
 

ABSTRACT 

 

Let H(U) be the set of all holomorphic functions on the unit ball U of the 

complex plane. The Hardy space H2 is the set of all functions f(z)= n

n 0

f̂ (n)z
∞

=
∑  

that belongs to H(U) such that 2

n 0

ˆ| f (n) |
∞

=
∑  < ∞. Let ϕ be a holomorphic self 

map of U. The composition operator Cϕ on H2 is defined as follows: 

Cϕf = foϕ, for all f ∈ H2 

Littlewood's principle shows that Cϕ is a bounded operator on H2. Recall 

that, an operator T on a Hilbert space H is said to be cyclic operator if there 

exists a vector x in H, such that span {Tnx : n =0, 1, …} is dense in H, the 

operator T is supercyclic if there is a vector x in H, such that the set {λnT
nx : 

λn ∈ � , n =0, 1, …} is dense in H. It may happen that orb(T, x) = {T nx : n = 

0, 1, …} is dense in H, in this case T is called a hypercyclic operator.  

One of our main concerns in this thesis was to give conditions that are 

necessary and (or) sufficient for the composition operator to be a cyclic 

(hypercyclic, supercyclic) operator.We give some known results with details 

of the proofs, specially when ϕ is a linear fractional transformation, i.e.  

ϕ(z) = az b
cz d

+
+

, z ∈ U 

Where a, b, c and d are complex numbers. 

This thesis contains some new results (to the best of our knowledge) for 

the cyclicity of the operator*Cϕ , where *Cϕ  is the adjoint of the composition 

operator Cϕ. . 
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CHAPTER ONE 

PRELIMINARIES  

 

INTRODUCTION 

In this chapter, we introduce the Hardy space H2 of all holomorphic 

functions on the unit ball U of the complex plane with square summable 

power series coefficients, discuss its norm and some properties. Also, we 

study the holomorphic functions that take U into itself, state famous theorems 

and recall some definitions. To each holomorphic function ϕ that takes U into 

itself we associate the composition operator Cϕ  defined by: 

Cϕ f = foϕ  (f ∈ H2) 

The Littlewoods a subordination theorem (1.3.1) tells us that the operator 

Cϕ  takes the Hardy space H2 into itself. Littlewood's principle also supplies 

an estimate which shows that Cϕ  is a bounded operator on H2, see [17, 3] for 

more details. 

This chapter consists of five sections. In section one; we recall the 

definition of Hardy space and some basic theorems. In section two, we give 

the concept of the radial limit, non-tangential limit, angular derivative; we 

state Schwarz lemma and prove several results from it. In section three, we 

state the Littelwood subordination theorem and the definition of composition 

operators. 

In section four, we study the linear fractional transformation. The 

holomorphic mapping ϕ is a linear fractional transformation if: 

ϕ(z) = 
az b
cz d

+
+

, (z ∈ Ĉ) 

Where a, b, c and d are complex numbers, Ĉ  is the Riemann sphere, i.e.,  

( Ĉ  = �  ∪ {∞}).we classify the set of all non-constant linear fractional 
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transformations into parabolic, elliptic, hyperbolic and loxodromic. We state 

and try to prove some useful results. 

In section five, we discuss the compact operators and give some 

necessary and sufficient conditions for a composition operator to be a 

compact operator. 
 

1.1 HARDY SPACE H2 

In this section, we define the Hardy space H2 and prove some basic 

results. We refer the reader to Duren's book [8] and J. H.shapiro [17] for more 

details about Hardy space. Let U be the unit ball in the complex plane �  , 

i.e., U = {z ∈�  : |z| < 1} and let H(U) be the set of all complex valued 

functions which are holomorphic (i.e., analytic) on U. Since pointwise sums 

and products of holomorphic functions are again holomorphic, then H(U) is a 

vector space over the field of the complex numbers. Before we give the 

definition of the Hardy space H2, we recall Taylor theorem without proof. 
 

Theorem (1.1.1) (Taylor) [4]: 

Let f be analytic at all points within a circle C with center at z0 and 

radius r0. Then at each point z inside C, the power series n
0

n 0

f̂ (n)(z z )
∞

=
−∑ , 

converges uniformly to f(z),  

i.e., f(z) = n
0

n 0

f̂ (n)(z z )
∞

=
−∑  for all z inside C, where f̂ (n)  = 

(n)
0f (z )

n!
 is said 

to be the n-th Taylor coefficient of the function f. 
 

Remark (1.1.2): 

If the function f belongs to H(U), then by Taylor theorem: 

f(z) = n

n 0

f̂ (n)z
∞

=
∑  

 

Now, we give the definition of Hardy space H2. 
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Definition (1.1.3) [17]: 

The Hardy space H2 is the set of all functions f(z) = n

n 0

f̂ (n)z
∞

=
∑  ∈ H(U), 

such that 2

n 0

ˆ| f (n) |
∞

=
∑  < ∞, i.e., H2 = {f ∈ H(U) : 2

n 0

ˆ| f (n) |
∞

=
∑  < ∞}. 

We can define an inner product on H2 as follows: 

If f(z) = n

n 0

f̂ (n)z
∞

=
∑  and g(z) = n

n 0

ĝ(n)z
∞

=
∑ , are any functions in H2, then 

the inner product of f and g is: 

<f, g> = 
n 0

ˆ ˆf (n)g(n)
∞

=
∑  

One can prove that this series converges [3]. 
 

Remark (1.1.4): 

If f is any function in H2, then we define the norm of the function f as 

follows: 

||f||2 = <f, f> = 2

n 0

ˆ| f (n) |
∞

=
∑  

i.e., H2 is a normed space. 
 

Theorem (1.1.5) [15]: 

The Hardy space H2 is Hilbert space. 
 

We give the following lemma without proof since it is well-known. 
 

Lemma (1.1.6) (Cauchy-Schwarz Inequality) [15]: 

Let K be an inner product space, then  

|<x, y>| ≤ ||x|| ||y||, for all x and y in K. 
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The following theorem appeared in [17], we give the proof for the sake 

of completeness. 
 

Theorem (1.1.7) (Growth Estimate): 

For each f ∈ H2 

|f(z)| ≤ 
2

|| f ||

1 | z |−
, for each z ∈ U 

Proof: 

Upon applying the Cauchy-Schwarz inequality to the power series of f, 

we obtain for each z ∈ U 

|f(z)| ≤ n

n 0

ˆ| f (n) | | z |
∞

=
∑  

 ≤ 

1/ 2 1/ 2
2 2n

n 0 n 0

ˆ| f (n) | | z |
∞ ∞

= =

   
   
   
∑ ∑  

 = 
2

|| f ||

1 | z |−
.    � 

 

The following corollary appeared in [17], we give the proof for the sake 

of completeness. 
 

Corollary (1.1.8): 

Every norm convergent sequence in H2 converges (to the same limit) 

uniformly on compact subsets of U. 

Proof: 

Suppose {fn} is a sequence in H2 norm-convergent to a function f ∈ H2, 

that is, ||fn − f|| → 0 

For 0 < R < 1, the growth estimate above yields for each n: 
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|z| R
sup

≤
|fn(z) − f(z)| ≤ n

2

|| f f ||

1 R

−

−
 

So fn → f uniformly on the closed disk {|z| ≤ R}, since R is arbitrary,         

fn → f uniformly on every compact subset of U.    � 
 

Remark (1.1.9): 

It is easily seen that en(z) = zn, n = 0, 1, …; is a complete orthonormal  

basis for H2, therefore span {en(z)} is dense in H2 and hence H2 is a separable 

Hilbert space. 
 

Definition (1.1.10) [17]: 

Let f be a holomorphic function on U and let z = reiθ, 0 ≤ r < 1, then 

define: 

M2(f, r) = 

1/ 2

i 21 | f (re ) | d
2

π
θ

−π

 
θ 

π  
∫  

 

The proof of the following proposition appeared in [17]. 
 

Proposition (1.1.11): 

Suppose that f is holomorphic on U, then f ∈ H2 if and only if M2(f, r) is 

bounded for 0 ≤ r < 1. 
 

Note that if f ∈ H2, then ||f|| = 
r 1
lim

−→
M2(f, r), [17]. 

Let H∞ be the set of all bounded holomorphic functions on U. Define a 

norm on H∞ by: 

||f||∞ = 
z U
sup

∈
|f(z)| 

One can prove that H∞ ⊆ H2 and ||f|| ≤ ||f||∞, for all f ∈ H∞, [17]. 
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Definitions (1.1.12): 

1. The function ϕ is said to be self map of U if it takes the unit ball U of the 

complex plane �  into itself. 

2. A one-to-one holomorphic map is called univalent. 

3. Let ϕ be a holomorphic self map of U. If ϕ is univalent and onto U, then 

ϕ is said to be a conformal automorphism of U or just automorphism of 

U. 
 

Now, we give two examples of holomorphic functions: 
 

Example (1.1.13): 

For each p ∈ U, define the special automorphism function: 

αp(z) = 
p z
1 pz

−
−

, for all z ∈ Ĉ  

This function interchanges p with the origin, i.e., αp(p) = 0 and αp(0) = p 
 

The following proposition appeared in [20], we give the details of its 

proof. 
 

Proposition (1.1.14): 

For each p ∈ U, the function αp is conformal automorphism of U and 

takes ∂U onto ∂U. 

Proof: 

It is clear that αp is holomorphic at all z except at z = 1
p

, which is 

outside of U, hence αp is holomorphic on U. Since: 

1 − |αp(z)|2 = 1 − αp(z) p(z)α  

= 
2 2

2
(1 | p | )(1 | z | )

|1 pz |

− −
−

 

This equation is greater than 0 for every z ∈ U and equals 0 for every z ∈ ∂U, 

hence |αp(z)| < 1 on U and |αp(z)| = 1 on ∂U 
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Let z ∈ U  = U ∪ ∂U, then αp(αp(z)) = z, therefore αp takes U onto U and ∂U 

onto ∂U.  

Finally, we show that αp is one-to-one. 

Let αp(z1) = αp(z2), then αp(αp(z1)) = αp(αp(z2)), hence z1 = z2 

Thus αp is conformal automorphism.    � 
 

The following remark shows that the function αp is self inverse. 

Remark (1.1.15): 

Let p ∈ U, one can show easily that αp(αp(z)) = z, for all z ∈ U. 

Therefore 1
p
−α  = αp. 

 

We need the following lemma, the proof is simple. 
 

Lemma (1.1.16): 

For each p ∈ U, p(0)′α  = -1 − |p|2 and p(p)′α  = 
2

1
1 | p |− +

. Therefore, 

p(0)′α p(p)′α  = 1. 

 

We give another example of holomorphic function on U. 
 

Example (1.1.17): 

Associated to each point α ∈ U, there is a function of a particular 

interest to us; the reproducing kernel for α, defined by: 

kα(z) = 1
1 z− α

 = n

n 0

( z)
∞

=
α∑  

which clearly belongs to H2 and has norm 
2

1

1 | |− α
. 

For each f ∈ H2, one can prove easily: 

f(α) = <f, kα> 
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1.2 SCHWARZ LEMMA 

In this section, we recall several definitions and state important theorems 

that we need in the next chapters. In the following theorem, we give the 

concept of the radial limit. 
 

Theorem (1.2.1) [3]: 

Let f ∈ H2 and 0 ≤ r < 1, then the limit f∗(w) = 
r 1
lim

−→
f(rw), exists at almost 

every point w on the unit circle. 
 

Definition (1.2.2) [3]: 

Let f ∈ H2 and w ∈ ∂U. The limit f∗(w) is said to be the radial limit of f 

at w. 
 

Remark (1.2.3): 

From now on, we drop the notation f∗(w) and we simply write f(w) for 

the radial limit of f at w. 
 

The following proposition appeared in [8], we give it without proof. 
 

Proposition (1.2.4): 

If f and g are two functions in H2, then one can find the inner product of 

f and g as follows: 

<f, g> = i i1 f (e )g(e ) d
2

π
θ θ

−π

θ
π ∫  

Thus: 

||f||2 = i 21 | f (e ) | d
2

π
θ

−π

θ
π ∫  

 

Recall that a point p ∈ �  is fixed point for the function ϕ, if ϕ(p) = p. 
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Definitions (1.2.5): 

Let ϕ be a holomorphic function that takes the unit ball U of the complex 

plane �  into itself and fixes the point p, then: 

1. p is an interior fixed point for ϕ if p ∈ U. 

2. p is an exterior fixed point for ϕ if p lies outside the closed disk U . 

3. p is a boundary fixed point if p ∈ ∂U and ϕ(p) = p in the sense of radial 

limits (i.e., 
r 1
lim

−→
ϕ(rp) = p). 

 

Definition (1.2.6): 

The holomorphic function ϕ is said to be rotation about the origin if 

there exists w ∈ ∂U, such that ϕ(z) = wz, (z ∈ U). 
 

The following is one of the most important theorems in complex 

analysis. 
 

Schwarz Lemma (1.2.7) [5]: 

If ϕ is a holomorphic self map of U with ϕ(0) = 0, then: 

1. |ϕ(z)| ≤ |z|, for every z in U, with equality for some 0 ≠ z ∈U if and only 

if ϕ is a rotation about the origin. 

2. |ϕ′(0)| ≤ 1 with equality if and only if ϕ is a rotation about the origin. 

From Schwarz lemma, we can get several results, we give some of them. 

The following proposition appeared in [20], we give the proof for the sake of 

completeness. 
 

 

Proposition (1.2.8): 

If ϕ is a conformal automorphism of U that fixes the origin, then there 

exists w ∈ ∂U such that ϕ(z) = wz  for every z ∈ U . 
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Proof: 

Since ϕ is a holomorphic self-map of U that fixes the origin, part (2) of 

Schwarz lemma guarantees that |ϕ′(0)| ≤ 1.  

But since ϕ is an automosphism, it has a compositional inverse ψ that also 

obeys the hypothesis of Schwarz lemma 

Hence |ψ′(0)| ≤ 1. By the chain rule, ϕ′(0)ψ′(0) = 1, hence |ϕ′(0)| = 1, and so 

by the "equality part" of part (2) of Schwarz lemma, ϕ is a rotation about the 

origin.    � 
 

We prove the following theorem .  
 

Theorem (1.2.9) ]20]: 

If ϕ is a holomorphic self map of U, then for every p ∈ U 

|ϕ′(p)| ≤ 
2

2
1 | (p) |

1 | p |

− ϕ
−

 

with equality if and only if ϕ is automorphism of U. 

Proof: 

Let q = ϕ(p) and consider the mapping ψ = αqoϕoαp, where αp and αq 

are the special automorphism mappings defined in page (8). 

It is clear that ψ is a holomorphic self map of U and ψ(0) = 0, hence by 

Schwarz lemma |ψ′(0)| ≤ 1 with equality if and only if ψ is a rotation about 

the origin. 

By the chain rule 

ψ′(z) = α′q(ϕoαp(z))ϕ′(αp(z))α′p(z) 

Hence: 

ψ′(0) = α′q(q)ϕ′(p)α′p(0) 

= 2
1

| q | 1−
ϕ′(p)(|p|2 − 1) 
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Since |ψ′(0)| ≤ 1, then |ϕ′(p)| ≤ 
2

2
1 | q |

1 | p |

−
−

 =
2

2
1 | (p) |

1 | p |

− ϕ
−

 

If the equality holds in the last inequality, then |ψ′(0)| = 1, so that by Schwarz 

lemma, there exists w ∈ ∂U, such that ψ(z) = wz for all z ∈ U, hence ψ is 

automorphism of U 

Since ψ = αqoϕoαp and αq, αp are self inverse, then ϕ = αqoψoαp 

Since ψ, αq, αp are automorphism, then ϕ is automorphism. 

Conversely, if ϕ is automorphism, then ψ = αqoϕoαp is also 

automorphism 

Since ψ(0) = 0, then from proposition (1.2.8), there exists w ∈ ∂U, such that 

ψ(z) = wz, for all z ∈ U 

Hence |ψ′(0)| = |w| = 1, that is |ϕ′(p)| = 
2

2
1 | q |

1 | p |

−
−

.    � 

 

Corollary (1.2.10) [20]: 

If ϕ is a holomorphic self map of U that fixes a point p ∈ U, then |ϕ′(p)| 

≤ 1, with equality if and only if ϕ is an automorphism. 

Proof: 

From theorem (1.2.9), |ϕ′(p)| ≤ 
2

2
1 | (p) |

1 | p |

− ϕ
−

 with equality if and only if ϕ 

is automorphism. Since ϕ(p) = p, then |ϕ′(p)| ≤ 1 with equality if and only if ϕ 

is automorphism.  � 

We give the proof of the following proposition for the sake of 

completeness. 
 

Proposition (1.2.11) [3, 20]: 

No self map U (except the identity function) may have more than one 

interior fixed point. 
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Proof: 

If ϕ(0) = 0 and ϕ(q) = q, where 0 ≠ q ∈ U, then by part (1) of Schwarz 

lemma, ϕ(z) = λz (z ∈ U), where |λ| = 1 

Therefore q = ϕ(q) =λq, so that λ = 1. Thus ϕ is the identity mapping 

If p and q are non-zero fixed points for ϕ, then consider the mapping ψ = 

αpoϕoαp, where αp is the special automorphism mapping. 

It is clear that ψ(0) = 0. Since q ∈ U and αp is automorphism then there exists 

0 ≠ r ∈ U, such that αp(r) = q, therefore ψ(r) = r 

Hence ψ fixes the origin and another point in U, therefore by our proof ψ 

must be the identity mapping 

Since ϕ = αpoψoαp, then ϕ is the identity mapping.    � 
 

Definitions (1.2.12): 

1. A sector in U at a point w ∈ ∂U is the region between two straight lines 

in U that meat at w and are symmetric about the radius to w, see figure 

(1.1), [17, p.49]. 

w

 

Figure (1.1) Sector at w. 

2. If f is a function defined on U and w ∈ ∂U, then ∠
z w
lim
→

f(z) = L, means 

that f(z) → L as z → w through any sector at w. When this 

happens, we say that L is the non-tangential (or angular) limit of f at w, 

[17, p.49]. 
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3. We say a holomorphic self map ϕ of U has an angular derivative at w ∈ 

∂U if ∠
z w
lim
→

ϕ′(z) exists (finitely), and that when this happens, we 

denote the limit by ϕ′(w), [3, p.17]. 
 

We end this section by the following theorem. For a proof see [17]. 
 

The Julia-Carathéodory Theorem (1.2.13): 

Suppose ϕ is a holomorphic self-map of U, and w ∈ ∂U. Then the 

following statements are equivalent: 

1. ∠
z w
lim
→

(z)
w z

η − ϕ
−

 exists for some η ∈ ∂U. 

2. ∠
z w
lim
→

ϕ′(z) exists, and ∠
z w
lim
→

ϕ(z) = η ∈ ∂U. 

Moreover: 

• The boundary point η in parts (1) and (2) are the same. 

• The limit of the difference quotient in part (1) coincides with that of the 

derivative in part (2). 
 

1.3 LITTLEWOOD'S THEOREM 

In this section, we explore some links between function theory and 

operator theory that are created by Littlewood's subordination principle. To 

each holomorphic function ϕ that takes the unit ball U of the complex plane C 

into itself, we associated the composition operator Cϕ defined by: 

Cϕf = foϕ, for all f ∈ H2 

We state the following famous theorem without proof, for a proof see 

[17]. 
 

Littlewood's Subordination Principle (1.3.1): 

Suppose ϕ is a holomorphic self-map of U, with ϕ(0) = 0. Then for each 

f ∈ H2, Cϕf ∈ H2 and ||Cϕf|| ≤ ||f||. 
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The following theorem gives the general case for the map ϕ (ϕ does not 

necessarily fix the origin). 
 

