= 42 2,2πJ +
13

++= 23 3,2πJ
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3- Nd isotopes : 

a- From  all figures of energy levels for  144-154Nd Isotopes  we found that 
144-154Nd isotopes changed from the vibrational SU(5) limit to transitional 

limit SU(3) , because the value of the ratio  E (41) / E(21) is 

( 1.885        3.281 ).

b- The X(5) analytic solutions for the critical point in the spherical to 

axially deformed phase/shape transition is closely manifested empirically 

in 150Nd and in other N=90 isotones.

c- The     states in the N = 86 isotope show a similar behavior to the 

corresponding states in the N = 88 isotope and show that the mixed-

symmetry states are sensitive to the residual proton-neutron interaction in 

this mass region. 

4- Ge isotopes : 

a- From  all figures of energy levels for 64-82Ge isotopes we found that 64-

82Ge isotopes changed from the vibrational SU(5) limit to transitional  limit 

O(6) , because the value of the ratio  E (41) / E(21) is ( 2.28         2.60 ).

b- The E2 transition rates, isotope shifts and  results are in good 

agreement with those experimental values which are available, again 

indicating that the prescription of two mixed configurations works well.

            

4.2 Suggestions for Future Work

The use of the IBM-2  basis can be used for other calculations in addition to 

the energy levels and electromagnetic transitions. Same of these   extensions are 

suggested below :

1- One of the most significant recent developments in nuclear structure physics is 

the prediction that  a Supersymmetry Model (SSM) may be realized in nuclei. The 

recognition of dynamical symmetries in even-even nuclei via the introduction of 

bosons has reoriented our directions nuclear spectroscopy. Therefore this suggests to 

use this  model to study the level schemes in odd-even mass nuclei, and study the 

non-collective motion in transitional and deformed nuclei.

2-  Study of  the hexadecupole degree of freedom in transitional nuclei, by 

addition of a g-boson (L = 4), to test the important Kπ = 4+ band and E4 transitions in 

this region.  

125
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3- Use the method  to proposed of connecting of the interacting boson model and 

shell model is called interacting boson model-3 (IBM-3) to describe the light nuclei 

(πν , T =1) . 

4- The +
M2  states found so far in the A = 140 mass region give us an interesting 

glimpse into the behavior of mixed-symmetry states. The extent of the existence of 

these states and also their purity would test the limits of the validity of describing 

them as states of mixed proton-neutron symmetry. Efforts are continuing in the search 

of mixed-symmetry states in this mass region.

126



Chapter Four                                                                              Conclusions and Suggestions

