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Abstract 

    Investigation of some transition metal complexes were carried out at room 

temperature in the new clan of room temperature ionic liquids of choline 

chloride based composition. 

The Ultraviolet Visible Spectroscopic spectra of Cr3+, Fe3+, Co2+, Ni2+ and Cu2+ 

indicated a complexes formation between the metal ions and the entities of these 

types of RTILs solvents namely choline chloride/ urea and choline chloride/ 

malonic acid which have freezing point at 12oC and 0oC respectively.   

    The complexes in choline chloride/ urea were found to be of Octahedral 

geometry for Cr3+, Ni2+ and Cu2+, and Tetrahedral geometry for Fe3+, Co2+ metal 

ions. Their spectra were found to be assigned to normal transition state of 

corresponding dn configuration in both geometries of Octahedral and 

Tetrahedral. 

    Substitution of solvent coordinated to these metals by added nitrate ions were 

observed, suggested a weak bonding between solvent molecules and transition 

metal cations, although they showed some geometrical coordination of 

corresponding metal cations. All complexes were found to reach final state of 

coordination at 72 hours, except Co2+ complexes when they showed instability 

when they were left at room temperature for 40 days. 

    In choline chloride/ malonic acid the geometrical coordination of Ni2+ and 

Cu2+ showed tetrahedral geometry rather than octahedral geometry in this RTIL, 

while the other cations have similar coordination geometry.  

    CFT splitting value (10Dq) have been determined for most of new formed 

complexes using appropriate dn Orgel and Tanabe-Sugano diagrams, and 

Jorgenson rule was used to asset the suggestion of the type of ligands 

coordinated to transition metal cations. The nature of the bonding between the 
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metal ions and the donor ligands were demonstrated through the Jorgenson rule 

and calculation of Racah parameters B ̀ were obtained form appropriate dn 

Tanabe-Sugano diagrams together with the qualitative assistance of Orgel 

diagrams.   
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Chapter One  

Introduction 

1.1. Introduction. 

      What is Molten Salt? 
      Molten salts are evidently numerous and potentially most significant and useful 

class of nonaqueous solvents. While “salts” is widely used though imprecise term, 

this class can be broadly defined as the liquid state of those compounds which 

melt, usually above room temperature to give liquids displaying ionic properties, at 

least to some degree. While they are probably more numerous than other 

nonaqueous solvents, molten salts are currently the least-known and least 

appreciated of the nonaqueous solvents, certainly much less so than their practical 

importance demands.(1,3) 

     Molten Salt is a rather dreadful name for an otherwise useful category of 

materials and processes. The term "Molten Salt" is self-descriptive; it is melted 

salt(s). Another common name is Fused Salt(s).(2,4)  

        Salts are simple, usually ionic (that is the chemical bonds are a simple ionic 

type) and stable compounds. The most common example of molten salt is "table 

salt", or sodium chloride (NaCl). Both sodium and chlorine are reactive; sodium is 

one of the most electropositive substances (tends to lose an electron) and chlorine 

one of the most electronegative (tends to take an electron). These two opposite 

substances readily join to form stable sodium chloride via a strong ionic bond. The 

melting point of sodium chloride is 801° C. At which point it becomes a liquid, and 

thus a "molten salt". This liquid is stable, has a heat capacity similar to water (by 

volume) and flows much like water does. The major differences are the obvious 

higher temperatures attainable in the molten salt state and when the salt solidifies 

(freezes) it contracts versus expanding in water. Thus, molten salt freezing in a 

pipe would not burst the pipe as water would.(3)
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     Molten salts are of considerable interest, not only from the technological point 

of view, but also from the standpoint of satisfying a fundamental curiosity. 

Structural studies of molten salts (such as alkali halides) by x-ray and neutron 

diffraction have been undertaken as part of a general program to determine the 

properties of molten salts.(3) 

      Molten salts, or if they are liquid under ordinary conditions, ionic liquids, are 

interesting for the special properties unique to fluids of charged particles and for 

applications of ionic liquids as environmentally friendly solvents.(3) 

1.2. Room Temperature Ionic Liquids ‘RTILs’. 
      Ionic liquids are highly solvating, non-coordinating medium in which a variety 

of organic and inorganic solutes are able to dissolve.  They are outstanding good 

solvents for a variety of compounds, and their lack of a measurable vapour 

pressure makes them a desirable substitute for VOCs.  Ionic liquids are attractive 

solvents as they are non-volatile, non-flammable, have a high thermal stability and 

are relatively inexpensive to manufacture. They usually exist as liquids well below 

room temperature up to a temperature as high as 200oC.(5,6) 

    An ionic liquid is a liquid that contains essentially only ions. Some ionic liquids, 

such as ethyl ammonium nitrate, are in a dynamic equilibrium where at any time 

more than 99.99% of the liquid is made up of ionic rather than molecular species. 

In the broad sense, the term includes all molten salts, for instance, sodium chloride 

at temperatures higher than 800 °C. Today, however, the term "ionic liquid" is 

commonly used for salts whose melting point is relatively low (below 100 °C). In 

particular, the salts that are liquid at room temperature are called room-temperature 

ionic liquids, or RTILs.(7,8) 

1.3. A short history of ionic liquids—from molten salts to neoteric 

       solvents. 

     Ionic liquid is a salt with a melting temperature below the boiling point of 

water. Most salts identified in the literature as ionic liquids are liquid at room 

temperature, and often to substantially lower temperatures.The history of ionic 
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liquids may be viewed as a relatively recent one, or one extending back to the 19th 

century. Which history you choose depends on your definition of ‘ionic liquid’ and 

how deeply you look for progenitors of the present materials receiving so much 

interest for green chemistry applications.(9) Accordingly, this may be the birth of 

new and important industrial materials, or we are witnesses to a renaissance of 

molten salt chemistry. One fairly general feature of ionic liquids that is not part of 

the definition is that most have organic cations and inorganic anions. There are 

many synonyms used for ionic liquids that complicate a literature search.(10) 

‘Molten salts’ is the most common and most broadly applied term for ionic 

compounds in the liquid state. Unfortunately the term ‘ionic liquids’ was also used 

to mean the same thing long before there was much literature on low melting salts. 

It may seem that the difference between ionic liquids and molten salts is just a 

matter of degree (literally), however the practical differences are sufficient to 

justify a separately identified niche for the salts that are liquid around room 

temperature.(11) Synonyms for materials that meet the working definition of ionic 

liquid are ‘room temperature molten salt,’ ‘low temperature molten salt’, ‘ambient 

temperature molten salt’, ‘ionic fluid’ and ‘liquid organic salt.’ The term ‘neoteric 

solvent’ has been used in recent years to mean new types of solvents, or older 

materials that are finding new applications as solvents. Supercritical fluids and 

ionic liquids are good examples of neoteric solvents that have been known for a 

long time, but are being considered as process solvents.(10)  

     The link between ionic liquids and green chemistry is clearly related to the 

solvent properties of ionic liquids. Liquids range is the span of temperatures 

between the freezing point and boiling point of a liquid. The consequence for green 

chemistry is that ionic liquids are the ultimate non-volatile organic solvent, with 

emphasis on the ‘non-‘.(12) No molecular solvent (other than molten polymers) 

comes even close to the low volatility of ionic liquids. Ionic liquids have many of 

the advantages of molten salts, and they avoid the worst disadvantages caused by 
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high temperature. In fact they are better viewed as a new type of non-aqueous 

solvent, which is a neoteric solvent.(13,14)  

    The early history of ionic liquids began in 1914 when the first report of a room 

temperature molten salt was reported by Walden. He reported the physical 

properties of ethyl ammonium nitrate, [C2H5NH3] NO3, which has a melting point 

of 12oC, formed by the reaction of ethylamine with concentrated nitric acid. Then, 

Hurley and Weir stated that a room temperature ionic liquid could be prepared by 

mixing and warming 1-ethylpyridinium chloride with aluminum chloride(14). In 

1970s and 1980s, Osteryoung et al(19). and Hussey et al.(20) respectively carried out 

extensive research on organic chloride–aluminum chloride ambient temperature 

ionic liquids and the first major review of room temperature ionic liquids was 

written by Hussey.(20) It was about in the middle of the 1990s when it was decided 

in the community to replace the term ‘‘room temperature molten salt’’ by ‘‘ionic 

liquid’’, and an ionic liquid is defined today as a liquid consisting solely of cations 

and anions with a melting point of 100oC and below. Although any high 

temperature molten salt is an ionic liquid, too, this novel term for the room 

temperature liquids clearly made a distinction.(15,16) 

     The ionic liquids based on AlCl3 can be regarded as the first generation of ionic 

liquids. The hygroscopic nature of AlCl3 based ionic liquids has delayed the 

progress in their use in many applications since they must be prepared and handled 

under inert gas atmosphere. Thus, the synthesis of air and water stable ionic 

liquids, which are considered as the second generation of ionic liquids, attracted 

further interest in the use of ionic liquids in various fields. (17) Generally, these 

ionic liquids are water insensitive; however, the exposure to moisture for a long 

time can cause some changes in their physical and chemical properties.(19) In 1992, 

Wilkes reported the first air and moisture stable ionic liquids based on 1-ethyl-3-

methylimidazolium cation with either tetrafluoroborate or hexafluorophosphate as 

anions. Unlike the chloroaluminate ionic liquids, these ionic liquids could be 

prepared and safely stored outside of an inert atmosphere (18).  
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1.4. Green chemistry and green solvents. 
     Green chemistry involves the development of chemical products and synthetic 

procedures, which are environmentally friendly and have reduced health risks with 

the search for more efficient methods to do chemistry.  Its roots stem back some 

years from a simple idea to a prominent concept which permeates all areas of 

modern chemistry.(20) Green solvents are environmentally friendly solvents or 

biosolvents, which are derived from the processing of agricultural crops. The uses 

of petrochemical solvents are the key to the majority of chemical processes but not 

without severe implications on the environment.  The Montreal Protocol identified 

the need to re-evaluate chemical processes with regard to their use of volatile 

organic compounds (VOCs) and the impact theses VOCs has on the environment.  

Green solvents were developed as a more environmentally friendly alternative to 

petrochemical solvents, Ethyl lactate, for example is a green solvent derived from 

processing corn. Lactate esters solvents are commonly used solvents in the paints 

and coatings industry and have numerous attractive advantages including being 

100% biodegradable, easy to recycle, non-corrosive, non-carcinogenic and non-

ozone depleting.(21,22) 

      Room temperature ionic liquids which melt below 100oC can be achieved by 

for example incorporating a bulky asymmetric cation into the structure to stop the 

ions packing easily. Since the melting points are low, ionic liquids can act as 

solvents in which reaction can be preformed, and because the liquid is made of 

ions rather than molecules, such reactions often give distinct selectivity and 

reactivity when compared with conventional organic solvents. Room temperature 

ionic have been utilized as clean solvents and catalysts for green chemistry and as 

electrolytes for batteries, photochemistry and electro-synthesis.(23) 

    These stemmed significantly as ionic liquids have no significant vapor pressure 

and thus create no volatile organic components. They also allow for easy 

separation of organic molecules by direct distillation without loss of the ionic 

liquid. Their liquid range can be as large as 300o C allowing for large reaction 
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2. Very good solvents properties for a wide variety of organic, inorganic and    

organometallic compounds: in some cases, the solubility of certain solutes in 

RTILs can be several orders of magnitude higher than that in traditional 

solvents.(34) 

3. Stability. 

     In most of these applications, the stability of ionic liquids, at least at a certain 

extent, is crucial for optimum process performance. Several studies have indicated 

that, although not 100% inert, certain ionic liquids incorporating 1,3-dialkyl 

imidazolium cations are generally more resistant than traditional solvents under 

certain harsh process conditions, such as those occurring in oxidation, photolysis 

and radiation processes.(36) 

4.  Color. 

     High quality ionic liquids incorporating [bmim] + cation and a variety of anions, 

such as [PF6]-, [BF4]-, [CF3SO3]-, [CF3CO2]-  and  [(CF3SO2)2N]- have been 

reported to be colorless, even though they are not 100% pure. The color of less 

pure ionic liquids generally ranges from yellowish to orange. The formation of the 

color has been attributed to the use of raw materials with color or excessive heating 

during the synthesis of imidazolium salt.(35,36)  

5. Hygroscopicity. 

      The water content has an influence on the viscosity of the ionic liquids.  

Viscosity measurements indicate that ionic liquids became less viscous with 

increasing water content. Hydrolysis problems can also occur. Most of the ionic 

liquids have extremely low vapour pressures, which allows removing water by 

simple heating under vacuum. Water contents below 1 ppm are quite easy to 

achieve with most of the liquids. 

6. Hydrophopicity. 

      The degree of polarity can be varied by adapting the length of the 1-alkyl chain 

(in 1,3-substituted imidazolium cations). The anion chemistry has a large influence 

on the properties of IL, though little variation in properties might be expected 

between same-cation salts of these species, the actual differences can be dramatic: 
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for example, [bmim]PF6
- is immiscible with water, whereas [bmim]BF4

- is water-

soluble.(36) 

7. Conductivity. 

     Ionic liquids have reasonably good ionic conductivities compared with those of 

organic solvents/electrolyte systems (up to~10 mS cm-1). However, at room 

temperature their conductivities are usually lower than those of concentrated 

aqueous electrolytes. Based on the fact that ionic liquids are composed solely of 

ions, it would be expected that ionic liquids have high conductivities. This is not 

the case since the conductivity of any solution depends not only on the number of 

charge carriers but also on their mobility(38). The large constituent ions of ionic 

liquids reduce the ion mobility which, in turn, leads to lower conductivities. The 

conductivity of ionic liquids is inversely linked to their viscosity. Hence, ionic 

liquids of higher viscosity exhibit lower conductivity. Increasing the temperature 

increases conductivity and lowers viscosity.(37,39) 

8. Viscosity. 

      Generally, ionic liquids are more viscous than common molecular solvents and 

their viscosities are ranging from 10 mPa s to about 500 mPa s at room 

temperature. The viscosity of ionic liquids is determined by van der Waals forces 

and hydrogen bonding(40). Electrostatic forces may also play an important role. 

Alkyl chain lengthening in the cation leads to an increase in viscosity. This is due 

to stronger van der Waals forces between cations leading to increase in the energy 

required for molecular motion. Also, the ability of anions to form hydrogen 

bonding has a pronounced effect on viscosity. The fluorinated anions such as BF4
- 

and PF6
-form viscous ionic liquids due to the formation of hydrogen bonding, in 

general, all ionic liquids show a significant decrease in viscosity as the temperature 

increases.(41) 

9. Density. 

       Ionic liquids in general are denser than water with values ranging from 1 to 1.6 

g cm-3 and their densities decrease with increase in the length of the alkyl chain in 

the cation. For example, in ionic liquids composed of substituted imidazolium 
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cations and CF3SO3
- anion the density decreases from 1.39 g cm-3 for [EMIm]+ to 

1.33 g cm-3 for [EEIm]+, to 1.29 g cm-3 for [BMIm]+ and to 1.27 g cm-3 for 

[BEIm]+. The densities of ionic liquids are also affected by the identity of anions. 

