ABSTRACT

Let H(U) be the set of all holomorphic functionsttye unit ball U of the

complex plane. The Hardy spacéiblthe set of all functions f(z)zf(n)zn
n=0

that belongs to H(U) such th@ﬁ(n)l2 <o, Let ¢ be a holomorphic self
n=0

map of U. The composition operatog @n H is defined as follows:
Cyf = fod, for all f O H?

Littlewood's principle shows that,@s a bounded operator orf.HRecall
that, an operator T on a Hilbert space H is saibdeayclic operator if there
exists a vector x in H, such that spar'XT n=0, 1, ...} is dense in H, the
operator T is supercyclic if there is a vector ¥Hinsuch that the seh{T"x :
MO0, n=0,1, ..}is dense in H. It may happen that orb(I=XT"x : n=
0, 1, ...}isdense in H, in this case T is calledyaercyclic operator.

One of our main concerns in this thesis was to gwaditions that are
necessary and (or) sufficient for the compositigrerator to be a cyclic
(hypercyclic, supercyclic) operator.We give somewn results with details
of the proofs, specially whapis a linear fractional transformation, i.e.

_az+b
d(2)= CZ+d,zDU

Where a, b, c and d are complex numbers.

This thesis contains some new results (to the dfestir knowledge) for
the cyclicity of the operat@;, where C; is the adjoint of the composition

operator G. .
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CHAPTER ONE
PRELIMINARIES

INTRODUCTION

In this chapter, we introduce the Hardy spaceoHall holomorphic
functions on the unit ball U of the complex planghwsquare summable
power series coefficients, discuss its norm andesgnoperties. Also, we
study the holomorphic functions that take U inseit, state famous theorems
and recall some definitions. To each holomorphrection ¢ that takes U into
itself we associate the composition operatpro€fined by:

Cpf=fodp (fOH?)

The Littlewoods a subordination theorem (1.3.1ste$ that the operator
Cy takes the Hardy spacé liito itself. Littlewood's principle also supplies
an estimate which shows thag @& a bounded operator orf,ksee [17, 3] for
more details.

This chapter consists of five sections. In sectime; we recall the
definition of Hardy space and some basic theorémsection two, we give
the concept of the radial limit, non-tangential itinangular derivative; we
state Schwarz lemma and prove several results itroim section three, we
state the Littelwood subordination theorem anddénition of composition
operators.

In section four, we study the linear fractionalngtormation. The
holomorphic mapping is a linear fractional transformation if:

az+ b

zOoC
cz+d (z )

¢(2) =

Where a, b, ¢ and d are complex numb&sis the Riemann sphere, i.e.,
(é = [0 O {}).we classify the set of all non-constant lineaactional
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transformations into parabolic, elliptic, hyperlooéind loxodromic. We state
and try to prove some useful results.

In section five, we discuss the compact operatard give some
necessary and sufficient conditions for a compositoperator to be a
compact operator.

1.1 HARDY SPACE H

In this section, we define the Hardy space a#d prove some basic
results. We refer the reader to Duren's book [8] &rH.shapiro [17] for more
details about Hardy space. Let U be the unit balhie complex plang
le., U={z OO0 : |z|] < 1} and let H(U) be the set of all complexiued
functions which are holomorphic (i.e., analytic) OnSince pointwise sums
and products of holomorphic functions are agaimharphic, then H(U) is a
vector space over the field of the complex numb8efore we give the
definition of the Hardy space®Hwe recall Taylor theorem without proof.

Theorem (1.1.1) (Taylor) [4]:

Let f be analytic at all points within a circle Ctlw center at g and

radius 5. Then at each point z inside C, the power s@é%n)(z—zo)“,
n=0

converges uniformly to f(z),

o . (n)
le., f(z)= Zf(n)(z—zo)“ for all z inside C, wheré(n) = fﬂ# is said
n=0 :

to be the n-th Taylor coefficient of the functian f

Remark (1.1.2):
If the function f belongs to H(U), then by Tayltiebrem:

f(z) = if (n)z"
n=0

Now, we give the definition of Hardy spacé.H
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Definition (1.1.3) [17]:

The Hardy space Hs the set of all functions f(2) Zf(n)z“ 0 H(V),
n=0

such that) |f(n)f <o, i.e, H={f DHU): Y |f(n)F <oo}.
n=0 n=0
We can define an inner product oh &s follows:
If f(z) = Zf(n)z” and g(z= > §(n)Z", are any functions in Hithen

n=0 n=0
the inner product of f and g is:

<f, g>= Y f(n)a(n)
n=0
One can prove that this series converges [3].

Remark (1.1.4):

If f is any function in H, then we define the norm of the function f as
follows:

Iif =<, f>= > If(n)F
n=0
i.e., H is a normed space.

Theorem (1.1.5) [15]:

The Hardy space Hs Hilbert space.
We give the following lemma without proof sincestwell-known.

Lemma (1.1.6) (Cauchy-Schwarz Inequality) [15]:

Let K be an inner product space, then

|<x, y=>|< 1IX]] |ly]|, for all x and y in K.
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The following theorem appeared in [17], we give fineof for the sake
of completeness.

Theorem (1.1.7) (Growth Estimate):
For each f1 H?

[f(z)| < 111l , for each 21U

J1-|zF

Proof:

Upon applying the Cauchy-Schwarz inequality to plogver series of f,
we obtain for each @ U

o0

f(z)l< > If(n) |2

s(iﬁ(n)Fj [iuf”)
L.
1- |z}

The following corollary appeared in [17], we gilreetproof for the sake
of completeness.

Corollary (1.1.8):

Every norm convergent sequence if ¢bnverges (to the same limit)
uniformly on compact subsets of U.

Proof:

Suppose {f} is a sequence in +horm-convergent to a functiori’f H
thatis, |[f-f||C0 - O

For 0 < R < 1, the growth estimate above yieldsfxh n:
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suplfo(2) - f(z)| < I ="

&R 1- R?

So {, O - f uniformly on the closed disk {|& R}, since R is arbitrary,
f, 0 — funiformly on every compact subset of Um

Remark (1.1.9):

It is easily seen that,@) = Z", n=0, 1, ...; is a complete orthonormal
basis for H, therefore span {z)} is dense in Hand hence His a separable
Hilbert space.

Definition (1.1.10) [17]:

Let f be a holomorphic function on U and letz€®, 0<r < 1, then
define:

n 1/2
M,(f, 1) = [iju(re‘e)F OB]

The proof of the following proposition appearediid].

Proposition (1.1.11):

Suppose that f is holomorphic on U, theB H? if and only if My(f, r) is
bounded for G r < 1.

Note that if f0 H?, then ||flE lim M(f, r), [17].
r-1

Let H” be the set of all bounded holomorphic functiondbrDefine a
norm on H by:

[If[l. = suplf(z)|

zZu

One can prove that'H1 H? and ||f|k ||f|k, for all f O H>, [17].
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Definitions (1.1.12):

1. The functiong is said to be self map of U if it takes the uratl iy of the
complex plane! into itself.

2. A one-to-one holomorphic map is called univalent.

3. Let¢ be a holomorphic self map of U.difis univalent and onto U, then
¢ is said to be a conformal automorphism of U ot pugomorphism of
U.

Now, we give two examples of holomorphic functions:

Example (1.1.13):

For each pl U, define the special automorphism function:

ap(2)= 2=Z forallzO C
1-pz

This function interchanges p with the origin, ig,(p) = 0 anda,(0) = p

The following proposition appeared in [20], we githee details of its
proof.

Proposition (1.1.14):

For each pJ U, the functiona, is conformal automorphism of U and
takesoU ontooU.

Proof:
It is clear thata, is holomorphic at all z except at:z%, which is
P

outside of U, hence, is holomorphic on U. Since:
1-lop(z)f =1~ ap(2)a,(2)
_(@-1pf)E 173
|1-pzf
This equation is greater than O for evefy & and equals O for every(zoU,
hencedy(z)| < 1 on U andi,(z)|= 1 ondU




Chapter One Preliminaries

LetzO U =U O aU, thenay(ay(z)) = z, thereforen, takes U onto U andU
ontoouU.

Finally, we show thatx, is one-to-one.
Let ap(z1) = ay(z2), thenay(ap(z1)) = ap(ap(zz)), hence z= z,

Thusa, is conformal automorphism. m

The following remark shows that the functiopis self inverse.

Remark (1.1.15):

Let p O U, one can show easily that(ay(z)) = z, for all z U.

Thereforea ;1 = dp.

We need the following lemma, the proof is simple.

Lemma (1.1.16):

1

-1+ |pf

. Therefore,

For each p U, a;,(0) = -1 - |pf and a},(p) =
a,(0) a,(p) = 1.
We give another example of holomorphic functionlbn

Example (1.1.17):

Associated to each poirt [0 U, there is a function of a particular
interest to us; the reproducing kernel dgrdefined by:

k(@) = —— = (@2)"
n=0

1-az B

which clearly belongs to Hand has norm\/l—ilz.
1-|a

For each f1 H? one can prove easily:

f(a) = <f, k>
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1.2 SCHWARZ LEMMA

In this section, we recall several definitions atate important theorems
that we need in the next chapters. In the followihgorem, we give the
concept of the radial limit.

Theorem (1.2.1) [3]:

Let f 0 H? and O< r < 1, then the limit{w) = lim f(rw), exists at almost

r—

every point w on the unit circle.

Definition (1.2.2) [3]:

Let f O H? and wO dU. The limit f{w) is said to be the radial limit of f
at w.

Remark (1.2.3):

From now on, we drop the notatior{vf) and we simply write f(w) for
the radial limit of f at w.

The following proposition appeared in [8], we giv&ithout proof.

Proposition (1.2.4):

If f and g are two functions in®then one can find the inner product of
f and g as follows:

T[ N
<f, g>= 1 J- f(€®)g(e®) ®
2
Thus:

P == [ 11 @

Recall that a point pl [J is fixed point for the functiow, if ¢(p) = p.

10
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Definitions (1.2.5):

Let ¢ be a holomorphic function that takes the unit hiadif the complex
planell into itself and fixes the point p, then:

1. pis an interior fixed point fop if p O U.
2. pis an exterior fixed point fap if p lies outside the closed digk.

3. pis a boundary fixed point if @ 0U and¢(p) = p in the sense of radial
limits (i.e., lim ¢(rp) = p).
r-1

Definition (1.2.6):

The holomorphic functiord is said to be rotation about the origin if
there exists Wi 0U, such that(z) = wz, (zO U).

The following is one of the most important theorems complex
analysis.

Schwarz Lemma (1.2.7) [5]:

If ¢ is a holomorphic self map of U with(0) = 0, then:

1. [6(2)|< |z, for every z in U, with equality for somet@ U if and only
if ¢ is a rotation about the origin.

2. 1¢'(0)|< 1 with equality if and only i is a rotation about the origin.

From Schwarz lemma, we can get several resultgjiveesome of them.
The following proposition appeared in [20], we gt proof for the sake of
completeness.

Proposition (1.2.8):

If ¢ is a conformal automorphism of U that fixes thagior, then there
exists wll dU such thatp(z) =wz for every 21U .

11
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Proof:

Since¢ is a holomorphic self-map of U that fixes the arjgart (2) of
Schwarz lemma guarantees thafQ)| < 1.

But since¢ is an automosphism, it has a compositional invdrgbat also
obeys the hypothesis of Schwarz lemma

Hence §/'(0)| < 1. By the chain rulep’'(0)d'(0) = 1, henced|'(0)| = 1, and so
by the "equality part" of part (2) of Schwarz lemrpas a rotation about the
origin. =

We prove the following theorem .

Theorem (1.2.9) 120]:

If ¢ is a holomorphic self map of U, then for everly pJ

i< E100)F
QR

with equality if and only i is automorphism of U.
Proof:

Let g= ¢(p) and consider the mapping= a,0doa,, wherea, anda,
are the special automorphism mappings defined ge [6&).

It is clear that) is a holomorphic self map of U ang(0) = O, hence by
Schwarz lemmalf (0)| < 1 with equality if and only ifp is a rotation about
the origin.

By the chain rule

Y'(z) = o' 4(poap(2))0" (ap(2))a’ n(2)
Hence:

P'(0) = a'(@)¢’ (p)a’x(0)

1
= ! -1
pratUCLREY

12
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Since (0)|< 1, thend'(p) < L-19F =10 (@)f

-|pf  1-|pf
If the equality holds in the last inequality, tHeéi(0)| = 1, so that by Schwarz
lemma, there exists Wl dU, such thatp(z) = wz for all zO U, hencey is
automorphism of U

Sincey = aso0doa, anday, a, are self inverse, thefpn= asopoa,
Sincey, ag, 0, are automorphism, thénis automorphism.

Conversely, if ¢ is automorphism, thenp = aqs0doa, is also
automorphism

Since(0) = 0, then from proposition (1.2.8), there exist§wU, such that
Y(z) =wz, for all zO U

Hence (0| = w|= 1, that is¢'(p)] = 19

= pf

Corollary (1.2.10) [20]:

If ¢ is a holomorphic self map of U that fixes a pagini U, then ¢'(p)|
< 1, with equality if and only i is an automorphism.

Proof:

From theorem (1.2.9%(p)| < 1_1|¢|¢)F with equality if and only i

pf

is automorphism. Sinag(p) = p, then¢’(p)| < 1 with equality if and only i
Is automorphism.m

We give the proof of the following proposition fdhe sake of
completeness.

Proposition (1.2.11) [3, 20]:

No self map U (except the identity function) mayéanore than one
interior fixed point.

13
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Proof:

If $(0) =0 andd(q) = q, where 02 q U U, then by part (1) of Schwarz
lemma,$(z) =Az (zO U), wherej|=1

Therefore o= §(q) =Aq, so thak = 1. Thusp is the identity mapping

If p and q are non-zero fixed points fprthen consider the mappidg=
Oyoho0,, Wherea, is the special automorphism mapping.

It is clear thatp(0) = 0. Since ¢J U anda,, is automorphism then there exists
0# r 0 U, such thatiy(r) = q, thereforep(r) =r

Hencey fixes the origin and another point in U, therefbyeour proofy
must be the identity mapping

Since¢ = a,opoap, theng is the identity mapping. =

Definitions (1.2.12):

1. A sectorin U at a point Wl dU is the region between two straight lines
in U that meat at w and are symmetric about theausatb w, see figure
(1.1), [17, p.49].

Figure (1.1) Sector at w.

2. If fis a function defined on U and W dU, then(J lim f(z) = L, means
zZ—-W

that f(z) 0 - L as zO - w through any sector at w. When this
happens, we say that L is the non-tangential (qukam) limit of f at w,
[17, p.49].

14
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3. We say a holomorphic self mapof U has an angular derivative atw
ou if Olim ¢'(z) exists (finitely), and that when this happens
Z->W

denote the limit by'(w), [3, p.17].
We end this section by the following theorem. Fpraof see [17].

The Julia-Carathéodory Theorem (1.2.13):

Supposed is a holomorphic self-map of U, and W dU. Then the
following statements are equivalent:

1. Olim N=9@)
T zow wW-2Z

exists for some [ 0U.
2. Olim ¢'(z) exists, and] lim ¢(z) =n O oU.
Z->W Z->W

Moreover:
e The boundary poim in parts (1) and (2) are the same.

« The limit of the difference quotient in part (1)icodes with that of the
derivative in part (2).

1.3 LITTLEWOOD'S THEOREM

In this section, we explore some links between tionctheory and
operator theory that are created by Littlewoodlsosdination principle. To
each holomorphic functiop that takes the unit ball U of the complex plane C
into itself, we associated the composition oper@podefined by:

Cyf = fod, for all f O H
We state the following famous theorem without prdof a proof see

[17].

Littlewood's Subordination Principle (1.3.1):

Supposeab is a holomorphic self-map of U, with(0) = 0. Then for each
f O H?, Cyf O H*and ||Gfl| < [If].

15
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The following theorem gives the general case ferrttapd (¢ does not
necessarily fix the origin).

