ADbstract

The analytical method is used to derive the formulae of optical properties for
magnetic lens and deflector. From these formulae, the optical properties are
computed for both magnetic lens and deflector. The minimum spherical and
chromatic aberration coefficients (axial, magnification and rotation chromatic
aberration coefficients) are selected from the results of calculation for both
magnetic lens and deflector.

The inverse power law model is adopted to obtain the axia field distribution of
magnetic lenses. The moving objective lens concept is used in the computation of
the deflection field distribution for magnetic deflector.

The first and third orders optical properties for magnetic lens and deflector are
studied. Also, the minimum values of optical properties are obtained by changing
the order n and the index of the zero corresponding to each value of n.

The computation for magnetic lens and deflector shows that the focal length,
spherical and axial chromatic aberration coefficients are proportional with the
value of z at the focus. As well, the best magnetic lens and deflector which gives
rise to minimum spherical and axial chromatic aberration coefficients are found at
n=4. Also, it is noticed that the increasing of the values of the index of the zero for
each value of n, for magnetic lenses and deflectors, leads to reduce the spherica
and axial chromatic aberration coefficients. Additionally for magnetic lens and
deflector, the magnification and rotation chromatic aberration coefficients have
constant values, for each value of n, corresponding to each index of the zero.
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Trajectory Equation of Magnetic Deflectors

Appendix

The Trajectory Equation of Magnetic Deflectors

From Eq. (2-6) which isgiven by:

DE)=2B()

B'(2) iscomputed by aiding Eq. (2-3)
Then, Eqg. (1) can be written as:

D(2)= ndB,
2

n+1

For simplicity, let d=1(mm)
Then, EQ. (2) becomes:
nB,

n+1

D(2)=

Now, Eq. (3) substituting into Eq. (2-1) to get:

2 2
(Bo) n 1 _
2V, 22n+2) ") =0

@)+ ("

1
Let r(2) = z2°R(2)

Now, change the variable from r(z) to R(z) as:

1

1 -1
r'(z) = 2°R'(2) + ;z ?

R(2)

(1)

)

3)

(4)

()

(6)
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Appendix Trajectory Equation of Magnetic Deflectors

1 _1 1 _3
'@ =2R'@) + ;2 *R@) + 2 "R(D) -,z *RE) ™
Eq. (5) and Eg. (7) substituted into Eq. (4) to obtain:

1 -1
Z’R"(2) +z °R(2) -

P 22 1
4112 2R(z)+(”(B°) n 1 JZZR(ZFO (8)

32V, Z2n+2

1

Multiplying Eq. (8) by Z 2 and making some rearranging to get:

' 2 2

If Eq. (9) is compared with Eqg. (36-76) from [Hawkes and Kasper 1989], one can
be found that  isgiven by:

nk_-n

C= TZ (10)

where K is defined by Eq. (3-7).

After some mathematical substitution and rearranging, Eq. (9) becomes:

2 2
dR , 1dR 4 11-Y |R=0 (11)
dC € dC CZ
with  Vi=—1 (12)
4n’

Eq. (11) is Bessel function of first order.

Now from Eq. (5), Eg. (10) and Eq. (12), one can find the trajectory equation for
magnetic deflectors as the following:
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Appendix Trajectory Equation of Magnetic Deflectors

| -when n=2

Thisvaue (n=2) can be substituted in Eq. (12) to find the order of Bessel
function as:

> 1 1
V===
16 4 (13)

Also, thisvaue (n=2) substitutesin Eg. (10) to find the argument as:
Kk
C = _2 (14)
2Z
From Eq. (13) and Eq. (14), one can obtain on:
_ k
R(2) = J; (—2) (15)
4227
Now, Eg. (15) substitutes in Eqg. (5) to find:

1

(2) = 2% 3, () (16
4 22

I 1-when n=3

Thisvaue (n=3) can be substituted in Eqg. (12) to find the order of Bessel
function as:

V'=—=Spy== (17)

Additionally, thisvalue (n=3) insertsin Eq. (10) to find the argument as.

Kk
= 3—3 (18)
47

From Eq. (17) and Eq. (18), one can find:
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Appendix Trajectory Equation of Magnetic Deflectors

R(2) = J, (S—E) (19)
6 47

Now, Eg. (19) substitutes in Eqg. (5) to find:

3 1.3k
2
r(z) =z J;(—S) (20)
6 4z
I11-when n=4
Thisvaue (n=4) can be substituted in Eq. (12) to find the order of Bessel
function as:
2 1 1
V =— V==
64 = 3 (21)
Moreover, thisvaue (n=4) insertsin Eg. (10) to find the argument as:
k
C=— (22)
o
From Eq. (21) and Eqg. (22), one can find:
_ Kk
R(2=J, (—) (23)
8 z
Now, Eqg. (23) substitutes in Eqg. (5) to find:
1
2 k
r(2) =2 J; (=) (24)

8 z
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Chapter Five

Conclusions and Recommendations for Future Works

5-1 Conclusions

According to the results obtained in the previous chapter several conclusions

can be recorded. Before that, one can be mentioned that the analytical method
which applied in the present study gives a good observation to understand the
theoretical study of electron optics because the behavior of any one of the
parameter can be predicted by the formula which has described.

The most important conclusions are listed as the following:

5-1-1 Magnetic lenses and deflectors

1-

The most important of conclusion are summarized in the following:

The results of calculations show that the focal length was found to be
proportional to the value of z at the focus for al magnetic lenses and
deflectors. Furthermore, the results of calculations for the spherical and axia
chromatic aberration coefficients were also proportional to the value of z at
the focus (and therefore to the focal length).

The results of calculation indicate that the various parameter of interest for
each value of n, namely f/z ,Cs/z ,Cs/f,Cc/z; andCc/f are al have
constant values corresponding to each value of index of the zero.

These parameters are al dightly dependent on the position of the focus
except for f/z of monopole lens and Cc/z of each type of lenses and
deflectors where Cc/z; has constant value for each index of the zero.
Additionally, the values of these parameters depend on the order n.
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3- One can note from the results of calculations that the values of both
Cm and Co for each magnetic lens and deflector are constant corresponding
to each one of index of the zero.

Both coefficients are dependent on the position of the focus z (except for
Cm of monopole lens) and the order of multipole (n).

4- The best magnetic lenses and deflectors, which gives rise to minimum
spherical aberration coefficient and with all axial, magnification and rotation
chromatic aberration coefficients, are clear from the results of the
calculations occurs when n = 4 although in the case of magnetic lenses has
maximum magnification chromatic aberration.

5-2 Recommendationsfor Future Works

The following topics are put forward as future investigations:

1- One can chose the type of magnetic deflector whether saddle or toroidal
type to use as a source of magnetic deflector in the present work. After
that, studying the effect of the coil geometry, which may be represented
through the length and the angle of the coil, to find the optimum design
that givesrise to minimum aberration coefficients.

2- One can suggest different methods such as numerical and DA methods to
study the magnetic deflectors, which are studied in the present work, in
order to compare them with the results cal cul ated.
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Chapter Four

Results and Discussion

4-1 Introduction

The magnetic flux density distribution for the mega lens is calculated by
applying Eg. (2-3). The MOL concept, which is showrsection (2-4), has been
used to find the deflection field of magnetic defte.

After that, we are applied the formulae that hagerbderived in chapter three,
of each optical properties; such as trajectory leicteon beam, focal length,
spherical and chromatic aberration coefficientsesehoptical properties can be
calculated by using MATHCAD 14 package.

The calculations procedure are divided into foapstfor each type of magnetic
system (lens and deflector): the first; calculatitg magnetic field, second;
calculating the trajectory of electron beam, thicdiculating the focal length and
fourth; calculating the spherical and chromaticredd@n coefficients.

4-2 M agnetic L enses
4-2-1 Magnetic field distribution by using inver se power law model

The axial flux density distributions of lens B(aeacomputed using Eq. (2-3)
for each value of n at constant value of (a). Fegir-1) shows the distributions of
the axial flux density for the magnetic lenses wHields in the form B(z¥ z" for
different values of n (n= 2, 3 and 4).
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B(z)/B, ~——B(z)/Bo n=2
=== B(z)/Bo n=3
e—PB(z)/Bo n=4

z (mm)

Figure (4-1):The axial flux density distributions of magnetianses which fields in the
form B(z)« z" for n=2, 3 and 4 at constant value of (a).

From this figure one can be observed that the ntagfeld for n=2 and 4 have
maximum value at =0 while in the case n=3, the field is divided i@ parts;
one in the positive region and the other in theatigg. This means that the domain
of these fields (for n=2 and 4) is strong at th@np (z=0) and it gradually
decreases when it moves away from this point. Euntbre, increasing the power
n leads to decrease the width of these fields.

4-2-2 Trajectory of electron beam

The trajectories of electron beam along the magriiedids for lenses have been
computed using Eq. (3-1)-Eq. (3-3) for n=2, 3 andespectively at the value of

p;turn

the excitation parameter equal 13.4%) (i.e. k=5) as is shown in figure (4-

2). The initial conditions for computing the traj@gy of electron beam are given
by:

lim Zo) =1 limg' 0
g(zo)ﬁog( 0) g(zo)ﬁog Lo ¥
h(lz'moh(z") =0 h(zol)IET?Jh L, ¥ 1
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r(z) (mm) =—r(z) n=2| | r(z) (mm) r(z) n=3
1.2
1
1
0.8
0.8
0.6
0.6
0.4 04
0.2 0.2
0 -
0 5 10 0 5 10
z(mm) z(mm)
(a) For n=2. (b) For n=3.
r(z) (mm) =r(z) n=4
1.2
1
0.8
0.6
0.4
0.2
0
0 5 10
z(mm)
(c) For n=4.
Figure (4-2): Trajectory of electron beam at theittion parametet3.424 ‘t\r;l;;;rf ) for
magnetic lenses with the field distributions of tbhem B(z)o z" for n=2,

3 and 4.

From figure (4-2), one can note that the trajeewrof electron beam for
different magnetic lenses have almost the samevimha spite of different
magnetic fields for each lens. This cause occucsuse of the trajectories of the
electron for these magnetic lenses described imnstef fractional Bessel functions.
The behavior of these functions is somewhat sinaa large extent with each
other. Therefore, the behavior of the trajectoisesmost similar.
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4-2-3 Focal length

Eq. (3-27)-Eq. (3-29) are used to compute the fagth for magnetic lenses
at the focus for n=2, 3 and 4, respectively. Thaulte of calculations for these
parameters are shown in figure (4-3) as a funaiidhe excitation parameter.

= gt 1st index of x1 e gt 1st index of x2
3.5 =gt 2nd index of x1 0.7 = gat 2nd index of x2
3 at 3rd index of x1 0.6 at 3rd index of x2
E 25 = 0.5
E E 04
s 2 b
15 0.3
1 0.2
05 0.1
0 0
0 5 10 15 20 25 0 5 10 15 20 25
N1/(vr)°3 (Amp.turn/(Volt)%-3) NI/(vr)®5 (Amp.turn/(Volt)®-5)
(a) For n=2. (b) For n=3.
=gt 1st index of x3
0.35 === at 2nd index of x3
at 3rd index of x3
0.3
0.25
E 02
E
= 015
0.1
0.05
0
0 5 10 15 20 25
NI/(Vr)°3 (Amp.turn/(Volt)%-3)
(c) For n=4.

Figure (4-3):Focal length at the focus for first three indicéshe zero as a function
of excitation paramete(%) for magnetic lenses with the field

distributions of the form B(z) z"for n=2, 3 and 4.
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From the figure (4-3), one can notice that the folegth is directly
proportional with the excitation parameter for ea@tue of n. That means the
increasing of the excitation parameter leads toegwe the focal length.

Also, the focal length for each value of n hasdetwalue at third index of the
zero corresponding to each one of x & and x).

By comparing figures (4-3a), (4-3b) and (4-3c), cae find that increasing of
the power n leads to decrease the focal lengtls @dse occurs because the focal
lengths are proportional with k*/2 andk'/? for n=2, 3 and 4, respectively. As the
result, they are proportional Wi% ,(JI\I—VL)V2 and (\/N—Vi)1/3 for n=2, 3 and 4,
respectively.

The calculation results of the relative focal lénfy'z; for different values of n
are shown in th&able 1.

Table 1. The relative focal length, at the focus for fitetee indices of the zero, of
monopole, dipole and quadrupole magnetic lensete (ihat the results were
calculated to the eighth decimal order).

