Abstract

The main purpose of thiswork can be divided in to three aspects.
First, a study of the existence and uniqueness of the solution for special
types of linear operator equations, namely the Lyapunov equation.
Second, adiscussion of the range for the quaii-Jordan* -derivation.
Third, some special types of Lyapunov equation, namely stein equation.
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CHAPTER ONE

The Continuous-Time Lyapunov Equation

| ntr oduction

The purpose of this chapter is to recall some definitions, basic
concepts and some properties which are important for the discussion of
our later results. Also, we study the nature of the solution of the
continuous-time Lyapunov equation for special types of operators as well
as the study of the range of 15, where T (X)= A*X + XA, X OB(H)
and A isfixed.

This chapter consists of five sections. In section one, we recall the
definition of an operator equation and introduce some types of operator
equations namly the Sylvestor operator equation, the discrete and
continuous time Lyapunov equations with their generalization.

In section two, we study the nature of the solution of the continuous-

time Lyapunov equation A™X + XA =W for special types of operators.
In section three, we recall the definition of an invariant subspace.
Also give some remarks and exampl es.

In section four, we study the range of 15, where

TA(X)=A"X +XA, XOPB(H)and A is fixed and we prove that 1, is

not a derivation and not a Jordadwlerivation. Also, we give some new

theorems, corollaries, remarks and examples oratinge oft, .

In section five, we study the nature of the solution of more general

continuous-time Lyapunov equations for special types of operators.
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1.1 Some types of Operator Equations

In this section, we give the definition of an operator equation. Also,

some types of operator equations are introduced.
We start this section by the following definition

Definition (1.1.1), [12]:
An equation of theform
L(X)=C (1.1)

Is said to be an operator equation, where L and C are known operators
defined on a Hilbert space H and X is the unknown operator that must be
determined.

Remark (1.1.1), [12]:
In eq.(1.1), if the operator L is linear then this equation is said to be

linear operator equation. Otherwise, it is non-linear operator equation.

Now, we introduce some kinds of linear operator equations

(1) A special type of the linear operator equation takes the form
AX —XB =Y (1.2)

where A, B and Y are given operators defined on a Hilbert space H
and X is the unknown operator that must be determined. This equation is
called the Sylvester operator equation, [6] and [22].

The author in [6] discussed the necessary and sufficient conditions
for the solvability of this equation. Furthermore, he gave equivalent
conditions for the solvability of this equation for special types of
operators A and B.

(2) The operator equation of the form

X-FXF=Q (1.3)
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is called the discrete-time Lyapunov equation, or the Stein equation,

where F and Q are known operators defined on aHilbert spaceH and X is
the unknown operator that must be determined, [5].
(3) The operator equation of the form

A"X +XA =W (1.4)
Is called the continuous-time Lyapunov equation, where A and W are
given operators defined on a Hilbert space H and X is the unknown
operator that must be determined, [4] and [23].
(4) The author in [7] studied the necessary and sufficient conditions
for the solvability of the operator equation of the form

AX +XA =W (1.5)
where A and W are known operators defined on a Hilbert space H and X
IS the unknown operator that must be determined.

(5 The operator equations of the forms

A"X +tXA=W (1.6)
ATX + XA+tAT XAY? =W | (L.7)

and
AZX + XAZ +tAXA =W (1.8)

are generalization of the continuous — time Lyapunov equations, where t
iIsany scalar,[5] and [7].
(6) The operator equation of the form
X A+ AX =W (1.9)
where A and W are given operators defined on a Hilbert space H, and X

IS the unknown operator that must be determined.
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1.2 Continuous-Time L yapunov Equations:

The continuous-time Lyapunov equations, are much studied because
of its importance in differential equations and control theory,[4].
Therefore, devote the studying of the continuous-time Lyapunov
eguations.

The question now is pertinent, does eq.(1.4) have a solution? If yes,
ISit unique?.

To answer this question, recall the Sylvefesenblum theorem, [6].
Sylvester - Rosenblum Theorem (1.2.1):
If A and B are operators in 3(H) such that o(A) n o(B) = ¢, then

egd.(1.2) has aunique solution X for every operator Y.

According to the above theorem, we have the following corollaries.

Corollary (1.2.1):

If A is an operator such that o(A") n o(-A) = @, then eg.(1.4) has a

unique solution X for every operator W.

Corollary (1.2.2):

O

If o(A") n o(-A) =@ then the operator ﬁ)

W} is defined on

L A 0
HOH issimilar to the operator 0 A

Pr oof:
Since o(A") n o(-A) =@ then by Sylvester—Rosenblum theorem,
€g.(1.4) hasa unique solution X. Also

o e S e
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| X O o _
But isinvertible so A 0 issimilar to A W 4
0 | 0 0O -A

The converse of corollary (1.2.2) is not true in general as we seein

the following example.

Example (1.2.1):

Let H=/, (C), that is; zz(c):{x = (%)

i|xi|2 <o, X DC} Define
i=1

A:HD - H by A(X1,Xz,...)=(x,0,0,...). Thus A” =A.
Consider eq.(1.4), where W(x,,x,,...)=(0,x.0,...). Then X=U is a
solution of this equation since
(A"X + XA)(X1,X5,..)= (AU + UA) (X1, X5,...)

A"(0,%X,,%,,...)+U (% ,00,...)= (000,...)+ (0,x,,00,...)
= (0,%,,00,...)=Wx

On the other hand, U isthe solution of eq.(1.4) and

o 1o Ao “alo 1

O

O
Therefore,ﬁ) }is similar toﬁ) C;J Moreover 0 is an

eigenvalue of A and X =(0,x,,...) is the associated eigenvector.
Therefore, 00 0(A") n o(-A) and hence o(A") n a(-A) £ @.¢
Remark (1.2.1):

If the conditiona(A") n o(-A) = @ failsto be satisfied then eq.(1.4)
may have one solution, an infinite number of solutions or it may have no
solution.

To understand this, consider the following examples.



Chapter One The Continuous-Time Lyapunov Equation

Example (1.2.2):
Consider eg.(14), where A=l and W=0. Clealy

o(A") n a(-A) # @. Moreover, any XOB(H) is asolution of eq.(1.4).

Example (1.2.12):

00 30
Consider eq.(1.4), where A {0 3} and W = {0 O} It is clear that

0O o(A). Therefore a(A) n a(-A) #¢. Moreover, it is easy to check
eg.(1.4) has no solution.

Now, we study the nature of the solution of eq.(1.4) for special types

of operators.

Recall that an operator A is sAaid to be self-adjoint if A=A
19,pp. 147]. The following remark is very usful here.

Remark (1.2.2):
If A and W are self—-adjoint operators, then eq.(1.4) may or may not

have a solution. Moreover, if it has a solution then it may be non self—

adjoint. Thisremark can easily be observed in the matrices.

Next if A and W are self—-adjoint operators, what conditions can one
put on A (or W) to ensure the existence of self—adjoint solution for
eq.(1.4)?

The following theorem gives one such conditions.
Theorem (1.2.2):
Let A ancW be self-adjoint operators which are also positive. If

00 o(A) then the solution X of eg.(1.4) is self — adjoint.

Pr oof:
Since 00o(A) then it is easy to see that o(A) n o(-A)=¢ and

hence eq.(1.4) has a unique solution X. Moreover, AX"+X"A=W

-6-
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Therefore X" is aso a solution of eq.(1.4). By the uniqueness of the
solution onegets X =X".¢

Recall that an operator A is said to be skew—adjoint in case
A"=-A[9, pp.48].

Remark (1.2.3):

If A is a askew—adjoint operator, then o(A") n o(-A) =o(-A) and
hence eq.(1.4) may have a solution or may not. If it has a solution then it
may be askew—adjoint or may not.

To illustrate this remark, consider the following example

Example (1.2.4):

If A is a askew—adjoint operator and W is a zero operator then

eq(1.4) has an infinite number of solutions. For example, X=A is a skew-
adjoint solution of eq.(1.4). On the other hand X=I is not.

Now, the following proposition shows that if A and W are skew—
adjoint and if eq. (1.4) has a unique solution then this solution is a skew—

adjoint.

Proposition (1.2.1):

If A and W are skew—adjoint operators and eq.(1.4) has only one

solution then this solution is also skew—adjoint.

Pr oof:
Since A°'=-A and W =-W then it is easy that to check

A (-X)+(-X)A =W and since the equation has only one solution

thenX” =-X .¢

Next, recall that an operator A is said to be norma incase

A"A = AA", [9, ppP154].
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The following remark is useful here.

