INVESTIGATION
 OF
 VAPOR-LIQUID-LIQUID EQUILIBRIA

A Thesis
Submitted to the College of Engineering of Al-Nahrain University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering
\section*{by}
GHAZWAN AHMED MOHAMMED AL-JIBOURY
B. Sc. 1996
M. Sc. 1998

Jumada I
1426
June
2005

Certification

We certify that this thesis entitled "INVESTIGATION OF VAPOR-LIQUID-LIQUID EQUILIBRA" was prepared by GHAZWAN AHMED MOHAMMED, under our supervision at Al-Nahrain University, College of
Engineering, in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Chemical Engineering.

Certificate

We certify, as an examining committee, that we have read this thesis entitled
"NVESTIGATION OF VAPOR-LIQUID-LIQUID EQUILIBRIA", examined the student
GHAZWAN AHMED MOHAMMED in its content and found it meets the standard of
thesis for the degree of Doctor of Philosophy in Chemical Engineering.

ABSTRACT

Vapor-Liquid-Liquid Equilibrium (VLLE) systems are complicated systems; they involve both a two phase liquid and a two phase vapor. Obtaining equilibrium data on these systems is very difficult, VaporLiquidEquilibrium
(VLE) recirculation stills can
not be used to obtain accurate VLLE
data due to incorrect composition
of
the recycled condensed vapor to
the
boiler, modifications are made to
these stills to obtain accurate equilibrium
data for partial and immiscible
liquid systems.
Another difficulty
when collecting the vapor \& liquid samples, a modification must be made in
order to collect a sample with the correct composition.
VLLE systems are non-ideal and polar systems, many Equations Of States
(EOS) failed in correlating or predicting VLLE data. Activity coefficient models gave reasonable accuracy in correlating or predicting VLLE data such
as T.K.Wilson and NRTL (Non-Random-Two-Liquid) and UNIQUAC (Universal-Quasi chemical-Activity-Coefficient) models while the UNIFAC
(Uniquac-Functional group-Activity-Coefficient) model failed in predicting
VLLE data especially for immiscible and some partial miscible liquid systems.

In this study the following was accomplished:
1- A modified recirculation still was assembled to deal with partial and immiscible liquid systems. The still consisted of 55 mm diameter boiling section and a 40 mm diameter condensing section. The modification involved
supplying the still with mixers in the two mentioned sections, the speed of
mixing was $1400-1600 \mathrm{rpm}$. The mixers helped in keeping the two phase liquid mixtures in the boiler and the condenser in a kind of a homogenous state.

I

Abstract

This gave a correct composition of the recycled liquid in the condenser and a
correct boiling temperature reading in the boiler.
2- Isobaric VLLE data for two binary systems; Ethyl-acetatelWater and

ToluenelWater and one ternary system ToluenelEthyl-acetatelWater have been measured at 101.325 kPa in the modified still. All the systems are two
phase mixtures were the system Ethyl-acetatelWater is a partial miscible system and the systems ToluenelWater and ToluenelEthyl-acetatelWater are
immiscible systems. No equilibrium data are available on the ternary system
measured in this study. The binary systems and the ternary system forms minimum boiling point Azotropes.

3- The VLLE data where correlated and predicted by using the PengRobinson
Equation Of State (EOS) in both
the vapor and liquid phases and
one
of the activity coefficient models
T.K.Wilson, NRTL, UNIQUAC and UNIFAC
in the liquid phase and the Peng-Robinson
(EOS) in the vapor
phase.
The overall average absolute deviations
in vapor mole
fraction for the
system
Ethyl-acetate \Water measured
in
the present study by the prediction
and
correlation methods
was
37.98 and 0.12 respectively and for the system

Toluene
I Water it was 1.62 and 0.08 respectively
and for the system Toluene
1
Ethyl-acetate \Water it was 0.16 and 0.06 respectively.
4- A modification was applied on the the UNIQUAC model by converting the
coordination number ($\mathrm{Z} / 2$) which was considered as a constant $=5$ into a
third adjustable parameter, this helped in decreasing the average absolute deviation in vapor mole fraction from 20% to 65%.

II

Abstract

5- liquid-liquid-Equilibrium (LLE) data of the binary system EthylacetatelWater was measured in the Temperature range 20
o
C to 75
C by the
same modified still and the overall average absolute deviation in
predicted
activity coefficient ratio of top and bottom layers $\Delta(\gamma$
1
T
$/ \gamma$
1
B
) were 0.0561 ,
$0.0112,0.0361$ and 0.1512 by using the activity coefficient models
T.K.Wilson, NRTL, UNIQUAC and UNIFAC respectively.
o
III

List of Contents

LIST OF CONTENTS

Abstract 1
List of Contents IV

CHAPTER ONE

INTRODUCTION

Introduction 1

CHAPTER TWO

THEORY \& LITERATURE REVIEW

2.1 VLLE Phenomenon 4
2.2 Thermodynamics of Equilibrium 5
2.3 Fugacities in Gas Mixtures 7
2.3.1 The Lewis Fugacity Rule 8
2.3.2 Fugacities from the Virial Equation of State 10
2.3.3 Fugacities from the Cubic Equations of State 15
2.4 Fugacities in Liquid Mixtures 20
2.4.1 The Ideal Solution 21
2.4.2 Activity and Activity Coefficients 22
2.4.3 Activity Coefficients from Excess Functions 23
2.5 Equilibrium Stills 37
2.6 Azeotropic Predictions 43
2.7 Previous Studies of VLLE Systems 46

IV

List of Contents

CHAPTER THREE

EXPERIMENTAL WORK
3.1 Chemicals 49
3.2 Equilibrium Still 49
3.3 Temperature Sensor 53
3.4 Preparation of Liquid Mixtures 54
3.5 Operating the equilibrium still for VLLE measurements 55
3.6 Sampling Methods 56
3.7 Sample Analysis 57
3.8 Operating the equilibrium still for LLE measurements 60
3.9 Cleaning the equilibrium still 61
3.10 Experimental data 61
3.11 Testing Experimental data 65
CHAPTER FOUR
RESULTS \& CALCULATIONS
4.1 Temperature-Composition Diagrams 68
4.2 Prediction of Equilibrium Data 71
4.3 Correlation of Equilibrium Data 84
4.4 Modification of UNIQUAC equation 96
4.5 Calculation of boiling temperature 97
4.6 Determination of Azeotropic Point 100
4.7 Summery 102
CHAPTER FIVE
DISCUSSION \& CONCLUTIONS
5.1 Systems Selected 107
5.2 Assembled Equilibrium Still 109
5.3 Prediction Method 110
5.4 Correlation Method 112
5.5 Azeotropic Point 115
5.6 Conclusions 116
5.7 Recommendations for future work 117
V
List of Contents
REFERENCES

CD CONTENTS

APPENDIX A

A. 1 Quick-fit heads of the Equilibrium Still A-1
A. 2 CASSY Module Interface A-2
A. 3 A. 3 Universal Data Acquisition A-3

APPENDIX B

B. 1 Refractometer B-1
B. 2 Circulation Thermostat with Refrigeration Unit B-3

APPENDIX C

C. 1 Microsoft Excel C-1
C.1.1 Exp. Sheet C-1
C.1.2 Calc. Sheet C-5
C.1.3 A.C. Sheet C-8

APPENDIX D

D. 1 Newton-Raphson Method D-1
D. 2 Correlation of Experimental Data D-2

VI

Nomenclatures

Abbreviations

NOMENCLATURES
ABS Absolute
24DMD 2,4-Dimethyl-1,3-dioxolane
2MD 2-Methyl-1,3-dioxolane
BDH British Drug Home
Cal. Calculated
CASSY Computer Assisted Science System
EOS Equation of State
Exp. Experimental
GRG Generalized Reduced Gradient Search method
LLE Liquid Liquid Equilibrium
M.WILSON Modified Wilson activity coefficient model
M.Wt. Molecular Weight
MEK Methyl-Ethyl-Ketone
N.V.M Non Volatile Matter
NRTL Non-Random Two Liquid activity coefficient model
O.F Objective Function
P.E Poly-ethylene
Pred. Prediction
QVF Quick-fit Visible Flow
T.K.Wilson Tsubota \& Katayama modified Wilson activity coefficient model
T-X Temperature-Liquid composition
T-X-X Temperature-Liquid composition-Liquid composition
T-X-Y Temperature-Liquid composition-Vapor composition
UNIFAC UNIQUAC Functional Group Activity Coefficient model
UNIQUAC Universal Quasi-Chemical activity coefficient model
VLE Vapor Liquid Equilibrium
VLLE Vapor Liquid Liquid Equilibrium
Symbols
A
ij
, B
ij
, C
Parameters of equation 2.6.1
B
ij
ij
The second virial coefficient in equation 2.3.10
B
The second virial coefficient of the mixture in equation 2.3.9

```
C
1
,C
2
mix
,C
3
C
Coefficients of equation 2.3.16
C
i0
C
,C
mix
i1
4
Coefficients of equation 2.3.17
The third virial coefficient of the mixture in equation 2.3.9
d
Derivative
E
Constant in equation 2.4.15c
i
VII
Nomenclatures
f
Partial molar fugacity of component i
f
i
0
The liquid phase standard-state fugacity
f
i
L
Partial molar fugacity of component i in liquid phase
f
i
Partial molar fugacity of component i in vapor phase
k
Interacting parameter of Peng-Robinson (EOS)
```

```
L Liquid phase
n
ij
Number of moles of component i
P Total pressure (kPa.)
P
i
Critical pressure (kPa.)
P
C
S
Saturation pressure (kPa.)
R Universal gas constant
r, q, q
Pure component molecular structures of UNIQUAC model
R Correlation coefficient (N.m / mole.K)
T Temperature (
o
C or Kelvin )
T
Azo
Temperature of azotrope (
o
C or Kelvin )
T
c
Critical temperature (
o
C or Kelvin )
T
i
Boiling point of component i (
o
C or Kelvin )
T
r
Reduced temperature (
o
C or Kelvin )
V Vapor phase
V Molar volume in equation 2.3.2 (cm
/ mole)
V
C
Critical molar volume (m
3
/ Kmole)
```

```
X
Composition of component i in liquid phase
X
i
i
Azo
Azotrope composition of component i
Y
Composition of component i in vapor phase
Z Compressibility factor
Z
i
Critical compressibility factor
Z
C
mix
```

Greek Symbols
Compressibility factor of mixture
μ Chemical potential
3
i
proportionality constant dependent on temperature and pressure

Y-

Average absolute vapor phase mole fraction difference
Parameter of UNIFAC model given by equation 2.4.32
α
5
ij
Parameter function of temperature of equation 2.3.33
α
i
Non-randomness parameter of NRTL model
γ
γ
γ
${ }^{\text {i }}$
$\stackrel{i j}{i}$
B
${ }^{i}$
Activity coefficient of component i in liquid phase
Activity coefficient in Bottom liquid layer of component i
Activity coefficient in combinatorial part of UNIFAC model

```
\gamma
i
Activity coefficient in residual part of UNIFAC model
\gamma
i
Activity coefficient in Top liquid layer of component i
VIII
```

Nomenclatures
Δ Difference

```
\Deltau
Characteristic energy of UNIQUAC model
\DeltaY
ij
Absolute vapor phase mole fraction difference of component i
0,}
\lambda
i
Area fractions of UNIQUAC model
ij Adjustable parameters of WILSON model
\mu
\alpha
Chemical potential in \alpha phase
\mu
Chemical potential in }\beta\mathrm{ phase
\mu
The reduced dipole moment in equation 2.3.24
\tau
R
Adjustable parameters of NRTL model
\Phi
ij
```

Segment fraction of UNIQUAC model
φ
Partial molar fugacity coefficient of component i
φ
i
L
Partial molar fugacity coefficient of component i in liquid phase φ
i
S
Partial molar fugacity coefficient of component i at Saturation φ
i
V
P
Partial molar fugacity coefficient of component i in vapor phase ω The acentric factor

IX

Chapter One
Introduction

CHAPTER ONE

INTRODUCTION

Many of the azotropic systems, particularly the aqueous ones that are being used for industrial distillations involve partially miscible regions for
which a few data are available. An adequate method of measuring the vapor-
liquid equilibrium (VLE) data of such systems is of great importance. In both
processes of azotropic distillation and liquid-liquid extraction, solvent is generally removed from one or more streams by stripping columns from which the condensed overhead separates into two layers [1]. To make accurate and economic design, an equilibrium still has to be designed which permits the determination of VLE for systems involving both a two phase liquid and a two phase vapor condensate.

There are two major difficulties in studing partially miscible and immiscible systems in addition to those in equilibrium stills. The first is the
vapor when condensed will form an immiscible mixture. Thus the recirculation type of apparatus can not be used since the condensed vapor cannot be returned to the boiler of the still with the two liquid phases in proper portion. The second difficulty lies in the great difference in composition between the vapor and liquid. For example in the miscible region
of Ethyl-acetate in Water, which extends to 2 mole percent Ethyl-acetate, the
vapor is from 5 to 22 times as rich in Ethyl-acetate as the liquid.
Therefore, if
an equilibrium study is undertaken where a liquid sample is distilled, its composition will change extremely rapidly as vapor is formed, and the arrival
at the desired steady state in the still becomes difficult [2].

1

Chapter One

Introduction

Partially miscible and immiscible systems are non ideal and polar systems. Correlating or predicting equilibrium data of these system is best achieved by the aid of activity coefficient models [3] although attempts have
been made by the aid of Equations Of State (EOS) [4, 5], this gave good results for high pressure immiscible systems but failed in low pressure systems. EOS is applied to determine the fugacity coefficients at the vapor
phase and at the saturation. The most applied EOS is the Peng-Robinson EOS
[4]. The fugacity coefficients can also be determined from the Virial equation
[6].
The most applied activity coefficient models are the Wilson, T.K.Wilson, NRTL, UNIQUAC and the UNIFAC models. All these models except the UNIFAC have adjustable parameters which are obtained from non linear regression of experimental equilibrium data [7] or from infinite dilution activity coefficients [8], thus the UNIFAC model is not as accurate as the
other models its only a predicting model and not a correlating model. The NRTL model has three adjustable parameters with one parameter more than
the other models this increases the accuracy of the correlation and the prediction of equilibrium data.

The scope of this study involves the following objectives:
1- Assembling a modified equilibrium still to deal with partial miscible and immiscible systems.

2- Measuring the vapor-liquid-liquid equilibrium (VLLE) data of the partial
miscible binary of Ethyl-acetate \backslash Water and the immiscible binary of Toluene
\backslash Water and the ternary of Toluene \backslash Ethyl-acetate \backslash Water in the new modified still at 101.325 kPa .

2

Chapter One

Introduction

3- Measuring the liquid-liquid equilibrium (LLE) data of the partial miscible binary of Ethyl-acetate \backslash Water in temperature range 20
o
C to 65
C by the same still at 101.325 kPa .

4- Correlating and predicting the VLLE and LLE data obtained from the new
modified still by applying the Peng-Robinson (EOS) in both the vapor and
liquid phases and applying the activity coefficient models (T.K.WILSON, NRTL, UNIQUAC and UNIFAC) in the liquid phase and the PengRobinson
(EOS) in the vapor phase.

5- The UNIQUAC equation is modified and converted from a two adjustable
parameter model to a three adjustable parameter model.
。
3

Chapter Two
Theory \& Literature
Review

CHAPTER TWO

THEORY \& LITERATURE REVIEW

2.1 VLLE Phenomenon

When the binodal curve representing the liquid-liquid equilibrium (LLE)
data intersects the vapor-liquid equilibrium (VLE) data curve this gives rise to the phenomenon of vapor-liquid-liquid equilibrium (VLLE) [9].

A binary system consisting of two liquid phases and a vapor phase in equilibrium has (according to the phase rule) one degree of freedom, for a given fixed pressure, temperature and composition in all three phases. On a
temperature composition diagram the points representing the states of the three phases in equilibrium fall on a horizontal line at (T^{*}) as shown in Figure 2-1. At a temperature above (T^{*}) the system may be a single liquid phase, two phases (liquid and vapor), or a single vapor phase, depending on the overall composition.

Figure 2-1 VLLE T-X, Y diagram [9]
4

In region α system is a single liquid rich in species 2 ; in region β it's a
single liquid rich in species 1 . In region $\alpha-V$, liquid and vapor are in equilibrium. The states of the individual phases fall on lines $A C$ and $A E$. In
the region $\beta-\mathrm{V}$, liquid and vapor phases, described by lines $B D$ and $B E$, also
exist at equilibrium. Finally, in the region designated V, the system is a single
vapor phase. Below the three phase temperature T
, the system is entirely
liquid this is the region of LLE.

2.2 Thermodynamics of Equilibrium [3]

The fundamental equations of phase equilibrium are commonly written in terms of chemical potentials,

〈®

$\propto \propto=$

Where $\boldsymbol{\mu}$ is the chemical potential, α and β represent the phases in equilibrium, for practical engineering problem it is useful to write equation
(2.2.1) in other useful form where it can be related to the chemical potential in
terms of temperature, pressure and composition. To establish this relation it is
convenient to introduce some auxiliary functions such as fugacity and activity. These functions make the practical engineering problem easier to visualize.

When there are two phases a vapor phase (V) and a liquid phase (L), they
are in equilibrium when both at the same temperature and pressure the partial
molar fugacity of component i (f
) in the vapor phase is equal to that in the
liquid phase

```
L
i
)2.2.2(ff
i
=
i
5
)1.2.2(
Chapter Two
Review
```

Equation (2.2.2) is of little use unless it can be related to the fugacity with temperature (T) and pressure (P) and composition (X

```
i
```

, Yi); f
i
V
must be wrote
as a function of T, P, and Y
i
(composition in vapor phase) f
i
must be wrote
as a function of T, P, X
(composition in liquid phase). To facilitate the
desired relations, three auxiliary functions are required:
1 - The vapor phase partial molar fugacity coefficient φ
i

2- The liquid phase activity coefficient γ
3- The liquid phase standard-state fugacity f
Equation (2.2.2) can now be written as follows:

```
v
i
o
iiii
`\\=
i
i
0
```


)3.2.2(fXPY

Equation (2.2.3) contains three of the variables of interest $\boldsymbol{X i}, \boldsymbol{Y i}$ and \boldsymbol{P}. Its no
more and no less fundamental than equation (2.2.1); one is merely a mathematical transformation of the other, and any claim equation (2.2.3) may
have to being more useful is only a consequence of a fortunate choice of useful auxiliary functions in the transformation.

Much of this utility comes from the concept of ideality. If mixtures are
defined with certain properties as ideal mixtures, then its found that as a result
of this choice of auxiliary functions, that the equation of equilibrium can be
simplified further; for example, for a mixture of ideal gases φ ideal liquid mixtures at low pressures, γ
i
$=1$ when f
is given by the
saturation pressure of pure liquid i at the temperature of interest. So its found
that some of the auxiliary functions are useful because they are numerical factors, frequently of the order of unity, that establish the connection between
real mixtures and those that, by judicious choice, have been defined as ideal
mixtures.
v
$=1$, and for

6

In the general case ideal behavior cannot be assumed and two relations
must be established, one for φ

```
V
    = F(T,P,Y
    , Y
2
i
    and }
i
,...)
\gamma
i
    =F(T,P,X
,X
2
,...)
Equation (2.2.2) can be written in another form
V
ii
L
ii
\Pi=
)6.2.2(XY
Where
\varphi
i
=F(T, P, X
1
, X
2
,...)
,X
Equation (2.2.2) can be written in another form V
\(i i\)
L
ii
\(\Pi \Pi=\)
)6.2.2(XY
\(\varphi\)
\(i\)
\(=F(T, P, X\)
, \(X\)
2
```

2.3 Fugacities in Gas Mixtures[3]:

As was shown previously equation (2.2.2) is the basic equation for equilibrium between two phases (L, V), for the gas phase mixture the fugacity
is calculated from volumetric data and the following equations:
П
$) \ln ($
Π
i

```
i
)|n(
Where
=\Pi
i
=
RT
1
RT
1
f
i
PY
+
+
/
\Upsilon
\
\leq
7
7
RT
n
V
0
n,P,T
i
```

```
\Upsilon
\imath
s
,
7
7
V
n,V,T
i
RT
n
P
j
\infty
f
\infty
\infty
\infty
)1.3.2(dP
P
f
)2.3.2()Z\operatorname{ln}(dV
V
```

Equation (2.3.1) is used whenever the volumetric data are given in volume
explicit form; i.e.,
7
)3.3.2(

Review

$$
V=F
$$

Also equation (2.3.2) is used whenever the volumetric data are expressed in
pressure-explicit form, i.e.,
$P=F$
P
(T, V, n
1
, ...)
(2.3.5)

The mathematical relation between volume, pressure, temperature, and
composition is called the Equation Of State (EOS) and most forms of the equation of state are pressure-explicit. Therefore equation (2.3.2) is frequently
more useful than equation (2.3.1). These equations are exact and if the information needed to evaluate the integrals is at hand, then the fugacity coefficient can be calculated exactly. The problem of calculating fugacities in the gas phase, therefore, is equivalent to the problem of estimating volumetric properties.

2.3.1 The Lewis Fugacity Rule [3]

A particularly simple and popular approximation for calculating fugacities in gas-phase mixtures is given by the Lewis rule. The assumption on which the rule rests states that at constant temperature and pressure, the
molar volume of the mixture is a linear function of the mole fraction. This assumption must hold not only at the pressure of interest but for all pressures
up to the pressure of interest. The fugacity of component i in a gas mixture
can be related to the fugacity of pure gaseous i at the same temperature and
pressure by the exact relation

```
f
ln(RT
i
P
\imath=
)6.3.2(dp)ViiV()
fY
0
ipurei
+
8
Chapter Two

Equation (2.3.6) is another form of equation (2.3.1), where
\(i V\)
is the partial
molar volume, according to Amagats law,
ViiV=
, and assuming validity of
this equality over the entire pressure range \(0-\mathrm{P}\), equation (2.3.6) becomes
\(=\)
)7.3.2(fYf
ipureii
Or in equivalent form,
\(\Pi \Pi=\)
ipurei
Where
\(f\)
pure \(i\)
and \(\varphi\)
are evaluated for the pure gas at the same temperature
and pressure as those of the mixture. In effect the Lewis rule assumes that at
constant temperature and pressure, the fugacity coefficient of \(i\) is independent
of the composition of the mixture and independent of the nature of the other
components in the mixture. These are drastic assumptions, on the basis of
intermolecular forces, for component i, deviations from ideal-gas behavior (as
measured by
\(\varphi\)
pure \(i\)
) depend not only on temperature and pressure, but also on the relative amounts of component i and other components \(\mathrm{j}, \mathrm{k}, \ldots\); further \(\varphi\)
must depend on the chemical nature of these other components that interact
with component i. It is concluded that the Lewis fugacity rule for component i

1- Always a good approximation at sufficiently low pressures where the gas phase is nearly ideal.

2- Always a good approximation at any pressure whenever i is present in large excess ( say, Y
i
\(>0.9\) ). The Lewis rule becomes exact in the limit as Y
approach 1 .
3- Often a fair approximation over a wide range of composition and pressure
whenever the physical properties of all the components are nearly the same (e.g., nitrogen-carbon monoxide or benzene-toluene).

9
)8.3.2(
\(i\)

Chapter Two
Theory \& Literature
Review
4- Almost always a poor approximation at moderate and high pressures whenever the molecular properties of the other components are significantly
different from those of \(i\) and when \(i\) not present in excess.

In summery, the Lewis fugacity rule is attractive because of convenience
but it has no general validity. However, when applied in certain limiting situations, it frequently provides a good approximation.

\subsection*{2.3.2 Fugacities from the Virial Equation of State [3]}

To calculate with confidence fugacities in a gas mixture, it is advantageous to use an equation of state where the parameters have physical
significance, i.e. where the parameters can be related directly to intermolecular forces. One equation of state that possesses this desirable ability is the virial equation of state. The virial equation for a mixture, truncated after the third term, is given by
```

Z
mix
RT
PV
B
1
C
V
2
mixmix
++==
Where Z
mix
)9.3.2(
V
is the compressibility factor of the mixture, V}\mathrm{ is the molar volume
of the mixture, and
B
the mixture given by

```
\(=\)
m
\(i j\)
m
4
mix
    and \(C\)
mix
are the second and third virial coefficient of

\section*{)10.3.2(BYYB}
\(1 j\)
imix
\(=\)
\(1 i\)
j
\(m\)
44
==
\(1 i\)
m
\(1 j\)
m
)11.3.2(CYYYC

\section*{\(1 k\)}
ijkkjimix
10

Chapter Two
Theory \& Literature
Review
The fugacity coefficient for any component \(i\) in a mixture of \(m\) components is obtained by substitution of equations (2.3.9, 2.3.10, 2.3.11) in
equation (2.3.2) and when the indicated differentiations and integrations are
preformed, yields
```

)ln(
\Pi
V
2
2
m
3
BY
m
44
\imath+=
lj

```
```

iji

```
\({ }^{1 j}\)
mixijkk
\(=\)
m
)12.3.2()Zln(CYY
V2
1k
j

Equation (2.3.12) is one of the most useful equations for phaseequilibrium thermodynamics.
It relates
the partial molar
fugacity of a
component in the vapor phase to its partial pressure through the theoretically
derived virial equation of state. It may be applied to any component in a gas
mixture regardless of whether or not that component can exist as pure vapor
at the temperature and pressure of the mixture, finally equation (2.3.12) is valid for many types of (no ionized) molecules, polar and no polar.

Because data for second virial coefficients are much more plentiful than
those for the third virial coefficients, equation (2.3.12) is written as

\section*{2 \\ ) \(\ln (\) \\ П \\ mix \\ m \\ \(\downarrow=\)}
)13.3.2()Zln(BY
V
\(1 j\)
ijii
Where
Z
mix
B
1Z
```

