Abstract

Color images have the potential to convey more information than a
monochrome or black and white images. Each pixel for a true color image is
stored as values of red, green, and blue. However, the RGB color model isnot an
efficient representation for compression task because there is significant
correlation between RGB color components. Therefore, for compression,
luminance-chrominance representations (such as YIQ) is implemented. A
common approach to the color image compression was started by transform the
RGB image to a desire color model, then applying compression techniques, and
finally retransform the results back to RGB model.

In this work, a color image compression scheme combining the wavelet
transform and a modified vector quantization (MVQ) method is proposed. In
wavelet transform, the low and high Haar filters are composed to construct four
2- dimensional filters, such filters are applied directly to the Y IQ image to speed
up the implementation of the Haar wavelet transform. Haar wavelet transform
was used to map it to frequency bands. Bit allocation process and scalar
guantization are implemented on the approximation subband while modified
vector quantization mechanism is employed to encode other higher frequency
subbands using small block size (so as decrease the codebook size) as the
subband number increases. Since the encoding process is much easier when the
range of coded parameters are positive, thus the coefficients values of codebook
are mapped to the positive range. Finally S-Shift encoding process is performed.

The anaysis results have indicated that the proposed method offers a
comparission performance up to (29/1) with little effects will be noticed on the
image quality.
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Chapter 1
General Introduction

1.1 Introduction

Image processing is computer imaging where the@pn involves a
human being in visual loop. In other words, thegemare to be examined
and acted upon by people. The major topics witlia field of image
processing include image restoration, image enlmect and image
compression [Umb98]:

 Image restoration is the process of talking an enagth some
known, or estimated, degradation, and restoring its original
appearance.

 Image enhancement involves talking an image andawpg it
visually, typically by talking advantage of the ham visual
system'’s response.

« Image compression involves reducing the typicallasaive
amount of data needed to represent an image.

An image may be defined as a two-dimensional fongti(x, y), where
x and y arespatial (plane) coordinates, and the amplitude of f at paiy of
coordinates (x, y) is called thatensity or gray level of the image at that
point. When x, y, and the amplitude values of f atk finite, discrete
guantities, we call the image digital image. The field ofdigital image
processing refers to processing digital images by means ofjiadl computer.
Digital image is composed of a finite number ofnedmts, each of which has
a particular location and value. These elementsrafierred to agicture
elements, image elements, andpixels. Pixel is the term most widely used to
denote the elements of a digital image [Gon02].
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Color image processing is concerned with the mdaijun of digital
color image on computer, and is a branch of theewiof digital image
processing discipline, which is itself a branchtloé more general field of
digital signal processing. The purpose of colorgmarocessing is to enhance
or improve the color image, beside to extract imfation [San98].

Digital color images are usually stored using tleel RGreen, and Blue
or RGB color space. A RGB representation of an en&gygenerated by
spectral primary filtering an arbitrary color scerfélters generate three
channels by the spectral subbands red, green aedwhich usually overlap.
Therefore the RGB model representation is a vedtymdant one.

The combine of these three channels of light preduscwide range of
visible colors. All color spaces are three-dimenaioorthogonal coordinate
systems, meaning that there are three axes (inc#ss the red, green, and
blue color intensities) that are perpendicular another [Bel03].

1.2 Image Size Problem

Many of images are yearly received. Beside to thatispectral of
these images their size may extend to reach muwtanbits of size level. As
an example, color digital image consists of thregtal images (i.e., red,
green, and blue); each image is represented byS3P2matrixes of pixels,
with 8 bits (i.e., 256 levels). Thus, the numberba$ required to store this
type of images is, S = 5121283 bits = 786 Kbytes, a rather large number.

Thus, the goal of color image compression is tacedhis number, as much
as possible, keeping in mind that reconstructedyamiaas to be a faithful
duplication of the original image.

To avoid the possibility of storing totally the amfation, tread-off
techniques were proposed and utilized to give nfileseble solution to the
image archive capacity overload problem. Most dofsth techniques are
considered as part of image compression discifplaraework [Jor97].

In fact, the goal of these methods is to reducenfress) the number of
bits required to represent the image information ut§izing a suitable
encoding process. Some of these compression metbfiels a perfect
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reconstruction of the original image, while othezthods impose distortions,
up to an acceptable level, upon the reconstructage.

1.3 Image Compression

As long as bandwidth and storage isn't cheap aoflpare impatient,
image compression is going to be utilized. Aftempoessing, image data
takes up less storage space and requires less igindavbe transmitted over
the Internet. Whether we need to send images dweetrternet or squeeze
multiple files into a single file for backup andisige; imaging compression
components will give the code which need to makages "lean and mean”
and make the applications run much faster [Bot98].

Documents can be scanned and simply compressegl iIRBEG or GIF.
Unfortunately, the resulting files tend to be quitege if one wants to
preserve the readability of the text. Compresseal WPEG, a color image of
a typical magazine page scanned at 100dpi (dotsnpk) would be around
100 Kbytes to 200 Kbytes, and would be barely rbedalrhe same page at
300dpi would be of acceptable quality, but wouldwgay around 500 Kbytes.
Even worse, not only would the decompressed imageud the entire
memory of an average PC, but also only a smaligodf it would be visible
on the screen at once. GIF is often used on the fdtafistributing black and
white document images, but it requires 50 to 100 page for decent
quality (150dpi) [Bot98].

Considering anisotropy in luminance images in thmgression stage,
has led to better compression performance andri@tservation of details,
thus getting higher image quality [Bel03].

1.4 Vector Quantiztion

The application of wavelet transform in signal amége compression
has attracted a great deal of attention. It is kmawat it generates a
multiresolution representation of an image. Theare several sub-images or
subbands that might be encoded more perfectly tt@mriginal image. The
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wavelet transform technique breaks the image inddion into various
frequency bands and encodes each subband usiaglsuwbding system

Vector Quantization with image compression techegjhhave many
uses in image processing. VQ is useful in compngsdata that arises in a
wide range of applications and it can achieve betienpression performance
that any conventional coding techniques, whichlbased on the encoding of
scalar quantities.

It is very interesting to see why VQ works in coegsion. A vector
guantizer is composed of two operations: the encade the decoder. The
encoder takes an input vector and outputs the imdethe codeword that
offers the lowest distortion. In this case the lIstvdistortion is found by
evaluating the Euclidean distance between the ingdtor and each
codeword in the codebook. Once the codeword ofctbsest reproduction
vector is found, the index of that codeword is sémbugh a channel (the
channel could be computer storage, communicatidamrel, and so on).
When the encoder receives the index of the codewbrdplaces the index
with the associated codeword.

1.5 An Introduction to Wavelets

From digital signal processing to computer visimayelets have been
widely utilized to analyze and transform discretatad The concept of
wavelets is rooted in many disciplines, includingthematics, physics, and
engineering. The 1980s witnessed a new wave of leadescoveries, like
multiresolution analysis and orthonormal compactlypported wavelets.
These advances have revolutionized the field ane hed to many novel
applications of wavelets [Asu02].

A wavelet, which literally means little wave, is ascillating zero-
average function that is well localized in a snpafiod of time. A wavelet
function, known as a mother wavelet, gives risa tamily of wavelets that
are translated (shifted) and dilated (stretchedoonpressed) versions of the
original mother wavelet [Asu02].
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Wavelets have great utility in the area of diggajnal processing. A
digital signal can be represented as a summatiorwadfelets that are
fundamentally identical except for the translatimnd dilation factors (or
coefficients). Hence, a signal can be representetirey by wavelet
coefficients. These coefficients provide importdm@quency and temporal
information which can be used to analyze a sighatthermore, the signal
can be processed in the wavelet coefficient dorbafore being transformed
back to the normal time-amplitude representatidrusl wavelets facilitate a
unique framework for digital signal processing [B&(1

1.6 Related Work

There are many coding techniques applicable toraatage. In our
work, some adaptive coding methods have been pgeskéor performing the
Image compression process; all these methods erapally based on using
wavelet transform and vector quantization.

J. R Goldschneider [1997] developed lossy compression algorithms
based on the wavelet transform and vector quardizatOptimal Dbit-
allocation algorithms based on pruned tree-stresturector quantization
techniques are developed for the discrete wavedastorm and for the more
general discrete wavelet packet transform. Thegerithms systematically
find all quantizers on the lower convex hull of la¢e-distortion curve, while
for the wavelet packet transform, simultaneouslgaang based basis.

S Paek and L. Kim [2000] proposed zerotree wavelet vector
quantization (WVQ) algorithm focuses on the probleirhow to reduce the
computation time to encode wavelet images with highkling efficiency.
Conventional wavelet image compression algorithplets tree-structure of
wavelet coefficients coupled with scalar quant@atiHowever, they can not
provide the real-time computation because they itesative methods to
decide zerotrees. In contrast, the zerotree WVQ@rahgn predicts in real-
time zero-vector trees of insignificant wavelet tees by a non-iterative
decision rule and then encodes significant wavwedetors by the classified
VQ (CVQ). These cause the zerotree WVQ algorithnprtovide the best
compromise between the coding performance andampgtation time.
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B. K. Al-Abudi [2002] proposed hierarchical multilevel block tration
coding (HMBTC) based on wavelet transform. Zerce tesd transmission
progressive mechanism were designed and implemémtaagh the encoding
and decoding process, and also proposed WaveletifistbdVector
Quantization.

O. O. Khalifa [2003] a modified version of Linde-Buzo-Gray (LBG)
algorithm using Partial Search Partial DistortiddSPD) is presented for
coding the wavelet coefficients. The proposed se&eam save 70 - 80 % of
the Vector Quantization (VQ) encoding time compatedully search VQ
and reduced arithmetic complexity with out sacmficperformance.

F. Murtagh [2005] considers the wavelet transform of a rootemje-
ranked, p-way tree. he focus on the case of bitrags, and a variant of the
Haar wavelet transfornihey distinguish between two cases: firstly, where
the binary tree represents a hierarchy of embedumtoverlapping subsets
of a given set; and secondly, where the binary trepresents an
ultrametrically related set of points. Wavelet sfamms allow for
multiresolution analysis through translation andtthn of a wavelet function.

1.6 Aim of Thesis

The aim of thesis is implementing a color image pmasion scheme
based on the modified vector quantization codin@)vhethod and wavelet
transform (WT). Modified VQ was adapted to encodecimages. Because
the RGB image has extensive correlation among caomponents,
luminance-chrominance representation was implendenite this scheme,
scalar quantization method was implemented to endbd approximation
subband of wavelet transform while modified VQ veasployed to encode
the high frequency subbands.
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1.7 Thesis Layout

The reminder of this thesis will be structured irtee following
chapters:

Chapter 2: Entitle “Color Models & Image Compression”. This chapter
implies a brief overview about color, Luminance,r@hinance, Pixels and
Bitmaps, Types of Digital Images, Computer Coloragf@a Representation
types of images, representation of color images @estription of various
mathematical models, including the equations areffictents required for
converting color pixel values between differentocohodels. The second part
will be dedicated to discuss the based of some encagnpression techniques
with clear emphasis on their properties and transition methods.

Chapter 3: Entitle “Hybrid Wavelet Modified Vector Quantization”. This
chapter will be devoted to present a full desamptfor the color image
compression technique based on wavelet transfomnnaodified VQ. The
reasons for implementing luminance-chrominance easgrtation for
compression will be investigated. The experimergallts of these methods
will be investigated and discussed.

Chapter 4: Entitle “Conclusions & Suggestions’. A brief review will be
devoted to demonstrate the success of the presetéad to match the
requirements of color image compression task. Ah@uradaptive proposals
will be given as future work



Chapter 2

Color Models and Image Compression

2.1 Introduction

A digital color image is a collection of pixels Wwiteach pixel a 3-
dimensional (3-D) color vector. The vector elemesptscify the pixel's color
with respect to a chosen color space. Joint Phaptge Experts Group
(JPEG) is a commonly used standard to comprestadalor images. JPEG
compresses by quantizing the discrete cosine temdfDCT) coefficients of
the image’s three color planes [Nee04].

Mass storageapability is a must in image processing applicegicAn
image of size 1024*1024 pixels, in which the inignsf each pixel is an 8-
bit quantity, requires one megabyte of storage ephdhe image is not
compressed. When dealing with thousands, or evdioms, of images,
providing adequate storage in an image processstgrs can be a challenge.
Digital storage for image processing applicatioabsfinto three principal
categories [Gon02]:

(1) Shortterm storage for use during processing,

(2) On-line storage for relatively fast recall, and

(3) Archival storage, characterized by infrequestess.

Storage is measured in bytes (eight bits), Kbyvee ¢housand bytes),
Mbytes (one million bytes), Gbytes (meaning gigapwe billion bytes), and
Tbhytes (meaning tera, or one trillion bytes).

2.2 Basic Concepts:

The basic concepts in the image are:
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2.2.1 What is Color?

Color is the perceptual result of light in the kisi region of the
spectrum, having wavelengths in the region of 460ta 700 nm, incident
upon the retina. Physical power (adiance is expressed in gpectral power
distribution (SPD).

The human retina has three types of color photpteceone cells,
which respond to incident radiation with somewh#edent spectral response
curves. A fourth type of photoreceptor cell, ttogl, is also present in the
retina. Rods are effective only at extremely loghti levels (colloquially,
night visior), and although important for vision play no role image
reproduction.

