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Abstract  

  
The analytical method is used to derive the formulae of optical properties for 

magnetic lens and deflector. From these formulae, the optical properties are 

computed for both magnetic lens and deflector. The minimum spherical and 

chromatic aberration coefficients (axial, magnification and rotation chromatic 

aberration coefficients) are selected from the results of calculation for both 

magnetic lens and deflector. 

The inverse power law model is adopted to obtain the axial field distribution of 

magnetic lenses. The moving objective lens concept is used in the computation of 

the deflection field distribution for magnetic deflector. 

The first and third orders optical properties for magnetic lens and deflector are 

studied. Also, the minimum values of optical properties are obtained by changing 

the order n and the index of the zero corresponding to each value of n.  

The computation for magnetic lens and deflector shows that the focal length, 

spherical and axial chromatic aberration coefficients are proportional with the 

value of z at the focus. As well, the best magnetic lens and deflector which gives 

rise to minimum spherical and axial chromatic aberration coefficients are found at 

n=4. Also, it is noticed that the increasing of the values of the index of the zero for 

each value of n, for magnetic lenses and deflectors, leads to reduce the spherical 

and axial chromatic aberration coefficients. Additionally for magnetic lens and 

deflector, the magnification and rotation chromatic aberration coefficients have 

constant values, for each value of n, corresponding to each index of the zero.  
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Appendix 

The Trajectory Equation of Magnetic Deflectors 

From Eq. (2-6) which is given by: 

-dD(z)= B (z)
2

′          (1) 

B (z)′  is computed by aiding Eq. (2-3) 

Then, Eq. (1) can be written as: 

o

n+1
2

n d BD(z)=
 z

         (2) 

For simplicity, let d=1(mm) 

Then, Eq. (2) becomes: 

o

n+1
2

n BD(z)=
 z

         (3) 

Now, Eq. (3) substituting into Eq. (2-1) to get: 

o

r

2 2
0

2n+232 

η (B ) n 1r (z) + ( ) r(z) = 
V z

′′       (4) 

Let  

1
2r(z) = z R(z)          (5)

  

Now, change the variable from r(z) to R(z) as: 

1 1
2 21

2
r (z) = z R (z) + z R(z)

−
′ ′       (6) 
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31 1 1
2 2 2 21 1 1

2 2 4
r (z) = z R (z) + z R (z) + z R (z) z R(z) 

− − −
′′ ′′ ′ ′ −    (7) 

Eq. (5) and Eq. (7) substituted into Eq. (4) to obtain: 

31 1 1
2 2 2 2o

r

2 2
1

0
2n+24 32 

η (B ) n 1z R (z) + z R (z) z R(z) + z R(z) = 
V z

− −  
 
 
 

′′ ′ −  (8) 

Multiplying Eq. (8) by 

1
2z

−
and making some rearranging to get: 

o

r

2 2
1 1

0
22n+24 8 z

R (z) η (B ) n 1  R (z) +   +  R(z) = 
z V z

 
 
 
 

′′′ −  (9) 

If Eq. (9) is compared with Eq. (36-76) from [Hawkes and Kasper 1989], one can 

be found that ζ  is given by: 

-n

4

n k
ζ = z   (10) 

where k is defined by Eq. (3-7). 

After some mathematical substitution and rearranging, Eq. (9) becomes: 

2

2

2

2

d
1 0

 dd

d R  1 R   +   + R = 
 ζ ζζ ζ

ν 
 
 
 

−  (11) 

with       
2

2
1

4 n
ν =  (12) 

Eq. (11) is Bessel function of first order. 

Now from Eq. (5), Eq. (10) and Eq. (12), one can find the trajectory equation for 

magnetic deflectors as the following: 
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I-when n=2 

This value (n=2) can be substituted in Eq. (12) to find the order of Bessel 

function as: 

2 1 1
16 4

ν ν= ⇒ =  (13) 

Also, this value (n=2) substitutes in Eq. (10) to find the argument as: 

 2
2 

 k
ζ = 

z
 (14) 

From Eq. (13) and Eq. (14), one can obtain on: 

1 2
4

( )
2 

 kR(z) = 
z

J   (15) 

Now, Eq. (15) substitutes in Eq. (5) to find: 

1
2

1 2
4

( )
2 

 kr(z) = z  
z

J  (16) 

II-when n=3 

This value (n=3) can be substituted in Eq. (12) to find the order of Bessel 

function as: 

2 1 1
36 6

ν ν= ⇒ =  (17) 

Additionally, this value (n=3) inserts in Eq. (10) to find the argument as: 

 3

3

4 

  k
ζ = 

z
 (18) 

From Eq. (17) and Eq. (18), one can find: 
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1 3
6

3
( )
4 

  kR(z) = 
z

J   (19) 

Now, Eq. (19) substitutes in Eq. (5) to find: 

1
2

1 3
6

3
( )
4 

  kr(z) = z  
z

J  (20) 

III-when n=4 

This value (n=4) can be substituted in Eq. (12) to find the order of Bessel 

function as: 

2 1 1
64 8

ν ν= ⇒ =  (21) 

Moreover, this value (n=4) inserts in Eq. (10) to find the argument as: 

 4

 k
ζ = 

z
 (22) 

From Eq. (21) and Eq. (22), one can find: 

1 4
8

( )
 

 kR(z) = 
z

J   (23) 

Now, Eq. (23) substitutes in Eq. (5) to find: 

1
2

1 4
8

( )
 

 kr(z) = z  
z

J  (24) 
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Chapter Five 

Conclusions and Recommendations for Future Works 

5-1 Conclusions 

According to the results obtained in the previous chapter several conclusions 

can be recorded. Before that, one can be mentioned that the analytical method 

which applied in the present study gives a good observation to understand the 

theoretical study of electron optics because the behavior of any one of the 

parameter can be predicted by the formula which has described. 

   The most important conclusions are listed as the following: 

5-1-1 Magnetic lenses and deflectors 

    The most important of conclusion are summarized in the following: 

1- The results of calculations show that the focal length was found to be 

proportional to the value of z at the focus for all magnetic lenses and 

deflectors. Furthermore, the results of calculations for the spherical and axial 

chromatic aberration coefficients were also proportional to the value of z at 

the focus (and therefore to the focal length). 

2- The results of calculation indicate that the various parameter of interest for 

each value of n, namely s s c cf f ff z ,C z ,C f ,C z and C f are all have 

constant values corresponding to each value of index of the zero. 

 These parameters are all slightly dependent on the position of the focus 

except for ff z of monopole lens and c fC z of each type of lenses and 

deflectors where c fC z  has constant value for each index of the zero. 

Additionally, the values of these parameters depend on the order n. 
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3- One can note from the results of calculations that the values of both 

m θC  and C  for each magnetic lens and deflector are constant corresponding 

to each one of index of the zero. 

Both coefficients are dependent on the position of the focus z (except for

mC of monopole lens) and the order of multipole (n). 

4- The best magnetic lenses and deflectors, which gives rise to minimum 

spherical aberration coefficient and with all axial, magnification and rotation 

chromatic aberration coefficients, are clear from the results of the 

calculations occurs when n = 4 although in the case of magnetic lenses has 

maximum magnification chromatic aberration. 

5-2 Recommendations for Future Works 

The following topics are put forward as future investigations: 

1- One can chose the type of magnetic deflector whether saddle or toroidal 

type to use as a source of magnetic deflector in the present work. After 

that, studying the effect of the coil geometry, which may be represented 

through the length and the angle of the coil, to find the optimum design 

that gives rise to minimum aberration coefficients. 

2- One can suggest different methods such as numerical and DA methods to 

study the magnetic deflectors, which are studied in the present work, in 

order to compare them with the results calculated. 
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Chapter Four 

Results and Discussion 

4-1 Introduction 

The magnetic flux density distribution for the magnetic lens is calculated by 

applying Eq. (2-3). The MOL concept, which is shown in section (2-4), has been 

used to find the deflection field of magnetic deflector. 

After that, we are applied the formulae that have been derived in chapter three, 

of each optical properties; such as trajectory of electron beam, focal length, 

spherical and chromatic aberration coefficients. These optical properties can be 

calculated by using MATHCAD 14 package. 

The calculations procedure are divided into four steps for each type of magnetic 

system (lens and deflector): the first; calculating the magnetic field, second; 

calculating the trajectory of electron beam, third; calculating the focal length and 

fourth; calculating the spherical and chromatic aberration coefficients.  

 

4-2 Magnetic Lenses   

4-2-1 Magnetic field distribution by using inverse power law model 

The axial flux density distributions of lens B(z) are computed using Eq. (2-3) 

for each value of n at constant value of (a). Figure (4-1) shows the distributions of 

the axial flux density for the magnetic lenses which fields in the form B(z)	∝	z-n for 

different values of n (n= 2, 3 and 4). 
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Figure (4-1): The axial flux density distributions of magnetic lenses which fields in the 
form B(z)	∝	z-n for n=2, 3 and 4 at constant value of (a). 

From this figure one can be observed that the magnetic field for n=2 and 4 have 

maximum value at z �0 while in the case n=3, the field is divided into two parts; 

one in the positive region and the other in the negative. This means that the domain 

of these fields (for n=2 and 4) is strong at this point (z=0) and it gradually 

decreases when it moves away from this point. Furthermore, increasing the power 

n leads to decrease the width of these fields. 

4-2-2 Trajectory of electron beam 

The trajectories of electron beam along the magnetic fields for lenses have been 

computed using Eq. (3-1)-Eq. (3-3) for n=2, 3 and 4, respectively at the value of 

the excitation parameter equal 13.424 (
���.	
��

���	��.�

� (i.e. k=5) as is shown in figure (4-

2). The initial conditions for computing the trajectory of electron beam are given 

by: 

0 0

0 0

0 0
( ) 0 ( ) 0

0 0
( ) 0 ( ) 0

lim ( ) 1                          lim ( ) 0

lim ( ) 0                           lim ( ) 1 

g z g z

h z h z

g z g z

h z h z

→ →

→ →

′= =

′= =  
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0
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Figure (4-2): Trajectory of electron beam at the excitation parameter 13.424 (
���.	
��


���	��.�
�	for 

magnetic lenses with the field distributions of the form B(z)	∝ z-n for n=2, 
3 and 4. 

From figure (4-2), one can note that the trajectories of electron beam for 
different magnetic lenses have almost the same behavior in spite of different 
magnetic fields for each lens. This cause occurs because of the trajectories of the 
electron for these magnetic lenses described in terms of fractional Bessel functions. 
The behavior of these functions is somewhat similar to a large extent with each 
other. Therefore, the behavior of the trajectories is almost similar.   
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4-2-3 Focal length 

Eq. (3-27)-Eq. (3-29) are used to compute the focal length for magnetic lenses 

at the focus for n=2, 3 and 4, respectively. The results of calculations for these 

parameters are shown in figure (4-3) as a function of the excitation parameter. 
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 Figure (4-3): Focal length at the focus for first three indices of the zero as a function 

of excitation parameter 
 ��

���	
� for magnetic lenses with the field 

distributions of the form B(z)∝	z-n for n=2, 3 and 4. 
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From the figure (4-3), one can notice that the focal length is directly 

proportional with the excitation parameter for each value of n. That means the 

increasing of the excitation parameter leads to increase the focal length. 

 Also, the focal length for each value of n has lowest value at third index of the 

zero corresponding to each one of x (x1, x2 and x3). 

By comparing figures (4-3a), (4-3b) and (4-3c), one can find that increasing of 

the power n leads to decrease the focal length. This case occurs because the focal 

lengths are proportional with k, k� �⁄ 	and	k� �⁄  for n=2, 3 and 4, respectively. As the 

result, they are proportional with 
��

���
	 , 
 ��

���
�� �⁄  and 
 ��

���
�� �⁄  for n=2, 3 and 4, 

respectively. 

 The calculation results of the relative focal length f z�⁄  for different values of n 

are shown in the table 1. 

Table 1: The relative focal length, at the focus for first three indices of the zero, of 

monopole, dipole and quadrupole magnetic lenses (note that the results were 

calculated to the eighth decimal order). 

Index of the zero Monopole (n=2) Dipole (n=3) Quadrupole (n=4) 

First 1 0.44785219 0.28770505 

Second 1 0.37244770 0.22321278 

Third 1 0.33507053 0.19336092 

 

From the table 1, it is clear that the lowest value of relative focal length is at 

third index of the zero for each case of x except in the case when n=2, where it has 

constant value for all indices of the zero. Also from the comparison among 

different magnetic lenses, it can be observed that the increasing of the power n 

leads to decrease	f z�⁄  . 
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4-2-4 Aberration c

4-2-4-1 spherical aberration c

By using Eq. (3-39

coefficients at the focus 

results of calculations for these 
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  Figure (4-4): The spherical aberration coefficients at the focus for first three 

zero as a function of excitation parameter 

field distribution of 
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coefficients for magnetic lenses 

spherical aberration coefficient 

39), Eq. (3-42) and Eq. (3-45), the spherical aberration 

focus can be found for n=2, n=3 and n=4,

results of calculations for these coefficients are shown in figure (4
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he spherical aberration 

and n=4, respectively. The 

in figure (4-4). 
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for magnetic lenses with the 
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The figure (4-4) shows that the spherical aberration coefficient for different 

values of n, (n=2, 3 and 4), is directly proportional with excitation parameter. 

Additionally, the spherical aberration coefficient has lowest value at third index of 

the zero corresponding to each one of x (x1, x2 and x3).  

The comparison among figures (4-4a), (4-4b) and (4-4c) shows that the 

increasing of the power n leads to decrease the spherical aberration coefficient. 

This case occurs because the spherical aberration coefficients are proportional with 

k, k� �⁄ 	and	k� �⁄ 	for n=2, 3 and 4, respectively. As a consequence, they are 

proportional with 
��

���
	 , 
 ��

���
�� �⁄  and 
 ��

���
�� �⁄  for n=2, 3 and 4, respectively. 

