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Abstract

Computing the volume and integral points of a peffon in
[0"is a very important subject in different areas atmematics.

There are two representations for the polyhedramety the
H-representation and the V-representation. For e@ptesentation we
give a different method of finding the volume angnber of integral
points.

Moreover, the Ehrhart polynomial of a bounded pebfion is
discussed with some methods for finding it. Onghafse methods is
modified and we prove two theorems for computing ¢befficients of
the Ehrhart polynomial.

Also, a modified method for counting the numberimtegral
points of a bounded polyhedron is given, and @kes matrix
operations on the matrix that represents the balpadé/hedron, and
studies the effect of these operations on thesédarsn

All of the used methods are demonstrated with obffe
examples.



Introduction

A wide variety of pure and applied mathematicsolme the
problem of counting the number of integral pointside a region in
space. Applications range from the very pure: nuntheory, toric
Hilbert functions, Kostant's partition function iepresentation theory,
Ehrhart polynomial in combinatorics to the very kgxh cryptography,
integer programming, statistical contingency, magsectroscope
analysis. Perhaps the most basic case is wherethenris a convex
bounded polyhedron. Convex polyhedra, i.e., thers#ctions of a
finite number of half spaces of the spddé, are important objects in
various areas of mathematics and other disciplageseen before. In
particular, the compact ones among them (polytopesich, can
equivalently be defined as the convex hulls oftéilyy many points in
0¢, have been studied since ancient times, for examdtonic solids,
diamonds, the great pyramids in Egypt etc., [20]ytopes appear as
building blocks of more complicated structures,. égcombinatorial,
topology, numerical mathematics and computed atesigns. Even in
physics polytopes are relevant e.g., in crystadpby or string theory,
[31].

Probably the most important reason of the tremesdpowth of
interest in the theory of convex polyhedra in teeand half of 20'th
century was the fact that linear programming ioptimizing a linear
function over the solutions of a system of lineagqualities became a
wide spread tool to solve practical problems inustdy and military.
Dantzig's simplex algorithm, developed in the 4@'she last century,
showed that geometric and combinatorial knowledgpotyhedra (as
the domains of linear programming problems), istejhelpful for
finding and analyzing solution procedures for lingaogramming
problems, [31].

Since the interest in the theory of convex polyhei a large
extent comes from algorithmic problems, it is natpsising that many
algorithmic questions on polyhedra rose in the,dadtalso inherently,
convex polyhedra (in particular: polytopes) giveerito algorithmic
guestions, because they can be treated as finjgetelby definition;
this makes it possible to investigate the smallesoamong them by



computer programs like the polymake - system writig Gawilow and
Jowing, [24].

Once chosen to exploit this possibility one immeaslia finds
oneself confronted with many algorithmic challenges

Also, the notion of the volume of a polytope issicaand
intuitive; its computation has raised a lot of desbs. In this thesis we
attempt to answer some fundamental and practicadtgqpn on volume
computation of higher dimensional convex polytogesen by their
vertices and / or facets. In particular, we stutlyotigh extensive
computational experiment typical behavior of theaax methods,
including Delaunay and boundary triangulation, ttreangulation
scheme described by Cohen and Hickey and the nethi@dented by
Lawrence, [13].

This thesis consists of three chapters.

In chapter one we try to give a short introductipngvide a
sketch of what bounded polyhedron looks like ands tlbey behave
with many examples. Also we recall some methodsfifuting the
number of integral points inside a convex polytd8], [25] and [4].

In chapter two we present some methods for comgutime
coefficients of Ehrhart polynomial that depend ¢ tconcepts of
Dedekind sum and residue theorem in complex argly&iso, a
method for counting these coefficients is introdliCEhe polytope that
we take are with V-representations,db¢l [60]. We give a
method for computing the coefficients of the Ehtlplynomial, c,_,

c,, until c, , also we give a formula for the differentat of the
given method.

In chapter three, a method for finding the volumme H-
representation of a polytope usingplace transform is presented and
some basic concepts and remarks about the Birklubytope and their
volumes are discussed with their Ehrhart polynasnif83], [11], [7],
[8] and [9]. We make a change on thérimavhich represents
the polytopes and finds a general formula for thenlber of integral
points; also we make a change of matrix operatrmhsudy the effect
of this change on the number of integral pointghefpolytopes. To the
best of our knowledge, this result seems to be new.
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Chapter One

Preliminaries



| ntroduction
Convex bounded polyhedrons are fundamental geanatjects
that have been investigated since antiquity. Ttaityeof their theory is
nowadays complemented by their importance for maother
mathematical subjects, ranging from the integratiogory, algebraic
topology, and algebraic geometry (toric varietiés)the linear and
combinatorial optimization.

In this chapter we try to give a short introducteord provide
a sketch of what bounded polyhedron looks likeé how they behave
with many examples.

A convex polyhedron is an intersection of a fimtenber of half
spaces of the spadé‘, and a convex polytope is a bounded convex
polyhedron. Every convex polyhedron has two nattgptesentations,

a half space representation (H-representationl an vertex
representation (V-representation). In recent ygarsus techniques of
geometric computations associated with convex aybn have been

discovered, see [13], [31], [16] and [17].

Also, we recall some methods for finding the volush@ convex
polytope and other methods for finding the numblemtegral points
inside a convex polytope.

This chapter consists of three sections:

In section one, some basic definitions with somefulgemarks
about representation of the polyhedron are predente

In section two, some methods for computing the mauof

convex polytopes are given with some illustratixaraples. These are

classified into two groups: triangulation methodsd a signed
decomposition methods.

The triangulation methods include boundary triaagah,
Delaunay triangulation and Cohen & Hickey's tridiagjon, [13]. The
signed decomposition methods include Lawerencetbade[25].

In section three, some methods for finding the nemal integral
points of a convex polytope are discussed; thesehods are
demonstrated with some examples.



1.1 Representation of a polyhedron
The volume of a convex bounded polyhedron is nay ea
compute and the basic methods for exact computatidhis volume
can be classified according to whether a half spapgesentation or a
vertex representation of it, [33]. Therefore, imstBection some basic
definitions on a convex bounded polyhedron andejgsesentations are
given.

We start this section by the following definitions:

Definition (1.1.1), [35, p.85]:
Let AX<b whereA O O ™“is a given real matrix, anh JO" is a
known real vector. A seP ={X 0O0‘: AX <h} is said to be a
polyhedron.

A polyhedron P is bounded if there exigis. ][]} such thalﬂXH < a for
every X LJP, [35, p.86].

Definition (1.1.2), [35, p.85]:
Every bounded polyhedron is said to be a polytope.

Definition (1.1.3), [35, p.84]:
Let S={x,X,,....x } Wherex 00°, 1<i <k, then S is said to be

k
affinely independent if the unique solution OZ a,x, = 0and

i=1

k
Z&=0isa=0,fori=1, .. k.

Recall that a polyhedron P is of dimension k, dedoby
dim(P)=k, if the maximum number of affinely indegemt points in P
is k+1. In this case a polyhedron (polytope) isidai be k-polyhedron
(k-polytope). On the other hand, a polyhedron ia &@ill dimensional if
dim (P) =d, [35, P.86].

Remark (1.1.1):
If the polyhedron P which is defined blg,={X O0°: AX<b }

Is not full dimensional, then at least one of thequalitiesa X <h,




I=1,2,...,K, is satisfied as equality by all poinfsRy wherea, is the ith
row of the matrix A and are the values of the vector b, [35, p.86].

Proposition (1.1.1), [35, p.84]:
Let P={XOO‘:AX <b} then the following statements are
equivalent:
(@) {XOO:AX<h} #¢.
(b) rank(A)=rank(Ab),
whereADO™,b0O0™, Alb is the augmented matrix of the system

AX=b and rank(Ab) is the maximum number of linearly independent
rows ( columns) of |A.

Now, if P takes the fornP ={X 0O0O°: AX <b ,}the pair Ab is
said to be a half space representation or simplgptlesentation of P,
where AOO™ ,bOO™ ,[13].

Proposition (1.1.2), [35, p.87]:
Let P={X O0O": AX <b}be a polytope, then:

dim(P)+rank@&|b" )=d,
where A'|b’ denotes the corresponding rows dib Avhich represent the

equality sets of the representation |bA of P, that is,
P={X0OO":A’X =b'}, [35,p.86].

Definition (1.1.4), [4]:
Let P={X O0O": AX <b} be a polyhedron. If the entries of A

and b have integer values then this polyhedroraid ®© be rational
polyhedron.

Recall that for a given convex set S, a pao¥i] S is said to be

vertex (or sometimes extreme point) if it does Ir@bn a line segment

joining two other points of this set. In this cale line joining any two
vertices is said to be an edge [41, p.98].

It can be easily seen that any polyhedron is aeoset in(]°.

Definition (1.1.5), [38]:
A lattice polytope ind“(sometimes called integral polytope) is a
polytope whose vertices are lattice points (integraints), that is,




points inZ°. If the lattice polytope is of dimension d therstholytope
Is said to be a d-dimensional lattice polytope

Definition (1.1.6), [41, p.96 ]:

d
Given Zapg =b, wherea and b are known real constants for
i=1
1<i<d. The set of pointsX ={x}.,, which satisfies the above

=17

equation, is said to be a hyperplane.
Moreover, the set of pointX ={x}", is called a half- space if it

d
satisfies the inequalitfaix >b, [36, p.413].

Definition (1.1.7), [10]:
Let P be a polyhedron inl?. For cOO and bOO, the

d
inequalityZ:qyi <b is called valid for P if it is satisfied by all jpds
in P, wherec={c}.,. The faces of P are the sets of the form

d d
PN{Y ={yi}id:132qyi =b} for some valid inequalitquyi <b.

Recall that a face F is said to be propeg# F #P. On the

other hand the faces of dimension O and 1 areccabetices and edges
respectively. However the faces of highest dimensi®@ termed facets.

Definition (1.1.8), [12]:
A polytope in[0° is said to be simple if there are exactly d edges
through each vertex, and it is called simpliciakdch facet contains
exactly d vertices.

It is known that a simplex if]® is a d-dimensional polyhedron,
which has exactly d+1 vertices, [23, p.37].

Definition (1.1.9), [35, p.83]:
Given a non empty se8[1¢, a point X OO is a convex
combination of points of S if there exists a firget of point{x}_in S

and A00 with > A =landX => Ax.
i=1 i=1



It is known that the convex hull of S, denoted loyn(S) is the
set of all points that are convex combinationsliop@ints in S.

Now, if V ={v,,v,...v.} is a finite set of points iM]", the
convex hull ofV denoted by conv(V) is said to be convex polytdpe.

this case, V is called vertex representation ompbinv-representation
of P, [13].

1.2 Some methods for the volume computation of a
polytope

As mentioned before, computing the volume of agudyis very
important in many real life applications, so inglsection we give some
methods for finding it. There is a comparative gtofl various volume
computation algorithms for polytopes in [13]. Howeuhere is no
single algorithm that works well for many differéypes of them, [22].

For simple polytopes, trianqulation-based algorighiamre more
efficient and for simplicial polytopes sign-decomiion based
algorithms are better, [13].

In this section, some methods for volume computatre given
with different examples.
We start this section by the following remark.

Remark (1.2.1):

All known algorithms for exact volume computatiGgtampose
a given polytope into simplices, and thus theyrely on the volume
formula of a simplex which is given by the follogvproposition, [13]:

Proposition (1.2.1), [13]:
For a polytope represented by its verticesv,,...,v, 10°, the

volume of it is given by
V_C)I(A(vo,vl,...,vd))ié\det(vl VoV, —V,)

Where A(V,,V,,...,,) _denotes the simplex iri]® with vertices

Vy, V.0V, 00 and (v, = V,,...,v, —V,)_is d xd _matrix whose columns

are Vv, =Vv,,...,v, =V,.

Next, there are two types of methods for exact melu
computation of the simple polytopes, which areudised below:




|. Triangulation methods:
In these methods one has a simple polytope FD_‘in P is

triangulated into simplices\ (i = ],2,...,3)_P=UAi . The volume of P

i=1

iIs simply the sum of the volumes of the simplices.

Vol(P) = ivOl(Ai) (1.1)

The following: boundary triangulation, Delaunay angulation and
Cohen & Hickey's combinatorial triangulation by dinsional
recursion named, as triangulations method, [13].

An important difference between these methodsitghle former
two methods need only a V-representation while |8 method
requires both V- and H-representations, [13].

Before giving the signed decomposition methodsheed the
following definition.

Definition (1.2.1):
Let POO® be a polytope, a signed union of P means, a

k
collection of polytope®,F,....,R, 0 0°such thatP=| JP, and PN P
i=1

is a proper face oFand P, for i # j.In this case we writd® =| JP,

[30].

e +

ll. Sighed decomposition methods:

Instead of triangulating a polytope P, one can depose P into
signed simplices whose signed union is exactly &teMpecifically, P
is represented as a signed union of simplifesi =1, 2, ..., s. This

means,

P=Jon, (1.2)

Whereo, is either +1 or —1. The volume of P is, [13].



Vol(P) = ZS:JiVoI(Ai)

1.2.1 Trianqulation methods
In this subsection we discuss briefly some of thewk
trianqulation methods that compute the volume efgblytope.

(i) Boundary triangulation, [13]:

In boundary triangulation, one computes the conlvelk of the
perturbed points, interpreting the result in terafghe original vertices
leads to a triangulation of the boundary, whichlimking with a fixed
interior _point vields, a triangulation of P. For ¢h convex hull
computation the reverse search algorithm is chognwhere only the
V-representation of a polytope is required. Togthate this method,
consider the polytope which is represented by aofeertices named
{a, b, c , d} as given in figure (1). Using an int& point e where the
boundary of a polytope is easily trianqulated araldy triangulated as
in the case of simplicial polytopes. By linkingant e with the vertices
a, b, c and d vields four triangles then, voluméshese triangles are
found, summing all of these volumes the voluméhisf golytope is
obtained.

(a) (b)
Figure (1):

(a) represents a polytope P.
(b) represents a partition of the given polytdpédy using the
boundary triangulation method.

(i) Delaunay triangulation, [13]:
Before we discuss this method, some basic defisitoncerning
the Delaunay triangulation are needed.

Definition (1.2.2), [22]:




Given a set S of n distinct pointsﬁ, Voronoi diagram is the
partition of 0°_into n polyhedron regions (denoted by(p), o0 S).

Each regionvo(p) _is called Voronoi cell ofo, which is defined as set

of points inD_d that are closer top_than other points in S, or more

precisely
vo(p) ={X 00" |X -p|<|X -d|,0q90S~p}.

Definition (1.2.3), [22]:
Let S be a set of n points IA’. For each pointv 00O°, the

nearest neighbor set denoted (myb(S,_V))LfKi_n§ is the set of points

pUOS-v which are closest t& in Euclidean distance.

Definition (1.2.4), [22]:
Let S be a set of n points . A pointv00%is said to be

a Voronoi vertex of S ihb(S,v)is maximal over all nearest neighbor

sets.

Definition (1.2.5), [22]:
Let S be a set of n points @d The convex hull of the nearest

neighbor set of Voronoi vertex_denoted bycon\(nk(S,v))is said to

be a Delaunay cell o .

The Delaunay triangulation of S is a partition betconvex hull
conv(S) into the Delaunay cells of Voronoi vertitesether with their

faces, [22].

Now we discuss the method of Delaunay trianqulatieethod
that requires only the V—representation of the fmpe.

The geometric idea behind a Delaunay trianqulatmna d—
polytope is to ' lift ' it on a paraboloid in dimgn d+1. The following
construction is very important to compute the Vaiahagram, [22].

Let S be a set of n points iG". For each pointp0SO0°,

consider the hyperplane tangent to the parabobojd = X7 +...+ x?_in

Ddﬂip:_




This hyperplane is represented byM)(as:

d d o
ijz _ZZIOJ' Xj * Xyn =0
=1 =1

where p, (j =12,...,d)_are the coordinates op, for each pointp,

the equality in the above equation is replaced lmy inequalitie$>),

which yields a system of n inequalities that isaded byb—- AX > 0.
The polyhedron P inl* of all solutions X to the system of inequality

1S a lifting of the Voronoi diagram to onegher dimensional
space. [13], shows that the underlying convex hlgbrithm uses the '
beneath — beyond ' method.

Example (1.2.1):
Consider the set of vertices:

S={p,= (00).p, = 21.p, = (L2). p, = (40). 0, = (04).p, = (44)}.
Here the volume of the polytope given by theseicesrtis to be

determined. To do so, Delaunay trianqulation isdug® compute the
volume of this polytope.

First, write down the system of linear inequalities three
variables as explained before. That is for eaphl1S, j=12,...6,

apply the inequalities:
2 2
pr —Zijxj +x,20
j=1 j=1

we get a system of six inequalities

X, 20
5-4x —-2x,+x,20
5-2x —4x,+x%x,20
_16-8x +x,20
_16-8x,+x,20

_32-8x —8x,+x,20.




The set of solutionX [01° of the above inequalities represents

a polyhedron P. By applying the cdd+ program [2#e Delaunay
cells,

(011 04, 05) (012 51 05) (012 P21 £) 1 (05105 2) 1 (05 P, £5) ANA( 05, 05, O ) @
re obtained. The cdlp,, p,, o) means the triangle which is represented

by three verticep,p,_and p,, and similarly for the other cells.

Therefore six triangles are_obtained, summing tbkimes of these
triangles vields the volume of the polyhedron Bgeal to 16.

PIN 7|6

Pl ol
Figure (2): represents the polyhedron P with thet sd
vertice§ p,, o,,...,0,} and Delaunay cells.

(iii) Triangulation by Cohen & Hickey, [13]:

This recursive scheme triangulates a d- polytopgegyRhoosing
any vertexv[dP_as an apex and connecting it with the (d-1)—
dimensional simplices resulting from a triangulatiof all facets of P
not containinqx. To be precise, denote bﬁj_Osksd, the k-

dimensional faces of P, and lgtbe a ' map ' which associates to each

face one of its vertices. Then the pyramids witbxap(6')and bases

among the facets§"™ with 7(6°)06 form a dissection of the
polytope.

Applying the scheme recursively to &1 results in a set of
decreasing chains of faces@° 06 0...08°*&°such that
n@)YO6*" for 1<k<d. Then the set of corresponding simplices

A(n(6°),n(8Y),...n(68%))is a triangulation of P.

To implement this recursive method, an extensiwe afsthe
double description as V-representation and H-reprggtion is made
by representing all faces as sets of vertices.




Note that in the case of Cohen & Hickey comparea boundary
trianqulation all simplices in the facets contaigirthe apex v are
eliminated and therefore the number of simplicassisally reduced.

Example (1.2.2):
Consider the polytope which is represented by $etedtices
{p,, 0., P, P, P,}_as illustrated in figure (3), ley_be the 'map' which

assigns to each face of the polytope its vertel thie lowest number,
so n(P)=p,, all facets which do not contain the vertgx_are

examined, that is, Il, Il and IV. The scheme ef @ohen and Hickey is
applied to facet Il withvp(11') = p,. 1l is intersected with all facets not

containing the vertey,, these are lll, IV and V. The intersections with

IV and V are emptv,_so this recursion is unsuccés§he intersection
with Il yields the vertexo,, and the fixed verticgs,, p,, o, _forms a

first simplex. The other simplices obtained fromh dhd IV is also
marked in the figure (3). Therefore we have threangles. Summing
the volumes of these triangles yields the voluntkeopolytope.

Figure (3): represents the partition of the polytoby
Cohen & Hickey's triangulation method.

1.2.2 Signed decomposition method
In this subsection Lawrence's volume formulhictv is one of the
signed decomposition methods, is discussed.

(i) Lawrence's volume formula, [13]:
Assume the polytope P is simple and choose arvEédid1° and

qO00O _such that the functionf:0¢ -~ O_which is defined by
f(X)=C"X +¢_is not constant along any edge that connected the

vertices of the polytope P a@ is the transpose CE . Let V be the set




of vertices defining the polytope P. For each werélV , let A be the

d x d — matrix composed by the rows of A which are biadinv. Then

by using [13]A, _is invertible and yV=[AVT]_1C. The assumption

imposed orE assures that none of the entriesyofis zero. It is shown
that -

VO|(P) - Z (CTv+ qzd
! \detMrJ A

To illustrate this method, consider the followin@mple.