For example, the densities of 1-butyl-3 methylimidazolium type ionic liquids with 

different anions, such as BF4
-, PF6

-, TFA- and Tf2N- are 1.12 g cm-3, 1.21 g cm-3, 

1.36 g cm-3 and 1.43 g cm-3, respectively.(42-44)  

10. Melting point. 

      As a class, ionic liquids have been defined to have melting points below 100 oC 

and most of them are liquid at room temperature. Both cations and anions 

contribute to the low meting points of ionic liquids(43). The increase in anion size 

leads to a decrease in melting point. For example, the melting points of 1-ethyl-3-

methylimidazolium type ionic liquids with different anions, such as [BF4]- and 

[Tf2N]- are 15o C and -3o C, respectively. Cations size and symmetry make an 

important impact on the melting points of ionic liquids. Large cations and 

increased asymmetric substitution results in a melting point reduction.(45) 

11. Thermal stability. 

     Ionic liquids can be thermally stable up to temperatures of 450o C. The thermal 

stability of ionic liquids is limited by the strength of their heteroatom–carbon and 

their heteroatom– hydrogen bonds, respectively. High temperatures are only 

tolerated by most liquids for a short time. Long time exposure to such high 

temperatures inevitably leads to decomposition.(46) 

12. Electrochemical window. 

     The electrochemical window is an important property and plays a key role in 

using ionic liquids in electrodeposition of metals and semiconductors. By 

definition, the electrochemical window is the electrochemical potential range over 

which the electrolyte is neither reduced nor oxidized at an electrode. This value 

determines the electrochemical stability of solvents(47). As known in aqueous 

solution, the electro-deposition of elements and compounds is limited by the low 

electrochemical window of water (about 1.2 V). On the contrary, ionic liquids have 

significantly larger electrochemical windows, e.g., 4.15 V for [BMIm] PF6 at a 
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platinum electrode, 4.10 V for [BMIm]BF4  and 5.5 V for [BMP]Tf2N at a glassy 

carbon electrode. In general, the wide electrochemical windows of ionic liquids 

have opened the door to electrodeposit metals and semiconductors at room 

temperature which were formerly obtained only from high temperature molten 

salts. For example, Al, Mg, Si, Ge, and rare earth elements can be obtained from 

room temperature ionic liquids.(48) 

1.7. Applications of Ionic liquids.  
1.  Homogeneous and heterogeneous catalyst.  

    For some applications, ionic liquids offer the advantage of both homogeneous 

and heterogeneous catalysts. This is because selected ionic liquids can be 

immiscible with the reactants and products but dissolve the catalysts. This has the 

advantages of a solid for immobilizing the catalyst, with the advantages of a liquid 

for allowing the catalyst to move freely.(49) 

2. Biological reactions media; Enzymes are also stable in ionic liquids, opening 

the possibility for ionic liquids to be used in biological reactions, such as the 

synthesis of pharmaceuticals.(49,50) 

3. Treatment of high-level nuclear waste; Ionizing radiation does not affect ionic 

liquids, so they could even be used to treat high-level nuclear waste.(49) 

4. Removing of metal ions; Researchers have designed and synthetized several 

new ionic liquids to remove cadmium and mercury from contaminated water. 

When these water-insoluble ionic liquids come in contact with contaminated water, 

they snatch the metal ions out of water and sequester them in the ionic liquid.(51) 

5. Purification of gases, Ionic liquids can selectively dissolve and remove gases 

and could be used for air purification on submarines and spaceships.(51) 

6. As solvent for synthetic and catalytic purposes, for example Diels-Alder 

cycloaddition reactions, Friedel-Craft acylation and alkylation, hydrogenation and 

oxidation reactions and Heck reactions.(52,55)  

7. As biphasic system in combination with an organic solvent or water in 

extraction and separation technologies. (52)   
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1.9. General properties of Choline Chloride. 

    Choline chloride [Ethanaminium, 2-hydroxy-N, N, N-trimethyl-, chloride], is a 

quaternary amine salt, with the chemical formula [HOCH2CH2N (CH3)3Cl] it 

dissociates in water into the corresponding positively charged quaternary hydroxyl 

alkylammonium ion and the negatively charged chloride ion. Using different 

amounts of choline chloride showed that the lowest pH value of 4 was determined 

in a100 mg/L. Even if choline chloride of different specifications was used, choline 

chloride can be stated to be a weak acid. No data on dissociation constants are 

available for this compound. Choline chloride has neither explosive nor oxidizing 

properties due to its molecular structure (54). Choline is a dietary component and 

found in foods as free choline and as esterified forms such as phosphocholine, 

glycerol-phosphocholine, sphingomyeline, and phosphatidylcholine. Dietary 

choline is absorbed from the lumen of the small intestine. Additionally to dietary 

supply choline can be made available by enzymatic cleavage in the pancreas from 

other nutritional sources, before choline can be absorbed from the gut, some is 

metabolised by bacteria to form betaine and methylamines. Fasting plasma choline 

concentrations vary from 9 to 20 μmol/L. Choline chloride is a white crystalline 

solid but is marketed as an aqueous solution (70 – 75 % w/w in water) which is a 

colorless liquid with an amine-like odor. It has a measured water solubility of ca. 

650 g/L and a calculated vapor pressure of 6.57×10-10 Pa at 25°C.(55) Choline 

chloride or trimethyl (2-hydroxyethyl) ammonium chloride is an essential feed 

ingredient for optimum animal growth. Choline is classified as a vitamin and 

belongs to the group of water soluble B-vitamins. Choline has three essential 

metabolic functions :(56) 

i) It is a key constituent of phosphatidylcholine and phosphocholine and 

represents about 70 – 80 % of total phospholipids in the body. 

ii) It plays a vital role in fat transport and metabolism, thus preventing    

abnormal fat accumulation in the liver. It is also important in the    establishment 

and maintenance of cell membrane structure. 
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iii) Choline is a precursor to acetylcholine in impulse transmission of all nerves; 

Choline is a source of free methyl groups, essential for numerous biological 

functions. Animal studies with choline chloride show a low acute toxicity after 

oral uptake. No acute toxicity attributable to choline was observed in humans 

following oral doses of ≥3000 mg choline magnesium trisalicylate/day. 

iv) Choline chloride does not show a mutagenic, clastogenic or DNA damaging 

potential when tested in vitro; furthermore it has no structural alerts. There is 

therefore no indication of a genotoxic potential in vivo. 

1.10. Deep eutectic solvents. 

Eutectic mixtures of salts have been utilized for a long time to decrease the 

temperature for molten salt applications. In the extreme, ambient temperature 

molten salts have been formed by mixing quaternary ammonium salts with metal 

salts. This type of ionic liquid can be viewed as a deep eutectic resulting from the 

formation of complex anions e.g. Al2Cl7 and Zn2Cl5 thus decreasing the lattice 

energy and decreasing the freezing point of the system (57, 58). Work in this area 

focused on chloroaluminate salts of imidazolium and pyridinium chloride. A 

variety of different anions are formed in solution the ratios of which vary with the 

changing aluminium chloride composition. The depression of freezing point at the 

eutectic composition is as much as 190 °C. These ideas have recently been 

extended to other chlorometallate salts including ZnCl2, SnCl2 and FeCl3.(59,60) 

1.10.1. Eutectic mixtures of Urea and Choline chloride. 

        Halide salts can also form complexes with hydrogen bond donors and 

previous work has shown that mixtures of urea with alkali metal halides form 

eutectics with melting points of < 150° C. While a few reports also exist for 

adducts of urea with other metal salts their use as solvents has been limited to high 

temperature applications. Substituted quaternary ammonium salts such as choline 

chloride with urea produce eutectics that are liquid at ambient temperature and 

have unusual solvent properties. Figure (1-5) shows the freezing point of mixture 
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of choline chloride and urea, a eutectic occurs at a urea to choline chloride ratio of 

2:1. The freezing point of the eutectic mixture is 12 °C, which is considerably 

lower than that of either of the constituents (m.p. choline chloride = 302 °C and 

urea = 133 °C) and allows the mixture to be used as an ambient temperature 

solvent. This significant depression of the freezing point must arise from an 

interaction between urea molecules and the chloride ion. This is consistent with the 

crystallographic data for the (mane) solid [(CH3)3N+CH2CH2OH-]2C2O4
2-

.2(NH2)2CS which shows extensive hydrogen bonding between the thiourea 

molecule and the oxalate anion. The existence of hydrogen bonding in these 

eutectic mixtures can be observed using NMR spectroscopy. An alternative 

approach to making large non-symmetric ions is to take a simple organic halide 

salt and complex the anion with something that will form a hydrogen bond. The 

complexing agent interacts with the anion, increasing its effective size. This in turn 

decreases the interaction with the cation and so decreases the freezing point of the 

mixture. The major advantage of this approach is that common, non-toxic 

components can be used and the properties of the liquid can be changed with each 

hydrogen bond formed and each halide salt. This approach has numerous 

possibilities. Therefore, many quaternary ammonium salts are available and the 

wide variety of amides, amines, carboxylic acids and alcohols which could be used 

to provide hydrogen bonds. These liquids are similar to the metal-containing ionic 
liquids, but to differentiate them from the wide range of ionic liquids that are 

available they have been given the name deep eutectic solvents. They are easy to 

make – simply take the two solids, mix them together with gentle heating, until 

they melt, and when they cool they remain liquid. Work to date has focused on 

choline (2-hydroxyethyl-trimethylammonium) chloride as the quaternary 

ammonium salt. This is vitamin B4 and is produced on the milirn tones per annum 

scale as an additive for chicken feed and a wide range of other applications. Thus 

choline chloride is not only cheap, but it is non-toxic and even biodegradable. Ionic 

liquids based on choline chloride have, therefore, the potential to be used on a 

large scale. One simple hydrogen bond ‘donor’ that has been used is urea 
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1.10.2. Eutectic mixtures of Malonic acid and Choline chloride.(83) 

    Carboxylic acids can also form complexes with hydrogen bond donors and 

previous work has shown that mixtures of urea with quaternary ammonium salt 

(choline chloride) form eutectics with melting points of 12° C.  

    Another hydrogen bond ‘donor’ that has been used is malonic acid                   

[CH2 (COOH)2], which is dicarboxylic acid. Malonic acid was mixed with choline 

chloride in mole ratio of 1:1 and was heated to 80oC, when a homogeneous 

colourless liquid was produced. The liquid was slowly cooled until it solidified at 

0oC; freezing point was taken as the temperature at which the first solid began to 

form. The solidified melt turned into liquid state as temperature increased to room 

temperature which is considerably lower than that of either of the constituents 

(choline chloride melts at 303°C and malonic acid at 133° C). The bonding was 

suggesting being between the acid and chloride ion, or bridging acids between 

neighboring chloride ions. (62) 
    Phase Behaviour. Figure (1-7) shows the phase diagram for mixtures of choline 

chloride with phenylacetic and phenylpropionic acids as a function of composition. 

It is apparent that a eutectic is formed at a composition of 67 mol % acid which is 

similar to the eutectic recently reported for the choline chloride/urea system. It can 

be inferred that to form the eutectic two carboxylic acid molecules are required to 

complex each chloride ion. It is thought that the protons and carboxylate anions are 

extensively associated in the liquids.(62) (Figure 1-8) shows the phase diagrams for 

dicarboxylic acid (malonic acid). For these systems, the eutectic occurs at 50 mol 

% acid suggesting a 1:1 complex between the acid and chloride ion, or bridging 

acids between neighboring chloride ions, like malonic acid.  These exhibit the 

rheology of gels and presumably have extensive bridging of the acids between 

neighboring chloride ions. The freezing point of the eutectic mixture of choline 

chloride and malonic acid mixture is 10oC, while the melting point of the pure acid 

is 135oC and for choline chloride is 303oC. 
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recently been shown that these ideas can be extended to other metals by using 

hydrated salt mixtures. To circumvent the use of metals in ionic fluids a variety of 

closed shell anions have been synthesized and these have been the main focus of 

ionic liquids research over the past decade.  

     The viscosity of the DES of choline chloride/malonic acid changes significantly 

as a function of temperature, the hydrogen bond donor type and mixture 

composition as shown in (Figure 1-9). The viscosity values were found to cover the 

range 50 to 5000 cP, which is similar to those observed with ionic liquids.  

     The DES of choline chloride/malonic acid has conductivity of the range 0.1 to 

10 mS cm-1 changing with composition and temperature. These values are again 

similar to imidazolium based ionic liquids and similar to the choline chloride/urea 

DES. Approximately linear correlations are observed between σ and η-1 for this 

DES for all of the systems, although the slopes are markedly different.(62)  
 

 

 

 

 
 

 

 

 

 

Fig.(1-9):- Plot of log viscosity vs. reciprocal of temperature for the Choline chloride/Malonic acid 
ionic liquid. (62) 
 

1.11. Interaction of the ligands with the metal ions.    
    The tendency of metal ion to from a stable complex with ligands depend on 

many rules such as the hard and soft acids and bases (HSAB) rule of Pearson (58) 

which imply that metal ion tend to coordinate with certain functional groups of the 

ligand to from a stable complex. On the other hand, the tendency of transition 
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metal ion of a special oxidation states is affected by the coordination to certain 

ligands. This phenomenon is called (symbiosis).(64, 65) 

       Increasing the positive charge on the central transition metal ions strengthens 

the metal –ligands bond. The metal ion prefers to bind with atoms of high electron 

density such as N3-, O2-, P3-, S2- and C4-. The ligand should have certain 

characteristic properties to make it convenient to form stable complex with 

transition metal ions. The size, geometrical shape, number and geometrical 

arrangement of ligand and donor atoms play the important role in the stability of 

the resultant complex. Metal centers, being positively charged, are favored to bind 

to negative charged biomolecules, the constituents of proteins and nucleic acid 

offer excellent ligands for binding to metal ions (65).  The Irving Williams series of 

stability for a given ligand shows a good criterian for the stability of complexes 

with dipositive metal ions which follows the order:  

Ba2+<Sr2+<Ca2+<Mg2+<Mn2+<Fe2+<Co2+<Ni2+<Cu2+>Zn2+ 

      This order arises in part from a decrease in size across the series and in part 

from ligand field effect. A second observation is that certain ligands form their 

most stable complexes with metal ions such as Ag+, Hg2+and Pt2+, but other ligands 

seem to prefer ions such as Al3+, Ti4+, and Co3+. Ligands and metal ions were 

classified as class (a) or (b) according to their preferential bonding.  Class (a) metal 

ions includes those of alkali metals, alkaline earth metals, and lighter transition 

metals in higher oxidation states such as  Ti+4 ,Cr+3 , Fe+3 ,Co+3 and the hydrogen 

ion, H+. Class (b) metal ions include those of the heavier transition metals, and 

those in lower oxidation states such as Cu+, Ag+, Hg+2, Pd+2, and  Pt+2. According 

to their preference toward either class (a) or class (b) metal ions, ligands may be 

classified as type (a) or (b), respectively. Stability of these complexes may be 

summarized as follows (65, 66); the ligand should have certain characteristic 

properties to make it convenient to form a stable complex with transition metal 

ions. The size, geometrical shape, number and geometrical arrangement of ligand 

donor atoms play the important role in stability of the resultant complex (65). 
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Tendency of ligands to complex with              Tendency of ligands to complex with                   

     Class (a) metal ions                                            Class (b) metal ions     
     N>>P> As >Ab                                                     N<<P< ِِِAs >Sb 
     O>>S>Se>Te                                                      O<<S<Se~Te 
     F>Cl>Br>I                                                           F<Cl<Br<I 

          One of the important aspects of CFT is that all ligands are not identical when 

it comes to a causing separation of the d-orbitals. For transition metal compounds, 

they were aware of the multitude of colors available for a given metal ion when the 

ligands or stereochemistry are varied. In octahedral complexes, this can be 

considered a reflection of the energy difference between the higher dz2, dx2-y2 (eg 

subset) and the dxy, dyz, dxz (t2g subset). 

    It has been established that the ability of ligands to cause a large splitting of the 

energy between the orbitals is essentially independent of the metal ion and the 

spectrochemical series is a list of ligands ranked in order of their ability to cause 

large orbital separations. 

