DESIGN STUDY OF A SMALL HYDROELECTRIC SYSTEM

A Thesis

Submitted to the College of Engineering of

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

By Sinan Samir Tawfiq (B.Sc. 2001)

Ramadan	1425
October	2004

We certify that we have read this dissertation entitled "**Design Study of a Small Hydroelectric System**", and as an examining committee, examined the student in its contents and that in our opinion it meets the standard of a dissertation for the degree of Master of Science in Mechanical Engineering.

Signature:	Signature:
Name: Dr. Khalil E. Al-Jumaily	Name:
(Supervisor)	(Chairman)
Date: / /2004	Date: / /2004

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files. Date: / /2004 Date: / /2004

Approved by the Dean of the College of Engineering:

Signature: Name: Prof. Dr. Fawzi M. Al-Naima (Dean of Engineering College) Date: / /2004

Abstract

The design and construction of a small hydroelectric generator power by undershot waterwheel; the effect of the number of blades on the waterwheel velocity, the effect of the waterwheel radius on the waterwheel velocity, the effect of the water mass flow rate on the system efficiencies, the total head, and the output power, and the effect of the channel cross sectional area also on the system efficiencies, the total head, and the output power.

The maximum overall efficiency was $\eta = 6.69$ %, the total head was h = 15.45 cm and the output power was $P_g = 0.18$ W these values found at number of blades N = 36, waterwheel radius r = 22 cm. This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

No watermark on the output documents.
 Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

plottee in figures 5.22 to 5.27

The performance curves may be used for larger waterwheels using similarity laws to predict the performance of the larger waterwheels, which is the aim of this thesis.

Content

ABSTRACT	Ι	
CONTENT	II	
NOMENCLATURE	V	
CHAPTER ONE		
INTRODUCTION	1	
1.1 HYDROPOWER AND MICRO-HYDROPOWER	1	
1.2 THE FUTURE FOR MICRO-HYDRO POWER	4	
1.3 OBJECTIVE OF THE WORK	4	
CHAPTER TWO		
LITRETURE REVIEW	6	
2.1 BACKGROUND AND PREVIOUS WORK		

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:	
1.No watermark on the output documents.	
2.Can operate scanned PDF files via OCR. CPOWE Remove Waterr	nark Now
3.No page quantity limitations for converted PDF files.	19
3.1.1 WATER SUPPLY NETWORK	
3.1.2 WATERWHEEL DESIGN AND CONSTRUCTION	21
3.1.3 COMPARISON BETWEEN WATERWHEELS	28
AND TURBINES	
3.1.4 TURBINES	30
3.1.5 GENERATORS AND POWER CONVERSION	32
3.2 HYDRAULIC CHANNEL	34
3.2.1 LEVELLING THE FLOW CHANNEL	34
3.2.2 USE OF THE GRAVIMETRIC TANK	35
3.2.3 THEORY OF CHANNEL FLOW	35
3.2.4 PROPERTIES OF THE CHANNEL CROSS-SECTION	36
3.2.5 VOLUME FLOW, MASS FLOW, KINETIC ENERGY	37

AND MOMENTUM FLOW

3.2.6 FROUDE NUMBER, REYNOLDS NUMBER	38
3.2.7 TOTAL HEAD AND SPECIFIC ENERGY;	38
FRICTION SLOPE	
3.2.8 NON-UNIFORM FLOW; NORMAL DEPTH,	39
CRITICAL DEPTH	
3.2.9 VARIATION OF SPECIFIC ENERGY WITH	40
DEPTH OF FLOW	
3.3 THE WATERWHEEL	41
3.4 THE GENERATOR	42

CHAPTER FOUR

BASIC PRINCIPLES AND POWER (CALCULATIONS	
This is a watermark for the trial version	, ^s register to get the	full one!
1 No watermark on the output documents		56
2.Can operate scanned PDF files via OCR.3.No page quantity limitations for converted PDF files.	Remove Watermar	k Now
4.3.2 FLOW INTO AND OUT OF A CONT	ROL	
VOLUME		
4.3.3 DERIVATION OF THE CONTROL-	VOLUME	59
EQUATION		
4.4 MOMENTUM PRINCIPLE		62
4.5 DERIVATION OF BASIC MOMENTU	JM	62
EQUATION		
4.6 POWER CALCULATIONS		63
4.7 SERIES OF VANES MOUNTED ON A	WHEEL	69
4.8 LOSSES AND EFFICIENCIES		71

CHAPTER FIVE

	RESULTS AND DISCUSSION	77
	5.1 EXPERIMENTAL WORK	77
	5.2 THE EFFECT OF INCREASING BLADES	81
	5.3 THE EFFECT OF INCREASING THE RADIUS	81
	5.4 THE EFFECT OF MASS FLOW RATE	82
	5.5 THE EFFECT OF CROSS SECTIONAL AREA	83
CHAPTER SIX		
	CONCLUSIONS AND RECOMMENDATIONS	101
	6.1 CONCLUSIONS	101
	6.2 RECOMMENDATIONS FOR FUTURE WORK	102
	REFERENCES	103
	Appendix A	A-1

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Nomenclature

Symbol	Description	Dimension
Α	Cross sectional area of water.	cm^2
\mathbf{A}_{a}	Actual cross sectional area.	cm^2
\mathbf{A}_b	Cross sectional area loss from bellow.	cm^2
\mathbf{A}_{s}	Cross sectional area loss from sides.	cm^2
a	Sloping height from the gate to the wheel.	cm
В	Breadth of channel.	cm
с	Velocity of an infinitesimal gravity wave.	m/s
D	Diameter of the waterwheel.	m
D	Depth of channel.	cm
Е	Specific energy.	J
F	Force of water.	Ν
Fr	Froude number.	—
g	Gravitational acceleration	m/s^2
	Total head.	

This is a watermark for the trial version, register to get the full one!

Benefits for registered users loss in wheel.	
1.No watermark on the output documents.	00000
2.Can operate scanned PDF files via OCR.	Remove Watermark Now
3.No page quantity limitations for converted PDF files.	
Kinetic Energy.	
L Length of channel.	
m Mass of water	
	кş
N Number of blades.	—
n Number of revolutions per min	uite rnm

11	Number of revolutions per minute.	ipin
Р	Wetted perimeter.	cm
P.E.	Potential Energy.	J
P_a	Actual power.	W
$P_{\rm c}$	Power loss in channel.	W
$P_{\rm e}$	Power loss in generator (Electric loss).	W
P_{g}	Power output from generator.	W
$\tilde{P_1}$	Power loss due to leakage.	W
$P_{\rm m}$	Mechanical power losses.	W
$P_{P.E.}$	Total waterpower.	W
$P_{\rm s}$	Power output from shaft.	W
$P_{\rm t}$	Power loss due to transition.	W
P_{w}	Power loss due to wheel.	W
Q	Volume flow rate (discharge).	m^3/s

Hydraulic radius.	cm
Reynolds number.	
Wheel radius.	cm
Active radius.	cm
Channel bed slope.	
Friction slope.	
Surface width.	cm
Time.	S
Tangential velocity of wheel.	m/s
Velocity of water.	m/s
Velocity of water before the sluice gate.	m/s
Velocity of water after the sluice gate.	m/s
Voltage.	V
Height from channel bed to the free surface.	cm
Normal depth.	cm
Critical depth.	cm
Height of channel bed above datum.	cm
	 Hydraulic radius. Reynolds number. Wheel radius. Active radius. Active radius. Channel bed slope. Friction slope. Surface width. Time. Tangential velocity of wheel. Velocity of water. Velocity of water. Velocity of water before the sluice gate. Velocity of water after the sluice gate. Voltage. Height from channel bed to the free surface. Normal depth. Critical depth. Height of channel bed above datum.

Greek Symbols

This is a watermark for the trial version, register to get the full one!

η Overall efficiency.	
Benefits for registered users: efficiency.	
1.No watermark on the output documents.	
2.Can operate scanned PDF files via OCR. CV	Remove Watermark Now
3.No page quantity limitations for converted PDF files.	
$\eta_{\rm c}$ Volumetric efficiency.	

W			

θ	Sluice gate angle.	Degree
ρ	Density of water.	kg/m ³
-	Other Symbols	-
<i>₿</i>	Net flow rate of an extensive property.	kg/s
ṁ	Total mass flow rate.	kg/s
\dot{m}_a	Actual mass flow rate.	kg/s
$\dot{m}_{\!\scriptscriptstyle b}$	Mass flow rate losses from below.	kg/s
\dot{m}_1	Total loss of mass flow rate.	kg/s
ṁ.	Mass flow rate losses from sides.	kg/s

Abstract

The design and construction of a small hydroelectric system is a model of an undershot waterwheel turbine which was placed in the hydraulic channel and have a sluice gate as a small dam.

The design of the waterwheel had the ability to change the number of its blades and the blades may be taller or shorter this gives bigger or smaller waterwheel diameter.

The increasing of the water mass flow rate (0.341-1.765 kg/s) at fixed channel cross sectional area (12.75 cm^2) of the undershot waterwheel generated power system shows increased in the following the

This is a watermark for the trial version, register to get the full one!

 Benefits for registered users:
 Was decreased (1002)

 1.No watermark on the output documents.
 9

 2.Can operate scanned PDF files via OCR.
 Red

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

The increasing of the channel cross sectional area (11.25-17.25

cm²) at fixed water mass flow rate (1.765 kg/s) of the undershot

waterwheel generated power system shows decreased in the following the generator output power (0.201-0.067 Watt), the mechanical efficiency (100%-26.7%) and the electrical efficiency (99.4%-94.4%) and increased in the following the channel efficiency (8.6%-100%), volumetric efficiency (70.9%-75.5%), and wheel efficiency (85.7%-91.3%). The transitional efficiency was fixed at 97.9%.

The maximum overall efficiency of the small generated power system was 6.69 %, the total head was 15.45 cm and the output power was 0.18 W, these values obtained at number of blades 36, number of revolutions per minute 57 rpm, waterwheel radius 22 cm, maximum

water mass flow rate 1.765 kg/s, and channel cross sectional area 12.75 cm^2 .

The theoretical extrapolation of the waterwheel diameter (0.44-2 m) and the water head (0.1554-5 m) gives that the output generated power was increased (0.18-675 Watt).

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Contents

Abstract	Ι
Contents	III
Nomenclature	V
Chapter One: - Introduction	1
1.1 Hydropower and Micro-Hydropower	1
1.2 The Future for Micro-Hydropower	4
Chapter Two: - Literature Review	6
2.1 Backgrounds	6
2.2 Literature review	7
2.3 Objective of the work	15
Chapter Three: - The Design Study and Construction	

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:	
1.No watermark on the output documents.	20
2.Can operate scanned PDF files via OCR. Remove Water	nark Now
3.No page quantity limitations for converted PDF files.	21
3.3 The Waterwheel	
3.4 The Generator	22
Chapter Four: - Flow Principles and Power Calculations	26
4.1 Flows through Open Channels	26
4.2 Classification of Flow	26
4.3 Derivation of the Control-Volume Equation	29
4.4 Momentum Principle	32
4.5 Derivation of Basic Momentum Equation	32
4.6 Power Calculations	33
4.7 Series of Vanes Mounted On a Wheel	39
4.8 Losses and Efficiencies	41

4.9 Similarity Laws	46
Chapter Five: - Results and Discussion	47
5.1 Experimental Work	47
5.2 The Effect of Increasing Blades	50
5.3 The Effect of Increasing the Radius	50
5.4 The Effect of Mass Flow Rate	50
5.5 The Effect of the Cross Sectional Area	51
Chapter Six: -Conclusions and Recommendations	65
6.1 Conclusions	65
6.2 Recommendations for Future Work	66
References	67
	A 4

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Nomenclature

Symbol	Description	Dimension
Α	Cross sectional area of water.	m^2
a	Sloping height from the gate to the wheel.	m
В	Breadth of channel.	m
D	Diameter of the waterwheel.	m
D	Depth of channel.	m
\mathbf{F}	Force of water.	Ν
g	Gravitational acceleration.	m/s^2
h	Total head.	m
Ι	Current.	Amp.
\mathbf{K}_h	Head coefficient.	
K_{Pg}	Power coefficient.	
K _Q	Flow coefficient.	—
Ĺ	Length of channel	m
	Mass of water.	

Number of blades

This is a watermark for the trial version, register to get the full one!