 The relative spherical aberration coefficients C!\z�	 and C!\f are computed. The 
results of calculations are listed in the table 2. 

 

Table 2: The relative spherical aberration coefficients C!\z�	 and C!\f, at the focus for 

first three indices of the zero, of monopole, dipole and quadrupole magnetic 

lenses (note that the results were calculated to the eighth decimal order). 

Magnetic lenses Index of the zero C!\z�	 C!\f 

Monopole (n=2) 

First 0.17933181 0.17933181 

Second 0.16983295 0.16983295 

Third 0.16807391 0.16807391 

Dipole (n=3) 

First 0.10269968 0.22931602 

Second 0.10066346 0.27027542 

Third 0.10029476 0.29932432 

Quadrupole (n=4) 

First 0.07242078 0.25171885 

Second 0.07167219 0.32109357 

Third 0.0715374 0.36996824 

 

In the table 2, the value of C!\z� or C!\f is of interest because they are generally 

used as figure of merit by which various types of lenses, both magnetic and 
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electrostatic, can be compared

figure of merit can be used in magnetic deflector.

The constant values of both 

case n=2, for example, is proportional with k and the spherical aberration 

coefficient in the same case also

coefficients are constant values. This case is the 

(i.e. for n=3 and n=4). 

It is clear from the table 2 

has lowest value at 

comparing among different magnetic lenses as in table 2,

increasing of the power n leads to decreas

On the other hand

coefficient C!\f has lowest 

n=2. Furthermore, the 

case n=2.  

4-2-4-2 chromatic 

A-axial chromatic aberration

The computing axial chromatic aberration coefficients at 

by using Eq. (3-53), Eq.

results of calculations 
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electrostatic, can be compared [El-Kareh and El-Kareh 1970]

figure of merit can be used in magnetic deflector. 

The constant values of both C!\z�	 and C!\f caused is that the foci position in 

case n=2, for example, is proportional with k and the spherical aberration 

coefficient in the same case also proportional with k. Therefore, the relative 

coefficients are constant values. This case is the same for different magnetic lenses 

 

the table 2 that the relative spherical aberration

 third index for each one of x (x1, x

different magnetic lenses as in table 2, 

the power n leads to decrease	C!\z�	. 

other hand, table 2 shows that the relative spherical aberration

lowest value at first index for each value 

the increasing of the power n leads to increas

hromatic aberration coefficients 

hromatic aberration coefficient 

axial chromatic aberration coefficients at 

), Eq. (3-55) and Eq. (3-57) for n=2, 3 and 4

 for these coefficients are shown in figure (4
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Kareh 1970]. Furthermore, the 

caused is that the foci position in 

case n=2, for example, is proportional with k and the spherical aberration 

proportional with k. Therefore, the relative 

same for different magnetic lenses 

that the relative spherical aberration coefficient C!\z�	 
, x2 and x3). Through 

 one can find that the 

relative spherical aberration 

value of x except the case 

the power n leads to increase C!\f except the 

axial chromatic aberration coefficients at the focus can be found 

3 and 4, respectively. The 

shown in figure (4-5).    
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This figure shows that the axial chromatic aberration coefficient

of n is directly proportional with excitation parameter. 

at third index of the zero corresponding to

By comparing figure
increasing of the power 
coefficients. This case

axial chromatic aberration coefficients 

respectively. As the result

for n=2, 3 and 4, respectively.

The relative axial chromatic
computed. The results of calculations are shown in the table 3

 
  
 
 

 

  Figure (4-5): The axial chromatic aberration coefficients at the focus for first three 

indices of the zero as a function of excitation parameter (

magnetic lenses with the field distributions of the form B(z)
3 and 4.  
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computed. The results of calculations are shown in the table 3
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Table 3: The relative axial chromatic aberration coefficients C#\z�	 and C#\f, at the 

focus for first three indices of the zero, of monopole, dipole and quadrupole 

magnetic lenses (note that the results were calculated to the eighth decimal 

order). 

Magnetic lenses Index of the zero C#\z�	 C#\f 

Monopole (n=2) 

First 0.5 0.5 

Second 0.5 0.5 

Third 0.5 0.5 

Dipole (n=3) 

First 0.24999999 0.55821988 

Second 0.24999999 0.98207718 

Third 0.24999999 1.35169873 

Quadrupole (n=4) 

First 0.16666665 0.57929693 

Second 0.16666665 1.10667753 

Third 0.16666665 1.58811633 

The table 3 shows that the relative axial chromatic aberration coefficient C# z�⁄  
for each case of n has constant value for each value of index of the zero. 

If magnetic lenses are compared with each other as in table 3, one can observe 

that the increasing of the power n leads to decrease	C# z�⁄ 	.  

However, the relative axial chromatic aberration coefficient C# f⁄  for each case 

of n has lowest value at first index for each one of x except the case n=2.  

By comparing between magnetic lenses as in table 3, one can be noted that the 

increasing of the power n leads to increase C# f⁄  except the case n=2. 

B- magnification chromatic aberration coefficient 

 To compute the magnification chromatic aberration coefficients at the focus, 

one can be used Eq. (3-65), Eq. (3-67) and Eq. (3-69) for n=2, 3 and 4, 

respectively. The results of calculations for these coefficients are shown in table 4. 
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Table 4: The magnification chromatic aberration coefficients, at the focus for first three 
indices of the zero, of monopole, dipole and quadrupole magnetic lenses (note 
that the results were calculated to the eighth decimal order). 

Index of the zero Monopole (n=2) Dipole (n=3) Quadrupole (n=4) 

First 0.5 0.55821988 0.57929693 

Second 0.5 0.67123511 0.7466715 

Third 0.5 0.74611155 0.8619459 
 

From the table 4, one can find that the magnification chromatic aberration 

coefficients at the focus for each value of n have constant values, but the change in 

the magnification chromatic aberration coefficients due to vary the index of the 

zero except the case n=2, where it has constant value for all indices of the zero. 

The constant values of these coefficients due to independent on 
 ��

���	
�. Also, the 

magnification chromatic aberration coefficient has lowest value at first index of x 

(x2 and x3) for n=3 and 4. 

Referring to the table 4, one can notice that the increasing of the power n leads 

to increase Cm.  

C- rotation chromatic aberration coefficient 

From Eq. (3-74)-Eq. (3-76), one can be computed the rotation chromatic 

aberration coefficients at the focus for n=2, 3 and 4, respectively. The results of 

calculations for these coefficients are shown in table 5. 

Table 5: The rotation chromatic aberration coefficients, at the focus for first three indices 

of the zero, of monopole, dipole and quadrupole magnetic lenses (note that the 

results were calculated to the eighth decimal order). 

Index of the zero Monopole (n=2) Dipole (n=3) Quadrupole (n=4) 

First 1.57079633 1.39044385 1.3287528 

Second 3.14159265 2.9530713 2.88926995 

Third 4.71238898 4.52119185 4.4567831 
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The table 5 shows that the rotation chromatic aberration coefficients at the 
focus for each case of n have constant values corresponding to each value of index 

of the zero. These constant values of Cθ due to the independent on		 ��
���	

. As well, 

these coefficients have lowest values at first index of the zero corresponding to 
each one of x (x1, x2 and x3). 

The positive sign of these coefficients means that the tangential deviation of the 

image point due to an increasing of accelerating voltage is the same direction to 

that of image rotation. 

From comparison among different magnetic lenses as in the table 5, one can be 

observed that the increasing of the power n leads to slightly decrease	C$. 

The results of calculation in the present work by analytical method are 
shown in table 6, 7, and 8 together with those calculated through the 
Hawkes’s analytical method, Crewe’s results and the Liu’s DA results for 
comparison (the results through different methods are taken from [Liu 
2003]). 

Table 6: The optical properties of monopole lenses at the focus have been calculated by 
using different methods: a) DA method; b) Analytical method; and c) Crewe’s 
method; d) Result from present study. * Sign “–“ indicates that the aberration 
integral was performed from infinity to the focus.   

Zero Methods f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 

a 1.0000000 0.17933182 0.50001161     

b 1.0000000 0.17933181 0.50000000     

c 1.00 -0.18* 0.50     

d 1 0.17933181 0.5 0.17933181 0.5 0.5 1.57079633 

Second 

a 0.9999999 0.16983296 0.50001167     

b 1.0000000 0.16983295 0.50000000     

c 1.00 -0.17* 0.50     

d 1 0.16983295 0.5 0.16983295 0.5 0.5 3.14159265 

Third 

a 1.0000000 0.16807391 0.50001112     

b 1.0000000 0.16807391 0.50000000     

c 1.00 -0.17* 0.50     

d 1 0.16807391 0.5 0.16807391 0.5 0.5 4.71238898 
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Table 7: The optical properties of dipole lenses at the focus have been calculated by 
using different methods: a) DA method; b) Analytical method; and c) Crewe’s 
method; d) Result from present study. * Sign “–“ indicates that the aberration 
integral was performed from infinity to the focus.   

Table 8: The optical properties of quadrupole lenses at the focus have been calculated by 
using different methods: a) DA method; b) Analytical method; and c) Crewe’s 
method; d) Result from present study * Sign “–“ indicates that the aberration 
integral was performed from infinity to the focus.   

Zero Methods f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 

a 0.44785218 0.10269970 0.25000056     

b 0.44785219 0.10269968 0.25000000     

c 0.45 -0.10* 0.25     

d 0.44785218 0.10269968 0.24999999 0.22931602 0.55821988 0.55821988 1.39044385 

Second 

a 0.37244770 0.10066346 0.25000046     

b 0.37244770 0.10066346 0.25000000     

c 0.37 -0.10* 0.25     

d 0.3724477 0.10066346 0.24999999 0.27027542 0.98207718 0.67123511 2.9530713 

Third 

a 0.33507052 0.10029477 0.25000034     

b 0.33507053 0.10029476 0.25000000     

c 0.34 -0.10* 0.25     

d 0.3350705 0.10029476 0.24999999 0.29932432 1.35169873 0.74611155 4.52119185 

Zero Methods f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 

a 0.28770505 0.072420788 0.16666670     

b 0.28770505 0.072420784 0.16666667     

c 0.29 -0.072* 0.166     

d 0.28770505 0.07242078 0.16666665 0.25171885 0.5792969 0.5792969 1.3287528 

Second 

a 0.22321278 0.071672189 0.16666666     

b 0.22321278 0.071672190 0.16666667     

c 0.22 -0.072* 0.166     

d 0.223212782 0.07167219 0.16666665 0.32109357 1.1066775 0.7466715 2.8892699 

Third 

a 0.19336092 0.071537400 0.16666665     

b 0.19336092 0.071537398 0.16666667     

c 0.19 -0.072* 0.166     

d 0.193360918 0.0715374 0.16666665 0.36996824 1.5881163 0.8619459 4.4567831 
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4-3 Magnetic Deflectors 

4-3-1 Magnetic field distribution by using the MOL concept 

The MOL concept is used to find the deflection field of magnetic deflector. By 

using the MOL, one can find the design of magnetic deflector by knowing the 

design of magnetic lens or the axial magnetic field distribution of lens, depending 

on Eq. (2-6). In the present work, the field of magnetic deflector is found by 

knowing the axial magnetic field distributions of lens which are given by Eq. (2-3). 

The axial flux density distribution of deflector D(z) is computed by applying 
Eq. (2-6) where ( )B z′  is computed with the aid of Eq. (2-3). Then, the fields of 

magnetic deflector are shown in figure (4-6) for each value of n at constant (a) and 
(d). 
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 (c) For n=4. 
  Figure (4-6): The axial flux density distributions of magnetic deflector with the fields of 

the form D(z)	∝ z-n-1 for n=2, 3 and 4. 
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4-3-2 Trajectory of electron beam 

By applying Eq. (3-9)-Eq. (3-11) for n=2, 3 and 4, respectively, the trajectories 

of electron beam a long magnetic fields of deflectors can be computed at the value 

of the excitation parameter equal 13.424 (
���.	
��

���	��.�

� (i.e. k=5). The trajectory of 

electron beam when n = 2 for magnetic deflector is the same as the trajectory of 

electron beam for magnetic lens when n=3. This case occurs because of the field 

distribution of deflector in this case is the same as the field distribution of lens, so 

the trajectory in this case was shown previously by figure (4-2b). While the 

trajectories of electron beam for the case n=3 and 4 are shown in figure (4 -7). The 

initial conditions for computing the trajectory of electron beam are given by: 

0 0

0 0

0 0
( ) 0 ( ) 0

0 0
( ) 0 ( ) 0

lim ( ) 1                          lim ( ) 0

lim ( ) 0                           lim ( ) 1 

g z g z

h z h z

g z g z

h z h z

→ →

→ →

′= =

′= =  

         

Figure (4-7): Trajectories of electron beam at the excitation parameter 13.424 
���.	
��


���	��.�
� 

for magnetic deflector with the field distributions of the form D(z)	∝	z-n-1 

for n=3 and 4. 

From this figure and figure (4-2b), one can note that the behavior of trajectory 

of electron beam in magnetic deflectors which is computed by using MOL concept 

like the behavior of trajectory of electron in magnetic lenses. This case occurs 
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because of the magnetic fields in magnetic deflector by following MOL concept is 

a derivative of the magnetic field of the lens. At constant (d), When compute the 

magnetic field of deflector when n=2, it appears the magnetic field of the lens 

when n = 3 and therefore it will get on the same the trajectory of electron. While in 

the case of magnetic field of deflector when n=3, it almost the same as the 

magnetic field of the lens when n=4, so the trajectory of the electron almost the 

same, but there are some difference, ect.  

4-3-3 Focal length 

By employing Eq. (3-28), Eq. (3-30) and Eq. (3-31) for n=2, 3 and 4, 

respectively, the focal length for magnetic deflector at the focus has been 

computed. The focal length when n=2 for magnetic deflector is the same as the 

focal length for magnetic lens when n=3, so it was shown previously by figure (4-

3b). While for the case n=3 and n=4, the focal lengths are shown in figure (4-8). 