    A shortened list includes: 

I- < Br- < SCN- ~ Cl- < F- < OH- ~ ONO- < C2O4 2- < H2O < NCS- < EDTA4- < NH3 

~ pyr ~ en < bipy < phen < CN- ~ CO 

When metal ions that have between 4 and 7 electrons in the d orbitals form 

octahedral compounds, two possible electron allocations can occur. These are 

referred to as both weak field (high spin) and strong field (low spin) 

configurations. 

    The MOT method has provided a quantitative measure of the d-splittings. The 

eg/t2g splitting (called the octahedral ligand field splitting ∆0= 10Dq) Follows the 

general trend. Point to consider about the ∆0 splitting:  

1) charge on the metal:- 

      As charge increase, electrostatic attraction between M and L increases, M-L 

bond distance decreased and SML increased. Also as charge increase, metal 
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becomes more electronegative, decreasing ∆EML. Both trends lead to greater 

field strength for the more highly charged ion.  

2) The nature of the metal ion, radial extension of 2
nd 

and 3
rd 

row transition metals 

are greater, thus SML larger, leading to the following trend in ∆0: 1
st 

row 

transition metal << 2
nd 

row transition metal ~ 3
rd 

row transition metal. 

3) Nature of ligand:- 

      Different ligands have different SML for a given metal ion. Can assess by 
measuring ∆0 for different ligands about a given metal ion of given charge  

Cl 
-
< F

-
< OH2 < CN 

-                                                          
Cl

-
< OH2 < NH3 < CN 

-
 

From experiments such as these, may deduce a general ranking of ligands in terms 

of field strength… this ranking is called the spectrochemical series:  

I
-
 < Br 

- 
< S

2- 
< SCN 

- 
< Cl 

-
< S

2- 
< F 

- 
< O

2- 
< OH 

-
< H2O < NH3 < CN 

- 
< CO < NO

+  

  Weak field strength (small ∆0)                            strong field strength (large∆0)                  
π-donors                                               σ-only                                      π-accepter                        

    In the above series, the ligand type has been overlayed onto the spectrochemical 

series. As is readily apparent from the energetic disposition of ∆0, π-donors give 

weak ligand fields, σ-only ligands give intermediate fields and π-acceptors ligands 

give strong fields. (64, 65) 
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1.12.   The Chemistry of the first Transition Metal Elements. 

1.12.1. Chromium (III), (d3). 

       Oxidation state (III) is by far the most stable and best known oxidation state of 

chromium there is literally thousands of chromium (III) complexes that with a few 

exceptions are all hexacoordinate. The principale characteristic of these complexes 

in aqueous solution is their relative kinetic inertness.(64) 

      Chromium (III) forms stable salt with all the common anions and it complexes 

with virtually any species capable of donating an electron-pair. These complexes 

may be anionic, cationic, or neutral and, with hardly any exceptions are octahedral. 

There is also a multitude of complexes with two or more different ligands such as 

pentammines [Cr(NH3)5X]n+1 which have been extensively used in kinetic. These 

various complexes are notable for their kinetic inertness, which is compatible with 

the half-filled t2g level arising from an octahedral d3 configuration, ligand 

displacement or rearrangement reaction of Cr (III) complexes are only about 10 

times faster than those of Co(III), with half-times in the range of several hours. 

This is the reason why many thermodynamically unstable complexes of Cr III can 

be isolated as solid and that they persist for relatively long of time in solution, even 

under conditions of marked thermodynamic instability. (65) 

                  [CrX6]3-             (X= halide, CN, SCN, N3, H2O, NH3). 

                  [Cr(L-L)3]         (L-L= amino acid anions). 

       The hexaaqua ion [Cr(H2O)6]3+, which is regular octahedral, occurs in aqueous 

solution and in numerous solid salts such as the violet [Cr(H2O)6]Cl3. Chromium 

(III) is the archetypal d3 ion and the electronic spectra and magnetic properties of 

its complexes have been exhaustively studied. The magnetic properties of the 

octahedral Cr(III) complexes are uncomplicated. All such complexes must have 

three unpaired electrons irrespective of the strength of the ligand field, and this has 

been confirmed for all known mononuclear complexes. The spectra of Cr(III) 

complexes are also well understood in their main features, in  an octahedral field, 

the splitting of free ion ground 4F term, along with the presence of the excited 4P 
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term of the same multiplicity, provides or indicating  the possibility of three spin-

allowed d-d transitions, and these have been observed in a considerable number of 

complexes, the spectrochemical series was originally established by Tsuchida 

using data for Cr(III) and Co(III) complexes. In the aqua ion the bands are found to 

be 17,400, 24,700, and 37,000 cm-1. The frequencies of the spin-allowed bands of 

Cr(III) in ruby indicate that the Cr(III) ions are under considerable compression, 

since the value of Δo calculated is significantly higher than the [Cr(H2O)6]3+ion or  

in other oxide lattice and glasses. Spin-forbidden transitions from the 4A2g ground 

state to the doublet states arising from 2G state of the free ion are observed. The 

transitions to the 2Eg and 2T1g states give rise to extremely sharp lines because the 

slope of the energy lines for these states is the same as that for the ground state. 

For [Cr(H2O)6]3+, this has the simplifying effect that the crystal field splitting 

10Dq, is given directly by the energy of the lowest transition. The magnetic 

moment is expected to be very close value to the spin-only value for three unpaired 

electrons, and because of the absence of any orbital contribution, to be independent 

of temperature. (65)  

     In molten salts anhydrous Chromium (III) chloride dissolved only slowly 

forming pale green solutions after more than 15 h for 10−3 mol dm−3 concentrations 

at 90oC in acetamide-potassium nitrate and 8 h at 140oC in butyramide-sodium 

nitrate melts. The spectrum for the acetamide eutectics (Figure 1-10, curve A) 

showed two absorption maxima, consistent with octahedral coordination. The band 

energies were close to those expected for 6 acetamide or 6 nitrate ligands, but the 

much higher extinction coefficients suggested mixed, lower symmetry, complexes, 

though probably with little or no coordination by chloride ligands. The 

coordination in the butyramide-sodium nitrate eutectic, spectrum in (Figure1-10, 

curve B), was probably rather similar.(67) 
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tendency of the trivalent ion to have charge transfer bands in the near-ultraviolet 

region with strong low-energy wings in the visible that obscure the very weak, 

spin-forbidden d-d band. Insofar as they are known, however, the spectral features 

of iron (III) in octahedral surroundings are in accord with theoretical expectations. 

Iron (III) is high spin in nearly all its complexes except those with the strongest 

ligands like [Fe (CN)6]3-, [Fe (bipy)3]3+, [Fe (phen)3]3+, and other tris compexes 

with imine nitrogen atoms as donor. The low-spin complexes with t2g5 

configuration usually have considerable orbital contribution to their moments at 

about room temperature. There is evidence of very high covalence and electron 

delocalization in low-spin complexes such as [Fe (phen)3]3+ and [Fe (bipy)3]3+. Iron 

(III) may be high or low spin and even though an octahedral stereochemistry is the 

most common. A number of other geometries are also found. It has been suggested 

that FeIII species high spin and low spin are present in thermal equilibrium. The 

simplified Tanabe-Sugano diagram (d5) shows how as the crystal field increases, it 

is designated as weak or strong (the configuration as high or low spin) depending 

on whether the ground term is a 6A1 (t2g3eg2) or 2T2 (t2g5) term. Where CFT is close 

to this critical boundary value both terms are thermally accessible and the observed 

magnetic moment will depend on the precise distribution between them. As this 

distribution will be temperature dependent. (64, 66)      

      Iron (III) chloride was very soluble in the acetamide-potassium nitrate eutectic 

at 90oC giving initially a pale yellow solution which darkened rapidly to a strong 

brown color within 15 min. The pale yellow solution gave one absorption band at ν 

= 16900 cm−1 (ε = 35mol−1 dm3 cm−1) close to an absorption edge at ν = 21000 

cm−1, while the dark brown solution showed only the absorption edge. The pale 

yellow solution may be due to a tetrahedral complex perhaps containing some 

chloride (FeCl4
- in LiNO3-KNO3 eutectic at 160oC, band at ν = 16000 cm−1, ε = 

32mol−1 dm3 cm−1) which was replaced over 15 min by more stable simple 

complexes containing acetamide and/or nitrate, or perhaps by more polymerized 

solvolyzed iron specie.(67) 
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1.12.3. Cobalt (II), (d7). 

    There is a very marked contrast in this oxidation state between cobalt (II) on the 

one hand and the two heavier member of the group on the other hand, for cobalt 

(II) it is one of the two most stable oxidation state. Complexes of configuration 

comparable are stability with the t2g6 of Co (II), show a greater diversity of types 

and are more labile. The aqua ion [Co (H2O)6]+2 is the simplest complex of cobalt 

(II). In aqueous solution containing no complexing agents, the oxidation to CoIII is 

very unfavorable. Cobalt (II) forms numerous complexes, mostly either octahedral 

or tetrahedral but five-coordination and square species are also known. There are 

more tetrahedral complexes of Cobalt (II) than other transition metal ions. This is 

in accord with the fact that for a d7 ion, ligand field stabilization energies disfavor 

the tetrahedral configuration relative to the octahedral one to a smaller extent than 

for any other dn (1 ≤ n ≤ 9) configuration. Because of the small stability difference 

between octahedral and tetrahedral CoII complexes, there are several cases in which 

the tow types with the same ligand are both known and may be in equilibrium. 

There is always some [Co (H2O)4]2+ in equilibrium with [Co(H2O)6]2+.(64) As 

already noted, Cobalt (II) occurs in a great variety of structural environments, 

because of this the electronic structures, hence the spectral and magnetic properties 

of the ion, are extremely varied. High-spin octahedral and tetrahedral complexes, 

in each case there is a quartet ground state (4F) and three spin-allowed electronic 

transitions to the excited quartet state (4P). As maybe inferred from the simple 

observation that octahedral complexes are typically pale red or purple and many 

common tetrahedral ones are an intense blue in each case the visible spectrum is 

dominated by the highest energy transition, 4A2→4T1(P) for tetrahedral and 
4T1g(F)→4T1g(P) for octahedral complexes, however in the octahedral systems the 
4A2g level is usually close to the 4T1g(P) level and the transition to these tow levels 

are close together. Since the 4T1g state is derived from a t2g3eg4 electron 

configuration, and the 4T1g (F) ground state is derived mainly from a t2g5eg2 

configuration, the 4T1g(F)→4A2g(F) (shoulder) transition is essentially a two-
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electron process. For octahedral complexes, there is one more spin-allowed 

transition (4T1g (F) →4T2g) which generally occurs in the near-infrared region. 

Tetrahedral complexes [CoX4]2- are generally formed with monodentate anionic 

ligands such as Cl-, Br-, I-, SCN-, N3
-, and OH-; with a combination of two such 

ligands and two neutral ones, tetrahedral complexes of the type CoL2X2 are 

formed. With ligands that are bidentate monoanions, tetrahedral complexes are 

formed. For tetrahedral complexes there is also a transition in the near-infrared 

region [4A2→4T1(F)] as well as one quite low energy (4A2→4T2), which is observed 

because it is in region spectrum(1000-2000 nm)and it is orbitally forbidden. The 

visible transitions in both tetrahedral and octahedral cases, particularly in the 

tetrahedral case is more intense, because a number of transitions to doublet excited 

state occur in the same region, and these acquire some intensity by means of spin 

orbit coupling. Cobalt (II) is the only common d7 ion, because of its stereochemical 

diversity its spectra have been widely studies. In the octahedral case the splitting is 

the same as the octahedral d2 ion and the spectra can therefore be interpreted by 

using the same Tanabe-Sugano diagram as was used for d2. Magnetic properties 

provide a complementary means of distinguishing stereochemistry the T ground 

term of octahedral ion is expected to give rise to a temperature dependent orbital 

contribution to the magnetic moment where as the A ground term of the tetrahedral 

ion is not, Low-spin octahedral complexes, a sufficiently strong ligand field (Δo ≥ 

15,000 cm-1) can cause a 2E state originating in the 2G state of free ion to become 

the ground state. The electron configuration here is mainly t2g6eg; thus a Jahn-

teller distortion would be expected consequently perfectly octahedral low-spin Co 

(II) complexes must be rare.(64,65)  

    The dipositive 3d transition metal ions have been shown to occur as markedly 

different ionic species in the highly dissociated alkali chloride melts compared 

with the non dissociated aluminum chloride melt. From spectrophotometric 

measurements of Cobalt (II) chloride in calcium nitrate tetrahydrate melts 

containing variable amounts of calcium chloride (from 0 to 3.1 mol dm-3) were 

reported at different temperatures from 40 oC to 70oC. The solutions in pure 
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calcium nitrate tetrahydrate showed octahedral coordination, the position of the 

absorption maximum being at 19420cm-1 (512 nm). Addition of chloride caused a 

shift of the absorption maximum toward lower energies and a large increase of the 

absorption coefficient indicating a change from octahedral to tetrahedral or 

distorted octahedral coordination.(68)  

    The absorption spectra of Cobalt (II) chloride complexes, containing variable 

concentrations of chloride ligand also reported, in a molten mixture of 80% acetmide-

20% calcium nitrate tetrahydrate, in range of temperature 313 to 363 K, in the 

wavelength range 400-800 nm. The melt contained three ligands (CH3CONH3, H2O, 

and NO3
-) for competition with added chloride; addition of chloride caused a shift of 

the absorption maximum of octahedral Cobalt (II) nitrate towards lower energies and 

pronounced changes in shape of the initial spectrum of Cobalt (II) nitrate. The effect 

of temperature changes on the molar absorption of the Co (II) species was attributed 

to structural changes occurring in the Cobalt (II) species.(69)  

    In the LiC1-KC1 eutectic melt the absorption spectrum of Co (I1) is that of the 

tetrahedral CoCl4
2- species. The occurrence of the CoCl4

2- rather than the CoCl6
4- 

species in this highly ionic melt can be rationalized in terms of large (-30 kcal.) 

electrostatic repulsion energies favoring the four- over the six-coordinated form. In 

the covalent A1C13 melt CoCl2 in an A1C13 melt with 35.5 mole % KC1, close to the 

composition KA12C17, is practically identical with the spectrum in pure A1C13, 

indicating that the postulated Co(Al2C17)2 complex is the only light-absorbing species 

present in the composition range 0-35.5 mole % KC1. Successive additions of KC1 to 

the 35.5 mole % KC1 melt resulted in only minor spectral changes until a 

composition of 42 mole % KC1 was reached. Upon further addition of KC1, the 

Co(Al2C17)2 spectrum characteristic of octahedral coordination gradually transformed 

into a new spectrum. Addition of KC1 to a melt containing 49.3 mole % KC1 

resulted in partial precipitation of Co (I1) and the formation of a blue precipitate 

which chemical and X-ray analysis showed to be CoCl2. Addition of KC1 to a melt 

whose KC1:AlCl3 ratio was exactly equal to 1 caused the CoCl2 precipitate to 

redissolve completely with only a few times more than the stoichiometric amount of 

KC1 needed to form CoC14
2-, as shown in (Figure 1-11).(70) 



Chapte
 

 

     

 

 

 

 

 

 
 
 
Fig.(1-11):
49.7%AlC
Co(Al2Cl7)
distorted o
 
    Absor

room-tem

butylpyr

(I1) was

Spectros

octahedr

suggeste

molar ra

 

 

 

 

 

 

 

 

Fig. (1-12
Co (II) in
melt (tetr
 

er One    

:- Spectra of
Cl3 (tetrahedr
)2 ; C, 100.0 
octahedral; E

rption spe

mperature

ridinium c

s tetrahedra

scopic stud

rally coor

ed that two

atio compo

2):- Absorpt
n 2:l AICI3,
rahedral).(71)