Power

Benefits for registered usersne flow rate (discharge)

1.No watermark on	the output documents.		
2.Can operate scar	nned PDF files via OCR.	Remove Wa	atermark Now
3.No page quantity	limitations for converted PDF files.		122/C
V	Velocity of water		
	Velocity of water before the sl	uice gate	m/s
, V	Velocity of water after the slui	ce gate.	m/s
V	Voltage.	8	V
У	Height from channel bed to the	e free surface.	m
-	Greek Symbo	ols	
ϕ	Impedance factor (load factor)		—
β	Intensive property.		—
η	Overall efficiency.		—
heta	Sluice gate angle.		Degree
ρ	Density of water.		kg/m ³
	Other Symbo	ols	
B	Net flow rate of an extensive p	roperty.	kg/s
'n	Total mass flow rate.		kg/s

Subscripts

a	Actual
b	Loss from bellow
S	Loss from sides
c	Channel
f	Fluid
W	Wheel
h	Head
Pg	Power
Q	Flow
e	Electrical
g	Generator
1	Leakage
m	Mechanical
sh	Shaft
t	Transitional
	Volumetric

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Chapter Two Literature Review

2.1 Backgrounds

The first description of a waterwheel that can be definitely identified as vertical is from Vitruvius, an engineer of the Augustan Age (31 BC - 14 AD), who composed a 10-volume treatise on all aspects of Roman engineering. Vitruvius described an undershot wheel, but remarked that it was among the "machines which is rarely employed." One of the reasons hypothesized for its sparse application was the availability of cheap slave labor, which prevented the Romans from

This is a watermark for the trial version, register to get the full one

Benefits for registered users. Arles in southern France Parts for registered users. 1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

western Tunisia, where a combination bridge/dam spanned the Medjerda

River. Three horizontal waterwheels, side-by-side, were set into the bridge abutments. The other mill was in Palestine on a dam on the Crocodile River near ancient Caesarea, halfway to Haifa. Here, there were 2 horizontal wheels, each at the bottom of a penstock. According to Hodges (p. 111): "Neither installation has been fully studied, but together they remain the only known parallels to Barbegal." [8]

However, it was much later, in 1882, the first hydroelectric facility was built in the United States, Appleton, Wisconsin, and produced direct current (DC) for local industry (provided 12.5 kilowatts to light two paper mills and a house). This plant made use of a fast flowing river as its

source. Some years later, dams were constructed to create artificial water storage areas at the most convenient locations. These dams also controlled the water flow rate to the power station turbines.

Originally, hydroelectric power stations were of a small size and were set up at waterfalls in the vicinity of towns because it was not possible at that time, to transmit electric energy over great distances. The main reason why there has been large-scale use of hydroelectric power is because it can now be transmitted inexpensively over hundreds of kilometers to where it is required, making hydropower economically viable. [7]

2.2 Literature Review

Rachel Alter [6] constructed a classic overshot waterwheel with a

This is a watermark for the trial version, register to get the full one!

on the sides, and a wooden base. This waterwheel was cons

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

he purpose of the experimentation and design was achieved.

Professor Carl R. Weidner [9] (Fitz Water Wheel Company) tested a ten-foot diameter Fitz steel overshot [John Fitz, inventor and manufacturer. 1847-1914] installed in the hydraulic laboratory of the University of Wisconsin.

A range of four hundred per cent in variation of the amount of water supplied to this waterwheel showed a difference of only 5% in the efficiency of the wheel. The article in the "Engineering News" of January 2, 1913, by prof. Carl R. Weidner, instructor in hydraulic engineering at the University of Wisconsin. The published test reports of the University of Wisconsin show the ten foot diameter Fitz wheel, mounted on out bronze lined bearings, yielded an efficiency of 89%, on the waterwheel shaft.

Later tests of this same wheel, made under the same supervision but with the mounting changed the-aligning ball bearings, showed an efficiency of 92%.

Mick Harris [10] an Australian lived more than ten kilometers away from the nearest connection to the electricity grid. The oldest and most simple technologies (the traditional waterwheel) would be perfect to use. All-steel, welded waterwheel included very basic components: mild steel sheet, square steel tube, two bearings for the wheel to pivot on, angle iron for a pulley and a V belt.

This is a watermark for the trial version, register to get the full one

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files. It

Remove Watermark Now

Wilderness Area, Australia) have their electricity generated by a 52 kW Pelton P250/335 single-jet turbine from Tamar Designs, coupled to a 90kVA generator Fig. 2.1. Before installation, the alternatives to supply the lodge were either a diesel generator – with the consequent noise and air pollution – or clearing native forest to make way for a transmission line. Since 1991, the hydro turbine has provided all the electricity requirements of the 90-bed lodge. The system also provided water for the site.

Lemon Thyme Lodge is a successful demonstration of clean energy production catering for modern remote tourist accommodation.

The hydro installation meets all the electricity demand of the fully equipped tourist lodge. Log fires provide additional heating and the water heater is boosted by gas. The system has performed reliably, with an average output of 48 kW.

Reliability and quality of supply is of great importance to Lemon Thyme Lodge. To be commercially viable as a modern, wilderness-based tourist facility, its power system needs to meet the comfort requirements of tourists in an environmentally sensitive way. The hydro system fulfils the needs of the Lodge cost-effectively.

CADDET [12] (Mae Ya) small-scale hydropower plant in Thailand is owned and operated by the Provincial Electricity Authority

(PEA) of Thailand. The project has been fully operational since 1991 and

This is a watermark for the trial version, register to get the full one

he hydropower plant is situated in a National l

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

The Mae Ya hydro-power plant is sited in a National Park, on the

Mae Ya River in the north west of Thailand. The project started in 1985 and was commissioned in 1989.

Mae Ya has a high head of 100 m. A 3 m high weir encloses a small stilling pond. From the stilling pond, water is fed into an open desander and then to the headrace, a concrete box section about 1,000 m long. The penstock is an exposed steel pipe, 900 mm diameter and 370 m long See Fig. 2.2.

The turbine house situated 100 m below and adjacent to the river, is a closed structure with ventilation grills at the eaves. It houses the twinjet Turgo turbine rated at 1.15 MW Fig. 2.2*a*. The generator is connected to the main district grid by means of power lines mounted on overhead poles. The station is not required to operate independently, unlike those stations at Mae Pai and Mae Thoei.

Mae Ya has been performing with an average load factor of 55%, which is above the design load. The plant's power generation and maintenance levels are close to target, with a transformer failure resulted in some times in 1994.

By the end of the dry season, the installation was operating at 50 kW output power compared to the full flow design power of 1 MW. The Gilkes Turgo turbine has a good efficiency curve against reduced flow.

Joseph Hartvigsen [13] built a system using an ES&D 10 cm plastic pelton runner, which he purchased, locally. The system is on the family farm in the mountains of southeastern Idaho.

This is a watermark for the trial version, register to get the full one

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR.

Remove Watermark Now

3.No page quantity limitations for converted PDF files.ct

nounted on a ~ 0.5 m pedestal (shaft horizontal) to allow room for a

nozzle above and below. The shaft extended through a Plexiglas wall to keep water off the motor. A pressure relief valve and pressure gauge were on the top of the cross. From the two sides the water goes out, up on one side, down on the other, out toward the generator then turns to the tangent of the pelton runner. Most of the joints were glued but there were enough threaded joints to give 3 axis of motion to align them. He put in the generator, nozzles, pelton, etc. And started it up he got 15-16A.

DOST [14] project was demonstrated at Dulao, Malicbong, and Abra from August 1995 to June 1997(In Philippines). The piloting of community-based micro-hydro power generation technology was successfully established and now operational in Barangay Dulao and Barangay Gacab both in the municipality of Malibcong, Abra in the year 1997 and 2000, respectively. The two-hydropower systems have similar operation schemes, but differ in the controlling mechanisms.

The plant now provides electricity to forty-four (44) households, allowing every house with 40 watts of power for lighting during low flows and maximum of 160 watts during peak flows. In addition, each house has a convenience outlet for radio and stereo plugging, and battery charging. The village was also provided with five (5) streetlights at 100watt bulb each. Likewise, the church was installed with two 20-watt fluorescent lamps while the town hall has two 100-watt incandescent bulbs and a convenience outlet.

Micro-hydro power in Laos [15] Fig. 2.3 in the northern

This is a watermark for the trial version, register to get the full one!

resting example of an appropriate technolog

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

on a bamboo draft tube. The generator mounted at the upper end of the

shaft is covered to protect it from the elements.

Numerous examples of this technology can be found in Muang Samphanh. Along the Nam Likna, just before it enters the Nam Ou, individual villagers have constructed canals in the streambed to direct a portion of the flow a short distance. The water then flows into one or more short channels each constructed of three wooden planks. Figure 2.3b shows three such channels in the foreground and more in the background.

Each channel has a hole at the end of the bottom board while the two side planks are joined by a bucket with its bottom removed and split along it side. This hole leads to a bamboo draft tube into which the end of the turbine/generator unit is inserted Fig. 2.3c. Water drops about 1 meter and generates an estimated output on the order of 50 W (with greater output for larger drops).

The permanent magnet generator, which is located at the top of the shaft from the propeller turbine, generates 220 V of alternating current.

Two small gauge wires draped over thin bamboo poles and trees and hanging from homes and other structures along the way transmit the electricity for each turbine/generator to the home of the owner of that unit. There, electricity is used for lighting, to power radios and fans, and in a few cases, to power satellite dishes and televisions.

CADDET [16] small hydropower project in southern Sweden

This is a watermark for the trial version, register to get the full one

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.v

Remove Watermark Now

Kraft Turbine AB, was chosen to carry out the project.

To minimize the hydro power plant's impact on the environment, neither hydraulic oils nor grease are used. Instead, food-quality lubricants, which will not damage the environment in the event of leakage, are used in the plant.

The turbine is a 700 mm semi-Kaplan model with flexible turbine blades. When power is not required, the blades are adjusted to a minimum resistance and the turbine runs at idling speed. Water is allowed to flow through at 10–12% volume and the system never runs dry, which is important in maintaining biodiversity and because the river is a spawning site for salmon.

Mark Richard Allan [17] described a method for modifying predictive models of pump-as-turbine (PAT) performance in conjunction with complete pump characteristics diagrams. This method is applied to predict the performance of a water reservoir feed pump as a turbine, and the potential arising for pumped energy storage within the water network is examined.

Given an estimated output power of 660 kW, the simplest method of pumped storage would be to pump water uphill at night and release it during the day. As an absolute limit over 24 hours, pumping for $11\frac{1}{2}$ hours with one 78% efficient 660 *l*/s pump and recovering energy from the same 8100 l of water over $12\frac{1}{2}$ hours with one 82% efficient 660 kW

This is a watermark for the trial version, register to get the full one

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files. et

Remove Watermark Now

over 80 liters/sec in winter. It rarely fell below 5 liters/sec between October and April.

The penstock was made up of 4" diameter PVC tubing. It was delivered in 6-meter lengths and thus required many joints to be made. He used solvent weld connectors because they were cheaper than the alternatives. The penstock was buried for about half its length adjacent to the house but was fixed on the surface for the remaining distance, via a system of brackets and stone supports.

A concrete base was made for the turbine into which a removable frame was mounted to which the turbine was bolted. To connect up the turbine to the battery required about 150 meters of 6mm cable. Six mm cable was required to prevent too much voltage drop along the length of the cable and hence loss of power.

The turbine started turning, the output meter read 10 amps - *i.e.* 250 watts output.

Paul Cunningham [19] wrote about a renewable energy dealer Harold Lunner of British Columbia, Canada, had recently completed an installation of a Stream Engine. The hydraulic system used was the pelton wheel. The head vertical drop at this site was approximately eight meters.

The system, with two 22 mm nozzles, uses about 10 l/s and was fed by a 150 mm pipe, 200 m long. Output from the machine was 8.5 amperes in a nominal 48V system; this actually operated at 54V at this

current level

This is a watermark for the trial version, register to get the full one!

5% was achieved

Benefits for registered users: <u>Studied the</u>
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

course enough for the needs and depending on the availability of

resources. Water flow should be controlled for this purpose. Small hydroelectric stations could be established along with the dams to use water and electric power for the development of rural areas.

A computer program was set to study water needs and resources, dams design and the suitable hydroelectric generation stations built up on seasonal water valleys. Another program was set up for controlling water and operating these stations for maximal exploitation of water.