           

Figure (4-8): Focal length at the focus for first three indices of the zero as a function of 

excitation parameter 
 ��

���	
� for magnetic deflectors with the field 

distributions of the form D(z)	∝ z-n-1 for n=3 and 4. 

Figure (4-8) and figure (4-3b) indicate that the focal length for each value of n 

is directly proportional with excitation parameter. Moreover, the focal length for 

magnetic deflector for each case of n has lowest value at third index of the zero 
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corresponding to each value of x (x2, x3 and x4). This behavior is like the behavior 

which occurs in magnetic lenses. 

The comparison among figures (4-3b), (4-8a) and (4-8b) shows that the 

increasing of the power n leads to decrease the focal length. This case occurs 

because the focal lengths are proportional with 	k� �⁄ , k� �⁄ 	and	k� %⁄  for n=2, 3 and 

4, respectively. Accordingly, they are proportional with	
 ��

���
�� �⁄ ,
 ��

���
�� �⁄  and 


 ��

���
�� %⁄  for n=2, 3 and 4, respectively. 

 The relative focal length f z�⁄  is computed for magnetic deflectors when n=3 

and 4. While the relative focal length for magnetic deflector when n=2 is the same 

as the relative focal length for magnetic lens when n=3. The results of calculations 

are shown in table 9. 

Table 9: The relative focal length, at the focus for first three indices of the zero, of 

magnetic deflector with the field distributions of the form D(z)	∝ z-n-1 for n=2, 

3 and 4 (note that the results were calculated to the eighth decimal order). 

Index of the zero D(z)	∝ z-3  (n=2) D(z)	∝ z-4  (n=3) D(z)	∝ z-5  (n=4) 

First 0.44785219 0.31666038 0.21180208 

Second 0.37244770 0.24567746 0.15842764 

Third 0.33507053 0.21282123 0.13459751 

 

It is seen from table 9 that the relative focal length for each value of n has the 

lowest value at third index for each one of x (x2, x3 and x4). 

If the magnetic deflectors are compared with each other as in table 9, one can 

observe that the increasing of the power n leads to decrease the relative	f z�⁄  . This 

behavior is like the behavior that it is occurred in magnetic lenses. 
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coefficients for magnetic deflectors

aberration coefficient 

The spherical aberration coefficients at the focus have been computed using Eq.

6) and Eq. (3-47) for n=2, 3 and 4, respectively. The spherical 

aberration coefficient for deflector when n=2 is the same 

aberration coefficient for magnetic lens when n=3, so it was

the results of calculations for these coefficients

are shown in figure (4-9). 
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eflectors 

focus have been computed using Eq. 
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k� �⁄ , k� �⁄ 	and k� %⁄  for n=2, 3 and 4, respectively. Consequently, they are 

proportional with	
 ��

���
�� �⁄ ,
 ��

���
�� �⁄  and 
 ��

���
�� %⁄  for n=2, 3 and 4, respectively. 

In the following table, the relative spherical aberration coefficient C! z�⁄  and 
C! f⁄  are computed for n=3 and 4. While the relative spherical aberration 

coefficient for deflector when n=2 is the same as the relative spherical aberration 

coefficient for magnetic lens when n=3. The results of calculations are shown in 

the table 10. 

Table 10: The relative spherical aberration coefficients C!\z�	 and C!\f, at the focus for 

first three indices of the zero, of magnetic deflector with the field distributions 

of the form D(z)	∝ z-n-1 for n=2, 3 and 4 (note that the results were calculated to 

the eighth decimal order). 

Magnetic deflectors Index of the zero C!\z�	 C!\f 

D(z)	∝ z-3  (n=2) 

First 0.10269968 0.22931602 

Second 0.10066346 0.27027542 

Third 0.10029476 0.29932432 

D(z)	∝ z-4  (n=3) 

First 0.0180782 0.05709018 

Second 0.01508382 0.06139685 

Third 0.01454465 0.06834212 

D(z)	∝ z-5  (n=4) 

First 0.00587673 0.02774631 

Second 0.00406311 0.02796766 

Third 0.00373729 0.03027953 

 

The table 10 shows that the relative spherical aberration coefficient C!\z�	 for 

each value of n has lowest value at third index for each one of x (x2, x3 and x4). 

 The comparison of magnetic deflectors with each other as in table 10 shows 

that the increasing of the power n leads to decrease	C!\z�	.This behavior is like the 

behavior that it occurs in magnetic lenses. 
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other hand, the relative spherical aberration coefficient
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relative spherical aberration coefficient C!\f for each 
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From this figure and figure (4-5b), one can note that the axial chromatic 

aberration coefficient for each value of n is directly proportional with excitation 

parameter. As well, the axial chromatic aberration coefficient for each value of n 

has lowest value at third index for each one of x (x2, x3 and x4). This behavior is 

like the behavior that it is occurred in magnetic lenses. 

 If figures (4-5b), (4-10a) and (4-10b) are compared, they show that the 

increasing of the power n leads to decrease the axial aberration coefficient. This 

case occurs because the axial chromatic aberration coefficients are proportional 

with k� �⁄ , k� �⁄ 	and	k� %⁄  for n=2, 3 and 4, respectively. Consequently, they are 

proportional with	
 ��

���
�� �⁄ ,
 ��

���
�� �⁄  and 
 ��

���
�� %⁄  for n=2, 3 and 4, respectively. 

The relative axial chromatic aberration coefficient C#	 z�	⁄  or C#	 f⁄  are computed 

for n=3 and 4. While the relative axial chromatic aberration coefficient for 

deflector when n=2 is the same as the relative axial chromatic aberration 

coefficient for magnetic lens when n=3. The results of the calculations for these 

relative coefficients are shown in table 11. 

Table 11: The relative axial chromatic aberration coefficients C#\z�	 and C#\f, at the 

focus for first three indices of the zero, of magnetic deflector with the field 

distributions of the form D(z)	∝ z-n-1 for n=2, 3 and 4 (note that the results were 

calculated to the eighth decimal order). 

Magnetic deflectors Index of the zero C#\z�	 C#\f 

D(z)	∝ z-3  (n=2) 

First 0.24999999 0.55821988 

Second 0.24999999 0.98207718 

Third 0.24999999 1.35169873 

D(z)	∝ z-4  (n=3) 

First 0.07407407 0.23392275 

Second 0.07407407 0.30150937 

Third 0.07407407 0.3480577 

D(z)	∝ z-5  (n=4) 

First 0.03125 0.14754338 

Second 0.03125 0.19725087 

Third 0.03125 0.23217366 
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As shown in the table 11, the relative axial chromatic aberration coefficient 

C#	 z�	⁄  for each case of n has constant value for each indices of the zero.  

From comparison among the different magnetic deflector as in table 11, one can 

note that the increasing of the power n leads to decrease	C#	 z�	⁄ . This behavior is 

similar to the behavior which occurs in magnetic lenses. 

However, the relative axial chromatic aberration coefficient C#	 f⁄  for each case 

of n has lowest value at first index for each one of x (x2, x3 and x4). 

By comparing between the different magnetic deflector as in table 11, one can 

observe that the increasing of the power n leads to decrease	C#	 f⁄  . This behavior is 

different to the behavior that it occurs in magnetic lenses. 

B- magnification chromatic aberration coefficient 

For computing the magnification chromatic aberration coefficients at the focus, 

one can be used Eq. (3-67), Eq. (3-70) and Eq. (3-71) for n=2, 3 and 4, 

respectively. The magnification chromatic aberration coefficient for deflector when 

n=2 is the same as the magnification chromatic aberration coefficient for magnetic 

lens when n=3. The results of calculations for these coefficients are shown in table 

12. 

Table 12: The magnification chromatic aberration coefficients, at the focus for first three 
indices of the zero, of magnetic deflector with the field distributions of the 
form D(z)	∝ z-n-1 for n=2, 3 and 4 (note that the results were calculated to the 
eighth decimal order). 

Index of the zero D(z)	∝ z-3  (n=2) D(z)	∝ z-4  (n=3) D(z)	∝ z-5  (n=4) 

First 0.55821988 0.23392275 0.14754338 

Second 0.67123511 0.30150937 0.19725087 

Third 0.74611155 0.3480577 0.23217366 

 

The table 12 is made clear that the magnification chromatic aberration 

coefficients at the focus for each value of n have constant value, but they are 
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changed due to change the index of the zero. The reason of the magnification 

chromatic aberration coefficients have constant value is they are independent on 


 ��

���	
�. Also, the magnification chromatic aberration coefficient has lowest value at 

first index for each one of x (x2, x3 and x4). This behavior is similar to the behavior 

which is occurred in magnetic lenses. 

From comparison among the different magnetic deflectors as in table 12, one 

can be noticed that the increasing of the power n leads to decrease Cm. This 

behavior is different to the behavior which occurs in magnetic lenses.  

C- rotation chromatic aberration coefficient 

From Eq. (3-75), Eq. (3-77) and Eq. (3-78) for n=2, 3 and 4, respectively, one 

can be computed the rotation chromatic aberration coefficients at the focus. The 

rotation chromatic aberration coefficient for deflector when n=2 is the same as the 

rotation chromatic aberration coefficient for magnetic lens when n=3. The results 

of calculations for these coefficients are shown in table 13. 

Table 13: The rotation chromatic aberration coefficients, at the focus for first three 
indices of the zero, of magnetic deflector with the field distributions of the form 
D(z)	∝ z-n-1 for n=2, 3 and 4 (note that the results were calculated to the eighth 
decimal order). 

Index of the zero D(z)	∝ z-3  (n=2) D(z)	∝ z-4  (n=3) D(z)	∝ z-5  (n=4) 

First 1.39044385 0.8858352 0.64878 

Second 2.9530713 1.92617997 1.428585 

Third 4.52119185 2.97118873 2.2122225 

 

 

 

 

 It is appeared from this table that the rotation chromatic aberration 

coefficient at the focus for each value of n has constant value corresponding to 

each one of index of the zero, this mean that it is independent on	
 ��

���	
�. 

Moreover, this coefficient has lowest value at first index for each one of x (x2, x3 

and x4). This behavior is like the behavior that it occurs in magnetic lenses. By 

comparing among different magnetic deflector as in table 13, one can note that 

the increasing of the power n leads to decrease Cθ.  
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The results of calculation for magnetic deflectors at the focus for each case of n, 
which are computed by analytical method in the present work, are shown in table 
14, 15 and 16.  

 

Table 14: The optical properties of magnetic deflector which has the field in the form 
D(z)	∝ z-n-1 with n=2 at the focus calculated by using analytical method.   

Zero f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 0.44785219 0.10269968 0.24999999 0.22931602 0.55821988 0.55821988 1.39044385 

Second 0.37244770 0.10066346 0.24999999 0.27027542 0.98207718 0.67123511 2.9530713 

Third 0.33507053 0.10029476 0.24999999 0.29932432 1.35169873 0.74611155 4.52119185 

Table 15: The optical properties of magnetic deflector which has the field in the form 
D(z)	∝	z-n-1 with n=3 at the focus calculated by using analytical method. 

Zero f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 0.31666038 0.0180782 0.07407407 0.05709018 0.23392275 0.23392275 0.8858352 

Second 0.24567746 0.01508382 0.07407407 0.06139685 0.30150937 0.30150937 1.92617997 

Third 0.21282123 0.01454465 0.07407407 0.06834212 0.3480577 0.3480577 2.97118873 

Table 16: The optical properties of magnetic deflector which has the field in the form 
D(z)	∝ z-n-1 with n=4 at the focus calculated by using analytical method. 

Zero f/zf Cs/ zf Cc/ zf Cs/ f Cc/ f Cm Cθ 

First 0.21180208 0.00587673 0.03125 0.02774631 0.14754338 0.14754338 0.64878 

Second 0.15842764 0.00406311 0.03125 0.02796766 0.19725087 0.19725087 1.428585 

Third 0.13459751 0.00373729 0.03125 0.03027953 0.23217366 0.23217366 2.2122225 
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Chapter One 

Introduction 

It is axiomatic that any device which permits the discernment of details finer 

than those that are visible with the naked eye, is of great scientific value. Thus the 

discovery of the electron optics has initiated a new era of investigation into many 

aspects of physical and biological science. 

In 1828 Hamilton was noted that there is the close analogy between classical 

mechanics and geometrical light. However at the third decade of the last century, 

this analogy strongly leads to give birth to a new branch of physics called later by 

charged particle optics or most common by Electron Optics [El-Kareh and El-

Kareh 1970].     

Electron optics, in fact, is based on two fundamental discoveries made in 1925 

by de Broglie and in 1927 by Busch. De Broglie postulated on ground of 

theoretical considerations that one must attribute a wave with each moving 

particle. At about the same time, Busch discovered that the magnetic field of 

solenoid acts on electrons in exactly the same way as a glass lens on the light rays. 

Actually these two essential discoveries led Ruska to conclude the possibility to 

build up a microscope which uses electrons instead of photons. Hence, he 

successfully realized the first transmission electron microscope (TEM) in 1931 

[Harald 2008]. 

Therefore, electron optics becomes a theory and practice of production, 

controlling and utilization of charged particle beam. In other word, one may say 

that the branch of physics that deals with the problems of charged particle beams 

motion throughout electromagnetic field is known as electron optics. 

     With the analogy between light and electron optics there are fundamental 

limitations that should be taken into account.  Some of these limitations are listed 

as follows [El-Kareh and El-Kareh 1970]: 



Chapter One                                                                                                                                           Introduction 

 

2 

 

1- In light optics, refractive index of light lenses changes abruptly between 

materials of different indices of refraction. In electron optics, the changes are 

continuous.   

2- Both the energy and momentum of the electron are continuously variable                 

 and can be changed arbitrarily. This is not the case in light optics. 

3- A good vacuum must be satisfied for traveling of charged particle beams due 

to the rapid absorption and scattering of particles by gases, while light rays are 

free. 

4- Almost all lenses in electron optics are convergent, while in light optics 

convergent as well as divergent lenses are used.  