Because there are exactly three types of colorgoboeptor, three
numerical components are necessary and sufficentescribe a color,
providing that appropriate spectral weighting fuoies are used. This is the
concern of the science oblorimetry. In 1931, the Commission Internationale
de L’Eclairage (CIE) adopted standard curves fdrypotheticalStandard
Observer These curves specify how an SPD can be transtbmte a set of
three numbers that specifies a color [Poy97].

2.2.2 Luminance

The luminance of a color is a measure of its peszkbrightness. The
computation of luminance takes into account thetfaat the human eye is far
more sensitive to certain colors (like yellow-gredman to others (like blue)
[Sac99].

2.2.3 Chrominance

Chrominance is a complementary concept to luminafigeu think of
how a television signal works, there are two congmis—a black and white
image which represents the luminance and a cogmasiwhich contains the
chrominance information. Chrominance is a 2-dimamai color space that
represents hue and saturation, independent ofthagh [Sac99].
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2.3 Types of Digital Images

The digital image f(x, y) is represented as two-ahsional array of
data, where each pixel value corresponds to tlghtness of the image at the
point (X, y). The simplest type of image is the momrome (one color, this is
what we normally refer to as black and white) imalg¢a, other types of
image data required extension or modification ts thodel, typically there
are multiband images (color, multispectral), andytltan be modeled by
different function f(x, y) corresponding to eaclparte band of brightness
information. The image can be classified into thiéofving types [Umb98]:

2.3.1 Black and White Images

A black and white image is made up of pixels eatllnich holds a
single number corresponding to the gray level @f ittnage at a particular
location. These gray levels span the full rangenfldack to white in a series
of very fine steps, normally 256 different graysnc® the eye can barely
distinguish about 200 different gray levels, tllgnough to give the illusion
of a stepless tonal scale as illustrated below:

Assuming 256 gray levels, each black and whitelgae be stored in
a single byte (8 bits) of memory [Sac99].

2.3.2 Color Images

A color image is made up of pixels each of whickdedhree numbers
corresponding to the red, green, and blue leveth@fimage at a particular
location. Red, green, and blue (sometimes reféeoed RGB) are the primary
colors for mixing light—these so-called additivenpary colors are different
from the subtractive primary colors used for mixijpg@ints (cyan, magenta,
and yellow). Any color can be created by mixing toerect amounts of red,
green, and blue light. Assuming 256 levels for gachnary, each color pixel
can be stored in three bytes (24 bits) of memohys €orresponds to roughly
16.7 million different possible colors while for ages of the same size, a
black and white version will use three times legsnory than a color version
[Sac99].
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2.3.3 Binary or Bilevel Images

In a binary image, each pixel assumes one of ambydiscrete values.
Essentially, these two values correspond to on @&hdA binary image is
stored as a two-dimensional matrix of O’'s (off psyeand 1's (on pixels). A
binary image can be considered a special kind tehsity image, containing
only black and white. Other interpretations aresgue, however; you can
also think of a binary image as an indexed imag# wnly two colors
[Mat99].

2.3.4 Indexed Color Images

Indexed color(or pseudocolor) is the provision of a relatively small
number of discrete colors — often 256 — incdormapor palette The frame
buffer stores, at each pixel, the index number oblar. At the output of the
frame buffer, a lookup table uses the index toiee¢r red, green and blue
components that are then sent to the display [Foy97

There are several problems with using indexed cédorepresent
photographic images. First, if the image contairsardifferent colors than
are in the palette, techniques such as ditheringt ine applied to represent
the missing colors and this degrades the imageortSeccombining two
indexed color images that use different palettesvan retouching part of a
single indexed color image creates problems beaafube limited number of
available colors [Sac99].

2.4 Computer Color Image Representation

The computes operating system displays, the (RGB) color model,
which is called “additive” because a combinatiomldaup” the three pure
colors lead to white light.

In the simplest form of black and white computespiiays a single bit
of memory is assigned to each pixel. Since eachanghit can only be (0 or
1), a one-bit display system can only manage tworsdblack or white) for
each pixel on the screen as shown in figure (2\8i96].
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One-bit black and white display

Pixels on the
computer screen

Each screen pixel is represented T
by ane bit {0 or 17 of memory.

Enlarged screen
shows individual
pixels.

Fig. (2.1)One bit black and white image display.

When eight bits of memory are dedicated to eaclkelpach pixel
could be one of 256 colors (2562 This kind of computer display is called
an “eight bit"or “256 color” display as shown ingtire (2.2). In eight bit
images the 256 colors that make up the image &eereed to as “palette “or
“index”(also called a color look up table, CLUT)h& main point for eight bit
images is that they can never contain more tharcakss.

8-bit or 256 color displays Pivels on the

computer screen

Each screen pixel is represented
by eight bits of memary.

1|0 |1 (0|0 )|0DO]|1 1

256 colars (Color Look Up Table)
[T 11

Fig. (2.2)8-bit color image display.
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True-color or 24-bits color displays can show railliof unique colors
on the computer screen. True color images are csatpby dedicating 24
bits of memory to each pixel; eight bit for eachmpmnent (red, green, and
blue) (8+8+8=24) as shown in figure (2.3)

24-bit “true color™ displays
Pixels on the
computer screen

Cach acreen pixel is repressnted by thrres groups
of eight bits, for a total of 24 bits,
E1 ug Green Red

DDDDDDDI]/I1111111/11111111/)

Photoshop colar picker shows the
R, G, B components that make "yellow.”

Fig. (2.3)24 —bit “True color image” —display.

True-color or 24 bits images are typically muchgtarthan eight bits
images in their uncompressed state, because easlhpa 24-bits image has
24 bits of memory dedicated to it, typically ingermonochrome layers (red,
green, and blue) as shown in figure (2.4) [Wei96].

Ay O+H+8=24bits

Blue layer (& bits)

Composite RGE image

Fig. (2.4)Composite RGB images from three layers.
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Since this type of images is the most common foiméodays high-
quality computer display and storage devices, tbezein the present work
this type of images will be utilized, also, thees#éd file format will be the
BMP (bitmap image)file due to the popularity of this format [Lus94his
type of images contains both header and image diat@ as shown in figure
(2.5).

\ Header Image pixel data

54 Byte (Image height) X(Image width)

Fig. (2.5)The BMP file format of 24-bits image.

The header contains information about the imades,(limage size,
width, height, number of bits per pixel...etc)

2.5 Color Models

For computer applications; color is usually desdibn terms of the
red, green, and blue, or RGB color model [Gon92jwelver, the RGB color
model does not model well the human perceptionotdrc Applying image
processing techniques in the RGB model will ofteadpice color distortion
and artifacts. Therefore, color models based orintimean perception of color
may be beneficial. The color models presented im $bction are the most
popular in the image processing community. Equatiodescribing
transformations between color models and the reaforusing color models
other than RGB will be presented in the followirgtons.

2.5.1 RGB Color Model

The RGB model is the most frequently used color ehddr image
processing. Since color cameras, scanners andagsspre most often
provided with direct RGB signal input or outputistikolor model is the basic
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one, which is, if necessary, transformed into ott@or models. The color
gamut in RGB model forms a cube (see figure 2.@&chEcolor, which is
described by its RGB components, is representealnyint and can be found
either on the surface or inside the cube. All gralprs are placed on the main
diagonal of this cube from black (R=G=B=0) to wh{R=G=B=max). The
main disadvantage of RGB color model in applicaionvolving natural
images comes from the high correlation betweencdmponents; about
0.78for B-R, 0.98 for R-G and 0.94 for G-B compaisemhis makes the
RGB model unsuitable for compression. The otheadliantages of RGB
model can be summarized as follow [San98]:

1. Psychological non-intuitively, i.e. it is hard taswalize a
color based on R, G, and B components.

2. Non-uniformity, i.e. it is impossible to evaluateetperceived
differences between colors on the basis of disentd&kRGB

model.
A
Blue (0, 0, Bmax)
Cyan (0, Gmax, Bmax)
White
(Rmax, Gmax, Bpriax)
Magenta
(Rmax, 0, Bmax)
Line
of
gray Green (0,Gmax, 0)
<k (0, 0, 0) -
Red (Rmax, 0, 0) Yellow (Rmax, Gmax, 0)

Fig. (2.6, RGB color cube. The gray scale spectrum lies erlitte
joining the black and white vertices.

2.5.2 CIEXYZ Color Model

The CIE system is based on the description afrca¢ a luminance
component Y, and two additional components X and The spectral
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weighting curves of X and Z have been standardlzedhe CIE based on
statistics from experiments involving human obsesveXYZ tristimulus

values can describe any color. (RGB tristimulus valued Wwe described
later.)

The magnitudes of the XYZ components are propoatian physical
energy, but their spectral composition correspotmshe color matching
characteristics of human vision [Poy97].

In the (CIE) spectral and N.T.S.C primary systeth® tristimulus
values required to achieve a color match are somstnegative. The CIE has
developed a color standard based on imaginary pyimalors XYZ, which
has been used in colorimetry. It is designed ttdyaenon-negative tristimulus
value for each color. It is related to RGB tristimaivalues according to the
following relationship [San98]:

X7 [0.431 0.342 0.178|[R
Y |=|0.220 0.707 0.071||G (2.1)
Z | 10.020 0.130 0.939||B

2.5.3 CMYK Color Model

CMYK is a color model used for printing. It genastby combining
pigments, or paints, for the model’s three primemjors: cyan, magenta and
yellow. For convenience, CMYK also uses black (Kgt B, to avoid
confusion with blue) because to generate black \@MYK would take
mixing the paints from the three primaries; it'schueasier to have black ink
to create a really dark black on paper [AsiO3].

Like the RGB color model, we’ll need three cololagtities to produce
a color in the CMYK color model. Also like the RGfodel, each color
component assumes the same range of values and¢@acltomponent uses
the same unit of measurement (unlike the hue-baebkls, where the hue is
measured as an angle and the other componentseasurad as a number
between 0.0 and 1.0). The CMYK color model candy@esented as a cube
similar to the RGB cube. Figure (2.7) shows the GdVtube [AsiO3].
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Fig. (2.7) The CMYK Color Cube.

2.5.4 YUV Color Model

In Europe the YUV color model (the basis of the PAWV signal
coding system) is used [San98):

Y 0.299 0.587 0.114 ][R
U|=|-0.147-0.289 0.437|| G (2.2)
Vv 0.615 -0.515-0.100|| B

The Y (luminance) component is identical to thedfnponent in XYZ
model. The YUV model is widely used in coding ofaxamages and in color
video. Because the color representation of an insgggiences requires less
detail than the luminance, the data rate can beedtas follows: 80% to the Y
component and 10% each to the U and V componeat®©g.

The color models discussed thus far were desigroed specific
purposes: RGB for color image display, CMYK formimng and HSV (HSI,
HSB) for an artistic view of color. However, theseone glaring omission
from these color models. None of them leveragenaportant property of
human vision. Human vision is more sensitive tongjes in light intensity
than changes in color. Perhaps that's why we hawes mods than cones on
our retinas. The YUV color model takes advantageisfinteresting property
of human vision [AsiO3].
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2.5.5YIQ Color Model

The YIQ color model is useful in color TV broaddagt and is a
simple linear transform of the RGB representati®or99]:

Y7 [0.299 0.587 0.114][R
| |=|0.596-0.274 -0.322|| G (2.3)
Q| |0.212-0.523 0.311)| B

The Y (luminance) component is identical to thedfnponent in XYZ
model. The inverse transform from YIQ to RGB isfpaned as follows:

R [1.000 0.956 0.621][Y
G |=|1.000-0.272-0.647|| | (2.4)
B| |1.000-1.106 1.703||Q

In this model the luminance (Y component) is sefgararom the
chrominance ((I and Q components), which is desigonebe more sensitive
to changes in Luminance than to changes in ChrammaSeparating out the
luminance from other components has several adgasia

1.Since the human eyes are more sensitive to thenamoe than to
chrominance, thus, the bits can be distributedefozoding in a more
effective way, Q and | components can be repredebte fewer
numbers of bits compared to the Y component (i@.,and |
components can be limited without noticeable deapiad).

2.We can drop the chromatic part altogether if we tveamhromatic image
(this is how black and white TVs can pickup the sasignal as color
ones).

2.5.6 YC,C, Color Model

This color model is closely related to the YUV mbdeis appropriate
for digital coding of standard TV images and isagi\as follows [San98]:
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Y 0.299 0.587 0.114[R
C, |= [-0.169-0.331 0.500 |G (2.5)
C, 0.500-0.418-0.081f| g

The YCDCr format is widely used for digital videlm this format,
luminance information is stored as a single compo¥é), and chrominance
information is stored as two color difference comgats (Cb and Cr). Cb
represents the difference between the blue comp@meha reference value,
and Cr represents the difference between the regbaoent and a reference
value [Mat99].

Other current applications in image compressiog. (8PEG format)
often employ YGC, model as quantization model [Son99].