Remark (1.2.4):

Consider eq.(1.4), where the solution of it exists. If A and W are

normal operators then this solution is not necessarily normal.

Thisfact can easily be seen in the following example.
Example (1.2.5):

Let H=/,(C), consider eqg.(1.4), where A=il and W=0. Therefore,
iIX +Xil =0. It is easy to check the unilateral shift operatefined by

U(X1, X2,...)=(0,Xg, Xo,...) O(X,, %y5.--)04,(C)
Isasolution of the above equation which is non normal operator.

There are cases in which the converse of corollary (1.2.2) holds but

first we need some preliminaries.

Putnam—Fugled Theorem (1.2.3)
Assume that M,N, TOB(H), where MancN are normal. If

MT =TN then M“T = TN".

Pr oof:
See[17, pp.300].

Next recall that an operator M is said to be dominant if

H(T -2 xH <M,|(T-2)x|, for all zOo(T) and xOH. On the other
hand, operator M is caled M-hyponormal operator if
H(T -2) XH <M|(T - 2)x|, for zOC andx OH [15].

In [15], the above theorem was generalized as follows.

Theorem (1.2.4):

Let M be adominant operator and N is an M-hyponormal operator.

Assume MT =TN for some TOB(H) then M"T = TN".
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We also need the following lemma.

Lemma (1.2.1) [20]:

R
If {(S? T} IS an invertible operator on the direct sum H, [0 H, of

Hilbert spaces H, andH,, then SS”+ TT" isinvertibleon H,.

Let us say that operators M and N satisfy Putnam- Fugled condition
if MT=TN for some TOB(H) impliesthat M"T =TN".

The following theorem was proved in [21] if A ancB are normal
operators, we prove it for more general cases.

Theorem (1.2.5):
Let A anc B betwo operators that satisfy Putnam- Fugled condition.

_ A O
The operator equation AX -XB=C has a solution X iff {0 B} and

A C .
0 B are similar operator on HO H.

Asacorollary, we have

Coroallary (1.2.3):
If A is normal operator then eg.(1.4) has a solution if and only if

{AD 0 } . {AD —W}
issimilar to )
0O -A 0 -A

Pr oof:

Suppose that eg.(1.4) has a solution, then by the corollary (1.2.2)

g

A
the operator { 0 0 -A

o] » {AD —W}
issimilar to )
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Conversely, assume similarity, then there exists an invertible

Q R
operator such that
S T

Q RI||A" 0o |_|A” -W|[Q R
S T|lo -A| |0 -A|lS T/
C
So QA"-A"Q=ws -RA-A R=WT, SA"=-AS and
-TA=-AT . It followsthat - A commutes with both SS'andTT".

Now
-W(SS"+TT") = (QA”-AQ)S’+(-RA- AR)T"
=(QA"S"-RAT") - (AQS”+ A'RT")
=(QS”+RT)(-A) - A (QS"+RT"),
by lemma (1.2.1), SS"+TT" is invertible, moreover its inverse
commutes with  (-A) so eq(l4) has the solution
X =—(QS"+RTH(SS"+TT) ™ .e
The following corollary follows directly from theorem (1.2.4)
Coroallary (1.2.4):

If A is dominant or a M-hyponormal operator then the operator

U oo_
equation defined by eq.(1.4) has asolution iff {AE) (;J and {AO _Vﬂ

are similar operatorson HI H.

Recall that an operator T on a Hilbert space H is said to be binormal
if T°T commutes with TT", quasinormal if T commutes with T"T, and
0 - operator if [T"T, T+ T =0, where

[TT,T+TN=TTT+TYH) —(T+THTT,[25].

In example (1.2.3), it is clear that A and W are binormal

(quasinormal, ©-operator).On the other hand, the unilateral shift

operator is a solution which is not

-10
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Next, we recall the definition of another type of operators, namely

the compact operators.

Definition (1.2.2), [9]:

An operator A is said to be compact in case, given any sequence of

vectors {x,} such that |x,| is bounded, {Ax,} has a convergent
subsequence.
Clearly, an operator A is compact iff |x|<1 implies {Ax,} has a

convergent subsequence.
Now, the following remark shows that the solution X of eq.(1.4) is

not necessarily a compact operator in case A (or W) is compact.

Remark (1.2.5)
If A (or W) is compact and the solution of eq.(1.4) exists then it is

not necessarily compact

Asanillustration to this remark, consider the following examples.

Example (1.2.6):

Consider the equation A“X + XA = A"+ A, where A is a compact
operator on an infinite dimensional Hilbert space H. It isclear that X =1
Isasolution of the above operator equation which is not compact.
Example (1.2.7):

Consider eq.(1.4) where W=0. It is clear that the zero operator is

compact. Given A=il, then X=I is a solution of eg.(1.4) which is not

compact.

1.3 Invariant Subspaces

In this section, we recall the definition of an invariant subspace.
Also give some propositions and remarks with some examples
Moreover, in this section, we study if the operator equation given by

eg.(1.4) has a solution, when does this solution has a non-trivial invariant

-11
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subspace. Also, we study the existence of non-trivial invariant subspaces
for the operators X and W which are defined in the operator equation
given by eg.(1.4) in case the operator A and A" have reducing subspaces.

We start this section by recalling that a non-empty set M [ H issaid
to be a linear manifold of H if it is closed under addition and scalar
multiplication which are defined on H and if this linear manifold is

closed in the norm topology, then it is called a subspace,[ 3].

Definition (1.3.1), [3]:
Let T:H - H be abounded linear operator on a Hilbert space H. A

subspace M O Hisan invariant under T (or T —invariant) if TM O M.

The two trivial subspaces H and {0} are invariant subspaces under
every bounded linear operator T. So, a non-trivial invariant subspace of a
bounded linear operator T is a subspace M such that 0#M #H and
TM O M. The set of al invariant subspaces of a bounded linear operator
T iscalled the Lattice of T and is denoted by Lat T. It is clear that the

trivial subspacesarein Lat T for every bounded linear operator T.

Next, the definition of the common invariant subspace for a pair of

bounded linear operatorsis given below

Definition (1.3.2), [3]:
Let A,BOPB(H). A subspace M OH is said to be a common

invariant subspace of AandB if AM M and BM O M.

It isclear that H and {0} are common invariant subspaces of any pair
of bounded linear operators. So, by a common non—trivial invariant
subspace, we mean a subspace M such that 0ZM #H and is an

invariant subspace under both A and B.

-12
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Now, the next remark shows that if A and W have a common non-
trivia invariant subspace M and the solution X of eq.(1.4) existsthenitis

not necessary that M is an invariant subspace under solution X.

Remark (1.3.1):

Consider eq.(1.4), if the operators A and W have a common non-

trivial invariant subspace M then M is not a necessary invariant under the

solution of this equation if it exists.

To see this, consider the following example.

Example (1.3.1):

2 1
Consider A:02 M - 0?2, where A{O 2] W=l. It is easy to

Xq
check that M = 0

subspace under the operators A and W. After simple computations, the

xlDD} IS a common non-trivial invariant

1 1
solution of eq.(1.4) in this case takes the form X = _41 36 . On the
16 32
other hand,
1 1 1
XM = —21 _é_G {ﬂ: _lel OM, therefore M is a non invariant
16 32 167

subspace under the solution X.

Moreover, the following remark is very useful here.

Remark (1.3.2):
Consider eq.(1.4). If the operators A and W have non-trivial

invariant subspaces as M, and M, respectively then M, and M, may

-13
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not be non-trivial invariant subspaces under the solution of eq.(1.4) if it

exists.

To explain this remark, consider the following example.

Example (1.3.2):

2 1 1 0
Consider A:02 M - 02, where A = . W= 1t is
0 2 0 2

o] o

non-trivial invariant subspaces under operators A and W respectively.

X
easy to note that Mﬁ{( OlJ Xzﬂlj} are

After ssimple computations, the solution of eg.(1.4) in this case takes the

i _1
_| 4 16
form X __1 % . On the other hand,
16 64
1 1
|12 16||X]_ le it h .
XI\/Il—__1 34 || o —__1X OM, if x; #0. Therefore, M4 is a
16 64 16+

non invariant subspace under solution X.

1 1 -1,
= =0T [55x,

Also, XM, = _41 3146 L( }z %2 OM, if x,#0. Therefore,
N _ 2 —X
16 64 64 °

M, isanon invariant subspace under solution X.