In many electron beam instruments, such as scanning electron microscopes and 

scanning electron beam lithography systems are usually use a magnetic lens to 

focus a charge particle beam and magnetic deflection coils mounted within the lens 

to purpose scanning the beam over a surface. 

 The most common and classical type of deflection is used in cathode ray tubes, 

lithography machines, scanning electron microscopes, electron accelerators, 

electron-beam manufacturing technologies and some other analytical instruments 

[Szilagyi 1988].  

In the present work, we will address only to the magnetic lens and deflector in 

detail but for the other types of lenses and electrostatic deflector can be seen for 

example; [El-Kareh and El-Kareh 1970; Szilagyi 1988; Hawkes and Kasper 1989].  

1-2 Electron Lenses 

Electron lens, in general, can be defined as an instrument which collects a 

moving beam of charged particles or focuses them to the same point. The electron 

lens acts on the charged particle beams (electrons or ions) to be focused and 

imaged similar to that of glass lens on the light.  A set of electrodes held at suitable 

distances and voltages will be produced electrostatic fields, while the magnetic 

fields can be produced by current-carrying coils [Szilagyi 1988].   

The main three types of the electron lenses are electrostatic lenses, permanent 

magnetic lenses and magnetic lenses.  
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1-2-1 Magnetic lenses 

Any axially symmetric magnetic field produced by circular coils with or 

without ferromagnetic materials acts as a magnetic lens [Szilagyi 1988].  When the 

electrons travel through the magnetic field in electron optical systems, this field 

enables electrons to be focused and imaged. This means that a magnetic field has 

an imaging property.  

The optical properties of the magnetic lenses are dependent on the charge-to-

mass quotient of the particle [Szilagyi 1988].  

There are two effects of a magnetic electron lens on the moving electron beams, 

the first one, is a deflection towards the optical axis identically to the focusing 

effect of a converging lens in light optics. The second is an additional rotation 

around the optical axis [Labar 2002]. 

1-2-2 Common types of magnetic lenses 

The magnetic lenses can be classified from many different points of view, for 

example; one can talk about bounded lenses or lenses immersed in fields, whether 

the boundaries of the lens can or cannot found; strong or weak lenses depending on 

whether their focal points are situated inside or outside the field; thick or thin 

lenses; symmetrical or asymmetrical lenses depending upon whether there exists 

middle plane perpendicular to the optical axis about which the geometrical 

arrangement of the lens is symmetrical or not [Hawkes 1982; Szilagyi 1988].   

Magnetic electron lenses can be classified according to the number of their 

polepieces into three types: single polepiece lens, double polepiece lens and triple 

polepiece lens. Also iron-free lenses are one of magnetic lenses types. So these 

types will be explained as the following:  

1-2-2-1 double polepiece magnetic lens 

     This type of magnetic lenses consists of insulated wire or tape windings 

made of conducting material (usually copper) surrounded by a ferromagnetic 

material core of high magnetic permeability which was designed by Ruska in 1933. 
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 The core has coaxial circu

the electrons beam to pass through an air gap of width

circuit between the two polepieces (Figure 1

expressed in terms of the ratio  

Figure (1-1): A schematic diagram of double polepiece magnetic lens

Symmetrical double polepiece magnetic lens could be achieved when the 

bores between the two polepieces are identical, while asymmetrical lens be held 

when the axial bores are not ident

1-2-2-2 single polepiece magnetic l

 In 1972 Mulvey introduced a new design of magnetic lens named ‘Snorkel’ 

lens. When the double polepiece magnetic lens is divided into two halves from the 

middle a single polepiece magnetic lens can be obtained by removing one half.  

The single polepiece ma

optical instruments [Mulvey and Newman 

the single polepiece lens makes fabrication of the lens easier.  The single polepiece 

lens has the advantage that th

vacuum chamber (Figure 1

single polepiece lens can be pushed away from the lens profile itself making the 
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The core has coaxial circular bore of diameter “d”  along the optical axis to allow 

the electrons beam to pass through an air gap of width “ S

en the two polepieces (Figure 1-1).  The properties of these lenses are 

expressed in terms of the ratio �S/�) [Liebmann 1952].                                             

: A schematic diagram of double polepiece magnetic lens

Symmetrical double polepiece magnetic lens could be achieved when the 

bores between the two polepieces are identical, while asymmetrical lens be held 

when the axial bores are not identical. 

single polepiece magnetic lens 

In 1972 Mulvey introduced a new design of magnetic lens named ‘Snorkel’ 

lens. When the double polepiece magnetic lens is divided into two halves from the 

middle a single polepiece magnetic lens can be obtained by removing one half.  

The single polepiece magnetic lens has been taken a great interest in the electron 

optical instruments [Mulvey and Newman 1973; 1974].  The absence of the bore in 

the single polepiece lens makes fabrication of the lens easier.  The single polepiece 

lens has the advantage that the entire lens can be physically situated outside the 

vacuum chamber (Figure 1-2).  The axial magnetic flux density distribution of the 

single polepiece lens can be pushed away from the lens profile itself making the 
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: A schematic diagram of double polepiece magnetic lens [Ahmed 2007]. 

Symmetrical double polepiece magnetic lens could be achieved when the axial 

bores between the two polepieces are identical, while asymmetrical lens be held 
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lens. When the double polepiece magnetic lens is divided into two halves from the 

middle a single polepiece magnetic lens can be obtained by removing one half.  
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optical properties of the lens less depe

and the energizing coil.  

Figure (1-2): Cross-

1-2-2-3 triple polepiece magnetic l

Doublet lens [Juma 1975] consists of two magnetic 

gaps and it is also called triple polepiece magnetic lens [Tsuno and Harada 1981]. 

The two magnetic lenses of the triple lens may be symmetrical or asymmetrical 

depending on the design of each lens (Figure 1

 

 

 

 

 

 

 

 

Figure (1-3): Cross-section of triple polepiece magnetic lens [Tsuno and Harada 1981]
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optical properties of the lens less dependent on the imperfections in the iron circuit 

and the energizing coil.   

-section of single polepiece magnetic lens 

triple polepiece magnetic lens 

Doublet lens [Juma 1975] consists of two magnetic electron lenses of two air 

gaps and it is also called triple polepiece magnetic lens [Tsuno and Harada 1981]. 

The two magnetic lenses of the triple lens may be symmetrical or asymmetrical 

e design of each lens (Figure 1-3).  

section of triple polepiece magnetic lens [Tsuno and Harada 1981]
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ndent on the imperfections in the iron circuit 

 
 [Ahmed 2007]. 

electron lenses of two air 

gaps and it is also called triple polepiece magnetic lens [Tsuno and Harada 1981]. 

The two magnetic lenses of the triple lens may be symmetrical or asymmetrical 

section of triple polepiece magnetic lens [Tsuno and Harada 1981]. 
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1-2-2-4 iron-free lens

This lens is the simplest probe

metallic conductor wire or tape windings woun

4). 

Figure (1-4)

One advantage of the iron

iron circuit lenses.  It is therefore desirable to describe some recent investigations 

of iron-free objective lenses that offer the possibility of developing electron optical 

instruments, both with and without the use of superconducting windings 

2000]. 

1-3 Deflection Systems

A deflection system is an arrangement of electrodes or coils by means of which 

it is possible to exert an influence on the path of an electron ray. 

magnetic deflection systems are different and these depend 

magnetic device. For example; 

conventional transmission electron microscopes, deflection plays a minor role and 

is provided only to permit nonmechanical alignment of the column [Hawkes and 

Kasper 1989].  
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This lens is the simplest probe-forming device; it consists of coils made from 

metallic conductor wire or tape windings wound on non-magnetic core (Figure1

): Iron-free rectangular cross-sections [Ala

One advantage of the iron-free coils is their size reduction with respect 

iron circuit lenses.  It is therefore desirable to describe some recent investigations 

free objective lenses that offer the possibility of developing electron optical 

h with and without the use of superconducting windings 

ystems 

A deflection system is an arrangement of electrodes or coils by means of which 

it is possible to exert an influence on the path of an electron ray. 

magnetic deflection systems are different and these depend 

device. For example; in fixed-beam instruments, essentially in 

conventional transmission electron microscopes, deflection plays a minor role and 

is provided only to permit nonmechanical alignment of the column [Hawkes and 
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magnetic core (Figure1-

 
amir 2000]. 

free coils is their size reduction with respect to the 

iron circuit lenses.  It is therefore desirable to describe some recent investigations 

free objective lenses that offer the possibility of developing electron optical 

h with and without the use of superconducting windings [Alamir 

A deflection system is an arrangement of electrodes or coils by means of which 

it is possible to exert an influence on the path of an electron ray. The roles of 

magnetic deflection systems are different and these depend on the function of 

beam instruments, essentially in 

conventional transmission electron microscopes, deflection plays a minor role and 

is provided only to permit nonmechanical alignment of the column [Hawkes and 
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However, in scanning devices, the deflection systems are needed here for two 

purposes: one is deflection of the focused probe over the specimen in order to form 

an image or to position it at a particular point in order to make a measurement, and 

the other is for beam-blanking purposes. The former function is invariably carried 

out by magnetic deflection, whereas the latter is usually achieved through 

electrostatic deflection [Khursheed 2011]

at least as important as that of the lenses [Hawkes and Kasper 1989]

As mentioned before, the present study is concern

deflection only. A magnetic deflector usually has current

arranged on a surface of revolution about z

horn. The winding may be in the form of either a saddle or toroidal type, and the 

deflector itself can be placed

diagram for toroidal and saddle 

arrows indicate the direction of current flow [Khursheed 2011].  

                      Toroidal 

Figure (1-5): Schematic drawing of primary beam magnetic deflectors [Khursheed 2011]. 

A significant difference between electrostatic and magnetic deflector is their 

relative deflection sensitivity. Electrostatic

sensitivity and thus needs high driving voltages, while magnetic field has a high 

deflection sensitivity and thus requires low driving currents. Scan generators for 

y 
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However, in scanning devices, the deflection systems are needed here for two 

purposes: one is deflection of the focused probe over the specimen in order to form 

an image or to position it at a particular point in order to make a measurement, and 

blanking purposes. The former function is invariably carried 

out by magnetic deflection, whereas the latter is usually achieved through 

the design of deflection systems is 

portant as that of the lenses [Hawkes and Kasper 1989]. 
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A magnetic deflector usually has current-carrying conductors 

axis in the form of a cylinder tapered 

horn. The winding may be in the form of either a saddle or toroidal type, and the 

next symmetric magnetic materials. A schematic 

deflection yoke are shown in figure (1-5). The 

arrows indicate the direction of current flow [Khursheed 2011].    
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Schematic drawing of primary beam magnetic deflectors [Khursheed 2011].  

A significant difference between electrostatic and magnetic deflector is their 

deflection has a low deflection 

sensitivity and thus needs high driving voltages, while magnetic field has a high 

deflection sensitivity and thus requires low driving currents. Scan generators for 
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magnetic coils are simpler than electrostatic ones. The major disadvantage of a coil 

comes from its eddy currents, which limit its scan frequency [Khursheed 2011]. 

The study of the optics of deflection systems passes through essentially the 

same stages as those already encountered for round lenses or quadruples; the novel 

aspects arise from the new symmetry conditions [Hawkes and Kasper 1989]. 

1-4 Historical Development   

1-4-1 Magnetic lenses 

The theory and practice of electron focusing was developed principally with the 

needs of electron microscopy. In particular transmission electron microscopy, the 

electrons must pass through the electron optical system unimpeded and this 

precluded the use of any physical object on the axis. More recently, there had 

evolved a need for the use of low voltage electrons in the SEM. These electrons are 

so slow that they do not pass through the specimen and this means that the incident 

beam and the electrons containing the image information all occur in one 

hemisphere. The region below the specimen is then made available and there is no 

longer any restriction on placing iron on the axis [Crewe 2001]. 

This opens up the possibilities for new lenses and there is a wide variety of lens 

designs that could be used.  

Mulvey studied the use of a single pole electromagnetic lens and indicated that 

it had good electron optical properties. He also indicated that a dipole magnetic 

field might be a good model for the field produced by such a lens, although that 

field would be severely modified by the coil excitation [Hawkes 1982]. 

In looking for new lens designs it was guided by the observation that if it was 

able to make a hyperbolic magnetic field (B(z) ∝	1/z), the trajectory that focuses at 

the singularity is a parabola and then the integrand for Cs is zero [Crewe 1977]. It 

could not make such a field, but one could make fields that approximate 

monopoles which the field in the form B(z) ∝	1/z2, dipoles which the field in the 

form B(z) ∝ 1/z3 etc. 



Chapter One                                                                                                                                           Introduction 

 

9 

 

In 1996 Crewe and Kielpinski found that the focal length, spherical and 

chromatic aberration coefficients of dipoles magnetic lenses could be expressed 

simply when they were normalized to the dipole moment [Crewe and Kielpinski 

1996]. Subsequently, Crewe extended the study to two other members of the 

multipole magnetic lenses family through numerical and digital methods and 

obtained some interesting results on the electron optical properties of monopole, 

dipole and quadrupole lenses [Crewe 2001].  

In 2002 Hawkes used the properties of Bessel function to predict the most of 

Crewe’s finding for the same magnetic lenses. In this study, he included the 

analytical method to obtain on the optical properties which found by Crewe 

[Hawkes 2002].  

One year later, the optical properties of monopole, dipole and quadrupole 

magnetic lenses had been demonstrated by Liu. The differential algebraic (DA) 

method and analytical expression were adopted in this study [Liu 2003]. 

 Meanwhile, the rotation free-system of projector magnetic lenses in the form of 

an inverse power law was studied by Alamir and the value of chromatic change of 

magnification and rotation were estimated [Alamir 2003a].  

Also, the spiral distortion in for such projector magnetic lenses had been studied 

by Alamir [Alamir 2003b]. 