               

f Co(II) in c
ral CoCl4

2-), E
mole % KC

E, 35.5 mole %

ctroscopy 

 chloroa

chloride (A

ally coord

dies of Co

rdinated sp

o different

osition regi

tion spectra 
-BPC melt 
) 

                

chloride surr
E, 50.3 mole

C1 at 800o; D
% KCl, 64.5 m

was used

aluminate 

AICI3-BPC

dinated as t

o (I1) in 2

pecies, po

t Co(I1) s

ion. As sh

of Co (II) i
(octahedral

               

32 

roundings: A
e % KC1, 49
D, 49.9 mole 
mole % AlC1

d to study 

melt 

C). Absorp

the CoCI4
2

2: 1 molar

ossibly Co

pecies ma

own in (Fi

in AICI3,-BP
l); (dotted li

               

A, crystalline
9.7 mole % A
% KC1, 50.1

13 at 300o. (70)

the coordi

system 

rption spec
2- ion in 0.

r ratio A1

o (Al2C I7

ay exist in 

igure1-12)

PC melt at 4
ine) 1.02 ×1

               

e Co(AlC14)2

AlCl3 at 300o

1 mole % M

ination of 

aluminum

ctroscopy 

.8: 1 molar

CI3-BPC 

7) m
2-m , w

equilibriu

).(71) 

40.0 OC: (so
10-3M Co(II)

    Introd

2 at 25o, B,5
o (octahedral 

MCl2 at 300o[C

Co (I1) io

m chlor

indicated 

r ratio AIC

melt sugg

with m =

um close t

olid line) 2.0
) in 0.8:l AI

duction

0.3% KCl, 
CoCl6

4- or 
Co(AlCl4)2] 

on in the 

ride-N-n-

that Co 

CI3-BPC. 

gested an 

= 2, also 

to the 1:l 

04 ×10-2 M 
ICI3,-BPC 



Chapte
 

 

   In ano

butyram

The visi

showed 

coordina

Environ

acetami

graduall

while th

change w

nitrates 

tetrahed

melts w

coefficie

an even

strain im

 

 

 

 

 

 

 

 

 
Fig. (1-1
temperatu
curve C (
 

 

 

er One    

other stud

mide-sodiu

ible- ultra

two band

ation in 

nment sug

de-potassi

ly increase

he band i

was in acc

replacing

dral coordi

with increa

ents found

n lower sy

mposed by

3):- Spectr
ures, curve 
o).(67) 

               

dy anhydro

um nitrate 

aviolet spe

ds, with s

each cas

ggest coo

ium nitrat

ed to 140o

intensities

cord with 

g acetam

ination, as

ased tempe

d with but

ymmetry c

y the large

ra of CoCl
A   90oC (•)

                

ous cobalt

and acetam

ectrum of 

ome splitt

se. Calcul

ordination 

te eutectic
oC, the ab

s increase

a shift to 

ide or p

s has frequ

erature. Th

tyramide-s

coordinati

r butyram

l2 (0.019 m
), curve B 14

               

33 

t (II) chlo

mide-pota

the acetam

ting of th

lations u

by 4 a

c. As the 

bsorption b

d conside

a lower sy

erhaps a 

uently bee

he larger 

sodium nit

ion, possib

mide molec

mol dm−3) 
40oC (- - -), 

               

oride was

assium nitr

mide solut

e visible b

sing Jorg

acetamides

temperat

bands mov

erably (Fi

ymmetry e

shift fro

en found f

red shifts 

trate (Figu

bly due a

cules.(67) 

in acetami
and of buty

               

found ver

rate, givin

tion (Figu

band, ind

gensen's R

s and 2 

ture of the

ved a littl

igure 1-13

environme

om octah

for cobalt 

and even

ure 1-13, c

at least in 

ide-KNO3 
yramide-sod

    Introd

ry soluble

ng violet so

ure 1-13, c

dicating oc

Rule of 

chlorides

ese soluti

e towards

3, curve B

ent, possib

hedral to 

(II) salts 

n higher ex

curve C) i

part to th

eutectic at 
dium nitrate

duction

e in both 

olutions. 

curve A) 

ctahedral 

Average 

s in the 

ions was 

s the red, 

B). This 

bly some 

a more 

in many 

xtinction 

ndicated 

he steric 

different 
e at 140oC, 



Chapter One                                                                                    Introduction 
 

34 
 

1.12.4. Nickel (II), (d8).  
     This is undoubtedly the most prolific oxidation state for this group of elements. 

The stereochemistry of Ni (II) has been atopic of continuing interest, and kinetic and 

mechanistic studies on complexes of Ni (II). The absence of any other oxidation state 

of comparable stability for nickel implies compounds of Ni (II) are largely immune to 

normal redox reactions. Ni (II) forms salts with virtually every anion has extensive 

aqueous solutions chemistry based on the green hexaaaquanickel(II), [Ni(H2O)6]2+ ion 

which is always present in the absence of strongly complexing ligands. The 

coordination number of Ni(II) rarely exceeds 6 and its principal stereochemistries are 

octahedral and square planer, tetrahedral (4-coordinate) with rather fewer examples of 

trigonal bipyramidal, square pyramidal (5-coordinate). Octahedral complexes of Ni 

(II) are obtained often from aqueous solution by replacement of coordinating water, 

especially with neutral N-donner ligands such as NH3, en, bipy, and phen, but also 

with NCS-, NO2
-, and O-donner such as DMSO (Me2SO). (64, 65) 

     Nickel (II) forms a large numbers of complexes encompassing coordination 

numbers 4, 5, and 6 in structural types of neutral ligands. It is characteristic of 

Ni(II)complexes that complicated equilibria, which are generally temperature 

dependent and sometimes concentration dependent. Nickel(II) is the only common d8 

and its spectroscopic and magnetic properties have accordingly been extensively 

studies in cubic field three spin-allowed transitions are expected, because of the 

splitting of the free ion ground 3F term and the presence of the 3P term, in an 

octahedral field the splitting is the same as for the octahedral d3 ion and the same 

Tanaba-Sugano diagram, can be used to [Ni(H2O)6]2+, the spectra can readily be 

interpreted by referring to the energy level diagram for d8 ions. Three spin-allowed 

transitions are expected, and the three observed bands in each spectrum may thus be 

assigned. It is a characteristic feature of the spectra of octahedral nickel (II) 

complexes like [Ni(H2O)6]2+, the molar absorbances of the bands are at low end of the 

range (1-100) for octahedral complexes of the first transition series in general, the 

splitting of the middle band in the [Ni(H2O)6]2+ spectrum is due to spin-orbit coupling 

that mixes the 3T1g(F) and 1Eg states, which are very close in energy at the Δo value 

given by 6 H2O. The assigned bands are, ν1 (3A2g (F) → 3T2g (F)) is the 10Dq it is 



Chapte
 

 

also evid

absorpti

spin-orb

spin-forb

(3A2g(F)

this is fo

there are

of a p

specifica

      Anhy

solution

indicatin

slightly 

coordina

acetamid

complex

no data 

similar t

and 2 ch

 

 

 

 

 

 

 

 
Fig. (1-14
(•), curve 
 

er One    

dence of w

on has a s

bit couplin

bidden tra

)→3T1g(P)

ound alway

e character

paramagne

ation.(64,65)

ydrous N

s. The spe

ng octahed

lower ene

ation by c

des and 2 

xes resultin

on the b

to that of 

hloride liga

4):- Spectra 
B - c = 0.01

               

weak spin-

strong sho

g ‘mixing

ansition t

)), it follow

ys to be th

ristic spec

etic nicke
) 

ickel (II) 

ectra (Figu

dral coordi

ergies than

chloride, o

chlorides 

ng would e

and positi

acetamide

ands.(67) 

of NiCl2, cu
2 mol dm−3 

                

-forbidden

oulder on 

’ (spin sin

to gain in

ws that th

he case, for

ctral and m

el (II) c

chloride 

re 1-14, cu

ination of 

n those fou

or less lik

could giv

explain the

ions of bu

e, then the 

urve A - c = 
in butyram

               

35 

n (spin trip

it. This ha

nglet (1Eg)

ntensity f

hey all sho

r regular o

magnetic pr

complex t

was solub

urves A an

the Nicke

und in pu

kely by n

ve the obs

e higher e

utyramide 

calculated

0.046 mol d
ide-sodium 

               

plet to sing

as been a 

) with the 

from the

ould have 

or nearly re

roperties, 

the less 

ble in bo

nd B) show

el (II) catio

re molten 

nitrate. Jor

erved ban

xtinction c

complexe

d coordina

dm−3 in acet
nitrate at 14

               

glet), ν2 (3

scribed to

(3T1g) the

spin-allow

tow unpai

egular tetr

more irreg

likely c

oth eutecti

wed three a

ons. The b

acetamide

rgensen's 

nds and the

coefficient

es, but if 

ation woul

tamide-pota
40oC (- - -).(6

    Introd

3A2g (F)→

o the influ

ere by allo

wed trans

ired electr

rahedral co

gular the g

onform t

ics, giving

absorption

bands are s

e suggesti

Rule sugg

e less sym

ts found. T

its ligand

ld also be 

assium nitra
67) 

duction

→3T1g(F)) 

uences of 

wing the 

ition, ν3 

rons, and 

omplexes 

geometry 

to these 

g yellow 

n maxima 

shifted to 

ing some 

gested 4 

mmetrical 

There are 

d field is 

4 amide 

ate at 90oC 



Chapter One                                                                                    Introduction 
 

36 
 

1.12.5. Cupper (II), (d9).   

     The dispositive state is the most important one of Copper. In this oxidation state 

Copper which provide by for the most familiar and extensive chemistry. Simple salt 

are formed with most anions, except CN- and I-. Which instead form covalent Cu(I) 

compounds which insoluble in water.  Most Cu(I) compounds are fairly readily 

oxidized to Cu(II) compounds. there  is a well-defined aqueous chemistry of Cu2+, and 

large number of salts of various anions, many of which are water soluble, the blue 

color of their solution arising from the [Cu(H2O)6]2+ion, and they frequently 

crystallize as hydrates. The aqueous solutions are prone to slight hydrolysis and, 

unless stabilized by a small amount of acid, are liable to deposit basic salts. The most 

common coordination numbers of Copper (II) are 4, 5, and 6, but regular geometries 

are rare and the distinction between square-planar and tetragonally distorted 

octahedral coordination is generally not easily made. The reason for this is ascribed to 

the Jahn-Teller effect arising from the unequal occupation of the Eg pair of orbitals 

(dz2 and dx2-y2) when a d9 ion is subjected to an octahedral crystal field. The d9 

configuration makes CuII subject to Jahn-Teller distortion if placed in an environment 

of cubic (i.e. regular octahedral or tetrahedral) symmetry, and this has a profound 

effect on all its stereochemistry. The d9 configuration can be thought of as an 

inversion of d1, relatively simple spectra might be expected, and it is indeed true that 

the great majority of Cu (II) compounds are blue or green because of a single broad 

absorption band in the region 11000-16000 cm1-, however as already noted, the d9ion 

in characterized by large distortions from octahedral symmetry and the band is 

unsymmetrical, being the result of a number of transitions which are by no means 

easy to assign unambiguously. The free-ion ground 2D term is expected to split in a 

crystal field in the same way as the 5D term of the d4ion, (2Eg→2T2g).and a similar 

interpretation of spectra is like wise expected. Unfortunately this is now more difficult 

because of the greater overlapping of bands which occurs in the case of Cu (II). The T 

ground term of the tetrahedrally coordinated ion implies on orbital contribution to the 

magnetic moment, but the E ground term of the octahedrally coordinated ion because 

of ‘mixing’ of the excited T term into the E ground term with compounds whose 
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geometry approaches octahedral having moments at the lower end, and those with 

geometries approaching tetrahedral having moments at the higher end, but their 

measurements can not be used diagnostically with safety unless supported by other 

evidence.(64,65)  

    Copper (I1) chloro complex formation was examined in basic melt by using 

absorption spectroscopy. Potentiometric titration experiments involving the Cu (II)/Cu 

(I) couple were attempted, but the resulting titration data were irreproducible and 

could not be analyzed in a meaningful way. The exact cause of this behavior could not 

be determined. Figure 16 shows absorption spectra for copper (I1) dissolved in 47.3 

mol % AlC13,-MEIC melt and DMF containing either LiCl or MEIC as the chloride 

source. The spectrum for copper (I1) in DMF, containing high concentrations of LiCl, 

exhibits maxima at 295 and 411 nm. These absorption maxima have been reported for 

Copper (I1) in propylene carbonate and dimethyl sulfoxide, also. They are 

characteristic of the unsolvated CuC14
2- ion. A spectrum of copper (I1) in 47.3 mol % 

AlC13,-MEIC exhibits maxima at 293 and 407 nm. The molar absorptivity for the 

407-nm peak compares favorably with that for the 410-411nm peaks found in DMF 

and other solvents the peak at 293 nm, observed for copper(I1) in basic melt, seems 

distorted and exhibits a significantly higher absorbtivity than that observed for the 

294-295-nm peaks in organic solvents containing LiCl. An absorption spectrum for 

Copper (I1) in DMF with MEIC as the source of chloride ion exhibits maxima at 282 

and 408 nm and an ill-defined shoulder near 292 nm as in (Figure 1-15).(72) 

      Anhydrous Copper (II) sulfate dissolved readily in the acetamide-potassium 

nitrate eutectic to give blue-green solutions. Spectroscopy showed two bands at ν = 

20700 cm−1 (ε= 43 mol−1 dm3 cm−1) and ν = 14000 cm−1 (ε = 73mol−1 dm3 cm−1) 

with a shoulder at ν = 11000 cm−1. The copper cations appear to be in an 

octahedral coordination, though with a higher extinction coefficient, and thus 

probably a lower symmetry (perhaps D4h), than those found for the regular 

octahedral complexes in aqueous solution (band maxima at ν = 12600 cm−1, ε = 12 

mol−1 dm3 cm−1), or in anhydrous alkali metal nitrate melts (ν = 13000 cm−1, ε = 14 

mol−1 dm3 cm−1), because in this binary eutectic coordination is by both acetamide 
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cm-1, ν=8000 cm-1 at 700-1000oC, indicating distorted tetrahedral coordination, and 

in CsCl melt at 864oC also showed three absorption bands at ν=15700 cm-1, 

ν=14000 cm-1, ν=7500 cm-1 indicating similar tetrahedral coordination. Cu (II) in 

the chloride melt (LiCl/KCl) at 400oC showed one absorption band at ν=9500 cm-1 

indicating tetrahedral coordination.(1) 

    In the case of Ni(II) the three bands were initially assigned to a distorted 

tetrahedral coordination though in the light of more detailed measurements over a 

temperature range, the coordination ratio tetrahedral/octahedral centers was about 

to increases with potassium chloride concentration (in LiCl/KCl mixture) as well 

as with increasing temperature.(1)  

 

1.14. Determination of spectra. 

1.14.1. Orgel diagrams. 

      Orgel diagrams are useful for showing the number of spin-allowed absorption 

bands expected, and their symmetry state designations, for Td and weak field Oh - 

complexes (d5 not included). The two diagrams (one for d1, 4, 6, 9 the other for d2, 3, 7, 

8) pack a lot of information in very little space. Nevertheless, there are three major 

limitations to using Orgel diagrams: 

(1) They are restricted to weak field/high spin conditions and offer no    

information for d4, 5, 6, 7 strong fields/ low spin cases. 

