Fractional Calculus is a branch of mathematical analysis that satisfies
the possibility of considering the power of the differential operator as a real
number. Several different families of fractional derivatives (such as,

Riemann-Liouville, Caputo, Hadamard and others) are developed.

In this work, we are investigate the applications of the Laplace
transform to construct the solution of homogenous and nonhomogeneous
linear differential equations having multi-arbitrary fractional order
derivatives involving the Riemann-Liouville fractional derivatives with
constant coefficients in terms of special function called “Mittage—Leffler
Function” by using Laplace transform formula for such special function and

their derivatives.

Several examples are solved to demonstrate our constructed solutions

formulas.



Arbitrary order’s (real and complex number) derivatives and integrals
are called generalized differentiation and integration or generalized
differentiation for the sake of convenience. This generalized differentiation

Is commonly called as “Fractional Calculus” [14].

Although this subject can claim to be well upwards of 200 years old,
and its foundations have been securely in place for more than a century, the
first book — length account of the field did not appear until 1974, when
Oldham and Spanier [16] published “The Fractional Calculus” [22]. This
book provides brief, yet important, accounts of the history, definitions,

properties, and some applications of the fractional calculus.

Many found, using their own notation and methodology, definitions
that fit the concept of a fractional (non—integer) order integral or derivative,
but the most famous of these definitions that have been popularized in the
world of fractional calculus are the Riemann-Liouville and Grunwald-
Letnikov definitions [16].

The importance and popularity of fractional calculus has been gained
during the past three decades or so, due mainly to its demonstrated
applications in many field of science and engineering, including fluid flow,
diffusive transport theory, electrical networks, electromagnetic theory, and
electrochemistry [22]. Also, applications of fractional calculus may be found

in mechanical engineering and finance [8]. In signal processing Loverro [9]



used a fractional order transfer function to provide a good prediction for the
reaction of a certain algorithm planner where the input of this algorithm is a

signal.

Moreover, classical calculus may be considered as a field of
applications of fractional calculus [16] and [15], introducing a novel class of
functions which have certain properties [6], have been made by means of

fractional calculus.

Furthermore, fractional calculus has been used to solve some classes
of differential, integro—differential equations and diffusion problems [16].

An application in probability was given in [21].

In this work, we constructing the solution of homogenous and
nonhomogeneous linear fractional order differential equations with constant

coefficients involving the Riemann—Liouville fractional derivatives

This work is organized as follows:

Chapter one provides some basic definitions and properties from such
topics of Mathematical Analysis as functional spaces, special functions,
integral transforms, generalized functions, and so on. The extensive
modern—day usages of such special functions as the classical Mittag—Leffler
functions. Moreover, this chapter contains the definitions and some

potentially useful properties of Riemann—Liouville fractional derivatives.



In chapter two we investigate the applications of the Laplace integral
transform with a view to constructing the solutions of homogeneous linear
fractional order differential equations involving the Riemann-Liouville
fractional derivatives with constant coefficients including some examples to

demonstrate our constructed solutions formula.

In chapter three we investigate the applications of the Laplace integral
transform with a view to constructing the solutions of nonhomogeneous
linear fractional order differential equations involving the Riemann-
Liouville fractional derivatives with constant coefficients including some

examples to demonstrate our constructed solutions formula.

Finally, conclusions and future work have been presented.
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Chapter One Preliminaries

Chapter One

PRELIMINARIES

The main purpose of this chapter is to make this work as self—contained as
possible. So we shall give some definitions and properties from such Topics of Analysis
as functional spaces, special functions, and integral transforms.

1.1 Space of Absolutely Continuous Functions:

In this section we present definitions of space of absolutely continuous that will
be needed later. More detailed information may be found in [7], [18] and [13].

Let [a,b] be a finite interval and let f(x) be a functions which called absolutely
continuous on [a,b], if for any £> 0 there exists a 6 >0 such that for any finite set of
pairwise nonintersecting intervals [a,,b,]c[a,b], k=1,23,..,n, such that
> (b, —a,)<d, the inequality Y|f(b;)— f(a,) <& holds. The space of these
k=1 k=1
functions is denoted by AC[a,b]. It is known in [7] that AC[a,b] coincides with the
space of primitives of Lebesgue summable functions:

feAC[a,b]<:>f(x)=c+]f¢(t)dt (1.1.1)

and therefore an absolutely continuous function f(x) has a summable derivative
f'(x)=@(x) almost everywhere on [a,b]. Thus (1.1.1) yields

o(x) = f'(x) and ¢ = f(a)
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For ne N ={1,2,3,...} we denote by AC"[a,b] the space of complex—valued
functions f(x) which have continuous derivatives up of order n—1 on [a,b] such that

" e AC[a,b]:

AC”[a’b]z{f:[a,b]—)C and (Dn_lf)eAC[a’b] (D:%)}

C being the set of complex numbers. In particular, AC*[a,b]= AC[a,b].

Lemma1.1: [18]

The space AC"[a,b] consists of those and only those functions f(x) which can
be represented in the form
n nl k
f(x)=Ug0)(x)+ 2 ¢4 (x—a) (1.1.2)
k=0

where ¢, (k=0,1,...,n—1) are arbitrary constants, and

f(x —1)" " p(t)dt (1.1.3)

a

(I":+¢)(x) = (n—1)!

It follows from (1.1.2) that

(k)
o(x)= £ (x), ck=fl;l(") (k=012,..,n-1)
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1.2 The Gamma Function and Related Special Functions:

In this section we present the definitions and some properties of the Euler Gamma
function and of some special functions connected with this function. More detailed
information may be found in [5] and [1].

The Euler gamma function I'(z) is defined by the so-called Euler integral of the
second kind:

I'(z)= Ojotz‘le“ dt (Re(z) > 0) (1.2.1)
0

where 7! = D190 Thjs integral is convergent for all complex z e C (Re(z) > 0).

The Gamma function satisfies the recurrence relation

I'(z+1)=2zl(z) (Re(z)>0) (1.2.2)

It is obtained from (1.2.1) by integration by parts. Using this relation, the Euler gamma
function is extended to the half-plane Re(z) <0 by

I'(z+n)

Hz)= (2)n

(Re(z)>-n; neN,; ze¢Z, ={0-1-2,..}) (1.2.3)

Here (z), 1is defined for complex zeC and non-negative integer
ne N={123,..}by

(2)o=1 and (z),=z2(z+1)(z+2)..(z+n-1) (1.2.4)
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Equations (1.2.2) and (1.2.4) yield

I'n+1)=1), =n! (ne Ng={012,..})
with 0!=1.