Index of the zero| Monopole (n=2) | Dipole (n=3) Quadrupole (n=4)

1

From the table 1, it is clear that the lowest vabfigelative focal length is at
third index of the zero for each case of x excepghe case when n=2, where it has
constant value for all indices of the zero. Alsonfr the comparison among
different magnetic lenses, it can be observed tiimatincreasing of the power n
leads to decreasgéz; .
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4-2-4 Aberration coefficientsfor magnetic lenses

4-2-4-1 spherical aberration coefficient

By using Eq. (339), Eq. (3-42) and Eq. (3-45)he spherical aberratic
coefficients at thdocus can be found for n=2, n=8nd n=4 respectively. The
results of calculations for thecoefficients are showm figure (4-4).

esmms 3t 15t index of x1 =t 1st index of x2
06 et 2nd index of x1 0.16 =3t 2nd index of x2
’ at 3rd index of x1 at 3rd index of x2
,g 0.5 ,E 0.12
£ 04 £
g 03 g 0.08
0.2
0.04
0.1
0 0
0 5 10 15 20 25 0 5 10 15 20 25
NI/(vr)°5 (Amp.turn/(Volt)°-5) NI/(Vr)%3 (Amp.turn/(Volt)®-3)
(a) For n=2 (b) For n=3
at 1st index of x3
—at 2nd index of x3
0.08 at 3rd index of x3
__0.06
£
£
< 0.04
o
0.02
0
0 5 10 15 20 25
NI/(Vr)%-3 (Amp.turn/(Volt)°-3)

(c) For n=4.
Figure (4-4):.The spherical aberration coefficients at the fdrudirst threeindices of the
zero as a function of excitation parame(%) for magnetic lenses with tf

field distribution ofthe form B(z)x z"for n=2, 3 and .
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The figure (4-4) shows that the spherical abematoefficient for different
values of n, (n=2, 3 and 4), is directly proporéibnvith excitation parameter.
Additionally, the spherical aberration coefficidraés lowest value at third index of
the zero corresponding to each one ofxXxand x).

The comparison among figures (4-4a), (4-4b) andidd-shows that the
increasing of the power n leads to decrease therigjah aberration coefficient.
This case occurs because the spherical aberrageffiatents are proportional with

k,k'/2 andk'/3 for n=2, 3 and 4, respectively. As a consequenbey tare

proportional withN—VI ,(—=)"? and(—=)1/3 for n=2, 3 and 4, respectively.

NI NI

TANE NS

The relative spherical aberration coefficie@t§z; andC\f are computed. The
results of calculations are listed in the table 2.

Table 2: The relative spherical aberration coefficieitd z; andCg\f, at the focus for
first three indices of the zero, of monopole, dgpahd quadrupole magnetic
lenses (note that the results were calculatedet@iphth decimal order).

worepi 12

ok 1=

0.0715374 0.36996824

In the table 2, the value @f\z or C,\f is of interest because they are generally
used as figure of merit by which various types efses, both magnetic and
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electrostatic, can be compa [El-Kareh and EKareh 197C. Furthermore, the
figure of merit can be used in magnetic defle

The constant values of boCs\z; andC \f caused is that the foci position
case n=2, for example, is proportional with k ard tspherical aberratic
coefficient in the same case ¢ proportional with k. Therefore, the relati
coefficients are constant values. This case issame for different magnetic lens
(i.e. for n=3 and n=4).

It is clear fromthe table zthat the relative spherical aberrar coefficientCg\zs
has lowest value athird index for each one of x {xx and %). Through
comparing amonglifferent magnetic lenses as in tabli one can find that the
increasing othe power n leads to decre C\z;.

On the other han, table 2 shows that theelative spherical aberrati
coefficientC,\f haslowestvalue at first index for eackhalue of x except the case
n=2. Furthermorethe increasing othe power n leads to incree C,\f except the
case n=2.

4-2-4-2 chromatic aberration coefficients

A-axial chromatic aberration coefficient

The computingaxial chromatic aberration coefficientsthe focus can be found
by using Eq. (3-58 Eq (3-55) and Eq. (3-57) for n=3, and «, respectively. The
results of calculationfr these coefficients ashown in figure (-5).

= gt 1st index of x1 at 1st index of x2
=gt 2nd index of x1 0.4 at 2nd index of x2
1.6 at 3rd index of x1 at 3rd index of x2
0.3
—g 1.2 'g
- 0.8 : 0.2
S u}
0.4 0.1
0 0
0 5 10 15 20 25 0 5 10 15 20 25
NI/(vr)®3 (Amp.turn/(Volt)®-3) NI/(vr)°5 (Amp.turn/(Volt)°-3)

(a) For n=2 (b) For n=3
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at 1st index of x3
——at 2nd index of x3
0.2 .
at 3rd index of x3
0.16
E
£ 0.12
(8]
O 0.08
0.04
0
0 5 10 15 20 25
NI/(Vr)%3 (Amp.turn/(Volt)?-5)

(c) For n=4.
Figure (4-9: The axial chromatic aberration coefficients e tfocus for first thre
indices of the zero as a function of excitation parame%) for

A

magnetic lenses with the field distributions of tbem B(z) « z" for n=2,
3 and 4.

This figure showshat the axial chromatic aberration coeffic for each value
of n isdirectly proportional with excitation parametAs well, it has lowest value
at third indexof the zero corresponding each one of x (x x, and %).

By comparing figurs (4-5a), (4-5b) and (4-5chne can observe that the
increasing ofthe powern leads to decreasthe axial chromatic aberratic
coefficients. Thiscast occurs because of the directlyoportiorality between the
axial chromatic aberration coefficienand k,k'/2andk'/3 for n=2, 3 and 4,

respectively. As theesul, they are proportional Witbl\ilzlr ,(i)l/ 2 and (—=)1/3

N
Vi JVr
for n=2, 3 and}, respectivel

The relative axial chromati aberration coefficientsC.\z; and C.\f are
computed. The results of calculations are showthartable .
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Table 3: The relative axial chromatic aberration coeffitgefi.\z; and C.\f, at the
focus for first three indices of the zero, of moalgp dipole and quadrupole
magnetic lenses (note that the results were cadmilto the eighth decimal
order).

oncpie (122

Dipole (n=3) 0.24999999 | 0.98207718

The table 3 shows that the relative axial chromaltierration coefficient./zs
for each case of n has constant value for eacle dlindex of the zero.

If magnetic lenses are compared with each othar tsble 3, one can observe
that the increasing of the power n leads to deer@g; .

However, the relative axial chromatic aberratioefGoient C./f for each case
of n has lowest value at first index for each ohe except the case n=2.

By comparing between magnetic lenses as in tabb&@&,can be noted that the
increasing of the power n leads to incre@gé except the case n=2.

B- magnification chromatic aberration coefficient

To compute the magnification chromatic aberratioefficients at the focus,
one can be used Eq. (3-65), Egq. (3-67) and EQ.9)3f6r n=2, 3 and 4,
respectively. The results of calculations for thesefficients are shown in table 4.
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Table 4: The magnification chromatic aberration coefficgrdt the focus for first three
indices of the zero, of monopole, dipole and qupdi®l magnetic lenses (note
that the results were calculated to the eighthrdelcorder).

Index of the zero| Monopole (n=2) | Dipole (n=3) Quadrupole (n=4)
First 0.55821988 0.57929693

Second 0.67123511 0.7466715
Third 0.74611155 0.8619459

From the table 4, one can find that the magnificatchromatic aberration
coefficients at the focus for each value of n hemestant values, but the change in
the magnification chromatic aberration coefficiedtse to vary the index of the
zero except the case n=2, where it has constané fal all indices of the zero.

NI
\/W)' Also, the

magnification chromatic aberration coefficient hawest value at first index of x
(x> and %) for n=3 and 4.

The constant values of these coefficients due dependent org

Referring to the table 4, one can notice that ticegiasing of the power n leads
to increase (.

C- rotation chromatic aberration coefficient

From Eq. (3-74)-Eq. (3-76), one can be computed riftation chromatic
aberration coefficients at the focus for n=2, 3 dndespectively. The results of
calculations for these coefficients are shown et®.

Table 5: The rotation chromatic aberration coefficientsthat focus for first three indices
of the zero, of monopole, dipole and quadrupole matig lenses (note that the
results were calculated to the eighth decimal grder

Index of the zero| Monopole (n=2) | Dipole (n=3) Quadrupole (n=4)
First 1.57079633 1.39044385 1.3287528

Second 3.14159265 2.9530713 2.88926995
Third 4.71238898 4.52119185 4.4567831
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The table 5 shows that the rotation chromatic abiem coefficients at the
focus for each case of n have constant valuessmoneling to each value of index

of the zero. These constant values gfdQe to the independent (%I: As well,

these coefficients have lowest values at first xndéthe zero corresponding to
each one of x (X X, and x).

The positive sign of these coefficients means ttatangential deviation of the
image point due to an increasing of acceleratingage is the same direction to
that of image rotation.

From comparison among different magnetic lensen e table 5, one can be
observed that the increasing of the power n leadfightly decreasé,.

The results of calculation in the present work Inalgtical method are
shown in table 6, 7, and 8 together with those utated through the
Hawkes’s analytical method, Crewe’s results and lthies DA results for
comparison (the results through different methods t@ken from [Liu

2003]).

Table 6: The optical properties of monopole lenses at tlieddhave been calculated by
using different methods: a) DA method; b) Analytingethod; and c) Crewe’s

method; d) Result from present study. * Sign “~tlicates that the aberration
integral was performed from infinity to the focus.

| Zero  Methods

fl Zs
1.0000000

Cd z
0.17933182

Cdz
0.50001161

Cd f

CJf Cn

Co

1.0000000

0.17933181

0.50000000

1.00

-0.18*

0.50

1

0.17933181

0.5

0.17933181

1.57079633

Second

0.9999999

0.16983296

0.50001167

1.0000000

0.16983295

0.50000000

1.00

-0.17*

0.50

1

0.16983295

0.5

0.16983295

3.14159265

1.0000000

0.16807391

0.50001112

1.0000000

0.16807391

0.50000000

1.00

-0.17*

0.50

clojo|jo|aljo|Tl|a|o|T

1

0.16807391

0.5

0.16807391

4.71238898
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Table 7: The optical properties of dipole lenses at the $obhave been calculated by
using different methods: a) DA method; b) Analytioceethod; and c) Crewe’s
method; d) Result from present study. * Sign “-Hicates that the aberration
integral was performed from infinity to the focus.

Gdz | Gz | oJf  cdf

Zero \ Methods‘

f/ Zs

[o}]

0.44785218

0.10269970Q

0.25000056

0.44785219

0.10269968§

0.25000000

0.45

-0.10*

0.25

0.44785218

0.10269968

0.24999999

0.22931602

0.55821988§

0.55821988§

1.3904438¢

0.3724477(Q

0.100663446

0.250000446

0.3724477(Q

0.100663446

0.25000000

0.37

-0.10*

0.25

0.3724477

0.100663446

0.24999999

0.27027542

0.98207718

0.67123511

2.9530713

0.33507052

0.10029477

0.25000034

0.33507053

0.10029476

0.25000000

0.34

-0.10*

0.25

oflojTc|lo|lQaljlo|jT|jla|alo|T

0.3350705

0.10029476

0.24999999

0.29932432

1.35169873

0.74611155

4.5211918¢

Table 8: The optical properties of quadrupole lenses afdbes have been calculated by
using different methods: a) DA method; b) Analytingethod; and c) Crewe’s

method; d) Result from present study * Sign

13 13

icades that the aberration

integral was performed from infinity to the focus.

\Zero ‘Methods f/z ‘ Cd z ‘ Cd z \ Cd f \ CJ f \ Cn \

0.28770505

0.072420788

0.16666670

0.28770505

0.072420784

0.16666667

0.29

-0.072*

0.166

0.28770505

0.07242078

0.16666665

0.25171885

0.5792969

0.5792969

1.3287528

Second

0.22321278

0.071672189

0.16666666

0.22321278

0.071672190Q

0.16666667

0.22

-0.072*

0.166

0.223212782

0.07167219

0.16666665

0.32109357

1.1066775

0.7466715

2.889269¢

0.19336092

0.071537400Q

0.16666665

0.19336092

0.071537398

0.16666667

0.19

-0.072*

0.166

ojlo|cjlo|jaljlolTcjy|ajo|T| o

0.193360918

0.0715374

0.16666665

0.36996824

1.5881163

0.8619459

4.4567831
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4-3 M agnetic Deflectors
4-3-1 Magnetic field distribution by using the M OL concept

The MOL concept is used to find the deflectiondief magnetic deflector. By
using the MOL, one can find the design of magndeflector by knowing the
design of magnetic lens or the axial magnetic faiktribution of lens, depending
on Eq. (2-6). In the present work, the field of metic deflector is found by
knowing the axial magnetic field distributions ehk which are given by Eq. (2-3).

The axial flux density distribution of deflector )(is computed by applying
Eq. (2-6) whereB'(z) is computed with the aid of Eq. (2-3). Then, theddf of
magnetic deflector are shown in figure (4-6) foclemalue of n at constant (a) and

(d).