Thequestion now arises: if the operator equation given by eq.(1.4)
has a solution, when does this solution have a non-trivial invariant

subspace. The following proposition gives an answer.

- 14
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Proposition (1.3.1):

Let o(A") no(-A)=¢. If A and A" have a common non-
trivial invariant subspace M, then for each W O3(H), W has M as a non-
trivial invariant subspace iff X has M as a non-trivial invariant subspace

where X isasolution of the operator equation A "X + XA =W.

Pr oof:

Since A and A" have a common non-trivial invariant subspace M,

then the above operator equation can be written as

ACATTXD X | X X |[A AW W,

5 s Els A e eannn
W, WL, W, and W, O B(H)

Therefore,
ArX; + AKX+ XA =W,
ArX, + ALK, + XA, + XA, =W,
AX,+ XA =W,

and

ALX 4+ XA, + X 4A . =W,
Since o(A") n o(-A) =@, thus 6(A,") n (-A,) = @
and by using Sylvester—Rosenblum theorem one can get W3 =0 iff

X4 =0. This completes the proof. ¢

Next recall that, a subspace M is said to reduce the operator T if M

and M" are both invariant subspaces under T and in this case, the

T, 0

operator T can be represented as a diagonal matrix T = { 0 } where

4

T,:M D - M and T,:MP I - MY [16].

-15
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Now, we study the existence of non-trivial invariant subspace for the

operators X and W which are defined in the above operator equation in

case the operators A and A" have reduci ng subspaces.

Proposition (1.3.2):

Let o(A") no(-A)=¢. If A and A" have a common a non-trivial
reducing subspace M then for each W L(3(H), W has M as a non-trivial
invariant subspace iff X has M as a non-trivial invariant subspace where

X isasolution of the operator equation AX + XA =W . Moreover M, is
areducing subspace of W iff it is areducing subspace of X.

Pr oof:

Since A and A" have a common non-trivia reduci ng subspace M

then the above operator equation can be written as
{AE 0 Mxl xz}{xl ><2MAl 0 } {vvl wz}
0 AJ|[Xs X,| [Xs X,Jl0 A, |[W, W,
Therefore
ALXq+X iA1= W,
ATX 5 + XA 4 =W,
AZX3+X A1 =W
and
AGX 4+ XA, =W,
Since oA"Y no(-A)=¢, thus o(A;)no(-A,)=¢ and
o(A 4[) n a(—A,) = @. Therefore by using Sylvester—Rosenblum theorem
one can gets W, =0 iff X, =0 and W3 =0 iff X3 =0. This completes

the proof. ¢

-16
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Next, recall that an operator A on a Hilbert space is said to be

isometry in case A"A=I,an algebraic operator if there exists a non-zero

polynomia P such that P(A)=0 and nilpotent if there exists a positive
integer n such that A" =0; [9, pp.140]. We introduce the following

corollary.

Corollary (1.3.1):

Let o(A") n o(-A) =@ and assume that A is normal. If one of the
following conditions is satisfied, then for each W LI3(H), W and X have
a common non-trivial invariant subspace where X is a solution of
eq.(1.4).

1. Alis nilpotent operator.

2. A hasaneignvalue.
3. Aand A" ared gebraic operators.
4

A" isanon-scaar Isometry operator.

Proof:
In case 1,2,3 and 4, the operators A and A" have a common non-
trivia invariant subspace, see[3].
Recall that an operator TO B(H) is said to be hyponormal if TT>TT .
[9, pp.161]
Now, consider the following proposition.

Proposition (1.3.3):

Let o(A[) n o(-A) = @. If A isahyponormal operator then for each
W OB(H), W and X have a common invariant subspace , where X is a

solution of eq.(1.4).

-17
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Pr oof:

Since A is a hyponormal operator then the null space of A is
common invariant subspace of A and AL, [16, pp.117] and the result

follows from proposition (1.3.1). ¢

1.4 On the Range of 15

In this section, we discuss the injectivity of the map
T, :B(H) I - B(H) and show that in general, the map T, IS not
necessary one-to-one. Also, we study the range of 14 when A is
hyponormal.
Recall that, alinear mapping 1 fromaring Rto it self iscalled a
derivation, if t(ak) =at(b) + t(a)b, for al a,b in R,[12].
Define the mapping 1:B(H) I - B(H) by
(X)=T,(X)=AX+XA, XOB(H).
where A is afixed operator in (H).
Itisclear that the map 1, isalinear map, in fact
T, (00X, +BX,) = A%(0X, +BX,) +(aX, +BX,)A
= AT, (X,) +BTA(X,).
Also, themap T, isbounded, since
A

fral =A™+ XA < |AX] +[xa] < x| [A"] +[Al].

But ADIB(H) and |A"|=[A], thus [t,(X)|<M]|X| where M =2|A], so

T, isbounded.

The following remark shows that the mapping 1, isnot aderivation.

-18
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Remark (1.4.1):

Since TA(XY)=A[(XY)+(XY)A for al X,YOB(H) and
XTaA(Y)=XALY +XYA . Also TA(X)Y =ALXY + XAY . Then one
can deducethat T,(XY) Z XT,(Y)+T1,(X)Y.

To prove this, let H=/,(C) and A=U where U is a unilateral shift
operator. Then 1,(X) =BX + XU, where B isthe bilateral shift operator.

Inthiscase 1, is not derivation. To see this, consider

1,(IU) =1,(VU) =BU + U%and

7, U)+7, (DU =7, (U) + 7, (U
=BU +U*+(B+U)U
=2BU +2U?

Now, let R be aring. Recall that, a Jordan derivation f :R [1] - R
is defined to be an additive mapping satisfying f (@) = af (@) + f @)a.
Now, let R be [}ring, i.e, a ring with involution [ A linear mapping

r'R- R is caled Jordan [iderivation, if for al abOR and
1@%)=ar@+1@8a",[2]. If R is a ring with the trivia involution,

a" =a, then the set of all Jordan Cderivations is equal to the set of all

Jordan derivations.
It iseasily seen that the mapping t:B(H) I - B(H) defined by
(X) =1,(X) =AX + XA, XOB(H) is not Jordan CHderivation. To see

this, see the above example.

Next, we discuss the injectivity of the map 1, and show that, in general,

themap 1, :B(H) I - B(H) isnot necessary one-to-one.

-19
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Proposition (1.4.1):

Consider the map TA(X)=AX +XA . If A is a skew-adjoint
operator then 1, isnot oneto one.
Pr oof:
Since A is askew-adjoint operator, then kert ={X[IB(H): AX = XA}.
Therefore | Ukert, and thus 1, isnot oneto one. ¢

Now, we have the following simple proposition.
Proposition (1.4.2):

1. Rang (14)" =Rangdt,)
2. a Rang (1,)=Rang (7,)
Proof:
1. Since Rang(7,)’ ={X A+ A'X", X0 A(H)}. Then,
Rang(7,) ={A X, + X,A X,08(H)} where X; =X . Therefore
Rang7,)” = Rang(7,).
2. a Rang(t,)={a (AX +XA),XORH)}
={A"aX +aXA, X ORH)}
Let X; =aX, then

a Rang(t,) ={ AX,+X,A, X, 0fH)} =RangT,) .

Next we study the range of 7, when A is hyponormal.

Now, we prove the following theorem.

Corollary (1.4.5):

Let AOB(H) such that A" is a hyponormal operator and let

p(X)=aX"+a X"+ +aX+a,. If p(A")ORandt,) then for each
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Chapter One The Continuous-Time Lyapunov Equation

AO0(A") n a(-A) such that A is an approximate eignvalue of -A and
A" with the same corresponding approximate eigenvector then p(A) = 0.

Pr oof:
Let 0>0 and let AOo(A") n a(-A), such that A is an approximate

eigenvalue with the same approximate eigenvector. Then there exists a

unit vector f OH such that
A% -] <% (1.10)
and
A —Af| <% (1.12)
since A is an approximate eignvalue for A" then p()) is an approximate
eignvalue for p(A") with the same corresponding eignvector, [18].
[
Thus [p(A)f - pVf| <7 Hence, [p(a%) = pi) 1| <2
So by Schwartz inequality
<p(AYf,f >—p(A) <% (1.12)
And since p(A")CRang€t,), then there is XOB(H) such that
P(AY) —(AX +XA) =0. So < (p(A”) - (A"X + XA))g,g>=0 OgOH.
In particular <(p(A”)-(AX +XA) f, f >=0. Thus

<p(ADf,f >-<AXf,f >-<XAf,f>=0 (1.13)

Since LI is arhitrary, then we can assumein eq.(1.11) that
O
|af =Af]x < .