Example (1.2.4) :
Consider the polytope P which is described by thiowing
constraints

-x <0

-%X, <0

X <2

X, <2

X +X,<3
-1 0 0
0 -1 0
_____A=|1 O ,_X:L)((l}ﬂb: 2
o 1| _—=° 2
1 1 '3

It is easy to check that the polytope of this edans simple,
therefore the Lawerence volume formula can be adpliDefine
a function f byf (X) = x, —x, whereC™ = (1,-1)_and g = 0. Note that

f (X) is non — constant on each edge of the podytoghe figure (4), for
example, on edge (1) which connecindv,, X, =0_and x,_varies from

0 to 2. Therefore f (X) =X _which varies from 0 to 2 which means that

it is nonconstant on edge (1) and similarly on easige of P.
According to figure (4), it is seen that the setwafitices, which
represents the polytope, is

{v,=00),v, = (20),v, = (2D,v, = 1L2),v, =(0,2)}.




Now, considen, = (0,0), this vertex satisfies the first two constraints,
and this implies that

A, :{_1 0} . _hence ‘detAﬁ‘ =1 _and p'= [Az]l|:zl:|

7o A

and for v, = (2,0), this vertex satisfies the second and third

constraints, that is,
_ 1 0 _ Ny — T2 1 _ 1
—n=[y OJen zranay =[R] 1<

And similarly for the other vertices we get

o I RV R T e
—y__l.l_y_ 1—y__1

Then Lawrence's volume formula is applied to getwblume of

P.
Vol(P)=Y (CT")Z
v 2!\deta\ﬂ V!
= Y + 4 + r + (_1)2 + (_2)2
2000 2000 200D 2020 2QEDED
1

=0+2+(-V4+(-1/4 t2=3,.
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Figure (4): represents a polytope with the&ertices
V,V,,V,,V, andy,

1.3 Methods for computing integral points
The main objective of this section is to recalineomethods for
finding integral points of a polyhedron. In this kkpwe use the symbol

\szd\ to denote the number of integral points in theyphetron P,

where Z° is the integer lattice and P is a rational polyned. These
methods are:

Method (1), [4]:
Ford = 2, PO % and P is an integral polyhedron. The famous

formula, [42, p.240] states that

2‘

PNZ?* =areaP +—‘6PDZ +1
PNz =areap) +

That is, the number of integral points in an int@grolyhedron is
equal to the area of the polyhedron plus half tlhunher of integral
points on the boundary of the polyhedron plus orffd@s formula is
useful because it is much more efficient than ihbectdenumeration of
integral points in a polyhedron. The area of P ismputed by
triangulating the polyhedron. Furthermore, the bdany 4P is a union
of finitely many straight-line intervals, and countf integral points in
intervals is easy.

Method (2), [4]:
Let PO O be a polytope, then one can write the number of

integral points in P as




PNZ‘[=) &(X,P)

X0z

1 if XOP
0 if XOP

where o(X,P) :{

Before we give the next method, we need the folpdefinition.

Definition (1.3.1), [2, p.61]:
The Dedekind sum of two relatively prime positntegers a and
b denoted by&(a,b) _can be defined as follows,

—sen=3(5)(5)

where

(%) = x—LxJ—% if xO0Z
0 if xOZ

and | x| is the greatest integes x.

Remarks (1.3.1):

Dedekind sums appear in various branches of mathesahe
number theory, algebraic geometry and topology.s€&hmclude the
quadratic reciprocity law, random number generatf8g], and lattice
point problems [19]. More details about Dedekindnsuare given in

chapter two

Now, we are in a position that we can explain tbkoWing
method.

Method (3), [4]:

Let A0 O° be the tetrahedron with vertices (0, 0, 0), (apy,
(0, b, 0), (0, O, c) where a, b and c are pairwEprime positive
integers, then the number of integral pointsNnan be expressed as:

‘Pﬂz‘_abc ab+ac+bc+a+b+c i(gz bc  ab i)—S(bc,a)—
4 12°’b a <c¢ abc

S(ac,b) — S(ab,c)




This formula is useful because it reduces courtiwgnumber of
integral points to a computation of Dedekind sumisich can be done

efficiently.

Method (4), [4]:
Let PO O%e an integral polytope, for positive integer tt le

tP={tX : X/ P} denote the dilated polytope P. By [42, p.23&rthis
a polynomial p(t) called the Ehrhart polynomial®f

___[tPNZY=p(t)
where p(t) =a,t* +a,,t"" +..+3

furthermore,a, =1 and a,_is the volume of the polytope P.

To illustrate these methods, consider the follaweramples.

Example (1.3.1):
Let us consider three points in two dimensions stitt

v, = (01),v, = (10) and v, = (00). Then the convex hull of,v, and v,
Is a triangle in two dimensions.

We compute the number of integral points by thetbonls.
From method (1), one can have

aPﬂ22\+l
2

PNZ7 =area(P)+‘

the area of triangle, is area(P)=0.5(1)(1)=0.5 av\ﬁPﬂZz‘ =3 which

represents the number of integral points on thendawmy of the

triangle.
Then the number of integral points of the trianigle

___ |PNZ’|=05+05@) +1=3.

In method (2), we have

PNZ?|=> 3(X,P)

Xx0z2

v, = (0) TP thend(v,,P) =1




v, = (L0)UP theno(v,,P) =1
v, = (00) P thend(v,,P) =1

therefore‘Pﬂ ZZ‘ =1+1+1=3, which is the number of integral points

for the triangle.

Form method (4), one can have
‘Pﬂzz‘:az+al+1
where 2, is the volume of the polytope aragj is the half number of

integral points on the boundary of the polvtope
In this case,

a, = 0.5(1)(1)=0.5
and a, =3/2
therefore|P Z°|= 05+15+1=3,

Example (1.3.1):
Let us consider the tetrahedrof (0 [0° with vertices (0,0,0),

(3,0,0), (0,5,0), (0,0,7).

Form method (3), the number of integral points/ncan be
expressed as,

bc ab+ac+bc+a+b+c 1 ,ac bc ab 1
\Pﬂz\_a yo(ac be,ab, 1,
4 12°b a ¢ abc

- S(bc,a) — S(ac,b) — S(ab,c)

here a=3, b=5 and c=7. Therefore

‘sz‘_105 15+21+35+3+5+7 i(z_l § 15 5) S@353)
4 12°5 3 7 1

- S(215) - S@A5.7)

After simple computation one can get, S(35,3)=89586 S(21,5)=0.2,
S(15,7)= 0.35714,
Thus [P Z°|=175+215+1501877+ 0.05555- 0.2 - 0.35714= 40,
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Appendix

Before we give the proof of the relationship between the Dedekind
sum and the Dedekind cotangent sum, we need the following definitions
and lemma.

Definition 1
By means of the discrete Fourier series of Saw tooth function (saw
tooth function ((x)) isthefirst Bernoulli function

B,(x), B,(x)=0if x0Z), and

_ | P-1 /
- — t P
3zl FF
Definition 2
For a,b,c,m,n ON

S,.(ab,c)= ZB( j (kcj is called Dedekind Bernoulli sum.

kmodb a

Definition 3
Let &,a,,...,a, LIN bereatively primeto a, LI N definethe
higher-dimensional Dedekind sum as

S(a,,a,,...a,) = - )%afcot(n:o jcot(%jmcot(%)

Note that thissumis zero if disodd, since the cotangent is an odd
function.
Lemma

For m=2

R

These discrete Fourier expansions can be used to rewrite the Dedekind
Bernoulli sumsin terms of the Dedekind cotangent sums.
Corallary

If @, b, c LN are pairwise relatively rime and m, n =2 are integers
with the same parity then

Smn(a"b’c) Z B ( j (kcj

’ kmoda a
o e

R $oo (TRC) oo TD) , BB,

2m+n m+n-; = m+n-1

a a a




We note that the parity assumption on m and n is no restriction; since the
sums vanish if m+nisodd it is worth mentioning that a close relative of
these sums namely

a oY _ ()" & (m) (m-l)(@j
ZB( ) (a) mwécot . cot -

Pr oof
By lemmawe get

S...(ab, c) k;iaB ( ) (i:)
:k%;a_ (_Basm + m(zi(rjl}mgcot(m'”(gJem(k:q{ (_Ba) ( ) Zcot " (Td e 3] }
[ R A TIR o

(¢

We use the fact that m+n=even.
Note:
a,b,c arerelatively prime

) _Jaif 37
2e {0 elsen

kmoda

if gl(jb+lc) then | = jbc™ moda therefore

S,.(ab,c)=m (z ))m Zi: ml( )cot ( T[jbc_lj+(—a) BmBq

=mn - 1) m+n2 aZ{‘,Cot(m’l)[mjcot(”’l)(_ T[jbc_lj +_ B Efn-l
2a)™" < a a (-a)
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nb(Sv)
conv(nb(S,v))

PNz
0PN Z

o(X, p)

[

rank(A)
dim(P)

AV, V... V)

det(v, - v,,...,V, —

P=Up

[ ]*

L(P.)
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S(m,n)
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1
=1 *~x=3

0
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Introduction

A wide variety of pure and applied mathematicsoiae the problem
of counting the number of integral points insideregion in space.
Applications range from the very pure: number tlgeatoric Hilbert
functions, Kostant's partition function in represgion theory, Ehrhart
polynomial in combinatorics to the very appliedymography, integer
programming, statistical contingency, mass spectnos analysis. Perhaps
the most basic case is when the region is a cobeexded polyhedron.
Convex polyhedra, i.e., the intersections of ad¢imumber of half spaces of
the spacell‘, are important objects in various areas of mathiesand
other disciplines as seen before. In particulag,dbmpact ones among them
(polytopes), which, can equivalently be definedths convex hulls of
finitely many points in0¢, have been studied since ancient times, for
example, platonic solids, diamonds, the great pydarm Egypt etc., [27].
polytopes appear as building blocks of more comapdid structures, e.g. in
combinatorial, topology, numerical mathematics aocomputed aided
designs. Even in physics polytopes are relevant mgrystallography or
string theory, [31].

Probably the most important reason of the tremesdgrowth of
interest in the theory of convex polyhedra in teeahd half of 20'th century
was the fact that linear programming i.e., optimiza linear function over
the solutions of a system of linear inequalitiesdme a wide spread tool to
solve practical problems in industry and militarfpantzig's simplex
algorithm, developed in the 40's of the last centahowed that geometric
and combinatorial knowledge of polyhedra (as thenaias of linear
programming problems), is quite helpful for findiagd analyzing solution
procedures for linear programming problems, [31].

Since the interest in the theory of convex polyhdd a large extent
comes from algorithmic problems, it is not surprgsthat many algorithmic
guestions on polyhedra rose in the past, but afwerently, convex
polyhedra (in particular. polytopes) give rise ttgamithmic questions,
because they can be treated as finite objects bwgitden; this makes it
possible to investigate the smaller ones among thecomputer programs
like the polymake - system written by Gawilow amavihg, [24].

Once chosen to exploit this possibility one immesliafinds oneself
confronted with many algorithmic challenges.



Also, the notion of the volume of a polytope isicaand intuitive; its
computation has raised a lot of problems. In thests we attempt to answer
some fundamental and practical question on voluompaitation of higher
dimensional convex polytopes given by their vedi@nd / or facets. In
particular, we study through extensive computalicgeperiment typical
behavior of the exact methods, including Delaunayd aboundary
triangulation, the triangulation scheme describgdCbhen and Hickey and
the methods presented by Lawrence, [13].

This thesis consists of three chapters.

In chapter one we try to give a short introductiprgvide a sketch of
what bounded polyhedron looks like and how theyabehwith many
examples. Also we recall some methods for findimg number of integral
points inside a convex polytope, [13], [25] and [4]

In chapter two we present some methods for comgutine
coefficients of Ehrhart polynomial that depend ba toncepts of Dedekind
sum and residue theorem in complex analysis. Adsmethod for counting
these coefficients is introduced. The polytope that take are with
V-representations, [5] and [60]. We give a methad €omputing the
coefficients of the Ehrhart polynomiat, ,, c, , until c,_, also we give

a formula for the differentiation of the given math

In chapter three, a method for finding the volushéd-representation
of a polytope using L#ace transform is presented and some basic concepts
and remarks about the Birkhoff polytope and thalumnes are discussed
with their Ehrhart polynomials, [33], [11], [7], [8and [9]. We make
a change on the matrix, which represents the podga@and finds a general
formula for the number of integral points; also make a change of matrix
operation and study the effect of this change emtimber of integral points
of the polytopes. To the best of our knowledges tasult seems to be new.
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Chapter One

Preliminaries

Introduction

Convex bounded polyhedrons are fundamental geanelyects
that have been investigated since antiquity. Treutyeof their theory is
nowadays complemented by their importance for maoipher
mathematical subjects, ranging from the integratibeory, algebraic
topology, and algebraic geometry (toric varietiés) the linear and
combinatorial optimization.

In this chapter we try to give a short introduntiand provide
a sketch of what bounded polyhedron looks like hod they behave
with many examples.

A convex polyhedron is an intersection of a fimember of half

spaces of the spadg‘, and a convex polytope is a bounded convex
polyhedron. Every convex polyhedron has two natuvegresentations,
a half space representation (H-representationpareftex representation
(V-representation). In recent years various teadlesqof geometric
computations associated with convex polyhedron heeen discovered,
see [13], [31], [16] and [17].

Also, we recall some methods for finding the voduof a convex
polytope and other methods for finding the numbkrntegral points
inside a convex polytope.

This chapter consists of three sections:

In section one, some basic definitions with somefulsremarks
about representation of the polyhedron are predente

In section two, some methods for computing the mawf convex
polytopes are given with some illustrative exampldsese are classified
into two groups: triangulation methods and signeetotnposition
methods.

The triangulation methods include boundary triaagah,
Delaunay triangulation and Cohen & Hickey's tridagjon, [13]. The
signed decomposition methods include Lawerencetbade[25].
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In section three, some methods for finding thenbber of integral
points of a convex polytope are discussed; thesdhods are
demonstrated with some examples.

1.1 Representation of a polyhedron

The volume of a convex bounded polyhedron is naty e@
compute and the basic methods for exact computafitims volume can
be classified according to whether a half spaceesgmtation or a vertex
representation of it, [33]. Therefore, in this s@ttsome basic definitions
on a convex bounded polyhedron and its representatire given.

We start this section by the following definitions:

Definition (1.1.1), [35, p.85]:
Let AX <b whereA 0O O ™“is a given real matrix, andOO" is
a known real vector. A seP={XO0O":AX <b} is said to be

a polyhedron.

A polyhedron P is bounded if there existsOO. such that
|X||< a for everyX OP, [35, p.86].

Definition (1.1.2), [35, p.85]:
Every bounded polyhedron is said to be a polytope.

Definition (1.1.3), [35, p.84]:
Let S={x,%,,....x.} wherex 00, 1<i<k, then S is said to be

Kk
affinely independent if the unique solution OZ ax, =0and
i=1
k

D a=0isa=0fori=1,..k

i=1

Recall that a polyhedron P is of dimension k, deddty dim(P)=k,
if the maximum number of affinely independent psimt P is k+1. In this
case a polyhedron (polytope) is said to be k-palybe (k-polytope). On
the other hand, a polyhedron is of a full dimenalahdim (P) = d, [35,
P.86].

Remark (1.1.1):
If the polyhedron P which is defined b, ={X 00°:AX <b i§

not full dimensional, then at least one of the umdidies a X <h,
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i=1,2,...,k, is satisfied as equality by all poinfsRy wherea, is the ith
row of the matrix A andy are the values of the vector b, [35, p.86].

Proposition (1.1.1), [35, p.84]:
Let P={XOO‘:AX <b} then the following statements are

equivalent:

(@) {XOO:AX <b} #¢.

(b) rank(A)=rank(Ab),

whereAOO™,bd0™ ,Alb is the augmented matrix of the system AX=b
and rank(Ab) is the maximum number of linearly independenivso

( columns ) of Ab.

Now, if P takes the forrP={X O0": AX <b ,}the pair Ab is
said to be a half space representation or simphgpgtfiesentation of P,
where AOO™ ,bOO™ ,[13].

Proposition (1.1.2), [35, p.87]:
Let P={X O0O": AX <b}be a polytope, then:

dim(P)+rank@|b" )=d,
where A*‘b* denotes the corresponding rows dbAwhich represent the

equality sets of the representation |bA of P, that s,
P={X0O0O": A’X =b'}, [35,p.86].

Definition (1.1.4), [4}
Let P={X O0O": AX <b} be a polyhedron. If the entries of A and

b have integer values then this polyhedron is daidbe rational
polyhedron.

Recall that for a given convex set S, a poxitlS is said to be
vertex (or sometimes extreme point) if it does lmton a line segment
joining two other points of this set. In this cdke line joining any two
vertices is said to be an edge [41, p.98].

It can be easily seen that any polyhedron is aeoset in(1°.
Definition (1.1.5), [38]:

A lattice polytope inJ“(sometimes called integral polytope) is a
polytope whose vertices are lattice points (integaants), that is, points
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in Z°. If the lattice polytope is of dimension d theistpolytope is said
to be a d-dimensional lattice polytope

Definition (1.1.6), [41, p.96 |:
d
Given Zapg =b, wherea and b are known real constants for
i=1
1<i<d. The set of pointX ={x}Z , which satisfies the above equation,
is said to be a hyperplane.
Moreover, the set of pointX ={x}Z, is called a half- space if it

d
satisfies the inequalitfapg >b, [36, p.413].

Definition (1.1.7), [10]:
Let P be a polyhedron in®. ForcOO¢ andb0, the inequality

d
Z:c:,yi <b is called valid for P if it is satisfied by all s in P, where
c={c}.,. The faces of P are the sets of the form

d d
PN{Y ={yi}id:1320.yi =D} for some valid inequalit)E:C,yi <b.

Recall that a face F is said to be propeg # F # P. On the other

hand the faces of dimension 0 and 1 are calledicesrtand edges
respectively. However the faces of highest dimeansi@ termed facets.

Definition (1.1.8), [12]:

A polytope in(° is said to be simple if there are exactly d edges
through each vertex, and it is called simplicialedich facet contains
exactly d vertices.

It is known that a simplex ¢ is a d-dimensional polyhedron,
which has exactly d+1 vertices, [23, p.37].

Definition (1.1.9), [35, p.83 |:
Given a non empty seS0 ¢, a point XOO! is a convex
combination of points of S if there exists a fingtet of pointgx}._in S

and 100! with Y A =landX =) Ax.
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It is known that the convex hull of S, denoted byw(S) is the set
of all points that are convex combinations of alints in S.

Now, if V ={v,,v,,...,v.} is a finite set of points if]’, the convex
hull of V denoted by conv(V) is said to be convex polytdpéhis case,
V is called vertex representation or simply V-reggmatation of P, [13].

1.2 Some methods for the volume computation of &/fmpe

As mentioned before, computing the volume of a {ogg is very
important in many real life applications, so instisiection we give some
methods for finding it. There is a comparative gtad various volume
computation algorithms for polytopes in [13]. Howethere is no single
algorithm that works well for many different typefthem, [22].

For simple polytopes, triangulation-based algorghare more
efficient and for simplicial polytopes sign-decorsgimn based
algorithms are better, [13].

In this section, some methods for volume computatice given
with different examples.
We start this section by the following remark.

Remark (1.2.1):

All known algorithms for exact volume computatioecdmpose
a given polytope into simplices, and thus theyraly on the volume
formula of a simplex which is given by the followjiproposition, [13]:

Proposition (1.2.1), [13]:
For a polytope represented by its vertiogsv,,...,v, 00, the
volume of it is given by

VOI(AY, V., V,)) = é\det(vl Ny =V,

Where A(v,,V,,...,V, ) denotes the simplex ind¢ with vertices
V,,V,,..,v, 00% and (v, -Vv,,...,v, =V, ) is d xd matrix whose columns
arev, —v,,....v, —V,.

Next, there are two types of methods for exact m@womputation
of the simple polytopes, which are discussed below:
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[.Triangulation methods:
In these methods one has a simple polytope Flfn P is

triangulated into simpliced (i =12,...,s P=UAi . The volume of P is

i=1

simply the sum of the volumes of the simplices.
Vol (P) =) Vol (a) (1.1)

The following: boundary triangulation, Delaunayatrgulation and Cohen
& Hickey's combinatorial triangulation by dimensamecursion named,
as triangulations method, [13].