=
is given by
mix
mix
+=
)14.3.2(
V
When equation (2.3.14) and (V=\boldsymbol{RT}/\boldsymbol{P})\mathrm{) are substituted in equation}
(2.3.13), yields
1 1
Chapter Two
Review
mix
m
P
BBY2)ln(
П
\
iji
=

```

The viral coefficient B
mix
)15.3.2(
RT
may be calculated from Potential Functions
and
Corresponding-State Correlations, the first method is explained in many references [3, 8] for the second method Schreiber and Pitzer [10] have
```

proposed the following form to determine
B
BP
cc
c
\imath\
I
r21
2
r3
+++=
6
r4
mix
)16.3.2(TCTCTCC
ZRT
Where
T
$=T / T$
C
and Z
is the critical compressibility factor and the coefficients
C
1
, C
2
, C
3
, C
$\stackrel{4}{C}$
are given by the following equation
$7+=$
)17.3.2(CCC
1,i0,ii
Where
ω is the acentric factor given by

```
\(=\)
    given by the following table
Table 2-1 Coefficients for Eq. (2.3.17)
i
C
i,0
10.442259000 .725650
\(2-0.980970000 .218714\)
3-0.61114200-1.249760
4 -0.00515624-0.189187
C
i, 1
12

The previous table was determined from a large body of experimental
data for polar or slightly polar fluids. Highly polar fluids such as water, nitriles, ammonia, and alcohols were not included.

For polar and hydrogen-bonded fluids, Tsonopoulos [6] gave another
correlation for the second virial coefficients in the form

\section*{RT \\ BP \\ \({ }^{C}\) \\ C \\ \(T\) \\ F \\ c \\ ) 0 (}
+
\(=\)
7
Where
\(T\)
F
F
\(T\)
RC
) 0 (

0637.0

T
T
331.0

2
R
3
R
008.0

T
423.0

11+=
b
\(T\)
\(a\)
\(T\)
\(T\)
\(\underset{C}{F}\)
)2(
\(\uparrow=\)
Where \(\boldsymbol{T}\)
\begin{tabular}{l}
\(R\) \\
\(R\) \\
\(R\) \\
\(R\) \\
\hline
\end{tabular}
R
)20.3.2(
```

8
R
)21.3.2(
T
8
R
)22.3.2(
T
8
R
is the reduced temperature, Constants a}\mathrm{ and }\boldsymbol{b}\mathrm{ cannot be
generalized, but for polar fluids that do not have hydrogen bond,
Tsonopoulos
found that
b}=0. For Ketones, Aldehydes, Alkyl Nitriles, Ethers, Carboxylic
Acid Esters the constant a is given by the following equation
a=-2.14*10
Where }\boldsymbol{\mu
\mu
R
R
R
-4.308*10
-21
M
8
(2.3.23)
is the reduced dipole moment given by the following equation
= 0.9869*10
5
(\mu
2
P
C
/T
C
2
)
(2.3.24)

Review
Where the units of μ are debye and bar for P
C
and Kelvin for T
C
The ternary expression of the fugacity coefficient of equation 2.3.15 is
given by equations 2.3.25a, 2.3.25b and 2.3.25c.
Ln
Ln
Ln
RT
P2
\leq
Υ
/
,
B
BYBYBY
()
)a25.3.2(
2
mix
1331221111
$\uparrow++=$
)
RT
$P 2$
1
\leq
Υ
B
BYBYBY
∞
f
()

```
)b25.3.2(
2
mix
2332222112
\imath++=
)
r
\imath++=
)
P2
B
\infty
f
()
)c25.3.2(
2
mix
3333223113
Where
2
1mix
BYBYBY
RT
,
\leq
/
\infty
f
2
223321331122111
ВYBYBYY2BYY2BYY2BYB ++++++=
And
)1(
12
() ()
1
V,FFFVB
) 0 (
11
```

```
12C12
```

12R
) 0 (
1445.0F
12
()
$12 R 2112$
0637.0F
T
33.0
T,2/
2
12R
)1(
12
12
=+=
T
331.0
T
1385.0
2
12R
T
T
423.0
T
12C
)2(
12
12
8
12R
3
12R
3
12R
T
008.0
$2 C$
3/1
1C12C
$+=++=$
VV
8
000607.0
T
0121.0

```
\l\\=
77
Where
T
8
12R
a
F,
12
)2(
==\\+=
()
2/
6
12R
33
2
322
3
3/1
()
5.0
2C1C12C
TTT,
T
R
109869.0,10308.41014.2a
4
12
21
12R
8
12R
5
12R
\dagger=\\imath\\uparrow=
2112
12C12C
\propto\propto
+=
\
```

$\propto \propto \propto \propto$

Chapter Two
Review
The values of \boldsymbol{T}
c
${ }_{C}{ }^{P}$
V
, $\boldsymbol{\omega}$ and $\boldsymbol{\mu}$ of the components used in the present
study are given in table 2-2 [9].
$\underset{\text { C }}{\boldsymbol{B}}$
Table 2-2 Values of T
11
Component T
C
$\stackrel{\text { C }}{\text { C }}$
, V
, ω and μ of Components Used in the Present Study.
P
C

V
$\omega \mu$
Water 647.30221 .200 .05710 .3441 .8

c

Ethyl-acetate 523.2038 .300 .28610 .3621 .9
Toluene 591.7541 .080 .31670 .2630 .4
, B
22
, B

```
K bar cm
33
and B
13
3
/mol debye
are expressed the same way as B
```


2.3.3 Fugacities from the Cubic Equations of State [8]

12
Cubic equations of state are another form of equation of state in which
the pressure is given by a cubic function of molar volume containing two parameters, which are functions of composition and possibly of temperature.

Many cubic equations are available in the literature, the widely used are:
Van Der Waals equation of state (1873), which is the simplest. Although this
equation is never accurate for real fluids, it is based on sound theoretical approximations and predicts behavior, which is, physically, essentially correct. The form of this equation is

```
a
bV
RT
P
=
Where
\
i
n
)26.3.2(
V
=
2
i
2
)RT(27
```

```
a,aXa
And
li
i
=
=
2c
i
)27.3.2(
P64
c
i
1 5
Chapter Two Review
ii
n
RT
b,bXb
=
i
=
c
i
)28.3.2(
P8
c
i
And the fugacity coefficient is given by
)ln(
```

```
bV
b
RTV
aa2
\Upsilon
1\
b
1Zln
i
i
i
\infty
=
\Pi
\leq
```

f
$/$
)29.3.2(
V
Where the compressibility factor Z is given by
\boldsymbol{a}
bV
V
$Z \uparrow$
=
)30.3.2(
RTV
Redlich-Kwong Equation of State (1949) this equation was a
considerable
improvement over other available equations, Redlich states that there was
no
particular theoretical basis for the equation; rather it is considered as an
effective empirical modification of its predecessors. The form of this
equation

a

bV
RT
P
$=$
〈
$+$
) with a more
)32.3.2(
)bV(V
16

Peng-Robinson Equation of State (1976) structurally this equation is similar
to the previous equation with better representation of PVT data in the vicinity
of the critical point, the form of this equation is

```
a
bV
RT
P
=
Where
n
< 
\
)33.3.2(
)bV(b)bV(V
jjiiij
n
4
<<< \=
)34.3.2()a)(a()k1(XXa
And
1j
i
li
j
[]
)35.3.2(
P
)RT(
45724.0a,)T1(n1
i,rii
i
2
=\imath+=\langle
2
iii
77+=
2c
i
c
)36.3.2(26992.05422.137464.0n
```

```
ii
n
RT
07780.0b,bXb
=
i
=
And the compressibility factor is given by
c
i
)37.3.2(
P
c
i
=\\\\\+\
(2.3.38)
0)BBAB(Z)B2B3A(Z)B1(Z
Where
n
n}4
=\imath=
i
n
)39.3.2(BXB,AA)k1(XXA
Ii
j
lj
i
1i
ijij
==
4 5 7 2 4 . 0
i
P
i
```

```
T
i,r
A=
<
2
i,r
i
B,
P
07780.0
And the fugacity coefficient is given by
T
i,r
i,r
1 7
)40.3.2(
Chapter Two
Review
\Pi
B
)ln(
i
=
)BZln()1Z(
B
B828.2
A
ii
\leq
\Upsilon
,
B
B
a
2
jjiiij
N
```

```
\\+\\\
B414.2Z
lna)(a)k1(X
<<
<
j
=
f
/
\infty
\infty
The binary expression of the fugacity coefficient of equation 2.3.41 is
given by equations 2.3.42a and 2.3.42b.
```

```
B
Ln
\leq
r
()()()
B
B
I
I
+\1\=
```

a
2
BZLnIZ
B
B828.2
A
$+$

```
B414.0Z
()
/,
2 2 1 1 1 2 2 1 1 1 1 1 1 1
I
\imath+\\
<
B
Ln
<<<<
Lnaa)k1(Xaa)k1(X
()
()()
B
B
2
2
a
2
BZLn1Z
B
B828.2
A
\infty
f
+
```

B414.2Z
)a42.3.2(
B414.0Z
()

```
)
+\uparrow\\imath=
B414.2Z
Lnaa)k1(Xaa)k1(X
22222221122211
2
<<<
\ +1ई
Where
\infty
f
\imath}++\imath+\imath=+
```

AA)k1(XXAA)k1(
XXAA)k1(XXAA)k1(XXA,BXBXB
2222221221
$+$
)b42.3.2(
B414.0Z
122112211111112211
$=\uparrow \uparrow+$
$\uparrow+\uparrow+\uparrow=$
〈l《
<<<<<
$0 k k, a a) k 1(X X a a$
)k1(XXaa)k1(XXaa)k1(XXa
21122211122111111111
2211222222221122
The ternary expression of the fugacity coefficient of equation 2.3.41
is
given by equations 2.3.43a, 2.3.43b and 2.3.43c.

Review

```
B
Ln
() ()()
B
B
I
1
a
2
BZLn1Z
B
aa
)k1(Xaa)k1(Xaa)k1(X
B414.2Z
Ln
3311
B828.2
A
/
```



```
\Upsilon
,
\leq
)
13322111221111111
I
\
+\\\=
<
+
\imath+\imath+\downarrow
```

```
<<<
)a43.3.2(
B414.0Z
B
Ln
()
()()
B
B
2
2
a
2
BZLn1Z
B
aa
)k1(Xaa)k1(Xaa)k1(X
B414.2Z
Ln
3322
B828.2
A
/
\Upsilon
\leq
)
23322222221122211
2
```

$$
\begin{aligned}
& 1 \\
& +\downarrow 1 \downarrow= \\
& + \\
& \uparrow+\downarrow+\downarrow \\
& \text { 《<< }
\end{aligned}
$$

33322333221133311

```
\imath
+\1\=
+
<
```

$\uparrow+\downarrow+\downarrow$
\ll
$\lll<$
)c43.3.2(
B414.0Z

Where

19
∞
∞
f
∞
∞

```
f
\infty
\infty
f
```

Chapter Two
Review
$+\uparrow+\uparrow=+=$
AA) $k 1(X X A A) k 1(X X A, B X B X B X B$
21122111
1111332211
$\uparrow+\uparrow+\uparrow++\uparrow+\uparrow+\uparrow$
)k1(XXAA)k1(XXAA)k1(XXAA)k1(
XXAA)kl(XXAA)kl(XXAA)kl(XX
32222222122112311331
33332332231331133223
aa)k1(XXaa)k1(XXaa)k1(XXa
, $\boldsymbol{A A}$

33
$\uparrow+\uparrow+\uparrow=$
<<<<<<<
331113312211122111111111
$==\uparrow++\uparrow+\uparrow+\uparrow+$
<<<<<<
0kkk,aa)k1(XXaa)k1(XX
aa)k1(XXaa)k1(XXaa)k1(XX
113331132222222211222112
<<<<
3322113333333322333223
The roots of equation 2.3.38 are obtained by numerical technique two
of
these roots are
Z
V
and \boldsymbol{Z}
which are the compressibility factor at the gas and
liquid phase respectively, these values are applied in equation 2.3.41 to
obtain
the fugacity coefficients of the vapor and liquid phase. The interacting parameters k
$\stackrel{i j}{i j}$
are obtained from correlation of experimental data.

2.4 Fugacities in Liquid Mixtures

[3]
Calculation of fugacities from volumetric properties was mentioned in the previous section (2.3) it can be applied to condensed phases as well as gas phase. However, it is not practical to do so because the necessary integrations
require that volumetric data be available at constant temperature and constant
composition over the entire density range from the ideal gas state (zero density) to the density of condensed phase, including the two-phase region. A
more useful alternate method is needed for calculation of fugacities in liquid
solutions. Such a method is obtained by defining an ideal liquid solution and
by describing deviations from ideal behavior in terms of excess functions; these functions yield the familiar activity coefficients that give a quantitative
measure of departure from ideal behavior.

20

Chapter Two

Theory \& Literature
Review
The partial molar fugacity of component i in a liquid solution as was given by the left hand of equation (2.2.3)

L

i
© $=$
0
iii
)1.4.2(fXf
At any composition, the activity coefficient γ
depends on the choice of
standard state and the numerical value of
γ
i
i
has no significance unless the numerical value of
${ }_{i}$
0
is also specified.

2.4.1 The Ideal Solution [3]

An ideal liquid solution is one where, at constant temperature and pressure, the partial molar fugacity of every component is proportional to some suitable measure of its concentration, usually the mole fraction. That is, at some constant temperature and pressure, for any component i in an ideal
solution,

$i i$

Ideal
)2.4.2(Xf
i

$$
=
$$

Where
is proportionality constant dependent on temperature and

$$
i
$$

pressure but independent of X
f
0
$=$, then γ
i
composition (from X
i
. Its noticed from equation (2.4.1) that, if we let
$=1$. If equation (2.4.2) holds for the entire range of
i
$=0$ to X
$=1$), the solution is ideal in the sense of
Raoult's law. In many cases, the simple proportionality between f i
holds only over a small range of composition. If X is near zero, it is still
possible to have an ideal solution according to equation (2.4.2) without equating
to the fugacity of pure liquid i. Such a solution is called an ideal i
i
dilute solution leading to the familiar relation known as Henry's law.
i
L
21
and X
i

Chapter Two
Theory \& Literature
Review

2.4.2 Activity and Activity Coefficients [3]

The activity of component i at some temperature, pressure, and composition is defined as the ratio of the partial molar fugacity of i at these
conditions to the fugacity of i in the standard state, that is a state at the same
temperature as that of the mixture and at some specified condition of pressure
and composition:

```
)X,P,T(f
)X,P,T(a
i
i
```

Where
P
0
=
and \boldsymbol{X}
)3.4.2(
$) X, P, T(f$
oo
i
0
are an arbitrary but specified pressure and composition. The activity coefficient
is the ratio of the activity of i to some convenient
measure of the concentration of i, usually the mole fraction

```
=(c
i
a
i
i
i
)4.4.2(
X
```

The partial molar excess function

```
E
i
Ideal
ii
\imath=
E
i
G
    is given by
)5.4.2(GGG
```

Where
Ideal
ii
G,G
are the actual and standard partial molar properties
respectively, the relation between the partial molar excess function and the
fugacity is given by the following

[]

)6.4.2()fln()fln(RTGGG

```
E
\(i\)
Ideal
ii
\(\uparrow=\uparrow=\)
Ideal
```

ii
If equation (2.4.1) and (2.4.2) are substituted in equation (2.4.6) and setting

```
f
0
= we obtain
i
2 2
```

Review
i
E
)7.4.2() $\boldsymbol{\operatorname { l n } (\boldsymbol { R T G }}$
i
(C) $=$
Partial molar excess functions are defined in a manner analogous to
that
used for partial molar thermodynamics properties. If M is an extensive
thermodynamic property, then
m
the partial molar M of component i , is
defined by
M
m
i
=

Where n
=
7
7

```
i
)8.4.2(
n
n,P,T
i
is the number of moles of i, also from Euler's theorem, where
)9.4.2(mnM
i
ii
If equation (2.4.9) is applied to equation (2.4.7) the following equation is
obtained
E
= ©
)10.4.2()ln(XRTG
i
ii
2.4.3 Activity Coefficients from Excess Functions [3]
    At a fixed temperature, the molar excess Gibbs energy G
depends on the composition of the mixture and, to a smaller extent, on
E
pressure. At low or moderate pressures, well removed from critical
conditions, the effect of pressure is negligible. Any expression for the
molar
excess Gibbs energy must obey the following condition
G
E
=0 when X
i
of a mixture
=0,i=1,2,\ldots
Wohl (1946) [11] proposed a general method for expressing excess
Gibbs
energies, the main advantage of his method is that rough physical significance
can be assigned to the parameters that appear in the equations; as a result,

Wohl's expansion can be extended systematically to multicomponent solutions. Many equations have been proposed for the relation between activity coefficients and mole fractions and new ones appear every year [6].
Some, but not all, of these can be derived from Wohl's general method. In
practical, three equations that are useful for many practical calculations cannot be obtained by Wohl's formulation.

Wilson Equation. Based on molecular considerations, Wilson (1964) [12] presented the following expression for the excess Gibbs energy of a binary solution:

\section*{G}

1212221211
E
\(\mathfrak{J} \mathfrak{J}+\uparrow+\uparrow=\)
)12.4.2() \(X X \ln (X) X X \ln (X\)
RT

The activity coefficients for binary systems derived from this equation are:

I®
\(+\)
\(++\uparrow=\)
\(X) X X \ln () \ln (\)
221211
(1)
\(+\)
\(\uparrow+\uparrow=\)
\(X) X X \ln () 2 \ln (\)
11212

Equation (2.4.12) obeys the boundary condition that G
E
vanishes as either \(\boldsymbol{X}\)
or
X
A
21
2
becomes zero. Wilson's equation has two adjustable parameters, \(\boldsymbol{A}\) in Wilson's derivation these are related to the pure-component molar volumes by

\section*{\(\mathfrak{J}\)}

12
\(\uparrow=\)
V
2
\(\exp (\)
V
1
L
1112
,
RT
L
\(\mathfrak{I}\)
21
\(\uparrow=\)
V
V
1
2
\(\exp (\)
2221
RT
12
1
and
)c13.4.2()
24

Chapter Two
Theory \& Literature
Review
Where \(\boldsymbol{V}\)
is the molar liquid volume of pure component \(i\) and the \(\lambda\) 's are energies of interaction between the molecules 1,2. To a fair approximation,
the differences in the characteristic energies are independent of temperature,
at least over modest temperature intervals. Therefore, Wilson's equation gives
not only an expression for the activity coefficients as a function of composition but also an estimate of the variation of the activity coefficients
with temperature. This may provide a practical advantage in isobaric calculations where the temperature varies as the composition changes.
i
Wilson's equation appears to provide a good representation of excess Gibbs energies for a variety of miscible mixtures. It is particularly useful for
solutions of polar or associating components (e.g., alcohols) in no polar solvents. A study of Wilson's equation by Orye (1965) [13] shows that for
approximately 100 miscible binary mixtures of various chemical types, activity coefficients were well represented by Wilson's equation. Similar conclusions were obtained by Gmehling et al.[14], who Reported Wilson parameters for many binary systems. The serious disadvantage of the Wilson's equation lies in its inability to predict limited miscibility. When Wilson's equation is substituted into the equations of thermodynamic stability
for a binary system, no parameters A
12
and A
can be found that indicate the
existence of two stable liquid phases. Wilson's equation therefore, should be
21
used only for liquid systems that are completely miscible or else for those limited regions of partially miscible systems where only one liquid phase is
present.
For partially miscible systems, Wilson (1964) [12] suggested that the right hand side of equation (2.4.12) be multiplied by a constant greater than
unity. This suggestion not only introduces a third parameter but, more important, creates difficulties when the equation is applied to ternary systems.

25

Theory \& Literature Review

Also a modification has been made to Wilson equation to overcome the
problem of partial miscibility the simplest useful modification is that of Tsubota and Katayama [15] which is referred as the
T-K-Wilson model or
Modified Wilson. The excess Gibbs free energy is given by the following equation

\section*{G}

E
\(\ln X\)
RT
\(+\)
\(+\)
=
\(X X\)
VXX
1221
1
\(+\)

2
1221

VXX
\(\ln X\)
\(+\)
\(+\)
2112
2112
)14.4.2(

The activity coefficients derived from this equation are:
(c)
\() \ln (\)

1
(C)
\() \ln (\)

2
\(=\)
\(+\)
\(+\)
VXX
ln
\(X\)
\(X X\)
\(V\)
\(X\)
\(=\)
2

1221
1221
2112
21
VXX
1
2112
21
\(X X\)
1
12211221
1
```

+

\imath
)a15.4.2(
XXVXX
VXX
ln
V
X
l
+
+
+
3J
+
+
2112
2112
X
XX

```
```

I
I
VXX
I
1221
12
XX
I
21122112
2
+
+
)b15.4.2(
XXVXX
+
The parameters A
V
V
21
are equal to V
= E
(5.7 + 3 T
Where E
i
+
+

```
```

I
+
I3
12
2
and A
/
Ri
V
I
21
and V
I
+
are also given by equation (1.4.13c) and V
I
/V
2
respectively. The volume V
i
12
is given by
)
(2.4.15c)
is equal to 0.2363,0.2121 and 0.0409 for Toluene, Ethyl-acetate
and Water respectively and
T
Ri
is the reduced temperature.
26
and

```

Chapter Two Theory \& Literature
Review
The ternary expressions of the activity coefficients are given by equations 2.4.16a, 2.4.16b and 2.4.16c.
\(\operatorname{LnLn}\)

1
\(\boldsymbol{X}\)
\(\boldsymbol{X}\)
1
2

AXAXAX
VXVXVX
133122111
133122111
++
```

VXVXVX
V
133122111
1 1
VXVXVX
V
233222211
21
V
X
31
3
VXVXVX
333322311
AXAXAX
A
123122111
11
++

```

\section*{A}

233222211
\[
++
\]
++
\[
=
\]
(
()

LnLn
2
\(X\)
X
1
2
++
++
++
AXAXAX VXVXVX
VXVXVX
V
VXVXVX
V
\(\uparrow\)
\(+\)

A
31
++
AXAXAX 333322311

A

\section*{VXVXVX}

V
\(\boldsymbol{X}\)
3
\[
\begin{aligned}
& ++ \\
& ++ \\
& =
\end{aligned}
\]
(C)
()

LnLn
3
X
X
\(X\)

233222211
233222211
\(++\)

133122111
12
233222211
22
333322311
32
\(++\)
AXAXAX
A
123122111
12
\[
\begin{aligned}
& ++ \\
& \\
& 1 \\
& 2 \\
& 3
\end{aligned}
\]

AXAXAX VXVXVX 333322311 333322311 VXVXVX V
133122111
13
VXVXVX
V
233222211
23
V
333322311
33
VXVXVX
\(+\)

AXAXAX
A

233222211
22
333322311
32
\(++\)
\(\downarrow\)
\(+\)
\(+\)
\(+\)
\(+\)
)a16.4.2(
)b16.4.2(
AXAXAX
++

AXAXAX
A
123122111
13
++
++
++
AXAXAX
A
233222211
23
\(++\)
++
\(+\)

A
333322311
33
\(+\)
\(+\)
)c16.4.2(
AXAXAX
27

The adjustable parameters A are obtained from correlation of experimental data.
ij
NRTL Equation. The basic idea in Wilson's derivation of equation (1.4.21)
follows from the concept of local composition (Two Liquid Theory). This
concept was also used by Renon (1968) [16] in his derivation of the NRTL
(non random two liquid) equation; however, Renon's equation, unlike Wilson's, is applicable to partially miscible as well as completely miscible
systems. The NRTL equation for the excess Gibbs energy is

21
E
RT
G

G
GXX
G
\(X X\)

1212
1212
\(+\)
\(=\)

Where

RT
gg
2212
12
|
\(=\)
```

)17.4.2(
GXX
=
gg
1121
21
)18.4.2(
RT
|<l< \= \=
)19.4.2()}\operatorname{exp(G,)}\operatorname{exp(G
212121121212

```

The significance of

\section*{\(\underset{i j}{g}\)}
is similar to that of \(\lambda\)
in Wilson's equation. The
parameter
\(\boldsymbol{\alpha}\)
12
( \(\alpha\)
12
\(=\alpha\)
21
ij
) is related to the non-randomness in the mixture; \(\boldsymbol{\alpha}\)
is zero, the mixture is completely random and equation (2.4.17) reduces to the
Two-Suffix Margules equation. The NTRL equation contains three parameters, but reduction of experimental data for a large number of binary
systems indicates that
\(\boldsymbol{\alpha}\)
\(\alpha\)

\section*{12}
varies from about 0.20 to 0.47 ; a typical choice is
\(=0.3\) [3]. The activity coefficients for binary systems are given by

28
12

Chapter Two
Review
\(\Upsilon\)
\(+\)
G
GXX
G
\(X) \ln (\)

21
2
21
=
,
\(\leq\)
\(+\)

2121
21

2
- ©
\(+\)

1212
)a20.4.2(
) \(\boldsymbol{G X X} \boldsymbol{X}\) (
```

2
1212
/
\Upsilon
+
G
GXX
G
X)}\boldsymbol{ln}
12
2
12
=
\leq
+
1212
12
2121
2
|
@ ©
+
\infty
\infty
f
)b20.4.2(
)GXX(
2
2121
\infty
\infty
f

```

The ternary expressions of the activity coefficients are given by equations \(2.4 .21 \mathrm{a}, 2.4 .21 \mathrm{~b}\) and 2.4 .21 c

GXGXGX
Ln

Ln
()
(
1
\(+\)
\(+\)
++
\(=\)


313312122111111
++
GX
GXGXGX
111
313212111
GXGXGX
GXGXGX
11
313212111
GX
GXGXGX
GXGXGX
GXGXGX
122
12
323222121
GX
GXGXGX
GXGXGX
GXGXGX
131
13
333232131
()
©
++
```

++
++
GXGXGX
GX
GXGXGX
GX
GXGXGX
GX
+
||
|
++
++
313212111
313132121211111
|II
|
++
++
323222121
323232222212121
||
|
GXGXGX
GXGXGX
313312222212112
2
+
+
++

```

211
323222111
21
313212111
222
22
323222121
231
333232131
++
++
23
\(++\)
++
333232131
333332323213131
\(+\)
++
)a21.4.2(
GXGXGX
GXGXGX
GXGXGX
313212111
313132121211111
GXGXGX
GXGXGX
323222121
323232222212121
++
++



29
)b21.4.2(

Chapter Two
Theory \& Literature
```

Ln
()
(C)
GXGXGX
GXGXGX
333332322313113
3
+
+
++
=
||
311
333232131
GXGXGX
GXGXGX
GX
31
313212111
++
GX
GXGXGX
322
32
323222121
GXGXGX
GXGXGX
GX
331
+
++
33
333232131
++

```
```

++
++
++
\imath
GXGXGX
323222121
323232222212121
GXGXGX

```
++
++
\(\uparrow\)
++


GXGXGX
GXGXGX
333232131
333332323213131
For moderately non-ideal systems, the NRTL equation offers no advantages
over the Wilson and T.K.Wilson equations. However, for strongly nonideal
mixtures, and especially for partially immiscible systems, the NRTL equation
often provides a good representation of experimental data if care is exercised
in data reduction to obtain the adjustable parameters.
UNIQUAC Equation. An Attempt was made to derive a two parameter
equation for \(G\)
E
that retains at least some of the advantages of the equation of Wilson without restriction to completely miscible mixtures. Abrams [17] derived an equation that, in a sense, extends the Quasi Chemical theory of Guggenheim for nonrandom mixtures to solutions containing molecules of
different size. This extension was therefore called the Universal QuasiChemical

\author{
theory
}
or, in short, UNIQUAC.

The
UNIQUAC equation for
G
E
consists of two parts, a combinatorial part
that attempts to describe the dominant entropic contribution, and a residual
part
that is due primarily to intermolecular forces. The combinatorial part is determined only by the composition and by the sizes and shapes of the molecules; it requires only pure-component data.

30
)c21.4.2(

Chapter Two
Theory \& Literature
Review
The residual part depends also on intermolecular forces; the two adjustable
binary parameters, therefore, only appear in the residual part. The UNIQUAC
equation is

G
RT
G
\(+\)
ialcombinator
For a binary mixture,

\section*{G}

\section*{E}
\(\ln (X\)
RT
G
E
1
ialcombinator
2
Z

\section*{E}
```

