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Appendix A 
 
program simulation; 

        {uses crt;} 

type 

    arr=array [1..500] of real; 

var 

   f,g,t:array[1..50,1..50] of real; 

   b00,b11,b0w,b1w,b0m,b1m:arr; 

   sum,x,tt,z,z1:array[1..15] of real; 

   n,m,i,j,k,k1,l,r,rr:integer; 

sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12, 

sum13,sum14,sum15,sum16,sum17,sum18,sum19,av,av1,v,v1,skew,skew1, 

kur,kur1,b0,b1,newb0,sum20,sum21,sum22,sum23,sum24,sum25,sum26, 

sum27,av4,av5,v4,v5,skew4,skew5,kur4,kur5,sumz1,sumxz1,av2,av3,v2,v3, 

skew2,skew3,kur2,kur3,newb1,sumz,sumxz,sumsqrx,ps,lmda:real; 

procedure sumall(b00,b11:arr;var 

sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11:real); 

begin 

         sum4:=sum4+b00[l]; 

         sum5:=sum5+b11[l]; 

         sum6:=sum6+sqr(b00[l]); 

         sum7:=sum7+sqr(b11[l]); 

         sum8:=sum8+(sqr(b00[l]*b00[l])); 

         sum9:=sum9+(sqr(b11[l]*b11[l])); 

         sum10:=sum10+(sqr(b00[l]*sqr(b00[l]))); 

         sum11:=sum11+(sqr(b11[l]*sqr(b11[l]))); 

end; 
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procedure eval(sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11:real); 

begin 

     av:=sum4/500; 

     av1:=sum5/500; 

     writeln('mean of b0=',av:9:4); 

     writeln('mean of b1=',av1:9:4); 

     v:=(1/500)*(sum6-(500*sqr(av))); 

     v1:=(1/500)*(sum7-(500*sqr(av1))); 

     writeln('var of b0=',v:9:4); 

     writeln('var of b1=',v1:9:4); 

     skew:=(1/500)*(sum8-(3*av*sum6)+(2*av*sqr(av)))/sqrt(v*sqr(v)); 

     skew1:=(1/500)*(sum9-

(3*av1*sum7)+(2*av1*sqr(av1)))/sqrt(v1*sqr(v1)); 

     writeln('skew of b0=',skew:9:4); 

     writeln('skew of b1=',skew1:9:4); 

     kur:=((1/500)*(sum10-(4*sum8*av)+(6*sum6*sqr(av))-

(3*sqr(av)*sqr(av)))/sqr(v))-3; 

     kur1:=((1/500)*(sum11-(4*sum9*av1)+(6*sum7*sqr(av1)) 

     -(3*sqr(av1)*sqr(av1)))/sqr(v1))-3; 

     writeln('kurtosis of b0=',kur:9:4); 

     writeln('kurtosis of b1=',kur1:9:4); 

end; 

begin 

     {clrscr;} 

     writeln('enter the no. of groups= m'); 

     readln(m); 

     writeln('enter the no. of element in every groups= n'); 

     readln(n); 

     writeln('enter beta0'); 
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     readln(b0); 

     writeln('enter beta1'); 

     readln(b1); 

r:=1; 

while (r<=20) do 

     begin 

     writeln('r=',r); 

     ps:=ln(r)-(1/(2*r))-(1/(12*exp(2*ln(r))))+(1/(120*exp(4*ln(r)))) 

     -(1/(252*exp(6*ln(r))))+(1/(240*exp(8*ln(r)))); 

     sum4:=0; sum5:=0; sum6:=0; sum7:=0; 

     sum8:=0; sum9:=0; sum10:=0; sum11:=0; 

     sum12:=0; sum13:=0; sum14:=0; sum15:=0; 

     sum16:=0; sum17:=0; sum18:=0; sum19:=0; 

     sum20:=0; sum21:=0; sum22:=0; sum23:=0; 

     sum24:=0; sum25:=0; sum26:=0; sum27:=0; 

     randomize; 

     for j:= 1 to m do 

         x[j]:=j-((m+1)/2); 

     for l:=1 to 500 do 

         begin 

              for i:=1 to n do 

                  for j:= 1 to m do 

                      f[i,j]:=random; 

       lmda:=0; 

              for i:=1 to n do 

                 for j:= 1 to m do 

   begin  

                     lmda:=exp(b0+b1*x[j]); 

                     g[i,j]:=-lmda*ln(f[i,j]); 
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                 end; 

            for j:=1 to m do 

                begin 

                     for i:=1 to n-1 do 

                         for k:=i+1 to n do 

                             if g[i,j]>g[k,j] then 

                                begin 

                                     t[i,j]:=g[i,j]; 

                                     g[i,j]:=g[k,j]; 

                                     g[k,j]:=t[i,j]; 

                                end; 

                end; 

          for j:= 1 to m do 

              begin 

                   sum[j]:=0; 

                   for i:= 1 to r do 

                       sum[j]:=sum[j]+g[i,j]; 

              end; 

          for j:=1 to m do 

              tt[j]:=1/r*(sum[j]+(n-r)*g[r,j]); 

{********************** Estimation by ML*********** ************} 

         rr:=m*r; 

         repeat 

                     b0:=newb0;   b1:=newb1; 

                     sum1:=0;  sum2:=0;  sum3:=0; 

                     for j:= 1 to m do 

                         begin 

                          sum1:=sum1-(r*tt[j]*exp(-(b0+(b1*x[j])))); 

                          sum2:=sum2-(r*x[j]*tt[j]*exp(-(b0+(b1*x[j])))); 
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                          sum3:=sum3-(r*sqr(x[j])*tt[j]*exp(- (b0+(b1*x[j])))); 

                         end; 

                     newb0:=b0+1-((sum3*rr)/(sqr(sum2)-(sum1*sum3))); 

                     newb1:=b1+((sum2*rr)/(sqr(sum2)-(sum1*sum3))); 

         until (abs(newb0-b0)<=0.00001) or (abs(newb1-b1)<=0.00001); 

         b00[l]:=newb0; 

         b11[l]:=newb1; 

         sumall(b00,b11,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11); 

{********************** Estimation by WLS********** ************} 

        sumz:=0; sumxz:=0; sumsqrx:=0; z[j]:=0; 

        for j:=1 to m do 

            begin 

              sumsqrx:=sumsqrx+sqr(x[j]); 

              z[j]:=ln(tt[j])-ps+ln(r); 

              sumz:=sumz+z[j]; 

              sumxz:=sumxz+(x[j]*z[j]); 

            end; 

        b0w[l]:=sumz/m; 

        b1w[l]:=sumxz/sumsqrx; 

  sumall(b0w,b1w,sum12,sum13,sum14,sum15,sum16,sum17,sum18,sum19); 

{********************* Estimation by SWLS********** ***********} 

       sumxz1:=0; sumz1:=0; sumsqrx:=0; z1[j]:=0; 

       for j:=1 to m do 

         begin 

              sumsqrx:=sumsqrx+sqr(x[j]); 

              z1[j]:=ln(tt[j])+exp(-1*ln(2*r-(1/3)+(1/(16*r)))); 

              sumz1:=sumz1+z1[j]; 

              sumxz1:=sumxz1+(x[j]*z1[j]); 

         end; 
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         b0m[l]:=sumz1/m; 

         b1m[l]:=sumxz1/sumsqrx; 

  sumall(b0m,b1m,sum20,sum21,sum22,sum23,sum24,sum25,sum26,sum27); 

  end; { end of l loop} 

     readln; 

     writeln('ESTIMATION b0 & b1 BY ML'); 

     writeln; 

     eval(sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11); 

     readln; 

     writeln('ESTIMATION b0 & b1 BY WLS'); 

     writeln; 

     eval(sum12,sum13,sum14,sum15,sum16,sum17,sum18,sum19); 

     readln; 

     writeln('ESTIMATION b0 & b1 BY SWLS'); 

     writeln; 

     eval(sum20,sum21,sum22,sum23,sum24,sum25,sum26,sum27); 

     readln; 

if r<10 then r:=r+1 else r:=r+2; 

end; 

end. 



 

 

 

 

 

1.1 Introduction  

In this chapter, we shall introduce some basic concepts of right 

censored time to failure data, their types, associated distributions, censoring 

mechanism, maximum likelihood estimation, and some statistical 

transformation results. 

 

1.2 Right Censored Time to Failure Data  

In survival data investigation, it is quite common to find some units 

have not failed when observation is terminated. Their failure times are 

therefore unknown but known to be exceeding their survival times measured 

at the end of the investigation. Such failure times are said to be right censored. 

   This censoring mechanism may occur due to the need for early termination 

of the investigation or removal of units from use before failure, or failures of 

units occurring because of causes unrelated to the application of the operating 

conditions, etc, and records of survival times cannot subsequently be 

obtained. The following two examples illustrate the objective of collecting 

right censored data. 

 

 

Chapter One 

Censored Data of the Exponential Distribution  
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Example 1.2.1 

Bartholomew in 1957 [6] considers the situation in which pieces of 

equipment are installed at different time. At a later data some of the pieces 

will have the failed and the rest will still be in use. The aim is to study the 

lifetime distributed of this type of equipment and to estimate quantities such 

as the proportion of the equipment that will fail within a specified time. 

Bartholomew gives the data in Table 1.1 showing the results for 10 pieces of 

equipment. The life test in question was terminated on August 31. At that 

time three items (numbers 2,4 and 10) has still not failed, and their failure 

timed are therefore censored; we know for these items only that their failure 

times exceed 72, 60 and 21 days, respectively. 

 

   Table 1.1   Operating Times for 10 Pieces of Equipment  

Item  

Number 

Date of  

Installation 

Date of 

Failure 

Lifetime 

(days) 

1 11 June 13 June 2 

2 21 June _ ≥ 72 

3 22 June 12 August 51 

4 2 July _ ≥ 60 

5 21 July 23 August 33 

6 31 July 27 August 27 

7 31 July 14 August 14 

8 1 August 25 August 24 

9 2 August 6 August 4 

10 10 August _ ≥ 21 
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Example 1.2.2 

Nelson in 1972 [28] describes the results of a life test experiment in 

which specimens of a type of electrical insulating fluid were subjected to a 

constant voltage stress. The length of time to failure or breakdown of 

specimens was observed. Table 1.2 gives results for seven groups of 

specimens, tested at different voltages level. 