In 2004 Crewe studied the focusing properties of magnetic fields of the form 

B�z) ∝	zn for all integer n except the cases when n=-1and n=0. The calculations in 

this study by using numerical ray tracing were carried out for first and second 

indexes of the zero only [Crewe 2004].  

In the same year, Alamir studied the chromatic aberration coefficients for 

objective and projector magnetic lenses with the field distribution in the forms of 

inverse power law by using analytical and digital methods. Also, the chromatic 

aberration coefficients for one of the theoretical models that represent the single-

pole magnetic lens were calculated to express the magnitude analytically [Alamir 

2004]. 
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 One year later, the spherical and chromatic aberration coefficients for the same 

magnetic field model were calculated by Alamir to express the magnitude 

analytically. The results for this study were presented in a Tretner’s form to 

determine the optimum performance of magnetic lenses [Alamir 2005].  

Subsequently, the performance of magnetic lenses in the form B(z) ∝	zn, where 

n has positive integer, had been studied by Alamir in 2009. By using Tretner’s 

form, the different objective lenses had been compared in this study [Alamir 

2009a]. 

Also in 2009 by Alamir, the spiral and radial distortions of magnetic lenses with 

field distribution in the form B(z) ∝	zn were analyzed by means of Scherzer’s 

formula. In this study, the quality factor had been found for both the spiral and 

radial distortion to estimate the performance of the image in electron microscope 

for projector magnetic lenses [Alamir 2009b].  

Later, the chromatic aberration coefficients for both objective and projector 

magnetic lenses which fields in the form B(z) ∝	zn had been studied by Alamir 

[Alamir 2011]. 

1-4-2 Magnetic deflectors  

New ideas had been introduced for magnetic deflector. Munro listed the 

geometric and chromatic aberration integrals for purely magnetic deflection and 

round lens systems and also derived the formulae for calculating the first-order 

optical properties [Munro 1974].  

One year later, he introduced method for computing the optical properties of 

any combination of magnetic lenses and deflection yokes, including the most 

general case in which the lens and deflector fields may physically be superimposed 

[Munro 1975]. 

The general formulae had been expressed to include all possible focusing and 

deflection effects of both magnetic and electrostatic type. These formulae were 

derived by Soma [Soma 1977].  
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A systematic analysis of aberration for post-lens deflection, double deflection 

before the lens and “moving objective lens” (MOL) had been found by Ohiwa 

[Ohiwa 1978, 1979 and Ohiwa et al. 1971].  

Also, the aberration coefficients of a double-deflection unit for which the 

second deflector coincides with a round magnetic lens field were listed in Kuroda 

[Kuroda 1980].  

Lencova found the more general formulae for adding deflections aberrations 

[Lencova 1981]. These formulae were applied to several practical situations by 

Lencova [Lencova 1988]. 

An electron optical focusing and deflection system for electron beam 

lithography had been developed by Pfeiffer et al. which eliminates off‐axis 

aberrations up to the third order including transverse chromatic errors by means of 

a variable axis lens (VAL) [Pfeiffer et al. 1981]. 

The series of papers had been introduced by Munro and Chu [Munro and Chu 

1982 I, II, III and IV], the first two papers devoted to the numerical analysis of 

electron beam lithography systems so they concerned with field calculation. While 

the third gave a list of aberration integrals which could be used to study systems 

consisting of any combination of magnetic and electrostatic lenses and deflectors 

and the fourth concerned with computation optimization of complex systems.  

Subsequently, the fifth order aberration coefficient formulae for deflective 

focusing systems had been derived by several researchers; [ Kangyan and Tang 

1999; Li et al. 1993 and Uno et al. 1995].  

Meanwhile, variational deflection aberration theory had been further developed 

by Ximen et al. for deflection systems with curved axes at extra-large deflection 

angles (up to 120o). The variational method allowed us to calculate second- and 

third-order deflection aberrations with respect to a curved axis by means of 

gradient operations on eikonal (the function of optical length) [Ximen et al. 1995].  

One year later, a unified deflection aberration theory had been developed by 

Ximen et al. for nonhomogeneous magnetic deflection system with curvilinear or 

rectilinear axis. By using variable method, primary-order deflection aberrations 
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with respect to curvilinear or rectilinear axis could be universally calculated by 

means of gradient operations on eikonal [Ximen et al. 1996a].  

Also, by following the variational deflection aberration theory, a magnetic 

deflection system consisting of homogeneous deflection field and a homogeneous 

sextupole field had been further investigated by them. For such a magnetic 

deflection system, both the Gaussian trajectory and all second and third-order 

aberrations had been calculated analytically and expressed by algebraic-

trigonometric formulae suitable for computer computations [Ximen et al. 1996b]. 

The variable axis lens (VAL) concept, which was based upon the power series 

expansion of the lens field, had been introduced by Zhao and Khursheed. 

Theoretically, this concept limited to situations where the focusing and in-lens 

deflection fields were of the same type, usually magnetic. In this study, a general 

VAL condition was derived from the paraxial trajectory equation that was 

applicable to any combined focusing and in-lens deflection system with mixed 

magnetic and electrostatic fields [Zhao and Khursheed 1999].  

Wang et al. developed differential algebraic method (DA), which implement the 

DA method to arbitrary high order in visual C++, and applied it to the analysis of 

electron lenses and deflection systems separately [Wang et al. 2000]. In fact the 

facility of differential algebraic method had been used widely by many researchers 

since the beginning of the present century see for example [Hosokawa 2002; Wang 

et al. 2002 and Kang et al. 2009].  

The magnetic and electrostatic deflector by including the MOL concept had 

been studied by Oday in 2005. The optimum design of each one of them which 

give rise to the minimum spherical and chromatic aberration had been obtained. In 

this study, the saddle deflection coil used as the source of magnetic field and then 

the field distribution determined by using particular famous model such as Glaser 

bell shaped and Grivet models [Oday 2005]. 

 The aberration theory of a new type of combined electron focusing-deflection 

system had been studied by Yan et al. [Yan et al. 2007].  
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One year later, the magnetic deflection and focusing system by following the 

MOL concept had been studied by Ahmed to find the optimum design of magnetic 

deflection and focusing system. In this study, the toroidal deflection coil used as 

the source of magnetic field and then the field distribution determined by using an 

exponential function [Ahmed 2008]. 

1-5 Aim of Work 

The analytical method will be used in the present work to derive the formulae 

of optical properties for magnetic lenses with field distributions in the form 

B(z)∝ z��	; n=2, 3, 4 and to derive the formulae of optical properties for magnetic 

deflector which magnetic fields will be computed by including MOL concept. 

Also, the first- and third-order optical properties such as trajectory of electron 

beam, focal length, chromatic and spherical aberration coefficients for magnetic 

lens and deflector at the focus will be computed by using the deriving formulae. 

The results of calculations for these optical properties will be obtained by using 

MATHCAD 14 package, where the computer program is written to find the results.  

Also, the minimum values of aberration coefficients will be selected by taking 

different values of the power n and the index of the zero corresponding to each 

value of n. 

1-6 Thesis Layout 

The thesis is generally divided into five chapters with one appendix to 

supplement the calculation detail presented in the main body of the thesis. The 

contents of the various chapters are as follows: 

The second chapter is devoted to the theoretical considerations in electron 

optics, each component of magnetic system (lens, deflector) is fully described in 

terms of different parameters such as trajectory of electron beam, position of foci, 

focal lengths and aberration coefficients. Furthermore, these parameters are 

detailed by the basic equation of electron optics appropriate to the situation under 

study. 
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In the chapter three, the formulae for expressing to each parameter are derived 

by implement the analytical method for every component of magnetic system. 

In chapter four, the formulae which are derived in chapter three are used to find 

all parameters of magnetic system. Our results are obtained by using MATHCAD 

14 package, where the computer program is written to find the results. 

The fifth chapter has listed the remakes, interested observations and some of 

recommendations for future work. 

The thesis ends with one appendix which includes the derivative of the 

trajectories equation of magnetic deflectors by following MOL concept. 

Lastly, there is the bibliography. 
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Chapter Three 

Mathematical Structures 

3-1 Introduction 

In many electron probe instruments, such as scanning electron microscopes, 

scanning electron beam microfabraction systems, an electron beam is focused on a 

surface by using a magnetic lens and simultaneously the beam is scanned across 

the surface by a magnetic deflector system [Munro 1974].  

The lens and deflection fields in many systems are superimposed on each other. 

In such case, the effects of the lens and deflector fields are inseparable, and the 

system should be analyzed as a single entity. However, the lens and deflector are 

separate with studied theoretical basis. In this case, the properties of the lens and 

deflector can be calculated separately and the results can be cascaded to give the 

overall properties [Munro 1974]. 

In the present chapter, the formulae for calculating the optical properties of 

magnetic lens and deflector are derived separately using analytical method.  

3-2 Trajectory Equations of The Electron Beam in The Axial 

Symmetric Magnetic System 

The paraxial equation which describes electron trajectories in the axial 

symmetric magnetic system (lens and deflector) which is given by Eq. (2-1) can be 

solved in terms of Bessel functions for the fields are given by  Eq. (2-3) and Eq. (2-

6). For the magnetic lens, it was derived by Hansel [Hawkes and Kasper 1989]. 

3-2-1 Trajectory  equations of the electron beam in magnetic lenses 

The corresponding trajectories of electron beams in magnetic lenses for fields in 

the form B(z)	∝	z-2, B(z)	∝	z-3 and B(z)	∝	z-4 are given by [Hawkes 2002]: 
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1
2

1
2

k

z
z A zr( )=   J ( )      for monopole (3-1)   

( ) 2

1
2

1
4

k

2z
z B zr  J ( )=      for dipole  (3-2)   

( ) 3

1
2

1
6

k

3z
z C z  r =  J ( )      for quadrupole (3-3)   

where A, B and C are constants. These constants can be inserted in previous 

trajectory equations when z is a large value [Hawkes 2002]. 

For the case n=2, the constant A becomes:  

( )
1
22 3

= ( )
2

A
k
Γ          (3-4) 

where Γ(x) is Gamma function. 

For the case n=3, the constant B becomes:  

( )
1
44 5

( )
4

B
k
Γ=          (3-5) 

For the case n=4, the constant C becomes:  

( )
1
66 7

( )
6

C
k

= Γ      (3-6) 

where k is given by [Hawkes 2002]: 

0

r

 = 
ηBk

2 V
          (3-7) 

or it is given by [Alamir 2004]: 

r

0.3725
NIk
V

=          (3-8) 

where NI is magnetic field excitation. 
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3-2-2 Trajectory equations of the electron beam in magnetic 

deflectors 

In the case of magnetic deflector, the paraxial equation which describes electron 

trajectories in the axial symmetric magnetic system which is given by Eq. (2-1) can 

be solved analytically also in terms of Bessel functions for fields which are given 

by Eq. (2-6) and the magnetic field of lenses are given by Eq. (2-3). 

For fields in the form D(z)	∝	z-3, D(z)	∝	z-4 and D(z)	∝	z-5, the corresponding 

trajectories of electron beams in magnetic deflector are derived and the results are 

given by [see appendix]: 

( ) 2

1
2

1
4

k

2z
z B zr  J ( )=

   
for n=2  (3-9)  

( ) 3

1
2

1
6

3k

4z
z D zr  J ( )=                for n=3 (3-10)  

( ) 4

1
2

1
8

k

z
z E z  r =  J ( )   for n=4 (3-11) 

where B, D and E are constants. These constants can be inserted in previous 

trajectory equations when z is a large value. The constant B is defined by Eq. (3-5) 

while the constants D and E are given by: 

( )
1
63 7

( )
62

D
k
Γ=     (3-12) 

( )
1
82 9

( )
8

E
k
Γ=     (3-13) 

3-3 Positions of Foci 

The electron beams cross the axis of magnetic system at special points. These 

special points are called the position of foci or the focal points which is denoted by 

zf. 
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When Bessel function passes through zero, the electron is focused on the axis of 

the lens [Hawkes 2002]. The various Bessel function passes through zero for 

specific values of the argument, depending upon the order (corresponding to 

monopole, dipole, ect.) and the index of the zero (first, second, ect.) [Liu 2003]. 

The analogy define for positon of foci can be used in the case of magnetic 

deflector. 

Therefore, one should know the index of the zero and the position of the focus 

corresponding to each zero. 

The first three indices of the zero can be taken from Mathematica [Liu 2003]: 

x� = π, 2π	and	3π							                                          for monopole 

x� = 2.7808877,	5.9061426	and	9.0423837		 for dipole            

x� = 2.657505,	5.7785399	and	8.9135662		    for quadrupole   

x� = 2.59512,	5.71434	and	8.84889		    

The values of 	x�	are found in the present study.  

The position of focus corresponding to each zero has been evaluated 

analytically, based on its definition, as the following: 

3-3-1 Foci position for the magnetic lenses 

I-At n=2 

The position of focus corresponding to x� is derived and the result is given by: 

f
1

kz
x

=        for monopole (3-15) 

II-At n=3 

The position of focus corresponding to x� is derived and the result is given by: 

1
2

f
22

kz
x

 
 
 

=       for dipole  (3-16) 

   (3-14) 
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III-At n=4 

The position of focus corresponding to x� is derived and the result is given by: 

1
3

f
33

kz
x

 
 
 

=       for quadrupole (3-17)  

3-3-2 Foci position for the magnetic deflectors 

I-At n=2 

The position of focus in this case is the same as the position of focus for 

magnetic lens when n=3 and it is given by Eq. (3-16). 