An important difference between these methodsas tite former
two methods need only a V-representation whildaeemethod requires
both V- and H-representations, [13].

Before giving the signed decomposition methods, need the
following definition.

Definition (1.2.1):
Let POO be a polytope, a signed union of P means, a ¢mllec
k
of polytopesP,P,,....P. 0 “such thatP=UR, and P NP, is a proper
i=1

face of EandP,, for i # j.In this case we writé® =UR , [30].

lI. Signed decomposition methods:

Instead of triangulating a polytope P, one can dgxise P into
signed simplices whose signed union is exactly &evkpecifically, P is
represented as a signed union of simplitgs =1, 2, ..., s. This means,

P=Jon (1.2)

Whereo, is either +1 or —1. The volume of P is, [13].

Vol (P) = iaivm A)

1.2.1 Triangulation methods
In this subsection we discuss briefly some of theovkn
triangulation methods that compute the volume efgblytope.
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(i) Boundary triangulation, [13]:

In boundary triangulation, one computes the conkek of the
perturbed points, interpreting the result in tewwhghe original vertices
leads to a triangulation of the boundary, whichlibking with a fixed
interior point yields, a triangulation of P. Foetbonvex hull computation
the reverse search algorithm is chosen, [3], whenty the V-
representation of a polytope is required. To iHa this method,
consider the polytope which is represented by afseertices named {a,
b, ¢, d} as given in figure (1). Using an interipoint e where the
boundary of a polytope is easily triangulated oeadly triangulated as in
the case of simplicial polytopes. By linking a pognwith the vertices a,
b, ¢ and d yields four triangles then, volumesheke triangles are found,
summing all of these volumes the volume of this/fmge is obtained.

(@) (b)

Figure (1):
(a) represents a polytope P.
(b) represents a partition of the given polytdpdy using the
boundary triangulation method.

(i) Delaunay triangulation, [13]:
Before we discuss this method, some basic defimsticoncerning
the Delaunay triangulation are needed.

Definition (1.2.2), [22]:
Given a set S of n distinct points I, Voronoi diagram is the
partition of O¢ into n polyhedron regions (denoted by(p), p0S).

Each regiorvo(p) is called Voronoi cell ofo, which is defined as set of
points ind that are closer t@ than other points in S, or more precisely

vo(p) ={X 00" |X-p|<|X -q|,0q0S-p}.
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Definition (1.2.3), [22]:
Let S be a set of n points in. For each poiny JO¢, the nearest
neighbor set denoted b{nb(S,v)) of v in S is the set of points

pS—-v, which are closest tg in Euclidean distance.

Definition (1.2.4), [22]:
Let S be a set of n points in’. A point vOO%is said to be
a Voronoi vertex of S ifnb(S,v)is maximal over all nearest neighbor

sets.

Definition (1.2.5), [22]:
Let S be a set of n points iA". The convex hull of the nearest
neighbor set of Voronoi verteX denoted byconv(nb(S,v))is said to be

a Delaunay cell ot/ .

The Delaunay triangulation of S is a partition loé tconvex hull
conv(S) into the Delaunay cells of Voronoi vertidegether with their
faces, [22].

Now we discuss the method of Delaunay triangulati@thod that
requires only the V-representation of the polytope.

The geometric idea behind a Delaunay triangulatidna d—
polytope is to ' lift * it on a paraboloid in dingon d+1. The following
construction is very important to compute the Vaiahagram, [22].

Let S be a set of n points in‘. For each pointodSO 0",
consider the hyperplane tangent to the paraboiqQid=x’ +...+ X} in
O%"at po:

This hyperplane is represented byd) @s:

d d
ZIO]Z _Zzpjxj t X, =0
=1 j=1

where p, (j=12,...,d ) are the coordinates qf, for each pointp, the
equality in the above equation is replaced by tegjualitieg=), which
yields a system of n inequalities that is denotgdbb- AX >0. The
polyhedron P ind"*" of all solutions X to the system of inequality is
a lifting of the Voronoi diagram to one higher dimseonal space. [13],

shows that the underlying convex hull algorithmausee ' beneath —
beyond ' method.
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Example (1.2.1):

Consider the set of vertices:
S={p,= (00),, = (21), 0, = (.2), p, = (40), p, = (04), 0, = (44)}. Here
the volume of the polytope given by these vertisds be determined. To
do so, Delaunay triangulation is used to compute wblume of this
polytope.

First, write down the system of linear inequalitieshree variables
as explained before. That is for eaghUS,j=12,..., , &ply the

inequalities:

ZZ:pf —iz,oj.xj +x,20
j=1 i=1

we get a system of six inequalities

= 0
5-4x —-2x,+x%x,20
5-2x —4x,+x%x,20

16-8x +x,=2 0
16-8x,+x,2 0
32-8x, —8x, +x, 2 0.

The set of solutionsX 0° of the above inequalities represents
a polyhedron P. By applying the cdd+ program [#2%, Delaunay cells,

(01203, 0.) (811 P2 05) (8 P21 £2) (021 03, 05) 1 (£ 0, P:) &N 05, 05, 05 Jre
obtained. The cellp,, p,, o, Means the triangle which is represented by

three verticep,, o, and p,, and similarly for the other cells. Therefore

Six triangles are obtained, summing the volumethes$e triangles yields
the volume of the polyhedron P is equal to 16.

pf %, 7 |DG
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Figure (2): represents the polyhedron P with thd sé
vertice§ p,, o,,..., 0, Jand Delaunay cells.

(ii) Triangulation by Cohen & Hickey, [13]:

This recursive scheme triangulates a d- polytopg €hoosing any
vertex vOP as an apex and connecting it with the (d-1)—dinuerad
simplices resulting from a triangulation of all é&s of P not containing
V. To be precise, denote I/, 0<k <d, the k- dimensional faces of P,
and letn be a ' map ' which associates to each face oits wértices.

Then the pyramids with apex 8’ and bases among the facéfs" with
n(6*)06*form a dissection of the polytope.

Applying the scheme recursively to afi"™* results in a set of
decreasing chains of fac& 0 & O...0 8" 0 & such thatp(6“) 06"
for 1<k<d. Then the set of corresponding simplices
A(n(6°),n(8Y),...n(8%))is a triangulation of P.

To implement this recursive method, an extensiweaithe double
description as V-representation and H-represemati® made by
representing all faces as sets of vertices.

Note that in the case of Cohen & Hickey compared tmundary
triangulation all simplices in the facets contagithe apex v are
eliminated and therefore the number of simplicassisally reduced.

Example (1.2.2):

Consider the polytope which is represented by d$evestices
{p,, P, P, P, P, as illustrated in figure (3), ley be the 'map' which
assigns to each face of the polytope its vertek Wie lowest number, so
n(P) = p,, all facets which do not contain the vertgx are examined,

that is, II, Ill and IV. The scheme of the Coheml atickey is applied to
facet Il with 7(I1) = p,. Il is intersected with all facets not containithg
vertex p,, these are lll, IV and V. The intersections withdnd V are
empty, so this recursion is unsuccessful. The setron with Il yields
the vertexp,, and the fixed vertices,, p,, p, forms a first simplex. The
other simplices obtained from Ill and IV is alsorked in the figure (3).
Therefore we have three triangles. Summing the naeki of these
triangles yields the volume of the polytope.
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Figure (3): represents the partition of the pgigdy
Cohen & Hickey's triangulation method.

1.2.2 Signed decomposition method
In this subsection Lawrence's volume formul&jol is one of the

signed decomposition methods, is discussed.

(i) Lawrence's volume formula, [13]:
Assume the polytope P is simple and choose a vé&:fd1¢ and

qO0O such that the functionf:0Y — O which is defined by
f(X)=C" X +q is not constant along any edge that connecteddties

of the polytope P andC'is the transpose o€ . Let V be the set of
vertices defining the polytope P. For each verexV, let A be the

d x d — matrix composed by the rows of A which are bigdat v. Then
by using [13]A, is invertible andy” = [AVT]_lC. The assumption imposed
on C assures that none of the entrieg/bis zero. It is shown that

Vol (p) =y —(E V9
7 [detA|[] v

To illustrate this method, consider the followingmple.

Example (1.2.4) :
Consider the polytope P which is described by tbh#owing

constraints

then

AR
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-1 0] 0
0 -1 0
A=1 O ,X={X1} andb=|2
0 1 % 2
1 1 3

It is easy to check that the polytope of this eplms simple,
therefore the Lawerence volume formula can be agpliDefine
a function f byf (X) =x —-x, whereC" = (L— 1) and g = 0. Note that
f (X) is non — constant on each edge of the polgtimpthe figure (4), for
example, on edge (1) which connegtndv,, x, =0 and x_ varies from
0 to 2. Therefore f (X) =X, which varies from 0 to 2 which means that it

is nonconstant on edge (1) and similarly on eagieed P. According to
figure (4), it is seen that the set of verticesiohlrepresents the polytope,
IS

{v, = (00).v, = (20),v, = (21),v, = (12),v, =(0.2)} .

Now, considerv, = (00), this vertex satisfies the first two constraints,
and this implies that

Avlz{_ol _O} . hence |detA|=1 and yvl=[A{]l{zl}

Lo A

and forv, = (2,0), this vertex satisfies the second and third cairss,

that is,
1 0 1
A, {o —1] 1

And similarly for the other vertices we get

e I e e e e
y__lsy_ 1 y__l

Then Lawrence's volume formula is applied to getwblume of P.

1
detA |=1And y* =[AJ] {_J =

VY
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vol(p)=y €V
w2l ‘det&‘” A
= Y + 4 + r + (_1)2 + (_2)2
2030 2000 20QE) 2020 20EDED
:O+2+(—]J4)+(—]/4)+2:3% :
v
vo
v3
vl vZ

Figure (4): represents a polytope withwbgicesv,Vv,,V,,v, and v,

1.3 Methods for computing integral points
The main objective of this section is to recalingomethods for
finding integral points of a polyhedron. In this tkpwe use the symbol

\szd\ to denote the number of integral points in theypetiron P,

where Z° is the integer lattice and P is a rational polybed These
methods are:

Method (1), [4]:
For d = 2,P00?% and P is an integral polyhedron. The famous
formula, [42, p.240] states that

PNZ7 =area(P)+‘

aPﬂ22\+l
2

That is, the number of integral points in an inggrolyhedron is
equal to the area of the polyhedron plus half tnalver of integral points
on the boundary of the polyhedron plus one. Thisntda is useful
because it is much more efficient than the direcineeration of integral
points in a polyhedron. The area of P is computedriangulating the
polyhedron. Furthermore, the boundafy is a union of finitely many
straight-line intervals, and counting integral geim intervals is easy.

'Y
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Method (2), [4]:
Let POO° be a polytope, then one can write the number of
integral points in P as

PNZ‘|=) o(X,P)

x0z¢

where s(x,py=it I xOP
0 if XOP

Before we give the next method, we need the folhgwdefinition.
Definition (1.3.1), [2, p.61]:

The Dedekind sum of two relatively prime positiméeigers a and b
denoted byS(a,b) can be defined as follows,

sen=3(;)](5)

((X))z{x—LxJ—% if xO0Z

where

0 if xOZ
and| x| is the greatest integerx.

Remarks (1.3.1):

Dedekind sums appear in various branches of matiesnahe
number theory, algebraic geometry and topology.s&heclude the
guadratic reciprocity law, random number genera{B&, and lattice
point problems [19]. More details about Dedekinansuare given in
chapter two

Now, we are in a position that we can explain tbBofing
method.

Method (3), [4]:

Let AODO® be the tetrahedron with vertices (0, 0, 0), (ap),
(0, b, 0), (0, O, c) where a, b and c are pairnegarime positive integers,
then the number of integral pointsAncan be expressed as:

)¢
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abc ab+ac+bc+a+b+c 1 ,ac bc ab 1
+ + ()~ S(be,a) -
6 4 12°b a ¢ abc

S(ac,b) — S(ab, ¢)

Pn2-

This formula is useful because it reduces countimggnumber of
integral points to a computation of Dedekind suwmiich can be done
efficiently.

Method (4), [4]:

Let POO%e an integral polytope, for positive integer tt le
tP={tX : XOP} denote the dilated polytope P. By [42, p.238rthis
a polynomial p(t) called the Ehrhart polynomialRof

tPNZ¢| = p(t)
where p(t) =a,t" +a,,t"" +..+3a,

furthermore,a, = landa, is the volume of the polytope P.

To illustrate these methods, consider the follgnexamples.

Example (1.3.1):
Let us consider three points in two dimensions subht

v, = (0)),v, = (10) and v, = (00). Then the convex hull o¥,v, and v,
Is a triangle in two dimensions.

We compute the number of integral points by thesthotds.
From method (1), one can have

PN Z* =area(P) N

aPﬂ22\+l
2

the area of triangle, is area(P)=0.5(1)(1)=0.5 @RINZ°|=3 which

represents the number of integral points on thenbary of the triangle.

Then the number of integral points of the triangle
IPNZ*=05+05@)+1=3.

In method (2), we have

PNZ?|=> 3(X,P)

X0z

\o
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v, = (01) 0P then 6(v,,P) = 1
v, = 10) 0P then &(v,,P) = 1
v, = (00) P then 8(v,,P) = 1

thereforelP 1 2| =1+1+1=3, which is the number of integral points for
the triangle.

Form method (4), one can have
‘Pﬂzz‘: a,+a+1

where a, is the volume of the polytope arg is the half number of
integral points on the boundary of the polytope.
In this case,

a, =0.5(1)(1)=0.5
and a, =3/2
thereforePZ°|= 05+15+1=3.

Example (1.3.1):
Let us consider the tetrahedroh[° with vertices (0,0,0),
(3,0,0), (0,5,0), (0,0,7).

Form method (3), the number of integral points An can be
expressed as,

abc ab+ac+bc+a+b+c 1 ,ac bc ab 1
+ +—(—+—+—+—)

6 4 12°b a c¢ abc
— S(bc,a) — S(ac,b) — S(ab,c)

PNz

here a=3, b=5 and c=7. Therefore
‘szs‘:105+15+21+35+3+5+7+i(2_1+3_5+1_5+i5)_5(35,3)
6 4 125 3 7 10

- S(215) - SA5.7)

After simple computation one can get, S(35,3)=-858% S(21,5)=0.2,
S(15,7)=0.35714,
Thus \P N 23\ =175+215+1.501877+ 0.05555- 0.2 - 0.35714= 40.

1



Chapter Two
Computing the Volume and Integral Points of V-
Representation of a Polytope Using Ehrhart
Polynomial

Introduction

As was shown in chapter one, the Ehrhart polynoofia convex
lattice polytope counts the number of integral poin an integral dilate
of the polytope. E. Ehrhart proved that the funttishich counts the
number of lattice points that lie inside the dithtpolytope tP is
a polynomial in t and it is denoted by L(P,t), whiis the cardinal of
(tPNZ")where Z¢ is the integer lattice ¢, [4]. Many of Ehrhart's
valuable results are unknown by mathematician adpeiter science

community at this time, since many of these redudtge been published
in local reports and in French language, [4].

In this chapter we present some methods for comguthe
coefficients of Ehrhart polynomial that depend dre tconcepts of
Dedekind sum and residue theorem in complex arsalydso, a method
for computing the coefficients of the Ehrhart paymal is introduced
with general formula that counts the derivativethmintroduced method.
For our knowledge this method seems to be new.pbihgopes that we
take are with V — representations.

This chapter consists of six sections. In sectiop, some basic
definitions and remarks concerning the Ehrhart poigial are given.
Section two gives a method for finding the Ehrhastynomial of the
polytope using the formula of the Dedekind sum. #heo method for
finding the Ehrhart polynomial using residue th@oren complex
analysis is presented in section three. In secfmur the Ehrhart
coefficients are computed and in section five, vie ga method for

computingC,_;, C,_, until C,_; of the Ehrhart polynomial, the general
formula for the differentiation is given in sectisix.
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a Polytope using Ehrhart polynomial

2.1 Basic concepts about Ehrhart polynomials

As seen before, the Ehrhart polynomial is very ingoat in many
fields of mathematics. Therefore some methods fmdirig the
coefficients of this polynomial are to be listedo @ilo so, some basic
definitions, theorems and remarks are given inghigion.

We start this section by the following definitions

Definition (2.1.1), [19]:
Let POO’be a lattice d-polytope. Fort0Oz*, the set
tP={tX : X 0P} is said to be the dialeted polytope.

The definition of the Ehrhart polynomial is givealow

Definition (2.1.2), [42, p.235 ]:
Let PO O"be a lattice d-polytope. Define a mapN I - N by

L(P,t) = card(tP1z*), where 'card’ means the cardinality of({tP') and
N is the set of natural numbers. It is seen th&t).(can be represented

as: L(P,t) =1-|§:citi , this polynomial is said to be the Ehrhart polymm
of a lattice d-polytope P.
Remark (2.1.1):

Let PO O?be a lattice 2-polytope, the Ehrhart polynomialPois
given by

L (P,t) At2+%Bt+1

where A is the area of the polytope and B is thelmer of lattice points
on the boundary of P, [28].

Theorem (2.1.1), [8]:
Let POObe a lattice d-polytope, with the Ehrhart polyndmia

d
L(P,t) =thi. Thenc, is the volume of P, while the constant term is
i=0

one, which is equal to the Euler characteristif of
The other coefficients of L(P,t) are not easily egsible. In fact,

a method of computing these coefficients was unknawtil quite
recently, [4], [12] and [19].
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Before we give the next theorems, we need the atlg
definitions:

Definition (2.1.3), [35, p.86]:

Let P be a polytope which is defined B={X O0°:AX <b , }
XUP is said to be an interior point Bfif a X <b fori=1,2,....m., where
a is the ith row of the matrix A,bis the ith row of the vector b and
m<d.

Definition (2.1.4), [42, p.18]:
Let k and j be two given positive integer and (s, the number of
permutations 7 =(c,,...,c,) with exactly j cycles. Then the Stirling

numbers of the first kind of k and j, denoted bykg), are defined as
Sk, )=(-)""c(k,j), and c(k,j) can be found from the recurrence
relation c(k,j)=(k-1)c(k-1,)+c(k-1,)), k.21,

Theorem(2.1.2),(The reciprocity theorem for Ehrhapblynomial), [42
p.238], [19]:
The function L(P,t) satisfies the reciprocity law:

L (P,-t) = (-1Y™"L(P",t)
where Pis the interior of P and t is an integer.

Remark (2.1.2):
From theorem (2.1.2) the study of the polytopésRessentially
equivalent to the study of the polytope P, wheris Ehe interior of P.

A linear relation satisfied by the coefficients afl Ehrhart
polynomials is established by [8] which is a coun#ition of the
pioneering work of [Stanley,1980,1991; Betke&Mcmullen, 1985;
Hibi,1995] in [8] who established several relagasf linear inequalities
for the coefficients and are given in the followithggorems.

Theorem (2.1.3), [8]:
Let PO be a lattice d-polytope with the Ehrhart polyndmia
d
L(P.h=1+ct' then, ¢ <(-D*"S(d,r)c, + (—1)"“%
i=1 - .
r=1,2,..., d-1, where Kk, j) denotes the Stirling numbers of the firgtdki
of k and |.
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Theorem (2.1.4), [8]:
Let PO O’ be a lattice d-polytope with the Ehrhart polyndmia

d .
L(P.,t)=1+ > ct'. Then the following inequalities are valid:
i=1

1

>
¢ d

d+1
C,, 2
2(d -1)!

> (-D*¢ 20.

2.2 Counting integral points using Dedekind sums

In this section we describe the relation betwd®nRedekind sum
and the Ehrhart polynomial of a polytope and disedsa theorem that
counts the number of integral points in a polytope.

This section starts by some basic definitions mardarks that are
useful to discuss the method for counting the irgegooints of
a polytope.

Recall that the Dedekind sumf two relatively prime positive
integers a and b, denoted by S(a,b), is defined as

S(ab)= g«%))«%))

x—LxJ—% if x0Z
0 if x4Z

where ((X)) =

and| x| is the greatest integerx.