 
  Table 1.2   Times to Breakdown (in Minutes) at Each Seven Voltage Levels  

  Voltage 
Level 
(kV) 

ni Breakdown Times 

26 5 5.79,1579.52,2323.7,2450.5*,3442.3* 

28 6 68.85,426.07,110.29,108.29,1067.6,2447.38* 

30 14 
17.05,22.66,21.02,175.88,139.07,144.12,20.46,   
43.40,194.90,47.30,7.74,199.4*,184.4*,233.55* 

32 15 
0.40,82.85,9.88,89.29,215.10,2.75,0.79,15.93, 
3.91,0.27,0.69,100.58,27.80,13.95,53.53 

34 21 
0.96,4.15,0.19,0.78,8.01,31.75,7.35,6.50,8.27, 
33.91,32.52,3.16,4.85,2.78,4.67,1.31,12.06,36.71,       
72.89,84.18*,96.78* 

36 20 
1.97,0.59,2.58,1.69,2.71,25.50,0.35,0.99,3.99, 
3.67,2.07,0.96,5.35,2.90,13.77,14.9*,16.2*,14.3*, 
19.43*,16.45* 

38 12 
0.47,0.73,1.40,0.74,0.39,1.13,0.09,2.38,3.19*, 
3.23*,4.12*,4.9* 

  aStarred quantities denote censored observations. 
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1.3 Types of Right Censored Data     

Censored data are said to have Type I censoring if censored 

observations occur only at specified values of the dependent variables. In this 

type of censoring, the censoring values are fixed and the number censored of 

observations is random. For instance, in Example 1.2.1, the experiments 

which the 10 pieces are installed at 10 different specified time and terminated 

at August 31. We see that 7 pieces have failed within the specified time and 3 

pieces are censored at 31 August. 

   Censored data are said to have Type II  censoring if the number censored 

of the observations is specified and their censored values are random, for 

example, in life testing when all units are put on test at the same time and the 

test terminated when a specified number have failed. For instance, in Example 

1.2.2, seven groups of specimens are tested under seven different voltage 

levels. The breakdown or failure in each group is recorded. In this experiment 

observations are taken after a specified number of specimens have been failed 

at different voltage level. We see that 2, 1, 3, 0, 5, 2, and 4 specimens at still 

in use at voltage 26, 28, 30, 32, 34, 36, and 38.  

   More details discussion on censoring left-right mechanism and type (I, II), 

for signally, doubly, and multiply censored data is provided by Nelson et al 

[26] and Kalbfleisch et al [19]. 

   We note that the type II censoring procedure is adopted in this thesis for two 

reasons: 

1. Mathematically inference procedures are simpler for type II than type I 

[29]. 

2. Type II censoring usually does not allow an upper bounded to be 

placed on the total duration of the study.  
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1.4 Continuous Failure Time Distributions   

In most applications when the mechanisms lead to censoring related to 

survival data, the assumption that the underlying distribution is normal is not 

realistic because the standard technique for least squares methods based on an 

additive regression model is not appropriates. A number of the parametric 

regression models can be found throughout the literature based on underlying 

distribution, such as, exponential, Weibull, gamma, lognormal, logistic, and 

extreme value distributions which have been widely used in life testing and 

survival problem. 

 

   We turn now to the mathematical representation of failure time distribution 

where we consider the case of an independent sample from a homogeneous 

population (no explanatory variables). We let non-negative random variable 

X  represent the failure time of an individual selected randomly from 

population and x  represent the specific value for X . 

   Let )(xf  be the p.d.f of X . The probabilities of an individual surviving 

until time x  is given by the survivor function: 

0

( ) ( ) ( )

Where  s(0)=1, and s( )=0 
x

s x pr X x f t dt
∞

=


= ≥ = 



∞ 

∫                                                         (1.1) 

The hazard failure rate )(th  defined as: 

( )
0

| ( )
( ) lim

( )x

pr x X x x X x f x
h x

x s x∆ →

≤ ≤ + ∆ ≥
= =

∆
                                   (1.2) 
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   The hazard function specifics the instantaneous rate of failure at time x , 

given that the individual survived until time x . The functions )(xf , )(xs  and 

)(xh  satisfy the following well known relations [23]: 

0

( ) ( )exp ( )
x

f x h x h t dt
  = − 
  
∫                                                                       (1.3) 

0

( ) exp ( )
x

s x h t dt
 
 = − 
  
∫                                                                                (1.4) 

   For the purpose of our later discussion, we shall give a brief discussion of 

the properties and the theoretical basis of the exponential and gamma 

distributions. These distributions have been discussed in details by Mann et al 

[25], and Al-Faris [4]. 

 

1.4.1 The Exponential Distribution 

The exponential distribution has been widely used as a model in areas 

ranging from the studies on the lifetime of the manufactured items e.g. 

Epstein [11], to research involving survival times in chronic diseases e.g. 

Fiegl and Zelen [12]. The one parameter exponential is obtained by taken the 

hazard failure rate: 

1
( ) 0, 0h t x λ

λ
= > >                                                                    (1.5) 

The p.d.f and the c.d.f are found from (1.3) and (1.4) to be: 

 





 >=

−

..0

0
1

)(
/

we

xexf
x λ

λ                                                                  (1.6) 
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0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

exp x 1,( )

x

and 

∞=
∞<<

≤









−=−= −

x

x

x

exsxF x 0

0

1

1

0

)(1)( / λ                                                    (1.7) 

   The distribution where 1=λ  is called the standard exponential distribution 

which have a graphical representation of Figure 1.1. 

 

Figure 1.1   The standard exponential p.d.f. 

The moment generating function of r.v. )(~ λExpX  is: 

1 (1 )/ 1

0 0

1 1
( ) [ ] ( ) (1 )

t xtX tx xt x

t

M t E e e f x dx e e dx e dx tλ λλ λ
λ λ

∞ ∞
− −− −= = = = = −∫ ∫ ∫

 

   The rth distribution moment about origin can be obtained by differentiating 

)(tM  r  times at 0t = . Thus:  



Chapter One.   Censored Data of the Exponential Distribution                                       8 
 

r

t
r

r
r

r r
dt

tMd
XE λµ !

)(
][

0

===′
=

                                                               (1.8) 

   In particular 2,1=r  , the mean and the variance of the distribution are λ  

and 2λ  respectively. 

 

1.4.2 The Gamma Distribution 

The gamma distribution arise as a model from statistical studies of 

interval between events occurring in time or space [15], specifically when the 

interest in the waiting time from the occurrence of one event until r  further 

events have occurred in a Poisson process with constant rate λ . This distn 

sometimes referred to as a special Erlangian distn after the Swedish scientist 

who used the distn in early studies of queuing problem. The gamma distn has 

important applications in the study of life time models, such as stops of the 

machine, failure or breakdown of equipment (e.g. electronic computer), air or 

road accidents, coal mining disasters, telephone calls, etc., are examples of 

such events that occur in a real time and have properties exported for gamma 

case. 

   A r.v. X  is said to have a gamma distn, denoted by ),(~ βαGX , if X   has 

p.d.f: 

..

0

0
)()(

/1

we

xexxf
x ∞<<








Γ=
−−

−
βα

α

α
β

                                                       (1.9) 

   Where 0>α  and 0>β  are respectively the shape and scale parameters. 

This distn include the exponential distn as a special case 1=α . 

   The survivor and hazard functions involve the incomplete gamma function. 

Integrating (1.9), we have:  
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1 /

1 /

0

1 /

0

( ) ( )
( ) 1 ( ) and ( )

( )
1

( )

00

where ( ) 0
( )

1

x

x
t

x
t

x e
f x

s x F x h x
s x

t e dt

x

F x t e dt x

x

α
α β

α
α β

α
α β

β
α

β
α

β
α

−
− −

−
− −

−
− −

Γ= − = =

−
Γ

≤



= < < ∞ Γ

 = ∞

∫

∫

         (1.10) 

   The gamma distribution is used as a lifetime model; thought is not nearly as 

much as the exponential and Weibull distributions, partly because the 

survivor and hazard functions are not expressible in a simple closed form 

[23]. 

The moment generating function of r.v. ~ ( , )X G α β is: 

1 /
( )

0 0
1
(1 )

1
( )

0

( ) [ ] ( )tX tx tx x

t x

M t E e e f x dx e x e dx

x e dx

α

α

β α β
α

ββ α β
α

−

−

∞ ∞
− −

Γ

−∞ −
−

Γ

= = =

=

∫ ∫

∫

 

Set        
t

dv
dxdxtdvxtv

β
ββ

−
=⇒−=⇒−=

1
)1()1(  

We have: 

1
/ 1 /

0 0

1
( )

( ) 1 (1 ) ( )(1 )

(1 )

v vv dv
M t e v e dv

t t t

t

αα α
β α β

α

α

β β
α β β αβ

β

∞ ∞−− −
− − −

−

 = = Γ − − Γ  −

= −

∫ ∫  

   The rth distn moment about the origin can be obtained by differentiating 

( )M t  r  times at 0t = . Thus: 
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0

0.2

0.4

0.6

0.8

1
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G x 1, 1,( )

G x 2, 1,( )

G x 3, 1,( )

x

0

( )
[ ] ( 1)( 2)...( 1) , 1,2,...

r
r r

r r
t

d M t
E X r r

dt
µ α α α α β

=

′ = = = + + + − =   (1.12) 

   In particular 21,r = , the mean and variance of the distn are αβ  and 2αβ  

respectively. Figure 1.2 show the p.d.f.'s for a few gamma distns. 

 

Figure 1.2   Gamma p.d.f.'s with 1=β  and 0.5,1,2and3α = . 

   We note that, the gamma distribution also arise mathematically in the same 

situations in which the exponential distn is being used, specifically, if  

nXXX ,...,, 21 is a r.s. of size n from )(βExp  then the r.v. 

),(~
1

βnGXY
n

i
i∑

=
= . 
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1.5 Censoring Mechanism for Exponential Distribution  

Consider a life test involving a random sample from size n  from 

)(λExp  and testing is terminated as soon as r  failure has occurred. 

   Mathematically speaking let nXXX ,...,, 21  be a random sample of size n  

from )(λExp  with p.d.f. f(x) and c.d.f. )(xF  are given respectively in 

equations (1.6) and (1.7).  

   Let nYYY ,...,, 21  be random variables representing the arrangement of the 

sample set }{ iX  in ascending order of magnitude then from order statistics 

theory, the joint p.d.f. of the set }{ iY  is:  

..

...0

0

)(!
),...,,( 21

1
21 we

yyyyfn
yyyg n

n

i
i

n
∞<<<<<









= ∏
=

                    (1.13) 

   Now if testing is terminated as soon as r  failures have occurred. Then the 

joint p.d.f. rYYY ,...,, 21  is: 

1 2

1 2 1 1 2 1

1 2 1 2 1 2

1
1

2 1 2

( , ,..., ) ... ( , ,..., ) ...

! ( ) ... ( )

. ( )... ( ) ...

r r n

r r r r n n n n

r n r r n

y y y

r

i r
i y y y y y y y y

r n r r n

g y y y g y y y dy dy dy

n f y f y

f y f y dy dy dy

+ +

+ + + − − = −

∞ ∞ ∞
∗

+ +

∞ ∞ ∞ ∞

+
= = = =

+ + +

=

=

∫ ∫ ∫

∏ ∫ ∫ ∫ ∫  

Since 

1

1

1 1( ) ( ) ( ) ( ) 1 ( )
n

n n

n n n n ny
y y

f y dy F y F F y F y
−

−

∞
∞

− −
=

= = ∞ − = −∫  

also 



Chapter One.   Censored Data of the Exponential Distribution                                       12 
 

2
1 2

2
1 1 1 1

2
2

1
[1 ( )] ( ) [1 ( )]

2

[1 ( )]

2!

n
n n

n n n n
yy y

n

F y f y dy F y

F y

−− −

∞ ∞

− − − −
=

−

−− = −

−=

∫
 

If the successive integrations on 132 ,...,, +−− rnn yyy  are made we have:  

..