II-At n=3 

The position of focus corresponding to x� is derived and the result is given by: 

1
3

f
3

3
4

kz
x

 
 
 

=          (3-18) 

III-At n=4 

The position of focus corresponding to x� is derived and the result is given by: 

1
4

f
4

kz
x

 
 
 

=          (3-19)  

3-4 Focal Length  

The formulae of the focal length for the axial symmetric magnetic system in the 

present work can be found by applying Eq. (2-8) as the following: 

3-4-1 Focal length of magnetic lenses  

The formulae of the focal length of magnetic lenses for the field distribution are 

given by Eq. (2-3) can be found as follows: 
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I-At n=2 

The formula of the focal length at the focus for the magnetic field of the form 

( ) o
2

BB z
z

=
 
and the trajectory equation which is given by Eq. (3-1) can be found as 

follow: 

Eq. (3-4) can be substituted in Eq. (3-1) to give: 

( )  

1 1
2 2

1
2

π

2

2 kz  z
k z

r J )( 
 
 

=        (3-20) 

the  fractional Bessel function 1
2

k
z

J ( )  can be written in term of circular function 

[Hawkes 2002]: 

1
2

1
2

2k z ksin( )
z πk z

J )(  
 
 

=     (3-21) 

by substituting Eq. (3-21) in Eq. (3-20), one may find: 

( ) z kz sin( )
k z

r =          (3-22) 

now, let 1
kx
z

=  ; then the Eq. (3-22) becomes: 

( ) 1
zz sin(x )
k

r =          (3-23) 

the partial differential equation is given by:  

( )r zdr(z) x
dz x z

∂ ∂= ×
∂ ∂

         (3-24) 

Eq. (3-23) is substituted in Eq. (3-24) to find: 

1
1dr(z) cos(x )

dz z
−=          (3-25) 

by substituting Eq. (3-25) in Eq. (2-8) to find: 

f

1

zf =
cos(x )

    (3-26) 
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then Eq. (3-26) can be written as [Hawkes 2002]: 

f
1

kf = z
x

=     (3-27)  

II- At n=3  

To derive the formula of the focal length at the focus for the magnetic field of 

the form ( ) o
3

BB z
z

=
 
and the trajectory equation which is previously given by Eq. 

(3-2), one can be followed the similar method when n=2 and the result is given by: 

( ) ( )

1
2

3 5
4 4

52 2 3 2
4 4

5
2

4

kf

Γ( ) (x ) [ x x ]J J−

=
−

      (3-28) 

III- At n=4 

The focal length at the focus for the magnetic field of the form ( ) o
4

BB z
z

=
 
and 

the trajectory equation which is previously given by Eq. (3-3) can be described by 

the formula which is derived by similar method when n=2 and it is given by: 

    
   

 

3-4-2 Focal length of magnetic deflectors  

The formulae of the focal lengths for magnetic deflector can be found by 

similar method in the magnetic lenses. This is done by applying Eq. (2-8) as the 

following:  

I- At n=2 

The formula of the focal length at the focus for the magnetic field of the form

( ) o
3

BD z
z

=
 
and the trajectory equation which is previously given by Eq. (3-9) is 

      
( ) ( )

5 1
6 3

4 7
3 6

7 5 3
6

 3 3
6

2

7
3

6

kf

( ) (x ) [ x x ]

 

Γ J J−

=
−

                          

(3-29) 
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the same as the formula of the focal length for magnetic lens when n=3. Then, it is 
given earlier by Eq. (3-28).  

II- At n=3 

For deriving the formula of the focal length at the focus for the magnetic field 

of the form ( ) o
4

3

2

BD z
z

=
 
and the trajectory equation which is previously given by 

Eq. (3-10), one can be used the similar method which is applied in magnetic lenses. 

Then, the result of the deriving formula is given by: 

( ) ( )

5 1
6 3

7
6

7 53 3 3
6 6

2

7
3

6

kf

( ) (x ) [ x x ]

 

Γ J J−

=
−

      (3-30) 

III- At n=4 

The formula of the focal length at the focus for the magnetic field of the form 

( ) o
5

2BD z
z

=
 
and the trajectory equation which is previously given by Eq. (3-11) is 

derived and the formula is given by: 

( ) ( )

1
4

9 9
8 8

74 9 4 4
88

9
2

8

kf

( )(x ) [ x x ]Γ J J−

=
−

      (3-31) 

3-5 Spherical Aberration 

The formulae of the spherical aberration coefficient for magnetic lenses, 

deflectors and the combination of magnetic lens and deflector can be obtained by 

applying Eq. (2-12). After that, it can be derived  the general formulae to the 

spherical aberration coefficient for the magnetic lens and deflector. As a 

consequence, one can find the aberration coefficient of each value of n in magnetic 

lenses, deflectors and the combination of magnetic lens and deflector as the 

following: 
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3-5-1 General  formulae of spherical aberration 

In the case of magnetic lenses, by substituting Eq. (2-3) in Eq. (2-12), one can 

find [Hawkes and Kasper 1989]: 

 

 

 

            ( ) ( ) ( )42 2 2
2 2 40

0 0 n2n 2 n 2 4n
rr

fz

5  
48

1 Bη n n( n 1) ηB B 4 h (z)dz
V Vzz z z+ −

∞    =    
   

− +− +∫
 

(3-32) 

where B (z)′  and B (z)′′ are the first and second derivative with respect to z of B(z)

respectively. Then, Eq. (3-32) can be written as: 

2 2 2 2
4

2n 2 2n 2 4n
r r

2

f

2
0 0

s

z

( ) ( )

48

η 5n ( n n) ηC – 4 h (z)dz
V Vz z
B B

z+ −

∞   
 
  

− += +∫    (3-33)   

Eq. (3-7)  is substituted in Eq. (3-33) to find [Hawkes 2002]: 

2 2 2
4

2n 2 4ns

zf

4
16

12

k n n kC h (z)dz
z z+

∞  − 
 
  

= +∫       (3-34) 

Equation (3-34) is the general formula for calculating the spherical aberration 

coefficients of magnetic lenses which field distributions are given by Eq. (2-3). 

On the other hand, the formulae of the spherical aberration coefficient for 

magnetic deflector are obtained by using a similar method for magnetic lenses. So, 

they are derived and the formula is given by: 

2 2 2 2 2
4

2n 4 4n 4
f

s
z

4 7 1
4

48

n k n n n kC h (z)dz
z z+ +

∞   
 
  

+ −= +∫     (3-35) 

Equation (3-35) is the general formula for calculating the spherical aberration 

coefficients for magnetic deflectors which field distributions are given by Eq. (2-6) 

and the magnetic fields of lenses are given by Eq. (2-3). 

 

( )
2 2 4

2 4 4
2

r r rf

s
z

1
5 4 (z)  

48
η η ηC = B (z) - B(z)B (z)+ B h (z)dz
V V V

∞   
 
  

′ ′′∫
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3-5-2 Spherical aberration for magnetic lenses  

I- At n=2 

The value of n (n=2) is substituted in Eq. (3-34) to get: 

2 2
4

6 8
f

s
z

14
16

12

k kC ( )h (z)dz
z z

∞
= +∫   (3-36) 

by substituting  Eq. (3-1) and Eq. (3-33) in Eq. (2-13): 

( )
1

z kh z sin( )
x z

=         (3-37) 

inserting Eq. (3-37) into Eq. (3-36) gives: 

2 2 4
4

6 8 4
1f

s
z

14
16

12

k k z kC ( ) sin ( )dz
zz z (x )

∞
= +∫                      

     
2 2

4
4 2 4

1 fz

14
16

12

k k k( )sin ( )dz
z(x ) z z

∞
= +∫         (3-38) 

now, let ku
z

=  

then kz
u

=  and  
2

kdz du
u

= −    

when  z = z� 	→ u = x 

      z = ∞	 → u = 0 

these suppositions are applied in Eq. (3-38) to get: 

2 2 2 4
4

4 2 4 2
11

0
s

14
16

x12

k u k u kC ( ) sin (u)du
(x ) k k u

−= +∫  

after some rearranging, then above equation can be written as:  

( )
1 2 4

4
1

s
0

x
7 8

6

kC ( u )sin (u)du
x

+= ∫       (3-39) 
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II- At n=3  

The value of n (n=3) is substituted in Eq. (3-34) to get [Hawkes 2002]:  

2 2
4

8 12s
fz

33
16

12

k kC ( )h (z)dz
z z

∞
= +∫       (3-40)  

Eq. (3-2) is substituted in Eq. (2-13) to obtaine: 

1

2
1 2
4 2

 kh(z) f B z
z

J ( )=         (3-41) 

f in this case is defined by Eq. (3-28).  

The formula of the spherical aberration coefficient at the focus is derived by 

using the similar method when n=2. Then, the result of deriving for this coefficient  

is given by: 

( ) ( )
( )

1
2

2 2

 

2 43
15 4
42 5 2 3 2

4 4

s
0

x
33 64

6 2

kC u u u du
(x ) [ x x ]

J
J J−

   + 
  
 

= ∫
−

  (3-42) 

III- At n=4  

The value of n (n=4) is substituted in Eq. (3-34) to find: 

2 2
4

10 16s
fz

60
16

12

k kC ( ) h (z)dz
z z

∞
= +∫       (3-43) 

Eq. (3-3) is substituted in Eq. (2-13) to get: 

 

1

2
1 3
6 3

kh(z) f C z
z

J ( )=         (3-44) 

f in this case is defined by Eq. (3-29). 

If it follows the similar method when n=2, the formula of coefficient at the 

focus is derived and the formula is given by: 
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( ) ( )
( )

1
43 3 2 43

110 14
643 3

3 7 3 5 3
6 6

s

x16
5 12

0
3  

kC u u u du

(x ) [ x x ]

 J

J J−

 
 


 + 
 



= ∫

−

  (3-45)  

3-5-3 Spherical aberration for magnetic deflectors  

To find the formulae of spherical aberration coefficients for magnetic 

deflectors, it would be used the similar method which is applied in magnetic 

lenses. Therefore, they are derived as the following: 

I-At n=2 

In this case, the formula of the spherical aberration coefficient at the focus is the 

same as the formula of the coefficient for magnetic lens when n=3 and it is given 

earlier by Eq. (3-42). 

II- At n=3 

The formula of the spherical aberration coefficient at the focus is derived and 

the result is given by: 

( ) ( )
( ) ( )2

19 1
3 3 3 4

117 14
643 3

3 7 3 5 3
6

4

6

3

 

s
0

x2
7 8

3

kC u u u du

(x ) [ x

 

x ]

J

J J−

 +
 
 

= ∫

−

  (3-46)  

III- At n=4 

The spherical aberration coefficient at the focus is described by the formula 

which is derived and it is given by: 

( ) ( )
( )

1
54 4 2 44

19
842

4 9 4 7 4
8 8

s
0

 

x
91 64

192 

kC u u u du

(x ) [ x x ]

J

J J−

   + 
  
 

= ∫

−

   (3-47)  

 



Chapter Three                                                                                                                     Mathematical Structures 

 

38 

 

3-6 Chromatic Aberration 

The formulae for all types of the chromatic aberration coefficients will be 

derived as the following: 

3-6-1 Axial chromatic aberration 

To find the axial chromatic aberration coefficient for magnetic lenses, 

deflectors and the combination of magnetic lens and deflector, it can be started  

from Eq. (2-15). Consequently, the general formulae of the axial chromatic 

aberration coefficient will be derived for magnetic system (lens and deflector). As 

well, the formulae for the combination of magnetic lens and deflector will be 

obtained. 

3-6-1-1 general formulae of axial chromatic aberration 

In the case of magnetic lenses, by substituting Eq. (2-3) in Eq. (2-15), one can 

find: 

2
20

2n
r

f

c
)

8
z

(BeC h z)dz
V z

(
m

∞
= ∫       (3-48) 

by substituting Eq. (3-7) in Eq. (3-48) to give: 

2 2

2n

f

c

z

1C k h (z)dz
z

∞
= ∫         (3-49)  

where h(z) is defined previousely by Eq. (2-13).  

Equation (3-49) is the general formula for calculating the axial chromatic 

aberration coefficients for magnetic lenses which field distributions are given by 

Eq. (2-3). 

On the other hand, the formulae of the axial chromatic aberration coefficient for  

magnetic deflectors can be found by following the similar method which is applied 

in magnetic lenses. So, the general formula is derived and the result is given by: 
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2 2
2

2n 2

f

c
4 z

k nC h (z)dz
z +

∞
= ∫         (3-50) 

Equation (3-50) is the general formula for calculating the axial chromatic 

aberration coefficients for magnetic deflectors which field distributions are given 

by Eq. (2-6) and the magnetic fields of lenses are given by Eq. (2-3). 

3-6-1-2 axial chromatic aberration for magnetic lenses  

I-At  n=2  

The value of n (n=2) is substituted in Eq. (3-49) to find: 

2 2
4

f

c
z

1C k h (z)dz
z

∞
= ∫         (3-51) 

by substituting h(z) from Eq. (3-37) in Eq. (3-51) to find: 

2
2 2

4 2
f 1

c
z

1 z kC k sin ( )dz
zz (x )

∞
= ∫                                                       

      
2

2

2 2
f1 z

k 1 ksin ( )dz
z(x ) z

∞
= ∫        (3-52) 

now, let ku
z

=  

then kz
u

=  and   
2

kdz du
u

= −   

when  z = z� 	→ u = x 

      z = ∞	 → u = 0 

these suppositions are applied in Eq. (3-52) to find: 

2 2
2

2 2 2
11

0
c

x

k u ( k)C sin (u)du
(x ) k u

−= ∫  

      
1 2

2
1 0

xk sin (u )du
(x )

= ∫         (3-53) 
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Equation (3-53) is described the axial chromatic aberration coefficient for 

magnetic lens at the focus when n=2. 