Remark(2.2.1):

The discrete Fourier expansions can be used taiteevihe
Dedekind sum in terms of the Dedekind cotangent, gbat is, for two
relatively prime positive integers a and b:

s@ab) == 5 cot®®) cot)
4b k= b b

where S(a,b) is the Dedekind sum of a and b,.[Z22p




Chapter Two  Computing the Volume and Integral points of VV-Representation of
a Polytope using Ehrhart polynomial

Theorem (2.2.1), [5]:
Let P denote the simplex iRl® with the vertices (0,0,...,0),
(a,0,...,0),(04,,0,...,0),...,(0,...,08,), wherea,...,a, L1 N arerelatively

d .
prime. Denote the corresponding Ehrhart ponnor’njaIL(P,t):chtJ :
j=0

Thenc_ is the coefficient ok ™ in the Laurent series at s = 0 of

n;“; Zp:(l+ coth(l—T(s+ ir))j(1+ coth(ﬂ(s+ ir))j..(1+ coth(ﬂ(s+ ir))J
mi2°" p pry a a, a,

(1+ coth(Z (s + ir))j
0

wherep = a,...a, .

Definition (2.2.2) [34, p. 29]:
Let K be a closed bounded convex seflin Then a hyperplane H
of O0¢ is said to support K iH (1K # ¢, and K is contained in one of

the closed half - spaces determined by H.

Theorem (2.2.2), (Dedekind's reciprocity law), [5]:
For two relatively prime positive integers a and b

-1 1 1 b
S(a’b)+s(b’a):7+1_2[%+£+5j (2.1)

Proof:
Let P denote a simplex i with the vertices (0,0), (a,0), (0,b),
where a, bIN are relatively prime. From theorem (2.2.%), is the

coefficient ofs™ in the Laurent series at s = 0 of
li[u coth(s+ ir))j[1+ coth“(s+ ir))j[1+ coth(ZZ (s + ir))j
4ab & a b ab

(2.2)

The Laurent series of each factor depends on trigHar anyc 1N, we
write the series ofi + coth”? (s+ir)) such that c divides r or not.
C

To illustrate this, we consider these two cases:

First case: if ¢ divides r, then there exists an integer rahsthat r = mc
therefore,

Y
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(1+ cothl—CT(s+ ir)j =1+ cot}‘(n(g +mi D =1+ cot}‘(?j

it is known that, Laurent series of coth(z) abosetQis:
2n
coth(z)=£+}z—izﬁ‘+...+—I32n @,
z 3 45 @n)! z
where theB, 'sare Bernoulli numbers that are defined by the foiigy
steps:

Step (1): Expandzil as
e —
1 _1 1 sisl
_E E+;Azi+1z

e -1
where A = El A = A5
12’ 72C’ 3024(

Step (2): Define, the nth Bernoulli numbeB, by, [29, p.6]

Z<n

B =1, A =(- 1)‘1( 20) andB,,, = 0 for n=1,2,.

By replacing z by7—B in coth(z) we get
C

S

c

coth(E’) SEINELI o(s?), <1
c° /38 3

Let S =1+ coth(E) :Es'l +1+£S+ O(s’) -
C T 3c

Second case: assume that ¢ does not divide r.

Let f(s)= L+ coth%(s+ir))

then f (O) =1+ Coth(rgl)
also
f'(s) ::CSCh(T[(S"'ir)jCOtl‘(n(er)j then

fr0)=" csch(ﬂ) coth(ﬂ)

Therefore, the Maclaurln series of f(s) takes threnf
R =1+ coth(’%‘) +0(s).

Therefore, from the above one can get

Yy



Chapter Two  Computing the Volume and Integral points of VV-Representation of
a Polytope using Ehrhart polynomial

Ifc|rthens =Cq +1+£s+0(s3) and
T 3c

If ctrthenR =1+ coth(%) +0O(s)
Introduce the notation

(1 if clr
Xe 0 if clr

SO (L+ coth”? (s+ir)) can be written as
C

(1+ cothl—CT s+ ir)) =S x.+R_ (- x,) and (2.2) becomes

2SS, R A= XINEH, * R A= XSk + R 1)

Expand this into eight terms, which are

71 ab
rab (SaXaSbXbSabXab + SaXaSDXbRab (1_/Yab) + Sa/YaSab/YabRo(l_Xb) +
SaXaRoRab (1_Xab)(1_)(b) + SquSabXabRa(l_Xa) + SbXbRabRa (1_)(51)

L= Xu) + SuXuRR A- X)) x,) + RRR, - x.)A- x.,)L- X,))

and consider each term according to the numbey édctors

1. Terms with ones, factor are

SX.RA-X)R, A= X.) =S RR Y. =X, = Xon + Xa) = SRR, (Yo — Xa)
(2.3)

and similarly

SX.R Q- X)R, A= X,)=SRR, (X, = Xa) (2.4)

The term with S, is zero (note that x X, = X.X. = X,and
/Ya/Yb = /Yab)
To compute the contribution of (2.3) we need thepsut

of x,— x, In{1,2, ..., ab} which is{kajl<k<b- 1}
thus its contribution to (2.2) is,

Yy



Chapter Two  Computing the Volume and Integral points of VV-Representation of
a Polytope using Ehrhart polynomial

T as 7k 7k
mﬂ;(Hcothﬁ)(Hcotha%p)

:%Z(l—i cot(%‘))(l—i cot(%())

Sl B2 o7

The imaginary part in the preceding sum is zera;abse the
original generating function is real. The obtaimesult is

11
11 _gap).
2 2 o@D

Similarly (2.4) gives a contribution oif—% -S(b,a).
a

2. There are no terms with tw§ factors,

SX.SX.R,A-x..) =SSR.X., A= x,,) =0

and
Sa/YaRJ (1_Xb)sathb = SaR)Sah/\/ab (1_Xb) =0

3. Finally, the termS X, S X, S, X, = S.S,S, X, has a support {ab}, and
gives a contribution of

n ab n aabn ban a
+ + +—+

(__ T 4=

b
dab rr3ab mmwm3a mmr3a T 7_7

ab
+
T

:i(i+§+9)+l 1 1+1)_

_(_+
12ab b a 4b a

Adding all contributions, with the fact thaf is the coefficient ofs™ in
the Laurent series at s = 0 of (2.2) an& , [4P, p.235] we get

3 1.1 a b
1=+ —(—+=+-)-S(a,b) - S(b,a
4 12(ab b a) (@.b)==5(b.a)

Then
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1 1,a,1 b
S(a’b)+s(b’a):_Z+E(B+£+5)

which is the Dedekind reciprocity lamv.

2.3 Counting integral points using the residue tivem
This section is concerned with a method given6htp count the
integral points of a given polytope by means ofré®due theorem.

To do so, letz* O0O° be a d-dimensional integer lattice, so the
d
polytopeP’is defined asP’ ={(xl,...,xd)DDd :Z:ﬁ <land X, >0}, with
k=1 ak

vertices(00,...,0),@0,...,0),(04,.0,...0),...,©....,0a,), where g ,a,...,a,
are positive integers.

Recall that fort N, L(P,t) is the number of integral points in the
dilated polytope tP.

Let us use the notatiorA = aa,..a,, A, =aa,..a ..a, (wherej
means the factoa, is omitted). Then L(P,t) can be written as,

d
L(P,t) =car%(m1,m2...,md)ljzd :Zﬂst andall m, 20}.
k=1

Thus

m, @2,-a,)+m, @a,.a)+..+m, @a,.a,,) _
aa, ..,

In other words,

MA *mA +.+mA _
A

Therefore,
d
> mA < At
k=1

Hence, there exists a non negative real numbercin thiat

d
> mA +m=At, m,m=20
k=1

Yo
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Therefore, by usin{6] one can get,

d
LPt) =card (m,,...m,,m)0Z*: > mA, +m=tA

k=1
m, .m0

L(P,t) can be interpreted as the Taylor coefficighZ" for the function
{Z Zma Dy zmh Ly 2 Dy zm)

m; =0 m,=0 mg =0 m=0
=(A+ZM+Z%+ . )A+ 2%+ 2%+ ). A+ 28+ 2+ A+ 2+ 27 +.)
1 1 1 1
1-7%1-7%"T1-7z%1-2°

Equivalently

_ Z—tA—l a
H(P.)= Re{ (1-Z*)1-2Z%)...0- Z*)(1-2) 4= Oj

:Re{ e A z—o}

A-Z*)@A-2Z")...0-Z2")1-2)

= Reg{ Z_m_l_}/z +
1-Z*)1=-Z")..0- Z*)(1-2)

%z z:o]

A-z2*)A-2%)..0-z2*)1-2)’

_ z*-1 _
B Re{ (1-Z*)1-2Z")..0-Z")1-2)Z 220

1
Re{ A-Z")A-2Z")..a-ZM)1-2)Z <

then

Z* -1
- = 2.5
H(P.D Re{(l—zﬂ)a—z%)...a— zZ )(1—2)2’Z Ojﬂ (2-5)
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7z -1
1-ZM)A-Z*%)..0-Z*)1-2)Z

Let f (2)=

Expression (2.5) counts the number of lattice mointtP. Therefore we
need to compute the residue df (Z a} Z=0 and use the residue

theorem for the spher@U{} . In this notation,

L(P,t) =Res(f (Z),Z2=0)+1 (2.6)

A
Let @={Z0C\{1}:Z* =11<k<j<d}

The roots off_(Z )of unity inQ, 0 and 1 are the only poles 6f(Z )
Now, by [21, p. 273] one can get

Res(f,(Z2),Z=w)= Res( f (%),Z = oj . Therefore,

(ZtA _1)ZA1+A2+...+AH+1
(25 -1)..2" -1)(Z-1)

o)

then,Re{f_(%,z:O)j:o.

The following lemma is needed for proving the nigeorem.

Lemma (2.3.1), [20, p.204]:
The sum of the residues of a rational functionllaha poles in the

finite plane, together with the residue at infinity zero.

This theorem appears in [6] without a proof. Heve,prove it for
the sake of completeness.

Theorem (2.3.1), [6]:
Let P be a polytope defined as

P={(xl,...,xd)DD“ :Z%sland X, >o}, 2.7)
with vertices(0,0,...,O)_, @.0...,0(04a0,..0),...,0,..04a,) where
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a,...,a, are positive integers, and, (Z) andQ are defined as
z"-1

(IS 25 (2 W 2 2 v

and

Q={Z0C\{1l}: Z* =11<k<j<d}, then

L(P,t) =1-Res(f,(2),2=1)- Y Res(f(2).2=1).

Proof:
Using lemma (2.3.1), the poles &f (Z aje at 1, 0 and the roots

of unity therefore,
Res(f,(Z),Z=0)+Res(f (2),Z2=1)+ z Res(f,(2),Z2=21)

AOQ

+Res(f_(Z),Z=»)=0

SoRes(f,(2),2=0)=-Res(f,(2),2=1) - Y Res(f,(2),Z= )

After substations the results in (2.@ve get

L(P,t)=1-Res(f (2),Z2=1)~ ) Res(f,(2),Z=1).=

AOQ

Theorem(2.3.2), [6]:
Let P be a lattice d-polytope given by express@id)( Then, the
function L(P,t) is a polynomial in t.

Proof:

Let ALJQ be a Bth root of unity, where B is the product of some
of the a,'s. ExpressZ™ in terms of its power series abordt=A. The

coefficients of this power series involve variouseridatives of Z™,
evaluated aZ = A. Introduce a change of variable:

Z=w" =exp(l/Blogw). A suitable branch of the logarithm is chosen
such thatexp(l/Blog())=/4. The terms depending on t in the power

—tA

series of Z™ consist therefore the derivatives of the functidn’®,
evaluated at z=1. For this, the coefficients of jbaer series oZ™ are
polynomials in t. The fact that L(P,t) is simplyetlsum of all these
residues, L(P,t) is a polynomial inst.
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2.4 The Ehrhart coefficients
In this section, some details for deriving formuwé Ehrhart
coefficients are given. For each coefficient of Biehart polynomial

L(P,t) =c,t’ +¢c, t"" +...+c,.

A formula for finding these coefficients can berided with
a small modification off (Z )

Consider the function,

(2" -1’
L-Z*)1-2%)..0-Z")1-2)Z

i (lsz-m(k-]) (_1) i

_ i\ J
9.(2)= 1-Z*)1-2Z*)..0-Z2")1-2)Z

9,(4) =

k

If _Z(ﬂ(_l)i =0 is inserted in the numerator of the above equati@n
i=0

get

< (K (k)

Z( .jz-m-”(—l)' —Z( .j(—l)'

9,(2)= =] AN
1-Z)1-2")..0-Z")1-2)Z

k e
[ jj(—lw @z -1

9.(2)= Z; L-Z*)1-Z")..0-Z")1-2)Z

(k _
= Z( )(—1)1 e (@)
o \J
Recall that, LPt)=Re(f,(2), Z=0+1, using this relation, we
obtain,

k-1 k .
Res(9,(2),2=0) = ReS(Z(j](_l)J fiwe(2),2=0)
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k-1 k .
Z jj(_l)J Res(f__,,(Z2),Z2=0)

-3

(K .
gk(Z):Z(j =D’ (L(P,(k= ) +(-D)" -

1
j=0

LN
Z j (-2’ (L(P, (k- j)t) =D
k-1 k

J

_ “L ik .
(=D (L(P, (k- j)t)—Z(J(—l)J

j=0

The following lemma is needed to derive the formolathe
coefficients of the Ehrhart polynomial. But, befaiteat we give the
definition of the Stirling number of the secoridkand its properties.

Definition(2.4.1), [42, p. 3B
The Stirling number of the second kil&l(m,k is)defined as, the

number of partitions of an m —set into k — blocks.

The following properties o§,(m,k @are known, [42, p. 33-35].

S(mk)=0 if k>m (2.8)

S(m1)=1 (2.9)

S(mm)=1 (2.10)
S,(mk) = ;Z[ﬂw i (2.11)

S,(mk) =kS,(d ~1k) +S,(d -1k -1)

Lemma(2.4.1), [6]:
Suppose that(P,t) =ct® +c, t"* +...+c,, then forl<k <d

Res(g, (£),Z2 =0) = klzd:SZ (mk)c_t™

wheres,(m,k) denotes the Stirling number of the second kinch@nd k
andc,=1.

Proof:
Suppose that
Z(TJHY L(P,(k—={)) =D b ,t" (2.12)
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So that for m > 0,

k-1

k . (kK .
b, , = Z[ jj(—l)'cm(k— " =cm;(jj(—1)k-' j"

i=0
using the identity (2.11) of the Stirling number

sob,, =ck!'S,(mk) form> 0.
and by formula (2.8), we conclude thdf = for 1<m<k. The
constant term in formula (2.12) is

k-1

k .
bk,o = Z(jj(_l)lco = _Co(_l)k

=0

Therefore,

1k . d
Z(J(-DJ L(P,(k=])t) =Zcmk!82(m, K)t™

d
=k'» ¢ S,(mk)t" - (-1"
Then,

K1k . _ ) d i
Z(J(—l)’ L(P, (k= 1))+ (-1 =K Y c, S,(m K
Therefore,

Res(g,(2),Z2=0)=k Y S,(mk)c,t". =

The following theorem appears in [6] without probiere we prove
it for the sake of completeness.

Theorem (2.4.1), [6]:
Let P be a lattice d-polytope given by expressidiT)( with the

Ehrhart polynomialL(P,t) =c,t® +c, t** +...+¢,, then forl<sk<d

g Sz(m, k)Cmtm = _?!]-(RGS(gk (Z), Z= 1) + Z ReS(gk (Z), 7 :A))

A0Q,

AR
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A

where @ ={Z0OC\{1}: 2% =11<j, <, <...<|,, <d}

Proof:
SinceRes(g, (2),2=0) = Res(i(ﬂ(—l)j f oy (£),Z2=0)
and from

Rex(f (2),2=0=-Rex(f,2),2=) - ) Rex(f,(2),2=1)

therefore,

Res(f, ,(2),2=0)=~Res(f, (2),Z=1)~ > Res(f

A0Q

—t(k=j) -t(k-j) -t(k-j) (Z)’ Z= /])

Now

k-

) (Tj(_l)J ReS( f—t(k—j) (Z)’ Z= O)

j=

(k)
= —;( j j(_l) ] [ReS( f_t(k_j) (Z), /= 1) + Z Res( f_t(k_j) (Z)’ 7 :)\)]

AOQ

Res(g,(2),Z=0)=-Res(g,(2),Z=1) - >_Res(g,(Z),Z =)

AOQ

By using lemma(2.4.1) we get

mZik:Sz(m, K)c,t™ :?!1(Res(gk(z),z =1) +ZR6‘S(gk(Z),Z 1) =

A0Q,

The following corollary appears in [6] without pfodlere we prove
it for the sake of completeness.

Corollary (2.4.1), [6]:
For m > 0,c_ is the coefficient ot™in

_Hl(Res(gm(Z),Z =1)+ > Res(9,(Z),Z =\))

ADQ,,
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Proof:
By using the fact tha,(m,m) = in theorem (2.4.1), we get the

result of corollary (2.4.1)m

Now, we give the following proposition with its @® which we
need for proving the next theorem.

Proposition (2.4.1), [20, p. 265]:
Let f (z) be analytic inside and on a simple closadre C except
at a pole a of order m inside C. The residue aj &f a is given by

Ced™
2, =lim e (2 ((2) (213

Proof:
If f (z) has a pole a of order m, then the Lauisaries of f (z) at a
IS
a a a
fz)=—"—+—™ _+ +—2 +3 +a(z-a)+a,(z-a)’ +..
R e AL AL CRLALICRL

Then multiplying both sides bfz—-a)™, we have

(z-a)"f(z)=a _+a_, (z-a)+..+a,(z-a)" +a,(z-a)" +...

(2.14)
From Taylor's theorem one can see that the coefficdf (z—a)™" in
the expansion (2.14) is

: 1 d™ m
a, |ZI[]2 (m=1)! dz”“l{(z a)"f(z2}.m
Remark(2.4.1):

We know that from the definitions of the Ehrharlypmmial, the
leading coefficient is the volume of the polytopeldhe constant term is
one; these are termed as the trivial coefficierthefEhrhart polynomial,
the other coefficients are nontrivial.
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Theorem (2.4.2) [6]:
Let POO"be a lattice d-polytope, with verticeg0,0,...0),

(a0,...0),...,(00,...,a,)where g,a,...,a, are pairwise relatively prime
integers. The first nontrivial Ehrhart coefficierds,, d=3 is given by,

(C —S(Aa) —...= S(A,&,))

c

2 (d- 2)|

where S(a,b) denotes the Dedekind sum and

A A
==(d+ + ...+ + —(=+2+...+ ,
JAT AL AL 2t
A=aa,..a,, A, =aa..4a ..a, (Wherej means the factos, is omitted),

a.
and A, denotesa,..,..4,...a

Proof:
(Z—tA _1)d—2
A-Z%)1-2"%)..0-Z2")1-2)Z

Considerg, ,(Z) =

since g ,a,,...,a, are pairwise relatively primgu_z(Z) has simple poles
atthe g ,a,,...,a, -th roots of unite. Let® =1# A. Then,
1 (Z—tA _1)d—2

e 2) 2N = ) g2 2

A change of variablez = ¢/ :exp(%logwj is made, where a suitable

branch of logarithm such thakp{ilog(l)J = A, thus
a

e 1 4 (@™ -9 -
Re0 2 2= = T - S N ) 1)

whereB=a,,...,a,,B, =4a,..4 ..a,. We changey by Z.
Claim

-tB _ q\d-2
(Z 1) - ,Z:1 :_td—2
(1-2Z%)..0-Z%)
to prove this, first note that the Taylor series (af® -1)¢~
aboutZ=1is
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(Z—tB _1)d—2 — (_tB)d—Z (Z _1)d—2 + O((Z _l)d—Z)

Now for mN

Putting all of this together, we obtain

Re (ZB—tB _1)d—2 B 2 =1j _ (_tB)d—Z
A-2%)..0-Z%) (-B,)...(-B,)
:_td—zazd—z “add—z _ td ,
azd—Z . .add—z

as desired. Therefore
Res(g, ,(2),Z2=1) =

_td—2
a (1-1*)1-1)

Adding up all the residues at tlee—th roots of unityz1, we
get

_td—z a1 1
R Z2),Z=A)=
QR0 Z=N =)y

where is a primitivea, —throots of unity. This finite sum is practically
a Dedekind sum:

13 1 &(, 1+&™ 1+ &
= 1 1
Z(1 fk’“)(l &) %;( +1—<‘k’“j( +1—<‘kj

After simple computations one can get,

1 a -1 1 1 . M
a4 @1-&)A-£9) 4a1(a1 D- Zcoti

the imaginary terms disappear and the cotangentcaumbe rewrite in
terms of the Dedekind sum , so we get

Yo
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1 5 1

1
a (- 1-&) 4 aa AR

4,

NI

and therfore

oz 1 _
AaZlﬁReS(gd 2(Z)Z /]) (Z E S( 1’a1)j

Similar expressions for the residues at the otloatsr of unity are
obtained, so that corollary (2.4.1) give us toe 3

-1 jd . y1,1, .1 _
Cd—z_(d_z)!(z C (a1+a2+ +adJ S(Al’al) S(Ad’ad)j

(2.15)

where C is the coefficient df * of Re(g,_,(2),2=1),

Next, Res(g, ,(Z),Z=1) =Res(e’g, ,(€°),Z =0)

—IAZ _1)d 2 _
{(1 ) (L~ eAQZ) (A-e*)1-¢) Z'OJ'
Since(e™ -1)? = (-tAZ)*? + O((t2)***) and

12— Z‘1+l iZ+O(Z)
1-€ 2 12

the coefficient oft"? of Res(g,_,(2),Z=1) turns out to be

C ( A)dz ( l)d+1 (_1)d+lAl +(_1)d+lAh s
12\ A.. Aj ALA T ALA,
‘[('”dl P A G O G P o ﬂ
4{A..A T A.AL ALA O AALA A.A,

11 1 1. A A
) 4[a1+"'+ad+pﬁ'2+"'+p“‘l“’J 12(/* a +adJ

By substituting this into equation (2.15) we get thsultm

1



Chapter Two  Computing the Volume and Integral points of VV-Representation of
a Polytope using Ehrhart polynomial

2.5 Computingc,_, and c, , in The Ehrhart Polynomial

As seen before, the leading coefficient of the Bhripolynomial
represents the volume of the polytope, the secoedfficient represents
half of the surface area of the polytope and thestant term is one,
while the other coefficients are unknown.

