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program simulation;
{uses crt;}
type
arr=array [1..500] of real;
var
f,g,t:array[1..50,1..50] of real;
b00,b11,b0w,b1w,bOm,blm:arr;
sum,x,tt,z,z1:array[1..15] of real;
n,m,i,j,k,k1,lr,rr:integer;
suml,sum2,sum3,sum4,sums,sum6,sum/,sum8,sum9,sumid,sum12,
suml13,suml4,suml15,sum16,sum17,sum18,sumi19,avidyskew,skewl,
kur,kurl,b0,b1,newb0,sum20,sum21,sum22,sum23,ssud25,sum26,
sum27,av4,av5,v4,v5,skewd,skewS, kurd kur5,sumzxglirav2,av3,v2,v3,
skew?2,skew3,kix;kur3,newbl,sumz,sumxz,sumsqrx,ps,Imda:real;
procedure sumall(b00,b11:arr;var
sum4,sum5,sum6,sum?7,sum8,sum9,sum10,suml 1:real);
begin
sum4:=sum4-+b00[1];
sumS:=sum5+b11[l];
sum6:=sum6+sqr(b00[1]);
sum7:=sum7+sqr(b11[1]);
sum8&:=sum8&+(sqr(b00[1]*b00[1]));
sum9:=sum9+(sqr(b11[1]*b11[1]));
sum10:=sum10+(sqr(b00[1]*sqr(b00[1])));
suml 1:=suml I+(sqr(b11[1]*sqr(b11[1])));
end;
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procedure eval(sum4,sum5,sum6,sum7,sum8,sum9,sum10,suml 1:real);
begin

av:=sum4/500;

avl:=sum5/500;

writeln('mean of b0=",av:9:4);

writeln('mean of bl=',av1:9:4);

v:=(1/500)*(sumG500*sqr(av)));

v1:=(1/500)*(sum{500*sqr(avl)));

writeln('var of b0=",v:9:4);

writeln('var of b1=",v1:9);

skew:=(1/500)*(sum@3 *av*sum6)+(2*av*sqr(av)))/sqrt(v¥sqr(v));

skew1:=(1/500)*(sum9-
(3*avI*sum7)+(2*avl*sqr(avl)))/sqrt(vl*sqr(vl));

writeln('skew of b0='",skew:9:4);

writeln('skew of b1=",skew1:9:4);

kur:=((1/500)*(sum10-(4*sum8*av)+(6*sum6*sqwfs
(3*sqr(av)*sqr(av)))/sqr(v)B;

kurl:=((1/500)*(suml11-(4*sum9*avl)+(6*sum7*¢gvl))

-(3*sqr(avl)*sqr(avl)))/sqr(v1B:

writeln('kurtosis of b0=",kur:9:4);

writeln('kurtosis of b1="kur1:9:4);
end;
begin

{clrscr;}

writeln('enter the no. of groups= m’);

readin(m);

writeln('enter the no. of element in everyups= n');

readIn(n);

writeln('enter beta0');
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readIn(b0);
writeln(‘enter betal');
readin(b1);
r:=1;
while (r<=20) do
begin
writeln('r=',r);
ps:=In(r)-(1/(2*r))-(1/(12*exp(2*In(r))))+(1420*exp(4*In(r))))
(1/(252*exp(6*In(r))))+(1/(240*exp(8*In(r))));
sum4:=0; sum5:=0; sum6:=0; sum?7:=0;
sum8:=0; sum9:=0; sum10:=0; sum11:=0;
suml12:8; suml3:=0; sum14:=0; sum15:=0;
sum16:=0; sum17:=0; sum18:=0; sum19:=0;
sum20:=0; sum21:=0; sum22:=0; sum23:=0;
sum24:=0; sum25:=0; sum26:=0; sum27:=0;
randomize,
forj:==1tomdo
X[i]:=]-((m+1)/2);
for I:=1 to 500 do
begin
for ;=1 to ndo
forj:==1tomdo
f[i,j]:=random;
Imda:=0;
fori:==1to ndo
forj;==1tomdo
begin
Imda:=exp(b0+b1*x[j]);
g[i,j]:=-Imda*In(fi,j]);
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end;
forj:==1to mdo
begin
fori:==1to n-1do
for k:=i+1 to n do
if g[i,j]>g[k,j] then
begin
tli.jl:=glii]
gli.il:=glki]]
glk.jl:=t[i;]]
end;
end;
forj:==1tomdo
begin
sum[j]:=0;
foriz=1tordo
sum(jJ:=sum(jJ+g][i,j];
end;
for ;=1 tomdo
ttfil:=1/r*(sum[j]+(n-r)*g[r.j]);
[Fbikrikkk k. EStimation by MLk
rr:=m=*r;
repeat
b0:=newb0; bl:=newbl;
suml:=0; sum2:=0; sum3:=0;
forj;:=1tomdo

begin

suml:=suml-(r*tt[j]*exeo+(b1*x[j]))));

************}

sum2:=sum2-(r*x[jJ*ttjExp({b0+(b1*x[j]))));
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sum3:=sum3-(r*sqr(x[jifitrexp(- (b0+(b1*x[j]))));
end,
newb0:=b0+1-((sum3*rr)/(sgms2){suml *sum3)));
newbl1:=b1+((sum2*rr)/(sqr(syrt@im1*sum3)));
until (abs(newb0-b0)<=0.00001) or (abs(bn&wl)<=0.00001);
b00[1]:=newb0;
b11[l]:=newl;
sumall(b00,b11,sum4,sumS5,sum6,sum7,sum8,sum9,sum10,suml1);
[Frtpmrpkkks. Etimation by WILSHksts !
sumz:=0; sumxz:=0; sumsqrx:=0; z[j]:=0;
forj:==1to mdo
begin
sumsqgrx:=sumsdqrx+sqr(x[j]);
z[j]:=In(tt[j])-ps+In(r);
sumz:=sumz+z[j];
sumxz:=sumxz+(X[j]*z[j]);
end;
bOw[1]:=sumz/m,;
blw[l]:=sumxz/sumsqrx;
sumall(bOw,blw,sum12,suml13,suml4,suml5,suml6,58mmhl8,6m19);
[Frbkrikrkoos. Estimation by SWILSHsrires Fbkkkk k)
sumxz1:=0; sumz1:=0; sumsqrx:=0; z1[j]:=0;
for ;=1 to mdo
begin
sumsqgrx:=sumsqrx+sqr(x[j]);
z1[j]:=In(tt[j]) +exp(-1*In(2*r-(1/3)£1/(16*1))));
sumzl:=sumzl+z1[j];
sumxz1:=sumxz1+(x[j]*z1[j]);

end;
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bOm[1]:=sumz1/m;
blm[l]:=sumxz1/sumsqrx;
sumall(bOm,b1m,sum20,sum21,sum22,sum23,sum24,sum25,sum26,sum?27);
end; { end of | loop}
readin;
writeIn((ESTIMATION b0 & bl BY ML");
writeln;
eval(sum4,sum5,sum6,sum?7,sum8,sum9,sum10,suml11);
readin;
writeIn('ESTIMATION b0 & bl BY WLS");
writeln;
eval(suml2,suml3,suml4,suml5,suml6,suml7,suml8,suml9);
readin;
writeIn(ESTIMATION b0 & bl BY SWLS));
writeln;
eval(sum20,sum21,sum22,sum23,sum24,sum25,sum26,sum27);
readin;
1f r<10 then r:=r+1 else r:=r+2;
end;
end.
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1.1 Introductiol

In this chapter, we shall introduce some basic epts of right
censored time to failure data, their types, assedidistributions, censoring
mechanism, maximum likelihood estimation, and somseatistical

transformation results.

1.2 Right Censored Time to Failure Clata

In survival data investigation, it is quite commtnfind some units
have not failed when observation is terminated. iTl&lure times are
therefore unknown but known to be exceeding thaivigal times measured

at the end of the investigation. Such failure tirmessaid to be right censored.

This censoring mechanism may occur due to tleel fier early termination
of the investigation or removal of units from usafdre failure, or failures of
units occurring because of causes unrelated tagpkcation of the operating
conditions, etc, and records of survival times cansubsequently be
obtained. The following two examples illustrate thigective of collecting

right censored data.
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Example 1.2.1

Bartholomew in 1957 [6] considers the situationwhich pieces of
equipment are installed at different time. At aefatlata some of the pieces
will have the failed and the rest will still be use. The aim is to study the
lifetime distributed of this type of equipment atadestimate quantities such
as the proportion of the equipment that will faiithvin a specified time.
Bartholomew gives the data in Table 1.1 showingrésailts for 10 pieces of
equipment. The life test in question was terminatadAugust 31. At that
time three items (numbers 2,4 and 10) has stillfa¢d, and their failure
timed are therefore censored; we know for thesestenly that their failure

times exceed 72, 60 and 21 days, respectively.