References :
[1] E. Rutherford. Philosophical Magazine, 21 (1911) 661.
[2] J. Chadwick. Nature,129 (1932) 312.
[3] P. A. M. Dirac. Proc. R. Soc. A 117(1928)  610.
[4] P. A. M. Dirac. Proc. R. Soc. A118 (1928) 351.
[5] C. Anderson. Phys. Rev. 43 (1933) 491.
[6] G. Gamow. Proc. R. Soc. A 126 (803) (1930) 632 .
[7] C. F. von Weiz¨acker. Zeits. F. Physik, 96 (1935) 431.
[8] M. Goeppert-Mayer. Phys. Rev. 75 (1969) 1949.
[9] O. Haxel, J. H. D. Jensen, and H. E. Suess. Zeits. F. Physik, 128 (1950) 295.
[10] J. Rainwater. Phys. Rev. 79 (1950) 432.
[11] A. Bohr. Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 26 (1952) 14.
[12] A. Bohr and B. Mottelson. Kgl. Danske Videnskab. Selskab, Mat.fys.
        Medd. 27 (1953) 16.
[13] D. L. Hill and J. A. Wheeler. Phys. Rev. 89 (1953) 1102.
[14] S. G. Nilsson. Dan. Mat. Fys. Medd. 29 (1955) 16.
[15] A. Arima and F. Iachello. Phys. Rev. Lett.  35 (1975)1069. 
[16] L. Eisenbud and E. P. Wigner. 'Nuclear Structure'. Princeton University
        Press, Princeton, New Jersey 1958.
[17] U. Kaup and A. Gellberg, Z. Phys. A293 (1979) 311.
[18] P. Hellmeister, J. Keinonen, K. P. Lieb , Phys. Lett. B 85 (1979) 34. 
[19] A. R. Meyer, F. J. Wild and K. Esksla, Phys. Rev. C27 (1984) 2217.
[20] A. Giannutiempo, A. Nannini and A. Perego, Phys. Rev. C47 (1993) 521.
[21] H. Dejbakhsh, A. Kolomiets and S. Shlomo, Phys. Rev. C51 (1995) 573.
[22] A. Giannutiempo, A. Nannini and P. Sona, Phys. Rev. C62 (2000) 044302.
[23] Shi Zhu-Yi, Zhao Xing-Zhi and Tong Hong, China Phys. Soc. Vol. 12, No.7 
        (2003) 0732.
[24] F. H. AL-Khudair and LONG Gui-Lu, High Energy Physics and Nuclear Physics 
       Vol. 28, No. 6 (2004) 717.
[25] Nurettin Turkan, Davut Olgun, Ihsan Uluer and Sait Inan , Turk. J. Phys. 30 
        (2006) 89. 
[26] N. Turkan, T. Bascetin and I.Inci. Mom. 72, No. 6 (2009) 1004.
[27] A. Arima, F. Iachello, Ann. Phys. 99 (1976) 253 .
[28] A. Arima, F. Iachello, Ann. Phys. 111 (1978) 201.
[29] A. Arima, F. Iachello, Phys. Rev. Lett. 35 (1975) 1069 .
[30] A. Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 417 (1965).
[31] A. S. Davydov and G. F. Filipov, Nucl. Phys. 8 (1958) 237.
[32] A. S. Davydov and A. A. Chaban, Nucl. Phys. 20 (1960) 499.
[33] S. G. Rohozinski, J. Dobaczewski, B. Nerlo-Pomorska, K. Pomorski, J. Srebrny, 
       Nucl. Phys. A292 (1977) 66 .
[34] G. Puddu, O. Scholten, T. Otsuka, Nucl. Phys. A348 (1980) 109 . 
[35] R. F. Casten, P. von Brentano, Phys. Lett. 152B (1985) 22.
[36] F. Iachello and A.Arima, The Interacting Boson Model, Cambridge University 
        Press, Cambridge, 1987.
[37] A. Sevrin, K. Heyde, and J. Jolie, Phys. Rev. C 36 (1987) 2631.
[38]  P. Von Brentano, A. Gelberg, S. Harissopulos and R. F. Casten,  Phys. Rev. C  
        38 (1988) 2386.
[39] X.-W. Pan, T. Otsuka, J.-Q. Chen and A. Arima, Phys. Lett. B 287 (1992) 1.
[40] T. Mizusaki and T. Otsuka, Prog. Theor. Phys. 125 (1996) 97.
[41] N. V. Zamfir, W. T. Chou, R. F. Casten, Phys. Rev. C 57 (1998) 427.

127



Chapter Four                                                                              Conclusions and Suggestions