These were more than 10000 valleys distributed in the Arab world with water volume of 10^{12} m³. Unused valleys can be categorized into:

1. Large seasonal water valleys: water flows in it in the rate of 70-100% and transfer more than 10^8 m^3 .

- 2. Medium seasonal water valleys: water flows in it 40-70% of the day of year. The water transfers through 10^6 to less 10^8 m³.
- 3. Small seasonal water valleys: water flows at < 40% days of the year and the water transfer through it < 10^7 m³.

All the above were suitable for micro hydropower produced electricity from 5 to 30 kW at rate of flow $0.01 \text{ m}^3/\text{s}$ with head from less than 1 m of water to less than 100 m.

Majed S. [21] studied the possibility of exploiting the Tigris, the Euphrates and their branches to produce hydroelectric power. The estimated collected power was 100 TWh and the value of used electricity was 90 TWh [22] as shown in below.

This	Local height is a waterm	ark for the tria	Design power al version, reg	ister to get the	e full one!
D (1)	(1) 24-27 m		4×500 tW		
Benefit	s for registered us	sers:		856000 LWh	
1.No w	atermark on the o	utput documents.			
2.Can	operate scanned I	PDF files via OCR.	6×200 Rem	ove Waterma	ark Now
3.No pa	age quantity limita	tions for converted F	PDF files.	4.0000000000000000000000000000000000000	
	Total		6200 kW	24200000 kWh	

The summarized parameters of the micro hydropower systems of the literature review are shown in table 2.1.

2.3 Objective of the Work

The aim of this project was to build a model for generate power from water by constructing undershot waterwheel turbine and then extrapolate this model theoretically to predict the performance of the undershot waterwheel turbine prototypes. Calculate the efficiencies of the waterwheel and the effect of number of blades on the waterwheel velocity.

ctric systems	bine Generator Cost Ref.	et turbine 90 kVA generator A\$ 131,600 [11] Tamar electric shunt-load Rty. Ltd. governor	twin-jetInduction with cage£ 1000/kW[12]L.15 MWrotor. Provides£1000/kW[12]three-phase, 50 Hzoutput of 6,600 V at113 A, running at757 rpm.	er turbine 220 V – [15]	aplan with Belt-driven 380 – [16] le-pitch V/50 Hz ades Asynchronous	ls turbine la turbine	al Turgo Altermotor 200 W C\$ 1360 [18] bine	e turbine 459 W – [19]
electric :	Turbine	gle-jet turbii rom Tamar igns Rty. Lt	lkes twin-je go 1.15 MN	peller turbir	i-Kaplan w ıriable-pitch blades	np as turbin erformance efficiency 80% 83%	artical Turgo turbine	pulse turbin

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Table 2.1	Type	Dam	Run-of-rivel	I	Open flow	Water supply network	pipes	Pipe
	Head	Gross head 208 m	100 m with surge tower	lm	2.2 m	1 1 1	8/170 m	8 m
	Capacity	52 kW	1 MW	50 W	25-33 kW	Output 750 kW Grid modified 685 kW AF and water shower 650	200 W	<1 kW

Figure 2.1: Diagram of the micro hydro system at Lemonthyme

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

 Aver
 Headpoord
 Cover pressure pipe
 Surge pipe

 Image: Surge pipe
 High pressure pipeline
 High pressure pipeline

 Image: Surge pipe
 Image: Surge pipeline
 Image: Surge pipeline

 Image: Surge pipeline
 Image: Surge pipeline
 Image: Surge pipeline

 Image: Surge pipeline
 Image: Surge pipeline
 Image: Surge pipeline

 Image: Surge pipeline
 Image: Surge pipeline
 Image: Surge pipeline

 Image: Surge pipeline
 Image: Surge pipeline
 Image: Surge pipeline

 Image: Surge pipeline
 Image: Surge pipeline
 Image: Surge pipeline

Figure 2.2: Schematic diagram of a hydro-power station. [12]

Figure 2.2a: The twin-jet Turgo turbine [12]

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 2.3: Micro-hydro power project in Laos. [15]

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 2.4: Östra Kvarn micro hydropower project. [16]

Chapter One Introduction

1.1 Hydropower and Micro-Hydropower

The increasing demand of electrical power causes increasing in the fuel cost and as knowing that the sources of crude oil will finish after one or two hundred years, so the world countries turn to some alternative energy sources like water energy (hydropower), solar energy, thermal energy, wind energy and etc. to generate electrical power.

As the heat of solar radiation converts water to water vapor, or steam, which rises in the atmosphere to form clouds. When this water

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: energy when the store
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

A hydroelectric power plant uses a renewable source of energy that

does not pollute the environment. However, the construction of dams to enable hydroelectric generation may cause significant environmental damage. Also, water used to drive the power plant could have other uses at other times, for example for irrigation or town water supply. [1]

There are three types of hydropower systems, the first type is the large-scale hydropower systems which generate more than 30 megawatts (MW), the second one is the small-scale hydropower systems which generates between 0.01 to 30 megawatts (MW) of electricity, the third one is the micro-hydro system that generate up to 100 kilowatts (kW) of electricity. [2]

Micro hydropower is probably the least common of the other used renewable energy sources, but it has the potential to produce the most power, more reliably than solar or wind power if the right sit is used. This means having access to a river or stream that has high enough flow to produce power for a good part of the year.

Micro-hydro power was one of the earliest of the small-scale renewable energy technologies to be developed, and is still an important source of energy today.

The amount of energy produced depends on water pressure (measured in terms of "head" or the vertical distance from the water takeoff point down to the turbine), and volume, (measured as "flow" in cubic

This is a watermark for the trial version, register to get the full one

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

Remove Watermark Now

centuries as sources of power. The first information on them dates back to approximately 400 B.C., in a poem by Antipater, a Greek author. He wrote about the use of waterwheels in grinding grain, but by the time of the Industrial Revolution, they were used for driving anything from sawmills to forge bellows to textile mills.

Many types of waterwheels exist, these all depend on where water comes in contact with the paddles. In each one, the paddles are spaced evenly around the center, but that is usually where similarity ends. One of the more common types of waterwheels is the undershot waterwheel Fig. 1.1. This is the kind that is always seen positioned over a stream. Due to where the water comes in contact with the paddles, the paddles are usually slightly curved. This allows the paddles to cup the water for as long as possible while allowing it to fall away with relatively no velocity. Unfortunately, due to the small amount of time that the water is in contact with the paddles, it is the least efficient of all the types of waterwheels. The other types of waterwheels come under the main type called an overshot waterwheel. The traditional overshot waterwheel Fig 1.1 has water striking the top of the waterwheel to be carried down to the bottom and drop. It usually has sharply bent paddles to exploit the energy of the running water to the fullest. Another type of overshot waterwheel is the breast waterwheel fig. 1.1. On this waterwheel, the water hits the paddles halfway down the side of the waterwheel. Some say that this is the most

This is a watermark for the trial version, register to get the full one

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

Remove Watermark Now

choice of the waterwheel to be use depends on the surrounding land.

The type of waterwheel used is not the only factor in determining the efficiency of the waterwheel. The materials also contribute to how well the waterwheel harnesses the energy of the water. It was John Smeaton in 1759 that first started using cast-iron to make the wheel. Two years later, he found that making a completely cast-iron waterwheel almost tripled the efficiency of the undershot waterwheel. This ended the use of wood as the only component in waterwheels. From then on, waterwheels used in industry were made completely out of cast-iron. [6]

Waterwheels which were made from local trees are been used in irrigation and grain grinding and would have been located on the banks of the river Euphrates especially where the river is deep such as Ana, Hadetha, Heet and Al-Baghdady.

These wooden waterwheels could be used to generate electricity after certain improvements.

1.2 The Future of Micro-Hydropower

As a cheap, renewable source of energy with negligible environmental impacts, micro-hydro power has an important role to play in future energy supply scenarios, particularly in developing countries. It is an attractive alternative to diesel systems in rural and remote areas of developing countries as a means of achieving rural electrification. [7]

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

igure 1.1: The Undershot, Overshot, and

- Benefits for registered users: wh
- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 1.2: A Model of a Pitch-Back Waterwheel. [6]

Chapter Three

The Design Study and Construction Procedure of the Small (Micro) Hydroelectric Power System

3.1 Introduction

The hydro-power plant specifically designed to satisfy local environmental constraints. The micro-hydroelectric power system consist the following design parts:

1) Water supply network 2) Waterwheel/Turbine 3) Generator

The layout of the general micro hydroelectric system is shown in Fig. 3.1

This is a watermark for the trial version, register to get the full one

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

between pivots at 4.313 m centers. Scale divided into m and 0.1 m

provided along channel length.

Pump capacity 2.2 *l*/s, pump motor power 150 W, sump tank capacity 180 *l*, and gravimetric tank capacity 60 *l*.

220/240V A.C. supply and earth, single phase, cold water supply point initial filling, and drain outlet for occasional draining.

The channel operates in a closed water circuit. Water pumped from the supply tank to the channel inlet through a precision control valve. The valve may be adjusted by a control rod from any location along the length of the channel. From the outlet the water drops into a gravimetric measuring tank and then returns to the supply tank.

3.2.1 Leveling the Flow Channel

Leveling the flow channel by set a small flow and seal off the end of the channel with the sealed exit gate provided. Fed the channel to a depth of approximately 100 mm. switches off the pump and shut off the supply valve. Adjust the vernier depth gauges. Place a vernier depth gauge at each end of the channel. When the water has settled completely, measure the depth at each end. Since the water surface is horizontal, any difference between the readings indicates that the channel is sloping. To raise or to lower the downstream end of the channel use the screw jack as required bringing it level. Successive corrections will be needed, until the vernier gauges agree on the depth, indicating that the channel is perfectly

level. Allow the water to settle completely after each movement of the

This is a watermark for the trial version, register to get the full one!

3.3 The Waterwheel Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR...... thickne

3.No page quantity limitations for converted PDF files.

connect the wheel with the shaft, at 12 cm diameter there are four holes

Remove Watermark Now

with 4 cm diameter for decreasing the moment of inertia.

There are grooves every 10 degrees made readily all over the circumference of the wheel to put the blades inside it. Each groove have a length of 10 cm and thickness of 0.4 cm, at 1 cm on the right of any groove there are 9 holes to connect the blades with the wheel so that to change the radius of the wheel (r), the distance between each hole is 1 cm Fig. 3.3 shows the details of the wheel.

The blades made of plastic with 12 cm length, 6.2 cm width and 0.4 cm thickness and there are two holes to connect the blades with the wheel see Fig. 3.4.

The shaft is made of iron with maximum length of 30 cm, minimum diameter of 1 cm, and maximum diameter of 1.2 cm see Fig. 3.5.

Other things like the stand, is made of two pipes and the base is made of two parts of iron. The assembly of the waterwheel is shown in Fig. 3.2.

There are two gears to connect between the waterwheel shaft and the generator shaft. The two gears have a gear ratio of 80:16. Attach the larger gear to the wheel shaft and the smaller gear to the generator shaft.

3.4 The Generator

The generator is a bicycle generator Fig. 3.6.

The spinning generator shaft causes magnet to pass by coils of wire

inside the generator. This produces electrical energy, or electricity. This

This is a watermark for the trial version, register to get the full one!

being connected to an appliance [e.g. lights

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Remove Watermark Now

Figure 3.2: The project constructed micro hydropower system components.

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. und

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

Figure 3.4: The plastic blade of the waterwheel.

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 3.6: The project constructed small hydroelectric power system.

Chapter Four

Flow Principles and Power Calculations

4.1 Flows through Open Channels

The flow in open channels is characterized by the existence of a free surface. The free surface may be defined as the surface of contact between the liquid and the overlying gaseous fluid, (*i.e.* liquid-gas interface), the interface being subjected to a constant pressure throughout its length and breadth. In most of the engineering problems of open channel flow the gaseous fluid happens to be air at local atmospheric

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR ettner be p. **Remove Watermark Now** 3.No page quantity limitations for converted PDF files.

as an open channel while at times of heavy rains, the sewer gets completely filled and runs full under pressure. The analysis of flow in the first case will involve principles of open channel flow whereas in the second case, principles of pipe flow will have to be employed.

4.2 Classification of Flow

Open channel flow can be classified into many types. The following classification is due to change in flow depth with respect to time and space [25].

(A) Classification With Respect To Time

Steady Flow. Flow in an open channel is said to be steady if the depth of flow at a section does not change during the time interval under consideration.

Unsteady Flow. If the flow depth at a section changes with time, the flow is known as unsteady.