Theorem (1.3.2) [17]: 

Let ϕ be a holomorphic self-map of U, then foϕ ∈ H2,  

||foϕ|| ≤ 
1 | (0) |
1 | (0) |
+ ϕ
− ϕ

||f||, for all f ∈ H2 

 

We recall that if T is bounded operator on a Hilbert space H, then the 

norm of such an operator is defined by: 

||T|| =sup {||Tf|| : f ∈ H, ||f|| = 1} 

if ||T|| ≤ 1, then T is said to be a contraction on H.  

From theorem (1.3.2), we get the following corollary: 
 

Corollary (1.3.3): 

Let ϕ be a holomorphic self-map of U, then Cϕ is bounded operator on 

H2 and ||Cϕ|| ≤ 
1 | (0) |
1 | (0) |
+ ϕ
− ϕ

. 

Proof: 

We see from theorem (1.3.2) that foϕ ∈ H2, for all f ∈ H2  

Therefore the composition operator Cϕ takes the Hardy space H2 into itself. 

Also, we have from theorem (1.3.2) that: 

|| Cϕf || = ||foϕ|| ≤ 
1 | (0) |
1 | (0) |
+ ϕ
− ϕ

||f||, for all f ∈ H2 

Thus Cϕ is bounded and ||Cϕ|| ≤ 
1 | (0) |
1 | (0) |
+ ϕ
− ϕ

.    � 

 

Notation: 

Let ϕ be a holomorphic self map of U, then ϕn = ϕoϕo…oϕ (n-times). 
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Remarks (1.3.4): 

1. If ϕ is holomorphic self map of U that fixes the origin, then from 

corollary (1.3.3), Cϕ is a contraction on H2  

2. One can easily show that Cϕ o Cψ  = Cψ o ϕ and hence  

nCϕ  = Cϕoϕo…oϕ = 
n

Cϕ  

3. If ϕ is a conformal automorphism, then the composition operator Cϕ is 

invertible operator and 1C−
ϕ  = 1C −ϕ

. 

 

We recall that if H is a Hilbert space and T1, T2 are two operators on H, 

then T1, T2 are similar if there is an invertible operator S, such that  

T2 = S−1T1S. 
 

Definition (1.3.5) [17, p.93]: 

Composition operators Cϕ and Cψ are said to be compositionally similar 

if there is a conformal automorphism mapping α of the unit ball U, such that: 

ϕ = α−1
oψoα. 

 

The following proposition appeared in [17] without proof. We give the 

proof. 
 

Proposition (1.3.6): 

Every compositionally similar composition operators are similar. 

Proof: 

Let Cϕ and Cψ be two compositionally similar composition operators. 

Hence by definition, there exists a conformal automorphism mapping α such 

that ϕ = α−1
oψoα. Therefore: 

Cϕ = 1C − οψοαα = CαoCψo 1C −α  = CαoCψo
1C−

α  

Thus Cϕ and Cψ are similar operators.    � 
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We recall that if {en} is an orthonormal basis for a Hilbert space H, then 

every operator T on H can be represented by a matrix A = (aij), where Tei = 

ji j
j

a e∑ , i = 1, 2, … and the converse is true. We shall prove in the following 

example that the converse of proposition (1.3.6) is not true. 
 

Example (1.3.7): 

Let ϕ(z) = iz and ψ(z) = −iz, then Cϕ and Cψ are similar, but Cϕ and Cψ 

are not compositionally similar. 

Proof: 

We shall find the matrices of the operators Cϕ and Cψ with respect to the 

orthonormal basis en = zn, n = 0, 1, …; Cϕ1 =1, Cϕz = ϕ (z) = iz, Cϕz
2 =          

(ϕ (z))2 = −z2 and so on. 

Thus the operator Cϕ has a block matrix A 

A = 
M

M
 
 
 
 O

 

where: 

M = 

1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 i

 
 
 − 

−  

 

By the same way, the operator Cψ has a block matrix B: 

B = 
N

N
 
 
 
 O

 

Where: 

O 

O 

O 
O 
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N = 

1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 i

 
 −
 − 
  

 

Suppose that T is an operator that has a block matrix: 

C = 
P

P
 
 
 
 O

 

Where: 

P = 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 
 
 
 
  

 

It is clear that T is invertible operator, where T−1 has the block matrix: 

C−1 = 

1

1

P

P

−

−

 
 
 
 
 

O

 

Since A = C−1BC, then Cϕ =T−1CψT and hence Cϕ , Cψ are similar 

operators. Now, suppose that Cϕ , Cψ are compositionally similar, therefore 

there exists a conformal automorphism mapping α such that  

ϕ = α−1oψoα, that is αoϕ = ψoα. Thus: 

α(iz) = −iα(z), for every z ∈ U ................................................... (1.1) 

Therefore, α(0) = 0.  

By proposition (1.2.8), there exists r ∈ ∂U, such that α(z) = rz, for all  

z ∈ U.  

From equation (1.1) above, riz = −irz, for all z ∈ U.  

This is a contradiction. Therefore Cϕ and Cψ are not compositionally  

similar.    � 
 

O 

O 

O 

O 
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1.4 LINEAR FRACTIONAL TRANSFORMATIONS 

In this section, we present some information about the linear fractional 

transformations that we use in the next chapters. We refer the reader to [17], 

[5] for more details about the linear fractional transformations. 
 

Definition (1.4.1): 

A linear fractional transformation is a mapping of the form: 

ϕ (z) = 
az b
cz d

+
+

 

Where a, b, c and d are complex numbers. 
 

We prove the following proposition: 
 

Proposition (1.4.2): 

Let ϕ be a linear fractional transformation, then ϕ is a constant mapping 

if and only if ad − bc = 0. 

Proof: 

For any two points z1, z2, we have: 

ϕ (z1) = ϕ (z2)  

⇔ 1

1

az b

cz d

+
+

 = 2

2

az b

cz d

+
+

  

⇔ (az1 + b)(cz2 + d) = (az2 + b)(cz1 + d) 

⇔ (ad − bc)(z1 − z2) = 0 

Therefore, if ϕ is a constant mapping, then ϕ(z1) = ϕ(z2), for any z1, z2 and 

hence (ad − bc)(z1 − z2) = 0, if we take z1 ≠ z2, then ad − bc = 0 

Conversely, if ad − bc = 0, then (ad − bc)(z1 − z2) = 0 and hence ϕ(z1) = 

ϕ(z2), for each z1, z2; that is ϕ is a constant mapping.    � 
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Remarks (1.4.3): 

1. One can see from the proof of proposition (1.4.2), that every non-

constant linear fractional transformation is one-to-one. 

2. We consider a linear fractional transformation ϕ(z) = 
az b
cz d

+
+

, with ad − 

bc ≠ 0 defined on the Riemann sphere Ĉ =C ∪ {∞}, where ϕ(∞) = 
a
c

 

and d
c

− ϕ = ∞ 
 

 (notice that we cannot have a = 0 = c or d = 0 = c, since 

ad − bc ≠0). 
 

Notation: 

1. We denote the set of all linear fractional transformations is subject to the 

condition ad − bc ≠ 0 by LFT(Ĉ). 

2. For any ϕ(z) = 
az b
cz d

+
+

 ∈ LFT(Ĉ), we some times denote it by ϕA(z) 

where A is the non-singular 2×2 complex matrix 

A = 
a b
c d
 
  

 

 

Remarks (1.4.4): 

1. It is clear that if ϕA belongs to LFT(̂C), then ϕA =ϕλA , for any non-zero 

complex number λ. 

2. One can easily prove that ϕAoϕB = ϕAB, where o is the composition of 

maps. 

3. If ϕA belongs to LFT(̂C), then ϕA is invertible where 1
A
−ϕ  = 1A −ϕ , hence 

each linear fractional transformation can be regarded as a one-to-one 

holomorphic mapping of the Riemann sphere Ĉ onto itself. 
 

From remarks (1.4.4), one can prove the following: 
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Proposition (1.4.5): 

(LFT(Ĉ),o) is a group. 
 

Definition (1.4.6): 

We say that S, T ∈ LFT(Ĉ) are conjugate if there exists V ∈ LFT(Ĉ), 

such that S = VTV−1. 
 

It is easy to prove the following proposition: 
 

Proposition (1.4.7): 

Let ϕA and ϕB be any two mappings in LFT(Ĉ). Then A and B are 

similar matrices if and only if ϕA and ϕB are conjugate. 
 

Next, we study the fixed points for the linear fractional transformation. 

The proof of the following is simple. 
 

Remarks (1.4.8): 

If ϕ(z) = 
az b
cz d

+
+

   belongs to LFT(̂C), (ϕ is not the identity mapping), 

then: 

1. ϕ fixes the point ∞ if and only if c = 0. 

2. If c = 0, then ∞ is the only fixed point if and only if a = d and b ≠ 0. 

3. If c ≠ 0, then the fixed point equation is quadratic and takes the form cz2 

+ (d − a)z − b = 0 with solutions: 

α, β = 
2(a d) (a d) 4bc

2c

− − +m
 ......................................... (1.2) 

 

Definition (1.4.9): 

Let ϕ(z) = 
az b
cz d

+
+

 be a linear fractional transformation. If ad − bc = 1, 

then we say that ϕ is in a standard form. 
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Since every linear fractional transformation ϕA is equal to ϕλA, for every 

non-zero complex number λ, then one can assume that every linear fractional 

transformation is in a standard form: 
 

Definition (1.4.10): 

If T(z) = 
az b
cz d

+
+

 belongs to LFT(̂C), then define the trace of T to be 

X(T) = a + d. 
 

Remark (1.4.11): 

We can write the two fixed points in equation (1.2) in term of the trace: 

α, β = 
2 1/ 2(a d) (X(T) 4)

2c
− −m

 

Using this equation, one gets the following proposition: 
 

Proposition (1.4.12): 

Suppose that T belongs to LFT(Ĉ) and ∞ is not a fixed point for T, then 

T has a unique fixed point in Ĉ if and only if |X(T)| = 2. 
 

The following theorem appeared in [17]. 
 

Theorem (Fixed Point and Derivative) (1.4.13): 

Suppose that T ∈ LFT(Ĉ) (T is not the identity mapping), then the 

following are equivalent: 

1. |X(T)| = 2. 

2. T has just one fixed point in Ĉ. 

3. T′ = 1 at a fixed point of T 
 

Definition (1.4.14): 

A map ϕ ∈ LFT(Ĉ) is called parabolic if it has a single fixed point in Ĉ. 
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The proof of the following proposition is in [17]. 
 

Proposition (1.4.15): 

If ϕ ∈ LFT(Ĉ) is parabolic, then ϕ is conjugate to V(z) = z + c,  

c ≠ 0. 
 

Remark (1.4.16): 

If T ∈ LFT(Ĉ) is not parabolic, then T has two fixed points α, β ∈ Ĉ . 

Let S ∈ LFT(Ĉ) that takes α to 0 and β to ∞, then the map V = SoToS−1 

belongs to LFT(̂C) and fixes both 0 and ∞ so it must have the form V(z) = 

λz, λ is said to be the multiplier for T. 
 

Proposition (1.4.17) [17]: 

If  T ∈ LFT(Ĉ) has two fixed  points   α  , β   then  

T′(α ) = λ  and T′( β ) = 1/λ  where λ is the multiplier for T . 

In the following definition we classify the linear fractional transformations 

according to their multipliers . 
 

Definition (1.4.18) [17]: 

If ϕ ∈ LFT(Ĉ) is not parabolic and not an identity mapping and  

λ ≠ 1 is the multiplier for ϕ, then: 

1. ϕ is elliptic if |λ| = 1. 

2. ϕ is hyperbolic if λ > 0. 

3. ϕ is loxodromic if ϕ is neither elliptic nor hyperbolic. 
 

Our interest here is in LFT(U), the subgroup of LFT(Ĉ) consisting of 

self maps of the unit ball U (i.e., take U into itself). 
 

Notation: 

The notation fn 
k→  f, means that the sequence {fn} of functions 

converges to f uniformly on every compact subset of U.  
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Now, we state the following theorem without proof: 
 

Theorem (1.4.19) [3]: 

Suppose ϕ is analytic self map of U that is not elliptic linear fractional 

transformation, (ϕ not necessary linear fractional transformation).  

(a) If ϕ has a fixed point p ∈ U, then ϕn 
k→  p and |ϕ′(p)| < 1. 

(b) If ϕ has no fixed point in U, then there is a point p ∈ ∂U such that         

ϕn 
k→  p. Furthermore, 

• p is a boundary fixed point of ϕ, and 

• the angular derivative of ϕ exists at p with 0 < ϕ′(p) ≤ 1. 

(c) Conversely, if ϕ has a boundary fixed point p at which ϕ′(p) ≤ 1, then ϕ 

has no fixed points in U and ϕn 
k→  p. 

(Recall that ϕn means ϕoϕo…oϕ n-times). 
 

Remark (1.4.20): 

The fixed point p for the mapping ϕ is called the Denjoy Wolff point of 

ϕ, or attractive fixed point for ϕ if for each z in the unit ball U, ϕn(z) → p 

as n → ∞, [3]. 
 

The following proposition appeared in [17] without proof, we give the 

proof. 
 

Proposition (1.4.21): 

If ϕ ∈ LFT(U) is parabolic, then ϕ has its fixed point on ∂U. 

Proof: 

Since ϕ is parabolic, then ϕ has only one fixed point, say p. 

From theorem (1.4.19), p∈ U or p ∈ ∂U, if p ∈ U, then from part (a) of 

(1.4.19), |ϕ′(p)| < 1, and this contradicts part (3) of (1.4.13) 

Therefore, p ∈ ∂U.    � 
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We prove the following proposition: 
 

Proposition (1.4.22): 

If ϕ ∈ LFT(U) is parabolic, then for all z ∈ Ĉ , ϕn(z) → a as  

n → ∞, where a is the fixed point for ϕ. 

Proof: 

If α ∈ LFT(Ĉ) takes the point a to ∞, then V = αoϕoα−1 belongs to 

LFT(Ĉ) and fixes only the point ∞. 

Therefore, V(z) = z + c, for some non-zero complex number c.  

Therefore, ϕn = α−1Vnα, hence ϕn(z) = α−1(α(z) + nc), for all z ∈ Ĉ  

Since {α(z) + nc} → ∞ as n → ∞, then for all z ∈ Ĉ , ϕn(z) = α−1(α(z) + 

nc) → α−1(∞) = a as n → ∞.    � 
 

The following theorem appeared in [17]. 
 

Theorem (1.4.23): 

Let ϕ be a linear fractional self-map of U 

1. If ϕ is hyperbolic, then it has attractive fixed point in U  with the other 

fixed point outside U. 

2. If ϕ is loxodromic or elliptic, then it has a fixed point in U and a fixed 

point outside U . 
 

The proof of the following proposition appeared in [17]. 
 

Proposition (1.4.24): 

Let ϕ ∈ LFT(U) has two fixed points α, β ∈ Ĉ . If α is attractive fixed 

point for ϕ and ϕ is not elliptic, then for all z ∈ Ĉ \{ β}, ϕn(z) → α as           

n → ∞. 
 

We give the following proposition: 
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Proposition (1.4.25): 

Let ϕ be a linear fractional self map of U, then ϕ is elliptic if and only if 

ϕ is automorphism that has an interior fixed point. 

Proof: 

(⇒) If ϕ is elliptic, then from theorem (1.4.23), ϕ has a fixed point α ∈ 

U and β outside U . From proposition (1.4.17), ϕ′(α) = λ and ϕ′(β) = 1/λ, 

where λ is the multiplier for ϕ 

Since ϕ is elliptic, then |λ| = 1 and hence |ϕ′(α)| = |ϕ′(β)| = 1. 

Now, if ϕ is not automorphism, then by corollary (1.2.10), |ϕ′(α)| < 1, this is a 

contradiction, therefore ϕ is an automorphism. 

(⇐) Suppose ϕ is an automorphism of U with an interior fixed point p, 

let ψ = αpoϕoαp, where αp is the special automorphism mapping that 

interchanges the point p with the origin.  

Therefore, ψ is automorphism and ψ(0) = 0. By proposition (1.2.8), there 

exists w ∈ ∂U, such that ψ(z) = wz, for each z ∈ U. Therefore: 

w = ψ′(0) = α′p(ϕoαp(0)) ϕ′(αp(0)).α′p(0) 

= α′p(p) ϕ′(p) α′p(0) 

= ϕ′(p) 

That is the multiplier for ϕ is w. Since |w| = 1, then ϕ is elliptic.    � 
 

We end this section by the following proposition which appeared in [3]. 
 

Proposition (1.4.26): 

If ϕ ∈ LFT(U) has two boundary fixed points, then ϕ is an 

automorphism. 
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1.5 COMPACT COMPOSITION OPERATORS 

In this section, we recall the concept of a compact operator and give 

some necessary and sufficient conditions for a composition operator to be a 

compact operator. We recall that an operator T on a Hilbert space H is said to 

be compact if it maps every bounded set into a relatively compact one (one 

whose closure in H is compact). 

The following theorem shows that H2 supports a lot of compact 

composition operators. 
 

Theorem (1.5.1) [17]: 

Let ϕ be a holomorphic self map of U. If ||ϕ||∞ < 1, then Cϕ  is a compact 

operator on H2. 
 

We recall that an operator T on a Hilbert space H is said to be a Hilbert-

Schmidt operator if for some orthonormal basis {en} of H, 

2
n

n 0

|| Te ||
∞

=
∑  < ∞ 

The following theorem appeared in [17]. 
 

Theorem (1.5.2): 

Every Hilbert-Schmidt operator is compact. 
 

Corollary (1.5.3): 

If n 2

n 0

|| ||
∞

=

ϕ∑  < ∞, then Cϕ is compact operator. 

Proof: 

Since en(z) = zn, n = 0, 1, …; is orthonormal basis and 

n 2

n 0

|| C (z ) ||
∞

ϕ
=
∑  = n 2

n 0

|| ||
∞

=

ϕ∑  < ∞ 

then Cϕ is a Hilbert-Schmidt operator and hence from theorem (1.5.2), Cϕ is 

compact operator.    � 
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The following theorem appeared in [17]. 
 

Theorem (Angular Derivative Criterion for Compactness) (1.5.4): 

Suppose ϕ is a holomorphic self map of U. 

(a) If Cϕ is compact on H2, then ϕ has an angular derivative at no point of 

∂U. 

(b) If ϕ is univalent and has no angular derivative at any point of ∂U, then 

Cϕ is compact on H2. 
 

We are ready now to prove the following proposition. 
 

Proposition (1.5.5) [17]: 
If the composition operator Cϕ is compact on H2, then ϕ has a fixed point 

in U. 

Proof: 

If ϕ has no fixed point in U, then by theorem (1.4.19), ϕ has an angular 

derivative at a point w ∈ ∂U with 0 < ϕ′(w) ≤ 1. 

According to the angular derivative criterion, Cϕ is not compact.    � 
 

The authors in [13] have studied the compactness of the operator CϕC
*
ψ 

and showed the following. 
 

Theorem (1.5.6): 

Let ϕ, ψ be univalent self maps of U, then C*
ψCϕ is compact if and only 

if 
2

|z| 1

(1 | z |)
lim

(1 | (z) |)(1 | (z) |)−→

−
− ϕ − ψ

 = 0. 