[42] C. L. Wu, D. H. Feng, X.-G. Chen, J.-Q.Chen and M. W. Guidry, Phys. Rev.
        C 36 (1987) 1157.
[43] X.-W. Pan, J. L. Ping, D. H. Feng, J. Q. Chen, C. L. Wu and M. W. Guidry,
       Phys. Rev. C 53 (1996) 715.
[44] N. Yoshinaga, T. Mizusaki, A. Arima and Y. D. Devi, Prog. Theor. Phys.
        125 (1996) 65.
[45] N. Yoshinaga, Y. D. Devi and A. Arima, Phys. Rev.C 62 (2000) 024309.
[46] J. Q. Chen, Nucl. Phys. A626 (1997) 686.
[47]Y. A. Luo and J. Q. Chen, Phys. RevC 58 (1998) 589.
[48]Y. M. Zhao, S. Yamaji, N. Yoshinaga and A. Arima, Phys. Rev. C 62  (2000),   
       014315.    
[49] Y. A. Luo, J. Q. Chen and J. P. Draayer, Nucl. Phys. A 669 (2000) 101.
[50] R. Wyss et al., Nucl. Phys. A 505 (1989) 337.
[51] P. F. Mantica, Jr., B. E. Zimmerman, W. B. Walters, J. Rikovska and N. J. Stone, 
       Phys. Rev. C 45 (1992) 1586.
[52] M. T. F. da Cruz and I. D. Goldman, Phys. Rev. C 42 (1990) 869.
[53] A. Christy, I. Hall, R. P. Harper, I. M. Naqib and B. Wakefield, Nucl. Phys.   
       A142 (1970) 591.
[54] L. Prochniak, K. Zajac, K. Pomorski, S. G. Rohoziński and J. Srebrny,  Nucl. 
        Phys. A 648 (1999) 181.
[55] M. Beiner, H. Flocard, N. Van Giai and P. Quentin, Nucl. Phys. A 238 (1975) 
29.
[56] E. W. Schneider, M. D. Glascock, and W. B. Walters, Phys. Rev. C 19 (1979) 
       1025.
[57] B. Singh, R. Iafigliola, K. Sofia, J. E. Crawford, and J. K. P. Lee, Phys. Rev. 
        C 19  (1979) 2409.
[58] C Girit, W D Hamilton and E Michelakakis, J. Phys. G: Nucl. Phys. 6,  
        (1980)1025.
[59] L. Goettig, Ch. Droste, A. Dygo, T. Morek, J. Srebrny, R. Broda and, J. Stycze , 
        J. Hattula, H. Helppi and M. Jaaskelainen, , Nucl.Phys. A 357 (1981) 109.
[60] W. Gast, U. Kaup, H. Hanewinkel, R. Reinhardt, K. Schiffer, K. P.Schmittgen,K. 
        O. Zell, J. Wrzesinski, A. Gelberg and P. v. Brentano, , Z.Phys. A 318 (1984)123 
[61] R. Reinhardt, A. Dewald, A. Gelberg, W. Lieberz, K. Schiffer, K. P. 
        Schmittgen, K. O. Zell and P. von Brentano, Z. Phys. A 329 (1988) 507.
[62] D. Jerrestam, S. Elfstrom, W. Klamra, Th. Lindblad, C.G. Linden, V. Barci, H. 
        El-Samman and J. Gizon, , Nucl. Phys. A 481 (1988) 355.
[63] Rani Devi, S. P. Sarswat, Arun Bharti and S. K. Khosa, Phys. Rev. C 55 (1997) 
        2433.
[64] I. Maras1, R. Gumus and N. Turkan, Mathematical and Computational  
       Applications, Vol. 15, No. 1 (2010) 79.
[65] Laurent Coquard, Ph. D Thesis  “ Evolution of the one qudrupole phonon 21,ms 

mixed symmetry state in   124-126-128-130 132Xe (2010) Darmstadt University.
[66] N. Turkan and  I. Maras, Mathematical and Computational  Applications, Vol.    
        16, No. 2 (2011) 467.
[67] Salah A. Eid and S. M. Diab, Progress in Physics, Vol.1 ( 2012) 54.
[68] G. Maino and A. Ventura, Lett. Nuovo Ciemento 34 (1982) 79.
[69] D. S. Chuu, C. S. Han, S. T. Hsieh and M. M. King Yen, Phys. Rev. C30 (1984)  
       1300. 
[70] J. B. Gupta, J. Phys. G21 (1995) 565.
[71] A. G. Smith, W. R. Phillips, J. L. Durell, Phys. Rev. Lett. 73(1995) 2540. 

128



Chapter Four                                                                              Conclusions and Suggestions

[72] M. Hellstrom, H. Mach, B. Fogelberge et al., Phys. Rev. C46 (1992) 86.
[73] A. G. Smith, W. R. Phillips, J. L. Durell, Phys. Rev. C47 (1993) 545.
[74] Long Guilu, ZHU Shengian, Zhang Jinyu, ZHAO Enguang and LIU Yuxin,  
        Commun. Theor. Phys. 29 (1998) 65 
[75] R.M. Clark et al., Phys. Rev. C 67 (2004) 041302.
[76] R. F. Casten, N.V. Zamfir, R. Krucken, Phys. Rev. C 68 (2003) 059801.
[77] N. Turkan, I. Inci, Phys. Scr. 75 (2007) 515.
[78] S. Inan, N. Turkan, I. Inci and , D. Olgun, Mathematical and Computational 
       Applications, Vol. 13, No. 2 (2008) 101.
[79] N. Turkan and I. Inci Physics of Atomic Nuclei,  Vol. 71, No. 11, (2008) 1918.
[80] A. R. H. Subber and Falih H. Al-Khudair, J. Basrah Researches (science) 32 
       (2006) 12.
[81] E. Landulf, R. N. Saxena, C. B. Zamboni and A. L. Lapolli, Phys. Rev. C50  
     (1994) 733.
[82] M. Hasegawa, K. Kaneko and T. Mizusaki, Phys. Rev. C70 (2004), 031301.
[83] Zn. Podolyka et al., International Journal of Modern Physics B  13 (2004) 123.
[84] T. T. Hsieh, H. C. Chiang and De-San Chuu, Phys. Rev. C 46 (1992) 195.
[85] P. Duval, D. Goutte, and M. Vergnes, Phys. Lett. B 124 (1983) 297.
[86] E. Padilla-Rodal, Ph. D. Thesis, UNAM, Mexico (2004); E. Padilla-Rodal et al. 
       Phys. Rev. Lett. 94 (2005) 122501.
[87] M. Vergnes et al., Phys. Lett. B 72 (1978) 447.
[88] R. Lecomte et al., Phys. Rev. C 22 (1980) 1530.
[89] Y. Toh et al. in Nuclear Physics in the 21st century INPC 2001, AIP Conf. Proc. 
        610 (2002) 793.
[90] R. Lecomte et al., Phys. Rev. C 25 (1982) 2812.
[91] N. Turkan and I. Maras, Mathematical and Computational Applications, Vol. 15, 
        No. 3, (2010) 428.
[92] A. R. H. Subber, Turk. J. Phys. 35 (2011) 43 .