)22.4.2(
RT
residual
ln(X)
X
I
)
X
2
)a23.4.2()}\operatorname{ln}(qX)\operatorname{ln}(q
11
*
I
1)
++=

```
2
1
22
*
1
\(+\)
\() \ln (q X\)
RT
residual
```

1
12
I
ll
2 1
2
I|
\imath}+\uparrow
+
*
2
2
*
2
)b23.4.2()|n(qX
Where the coordination number Z}\mathrm{ is set equal to 10. segment fraction, }\boldsymbol{\Phi
, and
area fractions,
0}\mathrm{ and }\boldsymbol{0
rXrX
rX
11
*
I
, are given by
rX
,
+
=
)\
2
2211
qXqX
qX
11
1

```
```

2211
22
+
=
)a24.4.2(
rXrX
qX
,
=
\l
2
2211
1 1
1
qXqX
qX
11
+
22
2211
22
+
=
)b24.4.2(
qXqX
2 2
2
qX
,
=
ll
=
qXqX
11
+
,

```

\section*{Chapter Two}

Review
Parameters \(\boldsymbol{r}, \boldsymbol{q}\), and \(\boldsymbol{q}\)
are pure-component molecular-structure constants
depending on molecular size and external surface areas. In the original formulation,
\(q=q\)
. To obtain better agreement for systems containing water or lower alcohols, q
values for water and alcohols were adjusted empirically by Anderson [3] to give an optimum fit to a variety of systems containing these components. For alcohols, the surface of interaction

\section*{\(q\)}
is smaller than
the geometric external surface
\(\boldsymbol{q}\), suggesting that intermolecular attraction is
dominated by the OH group (hydrogen bonding). For each binary mixture,
there are two adjustable parameters,
\(\tau\)
12
and \(\boldsymbol{\tau}\)
. These are given in terms of characteristic energies
\(\Delta u\)

\section*{-}

1
\(\exp\)
```

u
12
and \Deltau
a
exp
1212
12
\=
|
exp
RT
|
a
exp
2121
21
\=

```

Activity coefficients \(\gamma\)
\(\quad) \ln (\)
1
\(=\)
\(\ln (\)
1
1
\(*\)
1
\()\)
\(X\)
1
1
```

1
2
Z
21
, by
21
)a25.4.2(
T
\imath=
(1)
(C)
(C
)}\boldsymbol{n}
2
and }
2
)b25.4.2(
T
are given by
r
l)}\boldsymbol{ln}(\boldsymbol{q
2
I
I
*
I
I
2 2 1
2
l
2 1
l
r

```
```

2
12
)a26.4.2(q)ln(q
=
ln
1
1
2
2
2
+
++
\imath++
I|
)
X
',
2
Z
I\
r
l)}\operatorname{ln}(
,
12
21
l

```
```

|
+
\
I
12

```
\() b 26.4 .2(q) \ln (q\)
2
()
2
2
2
2
\(++\uparrow\)
1
1
\(\%\)
2
112
*
1
2
\(\stackrel{\imath++}{1}\)


32

Chapter Two
Theory \& Literature
Review

Where
\(l\)
2
Z
Z
\(l) 1 r() q r,(\)
\(\uparrow \uparrow \uparrow=\uparrow \uparrow \uparrow=\)
)c26.4.2()1r()qr(
2
22221111

The ternary expressions for the activity coefficients are given by equations
2.4.27a, 2.4.27b and 2.4.27c.

\section*{Z \\ \(X\)}
()
()
©
1
1
LnLn
\(=\)
lLnq
2
()
\(q q L n q\)
1

1
\[
++\uparrow+
\]
,
\[
131
\]
\[
\uparrow++\uparrow
\]
\[
1|l| l
\]
\[
\pi
\]
\[
Z
\]
\[
X
\]
\[
\sqrt{\wedge}
\]
\[
\sqrt{ }
\]

212
lXIXIX
X
332211
1
12
2
\(\prod_{32}^{11}\)
```

322
++
+
I
213
13
|||||
|
33
323
++
)a27.4.2(
()
()
(C)
2
2
LnLn
=
lLnq
2
()
qqLnq
1
2

```
\[
\begin{aligned}
& f \\
& 2 \\
& 2 \\
& 1 \\
& 1 \\
& 1 \\
& 211 \\
& \\
& \\
& \\
& + \\
& 1 \\
& 212 \\
& 21 \\
& 1 \\
& 1 \\
& 322 \\
& 31 \\
& 1 \\
& 321 \\
& ++
\end{aligned}
\]
```

l
2
2

```
1
2
2
\(++\uparrow+\)
```

l++\
|
Z
X
212
lXlXlX
X
332211
2
22
2
++
+
2
|||
|
32
32
I
213
23
3
|||
|
++
+
33
323
)b27.4.2(
()
()
3
C
LnLn

```
```

=
lLnq
2
()
qqLnq
1
3
H
3
1
2 1 1
lv
+
,
213
31
I
,
323
31
321
++

```

ハハい


The values of the structural parameters \(r, q\) and \(q\) 32

322
，
1
213
33
3
11111

\section*{I \\ ++ \\ \(+\)}
[3] of the components used
the present study are given in table 2-3.
33
323
33
)c27.4.2(

Chapter Two
Theory \& Literature
Review

Table 2-3 Structural Parameters of Components Used in the Present Study.
Component
\(r \boldsymbol{q q}\)
Water 0.921 .401 .00
Ethyl-acetate 3.483 .123 .12
Toluene 3.922 .972 .97
The UNIQUAC equation is applicable to a wide variety of nonelectrolyte
liquid mixtures
containing non-polar or polar fluids such as
hydrocarbons, alcohols, nitriles, ketones, aldehydes, organic acids, etc. and water,
including partially miscible mixtures.

With only two adjustable binary parameters, it cannot always represent
high-quality data with high accuracy, but for many typical mixtures encountered in chemical practice, UNIQUAC provides a satisfactory description. UNIQUAC parameters for many binary systems are given by J.Gmehling [14].

The UNIFAC Method. A group contribution method for prediction of activity coefficients which combines the solution of functional groups concept
with a model for activity coefficients based on an extension of the Quasi Chemical theory of liquid mixtures (UNIQUAC). The resulting UNIFAC model (UNIQUAC Functional-group Activity Coefficients) contains two adjustable parameters per pair of functional groups. By using
groupinteraction
parameters
obtained from
data
reduction, activity coefficients in a
large
number
of binary and multicomponent
mixtures
maybe
predicted, often
with
good accuracy. This is demonstrated
for mixtures
containing water, hydrocarbons, alcohols, chlorides, nitriles, ketones, amines, and other organic
fluids in the temperature range 275
```

o
to 400
o
K [18].

```

The equations used in the UNIFAC method will be listed in a form different from the original form mentioned in [18], the equations are [9]:
\(\boldsymbol{\operatorname { l n }}(\gamma\)
i
\()=\ln (\gamma\)
Where
\({ }_{C}^{i}\)
\({ }_{i}+\boldsymbol{\operatorname { l n }}(\gamma\)
R
)
(2.4.28)
\(i i i\)
C
\(i\)
1q5)JIn(J1)In(
\(+\uparrow \uparrow+\uparrow=\)
©
R
\(i\)
\(\infty\)
1q) \(\ln (\)
\(\Upsilon\)
\(\downarrow \downarrow=\)
®®
(©
And

Xr
\(r\)
```

li
ln}(
s
ki
k
L
J
i
J
ln(
f
/
i
i

```
)a29.4.2()
L
)b29.4.2()
\(s\)
\(\stackrel{q}{\boldsymbol{L}}\),
\(=\)
```

4
)i(
k
i
i(
k
)30.4.2(
Xq
j
jj
4
)31.4.2(Qq, Rr {}
kk
k
)i(
k
ki
== |®
4
)32.4.2(e,
q
eqX
i
kiii
=|}
mk
m
mkmiik
)33.4.2(s,
qX

```
```

j
jj
\=
exp
a
mk
m
mkmk
)34.4.2(
T
35
Chapter Two
Theory \& Literature
Review
Where v
k
(i)
is the number of subgroups of type k in a molecular of species
i,
R
k
,
and a
are subgroups parameters that come from tabulations in the
literature [19].
The binary expression of Activity coefficients are given by equations $m k$ 2.4.35a and 2.4.35b.

```

\section*{J \\ 1q5JLnJ1Ln}
©
1111
\(\leq\)
\(\Upsilon\)
11
11
\(1 q\)
,

11

Lne
s
11
1
\(+\uparrow \uparrow+\uparrow=\)

11
11
1
Ln
L
1
®®
J

1q5JLnJ1Ln
() ()
©
2222
\(\leq\)
\(\Upsilon\)
21
12
\(1 q\)
```

\

```

Lne
s
12
1

\section*{L}
```

+

Lne
SS

```
\(+\uparrow \uparrow+\uparrow=\)
®R
1
1
21
2
2
Ln
L
```

L
J
21
2

```
```

f
/
\infty
\infty
)b35.4.2(
s

```

The ternary expression of the UNIFAC equation was obtained via the software ( UNIFAC Activity Coefficient ) programmed by the Chemical Engineering Departments at the University of Sydney Australia and Louisiana State University USA.

\subsection*{2.5 Equilibrium Stills}

There are a large number of industrially important systems whose equilibrium relations cannot be predicted from purely theoretical considerations and which must be obtained by a direct experimental determination. The direct experimental determination of vapor-liquid equilibrium means that we separate samples of the liquid and vapor which are in true equilibrium and determine the concentrations of both phases
analytically.
The determination of the equilibrium curves can be carried out either at constant temperature or at constant pressure. For distillation calculations the
isobaric data are especially important and their determination is also simpler.
In an accurate measurement it is necessary to have perfect control of both the
temperature and pressure. From the published data it is evident however that
even with the most painstaking measurements of these properties of the system certain inconsistencies in the measured equilibrium data can appear
[20, 21].
The design and construction of the equilibrium stills can be a source of various errors, which need not have the same importance in all systems measured (relative volatility, heat of vaporization etc.). Even though so far it
has not been possible to construct a still which would yield thermodynamically completely consistent data for all systems [21], most new
units give data of adequate precision for distillation calculations.
The methods for the direct determination of equilibrium data can be classified for the most part into the following groups [22]:
1- Distillation method.
2- Circulation method.
37

\section*{Chapter Two}

Theory \& Literature
Review
3- Static method.
4- Dew and bubble point method.
5- Flow method.
Circulation method this method is the most widely used, it's convenient to be
used in both the region of medium and low pressures. Even though the various equilibrium stills with circulation differ significantly from one
another in their construction details, they are all based on a common principle
which is shown in Figure 2-2.

\section*{A}

B
Figure 2-2 Diagram of Circulating Stills
The vapors evolved from the boiling mixture in the distilling flask (A)
pass through the vapor conduit ( ) and after complete condensation collection in the receiver (B). After filling the receiver the condensate returns
to the distilling flask through the liquid conduit ( ). If the still is started with
the receiver (B) empty, at the instant when it first fills, its contents are richer
in the more volatile constituent than is the vapor phase over the boiling mixture in the distilling flask. With further operation of the still, the contents
of the distillation flask become richer in the more volatile component and the
receiver becomes poorer. This process continues until the steady state is attained, in which the compositions in both vessels no longer change with time. Both compositions are determined analytically.

\section*{Chapter Two}

Theory \& Literature
Review
According to the manner of circulation of the phases, these stills can be
classified into two groups:
(a) Stills with circulation of the vapor phase.
(b) Stills with circulation of both vapor and liquid phase.

Stills with circulation of the vapor phase the first still with circulation of the
vapor phase was proposed by
Jamaguchi and Sameshima [22], but the first
equilibrium still which functioned satisfactory was constructed by

\section*{Othmer}
[23] as shown in Figure 2-3.
Figure 2-3 Othmer Still

The distillation flask (A) is filled to fifth of its height which is brought to boil
by a burner or electric heater. The evolved vapor fills the space above the liquid and then enters the vapor tube ( P ) and then flows to the condenser \((\mathrm{CH})\), after complete condensation it flows into the receiver (B).

When the receiver is filled the additional condensate is returned through the
weir (M) to the distilling flask (A). After a several-fold exchange of the contents of the receiver the steady state is attained in which the composition
of the liquid in the boiling flask and the composition of the distillate no longer
changes (30-60 min). Samples of the boiling liquid and condensed vapor can
then be withdrawn from valves K1 and K2 respectively into sampling flasks
for analysis.
The results obtained from this instrument may contain errors, the vapor jacket around the tube carrying vapor to the cooler does not completely prevent partial condensation [21], it is recommended to insulate the upper part
of the instrument or to heat it with a resistance winding. On the other hand it
is necessary to avoid superheating the walls of the still, as this could lead to
non-equilibrium total evaporation of droplets
sprayed on the walls. The
temperature measured in the vapor phase does not always correspond to the
true boiling point. Because the boiling itself is not sufficient to ensure thorough mixing of the boiling liquid with the returning cold condensate, concentration gradients can arise in the distilling flask. The liquid in equilibrium with vapor
mixes with part of the returning condensate during the withdrawal of the sample
. Othmer [24, 25, 26] proposed further modifications to remove the errors in the still. The whole instrument is made
of hard glass, it is quite compact for this reason and because of its simple operation this still is very frequently used despite the cited errors. The Othmer
still have been further improved by many authors [27, 28, 29, 30, 31].
None
of Othmer and some of the improved stills can be used to determine vapor -
liquid equilibrium in systems of limited miscibility, since the vapor after condensation and cooling usually separates into two layers and the condensate
cannot be returned to the boiling flask with the liquid phases in the correct
ratio.
40

\section*{Chapter Two}

Theory \& Literature
Review
These data are of great industrial importance, particularly in the field of azotropic and extractive distillation, a special circulation still for this purpose is needed [31] as shown in Figure 2-4.

Figure 2-4 VLE Still for Partial Miscible Systems

The boiling flask of this still is fitted with three necks; two of them (A) are for
thermometers for measuring the temperature in the liquid and vapor phases
and one (C) is for filling the still. The solution to be measured is placed in the
flask and brought to boil with the internal heater (I). The vapor leaving through the main vapor conduit (E) condenses in the cooler and returns in the
three-way valve (K) and small cooler (F) to the boiling vessel. A magnetic
mixer is used. After reaching steady-state ( 60 min ) the three way valve (K)
is turned so that the condensate flows through the auxiliary cooler ( F ) directly
into the sampling bottle. With this still it is only possible to determine the phase equilibrium for a solution that is homogeneous at the boiling point; magnetic mixing is not adequate for complete mixing of the
heterogeneous
mixture.
41

\section*{Chapter Two}

Theory \& Literature
Review

For this reason some authors propose the use of mechanical mixing [2] as shown in Figure 2-5.

Figure 2-5 VLE for Partial Miscible Systems with Mechanical Stirrers.
The above still consists of a liquid chamber (A) provided with a heater, a
20 mm diameter vapor space containing a saucer -shaped baffle (C) which
eliminates entrainment by deflecting the liquid spray from condenser (D), a
condensate chamber (E) and a line back from the liquid chamber. The two
phase liquid is boiled in the liquid chamber where it is completely emulsified
by the stirrer. The vibration of the stirrer pumps the liquid up between the inside of the stirrer and the wall of the heating surface. The vapor condenses
into a two phase liquid which collects in the condensate chamber (E), the condensate stirrer is powered by the same vibrating unit as the main stirrer.

The returning condensate leaves the condensate chamber (E) via a sloping tube of 1 mm bore which has a very fine construction over the half of its length next to the chamber. This ensures that a minimum of separation occurs
in the return tube and that the condensate leaving is reprehensive of the dispersed two phase mixture in the condensate chamber.

\subsection*{2.6 Azeotropic Predictions}

The term
Azeotrope means "non-boiling by any means" (Greek: a- non, zeo- boil, tropos - way/mean), and denotes a mixture of two or more components where the equilibrium vapor and liquid compositions are equal at
a given pressure and temperature. Systems which do not form Azeotropes are
called Zeotropic. Azeotropes occur frequently between compounds whose boiling points differ by less than about 30
o
C. If the vapor and liquid are of the same composition, the two-phase mixture is called a

\section*{Homogenous}

Azeotrope
. The constant-boiling mixtures that occur with a vapor and two or more dense phases are called
Heterogeneous Azeotrope. Figure 2.1 represents
a VLLE system with minimum-boiling Heterozeotrope.
The ability to predict Azotropic behavior becomes more and more important and complex when the number of components in the mixture increases. The prediction is tested successfully by applying the GibbsKonovalov theorem [32]. They developed correlation equations for expressing boiling temperature of the vapor-liquid equilibrium data, isobaric
conditions, as a function of liquid composition, where

\section*{\(N\)}

1N
)1.6.2(...]) \(X X(C) X X(B A[X X T X T\)
```

li
ii
0
\imath
li
N
44
+
\imath++=
=+==
1ij
jiijjiijijii
2
4 3
Chapter Two Review
Where T
i
0
is the boiling temperature of the pure component (i) in C , and N
the number of components in the mixture. The coefficients A ij
, B
are
binary or ternary parameters which are determined directly from the binary or
ternary data. The increase in the number of parameters increases the prediction accuracy.

```

The Gibbs-Konovalov theorem for multicomponent systems states that the
following conditions are fulfilled at the azeotropic point at constant pressure:

7
```

==
)2.6.2(N...,2,1i0
X
X,P
i

```

For a binary mixture equations 2.6.1 and 2.6.2 are written as
\({ }^{0}\)
11
)1 \(\mathbf{X 2}(B A)[X 1(X T) X 1(T X T\)
2
112
T
)3.6.2(J)1 1 2(C
7
\(\uparrow+\)
0
1
1
2
11212
2
11
)]1X2(C4B2)[XX(TT0
X
\(X, P\)
1
1121211
0
21
\(\uparrow+\uparrow+\uparrow+=\)
```

\imath+\imath+\imath==
2
112112121
\imath+\imath+\imath+
ij
and C
)4.6.2(])1X2(C)1X2(BA)[X21(
Equation 2.6.4 is solved numerically for the value of X
1
value is inserted in equation 2.6.3 and the temperature of the binary
Azeotrope is determined.

```

For a ternary mixture equation 2.6.1 and 2.6.2 are written as in Table 2-4.
Equations 2.6.6 and 2.6.7 are solved numerically for the values of X and
then the values are inserted in equation 2.6 .5 and the temperature of the ternary Azeotrope is determined. The parameters of equations 2.6.3 and 2.6.5
are determined using the following objective function (O.F):
ij
    and then the
1
, X

44
2

Chapter Two

\section*{()}
)8.6.2(TTF. \(O\)
```

M
4
=
Ii
i
i
.Exp
\imath=
Where T
i

```
```

Exp
and T
2
Cal
i
Cal.
are the experimental and calculated temperatures
respectively and M is the number of data points.
0
Table 2-4 The Gibbs-Konovalov theorem for Ternary systems.
A[\mathbf{XX]})\mathbf{XX(C)XX(BA[XX}
]
)XX(C)XX(BA[XXTXTXTXT
7
31331131331
2
32233223
T
)5.6.2(])XX(C)XX(B

```
```

)]\mathbf{X1X2(C4B2)[XXXX(TT0}
X
x,P
1
])X1X2(C)X1X2(BA)[XX21(
)]X2X1(C2B[X)XX1(])X
X(C)XX(BA[X)]XX(C2B[XX
T
)6.6.2(])X2X1(C)X2X1(BA[X

```
```

++\imath+\imath++
\imath+\uparrow++++=

```
0
2
2
0
1
32121232
2
)] \(\mathrm{X} 1 \mathbf{X 2 ( C 4 B 2 )}\) [ \(\mathbf{X X X}\)
X(TT0
X
X, \(\mathbf{P}\)
2
3
3
3
0
22
0
1
13311313331131331
3
0
33
7
\(+\uparrow\)
0
2
2
211221121221
3112
1231
2
11
2
311231121231
312323331
2
\(\uparrow \uparrow+\uparrow \uparrow+\uparrow\)
2
31233123233
2
321232121232
BA[X)]X2X1(C2B[X)XX1(
])XX21(C)XX21(BA)[XX21(
13133321313332
32232332
2
) 7.6.2(]) \(\mathbf{X X}(\mathrm{C}) \mathrm{XX}(\mathrm{BA}[\mathrm{X}\)
)] \(\mathbf{X X}\) (C2B[XX])X2X1(C)X2X1(
321332
2
```

32233223233
2332
2
++\imath+\imath\imath+\imath==
+\imath++\imath+\imath\imath

++\++\++
++\+
\+\=
+

I
+
\imath\imath+
+

\imath+\imath++
\imath++
+\
4 5

```

\subsection*{2.7 Previous Studies of VLLE Systems}

The previous studies did not use the term VLLE systems, where the term
partial miscible systems [1, 31, 2] or systems of limited miscibility [33, 34]
was used, then authors started using the term VLLE of three phase systems
[35, 36, 37]. Most of the studies that involved experimental work used a modified equilibrium still to deal with partial miscible systems. Some of the most important studies of binary system are:

1- One of the first studies was the determination of VLE of the systems nButanol
\(\\) Water and Isobutanol \ Water
at 760 mmHg
[38].
The equilibrium
still
used consists of a flask closely connected
to a condenser by a flexible
connection.
The condenser could be tilted
so that the condensate either
refluxed
totally or was wholly collected in
the receiver. Only a vapor sample
could
be collected by this still. The VLE
data collected for the system
Isobutanol
I Water showed a constant
vapor composition
of 67 mole
\%
Isobutanol
for a liquid charge of 2 to 43 mole
\% Isobutanol also for the
system
of n -Butanol \(\backslash\) Water showed a constant
vapor composition
of 25 mole
\%
n -Butanol for a liquid charge 1.5 to 50 mole
\% n-Butanol.

2- A study on the system Isobutanol \(\backslash\) Water at \(758-762 \mathrm{mmHg}\) [1] was achieved using equilibrium still specially constructed for partial miscible systems, the still was a circulation type of both the vapor and liquid. The data
obtained did show a constant vapor composition, the initial charges in the still
where a single phase liquid charge only one charge was a two phase liquid
charge. Thus the system studied could not be considered as a VLLE system.

3- The system 1-Butanol \(\backslash\) Water at 760 mmHg [31] was studied in a modified
Othmer still as shown in Fig.2.5.3. The data obtained showed a constant vapor composition of 75 mole \% 1-Butanol for a liquid charge of 54 to 97 mole \% 1-Butanol. The data was correlated by the aid of Van Larr equation.

4- A study on the systems Ethyl-acetate \Water, Methyl Ethyl Ketone \} Water, n-Butyl Alcohol \Water and Isobutyl Alcohol \ Water at 760 mmHg
[2] were accomplished with a modified Othmer still with mechanical stirrers.
The data collected showed a constant vapor composition of 70.9 mole \% Ethyl-acetate for a liquid charge 35 to 69 mole \% Ethyl-acetate, a constant
vapor composition of 64 mole \% Methyl Ethyl Ketone for a liquid charge of
20 to 56 mole \% Methyl Ethyl Ketone, a constant vapor composition of 26
mole \% n-Butyl -Alcohol for a liquid charge of 6.4 to 24 mole \% n-Butyl Alcohol and a constant vapor composition of 33.5 mole \% Isobutyl Alcohol
for a liquid charge of 6.4 to 22.4 mole \% Isobutyl Alcohol. The data was correlated by the aid of Van Larr three suffix equation.

5- The system Water \Methyl Isobutyl Ketone at 760 mmHg [34] was studied
in the same still in (3) above. The data collected showed a constant vapor composition of 64.1 mole \% Methyl Isobutyl Ketone for a liquid charge of 30
to 90 mole \% Methyl Isobutyl Ketone. The data was correlated by the aid of
the Modified WILSON Equation.
6- The systems 2-Methyl-1,3-dioxolane (2MD) \Water and 2,4-
Dimethyl-1,3dioxolane
(24DMD) \(\backslash\) Water at 760 mmHg
[39]
were studied in a modified
Othmer
still with mechanical
mixing.
The
data showed a constant vapor
composition of 67 mole \(\% 2 \mathrm{MD}\) for a liquid charge of 33 to 57 mole \(\%\) 2MD.
The data was correlated by the aid of the UNIQUAC Equation.
47

Chapter Two
Theory \& Literature
Review

And some of the most important studies of ternary systems are:
1- A study on the system MEK \Benzene \(\backslash\) Water at 760 mmHg [40] was accomplished in an Othmer still, only homogenous liquid charges were studied ( single phase liquid charge ), the condensed vapor formed a two phase liquid.

2- The system Cyclohexane \(\backslash 2\)-Propanol \(\backslash\) Water at 760 mmHg [41] was studied in a modified Othmer still, both homogenous and heterogeneous liquid charges were studied. The data were correlated by the aid of both Van
Larr and Redlich-Kister Equations.

48

\subsection*{3.1 Chemicals}

\section*{CHAPTER THREE}

\section*{EXPERIMENTAL WORK}

The chemicals used in this study were fine chemicals of high purity and
known brand tables 3-1 and 3-2 lists the specification of the chemicals used in
this study.

Table 3-1 Specification of Chemicals Used in the Present Study
Chemical Assay N.V.M
*
Water Manufacturer
Ethyl-acetate 99.7\% 0.0005\% 0.03\% Riedel-de Haen
Toluene \(99.9 \% 0.001 \% 0.03 \%\) BDH
Distilled Water \(100 \%\) Triple distilled
Acetone \(99 \%\) 0.005\% 0.5\% BDH
* Non volatile mater.

Table 3-2 M.Wt. and density of chemicals used in present study.
Toluene Ethyl-acetate Water
M.Wt. 92.1488 .1118 .016

Density (g/L) 20 © 0.86690 .9010 .998

\subsection*{3.2 Equilibrium Still}

The equilibrium still used in this study is a circulation type still with circulation of the vapor; it's similar to Othmer still [23]. Some modifications
were applied to the still so it can be used for partial miscible systems. The modifications helped in giving a steady temperature reading in the boiling section and helped in keeping the condensed vapor in the condensing section in a semi homogenous state. The modifications were:

1- The still was supplied with mechanical mixers for both the boiling section
(boiler) and the condensation section (condenser).
2- The still was supplied with multi-impeller shafts for both mixers of the boiling section and the mixing section.

49

Chapter Three
Experimental
Work

3- The still was supplied with two reflux lines for the reflux of the condensed
vapor to the boiler.
The assembled still as shown in Figure 3-1 consists of the following parts:

\section*{12}

\section*{7}

Figure 3-1 Assembled Still of the Present Study.
1- A 55 mm diameter glass cylinder type QVF (Length \(=325 \mathrm{~mm}\) ).
2- Quick-fit head with two P.E bushing rings.
3- Thermometer well.
4- Multi-impeller shaft (Length \(=400 \mathrm{~mm}\) ).
5- Sampling valve.
6- Inclined pipe with thermo well (Length \(=50 \mathrm{~mm}\) ).
7- Capillary pipes ( 1 mm diameter) with spherical bulb.
8- A 40 mm diameter glass cylinder type QVF (Length \(=250 \mathrm{~mm}\) ).
9- Quick-fit head with two P.E bushing rings.

\section*{8}

10

50

\section*{Chapter Three}

Experimental
Work
10- Multi-impeller shaft.
11- Glass condenser connection with flange (Length \(=90 \mathrm{~mm}\) ).
12- Vapor conduct (prevents condensation of vapor on walls of boiling section.

The multi-impeller shafts were driven by electric motors type Parvalux
electric motor LTD with a max. Speed of 2500 rpm . The speeds of the motors
were controlled by a volt Regulator ( \(0-300\) volts), at all the runs the speed of
the motors were from 1400 to 1600 rpm . The shafts were connected to the motor by rubber pipes to reduce the vibration. The P.E bushing rings in the
Quick-fit heads helped in preventing vapor leakage and also reduces the vibrations from the motor (see Appendix A.1). The still was heated by a
heating mental with grades from \(0-10\) grades. The vapor was condensed by
a glass condenser connected at the condenser connection (11); the
connection
was accomplished by two stainless steel flanges with a Teflon cascade.
The
cooling fluid in the condenser was a once through tap water at 17-23
C , when
the tap water temperature exceeded this range (Runs performed in the summer) the condenser was connected to a water bath with refrigeration unit
(-10 to 150
C) type Julabo. The whole still is insulated with fiber glass insulation except the condensing section. A picture of the whole unit used in
the present study is shown in Figure 3-2.
When the still was used to determine LLE data the heating mantle was
replaced by a water bath with temperature control type Memmert, where the
still was partially immersed in the water bath as shown in Figure 3-3. The condenser is not needed in the LLE data measurement, and the mixer in the
condenser section is also not needed, the quick fit head (2) is replaced by a
rubber cork with three holes the middle one for the multi-impeller shaft and
the other two for the pipettes for sampling the two liquid layers.
。

51

\section*{Chapter Three \\ Work}

Figure 3-2 Picture of the whole unit used in the present study.

Figure3-3 Still used for LLE data measurement.

\subsection*{3.3 Temperature Sensor}

The temperature was measured by a \(\mathrm{NiCr}-\mathrm{Ni}\) sensor which is able of temperature measurements of liquids and gases in the range -200 to +1200
C,
the temperature was recorded and represented graphically via a CASSY Module Interface in conjunction with a personal computer (486) and the software "Universal Data Acquisition", more details are given in appendix
(A.2). A schematic of the unit with the control is shown in Figure 3-4.

\section*{1}

2
11
10
Figure3-4 Schematic of the Unit with the Control Used in the Present Study.

\section*{7}

7

5
4

6
8
3
9
9
1- Computer
2- Interface
8
12
3- Temperature sensor

4- Heating mantle
5- Modified Still
6- Condenser
7- Electric motor
8- Voltage regulator
9 - Cooling water inlet and outlet
10- Thermometer
11- Condensing section
12- Boiling section
13- Vapor path
53
o

Chapter Three
Experimental
Work

\subsection*{3.4 Preparation of Liquid Mixtures}

The liquid mixtures were prepared by measuring a volume of each chemical by a graduated cylinder ( 100 ml ). The chemicals were not mixed
before charged in the still.
The mole percent of each chemical in the liquid mixtures measured in present
study are given in table 3-3.
Table 3-3 Composition of liquid mixtures measured in the present study.
Mole percent
Mixture No. Toluene Ethyl-acetate Water
10.26699 .734
20.98699 .014
31.55598 .445
42.41697 .584
54.34195 .659
610.18089 .820
726.53573 .465
833.83766 .163
940.57159 .429
1047.23352 .767
1155.73944 .261
1266.89133 .109
1371.31528 .685
1479.64420 .356
```