 

We end this section by studying the eigenvalues for a composition 

operator Cϕ. The eigenfunction equation for a composition operator Cϕ is 

called Schroder equation: 

foϕ = λf 

The following theorem appeared in [17]. 
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The Eigenfunction Theorem (1.5.7): 

Suppose that ϕ is a holomorphic self map of U for which Cϕ is compact 

on H2 (i.e., by proposition (1.5.5) there exists an interior fixed point p ∈ U), 

then the eigenvalues of Cϕ are precisely the numbers { }n 0
(p)

∞
=

′ϕ  each has 

multiplicity one. Moreover, if σ is an eigenfunction for ϕ′(p), then the set 

{ σn} spans the eigenspace for ϕ′(p)n, n = 0, 1, … 
 

Remark (1.5.8): 

If ϕ is univalent self map of U, then σ in the previous theorem is also 

univalent, [17]. 
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CHAPTER TWO 

CYCLIC COMPOSITION OPERATORS 

 

INTRODUCTION 

In this chapter, we recall the definitions of cyclic, supercyclic and 

hypercyclic operators on a Hilbert space H and we study the cyclicity of the 

composition operators. This chapter consists of two sections, in section one 

we prove an important theorems about the cyclic composition operators, for 

example we show that if ϕ is holomorphic self map of U that fixes a point p in 

U, then Cϕ is not a hypercyclic (supercyclic) operator. Although, a 

composition operator induced by a mapping ϕ with fixed point in U can never 

be supercyclic, it can be cyclic (see example (2.1.5)). Also, we study the 

cyclicity of normal, isometric composition operators.  

In section two, we state some conditions for the operator Cϕ to be cyclic, 

for example the univalency of the holomorphic mapping ϕ and the density of 

the range of Cϕ are necessary conditions for Cϕ to be cyclic. In general, if x is 

a cyclic vector for the operator T, then Tx may not be cyclic vector for T (see 

example (2.2.14)). We prove that if f is cyclic (hypercyclic, supercyclic) 

vector for Cϕ, then Cϕf is a cyclic (hypercyclic, supercyclic) vector for Cϕ 

(theorem (2.2.15)). Also, we prove some new results, to the best of our 

knowledge, for the cyclicity of the adjoint composition operators. 
 

2.1 CYCLICITY 

In this section, we recall a basic concept of cyclicity and we give 

important theorems about the cyclic composition operators. We begin this 

section by the following well-known definitions. 
 

Definitions (2.1.1): 

Let T be a bounded linear operator on a Hilbert space H, then: 
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1. T is cyclic if there exists a vector x ∈ H, such that the set span {Tnx : n = 

0, 1, …} is dense in H.  

The vector x is called a cyclic vector for the operator T. 

2. T is a supercyclic operator if there exists a vector x ∈ H, such that the set 

{ αnT
nx : αn ∈ � , n = 0, 1, …} is dense in H. 

The vector x is called a supercyclic vector for the operator T. 

3. T is a hypercyclic operator if there exists a vector x ∈ H, such that the 

orbit, orb(T, x) = {T nx : n = 0, 1, …} is dense in H. 

The vector x is called hypercyclic vector for the operator T. 
 

It is clear from this definition that every hypercyclic operator is a 

supercyclic operator and every supercyclic operator is a cyclic operator. 

However, it is known that the opposite implications are false [11].  

The proof of the following useful theorem is well-known, thus it is 

omitted. 
 

Theorem (2.1.2) [12, 10]: 

Suppose that S, T, X are bounded operators on a Hilbert space H, such 

that SX = XT, if T is cyclic (supercyclic, hypercyclic) and X has a dense 

range, then S is also cyclic (supercyclic, hypercyclic). 
 

Corollary (2.1.3): 

If T1 and T2 are similar operators, then T1 is cyclic (supercyclic, 

hypercyclic) if and only if T2 is cyclic (supercyclic, hypercyclic). 
 

From [16, proposition (4.5)] and [12, proposition (3.6)], we can prove 

the following proposition: 
 

Proposition (2.1.4): 

Let T be an operator on a Hilbert space H that has diagonal matrix A = 

diag(λ1, λ2, …) with respect to some orthonormal basis {en}, then T is cyclic 

if and only if the diagonal entries {λi} are distinct. 
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Now, we can give an example of a cyclic composition operator. 
 

Example (2.1.5): 

Let α be a non-zero complex number with |α| < 1 and let ϕ(z) = αz, for 

every z in U, then ϕ is a holomorphic self map of U. We claim that Cϕ is a 

cyclic operator on H2. In fact the matrix of Cϕ with respect to the orthonormal 

basis en(z) = zn, n = 0, 1, … is diagonal matrix A = diag(1, α, α2, …). Since   

1 > |α| > |α2| > …, then by proposition (2.1.4), Cϕ is cyclic. 
 

The following theorem shows that the composition operator Cϕ in 

example (2.1.5) is not hypercyclic (in fact it is not supercyclic, see theorem 

(2.1.18)). 
 

Theorem (2.1.6) [3]: 

Suppose that ϕ is holomorphic self map of U that fixes a point z0 in U, 

then Cϕ is not hypercyclic operator. Moreover, if ϕ is not an elliptic, then for 

each f ∈ H2, the only limit point of orb(Cϕ, f) is the constant function f(z0). 

Proof: 

Suppose that ϕ fixes a point z0 ∈ U. If ϕ is not elliptic, then by theorem 

(1.4.19), ϕn → z0 pointwise on U. Hence, if a function g is a limit point of 

the orbit of f, say g = 
J

lim foϕnJ. 

Then by the continuity of point evaluation function on H2, we see that for 

each z ∈ U 

g(z) = 
J

lim f(ϕnJ(z)) = f(z0) 

i.e., orb(Cϕ, f) is not dense in H2 

If ϕ is elliptic, then ϕn(z0) → z0 as n → ∞, hence if a function g is a limit 

point of orb(Cϕ, f), then g(z) = 
J

lim f(ϕnJ(z)) 

Therefore g(z0) = 
J

lim f(ϕnJ(z0)) = f(z0) 
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Thus, every function g belongs to the closure of the set orb(Cϕ, f) has value 

f(z0) at z0, hence orb(Cϕ, f) cannot be dense.    � 
 

Remark (2.1.7): 

We can prove theorem (2.1.6) by using Littlewood's subordination 

principle which asserts that if the fixed point p is the origin, then ||Cϕ|| ≤ 1 and 

hence Cϕ is not hypercyclic (every contraction operator is not hypercyclic 

operator [7]). If p ≠ 0, we have ψ = αpoϕoαp, where ψ(0) = 0, αp is the special 

automorphism mapping. So Cϕ is similar to a contraction and therefore still 

not hypercyclic (corollary (2.1.3)). 

We shall prove in theorem (3.2.6) that if ϕ is automorphism, non-elliptic 

(i.e., by proposition (1.4.25), ϕ has no interior fixed point) then Cϕ is a 

hypercyclic operator. 
 

Corollary (2.1.8): 

If Cϕ is a compact composition operator, then Cϕis not hypercyclic. 

Proof: 

Since Cϕ is compact, then by proposition (1.5.5), ϕ  has an interior fixed 

point and hence from theorem (2.1.6), Cϕ  is not a hypercyclic operator.    � 
 

In fact, much more is true: 

Proposition (2.1.9) [17]: 

No compact operator on a Hilbert space is hypercyclic. 
 

Remark (2.1.10): 

If ϕ, ψ are univalent holomorphic self maps of U and  

2

|z| 1

(1 | z |)
lim

(1 | (z) |)(1 | (z) |)−→

−
− ϕ − ψ

 = 0 

Then by theorem (1.5.6), C*
ψCϕ is a compact operator and hence C*

ψCϕ is not 

a hypercyclic operator. 
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The following theorem shows that if Cϕ is hypercyclic on H2, then it is 

hypercyclic on H(U). 
 

Theorem (2.1.11) [17]: 

Suppose E is a linear metric space and F a dense subspace that is itself a 

linear metric space with a stronger topology. Suppose T is a linear 

transformation on E that also maps the smaller space F into itself, and is 

continuous in the topology of each space. If T is hypercyclic on F, then it is 

also hypercyclic on E and has an E- hypercyclic vector that belong to F. 
 

Corollary (2.1.12): 

Any hypercyclic vector for Cϕ acting on H2 is also hypercyclic for 

Cϕacting on H(U). 

Proof: 

Since the set of polynomials is dense in both H2 and H(U), then H2 is 

dense in H(U) 

Therefore, any hypercyclic composition operator Cϕ acting on H2 is 

hypercyclic acting on H(U).    � 
 

The following lemma is proved in [16]. 
 

Lemma (2.1.13): 

If T is a cyclic operator on H has a matrix A = (aij) with cyclic vector X 
= (x1, x2, …), then the operator T  is cyclic with cyclic vector X  = ( 1x , 2x , 

…) , where ix  is the complex conjugate of xi, for all i and T  is the operator 

that has the matrix A  = ( ija ), ( ija  is the complex conjugate of aij). 
 

Notation: 

Let ϕ(z) = n
n

n

a z∑ , an ∈ C, ∀ n; be a holomorphic self map of U. We 

denote by ϕ(z) to the holomorphic map n
n

n

a z∑ , where na  is the complex 

conjugate of an. 
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We give the following proposition: 
 

Proposition (2.1.14): 

Let ϕ(z) be a holomorphic self map of U. If Cϕ is a cyclic operator with 

cyclic vector f, then Cϕ  is a cyclic operator with cyclic vectorf . 

Proof: 

Let A be the matrix of Cϕ with respect to the orthonormal basis {en(z) = 

zn}, therefore the matrix of Cϕ  is A  = ( ija ), where ija  is the complex 

conjugate of aij. 

If Cϕ is cyclic, then by lemma (2.1.13), Cϕ  is cyclic.    � 

 

Corollary (2.1.15): 

Suppose that ϕ(z) = n

m

p (z)
q (z)

 is a holomorphic self map of U, where pn(z) 

and qm(z) are polynomials of degree n and m, respectively. If Cϕ is a cyclic 

operator, then Cψ is a cyclic operator, where ψ(z) = n

m

p (z)
q (z)

. 

Proof: 

One can easily prove that (z)ϕ  = ψ(z) and hence if Cϕ is cyclic, then 

from proposition (2.1.14), Cψ is cyclic.    � 
 

Before we give theorem (2.1.18), we need some preliminaries. 
 

Remarks (2.1.16): 

1. If T is a cyclic operator, then dim[R(T)]⊥ < 2, where R(T) is the range of 

T, [9]. 

2. T is a cyclic operator if and only if T + αI is a cyclic operator for all  

α ∈ � , [16]. 
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Lemma (2.1.17) [2]: 

Let T be an operator that has the matrix A = (aij) with respect to the 

orthonormal basis {en}, then the matrix of T* (the adjoint of T) with respect 

to the same orthonormal basis is 
t

A  = ( jia ), where jia  is the complex 

conjugate of aji.  
 

The author in [1] proves the following theorem, we give another proof. 
 

Theorem (2.1.18): 

Let ϕ be a holomorphic self map of U with interior fixed point p, then Cϕ 

cannot be a suprcyclic operator. 

Proof: 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping, 

therefore ψ(0) = 0 and Cψ = CαpoCϕoCαp, that is Cψ is similar to Cϕ. 

We claim that Cψ is not a supercyclic operator. In fact if w = ψ′(0), then the 

matrix of Cψ with respect to the orthonormal basis en(z) = zn, n = 0, 1, … 

takes the form: 

A = (aij) = 2

1
0 w

w
*

 
 
 
 
  O

 

Therefore, the matrix of *Cψ  with the same orthonormal basis takes the form: 

t
A  = ( jia ) = 2

1 0
w *

w

 
 
 
 
  

L

O

 

If w = 1, then the first and second rows of the matrix A − I are zeros, hence 

e0(z) = 1 and e1(z) = z belong to [R(Cψ − I)]⊥, where R(Cψ − I) is the range of 

the operator Cψ − I, therefore Cψ − I is not cyclic (see remark (2.1.16)), so that 

Cψ is not suprcyclic. If w ≠ 1, then it is clear that 1 and w  are eigenvalues of 

O 

O 
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the operator *Cψ  ([16], proposition (4.11)). Thus, Cψ is not a supercyclic 

operator (the adjoint of the supercyclic operator has at most one eigenvalue 

[11]).  

Since Cϕ and Cψ are similar, then Cϕ is not a supercyclic operator.    � 
 

Corollary (2.1.19): 

If Cϕ is a compact operator, then Cϕ is not a supercyclic operator. 

Proof: 

Since Cϕ is compact, then by proposition (1.5.5), ϕ has interior fixed 

point 

Hence Cϕ is not a supercyclic operator (theorem (2.1.18)).    � 
 

Remark (2.1.20): 

Although a composition operator induced by a mapping ϕ with fixed 

point in U can never be supercyclic, it can be cyclic (see example (2.1.5)). 
 

We give the following theorem: 
 

Theorem (2.1.21): 

Let ϕ be a conformal automorphism of U and has an interior fixed point 

p, then Cϕ is cyclic if and only if (ϕ′(p))n ≠ 1, for all n = 1, 2, … 

Proof: 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping 

Therefore, ψ(0) = 0 and ψ is automorphism 

Hence by proposition (1.2.8), there exists w ∈ ∂U, such that ψ(z) = wz, for all 

z ∈ U, therefore: 

ψ′(z) = α′p(ϕoαp(z)) ϕ′(αp(z))α′p(z) 

So that w = ψ′(0) = ϕ′(p). It is clear that the matrix of Cψ with respect to the 

orthonormal basis {zn} is a diagonal matrix A = diag(1, w, w2, ..), therefore, 
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from proposition (2.1.4), Cψ is cyclic if and only if the diagonal entries {wn : 

n =0, 1, …} are distinct, that is wn ≠ 1, n =1, 2, …  

Since Cϕ = CαpoCψoCαp, then Cϕ and Cψ are similar so that Cϕ is cyclic if and 

only if Cψ  is cyclic. 

Thus Cϕ is cyclic if and only if (ϕ′(p))n = wn ≠ 1, n =1, 2, …    � 
 

Recall that, the operator T on H is called a normal operator if TT* = T*T 

and called isometric if T*T = I. 
 

Theorem (2.1.22) [7]: 

Let ϕ be holomorphic self map of U, then Cϕ is normal if and only if      

ϕ(z) = αz, for some α, |α| ≤ 1. 
 

From this theorem, we have the following results. 
 

Corollary (2.1.23): 

Let ϕ be a holomorphic self map of U. If Cϕ is normal, then Cϕ and *Cϕ  

are not hypercyclic (not supercyclic). 

Proof: 

Since Cϕ is a normal operator, the ϕ(z) = αz, for some α, |α| ≤ 1 

Therefore, 0 is fixed point for ϕ. Thus Cϕ is not hypercyclic (theorem (2.1.6)), 

not supercyclic (theorem (2.1.18)). 

If A is the matrix of Cϕ with respect to the orthonormal basis {zn}, then A is  a 

diagonal matrix with diagonal entries 1, α, α2, …, therefore the matrix of *Cϕ  

is a diagonal matrix with diagonal entries 1, α , α 2, … 

Thus *Cϕ  = Cψ, where ψ(z) = α z, ∀ z ∈ U 

Since 0 is fixed point for ψ, then *Cϕ  = Cψ is not hypercyclic (theorem 

(2.1.6)), not supercyclic (theorem (2.1.18)).    � 
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Corollary (2.1.24): 

Suppose that ϕ is non-zero holomorphic self map of U (ϕ is not the 

identity mapping). If ϕ is non-elliptic and Cϕ is normal operator, then Cϕ and 
*Cϕ  are cyclic operators. 

Proof: 

From theorem (2.1.22), ϕ(z) = αz,  where |α| ≤ 1 

Since ϕ is non-elliptic and not zero mapping, then 0 < |α| < 1, hence Cϕ is 

cyclic (see example (2.1.5)) 

From the proof of corollary (2.1.23), we have *Cϕ  = zCα , where 0 < |α | = |α| 

< 1 

Thus *Cϕ  is cyclic (example (2.1.5)).    � 

 

Before we characterize the cyclicity of the isometric composition 

operators, we need the following lemma: 
 

Lemma (2.1.25) [17]: 

Let ϕ be a holomorphic self map of U, then for each p ∈ U, *Cϕ Kp =    

Kϕ (p), where Kp(z) = 1
1 pz−

. 

Proof: 

We know from chapter one that <g, Kp> = g(p), for all g ∈ H2. 

Thus for each f ∈ H2, we have: 

<f, *Cϕ Kp> = <Cϕf, Kp> = <foϕ, Kp> = f(ϕ(p)) = <f, Kϕ (p)> 

So that *Cϕ Kp = Kϕ (p) .    � 

 

Theorem (2.1.26): 

Let ϕ be a holomorphic self map of U (ϕ is not the identity mapping). If 

Cϕ is isometric, then: 



Chapter Two                                                                           Cyclic Composition Operators 

 41 

1. Cϕ and *Cϕ  are not hypercyclic (supercyclic). 

2. If ϕ is not elliptic, then Cϕ and *Cϕ  are cyclic. 

Proof: 

We claim that Cϕ is normal operator and hence this results follows from 

corollary (2.1.23) and (2.1.24). 

Let 0 ≠ p ∈ U, then: 

*Cϕ CϕKp(z) = *Cϕ Kp(ϕ(z)) = Kϕ (p)(ϕ(z)) = 1
1 (p) (z)− ϕ ϕ

 

Since Cϕ is isometric, then *Cϕ CϕKp(z) = Kp(z) 

Therefore 1
1 (p) (z)− ϕ ϕ

 = Kp(z) = 1
1 pz−

 

Thus ϕ(z) = 
p
(p)ϕ

z, for all z ∈ U 

Put α = 
p
(p)ϕ

, hence ϕ(z) = αz, for all z ∈ U 

Since ϕ is self map of U, then |α| ≤ 1 and hence from theorem (2.1.22), Cϕ is 

normal operator.    � 

Recall that the operator T is hyponormal if T*T ≥ TT*  

Theorem (2.1.27) [7]: 

Let ϕ be a holomorphic self map of U. If Cϕ is hyponormal, then  

ϕ(0) = 0. 
 

From this theorem, we have the following corollary: 

Corollary (2.1.28): 

Let ϕ be a holomorphic self map of U. If Cϕ is hyponormal, then Cϕ is 

not hypercyclic (supercyclic) operators. 

Proof: 

 Since 0 is fixed point for ϕ, then Cϕ is not supercycilc operator (theorem 

(2.1.18)).    � 
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2.2 SOME CONDITIONS FOR CYCLICITY 

In this section, we describe in more details the cyclic composition 

operators. Also, we study the cyclicity of the operator C*
ϕ. , where C*ϕ. is the 

adjoint of the operator Cϕ . The following proposition shows that the 

univalence of the holomorphic mapping ϕ is a necessary condition for 

hypercyclicity. 
 

Proposition (2.2.1) [3]: 

Let ϕ be a holomorphic self map of U. If Cϕ is hypercyclic, then ϕ is 

univalent on U. 

Proof: 

If ϕ identifies two distinct points of U, then so does foϕn for each f ∈ H2 

and each positive integer n and therefore so does every limit point of the orbit 

of f under Cϕ. 

It follows that no orbit can be dense in H2 

So Cϕ is not hypercyclic.    � 
 

In fact, much more is true as the following theorem shows: 
 

Theorem (2.2.2) [3]: 

Let ϕ be a holomorphic self map of U. If Cϕ is cyclic, then ϕ is univalent 

on U. 
 

The following important theorem appeared in [3], the proof is long, thus 

is omitted. 
 

Theorem (2.2.3): 

Let ϕ be a holomorphic self map of U. If Cϕ is cyclic, then its range is 

dense in H2. 
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Remark (2.2.4): 

The necessary condition for cyclicity discussed in theorem (2.2.3) is not 

sufficient, we will show in the next chapter that for example if  

ψ(z) = 
z

2 z−
, then Cψ is not cyclic (theorem (3.1.12)) 

Note, however that Cψ does have dense range.,as is shown in the 

following proposition: 
 

Proposition (2.2.5): 

Let ψ(z) = 
z

2 z−
, for all z ∈ U, then Cψ has dense range. 

Proof: 

Suppose that f is orthogonal to the range of Cψ, then because 1 is in the 

range, 0 = <f, 1> = f(0), so that f = zg, for some g in H2. 