]93 [R. M. Clark , (2004) Paper LBNL-56419 , R. M. Clark et al., Phys. Rev. C 69 ,
)        2004  (064322.

]94 [D. L. Hill and J. A. Wheeler, Phys. Rev. 89 (1953)1102.
]95 [D. Bonatsos, Interacting Boson Models of Nuclear Structure, (Clarendon Press ,

       Oxford, 1988.(
]96 [A. Bohr and B. Mottelson, 'Nuclear Structure' II, (Benjamin, Reading, 1975.(

]97 [J.Wilets and M. Jean, Phys. Rev. 102 (1956) 788. 
]98 [R. F.Casten, Romanian Reports in Physics, Vol. 57, No. 4 (2005) 515.

]99 [R. Bijker., Lecture notes: IV International Balkan School on Nuclear Physics ,
        Bodrum, Turkey, September (2004) 22.

]100 [J. Lang, K. Kumar and J. H. Hamilton, Rev. Mod. Phys. Vol.54  No. 1  (1982.(
]101 [E. L. Church and J. Weneser, Phys. Rev. 103 (1956), 1035.

]102 [R. Bijker, A. E. L. Dieperink and O.Scholten, Nucl. Phys. A 344 (1980) 207 .
]103 [T. Otsuka,  and O. Soholten, KVI Internal Report No. 253, 1979.

]104 [R. F. Casten, Nucl. Phys. A443 (1985) 1.
]105 [T. Otsuka, T. Matsuo, and D. Abe, Phys. Rev. Lett. 97 (2006) 162501.

[106] D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo Iudice, F. Palumbo
         and O. Scholten, Phys. Lett. 137B (1984) 27.

[107] J. Enders, P. von Neumann-Cosel, C. Rangacharyulu, and A. Richter,
          Phys. Rev. C71 (2005) 014306.

]108 [P. Van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys. (NY) 171, 253  
)         1986.(

129



Chapter Four                                                                              Conclusions and Suggestions

[109] J. L. Wood, ' in Contemporary   research  Topics in Nuclear Physics  
         eds. D. H. Feng, et al., (Plenum Press, New York (1982) 451.

[110] K. Heyde,  P. Van Isacker, H. Waroquier, J. L. Wood, and R. A. Heyer,
          Phys. Rep. 102 (1983) 291.

]111 [P. D. Duval,  and B. R. Barrett, Nucl. Phys. A376 (1982)213.
]112 [P. D. Duval, Phys. Rev. Lett. 46, (1981)1504.

]113 [M. Sambataro and G. Molnar, Nucl. Phys. A 376 (1982) 201.
[114] T. Otsuka, A. Arima and F. Iachello, Nucl. Pys. A309(1978) 1.
[115] R. F. Casten, A. I. Namenson, W. F. Davidson, D. D. Warner and H. G. Borner, 
          Phys. Lette. 76B (1979) 280.
[116] N.A. Mansour "Advances in Applied Science Research", 2(5) (2011) 427.
[117] NSDF, http:// www.nndc.bnl.gov/ensdf, National Nuclear Data Center, (2011).
[118] A. R. Subber, P. Park, W. D. Hamilton, K. Kumar, K. Schreckenbach and   
          G.   Colvin, J. Phys. G: Nuclear  Phys. 12 (1986) 881.
[119] M. Sambataro, O. Scholten, A. E. L. Deperink and G. Piccitto, Nucl. 
          Phys. A423(1984) 333.
[120] P. Van Isacker  et al., Ann. Phys.2 (1985) 253.
[121] A. E.L.Dieperink, O.Scholten  and D.D.Warner, Nucl. Phys. A469 (1987) 173.