(2) They only show symmetry states of same highest spin multiplicity 

(3) They are qualitative, and therefore energy values cannot be obtained or 

calculated from them.(74)                
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vertical line. The left part pertains to the weak field /high spin condition and the 

right to strong field/ low spin condition. 

    First note why d 1 and d 9 cases have no T-S diagrams. A term description for an 

atom/ion is more informative than its electron configuration because terms account 

for e-e repulsion energies. However there is no e-e repulsion for one "d" electron 

so the d 1 configuration gives rise to a single term, 2D. In Oh and Td ligand fields 

this single term is split into T2g, Eg, or E, T2 symmetry states. Only one absorption 

band is expected and energy of the observed band gives the Δo or ΔTd value 

directly. No calculations are necessary, so no T-S diagram for d 1 (and d 9).(74) 
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1.14. Aim of the present work.   

    New class of room temperature ionic liquids (RTILs) based on choline chloride 

have been prepared.(59) These ionic liquids offered promising ease of handling and 

wide field of application as solvents and reacting media.(61) The behavior of some 

transition metal chlorides were investigated by ultraviolet visible spectroscopic 

measurements in two types of RTILs melts. The cationic metal are Cr3+, Fe3+, Co2+, 

Ni2+ and Cu2+ while the RTILs are choline chloride/ urea and choline chloride/ 

malonic acid mixtures which have freezing point of 12oC and 10oC respectively.   

    The solutions of these transition metals in ionic liquids will be studied by 

ultraviolet visible spectroscopy, infrared spectroscopy, conductivity and magnetic 

susceptibility, to determine their behavior and coordination in solution.    
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Chapter Two 

Experimental Part 

2.1. Chemicals and Instruments. 

2.1.1. Chemicals. 

     All the chemicals used in this work were of highest purity available and 

without further purification. Table (2-1) shows the reagents, their purities and 

suppliers. 

Table (2-1):- The chemicals used in this work with their purities and suppliers. 

Chemical compounds Purity %  Company  

Choline chloride 99 Merck 

Urea 99.5 Merck 

Malonic acid 99 Chem-Supply 

Ammonium nitrate 99.9 Baker Analyzed Reagents 

Chromium(III) chloride 

hexahydrate 

97 Chem-Supply 

Iron(III) chloride tetrahydrate 99 BDH 

Cobalt(II) chloride 

hexahydrate 

98 Chem-Supply 

Nickel(II) chloride 

hexahydrate 

99 BDH 

Copper(II) chloride dihydrate 95 Fluka 

Cobalt(II) nitrate hexahydrate  98.5 BDH 
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2.1.2. Instruments.  

2.1.2.1. Electronic absorption spectra measurements. 

        The electronic spectra of complexes were obtained by using SHIMADZU 

(Japan), UV-Vis 1650 PC Ultraviolet Visible Spectrophotometer at room 

temperature using quartz cells of 1.0 cm length and ionic liquids as solvents in the 

range of wave length 190-1100 nm. The preparations of samples are described in 

section (2.5).  

2.2. Setting of heating apparatus.   

    The heating apparatus that was used in the preparation of the ionic liquid is 

consisted of: - 

1- Hot plate. 

2- Stand. 

3- Clamp. 

4- Thermometer. 

5- Oil bath. 

6- Reaction beaker. 

7- Glass rod. 

2.3. Drying method. 

     The drying method was carried out by placing appropriate weight of samples in 

the oven under temperature range of 70 -75oC; the dried compound was kept in 

sealed the desicator for further use. 
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2.4. Preparation of room temperature ionic liquid. 

2.4.1. Preparation of Choline chloride/Urea room temperature ionic       

liquid.   

     Solid mixture of dry choline chloride and urea in mole ratio of 1:2 was milled, 

and well mixed and heated gradually to 75oC for a period of 20 min. using the 

apparatus described in (section 2.2) with continuous gentle stirring until both 

choline chloride and urea melted together producing colourless liquid, the mixture 

was gradually cooled down to room temperature, it was more viscose than water. 

Finally the prepared melt was kept in sealed dry desiccator for further use. (58, 61)  

 

2.4.2. Preparation of Choline chloride/Malonic acid room temperature 

ionic liquid. 

    Solid mixture of dry choline chloride and malonic acid in mole ratio of 1:1 was 

milled, and well mixed and heated gradually to 85oC for a period of 20 min. (62) 

using the apparatus described in (section 2.2) in the same way in (section 2.4.1). 

2.5. Preparation of metal chloride ionic liquid mixtures. 

The fallowing general procedure was used for the preparation of the solution of 

metal chlorides salts to ionic liquids:- 

    A known weight of dry sold compound [Table (2-2)] was added to appropriate 

volume of ionic liquid at room temperature, the mixture was left to stand for 72 

hours with occasional stirring to enhance dissolution of materials. The changes 

during this period were recorded such as colour changes and viscosities, however, 

no precipitation or gas evolution were noticed through out the entire experiments 

of this work.  

    In addition, during the investigation of coordination reaction, ammonium nitrate 

was added to above solution and any noticeable changes were recorded. 
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   All prepared solutions of metal chloride in ionic liquids of chlorine chloride/ urea 

with and without the addition of ammonium nitrate and choline chloride/ malonic 

acid were investigated by Ultraviolet Visible Spectroscopy and the obtained 

spectra were analyzed.           
Table (2-2):- Concentration of metal chloride in aqueous solution and room temperature ionic 
liquid of choline chloride/urea and choline chloride/malonic acid. 

 

Metal chloride  

 

Weight (g.) 

Concentration in 

aqueous solution 

(M) 

Concentration in 

choline chloride/urea 

ionic liquid (m) 

Concentration in 

choline 

chloride/malonic acid 

ionic liquid (m) 

CrCl3.6H2O 0.3 g. 0.1 M 7.4×10-2 m 7.5×10-2 m 

FeCl3.4H2O 0.2 g. 0.1 M 6.6×10-2 m 6.9×10-2 m 

CoCl2.6H2O 0.25 g.  0.1 M  6.9×10-2 m 7.4×10-2 m 

NiCl2.6H2O 0.4 g. 0.1 M 1.1×10-1 m 1.2×10-1 m 

CuCl2.2H2O 0.2 g. 0.1 M  7.7×10-2 m 8.03×10-2 m 

  M: - molarty, which is number of moles of solute per volume of solvent in L unit. 

  m: - molalty, which is number of moles of solute per weight of solvent in Kg. unit.  

2.6. Equations. 

      The equations that have been used in the determination of spectra of each 

complex were different from metal to another according to the splitting of terms 

for dn configurations as shown in Figure (2-1) and in Table (2-3). 

 

 

 

 

 

Fig. (2-1):- Splitting of terms for dn configurations in to (a) and (b).(65) 
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Table (2-3):- Splitting of terms elected dn configuration.(65) 

Configuration of 
free-ion  

Ground state of 
free-ion 

Energy level 
diagram 

Predicted in Figure 
(23) 

d3  4F Inverted (b) ν1=10 Dq 
ν2=18Dq-x 
ν3=12Dq+15B`+x 

d5 6S No splitting  
d7 4F (b) ν1=8Dq 

ν2=18Dq 
ν3=6Dq+15B` 

d8 3F Inverted (b) ν1=10 Dq 
ν2=18Dq-x 
ν3=12Dq+15B`+x 

d9 2D Inverted (a) ν1=10Dq 
 

      Also Jorgenson rule have been used to measure the tendency of metal ion to 

form a complex, the (g) factors provide an estimate of the value of 10Dq for an 

octahedral complex when combined with the (f) value for the appropriate 

ligands:(85) 

           10Dq = f ligand × g ion ×10 3     _____________________________ (2-1) 

Table (2-4):- Values of g and f factors for metal ions and various ligands. 

Transition metal ion  Value of (g) factor Various ligands  Value of(f) factor 

Cr(III) 17.4 Cl- 0.78 

Fe(III) 14.0 CO(NH2)2 0.92 

Co(II) 9.00 H2O 1.00 

Ni(II) 8.7 (CH2COOH)2 0.96 

Cu(II) 12.5 NO3
- 0.88 

       In units of k K (=1000 cm-1). 

    If all three transitions are observed, it is a simple matter to assign a value to B`, 

since the following equation must hold; (B` is in cm-1 units). 
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      15B`= ν3+ ν2–3 ν1 __________________________________________ (2-2) 

 The nephelauxetic ratio β is given by: 

       β= B`/B.  _________________________________________________ (2-3) 

   Where ‘B’ is Racah parameter. 

And by using equation (2-4) to find the ΔT, 

10Dq Td = 4/9 (10Dq Oh) _________________________________________ (2-4) 

2.7. Example of calculations. 

    Consider an example application of a Tanabe-Sugano diagram for a d3 case. The 

absorption spectrum of a Cr 3+ solution is shown below in Table (2-5). For example 

the mathematical determination of spectra of CrCl3.6H2O in choline chloride/urea 

ionic liquid at room temperature was taken. 
Table (2-5):- Peaks positions of Chromium (III) ions in room temperature ionic liquid of Choline 
chloride/Urea solution. 

Ion ν1 cm-1 ν2   cm-1 ν3  cm-1 ν2/ ν1 ν 1/ ν2 Δ/B ̀

Cr+3 16447 22727 ? 1.38 0.724 26.00 
 

    Two bands are observed within the range of measurement. They have a maxima 

at about 16447 and 22727 cm-1. These are spin-allowed LaPorte-forbidden d-d 

transitions. Chromium is in the 3+ oxidation state, so this is a d3 system. Reference 

to an Orgel diagram informs that three d-d bands are expected and they can be 

assigned as: 

ν1= 4A2g (F) → 4T2g (F) 

ν2= 4A2g (F) → 4T1g (F) 

ν3= 4A2g (F) → 4T1g (P) 
 
    Δo is taken to equal the absorption energy of 16447 cm-1, and the intersect on the 

x-axis of Tanabe-Sugano diagram equal Δo/B̀ and by drawing a vertical line from 
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this point will intersect with other allowed electronic states of Tanabe-Sugano 

diagram for d3.  

    There are several “goals” sought in analyzing spectra using Tanabe-Sugano 

diagrams: (99) 

(1) To make correct band assignments. The two bands observed could be the first 

and second, or the second and third. Their assignment cannot be made by 

inspection. 

(2) To determine the magnitude of the Ligand Field splitting parameter, ∆o.  

(3) To determine the magnitude of the e-e repulsion parameter (called a Racah B̀ 

parameter). 

    Assumes bands are the first and second (so third band is not observed). Compare 

the two results. Tanabe-Sugano diagrams are unit less graphs showing energy 

ratios. The abscissa shows values for the ratio ∆o/B̀ (i.e., Ligand Field splitting 

parameter / e-e repulsion parameter) and the ordinate shows values for the ratio 

(Eν/ B̀) (i.e., absorption band energy / e-e repulsion parameter).(74,75) 
 

Step (1): The calculated ratio of experimental band energies is:  E (ν2) / E (ν1), find 

chart lines for first and second symmetry states and record their values at each 

abscissa mark. 

None of these chart ratios come close to the experimental ratio of (1.38).  

Step (2): Find the specific value for ∆o/B̀, having a chart value for ν2/ν1 that 

matches the experimental ratio of 1.38. 

When ∆o/ B̀ = 30, chart ν2/ν1 = 1.40, and at ∆o/ B̀ = 20, chart ν2 /ν1 = 1.30. 

Verify (by extrapolation) that at a value of ∆o/ B̀ = 26, the chart ratio for ν2/ν1= 

1.38. 

Step (3): Find the intersection of chart lines for 4T2g and 4T1g at ∆o / B̀ = 26, 

And record their values on the ordinate E (νn)/ B̀. 

For 4T 2 g at ∆o / B̀ = 26, then E (ν1) / B̀ = 26, and 
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For 4T1g at ∆o / B̀ = 26, then E (ν2) / B̀ = 37 

Step (4): Use experimental values of E (ν1) and E (ν2) to obtain values for Racah B: 

B̀ [via E (ν1)] = 16447 cm-1 / 26 = 623.6 cm-1 

B̀ [via E (ν2)] = 22727 cm-1 / 37 = 614.3 cm-1 

 Then, B̀ avr. = 619 cm-1. 

    The two determinations are in acceptable agreement. Furthermore, in free Cr 

(III) ion, Racah B̀ = 918 cm-1, a larger value. It is anticipated that e-e repulsion 

should be reduced in compounds because metal electron density becomes 

delocalized (as a result of bond formation to ligands) and metal e-e repulsions are 

decreased correspondingly. 

Step (5): Use this value for Racah B̀ to determine ∆o, the Ligand Field splitting 

parameter. 

If ∆o / B̀ = 26, and B̀ = 619 cm-1, then ∆o = 16447cm-1. 

All calculated values are reasonable. But what about the missing third band? 

Step (6): Three bands are expected, but only two are observed. Fitting the first two 

absorption bands to the Tanabe-Sugano chart, according to the assignments 

produced good results. Information gained can be used to calculate the energy 

expected for the missing third transition:-  ν3= 4A2g (F) → 4T1g (P) 

At ∆o / B̀ = 26, the chart value for E(ν3) / B̀ = 56 

Using the value already obtained for B produces the result E (ν3) calc’d = 56.00 × 

618 cm-1= 34608 cm-1. 

    Is this reasonable? 

(1) Refer to the diagram for the recorded spectrum and note that it only extends to 

35,000 cm-1. This is the upper energy limit of the instrument used to measure the 

spectrum.  

(2) Notice that a small error in reading spectral band energies changes the 

experimental ν2/ν1 ratio which in-turn changes the matching ∆o/B̀ ratio on the 

Tanabe-Sugano diagram.  
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    This means a small change in ∆o / B̀ ratio will cause a large change in Eν / B̀ for 

ν3. Either or both of these factors could be responsible for third band not being 

observed. Observed at 16447 cm-1, 22727 cm-1 (third band not observed) Ligand 

Field parameters: ∆o = 16447 cm-1. Racah (B̀) = 619 cm-1 (free ion B = 918 cm-1). 

     And if the three expected bands were observed then by using the equations of 

splitting of term for d3 in Table (2-3), we can determine the B` and β as following: 

ν1=10 Dq. 

      16447 cm-1= 10 Dq 

       Dq = 1644.7 cm-1. 

ν2=18Dq-x 

      22727 cm-1 = 18(1644.7 cm-1) – x 

      x = 6877.6 cm-1. 

ν3=12Dq+15B`+x 

     34608 cm-1 = 12 (1644.7 cm-1) +15B`+6877.6 cm-1 

     B`= 533 cm-1 

Or we can use the following equation to determine the B` 

      15B`= ν3+ ν2−3ν1 

      15B`=34608 cm-1+22727 cm-1-3(16447 cm-1) 

      B`=533 cm-1 

To determine the nephelauxetic ratio β: 

If     β= B`/B,      Then      β=533 cm-1/619 cm-1 

And        β=0.68. 
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Chapter Three 

Results and Discussion 

3.1. Introduction. 

     This project relates to ionic compounds and methods for their preparation. In 

particular the project relates to ionic compounds which are liquid at relatively low 

temperatures,  generally below about 100°C, and preferably below about 60°C and 

more preferably which are liquid at or near to ambient temperature. In recent years, 

ionic compounds have been made which are liquid at relatively low temperatures, 

for example, trimethyl phenyl ammonium chloride with aluminium trichloride. The 

resulting ionic compound has a low freezing point (around -75°C), but suffers from 

the same water sensitivity, because of the presence of aluminium trichloride. There 

is much current interest in the field of ionic liquids. Such systems, which are 

examples of molten salts, have a number of interesting and useful chemical 

properties, and have utility, for example, as highly polar solvents for use in 

preparative chemistry, and as catalysts. They also have particular application in 

electrochemistry, for example in batteries, fuel cells, photovoltaic devices and 

electrodeposition processes, for example in baths for the electroplating of metals. 