2.5.7 IHS Color Model

In the perception process, a human can easily reoedpasic attributes
of color intensity (1), hue (H) and saturation ($he hue (H) represents the
impression related to the dominant wavelength ef plerceived color, the
saturation corresponds to relative color puritgKlaf white in the color) and
in the case of a pure color it is equal to 100%. é&ample, for a vivid red
S=100% and for a pale red (pink) S=50%. Colors \z#no saturation are
gray levels. Maximum intensity is sensed as purgayminimum intensity as
pure black [San98]. As a three dimensions reprasent the IHS color
model (see Figure 2.8) can give a hexagonal volwith vertical axis
representing intensity (i.e., from black (0) to th{1)), the distance from this
axis representing saturation (from O to 100%), dmel horizontal angle
representing the change in the hue (from O to 2gPe®, i.e., hue is measured
from red. This model, as in the YIQ model, inteyngl) is decoupled from the
color information, which is described by hue andisgtion components.

As hue varies from 0 to 1.0, the corresponding rsol@ary from red,
through yellow, green, cyan, blue, and magentak baaed. As saturation
varies from 0 to 1.0, the corresponding colors faoyn unsaturated (shades
of gray) to fully saturated (no white componentys ¥alue, or brightness,
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varies from 0 to 1.0, the corresponding colors bezancreasingly brighter
[Mat99].

It is sometimes useful to convert from RGB colorbeuto IHS
hexagonal cone, and vice versa. The transform fR§B to IHS model is
accomplished as follows: [Mat87]

Intensity = max(R, G, B)
M =min(R, G, B)
Range = Intensity-M
if intensity # 0 then Saturation = Rangé&Zimsity else Saturation=0
if S # 0 then
rl = (Intensity-R)/ Range
g1 = (Intensity-G)/ Range
bl = (Intensity-B)/ Range
if Intensity = R then
if M = G then hue = 5+b1 elseeh=1-g1
else if Intensity = G then
if M = B then hud-+#1 else hue=3-bl
else if M= R then hue ¥fd+else hue =1-r1

hue = hue*60
else hue = undefined
endifS#0

end.

While the inverse transform (IHS to RGB) is:
if hue =360 then hue =0
hue = hue / 60
| = int (hue); f = hue —i
P1= intensityx (1- Saturation)
P2= intensityx (1- (f x Saturation))
P3= intensityx (1- Saturationx (1-f))
case of i
0: R=intensity: G=P3: B=P1
1: R =P2: G =intensity: B = P1
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2: R =P1: G = intensity: B = P3
3: R =P1: G = P2: B = intensity
4: R = P3: G = P1: B = intensity
5: R =intensity: G = P1: B=P2
end case i
end

Green Yellow

White
Cyan Red

Magenta
Blue g

v
n

Black

Fig. (2.8)HIS hexagonal cone.

2.5.8 CIELAB Color Model

The CIELAB was designed to approach a perceptuaiijorm color
model, in which the perceived color differencesogguzed as equal by the
human eye would correspond to equal Euclideanristsa

AR
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It is based on the differences of three elemertalyr pairs: red-green,
yellow-blue, and black-white. The values of CIELABe L, which stand for
lightness with a scale value ranging from O(blatk)100(white) and is
orthogonal to aand b (see figure 2.9). aenotes the redness-greenness and
b  denotes the yellowness-blueness [Hei00].

A color in CIELAB color model is computed directfsom the color
components in CIEXYZ and the component of referenbée (X, Yo, Z).
The CIELAB color model is defined by the followimgpressions [San98]:

L" =116f LLJ -16 (2.6)

0

(2.7a)
where
1/3
X x>0.0088 2 7b
f(x)= 16 ( )
7.78%+——  otherwise
116
The reverse transformation (for x >0.008856) is:
X=X 4(P+a/500)° (2.8a)
Y=Y P (2.8b)
Z=Z7,(P-b/200)’ 2.Kc)

Where
P=(L'+16)/116 (2.8d)

Yy
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A White
100

Yellow (+)
b*

/ Red (+)

0 Black
Fig. (2.9) A three dimensional representation of the CIELA#oc mode.

A

Blue (-)

2.5.9 CIELUV Color Model

The CIELUV model is recommended by the CIE for agilons in
additive light source conditions (e.g. display).eTtefinition of L (which
means the lightness the same as for the CIELAB color model which is
given in equation (2.6). The wtands for the chromaticity variation
approximately from green to red, andrepresent the chromaticity variation
approximately from blue to yellow. They are defiredfollows [San98]:

u'=13L (u'-u) (2.9)
v=13L (V' - V) (2.10)

The quantitiesu;, and v, refer to reference white or the light source;
for CIE standard illuminantu;,=0.2009, v, = 0.4610 [ChrO01]. The value of
u'and v’ can be determined by using the following:

, 4X

u'= (2.11)
(X +15Y +32)

Yy
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V= QY
(X +15Y +32)

(2.12)

Most of the physical display device are driven gBRsignals, so the
transformation from L, u’, v’ color model to RGB model must be done. The
inverse mapping to RGB model is done in two steps.u, v to XYZ and
XYZ to RGB. The transformation from CIELUV to XYZiperformed as
follows [Poy97]:

u'=u/(13L)+u’ (2.13)
V' =V /(13L*)+ V) (2.14)
Y=((L"+16)/116} (2.15)
X=-9Yu'/((u'-4)v'-u' v") (2.16)
Z=(9Y-15Vv' Y- V' X)/3V' (2.17)
Then,
R=0.431X-1.393Y-0.476Z (2.18)
G=-0.969X+1.876Y+0.427Z (2.19)
B=0.068X-0.229Y+1.069Z (2.20)

Since displays are most often provide output imags direct RGB
model, images in any other color models must bestoamed back to the
RGB color model after handling the processed coraptmin these models.
In the present work, we applied the model (YIQ¥hswn in chapter-3.

2.6 Color Image Compression

Compressed images are representations that relgssestorage than
the nominal storage. This is generally accomplishgedcoding of the data
based on measured statistics, rearrangement dbthdo exploit patterns and
redundancies in the data, and (in the case of lossyression), quantization
of information. The goal is that the image, whegatepressed, either looks
very much like the original despite a loss of som@&rmation (lossy
compression), or is not different from the origi@ssless compression)
[Gib0Q].

AR3
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Three primary types of redundancy can be found igital images
[Yan98; Shi0O]:

1. Spatial redundancy due to the correlation betwesighioring
pixel value.

2. Spectral redundancy due to the correlation betveador planes
or spectral bands.

3. Temporal redundancy due to the correlation betwaiéferent
frames in sequence of images.

Image compression aims to reduce the number oflyitsemoving
these redundancies. Based on the difference betwadginal and
reconstructed version, data compression schemedeativided into two
broad classes: [Add0O]

2.6.1 Lossless coding

Also, called noiseless, or reversible compresdiossless compression
is usually limited to compression ratios of 4:1less, and even these ratios
are achievable only on sources that have consildesthicture. For images
and scientific data, lossless compression raties wwually much lower,
frequently 2:1 or less. Codes designed for noisetesnpression may even
cause data expansion [Bot98].

The goal of lossless image compression is to reptesn image signal
with the smallest possible number of bits withoogs of anyinformation,
thereby speeding up transmission and minimizingag® requirements. The
number of bits representing the signal is typicabpressed as an average bit
rate (average number of bits per sample for shfiges, and average number
of bits per second for video). The functioncoimpressioms often referred to
ascoding,for short [Gib00]. The most popular lossless corapie methods
are: Run length encoding, LZW, Arithmetic coding, Hufincading, S-shift
coding.
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2.6.2 Lossy coding

The second type of image compression is lossyynoisirreversible
compression [Bot98].

The goal of lossy compression is to achieve the pessible fidelity
given an available communication or storage bi-Epacity, or to minimize
the number of bits representing the image signbjesti to some allowable
loss ofinformation. In this way, a much greater reductiorbit rate can be
attained as compared to lossless compression, whiokcessary for enabling
many real-time applications involving the handliagd transmission of
audiovisual information [Gib00]. The most well knewossy compression
methods are Transform Coding, Vector Quantizat®lock Truncation and
Subband Coding. The proposed technique utilizes @fvthe compression
techniques presented in figure (2.10).

The most common approaches in color image compressiplies the
application of separated encoding of the three anagmponents. Lossy
coding mostly operates on the luminance-chrominaepeesentation with
subsampled chrominance. The rational for thisas tihe chrominance band is
narrower than that for luminance. The chrominanommonents are often
more compressed than luminance, at least in highpoession applications.
Thus the amount of chrominance data in the comedessistream can be
20% less than the amount of compressed luminanee[8an98]. See figure
(2.10).

1
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Compression

Y

A 4

A 4

A

A 4

A

Methods
\ 4 \ 4
Lossless Compression Lossy Compression
Run length Encoding Vector Quantization
Huffman Coding Predictive Coding
. . . DCT based |¢ Transform
Arithmetic Coding Transform based image
compression
Wavelet
LZW Transform | Fractal Image
compression

Fig. (2.10)The Most Popular Image Compression Methods.

2.7 Vector Quantization

Vector quantization is used for both image and dotmmpression. In
practice, vector quantization is commonly used dmgress data that have
been digitized from an analog source, such as smgbund and scanned
images (drawings or photographs). Such data iedallgitally sampled

analog data(DSAD). Vector Quantization is based on two facts:

1. The compression methods that compress stringserrdttan
individual symbols, can, in principle, produce betesults.

2. Adjacent data items in an image (i.e., pixels) amdligitized
sound (i.e., samples) are correlated. There isoal ghance that
the near neighbors of a pixel P will have the saalaes as P or
very similar values. Also consecutive sound samgaedly differ

by much.

yv
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For images, VQ works as follows:
1. Two Operations : Encoder and Decoder
2. Encoder takes an input vector and outputs the irdeke codeword
that offer lowest distortion.
3. This index is sent to decoder through a channel.
4. Decoder replaces index with associated codeworggQ4.

Following is a simple, intuitive vector quantizationethod for image
compression. Given an image, divide it into smécks of pixels, typically
2x2 or 4x4. Each block is considered a vector. @heoder maintains a list
(called acodebook of vectors and compresses each block by writinghe
compressed stream a pointer to the block in thelook. The decoder has
the easy task of reading pointers, following eaomter to a block in the
codebook, and joining the block to the image-so{lsge figure (2.11)).
Vector quantization is thus an asymmetric compogssiethod.

In the case of 2x2 blocks, each block (vector) maa®f four pixels. If
each pixel is one bit, then a block is four bitegcand there are only'216
different blocks. It is easy to store such a snp@lmanent codebook in both
encoder and decoder. However a pointer to a blogduch a codebook is, of
course, four bits long, so there is no compresgaim by replacing blocks
with pointers. If each pixel ik bits, then each block ikaits long and there
are 2* different blocks [Sal00].

The Encoder The Decoder
Input Vector Output Vectar
L | p Search
Engine I:I
A
Codebook  Indices Indices Codebook

Channel

s
o v

Y ¥ ¥ ¥
|

mMEn

Fig. (3.11)The encoder and decoder in a vector quantization.

YA



Chapter Two: Color Models & Image Compsion

2.7.1 The LBG Design Algorithm

Designing a codebook that best represents thefgapot vectors is
very-hard. That means that it requires an exhagisswarch for the best
possible codewords in space, and the search igeagponentially as the
number of codewords increases, therefore, we rés@uboptimal codebook
design schemes, and the first one that comes td mithe simplest. It is
namedLBG algorithm forLinde-Buzo-Graylt sometimes is also known as
K-means clustering .

This algorithm is in fact designed to iterativelggrove a given initial
codebook. The design of a codebook wiNkcodeword can be stated as
follows [Lin80]:-

1. Determine the number of codeword, or the size of the codebook.

2. SelectN codewords at random, and let that be the initialebmok.
The initial codewords can be randomly chosen fram get of input
vectors.

3. Using the Euclidean distance measure clusterizevédotors around
each codeword. This is done by taking each inggator and finding
the Euclidean distance between it and each codewiind input vector
belongs to the cluster of the codeword that yieflde minimum
distance.

4. Compute the new set of codewords. This is doneolitaining the
average of each cluster. Add the component of gactor and divide
by the number of vectors in the cluster.

1 m
Yi=— X Xij (2.21)
mj -1
wherei is the component of each vector (X, y, z, ...aions),mis the
number of vectors in the cluster.

Repeat stepsl, 2 and 3 until the either the codisvdon't change or
the change in the codewords is small .

ya
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This algorithm is by far the most popular, and tigtdue to its
simplicity. Although it is locally optimal, yet is very slow. The reasonitis
slow is because for each iteration, determinindneshgster requires that each
input vector be compared with all the codewordthacodebook.

2.8 Scalar Quantization

The function of scalar quantization is to convequantity to a finite
precision representation (such as converting reaibers to integers in digital
computing) [GibO0O].

The scalar quantization can be represent as [Ala02]

1. Determine the minimum (M and maximum (M) values of the image and
then determine their dynamic range (R).

R:MX_Mn

2. Determine the number of bits allocated, B, feing image by using the
following equation:

B =Log (R)

3. Determine the quantization coefficients of imbdgeapplying the following
expression:

- &

o -1

5. For each quantization coefficient of image, deteemthe quantization
index (Q) by applying scalar quantization to reduce the Ip@nof bits
needed to represent, approximately, the coeffisiaatfollows:

Qx, y)= "“g(x’(y?) ~Mn 2

Where img (X, y) is the image coefficient at thesigion (X, y), and Q
(X, y) is the corresponding quantization index.
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2.9 Transformation Methods

These methods are used to map the signal from aeaid
representation to another (e.g. from the time dantai the frequency
domain), from these transformation methods is:

2.9.1 Wavelets Transform

A wavelet, which literally means little wave, is ascillating zero-
average function that is well localized in a snpahiod of time. A wavelet
function, known as a mother wavelet, gives risa tamily of wavelets that
are translated (shifted) and dilated (stretchedoonpressed) versions of the
original mother wavelet [Asu02].