It follows from (1.2.3) that the gamma function is analytic everywhere in the
complex plane C except at z=0,-1,-2,..., where I'(z) has simple poles.

The beta function is defined by the Euler integral of the first kind [1]:

B(z,w)= }tz"l(l— )" Ldr (Re(z) > 0; Re(w)>0)
0

This function is connected with the gamma functions by the relation

I'(z)I'(w)

Tz 4+ w) (z,we Z™)

B(z,w)=

The binomial coefficients are defined for &« € C and n € N by the formula

(1.2.5)

[a]zl [a}z alea-1)(a-2)..(a—n+1)

n!
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In particular, when e =m (m e N,), we have

m m! _
[ j:m (ne Ny, m=n)

and

m
( j:O (I’lGNO; OSm<n)
n

If agZ ={-1-2,-3,.}=7Z;\{0}, (1.25) is represented via the gamma
function by

a) T(a+1l) _
[n)_n!l"(a—n+1) (@eCi nelNo)

Such a relation can be extended from n e N, to arbitrary complex g € C by

@) _ a+1) | )
(ﬂ]_l"(a—ﬂﬂ)r(ﬁﬂ) (@.BeC; agZ")

The incomplete gamma functions y(z,w) and I'(z,w) are defined for z,w e C
by [1]

y(z,w)= th_le_tdt (Re(z) > 0)
and ’

[(z,w)= .ftz_le_tdt
w

respectively. The following relation is evident:

7(z,0)=I(z,0)=T(z) =y(z,w)—-T(z,w) (Re(z) > 0)
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1.3 Classical Mittag-Leffler Functions: [4]

In this section we present the definitions and some properties of two classical
Mittag—Leffler functions.

The function E(z) defined by
o0 k

N .
E, (z)= IEO T(ak+1) (ze C; Re(a)>0) (1.3.1)

where I'(.) is the Gamma function.

This equation is known as the Mittag—Leffler function [12]. We present some
properties of this function. In particular, when & =1 and & = 2, we have

E((z)=¢* and E,(z)=cosh(+/z)

When a@=ne N, the following differentiation formulas hold for the function
E,(Az"):

dl’l
zn

E, (Az")=AE,(Az") (1eC) (1.3.2)

and

:ll p {z"_lEn( /},ﬂ = (_},)Hl E, [in) (z#£0; AeC)  (13.3)
v4

< < <
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The Mittag—Leffler function E, 4(z), generalizing the one in (1.3.1), is defined
by

k

- Z :
E, p(2)= kZ=jo Fak+ B) (z, e C; Re(a)>0) (1.3.4)

When g =1, E, 4(z) coincides with the Mittag-Leffler function (1.3.1):

E,1(z2)=E4(z) (zeC; Re(a)>0)

Like the Mittag-Leffler function E, (z), E, z(z) is satisfies the following
differentiation formulas generalized those in (1.3.2) and (1.3.3):

dn

zn

[zﬂ_lEn,ﬂ(/lz")]= zﬁ_"_lEn,ﬂ_n (/?.z") (neN; AeC)

and

d {z"‘ﬁEn,ﬂ(iﬂz(_ﬁﬁlEn,ﬂ(iﬂ) (z#0; neN; AeC)

dz" z z z

Now, we present some properties of special functions defined in terms of the
Mittag-Leffler E, ,(z)

We consider a function defined for z e C\{0} and a,4 € C in terms of the
Mittag—Leffler function (1.3.1) by

E,_(Az%) (Re(a) > 0) (1.3.5)
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The following differentiation formulas hold for this function with respect to z:

a"n [Ea (ﬂza)]= z_"Ea,l—n(/'Lza) (1.3.6)
4
and with respectto A :
aa /:n [Ea(lza)]= n! zm’ngalnﬂ(lz“) (1.3.7)

where E,(Az%) is the generalized Mittag—Leffler function which is denoted by

2 (Pt . .
Eé’,ﬂ(z)=k§or(a1;€izﬂ)k! (zeC; a,B,peC; Re(a)>0)
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1.4 Riemann-Liouville Fractional Derivatives: [18]

In this section we give the definitions and some properties of the Riemann—
Liouville fractional derivatives on a finite interval of the real line.

Let Q=[a,b] be a finite interval on the real axis R. The Riemann-Liouville
fractional derivatives DY y and D, y of order &« € C (Re(a) > 0) are defined by

+

1 d" < y(t)dt

(D ¥)(x) = - (h—a) 2" I v (1.4.)
(n =[Re(a)]+1; x>a)
and
_ n b
(DE y)(x)=— L[y (142)

r(n _a) dxn x(t_ x)a—n+1

(n =[Re(a)]+1, x<b)

respectively, where [Re(a)] means the integral part of Re(a). These derivatives are

called the left-sided and the right-sided fractional derivatives. In particular, when
a=ne N, then

(D2, y)(x) = (Dy_y)(x) = y(x); and
DL y)x)=y"(x)  DENE)=CD"y"(x)  (neN)

where y™ (x) is the usual derivative of y(x) of order n.
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If 0< Re(a) <1, then equations (1.4.1) and (1.4.2) becomes

o B 1 < y(t)dt
(D y)(x)= [l-a)dx ) (x—1)" (x> a) (1.4.3)
and
_ b
(DZ_y)(x)= 1 d [-2 (1)dt (x <b) (1.4.4)

IFl-a)dx (t—x)*

The Riemann-Liouville fractional derivatives (1.4.1) and (1.4.2), defined on a

finite interval [a,b] of the real line R, are naturally extended to the half-axis R*. The

fractional differentiation construction, corresponding to those in (1.4.1) and (1.4.2), are
defined by

1 d" ¥ y(t)dt

(DEY)(x)=— (=) g PP (1.4.5)
and
(D2 )= YO (146)

(n—a) dx" (¢t —x)* "

with n=[Re(a)]+1; Re(a)>0; x> 0.

The above expressions for DYy and D? y are called the Riemann-Liouville left—

sided and right—sided fractional derivatives on the half-axis R*. In particular, when
a=ne N, then

(D2y)(x) = (D2y)(x) = y(x);

(D y)(x) = y")(x) (D"y)(x)=(-1)"y")(x) (neN)

where y™(x) is the usual derivative of y(x) of order n.