...0

0

)](1)[(
)!(

!

),...,,(

21

1

21

we

yyyyFyf
rn

n

yyyg

r

r

i

rn
ri

r

∞<<<<<








−

−

=

∏
=

−

∗

               (1.14) 

For exponential case with )(tf  and )(tF  in (1.6) and (1.7) we have: 
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1.6 Maximum Likelihood Estimation for the Parameter λ  

The likelihood function is: 

)2121 ,...,,(),...,,,( rr yyygyyyLL ∗== λ  

The natural logarithm of the likely function is:  
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   The ML estimator for λ  is the solution of the equation 
ln ( )

0
L λ
λ

∂ =
∂

 at 

λλ ˆ= .  

So  
ˆ

ln ( )
0

L

λ λ

λ
λ =

∂ =
∂

   implies that   ])([
ˆ
1

ˆ
1

2 r

r

i
i yrny

r −++−
∑

=λλ
 

Then the ML estimator of λ  is: 

])([
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1
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r

i
i yrny

r
−+= ∑

=
λ                                                                             (1.16) 

 

1.7 Distribution of the ML Estimator of λ  

In this section we consider the distribution of λ̂ , by taking the 

transformation, which appears briefly in [23]:  

))(1( 1−−+−= iii YYinV    , ri ,...,2,1= , 00 =Y   

That is:  
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   This transformation is one-to-one that maps the space 

}...0:),...,,{( 2121 ∞<<<<<=Α rr yyyyyy  onto the space 

},...,2,1,0:),...,,{( 21 rivvvv ir =∞<<=Β , with inverse transform: 
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and the Jacobian of the transformation is: 
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also
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Therefore the joint p.d.f. of rVVV ,...,, 21  is:  
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Thus the set }{ iV  represent a sample of size r  from )(λExp .  

That is:  
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1.8 Some Statistical Transformation Results  

 

Theorem 1.8.1 

Let rXXX ,...,, 21  be a r.s. of size r  from )(λExp  then the r.v. 

)2(~
2 2 r

Xr
Y χ

λ
=  where 
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1
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i
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X X
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=
= ∑  

Proof 

Using m.g.f. technique: 
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Which is the m.g.f. of )2(2 rχ . 

 

Theorem 1.8.2 

If the r.v. ),(~ βαGX , then the r.v. XY ln=  distributed as log-

gamma distn with p.d.f. 

[ ]
..

0

exp
)(

1
)(

/

we

yey
yg

y ∞<<∞−






 −
Γ=

β
α α

βα  

With mean and variance of Y  are respectively:  
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[ ] [ ]ln ln ( )E Y E X β ψ α= = +  

[ ] [ ]var var ln ( )Y X ψ α′= =  

Proof  

The p.d.f. of r.v. ),(~ βαGX  is given by (1.9) as: 

..

0

0
)(

1
)(

/1

we

xex
xf

x ∞<<








Γ=
−− βα

αβα  

   The function xy ln=  define one-to-one transformation that maps the space  

}0:{ ∞<<=Α xx  onto the space }:{ ∞<<−∞=Β yy , with inverse yex =  

and the Jacobian of this transformation is: ye
dy

dx
J == . 

Then the p.d.f. of Y  is:  

( ) ∞<<−∞
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−

−−
yeeeeeJefyg
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yyeyy ,
)(

1

)(

1
)()( /1 βα

α
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α βαβα
 

   To find the mean and the variance of Y , we consider the moment generating 

function of Y  as follows: 

( )

1
( ) ( )

( )

( ) 1

( ) ( )

y

y

e
tY ty ty y

Y

y

e
t

t y
t

M t E e e g y dy e e e dy

t
e e dy

t

α β
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α β
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α β

α β
α α β
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−∞

−∞
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 = = =
  Γ

Γ +=
Γ Γ +

∫ ∫

∫

            (1.18) 

Since the integral side of eq. (1.18) is unity, then  

)(

)(
)(

α
βα

Γ
+Γ=

t

Y
t

tM                                                                                  (1.19) 



Chapter One.   Censored Data of the Exponential Distribution                                       18 
 
Set  

)(lnln)(ln)(ln)( αβαφ Γ−++Γ== tttMt  

( ) ( ) lnt tφ ψ α β′ = + +                                                                                (1.20) 

( ) ( )t tφ ψ α′′ ′= +                                                                                         (1.21) 

Where 

dw

wd
w

)(ln
)(

Γ=ψ    and 
2

2 )(ln
)(

dw

wd
w

Γ=′ψ  

   Are known as digamma and trigamma functions. Setting 0=t  the mean and 

variance of Y  are: 

[ ]
[ ] 




′=′′=
+=′=
)()0(var

ln)()0(

αψφ
βαψφ

Y

YE
                                                               (1.22) 

 

   We note that the digamma function ( )ψ α , and trigamma function ( )ψ α′  

are tabulated [2]. 

   Also, we note that, the following is an important well-known result can be 

deduced from theorem 1.8.1. 

If the r.v. )2(~
2 2 r

Xr χ
λ

, then the r.v. )2(
2

2 r
r

Y χλ=                               (1.23) 

   Where the distn is known as a non central chi-square distn with non 

centrality 
r2

λ
. 



 

 

 

 

3.1 Introduction  

In this chapter we present the results of the large scale Monte Carlo 

investigation to assess the approximations to the biases of ML and SWLS 

estimators. Moment properties of the three methods of estimation are 

tabulated and make comparisons with them. Mean square efficiencies of ML 

estimators relative to WLS and SWLS are assessed for the case of a single 

explanatory variable, but before that we consider a procedure for generating 

random variates from exponential distribution. 

   A computer program in Appendix (A) for evaluating the estimator's values 

of the regression coefficients for the three methods of estimation is mode by 

using Monte Carlo simulation. 

        

3.2 Random Variates Generation [35] 

Many methods and procedures are proposed in the literature for 

generating random variates from exponential distribution. We shall adopt the 

most well known method, namely the inverse transform method. 

 

 

 

Chapter Three 

Monte Carlo Investigation Results 
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3.2.1 Inverse Transform Method  

This method is the most common used in for generating random 

variates from the exponential distribution, which can be describe as follows: 

   The p.d.f. and c.d.f. of exponential distributed random variates are given by 

the equations (1.6) and (1.7) respectively. 

Setting )(xFU =  where )1,0(∈U  

    ⇒ λ/1 yeU −−= , that implies  

)1ln( UY −−= λ     

   Since the random variable )1( U−  is distributed in the same way as U , we 

may let:  

UY lnλ−=  

   The procedure for generating random variate from )(λExp  can be described 

as in the following algorithm: 

The algorithm IT 

1- Readλ . 

2- Generate U  from )1,0(U . 

3- Set UY lnλ−= . 

4- Deliver Y  as a random variate generating from )(λExp . 

 

   For a single explanatory variable with equally spaced values has been 

examined, the regression model for the mean that given in (2.2) becomes: 

( )0 1 ,
1,2,...,1

where
2

ix
i

i

e
i gg

x i

β βµ + =
= += − 


                                         (3.1) 
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   Equal numbers of censored exponential observations within the groups 

where taken with 20)2(10)1(1== rri , 10,5=g , with initial values of β
%

 equal 

to zero. 

A simulation run size 500 was used. 

 

3.3 Moment Properties of the ML Estimators  

For a single explanatory variable ( )1k =  the approximation to the bias 

of ML estimator given by the eq. (2.44) takes the form: 

3

1 1
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Also the information matrix of (2.14) becomes: 
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Hence, the asymptotic variances and covariance of ML estimators is:  
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We have      

0 1 , 1 1,2,...,ix
i ie x i gβ βµ += = =  
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From (2.15), we have: 
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And from (2.16) 
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% %% %

, 0

1

δ
δ

δ
 

=  
 %

                                                                (3.6) 

and 

0 0 1 0 0 1

0 1

1 0 1 1 0 1

0 1

ˆ ˆ ˆ ˆ( , ) ( , )
ˆ ˆ

ˆ ˆ ˆ ˆ( , ) ( , )
ˆ ˆ

f f

a b
A

b cf f

β β β β
β β

β β β β
β β

 ∂ ∂
 ∂ ∂   = =   ∂ ∂   
 ∂ ∂ 

%
 

 

 



Chapter Three.   Monte Carlo Investigation Results                                                         35 
 
Where  

( )

( )

( ) cetxr
f

betxr
f

aetr
f

i

i

i

x
ii

i
i

x
ii

i
i

i

x
ii

=−=
∂

∂

=−=
∂

∂

=−=
∂

∂

+−

+−

+−

∑

∑

∑

10

10

10

ˆˆ2

1

101

ˆˆ

1

100

ˆˆ

0

100

ˆ
)ˆ,ˆ(

ˆ
)ˆ,ˆ(

ˆ
)ˆ,ˆ(

ββ

ββ

ββ

β
ββ

β
ββ

β
ββ

 

1
2

1 c b
A

b aac b

− − =  −−  %
 

Then (3.6) becomes: 
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Substitute (3.7) in (3.5) we have: 
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In practice, we take rri = , then  
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   Then the approximate solution of ML estimators of (3.8) at stage )1( +s  

becomes: 
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   This process is repeated until the difference between new 0β  and 1β  

estimators and the old 0β  and 1β  estimators less than the same specific 

bounded which is ( 610− ). 

   Without loss of generality, we may assume that the x-values are centered so 

that 0=∑
i

ii xr . 

In this case, we have from (3.2) and (3.3) the following results: 

0and 1
1

0 =−= − bRb                                                                        (3.10) 
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   In Table 3.1 values of the biases of the ML estimators are shown for the 

cases 20)2(10)1(1== rri ; gi ,...2,1= , 10,5=g values of the approximate 

biases 1
0

−−= Rb  for 0β̂  are shown in parentheses, the bias of 1̂β  being zero 

to order 1−R . 

   The results of Table 3.1 show that there is a good agreement between the 

biases of  0β̂  obtained by simulation and the approximate values 1R −−  even 

for r as small as one. The biases for 1̂β  are close to zero which agree with the 

approximation given in eq. (3.10).  

   Table 3.2 presents the values of the variances, skewness, and kurtosis of the 

ML estimators are shown for the cases 20)2(10)1(1== rri ; gi ,...2,1= , 

10,5=g . Values of the large sample variances given by eq. (3.11) for 0β̂  and 

1̂β  are shown in parentheses. 

   The result of Table 3.2 shows that there is very good adequate between the 

large sample variances of eq. (3.11) and simulation value for all values of r. 