15 82.450 17.550
16 88.782 11.218
17 95.000 5.000
1898.400 1.600
191.670 98.330
302.369 97.631
215.358 94.642
228.62291.378
23 14.519 85.481
2421.31878.682
25 29.39870.602
2636.90963.091
2744.215 55.785
5 4
Chapter Three
Work
Table 3-3 (cont/d) Composition of liquid mixtures measured in the present study.
Mole percent
Mixture No. Toluene Ethyl-acetate Water
2854.31545 .685
2961.73738 .263
3075.95624 .044
3176.15123 .849
3286.88313 .117
3389.46510 .535
3491.7728 .228
3594.9415 .059
3612.60364 .20923 .188
3719.46942 .32138 .210
3822.77838 .90438 .318
3926.10635 .46738 .427
4029.45332 .01138 .536
4132.81928 .53638 .645
4238.95738 .10722 .936
4339.60821 .52538 .867
4441.31819 .75938 .923
4546.47614 .43239 .092
4653.4247 .25839 .318
4755.22721 .71123 .062
4861.52815 .10023 .372

```

The total volume of each mixture measured in the present study is 200300
ml .

\subsection*{3.5 Operating the equilibrium still for VLLE measurements}

The measurements by the modified equilibrium still of the present study
are begun by inserting the liquid mixture one chemical at a time in the boiling
section and the following procedure is followed:
1- Running the software "Universal Data Acquisition", that measures and
records the temperature of the liquid mixture with time via the personal computer.

55

\section*{Chapter Three}

Experimental
Work

2- Starting the heating mantle from the above software via the Interface (CASSY Module Interface) and starting the mixer of the boiling section at a rate below vortex formation.
3- When the liquid mixture starts boiling after 25-40 min the cooling water is allowed to flow in the condenser at a rate of about 2 liter / min. 4- As vapor starts to condense the mixer of the condensation section is started at a rate below vortex formation.

5- After the temperature of the liquid mixture reaches steady state (constant value) usually after 70-80 min samples are withdrawn from both the boiling and the condensation sections.

6- After samples are withdrawn the software is turned off by saving the recorded data in the personal computer under a certain name e.g. VLLE

1

7- The mixers are turned off and the cooling water to the condenser is stopped after 10-15 min.

\subsection*{3.6 Sampling Methods}

The samples are withdrawn from the still from both the condensation and
the boiling section into a graduated test tube \((0-5 \mathrm{ml})\) with 0.1 ml graduation;
the samples withdrawn are \(4-5 \mathrm{ml}\) for each of the boiling liquid and the condensed vapor. Three methods of sampling were employed:

1- Taking samples of both the condensed vapor and the boiling liquid [2]. 2- Stopping the mixer of the boiling section then after 2-5 min the heating mantle is turned off and a sample of the condensed vapor is withdrawn and then a sample from each layer of the boiling liquid is withdrawn separately [39].
3- Taking sample of the condensed vapor only [38].
56

\section*{Chapter Three}

Experimental
Work
The withdrawn samples are placed in a water bath at a temperature of 20
o
C and are left over night for complete separation of the two liquid layers in
each sample. Then the volume of each layer is measured by the graduation on
the test tube.

\subsection*{3.7 Sample Analysis}

Most of the samples of the measured liquid mixtures in the present study
were with two liquid layers, a sample was taken from each layer by a 0.1 ml
pipette with 0.01 ml graduation then the refractive index of these samples were measured at 20
o
C by a Refractometer, details of the measuring procedure is given in appendix B.1.

Two calibration curves were used to determine the mole fraction of the samples one for the top layer (Organic layer) and one for the bottom layer (Aqueous layer). The curves were obtained by preparing liquid mixtures of
different mole composition for each layer and measuring the refractive index
and the data obtained were represented graphically. Figures 3-5 and 3-6 represent the calibration curve of the aqueous and organic layer respectively
of the system Ethyl-acetate \Water.

57

Chapter Three
Experimental
Work
R.I (refractive index)
1.3370
1.3380
1.3390
1.3330
1.3340
1.3350
1.3360

Aqueous layer(20 C)
R.I = 0.0023X1

3
- 0.0068X1

2
+ 0.0072X1 +
1.333

R
2
\(=1\)

\subsection*{0.00 .20 .40 .60 .81 .01 .21 .41 .61 .82 .0 \\ Mole\% Ethyl-acetate}

Figure 3-5 Calibration curve of the aqueous layer of the system Ethyl-acetate \(\backslash\) Water.

\section*{R.I (refractive index)}
1.3758
1.3759
1.3760
1.3761
1.3762
1.3763
1.3757

Organic layer(20 C )
R.I = 1.3526X1

R
2
\(=0.9998\)
0.0038
88.090 .092 .094 .096 .098 .0100 .0

Mole \% Ethyl-acetate (X1)

Figure 3-6 Calibration curve of the organic layer of the system Ethyl-acetate \Water.

The system Toluene \Water was considered as an immiscible system were the solubility of Toluene in Water is \(0.05 \%\) at 20
o
C and the solubility of
Water in Toluene is \(0.03 \%\) at 20
o
C. As for the system Toluene \Ethyl-acetate

I Water Fig.3.7.1 was used for the bottom layer of the samples withdrawn, for
the top layer of the withdrawn samples a calibration curve was obtained by
preparing liquid mixtures of different compositions of Toluene and Ethylacetate
and measuring the refractive indices
of these mixtures and the data
obtained
were represented graphically. Figure
3-7 represents the calibration
curve
of the organic layer for the system
Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water.

\section*{R.I (refractive index)}
1.4400
1.4700
1.5000
1.5300
1.3500
1.3800
1.4100

0
rganic layer(20 ©
Organic layer ( 20
\(R . I=0.0012 x+1.382\)
R
2
\(=0.9934\)
o
C)
)
0.020 .040 .060 .080 .0100 .0

Mole \% Toluene (X1)
Figure 3-7 Calibration curve of the organic layer of the system Toluene \Ethylacetate \(\backslash\)
Water.

The assumption of Water is not present in the top layer of the withdrawn
samples of the system Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water is quite reasonable due
to the low solubility of Water in Toluene, and Toluene not present in the bottom layer of the withdrawn samples also due to the low solubility of Toluene in Water.

\subsection*{3.8 Operating the equilibrium still for LLE measurements}

The same equilibrium still was used for LLE measurements of the system
Ethyl-acetate \Water in the temperature range 25-65
o
C. The measurements
are begun by inserting the liquid mixture one chemical at a time in the boiling section and the following procedure is followed:

1- Running the software "Universal Data Acquisition", that measures and
records the temperature of the liquid mixture with time via the personal computer.

2- Setting the water bath temperature at the desired value and starting the mixer of the boiling section at a rate below vortex formation.

3- After the temperature in the still reaches a steady state value (constant value) usually after \(45-60 \mathrm{~min}\) the mixer is stopped.

4- After a period of 5 min samples are withdrawn from each layer by a 0.1
ml pipette with 0.01 ml graduation into a graduated test tube \((0-5 \mathrm{ml})\) with 0.1 ml graduation.

5- After samples are withdrawn the software is turned off by saving the recorded data in the personal computer under a certain name e.g. LLE1.

The withdrawn samples are treated and analyzed as in VLLE measurements. All the measured liquid feed mixtures were 15.585 mole \% Ethyl-acetate.

\subsection*{3.9 Cleaning the equilibrium still}

The equilibrium still is disconnected from the whole unit after each measurement and drained from the remaining liquid mixture and rinsed with
acetone and allowed to dry. The same thing is applied to the test tubes and
pipettes used in the analysis of the withdrawn samples.

\subsection*{3.10 Experimental data}

The experimental data obtained from VLLE measurements of the binary
system Ethyl-acetate \(\backslash\) Water is given in table 3-5.

Table 3-5 VLLE measurements of the binary system Ethyl-acetate \(\backslash\) Water.
Mole \% Average Mole \% Mole \% Mole \% Mole \%
Run \# L
VLLE
18
1
T
0
1
T
C X
X
1
B
X
1
o
\(0.26698 .478 \quad 0.0297 .793\)
VLLE
\(0.98696 .920 \quad 0.0598 .127\)
VLLE
17
1.55592 .3740 .6519 .566

VLLE
16
```

2.416 84.529 1.508 44.675
VLLE
15
4.34170.882 3.03844.675
VLLE
2
10.18071.383 77.78278.060
VLLE
5
26.53570.407 55.31371.916
VLLE
1
33.837 72.96058.956 1.662 31.81250.861
VLLE
10
40.57171.86278.687 3.007 38.80063.273
VLLE
8
47.23371.25877.357 1.204 45.13966.801
VLLE
3
55.73971.75378.981 0.67654.12868.133
VLLE
6
66.89171.283 67.19573.685
VLLE
4
71.31571.850 73.09675.010
VLLE
VLLE
7
1 1
1 2
79.64473.419 95.000 32.57379.26378.984
82.45073.763 95.00073.98982.391 85.062
VLLE
88.78274.800 90.153 85.097 88.509 85.279
VLLE
13
95.000 72.125 95.000 91.261
VLLE
Where L
9
98.40076.370 98.400 42.673
Sampling method 2 1
14
is the initial mole % of Ethyl-acetate charged in the still and T

```
the average boiling point of the mixture from the time the temperature reaches
a steady state value to the time of sampling.
```

6 1
Y
1
O
C is

```

\section*{Chapter Three}

Work

X
1
T
and X
1
B
are the mole \% of Ethyl-acetate in the top layer (organic layer)
and the bottom layer (aqueous layer) respectively in the boiling liquid. X is
the mole of Ethyl-acetate in both layers of the withdrawn sample of the boiling liquid. Y
is the mole \% of Ethyl-acetate in the condensed vapor.
Samples of the VLLE measurements 3, 6, 8 and 10-13 were withdrawn by
sampling method 2 and the rest of the VLLE measurements were by sampling method 1.

1
\[
\text { The numerical values of } \mathrm{X}
\]

1
T
, X
1
B
, X
1
o
and Y
were determined by
measuring the refractive index of the withdrawn samples and substituting their values in the calibration curves of Figure 3-5 and 3-6 and by material
balance as shown in appendix C.1.1. The experimental data obtained from
VLLE measurements of the binary system Toluene \(\backslash\) Water is given in table 36.

\section*{1}

Table 3-6 VLLE measurements of the binary system Toluene \(\backslash\) Water.
Mole \% Average Mole \% Mole \%
Run \# L
VLLE
35
1
T
o
1
C X
1.67098 .0831 .5925 .642

VLLE
2.36997 .9012 .1439 .873

VLLE
34
5.35896 .9485 .18814 .347

VLLE
33
8.62296 .1218 .09721 .372

VLLE
19
14.51994 .60114 .44327 .764

VLLE
20
21.31893 .49720 .58233 .746

VLLE
21
29.39892 .61028 .31636 .746

VLLE
VLLE
22
23
24
Y
36.90992 .47436 .97840 .437
44.21592 .48743 .64848 .064

VLLE
54.31593 .73054 .77953 .623

VLLE
25
61.73794 .96661 .30057 .692
```

VLLE
26
75.956 99.15176.141 62.548
VLLE
27
76.15199.33676.67364.372
VLLE
VLLE
28
29
31
86.883103.890 88.12971.343
89.465107.255 95.22978.557
VLLE
91.772 106.098 92.88374.491
VLLE
30
32
94.941 108.543 95.310 83.012
Sampling method 3
1
6 2
1
o
Chapter Three
Experimental
Work
Where L
1
is the initial mole % of Toluene charged in the still and T
C}\mathrm{ is the
average boiling point of the mixture from the time the temperature
reaches a
steady state value to the time of sampling. X
1
is the mole % of Toluene in
both layers of the boiling liquid.Y
is the mole % of Toluene in the condensed
vapor. Samples of the VLLE measurements 19-35 were withdrawn by
sampling method 3. The numerical values of X
1
1
o
and Y
were determined by

```
the solubility of Toluene in Water and the solubility of Water in Toluene at
20

\section*{o}

C and by material balance.
1
The experimental data obtained from VLLE measurements of the Ternary
system Toluene \Ethyl-acetate \Water is given in table 3-7.
Table 3-7 VLLE measurements of the ternary system Toluene \Ethyl-acetate \ Water.
Mole \% Mole \% Average Mole \% Mole \% Mole \% Mole \%
Run \# L
VLLE
42
1
L
2
T
0
1
1
。
C X
X
2
12.603 64.209 \(\mathbf{7 2 . 8 8 9} \mathbf{1 3 . 1 8 1} \mathbf{6 4 . 2 2 1} \mathbf{1 . 7 8 9} 43.538\)

VLLE
19.469 42.321 \(\mathbf{7 4 . 1 5 7} \mathbf{1 9 . 9 5 1} \mathbf{4 1 . 6 4 8} \mathbf{7 . 0 2 4} 41.534\)

VLLE
41
22.77838 .90475 .68023 .59338 .0416 .99642 .935 VLLE
46
26.10635 .467 76.882 26.68534 .93910 .03733 .323

VLLE
45
29.45332 .01179 .36130 .31231 .11910 .09740 .054

VLLE
36
32.81928 .53677 .49533 .82627 .85311 .89732 .783

VLLE
37
38.95738 .10780 .17840 .26037 .3659 .46939 .927

VLLE
43
39.60821 .52579 .88740 .62120 .80615 .17330 .198
```

VLLE
38
41.31819.759 83.247 42.34419.078 12.221 29.776
VLLE
47
46.476 14.43283.65247.900 13.668 18.136 24.831
VLLE
39
53.4247.258 87.081 55.1136.760 22.563 14.123
VLLE
VLLE
40
4 4
48
Y
55.227 21.711 89.263 56.658 21.071 19.611 27.862
61.528 15.100 90.52062.852 14.408 21.915 28.349
VLLE
67.540 9.068 93.766 69.306 8.662 15.846 20.632
VLLE
49
50
Where L
72.327 14.769 93.288 74.482 14.478 15.846 20.632
Sampling method 3
1
,L
are the initial mole % of Toluene and Ethyl-acetate charged
in the still respectively and T
2
o
C}\mathrm{ is the average boiling point of the mixture
from the time the temperature reaches a steady state value to the time of
sampling.
1
o
6 3
Y
2

```
are the mole \% of Toluene and Ethyl-acetate in both layers of the boiling liquid respectively.Y
, Y2 are the mole \% of Toluene and Ethylacetate in the condensed vapor respectively.
Samples
of the VLLE
measurements
36-50 were withdrawn by sampling method
3.

The numerical values of X
1
1
and Y
were determined by measuring the
refractive index of the withdrawn samples and substituting their values in the
calibration curves of Figures 3-5 and 3-7 and by material balance as shown in
appendix C.1.1.
1
The experimental data obtained from LLE measurements of the binary
system Ethyl-acetate \Water is given in table 3-8.

Table 3-8 LLE measurements of the binary system Ethyl-acetate \Water.
Mole \% Average Mole \% Mole \%
Run \# L1 T
LLE
1
0
C X
1
T
15.58524 .80495 .0001 .873

LLE
15.58530 .77495 .0001 .761

LLE
2
15.58534 .27293 .5651 .724
```

LLE
3
15.58541.610 91.6451.683
LLE
4
15.58549.675 88.492 1.704
LLE
5
15.58557.903 82.910 1.589
LLE
6
7
Where L
T
o
X
15.58565.331 82.109 1.724
Sampling method 2
1
is the initial mole % of Ethyl-acetate charged in the still and
C}\mathrm{ is the average boiling point of the mixture from the time the
temperature
reaches a steady state value to the time of sampling. X
1
T
and X
1
B
are the mole
% of Ethyl-acetate in the top layer (organic layer) and the bottom layer
(aqueous layer) respectively in the boiling liquid. Samples of the LLE
measurements were withdrawn by sampling method 2.
1
B
6 4
Work
The numerical values of X
1
T
, X
1
B
were determined by measuring the

```
refractive index of the withdrawn samples and substituting their values in the calibration curves of Figures 3-5 and 3-6 and by material balance.

More details are given in appendix C.1.1 on determining the numerical
values of X

1
T
, X
1
B
, X
1
o
and Y
1

\subsection*{3.11 Testing Experimental Data}

A semi empirical test for the thermodynamic consistency of isobaric equilibrium data was proposed by Herington [42]. This proposal suggests a plot of \(\ln (\gamma\)
1
\(/ \gamma\)
2
) vs. X
1
for the range \(X\)
1
\(=0\) to X
\(=1\). From this plot calculate
the percent deviation defined by equation 3.11.1.
+
\(\uparrow\)
axis.XbelowAreaaxis.aboveXArea
D
\(=\)
1
)1.11.3(
axis.XbelowAreaaxis.aboveXArea

The quantity D is compared with another quantity J which is found from equation 3.11.2.
```

=
150J
|
)2.11.3(
T
min
Where
$\boldsymbol{\tau}$ is the absolute difference between the maximum and minimum temperatures cited in the equilibrium data and
T
min

```
is the minimum
temperature cited in the equilibrium data. The constant 150 is empirical based
on analysis of typical heat-of-mixing data. If \((\mathrm{D}-\mathrm{J})<10\) then the data is probably consistent. Isobaric data of 24 systems taken from the third edition
of Perry's
Handbook for Chemical Engineers, the data of 9 of these systems were inconsistent according to this method [42].

This method was applied to the two binary systems of the present study.
Table 3-9 lists the value of the parameters of the Herington test.

Table 3-9 Values of the parameters of the Herington test.
P = 101.325 KPa. Ethyl-acetate \Water [Present study]
D \(\boldsymbol{\tau} \boldsymbol{T}\)
min
(K) J ( D-J ) < 10 > 10
15.013 28.071 343.557 12.256 2.847 YES
\(\mathrm{P}=101.325 \mathrm{KPa}\). Toluene \(\backslash\) Water [Present study]
D \(\boldsymbol{\tau} T\)
min
(K) \(J(D-J)<10>10\)
```

12.652 16.937 365.072 6.959 5.693 YES
P = 101.325 Ethyl-acetate \Water [2]
D \tau T
min
(K) J (D-J) < 10 > 10
21.466 29.550 343.6 12.900 8.566 YES
For the ternary system Toluene \Ethyl-acetate \Water the
McDermontEllis
test method
[43]
was used. Two
experimental
points a and b are
thermodynamically
consistent if the following condition is fulfilled:

```
\(D<D\)
max

Where
\(\boldsymbol{D}\) is the local deviation and is given by equation 3.11.4
```

N
=
()()
\imath+=
)4.11.3(ln}\operatorname{ln}XXD ©(C
And D

```
\(1 i\)
iaibibia
max
    the max deviation is given by equation 3.11.5.
\(\Upsilon\)
\(++++=\)
\(N\)
4
X
1
8 ミミニ｜

\section*{\(f\)}
\(\boldsymbol{N}\) is the number of components in the system tested. The values of the local deviation
D and the maximum deviation of the ternary system were 4.387 and 9.958 respectively.

When the above test was applied to the binary systems
EthylacetatelWater and ToluenelWater and the ternary system Toluene (1) \Ethylacetate (2) \(\backslash\) Water (3) the results were as given in table 3-10.

66

\section*{Chapter Three}

Experimental
Work
Table 3-10 Results of the McDermont-Ellis test applied to the binary and Ternary systems.

P = 101.325 kPa . Ethyl-acetate \(\backslash\) Water [Present study]
D D
max
D < D
max
7.080 9.523 YES
\(\mathrm{P}=101.325 \mathrm{kPa}\). Toluene \Water [Present study]
D D
max
D < D
max
12.362 13.624 YES
\(\mathrm{P}=101.325 \mathrm{kPa}\). Toluene(1) \Ethyl-acetate(2) \Water(3) [Present
study]
D D
max
D \(<\) D
max
4.387 9.958 YES

67

\section*{CHAPTER FOUR}

\section*{RESULTS \& CALCULATIONS}

The experimental data obtained from the VLLE measurements of the two
binary systems (Ethyl-acetate(1)\Water(2) and Toluene(1)\Water(2) ) and the
ternary system ( Toluene (1)\Ethyl-acetate (2)\Water (3) )and the LLE data of
the binary system (Ethyl-acetate(1) \(\backslash W\) ater(2) ) are plotted in
TemperatureComposition
Diagrams (T-X-Y, T-X, T-X-X).
Then these data are predicted
and
correlated by the activity coefficient
models
and the Peng-Robinson
(EOS).

\subsection*{4.1 Temperature-Composition Diagrams}

The experimental data obtained from the VLLE measurements of the binary system Ethyl-acetate (1) \Water (2) in columns 3, 6, 7 of table 3-5 are
plotted in Figure 4-1.
\(T\) (C) A
105
100
90
95
Te t
80
ver
era ure
age Boiling
mp
85
75
65
70

\section*{Ethyl-acetate(1) \ Water(2) \\ 020406080100 \\ X1,Y1 mole\% Ethyl-acetate}

Figure 4-1 T-X-Y Diagram of the System Ethyl-acetate (1) \Water (2).

\section*{68 \\ Y1 Exp. \\ X1O}

\section*{Chapter Four}

Results \&
Calculations

The experimental data obtained from LLE measurements of the binary
system Ethyl-acetate (1) \Water (2) in columns 3, 4, 5 of table 3-8 are plotted
in Figure 4-2.

\section*{T (C) Liquid Temperature}

\section*{50}

55
60
65
70
40
45
35
30
20
25
Ethyl-acetate(1) \Water(2)
020406080
100
X1T, X1B mole Ethyl-aetate
\%
Figure 4-2 T-X-X Diagram of the System Ethyl-acetate (1) \Water (2).
When both of the above Figures are plotted together a system similar to
the one in Figure 2-1 is obtained as shown in Figure 4-3.
T (C) Average Boiling
Temperature
```