10
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If 0< Re(a) <1 and x> 0, then equations (1.4.5) and (1.4.6) becomes

_ y(¢)dt
(DY y)(x)= r(1 2 dx!)(x )@ (1.4.7)
and
(DEy)(x) =~ I yo)dt (1.4.8)

F(l a)dxx(t x)

11
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1.5 Laplace Transform:

In this section we present the definitions and some properties of one—dimensional
Laplace transform. More detailed information may be found in [19], [3], [2] and [20]
(for the one—dimensional case).

1.5.1 Usual Laplace Transform:

The Laplace transform of a function f of a real variable e R™ =(0,) is
defined by

(L f)s)= Oj?e_“ f(t)dt (seC) (1.5.1)
0

= lim lfe‘s’f(t)dt=F(s)

b—)wo

whenever the limit exists (as a finite number). When it does, the integral (1.5.1) is said
to be converge. If the limit does not exist, the integral (1.5.1) is said to be diverge and
there is no Laplace transform defined for f.

Now, we want to consider the inverse problem, given a function F(s), we want
to find the function f(¢) whose Laplace transform is F(s). We introduce the notation

(LF(s) ()= f(2) (1.5.2)

to denote such a function £(¢), and it is called the inverse Laplace transform of F .

12
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The direct and inverse Laplace transforms are inverse to each other:

£‘1£¢ =@ and .Bﬁ_lg =g
Now, we present some simple properties of the Laplace transform

L[D*p()](s)=5*(Lp)s) (keN) (15.3)

D*(Lo)(s)=(-D) LI e ()](s)  (keN)

The convolution operator of two functions A(z) and ¢(¢), given on R™, is
defined for € R* by the integral

t
h*@=(h*)(t)= [ h(t - x)p(x)dx (15.4)
0
which has the commutative property

hxo=@*h (1.5.5)

The Laplace transform of the convolution & * ¢ is given by

(£ (h*@))(s) = (L h)(s)(L @)(s) (15.6)

13
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1.5.2 Laplace Transform for Fractional Ordinary Differential
Equations: [18]

In this section we present the Laplace transform of the Riemann-Liouville
fractional derivatives DYy in (1.4.5).

Lemma 1.2: [18]

Let Re(a)>0 and n=[Re(a)]+1;, ye AC"[0,b] for any b>0. Also let the
following estimate

¥(0) < Be™ (¢t>b>0) (1.5.7)

hold, for constants B >0 and ¢, >0, and if y*)(0)=0 (k=0,1,2,...,n—1) then the
relation

(£ DY y)(s)=s%(L y)(s) (15.8)

is valid for Re(s)> ¢, .

14
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Remark 1.1: [18]

If Re(a)>0, n=[Re(a)]+1; y(x)e AC"[0,b], for any b> 0, the condition
in (1.5.6) is satisfied and there exist the finite limits

lim [D* 1" %y(x)] and lim [D* 1" % y(x)]=0
x—>0+ X—>©

(D =d/dx; k=012,..,n-1)
where (I;7%y) is defined in (1.1.3).
Then from (1.4.7) and
i
> s /T (D/p)(0)  (keN)
j=0

L[D*p(1)](s) = s* (L p)(s) -

we derive a relation, more general than that in (1.5.8), of the form

n-1
(LD%y)(s)=s*(Ly)(s)— X s" ¥ DK 2y)0+) (159
k=0

(Re(s) > ‘Io)
In particular, when 0 < Re(a) <1 and y(x) € ACI[0,b] for any b > 0, then

(LD y)(s)=s%(L y)(s)- (I3~ %y)(0+) (15.10)

15
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Putting p=f#=1In

ap-p
|5 ED () ](s)=(:a_—/1)p

where Re(s)>0, Re(f)>0, AeC, and ‘ﬂs‘“‘<1 and  taking

Eiﬁ(z) =E,4(z) (zeC)and E, (z)=E,(z) (zeC; Re(a)>0) into account we
obtain the Laplace transform of the function (1.3.5):

sa—l

£ [Ea (zt“)] ()= P

(15.11)

(Re(s)> 0, 4 € C,and \zs—“\ <1)

and differentiating (1.5.11) n times with respectto A4 leads to the relation

nls®1

(sa _ ﬂ)n+1

(ne N) (1.5.12)

n

al’l
L™ E_ (A2%) | (s)=
o ©
Next we consider a function, more general than that in (1.3.5), defined by

zﬂ_lEa'ﬂ(iza) (zeC\{0}; a,B,1€C; Re(a)>0) (1.5.13)

16
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The following relations, analogous to those in (1.3.6), (1.3.7), (1.5.11) and

(1.5.12), are valid for the function in (1.5.13),(n € N):

an

a . [zﬂ_lEa1ﬂ (lza)]z zﬂ_n_lEa'ﬁ_n (lza)
<

a n
A"

[z'B_lEa’ﬂ(/lza)]z n!za”+'3_lEgzln+ﬂ (1z%)

s¢ P

s*— A

£ [t'B_lEa, ﬂ(lta)](s) =

(Re(s)>0; AeC;

zs‘“\ <1)

nls®F

(Sa _ /1)”+1

13{1“"*/’—1 ;n E, ﬁ(lta)}(s) =

(‘xls_a‘ <1)

17
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Chapter Two Integral Transform Method for the Solutions to Homogeneous
Fractional Order Differential Equations with Constant Coefficients

Chapter Two

INTEGRAL TRANSFORM METHOD FOR THE SOLUTIONS
TO HOMOGENEOUS FRACTIONAL ORDER DIFFRENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

The present chapter is devoted to the application of Laplace integral transform
to construct the solutions to linear and homogeneous fractional order differential
equations involving the Riemann-Liouville fractional derivatives with constant
coefficients of the form

m
kZlAk(ka y)(X)+ Agy(x)=0 (2.1)
(x>0; meN; O<ag<ay<az<..<ap)

with the Riemann-Liouville fractional derivatives D{*y (k=1,2,3,...,m), given by
(1.4.5). Here A, e R (k=0,1,2,...,m) are real constants, and, generally speaking, we
can take A,=1. We give the conditions when the solutions
Y1(X), ¥, (X), Y3(X),..., ¥, (X) of the equation (2.1) with | -1<a=a,, <I| (leN)

will be linearly independent, and when these linearly independent solutions form the
fundamental system of solutions, which (by analogy with the ordinary case) is
defined by

(DE ¥ yN0)=0  (k,j=123,..1; k=j)

(D Xy )0)=1  (k=123,...1) (2.2)

18
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The Laplace transform method is based on the relation (1.5.9) which, in
accordance with (1.4.5), is equivalent to the following one:

I .
(£ DFy)(s)=s*(LLy(x)D) (s)- Zldjsj_l (2.:3)
J:

(I-1<a<l; leN)

d; =(D27Iy)0)  (j=123...1) (2.4)

Now, we give three theorems for finding the solutions of equation (2.1) in case
m=1 m=2and me N

The idea of these proves based on the implemented of Laplace Transform
Method.