   And we find that for all values of r, the estimators show a small skewness 

and some negative kurtosis which indicating that normal approximation to the 

distribution of the estimators will be effective for 5r ≥ . 
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  Table 3.1   Values of Biases for ML Estimators 

r 
g=5 g=10 

0β̂  1̂β  0β̂  1̂β  

1 -0.02221(-0.2000) -0.0304 -0.1120(-0.1000) 0.0066 

2 -0.1019(-0.1000) -0.0012 -0.0665(-0.0500) -0.0007 

3 -0.0814(-0.0667) -0.0157 -0.0327(-0.0333) -0.0028 

4 -0.0642(-0.0500) -0.0182 -0.0315(-0.0250) 0.0003 

5 -0.0402(-0.0400) -0.0023 -0.0225(-0.0200) -0.0009 

6 -0.0426(-0.0333) 0.0026 -0.0116(-0.0167) 0.0012 

7 -0.0313(-0.0285) -0.0050 -0.0153(-0.0143) -0.0025 

8 -0.0333(-0.0250) -0.0096 -0.0236(-0.0125) 0.0008 

9 -0.0252(-0.0222) 0.0033 -0.0186(-0.0111) -0.0021 

10 -0.0239(-0.0200) -0.0007 -0.0081(-0.0100) 0.0001 

12 -0.0172(-0.0167) 0.0060 -0.0051(-0.0083) 0.0009 

14 -0.0110(-0.0143) -0.0030 -0.0096(-0.0071) -0.0004 

16 -0.0119(-0.0125) 0.0015 -0.0029(-0.0063) -0.0011 

18 -0.0051(-0.0111) 0.0004 -0.0077(-0.0056) -0.0009 

20 -0.0170(-0.0100) 0.0003 -0.0028(-0.0050) 0.0015 

 

 

 

 

 



Table 3.2   Values of Variances, Skewness, and Kurtosis for ML Estimators 

i. 0
ˆ( )β
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.2380(0.2000) 4.1625 11.8366 0.1046(0.1000) 2.4325 1.7417 

2 0.1156(0.1000) 2.7243 5.7039 0.0493(0.0500) 1.7637 -0.5829 

3 0.0616(0.0667) 2.0973 0.6827 0.0348(0.0333) 1.2339 -1.3994 

4 0.0515(0.0500) 1.8417 -0.0506 0.0264(0.0250) 1.1296 -1.9464 

5 0.0404(0.0400) 1.2270 -1.6496 0.0199(0.0200) 0.8890 -2.3553 

6 0.0350(0.0333) 1.3885 -1.3279 0.0173(0.0167) 0.6700 -2.5649 

7 0.0244(0.0286) 1.1619 -1.8334 0.0156(0.0143) 0.7881 -2.3325 

8 0.0238(0.0250) 1.2809 -1.5433 0.0136(0.0125) 1.0652 -2.0702 

9 0.0222(0.0222) 1.0034 -2.1215 00101(0.0111) 0.9119 -2.3531 

10 0.0239(0.0200) 1.0064 -0.0244 0.0086(0.0100) 0.5420 -2.7449 

12 0.0186(0.0167) 0.8430 -2.3155 0.0076(0.0083) 0.4338 -2.8225 

14 0.0119(0.0143) 0.6426 -2.6096 0.0068(0.0071) 0.6306 -2.6525 

16 0.0121(0.0125) 0.6383 -2.6506 0.0063(0.0063) 0.3192 -2.8950 

18 0.0110(0.0111) 0.4629 -2.7603 0.0057(0.0056) 0.5567 -2.7288 

20 0.0102(0.0100) 0.8143 -2.5061 00052(0.0050) 0.3187 -2.8988 

 



 
Table 3.2   Continued 

ii. 1̂( )β
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.1365(0.1000) 1.5841 0.4420 0.0143(0.0121) 0.2715 -2.7399 

2 0.0571(0.0500) 0.8351 -1.8490 0.0074(0.0061) 0.2945 -2.8719 

3 0.0417(0.0333) 0.3642 -2.5951 0.0045(0.0040) 0.3521 -2.8574 

4 0.0279(0.0250) 0.9078 -2.1065 0.0032(0.0030) 0.1573 -2.9559 

5 0.0217(0.0200) 0.5472 -2.5451 0.0025(0.0024) 0.2067 -2.9458 

6 0.0188(0.0167) 0.3339 -2.7962 0.0019(0.0020) 0.0515 -2.9820 

7 0.0165(0.0143) 0.5112 -2.6569 0.0018(0.0017) 0.3125 -2.9191 

8 0.0127(0.0125) 0.6462 -2.5558 0.0015(0.0015) 0.0692 -2.9783 

9 0.0113(0.0111) 0.2449 -2.8479 0.0015(0.0013) 0.2879 -2.9294 

10 0.0103(0.0100) 0.3086 -2.8615 0.0013(0.0012) 0.0981 -2.9822 

12 0.0082(0.0083) 0.0600 -2.9364 0.0010(0.0010) 0.0036 -2.9919 

14 0.0075(0.0071) 0.3518 -2.8636 0.0010(0.0009) 0.1550 -2.9706 

16 0.0062(0.0063) 0.1955 -2.9024 0.0007(0.0008) 0.2003 -2.9689 

18 0.0054(0.0056) 0.1666 -2.9571 0.0007(0.0007) 0.1880 -2.9694 

20 0.0051(0.0050) 0.2057 -2.9292 0.0006(0.0006) -0.0984 -2.9857 
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3.4 Moment Properties of WLS Estimators   

From (2.28), the WLS estimators under our model that given in (3.1) 

when rri = are: 
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     (3.12) 

And from eq. (2.29), the variances and covariance matrix is: 
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   Hence, the asymptotic variances and covariance of WLS estimators when 

rri =  are:  
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   Table 3.3 presents the values of the simulated biases of WLS estimators for 

the case 20)2(10)1(1== rri ; gi ,...2,1= , 10,5=g . The WLS estimator is an 

unbiased. 

   And Table 3.4 gives the values of the variances, skewness, and kurtosis of 

the WLS estimators are shown for the cases 20)2(10)1(1== rri ; gi ,...2,1= , 

10,5=g . Values of the large sample variances given by eq. (3.13) for 0
ˆ

wβ  

and 1̂wβ  are shown in parentheses. 

   The result of Table 3.4 shows that there is a good adequate between the 

large sample variances of eq. (3.13) and simulation value for all values of r. 

   And we notice that for all values of r, the estimators show a small skewness 

and some negative kurtosis which indicating that normal approximation to the 

distribution of the estimators will be effective even for small values of r. 
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  Table 3.3   Values of Biases for WLS Estimators  

r 
g=5 g=10 

0
ˆ

wβ  1̂wβ  0
ˆ

wβ  1̂wβ  

1 0.0128 -0.0392 -0.0059 0.0082 

2 0.0045 0.0029 -0.0185 -0.0003 

3 -0.0161 0.0151 0.0043 -0.0046 

4 -0.0127 -0.0185 -0.0063 0.0006 

5 0.0044 -0.0036 -0.0029 0.0004 

6 -0.0084 0.0042 0.0066 0.0010 

7 -0.0019 -0.0054 -0.0013 -0.0018 

8 -0.0065 -0.0099 -0.0103 0.0007 

9 -0.0039 0.0039 -0.0058 -0.0018 

10 -0.0040 -0.0011 0.0023 0.0000 

12 0.0002 0.0055 0.0030 0.0009 

14 0.0038 -0.0028 -0.0029 -0.0006 

16 0.0005 0.0010 0.0022 -0.0012 

18 0.0063 0.0002 -0.0019 -0.0011 

20 -0.0073 0.0002 0.0015 0.0015 

 

 

 

 

 



Table 3.4   Values of Variances, Skewness, and Kurtosis for WLS Estimators 

i. 0
ˆ( )wβ
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.2919(0.2414) 1.9268 5.4036 0.1632(0.1207) 1.1679 -0.8730 

2 0.1295(0.1065) 1.2721 0.4790 0.0598(0.0532) 1.0691 -1.5133 

3 0.0698(0.0689) 1.1421 -0.7887 0.0390(0.0345) 0.5922 -2.2570 

4 0.0541(0.0511) 0.9071 -1.8863 0.0286(0.0256) 0.6488 -2.4538 

5 0.0442(0.0407) 0.4888 -2.5740 0.0218(0.0203) 0.4568 -2.7413 

6 0.0364(0.0338) 0.7293 -2.5757 0.0185(0.0169) 0. 2554 -2.8175 

7 0.0261(0.0289) 0.5223 -2.5816 0.0166(0.0144) 0.4664 -2.5338 

8 0.0255(0.0252) 0.6641 -2.3939 0.0143 (0.0126) 0.7669 -2.3931 

9 0.0228(0.0224) 0.5413 -2.6041 0.0106(0.0112) 0.4908 -2.7410 

10 0.0245(0.0201) 0.5735 -2.5157 0.0091(0.0101) 0.2016 -2.9152 

12 0.0187(0.0168) 0.4156 -2.7053 0.0080(0.0084) 0.1503 -2.9379 

14 0.0122(0.0143) 0.2180 -2.8701 0.0070(0.0072) 0. 3645 -2.8315 

16 0.0126(0.0125) 0.2894 -2.8671 0.0064(0.0063) 0.1367 -2.9483 

18 0.0111(0.0111) 0.1254 -2.9078 0.0058(0.0056) 0.3065 -2.8824 

20 0.0104(0.0100) 0.4967 -2.7789 0.0052(0.0050) 0.1377 -2.9536 

 



Table 3.4   Continued 

ii. 1̂( )wβ
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.1558(0.1207) 1.5830 0.0773 0.0190 (0.0146) 0.3311 -2.6471 

2 0.0639(0.0532) 0.8057 -1.8617 0.0086 (0.0065) 0.2958 -2.8585 

3 0.0432(0.0345) 0.3283 -2.7158 0.0049(0.0042) 0.4319 -2.8125 

4 0.0283(0.0256) 0.8900 -2.1886 0.0035(0.0031) 0.1544 -2.9491 

5 0.0225(0.0203) 0.5944 -2.4723 0.0027(0.0025) 0.1401 -2.9604 

6 0.0198(0.0169) 0.3288 -2.7491 0.0019(0.0020) 0.0697 -2.9781 

7 0.0174(0.0144) 0.5176 -2.6595 0.0019(0.0017) 0.2575 -2.9398 

8 0.0128(0.0126) 0.6504 -2.5684 0.0015(0.0015) 0.0699 -2.9792 

9 0.0115(0.0112) 0.2364 -2.8402 0.0016(0.0014) 0.2704 -2.9364 

10 0.0104(0.0107) 0.3118 -2.8627 0.0013(0.0012) 0.1090 -2.9809 

12 0.0082(0.0084) 0.0791 --2.9333 0.0010(0.0010) 0.0087 -2.9919 

14 0.0076(0.0072) 0.3527 -2.8549 0.0010(0.0009) 0.1665 -2.9682 

16 0.0063(0.0063) 0.2108 -2.9081 0.0008(0.0008) 0.2026 -2.9678 

18 0.0055(0.0056) 0.1757 -2.9538 0.0007(0.0007) 0.2157 -2.9615 

20 0.0051(0.0050) 0.2071 -2.9295 0.0006(0.0006) -0.0912 -2.9855 
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3.5 Moment Properties of SWLS Estimators  

For the SWLS estimators expression (2.30), (2.31) apply with ( )irψ ′  

replaced 
1

10
1

2
1

−





 +−

irir , eq. (3.12) gives the SWLS estimators, and eq. 