In this section we find the non trivial coefficient,_,and C,_, for
the d—polytope with 24 and &5 respectively, where P is represented by
a list of vertice$0,0,...0),(a.0,...0), (0,a0,..0),...,(00,...,0a,),

such thata,,...,a, are pairwise relatively prime positive integers.
By corollary (2.4.1), if we defing, ,(Z) as

(Z—tA _1)d—3
1-Z*)1-2*)---1-Z~)1-2)Z

945(2) =

where A =aa, [[[a,, A =aa,[l[a [[[a, and &, means that the factor

a_ is omitted, then the poles of the functign,(Z) are at Z =0, 1 and
the roots of unity.

We find the residues of the functiay_,(Z) at these poles.
Sincea,,...,a, are pairwise relatively prime therefoge ,(Z) has simple
poles at a,...,a,-th roots of unity. Let A*=1#4 and since,

A=allla,, A=aallla,,..., A =aallla,, therefore

7 -t(@my) _ 1)d-3

gd—3(Z): a, A (aaD]B ) a,a, B '
(L= Z%™ ) (1= 2™ [ - Z*=™ )1~ Z)Z

Now atZ = A,

1-A1"™ 20 and1-A1#0.

Therefore

A change of variablesz:w%ﬁ:ex;{imgw] is made, where
8

a suitable branch of logarithm such tfeat{ilog(l)j =2, thus
a

v
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12
A-1)L-DAa,

(w—tB _1)d—3 B
i

whereB=4a, a,,...,.a,,B, =a,a,..4,..4,.
since Res(f(Z),Z=1) =Res(e’ f (¢’),Z=0), then

Res(g,.,(2),Z=4)=

(ZB—tB _1)d—3 B 2 :1j _Re eZ(BeZ—th _1)d—3B Z - Oj
(1-Z%)...(L— Z%) (1-e*)...— )

Leta = tB, then

eZ (e—tBZ _ l)d—3
1-e*)...1—e*?)

,Z=0)=Res( ezgi_az_l)d_; ,Z=0).
L-e™)...0—e™)

Res(

By writing the Maclaurin series for exponential étion one can get,

e{l—a 2@z _(@zy +..-+(‘1)] _
2! 3
Re _ m— Y
(1—1—322—(822) —...j---(l—l—BdZ—(BdZ) —j
2! 2!

after simple computations the above residue camrlieen as,

) ¢-3
1_(O’Z) a2 _
(-a)*¢ 2 3 Z=0
(-B)M(-B,)z**|(,, (B2, (B2 | (,,BD,BD, |/
2 3 2 3
Let
2 3 d-3
| :(1—£Z +a—Zz—a—ZS+...j
27 3T 4

JZ:(1+EZ+EZZ+EZ3+.J

2! 3 4

2 3 -1
J, :(1+EZ +EZ2 +EZ3 +j
2! 3 4l

YA
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2 3 -1
J, —[1+B Z+Bd Z7+ B“23 j
2l 3 4
then
Z (~-0Z _ q1\d-3 d-3 Z
il i i ,z:oj:Re (ta) 2(|J2--.Jd),z:o}
1-e™)..-e") (-B,)---(-B,)Z

( a)d3 Z
(-B))---(-B,)Z°

for the function (13,---J,) we have a pole of order two at

Zero.

Let @(Z)=€*13,d,--J,, andy=_ D"
#2) /7 (-B).(B,)

d-3

After simple computations ory, we gety:%. By the formula for

finding the residues given by (2.13), if we conside

f(2)= y¢( ) , thenRes(f (2),Z = 0)_@ Where

¢(2)=¢2)+€13,3,---3, +...+€°1],d,--- 0., .

Let

K,=e’17,3,--3,, K, =€*13.J,---J, ..., K, =€’13,3,--- '
therefore

¢(2)=¢(2) + K +K, +..+ K,
at Z =0, we compute' (Qafter simple computations we get

¢(0):1‘%(BZ+B3+...+B(,)—$
therefore,
Res(f(Z),Z= 0)-%(1-—(B+B+ +B,)- a(d2|—3)j.

1
Let D = 3(1_5(82 + B, + ..+ Bd)j

Therefore,

A
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D o
ad-A")a-1)

Res(g,,(£),2=4)=

all the a,-th roots of unityz 1 are added up to get
Dt 1
@L-AM)e-2)

D Res(g,.(2).2=4)=

A= 1z A= 1z

Let & be a primitivea, —th roots of unity, therefore

Dt Z 1 _ Dt & 1

a o2, -AMA-1)  a & A-8M)a-¢)
then

Z 1G58 - 141 £ -8 4141
a = @-&™ )(1 f) as 20-&%) 2(1-¢%)

_ L RA( 1N 1
_4%; 1+1-5“‘j[€1+1-<‘kj
_ LR 1 18N 148 L g
_4a1; 1+1—¢’k ey q—fk]

_ LIRS, RS (14E¢ 148N (146 1+ &9
“aler EE R HEEER)

k=1 k=1 k=1

T B L TR A T TR STEE T O
™ {Z[l-fk +1—Ek’*j+z(1-fk e ﬂ

k=1 k=1

1
Now, sinceé = 1% | then by using the formula for finding the roats i
2k,
the complex plane, =e® ,k=0,1,...8 —1. We obtain
s (e
N1+ & 1+ &M l+e®* l1l+e *
kl(l_fk-}-l—fwAl Z i ¥ Ay |

2krr

)i
HKlll-e ® l-e *

and
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-1 a -1 Sl G
az 1+&4) (14 & _Z l+e ™ l+e ®
e \1- Ek 1- EkAl k=1 (zaﬁT)i (@)i
“\1l-e*® l1-e *
2iz
But cot(z) = “03@ - _j( 1*€
sin(2) 1-¢e*
) (2); ety
|1l+e* l+e ® at
hence) e - Z—l cot 7K + cot A
2, Gsiall |
lll-e ™ l-e * k=1 & 4
and
a1 k kA a,-1
Z(“fkj Eﬁhij =) - [cotn—k ot KA
=\1-¢ 1-¢ k=1 a a
;-1
= —Z (cotﬁ Etot%
pe=} a a
therefore

L 1[R[ L) (1 qee
2,8 1)+4a1[z(1—5k+1—5“\j+z[1—£k 1—5“*ﬂ

k=1 k=1

=1 AN 7K A 15 7K TKA,
=—(@-D+— (cot—+cot—j - (cot—[tot—j
4a, 4a, ; a a 4a, ; Eh a

The imaginary terms disappear, and then the aboguaten can be
written as

1 a;-1
oL LS oot Mo A 1L _dag,
4 4a.1 4a1 k=1 a, aQ 4 4a1 4a

1

where S(A,, a,) is the Dedekind sum oA, and a, . Hence

Cayeppeelo 1 |
Aa;fes(gd-s(Z),Z—/l)—Dt G~ 30 - SAR)

Similar expressions are obtained for the residuethe other roots of
unity.

Now we find the residue &, ,(Z) at Z = 1, we have

€Y



Chapter Two  Computing the Volume and Integral points of VV-Representation of
a Polytope using Ehrhart polynomial

Res(g,.,(Z),Z=1) =Res(e’g, ,(€"),Z =0) then

_ _ eZ (e—tAZ _1)d—3 _
Res(g,,(2),2=1) Re{(1—e’*z)(1—e’*zz)...(1—e’*dz)(l—eZ)eZ’Z o].

By writing the Maclaurin series for exponential &on we get,

(1—0( Z+(a ) _( Z) + (- 1)}
2! 3
Re 5 . ,Z=0
(1—1—AZZ—(AZZ) j (1 1-AZ- (A“Z) ...J[El—l—z—z—...j
2 2!
wherea =tA, then the above residue becomes
@2 @ 2)2_“_“'3
. (@) 2! 3 7-0
(A) A)Z" (_H(AZ) L (A2)’ J...[H(Aazh(’*az)ﬂ j(l S ]
2! 3 2! 3 203

the function for which we want to find the resichaes a pole of order four
at zero.

Let
- j
) 2! 3 ,
(1+ (AZ) + (AZ)’ +...]...(1+ (AZ) + (AZ)° J Eﬁ1+Z +sz
2l 3l 2! 3 20 3
=t and f(2)5 y“z(z)

By the formula for finding the residue given byl), we get

3)
Res(f(2), 2 =0)= &~ O (O)V
Let
|:(1—az+a22—a23+...j h

(1+1Z+1ZZ+1Z3 j

2! 3 4! 2 3 41

£y
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2 3 -1 2 3 -1
y=(1eize Bz Ay )y o1e ez Ree Ragey )
2737 4 2737 4

2 3 -1
andjJ, :(1+ﬁz+izz +iz3 +j :
2! 3 41

Theng¢(Z)=133J,---J,h

and

¢(2)=133,---3,h+13,3,---J,h+...+13J,---3;h+ 13 J,---J
let

K,=13J,--J,h,K,=133,---3,h,....K,,, =13J,--I'h and

d+1

Kao = I‘Jl‘Jz”"th’
hence

¢(2)=K +K,+..+K  +K, 6 and¢"(Z) =K/+ K +..+ K] + K/
Now,
| :(1 Z+(tA) . _ (A Z3+...j

2! 3l 41
therefore
2 3 d-4 2
1'(z)=(d —3){(1—tAZ S 70 (A5 +j _A L2, +ﬂ
2! 3 4l 21 3

m

Differentiating 1" to get 1"and |
expression to get

, then put Z = 0 in the obtained

1(0) =1
'(0)=(d - 3)[ tAj

0=(-3) @ -4 -2

3

¢y
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1"(0) = (d —3){(01 —5)(d - 6)(— tAj +

2
2(tA)? —tAY 2(tA)? [ -3I(tA)°
(d—4)(—tA)( 3 +(d—4)j( 5 j( 3 +( 4 jﬂ
For
J1:(1+ﬁz+ﬁzzz+ﬁz3+...]
2l 3 41
Jl'(Z)=—(1+AZ+A‘ZZZ+Aﬁszs+...j_2(pﬁ+2pfz+3pfzz+...j
2l 3 41 20 3 41

Differentiate J' to get J"and J", then put Z = 0 in the obtained
expressions to get

J,(0)=1, J/(0) :_'3, Ji’(O):% and J/(0) =0.

In a similar way, we get the other differentiatioof
J,,J;,..d and h, then
(tA)d—S (A)d—3 td—3

7 Z,Z:O R Sl S S .
() ma)z A% J DL TNER

etc- A0
(A)MA,) 3

So by corollary (2.4.1) we get foed, c, ., which is the coefficient of
t7° of

_1 _ i
(d-3)! (Res(9,.(2),.2=1) +A;HRes(gd_3 (2),Z=1))

So
= ~1 pfd_ i1, L1 - _
c“—(d_g)!{D(Z 4(a1+...+auj S(A,a)-... S(Aj,ad)J C}

Thus we have proved the following:

123
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Theorem (2.5.1):
Let P denote the polytope in0d‘(d=>4) with vertices

(00....,0,@0,...9),...,(00,....2,) where a,...,a, are pairwise relatively
prime positive integers. Ther)_.is given by

71 |pfd_ 11, 1} _ - _
C“_(d—B)!{D{ [ +“'+aﬁj S(A,a)-... S(A,,aﬂ)J C}
where S(a,b) is the Dedekind sum of a and b,

1 1
D :E(l_E(BZ + Bg+...+ Bd)j’

o AT 470
(A)IIA,) 3

(1_ (tBZ) , (1BZ)’ +_J“'3
2l 3l

(A2 (AZ) +__),,,(1+(Ad2) L (A2 +j E€1+ z. 7 +j
2! 3 2! 3 2l 3

(0(2):(

A=aa,..a, A =aa.4 .4a, § means the factora, is omitted,
B=aa,..a,andB, =aa..a..a,.

In a similar way, we get, , for the d—polytope P &b), where P is
represented by a list of vertic€s...0),(a 0,...0),...,(00,...a,),a,,...,a,
are pairwise relatively prime positive integers. &yollary (2.4.1), if we
defineg,_,(Z) as

(Z—tA _1)d—4
1-Z*)1-2%)...0-Z2")1-2)Z

94..(2) =

where A=a [[la,, A =a [l[4, [[[a, and& means that the fact@,

IS omitted. The poles of the functiogd_4(Z) are at Z = 0, 1 and the

roots of unity.
Now we compute the residues at these poles.

Since a,,...,&, are pairwise relatively prime therefon@d_4(Z)
has simple poles &, ,...,a,-th roots of unity.

Let A* =1# A and sinceA=a [lla,, A =a,a,[[la,
Therefore

¢0
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(Z—t(al[lﬁd) _1)d—4 .
(1-Z%™ )(1— 2% ) [[[{l- Z)Z

9,.(2) =

Now atz=A

1-A*#0 and1-A #0.

Therefore

ReHQ,,(£),£=4)=

1 (Z—tA _:Dd—4 _
R Z=A
A-A)=-MA E((l-ZAZ)@-ZAg)---l-ZA“) j

We make a change of variablgs= W = ex;{iloga)j, where a suitable
a,

branch of logarithm such tha»t;{ilog(l)j = A, thus,
&

~ B 1 A (w—tB _1)d—4 ~
R0 =D =y ERG{ - )...0- ™) ’w"lj

whereB=aa...a,,B, =a,a,..4a,..4a,.
By the same steps followed before, we obtain withtB

eZ (e—D/ z _ 1)d—4

Res( s —-,2=0)
1-e%)...0.— e*?)
N (1_ (a IZ) +(o( |Z)z _J i}
—PRe (-a)*e - 2l 3 720
(-B,) OI{-B,)Z*"** (1+(BZZ)+(BZZ)2 J,,,(“(BdZ)Jr(BdZ)Z + j
2! I 2! 3
let

2! 3! 4!

2 3
J, = (1+EZ + P72, B g +..)"
2 3 4

a a? al o
| :(1——2 +—7*-=_27° +]

2 3
J, = (1+EZ +Bi72,Bizs +..)°
2 3 4

1
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then

Vd -0 Z _ 4\d-4 _ d-4 AZ
e(e”* - . J:Re (-o)e

57 By 3(IJZ...\]d),z:oj
1-e*)--1-e*) (=B,)--(=B,)Z

So for the function in the above residue we hapela of order three at
zero.

Let /(Z)=¢€"13,J,---J, and y:_(a)M

td—4

after simple commutations gn we gety=--—

By the formula for finding the residues given byl@, if we consider
£(2) :@, thenRes(f(2),Z = 0) :4‘(20”’

1
Let D = "(0
5 2!4d( )
Therefore,

-D d-4
t .
a,(1-1*)1-A)
all the a -th roots of unity#z 1 are added up to get

Res(g,,(£),2=4)=

- Dt 1

2ReS(0..DZ=A) =" DL Ty

A= 1£

With the same procedure that we used to(get, we obtain
1 1
> Re Z),Z=A)=-Dt"!| = -— -9(A, &) |.
2.Res(0,.,(2) ) (4 o al)J

Similar expressions are obtained for the residuethe other roots of
unity.
Now we find the residue of, ,(Z)at Z = 1 by using

Res(g,.,(Z),Z=1) =Res(e’g,_,(€"),Z=0)
then

_ _ eZ (e—tAZ _1)d—4 _ .
Res(0,-.(2).2=1) Res((l—e"*z)(l—e‘\zz)...(l—e’*’z)(l—ez)ez’Z O]

By the Maclaurin series of the exponential functwith a =tA, the
above residue becomes

1Y
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(1— (@2)  (a2) —...]M
(@) 2 3

e 5 2 2 2 !
(A) OT(A,)Z [1+(AZ)+(AZ) +__j,_‘(l+(AdZ)+(AdZ) j[€l+z+z+ j
2 3 2! 3 21 3

Z=0

for the function in the above residue, we havela pborder five at zero.

d-4

Let y=-

and f(Z):@

where
¢2)=

(1_ (@2) (a2 +]
2! 3

(1+ (A2) , (A2 +___]_,,(1+ (A2) , (A2Z) +] [€1+ .7, ]
2! 3 2! 3 2 3

by the formula for finding the residues given byl@®, we get
Res(f(2).z=0) =2 QY

4

Let

a._ a? a’ - 1_ 1 1 -
I:(l——z+—z2 -—7° +] , h:(1+z+zz+z3+...)

2! 3 41 2l 3 4

2 3 -1 2 3 -1

J = 1+ﬁZ+Al Z°+ AlZ3 peend, = 1+ﬂZ+A“Z2 Ad Z°+

2! 3 41 2! 3 41

theng(z)=13,3,---J,h
Now for
3 d-4
I:(l— Z+(tA) Z% - ﬂz’%...j
2! 3 41

The derivative is

1'(z)=(d - 4){( Lab (A" z? - (tA)’ Z%+ ...JH [E—tA+ 2A)° Z +H
277 3 4 2 3

Differentiating | to get”, 1"and | | then put Z = 0 in the obtained
expression to get

1(0)=1

EA
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"0)=(d - 4)%’*)

"(0)=(d - 4){(01 5)(

tA)  2(tA)
2

I"(0)=(d- 4)|:(d -9)(d- 6)(_ t;\J

+(d-5)(- tA)(Z(tA.)j d- 5)( j[z(t:l) ( 3!E1t|A) m

19(0) = (d - 4)[(d - 5)(d - 6)(d - 7)(- _) +(d-5)d - 6)(3(tA) )(2(t3A))

2tA 2(tA) "

(d - 5)(d - 6)(— 2% Ay ZSAY

B 2(tA)? B
(d 5)(2)(—) +(d - 5)(2)(— 5 ) A

2(tA)) . (d-5) 2A)( 3(4t|A) 1

(d - 5)(d - 6)(( - )(2“’” )+ (d - 5)

For

3l 4
Ji(z)= —[1+ Az Az Ay jz AN, SA ., j
2! 3! 4

2 3 -1
J, =(1+';12+Al 72+ 8170 J

2! 3! 41
Differentiating J' to get J", J"and J” |, then put Z = 0 in the
obtained expression to get

J0)=1, J, =—%, J/(0) :%, J/(0)=0 and 3 (0) = _21_0

In a similar way, we get the other differentiatioof
J,,Jd,,....,Jd and h, then

21737

_(A)d—4 td—4
(A)I{A,) 4

o A
(A) MI(A,)Z°

AZ),Z= OJ = ¢ )

(A g0
(A)IA) 4

LletC=-

So by corollary (2.4.1) we get foe8, C,_,, which is the coefficient of

t9* of

£9
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-1
(d-2)! (Res(9,.,(2).Z2=1) +ADZ%:_4ReS(gd_4(Z)'Z =1))

So
S (S R S - _
Cd4_(d—4)!{D{Z 4(31+a2...+adj SA &) -.. S(Ad,ad)J C]

Thus we have proved the following:

Theorem (2.5.2):
Let P denote the polytope ind%(d=5) with vertices

00,...,0,@ 0....0),...,(00,....2,) where a,...,a, are pairwise
relatively prime positive integers. Th&ly_, is given by

S Y B o _
Cd4_(d—4)!{D[Z 4[a1+a2"'+ad] SA &) -.. S(Ad,ad)] C}

where S(a,b) denotes the Dedekind sum of a and b,

d*
D _ dZ 2 (e ¢(Z)) _ (A)d—4 |:?(4) (O)

2200 C=
B2 | (A)OI{A,) 4

o B2, (B2)"

L)
AZ) = 21 3 _
(AZ) (AZ) yA
U207 ) S )T )

A=a.a,, A =a.4.a,, § means the factora, is omitted and

U9
I
R
D
S8)
Q
-]
o
XUJ
I
R
o
e

With the same procedure we get the coefficieits,C,_,---,.C,_g
under certain conditions. From the above methods)ate thatz(z) with

their definitions are needed to differentiate mibv@n once, so we obtain
a general form for this differentiation given ircsé2.6).