The wavelet transforntan be described as a transform that has basis
functions that are shifted and expanded versionthemselves. Because of
this, the wavelet transform contains not just festey information as well.
One of the most common models for a wavelet transfoses the Fourier
transform and highpass filters. To satisfy the dows for a wavelet
transform, the filters must qeerfect reconstruction filtersvhich means that
any distortion introduced by the forward transfomil be canceled in the
inverse transform (an example of these types w@réilarequadrature mirror
filters).

The wavelet transform breaks an image down into $otpsampled, or
decimated, images. They are subsampled by keepeny ®ther pixel. The
results consist of one image that has been highplssed in both the
horizontal and vertical direction, one that hasrbleighpass filters in vertical
and lowpass filters in the horizontal, one that bagn lowpassed in the
vertical and highpassed in the horizontal, and thre¢ has been lowpass
filtered in both directions.

Numerous filters can be used to implement the veavehnsform, and
two of the commonly used ones, the Daubechies hadHaar. These are
separable, so can be used to implement a waveetsform by first
convolving them with the rows and then the colufurmb98].

AR
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2.9.1.1 Discrete Wavelet Decomposition

A time-scale representation of a digital signablsained using digital
filtering techniques. The heart of the DWT impligg filters h and g, low-
pass and high-pass respectively. The block diagramone level DWT s
shown in figure (2.12). The one dimensional sigmaljs convoluted with
high-pass filter to analyze the high frequencias iais convoluted with low-
pass filter to analyze the low frequencies, andheasult is down sampled by
two, yielding the transformed sigrnajandx,. A DWT is obtained by further
decomposing the low-pass output sigralby means of a second identical
pair of analysis filters. This process my be repgéatnd the number of such
stages defines the level of the transform [Bur98].

A 4
A 4

12—>Xh

A 4

h >l L > Xg
2

Fig. (2.12)One levelwaveletdecomposition.

The DWT analyze the signal at different frequenands with different
resolutions by decomposing the signal into coag@aimation and detall
information. DWT employs two sets of functions,ledlthe scaling function
and wavelet function, which are associated with-f@s8s and high-pass
filters, respectively. The decomposition of thensiginto different frequency
bands is simply obtained by successive low-passhaidpass filtering of the
time domain signal. The original signal x(n) isfipassed through a half band
high-pass filter h(n) and low-pass filter I(n). &ftfiltering half of the samples
can be eliminate. The signal can therefore be sopleal by two. These
consitute one level of decomposition and can maghieally be expressed as
follows [AINO1]:

Yy
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Yhigh(k) =Zx(n).h(2k —n)
n (2.23)

~—

Yiow(K) =Zx(n) (2k —n)
n

J

where Yign(k) and yo.(k) are the output of the high-pass and low-pass
filters respectively, after subsampling by 2.

The above procedure, which also known as subbadihgocan be
repeated for further decomposition. At every levéie filtering and
subsampling will result in half the number of haffthe number of samples
(and hence half the time resolution). Figure (2.dIRstrate this procedure,
where x(n) is the original signal to be decomposed], I(n) and h(n) are low-
pass and high-pass filters respectively [Alh01]

2.9.1.2 Wavelet Image Decompositions

This section discusses several ways for decompaamngnage, each
involving a different algorithm and resulting in bhands with different
energy compactions. It is important to realize tihat wavelet filters and the
decomposition method are independent. The DWT ofvage can use any
set of filters and decompose the image in any vag. only limitation is that
there must be enough data points in the sub bandsvier all the filter taps.
The main decomposition types considered with waved@sform are [Sal00]:

1) Line decomposition

In this method, the DWT is applied to each row @& timage, resulting
in smooth coefficients on the left (sub-band L19 a@etail coefficients on the
right (sub-band H1). Sub-band L1 is then partitbmeo L2 and H2, and the
process is repeated until the entire coefficientrimas turned into detail
coefficients (see figure 2.13). The wavelet tranmsfois then applied
recursively to the leftmost column, resulting ineagmooth coefficient at the
top left corner of the coefficient matrix. This tastep may be omitted if a
decomposition method requires that the image rowes imdividually
compressed [Sal00].
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Original Image

L1 H1 L2 H2 H1

L3L2

L3H2

L3L1

H3 H2 H1

L3H1

H3| H2 H1 L3| H3| H2 H1

A

A

L3H1

Fig. (2.13)Line Wavelet Decomposition.

i) Quincunx decomposition

Quincunx decomposition, proceeds level by level dadomposes sub-
band L of level i into sub-bands H and L, of level i+1. It is efficient and
computationally simple (as shown in figure 2.14n @verage, it achieves
more than four times the energy compaction of the method. It results in
fewer sub-bands than most other wavelet decompasiéi feature that may
lead to reconstruct images with slightly lower &bkquality. This method is
not used much in practice, but it may performsaxrely well and may be the
best performer in many practical situations [Sal00]
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L2
Original Image g H1 > H1

H2

L4

H3 L3| H3
H4 H1
< H1 |«
H2 H2

Fig. (2.14)Quincunx wavelet decomposition.

i) Pyramid decomposition

The pyramid decomposition (figure 2.15) is by fae tmost common
method used to decompose images that are wavafetférmed. It results in
subbands with horizontal, vertical, and diagonahgm details. The three
subbands at each level contain horizontal, vertieald diagonal image
features at a particular scale, and each scalgited by an octave in spatial
frequency (division of the frequency by two).

Pyramid decomposition turns out to be very efficieway of
transforming significant visual data to the detasbefficients. Its
computational complexity is about 30% higher thhattof the quincunx
method, but its image reconstruction abilities laigher. The reasons for the
popularity of the pyramid method may be that itsiammetrical, and its
mathematical description is simple [Sal00].
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Temporary H

l

Temporary L Original image

LH1 HL1 HH1
LL1

A 4 A 4
Temporary L Temporary H

LH2 HL2 HH2
LL2

Fig. (2.15)Pyramid Wavelet Decompaosition.

iv) Standard decomposition

The first step in the standard decomposition spply whatever discrete
wavelet filter is being used to all rows of the geaobtaining sub-bands L1
and H1. This is repeated on L1 to obtain L2 and &# so on k times (as
shown in figure 2.16). This is followed by a secostdp where a similar
calculation is applied k times to the columns. #1k the decomposition
alternates between rows and columns, but k maydxgey than 1.

The result is to have one smooth coefficient atitipeleft corner of the
coefficient matrix. This method is somewhat similarline decomposition.
An important feature of standard decompositiorhet twvhen a coefficient is
guantized, it may affect a long, thin rectangulegaain the reconstructed
image. Thus, very coarse quantization may resultartifacts in the
reconstructed image in the form of horizontal regtas[Sal00].
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A 4
A 4

Original image L1 H1 L2|H2 | H1

A
A

Fig. (2.16)Standard Wavelet Decomposition.

v) Full wavelet decomposition

This type of decomposition is also called Wavelet Packdtansform.
It is shown in figure (2.17).
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Original Image

LLLL |LLHL HLLL HLHL

LL HL

LLLH |LHH HLLH HLHH

A

LHLL | HHL HHLL HHHL

LH HH

LHLH |LHHH |HHLH | HHHH

Fig. (2.17) Full Wavelet Decomposition
(Wavelet packet of an image for one, two decommslevels).

Denote the original image by. lit is assumed that its sizeX22'. After
applying the 2-D discrete wavelet transform tatiends up with a matrix, |
partitioned into four sub-bands. The same 2-D DWE. (iusing the same
wavelet filters) is then applied recursively to keaaf the four sub-bands
individually. The result is a coefficient matrix ¢onsisting of 16 sub-bands.
When this process is curried outtimes, the result is a coefficient matrix
consisting of 2x 2" sub-bands, each of siz& 2 2. The top-left sub-bands
contains the smooth coefficients (depending onpeicular wavelet filter
used, it may look like a small. Versions of thegoral image) and the other
sub-bands contain detail coefficients. Each suldbaorresponds to s
frequency band, while each individual transformffioent corresponds to a
local spatial region. By increasing the recursicepttl r, the frequency
resolution is increased at the expense of spasallution [Sal00].
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2.9.1.3 Haar Wavelet Transform (HWT)

The oldest and most basic of the wavelet systemsbiastructed from
the Haar basis function. The equations for forwmdehr wavelet transform
and inverse Haar wavelet transform, are given by:

1) Forward Haar Wavelet Transform (FHWT)

Haar wavelet transform consists of both: low pass lsigh pass filters
Is the preferred wavelet because it can be reaciptemented in hardware
[San00]. The high pass and low pass filters aréedahe decomposition
filters because they break the image down or deosmphe image into
detailed and approximation coefficients, respedtyive

The approximation band (LL) is the result of appdylow pass filter in
vertical and horizontal directions, the (LH) barsdthe result of applying
horizontal low pass filter and vertical high pastef, while the (HL) band is
the result of horizontal high pass filter and \aatilow pass filter, and finally
(HH) band is the result of horizontal and vertitagh pass filter. In this
transform each (2x2) adjacent pixels are pickedgesup and passed
simultaneously through four filters (i.e., LL, HLH, and HH) to obtain the
four wavelet coefficients, the bases of these té+8l could be derived as
follows: [Ala02]

The low and high filters are:

1
L=—q@ 1)

i -
H :ﬁ (1 '1)

Thus the horizontal low pass followed by the veaidtitow pass filter is
equivalent to:

LL =%®(1 1) =1[1 lj (2.25)
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The horizontal high pass filter followed by vertitaw pass filter is:

1( 1 11 1
HL == 1 1== 2.26
2(_J( ) 2(_1 _ ] (2.26)
While the horizontal low pass filter followed by rtieal high pass filter is
equivalent:
1(1 1(1 -
LH==| |1 -1)== 2.27
2@( ) 2(1 _ j (2.27)

And finally, the horizontal high pass filter foll@ad by vertical high pass filter
IS:
1 1 -
HH =1 @ -1 -1 (2.28)
2 -1 2(-1 1

i) Inverse Haar Wavelet Transform (IHWT)

The inverse one-dimensional HWT is simply the iseerto those
applied in the FHWT,; the IHWT equation dda03]:

1) IfNiseven

X(Zi):w ji=0...N/2-1 1 2.29)
x(2i+1):w i=0...N/2-1 J

ii) If N is odd
Az):% i=0...(N-1)/2 |
x(2i+1):L2H(i) i=0...(N-1)/2 » (2.30)
x(N -1) = L( N;'ljx/i
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Where

N is the number of pixels.

L is the low frequencies subbands.
H is the high frequencies subbands.

2.9.1.4 Integer Wavelet Transform(IWT)

One level of IWT decomposes the signal into a leegfiency part and
high frequency part, both at lower resolutions. Tdve part can be used with
the high part to reconstruct the original signdlisidecomposition represents
one level of the IWT.

Typically several levels of forward IWT can be cargxd, by iterating
the procedure just described upon the low-frequgrasy (in a tree scheme),
or reapply the procedure upon both low-frequenay ligh frequency parts
(in a packet scheméMajo7].

2.9.2 Wavelets features for Image Compression

This is a summary of some features of image comspesusing
Wavelets [KhaO3]:

1. Wavelet transform has a good energy compadt, preserved across the
transform, i.e. the sum of squares of the waveadefficients is equal the
sum of squares of the original image.

2. Wavelets can provide a good compression, it parform better than
JPEG2000, both in terms of SNR and image qualityusTshow no
blocking effect unlike JPEG2000.

3. The entire image is transformed and compressea single data object
using wavelet transforms, rather than block by klothis allows for
uniform distribution of compression error across ¢émtire image and at all
scales.
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4. The wavelet transform methods have been showgraweide integrity at
higher compression rates than other methods wimdegrity of data is
important e.g., medical images and fingerprints, et

5. Multiresolution properties allow for progressivansmission and zooming,
without extra storage.

6. It is a fast operation performance, in addittonsymmetry: both the
forward and inverse transform have the same contplexn both
compression and decompression phases.

7. Many image operations such as noise reductidniraage scaling can be
performed on wavelet transformed images.

2.10 Compression Efficiency Parameters

As mentioned previously, image compression teclesqean be
distinguished in two classes if our concern isékact reconstruction of the
original data or not. These include lossy and &sss| All the adopted coding
methods in the present work are classified as sylesmpression method.
Therefore, to evaluate the compression efficienicthe proposed methods,
the following parameters were utilized in the catranalysis,

2.10.1 Compression Ratio

It is defined as the ratio between he size of tigiral image data (file)
and the size of overall compressed data file [Rps82

Original File Size
CR= - _
CompressefdFile Size (2.31)

2.10.2 Fidelity Criteria

Mostly, compression techniques cause some infoomaddisses, up to a
certain tolerated level. Thus a use of fidelityenia is required to measure the
amount of lossess. Two basic ways of fidelity ciatere used [Umb98]:
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1-Subijective fidelity criteria, and
2- Objective fidelity criteria.