Tablel1l.1 Operating Timesfor 10 Pieces of Equipment

|tem Date of
Number | nstallation
1 11 June 13 June 2
2 21 June _ >72
3 22 June 12 August 51
4 2 July _ > 60
5 21 July 23 August 33
6 31 July 27 August 27
7 31 July 14 August 14
8 1 August 25 August 24
9 2 August 6 August 4
10 10 August _ >21
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Example 1.2.2

Nelson in 1972 [28] describes the results of a tiefst experiment in

which specimens of a type of electrical insulatihgd were subjected to a

constant voltage stress. The length of time toufailor breakdown of

specimens was observed. Table 1.2 gives resultsséoen groups of

specimens, tested at different voltages level.

Table1.2 Timesto Breakdown (in Minutes) at Each Seven Voltage L evels

Breakdown Times

26 5.79,1579.52,2323.7,2450&142.3

28 68.85,426.07,110.29,108.29,1067.6,2447.38

30 14 |17.05,22.66,21.02,175.88,139.07,144.12,20.46
43.40,194.90,47.30,7.74,199184.4,233.55

3 15 |0:40,82.85,9.88,89.29,215.10,2.75,0.79,15.93,
3.91,0.27,0.69,100.58,27.80,13.95,53.53
0.96,4.15,0.19,0.78,8.01,31.75,7.35,6.50,8.27,

34 21 |33.91,32.52,3.16,4.85,2.78,4.67,1.31,12.06,36
72.89.84.1896.78
1.97,0.59,2.58,1.69,2.71,25.50,0.35,0.99,3.99,

36 20 |3.67,2.07,0.96,5.35,2.90,13.77,1418.2,14.3,
19.43,16.45

38 12 o.47,o.73,1.49,0.74,0.39,1.13,0.09,2.38,3.19
3.23,4.12.4.9

Starred quantities denote censor ed observations.

71,
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1.3 Types of Right Censored Djta

Censored data are said to haVgpe | censoring if censored

observations occur only at specified values ofdbgendent variables. In this
type of censoring, the censoring values are fixaditae number censored of
observations is random. For instance, in Exampkll.the experiments
which the 10 pieces are installed at 10 differg@etcefied time and terminated
at August 31. We see that 7 pieces have failedmitie specified time and 3
pieces are censored at 31 August.

Censored data are said to hdype Il censoring if the number censored
of the observations is specified and their censaades are random, for
example, in life testing when all units are puttest at the same time and the
test terminated when a specified number have faledinstance, in Example
1.2.2, seven groups of specimens are tested umden different voltage
levels. The breakdown or failure in each grougemorded. In this experiment
observations are taken after a specified numbspefimens have been failed
at different voltage level. We see that 2, 1, ,&, and 4 specimens at still
in use at voltage 26, 28, 30, 32, 34, 36, and 38.

More details discussion on censoring left-riglegchanism and type (l, II),
for signally, doubly, and multiply censored datgrsvided by Nelson et al
[26] and Kalbfleisch et al [19].

We note that the type Il censoring proceduegpted in this thesis for two

reasons:

1. Mathematically inference procedures are simpletype Il than type |
[29].

2. Type Il censoring usually does not allow an uppeurided to be

placed on the total duration of the study.



Chapter One. Censored Data of the Exponential Distribution 5

1.4 Continuous Failure Time Distributichs

In most applications when the mechanisms lead teareng related to

survival data, the assumption that the underlyiisgribution is normal is not
realistic because the standard technique for kgpsires methods based on an
additive regression model is not appropriates. Alper of the parametric
regression models can be found throughout theatitee based on underlying
distribution, such as, exponential, Weibull, gamtognormal, logistic, and
extreme value distributions which have been widedgd in life testing and

survival problem.

We turn now to the mathematical representatidiaiture time distribution
where we consider the case of an independent sangoiea homogeneous
population (no explanatory variables). We let negative random variable
X represent the failure time of an individual sedectrandomly from

population andx represent the specific value fofr.
Let f(x) be the p.d.f ofX. The probabilities of an individual surviving
until time x is given by the survivor function:

o0

s(x)=pr(X =2x)= j f(t)dt

(1.1)
x=0
Where s(0)=1, and®( )=0
The hazard failure ratbe(t) defined as:
<X <X +AX|X 2
ho) = fim P X HAX|X 2x) T (x) (1.2)

Ax -0 AX S(x)
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The hazard function specifics the instantangaies of failure at timex ,

given that the individual survived until time. The functionsf (x), s(x) and

h(x) satisfy the following well known relations [23]:
f(x)=h(x)exp{—jh¢)ﬂt} (1.3)
0

X
S(x) = ex —jh([)dt (1.4)
0

For the purpose of our later discussion, welgfiaé a brief discussion of
the properties and the theoretical basis of theoeeptial and gamma
distributions. These distributions have been disedsn details by Mann et al
[25], and Al-Faris [4].

1.4.1 The Exponential Distribution

The exponential distribution has been widely use@ anodel in areas
ranging from the studies on the lifetime of the ofactured items e.g.
Epstein [11], to research involving survival timieschronic diseases e.qg.
Fiegl and Zelen [12]. The one parameter exponergiabtained by taken the

hazard failure rate:
1
h(t)=; Xx>0,1>0 (1.5)

The p.d.f and the c.d.f are found from (1.3) and )10 be:

1 —x/a
—e >0

f(x)=1) X (1.6)
0 ew.
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and
0 x<0

F(X)=1-s(x)={1-e**  0<x<w (1.7)
1 X =00

The distribution wherel =1 is called the standard exponential distribution

which have a graphical representation of Figure 1.1

Figure 1.1 The standard exponential p.d.f.

The moment generating function of rX.~ Exp(A) is:

M(t)zE[etX]=J.etXf(X)dX=J.eXt/%e_Xde=J-}1e (1=t )x

t 0 0

dx =(1-At)™?

The I distribution moment about origin can be obtaingditiferentiating
M(t) r times att =0. Thus:
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d"M(t)

- r—
Hr =E[X"]= o’

=rIA (1.8)
t=0

In particularr =12 , the mean and the variance of the distributicn Ar

and A2 respectively.

1.4.2 The Gamma Distribution

The gamma distribution arise as a model from gieais studies of
interval between events occurring in time or sgaé¢ specifically when the
interest in the waiting time from the occurrenceoot event untik further
events have occurred in a Poisson process withtamonsate A. This distn
sometimes referred to as a special Erlangian diter the Swedish scientist
who used the distn in early studies of queuing lerab The gamma distn has
important applications in the study of life time deds, such as stops of the
machine, failure or breakdown of equipment (e.gctbnic computer), air or
road accidents, coal mining disasters, telephotis, ec., are examples of
such events that occur in a real time and haveeptieis exported for gamma

case.

Ar.v. X is said to have a gamma distn, denotedXby G(a, f), if X has
p.d.f:
,B_a a'—le—x/,B O< X<oo

f()=1T(@)
0

(1.9)
ew.

Wherea >0 and >0 are respectively the shape and scale parameters.

This distn include the exponential distn as a sl@asea =1.

The survivor and hazard functions involve theomplete gamma function.

Integrating (1.9), we have:
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L_UXU—JE—X 1B
s(x)=1-F(x) and hg ):f x)__ T(a)
S(X) X ﬁ—a' .
1-| 2 1™ Ayt
r(a)
0 X <0 (1.10)

X —a
where F & )= J"B—ta_le_t Bt 0<x <o
0

The gamma distribution is used as a lifetime ehotthought is not nearly as
much as the exponential and Weibull distributiopgrtly because the
survivor and hazard functions are not expressibla isimple closed form
[23].

The moment generating function of rX. ~G (a,f)is:

(ee] (e¢]

M (t) = E[e™] :jetxf (x)dx :jetX %xa_le_x I Box
0 0
g f P
=I|_(a)x % dx
0
o o _ dv
Set v=(@0-/f)x = dv=(1-A/)dx = dx - A
We have:
M(t):wﬂ_a£ v ]a_le—vlﬁ dv _ 1 oo,B_ava'—le—V/ﬁdv
Ma)\1- A 1-4) (1—,8t)aor(a)
—-p)

The I distn moment about the origin can be obtained iffgrentiating
M (t) r times att =0. Thus:
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° =E[xr]=drer(t) —a(a )@ +2). (@+r 18 £ =12,. (1.12)
t

t=0

In particularr =1,2, the mean and variance of the distn afe and aB?

respectively. Figure 1.2 show the p.d.f.'s fora g@amma distns.

0.8
G(x,0.5,1)

G(x 1,1)
- 6
G(x, 2,1)

G(x 3,1)

Figure 1.2 Gamma p.d.f.'s wifh=1 anda =0.5,1, 2and.

We note that, the gamma distribution also ams¢hematically in the same
situations in which the exponential distn is beinged, specifically, if

X1, X5,...Xpis @ rs. of size n from Exp(8) then the r.v.

Y=anxi ~G(n,B).

i=1
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1.5 Censoring Mechanism for Exponential Distribofio

Consider a life test involving a random sample freipe n from

Exp(A) and testing is terminated as soorr dgilure has occurred.
Mathematically speaking leXq, X5,...,X,, be a random sample of size
from Exp(A) with p.d.f. f(xX) and c.d.f. F(x) are given respectively in

equations (1.6) and (1.7).