The Laplace transform was used by [17], [11] and [16] to solve simple and
special cases of fractional order differential equations.

19
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First we derive the solutions to equation (2.1) with m =1 in the form
(DZy)(x)—Ay(x)=0 (x>0; I-1<a<l; leN; 2eR) (25)

in terms of the Mittag—leffler functions (1.3.4). There holds the following statement.

Theorem 2.1:

Let |-1<a <l (IeN) and A € R. Then the functions
Yi()=x¥TE, g1 j(AX*)  (j=123,..,1)

yield the fundamental system of solutions to equation (2.5).

Proof:

Applying the Laplace transform formula to equation (2.5)
(£ D{y)(x)— (L Ay)(x)=0

From (2.3) we have

I .
s*(Ly)(s)- _zld,-sl‘l—zw y)(s)=0
]=

20
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Therefore, we have

gl-1

|
(8)(9)= 3. d, 26)
j=

s* -1

where d; (j=1,23,...,1) are given by (2.4). Formula (1.5.16) with f=a+1- ]
yields

gl-1

£ [t“—l' E g sl | (,u“)] (s) = (\z s_“‘ <1)

s% —

Thus from (2.7), we derive the following solution to equation (2.5):
| a—| o
y(x)= 2 d;y;(x) Yi(x)=Xx""Eq g41-j(AXT)
j=1
It is easily verified that the functions y;(x) are solutions to equation (2.5)

(Df [ta_j Ea,a+1—j (/ua)] (x)= Z'Xa_j Ea,a+1—j (Zxa) (1=123,...,1)

and, moreover,

_ o A" i
D% Ky . )(x) = x @ N+k-] 2.8
(DY y)(X) ngol“(an+k+l—j) (2.8)

It follows from (2.8) that

(DE ¥ y0)=0  (k,j=123,..1; k>])
(2.9)

(DE Y )0)=1  (k=123...1)

21
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If k< j, then

_ © an ¥
D% Ky, _ an+k—j
OYI= 2 g nvkaio

o0 lln+1 )
— Z Xa n+a+k—j (210)

nmol(l@an+a+k+1-j)

and since a+k—-j>2a+1-1>0 for any k,j=1,2,3...,1. The following relations
hold

(DX y)0)=0  (k,j=123,..1; k<]) (2.11)

By (2.9) and (2.11) the result of this theorem follows from (2.2).

A Special Case of Theorem (2.1):

The equation

(DZyY)(X)—A y(x)=0 (x>0; 0<a<l, 2€R)

has its solution given by

y(X) = x“_lEa,a(ﬂx“)

while the equation
(DZY)(X)—A y(x)=0 (x>0; 1<a<2; AeR)
has the fundamental system of solutions given by

Yi(X) = X? By o (AX%),  Yo(X) = X¥T2E, 4 1 (AXY)
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Example 2.1:

The equation
(DIY29)(x) =2 y(x)=0  (x>0; leN; AeR)
has the fundamental system of solutions given by

yj(x)= XH_UZE|—1/2,|—j+1/2(/7~xl_1/2) (j=123,...,1)

Example 2.2:

The following ordinary differential equation of order | € N

yWx)-2y(x)=0  (x>0)

has the fundamental system of solutions given by

yj(x)le_jE|,|+l—j(/1X|) (j=1:2,3,---,|)
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Next we derive the solutions to equation (2.1) with m = 2 of the form

(DZy)(x) = A(DP y)(x) - y(x)=0 (2.12)
(x>0; I-1<a<l; leN; a>£>0)

with A, ue R.

Theorem 2.2:

Let |-1<a<l; leN; O<fB<a and A,ue R. Then equation (2.12) is
solvable and the functional system

n n
i K janta-j 0

-B
n=o NI on Ea—ﬂ,nﬂ+a+1—j(/1xa ) (2.13)

yj(X)=

(j=123,..1)

are its solutions.

In particular, the equation
(DZy)(x)=A(D£y)(x)=0 (2.14)
(x>0; I-1<a<l; leN; a>p>0)
has its solution given by

Vi()=x"VEy g g jX*7P)  (i=123..1) (219
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If a—1+1> 4, then y;(x) in (2.13) and (2.15) are linearly independent

solutions to equations (2.12) and (2.14), respectively. In particular, for a —1+1> B8
they yield the fundamental system of solutions.

Proof:

Let m-1<B8<m (meN; m<I). Applying the Laplace transform to
(2.12) and using (2.3) as in (2.7), we obtain

| Sj_l
(Ly)(s)= 2 d; (2.16)
2 s asf -y
where, forall j=m+1m+2m+3,..,1l
dj = (DF71y)(0)+(Df~y)(0)
and forall j=1,2,3,....m
d; =(D?1y)(0)
m_ﬂ
For se C and “ad < 1, using [9], we have
s¥F -4
-B © Ne—B-np
1 __° 1_/3 -y M3 - (217)
s¥ AP —u (%P -A)(q_ us n=0 (Sa—ﬂ _1)”
s*h_2
and hence (2.16) has the following representation:
| © gl=1-B-np
(Ly)s)=2dj 2 u (2.18)

iZ1 n=0 (s*F )
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Using (1.5.17), with « replaced by a— 8 and B by e+ngB+1-j, for
seC and ‘ﬂsﬂ‘“‘ <1, we have

J-1-Bnp (a-B)-(a+npi-))
(s*F — 1) - (s%F — 1)

1 n+a—j o" 5
:ﬁ(£|:ta - o Ea—ﬂ,a+nﬂ+1—j('ua )| 1(s) (2.19)

From (2.18) and (2.19) we derive the solution to equation (2.12)
I
y(x)= 2 d;y;j(x) (2.20)
j=1

where y;(x) (j=1,23,...,1) are given by (2.13). It is readily verified that these

functions are solutions to equation (2.12), which proves the first assertion of
Theorem 2.2.