Ethyl-acetate(1)\ Water(2)
O20406080100
X1O, X1T, X1B,Y1 mole% Ethyl-acetate

```

Figure 4-3 T-X-X-Y Diagram of the System Ethyl-acetate (1) \Water (2).

69
X1B
X1T
Y1 Exp.
X1O
X1B
X1T

\section*{Chapter Four}

Results \&
Calculations
The experimental data obtained from the VLLE measurements of the binary
system Toluene (1) \Water (2) in columns 3, 4, 5 of table 3-6 are plotted in
Figure 4-4.
T(C) Averag Bol
Temper ure
120
ng
ei
at
115
110
100
105
90
95
Toluene(1) \(\backslash\) Water(2)
020406080100
X1, Y1 mole\% Toluene
Figure 4-4 T-X-Y Diagram of the System Toluene (1) \Water (2).
The experimental data obtained from the VLLE measurements of the ternary
system Toluene (1) \Ethyl-acetate(2) \Wate
\(r\) (3) in columns 4, 5, 6 of table 37
are plotted in Figure 4-5.

Toluene (Figur f 1) \ta ee 4-5 T-X Diagram o the System Ethyl-ace te(2) \Wat r (3).

70
X10
Y1

Chapter Four
Results \&
Calculations

\subsection*{4.2 Pred o a}
n th op
c e
\(\boldsymbol{\Phi}\) et b
on ot pas
e values of \(\boldsymbol{\Phi}\)
pling \(m\) thod (1). Tables 4-2 and 4-3 list the values of s
iction f Equilibrium D ta
By applying equations 2.2.3 a d 2.2.6 e value f \(\boldsymbol{Y}\)
is redicted
theoreti ally wh re \(\boldsymbol{\Phi}\)
1
\(v\)
, \(\boldsymbol{\Phi}\)
1
\(S\)
and
1
L
are d ermined y applying PengRobins
equati n of state with in eracting rameter k
\(=0\), equations
2.3.42a and 2.3.42b. Table 4-1 lists th
the binary system Ethyl-acetate (1) \Water (2) where samples are withdraw
by sam e \(\boldsymbol{\Phi}\)
and \(\boldsymbol{\Phi}\)
1
\({ }_{V}^{1}\)
, \(\boldsymbol{\Phi}\)
e a \(\backslash W) w\)
w m Tsoivc
rs 10
I u . 154.
Lo 2
u 42.4
nd 2.4.35b.
1
L
ij
, \(\boldsymbol{P}\)
for the binary syst \(m\) Ethyl- cetate (1) ater (2 here samples are
withdra \(n\) by sa pling method (2). he value f the act ity coeffi ients \(\gamma \mathrm{i}\)
are dete mined \(u\) ing the fo lowing \(m\) dels:
1- MOD FIED WILSON (M.W.), eq ations 2.4 a and 2. 15b.
2- NRT, equati ns 2.4.20a and 2.4. 0b.
3- UNIQUAC (UNIQ.), eq ations 2. .26a and .26b.
4- UNIFAC (UNIF.), equations 2.4.35a a
```

Table 4-1 Values of Ф
Run \# T
VLLE
18
o
1
,P
i
and Ф
s
and \Phi
L
L
i
S
and \boldsymbol{\Phi}
l
for the binary system Ethyl-acetate (1)\
Water (2) by sampling method 1.
C P (kPa) X
1
\Phi
I
v
P
I
(kPa)
\Phi
98.478 101.325 0.00029 0.97834195.104 0.982271958822
VLLE

```
```

17
I
S
96.920 101.325 0.000590.97808 186.563 0.98307 240012
VLLE
92.374 101.325 0.006510.97723 163.2970.98501 140835
VLLE
16
84.529 101.325 0.01508 0.97568 128.542 0.9880268998
VLLE
15
70.882 101.325 0.03038 0.97268 82.172 0.99211 21697
VLLE
2
72.960 101.325 0.318120.96951 88.206 0.98385 2.56189
VLLE
10
71.862 101.325 0.38800 0.96854 84.975 0.98266 1.63506
VLLE
VLLE
8
3
6
D
I
S
for
n
I
LS
,,P

- \Phi
71.258 101.325 0.45139 0.9678283.239 0.98149 1.25959
7 1 . 7 5 3 1 0 1 . 3 2 5 0 . 5 4 1 2 8 ~ 0 . 9 6 7 2 4 ~ 8 4 . 6 6 0 ~ 0 . 9 7 9 2 1 ~ 1 . 0 3 5 3 3)
VLLE
70.407 101.325 0.553130.96680 80.840 0.97974 0.97315
VLLE
1
7 1 . 2 8 3 1 0 1 . 3 2 5 ~ 0 . 6 7 1 9 5 ~ 0 . 9 6 6 3 0 8 3 . 3 1 0 ~ 0 . 9 7 6 8 3 0 . 8 7 5 0 5 ~
VLLE 71.850 1.97535 0.85972
LE
4
01.3250.73096 0.96618 84.940 0
VL }83101.3250.7778 83.596 0.97483 0.8303
7
71.320.96587
LLE
E
5

```
```

11
12
13
9
73.41 101.3250.79 3 0.96637 89 0. 0.88291
V 9 26 .58597316
VLLE 73.763 223 0.88565
101.3250.830.96637 90.6290.97240
74101.3250.890.96651970.97050.90562
VLL . }8008503.83
VLLE 72.125 19500 0.82575
01.325 0. 0 0.96569 85.740 0.97161
LLE
14
76.37 .9668290.9678 0.94631
V 0 101.325 0.98400 0 8.865 5
- \Phi
I
=f
l
/P
I
S
s
from equation
(P C.1.2)
71
I
L

```
Chapter Four
Results \&
Calculations
Table 4-2 Values of \(\Phi\)
o
1
, P
\(\stackrel{1}{\mathrm{i}}\)
and \(\Phi\)
1
and \(\Phi\)
1
for the binary system Ethyl-acetate (1) \}
Water (2) by sampling method 2.
```

(kPa) X
T
\Phi
v
(kPa)
Run \#
LE
10
3
T
P
S
C P
\Phi
I
7201.325 6 0.970 .205 01.00
VL . }96010.589522880.977457
VLLE 71.258 10.7735754 830.97499 817
VL . }862101.3250.78687756 84. 0.97435 088
VL . }753101.3250.78981675084.6 0.97437 3723
01.325 0.967 . 238 0.82
LE
710.9697504.8
LE
VLLE
8
6
13
710.9590.8
7 4 . 8 0 0 1 0 1 . 3 2 5 0 . 9 0 1 5 3 0 . 9 6 7 2 4 ~ 9 3 . 8 3 9 0 . 9 7 0 3 2 0 . 9 0 3 9 4)
VLLE 1 0.97064
73.419 0.86142
LE
01.3250.9500000.96646 89.584
VL . }763101.3250.95000
-\Phi
11
12
I
S
730.966590.6290.970380.87110
=f
l
/P
I

```
```

S
S
of \Phi
f C.1.2)
(P rom equation
Table 4-3 Values P
Run \# T
o
1
v
i
and Ф
S
1
L
and \Phi
ry system acetate (1
by samp d 2.
1
for the bina Ethyl-)\
Water (2) ling metho
C P (kPa) X
1
B
\Phi
I
v
P
I
(kPa)
\Phi
I
S
-\Phi
VL LE
71.753 101.325 0.00676 0.97322 84.659 0.99249302565
LE 71.258 101.325 0.01204 0.97304 83.238 0.99248 149312VL
6
VLLE
3
72.960101.3250.016620.97333 88.205 0.99188 83777
V 7 105072 .9LLE
10
1.862 1.32.030070.9984750.9918422149
LLE
8
3.41901.32525730.95589.50.983 2.4502

```
```

LLE
V7 10.3698443
V710.7662988
V710.8663915
11
3.76301.32539890.96590.60.973 0.9106
LLE
12
4.80001.325 50970.95893.8 0.971 0.91031
-\Phi
13
e Th
4
I
=f
l
/P
I
qu)
(P
I
frome ation C.1.2
p e firs tiv ie ns
aramet rs of the t three ac ity coeffic nt equatio are given
in table -4.
Ac icie ers
tio et
Table 4-4 tivity Coeff
Param
nt Paramet
[8] .
ers
\Phi
l
L
L
Equa n T
M.WILS (/ R \lambda
134
3ON \lambda-\lambda)
(\lambda -
= -751.71 K
1222
NRTL(R

```
```

) \ R
=3.3 K
21
1 1
\alpha 3 g-g)/
1211
= 671.8 K
UNIQUAC }\Delta\textrm{U}/\textrm{R
= 1081.40 K
12
(g-g
22
21
63.
)/ R
=1208 K
U
2
12
33.15 K
= \alpha=
0.4
21
22
3\Delta
/ R
=-2.02 K
1

```

The prNation-5

UNIFAC Equatio rs
43.65 K

Z / \(2=543.15 \mathrm{~K}\)
aramete \(s\) of the U IFAC equ \(n\) are give in tables 4 and 4-6.
Table 4-5 n Paramete [9].
CH2O
Branch CH3 CH3CO H2O
R
0.90111 .67240 .91830 .90
0.8481 .4880 .781 .40

Group 19137
k

IFAC Equa n Paramete [9].

\section*{a}

\section*{k,m}

Table 4-6 UN tio rs
) 3
(K 1917
10476.4251 .51318
\(926.760-103.6472 .5\)
\(1383.36191 .10-314.7\)
7300 -195.4 540.5 0
The value
1
ua iv es nd
s of \(\gamma\) for the 4 eq tions are \(g\) en in tabl 4-7, 4-8 a 4-9.
Table 4-7 Values of \(\gamma\)
un \# T C
\({ }^{1}\) for the binary system Ethyl-acetate (1) \Water (2) by sampling method 1 .

```

2
72.960 0.31812 2.23809 2.74150 2.18071 1.13736
VLLE
10
7 1 . 8 6 2 0 . 3 8 8 0 0 1 . 9 7 6 6 7 2 . 2 2 0 3 4 1 . 9 1 0 3 1 1 . 0 2 5 9 6 ~
LLE
8
3
o
X M N
V 7
V 7
V
VLLE
6
7 1 . 2 5 8 0 . 4 5 1 3 9 1 . 7 8 5 3 3 1 . 9 1 0 1 6 1 . 7 2 2 6 5 0 . 9 7 8 1 6 ~
71.753 0.541281.566331.607021.51494 0.95498
VLLE
70.407 0.553131.54217 1.575821.491880.97967
VLLE
1
7 1 . 2 8 3 0 . 6 7 1 9 5 1 . 3 2 5 8 0 1 . 3 1 7 0 3 1 . 2 9 0 9 8 ~ 0 . 9 8 4 2 6 ~
VLLE
4
7 1 . 8 5 0 0 . 7 3 0 9 6 1 . 2 3 8 5 1 1 . 2 2 0 8 3 1 . 2 1 0 8 0 ~ 0 . 9 8 4 7 5 ~
VLLE 71.383 0.77782 1.17775 1.15691 1.15546 0.97751
VLLE
7
5
73.419 0.79263 1.15870 1.137891.13829 0.98040
473 1.VLLE
11
73.763 0.822331.12104381.10777 0.98499
VLLE
12
74.800 0.885091.062351.047161.05266 0.99325
VLLE
13
5007110.0172.12.9500 1.015 1.00312780.99858
VLLE
9
14
76.3700.984001.001871 .00.999891.0008 1 0149
em Ethyl-aTable s t c samp
4-8 Value of }\gamma\mathrm{ for the
1
binary sys etate (1)\ Water (2) by ling
et

```
```

m hod 2.
\gamma
O
Run \# S R I NIF T
C X
1
M.WIL ON N TL UN QUAC U AC
VLLE
72.9605 8 .63548 0.95462 0.589561.467 3 1.4 357 1
VLLE 8 0 6 .20700 0.97677
10
71.25 0.773571.183 8 1.1 238 1
VLLE 2 4 4 .18536 0.97911
3
71.86 0.786871.1666 1.1547 1
VLLE 3 94 .18005 0.97955
8
71.75 0.789811.16291.1 194 1
VLLE
VLLE
6
13
11
74.80053 .04630 0.99494 0.901531.048 31.0549 1
73.41950.013490.99860 0.95000 1.0155 1.0 997 1
VLLE
12
73.76350.013460.99861 0.950001.01511.0996 1
7 3

```
Calculations
Table stc sa
et
4-9 Value of \(\gamma\)
for the binary sys
m
em Ethyl-a
hod 2.
    \(\gamma\)
Run \# T
o
C X
1
B
```

etate (1)\ Water (2) by mpling
1
M.WILS R I UON N TL UN QUAC NIFAC
VLLE
71.753 0.00676 5.07834 57.41965 21.4521242.89405
VLLE
6
71.258 0.01204 5.17695 66.19153 22.65216 56.66427
VLLE
3
72.960 0.016625.2953876.9936824.17656 82.56744
VLLE
10
71.8620.030074.80943 41.06641 18.42553 22.80326
VLLE
8
73.419 0.32573 2.20601 2.671489 3.20944 1.12219
VLLE
11
73.763 0.73989 1.173541.206831.16686 0.97488
VLLE
12
74.800 0 3275.0.850971.094 1.07619703 0.98913
1 3
The
ined by using equations (2.2.3), (2.2.6)
m le th
roy i
values of }\boldsymbol{Y
1fhs-a \y
thod 1.

```
```

Y

```
Y
I
I
pred
pred
    are determ
    are determ
and fro the data in the tab es 4-1 to 4-9. Tabl s 4-10 to 4-12 list e values
and fro the data in the tab es 4-1 to 4-9. Tabl s 4-10 to 4-12 list e values
of the p edicted m le % Eth l-acetate n the gas phase (Y
of the p edicted m le % Eth l-acetate n the gas phase (Y
Table 4-0 Values o Y
Table 4-0 Values o Y
Run # X
Run # X
1
1
O
O
pred
pred
    for te binary sy
    for te binary sy
me
me
1
1
exp
```

exp

```
```

|
pred
p
red
).
tem Ethyl cetate (1) Water (2) b sampling
Exp. M.W RTL UNIQ. UNIF. P.R.(EOS)N
VLLE
0.000290.07793 0.00305 0.040020.005350.00683
581
4 0.0784VLLE
18
0.000590.095660.0059 9 0.010330.01329
145
VLLE
17
0.006510.426730.056050.675940.0 0.11062
938
9283
LLE
16
467509901 .05698 .15256 .16341
1066
VLLE
V 0.01508 0.4 0. 100
15
0001.03038.71916 .12073 .030380.16527 0.15611
6 7 8
LLE
2
.31812.66801 . 62896 .77043 0.61283 . 29556 .8406
LLE
V0000002
V000001
V000007
10
. 38800 68133 65257.73301 0.63066 0.32411 .6550
LLE
8
.45139 .73685 . 67139 .71833 0.64782 0.35881 .5874
VLLE
3
0000.54128 .78067.71715 .73578 0.69362 0.433340.57939
VLLE

```
```

VLLE
VLLE
6
1
4
0000.55313.68436 .68968.70473 0.66719 0.4371 0.55676
0000.67195 . 63273.74046 .73556 0.72101 0.53663 0.6085
0.730960.508610.766110.75518 0.748970.600850.65042
VLLE
0.777820.75010.7628 0.7493 0.748370.634130.66866
VLLE
5
0.792630.850620.817710803020.80330.693120.72417.
VLLE
V
V
11
0.822330.85279 0.83243 0.81737 0.819870.73019 0.75364
LLE
12
0.88509 0.91261 0.87446 0.86196 0.866490.818440.82933
LLE
LLE
13
9
14
0.95000 0.789840.821510.816910.819140.807460.81233
0.98400 0.98608 0.96293 0.962170.962560.96312
V 0.96312

```
74

\section*{Chapter Four}

Results \&
Calculations

Table 4-11 Values of Y
```

Y
Run \# X
1
T
pred

```
f ling
method 2.
```

1
exp
or the binary sys em Ethyl-acetate (1) \Water (2) by sampt

```
```

Y
I
pred
Exp. M.W. UNIQ. UNIF. P.R(EOS)NRTL
0VLLE
0.58956 0.66801 0.79553 .781130.80720 0.49331 0.68458
VLLE
6
0 . 7 7 3 5 7 0 . 7 3 6 8 5 0 . 7 5 7 1 3 0 . 7 4 3 8 8 0 . 7 7 2 4 3 0 . 6 2 7 6 0 0 . 6 6 3 3 0
VLLE
3
0.786870.68133 0.77057.756710.78306 0.652810.684970
VLLE
8
0.789810.780670.728340.736300.811690.653130.60998
0.901530.91261 0.87885 0.86792 0.87698 0.83471 0.84319 VLLE
VLLE
10
13
1
1
0.950 0.84275 57020.84258 0.84711
00 0.850620.85876 0.8
E
12
0.000.8790.8580.8640.860.85240.8565
VLL 950 52 67 28 58365
Table 4-12 a
V lues of Y
1
for the bi ry system E hyl-acetate)\ Water (y samp
method 2.
Y
n \#
1
B
xp
Y
I
pd

```
```

E p. M . NRTL UNI . UNIF P.R(EO
L .E
0 6760.70670.0130.438150.137 80.0554
1431
LE
10
0 2040.76850.0570.6530.22530.086
1848
LE
3
06620.68010.0310.826510.30890.6019
0221
LE
6
00070.61330.1411.036720.46550.1536
655
LE
8
05730.80620.69460.76320.93040.3046 0.8231
LE
1 1
09890.82790.78610.803780.777 60.6490.6969
LE
12
13
ed
nat (1 2) b ling
I
ere
Ru X x.W Q .S)
VL0083056
VL .01 35196
VL
.016772
VL .03 8 21 1 6
VL. . }255357
VL.7351139
VL
.85165953
00970.92610.8790.8511710.8630.78280.8014
The ab olute dev tion or d fference (Y

```
```

 s ia i \(\Delta\)
 hbn
1
) whic is given y equatio
is ulated for he binary system Et yl-acetate (1) \Wat (2) for th
4.2.1 calc t her e
two sampling methods. The values are listed in tables 4-13 to 4-15.

```
\(\Delta \boldsymbol{Y}\)
1
\(=A B S(Y\)
1
exp
    - Y
1
pred
)
(4.2.1)
75

\section*{T}
le 4-13 V lues of \(\Delta \mathrm{Y}\)

1
for the bin ry system Ethyl-acetat (1) \Water 2) by sampling method 1
Exp.
\(\Delta \boldsymbol{Y}\)
\(\boldsymbol{Y}\)
exp
1
M.W NRTL UNIQ. UNIF. P.R(EOS)

Run \#
VLLE
```

18
0 . 0 7 7 9 3 0 . 0 7 4 8 8 0 . 0 3 7 9 1 0 . 0 7 2 5 8 ~ 0 . 0 7 1 1)
581
VLLE
0.095660.089720.01717 0.08533 0.08237
145
VLLE
17
0.426730.370680.249210.3339 0.31611
938
0.61023
VLLE
16
0.44675 0.34774 0.294190.28334
1066
VLLE
15
0.50610360.092240.1418180.2575 0.246570.24
LLE
7
.10283 .08828 0.0961 0.02423
VLLE
V 0.632730.10773 00
4
0.66801 0.03905 0.102420.05518 0.37245 0.17261
VLLE
10
0 . 6 8 1 3 3 0 . 0 2 8 7 6 0 . 0 5 1 6 8 0 . 0 5 0 6 7 0 . 3 5 7 2 2 0 . 0 2 6 3 2
VLLE
8
0.68436 0.00532 0.02037 0.01717 0.24726 0.1276
VLLE
1
0.71916
0.59843
0.31122
0.55389 0.56305 677
VLLE
2
0.73685 0.06546 0.018520.08903 0.37804 0.14938
VLLE
3
0.7501 0.0127 0.0008 0.00173 0.11596 0.08144
VLLE
VLLE
VLLE

```
```

5
6
9
0.780670.063520.044890.086980.34732 0.20128
0.789840.031670.027070.0293 0.017620.02249
0.850620.03291 0.0476 0.047320.1575 0.12645
VLLE
0.85279 0.020360.035420.032920.12260.09915
VLLE
12
0.912610.038150.050650.046120.094170.08328
VLLE 0.98608 0.02315 0.02391 0.02144 0.02296 0.02296
13
14
Average 0.12265 0.11103 0.11924 0.20763 0.09838
able 4-14 Values of }\Delta\textrm{Y
1
for the binary system Ethyl-acetate (1)\ Water (2) by sampling
method 2.
\DeltaY
Run \# X
1
T
1
M.W. NRTL UNIQ. UNIF. P.R(EOS)
VLLE
0.58956 0.127520.113120.139190.17471 0.01657
VLLE
6
0.773570.02028 0.00703 0.03558 0.10925 0.07355
VLLE
3
0.786870.08924 0.07538 0.10173 0.028520.00364
VLLE
8
0.789810.052330.04430 0.03109 0.127530.17069
VLLE
10
0.901530.03376 0.04469 0.035630.07790 0.06942
40.00787 0.00VLLE
13
11
0.9500 . 81 640 00 0 00 .00804 0.00351
VLLE 0.95000 0.01479 0.01005 0.01304
12

```
```

0.00014 0.00376
0.040.0432005181 .075160.04873

```
Average 4940.0
76

\section*{Chapter Four}

Results \&
Calculations

Table 4-1 of e bin Eth (1) by
```

5 Values \DeltaY
1
for th ary system yl-acetate \ Water (2) sampling
method 2

```
\(\Delta\)
Run \# X
1
B
\(\boldsymbol{Y}\)
UNIF. M.W. NRTL UNIQ. P.R(EOS)
VLLE
0.006760 .750530 .342450 .643020 .72520
1430
VLLE
10
0.012040 .685280 .077550 .511220 .65085
1847
10.15850 0.35VLLE
3
0.016620 .59499220 .06609
2101
VLLE
6
.03020 .355390 .2167
684
0070.55996180 .527
VLLE
8
57310000.320 .2120 .08630 .07992 .545940 .02745
VLLE 981800.15
```

11
0.7390.071 0.02218.02662 12786 0580
VLLE 09 82 0 0. .11
12
0.8570.046 0.06150 .04468 129760 118
Averag 09 0 0. .09e 0.417 0.15770 .26869 39620 0 814
1 3
When tw pha eq 2.2 na
there is o liquid ses (T, B) uation (2.) is writte s

```
```

f

```
f
TB
TB
i
i
    =f
    =f
\gamma
\gamma
Where f
i
= X
,f
i
B
are the partial molar fugacities of the top and bottom liquid
phases. And equation 2.2.3 is written as
TTBB
X
The values of ( }
\gamma
    (4.2.3)
T
re i us
oefficient equations and are given in tables 4-16 and 4-17
/\gamma
(\gamma
1
B
)
```

```
pred
    a pred cted ing the mentioned activity
c
Table 4-16 Values of ( }
```

```
Run # T
o
C
I
/\gamma
1
B
/\gamma
)
B
) for the binary system Ethyl-acetate (1)\ Water (2) by
sa
mpling method 2.
exp
11
T
/\gamma
I
)
pred
Exp. M N U U.WILSON RTL NIQUAC NIFAC
LLE
41.6100.07211000.01836 .01393 .04958 . 13430
LLE
4
34.2720.01843 0.07575000.01313 .04968 . 13980
LLE
3
30.774 0.018540.07766000.01282 .04977 . 14330
LLE
2
57.903 0.019170.06766000.01672 .05143 . 12410
LLE
LLE
6
5
1
49.6750.01926 0.06981000.01534 .05033 . 13070
24.8040.019720.05978 0 0 0.01893 .04964 . 15130
```

```
LLE
7
65.3310.02100 0.06640 0 0 0.01848 .05234 . 12450
7 7
```


Chapter Four

Results \& Calculations

Table 4-17 Values of (γ
Run \# T
o
C
${ }_{T}$
$/ \gamma$
T
$/ \gamma$
1
B
)
${ }^{1}$
exp
) for the binary system Ethyl-acetate (1) \Water (2) by sampling method 2.
$(\gamma$
1
1
T
$/ \gamma$
${ }_{B}^{1}$
)
pred
Exp. M.WILSON NRTL UNIQUAC UNIFAC
VL 0 LE
71.7530 .008560 .054360 .014830 .046470 .0963
0.06083 0.0VLLE

10
3
6
71. 580770.1087820 .0155617560 .50

VLLE 72.960
0.028190 .077560 .025830 .068150 .11670

```
VLLE
V
V
V
71.8620 .038220.08075 0.02790 0.06318 0.15694
LLE
8
7 3 . 4 1 9 0 . 3 4 2 8 7 0 . 4 8 0 9 6 0 . 3 7 8 0 6 0 . 3 7 9 9 9 0 . 9 4 8 8 7 )
LLE
11
73.763 0.77883 0.863300.836870.86330 1.02460
LLE
12
74.800
0.943920.966730.962560.970451.00509
1 3
    The absolute d or [ }
    which is given by
equ tion 4.2 is c or th syst yl-ace )\W
eviation difference ( }
es o }\gamma
B
)
) for the binary system Ethyl-acetate (1)\ Water (2) by
g.
T
/\gamma
11
B
)]
a .4 alculated f e binary em Eth tate (1 ater (2)
for the sampling method 2. The values are listed in tables 4-18 and 4-19.
```

$\Delta(\gamma$
1
T
$/ \gamma$
I
B
$)=A B S \quad[(\gamma$
1
T
$/ \gamma$
B
)
${ }_{1}^{-(\gamma}$
T
$/ \gamma$
B
)
pred
]
(4.2.4)

Table 4-18 Valu f Δ (

```
(\gamma
I
1
/\gamma
/
samplin method 2
1
B p
    \Delta(\gamma
)
T
o
C Exp. M.W SON TL U IQUAC
LLE
4
I
T
/\gamma
B
Run # IL NR N UNIFAC
41.6100.01836500.0400 0.00400.03100 0.11600
LLE
34.2720.01843500.0700 0.00500.03100 0.12100
LLE
LLE
3
2
30.7740.01854500.0900 0.00600.03100 0.12500
57.9030.01917400.0 800 0.00300.03200 0.10500
LLE
49.6750.01926500.0100 0.00400.03100 0.11100
```

```
LLE
5
24.804 0.01972400 0.0000 0.00100.03000.13200
LLE
1
65.3310.02100400 0.0800 0.00200 .03200.10500
Average 0.0 051 .004 0.031 0.116
7
```