Theorem (1.3.2) [17]:

Let ¢ be a holomorphic self-map of U, therpfal H?,

1+6(0)] 2
lIfod||< 1_|¢(O)I||f||,forall fOH

We recall that if T is bounded operator on a Hillsgace H, then the
norm of such an operator is defined by:

[ITll=sup {||Tf]| : {0 H, [If||= 1}
if ||T||< 1, then T is said to be a contraction on H.

From theorem (1.3.2), we get the following coragflar

Corollary (1.3.3):

Let ¢ be a holomorphic self-map of U, theg S bounded operator on

: = 160)]
endlsl= o o

Proof:
We see from theorem (1.3.2) thapf@l H?, for all f O H?
Therefore the composition operatof akes the Hardy space fihto itself.

Also, we have from theorem (1.3.2) that:

= 1+19(0) | 2
1 GPI = libell=< 17 0(0) |||f||, for all fO H

Thus G is bounded and |}{}< %l

Notation:

Let ¢ be a holomorphic self map of U, th¢p= podo...0p (n-times).

16
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Remarks (1.3.4):

1. If ¢ is holomorphic self map of U that fixes the origithen from
corollary (1.3.3), Gis a contraction on H

2. One can easily show tha} €C, = Cy,4and hence
Co = Cooto..o = Cy,

3. If ¢ is a conformal automorphism, then the compositparator G is
invertible operator an€;" = Cp-

We recall that if H is a Hilbert space and T, are two operators on H,
then T, T, are similar if there is an invertible operator §jch that
T,=S'T,S.

Definition (1.3.5) [17, p.93]:

Composition operators,Gnd G, are said to be compositionally similar
if there is a conformal automorphism mappengf the unit ball U, such that:

¢=a _loL|JoC( .

The following proposition appeared in [17] withqubof. We give the
proof.

Proposition (1.3.6):

Every compositionally similar composition operatars similar.
Proof:

Let Gy and G, be two compositionally similar composition operato
Hence by definition, there exists a conformal awgrhism mappingt such
thatd = o “oloar. Therefore:

Cy=C Co0CyoC,+ = CaoCyoCyt

a‘ogoa

Thus G and G, are similar operators. =

17
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We recall that if {g} is an orthonormal basis for a Hilbert space Hrth
every operator T on H can be represented by axmatr (a;), where Te=

Zaii e,i=1,2, ... and the converse is true. We shall prawée following
j
example that the converse of proposition (1.3.8pistrue.

Example (1.3.7):

Let ¢(z) = iz andy(z) = —iz, then G and G, are similar, but ¢and G
are not compositionally similar.

Proof:

We shall find the matrices of the operatogsa@d G, with respect to the
orthonormal basis,e= ', =0, 1, ...; Col =1, Gz = ¢ (2) = iz, G2 =
(¢ (2)=-2" and so on.

Thus the operator {has a block matrix A

M
A= MO
@)
where:
1 0 0 O
101 0 O
IVI_OO—lo
O O 0 -i

By the same way, the operatqy Ras a block matrix B:

18
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1 0 00
o -i 0o o0
N=1o 0 -1 0
0 0 0 |

PO
C= P

@)

Where:

1 0 0O
10 0 0 1
P= O 010

0O 1 00

It is clear that T is invertible operator, wheré fas the block matrix:

pl ®)

Since A= C'BC, then G =T 'C,T and hence g, C, are similar
operators. Now, suppose thaj GC, are compositionally similar, therefore
there exists a conformal automorphism mappirg such that
¢ = a oyoa, that isaod = oa. Thus:

a(iz) =—ia(z), forevery ZTU ......cooeiiiiiiieciie e (1.1)
Thereforea(0) = 0.

By proposition (1.2.8), there exists(t dU, such thata(z) = rz, for all
zJU.

From equation (1.1) above, Hz-irz, for all z[1 U.

This is a contradiction. Therefore, Gand G are not compositionally
similar. =

19
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1.4 LINEAR FRACTIONAL TRANSFORMATIONS

In this section, we present some information altbatlinear fractional
transformations that we use in the next chaptees.r&ter the reader to [17],
[5] for more details about the linear fraction@rtsformations.

Definition (1.4.1):

A linear fractional transformation is a mappingloé form:

az+ b
cz+d

¢ (2)=
Where a, b, c and d are complex numbers.

We prove the following proposition:

Proposition (1.4.2):

Let ¢ be a linear fractional transformation, thiems a constant mapping
if and only if ad— bc=0.

Proof:
For any two pointsz z,, we have:
¢ (z) =9 ()

az+b_az+b
cz+d cz,+d

~

= (az + b)(cz + d)=(az + b)(cz + d)
= (ad-bc)(z-2) =0

Therefore, if¢p is a constant mapping, thédz,) = ¢(z,), for any z, z and
hence (ad- bc)(z — z,) =0, if we take z# 2z, then ad-bc=0

Conversely, if ad- bc= 0, then (ad- bc)(z — z) = 0 and hencé(z,) =
¢(zp), for each g z; that is¢ is a constant mapping.m

20
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Remarks (1.4.3):

1. One can see from the proof of proposition (1.4tRpt every non-
constant linear fractional transformation is oneate.

azt b\ ik ad-
cz+d

2. We consider a linear fractional transformatipz) =

bc # 0 defined on the Riemann sphaBe=C O {c}, where ¢(e) = %

and ¢(_—d) = oo (notice that we cannot have=® = c or d= 0= ¢, since
C

ad- bc#z0).

Notation:
1. We denote the set of all linear fractional transfations is subject to the

condition ad- bc# 0 by LFT(@).

az+ b

2. For anyd(z) = P [] LFT(@), we some times denote it lha(z)

where A is the non-singulax2 complex matrix
_la b
S

Remarks (1.4.4):

1. Itis clear that ifp, belongs to LFTC), thenda =d,a , for any non-zero
complex numbea.

2. One can easily prove théhops = das, Where o is the composition of
maps.

3. If ¢ belongs to LFTC), thend, is invertible Whereti),g1 = ¢,-, hence

each linear fractional transformation can be regadrds a one-to-one
holomorphic mapping of the Riemann sphére)nto itself.

From remarks (1.4.4), one can prove the following:

21



Chapter One Preliminaries

Proposition (1.4.5):

(LFT(é),O) IS a group.

Definition (1.4.6):

We say that S, Tl LFT(@) are conjugate if there existleVLFT(f:),
such that & VTV ™.

It is easy to prove the following proposition:

Proposition (1.4.7):

Let ¢o and ¢g be any two mappings in LF?fI). Then A and B are
similar matrices if and only i, and¢g are conjugate.

Next, we study the fixed points for the linear franal transformation.
The proof of the following is simple.

Remarks (1.4.8):

belongs to LFT{:), (¢ is not the identity mapping),

If §(z) =

then:

az+ b
cz+

1. ¢ fixes the pointo if and only if c= 0.
2. Ifc =0, thenw is the only fixed point if and only ifad and bz 0.

3. Ifc #0, then the fixed point equation is quadratic taies the form ¢z
+ (d - a)z- b =0 with solutions:

N d)i\/(;— Af A0 (1.2)

Definition (1.4.9):

az+ b

Let (2) = 25—

be a linear fractional transformation. If adbc= 1,

then we say thali is in a standard form.
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Chapter One Preliminaries

Since every linear fractional transformatipg is equal tap,, for every
non-zero complex numbar, then one can assume that every linear fractional
transformation is in a standard form:

Definition (1.4.10):

If T(z) = azt b belongs to LFTC), then define the trace of T to be
cz+d

X(T)=a+d.

Remark (1.4.11):

We can write the two fixed points in equation (lirR)erm of the trace:

(a-d)F (X(T)* - 4)"?

a,B=
P 2C

Using this equation, one gets the following proposi

Proposition (1.4.12):

Suppose that T belongs to LF&“I ando is not a fixed point for T, then
T has a unique fixed point 6 if and only if |X(T)|= 2.

The following theorem appeared in [17].

Theorem (Fixed Point and Derivative) (1.4.13):

Suppose that TI LFT(fZ) (T is not the identity mapping), then the
following are equivalent:

1. [X(M)|=2.
2. T has just one fixed point i

3. T'=1atafixed pointof T

Definition (1.4.14):

A map¢ [ LFT(f:) is called parabolic if it has a single fixed poim C.
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Chapter One Preliminaries

The proof of the following proposition is in [17].

Proposition (1.4.15):
If ¢ O LFT(@) Is parabolic, thernp is conjugate to V(zF z + c,
cz 0.

Remark (1.4.16):
If T O LFT(f:) Is not parabolic, then T has two fixed poiats3 [ C.
Let SO LFT(C) that takesx to 0 andp to «, then the map \& SoToS!

belongs to LFTC) and fixes both 0 ané so it must have the form V(2
Az, A is said to be the multiplier for T.

Proposition (1.4.17) [17]:
If TO LFT(C) has two fixed pointsa , g then

T'(a) =4 and T(B) = 1/2 whereA is the multiplier for T .

In the following definition we classify the line&ractional transformations
according to their multipliers .

Definition (1.4.18) [17]:

If ¢ O LFT(f:) IS not parabolic and not an identity mapping and
A # 1 is the multiplier fog, then:

1. ¢ is ellipticif A\|= 1.
2. ¢ is hyperbolic ifA > 0.

3. ¢ is loxodromic if¢p is neither elliptic nor hyperbolic.

Our interest here is in LFT(U), the subgroup of K_é‘f consisting of
self maps of the unit ball U (i.e., take U intceits.

Notation:

The notation f 0% f means that the sequenceg}{bf functions
converges to f uniformly on every compact subséi.of
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Chapter One Preliminaries

Now, we state the following theorem without proof:

Theorem (1.4.19) [3]:

Suppose is analytic self map of U that is not elliptic dar fractional
transformation,§ not necessary linear fractional transformation).

(@) If ¢ has a fixed point pl U, thend,, [ 1, pandd’(p)| < 1.
(b) If ¢ has no fixed point in U, then there is a poinbJ@U such that
¢, U 1, p. Furthermore,

* p is a boundary fixed point @f, and
« the angular derivative df exists at p with 0 9'(p) < 1.

(c) Conversely, ifp has a boundary fixed point p at whigt{p) < 1, thend
has no fixed points in U arg, [ 1, p.

(Recall thath, meanshodo...0p n-times).

Remark (1.4.20):

The fixed point p for the mappingy is called the Denjoy Wolff point of
¢, or attractive fixed point fop if for each z in the unit ball W,(z) 0 - p
as nJ - oo, [3].

The following proposition appeared in [17] withquioof, we give the
proof.

Proposition (1.4.21):
If ¢ OO LFT(V) is parabolic, thewp has its fixed point odU.

Proof:
Since¢ is parabolic, thep has only one fixed point, say p.

From theorem (1.4.19),(pU or p oU, if p O U, then from part (a) of
(1.4.19),¢'(p)| < 1, and this contradicts part (3) of (1.4.13)

Therefore, @JoU. =
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Chapter One Preliminaries

We prove the following proposition:

Proposition (1.4.22):

If ¢ O LFT(U) is parabolic, then for all zI C, d,(z) O - a as
n - o, where ais the fixed point fgr.

Proof:

If o O LFT(C) takes the point a te, then V= aopoa belongs to
LFT(@) and fixes only the poirb.

Therefore, V(z} z + ¢, for some non-zero complex number c.
Thereforeg, = a™V,a, henceb(z) = a *(a(z) + nc), for all 271 C

Since {0(z) + nc} 0 - o as nd - o, then for all Z] C, dn(2) =a N(a(z) +
nc)d - a(w)=aasmnl - . W

The following theorem appeared in [17].

Theorem (1.4.23):

Let ¢ be a linear fractional self-map of U

1. If ¢ is hyperbolic, then it has attractive fixed padimtU with the other
fixed point outside U.

2. If ¢ is loxodromic or elliptic, then it has a fixed pbin U and a fixed
point outsideU ..

The proof of the following proposition appearediid].

Proposition (1.4.24):

Let$ OO LFT(U) has two fixed pointst, 3 [ C. If a is attractive fixed

point for @ and¢ is not elliptic, then for all Z1 f:\{B}, d,(2) 0 - a as
N - oo,

We give the following proposition:
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Chapter One Preliminaries

Proposition (1.4.25):

Let ¢ be a linear fractional self map of U, théens elliptic if and only if
¢ is automorphism that has an interior fixed point.

Proof:

(=) If ¢ is elliptic, then from theorem (1.4.23),has a fixed pointt []
U andp outside U. From proposition (1.4.17)'(a) = A and¢'(B) = 1/,
whereA is the multiplier forp

Since¢ is elliptic, thenj| =1 and henceb|(a)| = |¢"(B)| = 1.

Now, if ¢ is not automorphism, then by corollary (1.2.1¢Xd)| < 1, this is a
contradiction, therefor¢ is an automorphism.

(O) Supposep is an automorphism of U with an interior fixed pop,
let Y = ogdoa, wWhere a, is the special automorphism mapping that
interchanges the point p with the origin.

Therefore, is automorphism ang(0) = 0. By proposition (1.2.8), there
exists wll dU, such thatp(z) = wz, for each z1 U. Therefore:

w = '(0) = a’p(9oay(0)) ¢'(ap(0)).a,(0)
=a'y(p) ¢'(p) a’p(0)
=¢'(p)
That is the multiplier fop is w. Since |wf 1, theng is elliptic. =

We end this section by the following propositioniethappeared in [3].

Proposition (1.4.26):

If ¢ O LFT(U) has two boundary fixed points, thep is an
automorphism.
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Chapter One Preliminaries

1.5 COMPACT COMPOSITION OPERATORS

In this section, we recall the concept of a compmerator and give
some necessary and sufficient conditions for a amiipn operator to be a
compact operator. We recall that an operator T biillzert space H is said to
be compact if it maps every bounded set into aivellg compact one (one
whose closure in H is compact).

The following theorem shows that?Hsupports a lot of compact
composition operators.

Theorem (1.5.1) [17]:

Let ¢ be a holomorphic self map of U. [l < 1, then G is a compact
operator on H

We recall that an operator T on a Hilbert spacs Bhid to be a Hilbert-
Schmidt operator if for some orthonormal basig {& H,

DlITe ff <o
n=0

The following theorem appeared in [17].

Theorem (1.5.2):

Every Hilbert-Schmidt operator is compact.

Corollary (1.5.3):

If ZH(])” If <, then G is compact operator.
n=0

Proof:

Since g(z)=Z2", n=0, 1, ...; is orthonormal basis and

incq) @)ff = incb” P <o

then G is a Hilbert-Schmidt operator and hence from tBeo(1.5.2), G is
compact operator. =
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The following theorem appeared in [17].

Theorem (Angular Derivative Criterion for Compactss) (1.5.4):

Supposeb is a holomorphic self map of U.

(@) If Cy is compact on H then¢ has an angular derivative at no point of
ou.

(b) If ¢ is univalent and has no angular derivative at point of 0U, then
C, is compact on H

We are ready now to prove the following proposition

Proposition (1.5.5) [17]:
If the composition operatoryds compact on H then has a fixed point

in U.

Proof:
If ¢ has no fixed point in U, then by theorem (1.4.%8has an angular
derivative at a point Wl dU with 0 <¢'(w) < 1.

According to the angular derivative criterion, & not compact. ®

The authors in [13] have studied the compactneseobperator g;C*q,
and showed the following.

Theorem (1.5.6):
Let ¢, ¥ be univalent self maps of U, theﬁq,Cq) Is compact if and only

it im a-lzf  _j
-1 (-9 (2))E W (2) .

We end this section by studying the eigenvaluesafocomposition
operator . The eigenfunction equation for a composition apar G is
called Schroder equation:

fo = Af

The following theorem appeared in [17].
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Chapter One Preliminaries

The Eigenfunction Theorem (1.5.7):

Suppose thap is a holomorphic self map of U for which, & compact
on H (i.e., by proposition (1.5.5) there exists animtefixed point pd U),

then the eigenvalues of,Gire precisely the numbe{g'(p)} " each has

multiplicity one. Moreover, ifo is an eigenfunction fod'(p), then the set
{c"} spans the eigenspace i(p)", n=0, 1, ...