D(z)/By D(z)/B,
12 1.6
\||
1.06
0.4
-10 5 10 9>
Z (mm) u
-0.05 !
-10 -5 0 5 10
-1.2 Z (mm)
(a) For n=2. (b) For n=3.
D(z)/B,
2.1
1.5
0.9
0.3
-10 5 43 5 10
0 Z (mm)
-1.
2.1
(c) For n=4.

Figure (4-6): The axial flux density distribution§ magnetic deflector with the fields of
the form D(z)x z"*for n=2, 3 and 4. €0
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4-3-2 Trajectory of electron beam

By applying Eqg. (3-9)-Eq. (3-11) for n=2, 3 andrdspectively, the trajectories
of electron beam a long magnetic fields of deflesttan be computed at the value

of the excitation parameter equal 13.4%} (i.,e. k=5). The trajectory of

electron beam when n = 2 for magnetic deflectdhéssame as the trajectory of
electron beam for magnetic lens when n=3. This casers because of the field
distribution of deflector in this case is the saasethe field distribution of lens, so
the trajectory in this case was shown previouslyfigyre (4-2b). While the
trajectories of electron beam for the case n=34aade shown in figure (4-7). The
initial conditions for computing the trajectory electron beam are given by:

lim Zo) =1 limg' 0
g(zo)ﬁog( 0) g(zo)ﬁog Lo ¥
Iim h(z,) =0 limh' 1
h(z,)~0 (o) h(z,)— 0 4o F
r(z) (mm) =—r(z) n=3 | |r(z) (mm) ——r(z) n=4
1 1.2
08 1 a
0.8
0.6
0.6
0.4
0.4
0.2 0.2
0 0
0 5 10 0 5 10
z (mm) z (mm)
(a) For n=3. (b) For n=4.

Amp.turn
(Volt)0-5)
for magnetic deflector with the field distribution$ the form D(z)x z"*
for n=3 and 4.

Figure (4-7): Trajectories of electron beam ateaReitation parametel3.424(

From this figure and figure (4-2b), one can not tihe behavior of trajectory
of electron beam in magnetic deflectors which ispated by using MOL concept
like the behavior of trajectory of electron in mago lenses. This case occurs
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because of the magnetic fields in magnetic deftdaydfollowing MOL concept is
a derivative of the magnetic field of the lens.oénstant (d), When compute the
magnetic field of deflector when n=2, it appears thagnetic field of the lens
when n = 3 and therefore it will get on the saneetthjectory of electron. While in
the case of magnetic field of deflector when n=3almost the same as the
magnetic field of the lens when n=4, so the trajgcof the electron almost the
same, but there are some difference, ect.

4-3-3 Focal length

By employing Eq. (3-28), Eq. (3-30) and Eqg. (3-3by n=2, 3 and 4,
respectively, the focal length for magnetic defectt the focus has been
computed. The focal length when n=2 for magnetitedtor is the same as the
focal length for magnetic lens when n=3, so it wlaswn previously by figure (4-
3b). While for the case n=3 and n=4, the focal flea@re shown in figure (4-8).

=gt 1st index of x3 =3t 1st index of x4
=3t 2nd index of x3 0.35 =3t 2nd index of x4
at 3rd index of x3 03 at 3rd index of x4
0.4
0.25
E 0.3 E 0.2
- 0.2 / *=0.15 /
0.1
0.1
0.05
0 0
0 5 10 15 20 25
0 5 10 15 20 25
NI/(vr)®3 (Amp.turn/(Volt)®-3) NI/(vr) 95 (Amp.turn/(Volt) %-3)
(a) For n=3. (b) For n=4.

Figure (4-8): Focal length at the focus for fifstele indices of the zero as a function of
excitation parameter(%) for magnetic deflectors with the field

distributions of the form D(zx z"*for n=3 and 4.

Figure (4-8) and figure (4-3b) indicate that thedblength for each value of n
is directly proportional with excitation paramet&toreover, the focal length for
magnetic deflector for each case of n has lowelstevat third index of the zero
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corresponding to each value of %,(x; and x%). This behavior is like the behavior
which occurs in magnetic lenses.

The comparison among figures (4-3b), (4-8a) andBh@-shows that the
increasing of the power n leads to decrease thal feagth. This case occurs
because the focal lengths are proportional kith?, k'/3 andk'/* for n=2, 3 and

4, respectively. Accordingly, they are proportionsith ((=)'2,(—=)"/? and

NI (ﬂ
NI v1/a - i
( m) for n=2, 3 and 4, respectively.

The relative focal lengtli/z¢ is computed for magnetic deflectors when n=3
and 4. While the relative focal length for magnelsflector when n=2 is the same
as the relative focal length for magnetic lens whef. The results of calculations

are shown in table 9.

Table 9: The relative focal length, at the focus for fitetee indices of the zero, of
magnetic deflector with the field distributionstbe form D(z)< z"*for n=2,
3 and 4 (note that the results were calculateddetghth decimal order).

D(z) & z° (n=2)|| D(z) x Z* (n=3) | D(2)  Z° (n=4)

0.33507053 0.21282123 0.13459751

It is seen from table 9 that the relative focalgnfor each value of n has the
lowest value at third index for each one of x ¢ and x).

If the magnetic deflectors are compared with eableroas in table 9, one can
observe that the increasing of the power n leadietoease the relatifgz; . This
behavior is like the behavior that it is occurrednagnetic lenses.
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4-3-4 Aberration coefficientsfor magnetic deflector s

4-3-4-1 spherical aberration coefficient

The spherical aberration coefficientsthefocus have been computed using
(3-42), Eq. (3-6) and Eq. (-47) for n=2, 3 and}, respectively. The spheric
aberration coefficient fc deflector when n=2 is the samas the spherical
aberration coefficienfor magnetic lens when n=3, sowts shown previously by
figure (4-4b). Whilethe results of calculations for theseefficient: when n=3 and
4 are shown in figure ~-9).

at 1stindex of x3 et 1st index of x4
0.03 at 2nd index of x3 3t 2n;i in;iex off x4
’ : at 3rd index of x4
at 3rd index of x3 0.008
E 002 T 0.006
£ £
S S 0.004
0.01 /
0.002
0 0
o 5 10 1 20 2 o 5 10 15 20 25
NI/(Vr)%5 (Amp.turn/(Volt)%->) NI/(Vr)%3 (Amp.turn/(Volt)?-5)
(a) For n=3 (b) For n=4

Figure (4-9):The spherical aberration coefficientsthe focus for first threeindices of
. . . NI .
the zeraas a functio of excitation paramete{\/l?) for magnetic deflectors

with thefield distributions of the form D(zx z"*for n=2 and 4.

The spherical aberration coefficient for eavalueof n is directly proportione
with excitation paramete This is confirmed by figures (4b) and (4-9). Also, the
spherical aberration coefficie for each value of n lsalowes value at third index
for each one of x (X X3 and ). This behavior is likehe behavior which is
occurred in magnetic lens

By comparson amon figures (4-4b), (4-9a) and (4-9kjne can observe that
the increasing athe power n leac to decreas¢he spherical aberration coeffici.
This casenccurs becausthe spherical aberration coefficis are proportional with
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k12, k'3 and k/* for n=2, 3 and 4, respectively. Consequently, theg
roportional wit 1/2 1/3 and /4 for n=2, 3 and 4, respectivel
prop h(—= J—) ( J—) ( J—) p y.

In the following table, the relative spherical alagéiopn coefficientCs/z; and
Cs/f are computed for n=3 and 4. While the relative esiglal aberration
coefficient for deflector when n=2 is the samelss rielative spherical aberration
coefficient for magnetic lens when n=3. The resalt€alculations are shown in
the table 10.

Table 10: The relative spherical aberration coefficie6t z; andC\f, at the focus for
first three indices of the zero, of magnetic defleavith the field distributions
of the form D(z)x z"*for n=2, 3 and 4 (note that the results were catedl to
the eighth decimal order).

D)2 (122

D(z) x z* (n=3) 0.01508382 0.06139684
0.01454465 0.06834212
0.00587673 0.0277463
0.00406311 0.02796766
0.00373729 0.0302795

The table 10 shows that the relative sphericalrabien coefficientCi\z; for
each value of imas lowest value at third index for each one o&xX; and ).

The comparison of magnetic deflectors with eadteots in table 10 shows
that the increasing of the power n leads to deer@ag,.This behavior is like the
behavior that it occurs in magnetic lenses.
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On theother han, therelative spherical aberration coeffici C;\f for each
value of n hasowest valu at first index for each one of x,(%s and x%).

From comparisonf magnetic deflectors with each other as in tab, one can
note that thancreasin: of the power n leads to decre&sgf. This behavior is
different tothe behaviowhich occurs in magnetic lenses.

4-3-4-2 chromatic aberration coefficients

A-axial chromatic aberration coefficient

To compute lte axial hromatic aberration coefficieiat the focus, Eq. (3-55),
Eqg. (3-58 and Eq. (-59) are appliedor n=2, 3 and 4, respective The axial
chromatic aberration coefficient for deflector when2 is the san as the axial
chromatic aberration coefficient for magnetic whenn=3, so it was shown
earlier by figure (4-B). While the axial chromatic aberration coefficie for the
case n=3 and dre shown in figure -10).

at 1stindex of x3 at 1st index of x4
——at 2nd index of x3 0.05 at 2nd index of x4
0.12 at 3rd index of x3 at 3rd index of x4
0.1 0.04
T 0.08 E 0.03
£E 006 .E_
Q S 0.02
© 0.04
0.02 0.01
0 0
0 5 10 15 20 25 0 5 10 15 20 25
0.5 0.5
NI/(Vr)%-> (Amp.turn/(Volt)?-5) NI/(vr)®> (Amp.turn/(Volt)®-)
(a) For n=3 (b) For n=4

Figure (4-10: The axial chromatic aberration coefficients la¢ focus for first thre
indices of the zero as a function of excitation pararn (%) for

magnetic deflectors with the field distributionstbé form D(z < z"*
for n=Z and 4.
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From this figure and figure (4-5b), one can notat tthe axial chromatic
aberration coefficient for each value of n is die@roportional with excitation
parameter. As well, the axial chromatic aberratoefficient for each value of n
has lowest value at third indéor each one of x X x3 and x). This behavior is
like the behavior that it is occurred in magnegicdes.

If figures (4-5b), (4-10a) and (4-10b) are complaréhey show that the
increasing of the power n leads to decrease the akierration coefficient. This
case occurs because the axial chromatic aberratefficients are proportional

with k'/2, k1/3 andkl/4 for n=2, 3 and 4, respectively. Consequently, they
roportional wit 1/2 1/3 and 1/4 for n=2, 3 and 4, respectivel
prop h( ) i J—) ( J—) p y.

The relative axial chromatic aberration coeffici€py/z; or C. /f are computed
for n=3 and 4. While the relative axial chromatibeaation coefficient for
deflector when n=2 is the same as the relative | agimomatic aberration
coefficient for magnetic lens when n=3. The resaoftgshe calculations for these
relative coefficients are shown in table 11.

Table 11: The relative axial chromatic aberration coeffit®e6.\z; and C.\f, at the
focus for first three indices of the zero, of magneleflector with the field
distributions of the form D(zx z"*for n=2, 3 and 4 (note that the results were
calculated to the eighth decimal order).

e
D(z) x z* (n=3) 0.07407407 || 0.30150937
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As shown in the table 11, the relative axial chrbocnaberration coefficient
C. /z; for each case of n has constant value for eachandif the zero.

From comparison among the different magnetic defteas in table 11, one can
note that the increasing of the power n leads twedeseC, /z¢. This behavior is
similar to the behavior which occurs in magnetitskes.

However, the relative axial chromatic aberratioef@ioient C. /f for each case
of n has lowest value at first index for each ohe (x;, Xz and x%).

By comparing between the different magnetic dedleess in table 11, one can
observe that the increasing of the power n leadetoeas€, /f . This behavior is
different to the behavior that it occurs in magonétnses.

B- magnification chromatic aberration coefficient

For computing the magnification chromatic aberratwoefficients at the focus,
one can be used Eq. (3-67), Eg. (3-70) and Eq.1}3f@r n=2, 3 and 4,
respectively. The magnification chromatic aberratoefficient for deflector when
n=2 is the same as the magnification chromaticraben coefficient for magnetic
lens when n=3. The results of calculations for ¢hezefficients are shown in table
12.

Table 12: The magnification chromatic aberration coefficgrat the focus for first three
indices of the zero, of magnetic deflector with fiedd distributions of the
form D(z)x z"*for n=2, 3 and 4 (note that the results were cated to the
eighth decimal order).