[122] P. Van Isacker,  K. Heyde , J. Jolie  and A. Sevrin   Ann (NY)171. Phys (1986) 
          253.
[123] O. Scholten , K. Heyde , P. Van Isacker  and T. Otsuka Phys. Rev. C 32(1985) 
         1729.
[124] T. Otsuka and N. Yoshida, the IBM-2 computer program NPBOS, University of 
          Tokyo (1985).
[125] G. Rainosvki, N. Pietralla, T. Ahn, L. Coquard, C. J. Lister, R. V. F.   
          Janssens,M. P. Carpenter, S. Zhu, L. Bettermann, J. Jolie, W. Rother, R. V.   
          Jolos, V. Werner, Phys. Lett. B683 (2010) 11.
[126] V. Werner, H. Meise, I. Wiedenhِver, A. Gade, P. von Brentano, Nucl. Phys.  
         A692 (2001) 451.
[127] A. Gade, I.Wiedenhِver, J. Gableske, A. Gelberg, H. Meise, N. Pietralla, P.von  
          Brentano, Nucl. Phys. A665 (2000) 268.
[128] D. Bonatsos, D. Lenis, N. Pietralla, P. A. Terziev, Phys. Rev. C 74 (2006) 44306.
[129] J. H. Hamilton, K. Kumar , L. Ramayya and P. E. Johnson Phys. Rev., 1974 
          C 10, 2540.
[130] W. D. Hamilton, A.Irback  and P. Elliott, Phys. Rev. Lett. 53 (1984) 2469. 
[131] S. Zerguine, P. Van Isacker, A. Bouldjedri, and S. Heinze, Phys. Rev. 
          Lett. 101 (2008) 022502

130



الهداء
الى مثلي العلى وقدوتي في الحياة ٭والدي

الى من صبرت وسهرت من اجل راحتي ٭والدتي

الى رمز المودة والوفاء وسندي ٭زوجتي 

الى من شجعني في الشدائد ٭اخوتي

 الى اصدقائي وكل من ساهم في انجاز هذا

العمل  

اليهم جميعا اهدي ثمرة جهدي عرفانا بفضلهم

          
سعد     القادر عبد



ِم    ِحي ّر ل ا ِن َم ْح ّر ل ا ِه ّل ل ا ِم ْس ِب
ِت    َوا َما ّس ل ا ِق ْل َخ ِفي ّن  ِإ

ِر    َها ّن ل َوا ِل ْي ّل ل ا ِف َل ِت ْخ َوا ِض ْر َل  َوا
ِر     حْ َب ْل ا ِفي ْجرِي َت ِتي ّل ا ِك ْل ُف ْل  َوا

ُه      ّل ل ا َل َز ن َأ َما َو َس ا ّن ل ا ُع َف ن َي َما  ِب
هِ      ِب ا َي ْح َأ َف ّماء ِمن ِء َما ّس ل ا َن  مِ

ِمن      َها ِفي ّث َب وَ َها ِت ْو َم َد ْع َب َض ْر  ال
ِح    ا َي ّر ل ا يفِ ْصرِ َت َو ٍة ّب َدآ ّل  ُك

َماء    ّس ل ا َن ْي َب ِر ّخ َس ُم ْل ا ِب َحا ّس ل  َوا
َن    . ُلو ِق ْع َي ٍم ْو َق ّل ٍت ا َي ل ِض ْر َل َوا

لبقرة)   164الية ( ا سورة من





2 .1 The values of the parameters , , and  for the three dynamical symmetries proposed by IBM, ε κ χ β e 

represents  the  equilibrium value  of  shape parameter  when the potential  energy surface has aβ  
minimum limit.

22

3 .1 IBM2 Hamiltonian parameters for Kr isotopes . 34
3 .2

Energy ratio R 4/2 = E (41+) / E (21+ ) for Kr Isotopes .

35

3 .3 Electric Transition Probability for Kr Isotopes in e2 b2 units . 45
3 .4

Reduced Transition Probability B(M1) for Kr Isotopes in μN2  units .