For j,k=1,2,3,..., 1, the direct evaluation yields

3 00 n . an _
(DY kyj)(x)= 2 ﬂ—lxan+k J By gnpike1-j(AXE Py (2.21)

It follows from (2.21) that the relations in (2.9) hold for k> j. If k < j, then,
we rewrite (2.21) as follows:

© lq"'l

Da—k . =
(DY y;j)(x) q§or[(a_ﬂ)(q+l)+k+1—j]

X(a_ﬂ)q+a_ﬂ+k_j +

Z,U ozn+kjan

~ nl o Ea—ﬁ,nﬁ+k+1—j(/7~xa_'8)= 1, (X)+ 1,(X) (2.22)
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If a—1+1>p4, then (e-pB)q+a—-pf+k—-j>2a-p+1-1>0 for any
1,k=123,...,1 and ge N,. Thus lim I,(x)=0 (j,k=1,23,...,I; k< j) except

X—0+

for the case a¢—-1+1=p with k=1 and j=I, for which lim I, (x)=A4.

Xx—>0+

Moreover, since an+k—-j>2a+1-1>0 forany j,k=1,2.3,....,1 and ne N, then
lim 1,(x)=0 (k,j=12,3,..,1; k< ). Thus (2.22) yields the relation (2.11) for

X—>0+

any solution y;(x) in (2.13), except for the case a¢—1+1=/4 with k=1 and
j =1, for which

(D271y,)(0) = 4 (2.23)

It follows from (2.9), (2.11) and (2.23) that y,;(x) in (2.13) are linearly
independent solutions to the equation (2.12).

If @—1+1> B, then the relations (2.2) are valid, and hence y;(x) in (2.13)

yield the fundamental system of solutions to equation (2.12).
|

A Special Case of Theorem (2.2):

The equation

(D2y)(x) = A(DPy)(x) - y(x)=0 (x>0; 0<fB<a<l; A, ueR)

has its solution given by

4" gnia-1 0" B
_ an+a-— a—
y1(x) = ngoﬁ X o Ea_pnpra(AXT7) (2.24)

In particular,

yl(x) = Xa_l Ea—ﬂ,a(lxa_ﬂ) (2.25)

Is the solution to the following equation:

(DZy)(x)—A(DPy)(x)=0 (x>0; 0<B<a<l, AeR)
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Another Special Case of Theorem (2.2):

The equation

(DZy)(x)—A(DL y)(x) - y(x)=0 (2.26)

(x>0; 1<a<?2;, O<pfB<a; A, ueR)
has two solutions y,(x), given by (2.24), and

2 1" anva—2 0" B
an+a-— a-

In particular, the equation
(DZy)(x)= A(DEy)(x)=0 (2.27)
(x>0; 1<a<?;, 0<pf<a; A€R)
has two solutions y,(x), given by (2.25), and

Yo (X) = X% Ea—ﬂ,a—l(ﬂxa_ﬂ)

If a>p+1, then the above functions y,(x) and y,(x) are linearly

independent solutions to the equation (2.26) and (2.27), respectively. In particular,
for a > B +1 these functions provide the fundamental system of solutions.
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Example 2.3:

The equation
y'(x)=A(DLy)(x) - y(x)=0(x>0; 0<B<1; A,ueR)

has its solution given by

2 pu n o 1
y(X) = Zoﬁxn pr E1_ g n+1(AX P
n=0 M-
In particular,
=% oD B2 na ()
n= :

Is the solution to the equation

y'(X)=ADY2y)(X) - uy(x)=0 (x>0; A,ueR)

Example 2.4:

The equation
Y'(x)= ADLY)(X)-py(x)=0 (x>0; 0<B<2; A,ueR)

has its two solutions given by

© 4" onyg 0" 28
Y1(X)=n§oﬁx pr Eo_pgnge2(AXTF)

0 n an
yo(x)= 3 E-x2n

2-p
n=0 N! oAn E2—,8,n,3+1(/1x )
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These solutions are linearly independent when A<1 and form the
fundamental system of solutions when g <1.

In particular, the equation

y"(x)—A(DY2y)(x)-py(x)=0  (x>0; A,ueR)

has the fundamental system of solutions given by

0 /ln 2n 1 an 3/2
+
y1(x) = Zo—n, X pr Ez/2,1/2)n+2(AX7°7)
n=0 N:

o u" oy 0" 3/2
Yo (X) = X E (AX7"9)
2 EO nl o 3/2,(1/2)n+1

Example 2.5:

The following ordinary differential equation of order | € N

yD ()= ayM(x) = u y(x)=0 (x>0; meN; m<l; 4, ueR)

has | solutions given by

< :un nl+1—j 0" l-m .
yj(X):nEOHX a/lnEl—m,mn+I+1—j(lX ) (J=112131---1|)

when m =1, these solutions are linearly independent.
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In particular, the following ordinary second order differential equation

y'(X)= 2y (X)-pu y(x)=0 (x>0; 4,ueR)

has two linearly independent solutions given by

0 n an
yl(X) = Z £ X2n+1 El n+2(/lx)

n=0 N! oA"
0 n an
Yo (X)= 2 E_yn nEl,n+1(/1X)
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Finally, we find the solutions to equation (2.1) with any m € N in the form

(D)0~ AL Y(X)~ LA =0 (x>0) (229

O=qp<a<ar<..<aqn<fB<a, A,A,AA ... A,ER)

Theorem 2.3:

Let meN, I-1<a<I| (leN) and let g and a,,2,,2;,...,a,, be such that
a>f>a,>a,,>a,,>..>a,>a,=0, and let 4,A;,A,A,,..., A, €R. Then
equation (2.28) is solvable and the functional system

y,—(x)-i[ ) ]ko o ek

n=0\ kg+..Kp, =n

(a-P)n+a-j+ T (B-a, )k, gn
v=0 E m (Ax% Ay (2.29)
A" a-B.a+l-j+ Y (B-a,)k,
v=0

- X

with j=1,2,3,..,1, are its solutions. The inner sum is taken over all
Ko.K,,Ks,....K, € Ngsuch that k, + k; +k, +...+ Kk, =