Remark (1.5.8):

If ¢ is univalent self map of U, them in the previous theorem is also
univalent, [17].
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CHAPTER TWO
CYCLIC COMPOSITION OPERATORS

INTRODUCTION

In this chapter, we recall the definitions of cg¢lisupercyclic and
hypercyclic operators on a Hilbert space H and tudysthe cyclicity of the
composition operators. This chapter consists of $ections, in section one
we prove an important theorems about the cyclicpmmsition operators, for
example we show thatdf is holomorphic self map of U that fixes a pointp
U, then G is not a hypercyclic (supercyclic) operator. Altigh, a
composition operator induced by a mappingith fixed point in U can never
be supercyclic, it can be cyclic (see example )1 Also, we study the
cyclicity of normal, isometric composition operator

In section two, we state some conditions for theragr G to be cyclic,
for example the univalency of the holomorphic mag@ and the density of
the range of ¢are necessary conditions fog © be cyclic. In general, if X is
a cyclic vector for the operator T, then Tx may betcyclic vector for T (see
example (2.2.14)). We prove that if f is cyclic feycyclic, supercyclic)
vector for G, then Gf is a cyclic (hypercyclic, supercyclic) vector fQy
(theorem (2.2.15)). Also, we prove some new resutisthe best of our
knowledge, for the cyclicity of the adjoint compi®n operators.

21CYCLICITY

In this section, we recall a basic concept of cygliand we give
important theorems about the cyclic compositionrafmes. We begin this
section by the following well-known definitions.

Definitions (2.1.1):

Let T be a bounded linear operator on a Hilbertggd, then:
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Chapter Two Cyclic Composition Operators

1. Tis cyclic if there exists a vectorXx H, such that the set span"&T: n=
0,1, ...}isdense in H.

The vector x is called a cyclic vector for the ager T.
2. Tis asupercyclic operator if there exists a vextd H, such that the set
{o,Tx:a,00,n=0,1, ...}is dense in H.
The vector x is called a supercyclic vector for tperator T.
3. T is a hypercyclic operator if there exists a vestdl H, such that the
orbit, orb(T, X)={T"x : n=0, 1, ...} is dense in H.
The vector x is called hypercyclic vector for thgeoator T.

It is clear from this definition that every hypectig operator is a
supercyclic operator and every supercyclic oper&oa cyclic operator.
However, it is known that the opposite implicatiams false [11].

The proof of the following useful theorem is weftdwn, thus it is
omitted.

Theorem (2.1.2) [12, 10]:

Suppose that S, T, X are bounded operators onleetispace H, such
that SX= XT, if T is cyclic (supercyclic, hypercyclic) and has a dense
range, then S is also cyclic (supercyclic, hypdicy.c

Corollary (2.1.3):

If T, and T, are similar operators, then; Tis cyclic (supercyclic,
hypercyclic) if and only if Tis cyclic (supercyclic, hypercyclic).

From [16, proposition (4.5)] and [12, propositidhg)], we can prove
the following proposition:

Proposition (2.1.4):

Let T be an operator on a Hilbert space H thatdiagonal matrix A=
diagQ\1, Ao, ...) with respect to some orthonormal basig,{¢hen T is cyclic
if and only if the diagonal entriea{ are distinct.
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Chapter Two Cyclic Composition Operators

Now, we can give an example of a cyclic compositperator.

Example (2.1.5):

Let a be a non-zero complex number with ¥ 1 and leth(z) = az, for
every z in U, therp is a holomorphic self map of U. We claim thagt i€ a
cyclic operator on H In fact the matrix of ¢ with respect to the orthonormal
basis g(z) = 2", n=0, 1, ... is diagonal matrix A diag(1,a, a?, ...). Since
1> p| > p? > ..., then by proposition (2.1.4), & cyclic.

The following theorem shows that the compositiorerapor G in
example (2.1.5) is not hypercyclic (in fact it istrsupercyclic, see theorem
(2.1.18)).

Theorem (2.1.6) [3]:

Suppose thap is holomorphic self map of U that fixes a poigtiiz U,
then G is not hypercyclic operator. Moreover (ifis not an elliptic, then for
each fO H?, the only limit point of orb(¢; f) is the constant function f{z

Proof:

Suppose thap fixes a point g U. If ¢ is not elliptic, then by theorem
(1.4.19),9, O - 2z, pointwise on U. Hence, if a function g is a limpdint of
the orbit of f, say & IilJn fod .

Then by the continuity of point evaluation function H, we see that for
each 21U

0(2)= i H(0ns2) = f(zo

i.e., orb(G, f) is not dense in H

If ¢ is elliptic, thend,(z) I —» zpas nJ — oo, hence if a function g is a limit
point of orb(G, f), then g(z) IirJnf(q)nJ(z))

Therefore g(@ = Iign f(dnlz0)) = f(z0)
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Chapter Two Cyclic Composition Operators

Thus, every function g belongs to the closure efsbt orb(¢, f) has value
f(zo) at %, hence orb(g; f) cannot be dense.m

Remark (2.1.7):

We can prove theorem (2.1.6) by using Littlewoosiigordination
principle which asserts that if the fixed pointsghe origin, then |jffl< 1 and
hence G is not hypercyclic (every contraction operatomist hypercyclic
operator [7]). If p# 0, we havep = aopoa,, whereg(0) =0, a, is the special
automorphism mapping. Sa, @ similar to a contraction and therefore still
not hypercyclic (corollary (2.1.3)).

We shall prove in theorem (3.2.6) thapifs automorphism, non-elliptic
(i.e., by proposition (1.4.25)p has no interior fixed point) thenyGs a
hypercyclic operator.

Corollary (2.1.8):

If Cy is @ compact composition operator, thgis@ot hypercyclic.
Proof:

Since G is compact, then by proposition (1.5.§),has an interior fixed
point and hence from theorem (2.1.6), € not a hypercyclic operator.m

In fact, much more is true:

Proposition (2.1.9) [17]:

No compact operator on a Hilbert space is hypeizycl

Remark (2.1.10):

If ¢, Y are univalent holomorphic self maps of U and
lim (1-|z|f =0
2-1 (119 (z) NE W (2)]

Then by theorem (1.5.6),*@4, IS a compact operator and henégCC; IS not
a hypercyclic operator.
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Chapter Two Cyclic Composition Operators

The following theorem shows that ify @5 hypercyclic on  then it is
hypercyclic on H(U).

Theorem (2.1.11) [17]:

Suppose E is a linear metric space and F a debspace that is itself a
linear metric space with a stronger topology. Swgpd is a linear
transformation on E that also maps the smaller esgadnto itself, and is
continuous in the topology of each space. If Tyipdrcyclic on F, then it is
also hypercyclic on E and has an E- hypercyclicorehat belong to F.

Corollary (2.1.12):
Any hypercyclic vector for ¢ acting on H is also hypercyclic for
Cyacting on H(U).

Proof:

Since the set of polynomials is dense in bothaHd H(U), then Blis
dense in H(U)

Therefore, any hypercyclic composition operatog &cting on H is
hypercyclic acting on H(U). m

The following lemma is proved in [16].

Lemma (2.1.13):

If T is a cyclic operator on H has a matrix=Ag;) with cyclic vector X
= (X1, X2, ...), then the operator is cyclic with cyclic vectorX = (X;,X,,

...) , whereX; is the complex conjugate of, Xor all i andT is the operator
that has the matriA = (3), (g is the complex conjugate of)a

Notation:
Let ¢(z) = Zanz” , & U C, 0 n; be a holomorphic self map of U. We
n

denote by$(z) to the holomorphic ma;iénz“, whered, is the complex
n

conjugate of @
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We give the following proposition:

Proposition (2.1.14):

Let ¢(z) be a holomorphic self map of U. I§ @& a cyclic operator with
cyclic vector f, thenC; is a cyclic operator with cyclic vectbr
Proof:

Let A be the matrix of £with respect to the orthonormal basis(# =
z"}, therefore the matrix ofCy is A = (3), where 3; is the complex
conjugate of a

If Cy is cyclic, then by lemma (2.1.13Jy is cyclic. =

Corollary (2.1.15):

Pn(2)
m
and g,(z) are polynomials of degree n and m, respectiVélg, is a cyclic
@
Um (2)

Suppose thap(z) = Is a holomorphic self map of U, whergz)

operator, then gis a cyclic operator, wherg(z) =

Proof:

One can easily prove thgi(z) = Y(z) and hence if £is cyclic, then

from proposition (2.1.14), £is cyclic. =
Before we give theorem (2.1.18), we need somermidiries.

Remarks (2.1.16):

1. If Tis a cyclic operator, then dim[R(T)k 2, where R(T) is the range of
T, [9].

2. T s a cyclic operator if and only if T el is a cyclic operator for all
oo, [16].
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Lemma (2.1.17) [2]:

Let T be an operator that has the matrix-Aa;) with respect to the
orthonormal basis {@, then the matrix of T* (the adjoint of T) with spect

.t :
to the same orthonormal basis A = (3;), where 3; is the complex

conjugate of g
The author in [1] proves the following theorem, giee another proof.

Theorem (2.1.18):

Let ¢ be a holomorphic self map of U with interior fixpdint p, then ¢
cannot be a suprcyclic operator.

Proof:

Let Y = a,opoa, wherea, is the special automorphism mapping,
therefore(0) = 0 and G = C,,0C30C,, that is G is similar to G.

We claim that ¢ is not a supercyclic operator. In fact if=mp’(0), then the
matrix of G, with respect to the orthonormal basj¢zg= 2", n=0, 1, ...
takes the form:

A:(aj): 5

Therefore, the matrix 01131‘lJ with the same orthonormal basis takes the form:

1 O
—t W *
A

=

O

If w = 1, then the first and second rows of the matrix Rare zeros, hence
&(z) =1 and &z) = z belong to [R(G - D], where R(G — 1) is the range of
the operator ¢— |, therefore G — | is not cyclic (see remark (2.1.16)), so that
Cy is not suprcyclic. If w# 1, then it is clear that 1 andl are eigenvalues of

37



Chapter Two Cyclic Composition Operators

the operatorCfIJ ([16], proposition (4.11)). Thus, (Cis not a supercyclic

operator (the adjoint of the supercyclic operatas At most one eigenvalue
[11]).

Since G and G, are similar, then £Js not a supercyclic operator.m

Corollary (2.1.19):

If Cy is @ compact operator, theg S not a supercyclic operator.
Proof:

Since G is compact, then by proposition (1.5.%),has interior fixed
point

Hence G is not a supercyclic operator (theorem (2.1.18m

Remark (2.1.20):

Although a composition operator induced by a magpginwith fixed
point in U can never be supercyclic, it can beicy@ee example (2.1.5)).

We give the following theorem:

Theorem (2.1.21):

Let ¢ be a conformal automorphism of U and has an imtéxed point
p, then G is cyclic if and only if ¢'(p))" # 1, foralln=1, 2, ...

Proof:
Let Y = agohoa,, Wherea,is the special automorphism mapping
ThereforeJ(0) = 0 andy is automorphism

Hence by proposition (1.2.8), there exist§lwU, such thatp(z) = wz, for all
z 0 U, therefore:

W'(z) = a'p(Poy(z)) ¢'(ap(2))a’x(2)
So that w=§'(0) = ¢'(p). It is clear that the matrix of Gwvith respect to the
orthonormal basis {2 is a diagonal matrix A= diag(1, w, W, ..), therefore,
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from proposition (2.1.4), gis cyclic if and only if the diagonal entries Tw
n=0, 1, ...} are distinct, that is"# 1, n=1, 2, ...

Since G = CypoCyoCqp, then G and G, are similar so that {s cyclic if and
only if Cy is cyclic.

Thus G is cyclic if and only if ¢'(p))"=w"#1,n=1,2, ... =

Recall that, the operator T on H is called a noroparator if TT*=T*T
and called isometric if T*E I

Theorem (2.1.22) [7]:

Let ¢ be holomorphic self map of U, then, & normal if and only if
¢(z) = az, for soman, jo| < 1.

From this theorem, we have the following results.

Corollary (2.1.23):

Let ¢ be a holomorphic self map of U. Ify@ normal, then gand Cfb

are not hypercyclic (not supercyclic).
Proof:
Since G is a normal operator, thigz) = az, for somen, jo|< 1

Therefore, 0 is fixed point fap. Thus G is not hypercyclic (theorem (2.1.6)),
not supercyclic (theorem (2.1.18)).

If A is the matrix of G with respect to the orthonormal basi§}{zhen A is a
diagonal matrix with diagonal entriesd,,a?, ..., therefore the matrix dt;

is a diagonal matrix with diagonal entriesdl, G2, ...

Thus C;, = Cy, where(z)= 0z, 0z0 U

Since 0 is fixed point for, then Cfb = Cy is not hypercyclic (theorem
(2.1.6)), not supercyclic (theorem (2.1.18))m
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Corollary (2.1.24):

Suppose thad is non-zero holomorphic self map of @ (s not the
identity mapping). I is non-elliptic and ¢is normal operator, then,@nd

C;, are cyclic operators.

Proof:
From theorem (2.1.22¢,(z) = az, wheredq|<1

Since¢ is non-elliptic and not zero mapping, then Gok<4 1, hence gLis
cyclic (see example (2.1.5))

From the proof of corollary (2.1.23), we ha@% = Cq,, Where 0 < | = |a|
<1

Thus C;, is cyclic (example (2.1.5)). m

Before we characterize the cyclicity of the isontetcomposition
operators, we need the following lemma:

Lemma (2.1.25) [17]:

Let ¢ be a holomorphic self map of U, then for eachl pJ, Cfp Kp =

1
1-pz

K¢ () where %(Z) =

Proof:
We know from chapter one that <g,= g(p), for all g H?,

Thus for each f1 H?, we have:

<f, Cy Kp> = <Gyf, K> = <fod, K> = f(p(p)) = <f, Ky >

So thatC; Kp = K¢ ®) - |

Theorem (2.1.26):

Let ¢ be a holomorphic self map of @ (s not the identity mapping). If
Cy is isometric, then:
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1. Cyand C; are not hypercyclic (supercyclic).

2. If ¢ is not elliptic, then gandC;, are cyclic.

Proof:

We claim that ¢ is normal operator and hence this results follnam
corollary (2.1.23) and (2.1.24).

Let 0# p 0O U, then:

Ch Coi(2) = Cy Kpl0(2)) = Ko (($(2)) = ﬁm(z)
Since G is isometric, therCS, CoKop (z) = Ky(2)
Thereforﬂ 1 —
1-0(p} (2 ) IO
Thus¢(z) = %z forall zO U

Puta = L, hencep(z) = az, for all zO U
o(p)
Since¢ is self map of U, them| < 1 and hence from theorem (2.1.224,i€
normal operator. ®
Recall that the operator T is hyponormal if XTI T*
Theorem (2.1.27) [7]:

Let ¢ be a holomorphic self map of U. Ifyds hyponormal, then

¢(0)=0.

From this theorem, we have the following corollary:

Corollary (2.1.28):

Let ¢ be a holomorphic self map of U. Ify@ hyponormal, then Lis
not hypercyclic (supercyclic) operators.

Proof:

Since 0 is fixed point fop, then G is not supercycilc operator (theorem
(2.1.18)). =
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2.2 SOME CONDITIONSFOR CYCLICITY

In this section, we describe in more details thelicycomposition
operators. Also, we study the cyclicity of the ager C,. , where G,. is the
adjoint of the operator . The following proposition shows that the
univalence of the holomorphic mapping is a necessary condition for
hypercyclicity.

Proposition (2.2.1) [3]:

Let ¢ be a holomorphic self map of U. Ify@s hypercyclic, therp is
univalent on U.

Proof:

If ¢ identifies two distinct points of U, then so ddets, for each f H?
and each positive integer n and therefore so demy &mit point of the orbit
of f under G.

It follows that no orbit can be dense iA H

So G is not hypercyclic. ®
In fact, much more is true as the following theomows:

Theorem (2.2.2) [3]:

Let$ be a holomorphic self map of U. I§ @& cyclic, thenp is univalent
on U.

The following important theorem appeared in [3¢ firoof is long, thus
IS omitted.