By Schwartz inequality we get ‘<Af,XDf > -\ <f, X >‘<%

or
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Chapter One The Continuous-Time Lyapunov Equation

\A<f,xﬂr > — < Af, X'F >\<% (1.14)

Now the hyponormality of A™ impliesthat |Ay| < HA DyH foreach yOH .

Hence, |[X|||Af —Af| < g . Again by Schwartz inequality we get

< Xf,Af >—<Xf,Af >\<%

or

<AXE,f>-A<f, X >\<% (1.15)

By adding the equation (1.13) and the inqualities (1.12), (1.14) and (1.15)
we get [p(1) <§D 00>0. S0 p(A) =0.¢
Remark (1.4.2):

We can show that under the same conditions and the same argument
if p(A)URangt,) then p(A)=0.
Corollary (1.4.1):

Let AOB(H) such that A~ is a hyponormal operator and let
p(X)=a X" +a, X"t +..+aX+a, If o(A”)nao(-A) contans a
number of approximate eignvalues with the same corresponding

approximate eigenvectors, greater than the degree of p, then if
p(AY)ORang(r,), p(X)=0 OXOAB(H)..

Proof:

Suppose that p(A”) ORangégt, ) then using theorem (1.4.1) for each
AOo(AY) no(-A) satisfying the hypothesis in the theorem, p(A) =0
which means that the number of zeros of p(X) is greater than its degree

so p(X)=0.¢
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Chapter One The Continuous-Time Lyapunov Equation

Let f be a complex analytic function defined on a ball B, of center
zero and radius r , so by Taylors theorem f (z) = Zanz“ and this series
n=0

converges uniformally in |z <r. Let A be an element in B(H) such that

|A|<r, the series ian(A)” converges in PB(H), [16]. Define
n=0

f(AD) = ian(AD)“ . Since \o(AD)\ SHAEH , then o(A") OB, .
n=0

Now, we prove the following corollary.

Corollary (1.4.2):

Let A OB(H) suchthat A~ isahyponormal operator and let f be a

complex analytic function defined on aball B, of center zero and radiusr

such that HADH<r. If f(A")ORangt,) then if A is an approximate

eignvalue of -A and A" with the same corresponding approximate
eignvector, then f (A) =0.
The proof of this corollary is similar to theorem(1.4.1).

Remark (1.4.3):

One can show that under the same conditionsin corollary (1.4.2) and

by the same way, if f (A") ORand1,) then f(A) =0.

Proposition (1.4.3):

Let AOB(H) such that A" is ahyponormal operator and let f be a

complex analytic function defined on aball B, of center zero and radiusr

such that HADH <r.If o(A") n o(-A) contains a sequence of approximate

00
n=1

eignvalues {\ }*_, with the same corresponding eignvectors, for both
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Chapter One The Continuous-Time Lyapunov Equation

-A and A" such that A, [0 -~ A and |A|<r then if f(A?)ORang(z,),

f(2)=0, O z[JBr.

Proof:

Let f(AP)ORangt,) then by corollary (1.4.2) if {A.}", is a
sequence approximate of eigenvalues with the same corresponding
eigenvectors for both A and A" then f(A,)=0 for each n and since
A, D0 - A and [A|<r so by Taylor's theorem, f(z)=0 Oz UBr.

Following [4], we say that an operator T is pseudonormal if TX =Ax
for some x OH, AOC then T'x =Ax, and following [21] we say that an

operator T is*-paranormal if HT*XHZ < HT2XH for every unit vector x in H.

Remarks (1.4.4):

(1) Every dominant operator, in particular, every M hyponormal,

hyponormal, normal operator is a pseudonormal operator [14].

(2) Every *-paranormal is apseudonormal operator [14].

Now, we can prove by the same way and the same condition that if p(A)JRang(7r,)

2A<Xf, f >
£

Theorem (1.4.2):

then p(A) =

Let A OB(H) suchthat A" is a pseudonormal operator in A(H) and
let p(X) =a X" +a, X" +...+aX+a,. If p(A)ORangt,) thenif A
iIs an eigenvalue of -A and A’ with the same eigenvector f, then

2\ <Xf,f >
P(A) =

W, where x0B(H).
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Chapter One The Continuous-Time Lyapunov Equation

Proof:

Let A isan eigenvalue of A and A" with the same eigenvector f,
then A'f —=Af =0 and Af —Af =0 and since A" is pseudonormal then
Af —Xf =0.

Since p(A*)DRang{TA) then there exists X OB(H) such that
P(A") = A"X + XA S0 <(p(A)—(A X +XA) g,g >= 0,00gTH. In particular

<(E(A") = (A"X + XA)f,f >=0 (1.16)
But A isan eigenvalue of A" then p()) is eigenvalue of p(A*) with the
same eigenvector p(A*)f =p(A)f . Soeq.(1.16) becomes

<p(AD)f,f>-<A"Xf,f >-<XAf,f>=0
That is
<pA)f,f>—< X, Af >-A<Xf, f>=0
Thus
p(A) <f,f >-A<Xf,f >-A<Xf,f>=0

Therefore, p(A) :%.
Finaly, the following remark is essential here.

Remark (1.4.5):

The pervious results given in section(1.2),(1.3) and (1.4) of this

chapter can be easily generalized to includes the generalization of the

continuous — time Lyapunou equation given by eq.(1.6).
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CHAPTER THREE

On the Discrete-Time Lyapunov Equation

I ntroduction

Recall that, the operator equation of the form
X -F XF=Q,

is called the discrete-time Lyapunov equation her $tein equation, [5].
In general this equation may have one solutiofinite set of solutions or
no solution.

This chapter consists of three sections:

In section one, we study the nature of the solubibinis equation has a
unique solution and we study the nature of it fog@al type of operators.
In section two, we study some of the properties of ug(X)=X-F*XF,
XOB(X).
Also, we prove that the range pfis linear manifold of operators iB(H)
and show that the inverse of Q isn’'t necessary amge (If), in case
QURange (i) and Q is invertible.
In section three, we introduce some notation, t@st corollaries and
remarks about the spectrumgf Also we study the relation of the spectra

of Lr and R+ with the spectra F and F* respectively.

3.1 The Discrete-Time L yapunov Equation

Recall that, the operator equation
X-F*XF=Q (3.1)
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CHAPTER THREE On the Discrete-Time Lyapuimuation

is said to be the discrete-time Lyapunov equatidrere F and Q are known

operators irf3(H) and X is an unknown operator that must be deatezd,[5].

In general this equation may have one solutidimite set of solutions,

or no solution .

To see this, consider the following examples.

Example (3.1.1):
Let H=¢, (C). The unilateral shift operator U o, (C) is defined by

U(X1, Xo,...)=(0,%, Xo,...)
Consider eq.(3.1) where F=U and Q=0. Therefore3el).(reduces to the
operator equation

X-BXU=0

Where B is the bilateral shift operator which detirby

B (%,X2,...)=(X2, X3, X4,...)
and U*=B. The above discrete-time Lyapunov equatioas infinite
solutions, say X=0, X=U and X=cl where c is an @y constant.

The following example shows that eq.(3.1) may haveolution.

Example (3.1.2):

12 10
Consider eq.(3.1), where F= _|and Q . It is easy to check
00 13
that eq.(3.1) has no solution.

The following example shows that the solution of(8d) may be

unique.
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Example (3.1.3):

2 0 1 2
Consider eq.(3.1), take % O} and Q{s J. After simple

1
: ~ 2 : :
computations, one gets 3 , therefore, in this case eq.(3.1) has

w 111

-1
only one solution.

Now, we study the nature of the solution of eq. 3ot special types of

operators.

Proposition (3.1.1):

Let Q and F be self adjoint operators. AssumedhdB.1) has a unique

solution X then this solution is self adjoint.

Pr oof:
Consider eq.(3.1). ThereforexXF*X*F=Q=*. Since Q and F are self
adjoint operator, thus X**X*F=Q . Also X-F*XF=Q. but eq.(3.1) has a

unique solution , thus, X=X*, hence X is a self@d} operator

Next, we study the nature of the solution of ed.)3for normal

(binormal, quasi norma@-operator).