Example (2.5.1):

Let P be a 4-polytope with vertices (0,0,0,0)0(@,0), (0,2,0,0),
(0,0,3,0) and (0,0,0,5). It is easy to check tha& polytope satisfies the
conditions of theorem (2.5.1).
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In this case the Ehrhart polynomial of the polyteggiven by
L(P,t) =c,t* +ct’ +ct> +ct +c,
by theorem (2.5.1%, can be computed as

_ 1,1.1,1
. (4- 3){ (Z 4(7 273 5) AT ~S(A2) ~SA )

-S(A, 5)-C]

where D = %(1— 05(B, +B, +B,)),

(1_ (tB2) , (t1B2)* , ___]“'3
2 3

ﬂZ): 2 2 2
(1+(Alz)+(Alz) +___],,.(1+(Ad2>+(AdZ> +___][€1+z+z+__j
2! 3 2! 3 21 3

After simple computations one can get
A=210A =30,A =105A, =70,A, =42
B=30B,=15B,=10B,=6,D -1

(3)
C= 1 dL(O) where
90C 3

1-157 +...

Az)= 15 1
(1+152 +...)(1+22 +...j(1+5z +..)(1+3Z +...)(1+2|z +j
let

| =1-15tZ +..., J, =(1+152+..)", J, _(1+1252+ ] , J,=(1+5Z+..)7,

-1
J,=@+3Z+..)" andh :(1+21'z+___j

then¢(2)=13,3,3.3,h, we find ¢'(Z ),¢"(Z) andg® (Z ) then put Z=0 in
¢ (Z)to get the value of C which is equal to
1 1

C=— = ¢P
90C 3! ©

o)
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Also we need to compute S(30,7), S(105,2), S(7&) S(42,5),
which are equal to 0.071428, 0, 0.055555 and Oectsely. By

substitutingC, in the above formula one can get:

I 20\(4 1(1 1 1 1 B
e 3){( }(4 4(7 Stat ] S(307) - S(1052) - S(703)

- S(425)) - (29652489

= —-29€.3986<.

From, c, , =ﬁ(cd ~S(A,a) ..~ S(A,.a,)), Where
1 11, A, A
_4(d+A1,2+"'+A1—1d)+12 A a1+ +a)

one can get the value of, which is equal to,

_ 1 _ _ _ _
CZ—M[Q (A7) - S(A 2) - S(A 3 —S(A5)]
where

_1 111 A A A A
C =4+ A A A — ] -+ —=+ =+ 2+
. 4( + ]2+ ’3+ ’4)+12( + +a2 + +a4J

A, =aa, =15,A,, =aa, =35 andA,, =aa, =14, therefore

:%(24.37698— 0.1269$=1212500!

2.6 General formula for the differentiation ofi,J,,J,,..., 3, ,h
In this section, we get a general form for thead#htiation of the
terms 1,J,,3J,,..., J, and hthat appears throughout the process of

finding the coefficients of the Ehrhart polynomiae begin by
considering

l=g1033..9h  j=12..
where Il means that only | in the expressicgf1J,J,--- J his
differentiated j times.

oY
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!

Let E =1+£+...+ J; , then
J J

2 d

"=1P 4 EN,
|"':|[3]+E1(|[2]+|")+E1'|',
|(4) :|[4]+E1(2|[3]+|rrr)+E12|[2]+Ell(|[2]+2|n)+E1|r’

1O =] [5] + E1(3| [4] + | (4)) +3E12| 3] +3Ei(| (3] + Im) +3E1E1'| (2]
+ E1"(| [2] +3| ") + E1”| "+ E13| [2]’

| © =6 4 E, (4l [s] 4 | ) + = [4] +4E° 8] 4 = 2] 4 E! (6l [4] 4 4] @)
+3E211Y +12E E/N + 6E2E! 1P + 4E EN P + E(41 F + 61 ™)
+EP +a1") + E+ENY,

10 =1+ E 61 +1©)+10E71 ¥ +10E71 ¥ + 5E1 ¥ + EP1
+E @0 +19)+ E'@ol “ +101 @) + E'(IF +101 ™)
+E@ (1P +51") + E® I +30E,E/I + 30E2E!1 B + 10E°E!
+20E,EN " +10E2E1 7 + 5E EN1P +15E/21 B + 15 E/2|
+10E'EN 1,

|© =0 4+ E (6l 74 ™) +5E7| (o] 4 20E°| [5] +15E7| 8 4+ E°l (3]
+E (L5 ¢l 4 g ®)+E"(20 Bl +19 ) +E"15 4 1201 @)
+E”(619+18")+E” (1 +61") +E”I' +6CEEI " +9CEEN
+60E°EI® +15E'EI1 +6EET +60E2ENE + 20E°EN 1
+30EE] (8] +15E°E] 2] 4 6EE“ (2] 4 A (4 4 E 2] 4 9CEE? (8]
+45E7E2 + 60EENH +15EET + 60EEEN +15E)1 7,

In order to differentiated ,, J.,...,J, we need to find a general

formula for these differentiations so we work opgté elements and find
a general formula. To illustrate this, considerdgample,

oy
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J, —(1+—22+W222 Ve zos yr = W2
272" T a -1

then €*J,-J,=wZ. By assuming the implicit differentiation for both
sides of the above equation, we get

dd (€4d) - —(J) w,

and the second derivative of the above equation is
2 d’
d22 a2 ) T

when we differentiatee:* J, d-times we get a shape likebanomial
d(d-1)
2l

formula (a + b)?=a" +da’"b+ a’?b’ +...+b".

Therefore,

e (J,+w,)"=J"=0

where Jém) is the mth derivative ofJ,, sincew,is constant therefore,’
meansw, raised to the power m. For example,

let h=J,.¢"",

then
I — 1! AWZ W,Z —_ AWZ r
h' =Je"“ +w,e™J, =e“(J;, +w,J,),

h" = J5e"%% +w,J,e™” +wie®?J, + w,J5e%? = e™% (3} + 2w,J, + W3J,),
h" = e"* (J;"+ 3W2J;' + 3\N§J; + vijz).
And so on. Therefore

=€, = I,

2
I’ J!
Jr=J7 +E,J, whereE, :1+|—+ +J—d
d
=3 +2E 37 +EJ +EJ'.
39 =03 +3E,37 +3E;07 + E;J, + 3E,J) + E}J, + 3E,E,J;

2 272"

o¢
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and similarly for highest derivative. By arrangiigem together we
obtain

=130,
I=JP+EJ,
L= +E(3+I)+EJ,

JW =30+ E QIF+IN+EIP +E(IF +23))+EJ.,

2

7 =37+ E,(3)7 +3,7)+ E; (33)") + EZJ + E (33} +3J;
+E) (37 +3J)) + E}J, + 3E,E,J!

2 2272 1

30 =07 +E,(43;+ 3)7) + 6B 3 +AE I + B +
E;(6J;" +43,%) + Ej (43,7 +637) + EJ(J;" +4J)) +
EYJ! +12E,E,J° + 6E.E? I + 4E,E/) + 3(E,)? I

2 1

I =37 +E, (63 +37) +10E; 5 +10E;3Y +5E, 3%
+ B3I + E; (017" +53.7) + E; (033" +10J;7)
+ E;(5Jf" +103)) + E;” (I +5J;) + EPJ, + 30E,E,J}"
+30E,E2J% +10E,E2J + 20E,E;J% +10E7E;J?

+5E,E"I2 +15(E)?J¥ +15(E.)?E,J™ +10E.E/J?,

3® =39 +E, (637 +J) +15E231 + 20E2J% +15E/ I +
6E,J;" + E;J;" + E, (153;” +6J,7) + E; (203" +15,7) +
E;(153;" +200;%) + E,” (63, +13),7) + E;¥ (3, +6J]) +

E©J; +60E,E,J¥ +90E,E2J% + 60ESELJ +15E/E,J? +

27272 2272 2 =272
60E,E"J¥ + 60E’E"J® + 20E°E"J? + 30E,E"¥ +15E7E"™ +

6E,E 1 + 45(E;)* 31 +15(E})° I +90E, (E;) 3 + 45E2(E;)* I +
60E.E"J™ +15E.E") + 60E,E EJ® +10(E")* J?

2

00
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JO =3+ E, (731 + J®) + 21E2)7 +35E201 + 35E2J1 + 21E501 +
7ESID + ELIP + E (2107 +730)+ E'(353 + 219 ) +
Ey(35057 +3537)+ E (21" +350%) + EP (791 + 21017 +
E® (32 +7J7)+ EMJ, +105E,E.J¥ + 210E,E2J® + 210E°E.01 +
105E4ELJ9 + 21E°E I +140E,E"J% + 210E2E/JY +140E°E"IS +
35E/E"JP +105E,EM +105E7E"® +35E3EM + 42E,EM I +
21E2EW IR +7E,EQ IR +105E})? I + 3155, (E1)2 I + 315E2(EL)* I +
10562 (E2)? 3% +105E})* I +105E,(EL)° I + 2105 E/JY + 105, EMS +
21E'EMJIP + 70(E")? I +10E, (E")? I +35E"E") + 420E,E!E" I +
210E°E!E"J® +105E,E'EMP.

Since our work is for finding the coefficients dfie Ehrhart
polynomial until C,_, , so the derivatives that we are needed are until
9-th derivative.

By similar procedure we get the derivatives IofJ,,...,J,and h

that are used in the definition @fz) in the preceding sections. When we
arrange the obtained results we get a triangle dikgolya triangle [40,

p.20] where the contents of the triangle are theffawents of

2 . .
E,”,E3,...in the expression ”, 3 ...

Jj“ 1 E I

Jj 3 1 E

J 6 4 1 E I gH P
J? 10 10 5 1 E° B glgl A

J® 15 20 15 6 1 E/ JUgM gl 9B gl

J® 21 3 35 21 7 1 EJV gl gl gl gl gl

2

J@ 28 56 70 56 28 8 1 E J¥ Il gl gBglgl gl

Also, the first terms of the coefficients o, E;,... in the
expression ofl!¥ ,J® ... are

o1
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E,
@ 1 Er JA
j 3 1 Er J¢ gl
J 6 4 1 E® JW g gl

J» 10 10 5 1 EP JF JHaP g

2

J® 15 20 15 6 1 E® JFgE gl gl gl

2

J® 21 3 35 21 7 1 EPJIM gl gl gl gl gl

2 2

The second terms of the coefficientskf, E; ... in the expression

of 3/, ... are

E, E!
o 1 1 B O30,
j 3 3 1 E® J 3 I
J 4 6 4 1 E® 3P 3o,
J» 5 10 10 5 1 EP J2J3® 3 3 3,
J® 6 15 20 15 6 1 E®J® 30 3 Jgr o
J® 7 213 35 21 7 1EPJP JP 30 J3® Jrarod,

The coefficients ofE,E,, ESE,,... in the expression of,,J,,...
are arranged as follows.

B o0
o0
J® 0
j® 3 e, J2

J 12 6 EXE, JI B

J» 30 30 10 EE, JH 9B W

J® 60 90 60 15 EE, JB gl gl gl

J® 105 210 210 105 21 ESE g aFl gl gl gl

The diagonal of the above results is the secondnuolof the
preceding Polya triangle, and the first column tioe above results is
obtained as follows:

oy
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By multiplying the diagonal by 4,5,6... we get theel under the
diagonal, which are
(3)(4)=12,
(6)(5)=30,
(10)(6)=60,
(15)(7)=105,
The general formula of the differentiation is givaey

20 = 30+ B, ((m-2)al + 369+ w
where 1<nt8 and W can be obtained from the given tables lk®ifo

when m=3 then
3P =3+ E, (0P +9P)
when m=4 then

I =30+ E, (208 +38)+w
from the tables, W can be found as follows

w=E2JP + E (312 +20@)+ ELJ. .

oA



Chapter Three
The Ehrhart Polynomial of H-representation
Of a Polytope

| ntroduction

As seen before the computation of the volume oblytppe is very
important in many applications. For this importanoany researches
concerning the volume of the polytopes and in paldr with the
Birkhoff polytopes are found.

In this chapter a method for computing the cosdfits of the Ehrhart
polynomial of the Birkhoff polytope is discussedaké a change on the
matrix, which represents the polytope and find ranfida for the number
of integral points. These changes of the matrixraagrix operations on
the rows (columns) of the matrix. We try to lessba effect of their
changes on the number of integral points. We furthgcuss a method
for finding the volume of a polytope using Laplacnsform.

Chapter three consists of four sections. In seai# a method for
finding the volume of H-representation of polytopsing Laplace
transforms. In section two some basic conceptsranthrks about the
Birkhoff polytopes and their volumes are given. dection three, the
Ehrhart polynomial of Birkhoff polytope is presetitend in section four,
further properties about the number of integrahfsare obtained under
certain conditions, also we give the relation betmvehe number of
integral points of the original polytopes and thamging polytopes.

3.1 Computing the volume of a polytope using Laplace

transform, [33]
This section is devoted to the computation of tldume of
a polytope with H-representation using Laplacedfam.

The idea of the method is to consider the volume of
P={XO0O¢-AX <b}, AOO™and yOO", as a function g(b) where

g:0" — O which provides a simple expression of its Lapl&@nsform

G:C" - C, and the inverse Laplace transform to G, whinhthie next
section, can efficiently be done by repeated appbas of Cauchy
residue theorem for the evaluation of one—dimeradioamplex integrals.
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Let yOO"and AOO™ such that the convex polyhedron,
P(y)={XO0O¢-AX < y} (3.1)
Is compact, that is, P(y) is a convex polytope. $fmbol (1, stands for
the semi closed interdl, ) (1 1.
Now consider the functiog:[0" - 0O defined by
9(y)= [ dx=Vol(P(y)) (32)

P(y)

and letG:C" - Cbe its n-dimensional Laplace transform, that i}, [1

G(A) = [ g(y)dy (3-3)

where<|, (> is the Euclidean product defined aii.

Theorem (3.1.1), [33]:
Let P(y)={XOO!-AX <y} be a polytope, and let g and G be

defined by
g(y) = [dx=Vol (P(y)), G(A) = [€"g(y)dy

P(y)
respectively. Assume that X=0 is the only solutidrhe system

{X=0:-AX <0}. Then:

G(A)=— 1 . with {Re(")” (3.4)
[14 |‘J (A'Q), Re(A"1)>0
i=1 j=
Moreover
1 Cytioo C,Hioo <A vs
g(y) = [ e e (3.5)

(277)°
where the real constants,c,,...,c, are chosen such that c>0 satisfies
A'c>0.

Proof:
Apply the definition of G given by (3.3) to obtain

G(1) = j e<”'y>|: j dx:ldy

x20,Ax<y
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= { | e“”dy}dx

09 yzAx

= [e*"dx,  with Re() >0

n
A o
I

i=1

then after simple computations, one can get
Re() >0
Re(A"A)>0

G(h)=— 1 with {
A[]A™,

and (3.5) is obtained by a direct application o¢ tinverse Laplace
transform, [1]. It remains to show that, the domain
{Re(A) >0,Re(A" 1) >0} is non empty. This flows from the fact that a

special version of Farka’s lemma due to Carver, [B880], which states
that{u>0- A"u> 0} has a solutiouJO" if and only if (x, y) = 0 is the

only solution of the systefAx+y=0:-x=0,y=> O0}In other words,

x = 0 is the only solution dfx=0: Ax< Q}which is indeed the condition
given by this theoremu

Suppose that we want to compute the volume of thevex
polytope P={X O0O¢-AX < b}with b>0, that is, we must evaluate g(y) at

the pointy =b. Without a loss of generality, we may assume thatl
for every i=1,...,n.

The problem is then computing h(1) of the functiord, - [0 given
by,

_ _ 1 oo poytio Lo
h(z) = g(ze,) = oy jq_iw...j%_ime G(A)dA (3.6)

wheree = (1 1, ...)be the vector iri)' for i 21, such that its element is

one, and the real vectr< cJ[1", satisfiesA'c>0.

Computing the complex integral (3.5) can be donéwia ways,
directly as given in sec. (3.1.1) or indirectlygagen in sec. (3.1.2).

1)
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3.1.1 Thedirect method, [33]:
For better understanding the direct method, condioe case of
a polytope P with n=2.

Let AOO* be such that X=0 is the only solution of
{X 20:AX <0}. Moreover, suppose thah" =[ab] with a,b00° and

assume that:
i) ab, #0 anda, #b, forallj=1,2,....d.

i) a b, #a b, forallj, k=1.2,...,d.
then:

_ 1 ... |Re(1)>0
G(A) = - ,Wlth{
/11/12” (@A +bA,) Re@A, +bA,)>0
j=

Next, fix cand c, > Osuch thata,c, +b,c, > (for every j =1,2,...,d, and
compute the integral (3.6) as follows. First evéduhe integral,

+ioo A
= e da, (3.7)

27]' Ql—im d
A[@A+bA)
[@A+b

by using Cauchy residue technique. That is:
a) Close the path of integration by adding a semieifclof radius R
large enough.
b) Evaluate the closed integral using Cauchy's redildeerem.
c) Show that the integral alorigconverges to zero wheR - oo.

Now, since we are integrating with respect Ao and we must
evaluate h(z) at z=1, the semicir€lenust be added on the left side of the
integration path Re(l,) =c, because €™ converges to zero when
Re(Al) — —oo. Therefore, we must consider only polesGf, [ whose
real parts is strictly less than (with A, being fixed). Recall that
Re(-A,b,/a))=-cb /a <c for each j=1,2,...,d, an&(A, [ ,has only
poles of the first order (with, being fixed). Then, the evaluation of (3.7)
follows, and

1 d -e
|, = +>
)\dzilbj = b,-)\dzu(—akb,- la; +b)

1

~(b,/a,)2A,

J

1y
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of a polytope
Therefore,
1 peroe™l(A,)
h(z) = 1\72/4 )
e e
CpHioo vz d G, +ioo aqe(}Q laj)z4,
:Z;J.C o dled dAZ_ZziﬂJ.C —jco Adﬂab ]I<—| (ba —akb)dAz
: A § b = 2 2 i kY i

these integrals must be evaluated according tohen@t-b, /a,)y is

positive or negative. Thus recalling that Z > Qzlemtegral is equal to:
i) its residue at the pokg =0<c, whenl-b, /a, is positive, and

ii) zero if 1-b, /a, is negative because there is no pole on the right
side ofRe(1,) =c, that is

(3.8)

2 1 (a —-b)"
h - - j j
(2= lijb_ b,.;qajbj“(bKaj—akbj)

Observe that the above formula is not symmetrical the
parameters a, b. This is because we have chosegrate first with
respect toA; and the set{j:b /a < 1}is different from the set

{]:a,/b >1}, which would have been considered if we have tegrate
first with respect tol,.

In the latter case, we would have obtained.

Zd 1 (b'_a')d
h(z) =— - (@b,
@=% B aab,[](@b -ha)

which is (3.8) by interchanging a and b.