Theorem (2.2.3):

Let ¢ be a holomorphic self map of U. If,@ cyclic, then its range is
dense in A
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Chapter Two Cyclic Composition Operators

Remark (2.2.4):

The necessary condition for cyclicity discussethieorem (2.2.3) is not
sufficient, we will show in the next chapter thaorfexample if

Y(z) = i then G, is not cyclic (theorem (3.1.12))

Note, however that ( does have dense range.,as is shown in the
following proposition:

Proposition (2.2.5):

Let Y(z) = i for all zO U, then G has dense range.

Proof:

Suppose that f is orthogonal to the range gftGen because 1 is in the
range, 0= <f, 1>=f(0), so that £ zg, for some g in H

Becausa" belongs to the range of,Owve have:

n
0=<f, Y>> =<zg, (ﬁ) -

=2_1T[j;eieg(ée) ( 19) ®

-]

_ jleg( )(_Ie) ®

°)

_ 1 i i 1
"l ey

Suppose = €°, therefore 4= i€ df, so that:
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j g(1),——
(2t~ 1)
S ()
2" (2ri)

dt
n
)
2

By the general Cauchy integral formula, we get:

_19"7@)
2" (n-1)!

and hencg" @) =0,n=1, 2, ...

Since g and all of its derivatives vanish at thenpd/2, we see thatg0 and
hence = 0.

It follows that G, has dense range.m

Remark (2.2.6):

We shall see in chapter four that p|}} < 1, then the converse of
theorem (2.2.3) is true (see remarks (4.1.12)).

Although, our main results are set exclusivelyhia Hardy space }bf
the unit disk, it is some times convenient to iptet some of the intermediate
steps in a more general setting. If G is a simplynected plane domain, and
o is a univalent holomorphic mapping of U onto Gerththe Hardy space
H*G) is the set of functions f holomorphic on G fenich foo O H?. The
inner product of two elements f and g iA(@) is defined to be (f, g3 <foo,
goo>, where <., .> denotes the inner product of thealislardy space Hwe
can show that the collection of functions’ (@) is independent of the
particular univalent map used above [3].

The following theorem appeared in [3] without prodfe give the proof.

Theorem (2.2.7):

Suppose that Gl U is simply connected and th@atmaps U univalently
onto G. Then the following are equivalent:
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Chapter Two Cyclic Composition Operators

(a) The polynomials are dense if(8).
(b) The polynomials irp are dense in H

(c) The composition operator,CH* 0 - H” has dense range.
Before, we prove this theorem we need the followergma:

Lemma (2.2.8):

Let ¢ be a holomorphic self map of U and P is the setlgiolynomials
in ¢, thenR(C,) = P.
Proof:

We prove that P1 R(Gy) O P

Let P@)O P, then Rf) =a + ad + ... + ad", where ad C,i=0, 1, ..., n. It
is clear that:

Co P@)=Cy(a+az+..+az)=P@)
that is, P§) O R(Gy)

We prove now that R} [ P, letfO R(Gs), then there exists g H?, such
that f= Cog = g (¢)
Since g0 H?, then:

g(z)=by+ bz + ..., where p0 C,i=0, 1, ..., so that
f=bp+bd+..0P
Thus PO R(Gy) O P and hencR(C,) =P. =

Proof of the Theorem:

(@)= (b). We know that HG) is the set of all functions f holomorphic
on G, such that fip 0 H?

Let p(z) be any polynomial
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Chapter Two Cyclic Composition Operators

Since G : ¥ O - H*and p(z)J H?, then pp) = Cy(p(z))d H, that is the set
of all polynomials ind belongs to A We will prove that this set is dense in
H2

Suppose that there exist&H?, such that <h, i)>=0, for all polynomials p.

Since¢ is univalent mapping of U onto G, théf' is univalent mapping of G
onto U and hence 0" is holomorphic on G with hp'op = h O H?
therefore h¢™ O H*(G)

By the definition of the inner product orf(&), we get:
(hop™, p)= <hop "od, pap> = <h, p@h)>=0

for all polynomials p. Since the set of all polyriats is dense in §G), then
hop™ = 0, since¢™ is onto, then h= 0. It follows that the set of all
polynomials ing is dense in A

(b) = (c). From lemma (2.2.8)P = R(C,), where P is the set of all
polynomials ing. SinceP =H’, thenR(C, ) = H’, so that the range of,Gs
dense in K

(¢) = (a). SinceR(C, ) = H, then from lemma (2.2.8), we get=H?.

We know that H(G) is the set of all holomorphic on G, such thgtEH?

Suppose that Bl H¥(G) is orthogonbal to all polynomials p(z), themefdrom
the definition of the inner product of’(&), we get <h¢, pap> = 0, for all
polynomials p, that is {pO P~

SinceP = H?, then P =0 and hence lp=0
Sinced is holomorphic mapping of U onto G, we geth

So that the polynomials are dense f{G). m

Combining theorem (2.2.3) and theorem (2.2.7), biia:
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Chapter Two Cyclic Composition Operators

Corollary (2.2.9):

If Cy is cyclic, then the set of polynomials in is dense in 2
Equivalently, the set of polynomials in z is deirsel*(¢ (U)).

Let us say that a function¥ H? is univalent almost everywhere ob
provided that there is a settEOU having zero Lebesgue measure, such that f
is univalent ordU\E, [3].

The proof of the following theorem appeared in [3].

Theorem (2.2.10):

If Cy is cyclic, thenp is univalent almost everywhere auo.
We give the following proposition:

Proposition (2.2.11):

Let ¢ be analytic self map of U. §'(0) = O, then G is not cyclic.
Proof:

Let A = (g) be the matrix of the operator, Gvith respect to the
orthonormal basis {},0, then the second row of this matrix is zero, hence
e1(z) = z is orthogonal to the range of C

Therefore the range of,Gs not dense in H

Thus G is not cyclic. m
We give the following theorem:

Theorem (2.2.12):

Let ¢ be a holomorphic self map of U that has a fixethipp O U with
¢'(p) = 0, then G is not a cyclic operator.

Proof:

Let Y = a,0dpoa,, wherea, is the special automorphism mapping
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Chapter Two Cyclic Composition Operators

Hence G = Cyp0CyoCyp, that is G and G, are similar

Sincey’'(0) = ¢'(p) = 0, then from proposition (2.2.11),,@s not cyclic and
hence Gis not cyclic. m

We give the following corollary:

Corollary (2.2.13):

Let d (z) = Z'Y(z) be analytic self map of U,=n2, then G is not cyclic
operator.

Proof:

It is clear thath (0)= 0, ¢'(0) = 0 and hence from theorem (2.2.13)i€
not cyclic operator. m

In general if x is cyclic vector for the operatoy then Tx may not be
a cyclic vector for T as the following example sisow

Example (2.2.14):

Let H be a Hilbert space and.féde an orthonormal basis for H. Define
the operator U : Hl — H, as follows:

U(en) = 6+l n:Ol 1! vee

It is clear that gis a cyclic vector for the operator U while dJee, is not a
cyclic vector.

We prove the following theorem:

Theorem (2.2.15):

Let f be a cyclic (hypercyclic, supercyclic) vector C,, then Gf is
cyclic (hypercyclic, supercyclic) vector fogC

Before we prove this theorem, we give the followiagnma:
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Chapter Two Cyclic Composition Operators

Lemma (2.2.16):

Let H be a Hilbert space and T be an operator oif A.has a dense
range and M is a dense set in H, then T(M) is seaet in H.

Proof:

We claim that T(HYJ T(M), in fact if T(h)O T(H), where h1 H, then

by the density of M there exists,ml M, such that the sequence {m
converges to h.

Since T is a continuous operator, then the sequi@mg} converges to T(h),
hence T(hd T(M), so that T(HJ T(M)

Thus T(H) O T(M)

Since T has a dense range, tAigR) =H and hencel (M) =H. =

Proof of the Theorem:

We prove this theorem when f is cyclic vector fqr the proofs for the
other cases are similar.

Let M = span{G,(f), n=0, 1, ...}, since f is a cyclic vector for,Cthen
M =H? Itis clear that:

span{Gn(Cyf), n=0, 1, ... }=span{G (Cy.f), n=0, 1, ...}
= Cyspan{Gn(f), n=0, 1, ...}
=Gy (M)
SinceM = H?and G has a dense range, then from lemma (2.2Q§jM) =
H2
Thus Gfis a cyclic vector forg. =
We turn our attention to the adjoint of compositaperators. It is well-
known that if T is a hypercyclic operator, then (fhe adjoint of T) has no

eigenvalues [11]. For a supercyclic operator T,ati@int T* has at most one
eigenvalue [11].
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Chapter Two Cyclic Composition Operators

The following results for the cyclicity of the adhjo of composition
operators are new to the best of our knowledge.

Proposition (2.2.17):

Let ¢ be a holomorphic self map of U, théﬁb is not a hypercyclic

operator.

Proof:

It is clear that 1 is an eigenvalue of the oper&grso thatCz, is not

hypercyclic operator. m
The proof of the following lemma is well-known, thit is omitted.

Lemma (2.2.18) [2]:

If T is a bounded operator on H, then H|[T*||, where T* is the adjoint
of the operator T.

The proof of the following proposition appearedintheorem 2.2].

Proposition (2.2.19):

Suppose that T is a bounded linear operator onBtmeach space X
having the following properties:

(@) T is supercyclic.
(b) There existg1 > 0, such that |[]]< , for each positive n.
Then foreach X1 X, T 0 -~ 0 as nJ — oo.

We give the following theorem:

Theorem (2.2.20):

Let ¢ be a holomorphic self map of U that fixes a pqint U, then C;

IS not a supercyclic operator.
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Proof:

Let Y = apopoa, wherea, is the special automorphism mapping,
therefore(0) =0 and G =C,CyCup, that is G is similar to G and hence G,
is similar toC;, .
The following well-known norm estimate for compasit operator shows the
sequencéC{I‘J} ={Cyn} is bounded (see corollary (1.3.3))

1/2
|| Cynl| = (%D =1, for all positive integer n
n

Since |Cfpn || = ||C3J || lemma (2.2.18)), then the sequen(‘.%n{} Is bounded.

We can easily show tha(t;n (1) = 1, for every positive integer n, therefore

proposition (2.2.19) shows thi\‘:’:IJ cannot be a supercyclic operator and

hence Cp IS not a supercyclic operator.m

Corollary (2.2.21):

If C4 is @ compact operator, th@i IS not a supercyclic operator.

Proof:

Since G is compact, therp has an interior fixed point (proposition
(1.5.5))

Thus C;, IS not a supercyclic operator.m

In corollary (2.1.28) we see that if,@s hyponormal, then Lis not
supercyclic. The following corollary shows th@*&J Is also not a supercyclic

operator.

Corollary (2.2.22):

Let ¢ be a holomorphic self map of U. I, & hyponormal, then *@ 5
not a supercyclic operator.
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Chapter Two Cyclic Composition Operators

Proof:

Since 0 is a fixed point fob, then C¢ IS not supercyclic (theorem
(2.2.20)). =

We remark that although, the adjoint of a compositbperator induced
by a mappingp with fixed point in U can never be supercycliccdan be
cyclic (see theorem (2.2.24) below)

We recall that an operator T is said to be uppangular operator if T
has upper triangular matrix A(g;), i.e., § =0, for all i > j.

The proof of the following proposition appearedig].

Proposition (2.2.23):

Let T be an upper triangular operator whose diagemiaies with respect
to some orthonormal basis for H are distinct, thesa cyclic.

We give the following theorem:

Theorem (2.2.24):

Let$ be a holomorphic self map on U ahd0) =0, ¢'(0) # 0, @'(0))" #
1,0n=1,2, ..., then G is cyclic.

Proof:
Sinced (0)=0,¢'(0)20, ©'(0))"#1,0n=1, 2, ...
Thend(z)=az +azZ’+ ..., %0, ag # 1, for all positive integer n.

The matrix of G with respect to the orthonormal basiS}H{s:

o _
0 & O
: 2

Therefore the matrix of*@ IS an upper triangular matrix
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Ao %
0

Since the diagonal entries are distinct, then ppgsition (2.2.23),C; IS

cyclic. =

Corollary (2.2.25):

If ¢ has an interior fixed point p witth’'(p) # 0, @'(p))" # 1, for all
positive integer n, then*g: is cyclic.

Proof:

Let Y = apodod, wWhere a,is the special automorphism mapping,
therefore(0) = 0, Y'(0) = a’p(¢oap(0)) ¢'(ap(0))a’s(0) = ¢'(p) # O and
W'(0))"=(@'(p))" # 1, for all n

So that from theorem (2.2.21[;:]J Is cyclic
Since G, Cy are similar, therCy, C,, are similar

ThusC, is cyclic. m

Corollary (2.2.26):

Let ¢ be a non-elliptic analytic self map of ¢ (s not the identity). I
has a fixed point il U, ¢'(p) # 0, thenC is cyclic.

Proof:

Since ¢ is non-elliptic with fixed point pl0 U, then from theorem
(1.4.19),¢'(p)| < 1

Therefore ¢'(p))" # 1, for all positive integer n, and hence from dany
(2.2.25), C, iscyclic. =

We give the following lemma:
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Lemma (2.2.27):

If T is an operator that has an eigenvalue of plitity greater than one,
then T* is not cyclic.

Proof:

Let A be an eigenvalue of multiplicity greater than otmerefore dim
ker(T—Al) =2

Since ker(T-Al) = [R(T - AD)*] 7, then dim[R(T- A)*] "= 2
Hence (T- Al)* is not cyclic (part (1) of remark (2.1.16))
Since (T- Al)* = T* — Al, then T* is not cyclic (part (2) of remark (2.5)).

It is shown from theorem (1.4.19) thatpithas a Denjoy Wolff point
oU, then 0 ¢'(a)< 1.

C. C. Cown proved in [6] the following theorem:

Theorem (2.2.28):

Let ¢ be a holomorphic self map of U that has Denjoy-Modbint a [l
0U with ¢'(a) < 1. IfA O C, such thatd('(a))"> < \| < @'(a)) 2 thenA is an
eigenvalue for ¢of infinite multiplicity.

The following corollary follows from theorem (2.8 and lemma
(2.2.27)

Corollary (2.2.29):

If w [ 0U is the Denjoy Wolff point foh with ¢'(w) < 1, thenCE, IS not

cyclic.

Definition (2.2.30):

A non-constant sequenceas an F-sequence fap if ¢(z¢) = z.q, for
all k.
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The following theorem appeared in [6], the prodbisg thus is omitted.

Theorem (2.2.31):

Let ¢ be a holomorphic self map of U, has Denjoy Wolhirt a indU
with ¢'(a) = 1. If there is an F-sequencegj{#or ¢ for which:

Zy —4n

inf { —
1- Zy 4

Then eachh with \| =1 is eigenvalue of Lof infinite multiplicity.

:k:O,l,.} >0

The following corollary follows from theorem (2.8 and lemma
(2.2.27).

Corollary (2.2.32):

If the conditions of theorem (2.2.31) are satistieen C¢ IS not a cyclic
operator.

Definition (2.2.33):

Let ¢ be a holomorphic self map of @.is called an inner function if
|6(z)| = 1 almost every where aiU.

The following theorem appeared in [6]:

Theorem (2.2.34):

Let ¢ be an inner function, not linear fractional trawafation with

Denjoy Wolff point alJ dU. If |A| < @'(a))"%, then) is an eigenvalue for'g
of infinite multiplicity.

The following corollary follows from theorem (2.48 and
lemma (2.2.27).
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Corollary (2.2.35):

Let ¢ be an inner function, not linear fractional trawafation with
Denjoy-Wolff point all 0U, then G is not cyclic.

We illustrate corollary (2.2.35) by the followingample:

Example (2.2.36):

Let ¢ (z) = (0-15(2))’, Wwherea_y 3 is the special automorphism mapping,
-1

3

-z
, (zOU)
1+1z

i.e.,C(_l/g(Z) =

We showed in proposition (1.1.14) tleat 3 is conformal automorphism
of U and it take®U ontodU. Therefore:

0 (2)]= |o-1/3(2)| p-1/5(2)| = 1, for each 10U

Henceg is inner function

[ ==

2
z—Z
To find the fix points ofp, we putd (z) = z, therefor{ 1 J =z

+ |w

We simplify this equation, we have’ = 3Z + 3z -1 = 0, therefore
(z-1)* =0, that is the mappin@i(z) has only one fixed point=z1 0 dU

Corollary (2.2.35) shows that the composition ofier&, is not cyclic.