Let V;,Y5,....Y, be random variables representing the arrangenfetiteo
sample se{ X; }in ascending order of magnitude then from ordatistics
theory, the joint p.d.f. of the sgY; i3$:

n
n f (v O<y; <y, <..<y,<o
01, Yary) = [ ] FOD) 1< Y2 < <Y (1.13)
1=1 ew.
0

Now if testing is terminated as soonrasailures have occurred. Then the
joint p.d.f.Y;,Y5,....)Y, is:

g (Y1, 20yr )= T ojo T 961y 2.-Yn Wrefyrs2dyn

Yr+1Y¥Yr+2 Yn

[00) 00 00 00

=n!ir|:|lf(yi) | [ ] [t

Yr+17Yr Yr+2=Yr+1 Yn-1"Yn-2¥Yn=Yn-1
f(yre2)-F (Yn Xy edypso..0yp

Since

(o¢]

[ fOndn=Fuf | =F@E) -F(yn-1)=1-F (n-)
Yn=Yn-1

also
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[ BFOnlf (n-ddnos= L -Flyn-20?
Yn-1=Yn-2 Yn-2
_B-F(yn-p)*
2!

If the successive integrations gR_», Yy-3,---,Y; +1 are made we have:

9" (Y1, Yo, ¥y ) =

Nl

(n—r)!

|‘| fyOL-F(y)]"™" 0<y<y;<..<y, < (1.14)
=1

ew.
0

For exponential case with(t) andF(t) in (1.6) and (1.7) we have:

9" (Y1, YooYy ) =
r

- -1
(nTr)'A rexpﬁZyi +(n-r)y,] O0<yp<y;<..<y, <o (1.15)
' =1 ew.

0

1.6 Maximum Likelihood Estimation for the Paramétjr

The likelihood function is:

L= L(A1y1’y2""lyr) = 9[(yl,yZ,---,yr)

The natural logarithm of the likely function is:

InL—In[(n_r)!] rinA —/][E:lyI (n-r)y,]
oinL -r 1 <«
Y =7+A—2[i§:1Yi_(n_r)Yr]
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04 1)=j

The ML estimator forAd is the solution of the equatioglna;&=0 at
A=A,
dInL(A) o -r 1. %
So =0 implies that ——+— i +(n-r
) p ; Az[éy' (n=1)y;]

Then the ML estimator ofl is:

i =%[§yi +(n-1)y;] (1.16)

1.7 Distribution of the ML Estimator &i

In this section we consider the distribution df by taking the

transformation, which appears briefly in [23]:
Vi =(n=i+1(Y; Y1) ,i1=12...r,Y,=0
That is:

Vl = nYl

Vo =(n=1)(Y, -Y;)
V3 =(n-2)(Y3-Yp)

Vr =(n=r+DY —Yrq)

This transformation is one-to-one that maps thspace
A={(y,Y2,.Y):0<y; <y, <..<Yy, <oo} onto the space

B={(v1,Vs,....v, ):0<V; <o0,i =12,...,r}, with inverse transform:



Chapter One. Censored Data of the Exponential Distribution

14

V
Yy, =1

n
Y. :ﬁ+_\/2

n n-1
Vi, Vo, Vs

Y, M, Ve Vs, 4 W
n n-1 n-2 n-r+1

and the Jacobian of the transformation is:

dy1 Oy; Oy:  0yg
ovy 0vy 0vgj ov,
0y, O0yp Oy2 0y»
aV]_ 6V2 6V3 aVr
320012,y )_|%3 Oys Oys ~ 0y3
0V Vo,..v,) |0v1 Ovp 0vg3 ov,
oyr 0yr Oy, o oy
aV]_ 6V2 6V3 aVr
1 0 0 0
n
11 0
n n-1
S 1 0
n n-1 n-2
i1 1 1
n n-1 n-2 " on-r+1
Y
gt pglpgpg 1 _0-r)
n n-1n-2 n-r+1 n!
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also

r

Sy +n-ny, =M 2 L2, Ve oLy
= n n-1 n-2 n-r+1 n

r
Vo .V v

S22+ 3 r L )=y vty =D,
n-1 n-2 n-r+1 =

Therefore the joint p.d.f. of;,Vs,...\V, is:

( _1r
1 a2
hyVo,..V )=g 1V 2.y, P|= )l_re =1 O<v; <oo

0 e.w.

Thus the sefV; Yepresent a sample of sizefrom Exp(A).

That is:
Vi ~Exp(A) i =1,2,...r

Now

ﬁilZyi +(n—r>yr]=12vi
"= =

but
:
D Vi ~G(rA)
i=1
1w A
henceA==>» v, ~G(r,— 1.17
S Vi =G (117)

=1
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1.8 Some Statistical Transformation Resjults

Theorem 1.8.1

Let Xq,X5,...,X, be a rs. of sizer from Exp(A) then the r.v.

r
_2rX 2 ~ 1 '
Y_T X< (2r) whereX _FZX'

Proof

Using m.qg.f. technique:

_ 2 J
2rX Y X 2. r 2. v
== 1 X X
My(t)=E[etY]=Ee A |=Fe = =E[|_|e/‘ ']: E{e/‘ ']:
|

1) 1
HMX(_)_H(l 2t) (1 ZJ CL-2t)2/2

Which is the m.g.f. ofy (2r).

Theorem 1.8.2

If the rv. X ~G(a, ), then the r.v.Y =In X distributed as log-

gamma distn with p.d.f.

exp{ay—ey//”] —0<y<ow
ew,

1
a(y) =4 (a) 8
0

With mean and variance of are respectively:
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E[Y |=E[InX]=InB+y(a)
varly | =vaf InX | =¢" @)

Proof

The p.d.f. of r.v.X ~G(a, £) is given by (1.9) as:

1 1 -
Xa 1e x!/ B 0< X< oo

f(¥) =11 (@) 87 o
0 W,

The functiony =In x define one-to-one transformation that maps theepa

A ={x:0<x<o} onto the spacd ={y:—w <y<o}, with inversex =eY

and the Jacobian of this transformationJs: dx _ e,

dy
Then the p.d.f. of is:
_eY
_ _ 1 1 _eVig.y _ B
g(y) = f(e")J= el e Pe) = eYe # —w<y<ow
. F(a)ﬁ“( )" r(a)B°

To find the mean and the varianceYgfwe consider the moment generating

function of Y as follows:

e mad
My (t)=E[etY J=Ietyg(y)dy = Iety 1 eaye s dy
o T@s”
y (1.18)
00 —eY
_T@+t)s L @)y B
a a+t e 7 dy
Ma) = ra+t)B
Since the integral side of eq. (1.18) is unitynthe
t
Ma+vs (1.19)

My (t) = (@)
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Set

¢g)=InM@)=Inl(a +t)+tInB—InT(a)

gt)=y¢(a+t)+Inp (1.20)
gt)=¢'(a+t) (1.21)
Where
2
lﬂ(W) :dlr:j—r(vv) andl//'(w) :LFZ(VV)
W dw

Are known as digamma and trigamma functiongtirg@et =0 the mean and

variance ofY are:

ElV]=¢'(0)=¢(a)+Ing }

1.22
vafY]=¢ 0)=¢/'(a) (1.22)

We note that the digamma functign(a), and trigamma functiog/'(a)

are tabulated [2].

Also, we note that, the following is an impoitavell-known result can be

deduced from theorem 1.8.1.

If the r.v. ZrTX ~)(2 (2r), then the r.w =21)(2 (2r) (1.23)
r

Where the distn is known as a non central chasg distn with non

centralityi :
2r



3.1 Introductiol

In this chapter we present the results of the lagge Monte Carlo
investigation to assess the approximations to thees of ML and SWLS
estimators. Moment properties of the three methotisestimation are
tabulated and make comparisons with them. Meanrscgféiciencies of ML
estimators relative to WLS and SWLS are assessethéocase of a single
explanatory variable, but before that we considpracedure for generating

random variates from exponential distribution.

A computer program in Appendix (A) for evalugtithe estimator's values
of the regression coefficients for the three meshotdestimation is mode by

using Monte Carlo simulation.

3.2 Random Variates Generalljdgs]

Many methods and procedures are proposed in teeatiitre for
generating random variates from exponential distiim. We shall adopt the

most well known method, namely the inverse tramsforethod.
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3.2.1 Inverse Transform Method

This method is the most common used in for genggatandom

variates from the exponential distribution, whi@nde describe as follows:

The p.d.f. and c.d.f. of exponential distributaddom variates are given by
the equations (1.6) and (1.7) respectively.

SettingU = F(x) whereU (0,1

U =1-¢Y'4, that implies
Y=-AIn(1-V)
Since the random variab(@—-U) is distributed in the same way ds we
may let:
Y =-AInU
The procedure for generating random variate fEqp(A) can be described
as in the following algorithm:
The algorithm IT
1- Readl.

2- GeneratdJ fromU(0,)).

3- SetY =-AInU..

4- Deliver Y as a random variate generating fré&xp(A) .

For a single explanatory variable with equalpased values has been

examined, the regression model for the mean thangin (2.2) becomes:

Hi :e(ﬁo+/o’1xi ),

g+1 i =1,2,...9 (3.1)

2

where Xj =i -
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Equal numbers of censored exponential obsemn&twithin the groups
where taken with; =r = 1(110(2)20, g =510, with initial values of3 equal

to zero.

A simulation run size 500 was used.