Ionic liquids have very low vapour pressure and thus, in contrast to many 

conventional solvents, are very advantageous in that they produce virtually no 

hazardous vapours. They are therefore advantageous from a health, safety and 

environmental point of view.(63)  

     A new class of room temperature ionic liquid based on choline chloride have 

recently been prepared which have an advantageous over previous room 

temperature ionic liquid. The major advantageous are water insensitive which 

made them attractive RTIL for chemical and industrial applications. The potential 

of their advanced properties also arise from the availability, reasonable price and 

green characterization. The emerged RTILs have caught the attention of some 
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researchers to establish their chemical, physical and industrial scope of 

understanding. 

    Therefore, it is not surprising, in addition to its own right, to study the 

characterization of some transition metal ions (Cr3+, Fe3+, Co2+, Ni2+ and Cu2+) to 

determine their behaviour, particularly, coordination, interaction in such new clan 

of solvents.         

 3.2. Electronic absorption of transition metal chloride in room 

temperature ionic liquids.  
    Electronic absorption spectra of transition metal complexes are usually 

attributed to the partially filled d-orbital of the metal. The energy required for such 

transitions is that of the near ultraviolet and visible region. Charge transfer spectra 

are due to transitions between metal and ligand. Studies of electronic spectra of 

complexes help in the determination of structure of the complexes through the 

electronic interaction of the metal d-orbital and ligand orbital. (64, 65) In our work the 

spectra were investigated in the range (190-1100) nm, using two types of ionic 

liquids as solvent. 

3.2.1.Spectroscopic investigation of Chromium (III) chloride solutions. 

3.2.1.1. Chromium (III) chloride in choline chloride/urea room 

temperature ionic liquids. 

    Chromium (III) chloride hexahydrate was found to be completely soluble in 

choline chloride/ urea room temperature ionic liquid after 72 hours in 

concentration of 7.4×10-2m at room temperature see Table (3-1), producing a deep 

green colored solution. The viscosity of the choline chloride/urea ionic liquid 

before and after the dissolution of the salt seemed visually to have close viscosity.  

    The recorded ultraviolet visible spectrum of the solution showed two absorption 

bands at 16447 cm-1(608 nm), at 22727 cm-1 (440 nm) and a shoulder at 14502cm-1 

(689.56 nm). The U.V.-Vis. spectrum Figure (3-1) indicates that the Chromium 

(III) ion is consistent with octahedral coordination, as shown in Figure (3-1). 
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    The consistency of this interpretation can be checked and a value was obtained 

for the ‘interelectronic repulsion parameter’ B̀, by fitting the ratio of ν1/ν2 from the 

appropriate Tanabe-Sugano diagram, Figure (3-3). The obtained value of  B̀ equals 

to 632 cm-1   as in [Table (3-1)], which is smaller than that for free ion 918cm-1 or 

that of the metallic ion in the aqueous solution 918cm-1. The low value of B ̀ 

normally arises when the ligands have more expansion space for d-electron as in 

urea. And indicates coordination via covalent rather than ionic bonds where high 

value ought to be formed. The solution of Chromium (III) chloride hexahydrate in 

choline chloride/urea room temperature ionic liquid did not showed any observed 

changes in ultraviolet visible spectra when the solution was stored for 40 days, 

indicating that the solution already reached equilibrium and was stable over this 

period of storing time.     

3.2.1.2. Substitution Reaction with Ammonium Nitrate. 

   When ammonium nitrate (NH4NO3) was added to the chromium (III) chloride 

hexahydrate in choline chloride ionic liquid solution at room temperature, it 

showed no changes either in color or in the apparent viscosity of the solution. 

However, when the mixture was examined by ultraviolet visible spectrum of the 

Chromium (III) ion, the observed peaks shifted to higher energies than those 

obtained in pure melt and have the following values 16750 cm-1 (597 nm) and 

23529 cm-1(425 nm) and a shoulder at 14502 cm-1 (689.56 nm).  The addition of 

nitrate also showed an increase in the maximum intensity of those bands in 

comparison with those obtained in choline chloride/urea alone as shown in Figure 

(3-5). The changes might indicate some interaction of the added nitrate with 

Chromium (III) ions. The third energy band was calculated from the Tanabe-

Sugano diagram for d3 ion configuration Figure (3-3) and it was found to be equal 

to 36551 cm-1. 

    Calculation using Jorgenson Rule of average environment was found to be in 

agreement with replacement of two urea molecules by two nitrates in octahedral 
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the value of B̀, the higher value normally indicated a more repulsion in d-electron, 

due to more expansion of d-electron over a large cloud space.   

3.2.1.3. Chromium (III) chloride in Choline chloride/Malonic acid room 

temperature ionic liquid solution. 

     Chromium (III) chloride hexahydrate was found to be completely soluble in 

choline chloride/ malonic acid ionic liquid at room temperature after standing time 

of 72 hours in concentration of 7.5×10-2m, producing a greenish grey solution 

without apparent chang in viscosity of the choline chloride/ malonic acid ionic 

liquid. The ultraviolet visible spectrum of the solution showed two absorption 

bands at 15576 cm-1 (642 nm), 21141 cm-1 (473 nm) and a shoulder at 14372 cm-

1(696 nm) Figure (3-6). The energies of these bands agree with those of octahedral 

coordination of Chromium (III) complexes. 

    The third spectra band of Chromium (III) complex which is expected to have 

higher energy than ν1 and ν2 was calculated with the used of Tanabe-Sugano 

diagram of d3 ion configuration Figure (3-3) and found to equal to 33994 cm-1 (294 

nm) at the ultraviolet region. The bands were suggested to be due to the fallowing 

transition:-   

                                       ν1= 4A2g (F) → 4T2g (F) =10Dq 

                                       ν2= 4A2g (F) → 4T1g (F) 

                                       ν3= 4A2g (F) → 4T1g (P) 

While the shoulder that appeared was assigned to be of a forbidden transition from 
4A4g ground state to 2G state. 
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Table (3-1):- Electronic spectra for complexes of Chromium (III) ions in aqueous solution and 
various ionic liquids.  

Solution of 
Chromium 
(III) in:  

Absorption 
band cm-1 

 
B̀ (cm-1) 

calculated 
15B (cm-1) 

calculated 
β 

 
10Dq 

Suggested 
structure 

 
Reference  

Aqueous 
Solution 
at room 
temperature 

ν1=16474 
ν2=23474 
ν3cal.=37118 

713.8 10707 1.043 16474 
 

 
Oh 
(6 H2O) 
[Cr(H2O)6]3+ 

Present 
work 

Choline 
chloride/Ure
a 
at room 
temperature 

ν1=16447 
ν2=22727 
ν3cal.=34733 

632 9480 0.873 16447 
 

 
Oh 
(6 urea) 
[Cr(urea)6]3+ 

Present 
work 

Choline 
chloride/Ure
a  
+ NH4NO3 

at room 
temperature 

ν1=16750 
ν2=23529 
ν3cal.=36551 

664.56 9967.5 0.986 16750 
 

 
Oh 
(4 urea, 2 NO3

-) 
[Cr(urea)4(NO3)2]+ 

Present 
work 

Choline 
chloride/ 
Malonic acid 
at room 
temperature 

ν1=15576 
ν2=21141 
ν3cal.=33994 

539.6 8094 1.04 15576 
 

 
Oh 
(2 malonic acid, 2 Cl-) 
[Cr(malonic)2Cl2]- 

Present 
work 

LiCl//KCl 
 
at 400oC 

ν1=12500 
ν2=18500 

 
- 

 
- 

 
- 

 
- 

 
Oh 
(6 Cl-) 
[CrCl6]3- 

1 

Acetamide-
KNO3 

 

at 90oC 
 

ν1=16760 
ν2=22450 

 
- 

 
- 

 
- 

 
- 

 
Oh 
(6 acetamide) 

67 

Butyramide
-NaNO3 

 

at 140oC 

ν1=16600 
ν2=22500 

 
- 

 
- 

 
- 

 
- 

 
Oh 
(6 butyramide) 

67 
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Table (3-2):- The molar absorptivity of Chromium (III) ions in ionic liquid based on choline 
chloride. 

Ionic Liquids Concentration 

(M) [mol/l] 

Concentration 

(m) [mol/Kg] 

Absorbance Molar absoptivity 

(ε) [l cm-1mol-1] 

Choline chloride/ 

Urea 

0.1 M 7.4×10-2 m 0.406 4.06 

Choline chloride/ 

Urea + NH4NO3 

0.1 M 7.4×10-2 m 0.583 5.83 

Choline chloride/ 

Malonic acid 

0.1 M 7.5×10-2 m 0.037 0.37 

 

3.2.2. Spectroscopic investigation of Iron (III) chloride solutions. 

    Iron (III) is isoelectronic with Manganese (II), but much less is known of the 

greater tendency of the trivalent ion to have charge transfer bands in near 

ultraviolet region with strong low energy wings in the visible that obscure the very 

weak spin forbidden d-d bands. (64)  

3.2.2.1. Iron (III) chloride in Choline chloride/Urea room temperature 

ionic liquid solution.  

    Iron (III) chloride tetrahydrate was found to be completely soluble in choline 

chloride/urea room temperature ionic liquid after 72 hours in concentration of 

6.6×10-2m, producing initially a pale yellow solution which darkened to brownish 

yellow color within the standing time of 72 hours. The pale yellow solution was 

examined by ultraviolet visible and showed one absorption band at 15748 cm-1 

(635.5 nm) and an absorption at the edge of ultraviolet absorption at 21881 cm-1 

(457 nm), as illustrated in Figure (3-9), bands can be assigned to the following spin 

forbidden transitions, the term symbol for the ground state of Fe (III) ion 6S can 

split in tetrahedral crystal field as follows:-     ν1=6 A1
 → 4T1 and  ν2= 6A1 → 4T2 
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Tanabe-Sugano diagram Figure (3-13). Therefore it is not expected that the NO3
- 

and urea or chlorides are capable of inducing excitation to the Fe (III) ion to show 

absorption in the visible region. However, a raised from the ultraviolet absorption 

of the complex between Fe (III) and ligand as charge transfer spectra. Fe3+ is an 

oxidation state with half-filled d orbital with term symbol of 6S that has no 

splitting. It could be suggested that the environment of the ligand for Fe3+ are of 

mixed molecules of two urea and two nitrates in tetrahedral geometry, when the 

two chlorides were replaced with two nitrates molecules that is more stronger 

ligand according to the spectrochemical series. The prepared solution of Iron (III) 

chloride in choline chloride /urea with added nitrate room temperature ionic liquid 

appeared to reach stable complex in the melt after 40 days, when it was examined 

with ultraviolet visible spectroscopy no changes were observed.  

3.2.2.3. Iron (III) chloride in Choline chloride/Malonic acid room 
temperature ionic liquid solution. 

    Iron (III) chloride tetrahydrate was found to be completely soluble in choline 

chloride/ malonic acid room temperature ionic liquid after the standing time of 72 

hours in concentration of 6.9×10-2m, producing a pale yellow solution. The pale 

yellow solution was examined by ultraviolet visible spectroscopy and showed one 

absorption band at 11255 cm-1 (888.5 nm) and an absorption close to an edge of 

ultraviolet region at 18762 cm-1 (533 nm), and also showed another absorption at 

14771 cm-1 (677 nm), as showed in Figure (3-12),the bands can be assigned as 

shown below according to the term symbol for the ground state of Fe (III) ion 6S 

for Td crystal field :-   ν1=6 A1
 → 4T1  ,  ν2= 6A1 → 4T2 
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    Because of Fe3+ is in oxidation state with half-filled d orbital with term symbol 

of 6S that has so splitting. It could be suggested that the environment of the ligand 

for Fe3+ are of mixed molecules of one malonic acid molecule and two chlorides in 

tetrahedral geometry. The prepared solution of Iron (III) chloride in choline 

chloride /malonic acid room temperature ionic liquid was stable in the melt after 40 

days as there were no changes in its spectra when examined by ultraviolet visible 

spectroscopy. 

    Iron (III) is the most stable oxidation state of the two oxidation states of Iron (Fe 
II-Fe III). Iron (III) in choline chloride/urea eutectic was found to be tetrahedraly 

coordinated with chloride ions producing the pale yellow solution as FeCl4
-, where 

darken to brownish yellow because of the replacement of two chloride ions with 

two more stable urea molecules. And that’s increased the absorbance of the visible 

light in the blue region of energy as charge transfer band. Addition of ammonium 

nitrate to the previous solution resulted in ligand substitution reaction between 

chlorides and nitrate ions.  

      As illustrated in Figures (3-10), (3-11) and (3-12). It had been noticed that Fe3+ 

ions showed two absorption bands in choline chloride/ urea when examined after 

24 hours (15748 cm-1 - 21881 cm-1) the first band disappeared leaving only the 

higher energy band at 21881 cm-1 when examined after 72 hours. Further more, 

when nitrate was added to the observe solution, the remaining band at 21881 cm-1 

was also disappeared. This might be related to the slow reaction of Fe (III) with 

solvent molecules in the first case attending equilibrium after 72 hours producing 

more symmetrical coordination Iron (III) complex, the addition of nitrate ions 

afford more stable d5 configuration producing no transition in the visible region, 

and the absorptivities of the solutions were listed in Table (3-4).  

    In Table (3-3), Ultraviolet visible spectrum of Iron (III) in choline chloride/urea 

eutectic showed two absorption bands initially, and only the edge band appeared 

after 72 hours when the solution darkened. Addition of nitrate to the solution 
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shifted the edge absorbance band to higher energy charge transfer region where the 

device showed it as a shoulder near the ultraviolet region. In choline chloride/ 

malonic acid eutectic the absorption bands were shifted to lower energies than that 

in observed in water, and the absorbance in choline chloride/malonic acid was even 

lower than in choline chloride/ urea eutectic Table (3-3). When malonic acid could 

acts as a bidentate producing more stable Iron (III) complex while in choline 

chloride/ urea eutectic the absorbance was higher because urea is monodentate 

ligand and the formed Iron (III) complex was less stable. Figure (3-14) below 

showed the suggested structures for Iron (III) in the prepared ionic liquids at room 

temperature.   

Table (3-3):- Electronic spectra of complexes of Iron (III) ions in various ionic liquids. 

Ionic liquids Absorption band 

(cm-1) 
Transitions Temperature 

(oC) 
Suggested 

structure 
Reference 

Choline 

chloride/urea 

ν=15748 cm-1 

ν = 21881     cm-1  

 (ν1) 6A1 →  4T1 

(ν2)  6A1 → 4T2  
Room 

temperature 

Td 

FeCl4
- →[Fe Cl2 

(urea)2]+ 

Present 

work 

Choline 

chloride/urea 

+ NH4NO3 

About 457nm 

 
(ν1) 6A1 →  4T1 

(ν2)  6A1 → 4T2 
Room 

temperature 

Td 

[Fe (NO3)2 (urea)2]+ 

Present  

work 

Choline 

chloride/ 

malonic acid 

ν1 =11255 cm-1 

ν2=14771  cm-1 

ν3=18762  cm-1 

(ν1) 6A1 →  4T1 

(ν2) 6A1 →  4A1 

(ν3) 6A1 →  4T2 

Room 

temperature 

Td 

[Fe (malonic acid)Cl2]- 

present 

work 

Acetamide-

KNO3 

ν=16900 cm-1  

ν = 21000cm-1 

(ν1) 6A1 →  4T1 

(ν2)  6A1 → 4T2 
90oC Td 

[FeCl4]- 
67 

Butyramide-

NaNO3 

ν=16900 cm-1 

ν =21000 cm-1 

(ν1) 6A1 →  4T1 

(ν2)  6A1 → 4T2 
90oC Td 

FeCl4
- 

67 

LiCl/KCl ν=5100 cm-1 

    6000 cm-1 

(ν1) 6A1 →  4T1 

(ν2)  6A1 → 4T2 
400oC 

1000oC 

Td   or 

Distorted Td 
1 

LiNO3/KNO3 ν=1600 cm-1  160oC Td 

[FeCl4]- 
1 
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Table (3-5):- Electronic spectra for complexes of Cobalt (II) chloride in various room temperature 

ionic liquids. 
Ionic liquids Percents of 

IL. 