D(2) « 2° (n=2) | D(2) & Z* (n=3) | D(2) o¢ 2° (n=4)
0.55821988 0.23392275 0.14754338

0.67123511 0.30150937 0.1972508
0.74611155 0.3480577 0.23217366

The table 12 is made clear that the magnificatitmomatic aberration
coefficients at the focus for each value of n havestant value, but they are
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changed due to change the index of the zero. Tasoreof the magnification

chromatic aberration coefficients have constantieas they are independent on
NI

"
first indexfor each one of X @ X3 and %). This behavior is similar to the behavior
which is occurred in magnetic lenses.

). Also, the magnification chromatic aberration caeéint has lowest value at

From comparison among the different magnetic de&dftecas in table 12, one
can be noticed that the increasing of the poweeaudd to decrease,CThis
behavior is different to the behavior which ocaarsnagnetic lenses.

C- rotation chromatic aberration coefficient

From Eq. (3-75), Eq. (3-77) and Eq. (3-78) for n82and 4, respectively, one
can be computed the rotation chromatic aberrataefficients at the focus. The
rotation chromatic aberration coefficient for defte when n=2 is the same as the
rotation chromatic aberration coefficient for maméens when n=3. The results
of calculations for these coefficients are showtalrie 13.

Table 13: The rotation chromatic aberration coefficients,tta¢ focus for first three
indices of the zero, of magnetic deflector with tieéd distributions of the form

D(z) x z"*for n=2, 3 and 4 (note that the results were cated to the eighth
decimal order).

D(z) & Z° (n=2)|| D(z) x Z* (n=3) | D(2) « Z° (n=4)
1.39044385 0.8858352 0.64878

29530713 1.92617997 1.428585
452119185 297118873 2.2122225

It is appeared from this table that the rotatiorroniatic aberration
coefficient at the focus for each value of n hasstant value corresponding to

each one of index of the zero, this mean that itntependent 00%).

Ny

Moreover, this coefficient has lowest value attfirslex for each one of X £xx3
and x). This behavior is like the behavior that it ocur magnetic lenses. By
comparing among different magnetic deflector atable 13, one can note that
the increasing of the power n leads to decrease C
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The results of calculation for magnetic deflectairshe focus for each case of n,
which are computed by analytical method in the gmesvork, are shown in table
14, 15 and 16.

Table 14: The optical properties of magnetic deflector whids the field in the form

Seconc‘ 0.37244770

D(z) x Z"* with n=2 at the focus calculated by using anafjtinethod.

0.44785219

0.10269968

0.24999999

0.22931602

0.5582198¢

0.55821988

1.39044385

0.10066344

0.24999999

0.27027542

0.9820771§

0.67123511

2.9530713

0.33507053|

0.10029474

0.24999999

0.29932432

1.35169871

0.74611155

4.52119185

Table 15: The optical properties of magnetic deflector whids the field in the form

Seconc‘

D(z) < z™* with n=3 at the focus calculated by using anafftroethod.

0.31666038

0.0180782

0.07407407

0.05709018

0.23392274

0.23392275

0.8858352

0.245677449

0.01508382

0.07407407

0.06139685

0.30150937

0.30150937

1.92617997

0.21282123|

0.01454465

0.07407407

0.06834212

0.3480577

0.3480577

2.97118873

Table 16: The optical properties of magnetic deflector whids the field in the form

Seconc

D(z) « z"* with n=4 at the focus calculated by using anaiftinethod.

0.21180208

0.00587673

0.03125

0.02774631

0.1475433§

0.14754338

0.64878

0.15842764

0.00406311

0.03125

0.02796764

0.19725087

0.19725087

1.428585

0.13459751

0.00373729

0.03125

0.0302795%

0.23217364

0.23217366

2.2122225

70



Chapter One Introduction

Chapter One

Introduction

It is axiomatic that any device which permits thecdrnment of details finer
than those that are visible with the naked eyef great scientific value. Thus the
discovery of the electron optics has initiated & ®ea of investigation into many
aspects of physical and biological science.

In 1828 Hamilton was noted that there is the clasalogy between classical
mechanics and geometrical light. However at thedtdecade of the last century,
this analogy strongly leads to give birth to a neanch of physics called later by
charged particle optics or most common by Elect@ptics [El-Kareh and El-
Kareh 1970].

Electron optics, in fact, is based on two fundamakdiscoveries made in 1925
by de Broglie and in 1927 by Busch. De Broglie ptzed on ground of
theoretical considerations that one must attribatevave with each moving
particle. At about the same time, Busch discovetet the magnetic field of
solenoid acts on electrons in exactly the sameasgay glass lens on the light rays.
Actually these two essential discoveries led Ruskaonclude the possibility to
build up a microscope which uses electrons instehdgphotons. Hence, he
successfully realized the first transmission etecttmicroscope (TEM) in 1931
[Harald 2008].

Therefore, electron optics becomes a theory andtipea of production,
controlling and utilization of charged particle bealn other word, one may say
that the branch of physics that deals with the lerab of charged particle beams
motion throughout electromagnetic field is knowresesctron optics.

With the analogy between light and electrortiogpthere are fundamental
limitations that should be taken into account. 8ahthese limitations are listed
as follows [El-Kareh and El-Kareh 1970]:
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1- In light optics, refractive index of light lerssehanges abruptly between
materials of different indices of refraction. lIreefron optics, the changes are
continuous.

2- Both the energy and momentum of the electron argiramusly variable
and can be changed arbitrarily. This is not tre=ca light optics.

3- A good vacuum must be satisfied for travelinglorged particle beams due
to the rapid absorption and scattering of partiblegases, while light rays are
free.

4- Almost all lenses in electron optics are coneatg while in light optics
convergent as well as divergent lenses are used.

In many electron beam instruments, such as scam@ogron microscopes and
scanning electron beam lithography systems arellysuse a magnetic lens to
focus a charge particle beam and magnetic deflectids mounted within the lens
to purpose scanning the beam over a surface.

The most common and classical type of deflectsomsied in cathode ray tubes,
lithography machines, scanning electron microscopalsctron accelerators,
electron-beam manufacturing technologies and saimer @nalytical instruments
[Szilagyi 1988].

In the present work, we will address only to thegnetic lens and deflector in

detail but for the other types of lenses and ebstdtic deflector can be seen for
example; [El-Kareh and El-Kareh 1970; Szilagyi 1,988wkes and Kasper 1989].

1-2 Electron L enses

Electron lens, in general, can be defined as atmument which collects a
moving beam of charged particles or focuses thethésame point. The electron
lens acts on the charged particle beams (electoonsns) to be focused and
imaged similar to that of glass lens on the lightset of electrodes held at suitable
distances and voltages will be produced electrostaglds, while the magnetic
fields can be produced by current-carrying coitalfgyi 1988].

The main three types of the electron lenses adrestatic lenses, permanent
magnetic lenses and magnetic lenses.
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1-2-1 Magnetic lenses

Any axially symmetric magnetic field produced byrcailar coils with or
without ferromagnetic materials acts as a magmetis [Szilagyi 1988]. When the
electrons travel through the magnetic field in &t@t optical systems, this field
enables electrons to be focused and imaged. Thasmsniat a magnetic field has
an imaging property.

The optical properties of the magnetic lenses ameddent on the charge-to-
mass quotient of the particle [Szilagyi 1988].

There are two effects of a magnetic electron langhe moving electron beams,
the first one, is a deflection towards the optiaais identically to the focusing
effect of a converging lens in light optics. Themsd is an additional rotation
around the optical axis [Labar 2002].

1-2-2 Common types of magnetic lenses

The magnetic lenses can be classified from marfgrdiit points of view, for
example; one can talk about bounded lenses ordensaersed in fields, whether
the boundaries of the lens can or cannot foundngtor weak lenses depending on
whether their focal points are situated inside otswle the field; thick or thin
lenses; symmetrical or asymmetrical lenses depgnaioon whether there exists
middle plane perpendicular to the optical axis @batnich the geometrical
arrangement of the lens is symmetrical or[iiziwkes 1982; Szilagyi 1988].

Magnetic electron lenses can be classified accgrtnthe number of their
polepieces into three types: single polepiece ldasble polepiece lens and triple
polepiece lens. Also iron-free lenses are one ajnmefc lenses types. So these
types will be explained as the following:

1-2-2-1 double polepiece magnetic lens

This type of magnetic lenses consists of eigal wire or tape windings
made of conducting material (usually copper) surdmd by a ferromagnetic
material core of high magnetic permeability whichswlesigned by Ruska in 1933.
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The core has coaxial citlar bore of diametefd” along the optical axis to allo
the electrons beam to pass through an air gap d@th “S” formed in the iron
circuit betwesn the two polepieces (Figur-1). Theproperties of these lenses
expressed in terms of the ra(S/d) [Liebmann 1952].

axial magnetic field distribution Bz

MMagnetic Polepiece
flux lines

Figure (1-1) A schematic diagram of double polepiece magretie [Ahmed 2007].

Symmetrical double polepiece magnetic lens coulddieeved when thaxial
bores between the two polepieces are identicallewvdsymmetrical lens be he
when the axial bores are not idical.

1-2-2-2 single polepiece magnetic lens

In 1972 Mulvey introduced a new design of magné&gtits named ‘Snorke
lens. When the double polepiece magnetic lensvidetil into two halves from tF
middle a single polepiece magnetic lens can beirsddaby removing one hal
The single polepiece rgnetic lens has been taken a great interest irldatron
optical instruments [Mulvey and Newm1973; 1974]. The absence of the bore
the single polepiece lens makes fabrication ofehe easier. The single polepie
lens has the advantage thae entire lens can be physically situated outsid
vacuum chamber (Figure-2). The axial magnetic flux density distributiohtbe
single polepiece lens can be pushed away fromeahe profile itself making th
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optical properties of the lens less dndent on the imperfections in the iron circ
and the energizing coil

Coil «

Polepiece «

Optical axis Z

flux lines

Figure (1-2): Crossection of single polepiece magnetic I¢hsmed 2007].
1-2-2-3 triple polepiece magnetic lens

Doublet lens [Juma 1975] consists of two magnelectron lenses of two ¢
gaps and it is also called triple polepiece magnretis [Tsuno and Harada 198
The two magnetic lenses of the triple lens may yransetrical or asymmetrici
depending on #hdesign of each lens (Figur-3).

polepiece

Figure (1-3): Crossection of triple polepiece magnetic lens [Tsund Harada 198..
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1-2-2-4 iron-freelens

This lens is the simplest prc-forming device;it consists of coils made fro
metallic conductor wire or tape windings wid on nonmagnetic core (Figure
4).

> 7 Optical axis

Figure (1-4: Iron-free rectangular cross-sectionsg@ir 2000].

One advantage of the ir-free coils is their size reduction with respto the
iron circuit lenses. It is therefore desirabled&scribe some recent investigatis
of ironfree objective lenses that offer the possibilitydef/eloping electron optic
instruments, bdt with and without the use of superconducting wagdi[Alamir
2000].

1-3 Deflection Systems

A deflection system is an arrangement of electrasteils by means of whic
it is possible to exert an influence on the pathaonfelectron rayThe roles of
magnetic deflection systems are different and thsgendon the function of
magnetic device. For example;in fixed-beam instruments, essentially
conventional transmission electron microscopededidn plays a minor role ar
is provided only to permit nonmechanical alignmehthe column [Hawkes ar

Kasper 1989]
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However, in scanning devices, the deflection systane needed here for t
purposes: one is deflection of the focused prolex the specimen in order to fol
an image or to position it at a particular poinbnder to make a measurement,
the other is for bearbfanking purposes. The former function is invayatérried
out by magnetic deflection, whereas the latter smally achieved throug
electrostatic deflection [Khursheed 20. Here,the design of deflection systems

at least as iportant as that of the lenses [Hawkes and Kasp9].

As mentioned before, the present study is cored witt the magnetic
deflection only. A magnetic deflector usually has curi-carrying conductors
arranged on a surface of revolution abc-axis in the form of a cylinder taper
horn. The winding may be in the form of either ddie or toroidal type, and tt
deflector itself can be plac next symmetric magnetic materials. A schem
diagram for toroidal and sadddeflection yoke are shown in figure-5). The
arrows indicate the direction of current flow [Ksheed 2011]

Toradial Coils Saddle Coil
Figure (1-5):Schematic drawing of primary beam magnetic deflacfiihursheed 2011

A significant difference between electrostatic andgnetic deflector is the
relative deflection sensitivity. Electrosteé deflection has alow deflection
sensitivity and thus needs high driving voltagebjlevmagnetic field has a hic
deflection sensitivity and thus requires low driyiourrents. Scan generators
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magnetic coils are simpler than electrostatic ombs. major disadvantage of a coill
comes from its eddy currents, which limit its séaguency [Khursheed 2011].