(3.13) gives approximate variances which are: 
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   Table 3.5 shows the values of the simulated biases of SWLS estimators for 
the cases 20)2(10)1(1== rri ; gi ,...2,1= , 10,5=g . The true values of biases 

of SWLS given by eq. (2.42) where 
g

d
i

i

b
∑

∗ =0  for 0
ˆ

mβ  are shown between 

parentheses the biases of 1̂mβ  which is 
∑

∑
=∗

i
i

i
ii

x

dx

b 1  being zero. 

   The results of Table 3.5 show that there is an expected agreement between 

the biases of  0ˆ mβ  obtained by simulation and the approximate values 
i

i
d

g

∑

 

for all values of r. The biases for 1̂mβ  are close to zero which agree with the 

approximate values 
i i

i

i
i

x d

x

∑

∑
 that being zero.  

   And Table 3.6 gives the values of the variances, skewness, and kurtosis of 

the SWLS estimators are shown for the cases 20)2(10)1(1== rri ; gi ,...2,1= , 

10,5=g . Values of the large sample variances given by eq. (3.14) for 0
ˆ

mβ  

and 1̂mβ  are shown in parentheses. 
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   The result of Table 3.6 shows that there is a good adequate between the 

large sample variances of eq. (3.14) and simulation value for all values of r. 

   And we notice that for all values of r, the estimators show a small skewness 

and some negative kurtosis which indicating that normal approximation to the 

distribution of the estimators will be effective even for small values of r. 

 

  Table 3.5   Values of Biases for SWLS Estimators  

R 
g=5 g=10 

0
ˆ

mβ  1̂mβ  0
ˆ

mβ  1̂mβ  

1 0.0164(0.0035) -0.0392 -0.0024(0.0035) 0.0082 

2 0.0046(-0.0066) 0.0029 -0.0184(-0.0066) -0.0003 

3 -0.0161(-0.0050) 0.0151 0.0042(-0.0050) -0.0046 

4 -0.0127(-0.0039) -0.0185 -0.0063(-0.0039) 0.0006 

5 0.0044(-0.0031) -0.0036 -0.0029(-0.0031) 0.0004 

6 -0.0084(-0.0026) 0.0042 0.0066(-0.0026) 0.0010 

7 -0.0019(-0.0022) -0.0054 -0.0013(-0.0022) -0.0018 

8 -0.0065(-0.0019) -0.0099 -0.0103(-0.0019) 0.0007 

9 -0.0039(-0.0017) 0.0039 -0.0058(-0.0017) -0.0018 

10 -0.0040(-0.0016) -0.0011 0.0023(-0.0016) 0.0000 

12 0.0002(-0.0013) 0.0055 0.0030(-0.0013) 0.0009 

14 0.0038(-0.0011) -0.0028 -0.0029(-0.0011) -0.0006 

16 0.0005(-0.0010) 0.0010 0.0022(-0.0010) -0.0012 

18 0.0063(-0.0009) 0.0002 -0.0019(-0.0009) -0.0011 

20 -0.0073(-0.0008) 0.0002 0.0015(-0.0008) 0.0015 

 

 

 

 

 



Table 3.6   Values of Variances, Skewness, and Kurtosis for SWLS Estimators 

i. 0
ˆ( )mβ
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.292(0.3333) 1.8999 5.2782 0.1635(0.1667) 1.1365 -0.9371 

2 0.1311(0.1290) 1.2715 0.4774 0.0599(0.0645) 1.0683 -1.5147 

3 0.0699(0.0789) 1.1421 -0.7886 0.0398(0.0395) 0.5923 -2.2570 

4 0.054(0.0567) 0.9072 -1.8862 0.0287(0.0284) 0.6490 -2.4537 

5 0.0449(0.0442) 0.4889 -2.5739 0.0219(0.0221) 0.4568 -2.7413 

6 0.0365(0.0363) 0.7293 -2.5756 0.0185 (0.0181) 0.2555 -2.8175 

7 0.0261(0.0307) 0.5223 -2.5816 0.0166 (0.0154) 0.4665 -2.5338 

8 0.0255(0.0266) 0.6641 -2.3938  0.0143(0.0133) 0.7670 -2.3930 

9 0.0228(0.0235) 0.5414 -2.6041  0.0106 (0.0117) 0.4908 -2.7410 

10 0.0245(0.0210) 0.5735 -2.5157  0.0091 (0.0105) 0.2016 -2.9151 

12 0.0187(0.0174) 0.4156 -2.7053  0.0080 (0.0087) 0.1503 -2.9379 

14 0.0122(0.0148) 0.2180 -2.8701 0.0070 (0.0074) 0. 3645 -2.8315 

16 0.0126(0.0129) 0.2894 -2.8671 0.0064 (0.0064) 0.1367 -2.9483 

18 0.0111(0.0114) 0.1254 -2.9078 0.0058 (0.0057) 0.3065 -2.8824 

20 0.0104(0.0102) 0.4967 -2.7789 0.0052 (0.0051) 0.1377 -2.9536 

 



Table 3.6   Continued 

ii. 1̂( )mβ
%

 

r 
g=5 g=10 

var. skew. kurt. var. skew. kurt. 
1 0.1563(0.1667) 1.5830 0.0773 0.0193(0.0202) 0.3311 -2.6471 

2 0.0642(0.0645) 0.8057 -1.8617 0.0087(0.0078) 0.2958 -2.8585 

3 0.0434(0.0395) 0.3283 -2.7158 0.0050(0.0048) 0.4319 -2.8125 

4 0.0285(0.0284) 0.8900 -2.1886 0.0035(0.0034) 0.1544 -2.9491 

5 0.0229(0.0221) 0.5944 -2.4723 0.0027(0.0027) 0.1401 -2.9604 

6 0.0198(0.0181) 0.3288 -2.7491 0.0019(0.0022) 0.0697 -2.9781 

7 0.0174(0.0154) 0.5176 -2.6595 0.0019(0.0019) 0.2575 -2.9398 

8 0.0128(0.0133) 0.6504 -2.5684 0.0015(0.0016) 0.0699 -2.9792 

9 0.0115(0.0117) 0.2364 -2.8402 0.0016(0.0014) 0.2704 -2.9364 

10 0.0104(0.0105) 0.3118 -2.8627 0.0013(0.0013) 0.1090 -2.9809 

12 0.0082(0.0087) 0.0791 -2.9333 0.0010(0.0011) 0.0087 -2.9919 

14 0.0076(0.0074) 0.3527 -2.8549 0.0010(0.0009) 0.1665 -2.9682 

16 0.0063(0.0064) 0.2108 -2.9081 0.0008(0.0008) 0.2026 -2.9678 

18 0.0055(0.0057) 0.1757 -2.9538 0.0007(0.0007) 0.2157 -2.9615 

20 0.0051(0.0051) 0.2071 -2.9295 0.0006(0.0006) -0.0912 -2.9855 
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  Table 3.7   Variance Efficiencies of WLS Relative to ML 

r 
g=5 g=10 

0 1E E∗ ∗=  
0E  1E  0E  1E  

1 0.8153 0.8761 0.6409 0.7526 0.608 

2 0.8927 0.8936 0.8244 0.8605 0.7752 

3 0.8825 0.9653 0.8923 0.9184 0.8440 

4 0.9519 0.9859 0.9231 0.9143 0.8808 

5 0.9140 0.9644 0.9128 0.9259 0.9037 

6 0.9615 0.9495 0.9351 1 0.9192 

7 0.9349 0.9483 0.9398 0.9474 0.9304 

8 0.9333 0.9922 0.9510 1 0.9389 

9 0.9737 0.9826 0.9528 0.9375 0.9455 

10 0.9755 0.9904 0.9451 1 0.9509 

12 0.9947 1 0.9500 1 0.9589 

14 0.9754 0.9868 0.9714 1 0.9647 

16 0.9603 0.9841 0.9844 0.855 0.9690 

18 0.9910 0.9818 0.9828 1 0.9724 

20 0.9808 1 1 1 0.9752 

 

  Table 3.8   Variance Efficiencies of SWLS Relative to ML 

r 
g=5 g=10 

0 1E E∗ ∗=  
0E  1E  0E  1E  

1 0.8151 0.8733 0.6398 0.7409 0.6 

2 0.8817 0.8894 0.8230 0.8506 0.775 

3 0.8813 0.9608 0.8744 0.9000 0.8444 

4 0.9537 0.9789 0.9209 0.9143 0.881 

5 0.9000 0.9476 0.9087 0.9259 0.904 

6 0.9590 0.9495 0.9351 1 0.9194 

7 0.9349 0.9483 0.9398 0.9474 0.9306 

8 0.9333 0.9922 0.9510 1 0.9391 

9 0.9737 0.9826 0.9528 0.9375 0.9457 

10 0.9755 0.9904 0.9451 1 0.951 

12 0.9947 1 0.9500 1 0.9590 

14 0.9754 0.9868 0.9714 1 0.9648 

16 0.9603 0.9841 0.9844 0.855 0.9691 

18 0.9910 0.9818 0.9828 1 0.9725 

20 0.9808 1 1 1 0.9752 
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3.7 Bias Reduction Estimators  

The bias approximation given by eq. (3.2) for the ML estimators work 

effectively for all values of the { }ir  and the biases are of the same order of 

magnitude as the variances, we are led to consider bias reduction estimators 

given by:  

1
0 0

3

1
1 1 2 2

2

ˆ̂ ˆ

ˆ̂ ˆ
i i

i

i i
i

R

r x

r x

β β

β β

− = +



= +
 
 
 

  

∑

∑

                                                                    (3.19) 

   In order to reduce the mean square errors of estimation, the mean square 

errors of the new estimators are given by: 

( ) ( ) 2ˆ̂ ˆ 2 , 1,2j j j j jmse mse b b B jβ β= + − =                             (3.20) 

Where jβ  denoted the true bias of ˆ
jβ . 

   The mean square efficiencies of the ML, WLS, and SWLS estimators 

relative to the bias reduction estimators are defined by: 

( )
( )
( )

( )
( )

( )

1

2

3

ˆ̂

ˆ

ˆ̂

0,1
ˆ

ˆ̂

ˆ

j

j
j

j

j
jw

j

j
jm

mse
E

mse

mse
E j

mse

mse
E

mse

β

β

β

β

β

β


= 



= = 



=



                                                           (3.21) 
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   Estimates of the efficiencies are obtained by simulation are shown in Table 

3.9 for 20)2(10)1(1== rri  and 5,10g = .    

   For the x-values under consideration, we have 1 0b =  so the estimators 1
ˆ̂β  

and 1̂β  are equivalent, therefore 11 0E = .  