56



CHAPTER THREE
LINEAR FRACTIONAL CYCLICITY

INTRODUCTION

Let ¢ be a holomorphic function defined on the Riema;nfnesef: =0
[ {0}, as follows:

az+ b
¢(2) = P
where a, b, c and d are complex numbers, ¢hensaid to be linear fractional
transformation. In chapter one, we studied the dogsoperties of linear
fractional transformation. In this chapter, we stuithe cyclicity of the
composition operator induced by a linear fractiotraihsformation. P. S.
Bourdon and J. H. Shapiro [3], proved several thewr(see Table 1), we give
the details of the proofs. We give some new resutisthe best of our
knowledge, for the cyclicity of the adjoint of thmomposition operator
induced by the linear fractional transformations@lwe study the cyclicity of

the composition operator induced by the funcipgn) = i, where c is a
c-z

complex number andi(z) =az + 3, a and3 are complex numbers.

This chapter consists of three sections, in secr@nwe study the cyclicily of
Cyand C; where¢ has interior fixed point, we prove thatifis elliptic, then
Cy is cyclic if and only ifC} is cyclic. If ¢ is not elliptic, but linear fractional

transformation with interior fixed point, then weope thatCE, Is cyclic .Note

that when¢ has interior fixed point then ¢Cand Cfp are not hypercyclic

(supercyclic) operators (see chapter two). In eactiwo, we study the
cyclicity when¢ [0 LFT (U) has no interior fixed point. In this cases show
that if ¢ is automorphism, thenyGs hypercyclic. If¢p is not automorphism,
then the third and fourth rows of table | show theases.

57
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In section three, we give some definitions and r&s)dor example, we
show if G is multicyclic operator, then Qs cyclic, see [3] for more details.
In chapter four, we show for example, that in casitto what happens in the
first row of table I, there exists a holomorphiai{lmot linear fractional) self
map¢ of U with interior and boundary fixed points, sublat G is cyclic (see
example (4.1.16)).

Table |
Cyclic behaviour of G, @ is linear fractional, not an automorphism.

Fixed points ofg
(relative to U)

Cyclicity of G4 Examples

Interior & boundary Not cyclic

Interior & exterior Cyclic, not hypercyclic

Exterior& boundary

(hyperbolic) Hypercyclic

Boundary only

(parabolic) Cyclic, not hypercyclic

3.1LINEAR FRACTIONAL SELF MAPSOFUWITH
INTERIOR FIXED POINT

In this section, we discuss the cyclicity for,Gvhere ¢ is linear
fractional self map of U with interior fixed poiltVe summarize this section
by the following theorem:

Theorem (3.1.1):

Suppose thap is (not the identity) linear fractional self maply, which
has interior fixed point, then:

1. The operators £and Cfb are not hypercyclic (supercyclic).

2. If ¢ is elliptic, then G is cyclic if and only ifop Is cyclic.
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3. If ¢ is non-elliptic, then:
() The operatoq, is cyclic operator.
(i)  The cyclicity of the operator {depends on the nature of the fixed
point for ¢, that is:
« If ¢ has interior and exterior fixed points, thepi€cyclic.

« If ¢ has interior and boundary fixed points, thep i€ not
cyclic.

Part (1) of this theorem is proved in chapter two.
In chapter one, we showed thatifs loxodromic or elliptic, then it has
interior fixed point, hence £and C; are not hypercyclic (supercyclic). We

remark that although composition operators induneeélliptic mappings are
not supercyclic, they can be cyclic as the follogviheorem shows:

Theorem (3.1.2) [3]:

If ¢ U LFT(V) is elliptic, then G is cyclic if and only if the argument of
A is irrational multiple ofrt, whereA = ¢'(p), p is the interior fixed point daf.

Before the proof, we need some preliminaries.

Proposition (3.1.3)[15]:

Let f be a holomorphic map on U and Zff)a 0 U : f(a) = O0}.If Z(f)
has a limit point in U then f is the zero function.

We prove the following lemma:

Lemma (3.1.4):

Let f be a holomorphic map on U. If f vanishesrdinitely many points
on a circle in U, then f is zero function.

Proof:

It is clear that Z(f) is bounded set in the comghkane.
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If Z(f) has no limit point, then Z(f) is closed arttence by Heine-Borel
theorem, Z(f) is compact.

This contradicts every compact infinite set haisnat lpoint

So that z(f) has limit point, hence from propositi(3.1.3), f is the zero
function. m

Proof of Theorem (3.1.2):

Note that any elliptic self map on U has to be atomorphism of U
with interior fixed point p, and hence must be cgate (by automorphisms)
to a rotation about the origin. Specifically, ¢f is elliptic, then it is
automorphism with fixed point pl U (proposition (1.4.25)).

Hence by the special automorphism mappipgwe gety = agodod,, Where
Y is an automorphism fixes the origin, so that bypasition (1.2.8)1)(z) =
Az, for all zOO U, whereA|=1,A =¢'(0) = ¢'(p).

If argh is a rational multiple oft, then G fails to be cyclic because in this
case the orbit of any function irfldnder G is a finite set [3].

If, however, arg is irrational multiple offt, then G, is cyclic and K is cyclic
vector for all 0% a O U. To see this, letr # 0 be a point in U and f is
orthogonal to orb(f Kq) ={ K5., : n=0,1 ...}, thatis <f,Ks.,>=0, for all

non-negative integer n.

Therefore, fA"a) =0, n=0, 1, ...; hence the function f vanishes at infinitely
many points on the circle |z||a|, therefore by lemma (3.1.4), f is the zero
function

Because ¢is similar to G, then G is cyclic. =
We give the following theorem:

Theorem (3.1.5):

If ¢ O LFT(U) is elliptic self map on U, thenyQds cyclic if and only if
C, is cyclic.
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Proof:

Since¢ is elliptic, then it is automorphism with interibxed point p. As
the proof of theorem (3.1.2§ is conjugate via the special automorphism
mappinga, to the automorphism mapping(z) = Az, A O dU. It is easy to

prove thatC’;Z = Gy, whereX is the complex conjugate af Since, Cyis

similar to G, thenC; is similar toCy, .

Since argh) = —arg(\), then from theorem (3.1.2),Gs cyclic if and only if
G5, is cyclic, henceC, is cyclic if and only ifCE, Is cyclic. =

The following theorem is new to the best of our\kiezige.

Theorem (3.1.6):

Let ¢ be a non-elliptic linear fractional self map of (¢ is not the
identity mapping) have a fixed point p in U, th@@ is cyclic.
Proof:

Supposap = adod,, Wherea, is the special automorphism mapping,
therefore(0) = 0. Without loss of generality, we may assume that:

Z
Z)= ,b#0
P(2) o

It is clear thatp'(0) = % hencey'(0) # 0. Form theorem (1.4.19), we have

|W'(0)| < 1, thereforeyf (0))" # 1, n=1, 2, ... corollary (2.2.25) shows that

* -

Cy is cyclic and hence by the similari(;{; is cyclic. =

Corollary (3.1.7):

If ¢ O LFT(U) is loxodromic, therC, is cyclic.

Proof:

If ¢ is loxodromic, then by theorem (1.4.28)has interior fixed point,
therefore by theorem (3.1.&;; is cyclic. =
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Corollary (3.1.8):

If ¢ O LFT(U), (¢ is not the identity), which fixes both interioripband
boundary point of U, the@; is cyclic.

Proof:

Since ¢ has interior and boundary fixed points, thiens not elliptic
(theorem (1.4.23), hendg, is cyclic (theorem (3.1.6)). m

The following theorem appeared in [3], we give deails of its proof:

Theorem (3.1.9):

If ¢ OO LFT(U) is non-elliptic has a fixed point p in Ucifixed point q
outside the closure of U, then the composition agerG, is cyclic on H.

Before we prove this theorem we need the followergma:

Lemma (3.1.10):

Let ¢ be a linear fractional self map of U take the form

d(2)= az—+1,where a, b are complex numbers anrdez 0
az+1- bz

Then we can writé in terms of a reproducing kernel:

b b 1

=A +a K+ _, whereA=1 + ,a= andK- _(z)=———

¢ oa a-b’'~ b-a o-a(2) 1-(b-a)z
Proof:
0(2) = az+1l _ az+1- bz+ b2= 1+ bz
az+ 1- bz az+1- bz az+ 1- bz
1 1 1
Z+——-——
—14+_P a-b a-b{_q, b |;__a-b
a-b a-b
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WhereA =1 +

Proof of Theorem (3.1.9):

Let Y = apodott,, Wherea, is the special automorphism mapping. It is
z
az+

clear thatp(0) = 0, hencap(z) = o bz0

Therefore,y’'(0) = % By theorem (1.4.19)1|(0)| < 1, hence |b| > 1. The

other fixed point is:ﬂj (if a= 0, then the fixed point i®). Sinceq, is self
a

inverse, thenp(ap(z)) = ap($(z)), hencap(ay(q)) = ay(q), that isa,(q) is fixed
point for the mapping, thereforen,(q) = %’

Since q is outsid&J, then by proposition (1.1.143,(q) is outsideU .
1-b

Thus > 1 or equivalently

We claim that for any non-zewo ] U, the reproducing kernel function, k)

= 1_ is cyclic vector forC,,

1-az
A straight forword induction argument shows that #my non-negative
integer n:

as, z+ 1

K z)=
con(2) as, z+ o zb"

n
Where §=0 and for positive n,,s Zb_lk
=1
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Now, fix a vector gJ H? that is orthogonal to the orbit {§, : n=0, 1, ...}

We claim that g is the zero function. To see thige that the sequence
KqoW, converges to 1 in Htherefore:

0 = lim <g, Kyo)> = g(0)
n
Recalling from lemma (3.1.10), we can writ€, op,in terms of a
reproducing kernel:
Kaqun = )\n + ynKBn

WhereA, andy;, are complex constants
Vo= ———— #0andB, = _i—é_S]
b S b"

Thus the orthogonality hypothesis on g yield:
0= <g, Keop> = A,9(0) + ¥, 9(Br) = Y, 9(Br)

Thus g vanishes identically on the sequerf&g¢. {Upon recalling that |b| > 1,

we see from he definition that {S0O - bil henceB, 0 - B_—a’ where

by inequality (3.1), this limit belongs to U.

Thus g vanishes on a sequence with limit point jrnéhce from proposition
(3.1.3), g is the zero function. This shows thatiKcyclic for G,

Since G and G are similar, then £is also cyclic. =

Corollary (3.1.11):

If ¢ O LFT(U) is loxodromic, then gis cyclic.
Proof:

Since¢ is loxodromic, thenp has an interior fixed point and exterior
fixed point

Hence G is cyclic by theorem (3.1.9). m

The proof of the following theorem is very longushis omitted.
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Theorem (3.1.12):

Suppose thap is a linear fractional self map of U which fixestbh an
interior and a boundary point of U. Theg & not cyclic. In fact, the closed
linear span of any orbit has infinite codimensionf.

We end this section by studying the cyclicity oé thperator ¢ and its

adjoint, whereh(z) = i, where c is a complex number.

Proposition (3.1.13):

The mappingp(z) = i, where |ck 2 is analytic self map of U.

Proof:

Since |ck 2 and |¢- z|= [c|- |z|, for all z[O U, then |c-z| > 1, so that
0(2)|= 2zl 1, for all zO U
c-z|

Thus¢ is holomorphic self map of U. m

Remark (3.1.14):

It is clear thatp fixes the origin, so thatCand C;, are not supercyclic
operators (theorem (2.1.18) and theorem (2.2.20))

We prove the following theorem:

Theorem (3.1.15):

Letd(z) = L, lc|= 2, theanp is cyclic operator.
c-z
Proof:
It is clear thath(0) = 0 andd’(0) = % sothat 0 <¢|'(0)| < 1

Thus C;, is cyclic operator (theorem (2.2.24))m
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Remark (3.1.16):

It is easy to prove that O and—cl are the fixed points of the mapping

0(2)= 2=, [c|> 2.
cC—Z

We prove the following theorem:

Theorem (3.1.17):

Letd(z) = —2—, c|= 2
C—2

1. If c =2, then G is not cyclic.
2. If ¢ #2, then G is cyclic.
Proof:

1. It is clear thatp has 0 and 1 as fixed points. Thug i€ not cyclic
(theorem (3.1.12)).

2. If ¢ # 2, then¢ has interior fixed point {0} and exterior fixed b
c— 1, hence ¢is cyclic (theorem (3.1.9)). m

3.2LINEAR FRACTIONAL SELF MAPSOF U WITH NO
INTERIOR FIXED POINT

In this section, we consider the linear fractiosaf mapd of U that has
no interior fixed point. Three cases exhaust thesjlities:

« ¢ is an automorphism. In this case, we prove thas@ypercyclic.

¢ is not an automorphism and not parabolic, so thaas two fixed
points; the attractive one necessarilyobh the other necessarily outside
the closure of U. In this case, we show thgt€Cagain hypercyclic.

¢ is parabolic, but not an automorphism. In thisecgshas only one
fixed point, which necessarily lies @. We show that gis strongly
non-hypercyclic (theorem (3.2.20)), not supercy¢tioeorem (3.2.27))
and cyclic (theorem (3.2.25)).
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The following proposition appeared in [3], we gitree details of the
proof.

Proposition (3.2.1):

Let Z, denote the collection of functions that are camims on the
closed unit disc, analytic on the interior, and evhvanish at wi dU. Then
Z, is dense in B

Proof:

Suppose that:
f(z)= > f(n)z" OH’
n=0
is orthogonal to ¢ then for every non-negative integer n, the pomgrabd
2" - wZ" belongs to Z, so it is orthogonal to f. Thus:
0=<f, 2" -wZ>=f(n+1)- wf(n)

From this, it follows thatf (n) = w" f(O), for all n. Since w is on the unit

circle and fO H?, this forcesf (0) = 0 and therefore all the Taylor coefficients
of f must vanish

Thusf=0,so Z isdensein @ =

Remark (3.2.2):

As in the proof of proposition (3.2.1), we can pedhat ifa [0 U, then
the set of polynomials that vanisheats dense in A

Notation:

The statement T - 0 on a set X means that"§ff0 - 0, for every
vector x[J X.

The proof of the following theorem appeared in [17]
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Theorem (The Hypercyclic Criterion) (3.2.3):
Suppose that there is a dense subset X of a Hiipete H on which
T" O - 0 on X, and another dense set Y on which is ddfiagpossibly

discontinuous) map S: ¥ - Y, such that:
(@) TSisthe identityon'Y.
(b) SO - 0onY.

Then T is hypercyclic operator.

We showed in proposition (1.4.17) that¢if(] LFT(U) has two fixed
pointsa andp, then¢'(a) =A and’(B) = 1/A, whereA is the multiplier forp.
If ¢ is automorphism, then it is clear thgt is also automorphism and fixes
the same points, B and™(a) = 1A, ¢"(B) = A

We prove the following proposition:

Proposition (3.2.4):
Suppose thap is hyperbolic self map of U, thep is automorphism if
and only if the two fixed points fap lie onoU.

Proof:

If ¢ has two boundary fixed points, then from proposit{1.4.26)¢ is
an automorphism.

Conversely, if¢p is an automorphism, thejm has no interior fixed point
(otherwised is elliptic (see proposition (1.4.25))

Therefore, from theorem (1.4.19),has attractive fixed poird [ dU with
0 <¢'(a) =A < 1, whereh is the multiplier ford (if ¢'(a) = A =1, thend is
the identity mapping), the other fixed pofhoutside U (theorem (1.4.23))

It is clear thath ™ is automorphism with no interior fixed point and:
¢ (@)=1IN>1,07"(B)=A<1

Therefore, from theorem (1.4.19, is attractive fixed point fop™ with
BUOOU. m
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The following proposition shows that every autontesm mapping of U
is linear fractional self map on U

Proposition (3.2.5) [20]:

If ¢ is automorphism mapping, then there exists and wll 0U, such
that$ = wap,, wherea, is the special automorphism self map of U.