The study of the optics of deflection systems pmsbeough essentially the
same stages as those already encountered for lenses or quadruples; the novel

aspects arise from the new symmetry conditions késvand Kasper 1989]
1-4 Historical Development
1-4-1 M agnetic lenses

The theory and practice of electron focusing waselbped principally with the
needs of electron microscopy. In particular trassmon electron microscopy, the
electrons must pass through the electron opticateay unimpeded and this
precluded the use of any physical object on tha.aMiore recently, there had
evolved a need for the use of low voltage electinribe SEM. These electrons are
so slow that they do not pass through the specandrthis means that the incident
beam and the electrons containing the image infbomaall occur in one
hemisphere. The region below the specimen is themhenavailable and there is no
longer any restriction on placing iron on the dgisswe 2001].

This opens up the possibilities for new lensestaece is a wide variety of lens
designs that could be used.

Mulvey studied the use of a single pole electronetigiens and indicated that
it had good electron optical properties. He alsticated that a dipole magnetic
field might be a good model for the field produd®dsuch a lens, although that
field would be severely modified by the coil extiva [Hawkes 1982].

In looking for new lens designs it was guided bg dibservation that if it was
able to make a hyperbolic magnetic field (B&)/z), the trajectory that focuses at
the singularity is a parabola and then the integyfan Cs is zero [Crewe 1977]. It
could not make such a field, but one could makdddiethat approximate
monopoles which the field in the form B(&)1/Z, dipoles which the field in the
form B(z) x 1/Z etc.
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In 1996 Crewe and Kielpinski found that the focehdth, spherical and
chromatic aberration coefficients of dipoles magnétnses could be expressed
simply when they were normalized to the dipole motrj€rewe and Kielpinski
1996]. Subsequently, Crewe extended the study t dther members of the
multipole magnetic lenses family through numerieald digital methods and
obtained some interesting results on the electpircal properties of monopole,
dipole and quadrupole lenses [Crewe 2001].

In 2002 Hawkes used the properties of Bessel fandi predict the most of
Crewe’s finding for the same magnetic lenses. lis #tudy, he included the
analytical method to obtain on the optical progartwhich found by Crewe
[Hawkes 2002].

One year later, the optical properties of monopadlgole and quadrupole
magnetic lenses had been demonstrated by Liu. Tfereshtial algebraic (DA)
method and analytical expression were adoptedsrsthdy [Liu 2003].

Meanwhile, the rotation free-system of project@gmetic lenses in the form of
an inverse power law was studied by Alamir anduilee of chromatic change of
magnification and rotation were estimated [Alani02a].

Also, the spiral distortion in for such projectoagmetic lenses had been studied
by Alamir [Alamir 2003b].

In 2004 Crewe studied the focusing properties ofymetic fields of the form
B(z) « Z" for all integer n except the cases when n=-1ar@ fihe calculations in
this study by using numerical ray tracing were iedrrout for first and second
indexes of the zero only [Crewe 2004].

In the same year, Alamir studied the chromatic @iein coefficients for
objective and projector magnetic lenses with tle&dfdistribution in the forms of
inverse power law by using analytical and digitathods. Also, the chromatic
aberration coefficients for one of the theoreticadels that represent the single-
pole magnetic lens were calculated to express thgnitude analyticallyAlamir
2004].
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One year later, the spherical and chromatic abenraoefficients for the same
magnetic field model were calculated by Alamir tgpeess the magnitude
analytically. The results for this study were prded in a Tretner's form to
determine the optimum performance of magnetic lep&amir 2005].

Subsequently, the performance of magnetic lenséseifiorm B(z)x z", where
n has positive integer, had been studied by Alami2009. By using Tretner’s
form, the different objective lenses had been coetban this study [Alamir
2009a].

Also in 2009 by Alamir, the spiral and radial distons of magnetic lenses with
field distribution in the form B(z)x z" were analyzed by means of Scherzer's
formula. In this study, the quality factor had bdeand for both the spiral and
radial distortion to estimate the performance @ itlnage in electron microscope
for projector magnetic lenses [Alamir 2009D].

Later, the chromatic aberration coefficients forthbobjective and projector
magnetic lenses which fields in the form B¢zl" had been studied by Alamir
[Alamir 2011].

1-4-2 M agnetic deflector s

New ideas had been introduced for magnetic defledunro listed the
geometric and chromatic aberration integrals farefyumagnetic deflection and
round lens systems and also derived the formulaecdtrulating the first-order
optical properties [Munro 1974].

One year later, he introduced method for computiteg optical properties of
any combination of magnetic lenses and deflectiokeyg, including the most
general case in which the lens and deflector fietdg physically be superimposed
[Munro 1975].

The general formulae had been expressed to indligmssible focusing and
deflection effects of both magnetic and electrastpipe. These formulae were
derived by Soma [Soma 1977].

10
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A systematic analysis of aberration for post-leefledtion, double deflection
before the lens and “moving objective lens” (MOLgdhbeen found by Ohiwa
[Ohiwa 1978, 1979 and Ohiwa et al. 1971].

Also, the aberration coefficients of a double-deften unit for which the
second deflector coincides with a round magnetis eld were listed in Kuroda
[Kuroda 1980].

Lencova found the more general formulae for addieflections aberrations
[Lencova 1981]. These formulae were applied to isdveractical situations by
Lencova [Lencova 1988].

An electron optical focusing and deflection systdor electron beam
lithography had been developed by Pfeiffer et ahicv eliminates offxis
aberrations up to the third order including tramsgechromatic errors by means of
a variable axis lens (VAL) [Pfeiffer et al. 1981].

The series of papers had been introduced by MumaoGiou [Munro and Chu
1982 I, Il, 1l and 1V], the first two papers dewat to the numerical analysis of
electron beam lithography systems so they concenmidfield calculation. While
the third gave a list of aberration integrals whadhuld be used to study systems
consisting of any combination of magnetic and etestatic lenses and deflectors
and the fourth concerned with computation optimrabf complex systems.

Subsequently, the fifth order aberration coeffitidormulae for deflective
focusing systems had been derived by several @emar [ Kangyan and Tang
1999; Li et al. 1993 and Uno et al. 1995].

Meanwhile, variational deflection aberration thebad been further developed
by Ximen et al. for deflection systems with cunaeces at extra-large deflection
angles (up to 120. The variational method allowed us to calculaeosnd- and
third-order deflection aberrations with respect @ocurved axis by means of
gradient operations on eikonal (the function ofagtlength) [Ximen et al. 1995].

One year later, a unified deflection aberrationotigehad been developed by
Ximen et al. for nonhomogeneous magnetic deflecsiypstem with curvilinear or
rectilinear axis. By using variable method, primarger deflection aberrations

11



Chapter One Introduction

with respect to curvilinear or rectilinear axis tbie universally calculated by
means of gradient operations on eikonal [Ximen.e1306a].

Also, by following the variational deflection abation theory, a magnetic
deflection system consisting of homogeneous défiledield and a homogeneous
sextupole field had been further investigated bgnth For such a magnetic
deflection system, both the Gaussian trajectory alhdsecond and third-order
aberrations had been calculated analytically angressed by algebraic-
trigonometric formulae suitable for computer congpiains [Ximen et al. 1996b].

The variable axis lens (VAL) concept, which wasdahapon the power series
expansion of the lens field, had been introduced 2o and Khursheed.
Theoretically, this concept limited to situationhere the focusing and in-lens
deflection fields were of the same type, usuallygnsic. In this study, a general
VAL condition was derived from the paraxial traggt equation that was
applicable to any combined focusing and in-lended&bn system with mixed
magnetic and electrostatic fields [Zhao and KhueshE999].

Wang et al. developed differential algebraic metfi®d), which implement the
DA method to arbitrary high order in visual"*Cand applied it to the analysis of
electron lenses and deflection systems separatéing et al. 2000]. In fact the
facility of differential algebraic method had baesed widely by many researchers
since the beginning of the present century seeXample [Hosokawa 2002; Wang
et al. 2002 and Kang et al. 2009].

The magnetic and electrostatic deflector by ineclgdihe MOL concept had
been studied by Oday in 2005. The optimum desigeagh one of them which
give rise to the minimum spherical and chromatieredtion had been obtained. In
this study, the saddle deflection coil used assthece of magnetic field and then
the field distribution determined by using partamufamous model such as Glaser
bell shaped and Grivet models [Oday 2005].

The aberration theory of a new type of combinesttebn focusing-deflection
system had been studied by Yan et al. [Yan et0@l7P

12
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One year later, the magnetic deflection and fogusystem by following the
MOL concept had been studied by Ahmed to find thinaum design of magnetic
deflection and focusing system. In this study, tibr@idal deflection coil used as
the source of magnetic field and then the fieldrifigtion determined by using an
exponential function [Ahmed 2008].

1-5 Aim of Work

The analytical method will be used in the preseatkwo derive the formulae
of optical properties for magnetic lenses with dialistributions in the form
B(z)x z7™"; n=2, 3, 4 and to derive the formulae of opticagerties for magnetic
deflector which magnetic fields will be computedibgluding MOL concept.

Also, the first- and third-order optical propertigsch as trajectory of electron
beam, focal length, chromatic and spherical akerratoefficients for magnetic
lens and deflector at the focus will be computedubing the deriving formulae.
The results of calculations for these optical props will be obtained by using
MATHCAD 14 package, where the computer programngtew to find the results.
Also, the minimum values of aberration coefficiemisl be selected by taking
different values of the power n and the index & #ero corresponding to each
value of n.

1-6 Thesis Layout

The thesis is generally divided into five chaptevgéh one appendix to
supplement the calculation detail presented innt@n body of the thesis. The
contents of the various chapters are as follows:

The second chapter is devoted to the theoreticakiderations in electron
optics, each component of magnetic system (lerfieater) is fully described in
terms of different parameters such as trajectorgleétron beam, position of foci,
focal lengths and aberration coefficients. Furthemen these parameters are
detailed by the basic equation of electron optmsr@priate to the situation under
study.

13
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In the chapter three, the formulae for expressingaich parameter are derived
by implement the analytical method for every comgurof magnetic system.

In chapter four, the formulae which are derive@hapter three are used to find
all parameters of magnetic system. Our resultohbtained by using MATHCAD
14 package, where the computer program is writidmtl the results.

The fifth chapter has listed the remakes, intecesieservations and some of
recommendations for future work.

The thesis ends with one appendix which includes derivative of the
trajectories equation of magnetic deflectors bjofwing MOL concepit.

Lastly, there is the bibliography.

14
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Chapter Three

Mathematical Structures

3-1 Introduction

In many electron probe instruments, such as scgnelectron microscopes,
scanning electron beam microfabraction systemeg|estron beam is focused on a
surface by using a magnetic lens and simultanednsgybeam is scanned across
the surface by a magnetic deflector system [Mu®t4).

The lens and deflection fields in many systemssaperimposed on each other.
In such case, the effects of the lens and defldattits are inseparable, and the
system should be analyzed as a single entity. Hekyékie lens and deflector are
separate with studied theoretical basis. In theec#he properties of the lens and
deflector can be calculated separately and thdtsesan be cascaded to give the
overall properties [Munro 1974].

In the present chapter, the formulae for calcutptime optical properties of
magnetic lens and deflector are derived separatehg analytical method.

3-2 Trajectory Equations of The Electron Beam in The Axial
Symmetric Magnetic System

The paraxial equation which describes electronettajies in the axial
symmetric magnetic system (lens and deflector) Wwisagiven by Eq. (2-1) can be
solved in terms of Bessel functions for the fiedals given by Eg. (2-3) and Eq. (2-
6). For the magnetic lens, it was derived by Haftdalvkes and Kasper 1989].

3-2-1 Trajectory equations of the electron beam in magnetic lenses

The corresponding trajectories of electron beanmagnetic lenses for fields in
the form B(z)x z2, B(z) x z° and B(z)x z* are given by [Hawkes 2002]:
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1
r(z)= A z2 Jl(g) for monopole  (3-1)
2
a3 1(k _
r(z)=Bz Jl(E) for dipole (3-2)
4
1
r(z)=Cc?2 Jé(slzg) for quadrupole  (3-3)

where A, B and C are constants. These constantsdbeaimserted in previous
trajectory equations when z is a large value [Han2@02].

For the case n=2, the constant A becomes:

1
A= (Z)ZF(§) (3-4)
k 2

wherel'(x) is Gamma function.

For the case n=3, the constant B becomes:
1

B= (4)4 F(E) (3-5)
Kk 4

For the case n=4, the constant C becomes:
1

C:(6)6 F(Z) (3-6)
Kk 6

where k is given by [Hawkes 2002]:

B
k = NbBo 3-7
N (3-7)
or it is given by [Alamir 2004]:
k=0.37250 (3-8)

i

where NI is magnetic field excitation.
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3-2-2 Trajectory equations of the electron beam in magnetic
deflectors

In the case of magnetic deflector, the paraxiab&#qo which describes electron
trajectories in the axial symmetric magnetic systamch is given by Eq. (2-1) can
be solved analytically also in terms of Bessel fioms for fields which are given
by Eg. (2-6) and the magnetic field of lenses avergby Eq. (2-3).