Example(3.1.1) ,[33]:
Let e, =(111) be a vector in1° and let Pize,) O 0° be the polytope,

which is defined by,

1y



Chapter Three The Ehrhart polynomial of H-Representation
of a polytope

P(Z%)={XDDf;X1 +X,SZ;-2X, +2X, < 22X, — X, sz}. To find
the volume of this polytope, writéze, ap

1 1
Pie,) ={XO0O?-AX <z}, whereA=| -2 2],
2 -1

choosec, =3,c, = Z2andc, = 1so thatc, >2c, — 2c, andc, >c, - 2c,
that satisfies the conditions c>0 aAdc > 0.

1 c1+ioo c2+ioo c3+ioo
h(z) = e EG(A)dA,
( ) (27]')3 J.cl—ioo C,—ioo o C3—ioo ( )
with G(J) = 1

/11/]2/13 (/11 - 2/12 + 2/]3)(/]1 + 2/]2 _/]3) ’

Integrate first with respect td,; that is, evaluate the residue @{1) at
the poles A, =0,14,=24,-24, and A =A,-24, since 0<z, 0<c,
Re@4, -24,) <c, andRe(, —24,) <c,. We obtain,

_ 1 C,+ico CyHioo
"= Gy Jorir oy Qe+ 1410000,

where,
e_(/‘2+/‘3) z

24,4~ A)(A, - 24,)
e(3/12_/‘3)Z
[
i 64,A,(A, = A,)(A, - 4/31,)

e(2/|2—/|3) z

| =
*T 3L, - 24,) (A, - 4/31,)

Next, integratel, with respect tol,, we must consider the poles lofon
the left side ofRe(l,) = 1that is the pold, = 0OsinceRe(,) = 2 Thus,

2, 2

and the next integration with respect Ap yields 82 :

we get

3 !
2

When integratel ,with respect toA,, we have to consider the poles

A, = A, and A, =4?/12, on the right side oRe(J,) = ;land we get

¢
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—1[ e 3e5%"
—| - +
A { 2 8 }

Recall that the path of integration has a negainentation, so the
negative values of residues have to be considditeel.next integration

with respect tol, yields zz(l—i—g).

Finally, when integratind ,(4,,4, With respect tal,, we must consider
Z"z

only the polel, = Qwe get or

; the next integration with respect A9

2

yields zero. Hence, adding up the above threegbaesults, yields,

2
h(z) = 22[_1 +1_2_5} 1z
8 48 48

3.1.2 Theindirect method, [33]:

The indirect method permits avoid evaluating inégy of exponential
function in (3.6) which will be illustrated in thisection. We want to
compute (3.6) wherb# 0 and ¢c>0 are real vectors in" with A'c>0.
From (3.1) it is deduced that g (b)=0 whenebetO, so that the last
entryb > 0; and the following simple change of variablesdoae.

Lets=<A,b>andd, =<c,b> so that,

n-1
(s—ij/ljj
A= 7 and
b

n

h(z) = = [[ " e=G dsidA,.. 0,
(27]-) (‘,1 joo Cpyq—ioo W d—ico n
whereG(A S) =—G E_iﬂ
11" n 11 bn n—l’ b J bn
h(z) can be rewrite as follows:
1 dy +i
h(z) =—— eHsds with
@ =), HO

H(s) =~ [ [ G A A

@7y Jacin e T

10
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where H(s) is the Laplace transform of h(z)=g(zmd is called the
associated transform @(A).

Let AOO*" such that X=0 is the only solution fK >0-AX < 0}
Write A’ =[db] with a,b00¢, assume thaa b, # @orall j=1,...,d and
a b, #alb, forall j#k
Then,
c(l)=— 1 | With{ Re@?[>0,

AA, n (aA +bA,) Re(A'1)>0

fix A,=s—-A and choose real constants> &hnd c, > O such that
a,c, +bc,>0 for every j=1,2,...,d. Notice thaRe(s) =c, +c,. H(s) is
obtained by integratingG(4,,s—A, along the lineRe(,) =c, which
yields,

1 o 1
2787 ) (s=A)[1((@ =b)A +bs)
i=1

H(s) = dA,

Next, determine which poles @(A,s—A, 3dre on the left(right)
side of the integration patfRe(A,) =c, i order to apply the Cauchy
residue  theorem. Let J, ={j . a >bj}, J, ={j . a =bj} and
J_ ={j ! <bj}. Then the poles on the left side §le(1)=c, aye
A, =0 andd, =-bs/(a, —b, ) for all jOJ, since-b Re@E)/(a, —b)<c,.
Besides, the poles on the right side {&fe(1,)=c  a}e A, =s and
A =-bsl(a,-b) forall jOJ_.

Finally, notice thatG(A,s—A, Has only poles of the first order.
Hence, computing the residues of poles on thesldi of{Re(A,) =c, }
yields,

1 1 N Z _(aj _bj)d_‘jo‘
2
|_| Sbj Sll;! Sbj i, S ajbj |_| (—sbjak + sa]bk)

J0Jo kO]Jg K% j

H(s) =

N
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After moving terms around, we obtain

1 1 (aj _bi)d
H (S) - Sd+1 d Z.ajbj l_l (ajh< _bjak)

a;>b
” bJ | ]
J:

Notice that the previous equation holds even fer¢hseJ, # 0
Finally, after integration with respect to s, we ge

v 1 (q b)
I_Jb aJ>bja,b,l<_|(abk ba,)

h@z

Now, computing the negative value of residues degmn the
right side of{Re(A,) =c, }yields,

11 1 (b -a)
H(S) =G| = - T
S I_jaj b;jajbj“(bjak_ajg)

and after integration with respect to s, one akstatlge following

3 1 (b —a,)"
h(z) = dl J Zajbjl<_|(akb -ba))

”a a; /b, <1

Example(3.1.2),[33]:
Consider example(3.1.1). By settirg= @Bt P(ze,) 0 O be the

polytope which is defined by
2X, +2X,< 72X, — X, <2}

We can choosec =c,=1c,= 2and A =s-4,-4, so that,
Re(s) =d, =4, and

in particular casel, = 0

1-ico

—joo

(2)
1

AA(s= A = A)(25- A —4A,) (24, + 3, —9)

with M(A,s) =

1y
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We first integrate with respect td . Only the real parts of poles
A, =0 and A, =(s-34, )/2are less than 1. Therefore, the residue of the
O-pole yields:

= [ 1 dA, (3.9)
27i e 1 (5= A)(25- 41.)(31, - 5)
whereas the residue {s—34,)/2)-pole yields
i : A, (3.10
27i e 1 (s-31,)(s+ A )3s-51)

Applying again the Cauchy residue theorem to (3a9)the
polex, =0 yields —1/(2s°).

Similarly, applying the Cauchy residue theorem(3d.0) at the poles

) A 29 . . D17
A, =0 and A, =- s yields 2 finally we obtain H(s)= =

fol -

and so

h(z) =%, which is the area of the polytope.
z

3.2 Some basic concepts about Birkhoff polytopes

The set of doubly stochasticx n matrices form a convex set called
Birkhoff polytope. In this section, we describe Biekhoff polytope with
some methods for finding its volume.

We start this section by the following definition.

Definition (3.2.1), [7]:

The nth Birkhoff polytope B, is the set of all doubly stochastic
nxn matrices, that is, those matrices with non negateal coefficients
in which every row and column sums to one. In oterds, the rth
Birkhoff polytope B, is defined as

TA
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Xll X12 ' - ' Xln
X21 X22 X2n

o | 2 ijkzlforall 1<k<n

B, = 0o : _
" . . : D x, =1 forall1<j<n
k

X X, o . . X

B, is a convex polytope.

Remarks (3.2.1):
There are different ways for computing the volunfeBakhoff

polytopes. One of the recent attempts to compot€B, religs on the
theory of counting functions for the integer poimshe polytopes. Recall
that Ehrhart has proved that for a polytdpé&l [1" with integral vertices,
the number,L(P,t) =card(tPNZ"), is a polynomial in the positive integer
variable t, this counting function, has three praps, which are [7],

» The degree of (P,t)is the dimension of P.

» The leading term oL (P,t) is the relative volume of P.

» SinceL(P,t)is a polynomial, therefore it can be evaluated at
nonpositive integers. These evaluationklyie

L(P,0) =1
L(P,-t) =(-)"®L(P" t ) (3.11)
whereP’ is the interior of P.

We will denote the Ehrhart polynomial of the Birkhpolytope
B, asH,(t)=L(B, t ) whereH_ is a polynomial in t of degregn—1)?,
to do this count, note that the last row and coluanae fixed by the
conditions that the row and column sums should leaquee. The
remaining (n—1)> entries can be chosen freely; therefore the diinans
of B is (n-1)?, which is the degree of the Ehrhart polynomialtu#

Birkhoff polytope.

The first two of these polynomials are easily cotegu[7] which

are,
H,(t)=LH,()=t+1

19
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We will compute these polynomials in the next sattihe first nontrivial
polynomial was computed see [7], is

Hs(t)z—{t;?)]{t;z]

The properties oH_ are found in [7]. From (3.11), it is deduced that
H,(-n-t)=(-D)""H,(t)

and
H()=H (-2)=..=H (-n+1) =0

This allows the following strategy for computingd,, and

therefore, the volume oB,: compute the firs{”‘lJ values ofH_, use
2

the above symmetry and trivial values &f , and calculate the
polynomial H_ by interpolation, [7], [17].

3.3 The Ehrhart polynomial of a Birkoff polytope

In this section we give some theorems that camdssl to count the
Ehrhart polynomial of the Birkhoff polytope. Onencaiew the Birkhoff
polytope B, as given in the form of

P={X00°: AX =b} (3.12)

O 0 O R

oo o P

o o R O

o or o
o

where A =

Or OO
=

We illustrate how to represent the Birkhoff poly#oin the form (3.12).
For example if n = 2 then from the definition oétBirkhoff polytope,
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5 :(au auj
C e, &,
where
a,+ta,=1
a,+ta, =1
a,ta, =1
a,ta, =1
1 1 0 O\a, 1
0 011 1
this means that % |2
1 01 0fa, 1
010 1)a, 1
1100 a, 1
O 011 1
Let A= , X = %o and b=
1 010 a, 1
0101 a, 1
Then

P={X0O0O?: AX = b}
which is the H-representation of the polytope.

Now, some theorems that concern this type of ppl$ are given.

Theorem (3.3.1), [7]:

Consider a convex rational polytope P given (Byl2) for some
(mxd)-matrix A and m-dimensional vector b. Denote tb&umns of A
by c,,....c,. Then

1= ~th,=1 = ~tby-1
S U Rl S
(270)" g, (20, A= 27)A=27) - A= 27)
where0<¢,,...,¢, < lare distinct real numbers and t is a positivegate

L(P,t) =

Proof:
Consider the function

-ty -1y ~th,~1 = ~th,-1
f(2)= Zl Zz Zm
@-z*)1-z%)---Q-2%)

\A
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Here, (the standard multivariate notatidfi =v,*..v") is used. f(Z) will

be integrated with respect to each variable oveirrade with a small
radius:

[t@...2,)dz,-dz, (3.13)

|Zil=& |Zn[=ém

here 0<¢,...,§, < 1 are chosen such that, all of th&chk)can be
expanded into power series about 0. Since therat@yer one variable
will give the respective residue at O, integrattam be done with respect
to one variable at a time. When f is expandeditsthaurent series about
0, each term has the forngz™"..Z"™" where r,..r, are
nonnegative integers. Thus, in the integral (3viill)give a contribution
preciselys

Remark(3.3.1):

A special case of theorem (3.3.1) can be obtairyeplultting b =
(1,1,...,2)0Z*, therefore the Ehrhart polynomial of thémBirkhoff
polytope is given by

_'I._ _ J-J' - (Z_l...ZZH)" - 4z
(2”) (1 ZlZn+1)(1 ZZZn+2) o (l ZnZZn)

H,(t) =

Here, each integral is over a circle with radius eentered at the
origin; all appearing radii should be different.

The following theorem gives a general formula oé tBhrhart
polynomial of the Birkhoff polytope with b =(1,1,1).

Theorem (3.3.2), [7]:
For any distindd<¢,,....¢, < ,1

__ 1 T
0= G e Lo @ 20 g g =7y |92 42

\Al
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Proof:
From remark (3.3.1), the last n variablestbf t dan separate and

obtain

1 af 1 z ’
Ht=—[.--[(zz-..Z el dazldzdz --d
n(t) (2T“)n J. J( 172 n) (2 - J(l_zlz)a-_zlz)'. .(1_an) j Zn Zn—l Zi

The radius of integration circle of the inmaost integral may be
chosen to be smaller than the radii of the othtegiration paths. Then the
innermost integral is computed which is equal ®rsidue at zero of

1

Z"(1-22)---Q-22)
and, by residue theorem, equal to the negativeesum of the residues
atZ*,...,Z". ( Note that here we use the fact that t>0 ).

The residues at these poles are computed: thesayl,eatzican be
1
calculated as

nm(z—iﬂmtﬂ =
272 ) 270 22-a-2,2)
1

— i 1 l
=lim B
2-31-272 727 (1-2,2)---A-2,2)

:_iD Z]t_+l 3 Z]t-+n—l

Z, q-%y.q-by  (Z2-2)(2-Z)
Zl Zl
Similarly we calculate the residues at the oth@eg, which yield the
Ehrhart polynomial of the Birkhoff polytope.

In the next example we will illustrate the compidatof H, .

Example (3.3.1):
From theorem (3.3.2) we get,
—_ 1 —t-1=t —_ 1 -1
Hl(t) ) Ezl-[fl Zlel __.21-[51 le
=L =1
27

vy
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The next example will explain the computationtef and hence
the volume ofB,.

Example (3.3.2), [7]:
By using theorem (3.3.2) we get

H.(1) = % I(lezzs)_t_l( z12 . zZv ,
(2”) (Zl - ZZ)(Zl - Z3) (ZZ - Zl)(ZZ - Z3)

Z dz
(Z,-2)Z,-2))

We have to order the radii of the integration patbseach variable; we
choose0< ¢, <¢, <¢ < lwe use this fact after multiplying out the cubic:

Z —t—lZ —t—lZ 2t+5
integrating, for example, the term——2—- .
(Z,-2,)(2,-2)
gives 0, as this function is analytic at tie- origin and|Z,,|Z,|>¢,.

After using this observation for all the terms steimg from the cubic,
the only integrals surviving are

with respect taZ,

l j 212t+522—t—1zs—t—1
27)°°(Z2,-2,)(Z, - Z,)°

and
ENE
(27]') (Zl - Zz) (Zl - Zs) (Zz - Zs)

The first integral factors and yields, again bydas calculus
1 J_ 212t+5 Zz—t _1Z;t_1
(271)°* " (2, = Z,)(Z, = Z,)°

~t-1 2
=(2—:L')3-[let+5((ZZ—Z)SdZJ dz,
T '

— 1 2t+5 -1 -t-3 ’
= |2 ?(—t—l)(—t—Z)Zl dz,
(t+2)

=7

A&
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for the second integral, it is most efficient teeigrate with respect td,
first.
_3 I ZI+SZzzs—t—l d _ 3 j Z;+3zg—t

- = dz,dz
(277)

(Zl _ZS)S ’ '

(Z.-Z2,)(Z,-2,)(Z, - Z,) 2= (27)?

__i t+3£_ YA . o4 __ t+3
= Zn_jzl .4!(t)(t (-t -2)(-t-3)Z,"dz, {4}

Adding up the last two lines finally gives

t+2) (t+3
H,(t) = - :1t4+§t3+53t2+9t+1
2 4 8 4 8 4

In general, the relative volume of the fundamexnl@ahain of the sub
lattice of Z™ in the affine space spanned Byis n"*, [7].

Therefore, to obtain the volume Bf, the leading term oH, has to

be multiplied by the relative volume of the fundanta domain of the
sub lattice ofZ® in the affine space spanned By which is equal to 9;

hencevol(B,) =§

Now for n = 4, the number of integrals that haset@luate to
computeH, is only slightly higher. By theorem (3.3.2)

4

1 -t | & Z:r?’
v [zzzz) 1>
(277) |Z4]=61(Z4]=¢5| Z24=¢5]Z |=¢ 4 k=1 I_I (Zk - ZJ)

JES
Again we have a choice of ordering the ra@ik &, <¢, <&, <é, < are
used. After multiplying out the quadric, five intatg have to be

calculated; their evaluation (again straight fomvdrty means of the
residue theorem) is as follows:

H,(t) =

1. : J‘ Zlazllzz—t—lzs—t—:zll—t—l : dZ
(2”) (Zl - ZZ) (Zl - ZS) (Zl - Z4)

— 1 J‘let+11. J‘Ldz le: t+3 ’
(2m)* (Z,-2)° 3

Yo
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_4 .[ ZZt+BZ Z—t—lz—t—l Z
)" (Z2,-2,)(Z,-2.)°(Z,-2,)°(Z,-Z2.)(Z,-Z,)

1| B A
@2m)" " (2,-2,)" \"(2,-2)"(Z,-2)

[ EEZLHZJ 27 e B 4
(277) (Z -Z,) (Z,-2,) (2,-2,)°

2 S— . dz
(zl =2} (zl 7y

A A7)

4 J’ ZZt+Sz—t lZ Z—t—l

@78)" " (Z,-Z,)(2, - 2,) (2, - 2,)(Z, = Z,)(Z, - Z)Z
4 ozzen
(Zﬂ) (Zl - ZZ) (Zl - Z4) (ZZ - Z4)

2t+8 =7 —t-1 t + 2 -t-3 —-t-2 -t-1
4: ZJ. Zl Z4 7 [E( 2 j Zl ( 1) Z + Zl ]dz

@iz, -z) z,-2,) Z.-2) (Z,-7)
{(t + Zj[t + 5) [t + 6) [t + 7) [t + 7D
= + (t + 1) + + )
2 7 8 9 9
6 .[ Zt+5Zt+SZ—t—lz—t—1
(i)' (2,-2,)"(Z2,-2,)(2,-2,)°(Z2,- Z,)*(Z, Z)

t+5—t+5 -t-1 2
SO . o — _dz | dz,dz,
2m)" " (Z,-2,)" \" (Z,-2)(Z, - 2)

&
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_ 6 Z;+Szé+5 Z—2t 4 _ 22—2t—3 ZZ—Zt—Z
iy @z Y gty T g L Tt
,(t+5 _ t+5 t+5

_6(t+1)( - ] 24(t+1)( 8 j+24{ 9 j
_ 12 J- VARVAVAY 4z

@7)' " (Z2,-Z2,)(Z2,-2,)(Z2,-2,)"(2,- 2,)"(2, - Z2,)(Z, - Z,)
__ 12 J‘ th+5ZZZZ;t_1 dZ

(2”)3 (Zl - Z2)3(21 - Z4)5(ZZ - Z4)3
_ 1.22.[ th+52:+15 . 1 3+6 Z, : +6 Zf S)dZ

@m) " (2,-2,) (Z,-2,) (4,-2,) (Z,-Z)

t+5 t+5 t+5
=-1 -7 -7
7 8 9
After simple computations one can get
H, (1) = 11 e 11t8_|_19t7+g,[6_|_1109t5+£3,[4
11340 630 135 3 540 10
35117, 379, 65
+ t°+ t

+—t+1
567( 63 18
and hence
vol(B,) =4°0 11 176.
1134( 283¢

3.4 The effect of matrix operations on the number of integral
points
Consider the polytope P that is defined{asO0“: AX <b , where

AOO" andbd0O“. In this section we study the change of the number
of integral points of P upon performing the usuakmmx operations on the
matrix A, these operations include interchanging tews (columns), the

A%
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addition of a row (column) to another row (columand the transpose of
the matrix A.

The study is when n = 2, 3 and n = 4, the computashows that
there is no change in the number of integral pointshe case of
transpose and in the interchanging of rows or calwmder certain
conditions.

Now we discuss the method for the polytdped 1 : AX <b , where

ADOO% andbO0O°. In two cases which are
(1) Thecaseof 2% 2 matrix:

a, a,

a a,
l Z—tbl—l Z—tbm—l
1 ™ m
(2m)" 2o, 120, 1-zZ%)..0-2Z%)
column vectors of A, her@ < Em,...,fl <1 are distinct real numbers and

t a positive integer.