II-At n=3  

The value of n (n=3) is substituted in Eq. (3-49) to find: 

2 2

6
f

c
z

1C k h (z)dz
z

∞
= ∫  (3-54) 

Eq. (3-28) is substituted in Eq. (3-41) to find h(z). After that, h(z) can be 

substituted in Eq. (3-54). Consequently, the formula of the axial chromatic 

aberration coefficient at the focus is derived by applying the similar method when 

n=2 and it is given by: 

( ) ( )
( )

2

1
2 2 2

15
422

5 2 3 2
4 4

c
0

x
2

 

 kC u u du

(x ) [ x x ]

J

J J−

 
 
 

= ∫

−

    (3-55) 

III-At n=4 

The value of n (n=4) is substituted in Eq. (3-49) to find: 

2 2
8

f

c
1

z
C k h (z)dz

z

∞
= ∫         (3-56) 

by substituting Eq. (3-29) in Eq. (3-44) to find h(z) and after some 

mathematical substitution and rearranging as the case when n=2, the formula of the 

axial chromatic aberration coefficient at the focus is derived and it is given by: 

( ) ( )
( )

1
3 3 2

14 7
623 3

3 7 3 5 3
6 6

c
0

4

 

x

3

 kC u u du

(x ) [ x x ]

J

J J−

 
 
 

= ∫

−
                             

 

 

 

   (3-57) 
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3-6-1-3 axial chromatic aberration for magnetic deflectors  

For deriving the formulae of the axial chromatic aberration coefficient for 

magnetic deflectors, it should be applied the similar method which is used in 

magnetic lenses. As a consequence, the formulae have been derived as follows: 

I-At n=2 

The formula of the axial chromatic aberration coefficient at the focus in this 

case is the same as the formula of the coefficient for magnetic lens when n=3 and it 

is given previousely by Eq. (3-55).  

II-At n=3 

The axial chromatic aberration coefficient at the focus is described by formula 

which is derived and the result is given by:  

( ) ( )
( )

10 1
3 3 3 2

18 7
623 3

3 7 3 5 3
6 6

c
0

x

3  

2 kC u u du

(x ) [ ]

 

x x

J

J J−

 
 
 

= ∫

−

     (3-58) 

III-At n=4 

The result of derivation for the formula which is described the axial chromatic 

aberration coefficient at the focus is given by: 

 

           (3-59) 

 

3-6-2 Field chromatic aberration 

3-6-2 -1 isotropic chromatic aberration coefficient 

For deriving the formulae of the magnification chromatic aberration coefficient 

for magnetic lenses, deflectors and the combination of magnetic lens and deflector, 

one should be applied Eq. (2-14). After that, the general formulae of the 

( ) ( )
( )

1
4 4 2

19
824

4 9 4 7 4
8 8

c
0

x

4  

kC u u du

(x ) [ x x ]

J

J J−

 
 
 

= ∫

−
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magnification chromatic aberration coefficient for the magnetic lenses and 

deflectors can be found. As the result, one can find the aberration coefficient for 

each value of n in magnetic lenses, deflectors and the combination of magnetic 

lens and deflector as follows: 

A-general formula of magnification chromatic aberration  

In the case of magnetic lenses, by substituting Eq. (2-3) in Eq. (2-16), one can 

find: 

( )
2

0
2n

r f

m
)

8 z

(BeC h z g(z)dz
mV z

∞
= ∫       (3-60) 

Eq. (3-7) is substituted in Eq. (3-60) to get:  

( )2
2n

f

m
1

z
C k h z g(z)dz

z

∞
= ∫    (3-61) 

Equation (3-61) is the general formula for calculating the magnification 

chromatic aberration coefficients for magnetic lenses which field distributions are 

given by Eq. (2-3). 

However, the general formula of the magnification chromatic aberration 

coefficient for magnetic deflectors is derived by following the similar method 

which is applied in magnetic lenses. Consequently, it is given by: 

( )
2 2

2n 2
f

m
4 z

k nC h z g(z)dz
z +

∞
= ∫    (3-62) 

Equation (3-62) is the general formula for calculating the magnification 

chromatic aberration coefficients for magnetic deflectors which  field distributions 

are given by Eq. (2-6) and the magnetic fields of lenses are given by Eq. (2-3). 

B- magnification chromatic aberration for magnetic lenses  

I-At  n=2  

The value of n (n=2) is substituted in Eq. (3-61) to find: 
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( )2
4

f

m
z

1C k h z g(z)dz
z

∞
= ∫    (3-63) 

Eq. (3-22) and Eq. (3-37) are applied in Eq. (3-63) to get: 

2
4

f

m
z

1 z k z kC k sin( ) sin( )dz
x z k zz

∞
= ∫  

      
f

2

2
1

1

z

k ksin ( )dz
x zz

∞
= ∫      (3-64) 

now, let ku
z

=  

then kz
u

=  and 
2

kdz du
u

= −    

when  z = z� 	→ u = x 

      z = ∞	 → u = 0 

these suppositions are substituted in Eq. (3-64) to find: 

2
2

2 2
1 1

0
m

x

k u ( k)C sin (u)du
x k u

−= ∫  

       
1 2

1 0

x
1 sin (u)du
x

= ∫    (3-65) 

Equation (3-65) is described the magnification chromatic aberration coefficient 

at the focus when n=2. 

II-At n=3  

The value of n (n=3) is substituted in Eq. (3-61) to find: 

( )2

6
f

m
1

z
C k h z g(z)dz

z

∞
= ∫   (3-66) 

h(z) can be found by substituting Eq. (3-28) in Eq. (3-41). After that, h(z) and 

Eq. (3-2) can be substituted in Eq. (3-66). As a consequence, the derivative 
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formula of the  magnification chromatic aberration coefficient at the focus is given 

by: 

( ) ( )
( )

5
4

2 2
15
44

2 5 2 3 2
4 4

m
0

5 x2
4

( )
C u u du

(x ) [ x x ]

 Γ
J

J J−

 
 
 

= ∫

−

 

III- At n=4  

The value of n (n=4) is substituted in Eq. (3-61) to find: 

( )2
8

f

m
1

z
C k h z g(z)dz

z

∞
= ∫   (3-68) 

by substituting Eq. (3-29) in Eq. (3-44) to find	h(z). After some mathematical 

substitution and rearranging as the case when n=2, the formula of the 

magnification chromatic aberration coefficient at the focus is derived and the result 

is given by: 

( ) ( )
( )

 

7
6

3 2
17
66

3 7 3 5 3
6 6

m
0

7 x

 

2
6

( )
C u u du

(x ) [ x x ]

Γ
J

J J−

 
 
 

= ∫

−

  (3-69) 

C- magnification chromatic aberration for magnetic deflectors  

By using the similar method in the magnetic lenses, the formulae of 

magnification chromatic aberration coefficient for magnetic deflectors are derived 

as follows: 

I-At n=2 

The formula of the magnification chromatic aberration coefficient at the focus 

is similar to the formula of the magnification chromatic aberration coefficient for 

magnetic lens when n=3 and it is given by Eq. (3-67). 

 

  (3-67) 
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II-At n=3 

The formula of the magnification chromatic aberration coefficient at the focus 

is derived and it is given by: 

( ) ( )
( )

5
2

3 2
15 7
63 6

3 7 3 5 3
6 6

m
0

7 x2

 

6

3

( )
C u u du

(x ) [ x x ]

 Γ
J

J J−

 
 
 

= ∫

−

  (3-70) 

III-At n=4 

The magnification chromatic aberration coefficient at the focus is described by 

the formula which is derived and the result is given by: 

( ) ( )
( )

4 2
17 9
88 8

4 9 4 7 4 

8 8

m
0

9 x
8

2

( )
C u u du

(x ) [ x x ]

Γ
J

J J−

 
 
 

= ∫

−

   (3-71) 

3-6-2 -2 anisotropic chromatic aberration coefficient  

To derive the formulae of the rotation chromatic aberration coefficient, one can 

be started from Eq. (2-17). Consequently, one can be found the formulae of 

coefficient for the magnetic lenses, deflectors and the combination of magnetic 

lens and deflector as the following: 

A- roation chromatic aberration for magnetic lenses  

I-At n=2  

The value of n (n=2) is substituted in Eq. (2-17) to find: 

1
2 0

2
r f

θ
1
2 8 z

BeC dz
m V z

∞
 
 
 

= ∫  

      
1
20 1

fr z2 8

B e z
mV

 
 
 
 
 

− ∞ =  
 

× −
  

(3-72) 

by substituting Eq. (3-7) in Eq. (3-72) to get on:  
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f f
θ

1 1

2 2

k kC
z z

 
 ∞ 

= − =    (3-73) 

Eq. (3-16) is inserted into Eq. (3-73) to find: 

1
θ 2

x
C =    (3-74) 

II-At n=3 

The formula of the rotation chromatic aberration coefficient at the focus is 
derived and the result is given by: 

2
θ 2

x
C =    (3-75) 

III-At n=4 

Formula which is described the rotation chromatic aberration coefficient at the 
focus is derived and it is given by: 

3
θ 2

x
C =    (3-76) 

B- rotation chromatic aberration for magnetic deflectors 

I-At n=2 

The formula of the rotation chromatic aberration coefficient at the focus is similar 
to the formula of the rotation chromatic aberration coefficient for magnetic lens 
when n=3 and it is given by Eq. (3-75). 

II-At n=3 

The rotation chromatic aberration coefficient at the focus is described by the 
formula which is derived and the result is given by: 

3
θ

 

3

x
C =    (3-77) 

III-At n=4 

The formula of the rotation chromatic aberration coefficient at the focus is 
derived and it is given by: 

4
θ 4

x
C =    (3-78) 
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Chapter Two 

Theoretical Considerations 

2-1 Introduction 

In the present work, a magnetic lens and deflector have been adopted for the 

purpose of the theoretical study. Each component of magnetic system (lens and 

deflector) is fully described in terms of different parameters such as trajectory of 

electron beam, position of foci, focal lengths and aberration coefficients. 

2-2 Paraxial-Ray Equation in Magnetic Field 

The motion of an electron in an axially symmetrical field can be derived 

starting from many departure points. One may start from the Lagrangian [Hawkes 

1982; Silagyi 1988] or from a more familiar method of elementary mechanics [El-

Kareh and El-Kareh 1970; Klemperer and Barnett 1971]. The paraxial-ray equation 

of an electron in a magnetic field of axial symmetry is given by [El-Kareh and El-

Kareh 1970]: 

( )2

r

( )
8

er (z) B (z)r z 0
mV

+′′ =        (2-1)    

where r(z) is the radial displacement of the beam from the optical axis z, e and m 

are the charge and mass of the electron, respectively, r (z)′′  the second derivative of 

r(z) with respect to z and Vr is the relativistically corrected accelerating voltage 

which is given by [El-Kareh and El-Kareh 1970]: 

6

2
a

r a a a1 1 0.978 10
2

eV
V V V V

mc

−   = + = + ×     
      (2-2) 

where Va is the accelerating voltage and c is the speed of light in space.  

An important deduction can be made from Eq. (2-1). The force driving the 

electrons towards the axis is directly proportional to the radial distance r. This is 

the principle of a focusing field. Futhermore, this force is proportional with the 
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square of the magnetic flux density. It means that if the direction of the magnetic 

field is reversed by reversing the current, the direction of the force towards the axis 

should not change. In other words, there will be no change in the focus [El-Kareh 

and El-Kareh 1970].  

2-3 Mathematical Models for Magnetic Lens 

Magnetic field models of magnetic lenses are analytical expressions, that 

represent the axial field distribution B(z) of magnetic lenses. Each model gives a 

design basis for a lens, especially when its model is capable of being realized 

physically. 

Many field models deal exclusively with double-pole lenses, such as the Glaser 

bell shaped field and the Grivet-Lenz field. While the exponential field and the 

spherical field deal with the single pole lenses. 

In the present work, the mathematical model of the form inverse power law is 

chosen to represent the magnetic flux distribution which is given by [Alamir 

2005]: 

( ) n
0 )

z

a(B z B=
      

; n= 2, 3, 4  (2-3) 

where B� is the maximum value of axial magnetic field, a is the half width at half 

maximum field and n is any positive or negative numbers, not necessarily an 

integer, expect unity. Here, n is taken as positive numbers, where n=2 for 

monopole lens, n=3 for dipole lens and n=4 for quadrupole lens [Crewe 2001]. 

2-4 Moving Objective Lens (MOL) Concept 

The concept of moving objective lens (MOL) was introduced first by Ohiwa et 

al. [Ohiwa et al. 1971] for description of a system in which the deflectors are 

placed in the lens. In a moving objective lens (MOL) system, a lens is placed 

before the image plane and is electromagnetically moved is synchronization with 

the deflector. Such displacement of the lens can be expressed as the first-order 

Taylor expansion of the magnetic scalar potential of the lens [Ohiwa 1978]: 
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( ) ( )x-d, y,z = x, y,z -d( )
x

∂ΦΦ Φ
∂

      (2-4) 

This shows that superposition of the deflection field -d( )
x

∂Φ
∂

 on the lens field 

Φ  is equivalent to the displacement of the lens by a distance d. Let one assume 

that the focusing lens is composed of an axially symmetric magnetic field. Then, 

the off-axis potential can be expressed up to the second order as [Ohiwa 1978]: 

( ) ( )
2 2

2
)

4

r d (z)r, z r (
dz

ΦΦ = Φ −       (2-5) 

 Let B(z) is the axial flux density distribution for the lens and D(z) is the 

deflection flux density required at the axis. Then, the following relation holds from 

Eqs. (2-4) and (2-5) [Ohiwa 1979]:  

( ) ( )
2

dD z B z− ′=          (2-6) 

where d is the displacement by the first deflector (pre-deflection), and the ( )B z′ is 

the first derivative of B(z) with respect to z.  

The MOL concept is illustrated in figure (2-1). A point source of electrons, 

emitted from zo, is imaged to zi by a lens. The beam is deflected by the first 

deflector so that it enters the lens off-axis. The second deflector, placed inside the 

lens, shifts the electrical center of the lens off-axis. The Moving Objective Lens 

(MOL) reduces the effect of the off-axis lens aberrations [Khursheed 2011].  
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Figure (2-1): MOL arrangement [Ohiwa 1978]. 

2-5 Focal Lenght 

Focal length is defined as the distance between the principal plane and the 

focus. Assume an incident electron moving initially parallel to the axis, the focal 

lenght can be obtained by direct integration of Eq. (2-1) [Crewe 2004]: 

( )2

r8

1 e B z r(z)dz
f mV

∞

−∞
= ∫        (2-7) 

or the focal lenght can be obtained by differentiating the expression of a ray 

which is parallel to the axis far from the axial symmetric system.Therefore, it is 

easy to show that the focal lenght of the ray is given by [Hawkes 2002]:  

(z)
1f

r (z)
= ′           (2-8) 

where r (z)′ is the first derivative of r(z) with respect to z. 