Proof:

Since 00 U and¢ is a conformal automorphism, then there exists$ p
U, such thatp(p) = 0. Definey = dpoa,, Wherea, is the special automorphism
mapping.
It is clear thatp fixes the origin, sinc¢ anda, are automorphisms, thenis

automorphism

Hence by proposition (1.2.8), there exist&\wU, such thatp(z) = ¢(ay(2)) =
wz, for all zO U

Sinceaq, is self inverse, the@(z) = way(z), for all zOU. m

We remark that ifp is automorphism mapping with no interior fixed
point of U, then either¢ is parabolic automorphism or hyperbolic
automorphism.

If ¢ is parabolic automorphism, thérfixes only one pointt J 0U with
¢'(a) = 1, see chapter 1. In this cas€ is also parabolic and fixes the same
point. Therefore, from proposition (1.4.22),is attractive fixed point fop
andp .

If ¢ is hyperbolic automorphism, then from the proofpobposition
(3.2.4),¢ has two boundary fixed points (3 wherea is attractive fixed point
for ¢ andp is attractive fixed point fop™.

The following theorem appeared in [19], we give degails of its proof.
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Theorem (3.2.6):

Suppose thap is a conformal automorphism of U with no fixed ipisiin
the interior of U., then £is hypercyclic on A

Proof:

We note from proposition (3.2.5) thab is linear fractional
automorphism mapping of U.

Since$ has no interior fixed point, thepr is not elliptic. If¢ is parabolic,
then ¢ and ¢ have the same attractive fixed point a i If ¢ is not
parabolic, therd has two fixed points a, b @, where a is attractive fixed
point for¢ and b is attractive fixed point g ™.

In order to treat both cases simultaneously, wasdi if ¢ is parabolic

Let Z, be the set of functions that are continuous onclbsed unit disc,
analytic on the interior and which vanish at a, dafine Z similarly.

According to proposition (3.2.1), these sets aresden H

We claim first thatC[; 0 - 0o0on%
For this, note that for every &zl oU\{b}, we have ¢,(z) OO - a (see
proposition (1.4.24)), hence iff Z,, then f¢,(z)) 0 - f(a)=0.

Upon applying the elementary case of the bounddggral representation of
the H norm (proposition (1.2.4)), we obtain:

TT
ngR— 1 i0
ICH Il = 2n:[n|f(¢n(e Nf B®O - 0,asr] - o

To finish the proof let S= %1 =C As noted abovep™ is also

o
automorphism of U with attractive fixed point b.

So, if we take the set,Zthen S mapsnto itself, and the previous argument
applied to show that"$] - 0, on Z.
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Since the set Zis dense in Bl (proposition (3.2.1)), then the hypothesis of

hypercyclicity criterion are therefore satisfiedwil = Cy, S= C¢_1, X=2,

and Y=Z,

So G is hypercyclic operator. ®
We give the following proposition:

Proposition (3.2.7):

Let ¢ be a holomorphic self map of U with no interioted point. If is
automorphism of U, non parabolic, th@fﬂ is not cyclic.
Proof:

Since¢ is automorphism of U, thed is linear fractional self map of U
(proposition (3.2.5)).

Since ¢ has no interior fixed point, then the Denjoy-Waofbint w for ¢
belongs todU with ¢'(w) < 1 (theorem (1.4.19)). Sina is not parabolic,
then¢'(w) # 1 that isp'(w) < 1

Therefore from corollary (2.2.29§;§, IS not cyclic. m

We need the following useful theorem:

Theorem (Walsh's Theorem) (3.2.8) [19]:

Suppose that G is simply connected domain whosedary is a Jordan
curve (A Jordan curve is, by definition, a holontugpimage of the unit
circle). Let the holomorphic function F map U urastly onto G, then the
polynomials in F are dense irfH

Corollary (3.2.9):

If  maps U onto the interior of a Jordan curve lyindgJi then G has a
dense range.

71



Chapter Three Linear Fraghal Cyclicity

Proof:

From Walsh's theorem, we have the set of all potyats in¢ is dense
in H®. Since this set is a subset of the range gftkien the range of s
densein @ m

Remark (3.2.10):

We shall see in the next chapter thap imaps the unit disk onto the
interior of a Jordan curve lying in U, theg S cyclic.

We prove the following lemma:

Lemma (3.2.11):

Supposep [1 LFT(U) that is not an automorphism and does nethan
interior fixed point. If$ is not parabolic, thed is conjugate by an appropriate
disk automorphism to self maj(z) = az + 1- a, where 0 <a < 1.

Proof:

By the observations made earlier in this sectjohas its attractive fixed
point p ondU and the other fixed point g outside the closurg.o

We may assume without loss of generality thafixes p=1 and q in the

outsideU (if p #1, then £pa,) “odo(-par,) fixes 1 and g= ar(—%) outsideU,

where r is real number 0 <r < 1 amdis the special automorphism mapping).

q(q-1
q(l-7q)

It is easy to prove that T is automorphism of U &) = 1, T(q)= co.

Let T(z)=wa.(z), for all zO U, where w=

Supposap = TohoT, hencey is self map of U andy(1) = 1, () = oo,
thereforep must have the for(z) =az + 1- a

We claimthat0<a<1

Sincey has no interior fixed point, thed is not elliptic, not loxodromic.
Sincey fixes two points, the is not parabolic, henag must be hyperbolic
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Since 1 is the Denjoy-Wolff point fap andy has no interior fixed point and
non-elliptic, then from theorem (1.4.19), @)1)=a<1. =

Remark (3.2.12):

Let p O LFT(U) of the formy(z)=az + 1-a,0<a <1, thenitis easy
to prove thatp is an automorphism of the half plane=Gz : Re z < 1}.

The following theorem appeared in [3] we give tle¢adls of its proof.

Theorem (3.2.13):

Suppose) is a linear fractional self map of U that is nat@morphism
and does not have interior fixed point. dif is not parabolic, then Cis
hypercyclic.

Proof:

By the observation made earlier in this sectipias an attractive fixed
point on dU and fixed point outside the closure of U. Now, leynma
(3.2.11), we may assume without loss of generdiat ¢(z) = az + 1- a,
where 0 < a < 1¢ fixes 1 andb.

Note that by remark (3.2.12),is automorphism of the half plane=Jz : Re
z<1}

Hence, ifo is a linear fractional transformation mapping fr@onto U, then:

It is clear thaty is automorphism of U. We claim thgt does not have
interior fixed point. In fact, ifp fixes z 0 U, then g = W(zy) = 00 (zo), that
is (07(z0)) = 0 (zo), therefore eitheo™(zo) = 1 or . This contradict the
range ofo 'is G, hencep does not have an interior fixed point.

By theorem (3.2.6), £is hypercyclic. Because maps G onto U and U G,
thena(U) must also be a subset of U, in fa¢y) is Jordan domain; therefore
by corollary (3.2.9), € has dense range.
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By (3.2), GoCs = CxCy. Since G is hypercyclic and £has dense range,
then G is hypercyclic (theorem (2.1.2)).m

Corollary (3.2.14):

Let ¢ O LFT(U) has boundary and exterior fixed points,nth@, is
hypercyclic.

Proof:

Since¢ has no interior fixed point, themis not elliptic, not loxodromic.
Since¢ has two fixed points, thepis not parabolic, therefogeis hyperbolic

Sinced has boundary and exterior fixed points, tijers not automorphism,
so that G is hypercyclic. =

If ¢ satisfies the conditions of theorem (3.2.13), théx) = az + 1- a,

0 <a <1, hence it is easy to prove t{mﬁ} . are eigenvalues of,CThus,
n=
C, is not supercyclic.

The following theorem shows more:

Theorem (3.2.15):

If the conditions of theorem (3.2.13) are satisfiben C; IS not cyclic.

Proof:

From the proof of theorem (3.2.13), we h@fe)=az + 1-a,0<a<1

Note that,$ fixes 1 ando and¢'(1) =a <1, hencé:;, Is not cyclic (theorem
(2.2.29)). =

In the previous section, we studied the cyclicifytioe composition

operator induced by the holomorphic mappd@) = i, (z O U). Here,
c-z

we discuss the mapping(z) =az + b, & 0, b# 0. It is easy to prove thdt
maps U onto the ball with center at b and radijs |a
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We prove the following proposition:

Proposition (3.2.16):

Suppose)(z) =az + b, & 0, bz 0, theny is self map of U if and only if
|a] + bk 1.

Proof:

If |a] + |bE 1, then:

W(2)|= [W(z) - b + bl< [Y(z) -b| + |b] < |a] + | 1, for all zLJ U
Thusuy is self map of U

Conversely, suppos is self map of U and |a] + |[b] > 1, &t 0O
(sufficiently small), such that |a| + th§ > 1

|al-¢

We claim that[ o] +1)b [0 Rangey = Bp(b), where B(b) is the ball of

center at b and radius |a|.

‘(lal € 1][)_% =la|-€<|q|
||

Therefore[I Tt|> Ie +1] b O Range, that is there exists W U, such thatp(w)

(|7é|€+1jb therefore(w)| = ‘K%HH ('Tt')|€+1j|b| lal-

+|b|>1

This contradicts the fact thetis self map of U, so that [a| +4b]l. =

Remark (3.2.17):

One can show easily thatyi(z) =az + b, & 0, b# 0, |a| + |bk 1, then

Y has two fixed points p l—ba andeo.
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Theorem (3.2.18):

Let¢(z) =az + b,az 0, b# 0 be a holomorphic self map of U

(i) If |b|=1-a, then G is hypercyclic and;‘; IS not cyclic.

(i) If |b|] # 1 - a, then ¢ and C;, are cyclic, but not hypercyclic
(supercyclic) operators.

Proof:

(i) If [b]=1- a,¢ has boundary fixed point p l—ba and exterior fixed

point o, hence ¢ is hypercyclic (corollary (3.2.14)), anﬁs, IS not
cyclic (theorem (3.2.15)).

bl _ _Ib]

i) If |[b|# 1 - a, then|p, =
(i) 1f |p] P = e < 1)

< 1, hence p is interior fixed

point. Thus G and C; are not supercyclic and,@ cyclic operator (see

the previous section). Singg(p) =a# 0 and¢'(p)|=1al < 1, therC} IS
cyclic (corollary (2.2.25)). =

Remark (3.2.19):

Theorem (3.2.18) says, for example thap(®) =az + b, a 0, b# 0 is
self map of U, then:

1. G, iscyclic andCfp IS not supercyclic operator.

2. If ais a complex number with Im#0, then ¢ and C; are cyclic but

not supercyclic.

We conclude the linear fractional cyclicity by syudy the parabolic
linear fractional self maps of U. #f OO LFT(U) is parabolic automorphism,
then by theorem (3.2.6),,@s hypercyclic operator.

The proof of the following theorem is very longushis omitted.
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Theorem (3.2.20) [19]:
Let ¢ be a linear fractional self map of U. ¢f is parabolic non-
automorphism, thenJs strongly non-hypercyclic, in the sense thatdhby

functions that can adhere tg-Grbits are constant functions.
Lemma (3.2.21):

If ¢ O LFT(U) fixes the point plJ dU, then¢ is conjugate by an
appropriate automorphism mapping to a mapgirigat fixes 1.

Proof:

Define f(z)= pz (zO U). It is clear that f is automorphism mapping.bf
and f(1)= p. If Y = f'¢f, theny is self map of U and fixes the point 1m

Lemma (3.2.22):

If ¢ O LFT(U) is parabolic with fixed point at 1, theq(z) =
(2-a)z+ a
—az+ (2+ a)

, Wwhere Re(ax 0 and Re & 0 if and only if¢ is automorphism.

Proof:

Let T(z)= %Z (z O U). One can prove that T maps U ofite- {z : Re
-z

z>0}and T(1F

Define Y = TodoT 7, it is clear thatp takesl into itself and fixeso, hence,
Y(z) = Az + a, where the fact thatpreserves the right half plane forees 0
and Re 20. By the chain rula)'=T'(¢oT™).¢'(T™).T ", so that = §'(w) = 1

Thusy(z) =z + a, Re & 0, therefore:

(2-a)zt+ a

,where Re & 0
—az+ (2+ a)

d(z) = T oWoT(2) =

It is easy to show that Re=a0 if and only ify is automorphism mapping on
M. Sincep = T'YT and T is maps U ontd, then Re & 0 if and only if¢ is
automorphism of U. ®m
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Definition (3.2.23) [17]:

Let f be a holomorphic on U. The zero-sequenceistftiie collection of
its zeros, listed in order of increasing modulivgach zero written down as
many times as its multiplicity.

The proof of the following theorem appeared in [17]

Theorem (The Zero Sequence Theorem)(3.2.24):

Suppose {g is the zero-sequence of a functiondf H? that is not
identically zero, then;

D (-la, [ <
n=1

The following theorem appeared in [3], we give deails of its proof.

Theorem (3.2.25):

Every parabolic linear fractional self map of U utgs a cyclic
composition operator on’H

Before the proof, we need the following lemma:

Lemma (3.2.26):

Let a be a complex number, such that Re(a) >34 na ,n=1, 2,
na
...; then Z(l— IB,, |) is a divergent series.
n
Proof:
It is clear thatf},| < 1 and + B[ = AL+ Re(nd))  \ow:

4+ 4ARe(nay |né&| '
1 1 | _1{4(@+Re(na)y |nd|)_1 1+ |naf
nl1-|, f) n 4(1+ Re(na)) n{~ 4(1+ Re(na)
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2
<1(1+_n |afj:l+ laf_
n

n 4nRe(a) 4Re(a
c1+18F
4Re(a)

-1
Therefore = B > Lr, where 1= [ 1+ 121
n 4Re(a)

Hence%r < (- [Bal)(X + Bul)

Since B, < 1, thenﬁa <1- Bl SII”ICGZ diverges, thenZ(l— 1B, )

Is divergent series. &

Proof of theorem (3.2.25):

We have proved in theorem (3.2.6) that paraboltoraorphisms induce
hypercyclic composition operators. So, we need aalgonsider parabolic
self mapsp of U that are not automorphism, for sucth,ave will show that
the identity map u, defined on U by ug (zJ U) is a cyclic vector for ¢.

By lemma (3.2.21), without loss of generality, wayrassume that 1 is the
fixed point ofd.

Recall from lemma (3.2.22), théatis of the form:

(2-a)zt+ a
—az+ (2+ a)

d(2) = zOU

For some complex number a with Re(a) > 0 (the tspasitivity of Re(a)
reflecting the fact thap is not an automorphism)

For our purpose, a more convenient expressiot fer
o=V +aKg

a— <z 2 4 B —
a a(a+ 2) 2+a

Wherey = and ks =(1- B2)™
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The requirement that Re(a) > 0 insure that nonth@fdenominators in the
definitions of @, B, V is zero, as discussed in example (1.1.17), b K
f(B), for all f O H

Now,supposelH? is orthogonal to the g&orbit of u .that is,suppose <>
=0, foralln=0, 1... wherabo=u . Sinced, is pointwise convergent to 1, so

0=Ilim <f, > = <f, 1>=1(0)
Using this along with the orthogonality @fand f, we have:
0=<f, ¢>=<f, y +0 Kpg>=y<f, 1> +a<f, Kg>=af(p)

So that f) = 0. But f is also orthogonal #,, for each n and the formula for
¢, is obtained from that af by replacing a with na.

Thus the last calculation actually shows that tlhecfion f vanishes
identically on the sequence of points:

na
= ,h=1, 2, ...
Bn 2+ na

From lemma (3.2.26) we havE(l— IB,, |) = o0, hence by the zero sequence
n

theorem f must vanish identically on U.

We have shown that only the zero vector can beogahal to the ¢orbits of
u, therefore u is a cyclic vector fo.C m

The following theorem completes the proof of cyitiof Cy, wherep [
LFT(V).

Theorem (3.2.27) [18]:

If ¢ is a parabolic linear fractional self map of U ttha not an
automorphism, then s not supercyclic.

The proof is long, so is omitted.