Because ψn belongs to the range of Cψ, we have: 

0 = <f, ψn> = <zg, 
n

z
2 z

 
 − 

> 

= 
( )

( )

n
i

i i
n

i

e1 e g(e ) d
2

2 e

θπ
θ θ

θ−π

θ
π −
∫  

= 
( )

( )

ni
i i

ni

e1 e g(e ) d
2 2 e

− θπ
θ θ

− θ
−π

θ
π −
∫  

= 
( )

i i
ni

1 1e g(e ) d
2 2e 1

π
θ θ

θ
−π

θ
π −
∫  

Suppose τ = eiθ, therefore dτ = ieiθ dθ, so that: 
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0 = 
( )n

U

1 1g( ) d
2 i 2 1∂

τ τ
π τ −∫  

= n n
dU

g( )1 d
2 (2 i) 1

2

τ τ
π  τ − 

 

∫  

By the general Cauchy integral formula, we get: 

0 = 
(n 1) 1

2
n

g ( )1
(n 1)!2

−

−
 

and hence (n 1) 1
2g ( )−  = 0, n = 1, 2, … 

Since g and all of its derivatives vanish at the point 1/2, we see that g ≡ 0 and 

hence f ≡ 0.  

It follows that Cψ has dense range.    � 
 

Remark (2.2.6): 

We shall see in chapter four that if ||ϕ||∞ < 1, then the converse of 

theorem (2.2.3) is true (see remarks (4.1.12)). 

Although, our main results are set exclusively in the Hardy space H2 of 

the unit disk, it is some times convenient to interpret some of the intermediate 

steps in a more general setting. If G is a simply connected plane domain, and 

σ is a univalent holomorphic mapping of U onto G, then the Hardy space 

H2(G) is the set of functions f holomorphic on G for which foσ ∈ H2. The 

inner product of two elements f and g in H2(G) is defined to be (f, g) = <foσ, 

goσ>, where <., .> denotes the inner product of the usual Hardy space H2. We 

can show that the collection of functions H2(G) is independent of the 

particular univalent map σ used above [3]. 

The following theorem appeared in [3] without proof. We give the proof. 
 

Theorem (2.2.7): 

Suppose that G ⊆ U is simply connected and that ϕ maps U univalently 

onto G. Then the following are equivalent: 
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(a) The polynomials are dense in H2(G). 

(b) The polynomials in ϕ are dense in H2. 

(c) The composition operator Cϕ : H
2 → H2 has dense range. 

 

Before, we prove this theorem we need the following lemma: 
 

Lemma (2.2.8): 

Let ϕ be a holomorphic self map of U and P is the set of all polynomials 

in ϕ, then R(C )ϕ  = P. 

Proof: 

We prove that P ⊆ R(Cϕ) ⊆ P 

Let P(ϕ)∈ P, then P(ϕ) = a0 + a1ϕ + … + anϕn, where ai ∈ C, i =0, 1, …, n. It 

is clear that: 

Cϕ (P(z)) = Cϕ (a0 + a1z + … + anz
n) = P(ϕ) 

that is, P(ϕ) ∈ R(Cϕ)  

We prove now that R(Cϕ) ⊆ P, let f ∈ R(Cϕ), then there exists g ∈ H2, such 

that f = Cϕg = g(ϕ) 

Since g ∈ H2, then: 

g(z) = b0 + b1z + …, where bi ∈ C, i =0, 1, … , so that  

f = b0 + b1ϕ + … ∈ P 

Thus P ⊆ R(Cϕ) ⊆ P and hence R(C )ϕ  = P.    � 

 

Proof of the Theorem: 

(a) ⇒ (b). We know that H2(G) is the set of all functions f holomorphic 

on G, such that foϕ ∈ H2 

Let p(z) be any polynomial 



Chapter Two                                                                           Cyclic Composition Operators 

 46 

Since Cϕ : H
2 → H2 and p(z) ∈ H2, then p(ϕ) = Cϕ(p(z))∈ H2, that is the set 

of all polynomials in ϕ belongs to H2. We will prove that this set is dense in 

H2 

Suppose that there exists h ∈ H2, such that <h, p(ϕ)>=0, for all polynomials p.  

Since ϕ is univalent mapping of U onto G, then ϕ−1 is univalent mapping of G 

onto U and hence hoϕ−1 is holomorphic on G with hoϕ−1oϕ = h ∈ H2, 

therefore hoϕ−1 ∈ H2(G) 

By the definition of the inner product on H2(G), we get: 

(hoϕ−1, p) = <hoϕ−1oϕ, poϕ> = <h, p(ϕ)> = 0 

for all polynomials p. Since the set of all polynomials is dense in H2(G), then 

hoϕ−1 = 0, since ϕ−1 is onto, then h = 0. It follows that the set of all 

polynomials in ϕ is dense in H2. 

(b) ⇒ (c). From lemma (2.2.8), P = R(C )ϕ , where P is the set of all 

polynomials in ϕ. Since P =H2, then R(C )ϕ  = H2, so that the range of Cϕ is 

dense in H2. 

(c) ⇒ (a). Since R(C )ϕ  = H2, then from lemma (2.2.8), we get P=H2.  

We know that H2(G) is the set of all holomorphic on G, such that foϕ∈H2 

Suppose that h ∈ H2(G) is orthogonbal to all polynomials p(z), therefore from 

the definition of the inner product of H2(G), we get <hoϕ, poϕ> = 0, for all 

polynomials p, that is hoϕ ∈ P⊥ 

Since P = H2, then P⊥ = 0 and hence hoϕ = 0 

Since ϕ is holomorphic mapping of U onto G, we get h =0 

So that the polynomials are dense in H2(G).    � 
 

Combining theorem (2.2.3) and theorem (2.2.7), we obtain: 
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Corollary (2.2.9): 

If Cϕ is cyclic, then the set of polynomials in ϕ is dense in H2. 

Equivalently, the set of polynomials in z is dense in H2(ϕ (U)). 
 

Let us say that a function f ∈ H2 is univalent almost everywhere on ∂U 

provided that there is a set E ⊂ ∂U having zero Lebesgue measure, such that f 

is univalent on ∂U\E, [3]. 
 

The proof of the following theorem appeared in [3]. 
 

Theorem (2.2.10): 

If Cϕ is cyclic, then ϕ is univalent almost everywhere on ∂U. 
 

We give the following proposition: 
 

Proposition (2.2.11): 

Let ϕ be analytic self map of U. If ϕ′(0) = 0, then Cϕ is not cyclic. 

Proof: 

Let A = (aij) be the matrix of the operator Cϕ with respect to the 

orthonormal basis {zn} n≥0, then the second row of this matrix is zero, hence 

e1(z) = z is orthogonal to the range of Cϕ 

Therefore the range of Cϕ is not dense in H2 

Thus Cϕ is not cyclic.    � 
 

We give the following theorem: 
 

Theorem (2.2.12): 

Let ϕ be a holomorphic self map of U that has a fixed point p ∈ U with 

ϕ′(p) = 0, then Cϕ is not a cyclic operator. 

Proof: 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping 
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Hence Cψ = CαpoCϕoCαp, that is Cϕ and Cψ are similar 

Since ψ′(0) = ϕ′(p) = 0, then from proposition (2.2.11), Cψ is not cyclic and 

hence Cϕ is not cyclic.    � 
 

We give the following corollary: 
 

Corollary (2.2.13): 

Let ϕ (z) = znψ(z) be analytic self map of U, n ≥ 2, then Cϕ is not cyclic 

operator. 

Proof: 

It is clear that ϕ (0) = 0, ϕ′(0) = 0 and hence from theorem (2.2.12) Cϕ is 

not cyclic operator.    � 
 

In general if x is cyclic vector for the operator T, then Tx may not be      

a cyclic vector for T as the following example shows: 
 

Example (2.2.14): 

Let H be a Hilbert space and {en} be an orthonormal basis for H. Define 

the operator U : H → H, as follows: 

U(en) = en+1, n = 0, 1, … 

It is clear that e0 is a cyclic vector for the operator U while Ue0 = e1 is not a 

cyclic vector. 
 

We prove the following theorem: 
 

Theorem (2.2.15): 

Let f be a cyclic (hypercyclic, supercyclic) vector for Cϕ , then Cϕf is 

cyclic (hypercyclic, supercyclic) vector for Cϕ. 

Before we prove this theorem, we give the following lemma: 
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Lemma (2.2.16): 

Let H be a Hilbert space and T be an operator on H. If T has a dense 

range and M is a dense set in H, then T(M) is a dense set in H. 

Proof: 

We claim that T(H) ⊆ T(M) , in fact if T(h) ∈ T(H), where h ∈ H, then 

by the density of M there exists mn ∈ M, such that the sequence {mn} 

converges to h. 

Since T is a continuous operator, then the sequence {Tmn} converges to T(h), 

hence T(h) ∈ T(M) , so that T(H) ⊆ T(M)  

Thus T(H)  ⊆ T(M)  

Since T has a dense range, then T(H)  =H and hence T(M)  = H.    � 

 

Proof of the Theorem: 

We prove this theorem when f is cyclic vector for Cϕ, the proofs for the 

other cases are similar. 

Let M = span{Cϕn(f), n =0, 1, …}, since f is a cyclic vector for Cϕ , then 

M  = H2. It is clear that: 

span{Cϕn(Cϕf), n = 0, 1, … } = span{Cϕ (Cϕnf), n = 0, 1, …} 

= Cϕspan{Cϕn(f), n = 0, 1, …} 

= Cϕ (M) 

Since M  = H2 and Cϕ has a dense range, then from lemma (2.2.16), C (M)ϕ  = 

H2 

Thus Cϕf is a cyclic vector for Cϕ.     � 
 

We turn our attention to the adjoint of composition operators. It is well-

known that if T is a hypercyclic operator, then T* (the adjoint of T) has no 

eigenvalues [11]. For a supercyclic operator T, the adjoint T* has at most one 

eigenvalue [11]. 
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The following results for the cyclicity of the adjoint of composition 

operators are new to the best of our knowledge. 
 

Proposition (2.2.17): 

Let ϕ be a holomorphic self map of U, then *Cϕ  is not a hypercyclic 

operator. 

Proof: 

It is clear that 1 is an eigenvalue of the operator Cϕ, so that *Cϕ  is not 

hypercyclic operator.    � 
 

The proof of the following lemma is well-known, thus it is omitted. 
 

Lemma (2.2.18) [2]: 

If T is a bounded operator on H, then ||T|| =||T*||, where T* is the adjoint 

of the operator T. 

The proof of the following proposition appeared in [1, theorem 2.2]. 
 

Proposition (2.2.19): 

Suppose that T is a bounded linear operator on the Banach space X 

having the following properties: 

(a) T is supercyclic. 

(b) There exists µ > 0, such that ||Tn|| ≤ µ, for each positive n. 

Then for each x ∈ X, Tnx → 0 as n → ∞. 
 

We give the following theorem: 
 

Theorem (2.2.20): 

Let ϕ be a holomorphic self map of U that fixes a point p ∈ U, then *Cϕ  

is not a supercyclic operator. 
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Proof: 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping, 

therefore ψ(0) =0 and Cψ =CαpCϕCαp, that is Cψ is similar to Cϕ and hence C*ψ  

is similar to *Cϕ . 

The following well-known norm estimate for composition operator shows the 

sequence n{C }ψ  = {Cψn} is bounded (see corollary (1.3.3)) 

||Cψn|| ≤ 
1/ 2

n

n

1 | (0) |

1 | (0) |

 + ψ
 − ψ 

 =1, for all positive integer n 

Since || *n
Cψ || = || nCψ || (lemma (2.2.18)), then the sequence {*n

Cψ } is bounded. 

We can easily show that *
n

Cψ  (1) = 1, for every positive integer n, therefore 

proposition (2.2.19) shows that *Cψ  cannot be a supercyclic operator and 

hence C*ϕ is not a supercyclic operator.    � 
 

Corollary (2.2.21): 

If Cϕ is a compact operator, then *Cϕ   is not a supercyclic operator. 

Proof: 

Since Cϕ is compact, then ϕ has an interior fixed point (proposition 

(1.5.5)) 

Thus *Cϕ  is not a supercyclic operator.    � 

 

In corollary (2.1.28) we see that if Cϕ is hyponormal, then Cϕ is not 

supercyclic. The following corollary shows that *Cϕ  is also not a supercyclic 

operator. 
 

Corollary (2.2.22): 

Let ϕ be a holomorphic self map of U. If Cϕ is hyponormal, then C*ϕ  is 

not a supercyclic operator. 
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Proof: 

Since 0 is a fixed point for ϕ, then C*
ϕ   is not supercyclic (theorem 

(2.2.20)).    � 
 

We remark that although, the adjoint of a composition operator induced 

by a mapping ϕ with fixed point in U can never be supercyclic, it can be 

cyclic (see theorem (2.2.24) below) 

We recall that an operator T is said to be upper triangular operator if T 

has upper triangular matrix A = (aij), i.e., aij = 0, for all i > j. 

The proof of the following proposition appeared in [12]. 
 

Proposition (2.2.23): 

Let T be an upper triangular operator whose diagonal entries with respect 

to some orthonormal basis for H are distinct, then T is cyclic. 
 

We give the following theorem: 
 

Theorem (2.2.24): 

Let ϕ be a holomorphic self map on U and ϕ (0) = 0, ϕ′(0) ≠ 0, (ϕ′(0))n ≠ 

1, ∀ n = 1, 2, …, then C*ϕ   is cyclic. 

Proof: 

Since ϕ (0) = 0, ϕ′(0) ≠ 0, (ϕ′(0))n ≠ 1, ∀ n = 1, 2, … 

Then ϕ(z) = a0z + a1z
2 + …, a0 ≠ 0, n

0a  ≠ 1, for all positive integer n. 

The matrix of Cϕ with respect to the orthonormal basis {zn} is: 

A = 0
2
0

1
0 a

a
*

 
 
 
 
  

M

O

 

Therefore the matrix of C*ϕ  is an upper triangular matrix 

O 
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tA  = 0
2
0

1 *
a

a

 
 
 
 
  O

 

Since the diagonal entries are distinct, then by proposition (2.2.23), *Cϕ  is 

cyclic.    � 
 

Corollary (2.2.25): 

If ϕ has an interior fixed point p with ϕ′(p) ≠ 0, (ϕ′(p))n ≠ 1, for all 

positive integer n, then C*ϕ  is cyclic. 

Proof: 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping, 

therefore ψ(0) = 0, ψ′(0) = α′p(ϕoαp(0)) ϕ′(αp(0))α′p(0) = ϕ′(p) ≠ 0 and 

(ψ′(0))n = (ϕ′(p))n ≠ 1, for all n 

So that from theorem (2.2.24), *Cψ  is cyclic 

Since Cϕ, Cψ are similar, then *Cϕ , *Cψ  are similar 

Thus *Cϕ   is cyclic.    � 

 

Corollary (2.2.26): 

Let ϕ be a non-elliptic analytic self map of U (ϕ is not the identity). If ϕ 

has a fixed point p ∈ U, ϕ′(p) ≠ 0, then *Cϕ  is cyclic. 

Proof: 

Since ϕ is non-elliptic with fixed point p ∈ U, then from theorem 

(1.4.19), |ϕ′(p)| < 1 

Therefore (ϕ′(p))n ≠ 1, for all positive integer n, and hence from corollary 

(2.2.25), C*
ϕ  is cyclic.    � 

 

We give the following lemma: 
 

O 



Chapter Two                                                                           Cyclic Composition Operators 

 54 

Lemma (2.2.27): 

If T is an operator that has an eigenvalue of multiplicity greater than one, 

then T* is not cyclic. 

Proof: 

Let λ be an eigenvalue of multiplicity greater than one, therefore dim 

ker(T − λI) ≥ 2 

Since ker(T − λI) = [R(T − λI)*] ⊥, then dim[R(T − λI)*] ⊥ ≥ 2 

Hence (T − λI)* is not cyclic (part (1) of remark (2.1.16)) 

Since (T − λI)* = T* − λ I, then T* is not cyclic (part (2) of remark (2.1.16)).    
� 

 

It is shown from theorem (1.4.19) that if ϕ has a Denjoy Wolff point a ∈ 

∂U, then 0 < ϕ′(a) ≤ 1. 

C. C. Cown proved in [6] the following theorem: 
 

Theorem (2.2.28): 

Let ϕ be a holomorphic self map of U that has Denjoy-Wolff point a ∈ 

∂U with ϕ′(a) < 1. If λ ∈ C, such that (ϕ′(a))1/2 < |λ| < (ϕ′(a))−1/2, then λ is an 

eigenvalue for Cϕ of infinite multiplicity. 
 

The following corollary follows from theorem (2.2.28) and lemma 

(2.2.27) 
 

Corollary (2.2.29): 

If w ∈ ∂U is the Denjoy Wolff point for ϕ with ϕ′(w) < 1, then *Cϕ  is not 

cyclic. 
 

Definition (2.2.30): 

A non-constant sequence {zk} is an F-sequence for ϕ if ϕ(zk) = zk+1, for 

all k. 
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The following theorem appeared in [6], the proof is long thus is omitted. 
 

Theorem (2.2.31): 

Let ϕ be a holomorphic self map of U, has Denjoy Wolff point a in ∂U 

with ϕ′(a) = 1. If there is an F-sequence {zk} for ϕ for which: 

inf k k 1

k k 1

z z
: k 0,1,...

1 z z
+

+

 − = −  
 > 0 

Then each λ with |λ| = 1 is eigenvalue of Cϕ of infinite multiplicity. 
 

The following corollary follows from theorem (2.2.31) and lemma 

(2.2.27). 
 

Corollary (2.2.32): 

If the conditions of theorem (2.2.31) are satisfied then C*
ϕ  is not a cyclic 

operator. 
 

Definition (2.2.33): 

Let ϕ be a holomorphic self map of U. ϕ is called an inner function if      

|ϕ(z)| = 1 almost every where on ∂U. 
 

The following theorem appeared in [6]: 
 

Theorem (2.2.34): 

Let ϕ be an inner function, not linear fractional transformation with 

Denjoy Wolff point a ∈ ∂U. If |λ| < (ϕ′(a))1/2, then λ is an eigenvalue for C*ϕ   

of infinite multiplicity. 
 

The following corollary follows from theorem (2.2.34) and  

lemma (2.2.27). 
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Corollary (2.2.35): 

Let ϕ be an inner function, not linear fractional transformation with 

Denjoy-Wolff point a ∈ ∂U, then Cϕ is not cyclic. 
 

We illustrate corollary (2.2.35) by the following example: 
 

Example (2.2.36): 

Let ϕ (z) = (α−1/3(z))2, where α−1/3 is the special automorphism mapping, 

i.e., α−1/3(z) = 
1
3

1
3

z

1 z

− −
+

, (z ∈ U) 

We showed in proposition (1.1.14) that α−1/3 is conformal automorphism 

of U and it takes ∂U onto ∂U. Therefore: 

|ϕ (z)| = |α−1/3(z)| |α−1/3(z)| = 1, for each z ∈ ∂U 

Hence ϕ is inner function  

To find the fix points of ϕ, we put ϕ (z) = z, therefore 

2
1
3

1
3

z

1 z

 − −
  + 

 = z 

We simplify this equation, we have z3 − 3z2 + 3z −1 = 0, therefore  

(z −1)3 = 0, that is the mapping ϕ(z) has only one fixed point z = 1 ∈ ∂U 

Corollary (2.2.35) shows that the composition operator Cϕ is not cyclic. 
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CHAPTER THREE 

LINEAR FRACTIONAL CYCLICITY 

 

INTRODUCTION 

Let ϕ be a holomorphic function defined on the Riemann sphere ̂C  = �  

∪ {∞}, as follows: 

ϕ(z) = az b
cz d

+
+

 

where a, b, c and d are complex numbers, then ϕ is said to be linear fractional 

transformation. In chapter one, we studied the basic properties of linear 

fractional transformation. In this chapter, we study the cyclicity of the 

composition operator induced by a linear fractional transformation. P. S. 