   For estimation of 0β , if we use the approximation 1
0 0

ˆvar( ) B Rβ −= =  in 

eq. (3.20), we obtain:  

( )
( )

0

0

ˆ̂

ˆ 1

mse
R

Rmse

β

β
≈

+
                                                                                      (3.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

Table 3.9 
Mean Square Error Efficiencies 0f ML, WLS, and SWLS Estimators Relative to the Bias Reduction Estimators 

r 
g=5 g=10 

10E  20E  30E  21E  31E  10E  20E  30E  21E  31E  

1 0.8561 0.8153 0.8147 0.8761 0.8733 0.9127 0.6409 0.6398 0.7526 0.7409 

2 0.9204 0.8927 0.8919 0.8936 0.8894 0.9517 0.8244 0.8249 0.8605 0.8506 

3 0.9326 0.8825 0.8822 0.9653 0.9608 0.9691 0.8923 0.8926 0.9184 0.9000 

4 0.9976 0.9519 0.9510 0.9859 0.9789 0.9769 0.9231 0.9231 0.9143 0.9143 

5 0.9984 0.9140 0.9140 0.9644 0.9476 0.9803 0.9128 0.9128 0.9259 0.9259 

6 0.9989 0.9615 0.9615 0.9495 0.9495 0.9841 0.9351 0.9359 1 1 

7 0.9678 0.9349 0.9349 0.9483 0.9483 0.9871 0.9398 0.9398 0.9474 0.9474 

8 0.9993 0.9333 0.9333 0.9922 0.9922 0.9886 0.9510 0.9510 1 1 

9 0.9783 0.9737 0.9737 0.9826 0.9826 0.9879 0.9528 0.9528 0.9375 0.9375 

10 0.9835 0.9755 0.9755 0.9904 0.9904 0.9885 0.9451 0.9451 1 1 

12 0.9853 0.9947 0.9947 1 1 0.9910 0.9500 0.9500 1 1 

14 0.9831 0.9754 0.9754 0.9868 0.9868 0.9926 0.9714 0.9714 1 1 

16 0.9873 0.9603 0.9603 0.9841 0.9841 0.9937 0.9844 0.9844 0.855 0.855 

18 0.9890 0.9910 0.9910 0.9818 0.9818 0.9945 0.9828 0.9828 1 1 

20 0.9903 0.9808 0.9808 1 1 0.9952 1 1 1 1 

 

 

 



 

 

 

 

 

2.1 Introduction   

Suppose that we have g  groups of individuals or units, where being in   

individuals in the ith group, where ∑
=

=
g

i
i Nn

1

. The response variable of 

interest is time to failure and we let ijY  be a r.v. representing the failure time 

for the jth individual in the ith group. When failure occurs because of random 

causes and ageing has no effect, the distn of time failure is exponential will be 

assumed for statistically independent }{ ijY . Also we shall assume that the 

measurements a variable for k  explanatory variables kxxx ,...,, 21 , where all 

individuals in the same group having the same values of the explanatory 

variables. For the ith group the explanatory variables are denoted by 

ikii xxx ,...,, 21 . 

The exponential p.d.f. of the r.v. ijY  written as:  

1
1

0( )

0 . .

ij
i

y

ijij i
e yf y

e w

µ
µ

−
 < < ∞= 



                                             (2.1) 

 

Chapter Two  

Methods of Estimation 
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   We shall assume that the dependence of iµ  on the explanatory variables is 

given by the model:  

, 1,2,...,ix
i e i g

βµ ′= =% %                                                                 (2.2) 

Where 1 2(1, , ,..., )i i i ikx x x x′ ′=
%

   and 0 1 2( , , ,..., )kβ β β β β=
%

   

   Equation (2-2) shows that the mean iµ  being adjusted by the multiplicative 

exponential factor to allow for the influence of the explanatory variables. 

Other models have been proposed in the literature when the response variable 

is exponentially distributed, for instance, Feigl and Zelen [12] consider the 

model:  

, 1,2,...,i ix i gµ β′= =
% %

                                                                 (2.3) 

While Greenberg et al [13] use the reciprocal model: 

1( ) , 1,2,...,i ix i gµ β −′= =
% %

                                                          (2.4) 

   The linear and reciprocal models given by (2-3) and (2-4) are suffer from 

disadvantages that the values of β
%

  must be restricted to guarantee that 

0>iµ  for all values of ix ′
%

, while the model in (2-2) has the advantage that it 

has positive values for all values of ix ′
%

 and β
%

. Further more the model (2-2) 

has been used widely in the analysis of survival data, for example, Prentice 

[32], Lawless [22] and Kahn [18] used the (2-2) model extensively for 

machines accelerated life tests. 

   In the analysis of time to failure data, right censoring of the data often 

occurs because of the need for early termination of the investigation. Many 

censoring schemes are of course possible, but we shall employee type II 

censoring within groups in which observation within a given group ceases 

after the occurrence of the given order statistic within the group. For the ith 

group, we assume that ir  smallest observations 
iirii YYY <<< ...)2()1(  are 
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observed and the remanding ii rn −  observations being right censored at the 

value )( iriY . 

Let ∑
=

=
g

i
irR

1

 denote the total number of uncensored observations. 

 

2.2 Estimation of β
%

 by Maximum Likelihood Method 

The most important, widely used formal and has robust of the 

parameter estimation techniques is the method of maximum likelihood. 

Estimation by ML is a general technique that may be applied when the 

underlying distn of the data is specified. 

   Using eq. (1-15), the joint p.d.f. of the observed order statistics 

)()2()1( ...
iriii YYY <<<  into the ith group is: 

( )( )
1

! 1 1
exp ( ) , 1,2,...,

( )!

i

i rii

r
i

i j i ir
i i i ji

n
y n r y i g

n r µµ =

  
  − − − =  −    
∑     (2.5) 

and the log-likelihood over all groups is: 

∑ ∑
= = 


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
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i
yrnyr
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1
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!
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µ
µ              (2.6) 

Set   

         giyrny
r

t
i

i

r

j
riiiji

i
i ,...,2,1,)(

1

1
)()( =
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

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



−−= ∑
=
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Chapter Two.   Methods of Estimation                                                                               22 

Then eq. (2-6) becomes: 

∑
=









−−









−
=

g

i i

ii
ii

ii

i tr
r

rn

n
L

1

ln
)!(

!
ln

µ
µ                                                        (2.8) 

   It has been shown in eq. (1-16) that, if no model is imposed on the { }iµ , the 

statistics: 

1
( ) ( )

1

( ) , 1,2,...,
i

j

r

i i i j i i i r
j

T r Y n r Y i g−

=

 
 = + − = 
  
∑                     (2.9) 

   are the ML estimators of the { }iµ . It easily one can show that these 

estimators are independent, unbiased, sufficient, and having minimum 

variance, [7], [29] and [39], as well as, we show the expression of eq. (1-17) 

that each 

~ , i
i i

i
T G r

r

µ 
 
 

 with p.d.f. 

11
0( ) ( )

0 . .

ii
i i

r tr
ri

i i i

r
t e tf t r

e w

µ
µ

−
−


  < < ∞ = Γ  




                                      (2.10) 

With mean iµ  and variance 2 /i irµ . 

Under the regression model given by (2-2) we have:  

1

!
ln

( )!
i

g
xi

i i i i
i ii

n
L r x r t e

n r
ββ ′−

=

   ′= − −  −  
∑ % %

% %

 

And hence 

( )
1

1 , 0,1,2,...,i
g

x
i ir i

r i

L
r x t e r k

β

β
′−

=

∂ = − =
∂ ∑ % %                             (2.11) 
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and 

2

1

, , 0,1,2,...,i
g

x
i ir is i

r s i

L
r x x t e r s k

β

β β
′−

=

∂ = − =
∂ ∂ ∑ % %                      (2.12) 

   The ML estimate of β
%

 is therefore given by the solution of the ( 1)k +  

likelihood equations of eq. (2-11) 

1 1

, 0,1,2,...,i
g g

x
i ir i i ir

i i

r x t e r x r k
β′−

= =
= =∑ ∑% %                                (2.13) 

and the information matrix is:  

2

1 ( 1) ( 1)

g

i ir is
r s i k k

L
I E r x x

β β = + × +

     −∂    = =      ∂ ∂         
∑

%
                                 (2.14) 

   The solution of likelihood equations in (2-11) can be done iteratively by 

using Newton-Raphson method for solving the nonlinear equations as 

follows: 

Let 

      
ˆ

1

ˆ( ) 1 0, 0,1,2,...,i
g

x
r i ir i

i

f r x t e r k
ββ ′−

=

 = − = = 
 ∑ % %

%

              (2.15) 

   Suppose that ( ) ( ) ( )( )
0 1

ˆ ˆ ˆ ˆ( , ,..., )s s ss
kβ β β β=

%

 represent the approximate solution 

of the equations (2-15) at stage s . Then the approximate solution at the stage 

( 1)s +  for ˆ
rβ  is:  

( 1) ( )ˆ ˆ , 0,1,2,...,s s
r r r r kβ β δ+ = + =                                               (2.16) 

Set        1 ( )ˆ( )sfδ β−= −Α
% %% %
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Where   

( ) ( ) ( ) ( )
0 1 0 1

ˆ ˆ ˆ ˆ{ , ,..., }, ( ) { ( ), ( ),..., ( )}s s s s
k kf f f fδ δ δ δ β β β β= =

%% % % % %
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 
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 ∂ ∂ ∂ 

Α =  
 
 
 
 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

% % %

% % %

% % %

 

 

2.3 Estimation of β
%

 by weighted least squares method  

An alternative method of estimation which provides a non iterative 

solution uses the weighted least squares [29] applied to the logarithmic values 

of the { }it  that obtained by the eq. (2-7). This approach utilizes the well- 

known results for the log chi-square distn given by eq. (1-22) with rα =  and 

2β = . In this case:  

2
(2 )ln ( ) ln 2rE rχ ψ  = +

 
   and   2

(2 )var ln ( )r rχ ψ  ′=
 

                           (2.17) 

   Now, according to the results of (2-10) and Theorem 1.8.1 the r.v.'s 

~ , i
i i

i
T G r

r

λ 
 
 

 and 2
(2 )

2
~

i
i i

r
i

r T χ
λ

  that implies:  

2
(2 )~ , 1,2,...,

2 i
i

i r
i

T i g
r

λ χ =                                                       (2.18) 
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And 2
(2 )ln ~ ln ln(2 ) ln( ), 1,2,...,

ii i i rT r i gλ χ− + =                 (2.19) 

Thus, if we set:  

ln ( ) ln , 1,2,...,i i i iZ T r r i gψ= − + =                                       (2.20) 

Then 2
(2 )~ ( ) ln 2 ln , 1,2,...,

ii i i rZ x r i gβ ψ χ′ − − + =
% %

             (2.21) 

With [ ]i iE Z x β′=
% %

 and [ ]var ( )i iZ rψ ′=                                                (2.22) 

Set 2
(2 )ln ln 2 ( ), 1,2,...,

ii r ir i gε χ ψ= − − =                             (2.23) 

Then , 1,2,...,i i iZ x i gβ ε′= + =
% %

                                             (2.24)  

With  [ ] [ ]0, var ( ), 1,2,...,i i iE r i gε ε ψ ′= = =  

cov( , ) 0, 1,2,...,i j i j gε ε = ≠ =  

In matrix form, we write eq. (2.24) as a linear model:  

Z X β ε= +
% % %%

                                                                                               (2.25) 
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and 

1

2

3

1

.