(B) Classification With Respect To Space

Spatially Varied Flow. The steady flow in main channel, which is joined by lateral channels at different points along its length, is nonuniform. Such a flow where water flows into or out of the channel is known as spatially varied or discontinuous flow. The examples of this

type of flow are: flow in roadside gutters, flow in rivers having

This is a watermark for the trial version, register to get the full one!

around sewage-treatment tanks

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

whether or not depth remains constant with time. Uniform unsteady flow,

however, may not be possible in practice.

Non-uniform or Varied Flow. Flow is said to be non-uniform or varied if the depth of flow changes along the length of the channel. It may be either steady or unsteady. In most of the natural open channels the flow is generally non-uniform as indicated by the varying depths across and along the channel.

The non-uniform flow may further be classified as either gradually varied or rapidly varied. If the changes in depth of flow are gradual, the flow is said to be gradually varied. On the contrary, if the depth changes abruptly within a short distance it is known as rapidly varied flow. It is called a local phenomenon, as it occupies a short length of the channel. Examples of these types are the hydraulic drop and the hydraulic jump. The following chart shows the above-mentioned classification of flow.

4.3 Derivation of the Control-Volume Equation

To drive the basic control-volume equation, by first focusing on a *system* that moves through space; however, in the process of derivation, the control volume becomes significant.

The basic equation for the control-volume approach is derived by considering the rate of change of an extensive property of the *system* of fluid that is flowing through the control volume. In Fig. 4.3 the solid line identifies the control surface that encloses the control volume, and this same surface serves to define the system, a given mass of fluid, at time t. At time $t + \Delta t$, this system, or mass of fluid, is identified by the dashed line in Fig. 4.3, and it has moved with respect to the control surface; it has

moved downstream. The rate of change of the extensive property B of the

This is a watermark for the trial version, register to get the full one!

a derivative as

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

Figure 4.3: [26]

The mass of this system at time $t + \Delta t$ is the mass of the fluid within the control volume at time $t + \Delta t$ plus the mass that has moved out of the control volume in time Δt minus the mass of fluid that has moved into the control volume in time Δt see Fig. 4.3. Let us call ΔM_{out} the mass that has moved out of the control volume in time Δt and ΔM_{in} the mass that has moved into the control volume in time Δt . Likewise, let the extensive property of the system that has moved out of the control volume in time Δt be ΔB_{out} and let the extensive property of the system that has moved into the control volume in time Δt be ΔB_{in} . Thus the extensive property *B* of the system at time $t + \Delta t$ can be written $B_{cv.t + \Delta t} + \Delta B_{out} - \Delta B_{in}$, and the rate of change of the extensive property of the system with

respect to time can be expressed as

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

The first term on the right-hand side of Eq. (4.3) is simply the rate of change with respect to time of the extensive property *B* of the fluid inside the control volume at time *t*. That is,

$$\lim_{\Delta t \to 0} \left[\frac{B_{cv,t+\Delta t} - B_{cv,t}}{\Delta t} \right] = \frac{dB_{cv}}{dt} = \frac{d}{dt} \int_{cv} \beta \rho \, d \,\forall \tag{4.4}$$

Remove Watermark Now

The second term on the right-hand side of Eq. (4.3) can be analyzed in the following manner. The quantity $\Delta B_{out} - \Delta B_{in}$ represents the amount of the property *B* that has passed out of the control volume minus the amount of the property *B* that has passed into the control volume in time Δt . Thus, when this is divided by Δt and by taking the limit as $\Delta t \rightarrow 0$, obtain the rate of flow of *B* out of the control volume minus the rate of flow of *B* into the control volume or, in other words, the net rate of flow of *B* from the control volume.

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{cv} \beta \rho \, d\,\forall + \sum_{cs} \beta \rho \, \mathbf{V} \cdot \mathbf{A}$$
(4.5*a*)

The subscript on the summation sign of the second term on the right side of Eq. (4.5a) indicates that the summing flows across the entire control surface. In the derivation of Eq. (4.5a), it first considered the rate

of change of the extensive property B of the system, dB_{sys}/dt ; then it

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

conditions within the control volume and to flow across the control

surface for the first and second terms, respectively. In the derivation of Eq. (4.5*a*), one-dimensional flow was assumed; thus the rate of flow of *B* at each section was given as $\beta \rho \mathbf{V} \cdot \mathbf{A}$. However, when the velocity is variable across a section, the more general form for the rate of flow of the extensive property, thus the control-volume equation is given as

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{cv} \beta \rho \, d\,\forall + \int_{cs} \beta \rho \, \mathbf{V} \cdot d\mathbf{A}$$
(4.5b)

4.4 Momentum Principle

In solid mechanics the impulse, $\int \mathbf{F} dt$, applied to a body is equal to the change of momentum, $M\mathbf{V}_2 - M\mathbf{V}_1$, for a given time interval. The directly analogous situation for fluid flow is the case where liquid in a pipe is accelerated by means of a pressure differential along the pipe. Both these cases may be termed simple unsteady-state cases, for which the basic equation of linear momentum is applicable. At the non-uniform flow, which may be either steady or unsteady, the process becomes more complicated, and returns to the basic control-volume approach to develop the momentum equations.

4.5 Derivation of Basic Momentum Equation

This is a watermark for the trial version, register to get the full one!

change of momentum of the system with respect to time,

d(momentum)/dt. Momentum, by definition, is the product of mass and velocity. Therefore β , the corresponding intensive property (or momentum per unit mass) is simply the velocity **v** referenced to an inertial reference frame. The small **v** used here to distinguish it from the **V** in **V** • **A** of Eq. (4.5*a*). By substituting d(momentum)/dt for dB/dt and **v** for β in Eq. (4.5*b*) to obtain

$$\frac{d(momentum)}{dt} = \int_{cs} \mathbf{v}\rho \mathbf{V} \bullet d\mathbf{A} + \frac{d}{dt} \int_{cv} \mathbf{v}\rho \, d\forall \qquad (4.6)$$

According to Newton's second law, the summation of all external forces on a system is equal to the rate of change of momentum of that

system, $\Sigma \mathbf{F} = d(\text{momentum})/dt$. Thus when the appropriate substitution is made in Eq. (4.9), which gives

$$\sum \mathbf{F} = \int_{cs} \mathbf{v} \rho \mathbf{V} \bullet d\mathbf{A} + \frac{d}{dt} \int_{cv} \mathbf{v} \rho \, d \forall \qquad (4.7)$$

A simplified form of the momentum equation results when there is uniform velocity in the streams crossing the control surface. It is

$$\sum \mathbf{F} = \sum_{cs} \mathbf{v} \rho \mathbf{V} \bullet \mathbf{A} + \frac{d}{dt} \int_{cv} \mathbf{v} \rho \, d \forall \qquad (4.8)$$

For steady flow the second term is equal to zero and the equation becomes

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

installation the following chapter shows the basic laws of physics which

have to be obeyed if anyone want to generate any electricity from undershot waterwheels installation.

Hydropower is essentially based upon the fundamental laws of physics state that a "body" may contain energy (amongst other means) by virtue of its velocity (through "space") and/or by its relative height. These are termed Kinetic and Potential Energies respectively. Now the first law of thermodynamics states that "Energy cannot be created or destroyed, but its form may be changed". So knowing this one can already convert the "Kinetic Energy" of fast moving water in a stream, or the "Potential Energy" of a small pond high up a hillside to some other type of energy such as electricity. The potential energy of a body (water in this case) is proportional to its relative height and its mass, and may be expressed by the following equation:

$$P.E. = \mathbf{m} \times g \times h \text{ Joules (J)}$$

$$(4.10)$$

The kinetic energy of a body may be expressed by the following equation:

$$K.E. = \frac{1}{2} \times \mathbf{m} \times \mathbf{V}^2 \text{ Joules (J)}$$
(4.11)

So the previous equations can now be written as:

 $P.E. = \forall \times \rho \times g \times h \text{ Joules (J)}$ (4.12)

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: a simply the energy1.No watermark on the output documents.2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

$$P.E. = (\forall / \text{sec}) \times \rho \times g \times h \text{ Watt} (W)$$

$$(4.14)$$

Remove Watermark Now

$$K.E. = \frac{1}{2} \times ((\forall/\text{sec}) \times \rho) \times \mathbf{V}^2 \text{ Watt (W)}$$
(4.15)

The above equations actually gives power in Watts, which are much familiar with, and knowing that the volume of water passing through the blades of the waterwheel, of cross sectional area $\mathbf{A} \ m^2$, per second, is dependent upon the velocity of water, $\mathbf{V} \ m/s$. The mass flow rate $\dot{m} \ kg/s$ is dependent upon the velocity of water $\mathbf{V} \ m/s$, the cross sectional area $\mathbf{A} \ m^2$, and the density of water $\rho \ kg/m^3$.

The two energy equations become:

$$P.E. = \dot{m} \times g \times h \text{ Watts}$$
(4.16)

$$K.E. = \frac{1}{2}\dot{m} \times \mathbf{V}^2 \quad \text{Watts} \tag{4.17}$$

From these two equations one can exactly know how much energy is in the water at a point in time and space, and this indicate how much energy is available from the water, but in reality not all of this is available for conversion, e.g. in a turbine water needs some velocity on exit otherwise it would not get out of the turbine. Also for a turbine fed from a pipeline such as a pelton wheel, there will be losses in the pipeline giving a lower pressure (than that provided by static head alone) at nozzle the

This is a watermark for the trial version, register to get the full one!

50% of the initial energy by the time that generate

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. // or 103.No page quantity limitations for converted PDF files.

Determining Mass Flow Rate

To weigh water in the gravimetric tank the principle used is the difference principle. The tank is suspended on a balance arm, which is offset to be heavy on the side of the weight hanger, so that when water is collected steadily in the tank there comes a point at which the arm rises to the point of balance. At this instant a time measurement is started. A weight is now added to the weight hanger so that the balance arm is again pulled down. As water continues to be collected, a second balance point is reached, and at that instant the timing stops. The weight of water collected over the timed interval clearly corresponds to the weight added at the weight hanger.

Figure 4.4 illustrates the procedure and shows how the motion of the balance arm is controlled by the balance arm stop. When standing by as in Fig. 4.4*a* the stop is set to position 1 in which it supports the balance arm in its uppermost position, and water falling into the gravimetric tank passes through the valve in its base to the sump tank below. To obtain a measurement of mass flow rate, the stop is turned briefly aside, allowing the arm to fall below the horizontal. The stop is then returned to position 2 as shown in Fig. 4.4*b*; in this position it serves to restrain the balance arm from rising above the horizontal. The valve in the base of the gravimetric tank closes automatically as the balance arm falls, so that water falling into the tank now starts to collect. When the balance point is

reached, as indicated by the arm rising to the horizontal, the timing is

This is a watermark for the trial version, register to get the full one!

in drops. The continuing accumulation of water in the tar

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

weight of water collected in the gravimetric tank over the timed interval.

The balance arm stop is now turned briefly aside, allowing the arm to rise to its uppermost position, and is then returned as shown in Fig. 4.4d to its original position 1, locking the balance arm in the uppermost position for stand-by.

The weight added to the weight hanger = 10 kilogram.

The water mass (m) $\times 1 = 10 \times 3$

m = 30 kilogram.

The total mass flow rate $(\dot{m}) = \frac{m}{t}$ (4.18)

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

s usually measured in feet, meters, or unit of pressure. Head also is a

function of the characteristics of the channel or pipe through which it flows. From Fig. 4.5 the head (h) is:

$$h = \mathbf{y} \cdot h_f + \mathbf{a} + \frac{V^2}{2g} \tag{4.19}$$

Remove Watermark Now

Neglecting the term $V^2/2g$ because it is too small, the sloping height **a** can be found from the triangles similarity as shown:

Now Eq. (4.19) can be written as:

$$h = \mathbf{y} - h_f + 0.24 \tag{4.19a}$$

This is a watermark for the trial version, register to get the full one!

Figure 4.5: Non-uniform steady flow with sluice gate.

4.7 Series of Vanes Mounted On a Wheel

The foregoing cases of dynamic action of jet amply demonstrate the application of momentum principle. In the preceding flow-situation, the distance between the jet and the vane goes on increasing progressively, and, therefore, does not represent a practical situation. The force exerted by the impact of jet can be fruitfully utilized if the series of vanes are mounted on the periphery of a wheel as shown in Fig. 4.6.