Bourdon and J. H. Shapiro [3], proved several theorems (see Table I), we give 

the details of the proofs. We give some new results, to the best of our 

knowledge, for the cyclicity of the adjoint of the composition operator 

induced by the linear fractional transformation. Also, we study the cyclicity of 

the composition operator induced by the function ϕ(z) = z
c z−

, where c is a 

complex number and ψ(z) = αz + β, α and β are complex numbers. 

This chapter consists of three sections, in section one we study the cyclicily of 

Cϕ and *Cϕ  where ϕ has interior fixed point, we prove that if ϕ is elliptic, then 

Cϕ is cyclic if and only if *Cϕ  is cyclic. If ϕ is not elliptic, but linear fractional 

transformation with interior fixed point, then we prove that *Cϕ  is cyclic .Note 

that when ϕ has interior fixed point then Cϕ and *Cϕ  are not hypercyclic 

(supercyclic) operators (see chapter two). In section two, we study the 

cyclicity when ϕ ∈ LFT (U) has no interior fixed point. In this case, we show 

that if ϕ  is automorphism, then Cϕ is hypercyclic. If ϕ is not automorphism, 

then the third and fourth rows of table I show these cases. 
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In section three, we give some definitions and remarks, for example, we 

show if Cϕ is multicyclic operator, then Cϕ is cyclic, see [3] for more details. 

In chapter four, we show for example, that in contrast to what happens in the 

first row of table I, there exists a holomorphic (but not linear fractional) self 

map ϕ of U with interior and boundary fixed points, such that Cϕ is cyclic (see 

example (4.1.16)). 

Table I 

Cyclic behaviour of Cϕ , ϕ is linear fractional, not an automorphism. 

Fixed points of ϕ 
(relative to U) 

Cyclicity of Cϕ Examples 

Interior & boundary Not cyclic ϕ(z) = z
2 z−

 

Interior & exterior Cyclic, not hypercyclic ϕ(z) = z
2 z
−
+

 

Exterior & boundary 
(hyperbolic) 

Hypercyclic ϕ(z) = 1 z
2
+  

Boundary only 
(parabolic) 

Cyclic, not hypercyclic ϕ(z) = 1
2 z−

 

 

3.1 LINEAR FRACTIONAL SELF MAPS OF U WITH 

INTERIOR FIXED POINT 

In this section, we discuss the cyclicity for Cϕ, where ϕ is linear 

fractional self map of U with interior fixed point. We summarize this section 

by the following theorem: 
 

Theorem (3.1.1): 

Suppose that ϕ is (not the identity) linear fractional self map of U, which 

has interior fixed point, then: 

1. The operators Cϕ and *Cϕ  are not hypercyclic (supercyclic). 

2. If ϕ is elliptic, then Cϕ is cyclic if and only if *Cϕ  is cyclic. 
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3. If ϕ is non-elliptic, then: 

(i) The operator *Cϕ  is cyclic operator. 

(ii)  The cyclicity of the operator Cϕ depends on the nature of the fixed 

point for ϕ, that is: 

• If ϕ has interior and exterior fixed points, then Cϕ is cyclic.  

• If ϕ has interior and boundary fixed points, then Cϕ is not 

cyclic. 

Part (1) of this theorem is proved in chapter two. 

In chapter one, we showed that if ϕ is loxodromic or elliptic, then it has 

interior fixed point, hence Cϕ and *Cϕ  are not hypercyclic (supercyclic). We 

remark that although composition operators induced by elliptic mappings are 

not supercyclic, they can be cyclic as the following theorem shows: 
 

Theorem (3.1.2) [3]: 

If ϕ ∈ LFT(U) is elliptic, then Cϕ is cyclic if and only if the argument of 

λ is irrational multiple of π, where λ = ϕ′(p), p is the interior fixed point of ϕ. 
 

Before the proof, we need some preliminaries. 
 

Proposition (3.1.3)[15]:  

Let f be a holomorphic map on U and Z(f) = {a ∈ U : f(a) = 0}.If Z(f) 

has a limit point in U then f is the zero function. 
 

We prove the following lemma: 
 

Lemma (3.1.4): 

Let f be a holomorphic map on U. If f vanishes at infinitely many points 

on a circle in U, then f is zero function. 

Proof: 

It is clear that Z(f) is bounded set in the complex plane. 
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If Z(f) has no limit point, then Z(f) is closed and hence by Heine-Borel 

theorem, Z(f) is compact. 

This contradicts every compact infinite set has a limit point 

So that z(f) has limit point, hence from proposition (3.1.3), f is the zero 

function.    � 
 

Proof of Theorem (3.1.2): 

Note that any elliptic self map on U has to be an automorphism of U 

with interior fixed point p, and hence must be conjugate (by automorphisms) 

to a rotation about the origin. Specifically, if ϕ is elliptic, then it is 

automorphism with fixed point p ∈ U (proposition (1.4.25)).  

Hence by the special automorphism mapping αp, we get ψ = αpoϕoαp, where 

ψ is an automorphism fixes the origin, so that by proposition (1.2.8), ψ(z) = 

λz, for all z ∈ U, where |λ| = 1, λ = ψ′(0) = ϕ′(p). 

If argλ is a rational multiple of π, then Cϕ fails to be cyclic because in this 

case the orbit of any function in H2 under Cψ is a finite set [3]. 

If, however, argλ is irrational multiple of π, then Cψ is cyclic and Kα is cyclic 

vector for all 0 ≠ α ∈ U. To see this, let α ≠ 0 be a point in U and f is 

orthogonal to orb(Cψ, Kα) = { nKλ α  : n = 0, 1 …}, that is <f, nKλ α > = 0, for all 

non-negative integer n. 

Therefore, f( nλ α ) = 0, n = 0, 1, …; hence the function f vanishes at infinitely 

many points on the circle |z| = |α|, therefore by lemma (3.1.4), f is the zero 

function 

Because Cϕ is similar to Cψ, then Cϕ is cyclic.    � 
 

We give the following theorem: 
 

Theorem (3.1.5): 

If ϕ ∈ LFT(U) is elliptic self map on U, then Cϕ is cyclic if and only if  
*Cϕ  is cyclic. 
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Proof: 

Since ϕ is elliptic, then it is automorphism with interior fixed point p. As 

the proof of theorem (3.1.2), ϕ is conjugate via the special automorphism 

mapping αp to the automorphism mapping ψ(z) = λz, λ ∈ ∂U. It is easy to 

prove that *
zCλ  = zCλ , where λ  is the complex conjugate of λ. Since, Cϕ is 

similar to Cλz, then *Cϕ  is similar to zCλ .  

Since arg(λ ) = −arg(λ), then from theorem (3.1.2), Cλz is cyclic if and only if 

zCλ  is cyclic, hence Cϕ  is cyclic if and only if *Cϕ  is cyclic.    � 

 

The following theorem is new to the best of our knowledge. 
 

Theorem (3.1.6): 

Let ϕ be a non-elliptic linear fractional self map of U (ϕ is not the 

identity mapping) have a fixed point p in U, then *Cϕ  is cyclic. 

Proof: 

Suppose ψ = αpoϕoαp, where αp is the special automorphism mapping, 

therefore ψ(0) = 0. Without loss of generality, we may assume that: 

ψ(z) = z
az b+

, b ≠ 0 

It is clear that ψ′(0) = 1
b

, hence ψ′(0) ≠ 0. Form theorem (1.4.19), we have 

|ψ′(0)| < 1, therefore (ψ′(0))n ≠ 1, n = 1, 2, … corollary (2.2.25) shows that 
*Cψ  is cyclic and hence by the similarity *Cϕ  is cyclic.    � 

 

Corollary (3.1.7): 

If ϕ ∈ LFT(U) is loxodromic, then *Cϕ  is cyclic. 

Proof: 

If ϕ is loxodromic, then by theorem (1.4.23), ϕ has interior fixed point, 

therefore by theorem (3.1.6), *Cϕ  is cyclic.    � 
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Corollary (3.1.8): 

If ϕ ∈ LFT(U), (ϕ is not the identity), which fixes both interior point and 

boundary point of U, then *Cϕ  is cyclic. 

Proof: 

Since ϕ has interior and boundary fixed points, then ϕ is not elliptic 

(theorem (1.4.23), hence *Cϕ  is cyclic (theorem (3.1.6)).    � 

 

The following theorem appeared in [3], we give the details of its proof: 
 

Theorem (3.1.9):    

If ϕ ∈ LFT(U) is non-elliptic has a fixed point p in U and fixed point q 

outside the closure of U, then the composition operator Cϕ is cyclic on H2. 
 

Before we prove this theorem we need the following lemma: 
 

Lemma (3.1.10): 

Let ϕ be a linear fractional self map of U take the form: 

ϕ(z) = az 1
az 1 bz

+
+ −

,where a, b are complex numbers and a − b ≠ 0 

Then we can write ϕ in terms of a reproducing kernel: 

ϕ=λ + α b aK − , where λ=1 + b
a b−

, α= b
b a−

 and ( )b aK z− = 1
1 (b a)z− −

 

Proof: 

ϕ(z) = az 1
az 1 bz

+
+ −

 = az 1 bz bz
az 1 bz
+ − +

+ −
 = 1 + bz

az 1 bz+ −
 

= 1 + b
a b−

1 1z
a b a b

1z
a b

 + − − −
 

+ − 

 = 1 + b
a b−

1
a b1

1z
a b

 
 −− 

+ − 
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= 1 + b
a b−

 − b
a b−

1
1 (b a)z

 
 − − 

 = λ + α ( )b aK z−  

Where λ = 1 + b
a b−

 and α = b
b a−

.    � 

 

Proof of Theorem (3.1.9): 

Let ψ = αpoϕoαp, where αp is the special automorphism mapping. It is 

clear that ψ(0) = 0, hence ψ(z) = z
az b+

, b ≠ 0 

Therefore, ψ′(0) = 1
b

. By theorem (1.4.19), |ψ′(0)| < 1, hence |b| > 1. The 

other fixed point is 1 b
a
−  (if a = 0, then the fixed point is ∞). Since αp is self 

inverse, then ψ(αp(z)) = αp(ϕ(z)), hence ψ(αp(q)) = αp(q), that is αp(q) is fixed 

point for the mapping ψ, therefore αp(q) = 1 b
a
−  

Since q is outside U , then by proposition (1.1.14), αp(q) is outside U. 

Thus 1 b
a
−  > 1 or equivalently 

a
1 b−

 < 1 ..................................................................................... (3.1) 

We claim that for any non-zero α ∈ U, the reproducing kernel function Kα(z) 

= 1
1 z− α

 is cyclic vector for Cψ  

A straight forword induction argument shows that for any non-negative 

integer n: 

Kαoψn(z) = n
n

n

as z 1

as z 1 zb−
+

+ − α
 

Where s0 = 0 and for positive n, sn = 
n

k
k 1

1
b=

∑  
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Now, fix a vector g ∈ H2 that is orthogonal to the orbit {Kαoψn : n = 0, 1, …} 

We claim that g is the zero function. To see this, note that the sequence 

Kαoψn converges to 1 in H2, therefore: 

0 = 
n

lim <g, Kαoψn> = g(0) 

Recalling from lemma (3.1.10), we can write nKαοψ in terms of a 

reproducing kernel: 

Kαoψn = λn + γnKβn 

Where λn and γn are complex constants 

γn = 
n

n
n

b
b aS

−

−
α

α −
 ≠ 0 and βn = nn

aS
b
α −  

Thus the orthogonality hypothesis on g yield: 

0 = <g, Kαoψn> = nλ g(0) + nγ g(βn) = nγ g(βn) 

Thus g vanishes identically on the sequence {βn}. Upon recalling that |b| > 1, 

we see from he definition that {Sn} → 1
b 1−

, hence βn → a
b 1
−
−

, where 

by inequality (3.1), this limit belongs to U. 

Thus g vanishes on a sequence with limit point in U, hence from proposition 

(3.1.3), g is the zero function. This shows that Kα is cyclic for Cψ 

Since Cϕ and Cψ are similar, then Cϕ is also cyclic.    � 
 

Corollary (3.1.11): 

If ϕ ∈ LFT(U) is loxodromic, then Cϕ is cyclic. 

Proof: 

Since ϕ is loxodromic, then ϕ has an interior fixed point and exterior 

fixed point 

Hence Cϕ is cyclic by theorem (3.1.9).    � 
 

The proof of the following theorem is very long, thus is omitted. 
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Theorem (3.1.12): 

Suppose that ϕ is a linear fractional self map of U which fixes both an 

interior and a boundary point of U. Then Cϕ is not cyclic. In fact, the closed 

linear span of any orbit has infinite codimension in H2. 
 

We end this section by studying the cyclicity of the operator Cϕ and its 

adjoint, where ϕ(z) = z
c z−

, where c is a complex number. 

 

Proposition (3.1.13): 

The mapping ϕ(z) = z
c z−

, where |c| ≥ 2 is analytic self map of U. 

Proof: 

Since |c| ≥ 2 and |c − z| ≥ |c| − |z|, for all z ∈ U, then |c −z| > 1, so that 

|ϕ(z)| = 
| z |

| c z |−
 < 1, for all z ∈ U 

Thus ϕ is holomorphic self map of U.    � 
 

Remark (3.1.14): 

It is clear that ϕ fixes the origin, so that Cϕ and *Cϕ  are not supercyclic 

operators (theorem (2.1.18) and theorem (2.2.20)) 
 

We prove the following theorem: 
 

Theorem (3.1.15): 

Let ϕ(z) = z
c z−

, |c| ≥ 2, then *Cϕ  is cyclic operator. 

Proof: 

It is clear that ϕ(0) = 0 and ϕ′(0) = 1
c

, so that 0 < |ϕ′(0)| < 1 

Thus *Cϕ  is cyclic operator (theorem (2.2.24)).    � 

 



Chapter Three                                                                             Linear Fractional Cyclicity 

 66 

Remark (3.1.16): 

It is easy to prove that 0 and c − 1 are the fixed points of the mapping 

ϕ(z) = z
c z−

, |c| ≥ 2. 

 

We prove the following theorem: 
 

Theorem (3.1.17): 

Let ϕ(z) = z
c z−

, |c| ≥ 2 

1. If c =2, then Cϕ is not cyclic. 

2. If c ≠2, then Cϕ is cyclic. 

Proof: 

1. It is clear that ϕ has 0 and 1 as fixed points. Thus Cϕ is not cyclic 

(theorem (3.1.12)). 

2. If c ≠ 2, then ϕ has interior fixed point {0} and exterior fixed point  

c − 1, hence Cϕ is cyclic (theorem (3.1.9)).    � 
 

3.2 LINEAR FRACTIONAL SELF MAPS OF U WITH NO 

INTERIOR FIXED POINT 

In this section, we consider the linear fractional self map ϕ of U that has 

no interior fixed point. Three cases exhaust the possibilities: 

• ϕ is an automorphism. In this case, we prove that Cϕ is hypercyclic. 

• ϕ is not an automorphism and not parabolic, so that it has two fixed 

points; the attractive one necessarily on ∂U, the other necessarily outside 

the closure of U. In this case, we show that Cϕ is again hypercyclic. 

• ϕ is parabolic, but not an automorphism. In this case, ϕ has only one 

fixed point, which necessarily lies on ∂U. We show that Cϕ is strongly  

non-hypercyclic (theorem (3.2.20)), not supercyclic (theorem (3.2.27)) 

and cyclic (theorem (3.2.25)). 
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The following proposition appeared in [3], we give the details of the 

proof. 
 

Proposition (3.2.1): 

Let Zw denote the collection of functions that are continuous on the 

closed unit disc, analytic on the interior, and which vanish at w ∈ ∂U. Then 

Zw is dense in H2. 

Proof: 

Suppose that: 

f(z) = 
n 0

f̂ (n)
∞

=
∑ zn ∈ H2 

is orthogonal to Zw, then for every non-negative integer n, the polynomial  

zn+1 − wzn belongs to Zw, so it is orthogonal to f. Thus: 

0 = <f, zn+1 − wzn> = f̂ (n + 1) − w f̂ (n) 

From this, it follows that ̂f (n) = 
nw f̂ (0), for all n. Since w is on the unit 

circle and f ∈ H2, this forces ̂f (0) = 0 and therefore all the Taylor coefficients 

of f must vanish 

Thus f ≡ 0, so Zw is dense in H2.    � 
 

Remark (3.2.2): 

As in the proof of proposition (3.2.1), we can prove that if α ∉ U, then 

the set of polynomials that vanish at α is dense in H2. 
 

Notation: 

The statement Tn → 0 on a set X means that ||Tnx|| → 0, for every 

vector x ∈ X. 
 

The proof of the following theorem appeared in [17]. 
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Theorem (The Hypercyclic Criterion) (3.2.3): 

Suppose that there is a dense subset X of a Hilbert space H on which  

Tn → 0 on X, and another dense set Y on which is defined a (possibly 

discontinuous) map S : Y → Y, such that: 

(a) TS is the identity on Y. 

(b) Sn → 0 on Y. 

Then T is hypercyclic operator. 
 

We showed in proposition (1.4.17) that if ϕ ∈ LFT(U) has two fixed 

points α and β, then ϕ′(α) = λ and ϕ′(β) = 1/λ, where λ is the multiplier for ϕ. 

If ϕ is automorphism, then it is clear that ϕ-1 is also automorphism and fixes 

the same points α, β and ϕ−1′(α) = 1/λ, ϕ−1′(β) = λ 
 

We prove the following proposition: 
 

Proposition (3.2.4): 

Suppose that ϕ is hyperbolic self map of U, then ϕ is automorphism if 

and only if the two fixed points for ϕ lie on ∂U. 

Proof: 

If ϕ has two boundary fixed points, then from proposition (1.4.26), ϕ is 

an automorphism. 

Conversely, if ϕ is an automorphism, then ϕ has no interior fixed point 

(otherwise ϕ is elliptic (see proposition (1.4.25)) 

Therefore, from theorem (1.4.19), ϕ has attractive fixed point α ∈ ∂U with    

0 < ϕ′(α) = λ < 1, where λ is the multiplier for ϕ (if ϕ′(α) = λ = 1, then ϕ is 

the identity mapping), the other fixed point β outside U (theorem (1.4.23)) 

It is clear that ϕ−1 is automorphism with no interior fixed point and: 

ϕ−1′ (α) = 1/λ > 1, ϕ−1′(β) = λ < 1 

Therefore, from theorem (1.4.19), β is attractive fixed point for ϕ−1 with  

β ∈ ∂U.    � 
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The following proposition shows that every automorphism mapping of U 

is linear fractional self map on U 
 

Proposition (3.2.5) [20]: 

If ϕ is automorphism mapping, then there exists p ∈ U and w ∈ ∂U, such 

that ϕ = wαp, where αp is the special automorphism self map of U. 

Proof: 

Since 0 ∈ U and ϕ is a conformal automorphism, then there exists p ∈ 

U, such that ϕ(p) = 0. Define ψ = ϕoαp, where αp is the special automorphism 

mapping.  

It is clear that ψ fixes the origin, since ϕ and αp are automorphisms, then ψ is 

automorphism  

Hence by proposition (1.2.8), there exists w ∈ ∂U, such that ψ(z) = ϕ(αp(z)) = 

wz, for all z ∈ U 

Since αp is self inverse, then ϕ(z) = wαp(z), for all z ∈U.    � 
 

We remark that if ϕ is automorphism mapping with no interior fixed 

point of U, then either ϕ is parabolic automorphism or hyperbolic 

automorphism. 