Subjective fidelity criteria require the definitiarf a qualitative scale to
assess image quality. This scale can then usedulnar test subjects to
determine image fidelity. In order to provide urdad results, evaluation with
subjective measures requires careful selection hef test subjects and
carefully designed evaluation experiments.

When the level of information loss can be expressea@ function of
the original and reconstructed image, it is said@obased on an objective
fidelity criterion. Different objective criteria Babeen considered in the
literature, among the most commonly used istl@an square error (MSE),

MSE= E{(f - f')2}= . iM Nz:Mz:[f x,y) = £'(x, y)]? (2.32)
y=0 x=

Where f, f' represent the original and the reconstructed émag

Considering the difference between the original #rereconstructed
images as a noise a closely related objectiveitydeliteria is themean
signal tonoise ratio (MSNR)s used which is given by [Jor97]:

__E{?
MSNR= - 17 (2.33)

Or

N-1M -1

> 2 fAxy)

MSNR= n=0m=0 (2.34)

N-1

2 MZ f(xy) - f'(x Y

m=0

o

>

The equivalent definition to the (MSNR) is tReak Signal —to- Noise
Ratio (PSNR)defined as
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[peakto peakof f(x, y)]’ (2.35)
MSE

PSNF =

The PSNR value is usually measured in decibel (dB)ch is given by

: 2
PSNRdB) =10|oglo{(graysci;e§;'magé } (2.36)

For 8-bit gray scale image the PSNR is defined as:

(2.37)

2
PSNR= 10|oglo(255 ]

MSE

Here, PSNR is calculated relative to the dynamigearather than to
signal variation, while SNR was calculated relatw¢he signal variance. The
values of PSNR are about 6dB above those of SNRteftre, PSNR is not
only easier to calculate than SNR but it also gimese optimistic results, and
this may account for its popularity in reporting ttesults of compression.

For color images, the reconstruction of all thrdanps must be
considered in the PSNR calculation. The MSE is wated for the
reconstruction of each color plane. The averagbese three MSE is used to
generate the PSNR of the reconstructed RGB image:

255
PSNR=10lo —_—
910[ MSERGBJ (2.38)
Where,
MS + MS + MS
MSERGB — Ered Egreen Eblue (238&)

3

Where MSEeq (or green or biueyS Similar to equation(2.34) for each color plane.

Equation (2.40a) give the same weight for eacheglant as known the
human visual system is more sensitive to greengpdaual less to red plane and
much less to blue plane as shown the following BgundSan98]:
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Y= 0.299R+0.587G+0.114B (2.39)

Therefore, in the present work the M@E was calculated according to
the following weighted expression as follows:

MSEgrcs = 0.299MSIgey+0 .587 MSkeent 0.114MSEg)e

Nevertheless, there is no commonly accepted medthrozhlculation of
the PSNR of color images. Moreover, the resultsiokt using PSNR often
do not coincide with those obtained in subjectests. It is well known that
some small subjective errors randomly distributedrdhe whole image may
reflect badly in objective measures, i.e., leacnmall values of PSNR but
they often correspond to invisible degradationnsdge quality. On the other
hand, relatively high valued errors concentratechiparticular part of an
image cannot affect the objective error, i.e., ga@mmit the PSNR to be
relatively high, while the subjective assessmentasy low because of an
annoying corruption of a particular portion of fheture. These observations
prompt questions about the usefulness of the abganeasures, which
however, exhibit a very important advantage, tleey are easy to calculate.
This fundamental advantage makes PSNR very popular.

Image compression research literature typicallyorespperformance
based solely on the quantitative PSNR metric. Aemécsurvey of quality
measurements indicates the widely used PSNR meaftaredoes not reflect
spurious artifacts and does not always correlatéa wisual error perception.

2.11 Programming Work

All the computations involved with the proposed iogdmethods were
accomplished by utilizing a computer programmirgg programs had been
designed and implemented to achieve the codingtesithg tasksVisual
Basic (VB (version 6) under the Windows XP operating systeam adopted
to perform the programming work. The programs amplemented and
executed for testing purpose using Asus personabpater, with processor
Pentium-4. All the test tasks were performed oreg¢hcolor images, each
image has 24b/p and its size is 256x256 pixel.



Chapter 3

Hybrid Wavelet Modified Vector
Quantization (WMVQ)

3.1 Introduction

In this chapter, we proposed method which combites WT and
modified VQ. Wavelet transform decompose the imagest of the
information is concentrated in the lowest frequesapband. Any distortion
in the lowest frequency subband causes criticadasfon the quality of the
reconstructed image.

3.2 Color Images Transformation

Most color images are recorded in RGB model, wiscthe most well
known color model. However, RGB model is not suifed some image
processing purposes due to a number of reasosflyfFthere exist significant
information redundancy amongst the color planesretiore it may not be
suitable for image processing tasks such as imadi@g. Secondly, it is not a
uniform color model, which means that the distabheeveen some pairs of
points in the RGB model corresponds to an unndiesgaubjective color
difference while the same distance in anothergfatie model corresponds to
a quite significant difference in color sensati&an98].

For compression, a luminance-chrominance represemtais
considered superior to the RGB representation. éibex, RGB images are
transformed to one of the luminance-chrominance etspdoerforming the
compression process, and then transform back to R@Bel because
displays are most often provided output image wlitect RGB model. The
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luminance component represents the intensity ofrtfagye and looks like a
gray scale version. The chrominance componentsesept the color
information in the image.

3.3 Suggested Wavelet Transform

This section is dedicated to demonstrate the stggiescheme of
wavelet compression using Haar filter. In the pnéseork, the mechanism of
the WT system is based on the idea of combininghttezontal lowered high
pass filters with the vertical corresponding fidteto constructed four 2-
dimensional Haar filters, the direction implemeratiatof these filters will
lead to significant reduction in both coding anccating process time in
comparison with the traditional mechanism whiclbased on the sequential
application of the horizontal followed by vertiddder.

The suggested wavelet transform can be showntag ifollowing
steps:

3.3.1 Forward Haar Wavelet Transform

Figure (3.1) illustrates the steps of forward Haavelet transform,
where a, b, ¢, and d are the image pixel valuedewy B, C, and D are the
corresponding wavelet coefficients, w and h aré dlathe image width and
height, respectively.
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a(x,y) b (x+1,y)
a- (2x2) adjacent
pixels
c (x, y+1) d(x+1, y+1)
Forward Haar
wavelet transform
LL HL
A (x,Y) B (x+w,y)
=(a+b+c+d)/2 =(a+b-c-d)/2
LH HH
C (x, y+h)
b- The forward transform =(a-b+c-d)/2 D(x+w,y+h)
=(a-b-c+d)/2

Fig. (3.1) The forward Haar wavelet transform.

To apply forward Haar wavelet transform on the teslbr images,
those shown in figure (3.2). Of the beginning otamaposition, the image
will be decomposed into four subbands LL, HL, LkhdaHH (see figures,
3.3b, 3.4b, and 3.5b on luminance component). prosedure defines first
level subband coding, which contains the detaiéadures of the image (also
referred to as the high frequency or fine resotutwavelet coefficients).
While figures (3.3c, and d), (3.4c, and d) and fegu(3.5¢, and d) define the
second and third subband levels, respectively.tbpdevel, i.e. third level,
contains the coarse image features (low frequencycaoarse resolution
wavelet coefficients). It is clear that the lowevéls can be quantized
coarsely without much loss of important image infation, while the higher
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levels should be quantized finely. These ten sutdbaan be recombined to
produce the original image by applying inverse ¢farm, which is explained
in the next section.

Lina Image

Monaliza Image

Fig. (3.2) The test color images.
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a) Luminance component of b) Forward Haar wavelet transform,
satellite image. four bands.

c) Forward Haar wavelet transform, d)Forward Haar wavelet transform,
seven bands ten bands.

Fig. (3.3) Forward Haar wavelet transform applied on luminacam@ponent of
satellite image.
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a) Luminance component of b) Forward Haar wavelet transform,
Monaliza image. four bands.

c) Forward Haar wavelet transform, d)Forward Haar wavelet transform,
seven bands. ten bands.

Fig. (3.4) Forward Haar wavelet transform applied on luminacam@ponent of
Monaliza image.

o)



Chapter three: Hybrid Wavelet Modified Vector Quantization

a) Luminance component of Lina b) Forward Haar wavelet transform,
image. four bands.

c) Forward Haar wavelet transform, d) Forward Haar wavelet transform,
seven bands. ten bands.

Fig. (3.5) Forward Haar wavelet transform applied on luminacam@ponent of
Lina image.
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3.3.2 Inverse Haar Wavelet Transform

The output of forward Haar wavelet transform is thavelet
coefficients of the (LL, HL, LH, and HH) bands. Teconstruct the image,
the same four two dimensional filters (which arentrened in section 2.2.1)
have been used. Figure (3.6) demonstrates the smvéfaar wavelet
transform,where A, B, C, and D are the wavelet coefficiemtgile a, b, c,
and d are the reconstructed pixel values.

LL HL
A (X y) B (x+w, y)
LH HH
C (x, y+h) D(x+w,y+h)

Inverse Haar
wavelet transform

a(x, y) =(A+B+C+D)/2 | b(x+1,y) =(A+B-C-D¥

c(x, y+1) =(A-B+C-D)/2 d(x+1,y+1)=(A-B-C+D)/2

Fig. (3.6) The inverse Haar wavelet transform.
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3.4 Modified Vector Quantization (MVQ)

In this section, the following modified algorithnorfimproving the
quality of reconstructed images. The main steghisfmodification are:

1. For an Mx M image, the image is first partitioned into fixeide
square blocks, each block of sizesm.

2. Form an initial codebook by choosing the firstindut image
blocks as reproduction vectors.

3. Compare each input vector with all N-reprodutti@ctors. Best
match is achieved when the minimum mean square €48E)
between the reproduction and the input vectors ithinva pre-
specified threshold. In this case the input thatches vector with
minimum distance should be given the same indextho
reproduction vector.

4. For each index, find the centriod of all inpettors. The centriods
are the new codebook.

5. Sort the codebook vectors in descending oraen tnigh count to
low count.

6. Eliminate the last reproduction vector, whicls hary low count
and split the first reproduction vector (i.e., highunt) into two
vectors by multiplying the vector contents by egéament/reduction
factors (say, 1.1/0.9) to reproduce two new vectors

7. The above steps (3-6) are repeated until theaida redistribution
converges to solution, which is a minimum of theltoeproduction
error.

3.5 Wavelet Modified Vector Quantization Scheme
(WMVQ)

In this section, we will discuss the proposed carapion method based
on wavelet transform and modified vector quant@ati The suggested
method can be divided into two units:
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3.5.1 Encoding Unit.

The encoding process can be shown in the flowabfafigure (3.7) and
implies in the following steps:

Input
RGB Image

Y
Transform to the YIQ color model

A 4 A 4 Y

Y-component I-component Q-component

A 4 A 4 A 4

Apply Forward Haar Wavelet
transform (3 Layers)

Approximately Detailed sub-Bands

subband (LL) i v
: : Apply Modified Vector
Compute Bit Allocation Quantization on each sub-
band
A 4 ¢
Apply Scalar Uniform Mapping to positive number
Quantization
A 4
Compute the Minimum bits
needed for each sub-bandg

A 4

S-Shift Encoder

Enc

Fig. (3.7) Flowchart of encoder of suggested method.
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1. Convert the RGB image to YIQ space. Algorithm(34hows this
conversion.

Algorithm (3.1) conversion the color image to Y1 Q image.

Input: R(), G(), B() 2D array of RGB color model
W is the image width
H is the image height
bitY, bitl, bitQ the number of bits needed for eacmponent Y, |
and Q

Output:Y(), 1), Q() 2D array of YIQ color model

Procedure:
For all coefficients (x, y) where&x<W-1 and 8y<H-1
Set Y(X, W 0.299 * R(x, y) + 0.587 * G(x, y) + 0.114 * B(}, ¥
Set I(x, y}— 0.596 * R(X, y) - 0.274 * G(x, y) - 0.322 * B(}, y
Set Q(x, y3-0.211 * R(X, y) - 0.523 * G(x, y) + 0.312 * B(X, y)
End Loop x, y

Find the minimum and maximum value for Y, I, and Q.

Find the range between maximum value and minimduae\far each Y
I, and Q.

Set one¥— (2 M bitY - 1) / rangY

Set onek— (2 ~ bitl - 1) / rangl

Set one@— (2 A bitQ - 1) / rangQ

For all coefficients (x, y) where<&x<W-1 and 8y<H-1
Set Y(X, y3— (Y(X, y) - minY) * oneY
Set I(x, y)}— (I(x, y) - minl) * onel
Set Q(x, y}— (Q(x, y) - minQ) * oneQ

End Loop x, y
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2. Apply forward Haar wavelet transform on luminancomponent and
chrominance components, individually, to producg flumber of layers.
The total number of subbands will be (3xL+1) assishown in figure
(3.8). Algorithm (3.2) decomposes the image intbbsunds, such kind of
decomposion reduces the image data correlatiopeowides a useful data
structure. The results have been gathered in &esamgpy named img().