Component. 

Co (II) formed 

complexes 

Absorption 

bands (cm-1)

Temp. 

(o C). 
Suggested 

structure. 

References 

Ca(NO3)2.4H2O- 

CaCl2 

 

 

Addition of 

Cl- 

[Co(NO3)4]2-

[Co(NO3)2Cl2]2- 

[CoCl4]2- 

 

ν=19420 

 

Shifted to 

lower energy 

40-70 Oh 

 

Distorted Oh 

or Td 

68 

Acetamide- 

Ca(NO3)2.4H2O 

80%-20% 

Addition of 

Cl- 

[Co(NO3)4]2-

[Co(NO3)2Cl2]2- 

[CoCl4]2- 

ν=19430 

Shifted to 

lower energy 

40-90 Oh 

Distorted Oh 

or Td 

69 

KCl-AlCl3 (50.3-49.7)% 

(50.3-49.7)% 

 

(49.9-50.1)% 

[CoCl4]2-

[CoCl6]4- or 

Co(Al2Cl7)2 

[Co(AlCl4)2] 

 

_ 

25 

300 

 

300 

Td 

Oh 

 

Distorted Oh 

70 

AICI3,-BPC 2:l 

0.8:l 

Co (Al2C I7) m2-m

(m=2) 

CoCI4
2- 

_ 

_ 

40 

 

40 

Oh 

 

Td 

71 

butyramide- 

Na NO3 

(94.5-5.5)% [Co(butyramide)4Cl2] ν=1750 

ν=8200 

140 Oh 67 

Acetamide-KNO3   [Co(acetamide)4Cl2] ν=1800 

ν=8200 

90-

140 

Oh 67 

LiCl-KCl  [CoCl4]2-

 

ν=(14700, 

15150, 

16700) 

447-

480 

Td 

 

1 

     

    3.2.3.2. Substitution Reaction with Ammonium Nitrate. 

    Addition of ammonium nitrate (NH4NO3) to the prepared solution at room 

temperature did not show noticeable changes neither in color nor in viscosity of the 

solution, but when it was examined by ultraviolet visible spectroscopy it showed 

some changes in the ultraviolet visible spectrum of the Cobalt (II) ions, where the 

shape and the position of the peaks changed as well as the absorbance, as shown in 

Figure (3-20). 
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3.2.3.3. Cobalt (II) chloride in Choline chloride/Malonic acid room 

temperature ionic liquid solution. 

    Cobalt (II) chloride hexahydrate was found to be completely soluble in choline 

chloride/ malonic acid ionic liquid at room temperature after the standing time of 

72 hours in concentration of 7.4×10-2m, producing a blue colored solution without 

any visual changing in viscosity of the choline chloride/ malonic acid ionic liquid 

after the dissolution of the salt.  

    The ultraviolet visible spectrum of the solution showed three absorptions 

maxima bands at 14881 cm-1 (672 nm), 15576 cm-1 (642 nm) and 16155 cm-1 (619 

nm), that belong to the third transition band and the first and second transitions 

were in the infrared and near infrared region respectively. The third band showed a 

clear splitting and a spin forbidden transitions from 4A2 ground state to doublet 

state with its splitting, indicating that Cobalt (II) chloride in choline chloride/ 

malonic acid ionic liquid at room temperature consist of Td coordination complex 

of Cobalt (II), as shown in Figure (3-22), the term symbol for the ground state of 

Co(II) ion 4F can split in tetrahedral crystal field, Using appropriate Orgal diagram 

Figure (1-17), and Tanabe-Sugano diagram for the d7 tetrahedral electronic 

configuration which is the same Tanabe-Sugano diagram for d3 octahedral 

electronic configuration as in Figure (3-18), the transitions were assigned as 

below:- 

   ν1= 4A2 (F) → 4T2 (F) =10Dq 

                                           ν2= 4A2 (F) → 4T1 (F) 

                                           ν3= 4A2 (F) → 4T1 (P) 

    The absorption bands of the solution were close to those of Cobalt (II) in choline 

chloride/ urea room temperature ionic liquid in its initial readings after 72 hours 

from the preparation, but Cobalt (II) showed changes in choline chloride/urea ionic 

liquid where it did not show any changes in choline chloride/ malonic acid ionic 

liquid, as showed in Table (3-6). 
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tetrahedraly coordinated complex of [CoCl4
2-], that in choline chloride/urea ionic 

liquid after a period of time up to 40 days, it faced some replacement of two 

chlorides with two urea molecules, while in choline chloride/ malonic acid Cobalt 

(II) did not faced any changes in its coordination with chlorides.  

Table (3-7):- The molar absorptivity of Cobalt (II) ions in ionic liquid based on choline chloride. 

 

Ionic Liquids 

Concentration 

(M) [mol/l] 

Concentration 

(m) [mol/Kg] 

 

Absorbance 

Molar 

absorptivty (ε) 

[l cm-1mol-1] 

Choline chloride/ 

Urea 

0.1 M 6.9×10-2 m 2.737 27.37 

Choline chloride/ 

Urea + NH4NO3 

0.1 M 6.9×10-2 m 2.022 20.22 

Choline chloride/ 

Malonic acid 

0.1 M 7.4×10-2 m 2.482 24.82 

 

3.2.4. Spectroscopic investigation of Nickel (II) chloride solutions. 

3.2.4.1. Nickel (II) chloride in Choline chloride/Urea room temperature 

ionic liquid solution. 

    Nickel (II) chloride hexahydrate was found to be easily and completely soluble 

in choline chloride/urea ionic liquid at room temperature after the standing time of 

72 hours in 1.1×10-1m, producing a pale green solution without visual changing in 

viscosity of the choline chloride/urea ionic liquid after the dissolution of the salt. 

    The ultraviolet visible spectrum of the solution showed three absorption maxima 

the first one at 9522 cm-1(1050 nm), the second one at [13405 cm-1 (746 nm)- 

14948 cm-1 (669 nm)] with clear splitting and the third one at 24390 cm-1 (410 

nm), as shown in Figure (3-24), indicating that Nickel (II) in consistent with 

octahedral coordination complex.  
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    Using Tanabe-Sugano diagram for d8 electronic configuration Figure (3-26), the 

third transition was recalculated and it was found to be similar to the value of the 

experimental value, which is equal to 24390 cm-1 (410 nm). The value of ν1 

represent the crystal field splitting value (10 Dq) indicating ligand field effect, the 

different ligand field parameters have been calculated using Tanabe-Sugano 

diagram for d8 electronic configuration.  

    The results of Nickel (II) in choline chloride/urea ionic liquid at room 

temperature were close to those taken in aqueous solution, but it was not so similar 

or close to those in other ionic liquid although Nickel (II) was found to have Oh 

coordination, Table (3-8) show the results of Nickel (II) taken in aqueous solution 

and some other ionic liquids at different temperatures.    

Table (3-8):- Electronic spectra of complexes of Nickel (II) ions in aqueous solution and ionic 

liquids. 

Ionic liquid Ni (II) formed 

complexes 

Absorption bands 

(cm-1) 

Temp. (o C). Suggested 

structure. 

References 

Aqueous 

solution 

 

[Ni(H2O)6]2+ 

ν1= 8500 

ν2= 13800 

ν3= 25300 

Room 

temperature 

 

Oh 

 

 

64,65,66 

LiCl/KCl  

[NiCl4]2- 

ν1= 8000 

ν2= 14200 

ν3= 15300 

 

700-1000 

 

Distorted Td 

 

1 

CsCl  

[NiCl4]2- 

ν1= 7500 

ν2= 14000 

ν3= 15700 

 

864 

 

Td 

 

1 

Acetamide-

KNO3 

 

[Ni(acetamide)4 Cl2] 

ν1= 7500 

ν2= 12500 

ν3= 23200 

 

90 

 

Oh 

 

67 

Butyramide- 

NaNO3 

 

[Ni(butyramide)4 Cl2] 

ν1= 8100 

ν2= 12600 

ν3= 23300 

 

90-140 

 

Oh 

 

 

67 
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(3-9). This band was assigned to be in the value of 18149 cm-1(551 nm), and had a 

probable a weak spin forbidden transition forbidden transition from triplet to 

singlet as [3A2g (3P) → 1T1g (1G)], because it is the nearest forbidden transition 

before the third triplet to triplet allowed transition due to mixing of spin-orbital 

coupling.   

    The consistency of this interpretation can be calculated and a value obtained for 

the interelectronic repulsion parameter or Racah parameter B̀, by fitting the ratio of 

ν1/ν2 on appropriate Tanabe-Sugano diagram, Figure (3-26). And it was found to 

be equal to 833 cm-1, the value of B̀ was lower than that for free ion 1042 cm-1, and 

close to the value B obtained in the pure melt 1082 cm-1, because of the less 

expansion of d-electron charge on complexation reduce the value of B̀. 

3.2.4.3. Nickel (II) chloride in Choline chloride/Malonic acid room 

temperature ionic liquid solution. 

    Nickel (II) chloride hexahydrate was found to be easily and completely soluble 

in choline chloride/ malonic acid ionic liquid at room temperature within the 72 

hours in concentration of 1.2×10-1m, producing a bluish green solution without 

visual changing in viscosity of the choline chloride/ malonic acid ionic liquid after 

the dissolution of the salt.  

    The ultraviolet visible spectrum of the solution showed two absorption maxima 

bands at 14184 cm-1 (705 nm) and 15220 cm-1 (657 nm) as show in Figure (3-30). 

The ultraviolet visible spectrum indicated that Nickel (II) in choline chloride/ 

malonic acid eutectic consisted of Td complex or distorted Oh complex of Nickel 

(II), but the Td complex is more preferable because it is closer to the value of 

absorbance bands in aqueous solution of Nickel (II) chloride with high 

concentration of chloride ions which indicates tetrahedral coordination as shown in 

Table (3-9). 



Chap
 

 

   The tr

assigned

And the

transitio

transitio

transitio

  

 

 

 

 

 

 

Fig. (3-30

ionic liqu

     Nick

when re

Orgel di

most lik

choline 

pter Thre

ransitions 

d as fallow

e appeare

on that oc

on from 3T

ons were in

0):- The U.V

id at room t

kel (II) for

eferred to 

iagram d8

kely sugg

chloride/m

ee            

of the N

w: 

ed band i

ccurs in th

T1 ground

n infrared

V.-Vis. Spect

temperature

rmed Td c

Tanabe-S

 Td and d

gestion is 

malonic ac

               

Nickel (II) 

3T1

3T1→
3T1

in the sp

he visible

d state to s

d and near 

trum of NiC

e. 

complex i

Sugano di

d2 Oh have

that Nick

cid eutecti

                

91 

in cholin

→3T2 (F) 

→3A2 (F) 

→3T1 (P) 

ectra was

 region w

singlet sta

infrared s

Cl2.6H2O of (

in choline 

iagram of 

e the same

kel (II) fo

ic. 

           Re

ne chlorid

(ν1) 

(ν2) 

(ν3) 

s assigned

with a spli

ate of 1D. 

pectra reg

(1.2×10-1m)

chloride/

f d2 Oh el

e transitio

ormed a T

esults an

de/ maloni

d to be t

itting due

While the

gion respec

in choline c

/ malonic 

ectronic c

ons as in F

Tdcoordin

nd Discu

ic acid m

the third 

e to the fo

e first and

ctively.   

chloride/ ma

acid eutec

configurat

Figure (3-

nation com

ussion 

melt were 

allowed 

orbidden 

d second 

alonic acid 

ctic, and 

tion, and 

31), The 

mplex in 



Chap
 

 

    Sugge

malonic

bonded 

where t

accordin

malonic

transitio

containi

 

 

 

 

 

 

 

 

 

    The a

choline 

indicate

solution

complex

less sym

were sm

pter Thre

estion of 

c acid wa

with one

the two 

ng to the

c acid is 

on with a s

ing high c

Fig. (3-31):-

absorbanc

chloride/

e that the 

ns more st

x formed 

mmetrical 

maller in c

ee            

the aver

as based o

e malonic 

chlorides 

 electroch

stronger 

split is sim

oncentrati

- Tanabe-Su

ce of the 

/urea eute

Nickel (I

table and 

in cholin

and less 

choline ch

               

rage envir

on the sp

acid mol

were re

hemical s

than chlo

milar to th

ion of chlo

ugano diagr

solution 

ectic befo

II) formed

more sym

ne chloride

stable com

hloride/ ur

                

92 

ronment 

ectra of t

lecule and

placed w

series this

orides. Th

hat resultan

oride ions 

ram for d8 te

is higher 

ore and a

d complex

mmetrical

e/malonic 

mplex. Th

ea melt th

           Re

of Nickel

the solutio

d two chl

with malon

s replacem

he observ

nt in aque

as in Tab

etrahedral e

than the 

after the 

xes in cho

l and defe

acid eute

he absorba

han in cho

esults an

l (II) in 

on, where

lorides in 

nic acid 

ment is p

ved bands 

ous soluti

ble (3-9).  

lectronic co

solution 

addition 

oline chlo

erens in g

ectic, that 

ance and 

oline chlor

nd Discu

choline c

e Nickel 

Td coord

molecule

referable 

are of t

ion of NiC

nfiguration

of Nicke

of nitrate

oride/urea 

geometry 

t considere

molar abs

ride/ malo

ussion 

chloride/ 

(II) was 

dination, 

e, which 

because 

the third 

Cl2.6H2O 

. 

el (II) in 

e, which 

eutectic 

than the 

ed to be 

soptivity 

onic acid 



Chapter Three                                                      Results and Discussion 
 

93 
 

melt. The tetrahedral complex of Nickel (II) d8 gives a term symbol of (3F), and the 

transitions assigned as fallows:- 

(ν1) = 3T1→3T2 (F), (ν2) = 3T1→3A2 (F), (ν3) = 3T1→3T1 (P) 

    The consistency of this interpretation can be calculated and a value was obtained 

for the interelectronic repulsion parameter or Racah parameter B̀, by fitting the 

ratio of ν1/ν2 from the appropriate Tanabe-Sugano diagram for d8 tetrahedral 

configuration Figure (3-31), and it was found to be equal to 1030 cm-1, the value of 

B̀ was smaller than that for free ion (1042 cm-1) and higher for that in choline 

chloride/ urea ionic liquid (833 cm-1), because in tetrahedral complexes the 

expansion of d-electron charge is less than in octahedral complexes so the value of 

B̀ was reduced. Table (3-9) shows the results of Nickel (II) in choline chloride/ 

urea and choline chloride/ malonic acid ionic liquids at room temperature together 

with those in aqueous solution.  

    As indicated in the Table (3-10), the absorption of Ni (II) ion had extended to 

higher energy in choline chloride/ urea ionic liquid solvent in compared with those 

observed in pure water. This is not unexpected, as urea is known to have stronger 

field than water molecules and they are available large concentration in the melt. 