If a—1+12>p, then y;(x) in (2.29) are linearly independent solutions to

equation (2.28) . In particular, for a—1+1> B they provide the fundamental
system of solutions.
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Proof:

Let Im+1_1<ﬂS|m+1, Ik_1<akSIk (k=1,2,3,,m)

o<l gL, <, <...<1,,, £1). Applying the Laplace transform to (2.28) and using
(2.3) asin (2.16), we obtain

(Ly)(s)= 2 d; -
=L 5% _ 25 — 3 A s%
k=0

(2.30)

where
d; = (Df‘jy)(O)—z(Df"’yxm—k%Ak(ka‘jy)<0> (j=123...1;)

d; =(Df"'y)(O)—/l(Df‘jy)(O)—éAk(ka‘jy)(O) (J=l+L1+2.15)...

dj = (D 1y)(0)-ADLIY)0) (j=lpn+L 1y +20 +3.1504)

d; =(D¥IY)0) (J=lmys+Llmes+2Imsy + 30 )
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. ZAkSak_ﬂ
here > A, =0 (m>n). For seC and "=°a_ﬂ 1 <1, just as in (2.17), we
k=m S -
have
1 _sh 1
@ —Z,S’B — rzn: Aksak (Sa_ﬂ —A) . éoAksak_'B
k=0 Sa—ﬁ —ﬂ«
o0 S_ﬂ ( m a _ﬂ n
=2 2 A
n=0 (Sa_ﬂ —xl)n+1 k=0

_B-Y(B-a, )k,
-3| 3 #[ﬁ(%)kv}s - (2:31)
ko+...K,=n kolkm| v=0 (Sa—ﬂ _ﬂ)n+1 .

According to (1.5.17), just as in (2.19), for s e C and ‘ﬂ sﬂ‘“‘ <1, we have

==L (B-a )k, (a-p)-(ari-i+ T(B-a,)k,)

S S
(Sa—ﬂ _1) n+l (Sa—ﬂ —Z) n+1
(a-P)n+a—j+ 3 (B-a,)k, AN
1 el % °_E ] (4t* Py | |(s)
n! oA a-F.a+1l-j+ > (f-a, )k,
v=0
(2.32)
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From (2.30), (2.31) and (2.32) we obtain the solution to equation (2.28) in the
form (2.20), where y;(x) (j=1,2,3,...,1) are given by (2.29). It is easily verified

that these functions are solutions to (2.28), and thus the first assertion of the
Theorem 2.3 is proved.

For j,k=1,2,3,...,1 , the direct evaluation leads to the following equations:

_ o _
(DE ™ y))(X) =X T =By gy j(X* P+

oA

- L[m T (@Bnek-ir (B-a,k,
S| = ,—[H(MV}X

n=1\ Kg+...K,=n kO----km! v=0

n
0 E

: . (Ax%F) (2.33)
OA"  a-pk+l-j+ 3 (B-a,)k,
v=0

with j=1,2,3,...,1. If k> j, then the last formula yields the relations in (2.9). If
k < |, then, the first term in the right — hand side of (2.33) takes the form

. An o0 u
KK (XA = XK T 3 & (B
oA" p=11Tk+1-j+(a-B)u]
© 1
_ xk-ita-8 3 Y (@B (2.34)

p=0Tk+1=]+(a-B)(u+1)]
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If a—1+1> B, then forany k< j, we have k—j+a—-f2a—-f+1-120
and (a—ﬂ)n+k—j+g(ﬂ—av)kVZa—ﬂ+1—l>0for any ne N,. Then from
v=0

(2.33) and (2.34), we derive (2.11), except for the case ¢ —1+1= 4 with k=1 and
j =1, for which the relation (2.23) holds. it follows from (2.9), (2.11) and (2.23) that
the functions y;(x) in (2.29) are linearly independent solutions to equation (2.28).
When a —1+1> B, then the relations in (2.2) are valid, and thus y;(x) in (2.29) yield

the fundamental system of solutions to the equation (2.28).
|

A Special Case of Theorem (2.3):

If leN and 4,A,, A, A,,...., A € R, then the following ordinary differential
equation of order |

y“>(x)—/1y“‘”(x)—ki_oAky‘k)(x>=o (x>0)

has | solutions given by

v=0

© 1 I K n+|—j+2|‘,(l—1—v)kv
yij(x)= 2 2 W[H(A\/)V}X

n=0\ ko +...K;=n

an
oA" 1,I+1—j+Z|:(I—1—v)k\,

v=0

(AX) (j=12,3,...,m)
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Example 2.6:

The equation

(DZy)(x) = A(DZ y)(x) - 5(DL y)(x) - u y(x) =0 (2.35)

with | —1<a<I| (leN) and 0<y < B <a, has | solutions given by

yi(x)= i > ﬂx(a—ﬂ)nm—jwqﬂﬂ—y)v
n=0\_ g+v=n q!V!
an

| oA" Ea—ﬂ,a+1—j+ﬂq+(ﬂ—7)v

(Ax%P) (2.36)

(j=1,23,..1)

If @—1+1> B, then the functions y;(x) in (2.36) are linearly independent

solutions to equation (2.35). In particular, for ¢ — 1 +1> g these functions provide
the fundamental system of solutions.

Example 2.7:

The ordinary differential equation of order | e N
YO =2 y™(x)- 6y (x)-py(x)=0
where x>0; mkeN; k<mx<l; A4,6,ueR

has | solutions given by
- pis’ I-j K
Yj(X)= Z Z X( —m)n+1-j+mg+(m-Kk)v
n=0\ q+v=n q!V!

an

[— i
°JEI—m,I+1—j+mq+(m—k)v (A7) (1=123...1)
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Fractional Order Differential Equations with Constant Coefficients

Chapter Three

INTEGRAL TRANSFORM METHOD FOR THE SOLUTIONS
TO NONHOMOGENEOUS FRACTIONAL ORDER
DIFFRENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

The present chapter is to present a scheme for solving the fractional
nonhomogeneous differential equation with constant coefficients of the form