Algorithm (3.2) Haar Wavelet Transform

Input: img() 2D array represent the coefficients (Y, ), Q
W is the image width
H is the image height
no_of level the number of layer of wavelet

Qutput: rec of sub images rec().LL(), rec().LH(), rec().hiL(and
rec().HH().

Procedure:
Loopi=0tono_of layer-1
For all coefficients (X, y) where<«<W/2-1 and 8y<H/2-1
Set rec(i).LL(X, y}— 0.5 * (img(2 *x,2*y) +img(2 * x, 2 * |
+1)+img2*x+1,2*y)+img(2*x+1,2*w 1))

Set rec(i).HL(X, y}— 0.5 * (img(2 * x, 2 *y) + img(2 * x, 2 * y{
+1)-img2*x+1,2*y)-img2*x+1,2*y 1))

Set rec(i).LH(X, y}— 0.5 * (img(2 * x, 2 *y) - iImg(2 * x, 2 * y
+1)+img2*x+1,2*y)-img2*x+1,2*w¢ 1))

Setrec(il).HH(x, y3— 0.5 * (img(2 * X, 2 *y) - img(2 * x, 2 *
+1)-img(2*x+1,2*y)+img(2*x+1,2*w¢ 1))

End Loop x, y

Set H— (H/ 2)

Set We— (W/ 2)

For all coefficients (x, y) where<&x<W-1 and 8y<H-1

Set img(x, y} rec(i).LL(X, y)
End Loop X, y
End Loop i
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1=3 | 1=3
k=10 k=7 =2
| =3 | =3 k=4 1=1
k=8 k=9 k=1
|=2 |=2
k=5 k=6
=1 =1
k=2 k=3

Fig. (3.8) An example illustrates the relationship betwedsbsimd number (k) and the
subband layer number (1), where the total numbeubband layers is taken (L).

3. Determine the quantization coefficients of LLbkand by applying the
equations used in section 3.7.2:

Algorithm (3.3) illustrates the bit allocation andiform quantization
implementation for subband LL, the results havenlgthered in a single
array name img().
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Algorithm (3.3) Mapping by using bit allocation and Uniform
Quantization

Input: img() 2D array represent the LL-band.
H is the subband LL width.

W is the subband LL height.

Output: q(x, y) 2D array that represent LL-band quantized.
Bitsclr represent the number of bits needed to tjmed LL-band.
Procedure:
Find the minimum and maximumu number of the subband

Set rang— max - min
Set bitsclr— Log(rang)

For all coefficients (x, y) where<&x<W-1 and 8y<H-1
Set q(x, y, k3~ (img(x, y, k) - min) / rang) * (2 ~ bitsclr - 1)
End Loop x, y

4. Eliminate the highest frequency subbands.

5. Apply (MVQ) mechanism which described in section (3.4) for tedd
subbands using small block size. Decrease the oco#ieBize as the
subband number increases.

Algorithm (3.4) illustrates MVQ mechanism. The riésuorm each
component and band is gathered by array VQ() tiattito the algorithm.
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Algorithm (3.4) Modified Vector Quantization

Input: VQ() array of (LH, HL, HH) of YIQ Coefficients.
BIkSiz represent the block size.
MaxNoblk represent the CodeBook size .
W is the subband width.
H is the subband Height.

Output: Codebook() 3D array that contain the average bldcé&s subband.
Idx() represent the index of each block (x, ygubband.

Procedure:

ke Initialize Codebooks Vectors *xxkk  *
NoBlk«— -1
Loop for all blocks in the subband
Blk()— VQ()
If NoBlk < (MaxNoblk - 1) Then Fkg 0
Call algorithm (3.5) to find if block similar to btk in CodeBook(
or not
If Flg = 0 Then
NoBIlk<— NoBIk + 1
Initial Codebook() for Noblk by Blk()
End If
End If
End Loop

TotErr < 9.999E+19: Iter— 0
Do
Iter — Iter + 1. OTotErr«— TotErr
For all blocks(NoBIk) in codebooks initial accountor that blocks by

zero and the acm() for that block by zero.
To be continue
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Thkkkkkkkkkx Calculate the CentrOIdS *kkkkkkkkkk

TotErmr— 0

Make for loop for all blocks in the subband andrthe
Call algorithm (3.5) to found what block in the @®bok is
similar to that block in the subband and then addaunt for
that block by 1
Add acm for that block in the codebook with thecklmn the
subband.
TotErr — TotErr + Dist

End Loop

TotErr«— TotErr / (H* W)
If TotErr < OTotErr Then
Loop For k =0 To NoBIk
If Countl(k) >0 Then
Divide acm() for that block k by account(k) andrthmut in
the CodeBok for block(k)
Else
Set Codebook() for block k by zero
End If
End Loop k
Sort the vectors in the Codebook() in ascendingiokpend o
the account of blocks in subband.
k—20
M1 < NoBIk
While Countl(M1) < 1
For all coefficients (x, y) wherex<Blksz and 8ly<Blksz
| < Codebook(k, Ix, ly)
Codebook(M1, Ix, lyy Cint(j * 0.9)
] < CInt(j * 1.1)
If | > 255 Then j— 255
Codebook(k, Ix, 1y3— j

End Loop x, y
To be continue
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Ke—k+1:Ml—M1-1
End While M1
End If
Loop Until (Iter = Nolter) Or (OTotErr < TotErr)

Loop for each block in the subband
Dist = 255 * bsz2: M1 =0
Call algorithm (3.5) to number the index for thdbdk in the
subband by the number block in the CodeBook
ldx(Bx, By}— M1
End Loop

Algorithm (3.5) Find Block
Input: BIk() array of 2D.
BIkSiz represent the block size.
CodeBook() array of 3D that contains number of k#oc
NoBIk represent number of blocks in the CodeBook().

Output: M1 represent the number block in the CodeBook().
Flg represent flag number.

Procedure:
Loop For k =0 To NoBIk
Dis<— 0
For all coefficients (x, y) where<x<Blksz and 8y<Blksz
j «— CodeBook(k, x, y) - Blk(x , y)
Dis < Dis + Abs())
End Loop X, y
If Dis < Dist Then
Dist < Dis: M1« k: FIg=1
End If
End Loop k

1y



Chapter three: Hybrid Wavelet Modified Vector Quantization

6. For the detailed bands the coefficients valuesoaiebookW,(k, x, y)will
have positive and negative values. Since the engogrocess is much
easier when the range of coded parameters is\mditius the determined
coefficients are mapped to the positive range bipngushe following
mapping formula:

Wa(x y.K) = 2W ¢ (x,Y,K) if We(x,y,k)20
ey, Z.WC(x,y,k)‘—l otherwise

In this case all positive values will mapped to rewalues and all
negative values will correspond to odd values.

7. Compute the minimum bits for every codebook in edetailed subbands
by computing the maximum number in the codebook emahpute the
minimum bits need it for that subbands as showalgorithm (3.6).
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Algorithm (3.6) Mapping and S-Shift Optimizer

| nput: img() array of coefficients values of detailed fasnds.
W is the image width.
H is the image height.

Output: Number of required bits (Nb, Nbmax)

Procedure:
“* Do the positive mapping
For all coefficients (x, y) where®<W-1 and &y<H-1
If img(x, y, k) > 0 then Img(x, y, kK 2 *img(x, y, k)
Else
If img(x, y, k)<O then Img(x, y, k- 2 * abs(img(x, y, kK)) - 1
End if

> Compute the max number

max«— 0

For all coefficients (x, y) where®<wW-1 and &y<H-1
If img(x, y, k) > max Then max img(x, y, k)

End Loop X, y

“’Compute maximum number of required bits for maxmber
p—1l:0o«1
While max >=0
0—2*0+1
p—ptl
End Loop While

“’Compute the histogram Hist() of the quantizedrisform coefficients
Loop For j =0 To max
hist(j) = 0
End Loop j
To be continue
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For all coefficients (x, y) where®<wW-1 and &y<H-1
j —img(x,y, k)
hist(j) < hist(j) + 1

End Loop X, y

“’Shift coding optimizer to compute the number &quired bits (Nb,
Nbmax)
Siz—~W*H
nbmax— p
minbits<— nbmax * siz
nb «— nbmax
Loop Forj=2 To nbmax -1
me—2"j-1
sm«— 0
Loop For s =0 To Max
If s<m Then
SM«— sm + | * hist(s)
Else
Sm« sm + (j + nbmax) * hist(s)
End If
End Loop s
If sm < minbits Then
minbits<— sm
nb «— |
End If
End Loop |

8. S-Shift Encoder
In this stage, the input data are the quantizatidites valuef(x, v, k)
of subband LL and the coefficients values of thiebsunds (LH, HL, HH)
both results have been gathered in a single areyed S(). The
codewords produced by applying Shift-coding onahay S() are send to
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the compression bit stream, which represents thgoessed data file (see
algorithm (3.7)).

Algorithm (3.7) S-Shift Encoder

Input: A() 2D array represent the mapped values of the-tlsand

coefficients (LL, LH, HL, HH) of record from (Y Q).
W is the image width

H is the image height
nb the length (in bits) of the first shift codeword

Output: A set of integers whose lengths are either Nblamak

Procedure:
|0
Max« (2~ nb) -1
For all coefficients (x, y) where®<W-1 and &y<H-1
If Abs(A(X, y)) < Max Then
AL(l) — A(X, y)
| —1+1
Else
If A(y, X) >0 Then
Al(l) — Max
Al(l + 1)« A(x, y) - Max
| —[+2
Else
Al(l) « -Max
Al(l + 1) — (A(X, y) + Max)
| —[+2
End If
End If
End Loop X, y

A
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3.5.2 Decoding Unit.

The decoding process of the proposed method cashben in the
Flowchart of figuer (3.9) and implies the followisteps:

Approximately subband (LL)

S-Shift Decoder

For all detailed sub-bands [1-3L]

A 4

Mapping each odd number to real numbgr
and each even number to integer numbgr

For Detailed sub-bands[1-3L]

\4

\4

Inverse Scalar Inverse MVQ
Quantization

A 4
Apply Inverse Haar Wavelet Transform

A 4
Apply Inverse RGB color model Transform

Enc

Fig. (3.9) Flowchart of decoder of suggested method.

v
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1. Loading the compressed data as a one dimensoagl of bits.

2. Perform S-Shift decoding, which is opposite to $#Sincoding. The
input to the S-Shift decoder is the length (in boit$ the coefficient
value which is previously archived in the compresdile by using S-
Shift encoder, and the output is the coefficierltigaAlgorithm (3.8)
illustrates this process.

Algorithm (3.8) S-Shift decoder

Input: A() 1D array represent the mapped values of thb-sand
coefficients (LL, LH, HL, HH) of record from (Y Q).
W is the image width.

H is the image height.
Nbmax number of bits required to encode the largestber by

using fixed length binary representation.
Nb the length (in bits) of the first shift codeword

Output: NA() 2D a set of integers

Procedure:
|0
Max<«— (2~ nb) -1
For all coefficients (x, y) where®<h-1 and Gy<H-1
If Abs(A(l)) < Max Then
NA(X, y)«<— A(l)
| — 1+ 1
Else
NA(X, y)— A() + A(l + 1)
| — 1+ 2
End If
End Loop X, y

3. For each quantization index vaIQ?(x, y,k) belongs to subband LL, apply

the dequantization process as follows:

TA
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Qi (%, ¥,k) xR
2B(k) -1

Where R is the range between maximum and minimum computed

W (x,y,k) = +Mn

algorithm (3.3)v' (x, y,k) is the reconstructed wavelet coefficient.

Algorithm (3.9) represents inverse scalar quanbpat

Algorithm(3.9) I nverse Scalar Quantization

Input: Q () 2D array for all component (Y, I, Q).
W is the image width.
H is the image height.
bitsclr is the number of bit quantized in algorit{#18).
min is the minimum number in LL-band.
rang is the number of range between max numbernaimimum
number in LL-band.

Output: img1() 2D array of LL-band.

Procedure;
For all coefficients (X, y) where®<W-1 and 8y<H-1
img(x, y, K}— ((Q(x, y, k) * rang) / (2 ~ bitsclr-1)) + min
End Loop X, y

For all coefficients (X, y, k) whereg<W/2-1 and 8y<H/2-1

img1(x, y, K}—img(x, y, k)
End Loop X, y

4. For each coefficient value belongs to detailedbsands, use the inverse
MVQ method (see algorithm 3.10).

19
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Algorithm (3.10) I nverse MVQ method

Input: Codebook() array of Coefficients that contain ebhtdck and
index in image before compression.
Idx() array contain the index of each block in tuelebook.
Blksiz is the size of block
W is the subband width.
H is the subband Height.

Output: imgb() compressing image

Procedure:
By« 0
For y =0 To W Step BIkSiz
Bx<—0
For x =0 To H Step BIkSiz
k — Idx(Bx, By)
For all coefficients (Ix, ly) where<Ox<W-1 and &ly<H-1
Z «— Codebook(k, Ix, ly)
imgb(X + IX,y + ly)«— Z
End Loop Ix, ly
Bx—Bx+1
End Loop y
By«—By+1
End Loop x

5. For each coefficient vaILw;;(x, y,k belongs to detailed subbands, use the
following inverse mapping equation as shown in atgm (3.11):

We (X, Y, K)
2
_We (X yk)+1
2

if We(x,y,k) iseven
WC (X1 y, k) =

if We(x,y,k) isodd
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Algorithm (3.11) Mapping array from positive numbers to integer and
real numbers

Input: img() array of quantization indices of (LL, LH, HLHH)

Coefficients.
W is the image width.
H is the image height.