However, when nitrate was added to Ni (II) solution in the previous melt solvent, 

the absorption shifted even to higher energy than in pure melt. This is contrast to 

the stronger field of urea than the nitrate as known in the spectrochemical series. 

Therefore, the coordination of urea in pure melt with the metal ion indicated that 

urea was already coordinated in the melt structure with other components, thereby 

offering a reduced strength when coordinated with metal ions. Chloride ions 

available in the melt compositions which are even weaker than urea and nitrate 

ions in free state would play a negligible role in such coordination.       

[I- < Br- <S2- < SCN- ~ Cl- <NO3
- < N3

- < F- < CO(NH2)2 < OH- ~ ONO- < 

CH2(COO)2
2- ≈ C2O4

2- < H2O < CN- ≈  CO].  
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     Nickel (II) in the choline chloride/ urea and choline chloride/ malonic acid ionic 

liquids solutions did not show any visual changes neither in color nor in viscosity, 

and did not showed any spectral changes in the ultraviolet visible spectra of the 

solutions after 40 days, which indicates stable complexes of Nickel (II). Figure (3-

32) showed the suggested structures for Nickel (II) in the prepared ionic liquids. 

Table (3-9):- Electronic spectra of complexes of Nickel (II) ion in aqueous solution and various ionic 
liquids solution. 

Solution Solution 

color 

Transitions 

(cm-1) 

B̀ (cm-1) 10 Dq 

(cm-1) 
Suggested 

Structure 

 

References 

Aqueous solution Pale 

green 

ν1= 8500 

ν2= 13800 

ν3= 25300 

1042 8500 Oh 

[Ni(H2O)]2+ 
 

65 

Aqueous solution  

with high conc. 

of chloride ions 

 

Yellow  ν1=     - 

ν2= 7549 

ν3=(14250-

15240) 

1030 4070 Td 

[NiCl4]2- 
 

66 

Choline chloride/ 

Urea 

Pale 

green 

ν1= 9522 

ν2= (13405-

14948) 

ν3= 24390 

833 10000 Oh 

[Ni(NH2CONH2)4Cl2] 

Present 

work 

Choline chloride/ 

Urea +NH4NO3 

Pale 

green 

ν1= 9522 

ν2= (13369- 

14771) 

ν3= 24390  

833 10000 Oh 
[Ni(NH2CONH2)4(NO3)2] 

Present 

work 

Choline 

chloride/Malonic 

acid 

Bluish 

green 

ν1=      - 

ν2=      - 

ν3cal.=(14184 

-15220)  

1030       - Td 
[Ni((CH2COOH)2)Cl2]2- 

Present 

work 
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    Copper (II) has d9 electronic configuration, it was suggested that the 

environment of the ligands bonded with Cu2+ are of mixed ligands molecules of 

four urea and two nitrates in Oh geometry. 

Table (3-11):- The ultraviolet visible spectroscopic behavior of Copper (II) in various solvents. 

Solvents Solution 

color 

Absorption 

Band (cm-1) 

Transition Suggested 

structure 

References

Aqueous solution Pale blue ν = (11000-

13000) 

2Eg→2T2g Oh 

[Cu(H2O)6]2+ 
64,65 

LiCl/KCl - ν =  9500 2B1g →  2B2g
2B1g → 2Eg 

Distorted Oh or 

Td 
1 

AlCl3- 1,methyl 

3ethylimidazoluim 

chloride 

- ν =34139 

ν =24570 

2B1g →  2B2g
 2B1g → 2Eg 

Td 

[CuCl4]2- 
72 

Acetamide-KNO3 Blue-green 

 

ν1 = 11000 

(shoulder) 

ν2 = 14000 

ν3 = 20700 

2Eg→2T2g  

Oh 

 

67 

Choline chloride/ 

urea  

Blue 

 

ν1 =13055 2Eg→2T2g Oh 

[Cu(CO(NH2)2)6]2+  

Present  

work 

    The Cu (II) solution in choline chloride/ urea eutectic did not show any visual 

changes in color or viscosity as well as in the ultraviolet spectra after standing time  

40 days, which means that Copper (II) already reached equilibrium and formed a 

stable complex with urea molecules, in octahedral coordination. 

  3.2.5.2. Substitution Reaction with Ammonium Nitrate. 

    Addition of ammonium nitrate (NH4NO3) to the solution of Cu (II) in choline 

chloride/ urea eutectic at room temperature did not show any visual changes 

neither in color nor in viscosity of the solution, but it showed some changes in the 

ultraviolet visible spectrum of the Copper (II) ions, as the absorbance and the 

position of the peak had changed. The band was shifted to lower energy band at 

average of 12903 cm-1(775nm) and a new band appeared on the edge of high 
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Table (3-12):- Electronic spectra of complexes of Copper (II) ions in choline based ionic liquids at 

room temperature. 

Solution  Solution 

color 

Absorption 

band (cm-1) 

Transitions 

 

Suggested structure   References 

 

Choline 

chloride/ urea  

Blue 

 

ν = 13055 2Eg→2T2g Oh 

[Cu(CO(NH2)6]2+ 

Present  work 

Choline 

chloride/ urea 

+NH4NO3 

Blue 

 

ν =12903 2Eg→2T2g Oh 

[Cu(CO(NH2)4(NO3)2] 

Present work 

Choline 

chloride/ 

malonic acid 

Yellow 

 

ν =9208 2B1 →  2B2 
2B1 → 2E 

Distorted Oh or Td 

[Cu((CH2COOH)2)Cl2]2- 

Present work 

     

Table (3-13):- The molar absorptivity of Copper (II) ions in ionic liquid based on choline chloride. 

 

Ionic Liquids 

Concentration 

(M) [mol/l] 

Concentration 

(m) [mol/Kg] 

 

Absorbance 

Molar absoptivity 

(ε)  

[l cm-1mol-1] 

Choline chloride/ 

Urea 

0.1 M 7.7×10-2 m 1.702 17.02 

Choline chloride/ 

Urea + NH4NO3 

0.1 M 7.7×10-2 m 2.005 20.02 

Choline chloride/ 

Malonic acid 

0.1 M 8.03×10-2 m 2.312 23.12 
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3.3. Conclusion.   

1) The prepared room temperature ionic liquids was based on quaternary 

ammonium salt (choline chloride) that was mixed with hydrogen bond donor 

molecules like urea [CO(NH2)2] in mole ratio of 1:2, and malonic acid 

[(CH2COOH)2] in mole ratio of 1:1. Showed different physical properties 

from other non aqueous solvent.  

2) Those ionic liquids have been used as non-aqueous solvents to study the 

behavior of some first row transition metal compounds. The interaction that 

took place between transition metal ions and the possible ligands in each 

solution gave complexes comparable geometry. 

3)  All the prepared solutions of the transition metal ions were colored solution, 

while the prepared ionic liquids were colorless.  

4) The new formed complexes solution of each transition metal ion in each ionic 

liquid was analyzed by ultraviolet visible spectroscopy, and the spectra of the 

solutions were studied. 

5)  The prepared ionic liquids showed different ligands field strength properties, 

because ionic liquids contents had molten properties.  

6) The ligand field calculated showed different strength (according to the 10 Dq 

value), different Racah parameter (B̀) and different electron- repulsion 

parameter (β), which refers to different ionic character between the metal and 

donor atoms of the ligands.    

7) The infrared spectroscopy of the solutions of transition metals in ionic liquids 

was difficult to establish because the ionic liquids were insoluble in the 

solvents were used in the infrared spectroscopy instrument and it was soluble 

only in absolute ethanol, as well as it was not able to use the ionic liquids 

without dilution because the solution will be over saturated for the IR chart 

and the peaks will not be clear. 
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8)  The conductivity of the transition metals in ionic liquids solutions was also 

difficult to determine because the ionic liquids solution is conductance 

himself, and it was hard to extract the formed complex of transition metal 

with ionic liquids from its solution with the known extraction method, to 

determine the conductivity of the formed complex.     

9) The magnetic susceptibility of transition metal in ionic liquids solutions was 

difficult to calculate because the solutions were thick and hard to force into 

the magnetic susceptibility tubes with injection because of the formation of 

air bobble in the bottom on the tube that couldn’t be gotten red of it by 

shaking or worming the tube. 
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3.4. Suggestion for future work. 

    The following suggestions can be postulated to ensure completion of the study 

in this work. 

1) Preparation of another set of transition metal complexes using other transition 

metal ions such as second or third rows of transition metal using the same 

prepared ionic liquids. 

2) Preparation of another set of transition metal complexes using other reported 

room temperature ionic liquids or newly prepared ionic liquids. 

3) Preparation of the same solutions with the same concentration of transition 

metal ions and by using the same analyzing instrument but in various 

temperature ranges. 

4)  Preparation of the same solutions of transition metal ions using different 

concentration of the used transition metal compounds. 

5) To complete the measurements and identification of the new formed 

complexes of transition metal ions by using infrared spectroscopy, magnetic 

susceptibility measurements and x-ray diffraction.   

6) Find a suitable method to isolate the prepared complexes of transition metal 

ions from their ionic liquid solution.    
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  وزارة التعليم العالي والبحث العلمي

  جامعة النهرين 
  كلية العلوم

  قسم الكيمياء

  

  

 العناصر بعض ملاحلأ  طيفيتشخيص
 الأملاح  منصهرات فيالأنتقالية 

 درجة حرارة الغرفةب
 
 

  رسالة
   جامعة النهرين-مقدمة الى كلية العلوم

  ء في الكيمياوهي جزء من متطلبات نيل درجة الماجستير
  

  من قبل

  مريم علي سعيد
  ٢٠٠٥ )جامعة النهرين(بكالوريوس  
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  الدكتور هادي محمد علي عبود
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ِحِيمِبنِ الرمحمِ اللَّهِ الرس
َ  أحدُني رأيتإأبت ٰـ يِ لأبيهَسفُذ قـال يوإ

ي ـ لُ والقـمرُلشمس كـوكبا و اَعشر
ءياك ُبني لا تقصص رٰـقـال ي۞جدينٰـس

ن إ آك كيدـخوتك فيكيدوا لإعلى 
و كذلك ۞بينـُ م˝سن عدوٰـن للأنٰـالشيط

 من تأويل الأحاديث َبك ويعلمكُيجتبيك ر
 عليك وعلى آل يعقوب كما أتمها ُويتم نعمته

ن إق ٰـسحإ و َبراهيمإعلى أبويك من قبل 
                                 ٌ۞ حكيمٌربك عليم

              
                       ظِيمااللهُ الع قدص  



 
 
 
 
 
 
 

  ُ الذي أحببتَفيا والدي
 أهديكم ذا الأثرُن كنتٳ  

ً جميلاَ الجميلُردأفأني   
بنور الضمير ونور البصر  

  بروحي ًفأن كان بحثي سماءا
ُو القمرفأنتم شمسها   

 
 
 

وكل من له ...أهلي و أصدقائي...اخي و أختي...والدي العزيز...الى والدتي الغالية

  ....مكان في قلبي

  ...ور أياد حمزة جاسم الخفاجيالى روح أستاذي العزيز الأستاذ الدكت

   .اهدي عملي المتواضع

 
 
 

       
               مريم علي سعيد

  

الأهداء



  
 
 
 
 
 
 

      

آمذيب نوعين من الأملاح المنصهرة  في درجة حرارة الغرفة للأستخدامها في هذا البحث تم تحضير       

تجاه أيونات المرآبات الأيونية السائلة لامائي في دراسة الهدف منها التعرف على السلوك الذي تسلكه هذه 

العناصر الأنتقالية وهذه المرآبات حُضرِت من مزج ملح مشتق من جذر الأمونيم الرباعي و مواد لها قابلية 

بنسب مولية ) اليوريا و حامض آاربوآسيلي ثنائي الكاربوآسيل(على تكوين أواصر هيدروجينية مثل 

  .ثابته

ناصѧѧر الأنتقاليѧѧة فѧѧي نѧѧوع جديѧѧد مѧѧن الأمѧѧلاح المنѧѧصهرة فѧѧي درجѧѧة   تمѧѧت دراسѧѧة بعѧѧض معقѧѧدات الع  

  .حيث أن الأملاح المنصهرة تعتمد في ترآيبها على آلوريد الكولين, حرارة الغرفة

بواسѧطة الأشѧعة الفѧوق      تشخيѧصآ طيفيѧآ         شُخصت المحاليل المحضرة التي تحتوي على المعقѧدات الجديѧدة           

وحظ تكѧѧѧون معقѧѧѧدات بѧѧѧين الأيѧѧѧون الأنتقѧѧѧالي و مكونѧѧѧات الأمѧѧѧلاح حيѧѧѧث لUV-Vis .(ѧѧѧ(المرئيѧѧѧة -البنفѧѧѧسجية

الأمѧلاح المنѧصهرة سѧميت آѧولين آلورايѧد يوريѧا و آѧولين آلورايѧد و                  . المنصهرة فѧي درجѧة حѧرارة الغرفѧة        

  . درجة مئوية على التوالي٠ و ١٠حامض المالونك و الذان يمتلكان درجة أنجماد في 

    لѧѧوحظ أن الأيونѧѧات فѧѧي محلѧѧول الكѧѧولين آلورايѧѧد يوريѧѧا آانѧѧت ذات أشѧѧكال ثمانيѧѧة الѧѧسطوح لكѧѧل مѧѧن             

حيѧث أظهѧرت دراسѧة    . +Co٢ ,+Fe٣ و أشكال رباعية السطوح لكل مѧن أيونѧات   +Cu٢ ,+Ni٢ ,+Cr٣أيونات

ة الѧسطوح و     فѧي آѧل مѧن المعقѧدات ثمانيdn          ѧ المسموحة و الممنوعة لكѧل ترآيѧب ألكترونѧي         الأنتقالاتالطيف  

 .رباعية السطوح

تمت دراسة تفاعل أستبدال لليكندات المرتبطة بالأيون الأنتقѧالي فѧي محلѧول الكѧولين آلورايѧد يوريѧا                     

حيѧث أظهѧرت ضѧعف الأرتبѧاط بѧين جزيئѧات المحلѧول و               , بأضافة أيون النترات على شكل نترات الأمونيوم      

قѧѧدات المتكونѧѧة أظهѧѧرت حѧѧالات مѧѧستقرة فѧѧي أشѧѧكال  آѧѧل المع. الأيѧѧون الأنتقѧѧالي الموجѧѧب فѧѧي أشѧѧكال تناسѧѧقية 

عدا في حالة أيون الكوبلت الثنائي حيѧث أظهѧر تغيѧر فѧي طيفѧه بعѧد       ,  ساعة من تحضيرها   ٧٢معقداتها خلال   

  . يوم مما يدل على عدم وصول المعقد المتكون حالة الأستقرار٤٠

 أظهرا شكل رباعي الѧسطوح  +Cu٢ ,+Ni٢    أما في محلول الكولين آلورايد و حامض المالونك فأن أيوني 

  .أآثر من أشكال ثمانية السطوح

     

 الخلاصة



سرتْ فѧُ تم أقتراح نوع الأرتباط بين الأيѧون الأنتقѧالي الموجѧب و الليكنѧد بأسѧتخدام قاعѧدة جورجنѧسن آمѧا                           

سѧتخدام  و تѧم تحديѧد الأنتقѧالات بأ   طبيعة التآصر بين أيون الفلѧز والѧذرات المانحѧة فѧي الليكنѧد بمعامѧل راآѧاح                   

لجميѧѧع )   سѧѧوآانو-تنابѧѧا(ومقѧѧاييس المجѧѧال الليكنѧѧدي والتѧѧي تѧѧم أحتѧѧسابها بوسѧѧاطة مخطѧѧط     مخطѧѧط أوريكѧѧل  

 . المعقدات المحضرة
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