3.3 Moment Properties of the ML Estimailprs

For a single explanatory variabdk =1) the approximation to the bias

of ML estimator given by the eq. (2.44) takes then:

ZriXiB
bp=-% and b=-1—

R E{erl—xlzr

(3.2)

Also the information matrix of (2.14) becomes:
Zri Zrixi
—| i i
- 2
Zrixi Zri X
i i

Zri Zrixi
Let D:if'xi ler_xiz =(Zri)(zrixi2)_(zfixi)2

L1 Zrixiz _Zrixi
:B—Zi:rixi Zi:ri
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Hence, the asymptotic variances and covariancelogsfimators is:

var(,@’o)asy = D_lz f xiz,var(ﬁl) asyy = D_lz f
i i

A A 3.3
and  cov(By, B)asy =—D_1Zrixi 59
[
We have
w =ePorhxi x; =1 i=12,.9
Let ,?:(130131)
From (2.15), we have:
fo =f0(3o,,31) =N (tie_(ﬁoJr[}lXi ) —1) =0
! A (3.4)
fq =f1(ﬁo’3l) =Zri X; (tie_('goJr'glxi ) —1} =0
And from (2.16)
I@ésﬂ) :lé,c()s) +0p, Bl(s+1) =/é1(3) +0, (3.5)
Whered=-A"% (f), éz@ij (3.6)

of o(Bo. B) O o(Bo B2
anda=| %R0 A =(a b]
of1(BoB) O (BoBy | b ¢

5 B
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Where

0fo(Bo. 1) _ (Bo+Buxi) — 4
o7, IZr,te 07/1

afo(a/;)l B _ Zwe(owlx.) b

%ﬂ%@ ) _iz e forhi) -

A_l_ 1 C -b
T ac-b?l-b a

Then (3.6) becomes:

50 _ 1 C -b fo _ 1 Cfo_bfl _
3) b2-ac\-b a \fi) b2-acl-bfp+afy)

Cfo - bfl
b? - ac

- bfo + afl
b? - ac

50: ’51:

Substitute (3.7) in (3.5) we have:

,8(S+1) ,B(S) + 0 ,B(S) + (-::0 - bfl

,B(S+1) _,B(S) +0, = ,B(S)

cfg —bfy
b2 - ac
- bfo + afl
b2 —ac
(3.7)
| + 1
(3.8)
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In practice, we take =r, then

g

Zg:ri =Zr =rg =R (say)
i=1

i=1

Zg“rmz =rZ(i i g.;ljz ”Z[iz - (g +1) +(9;1j2]

_ {9(9 +1)29+1) _(9+Yg(g+1), 9(g +1)2}
2

4

2
GRS PN 7 (R R IR i)
12 12 12

Then the approximate solution of ML estimatofg328) at stage(s +1)

becomes:

Ié(()s+1) — Ié(()s) _ 2CR 41

S(s+l) _ A(s+1)b _SCF:Q (3-9)
AT e

This process is repeated until the differencevéen new 3, and S

estimators and the olg; and B, estimators less than the same specific

bounded which is10°).

Without loss of generality, we may assume thatx-values are centered so
thatZrixi =0
i

In this case, we have from (3.2) and (3.3) theofeihg results:

bp=-R! and b =0 (3.10)
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-1
g
Var(Bo)ay = zr] () =R

-1
g
~ 12 12
var(By) asy = rxi2 =—t \ = —F \ (3.11)
o)
and cov(ﬁ’o, ,Bl) =0

In Table 3.1 values of the biases of the MLmators are shown for the

casesr =r = 1110 (2)20 i=12,..9, g=51Cvalues of the approximate
biaseshy =-R! for ,5’0 are shown in parentheses, the bias@pbeing zero
to orderR™1,

The results of Table 3.1 show that there is adgagreement between the
biases of ,Bo obtained by simulation and the approximate valkiRs! even
for r as small as one. The biases ,erare close to zero which agree with the
approximation given in eq. (3.10).

Table 3.2 presents the values of the variarst&syness, and kurtosis of the
ML estimators are shown for the cases=r = 1(1)10 (220=12,..9,

g =5,10. Values of the large sample variances given by&41) for,@o and

B, are shown in parentheses.

The result of Table 3.2 shows that there is y@gd adequate between the

large sample variances of eq. (3.11) and simulatadue for all values of r.

And we find that for all values of r, the estioa show a small skewness
and some negative kurtosis which indicating thaitmad approximation to the

distribution of the estimators will be effectivafn=5.
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Table3.1 Valuesof Biasesfor ML Estimators
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g=5

fo

-0.02221(-0.2000

-0.1019(-0.1000)
-0.0814(-0.0667)
-0.0642(-0.0500)
-0.0402(-0.0400)
-0.0426(-0.0333)
-0.0313(-0.0285)
-0.0333(-0.0250)
-0.0252(-0.0222)
-0.0239(-0.0200)
-0.0172(-0.0167)
-0.0110(-0.0143)
-0.0119(-0.0125)
-0.0051(-0.0111)
-0.0170(-0.0100)

~

A

-0.0304
-0.0012
-0.0157
-0.0182
-0.0023
0.0026
-0.0050
-0.0096
0.0033
-0.0007
0.0060
-0.0030
0.0015
0.0004
0.0003

g=10

bo
-0.1120(-0.1000)
-0.0665(-0.0500)
-0.0327(-0.0333)
-0.0315(-0.0250)
-0.0225(-0.0200)
-0.0116(-0.0167)
-0.0153(-0.0143)
-0.0236(-0.0125)
-0.0186(-0.0111)
-0.0081(-0.0100)
-0.0051(-0.0083)
-0.0096(-0.0071)
-0.0029(-0.0063)
-0.0077(-0.0056)
-0.0028(-0.0050)

0.0066
-0.0007
-0.0028
0.0003
-0.0009
0.0012
-0.0025
0.0008
-0.0021
0.0001
0.0009
-0.0004
-0.0011
-0.0009
0.0015




Table3.2 Valuesof Variances, Skewness, and Kurtosisfor ML Estimators

- (fo)
. g=5 g=10
var. skew. kurt. var. skew. kurt.

1 0.2380(0.2000) 4.1625 11.8366 0.1046(0.1000) 2.4325 1.7417
2  0.1156(0.1000) 2.7243 5.7039 0.0493(0.0500) 1.7637 -0.5829
3 0.0616(0.0667) 2.0973 0.6827 0.0348(0.0333) 1.2339 -1.3994
4  0.0515(0.0500) 1.8417 -0.0506 0.0264(0.0250) 1.1296 -1.9464
5  0.0404(0.0400) 1.2270 -1.6496 0.0199(0.0200) 0.8890 -2.3553
6 0.0350(0.0333) 1.3885 -1.3279 0.0173(0.0167) 0.6700 -2.5649
7  0.0244(0.0286) 1.1619 -1.8334 0.0156(0.0143) 0.7881 -2.3325
g 0.0238(0.0250) 1.2809 -1.5433 0.0136(0.0125) 1.0652 -2.0702
g9 0.0222(0.0222) 1.0034 -2.1215 00101(0.0111) 0.9119 -2.3531
10 0.0239(0.0200) 1.0064 -0.0244 0.0086(0.0100) 0.5420 -2.7449
12 0.0186(0.0167) 0.8430 -2.3155 0.0076(0.0083) 0.4338 -2.8225
14 0.0119(0.0143) 0.6426 -2.6096 0.0068(0.0071) 0.6306 -2.6525
16 0.0121(0.0125) 0.6383 -2.6506 0.0063(0.0063) 0.3192 -2.8950
18 0.0110(0.0111) 0.4629 -2.7603 0.0057(0.0056) 0.5567 -2.7288
20 0.0102(0.0100) 0.8143 -2.5061 00052(0.0050) 0.3187 -2.8988




Table3.2 Continued

i.(B)
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var.
0.1365(0.1000)

0.0571(0.0500)
0.0417(0.0333)
0.0279(0.0250)
0.0217(0.0200)
0.0188(0.0167)
0.0165(0.0143)
0.0127(0.0125)
0.0113(0.0111)
0.0103(0.0100)
0.0082(0.0083)
0.0075(0.0071)
0.0062(0.0063)
0.0054(0.0056)
0.0051(0.0050)

kurt.
0.4420

-1.8490
-2.5951
-2.1065
-2.5451
-2.7962
-2.6569
-2.5558
-2.8479
-2.8615
-2.9364
-2.8636
-2.9024
-2.9571
-2.9292

var.
0.0143(0.0121)

0.0074(0.0061)
0.0045(0.0040)
0.0032(0.0030)
0.0025(0.0024)
0.0019(0.0020)
0.0018(0.0017)
0.0015(0.0015)
0.0015(0.0013)
0.0013(0.0012)
0.0010(0.0010)
0.0010(0.0009)
0.0007(0.0008)
0.0007(0.0007)
0.0006(0.0006)

kurt.
-2.7399

-2.8719
-2.8574
-2.9559
-2.9458
-2.9820
-2.9191
-2.9783
-2.9294
-2.9822
-2.9919
-2.9706
-2.9689
-2.9694
-2.9857




Chapter Three. Monte Carlo I nvestigation Results 41

3.4 Moment Properties of WLS Estimaljprs

From (2.28), the WLS estimators under our model ¢nzen in (3.1)

whenr; =r are:

(3.12)

Zx Z; Zx Z; Zx Z;
ZX )}_1 ZX )}_l ZXI

Where D{ 2 )}‘1]{Zmz{w'(ri )}-1]—[2&{40'@ )}-1]

i i
Hence, the asymptotic variances and covariand&'Ls estimators when

r=r are:
var(Bow Jesy = D ¥ (ri )= 9¢'(r)
[

g =1291//'(r)

SxP{w ) (9%

oG P ey = 0

var(By, Jasy = (3.13)
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Table 3.3 presents the values of the simulaiaseb of WLS estimators for
the caser; =r = 1110 (2)20i=12,..9g, g=510. The WLS estimator is an

unbiased.