If ϕ is parabolic automorphism, then ϕ fixes only one point α ∈ ∂U with 

ϕ′(α) = 1, see chapter 1. In this case ϕ−1 is also parabolic and fixes the same 

point. Therefore, from proposition (1.4.22), α is attractive fixed point for ϕ 

and ϕ−1. 

If ϕ is hyperbolic automorphism, then from the proof of proposition 

(3.2.4), ϕ has two boundary fixed points α, β where α is attractive fixed point 

for ϕ and β is attractive fixed point for ϕ−1. 

 

The following theorem appeared in [19], we give the details of its  proof. 
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Theorem (3.2.6):   

Suppose that ϕ is a conformal automorphism of U with no fixed points in 

the interior of U., then Cϕ is hypercyclic on H2. 

Proof: 

We note from proposition (3.2.5) that ϕ is linear fractional 

automorphism mapping of U.  

Since ϕ has no interior fixed point, then ϕ is not elliptic. If ϕ is parabolic, 

then ϕ and ϕ−1 have the same attractive fixed point a on ∂U. If ϕ is not 

parabolic, then ϕ has two fixed points a, b on ∂U, where a is attractive fixed 

point for ϕ and b is attractive fixed point for ϕ−1. 

In order to treat both cases simultaneously, we set a = b if ϕ is parabolic 

Let Za be the set of functions that are continuous on the closed unit disc, 

analytic on the interior and which vanish at a, and define Zb similarly. 

According to proposition (3.2.1), these sets are dense in H2 

We claim first that nCϕ  → 0 on Za 

For this, note that for every z ∈ ∂U\{b}, we have ϕn(z) → a (see 

proposition (1.4.24)), hence if f ∈ Za, then f(ϕn(z)) → f(a) = 0. 

Upon applying the elementary case of the boundary integral representation of 

the H2 norm (proposition (1.2.4)), we obtain: 

|| nCϕ f||2 = i 2
n

1 | f ( (e )) | d
2

π
θ

−π

ϕ θ
π ∫  → 0, as n → ∞ 

To finish the proof let S = 1C−
ϕ  = 1C −ϕ . As noted above, ϕ−1 is also 

automorphism of U with attractive fixed point b. 

So, if we take the set Zb, then S maps Zb into itself, and the previous argument 

applied to show that Sn → 0, on Zb. 
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Since the set Zb is dense in H2 (proposition (3.2.1)), then the hypothesis of 

hypercyclicity criterion are therefore satisfied with T = Cϕ, S = 1C −ϕ , X = Za 

and Y = Zb 

So Cϕ is hypercyclic operator.    � 
 

We give the following proposition: 
 

Proposition (3.2.7): 

Let ϕ be a holomorphic self map of U with no interior fixed point. If ϕ is 

automorphism of U, non parabolic, then *Cϕ  is not cyclic. 

Proof: 

Since ϕ is automorphism of U, then ϕ is linear fractional self map of U 

(proposition (3.2.5)).  

Since ϕ has no interior fixed point, then the Denjoy-Wolff point w for ϕ  

belongs to ∂U with ϕ′(w) ≤ 1 (theorem (1.4.19)). Since ϕ is not parabolic, 

then ϕ′(w) ≠ 1 that is ϕ′(w) < 1 

Therefore from corollary (2.2.29), *Cϕ  is not cyclic.    � 

 

We need the following useful theorem: 
 

Theorem (Walsh's Theorem) (3.2.8) [19]: 

Suppose that G is simply connected domain whose boundary is a Jordan 

curve (A Jordan curve is, by definition, a holomorphic image of the unit 

circle). Let the holomorphic function F map U univalently onto G, then the 

polynomials in F are dense in H2. 
 

Corollary (3.2.9): 

If ϕ maps U onto the interior of a Jordan curve lying in U, then Cϕ has a 

dense range. 
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Proof: 

From Walsh's theorem, we have the set of all polynomials in ϕ is dense 

in H2. Since this set is a subset of the range of Cϕ, then the range of Cϕ is 

dense in H2.    � 
 

Remark (3.2.10): 

We shall see in the next chapter that if ϕ maps the unit disk onto the 

interior of a Jordan curve lying in U, then Cϕ is cyclic. 
 

We prove the following lemma: 
 

Lemma (3.2.11): 

Suppose ϕ ∈ LFT(U) that is not an automorphism and does not have an 

interior fixed point. If ϕ is not parabolic, then ϕ is conjugate by an appropriate 

disk automorphism to self map ψ(z) = az + 1 − a, where 0 <a < 1. 

Proof: 

By the observations made earlier in this section, ϕ has its attractive fixed 

point p on ∂U and the other fixed point q outside the closure of U. 

We may assume without loss of generality that ϕ fixes p =1 and q in the 

outside U  (if p ≠1, then (−pαr)
−1

oϕo(−pαr) fixes 1 and z0 = αr(−
q
p

) outside U , 

where r is real number 0 < r < 1 and αr is the special automorphism mapping). 

Let T(z) = w 1
q
(z)α , for all z ∈ U, where w = 

q(q 1)
q(1 q)

−
−

 

It is easy to prove that T is automorphism of U and T(1) = 1, T(q) = ∞. 

Suppose ψ = ToϕoT−1, hence ψ is self map of U and ψ(1) = 1, ψ(∞) = ∞, 

therefore ψ must have the form ψ(z) = az + 1 − a 

We claim that 0 < a < 1 

Since ψ has no interior fixed point, then ψ is not elliptic, not loxodromic. 

Since ψ fixes two points, then ψ is not parabolic, hence ψ must be hyperbolic 
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Since 1 is the Denjoy-Wolff point for ψ and ψ has no interior fixed point and 

non-elliptic, then from theorem (1.4.19), 0 < ψ′(1) = a < 1.    � 
 

Remark (3.2.12): 

Let ψ ∈ LFT(U) of the form ψ(z) = az + 1 − a, 0 < a < 1, then it is easy 

to prove that ψ is an automorphism of the half plane G = {z : Re z < 1}. 
 

The following theorem appeared in [3] we give the details of its proof. 
 

Theorem (3.2.13): 

Suppose ϕ is a linear fractional self map of U that is not automorphism 

and does not have interior fixed point. If ϕ is not parabolic, then Cϕ is 

hypercyclic. 

Proof: 

By the observation made earlier in this section, ϕ has an attractive fixed 

point on ∂U and fixed point outside the closure of U. Now, by lemma 

(3.2.11), we may assume without loss of generality that ϕ(z) = az + 1 − a, 

where 0 < a < 1, ϕ fixes 1 and ∞. 

Note that by remark (3.2.12), ϕ is automorphism of the half plane G = {z : Re 

z < 1} 

Hence, if σ is a linear fractional transformation mapping from G onto U, then: 

ψ = σoϕoσ−1 ................................................................................. (3.2) 

It is clear that ψ is automorphism of U. We claim that ψ does not have 

interior fixed point. In fact, if ψ fixes z0 ∈ U, then z0 = ψ(z0) = σϕσ−1(z0), that 

is ϕ(σ−1(z0)) = σ−1(z0), therefore either σ−1(z0) = 1 or ∞. This contradict the 

range of σ−1is G, hence ψ does not have an interior fixed point. 

By theorem (3.2.6), Cψ is hypercyclic. Because σ maps G onto U and U ⊂ G, 

then σ(U) must also be a subset of U, in fact σ(U) is Jordan domain; therefore 

by corollary (3.2.9), Cσ  has dense range. 
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By (3.2), CϕoCσ = CσoCψ. Since Cψ is hypercyclic and Cσ has dense range, 

then Cϕ is hypercyclic (theorem (2.1.2)).    � 
 

Corollary (3.2.14): 

Let ϕ ∈ LFT(U) has boundary and exterior fixed points, then Cϕ is 

hypercyclic. 

Proof: 

Since ϕ has no interior fixed point, then ϕ is not elliptic, not loxodromic. 

Since ϕ has two fixed points, then ϕ is not parabolic, therefore ϕ is hyperbolic 

Since ϕ has boundary and exterior fixed points, then ϕ is not automorphism, 

so that Cϕ is hypercyclic.    � 
 

If ϕ satisfies the conditions of theorem (3.2.13), then ϕ(z) = az + 1 − a,  

0 < a < 1, hence it is easy to prove that { }n

n 0
a

∞

=
 are eigenvalues of Cϕ. Thus, 

*Cϕ  is not supercyclic.  

The following theorem shows more: 
 

Theorem (3.2.15): 

If the conditions of theorem (3.2.13) are satisfied, then *Cϕ  is not cyclic. 

Proof: 

From the proof of theorem (3.2.13), we have ϕ(z) = az + 1 − a, 0 < a < 1 

Note that, ϕ fixes 1 and ∞ and ϕ′(1) = a < 1, hence *Cϕ  is not cyclic (theorem 

(2.2.29)).    � 
 

In the previous section, we studied the cyclicity of the composition 

operator induced by the holomorphic mapping ϕ(z) = z
c z−

, (z ∈ U). Here, 

we discuss the mapping ψ(z) = az + b, a ≠ 0, b ≠ 0. It is easy to prove that ψ 

maps U onto the ball with center at b and radius |a|. 
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We prove the following proposition: 
 

Proposition (3.2.16): 

Suppose ψ(z) = az + b, a ≠ 0, b ≠ 0, then ψ is self map of U if and only if 

|a| + |b| ≤ 1. 

Proof: 

If |a| + |b| ≤ 1, then: 

|ψ(z)| = |ψ(z) − b + b| ≤ |ψ(z) −b| + |b| < |a| + |b| ≤ 1, for all z ∈ U 

Thus ψ is self map of U 

Conversely, suppose ψ is self map of U and |a| + |b| > 1, let ε > 0 

(sufficiently small), such that |a| + |b| − ε > 1 

We claim that | a | 1 b
| b |

 −ε + 
 

 ∈ Range ψ = B|a|(b), where B|a|(b) is the ball of 

center at b and radius |a|. 

| a | 1 b b
| b |

 −ε + − 
 

 = |a| − ε < |a| 

Therefore | a | 1 b
| b |

 −ε + 
 

 ∈ Rangeψ, that is there exists w ∈ U, such that ψ(w) 

= | a | 1 b
| b |

 −ε + 
 

, therefore |ψ(w)| = | a | 1 b
| b |

 −ε + 
 

 = | a | 1 | b |
| b |

 −ε + 
 

 = |a| − ε 

+ |b| > 1 

This contradicts the fact that ψ is self map of U, so that |a| + |b| ≤ 1.    � 
 

Remark (3.2.17): 

One can show easily that if ψ(z) = az + b, a ≠ 0, b ≠ 0, |a| + |b| ≤ 1, then 

ψ has two fixed points p = b
1 a−

 and ∞. 
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Theorem (3.2.18): 

Let ϕ(z) = az + b,a  ≠ 0, b ≠ 0 be a holomorphic self map of U 

(i) If |b| = 1 −a, then Cϕ is hypercyclic and *Cϕ  is not cyclic. 

(ii)  If |b| ≠ 1 − a, then Cϕ and *Cϕ  are cyclic, but not hypercyclic 

(supercyclic) operators. 

Proof: 

(i) If |b| = 1 − a, ϕ has boundary fixed point p = b
1 a−

 and exterior fixed 

point ∞, hence Cϕ  is hypercyclic (corollary (3.2.14)), and *Cϕ  is not 

cyclic (theorem (3.2.15)). 

(ii)  If |b| ≠ 1 − a, then p  = | b |
|1 a |−

 < | b |
1 | a |−

 ≤ 1, hence p is interior fixed 

point. Thus Cϕ and *Cϕ  are not supercyclic and Cϕ is cyclic operator (see 

the previous section). Since ϕ′(p) = a ≠ 0 and |ϕ′(p)| = |a| < 1, then *Cϕ  is 

cyclic (corollary (2.2.25)).    � 
 

Remark (3.2.19): 

Theorem (3.2.18) says, for example that if ϕ(z) = az + b, a ≠ 0, b ≠ 0 is 

self map of U, then: 

1.  Cϕ  is cyclic and *Cϕ  is not supercyclic operator. 

2. If a is a complex number with Im a ≠ 0, then Cϕ and *Cϕ  are cyclic but 

not supercyclic. 
 

We conclude the linear fractional cyclicity by studying the parabolic 

linear fractional self maps of U. If ϕ ∈ LFT(U) is parabolic automorphism, 

then by theorem (3.2.6), Cϕ is hypercyclic operator. 

The proof of the following theorem is very long, thus is omitted. 
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Theorem (3.2.20) [19]: 

Let ϕ be a linear fractional self map of U. If ϕ is parabolic non-

automorphism, then Cϕ is strongly non-hypercyclic, in the sense that the only 

functions that can adhere to Cϕ-orbits are constant functions. 

Lemma (3.2.21): 

If ϕ ∈ LFT(U) fixes the point p ∈ ∂U, then ϕ is conjugate by an 

appropriate automorphism mapping to a mapping ψ that fixes 1. 

Proof: 

Define f(z) = pz (z ∈ U). It is clear that f is automorphism mapping of U 

and f(1) = p. If ψ = f−1ϕf, then ψ is self map of U and fixes the point 1.    � 
 

Lemma (3.2.22):  

If ϕ ∈ LFT(U) is parabolic with fixed point at 1, then ϕ(z) = 

(2 a)z a
az (2 a)

− +
− + +

, where Re(a) ≥ 0 and Re a = 0 if and only if ϕ is automorphism. 

Proof: 

Let T(z) = 1 z
1 z

+
−

 (z ∈ U). One can prove that T maps U onto Π = {z : Re 

z > 0} and T(1) = ∞ 

Define ψ = ToϕoT−1, it is clear that ψ takes Π into itself and fixes ∞, hence, 

ψ(z) = λz + a, where the fact that ψ preserves the right half plane forces λ > 0 

and Re a≥0. By the chain rule, ψ′=T′(ϕoT−1).ϕ′(T−1).T−1′, so that λ = ψ′(∞) = 1 

Thus ψ(z) =z + a, Re a ≥ 0, therefore: 

ϕ(z) = T−1
oψoT(z) = 

(2 a)z a
az (2 a)

− +
− + +

, where Re a ≥ 0 

It is easy to show that Re a = 0 if and only if ψ is automorphism mapping on 

Π. Since ϕ = T−1ψT and T is maps U onto Π, then Re a = 0 if and only if ϕ is 

automorphism of U.    � 
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Definition (3.2.23) [17]: 

Let f be a holomorphic on U. The zero-sequence of f is the collection of 

its zeros, listed in order of increasing moduli with each zero written down as 

many times as its multiplicity. 
 

The proof of the following theorem appeared in [17]. 
 

Theorem (The Zero Sequence Theorem)(3.2.24): 

Suppose {an} is the zero-sequence of a function f ∈ H2 that is not 

identically zero, then; 

n
n 1

(1 | a |)
∞

=

−∑  < ∞ 

 

The following theorem appeared in [3], we give the details of its proof. 
 

Theorem (3.2.25): 

Every parabolic linear fractional self map of U induces a cyclic 

composition operator on H2. 
 

Before the proof, we need the following lemma: 
 

Lemma (3.2.26): 

Let a be a complex number, such that Re(a) > 0.If βn = na
2 na+

, n = 1, 2, 

…; then n
n

(1 | |)− β∑  is a divergent series. 

Proof: 

It is clear that |βn| < 1 and 1 − |βn|
2 = 

2
4(1 Re(na))

4 4Re(na) | na |

+
+ +

. Now: 

2
n

1 1
n 1 | |

 
 

− β 
 = 

24(1 Re(na)) | na |1
n 4(1 Re(na))

 + +
 + 

 = 
2| na |1 1

n 4(1 Re(na))

 
+ + 
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< 
2 2n | a |1 1

n 4n Re(a)

 
+ 

 
 = 

2| a |1
n 4Re(a)

+  

≤ 1 + 
2| a |

4Re(a)
 

Therefore 1 − |βn|
2 > 1

n
r, where r = 

12| a |
1

4Re(a)

−
 

+ 
 

 

Hence 1
n

r < (1 − |βn|)(1 + |βn|) 

Since |βn| < 1, then 1 r
n 2

 < 1 − |βn|. Since 1 r
n 2∑  diverges, then n

n

(1 | |)− β∑  

is divergent series.    � 
 

Proof of theorem (3.2.25): 

We have proved in theorem (3.2.6) that parabolic automorphisms induce 

hypercyclic composition operators. So, we need only to consider parabolic 

self maps ϕ of U that are not automorphism, for such a ϕ, we will show that 

the identity map u, defined on U by u(z) =z (z ∈ U) is a cyclic vector for Cϕ . 

By lemma (3.2.21), without loss of generality, we may assume that 1 is the 

fixed point of ϕ. 

Recall from lemma (3.2.22), that ϕ is of the form: 

ϕ(z) = 
(2 a)z a
az (2 a)

− +
− + +

, z ∈ U 

For some complex number a with Re(a) > 0 (the strict positivity of Re(a) 

reflecting the fact that ϕ is not an automorphism) 

For our purpose, a more convenient expression for ϕ is: 

ϕ = γ  + α Kβ 

Where γ  = a 2
a
− , α  = 4

a(a 2)+
, β  = a

2 a+
 and Kβ = (1 − βz)−1. 
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The requirement that Re(a) > 0 insure that none of the denominators in the 

definitions of α , β , γ  is zero, as discussed in example (1.1.17), <f, Kβ> = 

f(β), for all f ∈ H2. 

Now,suppose f∈H2 is orthogonal to the Cϕ -orbit of u .that is,suppose <f, ϕn> 

= 0, for all n = 0, 1… where ϕ0 = u . Since ϕn is pointwise convergent to 1, so  

0 = lim <f, ϕn> = <f, 1> = f(0) 

Using this along with the orthogonality of ϕ and f, we have: 

0 = <f, ϕ> = <f, γ  +α  Kβ> = γ<f, 1> + α<f, Kβ> = αf(β) 

So that f(β) = 0. But f is also orthogonal to ϕn, for each n and the formula for 

ϕn is obtained from that of ϕ  by replacing a with na.  

Thus the last calculation actually shows that the function f vanishes 

identically on the sequence of points: 

βn = na
2 na+

, n = 1, 2, … 

From lemma (3.2.26) we have n
n

(1 | |)− β∑  = ∞, hence by the zero sequence 

theorem f must vanish identically on U. 

We have shown that only the zero vector can be orthogonal to the Cϕ-orbits of 

u, therefore u is a cyclic vector for Cϕ.    � 
 

The following theorem completes the proof of cyclicity of Cϕ, where ϕ ∈ 

LFT(U). 
 

Theorem (3.2.27) [18]: 

If ϕ is a parabolic linear fractional self map of U that is not an 

automorphism, then Cϕ is not supercyclic. 

The proof is long, so is omitted. 
 

We give the following proposition: 
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Proposition (3.2.28): 

If ϕ is parabolic self map of U, then *Cϕ  is not supercyclic operator. 

Proof: 

Without loss of generality, we may assume that 1 is the fixed point for ϕ.  

The author in [18] shows that for each t ≥ 0, et(z) = { }1 zt
1 z

+−
−

, (z ∈ U) is      

an eigenvector of  Cϕ  with corresponding eigenvalue  eiat  , where  a  is the  

Translation parameter [18] .Thus *Cϕ  is not supercyclic operator.    � 

 

3.4 REMARKS 

Herrero introduced the corresponding hypercyclic idea; an operator T on 

a Banach space is called multihypercyclic if there is a finite subset of the 

space, the union of whose orbits is dense. 

The operator T is called muticyclic if there exists a finite subset of the 

space for which the smallest T-invariant subspace is the whole space. 

It is clear that if T is hypercyclic, then T is multihypercyclic. The author 

in [14] shows that the converse is true, that is every multihypercyclic operator 

is hypercyclic. 