We give the following proposition:
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Proposition (3.2.28):

If ¢ is parabolic self map of U, the(b; IS not supercyclic operator.

Proof:

Without loss of generality, we may assume thatthesfixed point foi.

The author in [18] shows that for eack 0, g(z) = {—t%z}, (zO U)is
-z

an eigenvector of Lwith corresponding eigenvalué” e where a is the

Translation parameter [18] .Thlﬁ% IS not supercyclic operator.m

3.4 REMARKS

Herrero introduced the corresponding hypercycleaidan operator T on
a Banach space is called multihypercyclic if thexea finite subset of the
space, the union of whose orbits is dense.

The operator T is called muticyclic if there exisat$inite subset of the
space for which the smallest T-invariant subspadke whole space.

It is clear that if T is hypercyclic, then T is rtibypercyclic. The author
in [14] shows that the converse is true, that srgwnultihypercyclic operator
is hypercyclic.

This fact in general is not true when T is cyclgeaator that is if T is
multicyclic, then T is not necessarily cyclic as following example shows:

Let H be a Hilbert space and,jas orthonormal basis for H. If U is the
forward shift operator, i.e., Uje= 6.1, i = 1, 2, ..., then it is clear that®ls
multicyclic operator where the orbit of and @ has dense span buf (3 not
cyclic operator, because the codimension of thgeaii U is two.

Paul S. Bourdon and Joel H. Shapiro proved intja} if ¢ O LFT(V)
and G is not cyclic composition operator, then everyitély generated
invariant subspace of such an operator has infaotémension. Therefore, if
Cy is not cyclic operator, wher¢ [ LFT(U) then it is not multicyclic
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operator. In other words, ¢ U LFT(U) and G is multicyclic operator, then
C, is cyclic operator.

The author in [3] shows the following:
If the operator T on X satisfies the hypothesistioé hypercyclicity

criterion (theorem (3.2.3)), then for any subsegedn,} of positive integers,
there exists f1 X, for which the set {1} is dense in X.

Let us call operators for which the last conclusientrue strongly
hypercyclic. Since we used the hypercyclicity c¢rde to establish
hypercyclicity and since the linear fractional mapst do not satisfy its
hypotheses are also not hypercyclic, our work digtshows:

Every hypercyclic composition operator, Qvhere ¢ [0 LFT(U) is
strongly hypercyclic.
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CHAPTER FOUR
LINEAR FRACTIONAL MODELS

INTRODUCTION

In chapter one, we observed that the linear fraatigelf maps of U fall
naturally into several categories, determined bsitpon of, and behaviour at
the Denjoy-Wolff point.

In this chapter, we classify the arbitrary holontocpself maps of U into
the following types (see [3] for more details).

« Dilation type, if the Denjoy-Wolff point is in U.

» Hyperbolic type, if the Denjoy-Wolff point is adtJ, and has derivative
< 1 there.

» Parabolic type, if the Denjoy-Wolff point is @, the derivative is 1
there.

The linear fractional model theorem (4.1.3) teksthat every univalent
self mapd of U can be represented as:

d = 0 'ooo

wheread is univalent maw : U 0 - C, andy U LFT(U) has the same type of
¢, that is if¢ is of dilation type thenp has interior fixed point. I is of
hyperbolic type, thenp is hyperbolic linear fractional self map of U with
Denjoy-Wolff point is ondU and has derivative < 1 there (in fact in thisecas
Y is hyperbolic automorphism). ¢f is of parabolic type, theg is parabolic,
has only one fixed point a?lJ with derivative 1 there.

This chapter consists of three sections, in secinwe show that if the
set of polynomials i is dense in Blthen the cyclic behaviour of the linear
fractional composition operator,@ransfers to ¢ In chapter two, we showed
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Chapter Four Linear Fractional Models

that if Gy is cyclic, then the set of polynomials ¢nis dense in Fl(corollary
(2.2.9))

The converse is not true as the following exampiews,; If Y(z) =

i, z 0 U, then the set of pynomials ip is dense in B (proposition

2-2
(2.2.5) and theorem (2.2.7))., Howevey, i€ not cyclic (theorem (3.1.17))
The author in [3] proves that ifp]}. < 1, then the converse of this

theorem is true that is¢@s cyclic if and only if the set of polynomials ¢nis
dense set in Hequivalently; G is cyclic if and only if G has dense range.

In section two, we study briefly the cyclicity dfd composition operator
induced by a holomorphic self mgpof U that has its Denjoy-Wolff point on
0U. These are of hyperbolic and parabolic types. mMap ¢ is said to be
regular provided it is univalent and continuous tbe closure of U, has
Denjoy-Wolff point p ordU and maps the closed disk intalp}, [3].

Since ¢ has the Denjoy-Wolff point p odU, then theorem (1.4.19)
insures that 0 9'(p) < 1 and we will see (theorem (4.2.6)) that whenever

¢'(p) = 1, then Ref""(p)) = 0. We summarize the results of this section in
table 1l below.

In section three, we conclude this chapter by sapen problems
suggested by our work.

Tablell
Cyclic behaviour of Cy4 Denjoy-Wolff point at 1 @I (1), regular and ¢”{1)20.

Hypothesis Hypothesison
on ¢11) ¢ (1)

None

Cyclicity of C, (Mngde ‘f’gf ,
Hypercyclic Hyperbolic
theorem(4.2.12) theorem(4.2.3|
Parabolic

automorphis
theorem(4.2.6]
Parabolic, non

automorphis
theorem(4.2.6|

Hypercyclic

Pure imaginarg 0 theorem(4.2.11)

Cyclic, not hypercyclic
theorem(4.2.10)&(4.2.8)

Real part >0
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Chapter Four Linear Fractional Models

4.1 TRANSFERENCE PRINCIPLE

In chapter three, we studied the cyclicity of tremposition operator
induced by a linear fractional self map of U. Imsteection, we discuss the

cyclicity problem for more general composition cgters G.

In the following definition, we classify the arkatty holomorphic self
maps of U into the following types:

Definition (Classification of Arbitrary Self-Maps) (4.1.1) [3]:

A holomorphic self-majp of U is of:
« Dilation type, if it has a fixed point in U.

*  Hyperbolic type, if it has no fixed point in U ahds derivative < 1 at its
Denjoy-Wolff point.

« Parabolic type, if it has no fixed point in U andshderivative 1 at its
Denjoy-Wolff point.

From the definitions in chapter one, it is easyptove the following
remarks:

Remarks (4.1.2):

1. If ¢ O LFT(U) is of hyperbolic type, thed is hyperbolic in the sense
of definition (1.4.18).

2. If ¢ O LFT(V) is of parabolic type, thetd is parabolic in the sense of
definition (1.4.14).

Te following important theorem appeared in [3], g®we it without
proof.

Theorem (The Linear-Fractional Model Theorem) (4.1.3):

Supposep is a univalent self-map of U. Then there existsnavalent
mapo : U O -C on U, and a linear fractional mapsuch thatp(U) O U,
Y(o(V)) O o(U), and:

85



Chapter Four Linear Fractional Models

Furthermore:
(a) W, viewed as a self-map of U, has the same tyge as

(b) If ¢ is of hyperbolic type, thed may be taken to be a conformal
automorphism of U.

(c) If ¢ is of either hyperbolic or parabolic automorphis/me, theno may
be taken to be a self map of U.

Definition (4.1.4) [3, 17]:

If G = o(U), then the pairyj, G), (or, equivalently,yj, o)) is called a
linear-fractional model foé. If in addition G is a Jordan domain (the region
interior to Jordan curve) it is said thdt, (G) is a Jordan model.

Y

\J

Figure 2: A linear-fractional model.

Remarks (4.1.5):

The linear fractional model theorem is the workaafumber of authors,
whose efforts stretch over nearly a century.
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The dilation case is due to Koenigs in 1884. Is ttase equation (4.1) is
oo = Aa, whereA = ¢'(0) (see [17, chapter 6] for more details).

The hyperbolic case is due to Valiron. If one repkathe unit disc by the
right half-plane, sending the Denjoy-Wolff point t@ then the resulting
functional equation is agaobd = Ao (see [3]).

Finally, the parabolic cases where established bgkeB and
Pommerenke (1979) and independently by Carl Cov@&1.10nce again the
situation is best viewed in the right half planether than the unit disc, with
the Denjoy-Wolff point placed ato. Then the equation (4.1) is just
oo =0 + i in the automorphism case aod = o + 1 in the nonautomorphic
case (see [3]).

The next result shows that, Ghherits the hypercyclicity (respectively,
cyclicity).

Theorem (4.1.6) [17]:

Supposey, G) is a Jordan model fgr, with GO U, and G hypercyclic
(respectively, cyclic) on H then G is hypercyclic (respectively cyclic) on
H?.

The proof is very long, thus we omit .

The following important theorem appeared in [3], giee the details of
its proof.

Theorem (Transference Principle) (4.1.7):

Suppose thap is a univalent self map of U of either dilationpeybolic,
or parabolic automorphism type. Let be the intertwining map forp
promised by the linear fractional model theorenpise further that the set
of polynomials ino is dense in § then the cyclic behaviour of the linear
fractional composition operator,@ransfers to ¢ More precisely:

(i) If ¢ is of hyperbolic type or parabolic automorphisméeythen  is
hypercyclic.
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(i)

If ¢ is of dilation type ¢ is not the identity and not elliptic linear
fractional transformation) then 4Cis cyclic, but not hypercyclic
(supercyclic).

Proof:

(i

(ii)

Suppose thap is of hyperbolic type. Becauge has its Denjoy-Walff
point on dU and has angular derivative < 1 at that point, lthear
factional model theorem provides a univalent se#pro of U, and
hyperbolic automorphisnp, so that the functional equatioad = Yoo is
satisfied. Becausg is a non-elliptic, theorem (3.2.6) shows thati€
hypercyclic. Let f be a hypercyclic vector fog,.GNe claim thatdo is
hypercyclic vector for ¢ Applying the equatiomod = Yoo, we obtain:

C1 (foo) = Co(foly)

Hence, orb(§, foo) = Cs(orb(Cy, f))

Since the polynomials ia are dense in Hthen G has dense range (the
image of the composition operatog €ontains the set of polynomials in
o). Since f is hypercyclic vector foryCthen orb(¢, f) is dense in 2
Therefore, by lemma (2.2.16)), orly(Go0) is dense in A that is &0 is
hypercyclic vector for ¢

Now, suppose thali is automorphism of parabolic type. Therefapas
also parabolic automorphism, hence by theorem GB.2C, is
hypercyclic operator. Sinago$ = 00, then G oC; = C; 0Cy, ( NOte

that by linear fractional model theorem|s self map of U, hence,Gs
an operator on f. Since G is hypercyclic and by our proof;Chas
dense range. Then, & hypercyclic operator (theorem (2.1.2)).

Since¢ is of dilation type, theg has interior fixed point. ThusyGs not
hypercyclic (supercyclic) operator. Without loss génerality, we
assume that 0 is fixed point for(if p # 0 is fixed point forp, then¢ is
conjugate by the special automorphism mappiptp a map, which has
0 as fixed point). From remarks (4.1.5), we hawe = Ao, where
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A ='(0), hence from theorem (1.4.19)<xQ\| = |¢'(0)| < 1. IfA =0, then
o(¢(2)) = 0, for all zO U, which contradict with the univalent ob¢,
hence 0 <N| < 1.

Let {a,} be a sequence of non-zero complex numbers chasdmat:

Dl llp" [<oo
n=0

Define v= Y a,0". Itis clear that v belongs to°H
n=0

Since Go" = a"(¢) = a(dp)o(9) ... o(¢) =AoAo ... \a =\"a", thena" is
an eigenvector for {corresponding to the eigenvalde for all n. We
claim that v is a cyclic vector forsCLet f[J H? be arbitrary and suppose

that <C(||§V, f>=0, fork=0, 1, ...,; it suffices to show that f is the zero

vector. We have for every non-negative integer k:

0=<Ckv, f>=<Y ap™o", f>= Ya <" 1> (A’
n=0

n=0
Hence if we define h(zF ian <o",f>2" then h}*) = 0, for k=0, 1,
n=0
...; note that h is analytic on U. Sindd k 1, then the sequenca‘}

converges to the zero, that i3f has a limit point 0, hence$f 0 on U
(proposition (3.1.3)).

Because & 0, for all n, we have@’, f>=0, for all n

Because by hypothesis, the polynomialsriare dense in Hit follows
that f = 0. This completes the proof tha @& cyclic and with it, the
proof of the transference theoremm

The transference technique introduced above regjthe density of the
polynomials, not inp but inc. Theorem (4.1.11) below shows that¢f}} <
1, then density of the polynomials i is equivalent to density of the
polynomials ino.

Before the theorem, we need some preliminaries.
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Lemma (4.1.8):

Let ¢ be a holomorphic self map of U. Ify®as dense range, théns
univalent.

Proof:

Since G has dense range andlzH? then there is a sequenceg}{bf
functions in H such that:

TG 14) N N OO (4.2)

Supposeb(a) = ¢(b), where a, a1 U; therefore f(d(a)) = f.(¢ (b)), for all n, so
that from (4.2), & b, henced is univalenton U. =

We prove the following proposition:

Proposition (4.1.9):
Let ¢ be a univalent self map of U. Letbe the intertwining map fap

promised by the linear fractional model theorem|iifi. < 1, theno(U) is
bounded.

Proof:

Since B|}. < 1, then G is compact (theorem (1.5.1)), so thathas
interior fixed point (proposition (1.5.5)), withodbss of generality, we
assumeb(0) =0, lethA =¢'(0). Remarks (4.1.5) shows:

where A = ¢'(0). We observe that 0 4||< 1, where the first inequality
follows from the univalence ado¢ (see the proof of theorem (4.1.7) part (ii))
and the second inequality follows from the Schwamma.

Since Pl < 1, then¢p(U) O U, hence by the Heine-Borel theorepU) is

compact. Since is continuous mapping, ther{¢(U)) is bounded. Note that

equation (4.3) may be rewrittem = %coq), so thato(U) = %G((I)(U)) [

%o(W). Thuso(U) is bounded. m
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The following proposition appeared in [3] withoutopf, we give the
proof.

Proposition (4.1.10):

Let ¢ be a holomorphic self map of U. If,@as dense range, theg, &
also for all n.

Proof:
Since (range §) = H?, then 0= (range @)D = kerCfp
If f O (range G)” = ker C, , then C; f = 0, that isC, f = 0, therefore

C;,(C;n_lf) =0, henceC}n_lf O ker Cy. But ker Cy =0, so thatC}n_lf =0,
we continuous until we have=f0, that is (range @D =0

Thus (range @) =H’. =
The following theorem appeared in [3], we give details of its proof.

Theorem (4.1.11):

Suppose thap is analytic on U anddi|l.< 1, then G is cyclic if and only
if the polynomials inp are dense in H

Proof:

We have seen that the density of the polynomial$ i1s a necessary
condition for cyclicity of G (corollary (2.2.9)). Our goal is to prove the
converse.

Suppose that the set of polynomialspiis dense in E(or equivalently
that G has dense range). Note that by lemma (4.b.8)ust be univalent on
U. Because |}, < 1, then from chapter oné, has interior fixed point (see
also proof proposition (4.1.9)). Without loss ofngeality, we assume that
¢(0) = 0. It is clear thad is not elliptic (if¢ is elliptic, thenp automorphism,
hence §||. = 1).
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Let A = ¢'(0) and observe from the proof of theorem (4.1.&t §ii) that
0< P\| < 1. The dilation model guarantees the existesfcanivalent map
o:U0 - C, such thatop = Ao

Note that from proposition (4.1.9) thafU) is bounded subset of C. Because
o(V) is bounded, we may choose a positive integdange enough, so that
Ao maps U into itself. We claim that the range of tloenposition operator
C

w1 1S dense in B or equivalently that the set of polynomialsAfo is

dense. Since the set of polynomials\Tio equals the set of polynomialsan
this will complete the proof of the theorem. Be@uagU) is an open set
containing O, there is integer m such that the tioncv defined by
v(z) = 0(\"2) is a self map of U. Thereforevfll H? for all f O H?.