And Table 3.4 gives the values of the varianskswness, and kurtosis of
the WLS estimators are shown for the cagesr = 1(1)10 (2)201,2,...g,

g =5,10. Values of the large sample variances given by(&4.3) for BON

and B, are shown in parentheses.

The result of Table 3.4 shows that there is adgadequate between the

large sample variances of eq. (3.13) and simulatadue for all values of r.

And we notice that for all values of r, the e&ttors show a small skewness
and some negative kurtosis which indicating thaimad approximation to the

distribution of the estimators will be effectivessvfor small values of r.
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Table3.3 Valuesof Biasesfor WL S Estimators
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Fow
0.0128
0.0045
-0.0161
-0.0127
0.0044
-0.0084
-0.0019
-0.0065
-0.0039
-0.0040
0.0002
0.0038
0.0005
0.0063
-0.0073

g=5

A~

Puw

-0.0392
0.0029
0.0151
-0.0185
-0.0036
0.0042
-0.0054
-0.0099
0.0039
-0.0011
0.0055
-0.0028
0.0010
0.0002
0.0002

Fow
-0.0059
-0.0185
0.0043
-0.0063
-0.0029
0.0066
-0.0013
-0.0103
-0.0058
0.0023
0.0030
-0.0029
0.0022
-0.0019
0.0015

g=10

A~

Puw

0.0082
-0.0003
-0.0046
0.0006
0.0004
0.0010
-0.0018
0.0007
-0.0018
0.0000
0.0009
-0.0006
-0.0012
-0.0011
0.0015




Table3.4 Valuesof Variances, Skewness, and Kurtosisfor WLS Estimators

- (fow)
. g=5 g=10
var. skew. kurt. var. skew. kurt.

1 0.2919(0.2414) 1.9268 5.4036 0.1632(0.1207) 1.1679 -0.8730
2 0.1295(0.1065) 1.2721 0.4790 0.0598(0.0532) 1.0691 -1.5133
3 0.0698(0.0689) 1.1421 -0.7887 0.0390(0.0345) 0.5922 -2.2570
4  0.0541(0.0511) 0.9071 -1.8863 0.0286(0.0256) 0.6488 -2.4538
5 0.0442(0.0407) 0.4888 -2.5740 0.0218(0.0203) 0.4568 -2.7413
6 0.0364(0.0338) 0.7293 -2.5757 0.0185(0.0169) 0. 2554 -2.8175
7 0.0261(0.0289) 0.5223 -2.5816 0.0166(0.0144) 0.4664 -2.5338
g 0.0255(0.0252) 0.6641 -2.3939 0.0143 (0.0126) 0.7669 -2.3931
g9 0.0228(0.0224) 0.5413 -2.6041 0.0106(0.0112) 0.4908 -2.7410
10 0.0245(0.0201) 0.5735 -2.5157 0.0091(0.0101) 0.2016 -2.9152
12 0.0187(0.0168) 0.4156 -2.7053 0.0080(0.0084) 0.1503 -2.9379
14 0.0122(0.0143) 0.2180 -2.8701 0.0070(0.0072) 0. 3645 -2.8315
16 0.0126(0.0125) 0.2894 -2.8671 0.0064(0.0063) 0.1367 -2.9483
18 0.0111(0.0111) 0.1254 -2.9078 0.0058(0.0056) 0.3065 -2.8824
20 0.0104(0.0100) 0.4967 -2.7789 0.0052(0.0050) 0.1377 -2.9536




Table3.4 Continued

i.(Bw)
. g=5 g=10
var. skew. kurt. var. skew kurt.

1 0.1558(0.1207) 1.5830 0.0773 0.0190 (0.0146) 0.3311 -2.6471
2  0.0639(0.0532) 0.8057 -1.8617 0.0086 (0.0065) 0.2958 -2.8585
3 0.0432(0.0345) 0.3283 -2.7158 0.0049(0.0042) 0.4319 -2.8125
4  0.0283(0.0256) 0.8900 -2.1886 0.0035(0.0031) 0.1544 -2.9491
5  0.0225(0.0203) 0.5944 -2.4723 0.0027(0.0025) 0.1401 -2.9604
6 0.0198(0.0169) 0.3288 -2.7491 0.0019(0.0020) 0.0697 -2.9781
7 0.0174(0.0144) 0.5176 -2.6595 0.0019(0.0017) 0.2575 -2.9398
g 0.0128(0.0126) 0.6504 -2.5684 0.0015(0.0015) 0.0699 -2.9792
9 0.0115(0.0112) 0.2364 -2.8402 0.0016(0.0014) 0.2704 -2.9364
10 0.0104(0.0107) 0.3118 -2.8627 0.0013(0.0012) 0.1090 -2.9809
12 0.0082(0.0084) 0.0791 --2.9333 0.0010(0.0010) 0.0087 -2.9919
14 0.0076(0.0072) 0.3527 -2.8549 0.0010(0.0009) 0.1665 -2.9682
16 0.0063(0.0063) 0.2108 -2.9081 0.0008(0.0008) 0.2026 -2.9678
18 0.0055(0.0056) 0.1757 -2.9538 0.0007(0.0007) 0.2157 -2.9615
20 0.0051(0.0050) 0.2071 -2.9295 0.0006(0.0006) -0.0912 -2.9855
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3.5 Moment Properties of SWLS Estimajprs

For the SWLS estimators expression (2.30), (2.3pBlyawith ¢/'(r;)

-1
replaced(ri —%+ﬁ) , eq. (3.12) gives the SWLS estimators, and eq.
|

(3.13) gives approximate variances which are:
5 _ 1., 1p-1,2\7"
iy =(R -39+ 5197

1 (3.14)
S el

-1

Table 3.5 shows the values of the simulatedelsiad SWLS estimators for
the cases; =r = 1110 (2)20i =1,2,...9, g =510. The true values of biases

2di .
of SWLS given by eq. (2.42) whekep :IT for fom are shown between
parentheses the biases@f,, which isby = <—— being zero.

X
i

The results of Table 3.5 show that there isgeeted agreement between
. 2d
the biases of 4y, obtained by simulation and the approximate vah'ﬂgs

for all values of r. The biases f(,ﬁlm are close to zero which agree with the

ZXi di
approximate vaIueéT that being zero.

2Xi

i
And Table 3.6 gives the values of the varianskswness, and kurtosis of
the SWLS estimators are shown for the cases = 1(1110 (2)2@,2,..9,

g =510. Values of the large sample variances given by(&44) for ,BOm

and B, are shown in parentheses.
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The result of Table 3.6 shows that there is adgadequate between the

large sample variances of eq. (3.14) and simulatadue for all values of r.

And we notice that for all values of r, the psttors show a small skewness
and some negative kurtosis which indicating thaimad approximation to the

distribution of the estimators will be effectiveeevfor small values of r.

Table3.5 Valuesof Biasesfor SWLS Estimators

© 0o N o o0~ W N - DO

el el O ol =
o o AN O

N
o

g=5

:éOm
0.0164(0.0035)
0.0046(-0.0066)
-0.0161(-0.0050)
-0.0127(-0.0039)
0.0044(-0.0031)
-0.0084(-0.0026)
-0.0019(-0.0022)
-0.0065(-0.0019)
-0.0039(-0.0017)
-0.0040(-0.0016)
0.0002(-0.0013)
0.0038(-0.0011)
0.0005(-0.0010)
0.0063(-0.0009)
-0.0073(-0.0008)

Bin
-0.0392
0.0029
0.0151
-0.0185
-0.0036
0.0042
-0.0054
-0.0099
0.0039
-0.0011
0.0055
-0.0028
0.0010
0.0002
0.0002

g=10

:éOm
-0.0024(0.0035)
-0.0184(-0.0066)
0.0042(-0.0050)
-0.0063(-0.0039)
-0.0029(-0.0031)
0.0066(-0.0026)
-0.0013(-0.0022)
-0.0103(-0.0019)
-0.0058(-0.0017)
0.0023(-0.0016)
0.0030(-0.0013)
-0.0029(-0.0011)
0.0022(-0.0010)
-0.0019(-0.0009)
0.0015(-0.0008)

Bin
0.0082
-0.0003
-0.0046
0.0006
0.0004
0.0010
-0.0018
0.0007
-0.0018
0.0000
0.0009
-0.0006
-0.0012
-0.0011
0.0015




Table3.6 Valuesof Variances, Skewness, and Kurtosisfor SWLS Estimators

. (Bom)
. g=5 g=10
var. skew. kurt. var. skew. kurt.