For fields in the form D(zx z°, D(z)x z* and D(z)x z°, the corresponding
trajectories of electron beams in magnetic defleate derived and the results are
given by [see appendix]:

1
=2 J (K _ i
r(z)=Bz Ji(zf) for n=2 (3-9)
> 13k
= 2 Bkl = -
r(z)=Dz ‘](13(423 forn=3  (3-10)
1
r(z)=E 2 J1(§) forn=4  (3-11)
8

where B, D and E are constants. These constantdbeanserted in previous
trajectory equations when z is a large value. Tdrestant B is defined by Eqg. (3-5)
while the constants D and E are given by:

1
DZ( 3 )6 T'd) (3-12)
2k 6
%
E :( 2) r'd (3-13)
k 8

3-3 Positions of Foci

The electron beams cross the axis of magnetic rayatespecial points. These
special points are called the position of fociler focal points which is denoted by
Z;.
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When Bessel function passes through zero, therefers focused on the axis of
the lens [Hawkes 2002]. The various Bessel funcpasses through zero for
specific values of the argument, depending upon diger (corresponding to
monopole, dipole, ect.) and the index of the zdirst( second, ect.) [Liu 2003].
The analogy define for positon of foci can be usedhe case of magnetic
deflector.

Therefore, one should know the index of the zeb the position of the focus
corresponding to each zero.

The first three indices of the zero can be takemfMathematica [Liu 2003]:
X; = T, 2mand 3T for morobe
X, = 2.7808877,5.9061426 and 9.0423837 for dipole
X3 = 2.657505, 5.7785399 and 8.9135662 for quadrupole (314
x4 = 2.59512,5.71434 and 8.84889

The values ofx, are found in the present study.

The position of focus corresponding to each zers lhaen evaluated
analytically, based on its definition, as the faling:

3-3-1 Foci position for the magnetic lenses
[-At n=2

The position of focus correspondingxpis derived and the result is given by:

Z; = XL for monopole (3-15)
1

[1-At n=3

The position of focus correspondingstpis derived and the result is given by:

_( k )2 :
Z —(szj for dipole (3-16)

29



Chapter Three Mathematical Structures

[11-At n=4

The position of focus correspondingstpis derived and the result is given by:

3
Z =(kj for quadrupole  (3-17)
3X 5

3-3-2 Foci position for the magnetic deflectors
[-At n=2

The position of focus in this case is the samehas gosition of focus for
magnetic lens when n=3 and it is given by Eq. (B-16

[1-At n=3

The position of focus correspondingxtpis derived and the result is given by:

1
_( 3k )3
z, _(%J (3-18)

[11-At n=4

The position of focus correspondingstpis derived and the result is given by:

Z; = (Lf 8-19)

X4
3-4 Focal Length

The formulae of the focal length for the axial syetrit magnetic system in the
present work can be found by applying Eq. (2-8hasfollowing:

3-4-1 Focal length of magnetic lenses

The formulae of the focal length of magnetic lenseghe field distribution are
given by Eq. (2-3) can be found as follows:
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[-At n=2

The formula of the focal length at the focus foe thagnetic field of the form

B(z) :B—§ and the trajectory equation which is given by B31) can be found as

Z
follow:

Eqg. (3-4) can be substituted in Eg. (3-1) to give:
2 r Aok
2" ¥t 23 (2 -
r(z)_(kj ; fJ%(Z) (3-20)

the fractional Bessel functiod, (;) can be written in term of circular function
2

[Hawkes 2002]:

1( 5)= (%jz Sln(g) (3-21)
by substituting Eqg. (3-21) in Eq. (3-20), one miyg f
r(2)="Zsin¢t) (3-22)

now, letx, :g ; then the Eq. (3-22) becomes:
z
r(z)= ESIn(X.l) (3-23)

the partial differential equation is given by:

dr(z)_0r(z), ox

dz _ ox oz (3-24)
Eqg. (3-23) is substituted in Eq. (3-24) to find:
dr(z) _-1
iz cos(>g ) (3-25)
by substituting Eq. (3-25) in Eq. (2-8) to find:
fl=—% (3-26)

- cos(x)
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then Eq. (3-26) can be written as [Hawkes 2002]:

___k
f=z "% (3-27)

[1- At n=3

To derive the formula of the focal length at theus for the magnetic field of
_Bo
Z3

(3-2), one can be followed the similar method whef and the result is given by:

the form B(z) and the trajectory equation which is previouslyegivby Eq.

N~

f=_ K (3-28)
El 5
24F(z) (X2)*[Js (x2) = L3(x )]
4 4
[11- At n=4
The focal length at the focus for the magneticdfief the form B(z):B—j and
y

the trajectory equation which is previously givenHy. (3-3) can be described by
the formula which is derived by similar method whet® and it is given by:

5 1

2° k3

f=— 7
() (6)° 13 (x3) = Ls (5]

(3-29)

3-4-2 Focal length of magnetic deflectors

The formulae of the focal lengths for magnetic eettbr can be found by
similar method in the magnetic lenses. This is doypepplying Eq. (2-8) as the
following:

- At n=2

The formula of the focal length at the focus foe thagnetic field of the form

D(z):B—g and the trajectory equation which is previouslyegivby Eq. (3-9) is
z
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the same as the formula of the focal length for metig lens when n=3. Then, it is
given earlier by Eq. (3-28).

[1- At n=3

For deriving the formula of the focal length at floeus for the magnetic field
of the form D(z) = 382
27

Eqg. (3-10), one can be used the similar method mwisi@applied in magnetic lenses.
Then, the result of the deriving formula is given b

and the trajectory equation which is previouslyegivby

ola
wlik

f = 2" K (3-30)

7
3(E) (%2)°1d; (xa) = L (xa)]

6

[11- At n=4

The formula of the focal length at the focus foe thhagnetic field of the form

D(z) =2
y4

derived and the formula is given by:

and the trajectory equation which is previouslyegivoy Eq. (3-11) is

1

=y LS (3-31)
28F(§)(x4)8[33 (Xa)= d7 (x4)]

8

3-5 Spherical Aberration

The formulae of the spherical aberration coeffitiédor magnetic lenses,
deflectors and the combination of magnetic lens @eftector can be obtained by
applying Eq. (2-12). After that, it can be derivetthe general formulae to the
spherical aberration coefficient for the magnetensl and deflector. As a
consequence, one can find the aberration coeffioieeach value of n in magnetic
lenses, deflectors and the combination of magnletis and deflector as the
following:
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3-5-1 General formulae of spherical aberration

In the case of magnetic lenses, by substituting(E®) in Eq. (2-12), one can
find [Hawkes and Kasper 1989]:

187{ v (B'(2)) -V—B(Z)B”(z)+4\1/1 B“(z)} ' (z)d:

r

2 2
_n 7 2 n® |_n21nEntl) o’ (By)
Y ! {5[(50) WJ (Bo) - 4V ZO }h (2)dz (3-32)

whereB'(z) and B"(z)are the first and second derivative with respea ¢b B(z)
respectively. Then, Eg. (3-32) can be written as:

_n°(B 5n°  (-n°+n 2Bo)’ | va sy
114(8\;)) I{ 2n+2 = S22 )+4(]/_r(z(21)n } h (z)dz (3-33)

Eq. (3-7) is substituted in Eq. (3-33) to find iMees 2002]:

_ k> % [an®-n k>
Cs=75 { ez 16 Z4n}h4 (2)dz (3-34)
Zf
Equation (3-34) is the general formula for caladuigtthe spherical aberration
coefficients of magnetic lenses which field distitibns are given by Eq. (2-3).

On the other hand, the formulae of the sphericarration coefficient for
magnetic deflector are obtained by using a sinmlathod for magnetic lenses. So,
they are derived and the formula is given by:

21,2 oo 2 _

48 Zf Z2n+4 Z4n+4

Equation (3-35) is the general formula for caldaigtthe spherical aberration
coefficients for magnetic deflectors which fielgwlibutions are given by Eq. (2-6)
and the magnetic fields of lenses are given by(EQ).
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3-5-2 Spherical aberration for magnetic lenses
I- At n=2
The value of n (n=2) is substituted in Eg. (3-3xyét:
Cs= _j (_ 16—)h (z)dz (3-36)
by substituting Eq. (3-1) and Eg. (3-33) in EG1®:
_Z . K

h(z)= X, sm(Z ) (3-37)

inserting Eq. (3-37) into Eq. (3-36) gives:

kK2® 14  k®, z* .4k
Co=— [ ((2+16°)—~%_sin' )dz
1) G

2
K j(14+16—)sm ( )dz (3-38)
12(X1)
now, letu :E
Z
thenz=E and dz:—L2 du
u u

whenz =z »u=x
z=wo »u=0

these suppositions are applied in Eq. (3-38) to get

A k2u4 —k .
Cs = ” 6 )u25|n4 (u)du

X

12()(1)4 X

after some rearranging, then above equation cavrikten as:

X
C=— K [(r+ad)sir (u)d (3-39)
6(x,) 0

Xq
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[I- At n=3
The value of n (n=3) is substituted in Eq. (3-3%yéet [Hawkes 2002]:

co=K 73, r162 - )h (2)dz (3-40)
127 7

Eqg. (3-2) is substituted in Eq. (2-13) to obtaine:

1
hz)=1B 2 J,(-X) (3-41)
2 2Z

fin this case is defined by Eq. (3-28).

The formula of the spherical aberration coefficiahtthe focus is derived by
using the similar method when n=2. Then, the resulteriving for this coefficient
is given by:

1
2 X2

x 2)]4 g) (33+ 64U j

o.)\l\)

Kk
6\f2(X2) [Js(x,)—J

4 4

(Jl ( u)j4 du (3-42)

2
[11- At n=4
The value of n (n=4) is substituted in Eq. (3-3#jind:
_k*= 60
Cs==5] ( 16—) h' (z)dz (3-43)
12 Zf
Eqg. (3-3) is substituted in Eq. (2-13) to get:
1
h(z)=fC 2 J,(X) 6-44)
6 3Z

fin this case is defined by Eq. (3-29).

If it follows the similar method when n=2, the farka of coefficient at the
focus is derived and the formula is given by:
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1

[ES

T i Xf’(suzuzj u? (Jl(u)j“ du (3-45)
3% (x;)° [J7 (x5) = Js(x 3)]4 ° °

3-5-3 Spherical aberration for magnetic deflectors

To find the formulae of spherical aberration caméints for magnetic
deflectors, it would be used the similar method clhis applied in magnetic
lenses. Therefore, they are derived as the follgwin

[-At n=2

In this case, the formula of the spherical abeyratioefficient at the focus is the
same as the formula of the coefficient for magnletics when n=3 and it is given
earlier by Eq. (3-42).

[1- At n=3

The formula of the spherical aberration coefficiahthe focus is derived and
the result is given by:

19 1 \
3 3 X I
Com g2 (j)3(7+8u2) 0 (Jl(u)j“ dt (3-46)
3% (%) [JZ (x3)= ‘J;S(X 3)]4 °
6 6
[11- At n=4

The spherical aberration coefficient at the focsiglescribed by the formula
which is derived and it is given by:

lon

k‘11 X4 2 4
G = 5 [ (91+ 64l )u (Jl(u)j du (3-47)
192 (x,)? [Jg (X 4) = 7 (% "

N

8

©
|
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3-6 Chromatic Aberration

The formulae for all types of the chromatic abeéoratcoefficients will be
derived as the following:

3-6-1 Axial chromatic aberration

To find the axial chromatic aberration coefficiefdr magnetic lenses,
deflectors and the combination of magnetic lens aefiector, it can be started
from Eg. (2-15). Consequently, the general formutdethe axial chromatic
aberration coefficient will be derived for magnesigstem (lens and deflector). As
well, the formulae for the combination of magndins and deflector will be
obtained.

3-6-1-1 general formulae of axial chromatic aberration

In the case of magnetic lenses, by substituting(E@®) in Eq. (2-15), one can
find:

- € T (Bo)2
samV, z2"
Zf

h®(z)dz (3-48)

c

by substituting Eq. (3-7) in Eq. (3-48) to give:
© 1
Co =K | 5-h*(2)dz (3-49)
z £
where h(z) is defined previousely by Eqg. (2-13).
Equation (3-49) is the general formula for calanlgtthe axial chromatic

aberration coefficients for magnetic lenses whiehdfdistributions are given by
Eqg. (2-3).

On the other hand, the formulae of the axial chitwraberration coefficient for
magnetic deflectors can be found by following theilar method which is applied
in magnetic lenses. So, the general formula isrddrand the result is given by:
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2 o
< " 2 (2)dz (3-50)

T 2n+2
4 7

—

Equation (3-50) is the general formula for calanlgtthe axial chromatic
aberration coefficients for magnetic deflectors alhfield distributions are given
by Eq. (2-6) and the magnetic fields of lensesgaren by Eq. (2-3).