This fact in general is not true when T is cyclic operator that is if T is 

multicyclic, then T is not necessarily cyclic as the following example shows: 

Let H be a Hilbert space and {en} is orthonormal basis for H. If U is the 

forward shift operator, i.e., U(ei) = ei+1, i = 1, 2, …, then it is clear that U2 is 

multicyclic operator where the orbit of e1 and e2 has dense span but U2 is not 

cyclic operator, because the codimension of the range of U2 is two. 

Paul S. Bourdon and Joel H. Shapiro proved in [3] that if ϕ ∈ LFT(U) 

and Cϕ is not cyclic composition operator, then every finitely generated 

invariant subspace of such an operator has infinite codimension. Therefore, if 

Cϕ is not cyclic operator, where ϕ ∈ LFT(U) then it is not multicyclic 
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operator. In other words, if ϕ ∈ LFT(U) and Cϕ is multicyclic operator, then 

Cϕ is cyclic operator. 

The author in [3] shows the following: 

If the operator T on X satisfies the hypothesis of the hypercyclicity 

criterion (theorem (3.2.3)), then for any subsequence {nk} of positive integers, 

there exists f ∈ X, for which the set {Tnkf} is dense in X. 

Let us call operators for which the last conclusion is true strongly 

hypercyclic. Since we used the hypercyclicity criterion to establish 

hypercyclicity and since the linear fractional maps that do not satisfy its 

hypotheses are also not hypercyclic, our work actually shows: 

Every hypercyclic composition operator Cϕ where ϕ ∈ LFT(U) is 

strongly hypercyclic. 
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CHAPTER FOUR 

LINEAR FRACTIONAL MODELS 

 

INTRODUCTION 

In chapter one, we observed that the linear fractional self maps of U fall 

naturally into several categories, determined by position of, and behaviour at 

the Denjoy-Wolff point. 

In this chapter, we classify the arbitrary holomorphic self maps of U into 

the following types (see [3] for more details). 

• Dilation type, if the Denjoy-Wolff point is in U. 

• Hyperbolic type, if the Denjoy-Wolff point is on ∂U, and has derivative 

< 1 there. 

• Parabolic type, if the Denjoy-Wolff point is on ∂U, the derivative is = 1 

there. 

The linear fractional model theorem (4.1.3) tells us that every univalent 

self map ϕ of U can be represented as: 

ϕ = σ−1
oψoσ 

where σ is univalent map σ : U →C, and ψ ∈ LFT(U) has the same type of 

ϕ, that is if ϕ is of dilation type then ψ has interior fixed point. If ϕ is of 

hyperbolic type, then ψ is hyperbolic linear fractional self map of U with 

Denjoy-Wolff point is on ∂U and has derivative < 1 there (in fact in this case 

ψ is hyperbolic automorphism). If ϕ is of parabolic type, then ψ is parabolic, 

has only one fixed point on ∂U with derivative 1 there. 

This chapter consists of three sections, in section one we show that if the 

set of polynomials in σ is dense in H2 then the cyclic behaviour of the linear 

fractional composition operator Cψ transfers to Cϕ. In chapter two, we showed 
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that if Cϕ is cyclic, then the set of polynomials in ϕ is dense in H2 (corollary 

(2.2.9)) 

The converse is not true as the following example shows; If ψ(z) = 

z
2 z−

, z ∈ U, then the set of pynomials in ψ is dense in H2 (proposition    

(2.2.5) and theorem (2.2.7))., However, Cψ is not cyclic (theorem (3.1.17)) 

The author in [3] proves that if ||ϕ||∞ < 1, then the converse of this 

theorem is true that is Cϕ is cyclic if and only if the set of polynomials in ϕ is 

dense set in H2, equivalently; Cϕ is cyclic if and only if Cϕ has dense range. 

In section two, we study briefly the cyclicity of the composition operator 

induced by a holomorphic self map ϕ of U that has its Denjoy-Wolff point on 

∂U. These are of hyperbolic and parabolic types. The map ϕ is said to be 

regular provided it is univalent and continuous on the closure of U, has 

Denjoy-Wolff point p on ∂U and maps the closed disk into U ∪ {p}, [3]. 

Since ϕ has the Denjoy-Wolff point p on ∂U, then theorem (1.4.19) 

insures that 0 < ϕ′(p) ≤ 1 and we will see (theorem (4.2.6)) that whenever 

ϕ′(p) = 1, then Re(ϕ′′(p)) ≥ 0. We summarize the results of this section in 

table II below. 

In section three, we conclude this chapter by some open problems 

suggested by our work. 

Table II 

Cyclic behaviour of Cϕ;Denjoy-Wolff point at 1 ϕ∈C4(1), regular and ϕ′′(1)≠0. 

Hypothesis 
on ϕ′(1) 

Hypothesis on 
ϕ"(1) 

Cyclicity of Cϕ 
Type of ϕ  

(Model for ϕ) 

< 1 None 
Hypercyclic 

theorem(4.2.12) 
Hyperbolic 

theorem(4.2.3) 

= 1 Pure imaginary ≠ 0 
Hypercyclic     

theorem(4.2.11) 

Parabolic 
automorphism 
theorem(4.2.6) 

= 1 Real part > 0 
Cyclic, not hypercyclic 
theorem(4.2.10)&(4.2.8) 

Parabolic, non-
automorphism 
theorem(4.2.6) 
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4.1 TRANSFERENCE PRINCIPLE 

In chapter three, we studied the cyclicity of the composition operator 

induced by a linear fractional self map of U. In this section, we discuss the 

cyclicity problem for more general composition operators Cϕ. 

In the following definition, we classify the arbitrary holomorphic self 

maps of U into the following types: 
 

Definition (Classification of Arbitrary Self-Maps) (4.1.1) [3]: 

A holomorphic self-map ϕ of U is of: 

• Dilation type, if it has a fixed point in U. 

• Hyperbolic type, if it has no fixed point in U and has derivative < 1 at its 

Denjoy-Wolff point. 

• Parabolic type, if it has no fixed point in U and has derivative 1 at its 

Denjoy-Wolff point. 

From the definitions in chapter one, it is easy to prove the following 

remarks: 
 

Remarks (4.1.2): 

1. If ϕ ∈ LFT(U) is of hyperbolic type, then ϕ is hyperbolic in the sense 

of definition (1.4.18). 

2. If ϕ ∈ LFT(U) is of parabolic type, then ϕ is parabolic in the sense of 

definition (1.4.14). 
 

Te following important theorem appeared in [3], we give it without 

proof. 
 

Theorem (The Linear-Fractional Model Theorem) (4.1.3): 

Suppose ϕ is a univalent self-map of U. Then there exists a univalent 

map σ : U →C on U, and a linear fractional map ψ such that ψ(U) ⊂ U, 

ψ(σ(U)) ⊂ σ(U), and: 
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σoϕ = ψoσ .................................................................................... (4.1) 

Furthermore: 

(a) ψ, viewed as a self-map of U, has the same type as ϕ. 

(b) If ϕ is of hyperbolic type, then ψ may be taken to be a conformal 

automorphism of U. 

(c) If ϕ is of either hyperbolic or parabolic automorphism type, then σ may 

be taken to be a self map of U. 
 

Definition (4.1.4) [3, 17]: 

If G = σ(U), then the pair (ψ, G), (or, equivalently, (ψ, σ)) is called a 

linear-fractional model for ϕ. If in addition G is a Jordan domain (the region 

interior to Jordan curve) it is said that (ψ, G) is a Jordan model. 
 

ϕ

ψ

σσ

σ(U)

 
Figure 2: A linear-fractional model. 

 

Remarks (4.1.5): 

The linear fractional  model theorem is the work of a number of authors, 

whose efforts stretch over nearly a century. 
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The dilation case is due to Koenigs in 1884. In this case equation (4.1) is 

σoϕ = λσ, where λ = ϕ′(0) (see [17, chapter 6] for more details). 

The hyperbolic case is due to Valiron. If one replaces the unit disc by the 

right half-plane, sending the Denjoy-Wolff point to ∞, then the resulting 

functional equation is again σoϕ = λσ (see [3]). 

Finally, the parabolic cases where established by Baker and 

Pommerenke (1979) and independently by Carl Cowen 1981. Once again the 

situation is best viewed in the right half plane, rather than the unit disc, with 

the Denjoy-Wolff point placed at ∞. Then the equation (4.1) is just             

σoϕ = σ + i in the automorphism case and σoϕ = σ + 1 in the nonautomorphic 

case (see [3]). 

The next result shows that Cϕ inherits the hypercyclicity (respectively, 

cyclicity). 
 

Theorem (4.1.6) [17]: 

Suppose (ψ, G) is a Jordan model for ϕ, with G ⊂ U, and Cψ hypercyclic 

(respectively, cyclic) on H2, then Cϕ is hypercyclic (respectively cyclic) on 

H2. 

The proof is very long, thus we omit . 
 

The following important theorem appeared in [3], we give the details of 

its proof. 
 

Theorem (Transference Principle) (4.1.7): 

Suppose that ϕ is a univalent self map of U of either dilation hyperbolic, 

or parabolic automorphism type. Let σ be the intertwining map for ϕ 

promised by the linear fractional model theorem. Suppose further that the set 

of polynomials in σ is dense in H2, then the cyclic behaviour of the linear 

fractional composition operator Cψ transfers to Cϕ. More precisely: 

(i) If ϕ is of hyperbolic type or parabolic automorphism type, then Cϕ is 

hypercyclic. 
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(ii)  If ϕ is of dilation type (ϕ is not the identity and not elliptic linear 

fractional transformation) then Cϕ. is cyclic, but not hypercyclic 

(supercyclic). 

Proof: 

(i) Suppose that ϕ is of hyperbolic type. Because ϕ has its Denjoy-Walff 

point on ∂U and has angular derivative < 1 at that point, the linear 

factional model theorem provides a univalent self map σ of U, and 

hyperbolic automorphism ψ, so that the functional equation σoϕ = ψoσ is 

satisfied. Because ψ is a non-elliptic, theorem (3.2.6) shows that Cψ is 

hypercyclic. Let f be a hypercyclic vector for Cψ. We claim that foσ is 

hypercyclic vector for Cϕ. Applying the equation σoϕ = ψoσ, we obtain: 

nCϕ (foσ) = Cσ(foψn) 

Hence, orb(Cϕ, foσ) = Cσ(orb(Cψ, f)) 

Since the polynomials in σ are dense in H2, then  Cσ has dense range (the 

image of the composition operator Cσ contains the set of polynomials in 

σ). Since f is hypercyclic vector for Cψ, then orb(Cψ, f) is dense in H2. 

Therefore, by lemma (2.2.16)), orb(Cϕ, foσ) is dense in H2, that is foσ is 

hypercyclic vector for Cϕ. 

Now, suppose that ϕ is automorphism of parabolic type. Therefore, ψ is 

also parabolic automorphism, hence by theorem (3.2.6), Cψ is 

hypercyclic operator. Since σ o ϕ = ψ o σ, then Cϕ oCσ = Cσ oCψ ( note  

that by linear fractional model theorem, σ is self map of U, hence Cσ is 

an operator on H2). Since Cψ is hypercyclic and by our proof Cσ has 

dense range. Then Cϕ is hypercyclic operator (theorem (2.1.2)). 

(ii)  Since ϕ is of dilation type, then ϕ has interior fixed point. Thus Cϕ is not 

hypercyclic (supercyclic) operator. Without loss of generality, we 

assume that 0 is fixed point for ϕ (if p ≠ 0 is fixed point for ϕ, then ϕ is 

conjugate by the special automorphism mapping αp to a map, which has 

0 as fixed point). From remarks (4.1.5), we have σoϕ = λσ, where          
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λ = ϕ′(0), hence from theorem (1.4.19), 0 ≤ |λ| = |ϕ′(0)| < 1. If λ = 0, then 

σ(ϕ(z)) = 0, for all z ∈ U, which contradict with the univalent of σoϕ, 

hence 0 < |λ| < 1. 

Let {an} be a sequence of non-zero complex numbers chosen so that: 

n
n

n 0

| a | || ||
∞

=
σ∑  < ∞  

Define v = n
n

n 0

a
∞

=
σ∑ . It is clear that v belongs to H2. 

Since Cϕσn = σn(ϕ) = σ(ϕ)σ(ϕ) … σ(ϕ) = λσλσ … λσ = λnσn, then σn is 

an eigenvector for Cϕ corresponding to the eigenvalue λn, for all n. We 

claim that v is a cyclic vector for Cϕ. Let f ∈ H2 be arbitrary and suppose 

that < kCϕ v, f> = 0, for k = 0, 1, …,; it suffices to show that f is the zero 

vector. We have for every non-negative integer k: 

0 = < kCϕ v, f> = < nk n
n

n 0

a
∞

=
λ σ∑ , f> = n

n
n 0

a , f
∞

=
< σ >∑ (λk)n 

Hence if we define h(z) = n
n

n 0

a , f
∞

=
< σ >∑ zn, then h(λk) = 0, for k = 0, 1, 

…; note that h is analytic on U. Since |λ| < 1, then the sequence {λk} 

converges to the zero, that is, {λk} has a limit point 0, hence h ≡ 0 on U 

(proposition (3.1.3)).  

Because an ≠ 0, for all n, we have <σn, f> = 0, for all n 

Because by hypothesis, the polynomials in σ are dense in H2 it follows 

that f ≡ 0. This completes the proof that Cϕ is cyclic and with it, the 

proof of the transference theorem.    � 
 

The transference technique introduced above requires the density of the 

polynomials, not in ϕ but in σ. Theorem (4.1.11) below shows that if ||ϕ||∞ < 

1, then density of the polynomials in ϕ is equivalent to density of the 

polynomials in σ.  

Before the theorem, we need some preliminaries. 
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Lemma (4.1.8): 

Let ϕ be a holomorphic self map of U. If Cϕ has dense range, then ϕ is 

univalent. 

Proof: 

Since Cϕ has dense range and z ∈ H2, then there is a sequence {fn} of 

functions in H2 such that: 

fn(ϕ(z)) → z ............................................................................. (4.2) 

Suppose ϕ(a) = ϕ(b), where a, b ∈ U; therefore fn(ϕ(a)) = fn(ϕ(b)), for all n, so 

that from (4.2), a = b, hence ϕ is univalent on U.    � 
 

We prove the following proposition: 
 

Proposition (4.1.9): 

Let ϕ be a univalent self map of U. Let σ be the intertwining map for ϕ 

promised by the linear fractional model theorem. If ||ϕ||∞ < 1, then σ(U) is 

bounded.  

Proof: 

Since ||ϕ||∞ < 1, then Cϕ is compact (theorem (1.5.1)), so that ϕ has 

interior fixed point (proposition (1.5.5)), without loss of generality, we 

assume ϕ(0) = 0, let λ = ϕ′(0). Remarks (4.1.5) shows: 

σoϕ = λσ ...................................................................................... (4.3) 

where λ = ϕ′(0). We observe that 0 < |λ| ≤ 1, where the first inequality 

follows from the univalence of σoϕ (see the proof of theorem (4.1.7) part (ii)) 

and the second inequality follows from the Schwarz lemma.  

Since ||ϕ||∞ < 1, then (U)ϕ  ⊂ U, hence by the Heine-Borel theorem (U)ϕ  is 

compact. Since σ is continuous mapping, then σ( (U)ϕ ) is bounded. Note that 

equation (4.3) may be rewritten σ = 
1

λ
σoϕ, so that σ(U) = 

1

λ
σ(ϕ(U)) ⊆ 

1

λ
σ( (U)ϕ ). Thus σ(U) is bounded.    � 
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The following proposition appeared in [3] without proof, we give the 

proof. 
 

Proposition (4.1.10): 

Let ϕ be a holomorphic self map of U. If Cϕ has dense range, then Cϕn is 

also for all n. 

Proof: 

Since (range Cϕ)
− = H2, then 0 = (range Cϕ)

⊥ = ker *Cϕ  

If f ∈ (range Cϕn)
⊥ = ker 

n

*Cϕ , then 
n

*Cϕ f = 0, that is 
n*Cϕ f = 0, therefore 

*Cϕ (
n 1*C

−

ϕ f) = 0, hence 
n 1*C

−

ϕ f ∈ ker *Cϕ . But ker *Cϕ  = 0, so that 
n 1*C

−

ϕ f = 0, 

we continuous until we have f = 0, that is (range Cϕn)
⊥ = 0 

Thus (range Cϕn)
− = H2.    � 

 

The following theorem appeared in [3], we give the details of its proof. 
 

Theorem (4.1.11): 

Suppose that ϕ is analytic on U and ||ϕ||∞< 1, then Cϕ is cyclic if and only 

if the polynomials in ϕ are dense in H2. 

Proof: 

We have seen that the density of the polynomials in ϕ is a necessary 

condition for cyclicity of Cϕ (corollary (2.2.9)). Our goal is to prove the 

converse. 

Suppose that the set of polynomials in ϕ is dense in H2 (or equivalently 

that Cϕ has dense range). Note that by lemma (4.1.8), ϕ must be univalent on 

U. Because ||ϕ||∞ < 1, then from chapter one, ϕ has interior fixed point (see 

also proof proposition (4.1.9)). Without loss of generality, we assume that 

ϕ(0) = 0. It is clear that ϕ is not elliptic (if ϕ is elliptic, then ϕ automorphism, 

hence ||ϕ||∞ = 1).  
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Let λ = ϕ′(0) and observe from the proof of theorem (4.1.7) part (ii) that      

0< |λ| < 1. The dilation model guarantees the existence of univalent map        

σ : U → C, such that σoϕ = λσ 

Note that from  proposition (4.1.9) that σ(U) is bounded subset of C. Because 

σ(U) is bounded, we may choose a positive integer n, large enough, so that 

λnσ maps U into itself. We claim that the range of the composition operator 

nCλ σ  is dense in H2, or equivalently that the set of polynomials in λnσ is 

dense. Since the set of polynomials in λnσ equals the set of polynomials in σ, 

this will complete the proof of the theorem. Because σ(U) is an open set 

containing 0, there is integer m such that the function v defined by               

v(z) = σ−1(λmz) is a self map of U. Therefore, fov ∈ H2, for all f ∈ H2. 

Range nCλ σ  ⊃ {(f ov)o(λnσ) : f ∈ H2} 

= {f oσ−1λm+nσ : f ∈ H2} 

= {f oϕm+n : f ∈ H2} 

= Range Cϕm+n. 

Since Cϕ has dense range, then Cϕm+n has dense range (proposition (4.1.10)). 

Thus the range of nCλ σ  contains a dense set and is therefore dense.    � 

 

Remarks (4.1.12): 

1. Since the density of the polynomials in ϕ is equivalent to the density of 

the range of Cϕ (theorem (2.2.7)), therefore, if ||ϕ||∞ < 1, then Cϕ is cyclic 

if and only if Cϕ has dense range. 

2. Density of the polynomials in ϕ does not in general imply cyclicity of Cϕ 

(see the example in the introduction of this chapter). 
 

Corollary (4.1.13): 

If ϕ maps U univalently onto the interior of Jordon curve lying in U, then 

Cϕ is cyclic. 
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Proof: 

By Walsh’s theorem (3.2.8), the polynomials in ϕ are dense in H2, 

whenever ϕ(U) is a Jordan domain. Since ϕ maps U univalently onto the 

interior of Jordan curve lying in U, then ||ϕ||∞ < 1, hence Cϕ is cyclic (theorem 

(4.1.11)).    � 
 

Corollary (4.1.14): 

Suppose that ϕ is an analytic self map of U and that ||ϕn||∞ < 1, for some 

n ≥ 1. If the set of polynomials in ϕ is dense in H2, then Cϕ is cyclic. 

Proof: 

We proved in proposition (4.1.10) that the density of the set of 

polynomials in ϕ implies density of the set of polynomials in ϕn, therefore Cϕn 

is cyclic (theorem (4.1.11)). Furthermore, if f is cyclic vector for Cϕn, then 

clearly f is cyclic vector for Cϕ.    � 
 

The proof of the following theorem is similar to the proof of theorem 

(4.1.7) part (ii). Thus we omit. 
 