Suppose thaA=( j b=(1 1).In order to find L(P, t) we use

L(P,t) = dZ wherec,...,.c, are the

W,

We use the standard multivariate notatioh=v/* ---v".
1 z oz

(271)° lezfzz 1-Z*)1-2%)

Let|Z|=¢ <1|z,|=¢,<1and ¢, =(a, a,)c =(a, a,).

By assuming t=1b =b, = We get

1 27277

L(P,t) =

dZ , here0<é¢,<¢,< 1

L(PY) =—— - —dz,dZ,
( ) (27'[) 21'[51 Zz'[fz (1_ Zlanzz21 )(l_ Zlalzzzzz)

Now let,

f(2) = L

212222 (1_ Zlanzzaﬂ )(1_ Zlalz Z;zz)
the poles of f(z) az =z, are
1. A pole at zero:

Since0int|Z,| =¢,, therefore it is a pole of order two.
. .1 1 .= . . .
2.1-72x7»=0thenZ® =——,Z,=(=)™, this is a pole ifZ,| <,

an a1
Zl Zl

therefore,

YA
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1z, = lan = i ,i>£2 (becaus®<{,<é < 1
‘Zl‘aﬂ C(Tlan 1

1 .o .
thenz, = (ﬁ) 20int(Z,] =¢,).

1

& a. —_— a _— l _— l al
3.1-Z%7=0thenZ» =——, Z,= (=)™
lez lez
1 1
therefore, |Z,|=——, but ?>52 ( because 0<¢,<¢& < )l then
C(lazz 1

1
Z,=(=)=0int(Z,|=&).
Zl

Therefore we have pole of order two at zero onhyg #@s residue has to
be computed as follows,
1

for f(Z)=—=; e .. » Wwe determine the residues on
2,72,QA-Z2Z2)A-2Z;7)

the circle|Z,| = £, with radiusé, and center zero, if we consider

f(2)= q)(? , Where
ZZ
1

d(Z) =
( ) le (1_ Z1ailz;ﬂ )(1_ Zlalzzszz)

Z, can be regarded as a constant, then

¢(Z>——[ (1-az3)* (-0, Z3"). (L~ fZ5)”
+(1—azaﬂ)-1(—ﬂazzzaﬂ'l)(1 pz)* |

dD(Z)——[aanZaﬂ‘l(l az)? - fz2)"
2 - ) (t-azg)* ]

wherea =Z* and 8 = Z>* therefore
1.1f a,, >1anda,, > 1then®'(0) = Otherefore L(P,1) =0
Now if a,, =1anda,, > 1then

va
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V(2= la-az,) - f2.)" + 2 (- ) T-az)]

®'(0) = 2
then

L(P]) = Zi [z27dz,

‘21‘251

2.1fa,>2ora, <1, thenL(P,1)=0.

3.1f a, =1thenL(P)) =i_ | idzl =1

‘Zl‘ =6 1

If &,, >1 anda,, = 1then

©(z)=—[pa-pz) " ta-azy’]
J _i — a,—2
@ (O) - le [,8 ] Zl

L(PJ) = i [z3dz,

T |z,/=&

4.1fa,>2o0ra,<lthenL(P,1)=0

5.1f a, =1thenL(P,) =i_ | idzl =1

|Zif=8 41
If a, =a,, =1, thend'(Z)) = %[a + A

(D’(Zl) = Zla‘n_2 + Zflz_z then L(P’t) - i I(Zlaﬂ—Z + Zlaiz_z)dzl

‘Zl‘:fz

6.1f a,>2ora, <1, anda, > 2ora, =1, then L(P,1) =0
7.1f a,=1anda, = 1then L(P,1) =2

This means we have three cases for n = 2, whieh ar
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Casel: L(P,1)=0

If
a, a,
(1) A= ],a21>1 and a,, >1
a, a,
(2) A=| a“],azz >1and (a, >20ra, <1)
1 a,
(3) A= 21: af],an >1and (a, > 20r &, <1)
(4) A= al” af],alz,an>2 or (a,,a,<1
Case2: L(P,1) =1
If
1 a,
1) A= 1
(1) L azj,afﬂ
a, 1
2) A= 1
(2) a ke
(3) A= 1 a, >20ra, <1
- 1 1 ’a12 a12
@ a=|® Ha >20ra,<1
1 1

Case3: L(P,1) =2

11
If A=

11
Now we look at the change in L(P,1) when a matrperation is
performed on the matrix A.

That is,

1. We first look atthe operation of taking the adjoin, the relation
between the number of integral points 8={X 00*: AX =b and

P={X0O0O*: A"X =} are equal and,

AN
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a. L(P,1) = O if there exists a roR  of the matrix A with index n
such thata, > l1wherea, are the elements of the rok, and
there exists a colum@, of the matrix A with index n such that
a, >1, whereg, are the elements of the colu@pi, j =1,...,n.

b. L(P,1) = 1 if there exists a colum@, of the matrix A with
elementa, such thata, = &nd a, > 2 k# ] and there exists
a row R, of the matrix A with index j such that =1, j =1,...,n.

c. L(P,1) = 2 if there exists two columr@, ,C, of the matrix A
such thata, = landa, =1 a, 22,k# j,k# j, and there exists
two rows R ,R of the matrix A such thas,;, =1 and a ;, = ahd
for C,, and

R, Qw>2KZ |, ], m#i,i,.

2. Interchanging of rowsor columns:

The number of integral points for the original golye and the
polytope obtained by interchanging of rows or catgnof the matrix A

are equal and,

a. L(P,1) = 0 if there exists a roR of the matrix A with index j
such thata;, > 2wherea, are the elements of the rory, and
columnC, of the matrix A, ] =1,....n.

b. L(P,1) = 1 if there exists a colum@, of the matrix A with
elementa, suchthata, = anda, > 2

Ok#j, i,j=L..n.

c. L(P,1) = 2 if there exists two columns of the ma# such that
its elements are equal to one.
3. Sum of two rows or columns:

The relation between the numbers of integral pdiotghe original
polytope and the polytope obtained by adding twesror columns of the
matrix A are given as follows:

a. L(P,1) = 0, the conditions are the same as L(P=1Q for
interchanging of rows or columns.

b. L(P, 1) = 1, in this case the number of integrainfs of the
original polytopes and the changing polytopes matybe equal

AY
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1 2
under any conditions. For examphes [1 5}, where L(P, 1) =1,

3 2
but when we add two columns the resultBs (6 5} and

L(P, 1) =0.
c. L(P, 1) = 2, also in this case, the numbers ofgrakpoints of the
original polytopes and the changing polytopes naybe equal.
c. Multiplying by a constant ¢ > O:

The relation between the numbers of integral pdiotghe original
polytope and the polytope obtained by multiplyingoa or column by a
constant ¢ > 0 are are given as follows:

a. L(P,1)=0, the conditions are the same as L(P,1)=0 f
interchanging of rows or columns.

b. L(P, 1) = 1, in this case, the number of integrains of the
original polytopes and the changing polytopes matybe equal

1 2
any where for example/é\:(l 5], where L(P, 1) = 1, but when

3 2
we multiply by a constant ¢ > 0 the resuItEB?—(s 5] and

L(P, 1) = 0.

c. L(P, 1) = 2, also in this case, the number of irdegoints of the
original polytopes and the changing polytopes matybe equal
under any condition.

(11) The case of 3x3 matrix:

a, a, ay
Now if A=|a, a, a,
A Ay Ay
This means that the polytoge={X 00°: AX =b ,30Z°. By theorem
(3.3.1) witht=1and, =b, =b, = Jwe get
1 2772777

L(PY) =
(P (277)3zf[zlzzj;szz4=53(1_zcl)(1_ZCZ)(l_ZC3)

where

c=(a, a, a,).c=(a, a, a,).c=(a, a, a,),
0<é,,¢,,¢ <1.
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of a polytope

Then
1
(V2 ) IEPATAPS s
Z7°7,°Z.;?dZ,dZ,dzZ,
(L-Z22Z328) M- 222323 (U~ 225 23)

the integrand is

L(P1) =

2°2;°Z;
(1 —_ Zlau Zzau Z:31 ) Hl —_ Zlaiz Zzazz Z;32 ) Hl —_ Zlaﬂs Zzaz3 Z:33 )

now we find the poles for the above function:

1. A pole of order one at zero,
Since0Oint|Z,| = ¢,.
2.1-7»7>»7 =0then Z»Z»Z> =1

a3

¢

g
a1 77 8 ” E 851
yAYA 1

1

A

Z,0int(Z,| = ¢&,).
Similarly for the other points.
By assuming

®(2) L

L-az;)A- 27 )A-V257)
where
a= 21%12521 1ﬂ — 213122522 andy — waz;zs

by generalized Cauchy integral formula at Z = 0,gee

®'(2) =-(-az3)*(~aa, 2" )1~ f27 )L~ VZ;°)"
+(-D(=La, 27 )= pZ37) " (L=az) (L= yZ)”
+jnZi (- )2) A - Az ) - f2)

A¢



Chapter Three The Ehrhart polynomial of H-Representation
of a polytope

regardingZ, andZ, as constants.

Now

If a,>1a,>1anda,>1then®'(0)= Q therefore
L(P, 1) =0 witha,, >1a,>1and a, > 1.

)If a,=1and a,,a,>1

P(2)=aa,-az,)" (- F23) - 2)* + fanz 0 )
(L-aZ)* M- )22) + jenZs - 12) U= az,) - )

®'0)=aga,=2"Z>*
8177 81

4% 47 4z,
(271) 2azie L2,

=L [ [z¥*z37dZ,dZ,
(Zﬂ) |Z4]=6.1Z5=¢,

) If a,>2ora, <1, thenL(P,1)=0
ii) If a,, =1 then®'(0) = 1 And

1 _
L(P))=——~+ [Z™7dZ, then
D= J2

a)lfa,>2ora,<1thenL(P,1)=0
b) If a,=1thenL(P,1)=1
M)If a,=1and a,,a,>1then®'(Z)=fa,=2*2Z> and

&2 77 8z
L(P) = 1.2 4 ZZZ dz,dz,
(2”) |zi|=6124=¢, Z Z
1

237 | Z22x72dZ,dZ
(27I )§ zlj & zzj;ez ’ o

i) If a,>2 ora,<1then®'(0) = Q this mean that L(P, 1) =0
i) If a, =1 then®'(0) = Tand L(P.1) =% [z57dz,

‘Zl‘:fl

a)lfa,>2ora,<lthenL(P,1)=0

Ao
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of a polytope

b) If a, =1 then®'(0) = land hence L(P, 1) = 1.
) If a,=1and a,,a,>1 then
®'(Z2) =)o, =Z*Z;*and hence

1 ; ;
_ 2777247 dZ
(27]-)2 2125122'[521 ’ ’ '

1 . _
- 2372 | Z7%7%dZ.dZ
(27i)° zlLa ' ZZLZ ’ T

i) If a,>2 ora, <1then®'(0)= Q this means that L(P, 1) = 0.

L(P1) =

i) If a,,=1 then®'(0) = land L(PA) =~ [Z7dz,

z]=&
Then,
a) If a,>2ora, <1 then L(P, 1) =0.
11) If &, =1,a,=1and a,, >1
®(Z2)=a(-aZ,)" (- pZ,)" Q- yZ>)"
+BA-BZF) A-az) (- y2)”
o2y (- y2r) -aZ) (- pZ,)”
then®'(0) =a+ =227 +2Z2>Z*

177 8 8277 8
hencel(P1) = Ll YL g7 4z,
(27]) |Z1|=4Z4=¢, Zl ZZ

1

iy ), J @ )z, 0z,
|Z4]=611Z4|=¢,

) If (a,>2o0ra,<1)and @,>2ora,< ] thenL(P, 1) =0.
i) If (a,=1and a,>2 ora, <1) then®'(Z) =22,
1 -
hence(Pl) =— [Z7dZ,

‘Zl‘:ﬁ
a) If a,>2ora, <1 then®'(0) = Q this means that L(P, 1) = 0.
b) If a,=1then L(P, 1) =1.
i) If a,,=1and (a,,>2 or a,, <1) then

AT
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of a polytope

CD’(Z) = Zlalz_zzz_l’ henceL(Pl) = i J-Zlalz—Zle

|Z1=&

a) If a,>2ora,<1then®'(0) = Q this means that L(P, 1) = 0.

b) If a,=1thenL(P, 1)=1.
iv) If a,=a, =1, then

LPY =~ (227 +2)2,

|Z1|=&

a) If (a,>2ora,<1) and(a,>2ora,< 1), thenL(P,1)=0.
b) If a,=1and(a,>2ora,< 1)thenL(P, 1) =1.

c) If a,=1 and(a, >2 ora, < lthen L(P, 1) = 1.

d) If a, =1 anda, = 1then L(P, 1) = 2.

l11) If &, =a,=1and a, >1, then
®'0)=a+y=2227+72>2>, then

&7 %1 4 377 83
LPY) =~ LUl YA g7z,
(27]) |Z1|=4(Z4=¢, Zl ZZ
1

== (22722372 + 272Z27=*)dZ,dZ,
(271) ziazizz
)If (a,>20r a,<1) and(a,>2or a,< 1), then L(P, 1) = 0.
i) If a,, =1 and(a,, >2 or a,, < 1), then
] 2= -1 1 2
®'(Z)=Z27Z;", hencd (P =—— [Z>7dZ,

|zi=4

a) If (a,>2or a,<1) then®'(0) = Oand L(P, 1) =0.
b) If &, =1then L(P, 1) = 1.

i) If a,, =1 and(a,,>2 or a, < 1), then
®'(Z)=2>7Z;, hencd(P]) = i [z7dz,

‘Zl‘:fl

a) If (a,>2 ora,<1) thenL(P,1)=0.
b) If a,=1then L(P, 1) = 1.

AY
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of a polytope

iv) If a, =1and a,, =1 then

L(PY = [z +27),

|Z1=4

a) If (a,>2ora, <1 and(a,>2or a,< 1), then L(P, 1) =0.
b) If a, =1and(a,>2 ora,< 1), then L(P, 1) = 1.
c)If a,=1anda,=1then L(P, 1) =2.

1) If a, =a,=1and a, >1 then
P(Z2)=pL+y=2*%2>+7Z>7Z> , hence
L(PY=— LULTHEL 47 a7,

(278)" 2] |2, Z, 7,
= ﬁ | @z ez,
) If (a,>2ora,<1 and(a,>2 ora,< 1), then L(P, 1) = 0.

i) If a,, =1 and(a,,>2 ora,, < 1), then

®'(Z) =272, hencd (P)) = i [z7dz,
‘Zl‘:fl
a)lfa,>2ora,<1lthen®’(0)= Q this means that L(P, 1) = 0.
b) If &, =1then L(P, 1) = 1.
i) If a, =1 and(a,,>2 ora,, < 1), then

CD’(Z) = Zlals_zzz‘l, henCEL(P,]_) = i '[Zla13—2dzl
|z,/=&

a)lfa,>2or a,<1lthenL(P, 1) =0.

b) If a, =1then L(P, 1) = 1.
iv) If a, =a, =1 then
L(P]) = i [(Z22 +Z7)dz,
|z,/=&

a)lf (a,>2ora,<1) and(a,=2 or a, < 1, then L(P, 1) = 0.
b) If a,=1anda,>2 ora,< 1), then L(P, 1) = 1.

AA
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of a polytope

IV1) If a, =a,, =a,, =1 then
(_‘D'(Z) =q+ ﬂ + y — Zlauzzazl + Zlauzzazz + Zla1szzaz3

1 Zallzazl + Zalzzazz + Zalszazs
L(PY) =—— 1L Th L Th L g7 47,
(2”) |Zi|=¢1|Z5=¢> Zl 22
1

o | @2z 2 2
|Z1|=¢11Z5=¢>

) If (a,>2o0ra,<1), (a,>2o0ra,<1 and

1

(a,>2 or a, <l)then L(P, 1) =0.
i If a, =1, (a,>2o0ra,<1) anda,>2 ora,< 1)then

L(P)) =i_ [z2dz,
78 1Zi|=&
a) If (a,>2o0ra,<1),thenL(P, 1) =0.
b)If a, =1then L(P, 1) = 1.
iv)If a,,=1, (a,>2o0r a,<1) and(a,>2 ora,, < Dthen
1
L(PY) =— [Z*?dZ,
P2 le

a)lf (a,>2ora,<1 thenL(P,1)=0.

b) If &, =1 then L(P, 1) = 1.
v) If a, =a, =1land(a,,>2 or a,, < 1) then
LPD =1 [(z2+2z5?)dz,
a)lf (a,>2ora, <B:<:':1nd(a12 >2ora,< 1)thenL(P, 1) =0.
b) If a,=1and(a,>2ora,< thenL(P, 1)=1.
c)Ifa,=1and(a,>2ora,< 1)thenL(P, 1) = 1.

d)If a,=a,=1thenL(P, 1) = 2.

vi) If a,,=a,,=1and(a,,>2 ora, < 1)then
LPY=— [@+20)z,

‘Zl‘ =&

a)lf (a,>2ora,<1) and(a,>2ora,< l)then L(P, 1) =0.

A4
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of a polytope

b) If a,=1and(a,>2 ora,< I)then L(P, 1) = 1.

c)lf a,=1and(a,>2ora,< I)then L(P, 1) = 1.
d)If a,=a,=1thenL(P, 1) =2.
vii) If a,, =a,,=1and(a,,>2 ora, < 1) then

L(P) = 2i j(Zf‘ﬂ‘2 +Z272)dzZ,
z)|=¢,
a)lf (a,>2or a,<1) and(a,>2ora,< I)then L(P, 1) =0.
b) If a, =1and(a,>2 ora,< 1)then L(P, 1) = 1.
c)If a,=1and(a,>2ora,< I)thenL(P, 1) =1.
d)If a,=a,=1thenL(P, 1) = 2.
viii) If a,, =a, =a,, =1 then

i '[(Zlau‘2 + Zlalz‘2 + Zla13_2 )dz

L(PD) = 271
Zy=6;

1

a)lf (@,>2ora,<1),@,>2o0ra,<landa,=2 ora,< lthen
L(P, 1) =0.

b)If a,=1and(a,>2ora,< I)then L(P, 1) = 1.

c)lfa, =1, (,> 2ora, < l)and(a, >2 ora, <1 then L(P,1)=1

d)ifa,=1,(a,>2ora,<l)and(a,>2 ora,< 1) then L(P, 1)=1

e)lf a,=a,=1 and(a,>2ora,< Dthen L(P, 1) = 2.

f) If a,=a,=1and(a,>2ora,< DthenL(P, 1) =2.

g)If a,=a,=1 and(a, >2ora, < 1) then L(P, 1) = 2.

h)If a,=a,=4a,=1thenL(P, 1)=3.

The obtained results in the case of n=3 are mkladethe number of
integral points for the original polytope and thaoging polytope are the
same as the case when n=2.
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of a polytope
The general caseis:
a, &, . . a4,
If A=| . . Whereaji, I,]=1...,n
a, a, . . &,

are positive integers and t=t,= (1...1). For the polytope
P={XO0O": AX <h}.
Our obtained results are, The number of integral pointsis:
1. L(P,1)=0
This will hold if R or any row of the matrix A has an element
a,>2 i=1...,n, whereR, is the nth row of the matrix A, and the
number of integral points does not change when:
a) Interchanging any two columns (rows).
b) Summing two columns (rows).
c) the matrix A is transposed, the condition on Agajs> arid
a, 21 I, ] =1...,n.
2. L(P,1)=1
When R, or any row of the matrix A has an element
a.>2 i=1...,n, whereR, is the nth row of the matrix A, and the

number of integral points does not change when:
a) Interchanging any two columns (rows).
But the number of integral points is change if:
b) Multiplying by a constant c>0.
¢) Summing two columns (rows).

d) The matrix A is transposed, the conditionsA that are
needed to get the same number of integral poiets ar

1) The elements of the fireiv are one.

i) There exist two rows andlumns and where their
elements are one.

1)



	Microsoft Word - 1.pdf
	Microsoft Word - 2.pdf
	Microsoft Word - abstract.pdf
	Microsoft Word - ackn.pdf
	Microsoft Word - aendex.pdf
	Microsoft Word - certi&anw.pdf
	Microsoft Word - conten&list.pdf
	Microsoft Word - dedk.pdf
	Microsoft Word - introduction.pdf
	Microsoft Word - referenceno..pdf
	Microsoft Word - ch1.pdf
	Microsoft Word - ch2.pdf
	Microsoft Word - chater3.pdf