Consider a wheel on the periphery of which a certain number of evenly spaced flat vanes are mounted. A fluid-jet of cross sectional area **A** moving with a velocity **V** strikes the bottom most plate as shown. The force exerted by the jet causes the rotation of the wheel. The flat vanes

thus occupy the bottom-most position according to their turn. The number

This is a watermark for the trial version, register to get the full one!

without doing work on the plate. Thus the entire flyid case i sui

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

ppears before the jet, which again exerts the force on the second plate

Remove Watermark Now

Thus each plate appears successively before the jet and the jet exerts force on each plate.

In this case the mass of water coming out from the jet per second is always in contact with the plates are considered. Hence mass of water per second striking the series of plates = $\rho \mathbf{A} \mathbf{V} = \dot{m}$.

Also the jet strikes the plate with a velocity = $\mathbf{V} - \mathbf{u}$. Where \mathbf{u} is the tangential velocity of the waterwheel.

After striking the jet moves tangential to the plate and hence the velocity component in the direction of motion of plate is equal to zero.

: The force exerted by the jet in the direction of motion of plate = $(\rho \mathbf{AV})[(\mathbf{V}-\mathbf{u})-0] = \rho \mathbf{AV}[\mathbf{V}-\mathbf{u}]_{.}$ This is the same expression of Eq. (4.9).

Work done by the jet on the series of plates per second = Force × Distance per second in the direction of force = $\rho \mathbf{AV} (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u} = \dot{m} (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u}$

The same equations can be used when water is hitting the blade instead of jet Fig. 4.7, but the difference is that there is waste in the water that strikes the blade, so the equations can be written as:

Water mass striking the plate per second = $\rho \mathbf{A}_a \mathbf{V} = \dot{m}_a$.

Velocity with which the water strikes the plates moving with a tangential velocity $\mathbf{u} = \mathbf{V} \cdot \mathbf{u}$.

This is a watermark for the trial version, register to get the full one!

Benefits for registered users. by the water on the

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Figure 4.6: Jet striking a series of vanes. [25]

Figure 4.7: Water striking a series of vanes.

8 Losses and Efficiencies

This is a watermark for the trial version, register to get the full one!

Benefits for registered users ulic machines suffer free oss & feners / How small 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

Remove Watermark Now

it is convenient for analytical and design purposes to consider component losses as well as their sum total and to express each component loss in the efficiency form.

Now consider these component losses one by one. First, the actual energy transfer in a rotodynamic machine occurs in its impeller (wheel). Here the fluid passes through the blade passages and either receives energy from the moving blades or imparts energy to them. In any case, there are two major sources of energy loss within the wheel. The inevitable contact between the fluid moving over solid surfaces gives rise to boundary layer development and, hence, to frictional losses, whereas the need for the fluid to change direction often results in separation and, hence, leads to separation (or shock) losses.

In this case the channel surrounds the wheel so that the fluid passes through parts of the channel before it strikes the wheel and after leaving it. Thus, losses due to difference in the heads (and possibly due to separation) occur in the channel as well. Thus if the mass flow rate through the channel is \dot{m} and the loss of head in the channel is h_c , then the power loss in the channel is

$$P_{\rm c} = \dot{m}gh_{\rm c} \tag{4.21}$$

If the mass flow rate leaking past the wheel is denote by \dot{m}_1 and if

 h_f is the total head across the wheel, then the power loss due to the

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

through the wheel, then the wheel power loss is

$$P_{\rm w} = \dot{m}_a g h_{\rm w} \tag{4.23}$$

Remove Watermark Now

There are mechanical losses of energy such as in the bearings and sealing glands, which must be accounted for. It is normal practice in hydraulic machines to include within this category losses due to disc friction, some-times referred to as "windage" losses. This is the power required to spin the wheel at the required velocity without any work being done by the wheel or on the wheel by the fluid. This would be possible only if the wheel did not have any blades. Thus, windage loss accounts for the friction between the outer surfaces of the wheel rotating in the fluid surrounding it within the channel. There is transitional loss occurs between the gears which connected between the waterwheel shaft and the generator shaft. Finally there is an electric loss within the generator.

It is now possible to consider the energy balance for the whole machine, but here to distinguish between pumps and turbines because what represents the output of one is the input of the other and vice versa.

In this case a waterwheel work as a turbine, so the energy balance equation is:

$$\dot{mgh} = g\left(\dot{mh_c} + \dot{m_1}h_f + \dot{m_a}h_w \\ \begin{array}{c} \text{Fluid} \\ \text{power} \\ \text{input} \end{array} \right) + \frac{P_m}{Mechanical} + \frac{P_s}{Shaft} + \frac{P_t}{Transitional} + \frac{P_{g.s.}}{Senerator} + \frac{P_e}{Senerator} + \frac{P_e}{Senerator} \\ \begin{array}{c} \text{Generator} \\ \text{Boss} \\ \text{output} \end{array} \right) + \frac{P_{g.s.}}{Shaft} + \frac{P_{g.s.}}{Shaft} + \frac{P_{g.s.}}{Senerator} + \frac{P_{e.}}{Senerator} + \frac{P_{e.}}{Senerator} \\ \begin{array}{c} \text{Generator} \\ \text{Boss} \\ \text{Output} \end{array} \right) + \frac{P_{g.s.}}{Senerator} + \frac{P_{g.s.}}{Senerator} + \frac{P_{e.}}{Senerator} + \frac{P_{e.}}{Senerator} + \frac{P_{e.}}{Senerator} \\ \begin{array}{c} \text{Generator} \\ \text{Boss} \\ \text{B$$

This is a watermark for the trial version, register to get the full one!

machine and the complete energy balance, it is now cossil

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

ower input to the machine

Hence, for turbine,

$$\eta = \frac{\text{Power output from the generator}}{\text{Fliud power input}} = P_{g}/\dot{m}gh$$
 (4.25)

Remove Watermark Now

The *channel efficiency* (η_c) accounted for the power loss in the channel. For a turbine,

$$\eta_{\rm c} = \frac{\text{Fluid power supplied to wheel+Leakageloss}}{\text{Fluid power received by channel}}$$
$$= \frac{\dot{m}_a g h_f + \dot{m}_1 g h_f}{\dot{m} g h} = \frac{h_f (\dot{m}_a + \dot{m}_1)}{h \dot{m}} = \frac{h_f}{h}$$
(4.26)

The *volumetric efficiency* (η_v) accounted the mass flow rate loss. For turbine,

$$\eta_{v} = \frac{\text{Mass flow rate through wheel}}{\text{Mass flow through machine}}$$
$$= (\dot{m} - \dot{m}_{1})/\dot{m} = \dot{m}_{a}/\dot{m}$$
(4.27)

The *wheel efficiency* (η_w) takes care of the losses in the wheel and, therefore, for turbine,

 $\eta_{\rm w} = \frac{\text{Mechanical power received by shaft}}{\text{Fluid power supplied to wheel}}$

This is a watermark for the trial version, register to get the full one!

 $(P_{\rm sh} - P_{\rm m}) \quad \dot{m}_a gh$

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Let the transitional loss is $P_{\rm t}$, the power delivered to the generator

shaft is $P_{g.s.} + P_t$ and the *transitional efficiency* (η_t) is defined as:

$$\eta_{t} = P_{g.s.} / (P_{g.s.} + P_{t}) = \frac{P_{g.s.}}{P_{sh}}$$
 For a turbine. (4.30)

The generator efficiency (electrical efficiency) (η_e) takes care of the losses in the generator and, therefore, for turbine,

$$\eta_{\rm e} = \frac{P_{\rm g}}{P_{\rm g.s.}} \tag{4.31}$$

Remove Watermark Now

It is now possible to show that the overall efficiency (η) is equal to the product of all the component efficiencies,

$$\eta = \eta_{\rm c} \eta_{\rm v} \eta_{\rm w} \eta_{\rm m} \eta_{\rm t} \eta_{\rm e} \tag{4.32}$$

By substituting into the above equation the appropriate expression as follows:

$$\eta = \frac{h_f}{h} \times \frac{\dot{m}_a}{\dot{m}} \times \frac{h_a}{h_f} \times \frac{P_{\rm sh}}{P_a} \times \frac{P_{\rm g.s.}}{P_{\rm sh}} \times \frac{P_{\rm g}}{P_{\rm g.s.}}$$

This simplifies to

$$\eta = \frac{\dot{m}_a \times h_a \times P_g}{\dot{m} \times h \times P_a}$$

But, since $P_a = \dot{m}_a g h_a$, obtaining

This is a watermark for the trial version, register to get the full one!

This is the expression (4.28) for the overall ef

Benefits for registered users: expression f 1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Recall Eq. (4.20):

Work done on the series of vanes per second = $\rho \mathbf{A}_a \mathbf{V} (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u}$

$$\therefore \text{ Efficiency}\eta = \frac{\text{Work done per second}}{\text{Kinetic energy per second}}$$
$$= \frac{\rho \mathbf{A}_a \mathbf{V} (\mathbf{V} \cdot \mathbf{u}) \cdot \mathbf{u}}{\frac{1}{2} \rho \mathbf{A}_a \mathbf{V}^3} = \frac{2\mathbf{u} (\mathbf{V} \cdot \mathbf{u})}{\mathbf{V}^2}$$
(4.33)

Remove Watermark Now

Equation (4.36) gives the value of the efficiency of the wheel for a given water velocity \mathbf{V} , the efficiency will be maximum when,

$$\frac{d\eta}{d\mathbf{u}} = 0$$

$$\frac{d}{d\mathbf{u}} \left[\frac{2\mathbf{u}(\mathbf{V} - \mathbf{u})}{\mathbf{V}^2} \right] = 0$$
$$\frac{d}{d\mathbf{u}} \left[\frac{2\mathbf{u}\mathbf{V} - 2\mathbf{u}^2}{\mathbf{V}^2} \right] = 0$$
$$\frac{2\mathbf{V} - 4\mathbf{u}}{\mathbf{V}^2} = 0 \Longrightarrow 2\mathbf{V} - 4\mathbf{u} = 0$$
$$\mathbf{V} = \frac{4\mathbf{u}}{2} = 2\mathbf{u} \quad \text{or} \quad \mathbf{u} = \frac{\mathbf{V}}{2}$$

Substituting the value of $\mathbf{V} = 2\mathbf{u}$ in Eq. (4.33) getting that the maximum efficiency is:

 $\eta_{\text{max}} = \frac{2\mathbf{u}(2\mathbf{u} - \mathbf{u})}{(2\mathbf{u})^2} = \frac{2\mathbf{u} \times \mathbf{u}}{2\mathbf{u} \times 2\mathbf{u}} = \frac{2\mathbf{u}^2}{4\mathbf{u}^2} = \frac{1}{2}$ or 50%

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:	
1.No watermark on the output documents. the domain	
2.Can operate scanned PDF files via OCR. of their cha	Remove Watermark Now
3.No page quantity limitations for converted PDF files.	

points may be stated as follows:

since
$$K_Q = Q/N\mathbf{D}^3 = \text{constant}, \qquad Q \propto N\mathbf{D}^3 \qquad (4.34)$$

since
$$K_h = gh/N^2 \mathbf{D}^2 = \text{constant}, \quad gh \propto N^2 \mathbf{D}^2$$
 (4.35)

since
$$K_{Pg} = P_g / \rho N^3 \mathbf{D}^5 = \text{constant}, P_g \propto \rho N^3 \mathbf{D}^5$$
 (4.36)

Chapter Five Results and Discussion

5.1 Experimental Work

The first thing it is important to know is how many blades will give the maximum revolutions per minute (N) to the shaft at appropriate radius, so the design of the wheel allowing to change the number of blades (n) and to change the radius of the wheel (r) at each number of blades.

The following steps describe the experimental work of this project:

Step1:

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. a. mass

3.No page quantity limitations for converted PDF files.

• $\theta = 90^{\circ}$ (Sluice gate angle).

<u>Step2</u>: -

In this step the number of blades has been changed see figures 5.1

Remove Watermark Now

to 5.4:

- a) Number of blades n = 9
- b) Number of blades n = 12
- c) Number of blades n = 18
- d) Number of blades n = 36

For data see Table 5.1 and for graph see Fig. 5.5. So the chosen number of (rpm) was N = 50 rpm and the chosen radius was r = 22 cm at the constants illustrated in Step1.

<u>Step3</u>: -

In this step the constants in Step1 has been changed one by one, the first constant changed was the cross sectional area of the water (**A**). The cross sectional area of the water (**A**) is equal to the water height (h_f) multiplied by the breadth of the channel (**b**) (*i.e.* $\mathbf{A}=h_f \times \mathbf{b}$), but (**b**) is constant (*i.e.* $\mathbf{b} = 7.5$ cm), so the change in (**A**) depends on (h_f) .