Theorem (4.1.15) [3]: 

Suppose that σ maps U univalently onto a domain G ⊂ C and that there 

exists a complex number λ ∈ U, such that λG ⊂ G. Suppose further that the 

polynomials in σ are dense in H2. Let ϕ = σ−1λσ, then the composition 

operator Cϕ is cyclic. 
 

The following example shows how theorem (3.1.12) can fail for general 

self maps of ϕ. 
 

Example (4.1.16) [3]: 

The mapping σ(z) = log
1 z

1 z

+ 
 − 

 is univalent on U. The holomorphic 

function defined by ϕ(z) = σ−1 (z)
2

σ 
 
 

, maps U univlently onto the shaded 

region of figure (3), and fixes 0, 1 and −1. 
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01 -1

 
Figure (3). 

Shapiro used theorem (4.1.15) and theorem (2.2.7) to prove that Cϕ is cyclic 

[3]. 
 

We end this section by studying the power of cyclic operators and the set 

of cyclic vectors. 

Recall that if T is hypercyclic on H then all positive powers of T are also 

hypercyclic [1] and the set of all hypercyclic vectors for T is dense set in H. 

Positive powers of supercyclic operators are also always supercyclic [1] and 

the set of supercyclic vectors is dense set in H. These results don’t have 

analogues for cyclic operators. The forward shift S on the classical Hardy 

space defined by: 

S(f(z)) = zf(z), f ∈ H2 

is cyclic. However, S2 is not cyclic because the codimension of the range of 

S2 is two. Moreover, the set of cyclic vectors for S is not dense in H2, [1]. 

The following theorem shows that there is a connection between all 

powers of a cyclic operator and the density of the set of its cyclic vectors. 
 

Theorem (4.1.17) [1]: 

Suppose that T is a bounded linear operator on the Banach space X and 

that Tn is cyclic for each positive integer n, then the set of cyclic vectors for T 

is a dense subset of X. 
 

Remark (4.1.18): 

The converse of the preceding theorem is not true. Consider for example 

the operator T on � 2 defined by: 

T(z1, z2) = (z2, 0) 

+1−1 
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Each vector (α, β) with both α and β non-zero will be cyclic for T, hence T 

has dense set of cyclic vectors. However, T2 is the zero operator, and thus is 

not cyclic.  

The following theorem appeared in [1]. 
 

Theorem (4.1.19): 

If Cϕ is cyclic operator, then all positive powers of Cϕ are also cyclic, 

moreover the set of cyclic vectors is dense in H2.  

Proof: 

Since the cyclicity of Cϕ depends on the “type” of inducing map ϕ and 

since the n-th iterate of ϕ, ϕn, is of the same type as ϕ, hence if Cϕ is cyclic, so 

is nCϕ  = Cϕn, for every positive integer n. Moreover, theorem (4.1.17) shows 

that the set of cyclic vectors is dense in H2.    � 
 

4.2 THE HYPERBOLIC AND PARABOLIC MODELS 

In this section, we turn our attention to the models that applied when a 

self map of U has its Denjoy-Wolff point on ∂U, these are the hyperbolic and 

parabolic cases of the linear fractional model theorem. Recall that the map 

T(z) = 
1 z

1 z

+
−

 maps U onto Π = {z : Re(z) > 0} and takes the point 1 to ∞. Let 

ϕ be a self map of U, that has Denjoy-Wolff point on ∂U, so that ϕ is either of 

a hyperbolic or parabolic type. Without loss of generality (in terms of the 

cyclicity problem) we may assume that ϕ has Denjoy-Wolff point 1, so     

ϕ(1) = 1 and 0 < ϕ′(1) ≤ 1. We denote by Φ the self-map of the right half 

plane that corresponds to ϕ via T: 

Φ = ToϕoT−1 

Clearly, the sequence of Φ-iterates of any point in Π converges to ∞, so 

∞ functions as the half plane analogue to Denjoy-Wolff point of Φ. We will 

also need to transfer to the right half plane the alternative characterization of 

the Denjoy-Wolff point in terms of angular limits and derivatives for 0 < α < 

π, let Sα = {w : |arg w| < α/2}, (see figure (4)). 
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α Sα

 

Figure (4). 
 

Definition (4.2.1)[ 3]: 

(1) We say that a function F defined on Π has angular limit L at ∞, and 

write 
w

limF(w)
→∞

∠  = L, provided that given any α with 0 < α < π, F(w) 

converges to L as w approaches ∞, through Sα. 

(2) We say that a self map Φ of Π has angular derivative Q at ∞ (and write 

Φ′(∞) = Q) provided that Φ′ has angular limit Q at ∞.  
 

Transferring information from U to Π via T, we have: 
 

Theorem (4.2.2) [3]: 

If Φ is a self-map of Π with Denjoy-Wolff point ∞, then Φ has angular 

limit  ∞ at ∞ , and has angular derivative at ∞ equals to 
1

(1)′ϕ
, where ϕ′(1) is 

the angular derivative of T−1
oΦoT  at 1. Thus, Φ′(∞) ≥  1.  

For self maps of Π with Denjoy-Wolff point ∞, the hyperbolic and 

parabolic parts of the linear fractional model theorem have the following 

simple forms: 
 

Theorem (4.2.3) [3] (Right Half-Plane Models): 

Suppose Φ maps the right half plane into itself, and has Denjoy-Wolff 

point at ∞. Let C = Φ′(∞) so that C≥ 1. 
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(a) The hyperbolic model: If C > 1, then there exists a non-constant analytic 

self-map V of Π, such that: 

VoΦ = CV ............................................................................ (4.1) 

In other words (ψ, V) is a linear fractional model for Φ, where ψ is 

automorphism of Π given by ψ(w) = Cw, for all w ∈ Π. 

(b) The parabolic models: If C = 1, then there exists a non-zero complex 

number a  with Re(a) ≥ 0, and a non-constant analytic function V defined 

on Π such that: 

VoΦ = V+ a ......................................................................... (4.2) 

Moreover, in equation (4.2): If Re(a) = 0 (the parabolic automorphism 

model) then V may be taken to be a self-map of Π. 
 

Remarks (4.2.4): 

(1) When Re(a) ≠ 0 (the parabolic non-automorphism model), we can not 

assert that the intertwining map V may be taken to be a self-map of Π. 

(2) In both models above, univalence of Φ implies univalence of V. 

(3) To obtain further information about the natural of Φ, we assume that Φ 

has some smoothness near ∞ (i.e., that the original map ϕ has some 

smoothness near its Denjoy-Wolff point). This information will allow us 

to derive asymptotic representations of the intertwining maps V in the 

right half plane models of theorem (4.2.3). 
 

We seek series representations for holomorphic self-map ϕ of U about its 

Denjoy-Wolff point, when that point lies on the boundary. We assume 

(without loss of generality) that ϕ has Denjoy-Wolff point 1. If α ∈ (0, π) and 

Sα is the angular approach region with angle α at 1 (see figure (4)) then by 

theorem (1.2.13), we can expand the mapping ϕ as follows: 

ϕ(z) = 1 + ϕ′(1)(z − 1) + γ(z) ...................................................... (4.3) 

where γ(z) = O(|z − 1|) as z → 1 in Sα (γ(z) = O(|z − 1|) means the growth 

of γ(z) as z → 1 in Sα). 
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Definition (4.2.5) [3]: 

If the expansion (3) holds with γ(z) = O(|z − 1|) as z → 1 in the full 

disk, we say that ϕ ∈ C1(1). More generally, if 0 ≤ ε < 1, we say that              

ϕ ∈ C(n+ε)(1) provided that ϕ has the expansion: 

ϕ(z) = 
(k)n

k 0

(1)

k!=

ϕ
∑ (z − 1)k + γ(z) .................................................. (4.4) 

where γ(z) = O(|z − 1|n+ε) as z → 1 in U. 
 

Recall from section one in this chapter that in order to apply the 

transference principle , theorem (4.1.7), when the self-map ϕ of U has linear 

fractional model (ψ, σ), we must find conditions on ϕ that imply that the 

polynomials in σ are dense in H2. Rather than work with ϕ and σ. The author 

in [3] works with their right half plane equivalents Φ and V, then transfer the 

information obtained back to the disk setting. In this section, we present 

briefly the theorems (without proofs) concern the holomorphic self map ϕ of 

U. 
 

The proof of the following theorem appeared in [3]: 
 

Theorem (4.2.6): 

Suppose ϕ is a holomorphic self map of U that is of parabolic type, has 

Denjoy-Wolff point at 1, and that ϕ∈ C2(1), then: 

(a) Re(ϕ′′(1)) ≥ 0. 

(b) If either ϕ′′(1) = 0 or Re(ϕ′′(1)) > 0, then ϕ is of non-automorphism type. 

(c) Conversely, if ϕ′′(1) is non zero and pure imaginary and ϕ ∈ C3+ε(1), 

then ϕ is of automorphism type. 
 

Remark (4.2.7): 

Shapiro in [3] shows by an example that the third statement of theorem 

(4.2.6) is false for maps with less than C3 at the Denjoy-Wolff point.  
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The proof of the following theorem is very long, thus we omit. 
 

Theorem (4.2.8) [3]: 

Suppose that ϕ is of parabolic type and has C2-smoothness at Denjoy-

Wolff point. If Re(ϕ′′) does not vanish at the Denjoy-Wolff point (so that, by 

theorem (4.2.6), ϕ is of non-automorphism type), then Cϕ is not hypercyclic, 

in fact only constant functions may adhere to Cϕ-orbits. 
 

Definition (4.2.9): 

We call a map ϕ regular provided it is univalent and continuous on the 

closure of U, has Dinjoy-Wolff point p on ∂U and maps the closed disk into U 

∪ {p}. 
 

The following theorem shows that if ϕ is a regular map of parabolic non-

automorphism type that has C3+ε-smoothness at the Dinjoy-Wolff point, then 

although Cϕ is not hypercyclic (as we have just showed) it is nevertheless 

cyclic. This completes the proof of the statements made in the third row of 

table II of the introduction. 
 

Theorem (4.2.10) [3]: 

Suppose that ϕ is a regular self map of U of parabolic type with Dinjoy-

Wolff point at 1, suppose further that ϕ ∈ C3+ε(1) with Re(ϕ′′(1)) > 0. Then 

Cϕ is cyclic. 
 

The following theorem proves the second row of table II of the 

introduction. 
 

Theorem (4.2.11) [3]: 

Suppose that ϕ is a regular self-map of U that is of parabolic type, has 

Dinjoy-Wolff point at 1, and has C3+ε-smoothness at 1. If ϕ′′(1) is pure 

imaginary (and non-zero), then Cϕ is hypercyclic. 
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We end this section by the following result, which is summarized in the 

first row of table II of the introduction. 
 

Theorem (Hyperbolic Hypercyclicity) (4.2.12) [3]: 

If ϕ is a regular self map of U that is of hyperbolic type and has C1+ε-

smoothness at its Dinjoy-Wolff point, then Cϕ is hypercyclic. 
 

4.3 OPEN PROBLEMS 

In this section, we present some open problems suggested by our work. 

We see in theorem (2.1.27) if Cϕ is hyponormal, then 0 is fixed point for the 

mapping ϕ, hence Cϕ and *Cϕ  are not hypercyclic (supercyclic) operators. 

 

Question 1: 

Are Cϕ and *Cϕ  cyclic operators, when Cϕ is hyponormal operator? 

We saw in chapter two that if Cϕ is compact operator, then Cϕ and *Cϕ  

are not hypercyclic (supercyclic) operators. 
 

Question 2: 

What is the relation between the compactness of the operator Cϕ and the 

cyclicity of Cϕ , 
*Cϕ  ? 

In chapter three, we studied the cyclicity of *Cϕ  when ϕ ∈ LFT(U). We 

proved that if ϕ is elliptic, then *Cϕ  is cyclic if and only if Cϕ is cyclic. If ϕ is 

non-elliptic with interior fixed point (ϕ is not the identity mapping) then *Cϕ  

is cyclic but not hypercyclic, not supercyclic. If ϕ has no interior fixed point, 

then either ϕ is parabolic or non-parabolic. If ϕ is non-parabolic, then *Cϕ  is 

not cyclic (proposition (3.2.7), theorem (3.2.15)). If ϕ is parabolic, then we 

proved that *Cϕ  is not supercyclic (proposition (3.2.28)). 



Chapter Four                                                                                Linear Fractional Models 

 101 

The following question completes the study of cyclicity of *Cϕ , when ϕ 

∈ LFT(U). 
 

Question 3: 

Is *Cϕ  cyclic when ϕ is parabolic? 

 

We turn our attention to arbitrary holomorphic self map ϕ of U. We saw 

in chapter four that there is three cases: ϕ is dilation type, hyperbolic type and 

parabolic type. 

Let ϕ be a univalent self-map of U of dilation type (except those trivial 

cases (the identity and elliptic mappings)). We assume without loss of 

generality that 0 is fixed point for ϕ, hence by the proof of theorem (4.1.7) 

part (ii) 0 < |ϕ′(0)| < 1. Therefore, *Cϕ  is cyclic (corollary (2.2.26)). 

Note that *Cϕ  is not hypercyclic (supercyclic) since ϕ has interior fixed 

point. 

If ϕ is of hyperbolic type, then corollary (2.2.29) shows that *Cϕ  is not 

cyclic. 

If ϕ is of parabolic type, then theorem (2.2.31) shows that *Cϕ  is not 

necessary cyclic. 
 

Question 4: 

If ϕ is of parabolic type, then what is the condition on ϕ to make *Cϕ  

cyclic? 
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  الإهداء
  

  حييها منقذ الامة ومُ إلى 
  الى الشجرة التي تربيت في ظلالها

  أبي وأمي وأخوتي
  يد العون منذ البدء حتى القطاف  إلى كل من مد

  أهدي هذه الثمرة
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INTRODUCTION 

 

Let H(U) be the set of all holomorphic functions on the unit ball U of the 

complex plane. If f belongs to H(U), then by Taylor theorem one can expand 

the function f about the origin as follows: 

f(z) = n

n 0

f̂ (n)z
∞

=
∑ , (z ∈ U) 

If the coefficients {̂f (n) } is a square summable sequence, i.e., 

2

n 0

ˆ| f (n) |
∞

=
∑  < ∞, then we say that the function f belongs to H2 or H2(U). 

Therefore: 

H2 = {f ∈ H(U) : 2

n 0

ˆ| f (n) |
∞

=
∑  < ∞}. H2 is called the Hardy space.  

It is clear that if ϕ is a self map of U that belongs to H(U), then for any 

function f ∈ H(U), the composition foϕ also belongs to H(U). The 

Littlewood’s principle theorem [17] shows that for any f that belongs to H2, 

the composition foϕ also belongs to H2. Thus the composition operators Cϕ 

defined by: 

Cϕf = foϕ     (f holomorphic on U) 

takes the Hardy space H2 into itself. Littlewood’s principle also shows that Cϕ 

is a bounded operator on H2. Several authors have studied the properties of 

composition operators, for example, compactness, subnormality, and spectra 

of composition operators [8, 17]. Here is another direction for the 

composition operators: The study of cyclicity, which was followed by 

Shapiro, Bourdon and others [3, 17]. 

Recall that an operator T on a Hilbert space H is said to be cyclic if there 

is a vector x in H (called a cyclic vector for T) whose orbit, orb(T, x) = {T nx : 

n = 0, 1, …} has dense linear span in H. The operator T is supercyclic, if there 

is a vector x in H (called a supercyclic vector of T), such that the set: 

{ λnT
nx : λn ∈�  , n ∈ 0,1,…} 
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Is dense in H. It may happen that orbit, orb(T, x) is dense in H, in this case T 

is called hypercyclic and x is a hypercyclic vector [9, 10, 11].  

Because the closed linear span of orb(T, x) is the smallest closed T-

invariant subspace that contains the vector x, the concept of cyclicity is 

intimately connected with the study of invariant subspaces. Hypercyclicity 

has the same connection with invariant subsets. 

One of our main concerns in this thesis was to give conditions that are 

necessary and (or) sufficient for the composition operator to be a cyclic 

operator.  

This thesis contains some new results, to the best of our knowledge, on 

the cyclicity of the adjoint composition operators. 

This thesis consists of four chapters. In chapter one, we recall the 

definition of Hardy space H2 and the composition operator on H2, also we 

give some information about the conformal automorphism mapping, specially 

when ϕ is a linear fractional transformation.  

In chapter two, we recall the definitions of cyclic, supercyclic and 

hypercyclic for the composition operator. We give important properties and 

proved several theorems, also discussed the cyclicity of normal, hyponormal 

and isometric composition operator.  

In chapter three, we study the cyclicity of the composition operator 

induced by a linear fractional transformation. Bourdon and Shapiro 

characterize the cyclic behaviour of the composition operators induced by a 

linear fractional mapping, see table I, page (58), see also [3, 17, 19]. We give 

the details of the proofs and other properties, discussed the cyclicity of the 

adjoint composition operator and investigate the cyclicity of the operators Cϕ 

and Cψ, where: 

ϕ(z) = 
z

c z−
, (z ∈ U)   ,    ψ(z) = az + b, (z ∈ U) 

In chapter four, we use the linear fractional model theorem to study the 

cyclicity of composition operators induced by more general mapping. Finally, 

we state some open problems suggested by our work. 
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 المستخلص

 

كـــرة الوحـــدة فـــي  U، حيـــث Uمجموعـــة كـــل الـــدوال التحليليـــة المعرفـــة علـــى  H(U)لـــتكن 

nبأنــه مجموعــة كــل الــدوال  H2 ييُعــرف فضــاء هــارد. المســتوي العقــدي

n 0

f̂ (n)z
∞

=
∑=f(z)  التــي

2 > ∞والتي تحقق H(U)تنتمي الى 

n 0

ˆ| f (n) |
∞

=
، يُعـرف Uالـى  Uمن دالة تحليلية  ϕلتكن . ∑

  :بالشكل التالي H2على  Cϕالمؤثر التركيبي 

Cϕf = foϕ (∀ f ∈ H2) 

  بحيـث أن x ∈ Hاذا وجد متجه . Hمؤثراً معرفاً على  Tفضاء هلبرت وليكن  Hليكن 
span {Tnx : n =0, 1, …} فـي  كثيـفH  فـانT  يسـمى مـؤثر دائـري ويقـال أن المتجـهx 

 بحيـــــــث أن المجموعــــــــة x ∈ Hد متجـــــــه اذا وجــــــــ .Tمتجـــــــه دائـــــــري للمــــــــؤثر 

{ λnT
nx : λn ∈ Χ, n = 0, 1, …, }   كثيفـة فـيH  فـأنT إذا . يسـمى مـؤثر دائـري فـائق

T} بحيـث أن المجموعـة x ∈Hوجد متجه  nx : n = 0, 1, …, }  كثيفـة فـيH  فـأنT  يسـمى
  .مؤثر دائري فوقي

الضرورية التي تجعل المـؤثر التركيبـي مـؤثراً ) أو(في هذا البحث الشروط الكافية و درسنا 
دائريــاً، حيــث أعطينــا بعــض النتــائج المعروفــة وحاولنــا الحصــول علــى نتــائج أخــرى، خصوصــاً 

  :معرفة بالشكل ϕعندما تكون 

ϕ(z) = az b
cz d

+
+

, z ∈ U 

  .أعداد عقدية d, c, b, aحيث أن 

مؤثراً دائريـاً،  Cϕ*رورية التي تجعل المؤثر ضال) أو(شروط الكافية و لاكما أعطينا بعض 
  .Cϕكيبي ر هو المؤثر المرافق للمؤثر الت Cϕ*حيث 
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