The following example shows that the solution of.(8.1) is not
necessarily normal (binormal, quasi norm@pperator) in case the known
operators F and Q are normal (binormal, quasi npréh@perators).
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Example (3.1.4):
Consider eq.(3.1).Take F=il, Q=0. It is clear ttlas equation has the
following solutions X=0, X=cl, X=U , where c is ambitrary number and U

is non normal (nonbinormal, nonquasi normal, Bewperator).

Next, we study the nature of the solution of ed.3vhen it exists for

another type of operators, namely the compact tpsta

The following example shows that the solution@f{2.1), if it exists, is

not necessarily compact operator incase the krapenator Q is compact.

Example (3.1.5):
Consider eq.(3.1). Take F=U and Q=0. Clearly, sb&ution of this

equation is X=cl, where c is an arbitrary numbed dnis not compact

operator in infinite dimensional space.

Remark (3.1.1):

The following example shows that the subspace Moisnecessarily

invariant subspace under a solution of eq. (3.Ease the operator, F and Q

have common nontrivial invariant subspace M.

Example (3.1.6):
Consider eq.(3.1), and put Q=0, F=U. we get X-BXUwx@& have the
following solutions X=0, X=cl, X=0 where c is anbérary numbers.

Remark (3.1.2):
Consider eq.(3.1). If the operator F has nontrimaariant subspace M

and the operator Q has also nontrivial invariamispace M then a solution
of this equation may have no invariant subspace.
To explain this remark, see example (1.3.2).
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3.2TheMap Ug

Let B(H) denote the algebra of all bounded operatorsannfinite

dimensional separable complex Hilbert space H. RForin [(B(H),
let Ue:B(H) M - B(H) be a mapping defined br(X)=X-F*XF, XTOBR(H)
then Rangl{p)={X-F*XF: XOB(H)}.
In this section, we study some of the propertiedo It is clear thal
Is a linear map, in fagi(aX+pXz)=(a X1+B Xo)-F*(aX1+BX,)F
DX +BX—aF* X F-BF*X, F
TU(X ) +BH(X2).
Now, we have the following simple proposition.
Proposition (3.2.1):

(1) Rang )*=Rang )
(2) aRang {4r)=Rang(lF) O allC

(3) The operatoplr is bounded.

Proof:
(1) Rangle)*={(X -F*XF)*, XUB(H)}
=(X*—F*X*F, X OB(H)}.
Let X=X*, then (Rand(g))* ={ X 1-F* X,F, X;OB(H)}=Rang().
(2) a Rangflp)={a(X-F*XF), XOB(H)}
g X-F*aXF, XOB(H)}.
Let X=aX, thena Rang(g)={X ;-F*X1 F, X;OB(H)}=Rang ().
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@3) JurOl= [x - F' x| <|x|+|F" x| <|x| i+ |F?). But FIB(H), thus

Je(¥)< M|X], where M1+ [F2), sopg is boundec

Now, we prove that the rangelifis linear manifold of the operators

in B(H).
Proposition (3.2.2):

Rang(lg) is a linear mainfold of operators [H).
Proof:
It is known that Rangi(=(X))={Q | Mr(X)=Q, XOB(H)}

(1) 0JRang(F) since X =0043(H) and y. (0)=0.

(2) Let Q, QORang(r) we must prove G-Q,[0Rang(ly)
Therefore,[1X,0B(H) such thapteX;=Q; and [ X,0B(H) such that
He X2=Q,. Thus, Pr(X1=X2)=(X1—X2)-F*(X1-X2)F
But, =X X - F*X ;F+F*XF
=( X-F*X1F)-(X-F*X,F)=Q,—Q..

Then X—X,0B(H) such thaple(X1—X2)=Q;—Q.. So Q—-Q.JRang(U).
Therefore, Rangl) is a linear manifold of operatoss.

Now, we state the following proposition.
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Proposition (3.2.3):

If QURang(lr) then so does Q*.

Proof:

Let QJRang(ls) so [XOB(H) such thatU(X)=Q. To prove
Q*0ORang(lr) so [ yOB(H) such thatpe(y)=Q*. But P(X)=Q, thus
(X-F*XF)*=Q*. Hence X*-F*X*F=Q*. Since XB(H) then X*1IB(H) so

Q*ORang(ls). ¢

The following example shows that the inverse dd@noted by Q) is

not necessarily in Ranglf) in case QJRang () and Q is invertible,

Example (3.2.1):

0 2 1 2
Consider eq.(3.1) Q= and F . Therefore
2 1 0O O

4 11 -2 _ : 0 2|
Q =—-- . After simple computations one can get|X= IS
412 O 2 1

a b
solution of eq.(3.1). In fact every matrix of thaerh X= Is a
b 1+4a

solution, where a and b are any numbers.
Now, if QJRang(lf) then @ does not necessarily belong to R

for all nCJZ,. This fact can easily be shown in matrices.

Remark (3.2.1):

If Q1, @QURang(lr) then QQ, is not necessarily in Rangy), this can

be seen in the following example.
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Example (3.2.2):

01 1 2
Take Q:L J, therefore @JRang(lr) where F{O O]

0 2
Qz:{2 1] therefore @I Rang(lg). After simple computations one gets

Qle:E :13}, but QQ.[JRang (4g).

Remark (3.2.2):

Rang(lf) is not a subalgebra g{H).

Recall thatpe(X) is one-to-one iff keldr)={0}. Let XUker(us) so
Me(X)=0, then X=F*XF also if F is an isometric opeyatso X=I then
ker(Ug)#{0}. Therefore,lUr is not one-to-one and thus it is non invertible.

To illustrate this fact, consider the following exale.

Example (3.2.3):

Consider eq.(3.1) sa==I-Rg:Lr, WwhereR.. =F'X and L, = XF Ug(X)=0
therefore X=0.
X-F*XF=0so0 X=F*XF. Let F=U so I=BlU=I and 0=BOU=0. F=BU-=I.
then U is an isometric operator, therefore F issametric operator andr is

not one-to-one and so is non invertible.

Recall that, an operator T on a Hilbert space bhid to be projection

operator in case’ET and T*=T, [9,pp. 147].

Proposition (3.2.1):

If F is a non zero projection operator thgnis not one to one and so

is not invertible.
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Pr oof:
The provelr is not one to one, we must prove that 1i-fXZ\=F*(X1-X2)F

then %-x,=0 take %-x,=F therefore F=F.

The following example shows thgt is not onto in general

Example (3.2.4):

1 0
Take F{O 2} so F*F£l. Then F is not isometric. Assume X=F*XF,

a b a b 1 Ofa bjl1 O _
Let X= . Then = After simple
c d c d 0O 2|c d|0 2

1 0
computation one gets {6 O} Oker(Ug ). Thereforelg is not one-to-

one and is not onto.

We state the following remark.

Remark (3.2.3):

If F is a non isometric operator thgila may not be one-to-one.

To see this fact, consider the above example.

Remark (3.2.4):

Recall that,Randug) is self-adjoint where the closure is in the norm
topology, if Randpg) =Rang(l¢)

But we observed, in proposition (3.2.1), that R@gpyE Randug) so

Randug) is self-adjoint ifRangpug) =Randu ,:)*

- 55-



CHAPTER THREE On the Discrete-Time Lyapuimuation

3.3 The Spectrum of pg:

In this section, we study the relation betweendépectra of tand

Re- with the sepactra of F and F* respectively.

Notation (3.3.1):
For A, BOB(H). X is any Banach space. Let

O(A)+0(B)={a+B : alo(A), BOO(B)}

O(A)+0{(A)={a+B: aldo (A), BUOx (B)}

Or(A)Or(B)={a B: allon (A), U0 (B)}

05(A)+03(B)={ a+B:a0;(A), BLOs (B)}

05(A)05(B)={ ap: alo;(A), 005 (B)}

In the following lemma we give the relation betwedre parts of

spectrum of the sum of two operators A and B defioe a Banach space X

and the sum of the spectrum.

Lemma (3.3.2), [10]:
If A, BB(H), and AB=BA, then

() o(A+B)00(A)+0x (B).
(i) o(AB)O(A)O5 (B).
We have this immediate corollary.

Corollary (3.3.1), [10]:
If A, B OB(H) and AB=BA then

(l) 05(A+ B) DG5(A)+G5(B) .
(i) Os(AB)IOs(A) Os(B).
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In [26] Herro,D.A. proved that if X is a Hilbert ape then corollary
(3.3.1) becomes
Remark (3.3.1)

Let A,BOB(H)and AB=BA then

(1) O(A+B)=0(A)+0B), 0O(AB)=0(A)0r(B).
(2) O5(A+B)=05(A)+0s(B), 05 (AB)LI05 (A) Os(B).