YA+ AY)= 100 (x>0 @D

with me N; 0<Re(a;)<Re(a,)<..<Re(a,); Ay, ALA ..., A, ER, and
involving the Riemann-Liouville fractional derivatives DY*y (k=1,2,3,...,m), given

by (1.4.5). By (1.5.10), for suitable functions vy, the Laplace transform (2.1) of Dy
IS given by

(£ DFy)(s)=s%(£ y)(s) (32)

Taking the Laplace transform of (3.1) and taking (3.2) into account, we have

{%+éﬁ#ﬂww@=wn@
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Using the inverse Laplace transform £ given by (1.5.2), from here we obtain a
particular solution to the equation (3.1) in the form

(£1)(s)
Ao+ X As™
| k=1

()
|

y(X)= (x) (3.3)

4/

Miller [11] introduced a fractional analog of the Green function G_(x) defined,
via the inverse Laplace transform (1.5.2), by

Ga(x){ﬁ—l{ - Dm, P(s)= ¥ Ak + Ay (3.4)
P(s%) k=1

represented a particular solution to the nonhomogeneous equation (3.1) in the form of
the convolution of G, (x) and f(x):

Y(X) = [Gy(x=1) (1)
0

and proved that this formula yields a unique solution y(x) to the equation (3.1) with
the following initial conditions:

y(0)=y'(0)= y"(0) = ...= y("D(0) =0
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In Chapter 2 we applied the Laplace transform method to derive the solutions to
the homogeneous equation (2.1) with the Riemann-Liouville fractional derivatives

(1.4.1). Here we use this approach to find particular solutions to the corresponding
nonhomogeneous equations.

3. AP Y00+ Agy(x) = 10 @5
(x>0; O<agy<ay<..<ay,;, meN)

with real A, e R (k=0,1.2....,m) and a given function f(x) on R". Our arguments

are based on a scheme for deducing a particular solution (3.3) to equation (3.5),
presented in Chapter 2. Using the Laplace convolution formula (1.4.6).

(B [}( k(x-1) f (t)dtn (s)=(£K)(s)(£ f)(p)
0

just as in (3.4) we can introduce the Laplace fractional analog of the Green function as
follows [10].

(3.6)
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and express a particular solution (3.3) of equation (3.5) in the form of the Laplace

convolutionof G, 5 4. 4 (X) and f(x)

X
Y(X)= [Ga, ay.an...a. (X—1) F (D)t (3.7)
0

Generally speaking, we can consider equation (3.5) with A =1.

Now, we give three theorems for finding the solutions of equation (3.1) in case
m=1 m=2and meN

The idea of these proves based on the implemented of the Green Function.

The Green function was used by [10] to solve nonhomogeneous fractional order
differential equations.
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First we derive a particular solution to equation (3.5) with m =1 in the form

(DIY(X)-Ay(x)=f(x) (x>0, a>0) (38

in terms of the Mittag—Leffler function (1.3.4).

Theorem 3.1:

Let «>0, AR and let f(x) be a given function defined on R™. Then
equation (3.8) is solvable, and its particular solution has the form

y(X) = }((x—t)“‘l Ea,a[l(x—t)“] f (t)dt (3.9)
0

Proof:

Its clear that equation (3.8) can be obtained from equation (3.5) in case if we
take m=1, o, =a, A =1 A,=-4,andequation (3.6) takes the form

oun-(e{ )
« () (L’ La—z (x)
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By (1.5.16) with g =, we have

1

L [t"“1 Ea,a(/lt“)] (s) = “_ (Re(s) > 0; /ls‘“‘ <1)
S _—
Hence
Gy (X) = Xa_lEa,a(lXa)
and thus (3.7), with G, , 4. o (X)=G,(X), yields (3.9).
|

Example 3.1:

The equation

D2 () -2 y(x)=f(x) (x>0; leN; AeR)

has a particular solution given by

Y(X) = [ (=12, 115 1o A= )Y £ (t)elt
0
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Example 3.2:

The following ordinary differential equation of order | e N

yWx)=-4y(x)= f(x)  (x>0)

has a particular solution given by

y(X) = )j((x—t)'_lEL,[Z(x—t)'] f (t)dt
0
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Next we derive a particular solution to equation (3.5) with m = 2 of the form

(DEY)(X)-ADELY)()-py(x)=F(x) (x>0 @a>B>0) (3.10)

Theorem 3.2:

Leta> B >0, A,ue R and let f(x) be agiven function defined on R*. Then
equation (3.10) is solvable, and its particular solution has the form

y(X) = }((x—t)“‘lGa’ﬁ;l,ﬂ(x—t)f(t)dt (3.11)
0

where
n n
< an O

B n=0 N! oA"

Eo_pnpra(A2%P) (312
In particular, the equation
(DEY)(X)-A(DLY)(¥)= f(x)  (x>0; a>B>0) (313)

has a particular solution given by

y(X) = )j((x—t)“_l Eopa [ﬂ(x—t)“"ﬂ ] f (t)dt (3.14)
0
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Proof:

Its clear that equation (3.10) can be obtained from equation (3.5) in case if we
take m=2, a,=a, a,=8, A, =1, A =-1, A, =-u,and equation (3.6) is given by

_ 1
e oty

;ts_ﬂ
s F_

< 1, we have

According to (2.17) for se C and

® -p-ng
Gap(X)=| L7 T 4" 2 (X) (3.15)
' a=0 (Sa p _/l)n+1

By (1.5.17) with a=a—f and f=a+ng, for seC and |As”™|<1, we
have

-p-npg n
S 1 _ 1 0 _
— _(B |:t(a ﬂ)n+(a+nﬂ) 1 azn Ea_ﬂ1a+nﬂ (/ua ﬂ):|] (S)

_1 (n+1)-1 0" v
_ﬁ[£|:ta JEa—ﬂ,a+nﬂ(ﬂ’ta ) (S)

and hence (3.15) takes the following form:

© . O" _
G p(X)= X u"x ML= E o ap(XOF)
n=0 6/1
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Thus the result in (3.11) follows from (3.7) with G, , ,. . (X)=G, 5(X).

(3.11) with g =0 vyields (3.14). Note that, in the limiting case g =0, the solution
(3.14) of equation (3.13) coincides with the solution (3.9) of equation (3.8).