48

3 .5

Mixing ratio δ(E2/M1) for Kr Isotopes in MeV eb /μN units.

50

3 .6 Monopole matrix element ρ (E0) for Kr  Isotopes in e.b . 51
3 .7 Isotopic Shifts for Kr Isotopes. 52
3 .8 IBM2 Hamiltonian parameters for  124- 134 Xe  Isotopes . 54
3 .9 Energy ratio for 124- 134 Xe  Isotopes. 56
3 .10 Electric Transition Probability for 124- 134 Xe  Isotopes e2 b2 units. 65
3 .11

Reduced Transition Probability B(M1) for 124- 134 Xe   Isotopes in μN2  units.

67

3 .12

Mixing ratio δ(E2/M1) for 124- 134 Xe  Isotopes  in  MeV eb /μN units.

69

3 .13 The Monopole matrix element  ρ (E0)  for  124- 134 Xe   Isotopes. 70
3 .14 The  branching  ratio X (E0 / E2 ) for  124- 134 Xe  Isotopes. 71
3 .15

The Isomer shifts δ<r2> fm2  for  124- 134 Xe  Isotopes.

71

3 .16

Energy levels and B ( M1 ; 2m+           21+ ) for 124- 134 Xe  .

72

3.17 IBM2 Hamiltonian parameters for 144 - 154 Nd  Isotopes . 73



3 .18

Energy ratio R 4/2 = E (41+) / E (21+ )  for  144 - 154 Nd  Isotopes .

74

3 .19 Electric Transition Probability for  144 - 154 Nd  Isotopes e2 b2 units. 83
3 .20

Reduced Transitions probability B(M1) in μN2 units for 144 - 154 Nd  isotopes.

84

3 .21

Mixing ratio δ(E2/M1) for  144 - 154 Nd  Isotopes  in  MeV eb /μN units.

86

3 .22 Monopole matrix element for ρ (E0)  144 - 154 Nd  Isotopes in e.b . 87
3 .23 The ratio X(E0/E2) values for 144 - 154 Nd  Isotopes . 88
3. 24

The Isomer shifts δ<r2> fm2  for 144 - 154 Nd  Isotopes .

88

3 .25 IBM2 Hamiltonian parameters for  64 - 80 Ge  (Nπ = 2 ) Isotopes  . 90
3 .26 IBM2 Hamiltonian parameters for  64 - 80 Ge    (Nπ = 4 ) Isotopes  . 91
3 .27

Values E (J1+ / 21+ ) for  64 - 80 Ge  Isotopes in normal configuration (Nπ = 2)

92

3 .28 Electric Transition probability for  64 - 80 Ge    Isotopes  in e2 b2 units. 115
3 .29

Reduced transitions probability B(M1) in μN2  units for  64 - 80 Ge   Isotopes.

118

3 .30

Mixing  ratio  δ (E2 /M1 ) for  64 - 80 Ge     in eb / μN units .

119

3 .31 Monopole matrix element for ρ (E0)   for  64 - 80 Ge   Isotopes. 122
3 .32 The  branching  ratio X (E0 / E2 ) for  64 - 80 Ge  Isotopes. 122

List of Tables



Abstract

Nuclear structure Properties and electromagnetic transitions of some 
even - even Kr, Xe, Nd and Ge isotopes have been studied in this work, by using the 
collective Interacting Boson Model-2 (IBM-2). 

         The Interacting Boson Model (IBM-2) has been very successful in describing 
the collective properties of nuclei. This work concerns a systematic applications of the 
model, involving configuration mixing of bosons.

         There have been extensive IBM studies of low-lying positive parity bands, 
which are based on the ground state and the quadrupole degree of freedom. 

         The results for energy levels, B(E2), B(M1), mixing ratios )1/2( MEδ , 
quadrupole and magnetic dipole moments and monopole transitions, were compared 
with some previous experimental and theoretical values. It was found that an 
acceptable degree of agreement between the predictions of the IBM-2 and the 
experiment can be achieved.

The  Kr isotope (Z = 36) lies in the transitional region closer to the vibrational 
range of nuclei. Energy , levels B(E2), B(M1) and the mixing ratios δ(E2/M1) and 
X(E0/E2) for selected transitions in this isotope were calculated in the framework of 
the interacting boson model (IBM-2). All results were compared with experimental 
data. Some experimental X(E0/E2) ratios were calculated from available experimental 
data. Majorana parameters were found to have a great effect on the calculated energy 
levels of the =π

iJ
+
32  , +

23  , +
42  and +1  states which indicates they have mixed 

symmetry properties.