Output: img() array of integer and real numbers.

Procedure:
For all coefficients (X, y) where®<W-1 and &y<H-1

If img(x, y)Mod 2 > 0 then
Img(x, y)— 2 /img(x, y)

Else
If img(x, y) <0 then
Img(x, y)— (1 -img(x, y)) /2
End if
End Loop X, y

6. Apply inverse Haar wavelet transform on the mstaucted wavelet
coefficients to reconstruct the image (see algori(d.12)).

Y
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Algorithm (3.12) I nverse Wavelet Transform

Input: rec() array of record for all subbands that outpériom
algorithm(3.10).
no_of level — 1 represent number of level of wavele
W is the image width
H is the image height

Output: img() record of wavelet off all sub-bands

Procedure:
Loop Fori=no_of level-1To O Step -1
For all coefficients (x, y) where®<W/2-1 and 8y<H/2-1
img(2 * x, 2 * y)« 0.5 * (rec(i).ll(x, y) + rec(i).hl(x, y) +
rec(i).lh(x, y) + rec(i).hh(x, y))
Img(2 *x,2*y + 1) 0.5 * (rec(i).li(x, y) + rec(i).hl(x, y) -

rec(i).In(x, y) - rec(i).hh(x, y))
Img(2 * x + 1, 2 * y)« 0.5*((rec(i).li(x, y) - rec(i).hl(x, y) +

rec(i).lh(x, y) - rec(i).hh(x, y))
img(2 *x+ 1, 2*y+ 1) 0.5%((rec(i).li(x, y) - rec(i).hl(x, y) -
rec(i).lh(x, y) + rec(i).hh(x, y))

End Loop X, y

If (i >0) Then
For all coefficients (x, y) where®<W-1 and &y<H-1
rec(i - 1).1l(x, y)« img(x, y)
End Loop X, y
End If

H—H*2
We— W *2
End Loop i

7. Finally, retransform the results into RGB colmodel as shown in
algorithm (3.13).

\Al
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Algorithm (3.13) I nverse transform from Y1 Q model to RGB model

Input: Y() 2D array of Y model.
() 2D array of | model.
Q() 2D array of Q model.
bitY, bitl, bitQ number of bits input in the algtimm(3.1).
minY, minl, minQ number of minimum number compnote¢he
algorithm(3.1).
rangY, rangl, rangQ the range between maximum aiméhmam of
components Y, | and Q that compute in the algoi{ghh) .
W is the image width.
H is the image height.

Output: R() 2D array of R model
G() 2D array of G model
B() 2D array of B model

Procedure:

oneY« rangY /(2 * bitY - 1)

onel«—rangl /(2 * bitl - 1)

oneQ« rangQ /(2 * bitQ - 1)

For all coefficients (x, y) where®<W-1 and &y<H-1
Y(X, Y)<— R(X, y)* oneY + minY
I(X, y) — G(X, y)* onel + minl
Q(x, y)«= B(x, y) * oneQ + minQ

End Loop X, y

For all coefficients (x, y) where®<W-1 and &y<H-1
R(X, y)<— Y(x,y) + 0.956 * I(x, y) + 0.621 * Q(X, y)
G(X, ¥Y)<— Y(X,y) - 0.272 * I(x, y) - 0.647 * Q(X, y)
B(X, )< Y(x,y) - 1.106 * I(x, y) + 1.703 * Q(X, y)

End Loop X, y

VY
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3.6 Experimental Results

This section is dedicated to present the resulégpplying the proposed
WMVQ method. The proposed method was applied seégdgraon the
luminance component and both chrominance components

All the involved parameters of this method, haverbtested as control
parameters to investigate the compression perfaenaf the proposed
method.

These involved parameters are:
1. Number of layers.
2. Codebook Size.
3. Block Size.

The effect of these parameters were investigatezbbgidering several
cases within the allowable range of their valueshasvn in tables (3.1 - 3.28)
for YIQ color models. While figures (3.10 — 3.12epent the reconstructed
RGB images for Satellite, Monaliza and Lina imagespectively. It is clear
from the results that the compression performamoesises with the increase
of block size and decreases with the codebook §lze relationships between
compression ratio and PSNR at different valuesooebook sizes are shown
in figures, (3.13 - 3.15). These figures show hd&NR decreases while C.R
increases with the decreasing in the codebook Better compression ratio is
obtained for smaller codebbook size, as less numibbits required to store
the index of the codevector.

V¢
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Table (3.1): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance componenatdife image with block size 2x2,
and the number of subband layers=3

Test
Color | Subband Type of Codebock | ~p | psNR. (dB)
Number Quantization Size
Image
10 scalar X X X
7,8,9 vector 128
4,56 vector 64 5.801 22.909
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Sat. 4,5,6 vector 32 7.613 21.085
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,56 vector 16 10.063 19.683
1,2 vector 8
3 eliminate X X X

Table (3.2): The effects of control parameters on the compoesperformance of the

proposed method applied on luminance component afdiiza image with block size
2x2, and the number of subband layers=3.

Test
Color | Subband Type of Codebook o | pgNR. (dB)
Number Quantization Size
Image
10 scalar X X X
7,8,9 vector 128
4,56 vector 64 5.777 30.209
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Mona. 4,56 vector 32 7.529 27.653
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,56 vector 16 9.881 26.029
1,2 vector 8
3 eliminate X X X
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Table (3.3): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance componeniabbBn image with block size 2x2,

and the number of subband layers=3.

Test
Color | Subband Type of Codebock | ~p | psNR. (dB)
Number Quantization Size
Image
10 scalar X X X
7,8,9 vector 128
4,56 vector 64 0,4y YV, AT
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Lina 4,56 vector 32 Y,V Yo,viy
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,5 6 vector 16 R Y¥,vay
1,2 vector 8
3 eliminate X X X

Table (3.4): The effects of control parameters on the compoesperformance of the
proposed method applied on chrominance componexit@atellite, Monaliza and Baboon

images with block size 2x2, 4x4, and the numbesubband layers=3

CT cﬁr Subband Typ_e of_ Bl_ock Cod_ebook CR PSNR.
Number Quantization Size Size n (dB)
Image
10 scalar X X X X
45,6,7,8,9 vector 2x2 4
=t 1 vector 4x4 4 36.571 | 50.103
2,3 eliminate X X X X
10 scalar X X X X
45,6,7,8,9 vector 2x2 4
Mona. 1 vector Ixd 2 34.133 49.301
2,3 eliminate X X X X
10 scalar X X X X
Lina 4.56.7.8.9 vector 2x2 4 FETY oy,0)
1 vector 4x4 4
2,3 eliminate X X X X

A
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Table (3.5): The effects of control parameters on the compoesperformance of the
proposed method applied on chrominance componendfQpatellite, Monaliza and
Baboon images with block size 2x2, 4x4, and thebmmof subband layers=3

C-:roelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size T (dB)
| mage
10 scalar X X X X
45,6,7,8,9 vector 2x2 4
Sat. 1 vector axd 4 47.080 54.721
2,3 eliminate X X X X
10 scalar X X X X
45,6,7,8,9 vector 2%x2 4
Mona. 1 vector axd 2 47.080 55.261
2,3 eliminate X X X X
10 scalar X X X X
. 45,6,7,8,9 vector 2%2 4
Lina 1 vector axd 2 46.945 56.052
2,3 eliminate X X X X

Yy
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Table (3.6): The compression performance of the proposed maih8atellite, Monaliza,

and Baboon images with block size 2x2 of Y-compo=ew number of layers=3.

Tedt Subband Type of Codebaok Size PSNR.
Color o of Y- C.R.
Number Quantization (dB)
Image component
10 scalar X X X
7,8,9 vector 128
4,5,6 vector 64 29.817 22.402
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Sat. 4,5, 6 vector 32 30.421 20.747
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,5, 6 vector 16 31.238 19.436
1,2 vector 8
3 eliminate X X X
10 scalar X X X
7,8,9 vector 128
4,5, 6 vector 64 28.996 30.039
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Mona. 4,5, 6 vector 32 29.581 28.315
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,5, 6 vector 16 30.365 27.042
1,2 vector 8
3 eliminate X X X
10 scalar X X X
7,8,9 vector 128
4,5, 6 vector 64 28.993 28.262
1,2 vector 32
3 eliminate X X X
10 scalar X X X
7,8,9 vector 64
Lina 4,5, 6 vector 32 29.595 26.423
1,2 vector 16
3 eliminate X X X
10 scalar X X X
7,8,9 vector 32
4,5, 6 vector 16 30.397 24.608
1,2 vector 8
3 eliminate X X X

YA
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Table (3.7): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance componenatdife image with block size 4x4,
and the number of subband layers=3.

Test
Color | Subband Type of Codebock -~ | psnR. (dB)
Number Quantization Size
Image
10 Scalar X X X
7,8,9 Vector 32
4,5,6 Vector 16 14.813 17.675
1,2 Vector 8
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 16
Sat. 4,5,6 Vector 8 23.011 16.874
1,2 Vector 4
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 8
4,5,6 Vector 4 34.276 16.385
1,2 Vector 2
3 Eliminate X X X

Table (3.8): The effects of control parameters on the compoaesperformance of the
proposed method applied on luminance component afdiiza image with block size
4x4, and the number of subband layers=3.

Test
Color | Subband Type of Codebock | ~p | psNR. (dB)
Number Quantization Size
| mage
10 Scalar X X X
7,8,9 Vector 32
4,5,6 Vector 16 14.707 25.402
1,2 Vector 8
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 16
Mona. 4,5,6 Vector 8 22.021 23.835
1,2 Vector 4
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 8
4,56 Vector 4 32.125 22.748
1,2 Vector 2
3 Eliminate X X X

V4
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Table (3.9): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance componeniabbBn image with block size 4x4,

and the number of subband layers=3.

Test
Color | Subband Type of Codebock | ~p | psNR. (dB)
Number Quantization Size
Image
10 Scalar X X X
7,8,9 Vector 32
4,56 Vector 16 15.723 22.721
1,2 Vector 8
3 Eliminate X X
10 Scalar X X X
7,8,9 Vector 16
Lina 4,56 Vector 8 24.165 21.632
1,2 Vector 4
3 Eliminate X X
10 Scalar X X X
7,8,9 Vector 8
4,56 Vector 4 35.083 20.919
1,2 Vector 2
3 Eliminate X X

Table (3.10): The effects of control parameters on the compoasperformance of the
proposed method applied on chrominance componearit@atellite, Monaliza and Baboon

images with block size 4x4, 8x8, and the numbesubtband layers=3

C-l:-oelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size n (dB)
I mage
10 Scalar X X X X
45,6,7,8,9 Vector 4x4 4
Sat. 1 Vector 88 3 60.235 49.431
2,3 Eliminate X X X X
10 Scalar X X X X
45,6,7,8,9 Vector 4x4 4
Mona. 1 Vector 88 3 52.851 48.823
2,3 Eliminate X X X X
10 Scalar X X X X
. 45,6,7,8,9 Vector 4x4 4
Lina 1 Vector 8x8 3 54.251 51.067
2,3 Eliminate X X X X
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Table (3.11): The effects of control parameters on the comprasparformance of the
proposed method applied on chrominance componendfQpatellite, Monaliza and

Baboon images with block size 4x4, 8x8, and thebmmof subband layers=3

C-:roelitr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size o (dB)
I mage
10 Scalar X X X X
4,5,6,7,8,9 Vector 4x4 4
Sat. 1 Vector 3x8 3 117.028 54.173
2,3 Eliminate X X X X
10 Scalar X X X X
4,5,6,7,8,9 Vector 4x4 4
Mono. 1 Vector 8x8 3 99.902 54.874
2,3 Eliminate X X X X
10 Scalar X X X X
: 4,5,6,7,8,9 Vector 4x4 4
Lina 1 Vector 3x8 3 102.4 55.045
2,3 Eliminate X X X X

AN




Chapter three: Hybrid Wavelet Modified Vector Quantization

Table (3.12): The compression performance of the proposed methiodatellite,
Monaliza, and Baboon images with block size 4x4Yetomponent and number of
layers=3.

Tedt Subband Type of Codebook Size PSNR.
Color o of Y- C.R.
Number Quantization (dB)
Image component
10 Scalar X X X
7,8,9 Vector 32
4,5,6 Vector 16 64.025 17.500
1,2 Vector 8
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 16
Sat. 4,56 Vector 8 66.758 16.728
1,2 Vector 4
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 8
4,5,6 Vector 4 70.513 16.254
1,2 Vector 2
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 32
4,5,6 Vector 16 55.820 26.480
1,2 Vector 8
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 16
Mona. 4,56 Vector 8 58.258 25.159
1,2 Vector 4
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 8
4,5,6 Vector 4 61.626 24,191
1,2 Vector 2
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 32
4,5,6 Vector 16 57.458 23.564
1,2 Vector 8
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 16
Lina 4,5,6 Vector 8 60.272 22.531
1,2 Vector 4
3 Eliminate X X X
10 Scalar X X X
7,8,9 Vector 8
4,5,6 Vector 4 63.911 21.848
1,2 Vector 2
3 Eliminate X X X
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Table (3.13): The effects of control parameters on the compoasperformance of the
proposed method applied on luminance componenatdife image with block size 2x2,
and the number of subband layers=2.