Let B(B(H)) be the Banach algebra of operator3@d) considerd as a
Banach space. Define the mappingsabd R from 3(H) into B(B(H)) such
that Le(X)=XF, Re(X)=F*X. Itis clear that for all EI3(H), Le Re+=Lg R-.

Now, we return to our problem, we want to reldte $pectra of Land

Re-with the spectra of F and F* respectively.

Theorem (3.3.1):
Let FIB(H), then

(1) On(Re-)=0r (F*) and Ox (LF)=05(F)
(2) 05(Re<)=05(F*) and O (LF)=0r(F).
Proof:

To prove this theorem, we have to look severakibilgies, but we

prove some of them and the rest can be provedryasiways. To prove
O(Rr)=0(F*) we have to show that O(F*)U0{R) and
Or(Re+) 00 (F*).

Let ALlO(F*), without loss of generality, we may take=0. Suppose
that F* is not bounded below on H, but-Rs bounded below ofg(H). This

means that there exists m>0 such tHRllt:*(X)Hz m|X| for all XOB(H).
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Since F* is not bounded below, one can choose tavector f1H such that
HF*fH <m. Now we set X=flg where g is a unit vector andd represents

the operator on H which is defined bylff)h=<h,g>f for all h in H. It is
easily checked thaff O g|=|f||g|. Thus|X|=[f O g|=|f[|d|=1. On the

other handHF* ><ﬂ HF*(f O g)H :“F*f O q‘ :HF*fH |[g|<m=mX|, a contradiction.
To prove that Q05 (Lr ) implies aloy (F). If ooF), then F maps H,

1-1 and invertibly onto rang(F). Then the equatd¥=C has a unique

solution inB(H) for any GIB(H), that is X=CF 1, whereF is the operator

whose restriction to rang(F) is the inverse of k avhose restriction to
Rang(F)D Is zero. This means that Rang&B(H) so 0J05(Lk ).
Now, let FIB(H), Re-Lr=L¢ Rr+ and R+ and Lr CB(H). So
Orn(Mp) =O0(I-Rr:LF)=01(1)—O0(Re:Lf) (by spectral mapping theorem)
=0(1)-0(Rr+)0(LF) by remark (3.3.1)
=1-05(F*) Or(F).
Also O5(MF)=05(1—ReLg)=05(1) —O5(Re<Lg) by remark (3.3.1)
=10{F*)05 (F) .
and this completes the proef.
Corallary (3.3.2):
(1) onlHe)=1-05(F*) or(F).
(2) 05(He)=1-0r(F*) O5(F).

Now, we state the main theorem
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Theorem (3.3.2):

O(Mp)=1-0 (F*)a(F)
Proof:

Since B(B(H)) is the Banach algebra of endmorphisms on a
Banach spac@(H) then o(yr)=0(I-Rr-Lp)=1-0(Rr)o(LF). Since
0(Rg+)=0(F*) ando(Lg)=0(F) so a(ur)=1-o(F*)a(F). ¢
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On The Range Of pa

| ntroduction

Assume thaip, :f(H) I - B(H) is amapping which is defined by
PA(X)=X"A +AX, XOB(H). The range opa is denoted by Rand

defined by Rp ={X*A + AX : X UOB(H)}.This mapping is said to be
guasi-Jordam-derivation.

In this chapter, we study the range of the quasialo *-derivation
Pa, When A is either normal or compact operator. frenmmnore, we study
some properties @y, like, surjectivity and density .

This chapter consists of four sections.

In section one, a study of the surjectivity of th@p pa is
introduced. We prove that, is not surjective in general. In fact if
A-A"orA+A" is non invertible therRy 23 (H)

In section two, a study of the rangepafwhen A is either a normal
or compact operator. We prove that, if A is a selfeint operator, (skew-
adjoint) which is an invertable operator then taege ofp, is equal to
the set of all skew-adjoint (self-adjoint) operatoMoreover, if A is a
skew-adjoint operator, we prove that the rangp.df equal to the set of

all self-adjoint operators.

In section three, we define the quasi-commutatdawofoperators in

B(H). Also, if H is a complex Hilbert space, théﬁ(H) =B (Mndin

case infinite dimensional real Hilbert space, wevslthat every operator

in B(H) can be written as a sum of two quasi-commutators.
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In section four, we study the density of the ranfp with respect

to the norm topology.

In fact, we show thaR, ={XA +AX" 1 X isaskew- adjoing is

not a norm dense iB(H).

We start this chapter by studying the surjectieitghe mappa.

2.1 Surjectivity of the map P a

For eachAUB(H), let p,:AH I -B(H be a mapping which is

defined byp,(X)=X"A+AX,. For everyA OB(H), we callp, a quasi-

Jordan-derivation. Let R, denote the range of the quasi—Jordan

derivationpa, that is,R 5 ={X[A +AX: XOB(H)}

In this section we study the surjectivity of thappa.

First the following simple proposition is given.

Proposition (2.1.1):

(1) Ra) =R, .

(2) iRp ={AX = X "A: X OB(H)}

Proof
(DRA)-={(X"A+AX)": XORH)}
={A'X+XAT: XOBH)} ={X A" + A'X: XORH)} =R »
(2) iR, ={i(X"A+AX): X ORH)}
={(iXD)A +A(iX): XOB(H)}

={(iX)"A+A(iX): XOBH)}={-X, A +AX,: X, OfH)}
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={AX, - X, A: X, OB(H)} whereX, = iX. ¢
The question that may be asked is, whether the ppaps 1-1 for any
fixed operator A if3(H).

The following proposition gives an answer.

Proposition (2.1.2): pa is not 1-1.

Pr oof:
It is known thatKer p, ={X 0S(H): XA" + AX =0}. If X ==X, then
Kerpa ={XUOB(H):- XA + AX =0}. Itis clear that OKerpp .¢

The following theorems shows that is not generally surjective.
Theorem (2.1.1):

Let A OB(H) such thatA - A" is non invertible, theil DR, and
henceR, B (H).

Pr oof :

Assume that there exists an operataiffH) such that

X"A +AX =il (2.1)
Hence
A +xtAE =) (2.2)

By subtracting eq.(2.2) from eq.(2.1), one can get

XEA +AX —AEX =X AL =2il .
It follows that
XHA -AD) +(A-ADHX =2il.
Thus
XHA =AY - (XHA-A"))=2il.
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By assuming thaB = A - AL then it is easily seen that B is skew-
adjoint andX "B - (X"B)" = 2il Therefore X'B = [il +(X"B)"|+il .Let
C=il +(X"B)" thenC=X"B -il. AIso,C‘j:[iI +(xEB)DT =l +XB=C.

Thus the spectrum of C, shown byC), consists of real numbers
only. On the other hand, since B is non invertisiejs X"B, and hence
000(X'B). But C=X"B-il, hence -io(C) which is a

contradiction¢

Theorem (2.1.4):

Let AOB(H) such thatA + A™ is non invertible, then OR, , and
henceR, B (H).

Pr oof:

Assume that there exists an operatdip¥) such that

XA +AX =1 (2.3)
Hence
ASX + XA =) (2.4)

By adding eq.(2.3) and eq.(2.4), one can get

XEHA +ADH +(XEA+AN) =21,

By assuming thaB = A + AL, then it is clear that B is self-adjoint and
XB=|l-(XB)|+I.Let C=1-(X"B)" thenC=X"B - 1. Also,
c'=[-(x®B)T =1-xB=-C.

Thus o(C) consists of the pure imaginary numbers only. Ga dther

hand, since B is non invertible, so¥ B, and henceODo(X[ B) But
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c=X'B-1, hence —-100(C) which is a contradiction. Therefore

Ra#B(H). ¢

2.2 On the Range of pa

In this section, we study the rangepaffor special types of operator

A. This study includes the compact operators aechthrmal operators.

2.2.1 On The Range Of paIn Case A IsA Normal Operator

This section given a study of the rangepgfin case A is a special
type of operators, namely the normal operator.

We start this section by the following proposition

Proposition (2.2.1): R =¢(H)where ¢(H) is the set of all self-adjoint

operators defined on H.

Proof:

It is clear thatR, ={X* +X\X DB(H)}. Since X+X is self-adjoint
operator then RIZ(H).

Conversely let YIZ(H), by assuming X=%Y then %X=Y0O R.
Therefore R=((H).