RangeC,., O {(fov)o(A"0) : f O H?}
={foc™A\™"o : f O H}

= {fohmin: F O H}

= Range Gmn

Since G has dense range, theg,G has dense range (proposition (4.1.10)).
Thus the range oE,., contains a dense set and is therefore denme.

Remarks (4.1.12):

1. Since the density of the polynomialsgns equivalent to the density of
the range of ¢(theorem (2.2.7)), therefore, ]}, < 1, then G is cyclic
if and only if G has dense range.

2. Density of the polynomials iy does not in general imply cyclicity of,C
(see the example in the introduction of this chgpte

Corollary (4.1.13):

If & maps U univalently onto the interior of Jordonvaulying in U, then
C, is cyclic.
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Proof:

By Walsh’s theorem (3.2.8), the polynomials ¢nare dense in H
whenever¢(U) is a Jordan domain. Singe maps U univalently onto the
interior of Jordan curve lying in U, the|l} < 1, hence gis cyclic (theorem
(4.1.11)). =

Corollary (4.1.14):

Suppose thap is an analytic self map of U and that,|l. < 1, for some
n= 1. If the set of polynomials i is dense in B then G is cyclic.

Proof:

We proved in proposition (4.1.10) that the densufy the set of
polynomials ing implies density of the set of polynomialsdin therefore G,
is cyclic (theorem (4.1.11)). Furthermore, if fagclic vector for G, then
clearly f is cyclic vector for ¢ m

The proof of the following theorem is similar toetlproof of theorem
(4.1.7) part (ii). Thus we omit.

Theorem (4.1.15) [3]:

Suppose that maps U univalently onto a domain[GC and that there
exists a complex numbar(] U, such thahG 0 G. Suppose further that the
polynomials inc are dense in H Let § = o *Ag, then the composition
operator G is cyclic.

The following example shows how theorem (3.1.12) fzl for general
self maps of.

Example (4.1.16) [3]:

The mappingo(z) = Iog(?j IS univalent on U. The holomorphic
-z
function defined byp(z) = 0‘1(?), maps U univlently onto the shaded

region of figure (3), and fixes 0, 1 and.
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-1

)
N

Figure (3).

Shapiro used theorem (4.1.15) and theorem (2.8.pydve that ¢ is cyclic
[3].

We end this section by studying the power of cyoperators and the set
of cyclic vectors.

Recall that if T is hypercyclic on H then all posgt powers of T are also
hypercyclic [1] and the set of all hypercyclic vact for T is dense set in H.
Positive powers of supercyclic operators are alg@ays supercyclic [1] and
the set of supercyclic vectors is dense set in kes& results don't have
analogues for cyclic operators. The forward shifor&the classical Hardy
space defined by:

S(f(2)) = zf(z), fO H?
is cyclic. However, Sis not cyclic because the codimension of the rasfge
S is two. Moreover, the set of cyclic vectors fois$iot dense in H [1].

The following theorem shows that there is a corinacbetween all
powers of a cyclic operator and the density ofséeof its cyclic vectors.

Theorem (4.1.17) [1]:

Suppose that T is a bounded linear operator oB#mach space X and
that T" is cyclic for each positive integer n, then theafecyclic vectors for T
is a dense subset of X.

Remark (4.1.18):

The converse of the preceding theorem is not CCoasider for example
the operator T ofi ? defined by:

T(Zl, 22) = (Zz, O)
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Each vectord, B) with botha and3 non-zero will be cyclic for T, hence T
has dense set of cyclic vectors. HowevérisTthe zero operator, and thus is
not cyclic.

The following theorem appeared in [1].

Theorem (4.1.19):

If Cy is cyclic operator, then all positive powers of &e also cyclic,
moreover the set of cyclic vectors is densein H

Proof:

Since the cyclicity of ¢ depends on the “type” of inducing mgpand
since the n-th iterate @f, ¢,, is of the same type &s hence if ¢ is cyclic, so
IS Cg = Cyn, for every positive integer n. Moreover, theorehi(17) shows

that the set of cyclic vectors is dense fn Hm

42 THE HYPERBOLIC AND PARABOLIC MODELS

In this section, we turn our attention to the medékat applied when a
self map of U has its Denjoy-Wolff point @tJ, these are the hyperbolic and
parabolic cases of the linear fractional model teeo Recall that the map

T(2) = %Z maps U ontd1 ={z : Re(z) > 0} and takes the point 1 4o Let
-z

¢ be a self map of U, that has Denjoy-Wolff pointdih so thatp is either of

a hyperbolic or parabolic type. Without loss of gelity (in terms of the
cyclicity problem) we may assume thét has Denjoy-Wolff point 1, so
¢(1) =1 and 0 <¢'(1) < 1. We denote by the self-map of the right half
plane that corresponds ¢ovia T:

® = TopoT*

Clearly, the sequence di-iterates of any point ifil converges teo, so
o functions as the half plane analogue to Denjoyf\fmint of ®. We will
also need to transfer to the right half plane ther@ative characterization of
the Denjoy-Wolff point in terms of angular limiteé derivatives for 0 « <
T, let § ={w : |arg w| <a/2}, (see figure (4)).
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Figure (4).

Definition (4.2.1)[ 3]:

(1) We say that a function F defined &hhas angular limit L at, and
write OlimF(w) = L, provided that given any with O <a <1t F(w)

W - 0

converges to L as w approachesthrough $.

(2) We say that a self map of Il has angular derivative Q @t(and write
@'(c0) = Q) provided that’ has angular limit Q ab.

Transferring information from U tOl via T, we have:

Theorem (4.2.2) [3]:

If @ is a self-map of1 with Denjoy-Wolff pointeo, then® has angular
limit o ateo , and has angular derivativecatequals toﬁ, where¢'(1) is

the angular derivative of To®oT at 1. Thusg'(c) > 1.

For self maps ofl with Denjoy-Wolff point «, the hyperbolic and
parabolic parts of the linear fractional model tle#o have the following
simple forms:

Theorem (4.2.3) [3] (Right Half-Plane M odels):

Supposed maps the right half plane into itself, and has jpgiWolff
point ateo. Let C= ®'(w0) so that & 1.
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(@) The hyperbolic model: If C > 1, then there existsoa-constant analytic
self-map V off1, such that:

In other words W, V) is a linear fractional model fob, wherey is
automorphism of1 given byy(w) = Cw, for all wI 1.

(b) The parabolic models: If & 1, then there exists a non-zero complex
number a with Re(& 0, and a non-constant analytic function V defined
onl1 such that:

Moreover, in equation (4.2): If Re(&) 0 (the parabolic automorphism
model) then V may be taken to be a self-mapl of

Remarks (4.2.4):

(1) When Re(a} 0 (the parabolic non-automorphism model), we cah n
assert that the intertwining map V may be takelne@ self-map dfl.

(2) In both models above, univalenced@implies univalence of V.

(3) To obtain further information about the naturaldafwe assume thab
has some smoothness near(i.e., that the original map has some
smoothness near its Denjoy-Wolff point). This imf@tion will allow us
to derive asymptotic representations of the intentvg maps V in the
right half plane models of theorem (4.2.3).

We seek series representations for holomorphiensati¢ of U about its
Denjoy-Wolff point, when that point lies on the lalary. We assume
(without loss of generality) thgt has Denjoy-Wolff point 1. I& [ (0, ) and
S is the angular approach region with anglat 1 (see figure (4)) then by
theorem (1.2.13), we can expand the mappirg follows:

B@) =1+ (L)(Z= 1) FY(Z) ceorererreeeeeeeeeeeeeeeeeeeeseeeeeeee e (4.3)

wherey(z) = O(|z- 1]) as 21 - 1in § (Y(z) = O(|z- 1]) means the growth
ofy(z)asZ - 1in §).
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Definition (4.2.5) [3]:

If the expansion (3) holds wity(z) = O(|z—- 1|) as Z1 - 1 in the full
disk, we say thaty 0 C'(1). More generally, if O< € < 1, we say that
¢ O C‘”*S)(l) provided thad has the expansion:

wherey(z) = O(|z- 1[") as zO - 1in U.

Recall from section one in this chapter that ineordo apply the
transference principle , theorem (4.1.7), whensé&mapd of U has linear
fractional model @, o), we must find conditions ofh that imply that the
polynomials inc are dense in H Rather than work witp ando. The author
in [3] works with their right half plane equivaler®® and V, then transfer the
information obtained back to the disk setting. Instsection, we present
briefly the theorems (without proofs) concern tlmdomorphic self mag of
U.

The proof of the following theorem appeared in [3]:

Theorem (4.2.6):

Supposep is a holomorphic self map of U that is of parabajipe, has
Denjoy-Wolff point at 1, and tha&t0 C*(1), then:

(& Re@'(1))=0.
(b) If either¢'’(1)=0 or Re¢''(1)) > 0, thenp is of non-automorphism type.
(c) Conversely, if¢p""(1) is non zero and pure imaginary apd] C*%(1),

then¢ is of automorphism type.

Remark (4.2.7):

Shapiro in [3] shows by an example that the thiedesnent of theorem
(4.2.6) is false for maps with less thahat the Denjoy-Wolff point.
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The proof of the following theorem is very longugwe omit.

Theorem (4.2.8) [3]:

Suppose thad is of parabolic type and has-6moothness at Denjoy-
Wolff point. If Re@'’) does not vanish at the Denjoy-Wolff point (sotfhey
theorem (4.2.6)¢ is of non-automorphism type), theg & not hypercyclic,
in fact only constant functions may adhere jeotits.

Definition (4.2.9):

We call a mapp regular provided it is univalent and continuoustia
closure of U, has Dinjoy-Wolff point p @ and maps the closed disk into U

0 {p}.

The following theorem shows thatdifis a regular map of parabolic non-
automorphism type that has&smoothness at the Dinjoy-Wolff point, then
although G is not hypercyclic (as we have just showed) ihévertheless
cyclic. This completes the proof of the statemangsle in the third row of
table Il of the introduction.

Theorem (4.2.10) [3]:

Suppose thap is a regular self map of U of parabolic type witimjoy-
Wolff point at 1, suppose further théitl C***(1) with Ref''(1)) > 0. Then
Cy is cyclic.

The following theorem proves the second row of g¢albil of the
introduction.

Theorem (4.2.11) [3]:

Suppose thap is a regular self-map of U that is of parabolipdayhas
Dinjoy-Wolff point at 1, and has ¥f-smoothness at 1. 1§"(1) is pure
imaginary (and non-zero), then, & hypercyclic.
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We end this section by the following result, whistssummarized in the
first row of table Il of the introduction.

Theorem (Hyperbolic Hypercyclicity) (4.2.12) [3]:

If ¢ is a regular self map of U that is of hyperbolipe and has -
smoothness at its Dinjoy-Wolff point, theg {S hypercyclic.

4.3 OPEN PROBLEMS

In this section, we present some open problemsesigd by our work.
We see in theorem (2.1.27) if, @ hyponormal, then 0 is fixed point for the

mappingd, hence ¢ and C;, are not hypercyclic (supercyclic) operators.

Question 1:

Are Gy and Cfp cyclic operators, whengGs hyponormal operator?

We saw in chapter two that ifGs compact operator, then, @nd Cfp

are not hypercyclic (supercyclic) operators.

Question 2:

What is the relation between the compactness obpleeator ¢ and the
cyclicity of Gy , Cy ?

In chapter three, we studied the cyclicity@j when¢ 0O LFT(U). We
proved that ifp is elliptic, thenCE, is cyclic if and only if G is cyclic. If¢ is
non-elliptic with interior fixed pointd is not the identity mapping) the(ﬁ;

is cyclic but not hypercyclic, not supercyclic.$ifnas no interior fixed point,
then eitherp is parabolic or non-parabolic. ¢f is non-parabolic, theﬁ:; IS

not cyclic (proposition (3.2.7), theorem (3.2.13§)¢ is parabolic, then we
proved thatCS, Is not supercyclic (proposition (3.2.28)).
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Chapter Four Linear Fractional Models

The following question completes the study of ayit)i of C;, when¢
O LFT(V).

Question 3:

Is C,, cyclic wheng is parabolic?

We turn our attention to arbitrary holomorphic sakip$ of U. We saw
in chapter four that there is three cages dilation type, hyperbolic type and
parabolic type.

Let ¢ be a univalent self-map of U of dilation type (egtthose trivial
cases (the identity and elliptic mappings)). Weuass without loss of
generality that O is fixed point fay, hence by the proof of theorem (4.1.7)

part (i) 0 < $'(0)| < 1. ThereforeC} Is cyclic (corollary (2.2.26)).

Note thatCS, Is not hypercyclic (supercyclic) singehas interior fixed
point.

If ¢ is of hyperbolic type, then corollary (2.2.29) msaothatcg is not
cyclic.

If ¢ is of parabolic type, then theorem (2.2.31) shomeat C; IS not

necessary cyclic.

Question 4:

If ¢ is of parabolic type, then what is the conditian¢oto makeCfp

cyclic?
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INTRODUCTION

Let H(U) be the set of all holomorphic functionsttie unit ball U of the
complex plane. If f belongs to H(U), then by Taylbeorem one can expand
the function f about the origin as follows:

fz)= > f(n)z", (zO V)
n=0
If the coefficients f(n)} IS a square summable sequence, i.e.,

Zh:(n)[2 < o, then we say that the function f belongs to di H(U).
n=0

Therefore:

H*={f OHU): > | f(n)B <oo}. HZis called the Hardy space.
n=0

It is clear that if¢p is a self map of U that belongs to H(U), then &my
function f O H(U), the composition o also belongs to H(U). The
Littlewood'’s principle theorem [17] shows that fany f that belongs to H
the compositiond also belongs to H Thus the composition operatorg C
defined by:

Cof =fodp  (f holomorphic on U)
takes the Hardy space Hto itself. Littlewood’s principle also shows the,
is a bounded operator orf.HSeveral authors have studied the properties of
composition operators, for example, compactnedm@unality, and spectra
of composition operators [8, 17]. Here is anotheredion for the
composition operators: The study of cyclicity, whievas followed by
Shapiro, Bourdon and others [3, 17].

Recall that an operator T on a Hilbert space Hiid ® be cyclic if there
is a vector x in H (called a cyclic vector for Thase orbit, orb(T, x¥ {T"x :
n=0, 1, ...} has dense linear span in H. The operatsrsupercyclic, if there
is a vector x in H (called a supercyclic vectoifpfsuch that the set:

{\T™:A, 00 ,n00,1,...}



I ntroduction

Is dense in H. It may happen that orbit, orb(Tisxjlense in H, in this case T
is called hypercyclic and x is a hypercyclic ved&rl0, 11].

Because the closed linear span of orb(T, x) issimallest closed T-
invariant subspace that contains the vector x, dbwecept of cyclicity is
intimately connected with the study of invarianbspaces. Hypercyclicity
has the same connection with invariant subsets.

One of our main concerns in this thesis was to gweditions that are
necessary and (or) sufficient for the compositiqgrerator to be a cyclic
operator.

This thesis contains some new results, to the ddfestir knowledge, on
the cyclicity of the adjoint composition operators.

This thesis consists of four chapters. In chaptee, ove recall the
definition of Hardy space Hand the composition operator orf, Hiso we
give some information about the conformal autom@mimapping, specially
when¢ is a linear fractional transformation.

In chapter two, we recall the definitions of cyclisupercyclic and
hypercyclic for the composition operator. We giveportant properties and
proved several theorems, also discussed the dyct€inormal, hyponormal
and isometric composition operator.

In chapter three, we study the cyclicity of the pmsition operator
induced by a linear fractional transformation. Bbam and Shapiro
characterize the cyclic behaviour of the compositbperators induced by a
linear fractional mapping, see table I, page (58§ also [3, 17, 19]. We give
the details of the proofs and other propertiesgudised the cyclicity of the
adjoint composition operator and investigate theicyy of the operators £
and G, where:

¢(z)=C%Z, (zOU) , wz)=az+b, (21U)

In chapter four, we use the linear fractional matielorem to study the
cyclicity of composition operators induced by mgeneral mapping. Finally,
we state some open problems suggested by our work.
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