2-6 Defects of Electron Optical System 

In general, when speaking of aberration in electron optics, one refers to the case 

in which rays emanating from one point for the same object point converge to 

different image points. If an electron path is leaving an object point, at a finite 
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distance from the axis with a particular direction and electron velocity, it intersects 

the Gaussian image plane at a point displaced from the Gaussian image point; this 

displacement is defined as the aberration [El-Kareh and El-Kareh 1970]. 

The operation of axially symmetric electron and ion systems (focusing systems 

or deflector systems) is based on the paraxial (first-order) theory. Practically, the 

trajectories always have both finite displacements r and finite slope r' with respect 

to the axis. Even if they are small, the omission of the higher-order terms in series 

expansions that leading to the paraxial ray equation causes some error. Therefore, 

the paraxial theory is always an approximation [Szilagyi 1988]. 

The assumption by means of equation (2-1) constricted is concerned with rays 

that are close to the system axis. However, if one calculating the second term (i.e. 

the third order-term) in series expansions of magnetic field that it is given by 

[Szilagyi 1988]: 

n 2n 1
(2n 1)

r z
n 1

( 1)

(n)!(n 1)!

rB (r,z) B (z)
2

−∞ −

=

−  =  −  
∑       (2-9)   

Then the equation of motion of an electron in an axially symmetric magnetic 

field for relativistic potential will take the form [Szilagyi 1988]: 

3 3 4
2 2 2 2

r

0
8 2 8

e r B B er Bz z zr rB r r B B rr Bz z z zmV m

 
 
 
 

′′′′ ′ ′ ′+ − − + + =
  

(2-10) 

Equation (2-10) is usually called the "third-order trajectory equation". This 

equation reduces to Eq. (2-1) if all the third-order terms in r and its derivatives (i.e. 

r3, r2r', rr'2), are removed. The presence of these terms in Eq. (2-10) results in the 

appearance of aberrations. Aberrations are referred to as third-order, fifth-order and 

so on according to the order of the term in Eq. (2-9). Only the third-order 

aberrations are of an importance in most analyses and calculations in the field of 

electron and ion optics since they outweigh the aberrations of higher orders 

[Szilagyi 1988]. 

The electron magnetic system suffers from many different types of defects 

through the image formation process. The geometrical aberrations occur when a 
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point object is imaged not by a point image but by a blurred spot produced by 

different paths of different slopes that focused at different image points. These 

paths intersect the Gaussian image plane at different points. The geometrical 

aberrations are arising from higher order terms in the field expansions. In general, 

there are eight different types of the geometrical aberrations namely; spherical, 

field curvature, radial distortion, spiral distortion, coma, anisotropic coma, 

astigmatism and anisotropic astigmatism aberrations. 

In addition to the geometrical aberrations in the magnetic system, the chromatic 

aberration is the other important type of defects from which the magnetic system is 

suffered.  

Space charge is another source of image aberration that it is occurred because of 

electrostatic repulsion forces between the same charge particles. 

When the properties of the system are analyzed using the nonrelativistic 

approximation, the disparities between the relativistic and nonrelativistic can be 

conveniently regarded as relativistic aberration. 

Finally, one has be mentioned to the mechanical aberrations which occur due to 

misalignment, material in homogeneity, mechanical imperfections, ect. [Szilagyi 

1988; Hawkes and Kasper 1989].  

Their implementation provides the creation of an ideal lens that forms stigmatic 

and similar images. Let us recall these assumptions: (1) rigorous axial symmetry; 

(2) paraxial trajectory approximation; (3) energy homogeneity, including the 

absence of time-dependent processes; and (4) negligible space-charge fields and 

small effects of electron diffraction. Violation of at least one of these conditions 

leads to aberrations that are responsible for blurred or distorted images and 

complicate beam transport problems [Tsimring 2007]. 

The most important aberrations for objective magnetic lens, which are limiting 

the resolution in an electron-optical system, are spherical and chromatic aberration. 

Thus, the present work has been determined these two aberrations for each 

magnetic lens and deflector. 
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2-6-1 Spherical aberration 

The spherical aberration is one of the most important geometrical aberrations; 

this aberrations is sometime, called aperture defect. It is one of the principal factors 

that limit the resolution of the optical system. This defect occurs because the power 

of the optical magnetic system is greater for off-axis rays than the paraxial rays 

[Zhigarev 1975], as is shown in figure (2-2). 

When these non-paraxial electrons arrive at the Gaussian image plane, they will 

be displaced radically from the optic axis by an amount rs given by [Egerton 2007]: 

     
3

s sr =  C α         (2-11) 

where Cs is the spherical aberration coefficient and α is acceptance half angle. 

Since α (in radian) is dimensionless, therefore, Cs has the dimensions of length. 

 

Figure (2-2): Ray diagram illustrating spherical aberration in the Gaussian image plane 
[Oday 2005].      

The spherical aberration coefficient Cs of axial symmetric magnetic optical 

element (lens or deflector) is calculated using the following integral formula 

[Hawkes 2002]:   

{ }2 4 4
s - 

1
5  ( 4  

4 8
C b ) b + b h (z db ) z

∞

− ∞
′ ′′= ∫     (2-12) 
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r

ηB(z)b
V

=   

where η = �e 2m⁄  is the charge -to- mass quotient of electron and h(z) is 

proportional to the solution r(z) of the paraxial equation which is given by Eq. (2-

1), the constant of proportionality being equal to the focal length in order to ensure 

that the gradient of h(z) at the object position, here the focus, is unity. Thus, h(z) is 

given by [Hawkes 2002]:  

( )h z f r(z)=         (2-13) 

where f is the focal length.  

2-6-2 Chromatic aberration 

From the expression of focal length which is given previously by Eq. (2-7), one 

can note that the focal length is related to the accelerating potential. Then the 

variation of that potential will result in the variation of focal length. Thus, the 

image will be distorted and this type of distortion is referred to as chromatic 

aberration [El-Kareh and El-Kareh 1970]. 

The main reason for chromatic aberration is the fact that electrons with higher 

initial energy are less influenced by the imaging field than lower-energy electrons. 

Therefore, if all electrons leave the object point with the same slope, the high-

energy electrons will form an image at a greater distance from the object than the 

low-energy electrons and the image will be blurred like in case of spherical 

aberration. Additionally, the rotation of electrons with different energies in a 

magnetic field will also be different [Szilagyi 1988]. There are several reasons for 

the energy spread of electrons and it occurs if [El-Kareh and El-Kareh 1970]:  

a. The accelerating potential as provided by regulated power supply changes or 

the current in the energized coil is not highly stabilized. 

b. The initial velocity of the electrons is not the same for all particles. 
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c. The passage of the electron beam through a target results in an inelastic 

collision of the particles with the specimen and thus the electron leave the 

specimen with different velocities. 

Figure (2-3) represents a simplified diagram defining this defect. A ray of 

energy 00
E ∆ E+ will reach the image plane for energy 

0
E

 
at a distance ∆r  from 

the axis. At a plane about halfway between the points where the two rays intersect 

the axis in image space, the bundle of rays having energies between 
0

E
 
and

00
E ∆ E+ are contained within a disc of confusion of radius about one-half where 

[Hall 1966]: 

0
c

0

∆E
∆r = α C

E
 
 
 

         (2-14) 

Cc is the chromatic aberration coefficient. 

The chromatic aberration coefficients of magnetic axial symmetric system  are 

divided into axial chromatic aberration coefficient Cc and chromatic field 

aberration (Chromatic aberration of magnification Cm and rotation Cθ) [Hawkes 

and Kasper 1989].              

 

Figure (2-3): Ray diagram illustrating chromatic aberration [Hall 1966]. 
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All types of the chromatic aberration coefficients will be mentioned as follows: 

1-6-2-1 axial chromatic aberration 

This aberration coefficient like the spherical aberration coefficient creates an 

aberration disc; its radius in the image plane is the same for all points in the object 

plane. It is of most concern when the angels are comparatively large [Hawkes and 

Kasper 1989].  

The axial chromatic aberration coefficient Cc of axial symmetric magnetic 

optical element (lens or deflector) is calculated using the following integral 

formula [Hawkes and Kasper 1989]: 

2 2

r
c

8

eC B (z)h (z)dz
mV −∞

∞
= ∫        (2-15) 

1-6-2-2 field chromatic aberration 

The field chromatic aberration is divided into the isotropic and anisotropic 

chromatic aberration. It is of most concern when the angles are small and the rays 

are off the axis [Hawkes and Kasper 1989]. This type of aberration will be 

mentioned as the following: 

A- isotropic chromatic aberration  

The isotropic chromatic aberration coefficient denoted by Cm and is commonly 

known as the chromatic aberration of magnification. 

The magnification chromatic aberration coefficient Cm of axial symmetric 

magnetic optical element (lens or deflector) is calculated using the following 

integral formula [Hawkes and Kasper 1989]: 

( )2

r
m

8

eC B (z)h z g(z)dz
mV

∞

−∞
= ∫       (2-16) 

where h(z) and g(z) are two independent solutions of the paraxial ray. h(z) is 

defined by Eq. (2-13) and g(z) is the same trajectory of electron in the magnetic 

axial symmetric system.   
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B- anisotropic chromatic aberration  

The anisotropic chromatic aberration coefficient denoted by Cθ and is 

commonly known as the chromatic aberration of rotation, it causes a small change 

in the image rotation in magnetic systems [Hawkes and Kasper 1989]. 

The rotation chromatic aberration coefficient Cθ of axial symmetric magnetic 

optical element (lens or deflector) is calculated by using the following integral 

formula [Hawkes and Kasper 1989]: 

( )
1
2

θ
r

1
( )

2 8
-

eC B z dz
mV

∞

∞

= ∫         (2-17) 
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Symbol Definition 

a the half width at half maximum field (m). 

A, B, C, D and E 
Constants inserted in the trajectory equation when z is a large 
value. 

B(z) The axial distribution of Magnetic field of lens (Tesla). 

B0 Maximum of the magnetic flux density (Tesla). 

rB (r,z) Radial component of the magnetic flux density (Tesla). 

c The speed of light in space (c =3× 108  m/sec). 

Cc Axial chromatic aberration coefficient (m). 

Cm Magnification chromatic aberration coefficient. 

Cs 
Spherical aberration coefficient (m). 

Cθ Rotation chromatic aberration coefficient. 

d Diameter of axial bore (m). 

d Displacement by the first magnetic deflector (m). 

D(z) Deflection magnetic flux density (Tesla). 

e  The charge of the electron (e = 1.6× 10-19 C). 

E0 Energy of electron beam (Joule). 

f Focal length (m). 

h(z), g(z) Two independent solutions of the paraxial-ray equation. 

I Electric current (Ampere).  

Jn(x) First kind Bessel polynomial.    

k Excitation parameter. 
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L Lens length (m). 

L1 The distance between pre-deflection and the MOL system (m). 

L2 The distance between the MOL system and the screen (m). 

m The mass of the electron (m = 9.1 × 10-31 Kg). 

n Order of multipole or the power of the multipole. 

NI Magnetic lens excitation (Amp.turn).   

r

NI
V

 Magnetic lens excitation parameter (
���.����

(
���)�.�
). 

r(z) Trajectory radial height along the lens axis (m). 

R1, R2 Inner and outer radii of coil respectively (m). 

rs 
Fluctuation in the electron beam focus (m). 

S Width of air gap of polepieces (m). 

Va The accelerating voltage (Volt). 

Vr Relativistically corrected accelerating voltage (Volt). 

x1, x2, x3 and x4 The index of the zero for each case of n. 

z The optical axis of system (m). 

zf The position of focus or focal point (m). 

zi Image plane position (m).  

zo Object plane position (m). 

α Trajectory angle with system axis (degree). 

αi α in image side (degree).  

αo α in object side (degree). 

Γ(x) Gamma function. 

∆E0 Fluctuation in the electron beam energy (Joule). 

∆r Fluctuation in the electron beam focus (m). 



 

VIII 

 

η Electron charge to mass quotient (e/2m)� �⁄  (C/Kg)� �⁄  . 

ϕ Angle of the coil (degree). 

( )x, y,zΦ  The magnetic scalar potential of the lens (Volt). 

( )r,zΦ  The off-axis magnetic scalar potential of the lens (Volt) 

' , '' First and second derivative with respect to z-axis (d/dz) and 
(d2/dz), respectively. 

 

 
 
 
 

Abbreviation Definition 

TEM Transmission electron microscope. 

SEM Scanning electron microscope. 

DA  Differential algebraic. 

MOL Moving objective lens. 

VAL Variable axis lens.  

AEM Analytical electron microscope. 

STEM Scanning transmission electron microscope. 
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�رف ا�()=�ط&% ا�
&�8�ت ���أظ�Uت 

@� P��=�	 5ري
، وW8 �Zن ا�SH <��� و/�رف أ�S�. <=� ا��Xرة z ال :�� ا���وي وا�#05% ا�(


5ر��� ��ان  n = 4 . [/5� ،\�,Iھ% <=��� 	�5ن ال �)=�ط&% ا��% 	�$% ا:� ز�5غ �Iو��، �05

�� ا�(���� ا���Tي ��� /���ز��دة :  ��n،���� ا�  B	Xدي ، �#����ت وا�
5ارف ا�()=�ط&# 	

�� ا����� وا�
�رف ���  �H�];�8 ا�B ذ�\. �ا�(
5ر� �ا�05#�و �ا���و� �5غ����3ت ا�6

�� ^���8 �وا��ورا0� �ا������� �ا�05#� 5غ����3ت ا��6#\ �(	، ا�()=�ط&%:، �� ���/ ���n  ، �I �8� 	

�(� �#(���� ا���Tي:.  
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