Next, we give a generalization of the above prapmsito include

another special type of normal operators, nameadys#if-adjoint operator.

Proposition (2.2.2):
Let A be self-adjoint operator, thdty ¢  (H)
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Proof:

Let YOR,, then there exists an operato¢[If3(H) such that
Y =X"A + AX . HenceY"® = AtXx + X'AL. Since A is self-adjoint, one
can get Y =AX +X"A =Y. Thus Y is self-adjoint. Therefore
Ra OC(H).¢

The question now is pertinent, do€$H) 0 R,for fixed operator
AOB(H) ?

The answer is negative, in fact, if A=0 where @his zero operator
then R={0} and hence,(H)#{0}.

On the other hand the following proposition shdhat if A is any
self-adjoint operator, then one can get the saswdtrthat is((H)O R4 .

Proposition (2.2.3):
If A is a self-adjoint operator which is non-intible, then
&(H)ORAa.

Proof:

Since A is self-adjoint, them\ +AF=2A, and since A is non-
invertible, then so doea + A", Thus by theorem (2.1.4)[JR, .But
I00&(H) thereforef(H)LRA.¢

Next, what conditions can one put it on the sdjbmt operator A

that gives the relatiord (H)=Ra?

The following proposition gives one of the such ditions.

Proposition (2.2.4):

If A is a self-adjoint operator which is inverthlthenr, = (H).
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Pr oof:
Let YDO((H).To prove Y[OR,, take X=%A_1Y, then

XDA+AX=%Y*(A'1)DA+%AA'1Y. Since Y is self-adjoint operator, then

XA +AX=%Y(A_1)DA +%AA_1Y. But A is self-adjoint, then

XA + AX :%YA_lA +%AA_1Y =Y. ThusZ(H) DR, and by using

proposition (2.2.2), one can gty =¢  (M4)

Now, we study the nature of,Rn case A is another special type of

normal operators, namely the skew-adjoint operator.

Proposition (2.2.5):

If A is a skew-adjoint operator, theR, Oy (H)Nhere y(H)

denoted the set of all skew-adjoint operator.
Pr oof:

Let Y=R, . Then there exist an operatotO0g(H) such that
Y = X"A+AX . HenceY = A”X + X" A".Since A is a skew-adjoint , one can
getY =(-AX+ X (-A). Therefore -Y" =X"A+AX . Thus-Y =Y and
hence is a skew-adjoint operator. Thereforey(H) .4

Now, we studyR 5 in case A is a normal operator. But before that,

we need the following definition and remarks.

Definition (2.2.1), [2]: A nonempty subse$ [13(H) is said to be self-

adjoint set if for eacth OS implies A" OS.

Remarks (2.2.1), [2]:
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(1) A nonempty se§ [13(H) is self-adjoint iffS= S,

(2) If S is a self-adjoint subset BfH) then so does.

The next theorem is a modification of a theorenmvpdoby Molnar
L. in [13]. It shows that ifA is a nhormal operator ari?A is a self-adjoint

subset of(H), then so does R

Theorem (2.2.1):

If AOB(H)is a normal operator, then the following statememés

equivalent :

(1) R, is a self-adjoint subset p{H).
(2) R, is a self-adjoint subset pH).
(3) 6(A) 0 0 00

Pr oof:
(1) = (2): follows from remarks (2.2.7).

1. 1) 1.1
(2) = (3): itis clear thaEéH—) A+A(§I+—)DDHA as n[ - oo,
n n

Thus by proposition (2.1.1A [ iR_A and hence-iA Dﬁ.On the other
hand, sinceR, is self-adjoint, therR 4 = (R4)". HenceR, = (Ra)D) =
Ra*, thusR, =RaPand—-iA ORAD, henceA OiRAL.

Next, let e>0 and let ALJo(A). Then A is an approximate

eigenvalue forA, thus there exists a unit vectpf]H such that
lay-w<E =1 25

This implies thaflAy — Ay] |y| <§. Thus by Schwarz inequality
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[<Ay-Ay,y > <§.
Hence
[<AY,y>-A<y,y > <%.
Thus
[<Ay,y>-\ <% (2.6)
Moreover, sinceA iRAC then there existx in B(H) such that
A -(X"A"+AX)| <%.
Hence
A =X"A"=AX] v <%
So by Schwarz inequality,
‘< (A -X"AP-ABx)y,y >‘ <%.
Thus
‘<Ay,y>—<AEB/,Xy>—<Xy,Ay>‘<§ (2.7)
Note that, sincee is arbitray, then we may assume in eq.(2.5) that
X Jay -ay| <§ (2.8)
Since A is normal, therjAz| = HADZH forall zOH.
It follows that
Wy -mx <, 29)
From ineq.(2.8) and ineq.(2.9) one can get

‘<X[g/,Ay—)\y>‘<§1
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and ‘<AES/—Xy,XES/ >‘<%

Hence

‘<Xy,Ay>+X<y,XDy>‘<% (2.10)
and

‘<A[B/, Xy > +A <y, Xy >‘<% (2.11)

By adding the inequalities (2.6), (2.7), (2.10) 48d.1) and after simple

computations one can have
‘2<Ay,y>—)\ +A(< Xy,y >+<y, Xy >)‘ <g.
Note that< Xy,y >+ <y, Xy >=r and2< Ay,y >=r,. Hence
‘rl -\ +ﬁ‘ <¢ for eache >0.
Now, we check thah OO O10. In fact, letA =a+ib.Thus
- (@+ib) + @-ib)r| <¢
It follows that,
I —a-ib+ar-ibr| <,
I +(r-Ya-i@+rb<e
sinceg arbitrary, then
I+ (r-Da-i+rb=0
Hence
n+(r—-Da=0
and
-([1+r)b=0.
It is clear that ifo# 0 then then (1+r)=0 which implies that=-1 which

is absurd. Thus eithexr=0 or b=0 and hence\ O il .4

Now, we study the range @f, in case A is compact.
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2.2.30n The Range Of p, In Case A s A Compact Oper ator

This section gives a study &, in case A is a compact operator.

We start this section by the following proposition

Proposition (2.2.6),[13]:

R, cannot contains a non trivial ideal g{H).

From this result we can deduce tlRt does not contain the ideal
of compact operators and henBg, does not contain the ideal of finite
rank operators, But there exists a compact operatosuch that
O(H)ORa and thusRa =0(H), whered(H) denote the set of all

compact operators defined on H.
Before giving the definition of this operator weed the following

definition and lemma,[13].

Lemma (2.2.1),[13]:

Let {x;} and{y,; } be two orthonormal sequence of vectors, and

{A\;} be a sequence of complex numbers that convergegs fbhen

operatorT = > A\, x; Oy; is compact.
i
Pr oof:

n
Let T, =Z)\ixi Oy, n=12,.... SinceT, is a finite rank operator
i=1

[In, thenT, is compactin. Also,

n
T Hzx ST
i i=1

D Nix; Oy

i>n

=SUFP\i‘

i>n
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But {A;} converges to O, thu§f =T, 0 -0 asn - . Hence T is
compact being a limit of a sequence of finite rapkrators¢

Next, we give the definition of the operatdrsuch thatl(H) [ R_A.
Definition (2.2.3),[13]:

Let {e,} ,n N, be a complete orthonormal set in H. For a real

numberq,|g <1, define the operator A as follows
A=>d"%,,0e,
n
The following result gives some propertie®pérator A.

Proposition (2.2.7),[13]:
(1) A is compact.

(2) y(H) O Ra.
The following proposition shows that if operatoisicompact then |

does not belong to the rangemf .

Proposition (2.2.8):

If A is a compact operator. IB(H), thenl R, .

Pr oof :

Since A is compact, this implies thatA +AX is compact for each

XOB(H). Therefore, if IOR, , then this implies that | is compact

which is contradiction. ThusOOR, . ¢

2.3 Quas-Commutator Operators

In this section, we give a definition of the quasmmutator
operator. Also we prove th@(H) =2 (H) whered' is the set of all quasi-

commutator operators on H.

We start this section by the following definitions
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Definition (2.3.1):
Let A, XOB(H). The quasi-commutator of A and X is definecbt®

the operatoiX"A + AX

Definition (2.3.2):

An operator YIB(H) is said to be quasi-commutator on H if there

exists two operators X and A fifH) such thaty =Y A + AX .
The following remarks are useful.
Remarks (2.3.3):

(1) If Y is a quasi-commutator, theny and Y are also, where O C.