The change in water height was from $h_f = 1.5$ cm (A= 11.25 cm²) to $h_f = 2.3$ cm (A= 17.25 cm²). So (A) that gives maximum (N) was A= 11.55cm² ($h_f = 1.5$ cm), but the water became leaking from the channel, so the second choice was A= 12.75 cm² ($h_f = 1.7$ cm). For data see Table 5.2.

The second constant changed was the sluice gate angle (θ), but the

This is a watermark for the trial version, register to get the full one!

third constant changed was the total mass he

Benefits for registered users:1.No watermark on the output documents.2.Can operate scanned PDF files via OCR.3.No page quantity limitations for converted PDF files.

Remove Watermark Now

$(\dot{m}=1.765 \text{ kg/s})$. So the choice was $\dot{m}=1.765 \text{ kg/s}$ (t = 17 s) which gives

the maximum (rpm). For data see Table 5.3.

The last constant changed was the unloading (*i.e.* connect load to the shaft of the waterwheel); the load was a DC generator that connected to the waterwheel shaft. The DC generator has a maximum capacity of 300 W and number of revolutions per minute n = 3000 rpm.

The required number of revolutions per minute was n = 100 rpm, and after using chain, belt, and gears the waterwheel could not reach it.

The alternative was an AC generator with a maximum capacity of 6 W and voltage of 12 V. By using gears with a ratio of 80:16, the resulting voltage (V) was 1.5 V and the resulting current (I) was 0.12 A.

The power of the generator can be define as the current I multiplied by the voltage V and the power factor $\cos \phi$, so the power generator $P_{\rm g}$ is:

$$P_{\rm g} = \mathbf{I} \mathbf{V} \cos \phi$$

Neglecting the effect of the power factor, because the load that connected to the generator is only a bulb. So the generator power is become:

$$P_{g} = IV = 0.12 \times 1.5 = 0.18 \text{ W}$$

Note: - This value at $\dot{m}=1.765$ kg/s, A=12.75 cm², $\theta=90^{\circ}$,

r = 22 cm and n = 36 blade

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: above value of the solution of the sol

This value of the electrical loss is very important to calculate the

generator power P_g and the total efficiency η of different mass flow rates \dot{m} and cross sectional areas **A**.

Using similarity laws to predict the performance of the waterwheel after assuming some waterwheel diameter at different heads and the results are illustrated in Tables 5.6 to 5.8.

5.2 The Effect of Increasing Blades

Fig. 5.5 shows that the higher number of blades at constant radius of wheel gives higher value of velocity, which has more benefit power to turn the wheel (*i.e.* the energy of the water converted to the blades without west).

The equations of the exponential fitting for Fig. 5.5 are:

 $N_9 = 208.45e^{-0.0746r}$

 $N_{12} = 152.38e^{-0.0584r}$

 $N_{18} = 134.24e^{-0.0502r}$

$N_{36} = 140.02e^{-0.0471}$

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: in Fig. 5.5 for different states of the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

power is constant and it is equal to the velocity radius multiplication

Extrapolations of the radius are illustrated in tables 5.6 to 5.8 which show that increasing the diameter of the waterwheel at fixed water head the output generated power increased because the number of revolutions per minute was decreased and the water mass flow rate was increased.

5.4 The Effect of Mass Flow Rate

The mass flow rate (\dot{m}) effected on the parameters of the system which shown in Fig. 5.6 to 5.8.

Fig. 5.6 shows the variations of the system efficiencies with mass flow rate. The volumetric efficiency (η_v) and the wheel efficiency (η_w) are fixed at different mass flow rates because it depends on the flow

geometry only. The transitional efficiency (η_t) is fixed because of the losses rate is assumed to be fixed. The channel efficiency (η_c) decreased because the total head (h) is increased due to increasing in mass flow rate (\dot{m}) with keeping the water head (h_f) fixed. The mechanical efficiency (η_m) is increase due to increasing in flow velocity (**V**). The electrical efficiency (η_e) is increased alternatively with small rate of the mass flow rate because the velocity (**V**) is increased. The overall efficiency (η) is the multiplication of all efficiencies and has the alternative feature from the mechanical efficiency (η_m) and the channel efficiency (η_c) .

The increase in the velocity of the wheel when increasing the mass flow rate is due to the increase in water velocity with keeping the cross sectional area constant which is shown in Fig. 5.7.

This is a watermark for the trial version, register to get the full one!

Remove Watermark Now

nd Total head h verses the total mass flow rate m) was

Benefits for registered users: power incre

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.3.No page quantity limitations for converted PDF files.

The Effect of the Cross Sectional Area

The effects of channel flow cross sectional area on the parameters of the system are shown in Fig. 5.9 to 5.11.

Fig. 5.9 shows the variations of the system efficiencies with channel cross sectional area. The channel efficiency (η_c) increased because the total head (h) is decreased due to increasing in water height (h_f) with keeping total mass flow rate constant. The volumetric efficiency (η_v) increased because of the actual mass flow rate (\dot{m}_a) is increased and the increasing in the volumetric efficiency is small because the loss mass flow rate is increased too. The wheel efficiency (η_w) increased due to the increasing in the actual head (h_a) with the increasing in the water head (h)

because the difference between them is constant. The mechanical efficiency (η_m) is increased due to decreasing in flow velocity (**V**). The transitional efficiency (η_t) is fixed (The same resin of the above section). The electrical efficiency (η_e) is decreased because the velocity (**V**) is decreased. The overall efficiency (η) is the multiplication of all efficiencies and has the alternative feature from the mechanical efficiency (η_m) and the channel efficiency (η_c) .

The decrease in the velocity of the wheel when increasing the channel cross sectional area is due to the decrease in water velocity with keeping the water mass flow rate fixed which is shown in Fig. 5.10.

The curves (Generator power P_g , Overall efficiency η , and Total head *h* verses the channel cross sectional area A) were plotted in Fig. 5.11

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: onal area, which is a 1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

r (cm)		N (rp	om) for	
	n = 9 blades	n = 12 blade	n = 18 blade	<u>n = 36 blade</u>
22	40	42	45	<u>50</u>
24	35	37	40	45
26	30	34	36	41
28	26	30	33	38
30	22	26	30	34

Table 5.1: Number of revolutions per minute at different number of blades and radiuses.

$h_f(\mathrm{cm})$	$\mathbf{A} = h_f \times \mathbf{b} \ (\mathrm{cm}^2)$	$h(\mathrm{cm})$	N (rpm)
1.5	11.25	16.34	66
<u>1.7</u>	<u>12.75</u>	<u>15.54</u>	<u>57</u>
1.8	13.50	08.44	56

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: Number of revolution

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

67	0.448	03.54	10
58	0.517	04.54	13
54	0.556	05.54	15
49	0.612	06.54	17
37	0.811	09.54	25
29	1.035	11.54	33
25	1.200	12.54	39
21	1.429	13.54	47
19	1.579	14.54	52
18	1.667	15.04	54
<u>17</u>	<u>1.765</u>	<u>15.54</u>	<u>57</u>

Table 5.3: Number of revolutions per minute at differentmass flow rate.

η_{m}		η_{t}	$\eta_{ m e}$	h	$P_{\rm g}({\rm W})$
1082	27	0.972	0.80628	0.05457	0.00310
1942	28	0.972	0.89204	0.05209	0.00810
22.94	45	0.972	0.90859	0.04884	0.01125
2318	34	0.972	0.90953	0.04048	0.01223
2612	46	0.972	0.91978	0.03911	0.01536
3012	23	0.972	0.93037	0.03124	0.02371
3875	52	0.972	0.94588	0.03378	0.03970
4313	34	0.972	0.95137	0.03481	0.05139
5338	37	0.972	0.96071	0.03752	0.07122
6357	76	0.972	0.96701	0.04497	0.10100
8682	40	0.972	0.97585	0.05991	0.14700
<u> 9</u> 66	31	0.972	0.97895	0.06672	0.18000
Sect	tion	nal area (A = 12.75 c	;m ²).	

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

					4								
$\eta_{ m c}$	1.0000	0.4802	0.3744	0.3068	0.2599.	0.1782	0.1473	0.1355	0.1255	0.11693	0.1130	0.1094	ts of com
<i>h</i> (m)	0.0170	0.0354	0.0454	0.0554	0.0654	0.0954	0.1154	0.1254	0.1354	0.1454	0.1504	0.1554	: The result
N (rpm)	04	10	13	15	17	25	33	39	47	52	54	57	Table 5.4
<i>m</i> i (kg/s)	0.341	0.448	0.517	0.556	0.612	0.811	1.038	1.200	1.429	1.579	1.667	1.765	

			2
0.06729	0.16898	0.94394	0.972
0.09760	0.17397	0.96121	0.972
0.12900	0.08792	0.97061	0.972
0.18000	0.06680	0.98361	0.972
0.20087	0.07100	0.99350	0.972
$P_{\rm g}({\rm W})$	μ	$\eta_{ m e}$	$\eta_{ m t}$

is flow rate (m = 1.765 kg/s).

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

		,			
757	0.`	1.00000	0.0230	41	17.25
743	0.`	0.61728	0.0324	50	15.00
737	0.`	0.21327	0.0844	55	13.50
729	0.`	0.10940	0.1554	57	12.75
202	0.`	0.08568	0.1634	99	11.25
ην		$\eta_{ m c}$	(m) <i>h</i>	N (rpm)	A (cm ²)

Table 5.5: The results of comput

$\mathbf{D}(\mathbf{m})$			N (rpm) t	for		
D (III)	<i>h</i> =0.1554 m	<i>h</i> =1 m	<i>h</i> = 2 m	<i>h</i> =3 m	<i>h</i> =4 m	<i>h</i> =5 m
0.44	57	145	205	250	289	323
0.6	42	106	150	164	212	237
0.8	31	80	113	138	159	178
1.0	25	64	90	110	127	142
1.2	21	53	75	92	106	109
1.4	18	45	64	79	91	102
1.6	16	40	56	69	80	89
1.8	14	35	50	61	71	79
2.0	13	32	45	55	64	71

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

				h = 3 m		
0.44	1.765	4.490	6.348	7.741	8.949	10.002
0.6	3.298	8.323	11.778	14.447	16.646	18.609
0.8	5.770	14.889	21.031	25.684	29.592	33.129
1.0	9.088	23.264	32.716	39.986	46.165	51.618
1.2	13.191	33.291	47.110	57.789	66.583	68.467
1.4	17.954	44.886	63.838	78.799	90.769	101.741
1.6	23.823	59.557	83.380	102.736	119.114	132.514
1.8	29.680	74.199	105.998	129.318	150.518	167.478
2.0	37.805	93.058	130.862	159.943	186.115	206.472

Table 5.7: Total mass flow rate (\dot{m}) at different extrapolation waterwheel diameter and head.

Table 5.8: Shows the generated power (P_g) at different extrapolation waterwheel diameter and head.

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 5.2: Waterwheel sketch for n = 12 blade and r = 22 cm.

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 5.4: Waterwheel sketch for n = 36 blade and r = 22 cm.

Figure 5.5: The number of revolutions per minute against the radius of the wheel at different number of blades and constant mass flow rate(\dot{m} =1.765kg/s).

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

Figure 5.6: The efficiencies against the total mass flow rate at constant cross sectional area ($A= 12.75 \text{ cm}^2$), number of blades (n = 36 blade), and wheel radius (r = 22 cm).

Figure 5.7: The number of rpm against the total mass flow rate at

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

Figure 5.9: The efficiencies against the cross sectional areas at constant total mass flow rate ($\dot{m} = 1.765$ kg/s), number of blades (n = 36 blade), and wheel radius (r = 22 cm).

constant total mass flow rate (*m*)

Benefits for registered users: of blades (n = 36 blad

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Chapter Six

Conclusions and Recommendations

6.1 Conclusions

The following has been concluded from the constructed undershot waterwheel generated power system:

- 1. The increasing of the number of blades (9-36 blades) at fixed radius of waterwheel gives increasing in the number of revolutions per minute (22-50 rpm) which represented by the exponential curve fitting equations.
- 2. The increasing of the water mass flow rate (0.341-1.765 kg/s) at

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

0.9%). The following were fixed volumetric efficiency 72.9%,

Remove Watermark Now

wheel efficiency 88.2%, and transitional efficiency 97.2%.