1 0.292(0.3333) 1.8999 5.2782 0.1635(0.1667) 1.1365 -0.9371
2 0.1311(0.1290) 1.2715 0.4774 0.0599(0.0645) 1.0683 -1.5147
3 0.0699(0.0789) 1.1421 -0.7886 0.0398(0.0395) 0.5923 -2.2570
4  0.054(0.0567) 0.9072 -1.8862 0.0287(0.0284) 0.6490 -2.4537
5 0.0449(0.0442) 0.4889 -2.5739 0.0219(0.0221) 0.4568 -2.7413
6 0.0365(0.0363) 0.7293 -2.5756 0.0185 (0.0181) 0.2555 -2.8175
7  0.0261(0.0307) 0.5223 -2.5816 0.0166 (0.0154) 0.4665 -2.5338
g 0.0255(0.0266) 0.6641 -2.3938 0.0143(0.0133) 0.7670 -2.3930
9 0.0228(0.0235) 0.5414 -2.6041 0.0106 (0.0117) 0.4908 -2.7410
10 0.0245(0.0210) 0.5735 -2.5157 0.0091 (0.0105) 0.2016 -2.9151
12 0.0187(0.0174) 0.4156 -2.7053 0.0080 (0.0087) 0.1503 -2.9379
14 0.0122(0.0148) 0.2180 -2.8701 0.0070 (0.0074) 0. 3645 -2.8315
16 0.0126(0.0129) 0.2894 -2.8671 0.0064 (0.0064) 0.1367 -2.9483
18 0.0111(0.0114) 0.1254 -2.9078 0.0058 (0.0057) 0.3065 -2.8824
20 0.0104(0.0102) 0.4967 -2.7789 0.0052 (0.0051) 0.1377 -2.9536




Table3.6 Continued

i.(Bim)
. g=5 g=10
var. skew. kurt. var. skew kurt.

1 0.1563(0.1667) 1.5830 0.0773 0.0193(0.0202) 0.3311 -2.6471
2  0.0642(0.0645) 0.8057 -1.8617 0.0087(0.0078) 0.2958 -2.8585
3 0.0434(0.0395) 0.3283 -2.7158 0.0050(0.0048) 0.4319 -2.8125
4  0.0285(0.0284) 0.8900 -2.1886 0.0035(0.0034) 0.1544 -2.9491
5  0.0229(0.0221) 0.5944 -2.4723 0.0027(0.0027) 0.1401 -2.9604
6 0.0198(0.0181) 0.3288 -2.7491 0.0019(0.0022) 0.0697 -2.9781
7 0.0174(0.0154) 0.5176 -2.6595 0.0019(0.0019) 0.2575 -2.9398
g 0.0128(0.0133) 0.6504 -2.5684 0.0015(0.0016) 0.0699 -2.9792
9 0.0115(0.0117) 0.2364 -2.8402 0.0016(0.0014) 0.2704 -2.9364
10 0.0104(0.0105) 0.3118 -2.8627 0.0013(0.0013) 0.1090 -2.9809
12 0.0082(0.0087) 0.0791 -2.9333 0.0010(0.0011) 0.0087 -2.9919
14 0.0076(0.0074) 0.3527 -2.8549 0.0010(0.0009) 0.1665 -2.9682
16 0.0063(0.0064) 0.2108 -2.9081 0.0008(0.0008) 0.2026 -2.9678
18 0.0055(0.0057) 0.1757 -2.9538 0.0007(0.0007) 0.2157 -2.9615
20 0.0051(0.0051) 0.2071 -2.9295 0.0006(0.0006) -0.0912 -2.9855
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Table3.7 Variance Efficienciesof WLS Relativeto ML

: g=5 g=10 £0- gD
Eo Eq Eo Eq 0——1
1 0.8153 0.8761 0.6409 0.7526 0.608
2 0.8927 0.8936 0.8244 0.8605 0.7752
3 0.8825 0.9653 0.8923 0.9184 0.8440
4 0.9519 0.9859 0.9231 0.9143 0.8808
5 0.9140 0.9644 0.9128 0.9259 0.9037
6 0.9615 0.9495 0.9351 1 0.9192
7 0.9349 0.9483 0.9398 0.9474 0.9304
8 0.9333 0.9922 0.9510 1 0.9389
9 0.9737 0.9826 0.9528 0.9375 0.9455
10 0.9755 0.9904 0.9451 1 0.9509
12 0.9947 1 0.9500 1 0.9589
14 0.9754 0.9868 0.9714 1 0.9647
16 0.9603 0.9841 0.9844 0.855 0.9690
18 0.9910 0.9818 0.9828 1 0.9724
20 0.9808 1 1 1 0.9752
Table3.8 Variance Efficiencies of SWLS Relativeto ML
=5 =10

' Eo ) Eq Eo ) Eq Eg'=Eq
1 0.8151 0.8733 0.6398 0.7409 0.6

2 0.8817 0.8894 0.8230 0.8506 0.775
3 0.8813 0.9608 0.8744 0.9000 0.8444
4 0.9537 0.9789 0.9209 0.9143 0.881
5 0.9000 0.9476 0.9087 0.9259 0.904
6 0.9590 0.9495 0.9351 1 0.9194
7 0.9349 0.9483 0.9398 0.9474 0.9306
8 0.9333 0.9922 0.9510 1 0.9391
9 0.9737 0.9826 0.9528 0.9375 0.9457
10 0.9755 0.9904 0.9451 1 0.951
12 0.9947 1 0.9500 1 0.9590
14 0.9754 0.9868 0.9714 1 0.9648
16 0.9603 0.9841 0.9844 0.855 0.9691
18 0.9910 0.9818 0.9828 1 0.9725
20 0.9808 1 1 1 0.9752
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3.7 Bias Reduction Estimatd{rs

The bias approximation given by eq. (3.2) for the &&timators work

effectively for all values of th¢r;} and the biases are of the same order of

magnitude as the variances, we are led to conbidsrreduction estimators

given by:

T (3.19)
2[ 2
Zri XiZJ

In order to reduce the mean square errors ahason, the mean square

lh))
1

=
+
=

errors of the new estimators are given by:
mse(Bj)zmse(/}j)+bj2—20ij, j=12 (3.20)
Where ; denoted the true bias gﬁfj :

The mean square efficiencies of the ML, WLS, &8MLS estimators

relative to the bias reduction estimators are @efiby:

mse( 3
)
E2j :W J =0,1 e (321)
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Estimates of the efficiencies are obtained byusation are shown in Table
3.9 forr; =r = 1(1)10 (2)20and g =5,10.

For the x-values under consideration, we hiayve0 so the estimatorg;

and ,@l are equivalent, therefoig;; = 0.

For estimation off,, if we use the approximatiomar(ﬁo)= Bo= R1in
ed. (3.20), we obtain:

mse(,éo) “R+1 (3.22)




Table3.9

Mean Square Error EfficienciesOf ML, WL S, and SWL S Estimators Relative to the Bias Reduction Estimators

r

© 00 NO Ol WN P

N = ol
O 0o NMNO

E1o
0.8561
0.9204
0.9326
0.9976
0.9984
0.9989
0.9678
0.9993
0.9783
0.9835
0.9853
0.9831
0.9873
0.9890
0.9903

E2o
0.8153
0.8927
0.8825
0.9519
0.9140
0.9615
0.9349
0.9333
0.9737
0.9755
0.9947
0.9754
0.9603
0.9910
0.9808

g=5

E3o
0.8147
0.8919
0.8822
0.9510
0.9140
0.9615
0.9349
0.9333
0.9737
0.9755
0.9947
0.9754
0.9603
0.9910
0.9808

E21
0.8761
0.8936
0.9653
0.9859
0.9644
0.9495
0.9483
0.9922
0.9826
0.9904

1
0.9868
0.9841
0.9818

1

E31
0.8733
0.8894
0.9608
0.9789
0.9476
0.9495
0.9483
0.9922
0.9826
0.9904

0.9868

0.9841

0.9818
1

E10
0.9127
0.9517
0.9691
0.9769
0.9803
0.9841
0.9871
0.9886
0.9879
0.9885
0.9910
0.9926
0.9937
0.9945
0.9952

E2o
0.6409
0.8244
0.8923
0.9231
0.9128
0.9351
0.9398
0.9510
0.9528
0.9451
0.9500
0.9714
0.9844
0.9828

1

g=10
E3o
0.6398
0.8249
0.8926
0.9231
0.9128
0.9359
0.9398
0.9510
0.9528
0.9451
0.9500
0.9714
0.9844
0.9828
1

E21
0.7526
0.8605
0.9184
0.9143
0.9259

1
0.9474
1
0.9375
1
1
1
0.855
1
1

E31
0.7409
0.8506
0.9000
0.9143
0.9259

0.9474

0.9375
1
1
1
0.855
1
1




" Chapter Two
-

2.1 Introductiol

Suppose that we hawg groups of individuals or units, where being

g
individuals in the 1 group, wherez n =N. The response variable of
i=1
interest is time to failure and we g} be a r.v. representing the failure time
for the [" individual in the " group. When failure occurs because of random
causes and ageing has no effect, the distn offtithe is exponential will be

assumed for statistically independd;} . Also we shall assume that the

measurements a variable ferexplanatory variablesy, x,,...,X,, where all

individuals in the same group having the same wlokethe explanatory

variables. For the™ group the explanatory variables are denoted by
Xi1s X210 Xk -