(2) If Y is a quasi-commutator on H, théh[J Y is a quasi-commutator

onHUOH.Infact, ifY = X A + AX

T R

Y 0
= =YOY.
o v)

Now, the following proposition shows that every gger in3(H) is

guasi-commutator.

Proposition (2.3.4):

B(H)=9"(H) whered (H) denoted the set of all quasi-commutator

opertors on H.

Pr oof :

Let YOIB(H). Define operators X and A as = —%I and A =-Y,

then

XA+ AX = (—%IJ(—Y) + (—Y)E—%Ij Y
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Hencep(H) =9" (H)¢

2.4 Density Of R, In the Norm T opology

In this section we study the density of the rawofep, (R,)with
respect to the norm topology.

We start this section by recalling the followingfiditions:

Definitions (2.4.1), [13]:

(1) A family S of operators if3(H) is said to be dense in the operator
norm topology, or uniformally dense, if for eacheogtor A C1B3(H),

there exists a sequence of operadrd] suéh thats, 0 - A in the
norm of B(H) , that is|A,, ~A| 0 -0 as n - o.

(2) A family S of operators if3(H) is said to be dense in the strong
topology, or strongly dense, if for each operatilB(H), there
exists a sequence of operatofs,J sBch that, A X - AX
strongly for all X OH, that is|A X -AX| - 0 asn - « for all
XOH.

(3) A family S of operators if3(H) is said to be dense in the weak
topology, or weakly dense, if for each operaddri3(H), there exists
a sequence of operatofs, [ s8ch thatA X — AXveakly for all
XOH, thatis|< Ax,y>-<Axy> -0 as n-« forall x,ydH.

Remark (2.4.1):

It is obvious that the density in the norm topgleg density in the
strong topology= density in the weak topology.

Now, we show that the rangB, ={XA +AXE :XDB(H)\ Xis

askew - adjointoperator is never dense in the norm topology.
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Theorem (2.4.1):

Let AOPB(H), and R ={XA +AX "X DB(H)\ Xis askew -
adjointoperator,then R 5 , can not be dense B(H) with respect to the

operator norm topology.

Pr oof :

Assume the contrary, that is assuReg is dense ir3(H).Let A,

and A, be the real and imaginary parts of A respectiviaelythe

Cartesian decomposition of A, thusA1=%(A +AD) and

A2=%(A +AD). It is known that decompositiotA =A; +iA, is
|
unique,[13].

Now, let B; ,B, be any pair of skew-adjoint operators on H, lmtd
B=B, +iB,. SinceR, is dense i3(H), then there exists a sequence
of operators {X} in B(H) such that X A+ AX I - B=B, +iB,.Since X is
a skew-adjoint therefore:

X,A-AX [ - B=B, +iB,
Thus,
X, (A+iA,)-(A +iIA,)X, [ - B, +iB,
since each ofA; and A, is self-adjoint then by proposition (2.2.2) each
of X, A;—A X, and X A, -A,X, is askew-adjoint for eachN . It
is clear that each of the sequenf¥sA; - A X, anp{X, A, -A,X,}

converges and by the closeness of a askew-adjparator, there limits

are skew-adjoints, call these limits By andC, . Thus,

(XpA1 A X)) +i(Xp Ay —AX,) M - Cp +iCy
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Because of the uniqueness of converging points, caa get

C,+iC, =B, +iB,. The uniqueness of the Cartesian decompositiofigsp
C, =B; andC, =B,. It is easily seen from the Cartesian decompasitio
that the spac@(H) is generated by skew-adjoint operators oveiThus

the complex linear subspaces generated by the saRge andR,, are

dense inB(H). Hence each oA, and A, has a left or a right inverse in
B(H).

Next, let BLOB(H) be an arbitrary skew-adjoint operator and apply
the last paragraph to the pair of the operatorsnB @, to get the
existence of a sequence {§Xin B(H) such thatX A, -A X, [ - B

and . X A, —A X, - 8.1f A has aright inverse then

XpAAS - AX A D - BAS! (2.12)
and
Xp=A,X Az M - 6
Thus,
Xn —AZXpA, M0 -8
and
XEAZL-AXYm - 6
Hence,
A XA -AAX M -0 (2.13)
Therefore,

Xn(A1AZY) +(A;AZH X D - BAS,
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which shows that the range of the m&pll — X(A;AZ) +(A;AH)XE
Is dense i3(H) and this is a contradiction. A similar argumemplaes if

A, has a left inverse.
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| ntroduction

The operator equations (linear and non-linear) playmportant rule
in differential equations, integral equations andtool theory, [4], [11] and
[19].

The operator equation is an equation of the forreCXwhere L and
C are known operators defined on a Hilbert spacanil X is an operator
that must be determined. If L is linear then thewv&bequation is said to be
linear operator equation, [12]. Otherwise, it is ndimear operator
equation,[12].

Many authors studied the operator equations fomgka Goldstein J.
in 1978 studied the existence and uniqueness o$dhdion for the linear
operator equation of the form AX+XB=Q, where A,Bda) are known
operators defined on a Hilbert space H, and X ésdperator that must be
determined, Lin S. in 1988 discussed the natutbetolution for the linear
operator equations of the forms AX=Q and AX - XQ=Where A,Q and W
are known operators defined on a Hilbert spacenid,ais the operator that
must be determined. Bahatia and Rosenthal. in 1B@8trate the
importance of the study of the previous linear éigua. Also, in 2001
Bahatia studied a special type of linear operamuagons of the form
A'X+XA+A™ A”=W, where A and W are known operators defined on
Hilbert space H, t is any scalar and X is the ojperahat must be

determined.

This work concerns with special types of the linegreration

equations namely, the Lyapunov equations.

These types of linear operator equations have maeat life

applications in physics, weather, and atmospheodets [4],[8] and [25].



Introduction

The Lyapunov equations are of two types, the fisgie is the
continuous-time Lyapunov equation which takes tbemf A-X+XA=W,
were A and W are known operators defined on a Hilpgace H, and X is
the unknown operator that must be determined,rjé][a3].

The second type is the discrete-time Lyapunov éguathich takes
the form X-A*XA=W, where A and W are known operatdefined on a
Hilbert space H, and X is the unknown operator thast be determined,
[5].

This work is a study of the nature of the solutifom the linear

Lyapunov equation of two types with simple geneslon.
This thesis consists of three chapters.

In chapter one, we modify some theorems to ensigrexistence and
uniqueness of the solution for the continuous-timapunov equation. Also,
some study is presented to include the more gemmatinuous-time

Lyapunov equation.
This chapter consists of four sections:
In section one; some types of linear operator egusare presented.

In section two, we give some modification for the/lv8ster
Rosenblum theorem to guarantee the existence amlamess for the

solution of the continuous-time Lyapunov equation.

In section three the invariant subspace problenstuslied of the

continuous-time Lyapunov equation.
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In section four, the range of the mgpP(H) - B(H) which is defined
by To(X)=A.X+XA is discussed. This discussion includes thesatiyity,

surjectivity for some special types of operators A.

In chapter two, a study of the range of the quasiah *-derivation
Pa:B(H) - B(H) such thapa(X)=X*A+AX is presented.

This chapter consists of four sections:
In section one, we discuss the injectivity, sunait of pa.

In section two, we study the range @f in case A is normal or

compact operator.

In section three, we defined the quasi-commutapmrator for any
pair of operators. Also, we proved that any operat@(H) can be written

as a sum of two quasi-commutator operators.

In section four, we study the density of the rapgewith respect to

the norm topology.

Chapter three concerns with the study of the disdime Lyapunov

equation. This chapter consists of three sections:

In section one, the nature of the solution for thecrete-time

Lyapunov equation is discussed.

In section two, we study the mapa:B(H)-B(H) defined by
Ha(X)=X-F*XF.

In section three, the nature of the spectrunuofwith its parts is
studied.



Introduction

To the best of our knowledge, theorem (1.4.1), riaeo (2.1.1)
theorem (2.1.2), theorem (2.4.1) and proposit®A.R) seem to be new.
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Table of Notation

[] Thefield of real numbers.
¢  Thefield of complex numbers.

H Infinite dimensional complex separable Hilbert space.
B(H)  TheBanach algebraof al bounded linear operators defined on H.
o(T)  Spectrum of the operator T.
o0T) The approximate point spectrum of T.
o5(T) Thedefect spectrum of T.
Rang(T) Therange of the operator T.
<, > Inner product.
I Norm.
T* The adjoint of the operator T.
Ker(X) Thekerne of the operator X.
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