78

```
C Exp. M.WILSON NRTL UNIQUAC UNIFAC
VLLE
09300 71.258 0.01556 0.04500 0.00200 0.03500 0.
VLLE
3
7 2 . 9 6 0 0 . 0 2 8 1 9 0 0 . 0 4 0 0 0 ~ 0 . 0 8 9 0 0 ~ 0 . 0 4 9 0 0 ~ 0 . 0 0 2 0 )
VLLE
V
6
71.862
0 20.02500 0.11900.03820.04300 0.01000
LLE .0085 0.04 0 0
VLLE
8
73.4190.34287 8 03500 0.03700 0.60600 0.1300 0.
VLLE
11
505800 0.08500 0.2460073.763 0.778830.08000.
VLLE
12
30
7 4 . 8 0 0
0.943920.0200 0. 1900 .02700 0.06100
Average 60.0 1 0.019 0.041 0.186
1 3
    The s th t b
ystem E yl-acetate (1) / Wa er (2) was studied y other researchers
.e]ig
[2,14] The exp rimental data of [2 are pred cted usin equation 2.2.3 and
cfuagbn
the 4 a tivity coe ficient eq ations. V lues are iven in ta les 4-20 a d 4-21.
pred
Table 4-20 Values of Y
for the inary syst m Ethyl-ac tate (1)\ W er
beeat
ef
(2) experim ntal data o [2].
P 3
= 101.25 kPa.
Y
T
O
```

```
71.7530660.00600 0.03800 0.08800
C X
1
I
exp
Y
I
pred
Exp. M.W. NRTL UNIQ. UNIF. P.R(EOS)
1000.00020.0017 0.00240.0313 0.0043 0.00551
4 8 . 5 3
99.90.00030.00070.00340.04390.006 0.00773
6 7 . 9 1
98.850.00056 0.040550.005940.077050.01040 0.01344
29.402
96.20.001140.12560 0.011320.14871 0.01957 0.02485
259.329
86.50.004890.59100 0.03540 0.46778 0.05779 0.07105
1027.154
76.20 .00858
0.668000 .043860 .583880 .067360 .07966 26582.836
70.550 .045900 .714000 .167041 .072270 .216440 .17208 1296.836
70.550 .144000 .702500 .386170 .857450 .411080 .20955 5.924
70.50 .269000 .706000 .534490 .718170 .525050 .24758 1.052
70.450 .354000 .709000 .601910 .700760 .582400 .28844
0.709000 .628110 .692940 .606050 .321430 .608
0.689
70.550 .40800
70.50 .514000 .710000 .681390 .706340 .658160 .394060 .557
70.50 .608000 .702500 .703110 .707460 .682040 .681720 .570
70.450 .690000 .707000 .720650 .713880 .702500 .537160 .601
70.50 .775000 .699000 .736800 .723790 .722660 .613020 .648
73.350 .944450
71.450 .873700 .765000 .777600 .765230 .769480 .722890 .736
.865000 .867960 .862430 .865050 .844890 .841
75.550 .980700 .941100 .951510 .950440 .950990 .933080 .935
```


Chapter Four

Calculations

Table 4-21 Values of $\Delta \mathrm{Y}$
$\mathrm{P}=101.325 \mathrm{kPa}$.
Y
1
exp
for the binary system Ethyl-acetate (1) \Water
(2) experimental data of [2].

```
T
o
C X
1
```


$\Delta \boldsymbol{Y}$

```
1
Exp. M.W. NRTL UNIQ. UNIF. P.R(EOS)
100.000 .000220 .001710 .000710 .029610 .002560 .00380
47.847
99
```

.900 .000310 .000670 .002730 .043230 .005310 .00706
67.228
10.036598 .850 .000560 .040550 .034600 .030150 .02711
28.718
96.200 .001140 .125600 .0 .023110 .106030075
258.645
114280.1
86.500 .004890 .591000000 .55560 . 12322 . 53321 . 51995
1026.469
76.200 .008580 .668000000 .58834
26582.152
. 62414 . 08412.60064
70.550 .045900 .714000000

1
. 54696 . 35827.49756 . 54192
296.151
70.550 .144000 .702500000 .31633 . 15495 . 29142. 49295
5.240
70.500 .2690000000 .70600 . 17151 . 01217 . 18095 . 458420.36800
70.450 .3540000000 .70900 . 10709.00824 . 12660 . 420560.00400
70.550 .4080000000 .70900 . 08089 . 01606 . 10295 . 387570.07600
70.500 .5140000000 .71000 .02861.00366.05184. 31594 0.12700
70.500 .6080000000 .70250 .00061.00496 .02046 . 02078 0.11500
70.450 .6900000000 .70700 .01365.00688.00450.169840.08400
70.500 .7750000000 .69900 .03780 .02479.02366 . 08598 0.03600
71.45000000 .87370 . 76500 .01260.00023 . 00448 .04211 0.05200
73.35000000 .94445 . 86500 00296 00257.00005 .02011 0.15600
75.55000000 .98070 . 94110 01041 . 00934 . 00989 . 00802 0.25100

A 000 0verage . 14786.05233 .14401 .233960 .12692
The calculations in the previous tables where achieved by the aid of the
tails are give
software Microsoft Excel, more de n in appendix C.1.2.
The data of th m ater (2 also predicted
a ble e valu
btain th
ficient equations NRTL, UNIQUAC and UNIFAC and the PengRobinson (

The parameters of the N NIQUA en in 3 and the
parameters of the UNIFAC equation are given in tables 4-24 and 4-25.
e binary syste Toluene (1) \ W) were
s before. Ta 4-22 lists th es of $\Delta \boldsymbol{Y}$
o ed using e activity
coef
EOS).
1
RTL, U C are giv table 4-2
80

Chapter Four
 Calculations

Results \&

Table 4-22 for the binary system Toluene (1) \backslash Water (2) by sampling
Values of ΔY
1
method 3 .

```
1
P}=101.325 kP
|
T
O
o
C Exp. TL UNIF.
210.21372
8126514
0130.27
0025.3979
9720.33
582.57647
RUN X
NR UNIQ. P.R(EOS)
VLLE
96.10.08097
4.4.3748424
VLLE
19
94.60.1444764
2.995.8889461.73055
VLLE
20
93.40.2058746
1.945.19016 }
0.52120
VLLE
21
92.6100.283160.36746
1.20086 3.75540 1.29873
0.13514
LLE
22
92.4740.369780.404370.74655
2.21773
0.877650.03786
LLE
V
V
V
V
V 9.151 0.76141 0.62548 0.08662 0.73402 0.07457 0.05838
```

```
VLLE
23
92.4870.43648 0.480640.47657
1.43439
0.22940 0.10425
LLE
24
93.7300.547790.536230.24968
1.02190
0.44795 0.13697
LLE
25
94.9660.61300 0.57692 0.158470.834870.009170.14279
LLE
26
2 7
28
9
99.3360.766730.64372 0.069720.66015 0.18343 0.07021
8129 0.71343 0.07118 0.6340VLLE
103.890 0.840.350550.02348
VLLE
29
30.74491 0.09 0.62848 0.12068 0.07923 106.098 0.9288 917
VLLE
30
255229855796702883299.086107. 0.950.70.00.60.31048
VLLE
31
108.5430.953100.83019120.085 20.675 60.068720.07406
    Averag 0 0e 0.214 60.685 80.26920 0.12250
32
Table 4 i e te b m 2
-23 Activ ty Coeffici nt Parame rs for the inary syste Toluene(1)\Water( )[8].
ua P s
qE tion arameter T
NR
1
)
6
( /
    0
\alphaTL (g
12
-g
/ R
```

```
= 1057.0 K
UNIQ /
3
1
g
21
-g
) R
=1643.2 K
22
/
1
Z/2 = 5 UAC }\Delta\textrm{U
12
R
= 13716 K
\DeltaU
R
=305.7 K
21
Table 4-24 UNI t t b e
2
12
= \alpha
=283.0
0.200
FAC Equa ion Parame ers for the inary syst m
Toluene (1)\Water (
A
) [9].
21
Branch ACH CCH3 H2O
R
0.53131.26630.9200
Q
0.4000 0.96801.4000
Group 10 7 12
k
Table 4-25 UNIFAC Equ
Toluen
a
k,m
```

```
ae
e)
tion Param
(1)\Water(2
(2
K)}10
eters for th
[9].
binary sys
7
10 0-14 362.3
121670 377.6
7550
9903.8
8 1
0 K
323.00 K
tem
6.8

\section*{T}
```

e
he T 1 -a
PiO
data of the ternary system oluene () \Ethyl cetate (2) \Water (3)
wer
fi
also predicted us
coef
io
t R
ing the eng-Rob nson (E S) and the activity
c a Q it a mf
urtm
ient equ ions N TL, UNI
s
UAC w h the bin ry para eters o the prev
e

```
s bina y system and he para eters of the binary system Tolu
```

,\Delta
ny alia
e(1)\Eth
Y
l-acetate(2) [8]. T bles 4-26 to 4-28 st the v lues of }\Delta\boldsymbol{Y

```
,
\(\Delta \boldsymbol{Y}\)
23
4- es Y t u
I Water ( ) using P.R EOS
26 ValuTable of \(\Delta Y\)
1
, \(\Delta\)
2,
\(\Delta Y\)
for he Ternary system Tol ene (1) \Ethyl-acetate (2)
3 () with k
\begin{tabular}{l}
3 \\
ij \\
\hline
\end{tabular}
\(=0\)
\(\mathrm{P}=101.325 \mathrm{kPa}\) Exp. P.R(EOS)
o
R un \# T
1
o
C X
X
2
0
Y
1
Y
2
890.131810 .642210 .017890 .437160 .0011 0VLLE
42
\(\Delta \boldsymbol{Y}\)
1
72.8 .18750 .0154
VLLE
74. 570.1991150 .4680 .00253408814740 .41 .056 0.31860 .004
VLLE
41
75.680 .235930 .380410 .069960 .429350 . 052808 . 3320.0059
VLLE
46
76.8820 .266850 .349390 .100370 .338250 .07960 .24270 .0574
```

VLLE
45
7 9 . 3 6 1 0 . 3 0 3 1 2 0 . 3 1 1 1 9 0 . 1 0 0 9 7 0 . 4 0 0 5 4 0 . 0 7 4 9 ~ 0 . 3 0 4 8 0 . 0 1 7 8)
VLLE
36
7 7 . 4 9 5 0 . 3 3 8 2 6 0 . 2 7 8 5 3 ~ 0 . 1 1 8 9 7 0 . 3 2 7 8 3 0 . 0 8 6 4 0 . 2 2 3 3 0 . 0 5 5 7)
VLLE
37
80.178 0.4026 0.373650.09469 0.40495 0.02470.20120.0295
VLLE
43
7 9 . 8 8 7 0 . 4 0 6 2 1 0 . 2 0 8 0 6 0 . 1 5 1 7 3 0 . 3 0 1 9 8 0 . 1 1 0 8 ~ 0 . 2 2 6 2 0 . 0 7 9 5)
VLLE
38
83.247 0.42344 0.19078 0.12221 0.297760.07240.21710.0670
VLLE
47
83.652 0.479 0.13668 0.18136 0.248310.1193 0.18420.0764
VLLE
39
87.081 0.55113 0.0676 0.22563 0.14123 0.1345 0.1007 0.1099
VLLE
40
89.263 0.566580.21071 0.196110.286470.0514 0.1178 0.1059
VLLE
44
90.520 . 628520.14408 0.219150.283490.0495 0.1605 0.1294
Average 0.0703 0.2167 0.0581
48
Table 4 s Y t u
s ia
-27 Value of }\Delta\textrm{Y},
1
Water (2) u
2,3
|
ing NRTL
|Y for he Ternary system Tol ene (1) \Ethyl-acetate (2)
\
equation w th binary p rameters.
2
P}=101.325 kPa Exp. NRTL
o
Run \# T
1
o
C X
X
2
0

```
```

Y
I
Y
2
\DeltaY
I
VL 3LE
72.889 0.131810.642210.017890.437160.0271 0.7090 0.328
LE
42
74.157 0.19951 0.41648 0.07024 0.41534VL 0.0023 0.2600 0.2578
VLLE 75.68 0.23593 0.38041 0.06996 0.42935 0.0193 0.1951 0.2166
LE
41
46
45
76.8820.26685 0.34939 0.10037 0.33825 0.00370.2397 0.253
VL6
VLLE
36
0.311190.10090054
0.0265 79.361 0.3031270.40.13610.1454
VLLE
77.4950.386320.30.19830427851870.327.012090.2179.110
VLLE
37
80.178 0.4026 0.373650.094690.40495 0.0696 0.2624 0.1303
VLLE
4 3
79.8870.406210.20806 0.15173 0.30198 0.0167 0.0295 0.1550
VLLE
38
83.247 0.42344 0.190780.12221 0.29776 0.0742 0.0344 0.1249
VLLE
47
83.6520.479 0.13668 0.18136 0.24831 0.0409 0.0183 0.0899
VLLE
VLLE
39
40
44
87.081 0.55113 0.0676 0.22563 0.14123 0.0575 0.0219 0.0562
89.263 0.566580.21071 0.19611 0.286470.1092 0.15140.0693
VLLE
90.520.628520.14408 0.21915 0.28349 0.1315 0.0133 0.1389
Average 0.0455 0.1679 0.1680
48
82

```
```

\DeltaY
2
I
\DeltaY
\DeltaY
3
3

```
Chapter Four
Results \&
Calculations
Table 4 s Y t u
a s
-28 Value of \(\Delta Y\)
1
, \(\Delta\)
2,
\(\Delta Y\)
for he Ternary system Tol ene (1) \Ethyl-acetate (2)
I W
ter (2) using UNIQUAC equation with binary parameter.
3
. X
\(\mathrm{P}=101325 \mathrm{kPa}\) E p. UNIQUAC
Run \# T
VLLE
42
o
1
C X
X
2
0
Y
1
Y
2
\(\Delta \boldsymbol{Y}\)
1
72.8890 .131810 .642210 .017890 .437160 .0180 .19310 .2608
0.415340 .03390 .0337 0.1582VLLE
74.1570 .199510 .416480 .07024
VLLE
41
75.6800 .235930 .380410 .069960 .429350 .06570 .02970 .1039
VLLE
46
76.8820 .266850 .349390 .100370 .338250 .06580 .01560 .1278
VL 0.40054 0.1159 0.0932 0.0053LE
```

4 5
7 9 . 3 6 1 0 . 3 0 3 1 2 0 . 3 1 1 1 9 0 . 1 0 0 9 7 ~
E 77.495 0.33826 0.27853 0.11897VL
36
0.32783 0.1017 0.0492 0.0703L
VLLE
37
80.178 0.4026 0.37365 0.09469 0.40495 0.0908 0.0681 0.0218
LE
43
7 9 . 8 8 7 0 . 4 0 6 2 1 0 . 2 0 8 0 6 ~ 0 . 1 5 1 7 3 0 . 3 0 1 9 8 0 . 1 7 5 7 ~ 0 . 1 6 6 2 0 . 0 4 9 9)
LE
VL
VL
VL 1 0.27820.1847 0.2069
VL
38
83.247 0.42344 0.19078 0.12221 0.29776 0.2671 0.1709 0.1199
LE
47
83.6520.479 0.13668 0.18136 0.2483
LE 87.081 0.55113 0.0676 0.22563 0.1412
39
30.36510.12280.3719
VLLE
40
89.263 0.56658 0.21071 0.19611 0.286470.2132 0.12820.4316
VLLE
44
90.520 0.628520.14408 0.219150.283490.2761 0.20130.6208
Average 0.1474 0.1139 0.1431
4 8

```

Tables 4-29 list the values of \(\Delta \boldsymbol{Y}\)
th
1
,\(\Delta \boldsymbol{Y}\)
2
, \(\Delta \boldsymbol{Y}\)
using the UNIFAC equation with
e binary parameters of the previous binary systems.
Table 4-29 Values of \(\Delta Y\)

\section*{LE}
```

3
\DeltaY
for the Ternary system Toluene (1)\ Ethyl-acetate (2)
\ Water (2) using UNIFAC equation.
2
P}=101.325 kPa Exp. UNIFAC
O
1
O
0
Run \# TC XX Y Y
\DeltaY
|Y}\Delta\boldsymbol{Y
VL
VL 0.118970.32783 0.2523 0.1276 0.0508
VLLE
12
123
79.3610.303120.311190.100970.40054 0.2874 0.1889 0.1125
LE
37
38
77.495 0.33826 0.27853
7 9 . 8 8 7 0 . 4 0 6 2 1 0 . 2 0 8 0 6 ~ 0 . 1 5 1 7 3 ~ 0 . 3 0 1 9 8 ~ 0 . 2 7 6 3 0 . 1 8 0 4 ~ 0 . 2 9 6 3 ~
VLLE
83.652 0.47900 0.13668 0.18136 0.248310.2623 0.18420.9224
LE
LE
39
40
4 1
87.081 0.55113 0.06760 0.225630.14123 0.9660 0.07370.034
VL }
74.1570.19951 0.41648 0.07024 0.415340.13220.07670.218
LE
VL 0
VL 1420
VL 4719
VLLE
72.889 0.13181 0.64221 0.01789 0.43716 0.0594 0.0016 0.
LE
42
43
44
80.178 0.40260 0.37365 0.09469 0.40495 0.1544 0.1209 0.
89.263 0.56658 0.21071 0.19611 0.286470.9034 0.0805 0.0531
VLLE

```
```

7 6 . 8 8 2 0 . 2 6 6 8 5 0 . 3 4 9 3 9 0 . 1 0 0 3 7 0 . 3 3 8 2 5 0 . 2 6 8 5 0 . 0 9 7 3 0 . 1 1 4 8)
VL 99LE
45
75.680 0.235930.380410.06996 0.429350.1372 0.24110.23
0.19078 0.12221 0.29776VLLE
46
4
7
48
83.2470.423440.15320.1548 0.3417
90.520220.14400.219150.283490.2498
VLLE 0.6 85 80.3210 0.1273
Aver }80.
age 0.2740.1889 125
83
\DeltaY
3

4.3 Correlation um

of Equilibri Data

paramete ity c uatio LSON RTL
nd UNIQUAC can be determined by applying non-linear constrained ptimization with the following objective function:
rs of the activ oefficient eq ns M.WI, N The
a
o

```
1
cCn
1
I
1j
pred
ij
exp
ij
4/
=\imath-
)YY(ABS
```

```
nc
W
)1.3.4(Y
c
li li
i
==
ith the following constraint:
--YY
\imath
== }
+
)2.3.4(0YY,0
ii
21ii
+
Wh the o ent e n dat and ere c is number f compon s and n th umber of a
points
is the de a te or. T to
Y-
min qua 1 ot aint ion ore
det ive n
    ram he s M N,N
the Eth (r (2 d by tiv of
equation 4.3.1 with the constraint of equation 4.3.2 are given in table 4-
30.
```

sired aver ge absolu deviation difference he aim is
imize e tion 4.3. subject t he constr of equat 4.3.2. M ails are g n in appe dix D .
The pa eters of t equation.WILSO RTL and UNIQUAC for system yl-acetate 1) \Wate) obtaine the objec e function
Ta ara e em te (1) ob on-
ble 4-30 P meters of th binary syst Ethyl-aceta) \Water (2 tained by n n Par
rain tion
linear const ed optimiza .
Equatio ameters T

```
(\lambda
M.WILSON
NRTL (g
-\lambda
=1911
12
12
-g
11
)/R
91 K
.4
(\lambda
)/ R
= 657.643 K
UNIQUAC }\Delta\textrm{U
/ R
= 515.041 K
12
84
21
-\lambda
22
    )/R 343-372
K
=573.328 K
(g
R=1145.033
21
\DeltaU
-g
21
22
)/\alpha
    / R
    = -30.761 K
    =
=0.5
    12
    05
    \alpha 343-37
    K
21
```

Z / 2
$=6.057$
2
343-372
K

Chapter Four
Results \&
Calculations

Table 4-31 lists the values of $\Delta \boldsymbol{Y}$
of the binary system Ethyl-acetate (1) \}
Water (2) using the parameters of table 4-30.

```
Table 4-31 Values of }\Delta\textrm{Y
1
of the binary system Ethyl-acetate (1)\ Water (2) using the
parameters of table 4-30.
    Experimental
\DeltaY
Run # X
VLLE
18
1
o
Y
I
exp
l
```

M.WILSON NRTL UNIQUAC
0.000290 .077930 .000000 .052970 .05279
VLLE 0.0005900 .04840 .04682
6
LLE
.095660 .03116
V 051300.00182
17
. 0060.42670 .12567 . 01467
VLLE
16
0.015080 .446750 .140 .1

0

9407959
. 22692
VLLE
15
0.030380 .71916

0.47

0.133880 .02971

970
VLLE
VLLE
VLLE
2
10
8
3
0.318120 .668010 .120 .00 .021640454495
0.388000 .681330 .130 .00 .043222305300
0.451390 .736850 .180 .00 .121801729477

VLLE
0.541280 .780670 .190 .00 .154150769223

VLLE
6
0.553130 .684360 .110 .00 .083446242179

VLLE
1
0.671950 .632730 .000 .00 .012434998627

VLLE
4
0.730960 .508610 .15

0.2

0793
3872
. 17026
VLLE
7
0.777820 .750100 .060 .00 .061189870360

VLLE
5
0.792630 .850620 .110 .00 .106584794936 VLLE
11
0.822330 .852790 .090 .00 .083920263528

VLLE

12
0.885090 .912610 .070 .00 .076729744883

```
VLLE 0.95000 0.78984 0.02 0.0 0.02128 069 2790
VLLE
13
9
14
0.98400 0.98608 0.02475 0.02378 0.02259
Average 0.11613 0.06936 0.07429
Correlation coefficient (R) 0.930 0.964 0.962
    By applying equation 2.2.3 the value of }\boldsymbol{Y
W
S
    is predicted theoretically
here
\Phi
I
v
and }\boldsymbol{\Phi
I
S
i
are determined by applying Peng-Robinson equation of
tate, equations 2.3.33 to 2.3.40 with k
P
i
S
=0. Table 4-32 lists the values of }\boldsymbol{\Phi
a are
withdrawn by sampling method 3.
nd \boldsymbol{D}
I
S
for the binary system Toluene (1)\ Water (2) where samples
85
1
v
```

```
,P
s
    and \Phi
1
S
for the binary system Toluene (1)\ Water
(2) by sampling method 3.
%OS
Run # C P (kPa) X
VLLE
19
1
\Phi
I
P
(kPa) Ф
96.121 101.325 0.080970.9727366.421 0.97665
VLLE
94.601 101.325 0.14443 0.9713063.3450.97744
VLLE
20
93.497 101.325 0.205820.97004 61.1840.97794
VLLE
21
92.610101.325 0.283160.96865 59.490 0.97827
VLLE
22
92.474101.325 0.36978 0.9673758.864 0.97827
0.43648 0.96VLLE
23
92.487101.325 660 59.2580.97803
VLLE
24
93.730101.3250.54779 0.96574 61.6350.97718
VLLE
25
94.966 101.3250.68 13000.965464.073 0.97643
VLLE
26
10.76156 99.151 1.325041 0.96572.9050.97402
VLLE
27
10.7665899.3361.3250730.96573.3170.97391
VLLE
28
```

```
    10.88128 103.8901.3250290.966 84.045 0.97134
VLLE
29
    10.92871 106.098 1.3250830.966 89.675 0.97010
VLLE
30
    10.95295 107.2551.3250290.966 92.742 0.96945
VLLE
    -\Phi
I
S
f
31
32
1
10.95325 108.5431.3250100.96796.2530.96858
= /P
1
(P
I
equation)
from C.1.2
```

alu he a oeff
The v es of t ctivity c icients γ i are predicted by using the
equations M.WILSON, NRTL and UNIQUAC, the parameters of these
e are ed obje ctio ion le
4 the ter
quations determin from the ctive fun n of equat 4.3.1. Tab -33 lists se parame s.