The exponential p.d.f. of the r.¥; written as:

1
ie_Tyij O< .. <00
FOyij) =1 Yij (2.1)

0 ew .
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We shall assume that the dependencg, obn the explanatory variables is

given by the model:
u =eXif, i =1,2,..9 (2.2)

Wherex{ =(1X{1.Xj2,...Xjx ) andB=(Lo, L. Bzb )

Equation (2-2) shows that the meanbeing adjusted by the multiplicative

exponential factor to allow for the influence ofetlexplanatory variables.
Other models have been proposed in the literattienwhe response variable
is exponentially distributed, for instance, FeigdaZelen [12] consider the

model:
=X B, i =1,2,...9 (2.3)

While Greenberg et al [13] use the reciprocal model

t=x A i =1,2,..g (2.4)

The linear and reciprocal models given by (&84 (2-4) are suffer from

disadvantages that the values Bf must be restricted to guarantee that

4 >0 for all values ofx; , while the model in (2-2) has the advantage that i

has positive values for all values »f and B. Further more the model (2-2)

has been used widely in the analysis of survivéh,di@r example, Prentice
[32], Lawless [22] and Kahn [18] used the (2-2) moéxtensively for

machines accelerated life tests.

In the analysis of time to failure data, riglgnsoring of the data often
occurs because of the need for early terminatiothefinvestigation. Many
censoring schemes are of course possible, but wk smployee type I
censoring within groups in which observation witl@ngiven group ceases
after the occurrence of the given order statistithiw the group. For the"|

group, we assume thai smallest observation%;q) <Y <...<Y;. are
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observed and the remandimg—r; observations being right censored at the

ValueYi(ri )

g
Let R= Zri denote the total number of uncensored observations
i=1

2.2 Estimation ofs by Maximum Likelihood Methof

The most important, widely used formal and has sbbof the
parameter estimation techniques is the method oftiran likelihood.
Estimation by ML is a general technique that maydpplied when the

underlying distn of the data is specified.

Using eq. (1-15), the joint p.d.f. of the obsav order statistics
Yig) <Yi) <---<Y(q, into the I group is:

(i r|)'/,1I

ik {ZyI(J) i i )yi(ri)}’ ‘=129 (25

and the log-likelihood over all groups is:

g 1 [J
L= IZ{'”{ — ),}‘ri In 44 _;i{qu)’i(j) - (ny ‘ri)Yi(ri)H (2.6)

Set

.
1| -

ti :r{zym) — (N ‘ri)Yi(ri)} 1=12.....9 (2.7)
| j=1
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Then eq. (2-6) becomes:

L= {m{ ! }—ri In —ﬂ} (2.8)
= (n—r)! H

It has been shown in eq. (1-16) that, if no nieglenposed on théz:} , the

statistics:

I
Ti = ri_l{ZYi () +(ni =T )YI (rj )}, [ :1,2,...,9 (29)
=1

are the ML estimators of thgu} . It easily one can show that these

estimators are independent, unbiased, sufficieng &aving minimum
variance, [7], [29] and [39], as well as, we shiw &xpression of eq. (1-17)

that each

T, ~G (ri i’—'j with p.d.f.

_fit

1 I i = T o
f ()= Tf.)(ﬁj thi e A 0<t< (2.10)

0 ew.

With meang and varianceyiz/ri .

Under the regression model given by (2-2) we have:

~ Nl . vip_rs aXiB
L—i:1|:|n{m} ri)gig ritie i|

And hence

aL g —Xi',B

=) X (tie k- —1), r=0,12,..Kk (2.11)
o (3
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and
— X X:tie ==, r.s=0,12,... 2.12
aﬁraﬁs ;I Ir 72 1S*1 k ( )

The ML estimate ofS is therefore given by the solution of tife +1)

likelihood equations of eq. (2-11)

g B

Zrixirtie e =Zrixir, r=012,.k (2.13)
i=1 i=1

and the information matrix is:

92 g
L_[[E{aﬂraﬁsm' Erixirxis (2.14)
(k +1)x(k +1)

The solution of likelihood equations in (2-11gncbe done iteratively by

using Newton-Raphson method for solving the nomlinequations as

follows:

Let
A g —v/! P
fr(,g) =Zri Xiy (tie xi B —1): 0, r=012,..k (2.15)
i=1

Suppose tha}?(s) = (B8, 8,...8) represent the approximate solution
of the equations (2-15) at stage Then the approximate solution at the stage

(s+1) for 3 is:
Ar(s+1) =Iér(s) +5r’ r=0,12,..k (2)16

set  Jd=-A"Y (B®)
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Where

3={0 Gy....o} LB ={f 4B, T {BS),... T (BN}, and

ofo(B®)) ot o(B) of o(B)
GJER GJEA - 0p
of 1 (B)) ot (B) of 1(B®))
0/, B b
A=
o (B®)) ofy (B) o (B®))
35, GJEA - 0p

2.3 Estimation ofs by weighted least squares metjjod

An alternative method of estimation which providesion iterative
solution uses the weighted least squares [29] egppdi the logarithmic values
of the {t;} that obtained by the eq. (2-7). This approachzesl the well-

known results for the log chi-square distn giverelyy (1-22) witha =r and

[ =2. In this case:

E[In/\/(ZZr)}=(//(r)+ln2 and var[ln)(ér)}zz//'(r) (2.17)

Now, according to the results of (2-10) and Tkeo 1.8.1 the r.v.'s

T, ~G[ri A—'J and ZZTi ~ X@r ) that implies:

g i

A |
T =X ), i =1,2,..9 (2.18)
|
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And InT; ~InA —In(2r; )+ In(X(22ri ))s 1 =1,2,...¢ (2.19)

Thus, if we set:

Z, =InT; —¢(r;)+1Inr;, 1 =1,2,...0 (2.20)
ThenZ; ~x{ B~w( )~ In2+ Inx(y ., i =1,2,...9 (2.21)
With E[Z; | =x{ B8 andvar{Z; | =¢'(; ) (2)2
Setg; :In)((zzri y~In2=¢(r), I =1,2,...0 (2.23)
Then Z, :>Si'@+5i1 1 =1,2,...9 (2.24)
With E[g]=0, vaflg]=¢'G ), i =1,2,..9

cov(g .&; )= 0, 2] =12,..9

In matrix form, we write eq. (2.24) as a linear rabd

Where
Zq 1 X1 Xi2 X Bo
Z, 1 X1 Xop X % B
Z3 1 X313 X3 X % B>
Z = , XN = , g:
Zg L Xg1 Xg2 - o Xk ) B )i+
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&

€2

€3
and¢ =

£ )yt
With E[£] =0 andcov[¢] =((Wij )) (2.26)
WhereWw; :{l// gi) : : (2.27)

Using the standard technique for generalizest leguare, then the estimates
of the model parameters of the eq. (2-24) can beddy minimizing the sum

of squares of the error st} that is, we minimize:

(-

_]X~§

M@
<
=~

z><

X

R

-X{ )

N
WX
R

=zw —/jxvy‘lz +BX

=

We differentiate partiall}2(53) with respect tg3, we have:

o0(8) _ —2XW IZ +2XW X B
B =

For minimum, we set:

0Q(p)
0B

o

=B

Thus, the WLS estimatq@’,\, iS:

B =(xwx ) xw Tz (2.28)
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The WLS@N is unbiased estimator fgf what ever the values of and

n; . Viz

(2.29)

i=1

g
WhereX W ~IX ={[inrxisl¢/’(ri )]J r=s=0,1,..k

2.4 Estimation ofs by Suggest Weighted Least Squares Mefthod

The weighted least squares estimatorfois given by eq. (2-28) need

tables of the digamma and trigamma tables for ewmno the numerical

values ofgi,\,.
If tables of the digamma and trigamma are notilakle, good

approximations [9] are given by:

cina—(2a-ts 1Y)
y@a=na (Za 3+160j (2.30)
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-1
Y'(a)= (a 1 +—j (2.31)

~ -1
Where
Z{=InT + (25 -3+ 3) =129 (2.33)
1 1 _1 - -
e (ri ‘5*@) 1) (2.34)
0 , 7]

In practice, we find that the estimators obtdimgy the three methods of
estimation (ML, WLS, SWLS), for instant, the ML msator ,é’ has an
important property that,é’—@ is distributed independently of, similar
properties applying to WLS and SWLS estimators.

This property for ML estimator can be deduceadhfithe likelihood equation

given by (2-13) which can be written as:

Zri Xirti%_Xi (g_g) = Zri Xir » r= O,l,k (235)
i i

Where

ti=t e ™8, i =1,2,...g (2.36)

The set of observatior{tiE} represented a sample for independent

standardized gamma r.v.'s with p.d.f.'s:
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— T r.t. e 1 * ,
fi ) =400 '(' ') i =1,2,..9 (2.37)
0 , ew .

Since these p.d.f. do not dependenfothe property follows.