Test
Color | v Typeof Codebook | cr | PSNR. (dB)
Number Quantization Size
I mage
7 scalar X X X
4,5,6 vector 128
1,2,3 vector 64 3.792 24.581
7 scalar X X X
Sat. 4,56 vector 64
1,23 vector 32 4.530 22.987
7 scalar X X X
4,56 vector 32
1,2,3 vector 16 5.417 21.419

Table (3.14): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance component afdiiza image with block size
2x2, and the number of subband layers=2.

Test
Color | Subband Typeof Codebock | -~ | psNR. (dB)
Number Quantization Size
| mage
7 scalar X X X
4,5,6 vector 128
1,2,3 vector 64 3.820 33.128
7 scalar X X X
Mona. 4,5,6 vector 64
1,2,3 vector 32 4.556 30.848
7 scalar X X X
4,5,6 vector 32
1,2,3 vector 16 5.446 29.213

Table (3.15): The effects of control parameters on the compoasperformance of the
proposed method applied on luminance componeniabbBn image with block size 2x2,

and the number of subband layers=2.

Test
Color | Jebeny Typect Codebook | - | psnR. (dB)
Number Quantization Size
Image
7 Scalar X X X
4,5, 6 Vector 128
1,2,3 Vector 64 4.633 30.175
7 Scalar X X X
Lina 4,5,6 Vector 64
1,2,3 Vector 32 5.935 28.396
7 Scalar X X X
4,5, 6 Vector 32
1,23 Vector 16 6.548 26.984

AY
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Table (3.16): The effects of control parameters on the compoasperformance of the
proposed method applied on chrominance componexit@atellite, Monaliza and Baboon

images with block size 2x2, 4x4, and the numbesuttband layers=2

C-li-oelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size o (dB)
Image
7 Scalar X X X X
4,5 6 Vector 2%2 4
Sat. 12 Vector Ixd 2 22.803 51.103
3 Eliminate X X X X
7 Scalar X X X X
4,56 Vector 2%x2 4
Mona. 1,2 Vector Ixdl 2 19.309 52.871
3 Eliminate X X X X
7 Scalar X X X X
. 4,5,6 Vector 2%2 4
Lina 12 Vector Axd 2 19.309 55.570
3 Eliminate X X X X

Table (3.17): The effects of control parameters on the compoasperformance of the
proposed method applied on chrominance componendfQ¥atellite, Monaliza and

Baboon images with block size 2x2, 4x4, and thebemof subband layers=2

(:Toelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size n (dB)
I mage
7 Scalar X X X X
4,5,6 Vector 2x2 4
Sat. 1,2 Vector Ixd 2 35.694 55.866
3 Eliminate X X X X
7 Scalar X X X X
4,5,6 Vector 2%2 4
M ono. 1,2 Vector Ixdl 2 35.386 57.545
3 Eliminate X X X X
7 Scalar X X X X
. 4,5,6 Vector 2%2 4
Lina 12 Vector Ixd 2 35.386 58.981
3 Eliminate X X X X

At
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Table (3.18): The compression performance of the proposed meath8atellite, Monaliza

and Baboon images with block size 2x2 of Y-compom=ew number of layers=2.

Test

Codebook Size

Color | Subband Typeof of V- cr. | PSNR.
Number Quantization (dB)
Image component
7 Scalar X X X
4,5,6 Vector 128
1,23 Vector 64 20.763 24.074
7 Scalar X X X
Sat. 4,56 Vector 64
1,23 Vector 32 21.009 22.632
7 Scalar X X X
4,5,6 Vector 32
1,23 Vector 16 21.305 21.168
7 Scalar X X X
4,56 Vector 128
1,23 Vector 64 19.505 32.892
7 Scalar X X X
Mono. 4,5,6 Vector 64
1,23 Vector 32 19.750 31.376
7 Scalar X X X
4,5,6 Vector 32
1,23 Vector 16 20.047 30.133
7 Scalar X X X
4,5,6 Vector 128
1,23 Vector 64 19.776 30.722
7 Scalar X X X
Lina 4,56 Vector 64
1,23 Vector 32 20.077 29.119
7 Scalar X X X
4,5,6 Vector 32
1,23 Vector 16 20.414 27.808
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Table (3.19): The effects of control parameters on the compoasperformance of the
proposed method applied on luminance componenatdife image with block size 4x4,
and the number of subband layers=2.

Test
Color Subband Typ_e of_ Cod_ebook CR. PSNR. (dB)
Number Quantization Size
I mage
7 Scalar X X X
4,5,6 Vector 128
1,23 Vector 64 4.686 20.949
7 Scalar X X X
Sat. 4,5,6 Vector 64
1,2,3 Vector 32 6.736 19.385
7 Scalar X X X
4,5, 6 Vector 32
1,2,3 Vector 16 8.943 18.490

Table (3.20): The effects of control parameters on the compoesperformance of the
proposed method applied on luminance component afdiiza image with block size
4x4, and the number of subband layers=2.

Test
Color | Jiowond Type ot Codebook | =R | PSNR. (dB)
Number Quantization Size
I mage
7 Scalar X X X
4,5,6 Vector 128
1,2,3 Vector 64 5.007 30.633
7 Scalar X X X
Mona. 4,5,6 Vector 64
1,2,3 Vector 32 7.013 28.628
7 Scalar X X X
4,5,6 Vector 32
1,2, 3 Vector 16 9.102 27.432

Table (3.21): The effects of control parameters on the comprasp&rformance of the
proposed method applied on luminance componentabbBn image with block size 4x4,
and the number of subband layers=2.

Test
Color | Subband Type of Codebock | -~ | psnR. (dB)
Number Quantization Size
Image
7 Scalar X X X
4,5 6 Vector 128
1,2,3 Vector 64 5.158 26.916
7 Scalar X X X
Lina 4,56 Vector 64
1.2.3 Vector 32 7.474 25.271
7 Scalar X X X
4,5 6 Vector 32
123 Vector 16 9.846 24.217
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Table (3.22): The effects of control parameters on the comprasparformance of the
proposed method applied on chrominance componerit8atellite, Monaleza and Baboon

images with block size 4x4, 8x8, and the numbesuttband layers=2

C-li-oelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size T (dB)
I mage
7 Scalar X X X X
4,5 6 Vector 4x4 4
Sat. 12 Vector 8x8 2 30.796 50.531
3 Eliminate X X X X
7 Scalar X X X X
4,5,6 Vector 4x4 4
Mono. 1,2 Vector 8x8 2 24.899 52.149
3 Eliminate X X X X
7 Scalar X X X X
. 4,5 6 Vector 4x4 4
Lina 12 Vector 8x8 2 24.899 54,725
3 Eliminate X X X X

Table (3.23): The effects of control parameters on the comprasparformance of the
proposed method applied on chrominance componendfQpatellite, Monaleza and

Baboon images with block size 4x4, 8x8, and thebemof subband layers=2

(:Toelf)tr Subband Type of Block | Codebook CR PSNR.
Number Quantization Size Size o (dB)
I mage
7 Scalar X X X X
4,56 Vector 4x4 4
Sat. 1,2 Vector 8x8 2 65.015 55.492
3 Eliminate X X X X
7 Scalar X X X X
4,5 6 Vector 4x4 4
Mono. 12 Vector 8x8 2 65.015 57.007
3 Eliminate X X X X
7 Scalar X X X X
. 4,5,6 Vector 4x4 4
Lina 12 Vector 8x8 2 61.134 58.092
3 Eliminate X X X X
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Table (3.24): The compression performance of the proposed meath8atellite, Monaliza

and Baboon images with block size 4x4 of Y-compo=ew number of layers=2.

Test

Codebook Size

Color Subband Typeof of Y- CR. PSNR.
Number Quantization (dB)
Image component
7 scalar X X X
4,56 vector 128
1,23 vector 64 33.499 20.705
7 scalar X X X
Sat. 4,56 vector 64
1,2,3 vector 32 34.183 19.217
7 scalar X X X
4,5,6 vector 32
1,23 vector 16 34.918 18.350
7 scalar X X X
4,56 vector 128
1,23 vector 64 31.640 31.120
7 scalar X X X
Mona. 4,5,6 vector 64
1,23 vector 30 32.309 29.598
7 scalar X X X
4,5,6 vector 32
1,23 vector 16 33.005 28.619
7 scalar X X X
4,56 vector 128
1,23 vector 64 30.397 27.721
7 scalar X X X
Lina 4,5,6 vector 64
1,2,3 vector 32 31.169 26.168
7 scalar X X X
4,5,6 vector 32
1,2,3 vector 16 31.960 25.155
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Number of layer = 3 Number of layer = 2

Codebook size of Y-component =128, 64, 32. Codebook size of Y-component =128, 64.
Block size of Y-component =2x2. Block size of Y-component =2x2.
C.R.=29.817. C.R.=20.763.

PSNR. = 22.402. PSNR. = 24.074

Fig. (3.10) The reconstructed RGB Satellite images from apglWwiMVQ.

Number of layer = 3 Number of layer = 2

Codebook size of Y-component =128, 64, 32. Codebook size of Y-component =128, 64.
Block size of Y-component =2x2. Block size of Y-component =2x2.

C.R. =28.996. C.R. =19.505.

PSNR. = 30.039 PSNR. = 32.892.

Fig. (3.11) The reconstructed RGB Monaliza images from applWigVvQ.
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Number of layer = 3 Number of layer = 2

Codebook size of Y-component =128, 64, 32. Codebook size of Y-component =128, 64.
Block size of Y-component =2x2. Block size of Y-component =2x2.

C.R. =28.993. C.R. =19.776.

PSNR. = 28.262. PSNR. = 30.722.

Fig. (3.12) The reconstructed RGB Lina images from applying WMV

23 -
22.5 -
22 -
21.5 -
21 -
20.5 -
20 - 32, 16, !
19.5 -

19 T T T T T T T T 1
296 298 30 30.2 304 306 308 31 312 314

C.R

128, 64,3

64,32, 1

PSNR.

Fig. (3.13) Compression ratio versus PSNR of suggested mettitbchumber of layers=3,
for different codebook sizes for Satellite image.
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30.5 4 128, 64, 3
30 -

29.5

29 -
28.5 64, 32, 1

PSNR.

28 A
27.5 32, 16,
27

265 T T T T T T T T 1
28.8 29 202 294 296 298 30 30.2 304 30.6

C.R.

Fig. (3.14) Compression ratio versus PSNR of suggested metlitbchumber of layers=3,
for different codebook sizes for Monaliza image.

28.5 128,64, 3
28 A
27.5 ~
27 A
26.5
26 -
25.5
25 A
24.5 -
24 ‘ ‘ ‘ ‘ \ T T T \
28.8 29 20.2 294 296 298 30 30.2 304 30.6

C.R.

64,32, 1

PSNR.

32, 16, ¢

Fig. (3.15) Compression ratio versus PSNR of suggested mettitbchumber of layers=3,
for different codebook sizes for Lina image.



Chapter 4
Conclusions & Suggestions

4.1 Conclusions

Wavelet transform and modified VQ was considered. In this work, the
colored images were often processed by first performing a color transformation
from RGB to YIQ color model performing the compression process, and then
transform back to RGB model. From the results presented in the previous
chapters, some remarks related to the performance of the proposed methods were
reported. Some of the important conclusions are presented in the following:

1. The proposed method offers a compression performance up to (29/1) with
little effects will be noticed on the image quality (22/1).

2. The experimental results show that the three-level decomposition scheme
(i.e, 10 subbands) is a good practical choice for the luminance and
chrominance components.

3. The codebook size refers to the total number of code vectors in the codebook.
As the size of codebook increases, the quality of the reconstructed images
improves, but the composition ratio reduces and the computational
complexity increases. Therefore, thereis atrade off between the quality of the
reconstructed images and the amount of compression achieved.

4. The compression performance of the proposed scheme is effected by the
textural attributes of the image, such that the image regions which imply high
contrast regions (as in urban regions in the Satellite image), will suffer as
objective degradation, when they compressed up to high compression ratio.
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Very small size of codebooks are utilized for both chrominance components
comparing with codebook size for luminance component because most of the
image energy is distributed in luminance component and to maintain a
relatively high fidelity coding of luminance component to satisfy the human
visua system.

4.2 Future work

Among the different suggestions that could be simulated during our

previous discussion, the following suggestions were presented as a material for
future research work;

1.

The performance of the wavelet transform can be increased by using better
filters (e.g., the Daubechies, Tab9\7). Using better filters perhaps could yield
additional improvement in the compression performance.

. Study in more details, the performance of the considering coding scheme with

CIELAB, YC,C, YUV and compare between them.

. Coding wavel et coefficients using fast algorithm for VVQ-based wavelet coding

system and implementing Partial Search Partial Distortion (PSPD). In this
modification, the combination of variance o and mean mis used to reject a
large number of code vectors from the search consideration without
calculating their distortion distance from the training vectors. Then, the
partial search is used to find the closed or best match code vectors from the
remaining possible match of the codebook.

. Using method of coding super high definition (SHD) still images based on

vector quantization of wavelet coefficients will use. A compression scheme
for SHD images should achieve data compression without ant visible picture
guality deterioration.
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