Table 4-33 Pa ne (1) \ W) obtained by onstra nary system Toluerameters of the bi Non-linea
rc
ation ara
P
ined optimization.
ater (2
1
meters Equ T

$$
\begin{aligned}
& \text { M.WILS } \\
& 2 \\
& -\lambda \\
& 550 \\
& \lambda \\
& 1 \\
& =19 \\
& \text { 67-ON (} \lambda \\
& 1 \\
& =35 \\
& \text { NRTL - } \mathrm{g} \\
& 15 . \\
& \text {) / R (} \\
& \text {. } 06 \text { K } \\
& 1 \\
& 21 \\
& \text { (g } \\
& =151 \\
& 21 \\
& \lambda \text {)/R } \\
& 3.34 \mathrm{~K} \\
& 3384 \text { K } \\
& 22 \\
& \alpha \\
& =0 \\
& \text { 65- (g } \\
& 12 \\
& =4 \\
& \text { UNIQU U } \\
& 492 \text { K } \\
& \text {) / R g) / R } \\
& 11 \\
& 694 \\
& \Delta \mathrm{U} \\
& 12 \\
& 5.104 \text { K } \\
& =\alpha \\
& 22 \\
& =-11 \\
& \text { Z } \\
& =2 \\
& 12 \\
& \text {. } 632 \\
& 3382 \mathrm{~K} \\
& \text { 67-AC } \Delta / R \\
& =.95 \mathrm{~K}
\end{aligned}
$$

```
86
21
21
1.82 K
/R / 2 3
.700
384 K
```

1
$p r$
Y
inary
W u equ.WIL TL IQ h
p s e 4 liste les 356
respectively.
v es of γ
1
,

Table ters

```
ed
    and }\Delta\mathrm{ for the b system Toluene (1)\
ater (
er
2) sing the ations M SON,NR and UN UAC wit
aramet from tabl -33 are d in tab 4-34, 4- and 4-3
4-34 Values of }
1
for the binary system Toluene (1) \ Water (2) using parame
from table 4-33.
\gamma
# M.WILSO NRT UNIQUA
E
Run T
9 0.08 273.475 3.9423 3.57617
E
19
9 0.142.2636 2.3492 2.8543
E 9
```

```
2 0
0.201.76101.89132.3921
E
21
9 0.28 1.43521.63231.9927
E }
22
0.361.24341.47031.6865
E
E
23
24
25
E }
26
9 0.431.1570 1.3806 1.5142
9 0.541.07401.26091.3060
0.611.04601.20141.2170
E
9 0.761.01251.0890 1.0790
E
27
9 0.761.01181.0856 1.0755
E
28
10 0.88 1.0024 1.0256 1.0194
E
29
10 0.921.0008 1.0098 1.0070
E 10
30
0.951.00031.0046 1.0031
E
31
32
o
C X
100.951.00031.00441.0030
s oTabl nary luen r (2) eters
table 4-33.
e 4-35 Values of Y
pred
1
o
NLC
VLL 6.121 097 2
VLL 4.601443 30 8
```

```
VLL 3.497582 }81
VLL 2.610316 0 1 3
VLL 2.474978 649
VLL 2.487 648 6 1 8
VLL 3.73077907 
VLL 4.966 300 364
VLL 9.151141528
VLL 9.336673713
VLL 3.890 129532
VLL 6.098 883 170
VLL 7.255 229505
VLL 8.543 310 322
for the bi
from
ystem T e te(1)\ Wa u amsing par
Experimental
Y
Run # X
1
O
Y
I
exp
pred
M.WILSON NRTL UNIQUAC
VLLE
0.08097 0.213720.18520 0.21009 0.19058
VLLE
19
0.14443 0.277640.20568 0.21346 0.25936
VLLE 0.20582 . 3374 0.22065 0.236970.29971
20
06
VLLE
21
22
0.283160.36746 0.240970.27406 0.33458
0.27013 0.31942 VLL 0.36978 0.40437 0.36640 E
LE
23
0.436480.48 64 0.2988 . 39112
VL 6 1 0.42515 0 LE
VL 050.35659 0
24
0.54779 0.5323 0.3621.44035
```

```
VL 6 8 0.47101 0 LE
25
0.61300 0.5792 0.4100.47712
VL 5 8 0.60184 0 LE
26
0.76141 0.6248 0.5595 .59635
VL 3 20.60748 0 LE
27
0.76673 0.64720.5662.60184
VL 3 30.753660 LE
28
29
0.88129 0.7143 0.7366 .74909
VL 4 8 0.83306 0 LE
0.928830.7491 0.8255 .83069
VL 5 8 0.87789 0 LE
30
0.952290.78 57 0.8741 .87663
VL
31
040.91064 0 LE 0.95310 0.83 12 0.9069.90937
32
87
RUN
```

Chapter Four
Results \&
Calculations
Table 4-3 ory T)
rr 4
6 s Value f ΔY
fo
the pa
1
the binar
ameters f
system
om table
$\Delta \boldsymbol{Y}$
Run \# Y
1
exp
oluene (1
-33.
1
\Water (2) using

```
    % M.WIL SON NRTL UNIQUAC
VLLE
1
9
. }
0 213720.08520.003630.02314
VLLE 0.27764 0.07196 0.06418 0.01828
VLLE
20
0.33746 0.116810.10049 0.03775
VLLE
VLLE
21
22
23
24
0.36746 0.12649 0.09340 0.03288
VLLE 0.40437 0.13424 0.08495 0.03797
0.48064
0.18179 0.12405
0.08952
VLLE
25
0.536230.17412
0.11108 0.09588
VLLE
0.57692 0.16684 0.10591
0.09980
VLLE
26
0.62548 0.06590 0.02364 0.02913
VLLE 0.64372 0.07750 0.03624 0.04188
VLLE
VLLE
27
28
29
3
7 1 3 4 3 0 2 3 2 0 ~ 0 . ~ 0 . ~ 0 . 0 4 0 2 3 0 . 0 3 5 6 6 ~
0.7410.080 0.088150.08578
0 . 7 8 0 . 0 8 8 6
0 . 8 3 0 1 0 . 0 7 6 8 2
4967
VLLE
55710.092320.09106
VLLE
31
```

```
20.08052 0.07925
    Average 0.10096 0.07491 0.05700
32
ion coeffici t (R).978 986087
By applying equation 2. . }3\mathrm{ the value of Y
Correlat en 0 0. .9
1
and Y
of t
(3) are p
ternary system
\ ~ E t h y l - a c e t a t e
    2 he
oluene (1) (2) \ Water redicted theoretically where
T
\Phi
I
vS
    and}\boldsymbol{\Phi
I
ined using P.R (EOS),
2
are determ equations 2.3.43a to 2.3.43c.
As shown in table 4-37.
Table 4-37 Values of }
42
T
o
C X
1
o
v
,P
i
and \Phi
S
for the ternary system Toluene (1)\ Ethyl-acetate
(2)\ Water (3) by sampling method 3.
P
1112222
S
S
\Phi
v
\Phi
S
X
```

```
|
S
72.889 0.131VLLE 8 30.501 0.9552 0.9677 0.6422 87.992 0.9624 0.9746
VLLE
74.157 0.1995 31.926 0.9544 0.9724 0.4165 91.838 0.9614 0.9783
VLLE
4 1
46
0.978575.680 0.235933.7080.95470.9724 0.3804 96.631 0.9617
35.170.9549 0.9726 0.3494 1VLLE
4
76.880.26600.55206190.9788
29.9
LE
7131.3480.95550.97190311209.0340.9650.978
LLE
VL 9.30.3038.124
V7.5128
V 0.9.4711644
V 9.9.0211629
V 3.3.7212635
V 34.3212636
36
7.49503383 3.949350.950.97360.27850296.597 0.20.979
LLE
37
8.17804026 3450.9560.97130.37371.9530.920.978
LLE }
43
.887040623520.9550.97460.20810.9070.950.980
LLE }
38
.247042344920.9560.97270.1908 3.463 0.940.979
LLE }
4 7
39
LLE }
40
.6520.4794950.9560.97390.13675.0520.950.980
.081055114570.9570.9733 0.0676 9.135 0.950.980
LLE }
V7.9.7113645
V 9.3.4214660
V 0.5.6415661
.263056665340.9590.96970.2107 8.7320.960.978
```

```
LLE }
44
48
.520062855470.9590.97080.14414.4870.990.979
```

88
Ф
v
Φ

Chapter Four

Results \& Calculations

Th s ac ffi dict ing
e value of the tivity coe cients γi are pre ed by us the equat ns M.WILSON, RTL and NIQUA, the p meters o these equa ns are etermin from the bjective function equation .3.1. T
io N UC ara f
tio ded o of 4
ables 4-38 and 4-42 list these parameters.
Table 4-38 Parame ate (2) \Water (3)
ters of the ternary system Toluene (1) \Ethyl-acet
obtained by Non-linear constra ptimization. ined o
IL R
8
M.W SON a

12
/
K
a
$=0.361$
a
23
/
2.

R
$=-2272 \mathrm{~K}$
21
/ R
$.11=7$
a
13

/ R

$=-597.52 \mathrm{~K}$
a
53
$=181 \mathrm{~K}$
NR
K 8 K
TL (g
)/R
$=33.78$
(g
1
12
)/R
$=3071.211$
32
1
(g
a
/ R
99.57 K

32
)/R
$=31.3=517$
K
α
(g
$=\alpha$
1221
, γ, Y
$=\alpha$
13
1
/ R
$=$ K 1180.72
$\stackrel{31}{\mathrm{~T}}=3-365 \mathrm{~K}$

5 K
)/R
598 K
3
2

```
(g
)/R
=499.88=857
31
(g
T 365
= \alpha
31
=\alpha
3
=\alpha
=0649
I
32
Y}\mathrm{ te ste
l ace \W ) h ons SO
d w me ta ds 40 an
4 t
    The va ues of }
Table 4-39 Values of }
1
2
,Y
and }
I
pred
2
pred
,\Delta\boldsymbol{Y}}\mathrm{ and }
for the rnary sy m
To uene (1) \Ethyl- tate (2) ater (3 using t e equati M.WIL N
an NRTL ith para ters from ble 4-38 are liste in table -39, 4-4 d
4-1 respec ively.
2
)/R
. }3
23
8 K
    =353-K
for the tern y system Toluene (1)\Ethyl-acetate (2)\
ar
Water (3) using parameters from table 4-38.
\gamma
Run # T
```

```
o
\gamma
O
C.WILSON NRTL X
2
M.WIL NRTL X
M SON
LE
89 0 0 3401.276 0.6421.11000 1.1827
LLE
VL 72.8 .1318 .59 16 2 3
V 4.199597 23705
V 5.63531988794
42
7570.150.801.30.4161.315701.24704
LLE
LLE
41
4 6
45
7800.290.901.20.3801.293201.23533
72 0.290.9 0 1.20.3491.272201.22678
LLE
V 6.86690061544
V 9.30357932102
V 7.43838393435
V 0.102442 22577
V 9.8 0607260231
V 3.22329049198
7610.311.001.20.3111.246901.21862
LLE
36
7950.3 3 1.001.1 0.278 1.15980 1.20329
LLE
37
8780.460.9 0 1.1 0.373 0.99480 1.15572
LLE
43
7870.421.201.1 0.208 1.16070 1.20216
LLE
LLE
38
4 7
39
8470.441.201.1 0.1901.142201.20053
```

```
8520.1.201.10.136 1.08880 1.19751
LLE }
V 3.6479 842 18057
V 7.0 51 34283526
V 9.26667262607
V 0.5 28 0164598 1
810.511.301.00.0671.01460 1.19819
LLE }
4 0
6 3 0 . 5 6 1 . 0 0 1 . 0 0 . 2 1 0 0 . 8 8 9 2 0 ~ 1 . 1 6 2 4 8 )
LLE
44
48
9200.651.101.00.144 0.84820 1.17153
```

89
2
Chapter Four
Table 4-40 Values of Y
1
and or the te ystem T (1) \Eth tate
Y
2
pred
f rnary s oluene yl-ace
(2) \backslash Water (3) using parameters from table 4-38.

```
Y
Run # X
1
O
Y
I
exp.
1
pred
```

Y
M.WILSON NRTL X
2
O
Y
2
exp.

```
M.WILSON NRTL
VLLE
VLLE
2
0.13180.0179 0.0239 0.0513 0.6422 0.4354 0.6269 VLLE
424
0.1995 0.0702 0.0551 0.0848 0.4165 0.4153 0.5054 V
0 0.0745 0.1030 0.3804 0.4294 VLLE
4 1
46
0.2359 0.070 0.4774 VLLE
VLLE .1 934 0.349 .3 0. VLLE
VLLE
VLLE
VLLE
VLLE
VLLE
0.266900040.00.1190403324488
0.30310100.1 0.14380120.4005 0.4244 V
4545
36
37
43
8
0.1 235 .31 LLE
0.1 0.1460 0.2785 0.3278 0.37 V64
49470.150.1786070.399 0.4168 V
0.3383 0.1190 270 LLE
0. }0260.002.373 3 LLE
0.1928 0.1853 0.3020 0.2694 VLLE
0.40620.15170.2081
383
7
0 . 4 2 3 4 0 . 1 2 2 2 0 . 2 2 8 8 ~ 0 . 2 1 3 9 ~ 0 . 1 9 0 8 ~ 0 . 2 9 7 8 ~ 0 . 2 7 0 0 ~ V L L E ~
4 7 4
VLLE LE
VLLE
0.4790 0.1814 0.2745 0.2390 0.1367 0.2483 0.1869 VL
3939
40
44
4 8
0.55110.2256 0.3672 0.29820.0676 0.1412 0.0957 VLLE
0.5666 0.1961 0.3224 0.3210 0.2107 0.2786 0.2783 VL
VLLE LE
0.6285 0.2192 0.3848 0.3653 0.1441 0.2835 0.1887 VLL
VLLE E
able 4-41 Values of }\Delta\textrm{Y
1
```

```
and \DeltaY
```

```
for the ternary system Toluene (1)\Ethyl-acetate (2)\
T
Water (3) using parameters from table 4-38.
```

```
\DeltaY
Run #
VLLE
42
Experimental
\DeltaY
1
expe
Y
2
xp
```

ON NRTL M.WILSON NRTL
Y
M.WILS
0.0170 .43
0.07000 .4290 .45331 .0480
0.07020 .4150 .52145 .0901
0.09470 .3990 .56839 .0118
0.10040 .3330 .70186 .1106
0.10100 .4000 .25428 .0239
9540.00600 .0334
0.18970 .2308
VLLE
4000.000 .0267
VLLE
46
3010.000 .0637
VLLE
41
3050.000 .0792
VLLE
43
2000.000 .0945
VLLE
VLLE
45
36
37

```
0.1190 0.327 0. 80 270.0486
0.12220.297 0. 66 917.0278
0.15170.302 0.11 336.0326
0.18140.248 0.31 576.0614
0.1961 0.278 0. 62 249.0082
0.21920.283
0.56462
0.22560.141 0. 16726.0455
0.10600
2
5020.000.0143
8000.000.0627
VLLE
8100.000.0140
VLLE
47
040.000.0230
VLLE
38
3090.000.0427
VLLE
39
6120.100.0773
VLLE
44
5
160.1
0.0948 0.0229
VLLE
48
40
2
p
2 140.000.0282
Average 06 0.0 0.0610 0.0600
Correlation coefficient (R) 0.9820.9730.9630.956
```

90
LLE
41
46
36
37
43
40

U

Table 4-42 Parameters of the ternary system Toluene (1) \Ethyl-acetate (2) \Water (3) obtained by Non-linear constrained optimization.

NIQUAC $\Delta \mathrm{U}$
/ R =
428.815 K
$\Delta \mathrm{U}$
12
23
$\Delta \mathrm{U}$
21
/ R
$=-353.542 \mathrm{~K}$
/ R $\Delta \mathrm{U}$
32
$\Delta \mathrm{U}$
/ R
$=1087.34 \mathrm{~K}$
13
$\Delta \mathrm{U}$
/ R
$=-144.76 \mathrm{~K}$
/ R Z / 2 T
$0-36=287.01 \mathrm{~K}=604.31 \mathrm{~K}=4.647=354 \mathrm{~K}$

The vf γ
Y
1
pr
, Δ nd $\Delta \mathrm{r}$ th y system
Toluene y (er (3) using t on AC with
parameters from table 4-42 are lis ta 3, d 4-45
respectiv

```
alues o
1
,\gamma
2
,
-4 o
ed
,Y
2
pred
for the ternary lu
a\us et l
2
Y
I
a Y
fo e ternar
(1)\Eth l-acetate 2)\ Wat he equati UNIQU
2
ted in bles 4-4 4-44 an
ely.
Table 4
yl-
3 Values f }
and }\gamma\mathrm{ system To ene (1)\
Eth cetate (2) Water (3) ing param ers from tab e 4-42.
1
x ta U
    E perimen l UNIQ AC
Run # T C
VLLE
42
o
X
1
O
2
o
\gamma
1
72.8890.13180.64220.67651.0326
VLLE
74.1570.19950.41650.91481.2030
```

```
VLLE
41
75.680 0.2359 0.3804 0.9520 1.1902
VLLE
46
76.8820.2668 0.34940.9862 1.1794
VLLE
45
79.3610.3031 0.31121.0356 1.1704
VLLE
36
77.495 0.3383 .3147 0.9962 1.06370
VLLE
37
80.178 0.4026 0.37360.87630.8784
VLL 5 E
43
79.887 0.40620.2081 1.1701 1.129
VLLE 83.247 0.4234 1908 1.2021
38
    1.1252
LE
0
VL 83.656714
V 87.0 5116
47
20.4790 0.13.2906 1.105
LLE
LLE
39
40
44
80.510.0671.4273 1.0987
630.50.2101.0380 0.7114
LLE
V 89.26667
V 90.5 285 1
4
200.60.1441.10830.6343
91
\gamma
2
31
```

Table 4-44 Valu and the em 1) \backslash
Ethyl-acetate (2) \Water (3 me b
es of Y
${ }_{1}^{1}$
Y
$\stackrel{2}{2}$
for ternary syst Toluene (
) using para ters from ta le 4-42.

```
IQU
Experimental UN AC
Run # T
VLLE
42
o
C
Y
exp
Y
exp
Y
pred
Y
1212
72.8890.0179 0.43540.027190.58315
VLLE
75.680 0.0700 0.42940.076110.43938
VLLE
46
7 4 . 1 5 7 0 . 0 7 0 2 0 . 4 1 5 3 0 . 0 5 8 5 9 0 . 4 6 2 1 2 )
VLLE
41
80.1780.09470.39930.139430.36796
VLLE
43
76.8820.1004 0.33320.093040.41609
VLLE
45
79.361 0.1010 0.4005 0.120840.39840
VLLE
36
7 7 . 4 9 5 0 . 1 1 9 0 ~ 0 . 3 2 7 8 ~ 0 . 1 2 1 8 5 0 . 3 4 5 2 0 )
VLLE
37
83.2470.1220.223780.26595
```

```
VLLE
47
38
79.8870.15170.30200.186920.26215
VLLE 2 0. 275 962
39
83.650.1814 24830.870.18
VLLE 3 0. }31326
VLLE
44
4 8
2.2978 0
89.260.1961 2786 0. 55 0.22
90.5200.2192 0.28350.387120.14108
VLLE
87.0810.2256 0.14120.392810.10368
4 0
Table 4-45 Values of }\Delta\textrm{Y
1
and }\Delta\textrm{Y
for the ternary system Tolu
Ethyl-acetate (2) \ Water (3) using parameters from table 4-42.
2
pred
ene (1)\
Experimental UNIQUAC
Run #
Y
VLLE
42
I
\DeltaY
l
    \DeltaY
0.0179 0.4354
0.00930
```


0.14599

```
VLLE
.00.0700 0.42940060 .0100316
VLLE
46
02100.070 .4530 .11650 .04678
VLLE
```

```
VLLE
41
4 3
45
4900.0970.3930.44750.03699
04 300.10 0.3 32 0. 0733 0.07784
VLLE
10000.10 0.4050.19870.00213
VLLE
36
90200.11 0.3780.02880.01736
VLLE
37
229 10.12 0.2780.01570.03181
VLLE
47
17000.15 0.3 20 0. 35190.03982
VLLE
38
14400.18 0.2830.94510.05869
VLLE
VLLE
VLLE
39
44
48
40
exp
Y
2
exp
61710.19 0.286 0. 17440.06383
920.2835
0.16797
00.21 .14241
2
560.1412 0.10.2267180.03755
    Average 0.04817 0.04817
Correlation coefficient (R) 0.9820.952
92

The interacti eters k
of the Peng-Robinson (EOS) for the two
binary systems Ethyl-acetate (1) \Water (2) and Toluene (1) \Water (2) were
obtained by non-linear constrained optimization the values of these parameters are listed in table 4-46.
ng param
ij
Table 4-46 Interacting parameters of the P.R. (EOS) for the two binary systems.
k

Ethyl-acetate(1)\Water(2) Toluene(1)\Water(2)
12
n k
21
n k
\(-0.22182 .19\)
12
k
termined u
.42 b wi the intera ting para eters f table \(4-6\). The va
b
i
L
of th two binar systems a e listed i table 4-47
Table 4 Values of
1
and \(\Phi\)
1
21
\(-0.270454302-0.27683-0.334411 .94111\)
By applying equation 2.2.6 the value of Y
\(\boldsymbol{\Phi}\)
1
\(v\)
and \(\boldsymbol{\Phi}\)
1
L
using the
arameters o table 4-4
o
Ethy cetate(1)\ ene(1)\W er(2)
Ф
1
\(v\)
is predicted theoretically where
is de sing the Peng-Robinson (EOS), equations 2.3.42a and 2.3 th c m rom 4 lues of
b
i
V
and eyrn.
\(-47 \Phi\) of the two binary systems
pf 6 .
1-a Water(2) T lu at
Run \#
\(\boldsymbol{\Phi}\)
VLLE
\({ }_{1}\)
\({ }_{L}\)
\(\Phi\)
1
\(v L\)
Run \#
\(\boldsymbol{\Phi}\)
0.963470 .964362 .94342
0.964061 .17861
0.63897 VLLE

\section*{VLLE}

2
0.9613819 .45240 VLLE

19

\section*{VLLE}

3
20
0.96338
0.964070 .963710 .78467
0.964340 .963690 .71800
0.96383
0.67556 VLLE
0.963850 .92578

VLLE
4
0.66208 VLLE

21

\section*{VLLE}

5
0.67587 VLLE

22
```

VLLE
VLLE
6
7
0.67014 VLLE
23
0.96378 0.69568
0.96438 0.68120 LE
0. . }7169
24
VL }641
VLLE
VLLE
8
9
0.96333 0.72225 VLLE
964850 VLLE
25
26
27
1
0.90.69286
0.964470.70658
0.96548 0.77409
VLLE
10
0.96337 0.82857 VLLE
0.965520.77747
VLLE
11
0.96496 0.72703 VLLE
28
0.96655 0.86674
VLLE
12
0.96511 0.73981 VLLE
29
0.967030.91399
VLLE
13
0.96551 0.77573 VLLE
30
0.967270.93975
VLLE
14
0.96607 0.83314 VLLE
31
0.967560.97319
VLLE
VLLE

```
```

15
16
0.96522 40.71559 VLLE
0.96720 63.39991 VLLE
32
33
34
0 . 9 6 4 5 3 2 . 6 7 1 1 2
0.96472 4.47128
VLLE
1 7
0.96828 84.57163 VLLE
0.96475 5.06358
VLLE
18
35
0.96865 1196.15463
93
Chapter Four
Calculations
The values of }\Delta\boldsymbol{Y
o
46 are listed in table
1
f the tw e parameters of table 4
4-48.
o binary systems using th
lonu
ters of table 4-46.
Table 4-48 Va ues of }\Delta\textrm{Y
f the two bi ary systems sing the
parame
Ethyl-acetate(1)\Water(2) Toluene(1)\Water(2)
Run \#
Y
VLLE
1
I
exp
\DeltaY
I
0.68436 0.31753 VLLE

```
Results \&
```

Run \#
Y
19
l
exp
0.213720.03342
VLLE
2
0.71916 0.10446 VLLE 0.27764 0.10107
20
3
685 0.42032 VLLE
0.33777
E
VLLE 0.73
460.139
VLL 3
4
0.6273 0.17127 VLLE
2
0.36760.1390
E
5
0.7010 0.20496 VLLE
2
0.40470.1548
E
6
0.7067
0.40425
VLLE
2
0.48040.1658
E
7
0.5861 0.00772 VLLE
2
0.536 3
0.1457
E
E
8
10
11
1 2
13
14
15
0.6 133 0.39043 VLLE
0.7984 0.08388 VLLE

```
```

0.6 801 0.39440 VLLE
0.8 062 0.25343 VLLE
0.8 279 0.22243 VLLE
0.9261 0.20149 VLLE
0.9608 0.13540 VLLE
0.4675 0 VLLE
2
2
2
2
3
3
3
4
VLL 5
2
37
VLL }
3
6
VLL 0
4
2
2
VLL }
VLL }
VLLE 6
5
6
7
8
\DeltaY
I
0.57620.1283
97
0.62580.0101
45
0.64320.0233
7
VLLE 5
9
0.71330.0785
4
VLLE 5
0
0.74410.1397
92

```
```

VLLE 1
1
0.78570.1362
5
VLLE }
2
0.830 2 0.1252
18
VLLE 4 .18937
3
0.14370.00 20
4
VLLE
16
0.42673 0.00000 VLLE
0.09873 0.00059
VLLE
17
0.09566 0.04413 VLLE
34
0.05642 0.02714
VLLE
18
35
0.07793 0.28018 Average 0.09129
Average 0.21254 R 0.971
R 0.794
By applying equatio lue of Y
is predicted theoretically
where
\Phi
I
and \boldsymbol{\Phi}
I
L
is determ ng-Robinson (EOS), equations
2.3.43a to 2.3.43c with ractin eters determine on-linear
constrained optimization which are given in table 4-49. The values of
\Phi
\Phi
I
L
n 2.2.6 the va
ined using the Pe
the inte g param d from n
for the ternary sy luen

```
```

listed in table 4-50.
stem To e (1)\Ethyl-acetate (2)\ Water (3) are
Table 4-49 Values o cting rs fo ry s uene (1)\
-aceta ater (
f the intera paramete r the terna ystem Tol
Ethyl
To)\ Eth (3
luene (1
k
21
te (2) \W
3).
yl-acetate (2)\ Water
k
0.0820.162870.04862
n k
12
13
k
23
)
k
31
1.96238-0.05503 46--0.04518 0.02495
94
I
v
k
and
32

4-50 Values of Φ

Table ry sy uene yl-acetate y sampling me
RUN
VLLE
36
T
o
C X
1
v
and Φ
1
0
1
1
L
(2) \Water (3) b
${ }_{1}$
${ }^{1}$
the terna stem To
thod 3.
$\boldsymbol{\Phi}$
1
L
X
2
0
1 (1) \Eth
$\boldsymbol{\Phi}$
2
V
79.3610 .30310 .95560 .08180 .31120 .96720 .8991

VLLE
77.4950 .33830 .95480 .08520 .27850 .96690 .9150

VLLE

37
79.8870 .40620 .95560 .09930 .20810 .96791 .2302 VLLE
38
83.6520 .47900 .95680 .13400 .13670 .96921 .7295

VLLE

39
87.0810 .55110 .95800 .17980 .06760 .97062 .4010 VLLE
40
74.1570 .19950 .95420 .05860 .41650 .96560 .5900 VLLE
41
72.8890 .13180 .95340 .08430 .64220 .96510 .6331

VLLE
42
80.1780 .40260 .95580 .13640 .37370 .96831 .1997

VLLE
43
89.2630 .56660 .95900 .22770 .21070 .97152 .0872

VLLE
44
76.8820 .26690 .95480 .07050 .34940 .96650 .7556

VLLE
45

```
7 5 . 6 8 0 0 . 2 3 5 9 0 . 9 5 4 5 0 . 0 6 4 7 0 . 3 8 0 4 0 . 9 6 6 0 0 . 6 7 4 1 )
VLLE
4 6
83.247 0.42340.9567 0.1173 0.1908 0.9688 1.4349
VLLE
47
48
90.5200.624410.9722 2.4339 85 0.95950.25450.1
The values of
|
,}\Delta\boldsymbol{Y}\mathrm{ ted e 4
Table 4-51
I
\DeltaY
2
    and
3
are lis in tabl -51.
for the ternary sy ne (1)
\ Ethyl-acetate (2)\ Water (3) using parameters from table 4-49.
Values of }\Delta\textrm{Y
1
,\DeltaY
2
and }\Delta\textrm{Y}\mathrm{ stem Tolue
3
Experimental P.R.(EOS)
1
exp exp
Run #
Y Y
VLLE
36
2
|Y
I
0.101000.111
.4005 0.0750 3
VLLE
0.1190 0.3278 0.0888 0.0300
VLLE
37
0.15 0. 20
VLLE
VLLE
```

```
38
39
40
\DeltaY
0.18140.24830.114340.004
0.225600.0260
0.01 0. 54
VLLE
43
4
0.09470.39930.037200.058
0 . 1 9 6 1 0 . 2
0.1662
0.07 0. }9
VLLE
0.12220.29780.070320.015
E
47
4 8
1 7 3 0 0 . 1 0 9 5 0 . 0 3 7 5
.1412
0.1222
VLLE
VLLE
VLLE
4 1
42
4
0.07020.4153 0.0580 0.1608
79430.00620.0158
7 8 6 0 . 0 6 1 6
VLLE
0.1004 0.33320.0807 0.0651
VLLE
45
46
00420.0540 0.1639
0.21920.2830524 0.0772
VLL 5 0.
orr n coeffic nt (R) 927.652
2
    Average 0.0716 0.0716
C elatio ie 0.0
95
Ф
```


4.4 Modification of UNIQUAC equation

Th ation $\mathrm{n} / 2$) which has a value of 5 was considered as
a third adjustable parameter. This was applied on six binary systems and two
ternary systems. Table $4-52$ shows the average values of
$\Delta \boldsymbol{Y}$
of the binary
systems calculated using the UNIQUAC equation with the third adjustable
parameter.
e co-ordin umber (Z

Table 4-52 Average $\Delta \mathrm{Y}$
${ }_{i}^{i}$
Values of the Binary Systems using the modification of the UNIQUAC equation.
hy 1)) a
lEt -acetate($\backslash W$ ater (2 Dat [2]
$\Delta \boldsymbol{Y}$
Z / 2
$\Delta \boldsymbol{Y}$
Z / 2
1
$\Delta \boldsymbol{Y}$
2
$\Delta \boldsymbol{Y}$
12
50.14400 .10514 .3350 .09970 .0997