3. The increasing of the channel cross sectional area (11.25-17.25 cm²) at fixed water mass flow rate (1.765 kg/s) of the undershot waterwheel generated power system shows decreased in the following the generator output power (0.201-0.067 Watt), the mechanical efficiency (100%-26.7%) and the electrical efficiency (99.4%-94.4%) and increased in the following the channel efficiency (8.6%-100%), volumetric efficiency (70.9%-75.5%), and wheel efficiency (85.7%-91.3%). The transitional efficiency was fixed at 97.9%.

- 4. The maximum generated power obtained from the constructed undershot waterwheel generated power system at n = 36 blade, r = 22 cm, \dot{m} =1.765kg/s and A = 12.75 cm² was $P_{\rm g}$ = 0.18 Watt.
- 5. The maximum overall efficiency of the constructed undershot waterwheel generated power system at n = 36 blade, \dot{m} =1.765kg/s, r=22 cm and A = 12.75 cm² was η = 6.69%.
- 6. The overall efficiency was affected by the channel efficiency and the mechanical efficiency as shown in figures 5.6 and 5.9.
- 7. The theoretical extrapolation of the waterwheel diameter (0.44-2 m) and the water head (0.1554-5 m) gives that the output generated power was increased (0.18-675 Watt).

6.2 Recommendations for Future Work

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files. Benefits for registered users: **Remove Watermark Now**

3. Using curved blades instead of flat blades and makes a comparison

between the results of this system with that of the curved blades.

4. Using the seasonal valleys and the Tigris, Euphrates branches as the water supply network for tasting the extrapolated waterwheels.

References

- The State of Queensland, "Power for a Sustainable Future", (Department of Education), Fact Sheet 9, 2000.
 Web site: www.Sustainable/Energy/Fact/Sheet.htm
- Organization of Energy Efficiency and Renewable Energy Clearinghouse (EREC), "Small Hydropower Systems", July 2001.

Web site: www.eren.doe.gov

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

www.itdg.org/technical_enquiries/docs/micro_hydro_power.pdf

- Theodore R. Hazen, "Waterwheels, Micro-hydroelectric Power". Web site: www.waterwheels/machines.htm
- Rachel Alter, Rebecca Idell, Eric McKeeman and Caitlin Pierce, "Waterwheel", Submitted to The Faculty of Operation Catapult LXIII, Rose-Hulman Institute of Technology, Terre Haute, Indiana, July 26, 2002.

- 7. Australian CRC for Renewable Energy Ltd., "Hydro-electric Power", June 1999.Web site: www.hydro/electric/power.htm
- Roger D. Hansen, "Water Wheels", 2002.
 Web site: www.waterhistory.org
- Fitz Water Wheel Company, "Fitz Steel Overshoot Water Wheels", BULLETIN 70 HANOVER, PA. U.S.A., December 1928.

10. Mick Harris, "Waterwheel-powered house", 1999.

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 1.No watermark on the output documents. 2.Can operate scanned PDF files via OCR. 3.No page quantity limitations for converted PDF files.

Web site: www.caddet-re.org

12.CADDET (Centre for Renewable Energy ETSU, 168 Harwell, Didcot), "Small-scale Hydro-power at Mae Ya, Thailand", Technical Brochure No. 57, 1997.Web site: www.caddet-re.org

13.Joseph Hartvigsen, "Idaho farm micro hydro", 1996.Web site: www.microhydropower.net/svinurayi/sld001.htm

14.Provincial Science and Technology Center of Abra (DOST-CAR) and The Department of Science and Technology through the Philippine Council for Industry and Energy Research and Development (PCIERD), "The Community-Based Micro-Hydro Power Generation project", June 1997.

Web site: www.unesco.or.id/apgest/pdf/philippines/bp-re.pdf

15."Micro-hydro power in Laos" June 21, 1997.Web site: www.microhydropower.net/svinurayi/sld001.htm

16.CADDET (Centre for Renewable Energy ETSU, 168 Harwell,

This is a watermark for the trial version, register to get the full one!

Brochure No.FG, 200

Remove Watermark Now

Hydropower Potential within Water Supply Network", Centre for

Renewable Energy Systems Technology, M Sc., Loughborough University, U.K., 2000-2001.

18.David Allender, "David Allender's Hydro system", 2001.Web site: www.microhydropower.net/svinurayi/sld001.htm

19.Paul Cunningham, "Micro Hydro-Electric Evolution", Paul Cunningham, Energy Systems & Design, NB Canada E4E 5L7.

- 20.Mr. M.S. Al-Hafid and Dr. Basil M. Saied, "The Small Hydropower Station Design for Utilizing Seasonal Valley Water Resources", The First Engineering Combined Conference, Al-Nahrain University, 10-12 March 2002.
- 21.Majed S.M. Al-Hafid and B.M. Saied, "Full investigation of Hydropower in Iraq", Fourth Scientific Conference, Scientific Research Council, Baghdad, Iraq, 1986.
- 22.UNECCWA,"A Regional Program for New and Renewable Sources of Energy, with Special References to Rural Applications", Natural Resources Bullentin, Vol.1, No.2, 1989.

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

Channel", TecQuipment Ltd., Equipment manual.

- 25.A. K. Jain, "Fluid Mechanics", Seventh Edition, KHANNA PUBLISHERS, 1993.
- 26.John A. Roberson and Clayton T. Crowe, "Engineering Fluid Mechanics", Sixth Edition, John Wiley & Sons, Inc., 1997.
- 27.Mike Munro, "Hydro Power (Power Calculations)", February 2002.

Web site: www.mike.munro.cwc.net/index.htm

- 28.J.F. Douglas, J.M. Gasiorek and J.A. Swaffield, "Fluid Mechanics", Second Edition, Pitman, London, 1984.
- 29.Gustav Niemann, "Machine Elements", Volume II, Allied Publishers Private Limited, 1980.

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

دراسة تصميمية لمنظومة كهرومائية صغيرة

رسالة مقدمة الى كلية الهندسة في جامعة النهرين وهي جزء من متطلبات نيل درجة ماجستير علوم في الهندسة الميكانيكية

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

▲ 1425	رمضان
2004 م	تشرين الأول

1

I I I

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

ı

(

(

. .)

.)

الخلاصة

درا سة لتصميم و صنع منظومة صغيرة هيدرومائية لتوليد الطاقة الكهربائية باستخدام باستخدام نموذج مصغر لتوربين ناعور الجريان التحتي الذي تم وضعة في القناة الهيدروليكية وتوجد هناك بوابة منزلقة تعمل كأنها سد صغبر.

أن تصميم الناعور لـهُ القدرة على تغيير عدد ريشهِ و الريش يمكن أن تكون اطول أو

اقصر وهذا يعطي للناعور قطراً اكبر أو اصغر

زيادة كتلة تدفق الماء (0.341-1.765 كغم/ثا) بثبوت المقطع العرضي للقناة (12.75

سم²) لمنظومة توليد القدرة الكهربائية بواسطة الناعور توضح زيادة في التالي القدرة الخارجة

(0.18-0.0031 واط) و الكفاءة الميكانيكية (10.8%-99.6%) و الكفاءة الكهربائية (80.6%-

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
 1.No watermark on the output documents.
 2.Can operate scanned PDF files via OCR.
 3.No page quantity limitations for converted PDF files.

الخارجة (0.201-0.207 واط) و الكفاءة الميكانيكية (100%-26.7%) و الكفاءة الكهربانية (99.4-94.4%) و الكميات التالية قد زادة كفاءة ألقناة (8.6%-100%) و ألكفاءة الحجمية (70.9%-75.5%) و كفاءة الناعور (85.7%-1.3%) زادة. كفاءة النقال كانت ثابتة على97.2%.

الكفاءة الكلية كانت تساوي 6.69% وارتفاع الماء كان يساوي 15.45سم و القدرة الخارجة كانت تساوي 0.18 واطو هذه القيم وجدة عندما كان عدد الريش يساوي 36 و نصف قطر الناعور يساوي 22سم و كتلة الماء المتدفق تساوي 1.765كغم/ثا و المقطع العرضي للقناة يساوي 12.75سم². أن الزيادة النضرية لقطر الناعور (0.44 م) و ارتفاع الماء ادة الى زيادة في القدرة

الخارجة (0.18-675 و اط).

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Appendix (A) Cases of Study and Sample of Calculations

1. At constant cross sectional area (A=12.75 cm²)

Having the values:

- The density of the water $\rho = 1000 \text{ kg/m}^3$.
- The height from channel bed to the free surface y = 17 cm.
- The total head across the wheel $h_f = 1.7$ cm.
- The wheel radius r = 22 cm.
- The time measured t = 17 s.
- The number of revolutions per minute N = 57 rpm.

Before calculating losses and efficiencies there are some values

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Descriptions drawing for Channel cross sectional area. **Note:** All dimensions in (cm).

From figure above:

$$\dot{m}_{a} = \dot{m} - \dot{m}_{1}$$

$$\dot{m}_{1} = \dot{m}_{b} + \dot{m}_{s}$$

$$\dot{m}_{b} = \rho \mathbf{V} \mathbf{A}_{b} = 1000 \times 1.384 \times 7.5 \times 0.2 \times 10^{-4} = 0.208 \text{ kg/s}$$

$$\dot{m}_{s} = 2\rho \mathbf{V} \mathbf{A}_{s} = 2 \times 1000 \times 1.384 \times 0.65 \times 1.5 \times 10^{-4} = 0.270 \text{ kg/s}$$

$$\dot{m}_{1} = 0.208 + 0.270 = 0.478 \text{ kg/s}$$

$$\dot{m}_{a} = 1.765 - 0.478 = 1.287 \text{ kg/s}$$

From Eq. (4.19a) the total head can be calculated:

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

From Eq. (4.16) the power of water can be calculated:

 $P_{P.E.} = \dot{m}gh = 1.765 \times 9.81 \times 15.54 \times 10^{-2} = 2.691 \,\mathrm{W}$

Recall Eq. (4.24) the power loss in channel is:

 $P_{\rm c} = \dot{m}gh_{\rm c} = 1.765 \times 9.81 \times 13.84 \times 10^{-2} = 2.396 \text{ W}$

Eq. (4.22) calculates the power loss due to leakage:

 $P_1 = \dot{m}_1 g h_f = 0.478 \times 9.81 \times 1.7 \times 10^{-2} = 0.07972 W$

From Eq. (4.23) the power loss in the wheel is:

 $P_{\rm w} = \dot{m}_a g h_{\rm w} = 1.287 \times 9.81 \times 0.2 \times 10^{-2} = 0.02525 \,\rm W$

From Eq. (4.20) the power output from shaft is:

$$P_{\rm sh} = \dot{m}_a (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u} = 1.287 (1.384 - 1.269) \times 1.269 = 0.188 \text{ W}$$

The value of the transitional loss can be taken from Table **A-1**:

 $P_{\rm t} = 0.028 P_{\rm sh} = 0.028 \times 0.188 = 0.005264 \text{ W}$

The power delivered to the generator shaft is equal:

 $P_{\text{g.s.}} = P_{\text{sh}} + P_{\text{t}} = 0.188 - 0.005264 = 0.183 \text{ W}$

From experimental work the generator power is:

 $P_g = IV = 0.12 \times 1.5 = 0.18$ W

This is a watermark for the trial version, register to get the full one!

Benefits for registered users: 691
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

 $\frac{1}{1} = \frac{1}{1554} = 0.10940$

Volumetric efficiency is calculated by using Eq. (4.27):

$$\eta_{\rm v} = \frac{\dot{m}_a}{\dot{m}} = \frac{1.287}{1.765} = 0.72918$$

Wheel efficiency can be calculated from Eq. (4.28):

$$\eta_{\rm w} = \frac{h_a}{h_f} = \frac{1.5}{1.7} = 0.88235$$

Mechanical efficiency is calculated by using Eq. (4.29):

$$\eta_{\rm m} = \frac{P_{\rm sh}}{P_a} = \frac{\dot{m}_a (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u}}{\dot{m}_a g h_a} = \frac{0.188}{1.287 \times 9.81 \times 1.5 \times 10^{-2}} = 0.99270$$

Transitional efficiency is calculated from Eq. (4.30):

$$\eta_{\rm t} = \frac{P_{\rm g.s.}}{P_{\rm sh}} = \frac{0.183}{0.188} = 0.97340$$

Generator efficiency can be calculated from Eq. (4.31):

$$\eta_{\rm e} = \frac{P_{\rm g}}{P_{\rm g.s.}} = \frac{0.18}{0.183} = 0.98361$$

From Eq. (4.32) the overall efficiency can be also calculated:

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

in appendix (**B**) for constant cross sectional areas

The results of this computer program is illustrated in Table 5.4 and plotted in Figures 5.6 to 5.8.