The results of IBM-2 for Xe isotopes were compared with the theoretical 
predictions assuming a critical point symmetry E(5) which leads to conclude that 
128Xe is not an E(5) isotope as previously suggested. In this case of the 128Xe  the 
observable 33.22/4 =R   is intermediate between the value for E(5)  ( )2.22/4 =R  and 

gamma soft limit ( )5.22/4 =R . The ratio suggests that 128Xe  should lie between E(5) 
and O(6). 

Similar test  using 130Xe as a most likely candidate amongst the Xe isotopes, 
conclusively demonstrate a how well E(5) is realized in the best case. The energy 
ratio confirmed that this isotope an E(5) critical point symmetry. The 132Xe and  134Xe 
show vibrational-like character (SU(5) limit).  

Mixed symmetry states are  also studied. It is found that some of the mixed 
symmetry states with moderate high spins change very fast with respect to the 
Majorana interaction. Under certain conditions, they become the yrast state or yrare 
state. These states are difficult to decay and become very stable. This study suggests 
that a possible new mode of isomers may exist due to the special nature in their proton 
and neutron degrees of freedom for these isotopes.
  



The  mixed-symmetry M2  )2( 3
+  states or at least a fragment of it have been 

identified in Xe isotopes. This enables us to trace the evolution of the one-phonon 
M2  states in the even-even xenon isotopic chain from the vibrators near N = 82 to 

the       γ-soft nuclei towards mid-shell.

We have studied the nuclear properties of Neodymium  isotopes with 
(A =144-154) in IBM-2. A good agreement results with the experimental data. 
144-150Nd lie in the transitional region (virational - rotational limit SU(5)→SU(3)). For 
the 152-154Nd  isotopes the energy ratio are well described by the rotational limit SU(3). 
The X(5)  symmetry would take place when moving continuously from the pure U(5) 
symmetry to the SU(3) symmetry and it implies a definite relations among the level 
energies and among the E2 transition strengths. It was recently shown that a signature 
of phase transition is observed in the chain of Nd isotopes, 150Nd display the predicted 
features of the X(5) symmetry and mark therefore the critical point. However, more 
detailed studies and experiments are needed to get ideas about this signature. At the 
end, we have concluded that some of  Nd isotopes display X(5) symmetry features. 
The ++

43 2,2  and +1  are mixed symmetry states in Nd isotopes.

The even-even isotopes of  germanium are of special interest because of the 
coexistence of two sets of bands, of very different character, in the lighter  nuclei. The 
IBM-2 with configuration mixing provides a good description, both of states built on 
the normal ground state and of those associated with a proton pair excitation across 
the Z =28 closed-shell gap. Ge  isotopes are studied, ranging from the middle of the 
neutron shell to very near the doubly closed shell at  82Ge. Same Hamiltonian is used 
for all the nuclei studied, with parameters which are constant or smoothly varying.

 



الخلصة

 لقد تم في هذا البحث دراسة التركيب النووي والنتقالت الكهرومغناطيسية  لبعض      

Gو  Nd , Xe , Kr  ( النظائر (الزوجية – الزوجية e  باستخدام النموذج الجماعي   

IBM-2  ( نموذج البوزونات المتفاعلة  الثاني  ) .

 النتقالت , B(E2) تم الحصول على نتائج لمستويات الطاقة، والنتقالت الكهربائية     

 وعزم رباعي القطب الكهربائي ، وعزم ، (E2/M1) ونسبة الخلط , B(M1) المغناطيسية

 ثنائي  القطب المغناطيسي ، والنتقالت احادية القطب . ولقد تم مقارنة النتائج  مع القيم

. العملية المتوفرة وقد وجد انها متقاربة ومقبولة

=Kr (Z ان نظائر ال      3 6  تقع في المنطقة النتقالية القريبة من التحديد الهتزازي. ( 

X(E0/E و  B(E2) ، B(M1) ، (E2/M1) ولقد تم حساب مستويات الطاقة  لبعض  (2

(IBM-2) النتقالت المختارة باستخدام نموذج البوزونات المتفاعلة الثاني  وان جميع النتائج 

.قد قورنت مع القيم العملية

  ,  التي حددت ,لقد كان لمعاملت ماجيرونا اثرا كبيرا في حساب مستويات الطاقة    ,     

. انها تمتلك صفات تناظر مختلطة

IBM-2 التي تم الحصول عليها من نموذج Xe  لقد تم مقارنة نتائج نظائر      مع التوقعات 

128وتبين  ان  .  E(5)النظرية لتماثل النقطة الحرجة Xe    هو ليس نظير يقع ضمن E(5) 

Xe1 كما اقترح مسبقا . لذا فان نسبة الطاقة لنظير ال 2 8 s- و حدود   E(5) تقع بين ()  o ftγ 

. 128وبذلك فحسب هذه النسبة فان    Xe    يجب ان يقع بين E(5) و O( 6).