3-6-1-2 axial chromatic aberration for magnetic lenses
[-At n=2
The value of n (n=2) is substituted in Eq. (3-49jind:
Ce= K2 | L h?(2)dz (3-51)
Zf Z

by substitutinch(z) from Eqg. (3-37) in Eq. (3-51) to find:

2
Ce=k [ L Z_sin? (¥)dz
2 2" (%) z
2w
= K7 Lsin %)z (3-52)
(X)) % z z
now, Ietu:E
Z
thenz:E and dz:—%du
u u

whenz =z > u=x
z=wo »u=0
these suppositions are applied in Eq. (3-52) td:fin

2

Cc= (x) ?u_z k)sm (u)du
1

= (xk)2 (j)lsinz(u)du (3-53)
1
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Equation (3-53) is described the axial chromatierediion coefficient for
magnetic lens at the focus when n=2.

[1-At n=3

The value of n (n=3) is substituted in Eq. (3-49jind:
Ce= K[ L M (2)dz (3-54)
Z z

Eq. (3-28) is substituted in Eq. (3-41) to fihgz). After that,h(z) can be
substituted in Eq. (3-54). Consequently, the foanmwolf the axial chromatic
aberration coefficient at the focus is derived pplging the similar method when
n=2 and it is given by:

1

Cc = V2 K2 Xfu (Jl ( u)jz du (3-55)

(Xz)E ['J§ (Xz) - J;s (X 2)]2

[11-At n=4

The value of n (n=4) is substituted in Eq. (3-49jind:
Ce=K | L h(z)dz (3-56)
Z z

by substituting Eqg. (3-29) in Eq. (3-44) to finh(z) and after some
mathematical substitution and rearranging as tee wadnen n=2, the formula of the
axial chromatic aberration coefficient at the fomiderived and it is given by:

_ 4 k® %3 2 -
Co=7—— ju(.]l(u)j du (3-57)
3°(xg)° [JZ (x35)— Jds(x 3)]2

6 6
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3-6-1-3 axial chromatic aberration for magnetic deflectors

For deriving the formulae of the axial chromaticeahtion coefficient for
magnetic deflectors, it should be applied the simihethod which is used in
magnetic lenses. As a consequence, the formulaelean derived as follows:

[-At n=2

The formula of the axial chromatic aberration cogfht at the focus in this
case is the same as the formula of the coeffié@nnagnetic lens when n=3 and it
Is given previousely by Eq. (3-55).

[1-At n=3

The axial chromatic aberration coefficient at tbheus is described by formula
which is derived and the result is given by:

10 1
3 3 X
Gz 2K jsu(Jl ( u))2 du (3-58)
—_ — 0 —
3 (x,)° [Jz (x3)- J;S(X 3)]2 °
6 6
[11-At n=4

The result of derivation for the formula which iesdribed the axial chromatic
aberration coefficient at the focus is given by:

1

Coz s k gu(Jl(u))Z du (3-59)
4 (X4)" [Jg (X4) - J;? (x 4)]2 °
8 8

3-6-2 Field chromatic aberration

3-6-2 -1 isotropic chromatic aberration coefficient

For deriving the formulae of the magnification amatic aberration coefficient
for magnetic lenses, deflectors and the combinaifanagnetic lens and deflector,
one should be applied Eg. (2-14). After that, thenagal formulae of the
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magnification chromatic aberration coefficient fthe magnetic lenses and
deflectors can be found. As the result, one cam firve aberration coefficient for
each value of n in magnetic lenses, deflectors thrdcombination of magnetic
lens and deflector as follows:

A-general formula of magnification chromatic aberration

In the case of magnetic lenses, by substituting(E®) in Eq. (2-16), one can
find:

Cor = 8n$v j 20) h(2) g(z)d: (3-60)

Eq. (3-7) is substituted in Eq. (3-60) to get:

Cn= kzojoin h(2) g(z)d: (3-61)
z 7

Equation (3-61) is the general formula for caldolgtthe magnification
chromatic aberration coefficients for magnetic &snwhich field distributions are
given by Eqg. (2-3).

However, the general formula of the magnificationramnatic aberration
coefficient for magnetic deflectors is derived kolldwing the similar method
which is applied in magnetic lenses. Consequeittiy,given by:

kK*® n’

Cnm :72{ a2 h(2) g(z)d: (3-62)

Equation (3-62) is the general formula for caldolgtthe magnification
chromatic aberration coefficients for magnetic éettbrs which field distributions
are given by Eq. (2-6) and the magnetic fieldseokks are given by Eq. (2-3).

B- magnification chromatic aberration for magnetic lenses
[-At n=2

The value of n (n=2) is substituted in Eq. (3-@&Ljind:
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h(z) g(z)d:z (3-63)

12T L Z5ind 2 sin a2
Cn=k Z4Xsm(z)ksm§)dz

® 1 .2,k
= —sin” (=)dz 3-64
4 7S ) (3-64)
now, Ietu:E
Z
thenz:E anddz:—deu
u u

whenz =z > u=x
z=wo »u=0

these suppositions are substituted in Eq. (3-6f4htb

U(k)

Cm ——j sin” (u)du
Xy X 1
=1 fsin2 (u)du (3-65)
X1 0

Equation (3-65) is described the magnification afmic aberration coefficient
at the focus when n=2.

[1-At n=3
The value of n (n=3) is substituted in Eq. (3-Gijind:
Cm =K [ 2 h(2)g(z)dz (3-66)
2 z

h(z) can be found by substituting Eq. (3-28) in Eq4(3- After thath(z) and
Eqg. (3-2) can be substituted in Eg. (3-66). As aseguence, the derivative
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formula of the magnification chromatic aberrataefficient at the focus is given
by:

5

4 T 5l
Cn= ) Xfu(J
(x3)* [Jg(xz)_‘] (x2)l

—3
4 4

(U))Z du (3-67)

[11- At n=4

The value of n (n=4) is substituted in Eq. (3-@&Ljind:
C = kz;f 2_18 h(2) g(z)dz (3-68)

by substituting Eq. (3-29) in Eq. (3-44) to fihz). After some mathematical
substitution and rearranging as the case when nh&, formula of the
magnification chromatic aberration coefficientla focus is derived and the result
IS given by:
7
2°T()) %

Cm = (j)u(Jl(u))Z du (3-69)

(%5)° [J7 (x3) = Ls(x 5]

6 6
C- magnification chromatic aberration for magnetic deflectors

By using the similar method in the magnetic lensd® formulae of
magnification chromatic aberration coefficient faagnetic deflectors are derived
as follows:

[-At n=2

The formula of the magnification chromatic abeoatcoefficient at the focus
is similar to the formula of the magnification chratic aberration coefficient for
magnetic lens when n=3 and it is given by Eq. (B-67
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[1-At n=3

The formula of the magnification chromatic abeoatcoefficient at the focus
is derived and it is given by:

5
21
Cm = — ? (6) tjju(\]l(u))z du (3-70)
3>(x3)° [‘]Z (X3)= J;5 (X3l °
6 6

[11-At n=4

The magnification chromatic aberration coefficiabthe focus is described by
the formula which is derived and the result is gibg:

re) X4
Cn=——5 2 [u(* (U))Z du (3-71)
L ~ 0 o
22(xa)° [Jg (xa) = o (x )]~ °

3-6-2 -2 anisotropic chromatic aberration coefficient

To derive the formulae of the rotation chromatiemétion coefficient, one can
be started from Eq. (2-17). Consequently, one canfdund the formulae of
coefficient for the magnetic lenses, deflectors #mel combination of magnetic
lens and deflector as the following:

A- roation chromatic aberration for magnetic lenses
[-At n=2
The value of n (n=2) is substituted in Eq. (2-X¥jind:

1
_1( e 2% By
Co _z(smvrj ij 22 dz
z “J (3-72)

1
:ﬁ € E)(
2 L amV, r2

by substituting Eq. (3-7) in Eq. (3-72) to get on:

-1
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Eq. (3-16) is inserted into Eq. (3-73) to find:
C, :% (3-74)
[1-At n=3

The formula of the rotation chromatic aberratiorefficient at the focus is
derived and the result is given by:

X
Gy =2 (3-75)

[11-At n=4

Formula which is described the rotation chromakbereation coefficient at the
focus is derived and it is given by:

X3
= 3-76
> ( )

B- rotation chromatic aberration for magnetic deflectors

[-At n=2

The formula of the rotation chromatic aberratioefticient at the focus is similar
to the formula of the rotation chromatic aberratawefficient for magnetic lens
when n=3 and it is given by Eq. (3-75).

[1-At n=3

The rotation chromatic aberration coefficient at focus is described by the
formula which is derived and the result is given by

G, :% (3-77)
111-At n=4

The formula of the rotation chromatic aberratiorefficient at the focus is
derived and it is given by:

— %
=— 3-78
. (3-78)
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Chapter Two

Theoretical Considerations

2-1 Introduction

In the present work, a magnetic lens and deflelctme been adopted for the
purpose of the theoretical study. Each componemhagnetic system (lens and
deflector) is fully described in terms of differgoéirameters such as trajectory of
electron beam, position of foci, focal lengths abeérration coefficients.

2-2 Paraxial-Ray Equation in Magnetic Field

The motion of an electron in an axially symmetri¢@ld can be derived
starting from many departure points. One may $tarnh the Lagrangian [Hawkes
1982; Silagyi 1988] or from a more familiar method of elementary mechanics [El-
Kareh and El-Kareh 1970; Klemperer and Barnett 1.91Mie paraxial-ray equation
of an electron in a magnetic field of axial symmes given by [El-Kareh and El-
Kareh 1970]:

e
amV,

r"(z)+ ( )B® (2)r(z)= 0 (2-1)
where r(z) is the radial displacement of the besomfthe optical axis z, e and m
are the charge and mass of the electron, respbgtivéz) the second derivative of
r(z) with respect to z and,\s the relativistically corrected accelerating agk
which is given by [El-Kareh and El-Kareh 1970]:

eV,

2

2mc

V, :v{h }:va[u 0.978& 10V a} (2-2)

where V4 is the accelerating voltage and c is the spedidittfin space.

An important deduction can be made from Eqg. (27he force driving the
electrons towards the axis is directly proportiotmathe radial distance r. This is
the principle of a focusing field. Futhermore, tifasce is proportional with the
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square of the magnetic flux density. It means thtte direction of the magnetic
field is reversed by reversing the current, thedaion of the force towards the axis
should not change. In other words, there will bechange in the focus [El-Kareh
and El-Kareh 1970].

2-3 Mathematical M odelsfor Magnetic Lens

Magnetic field models of magnetic lenses are awaltexpressions, that
represent the axial field distribution B(z) of matjn lenses. Each model gives a
design basis for a lens, especially when its maslelapable of being realized
physically.

Many field models deal exclusively with double-ptdases, such as the Glaser
bell shaped field and the Grivet-Lenz field. Whilee exponential field and the
spherical field deal with the single pole lenses.

In the present work, the mathematical model offtdren inverse power law is
chosen to represent the magnetic flux distributramch is given by [Alamir
2005]:

B(z)= Bo(%‘)“ 'n=2,3,4 (2-3)

whereB,, is the maximum value of axial magnetic field, ahe half width at half

maximum field and n is any positive or negative bens, not necessarily an
integer, expect unity. Here, n is taken as positivenbers, where n=2 for
monopole lens, n=3 for dipole lens and n=4 for qupadle lens [Crewe 2001].

2-4 Moving Objective Lens (M OL) Concept

The concept of moving objective lens (MOL) wasaduiced first by Ohiwa et
al. [Ohiwa et al. 1971] for description of a systeamwhich the deflectors are
placed in the lens. In a moving objective lens (MQlstem, a lens is placed
before the image plane and is electromagneticatlyed is synchronization with
the deflector. Such displacement of the lens camxpressed as the first-order
Taylor expansion of the magnetic scalar potenfighe lens [Ohiwa 1978]:
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®(x-d,y,2) =0 (x,y.2 -df ) (2-4)

This shows that superposition of the deflectioﬂdfied(g#;)) on the lens field

@ is equivalent to the displacement of the lens ldistance d. Let one assume
that the focusing lens is composed of an axiallprsetric magnetic field. Then,
the off-axis potential can be expressed up to ¢lcersd order as [Ohiwa 1978]:

2 2

r,d o(z

@(r,2)= 0 (r)-(H 122 (2:5)
Let B(z) is the axial flux density distribution rfdhe lens and D(z) is the
deflection flux density required at the axis. Thiére following relation holds from
Egs. (2-4) and (2-5) [Ohiwa 1979]:
—d

D(z)= - B'(2) (2-6)

where d is the displacement by the first defle¢poe-deflection), and th&'(z)is
the first derivative of B(z) with respect to z.