2. At constant total mass flow rate ($\dot{m} = 1.765 \text{ kg/s}$)

Having the values:

- The density of the water $\rho = 1000 \text{ kg/m}^3$.
- The height from channel bed to the free surface y = 10 cm.
- The total head across the wheel $h_f = 1.8$ cm.
- The breadth of channel $\mathbf{b} = 7.5 \,\mathrm{cm}$.
- The wheel radius r = 22 cm.
- The number of revolutions per minute N = 55 rpm.

Before calculating losses and efficiencies there are some values

must be calculated first, like: **A**, **V**, \mathbf{r}_{\circ} , **u**, \dot{m}_{a} , \dot{m}_{1} , h and h_{c} .

This is a watermark for the trial version, register to get the full one!

Descriptions drawing for Channel cross sectional area. **Note:** All dimensions in (cm). From figure above:

$$\dot{m}_{a} = \dot{m} - \dot{m}_{1}$$

$$\dot{m}_{1} = \dot{m}_{b} + \dot{m}_{s}$$

$$\dot{m}_{b} = \rho \mathbf{V} \mathbf{A}_{b} = 1000 \times 1.307 \times 7.5 \times 0.2 \times 10^{-4} = 0.196 \text{ kg/s}$$

$$\dot{m}_{s} = 2\rho \mathbf{V} \mathbf{A}_{s} = 2 \times 1000 \times 1.307 \times 0.65 \times 1.6 \times 10^{-4} = 0.272 \text{ kg/s}$$

$$\dot{m}_{1} = 0.196 + 0.272 = 0.468 \text{ kg/s}$$

$$\dot{m}_{a} = 1.765 - 0.468 = 1.297 \text{ kg/s}$$

From Eq. (4.19*a*) the total head can be calculated:

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

From Eq. (4.16) the power of water can be calculated:

$$P_{P,E} = \dot{m}gh = 1.765 \times 9.81 \times 8.44 \times 10^{-2} = 1.461 \,\mathrm{W}$$

Recall Eq. (4.21) the power loss in channel is:

 $P_{\rm c} = \dot{m}gh_{\rm c} = 1.765 \times 9.81 \times 6.64 \times 10^{-2} = 1.150 \text{ W}$

Eq. (4.22) calculates the power loss due to leakage:

 $P_1 = \dot{m}_1 g h_f = 0.468 \times 9.81 \times 1.8 \times 10^{-2} = 0.08264 \text{ W}$

From Eq. (4.23) the power loss in the wheel is:

 $P_{\rm w} = \dot{m}_a g h_{\rm w} = 1.297 \times 9.81 \times 0.2 \times 10^{-2} = 0.02545 \,\rm W$

From Eq. (4.20) the power output from shaft is:

$$P_{\rm sh} = \dot{m}_a (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u} = 1.297 (1.307 - 1.221) \times 1.221 = 0.136 \text{ W}$$

The value of the transitional loss can be taken from Table **A-1**:

 $P_{\rm t} = 0.028 P_{\rm sh} = 0.028 \times 0.136 = 0.00381 \text{ W}$

The power delivered to the generator shaft is equal:

 $P_{\rm g.s.} = P_{\rm sh} + P_{\rm t} = 0.136 - 0.00381 = 0.132 \text{ W}$

From experimental work the generator power loss is equal:

 $P_{\rm e} = 0.003 \, {\rm W}$

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR: the experi 3.No page quantity limitations for converted PDF files.

 $h_c = \int cm (A = 13.75 \text{ cm}^2)$ and because of the first case of study tak

 $n_f = 1.7$ cm, so to show different values this case of study takes

 $h_f = 1.8 \text{ cm} (\mathbf{A} = 13.50 \text{ cm}^2).$

Overall efficiency can be calculated from Eq. (4.25):

$$\eta = P_{\rm g} / \dot{m}gh = \frac{0.129}{1.461} = 0.08830 \times 100\% = 8.830\%$$

Channel efficiency is calculated from Eq. (4.26):

$$\eta_{\rm c} = \frac{h_f}{h} = \frac{1.8}{8.44} = 0.21327$$

Volumetric efficiency is calculated by using Eq. (4.27):

$$\eta_{\rm v} = \frac{\dot{m}_a}{\dot{m}} = \frac{1.297}{1.765} = 0.73484$$

Wheel efficiency can be calculated from Eq. (4.28):

$$\eta_{\rm w} = \frac{h_a}{h_f} = \frac{1.6}{1.8} = 0.88889$$

Mechanical efficiency is calculated by using Eq. (4.29):

$$\eta_{\rm m} = \frac{P_{\rm sh}}{P_a} = \frac{\dot{m}_a (\mathbf{V} - \mathbf{u}) \cdot \mathbf{u}}{\dot{m}_a g h_a} = \frac{0.136}{1.297 \times 9.81 \times 1.6 \times 10^{-2}} = 0.66805$$

Transitional efficiency is calculated from Eq. (4.30):

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1.No watermark on the output documents.
2.Can operate scanned PDF files via OCR.
3.No page quantity limitations for converted PDF files.

Remove Watermark Now

From Eq. (4.32) the overall efficiency can be also calculated:

 $\eta = 0.21327 \times 0.73484 \times 0.88889 \times 0.66805 \times 0.97059 \times 0.97727$ $= 0.08827 \times 100\% = 8.827\%$

The other values (Head, Efficiencies and Generator power) are calculated by using computer program (MATLAB 6.1), which illustrated in appendix (C) for constant mass flow rate.

The results of this computer program is illustrated in Table 5.5 and plotted in Figures 5.9 to 5.11.

Sample of Calculations

Having:

- Waterwheel diameter $\mathbf{D}_1 = 0.44$ m.
- Total head $h_1 = 0.1554$ m.
- Number rpm $N_1 = 57$ rpm.
- Total mass flow rate $\dot{m}_1 = 1.765$ kg/s.
- Generated power $P_{g1} = 0.18$ W.

Assuming that $\mathbf{D}_2 = 2 \text{ m}$ and $h_2 = 2 \text{ m}$

Recall Eq. (4.35),

 $gh_1/N_1^2\mathbf{D}_1^2 = gh_2/N_2^2\mathbf{D}_2^2$

From this equation N_2 is equal to:

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:²

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

Remove Watermark Now

$$\dot{m}_2 = \dot{m}_1 \frac{N_2}{N_1} \left(\frac{\mathbf{D}_2}{\mathbf{D}_1}\right)^3 = 1.765 \times \frac{45}{57} \times \left(\frac{2}{0.44}\right)^3 = 130.862 \text{ kg/s}$$

From Eq. (4.36) the generated power (P_{g2}) can be calculated as:

$$P_{g1} / \rho N_1^3 \mathbf{D}_1^5 = P_{g2} / \rho N_2^3 \mathbf{D}_2^5$$
$$P_{g2} = P_{g1} \left(\frac{N_2}{N_1}\right)^3 \left(\frac{\mathbf{D}_2}{\mathbf{D}_1}\right)^5 = 0.18 \times \left(\frac{45}{57}\right)^3 \times \left(\frac{2}{0.44}\right)^5 = 171.859 \,\mathrm{W}$$

	Remarks	Sliding bearings and spray lubrication	Rolling bearings, splash lubrication	Rolling bearings, splash lubrication
s [28].	N_{v} % of N_{1}]	$9 \cdot \cdot 2,8$	$\begin{array}{c} 1,0\\ 2,5\cdots 3\\ 3\\ 1\\ \cdots 6\end{array}$	$5 \cdot \cdot 10$ $34 \cdot \cdot 48$

Remove Watermark Now

Note: N_v represents P_t and N_1 represents

Benefits for registered users:

- 1.No watermark on the output documents.
- 2.Can operate scanned PDF files via OCR.
- 3.No page quantity limitations for converted PDF files.

		c te											
cal values for	9	Quenched &	machined	Case-harder	Shaved and		Case-harder	Case-harder	Case-harder) worm ha	> ground;	Jbronze	
Table A-1: Practi	Drive	Turbine gearing:	Parallel axis	Parallel axis	Planetary	Automobile gearing:	Parallel axis	Spiral bevel	Hypoid	Worm gearing $i = 5$	Worm gearing $i = 11$	Worm gearing $i = 23$	

Appendix (B) Computer Program for Constant Cross Sectional Area

Computer Program Notations

- p = Density of water (ρ).
- m = The hanging mass multiplied by the arm.
- r = Wheel radius (r).
- b = Breadth of channel (**b**).
- hf = Total head across the wheel (h_f) .
- t = Time(t).
- M = Total mass flow rate (\dot{m}).
- V = Velocity of water (V).
- Ro = Active radius (r_{\circ}) .
- N = Number of revolutions per minute (N).
- U = Tangential velocity of wheel (u)
- b = The head below the blade.

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

3.No page quantity limitations for converted PDF files.

= Volumetric efficiency (η_c)

- Ew = wheel efficiency (η_w) .
- g = Gravitational acceleration (g).
- Em = Mechanical efficiency (η_m) .
- Et = Transitional efficiency (η_t) .
- Ee = Electrical efficiency (η_e).
- E = Overall efficiency (η) .
- Pg = Power output from generator (P_g) .

p=0.1; m=30; r=22; b=7.5; hf=1.7; t=[88 67 58 54 49 42 37 29 25 21 19 18 17]; M=m./tV=M/(p*b*hf)Ro=r-0.75 N=[4 10 13 15 17 21 25 33 39 47 52 54 57]; U=((2*3.14*N)/60)*Ro*0.01 hb=0.2; Mb=p*V*b*hb Ms=2*p*V*0.65*1.5 Ml=Mb+Ms Ma=M-Ml Y=[3.1656789111314151616.517]:

This is a watermark for the trial version, register to get the full one!

Ew= 0.8824 0.8824 0.8824 0.8824 0. Benefits for registered users: 24 0.8824 1. 1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. 5*0 01)

Remove Watermark Now

3.No page quantity limitations for converted PDF files.

Ee=((1.1/1a.*(V-U).*U)-(Ma.*(V-U).*U*0.028))-(0.003))./((Ma.*(V-

E=(Ew).*(Ec).*(Ev).*(Em).*(Et).*(Ee)

Pg=E.*M*g.*h*0.01

Appendix (**C**) Computer Program for Constant Total Mass Flow Rate

Computer Program Notations

- p = Density of water (ρ).
- m = The hanging mass multiplied by the arm.
- r = Wheel radius (r).
- b = Breadth of channel (**b**).
- hf = Total head across the wheel (h_f) .
- t = Time (t).

U

- M = Total mass flow rate (\dot{m}).
- V = Velocity of water (V).
- Ro = Active radius (r_{\circ}) .
- N = Number of revolutions per minute (N).
 - = Tangential velocity of wheel (**u**).
 - b = The head below the blade.

This is a watermark for the trial version, register to get the full one!

Mass flow rate losses from sides (n

Benefits for registered users: f mass flow rate (m

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR. d to the f

3.No page quantity limitations for converted PDF files.

= Volumetric efficiency (η_c)

- Ew = wheel efficiency (η_w) .
- g = Gravitational acceleration (g).
- Em = Mechanical efficiency (η_m) .
- Et = Transitional efficiency (η_t) .
- Ee = Electrical efficiency (η_e) .
- E = Overall efficiency (η) .
- Pg = Power output from generator (P_g) .

p=0.1; m=30; r=22; b=7.5; t=17; hf=[1.5 1.7 1.8 2 2.3]; M=m/t V=M./(p*b.*hf) ro=(hf-0.2)/2Ro=r-ro N=[66 57 55 50 41]; U=((2*3.14*N)/60).*Ro*0.01 hb=0.2; Mb=p*V*b*hb ha=hf-0.2 Ms=2*p*V*0.65.*ha MI=Mb+Ms

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:

1.No watermark on the output documents.

2.Can operate scanned PDF files via OCR.

Remove Watermark Now

3.No page quantity limitations for converted PDF files.

=(((Ma * (V-U) * U)-(Ma * (V-U) * U*0.028))./(Ma * (V-U) * U))

U).*U)-(Ma.*(V-U).*U*0.028)) E=(Ew).*(Ec).*(Ev).*(Em).*(Et).*(Ee) Pg=E.*M*g.*h*0.01