130غالبا ما يكون اختبار     Xe مناسب لنظائر Xe  ، والذي يظهر خصائص E(5) بأفضل 

 اما بالنسبة لنظائر . E(5)  حالته. كذلك فان مستويات الطاقة تعزز وجود هذا النظير ضمن
132Xe   134 و Xe  فإنها تظهر صفات مشابهة للمحدد الهتزازي SU(5) .

 وهذا قد مكننا من Xe    قد تم التعريف عليها من نظائران مستويات التناظر المختلطة       

 تعقب تحرير فونون واحد لحالة  في سلسلة النظائر ( الزوجية – الزوجية ) للزنون من

=N الهتزازات القريبة من 8 2 s- الى نواة  o ftγ  باتجاه منتصف القشرة .

=Nd  (Aلقد درسنا الخصائص النووية لنظائر      1 4 4 - 1 5 4) IBM-2 في    وتم الحصول 

. على نتائج جيدة مقارنة بالقيم العملية  

1 4 4 - 1 5 0 Nd  يقع في المنطقة النتقالية ( الهتزازي – الدوراني )  SU(5) SU(3)  .→  بينما

154-152نظائر  Nd    فإنها تقع ضمن التحديد الدوراني  (SU(3)) .

 الى تناظر ال  U(5) سوف يأخذ مكان او حيز عندما يستمر بحركته بين تناظر X(5) ان    

SU(3) ويظهر ذلك بصورة واضحة ما بين مستويات الطاقة وقوى النتقال رباعي القطب 

E2  .

Nd1 تشير الى النتقالت الطورية كما ان نظير  Nd لقد وجد حديثا ان سلسلة نظائر     5 0  

 على العموم فان هناك عدة دراسات مفصلة بحاجة . X(5) يعرضا الخواص المتوقعة ل



 تكتشف خواص  Nd  للحصول على تلك المؤشرات . وبالنهاية نستنتج بان بعض نظائر

X(5) .   هي حالت تناظر مختلطة لنظائران  ,  Nd 

IBM-2 ان نموذج البوزونات المتفاعلة      كان ناجحا بوصفه للخواص التجميعية للنواة .  

 وفي هذا البحث قد تم الهتمام بالتطبيقات النظامية والمتضمنة اشكال البوزونات

.المختلطة

 ان النظائر الجرمانيوم ( الزوجية – الزوجية ) لها اهتمام خاص بسبب وجودها ضمن    

 مجموعتين من الحزم  ذات الخواص المعقدة للنواة الخفيفة . ان نموذج البوزونات

IBM-2 المتفاعلة  مع التركيبات المختلطة يجهز توصيف جيد لكل الحالت المبينة بالمستوى 

= Z الرضي وللبروتونات الموجودة بالمستوى المتهيج عبر غلف القشرة 2 8 . المغلق 

 لقد تم دراسة نظائر الجرمانيوم وتبين انه يتدرج مابين وسط قشرة البروتون و القشرة    

82المزدوجة القريبة من المغلقة عند ال  G e  ولقد وجد ان نظائر الجرمانيوم عند التشكيل .  

Nπ = 2 Nπ تأخذ  الشكل الهتزازي وعند التشكيل   =  4  تأخذ الشكل الدوراني ( ويزداد  

. (التشوه

)  وفي هذا العمل استخدمت طرق حديثة جدا لتعيين الشحنات الفعلية    eff e ctiv e  

c h a r g e)  للبوزونات وذلك باستخدام القيم العملية للنتقال رباعي القطب )01+  

21+ B(E2;



g وكذلك استخدمت طرق جديدة لحساب المعاملت الجيرو مغناطيسية للبوزونات      υ ،  g π  

        . δ (E2/M1) و  B(M1) وذلك بمعايرتها الى القيم العملية لـ
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