The MOL concept is illustrated in figure (2-1). Aipt source of electrons,
emitted from g, is imaged to jzby a lens. The beam is deflected by the first
deflector so that it enters the lens off-axis. BeReond deflector, placed inside the
lens, shifts the electrical center of the lensadils. The Moving Objective Lens
(MOL) reduces the effect of the off-axis lens abgons [Khursheed 2011].
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First Deflector Second Deflector

Figure (2-1): MOL arrangement [Ohiwa 1978].

2-5 Focal Lenght

Focal length is defined as the distance betweenptheipal plane and the
focus. Assume an incident electron moving initiglgrallel to the axis, the focal
lenght can be obtained by direct integration of 2€l) [Crewe 2004]:

fl - 8meVr _‘];BZ (2)r(z)dz (2-7)

or the focal lenght can be obtained by differemthe expression of a ray
which is parallel to the axis far from the axialhsyetric system.Therefore, it is
easy to show that the focal lenght of the ray vegiby [Hawkes 2002]:

fz) (2-8)

=_1_
r'(z)
wherer'(z)is the first derivative of r(z) with respect to z.

2-6 Defects of Electron Optical System

In general, when speaking of aberration in electyotics, one refers to the case
in which rays emanating from one point for the sawbgct point converge to
different image points. If an electron path is legvan object point, at a finite
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distance from the axis with a particular directamd electron velocity, it intersects
the Gaussian image plane at a point displaced fhenGaussian image point; this
displacement is defined as the aberration [El-Kamdh EI-Kareh 1970].

The operation of axially symmetric electron and systems (focusing systems
or deflector systems) is based on the paraxiagt{firder) theory. Practically, the
trajectories always have both finite displacemeraad finite slope mvith respect
to the axis. Even if they are small, the omissibthe higher-order terms in series
expansions that leading to the paraxial ray eqonatauses some error. Therefore,
the paraxial theory is always an approximation|gggii 1988].

The assumption by means of equation (2-1) constticga concerned with rays
that are close to the system axis. However, if @aleulating the second term (i.e.
the third order-term) in series expansions of magneld that it is given by
[Szilagyi 1988]:

( 1) (2n 1) 2n-1
o {n2)2 Z(n).(n i ()[ } &9)

Then the equation of motion of an electron in armalBxsymmetric magnetic
field for relativistic potential will take the foriiszilagyi 1988]:

e
smV

r

r" +

3 " 3 4
rBi— ' BEBZ rzr’B Bz +rr’ B + e;nBz}=O (2-10)

Equation (2-10) is usually called the "third-ordeajectory equation”. This
equation reduces to Eq. (2-1) if all the third-ertgms in r and its derivatives (i.e.
r?, Pr', rr%), are removed. The presence of these terms ifZ=t0) results in the
appearance of aberrations. Aberrations are reféorad third-order, fifth-order and
so on according to the order of the term in Eq9)2Only the third-order
aberrations are of an importance in most analysdscalculations in the field of
electron and ion optics since they outweigh therratiens of higher orders
[Szilagyi 1988].

The electron magnetic system suffers from manyembfit types of defects
through the image formation process. The geométaloarrations occur when a
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point object is imaged not by a point image butabblurred spot produced by
different paths of different slopes that focusedddfierent image points. These
paths intersect the Gaussian image plane at diffepeints. The geometrical
aberrations are arising from higher order termthenfield expansions. In general,
there are eight different types of the geometrada¢rrations namely; spherical,
field curvature, radial distortion, spiral distort, coma, anisotropic coma,
astigmatism and anisotropic astigmatism aberrations

In addition to the geometrical aberrations in thegnetic system, the chromatic
aberration is the other important type of defemsfwhich the magnetic system is
suffered.

Space charge is another source of image aberthtoit is occurred because of
electrostatic repulsion forces between the samegehzarticles.

When the properties of the system are analyzedgutie nonrelativistic
approximation, the disparities between the relstiwiand nonrelativistic can be
conveniently regarded as relativistic aberration.

Finally, one has be mentioned to the mechanicarati@ns which occur due to
misalignment, material in homogeneity, mechaniogparfections, ect{Szilagyi
1988; Hawkes and Kasper 1989].

Their implementation provides the creation of agaidens that forms stigmatic
and similar images. Let us recall these assumgtidn rigorous axial symmetry;
(2) paraxial trajectory approximation; (3) energy homogeneity, including the
absence of timdependent processes; and (4) negligible space-charge fields and
small effects of electron diffraction. Violation at least one of these conditions
leads to aberrations that are responsible for dduror distorted images and
complicate beam transport problems [Tsimring 2007].

The most important aberrations for objective maigriens, which are limiting
the resolution in an electron-optical system, ateesical and chromatic aberration.
Thus, the present work has been determined theeeatverrations for each
magnetic lens and deflector.
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2-6-1 Spherical aberration

The spherical aberration is one of the most impbrgggometrical aberrations;
this aberrations is sometime, called aperture delfieis one of the principal factors
that limit the resolution of the optical systemisTtlefect occurs because the power
of the optical magnetic system is greater for af6aays than the paraxial rays
[Zhigarev 1975], as is shown in figure (2-2).

When these non-paraxial electrons arrive at thes&8an image plane, they will
be displaced radically from the optic axis by aroant g given by [Egerton 2007]:

r,= C, o (2-11)

where G is the spherical aberration coefficient amds acceptance half angle.
Sinceo (in radian) is dimensionless, thereforg h@s the dimensions of length.

Figure (2-2): Ray diagram illustrating sphericaéahtion in the Gaussian image plane
[Oday 2005].

The spherical aberration coefficient 6f axial symmetric magnetic optical
element (lens or deflector) is calculated using tbkowing integral formula
[Hawkes 2002]:

1

C. =
°7 48

f{s ®Y-bb'+a b’} h' (3 & (2-12)
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b= nB(z)

N

where n = ,/e/2m is the charge -to- mass quotient of electron afm) s
proportional to the solution r(z) of the paraxiguation which is given by Eqg. (2-
1), the constant of proportionality being equatlhe focal length in order to ensure
that the gradient of h(z) at the object positiogrehthe focus, is unity. Thus, h(z) is
given by [Hawkes 2002]:

h(z)=1fr(z) (2-13)

where f is the focal length.

2-6-2 Chromatic aberration

From the expression of focal length which is giypeaviously by Eqg. (2-7), one
can note that the focal length is related to theekcating potential. Then the
variation of that potential will result in the vaftion of focal length. Thus, the
image will be distorted and this type of distortian referred to as chromatic
aberration [El-Kareh and El-Kareh 1970].

The main reason for chromatic aberration is the tlaat electrons with higher
initial energy are less influenced by the imagimddfthan lower-energy electrons.
Therefore, if all electrons leave the object ponth the same slope, the high-
energy electrons will form an image at a greatstatice from the object than the
low-energy electrons and the image will be blurldé# in case of spherical
aberration. Additionally, the rotation of electromsth different energies in a
magnetic field will also be different [Szilagyi 188 There are several reasons for
the energy spread of electrons and it occurs iK&ileh and El-Kareh 1970]:

a. The accelerating potential as provided by regulat@aler supply changes or
the current in the energized coil is not highlybgitzed.

b. The initial velocity of the electrons is not thereafor all particles.
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c. The passage of the electron beam through a taegelts in an inelastic
collision of the particles with the specimen andstlihe electron leave the
specimen with different velocities.

Figure (2-3) represents a simplified diagram definthis defect. A ray of
energy E, + A Eywill reach the image plane for enery at a distancer from

the axis. At a plane about halfway between thetpoahere the two rays intersect
the axis in image space, the bundle of rays haenergies betweerk, and

E, + A Epare contained within a disc of confusion of radabsut one-half where
[Hall 1966]:

Ar=a.C, [%J (2-14)

C. is the chromatic aberration coefficient.

The chromatic aberration coefficients of magneti@lasymmetric system are
divided into axial chromatic aberration coefficied; and chromatic field
aberration (Chromatic aberration of magnification &d rotation ¢ [Hawkes
and Kasper 1989].

Ar

%&fconfusmn

>I Image

Figure (2-3): Ray diagram illustrating chromatiesgdation [Hall 1966].
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All types of the chromatic aberration coefficienti be mentioned as follows:

1-6-2-1 axial chromatic aberration

This aberration coefficient like the spherical abgon coefficient creates an
aberration disc; its radius in the image pland&ésdame for all points in the object
plane.lt is of most concern when the angels are compaigtiarge [Hawkes and
Kasper 1989].

The axial chromatic aberration coefficient @ axial symmetric magnetic
optical element (lens or deflector) is calculatesing the following integral
formula [Hawkes and Kasper 1989]:

e
smV

r

Ce = °f B (2)I (2)dz (2-15)

1-6-2-2 field chromatic aberration

The field chromatic aberration is divided into tls®tropic and anisotropic
chromatic aberration. It is of most concern whem dhgles are small and the rays
are off the axis [Hawkes and Kasper 1989]. Thisetygd aberration will be
mentioned as the following:

A- isotropic chromatic aberration

The isotropic chromatic aberration coefficient dimdloby G, and is commonly
known as the chromatic aberration of magnification.

The magnification chromatic aberration coefficiebt, of axial symmetric
magnetic optical element (lens or deflectm)calculated using the following
integral formula [Hawkes and Kasper 1989]:

_ e *.2 }
Cnm= MV, _jooB (z)h(2) g(z)dz (2-16)

where h(z) and g(z) are two independent solutionghe paraxial ray. h(z) is
defined by Eq. (2-13) and g(z) is the same trajgctd electron in the magnetic
axial symmetric system.
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B- anisotropic chromatic aberration

The anisotropic chromatic aberration coefficientnated by G and is
commonly known as the chromatic aberration of rotatit causes a small change
in the image rotation in magnetic systems [Hawkekskasper 1989].

The rotation chromatic aberration coefficient @ axial symmetric magnetic
optical element (lens or deflectag calculated by using the following integral
formula [Hawkes and Kasper 1989]:

1

— 00

1 e
C, = 2(8mVr)2 [B(2)dz (2-17)
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a the half width at half maximum field (m).

A B.C.DandE \(IZ:IE:t.ants inserted in the trajectory equation wheéh a large
B(z) The axial distribution of Magnetic field offle (Tesla).
Bo Maximum of the magnetic flux density (Tesla).

B, (r,2) Radial component of the magnetic flux density (Zgsl
C The speed of light in space (c =3% 1/sec).

Cc Axial chromatic aberration coefficient (m).

Cm Magnification chromatic aberration coefficient.

Cs Spherical aberration coefficient (m).

Co Rotation chromatic aberration coefficient.

d Diameter of axial bore (m).

d Displacement by the first magnetic deflector (m).
D(z) Deflection magnetic flux density (Tesla).

e The charge of the electron (e = 1.6%'10).

Eo Energy of electron beam (Joule).

f Focal length (m).

h(z), g(z) Two independent solutions of the pararag equation.
I Electric current (Ampere).

Jn(X) First kind Bessel polynomial.

k Excitation parameter.

\




L Lens length (m).

L, The distance between pre-deflection and the MGitesy (m).
L, The distance between the MOL system and the s¢neen
m The mass of the electron (m = 9.1 X4Kg).

n Order of multipole or the power of the multipole.

NI Magnetic lens excitation (Amp.turn).

\/'\\|7|r Magnetic lens excitation parameté(%).

r(z) Trajectory radial height along the lens gxig.

Ri, Ry Inner and outer radii of coil respectively (m).

I Fluctuation in the electron beam focus (m).

S Width of air gap of polepieces (m).

Va The accelerating voltage (Volt).

V, Relativistically corrected accelerating voltage Ity.o

X1, X2, Xsand %

The index of the zero for each case of n.

z The optical axis of system (m).

Zs The position of focus or focal point (m).

Z Image plane position (m).

Zs Object plane position (m).

a Trajectory angle with system axis (degree).

a; a in image side (degree).

o a in object side (degree).

I'(x) Gamma function.

AE, Fluctuation in the electron beam energy (Joule).
Ar Fluctuation in the electron beam focus (m).

Vi




n Electron charge to mass quoti¢ag2m)®/? (C/Kg)/? .
0} Angle of the coil (degree).

D(x,Y,2) The magnetic scalar potential of the lens (Volt).
d(r,z) The off-axis magnetic scalar potential of the |@vglt)

- First and second derivative with respect to z-4®islz) and
’ (d¥/dz), respectively.

List of Abbreviations

TEM Transmission electron microscope.
SEM Scanning electron microscope.
DA Differential algebraic.
MOL Moving objective lens.
VAL Variable axis lens.
AEM Analytical electron microscope.
STEM Scanning transmission electron microscope.
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