We further have:
. d
B-pB~p° (2.38)

Where é(o) denoted the ML estimator o;? when the true model has

L =0. Similarly

- d . “ d .
By - B~A and By, - B~ B (2.39)
Where ,{A{,S,O) and ,Nér(,?) denoted respectively the WLS and SWLS estimators
of S whenf=0.
These results show that all central momentsnamichent properties such as

bias, variance, mean square error, skewness anaslsiare independent of

B for the three estimators. So without loss of gelityr we may therefore

take 5=0.

2.5 Bias Approximation for the Methods of Estimajjo

The WLS estimator:

A~

G =(xw %) x W Tz

~

is shown in section 2.3 an unbiased foffor all r; andn;, i =1,2,..g.
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The SWLS estimator:
N -1
B =(x Wi ) X wg'z"

of section 2.4 can be Written as:

. -1
B =(X WX ) X Wiz +d) (2.40)
Where
-1
d; =lﬂ(ri)+(2ri —%Jfﬁ) = Inr;., 1=12,.0 (2.41)
|

So the bias of the SWLS is:
b= (X WX ) X W3 (2.42)

Approximation to the bias of ML estimator is ééped by AL-Abood [1]

corrected to orderR™ with the condition the x-values satisfy the

orthogonality conditions:

D i XirXis =0, Or #£s=0,1,..k (2.43)

In this case the biases take the form:

k +1
2R

bo = and

Zr XII’XIS > (2.44)

ZZr x,zszi‘1 Zrixé where r =12k
i )




Conclusions

1. The values of the simulated biases of SWLS metloodsd are very

close to those of WLS when= 2, while the values of the simulated
biases of ML are over estimate for all values ofurthermore the

values of 5, obtained by the three methods are adequate #d2. We

notes that the values of the biases in the thrabaode are decreases
when r increases and these result become better as thbenwf
groups increase.

2. The ML values of the simulated variances/gf and S, are generally

have smaller values than these obtained by WLS SWlL.S when
r <7 and become close far=8. For WLS and SWLS, the values of
the variances become identical wheh 6.

3. The results of skewness of WLS and SWLS are gdygesadaller than
the skewness of ML which indicating that normal rpgmation to the
distribution of the estimators will be effectiveezvfor small values of
r . Generally the skewness values decreasesiasreases.

4. In the three methods of estimation, most of theueslof kurtosis
negative which indicate that the data is conceadrad the top of the
distribution curve.

5. The results of Table 3.9 show that there is goodegent between the

approximating efficiencies of formula (3.22) anck thalues ofE.

The results show that ML estimators have superieamsquare errors
performance than the WLS estimators for small aloker , but as
expected the differences in efficiencies of WLS &WLS estimators

are negligible for all values af.
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6. In all methods of estimation we find the resultsestimates values of
B, are very near to the reality from the estimateigalof 4, because
of the effective of the explanatory variables.

7. The results of SWLS in general are satisfactiomompare with the
results of WLS but less accurate because of tredxstence.

8. The important result obtained from Monte Carlo dation is that the

distribution of,@’—@ Is independent o,tf?(o).



| ntroduction

In recent years there is an increasing availability in the use of various
types of regression models for the analysis of what so called lifetime, survival
time or failure time data that have an end point the time until the failure or
certain event occurs. The major areas of applications of such models appear in

biomedical, industrial life testing, and reliability terminology.

We assume that observations are available on the failure time of n
independent individuals. The main problem in this work examined the
developing methods for assessing the dependence of faillure time on the
explanatory variables. The second problem involves the estimation and
specifying models to represent lifetime distribution and of making inference
based on these models.

We shall illustrate some applications of such models in present of the
explanatory variables or without it, for instance, in medical field with a
curable illness, the survival time might represent the time form initial
diagnosis of illness to complete recovery, while the case of serious illness
such as cancer, the survival time would represent time to death, and the
explanatory variables might refer to various attributes of the patients such as
age, sex, initial severity of illness, months from diagnosis ,prior therapy, etc.
in an industrial context, survival time might represent lives of components
subject to failure and the explanatory variables may refer to different
operating condations for the component being tested, such as temperature,
pressure, friction. Economists in the world of employments, and
demographers study the length of time that people are in work force
Kpedekpo [20], where employers are concerned with length of time

employees work before changing jobs. Hoadley [16] studied the length of
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time telephones remain disconnected in vacant quarters in order to determine
which telephones to remove for use else where and which to leave in for the
next customer. Gross and Clark [14] study the success of medical treatments
for certain diseases in measured by the length of patients survival. Prince [33]
evaluates the life of TV programs, The Association for Advancement of
Medical Instrumentation [5] has a proposed standard with methods for
estimating the life of heart pacemakers, etc.

More details on models representation and associated statistical
analysis are given by:

Feigl and Zelen [12] applied the exponential model on leukemia
survival datausing different type of explanatory variables on each patient, and
the parameters are estimated by the method of maximum likelihood.

Pike [31] investigated the applications of the carcinogenesis on two
groups of rates to examine two types of pretreatment regimens.

Hoel [17] assumed that the functional from of each age distribution is
known up to the point of unknown parameters. These parameters plus the
unknown net probabilities are estimated from the data by the maximum
likelihood methods.

Nelson and Hahn [26] dealt with the estimation problems of the
regression parameters when censored data are collected from accelerated life

data of motorettes.

Prentice [32] suggested an exponential survivor function with
censoring, and a number of explanatory variables describing patient etiology,
general medical status and clinical stage of disease are recorded when a
patient is taken on the study, when such concomitant variables seem

important, an exponential relation between failure rate and explanatory
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variable is suggested and the result are extended to include a weibull
component in the hazard.

Lawless [22] discussed estimation and predication procedures for
model which is commonly used in reliability and life testing work, the so
called inverse law model, which exponential time to fail data, and described
confidence interval estimation procedure for this model, so this procedures do
not involve the use to any asymptotic approximations and so all distributions

given exact for any sample size.

Crowely and Hu [9] considered a number of analyses to asses the
effects of various covariates on the survival of patients in the Stanford Heart

Transplantation program.

Noure and Readt [30] considered an approach to the proportional
hazards analysis of the survival data with covariates by parametric modeling
of piece wise distributions. MLS using GLIM and an iterative method is
straight forward are used with two applications, based on the weibull

distributions are described and some possible generalizations are indicated.

Kronborg and Aaby [21] considered the problem of comparing
survival functions or equivalently comparing baseline hazards in the stratified
proportional hazards model, and proposed test is a direct of identity of
survival functionsin the sense that it is nonparametric and is sensitive against

abroader class of alternatives than the proportional hazards aternative.

Lin and Wel [24] were interested in estimating the cumulative hazard
function and survival function under the Cox proportional hazard model.

Razooq [34] discussed two methods of estimation namely maximum
(ML) and weighted least square (WLS) for the estimation of the regression
coefficient related to Weibull type |1 censored data. Goodness of fit test for
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assumed model is given and testing is mode on the any subset of non effective

regresses.

Sigeo Aki and Katuomi Hirano [36] extracted formulafor the lifetime
distn for k-out-of-n in: F system where the observations are ordered according
to three well-know distributions, exponential, Weibull, Pareto and they obtain

feasible estimators by using moment method.

Sparling, Y. H. et al [38] consider a parametric family of the
regression models for evaluating interval-censored event time (survival) data,
where the employed Newton-Raphson method when the underling
distributions are Weibull, negative binomial, and log-logistic distributions as

aspecia cases.

The aim of this thesis is to find the best methods for estimating the
regression parameters related to exponential of type Il censoring data. One
method is devel oped and the observed estimators are compared with the other
methods of estimation taken place by Monte Carlo simulation.

This thesis consists of three chapters:

In chapter one, we give a brief summary of survival type Il right censored
data, regression models representation, exponential and gamma as a lifetime

distributions, and derivation to some transform results.

In chapter two, we present three methods of estimation for regression
coefficients of type Il censored exponentially distributed data, where the
regression model impose on the mean as:

H=exp(x )

The utilized methods of estimation are maximum likelihood (ML), weighted
least squares (WL S) and suggest weighted least squares (SWLS). We present
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moment properties of the estimators such as bias, variance, and mean square

errors are presented theoretically.

In chapter three, we consider the results of Monte Carlo investigation of the
biases of ML and SWLS estimators, moment properties of the three methods
of estimation, a new bias reduction estimator for the ML estimatorsis develop
and show a higher efficiency in mean square error with respect to the ML,
WLS, and SWLS, and the Tables of these resullts.
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Abstract

In this thesis, we consider a regression models for survival censored
data of type Il in which the underling distributions are exponential or gamma
where the effect of the regressor variables on the means is multiplication
given by the model

H =exp(xi B)

Three methods of estimation for the regression coefficients are
considered, namely maximum likelihood (ML), weighted least squares
(WLS), and suggest weighted least squares (SWLS). These methods are
discussed theoretically and examined practically by Monte Carlo simulation
for the case of asingle explanatory variable.

Moments and higher moments properties of the estimators, such as,
bias, variance, skewness, and kurtosis are examined, illustrated and compared.

Finally, anew bias reduction estimator to the ML estimator is proposed

and shows a higher performance with respect to the other estimators.
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