.

.

g g

ε
ε
ε

ε

ε
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 
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 
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With [ ] 0E ε =
% %

 and [ ] ( )( )cov ijWε =
%

                                                        (2.26) 

Where 
( )

0
i

ij
r i j

W
i j

ψ ′ ==  ≠
                                                                 (2.27) 

   Using the standard technique for generalized least square, then the estimates 

of the model parameters of the eq. (2-24) can be found by minimizing the sum 

of squares of the error set { }iε  that is, we minimize: 

( ) ( ) ( )22 1

1 1

1 1 1 1

1 1
( )

( ) ( )

g g

i i i
i ii i

Z X Z X W Z X
r r

Z W Z Z W X X W Z X W X

β ε β β β
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β β β β

−

= =
− − − −

′′Ω = = − = − −
′ ′

′ ′ ′ ′ ′ ′= − − +

∑ ∑
% % % % % %%% % % %

% % % % % % % %% % % %% % % %

 

We differentiate partially ( )βΩ
%

 with respect to β
%

, we have: 

1 1( )
2 2X W Z X W X

β
β

β
− −∂Ω

′ ′= − +
∂ %

% % % %% % %
%

 

For minimum, we set:  

ˆ

( )
0

β β

β
β

=

∂Ω
=

∂
% %

%
%

%

 

Thus, the WLS estimator ̂wβ
%

 is: 

( ) 11 1
ŵ X W X X W Zβ

−− −′ ′=
% % % %% %%

                                                                   (2.28) 
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   The WLS ŵβ
%

 is unbiased estimator for β
%

 what ever the values of ir  and 

in . Viz  

( ) ( ) [ ]

( )

1 11 1 1 1

11 1

ŵE E X W X X W Z X W X X W E Z

X W X X W X

β

β β

− −− − − −

−− −

   ′ ′ ′ ′= =    

′ ′= =

% % % % % % % %% % % %%

% % % %% % % %

 

With variance-covariance matrix is:  

( )
( ) [ ] ( )
( ) ( )
( )

11 1

1 11 1 1 1

1 11 1 1 1

11

ˆcov cov

cov

w X W X X W Z

X W X X W Z W X X W X

X W X X W WW X X W X

X W X

β
−− −

− −− − − −

− −− − − −

−−

   ′ ′=     

′ ′ ′=

′ ′ ′=

′=

% % % %% %%

% % % % % % %% % % %

% % % % % %% % % % %

% %%

                             (2.29) 

Where 1

1

/ ( ) , 0,1,...,
g

ir is i
i

X W X x x r r s kψ−

=

  
  ′ ′= = =
  
  
∑

% %%
 

 

2.4 Estimation of β
%

 by Suggest Weighted Least Squares Method 

The weighted least squares estimator for β
%

 is given by eq. (2-28) need 

tables of the digamma and trigamma tables for evaluation the numerical 

values of ŵβ
%

. 

   If tables of the digamma and trigamma are not available, good 

approximations [9] are given by: 

11 1
( ) ln 2

3 16
ψ α α α

α

−
 ≈ − − + 
 

                                                             (2.30) 
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11 1
( )

2 10
ψ α α

α

−
 ′ ≈ − + 
 

                                                                          (2.31) 

Using these approximations, the SWLS estimator for β
%

 is: 

( ) 11 1ˆ
m X W X X W Zβ

−− − ∗
∗ ∗′ ′=

% % % %% %%

                                                                 (2.32) 

Where  

11 1
3 16

ln (2 ) , 1,2,...,
i

i i i r
Z T r i g∗ −= + − + =                                (2.33) 

( ) 1
1 1
2 10

,

0 ,
i

i rij
r i j

W

i j

−
∗


− + == 

 ≠

                                                            (2.34) 

   In practice, we find that the estimators obtained by the three methods of 

estimation (ML, WLS, SWLS), for instant, the ML estimator β̂
%

 has an 

important property that ̂β β−
% %

 is distributed independently of β
%

, similar 

properties applying to WLS and SWLS estimators. 

   This property for ML estimator can be deduced from the likelihood equation 

given by (2-13) which can be written as:  

( )ˆ
, 0,1,...,ix

i ir i i ir
i i

r x t e r x r k
β β′− −∗ = =∑ ∑% %                           (2.35) 

Where  

ˆ
, 1,2,...,ix

i it t e i g
β′−∗ = =%                                                           (2.36) 

   The set of observation { }it
∗  represented a sample for independent 

standardized gamma r.v.'s with p.d.f.'s: 
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( ) 1
1
( )

0
,

( ) 1,2,...,

0 , . .

i i i
i

r r t i
i i ir

i i

t
r r t e

f t i g

e w

∗ ∗− −∗
∗ Γ

 < < ∞
=  =



                                  (2.37) 

   Since these p.d.f. do not dependent of β
%

, the property follows. 

We further have:  

(0)ˆ ˆ~
d

β β β−
% % %

                                                                                               (2.38) 

   Where (0)β̂
%

 denoted the ML estimator of β
%

 when the true model has 

0β =
%%

. Similarly 

(0)ˆ ˆ~
d

w wβ β β−
% % %

 and (0)ˆ ˆ~
d

m mβ β β−
% % %

                                                              (2.39) 

   Where (0)
ŵβ
%

 and (0)ˆ
mβ
%

 denoted respectively the WLS and SWLS estimators 

of β
%

 when 0β =
%%

. 

   These results show that all central moments and moment properties such as 

bias, variance, mean square error, skewness and kurtosis are independent of 

β
%

 for the three estimators. So without loss of generality, we may therefore 

take 0β =
%%

. 

 

2.5 Bias Approximation for the Methods of Estimation   

The WLS estimator:  

( ) 11 1
ŵ X W X X W Zβ

−− −′ ′=
% % % %% %%

  

is shown in section 2.3 an unbiased for β
%

 for all ir  and in , 1,2,...,i g= . 
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The SWLS estimator: 

 ( ) 11 1ˆ
m X W X X W Zβ

−− − ∗
∗ ∗′ ′=

% % % %% %%

  

of section 2.4 can be Written as:  

( ) ( )
11 1ˆ

m X W X X W Z dβ
−− −

∗ ∗′ ′= +
% % % %% % %%

                                                         (2.40) 

Where  

( ) 1
1 1
3 16

( ) 2 ln , 1,2,...,
i

i i i ir
d r r r i gψ

−
= + − + − =                   (2.41) 

So the bias of the SWLS is: 

( ) 11 1b X W X X W d
−− −

∗ ∗ ∗′ ′=
% % %% % % %

                                                                     (2.42) 

   Approximation to the bias of ML estimator is developed by AL-Abood [1] 

corrected to order 1R −  with the condition the x-values satisfy the 

orthogonality conditions: 

0, 0,1,...,i ir is
i

r x x r s k= ∀ ≠ =∑                                             (2.43) 

In this case the biases take the form:  

0

2

2 2
1

1
and

2

1

where 1,2,...,2

i ir isk
i

r
i i i iss

i i

k
b

R

r x x

b
r kr x r x=

+ = 

 
 −   =  
= 
   

∑
∑

∑ ∑

               (2.44) 



Conclusions 
 

1. The values of the simulated biases of SWLS method for 0β  are very 

close to those of WLS when 2r ≥ , while the values of the simulated 

biases of ML are over estimate for all values of r. Furthermore the 

values of 1β  obtained by the three methods are adequate for 2r ≥ . We 

notes that the values of the biases in the three methods are decreases 

when r  increases and these result become better as the number of 

groups increase. 

2. The ML values of the simulated variances of 0β  and 1β  are generally 

have smaller values than these obtained by WLS and SWLS when 

7r ≤  and become close for 8r ≥ . For WLS and SWLS, the values of 

the variances become identical when 6r ≥ . 

3. The results of skewness of WLS and SWLS are generally smaller than 

the skewness of ML which indicating that normal approximation to the 

distribution of the estimators will be effective even for small values of 

r . Generally the skewness values decreases as r  increases. 

4. In the three methods of estimation, most of the values of kurtosis 

negative which indicate that the data is concentrated to the top of the 

distribution curve. 

5. The results of Table 3.9 show that there is good agreement between the 

approximating efficiencies of formula (3.22) and the values of 10E . 

The results show that ML estimators have superior mean square errors 

performance than the WLS estimators for small values of r , but as 

expected the differences in efficiencies of WLS and SWLS estimators 

are negligible for all values of r . 
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6. In all methods of estimation we find the results of estimates values of 

1β  are very near to the reality from the estimate values of 0β  because 

of the effective of the explanatory variables. 

7. The results of SWLS in general are satisfaction in compare with the 

results of WLS but less accurate because of the bias existence. 

8. The important result obtained from Monte Carlo simulation is that the 

distribution of β̂ β−
% %

 is independent of (0)β̂
%

.    



Introduction 
 

 In recent years there is an increasing availability in the use of various 

types of regression models for the analysis of what so called lifetime, survival 

time or failure time data that have an end point the time until the failure or 

certain event occurs. The major areas of applications of such models appear in 

biomedical, industrial life testing, and reliability terminology. 

We assume that observations are available on the failure time of n 

independent individuals. The main problem in this work examined the 

developing methods for assessing the dependence of failure time on the 

explanatory variables. The second problem involves the estimation and 

specifying models to represent lifetime distribution and of making inference 

based on these models. 

We shall illustrate some applications of such models in present of the 

explanatory variables or without it, for instance, in medical field with a 

curable illness, the survival time might represent the time form initial 

diagnosis of illness to complete recovery, while the case of serious illness 

such as cancer, the survival time would represent time to death, and the 

explanatory variables might refer to various attributes of the patients such as 

age, sex, initial severity of illness, months from diagnosis ,prior therapy, etc. 

in an industrial context, survival time might represent lives of components 

subject to failure and the explanatory variables may refer to different 

operating condations for the component being tested, such as temperature, 

pressure, friction. Economists in the world of employments, and 

demographers study the length of time that people are in work force 

Kpedekpo [20], where employers are concerned with length of time 

employees work before changing jobs. Hoadley [16] studied the length of 
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time telephones remain disconnected in vacant quarters in order to determine 

which telephones to remove for use else where and which to leave in for the 

next customer. Gross and Clark [14] study the success of medical treatments 

for certain diseases in measured by the length of patients survival. Prince [33] 

evaluates the life of TV programs, The Association for Advancement of 

Medical Instrumentation [5] has a proposed standard with methods for 

estimating the life of heart pacemakers, etc. 

    

More details on models representation and associated statistical 

analysis are given by:  

Feigl and Zelen [12] applied the exponential model on leukemia 

survival data using different type of explanatory variables on each patient, and 

the parameters are estimated by the method of maximum likelihood. 