Example 3.3:

The equation

Y' ()= ADEY)(X) - y(x)= f(x) (x>0; 0<Re(B)<L; A,ueR)

has a particular solution given by

V() =[Gy giz,u(x— 1) T (el
0

where

Gy p:4.u(2)= i )" 0

1-p
n=o n!' oA" El—ﬁ,nﬁ+1(ﬂz )

In particular, the equation

Y() =AY * ) -py(x)=f(x) (x>0, A,ueR)
has a particular solution given by

X
Y(X)=[Gy1/2:2 ,(x—1) F(t)dt
0
Where

Gi1/2:4,4(2) = %o: (1z)” 0

1/2)
n=0 n! 94"

E1/2,1/2)n+1(A2
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Example 3.4:

The equation
Y (X)=ADLY) () -py(x)=f(x) (x>0; 0<B<2 AueR)

has a particular solution given by

Y(X) = [ (X— )Gy poa (X~ 1) F(t)c
0

where

Go s (@)= T 2027 T By g2t )
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Example 3.5:

The following ordinary differential equation of order | € N
y(')(x)—ﬂ y(m)(x)—y y(x)= f(x) (x>0; meN; m<l; A, ueR)

has a particular solution

V() = [ (X=1)'"16, 1z o (x—1) F (D)l
0

where
n n
QM om0 l-m
Gl,m;/l,ﬂ(z)_nzzlo nl Z oA Elcmmn+1(4277)
In particular,
X
y(X) = [(Xx=1)Gp 1.5 ,(Xx—1) f(t)dt
0
where
0 n an
Gorau(D)= 3 E 22" T E .0(22)

is a particular solution to the equation

y'(X)= A y'(x) - y(x)= f(x) (x>0)
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Finally, we find a particular solution to equation (3.5) with any me N . It is
convenient to rewrite (3.5), just as (2.28) in the form

(D£3)0) = 2D )(x) = T AP V)00~ Aoy(9= F(x) (x>0

(3.16)
With O< e, <@, <a;..<a, <B<a and 4, A;, A A,,.... A, eR.
Theorem 3.3:
Let meN, a>p>a,>a,_1>0,_,>.>a,>a,=0, let

A ALALA,. A, eR, and let f(x) be a given function defined on R*. Then
equation (3.16) is solvable, and its particular solution has the form

where

Co, a5 am,ﬂ,a;l(z)=§:( 2 Jﬁ[ﬂ(ﬁy)kv}

n=0\ ko +...kp, =n v=0

(a-p)n+ 3 (B-a, )k, Zn
o E _ (A2%7P) (3.18)
A" a-p.(a-p)n+a+ X (B-a,)k,

v=0

A

The inner sum is taken over all kg, k;,K,,..k,eN, such that
Ko+ Kk, +K, +...+ Kk, =n.
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Proof:

Fractional Order Differential Equations with Constant Coefficients

Its clear that equation (3.16) can be obtained from equation (3.5) in case if we

take o, =a, a, =8, A,=1 A, =-4,

for k=0,1,2,....,m. Since a, =0, equation (3.6) takes the form

For s e C and

1
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¥ —As” — Y AS
k=0

S

(X)

<1, in accordance with (2.31), we have

and with — A, instead of A,

(x)
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Using (1.5.17) with a=a-f and S=a+ > (B —-a,)k, just as in (2.32),

v=0

for se C and ‘Asﬂ‘“‘ <1, we have

m
—B-2(B-ay)k, m
s v 1 (a-B)n+a+ X (B-a,)k,~1 zn
v=0

- | elt Y E .
(s* 'B—l)n” n! OA"  a-g.a+>(B-a,)k,

v=0

(At Py || (s)

(3.20)

It follows from (3.20) that G, . 5. 4 (X)in(3.19) is given by

(a-p)n+a+ 2(B-a)k,~1 gn
v=0

- X (Ax%P)

E m
A" a-B.a+X(B-a,)k,
v=0

Hence (3. 7) yields the result in (3.17)
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A Special Case of Theorem (3.3):

If leN and 4,A;, A, A,,.... A € R, then the ordinary differential equation of
order |

y(x)-4 y“‘”(x)—ki_OAkw“(x): f)  (x>0)

Is solvable, and its particular solution has the form

y(X) = )j((x—t)"lGM(x—t)f(t)dt (3.21)
0

where

o 1 | K
Gz,|(2)=2( 2 j,—![H(A\/)V}

n=0\ Ko +...K; =n k0----k| v=0

n+ Ellvkv on
v=0 E | (A2) (3.22)
OA" 11+ vk,

v=0

-z

provided that the series in (3.22) and the integral (3.21) are convergent.
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Example 3.6:

The equation
(DZy)(x) = A(Dy)(x) = 8(DY y)(x) -t y(x) = F(x)
(x>0; A4,0,ueR)

with | -1<a <1 (e N), 0<y< f<a,has a particular solution given by

Y(X)=[(X=1)*7'G, g 42 (x—t) F(t)dt
0

where

G}/,,B,a;/l(z): i( Z ],U o

n=0\ii+v=n/ I!V!

(a-pn+Bi-(p-yy 0"
oA

Ea—,e,a+,3i—(,3_y)v(/12a_'3)
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Example 3.7:

The following ordinary differential equation of order | e N

yO ) -2 y™(x) =6y (x)— g y(x) = F(x)

(x>0; mkeN; k<mx<l)

with 4,6, u € R has a particular solution given by

Y(X) = [ (X 1) LGy m 12 (x— 1) F (Bl
0

where

0 qgv
Gk,m,l;/l(z)= Z( Z J'u o

n=0\ g+v=n q!V!

., (I=m)n+mg—(m-k)v 0"
oA"

|—
EI—m,I+mq—(m—k)v (/12 m)
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CONCLUSIONS

We are obtained the solutions for ordinary multi—fractional order
differential equations with constant coefficients for homogenous and
nonhomogeneous fractional order differential equations making use of the
Laplace transform formula of special function Mittage—Leffler function
and their derivatives, by considering, simple one term with fractional
order differential equation, extended to two terms with different arbitrary
fraction order derivatives, then generalized to m-terms with different

arbitrary fraction order derivatives.

FUTURE WORK

We are recommended the following future works for constructing

the explicit solutions to homogeneous and non — homogeneous:

1. System of fractional order differential equations.

2. Special Types of fractional order differential equations with

variable coefficients.

3. Fractional order differential equations using other integral

transforms, such as Fourier, Mellin Integral Transforms.

4. Fractional order differential equations using other definitions, such

as Caputo, Hadamard.
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