Pike [31] investigated the applications of the carcinogenesis on two 

groups of rates to examine two types of pretreatment regimens. 

Hoel [17] assumed that the functional from of each age distribution is 

known up to the point of unknown parameters. These parameters plus the 

unknown net probabilities are estimated from the data by the maximum 

likelihood methods. 

Nelson and Hahn [26] dealt with the estimation problems of the 

regression parameters when censored data are collected from accelerated life 

data of motorettes. 

Prentice [32] suggested an exponential survivor function with 

censoring, and a number of explanatory variables describing patient etiology, 

general medical status and clinical stage of disease are recorded when a 

patient is taken on the study, when such concomitant variables seem 

important, an exponential relation between failure rate and explanatory 
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variable is suggested and the result are extended to include a weibull 

component in the hazard. 

Lawless [22] discussed estimation and predication procedures for 

model which is commonly used in reliability and life testing work, the so 

called inverse law model, which exponential time to fail data, and described 

confidence interval estimation procedure for this model, so this procedures do 

not involve the use to any asymptotic approximations and so all distributions 

given exact for any sample size. 

Crowely and Hu [9] considered a number of analyses to asses the 

effects of various covariates on the survival of patients in the Stanford Heart 

Transplantation program. 

Noure and Readt [30] considered an approach to the proportional 

hazards analysis of the survival data with covariates by parametric modeling 

of piece wise distributions. MLS using GLIM and an iterative method is 

straight forward are used with two applications, based on the weibull 

distributions are described and some possible generalizations are indicated. 

Kronborg and Aaby [21] considered the problem of comparing 

survival functions or equivalently comparing baseline hazards in the stratified 

proportional hazards model, and proposed test is a direct of identity of 

survival functions in the sense that it is nonparametric and is sensitive against 

a broader class of alternatives than the proportional hazards alternative.  

Lin and Wei [24] were interested in estimating the cumulative hazard 

function and survival function under the Cox proportional hazard model. 

Razooq [34] discussed two methods of estimation namely maximum 

(ML) and weighted least square (WLS) for the estimation of the regression 

coefficient related to Weibull type II censored data. Goodness of fit test for 
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assumed model is given and testing is mode on the any subset of non effective 

regresses. 

Sigeo Aki and Katuomi Hirano [36] extracted formula for the lifetime 

distn for k-out-of-n in: F system where the observations are ordered according 

to three well-know distributions, exponential, Weibull, Pareto and they obtain 

feasible estimators by using moment method. 

 Sparling, Y. H. et al [38] consider a parametric family of the 

regression models for evaluating interval-censored event time (survival) data, 

where the employed Newton-Raphson method when the underling 

distributions are Weibull, negative binomial, and log-logistic distributions as 

a special cases. 

   

The aim of this thesis is to find the best methods for estimating the 

regression parameters related to exponential of type II censoring data. One 

method is developed and the observed estimators are compared with the other 

methods of estimation taken place by Monte Carlo simulation.  

This thesis consists of three chapters: 

   In chapter one, we give a brief summary of survival type II right censored 

data, regression models representation, exponential and gamma as a lifetime 

distributions, and derivation to some transform results. 

   In chapter two, we present three methods of estimation for regression 

coefficients of type II censored exponentially distributed data, where the 

regression model impose on the mean as: 

exp( )xµ β=
% %

 

   The utilized methods of estimation are maximum likelihood (ML), weighted 

least squares (WLS) and suggest weighted least squares (SWLS). We present 
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moment properties of the estimators such as bias, variance, and mean square 

errors are presented theoretically.  

   In chapter three, we consider the results of Monte Carlo investigation of the 

biases of ML and SWLS estimators, moment properties of the three methods 

of estimation, a new bias reduction estimator for the ML estimators is develop 

and show a higher efficiency in mean square error with respect to the ML, 

WLS, and SWLS, and the Tables of these results. 



References 
 

[1] AL-Abood, A., M. (1997), Bias Reduction for a Gamma Regression 

Models, Journal of Saddam University, 1, No. 2, 49-61. 

[2] Abramowitz, M., & Stegun, I.  A. (1964), Handbook of Mathematical 

Tables, New York, 253-266. 

[3] AL-Aggedy, J. S. A. (2000), Estimation of a Regression Parameters 

Related to Exponential Survival Data of Type II Censoring, M .Sc. Thesis, 

University of Baghdad.  

[4] AL-Faris, R. Q. Z. (1995), Approximation to the Incomplete Gamma 

Integral with Random Variates Procedures Simulation. M. Sc. Thesis, Dept. 

of Math and comp. Applications, Al-Nahrain University.      

[5] Association for the Advancement of Medical Instrumentation (1975), 

"AAMI Implantable Pacemaker Standard (Proposed)," Document AAMI IP-P 

10/75. 

[6] Bartholomew, D. J. (1957), A Problem in Life Testing. J. Am. Stat. 

Assoc., 52, 350-355. 

[7] Cordeiro, G., M. (1983), Improved Likelihood Ratio Statistics for 

Generalized Linear Models, J. R. Stat. B, 45, No. 3, 404-413. 

[8] Cox, D., R., and Lewis, P., A. (1966), The Statistics Analysis of Series of 

Events, New York and London. 

[9] Crowley, J., and Hu, M. (1977), Covariance Analysis of Heart Transplant 

Survival Data, J. Am. Stat. Assoc. 72, 27-36. 

[10] Dahiya, R. C., and Gurland, J. (1972), Goodness of Fit Tests for the 

Gamma and Exponential Distributions, Technometrics, 14, No. 3, 791-801.       

[11] Epstein, B. (1958), The Exponential Distribution and its Role in Life-

testing. Ind. Qual. Control, 15, 2-7. 



References                                                                                                                            57  
 
[12] Feigle, P. and M. Zelen (1965), Estimation of Exponential Survival 

Probabilities with Concomitant Information, Biometrics, 21, 826-838.   

[13] Greenberg, R., S. Bayard, and D. Byar (1974), Goodness of Fit of an 

Exponential Survival Model. Biometrics, 30, 601-608. 

[14] Gross, A. J., and Clark, V. A. (1975), Survival Distributions: Reliability 

Applications in the Biometrical Sciences, John Wiley, New York. 

[15] Gupta, S. S., and Groll, F. A. (1961), Gamma Distribution in 

Acceptance Sampling Based on Life Test, J. Am. Stat. Assoc., 56, 942-970. 

[16] Hoadley, B. (1970), "Strategies for Removing Telephones When Service 

is Disconnected," Presented at the Joint Statistical Meeting, Detroit, MI. 

[17] Hoel, D. G. (1972), A Representation of Mortality Data by Computing 

Risks, Biometrics, 28, 475-488. 

[18] Kahn, H. D. (1979), Least Square estimation for the Inverse Power Law 

for Accelerated Life Tests, Appl. Stat., 28, No. 1, 40-46. 

[19] Kalbfleisch, J. D., and Prentice, R.  L. (1980), The Statistical Analysis 

of Failure Time Data, John Wiley, New York.                          

[20] Kpedekpo, D. D. (1969), "Working Life Tables for Males in Ghana, 

1960," J. Am. Stat. Assoc. 64, 102-110. 

[21] Kronborg, D., and Aaby, P. (1990), Piecewise Comparison of Survival 

Functions in Stratified Proportional Hazards Models, Biometrics, 46, 375-

380. 

[22] Lawless, J. F. (1976), Confidence Interval Estimation in Inverse Power 

Law Model, Appl. Stat., 25, No. 2, 128-338. 

[23] Lawless, J. F. (1982), Statistical Models and Methods for Life Time 

Data, John Wiley, New York.  

[24] Lin, D. Y., Fleming, T. R., and Wei, L. J. (1994), Confidence Bands for 

Survival Curves under the Proportional Hazards Model, Biometrika, 81, 1, 

73-81. 



References                                                                                                                            58  
 
[25] Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. (1974), Methods 

for Statistical Analysis of Reliability and Life Data, John Wiley, New York.  

[26] Nelson, W., and Hahn, G. L. (1972), Linear Estimation of a Regression 

Relationship and their Application, Technometrics, 14, No. 2, 247-276. 

[27] Nelson, W. (1982), Applied Life Data Analysis, John Wiley, New York. 

[28] Nelson, W. B. (1972), Graphical Analysis of Accelerated Life Test Data 

with the Inverse Power Law Model. IEEE Trans. Reliab., R21, 2-11.                  

[29] Neter, J., Wasserman, W., and Kunter, M. H. (1985), Applied Linear 

Statistical Models, 2nd – edition. 

[30] Noura A. A. , Read, K. L. Q. (1990), Proportional Hazards Change Point 

Models in Survival Analysis, Appl., Stat., 39, No.2, 241-253. 

[31] Pike, M. C. (1966), A Model of Analysis of a Certain Class of 

Experiments in Carcinogenesis, Biometrics, 22, 142-161. 

[32] Prentice, R. L. (1973), Exponential Survivals with Censoring and 

Explanatory Variables, Biometrika, 60, 2, 279-288. 

[33] Prince, M. (1967), "Life Table Analysis of Prime Time Programs on a 

Television Network," Am. Stat. 21, 21-23. 

[34] Razooq, N. N. (1994), Analysis of Type II Censoring Data Related to the 

Weibull Distribution, M. Sc. Thesis, Collage of Science, Saddam University. 

[35] Rubinstein, R. Y. (1981), Simulation and Monte Carlo Method, John 

Wiley, New York.        

[36] Sigeo Aki and Katuomi Hirano (1995). Lifetime Distribution and 

Estimation Problems Consecutive-k-out-of-n: F system. Math. & Stat. Vol. 

48, No. 1 / March 1996.       

[37] Sinha, D., Tanner, M. A., and Hall, W. J. (1994), Maximization of the 

Marginal Likelihood of Grouped Survival Data, Biometrika, 81, 1, 53-60. 

[38] Sparling, Y. H., Younes, N., and Lachin, J. M. (2006), Parametric 

Survival Models for Interval-Censored Data with Time-Dependent 

Covariates. Biostatistics, Vol. 7, No. 4, 599-614.   



References                                                                                                                            59  
 
[39] Zippin, C., and Armitage, P. (1996), Use of Concomitant Variables and 

Incomplete Survival Information in the Estimation of an Exponential Survival 

Parameter, Biometrics, 21, 665-672. 



Abstract 
 

In this thesis, we consider a regression models for survival censored 

data of type II in which the underling distributions are exponential or gamma 

where the effect of the regressor variables on the means is multiplication 

given by the model  

exp( )i ixµ β′=
% %

 

 Three methods of estimation for the regression coefficients are 

considered, namely maximum likelihood (ML), weighted least squares 

(WLS), and suggest weighted least squares (SWLS). These methods are 

discussed theoretically and examined practically by Monte Carlo simulation 

for the case of a single explanatory variable. 

 Moments and higher moments properties of the estimators, such as, 

bias, variance, skewness, and kurtosis are examined, illustrated and compared. 

 Finally, a new bias reduction estimator to the ML estimator is proposed 

and shows a higher performance with respect to the other estimators. 
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