Average 0.1246 Average 0.0997
1-Butanol(1) $\backslash W a t e r(2)$ Data [2]
Z / 2
$\Delta \boldsymbol{Y}$
1
$\Delta \boldsymbol{Y}$
2
Z / 2
$\Delta \boldsymbol{Y}$

```
1
50.0290 0.06394.731 0.03810.0270
Average 0.0466 Average 0.0325
\DeltaY
2
MEK(1)\Water(2) Data [2]
Z / 2
\DeltaY
I
\DeltaY
2
Z / 2
\DeltaY
I
50.08990.0370 10.68 0.06320.0337
Average 63 e0.0 5 Av rage 0.0484
\DeltaY
2
2M ate 9] D(1)\W r(2) Data [3
/2
Y
Z
\DeltaY
2
/2
l
50.04500.0353 3.528 0.0404 .0350 8
A rage 0.0381
24DMD(1)\Wa 9] ter(2) Data [3
/ 2
|
I
Y
2
/2
1
50.09930.06555.3450.0936 .0650 9
A rage 0.0798
Ethyl-acetate(1)\Water(2) ata t woD [Presen rk]
    / 2
\DeltaY
I
Y
2
/2
I
50.11920.0725 6.057 0.0743 .0740 3
A rage 0.0743
```

```
Tol Wa ata t wouene(1)\ter(2) D [Presen rk]
/ }
\Delta
1
I
\Delta
Z
\DeltaY
\DeltaY
Average 0.0402 ve
Z
\Delta
Z
\Delta\boldsymbol{Y}
Average 0.0824 ve
Z
\Delta
Z
\Delta\boldsymbol{Y}}\Delta\boldsymbol{Y
Average 0.0959 ve
Y
2
/2
Z
\Delta
Z
\Delta\boldsymbol{Y}}\Delta\boldsymbol{Y
I
50.08410.08412.6960.0570.0570 0
A rage 0.0570
Average 0.0841 ve
96
2
2
2
```

Calculations

Table lues rnar s us difica
4-53 Average $\Delta \mathrm{Y}$
Va
of the UNIQUAC equation.
of the Te y System ing the mo tion

```
Toluene(1)\Ethyl-acetate(2)\Water(3) Data [Present work
Z / 2
|
Z / 2
|
I
\Delta
Y}\Delta\boldsymbol{Y
3
2
\DeltaY
50.14740.11390.14314.6470.0482 0.04820.0482
Average 0.1 r348 Ave age 0.0482
2
]
\DeltaY
EK(1)\Benzene(2) ter(3) D ]
M \Wa ata [40
Z/2
\Delta
Z
\Delta\boldsymbol{Y}}\Delta\boldsymbol{Y
\DeltaY
I
\Delta
2
Y
3
lation o boilin pera
perature of boili
    / }
I
\Delta
5889800.03
0.0328
50.0152 0.0737 0.0812 6.0.01 .0474 11
Average 0.0567 Average
```


4.5 Calcu fg tem ture

```
n 2.2.3.
was ca ted by ation 4 which
The tem ng lcula equ .5.1 is
derived fro o Tab 4 to st th s of T
for the two binary and the ternary systems.
```

```
m equati les 4-5 4-58 li e value T and }
S
P/P
iii
L
i
)1.X1
(C)
n
4
V
Table 4- o the b stem etate ter (2)
rs fr es 4.3 3.17
P=101.3
54 Values f T
5.4(1,
==
cal.
for
P te
inary sy Ethyl-ac (1)\ Wa Using
arame om Tabl . }1\mathrm{ and 4.
25 kPa. T C
X
1
O
n
li
i
Exp. ILSO NRTL
0.5531370.40772.51772.396
0.0383074.32671.209
Run # M.W N UNIQUAC P.R(EOS)
VLLE
69.961 84.042
VLLE
1
70.882 86.527 81.205
VLLE
```

```
2
0.4513971.25870.22973.13972.429 85.179
VLLE
3
0.6719571.28370.46372.11472.316 83.008
VLLE
4
0.7778271.38371.65672.05072.61282.219
VLLE
VLLE
5
6
0.54128 71.753 69.95872.577 72.409 84.189
0.7309671.85071.03772.0432.564
0.3880071.86270.76273.6296.023
0.9500072.12575.44173.6741.087
0.3181271.74674.1977.080
0.7926373.41971.88472.066 2.143
0.8223373.76372.39172.124 1.942
0.8850974.80073.69872.453 81.522
0.9840076.37076.54475.511
72.4118
VLLE
72.260 }
VLLE
8
75.2728
VLLE
9
72.96071.734 8
VLLE
10
72.706 }
VLLE
11
72.950 }
VLLE
12
73.776
VLLE
VLLE
13
14
15
76.441 80.912
0.01508 84.52988.89479.61280.874
0.0065192.37490.827 87.769 92.374
```

```
0.0005996.920 96.32198.579
78.778
VLLE
87.705
VLLE
16
98.563 105.429
VLLE
17
1 8
0.0002998.47897.787 99.293 99.284
97
23
3
```


Chapter Four

Results \& Calculations

Table the em tate (2)
ters es 446 .
4-55 Values of $\Delta \mathrm{T}$ for
Parame
$\mathrm{P}=101.325 \mathrm{kPa} . \mathrm{T}$
Run \# X
1
o
o
binary syst
from Tabl
Ethyl-ace
-30 and 4-
C ΔT
o
(1) \ Water

C
Exp. M.WILSON NRTL UNIQUAC P.R(EOS)
0.691 0VLLE
0.0002998 .478 . 8150.806 -----

VLLE
VLLE
VLLE
18
17
16
15
0.0005996 .920 .5991 .6591 .6438 .509
0.0065192 .3741 .5474 .6054 .6690 .000

```
0.01508 84.529 .3654.9175.751 3.655
0.03038 0.8820.327
0.3181272.96 1.2371.226
0.3880071.862 .100 1.7670.398
0.4513971.258 .029 1.881 1.171
0.54128 71.753 .795 0.8240.656
0.5531370.407 .446 2.110 1.989
0.6719571.283 .820 0.8311.033
0.7309671.85 0.1930.561
0.7778271.383 .273 0.667 1.229
0.7926373.419 .5351.353 0.713 8.724
0.8223373.763 . }3721.6390.8138.17
0.8809574.82.347 6.722
4
VLLE
715.645 3.44410.323
VLLE
2
1.21414.120
VLLE
10
14.161
VLLE
8
113.921
VLLE
3
112.436
VLLE
6
013.635
VLLE
1
011.725
VLLE
4
0.81310.714
VLLE
7
0 10.836
VLLE
5
1
VLLE
11
1
```

```
VLLE
12
1.102 1.024
VLLE
13
0.95000 72.125 3
VLLE
9
1 4
Using
.3161.5493.1478.962
0.8590.0714.542
0.9840076.370.174
Average 2.102 1.817 1.513 9.480
R 0.9530.985 0.9860.882
Table 4-56 Values of T
cal.
for the binary system Toluene (1) \ Water (2) using parameters
from table 4-33 and 4-46.
P}=101.325 kPa.T 
C
X
1
O
EXP. M.W SON .R(EOS)
0.0809 96.12 94 1576.657
0.144494.60 93 3895.433
0.205893.49923996.004
Run # IL NRTL UNIQUAC P
VLLE
71.193.877 96.085
VLLE
19
31.093.720 94.807
VLLE
VLLE
20
21
22
27.593.514 94.151
0.2831 92.61 6296.856
0.3697 92.47 92 27 98.008
0.436492.48 9399.061
6092.493.43793.738
VLLE
84.993.58793.589
```

```
VLLE
23
87.60593.84993.628
VLLE
24
25
93.73 9578
0.613094.96 96 63
0.7614 99.15 10396
0.7667 99.33 10560
0.8812 103.8901063900.376
0.54779 0.294.556 93.966 100.694
VLLE
06.595.136 94.357101.705
VLLE
26
110.97.134 96.201 103.829
VLLE
27
360.97.23296.307 103.882
VLLE
VLLE
28
29
30
94.199.932105.397
0.9288 106.0981070302.819
0.95229 107.255 107.821
36.1102.745105.918
VLLE
31
98
104.567104.659106.158
```

Calculations

Table 4-57 Values of $\Delta \mathrm{Y}$ for the binary system Toluene (1) \backslash Water (2) using parameters
from table 4-33 and 4-46.
$\mathrm{P}=101.325 \mathrm{kPa} . \Delta \mathrm{T}$
C
Run \# X

```
1
o
EXP. M.WILSON NRTL UNIQUAC P.R(EOS)
796.121 2.006 2.244 0.036VLLE
0.0809 17.464
VLLE
VLLE
19
20
2 1
0.14443 94.601 1.5630.881 0.206 2.832
0.205893.497958 0.017 0.6544.507
0.2831 92.610 1480.827
0.3697 92.474 650 1.310 7.731
0.4364 92.487 118 1.3628.574
0.5477 93.730 548 0.826 8.964
0.6130 94.966 5970.170 8.739
0.7614 99.151 2452.017
0.766799.336 2242.104
0 . 8 8 1 2 1 0 3 . 8 0 7 4 9 3 . 5 1 4
0.9288106.086053.279
0.9522 107.255662.688
2.
VLLE
60.1.128 6.246
VLLE
22
8.1.312
VLLE
23
8 1. 1.141
VLLE
24
9 1. 0.236
VLLE
25
0 1.0.609
VLLE
26
1 1.2.950 6.678
VLLE
27
3 1.3.029 6.546
VLLE
28
9 0.3.9583.507
```

```
VLLE
29
390.3.3531.820
VLLE
30
950.2.5960.903
    1.15.105
31
Average 047 1.796 .787
R 0. 0.9890.731 991 0.992
Values of T
cal
ystem T ene (1) \1-acetate ater (3
for the ternary s olu Ethy (2)\ W )
8, 4-42 and 4-49.
Table 4-58
using parameters from tables 4-3
P}=101.325\textrm{kPa}\mathrm{ .
Run # X
42
1
O
X
2
o
T
o
C
EXP. M.W NRTL UNIQUAC P.R(EOS)
0.13180.642272.88971.43866.80274.03571.895
LLE
VLLE
V
V
VLLE 0.2669 0.3494 76.88275.92673.126 76.663 83.713
V .493
0.1995 0.416574.157 73.738 69.96375.010 80.497
LLE
LLE
41
4 6
45
36
0.23590.380475.68074.91771.64075.894 82.263
0.3031 0.311279.36177.12974.98677.595 85
VLLE 0.3383 0.278577.49577.73275.797 78.299 84.328
LLE
```

VLLE
37
4 3
38
0.40260.3737 80.17878.67576.08679.87379.501
0.40620.208179.887 80.347 80.668 80.306
90.182
VLLE 0.4234 0.1908 83.247 80 80.766 91.101
. }85781.70
V . }6528
VLLE 0.5511 0.0676 87.081 84.197 90.087 84.071 99.603
VLL 666 0.2107 89.263 83.277 83.290 85.371
VLL 90.520 }8

```
```

LLE
47
39
40
0.479 0.1367 83 82.399 85.166 .230 94.169
E 0.5
82.707
E
44
48
0.62850.1441 84.059 86.683.408 89.148
99

```

\section*{Chapter Four}

Results \&
Calculations
Table 4-59 Values of \(\Delta \mathrm{T}\) for the ternary system Toluene (1) \(\backslash\) Ethyl-acetate (2) \(\backslash\) Water (3)
using parameters from tables 4-38, 4-42 and 4-49.
\(\mathrm{P}=101.325 \mathrm{kPa} . \Delta \mathrm{T}\)
C
X
o
X
O
EXP. M.W NRTL UNIQUAC P.R(EOS)Run \# VLLE
36
12
0.30310 .311279 .3612 .2324 .3751 .7666 .132
```

VLLE
0.3383 0.278577.495 0.2371.6970.804 6.834
VLLE
37
0.40620.208179.887 0.460 0.781 0.418 10.295
VLLE 0.4790 0.1367 83.652 1.253 1.514 1.422 10.517
LLE
V
VLL
38
39
0.55110.0676 87.081 2.883 3.007 3.009 12.523
E 0.1995 0.4165 74.157 0.4194.1940.8536.34
40
0
VLLE
VLLE
LLE
LE
41
42
43
44
4 6
0.13180.642272.8891.45716.0871.14 0.994
0.40260.3737 80.178 1.504 4.092 0.306 0.677
V .567 89 556 5.987 5. 3.8
VLLE
45
0660.210.263 6.973 92
0.26690.349476.8820.956 3.757 0.2196.831
VL 0.235 04 75 763 4.041 0.2146.583
VLLE
47
90.38.680 0.
0.42340.1908 83.247 2.390 1.542 2.4817.855
VLLE
48
0.62850.1441 90.5206.461 3.837 6.112 1.372
Average 2.120 3.455 1.902 6.219
R
0.9730.960 0.9830.830

```

\subsection*{4.6 Determination of Azeotropic Point}

The Azeotropic composition and temperature of the binary mixtures
thyl-acetatelWater and ToluenelWater were determined using equations .6.3 and 2.6.4. Table 4-60 lists the values of the parameters of equation 2.6.3
nd the Azeotropic composition and temperature of the binary systems.

\section*{E}

2
a
Table 4-60 Values of the Parameters of equation 2.6.3 and the Azeotropic Composition and Temperature of the Binary Systems Ethyl-Acetate(1)\Water(2) and Toluene(1)\Water(2).

Ethyl-acetate(1) \(\backslash\) Water(2) Data [Present study] \(\mathrm{P}=101.325 \mathrm{kPa}\).
A
12
B
12
C
12
X
1
Azo
-69.366 45.157 -40.320 0.5172 mole 71.159
C
Toluene(1) \(\backslash\) Water(2) Data [Present study] \(\mathrm{P}=101.325 \mathrm{kPa}\).
A
12
B
12
C
12
X
1
Azo
-47.470 5.815-5.892 0.3567 mole 92.180
C
T
he Azeotropic composition and temperature of the ternary mixture oluene\Ethyl-acetate\Water were determined using equations 2.6.5, 2.6.7 nd 2.6.7.
T
a
```

T
Azo
Azo
o
O

```

Chapter Four
Results \& Calculations

Table 4-61 lists the values of the parameters of equation 2.6.5 and the A
zeotropic composition and temperature of the ternary system.
Table 4-61 Value
and Temperatu
s of the Parameters of equation 2.6 .5 and the Azeotropic Composition re of the Ternary System Toluene(1)\Ethyl-Acetate(2)\Water(3).

Toluene(1)\Ethyl-acetate(2) \Water(3) Data [Present study] P=101.325
kP
A
12
A
13
A
23
B
12
B
13
-28.132 -77.421-51.398 \(15.71842 .614-5.158\)
C
12
C
13
C
\({ }^{23}\)
X
1
azo
X
2
azo
6.984 18.335-35.397 0.1532 mole 0.5543 mole 73.290

C
a.

\section*{. 7 Summery}

The previous calculation Steps can be represented by a block diagram as

\section*{Input Parameters of} Activity Coefficient

\section*{equations}

From References
Calculate \(\boldsymbol{\Phi}\)
Prediction
Method
from
v
, \(\boldsymbol{\Phi}\)
ii
Peng-Robinson (EOS)
With K
ij
\(=0\)
L
Input Equilibrium
Data
T
i
, X
102
\begin{tabular}{l}
\(i\) \\
\(\mathbf{i}\) \\
\hline
\end{tabular}
, X
Calculate \(\boldsymbol{\Phi}\)
i
```

i
equations 2.2.3
or 2.2.6
i
,X
V
i
, Ф
,Y
i
S
S
from
Peng-Robinson (EOS)
and Antonie equations
Calculate Activity
Coefficients
\gamma
,\gamma
i
Calculate Y from
i
,P
/\gamma
i
B

```

Figure 4-6 Block Diagram of the Calculations steps of the present study.
```

quations
Correlation
Method
Calculate \Phi
from
Correlation of equi
v
,\Phi
ii
Peng-Robinson (EOS)
data to obtain
librium
Interacting Parameters (K
L
)
of Peng-Robinson (EOS)
ij

```

\section*{Chapter Four}

Results \&
Calculations
The calculated Y
and T by the activity coefficient equations and P.R.
(EOS) for the two binary systems are plotted as T-X-Y diagrams as shown in
figures 4-7, 4-8, 4-9 and 4-10.
C) Boiling Temperature

105
110
95
100
80
85
90
70
75
T (
60
65
i
Ethyl-acetate(1) (Water(2) Data [Present Study]
020406080100
X1, Y1 mole\% Ethyl-acetate
Figure 4-7 T-X-Y Diagram of the System Ethyl-acetate (1) \Water (2) Prediction method,
T (C) Boiling Temperature
95
100
105

\section*{Ethyl-acetate(1)\Water(2) Data [Present study] 020406080100 \\ X1, Y1 mole\% ethyl-acetate}

Figure 4-8 T-X-Y Diagram of the System Ethyl-acetate (1) \Water (2) Correlation method, Data [Present Study].

103
x10
Y1exp.
Y1M.W
Y1NRTL
Y1uniquac
Y1UNIFAC
P.R.(EOS)

X1
Y1(NRTL)
Y1(Exp.)
Y1(UNIQ.)
Y1(P.R.E)
Y1(M. W)

Chapter Four
Results \&
Calculations
T (C) Boiling Temperature
120
110
100
90
80
70
60
Toluene (1) \(\backslash\) Water (2)
020406080100
X1, Y1 mole\% Toluene
F igure 4-9 T-X-Y Diagram of the System Toluene (1) \(\backslash\) Water (2) Prediction Method, Data
[present study].

\section*{T (C) Boiling Temperature}

110
115
120
100
105
85
90
95
80
Toluene (1) \(\backslash\) Water (2)
020406080100
X1, Y1 mole\% Toluene
Figure 4-10 T-X-Y Diagram of the System Toluene (1) \Water (2) Correlation Method,
Data [present study].
The calculated T by the activity coefficient equations and P.R. (EOS) for the
ternary system are plotted as T-X diagrams as shown in figures 4-11, 412, 413
and 4-14.
104
X1
Y1NRTL
Y1(UNIQUAC)
Y1exp.
Y1(P.R.E)
X1
Y1(M. W)
Y1(NRTL)
Y1(UNIQUAC)
Y1exp.
Y1(P.R.E)

Results \&
Calculations

Figure 4-11 T-X Diagram of the System Toluene (1) \Ethyl-acetate(2) \Water (3) using
M.WILSON equation, Correlation Method, Data [present study].

Figure 4-12 T-X Diagram of the System Toluene (1) \Ethyl-acetate(2) \Water (3) using
NRTL equation, Correlation Method, Data [present study].

Results \&

Figure 4-13 T-X Diagram of the System Toluene (1) \Ethyl-acetate(2) \Water (3) using
UNIQUAC equation, Correlation Method, Data [present study].
Figure 4-14 T-X Diagram of the System Toluene (1) \Ethyl-acetate(2) \Water (3) using
P.R (EOS), Correlation Method, Data [present study].

\section*{CHAPTER FIVE}

\section*{DISCUSSION \& CONCLUSIONS}

The present study involved measurements of VLLE data of two
binary
systems and one ternary system. Equilibrium still was assembled to deal with
these systems. The data obtained from the new still was analyzed by two methods, prediction and correlation methods. The prediction method involved
using activity coefficient equations with adjustable parameters obtained from
previous studies and using the Peng-Robinson (EOS) without interacting parameters. The correlation method involved using activity coefficient equations with adjustable parameters obtained from correlation of the
experimental data obtained from the assembled still and using the PengRobinson
(EOS) with interacting parameters
also obtained from
correlation of
the
experimental
data obtained from
the
same
still. A modification
was
applied
to the UNIQUAC equation to increase
the accuracy of this equation to
deal
with VLLE systems.

\subsection*{5.1 Systems Selected}

Two binary systems Ethyl-acetate \(\backslash\) Water and Toluene \(\backslash\) Water were selected, the system Ethyl-acetate \(\backslash\) Water is a system of limited miscibility
where the solubility of Ethyl-acetate in water is 1 ml Ethyl-acetate in 10 ml
Water at 20
o
C and the solubility of Water in Ethyl-acetate is 1 ml Water in 40 ml Ethyl-acetate at 20
o
C [44]. The system forms a binary Azeotrope as shown in Figures 4-3, 4-7 and 4-8.

107

\section*{Chapter Five}

Discussion \&
Conclusions

The system Toluene \(\backslash\) Water can be considered as an immiscible system
where the solubility of Toluene in Water is 0.05 gram Toluene per 100 gram
Water at 20
o
C and the solubility of Water in Toluene is 0.03 gram Water per
100 gram of Toluene at 20
。
C [44]. The system forms a binary Azeotrope as
shown in Figures 4-4, 4-9 and 4-10.
The mixtures of the two binary systems at temperatures of boiling or above are three phase systems where two liquid phases are in equilibrium with a vapor phase. The analysis of the withdrawn samples of the binary system Ethyl-acetate \Water was determined by refractive index measurements (Figures 3-5 and 3-6) and solubility data of each layer of the
sample and for the binary system Toluene \(\backslash\) Water only solubility data was
used. Refractive index measurements were simple and practical and suitable
for the conditions of the present study.
The ternary system Toluene \Ethyl-acetate \Water consists of a miscible
pair of Toluene \Ethyl-acetate and a partial miscible pair of Ethyl-acetate 1
Water and an immiscible pair of Toluene \(\backslash\) Water. The system formed a ternary Azeotrope as shown in Figure 4-5 and Figures 4-11 to 4-14. No VLLE
data are available in the literature for this ternary system.
The analysis of the withdrawn samples of the ternary system was determined by refractive index measurements (Figures 3-5 and 3-7) and solubility data. The assumption that no Water exists in the organic layer of the
withdrawn samples is due to the very low solubility of Water in Toluene and
the high solubility of Toluene in Ethyl-acetate, and no Toluene exists in the
aqueous layer of the withdrawn samples is due to the very low solubility of
Toluene in Water.

\subsection*{5.2 Assembled Equilibrium Still}

An Equilibrium Still was assembled (Figure 3-1) to deal with partial miscible and immiscible systems. The Still was provided with mechanical mixers in both the boiling and condensing sections. The mechanical mixer in
the boiling section helped in keeping the two liquid layers in the boiler in a
homogenous state to get a steady temperature reading of the boiling liquid, a
fluctuation in the temperature reading occurred when the still was operated
with no mixing in the boiling section where a temperature difference of 35

C
between the two liquid layers was noticed.
The mixer in the condensing section helped in correcting the composition
of the recycled condensed vapor to the boiler. A constant vapor composition
was obtained when the still was operated with no mechanical mixing in the
condensing section even if the boiling temperature changes. The system Ethyl-acetate \Water was studied by Ellis,etal [2] using an equilibrium still
with mechanical agitation in both the boiling and condensing sections (Figure
2-5) the equilibrium data obtained showed a constant vapor composition of 70
mole \% Ethyl-acetate and a constant boiling liquid temperature of 70.5 C in
the boiling liquid composition range of 5-78 mole \% Ethyl-acetate as noticed
in table 4-20. Also the data obtained by Kato.M, etal [7] showed a constant
vapor composition of 70.1 mole \% Ethyl-acetate in the boiling liquid composition range 8-71 of mole \% Ethyl-acetate were an equilibrium still
similar to the Othmer still (Figure 2-3) with no mechanical agitation or mixing was used. This indicates that mechanical mixing is necessary in both
boiling and condensing sections and even agitation is not enough. The two
reflux lines in the new still assured the return of the condensed vapor to the
boiler in correct composition even if vortex occurred in the condenser due to
the mechanical mixing.

\section*{109}
o
o

\section*{Chapter Five}

Discussion \&
Conclusions

\subsection*{5.3 Prediction Method}

The activity coefficient equations M.WILSON, NRTL, UNIQUAC and
UNIFAC and the Peng-Robinson (EOS) were used to determine the value of Y theoretically as follows:

\section*{i}

1- Using the Peng-Robinson (EOS) for the vapor and liquid phases the partial
molar fugacity coefficients for both phases were determined and no interacting parameters were used.

2- Using the Peng-Robinson (EOS) for vapor phase and using one of the activity coefficient equations M.WILSON, NRTL, UNIQUAC and UNIFAC
in liquid phase.
The adjustable parameters of the first three activity coefficient equations
were obtained from previous studies specially the two binary systems Ethylacetate
\(\backslash\) Water and Toluene \(\backslash\) Water and
for the ternary system Toluene \(\backslash\)

Ethyl-acetate
I Water the same adjustable parameters were used with the adjustable parameters of the binary system
Ethyl-acetate \Toluene obtained
by
correlating the experimental
data
of Kropholler, etal [46].

The average
of the absolute deviations in mole fraction of the vapor phase ( \(\Delta \boldsymbol{Y}\)
) for the binary system Ethyl-acetate \(\backslash\) Water using the NRTL and the UNIQUAC equations with predicted parameters were 0.1110 and 0.1192
respectively and 0.1227 and 0.2076 using the M.WILSON and the UNIFAC
equations as can be noticed in table 4-13. The predicted parameters of the binary system Toluene \Water were in the temperature range of 10 to 60 i
C;
very high average ( \(\Delta \boldsymbol{Y}\)
shown in table 4-22.
i
) values were obtained using these parameters as
110
O

\section*{Chapter Five}

Discussion \&

\section*{Conclusions}

The average of the absolute deviations in mole fraction of the vapor phase ( \(\Delta \boldsymbol{Y}\)
) for the ternary system Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water using the NRTL, UNIQUAC and the Peng-Robinson equations and the UNIFAC method were \(0.1271,0.1348,0.1150\) and 0.1963 respectively as shown in tables 4-26 to 4-29.

The NRTL activity coefficient equation gave the lowest absolute average
deviation; the NRTL equation has three adjustable parameters which gives a better representation of the equilibrium data. Both of the UNIFAC method
and the Peng-Robinson (EOS) when used in both phases gave high absolute
average deviation; both have no adjustable parameters. Table 5-1 summarizes
the average absolute deviation in mole fraction of vapor phase values by prediction method of the two binary systems and the ternary system measured
in the present study.
Table 5-1 Values of \(\Delta Y\)
i
by Prediction method for the systems measured in the present study.

Prediction method \(\Delta Y\)
(Average)
System M.W
NRTL
*
1
UNIQ.
UNIF.
P.R(EOS)

Ethyl-acetate(1)\Water(2) 0.122650 .111030 .119240 .20763189 .3488
Toluene(1)\Water(2)
0.864842 .024271 .775361 .82154

Average NRTL UNIQ. UNIF. P.R(EOS)
Toluene(1)\Ethyl-
acetate(2)\Water(3)
\(\Delta Y\)
\(\Delta Y\)
1
*
0.04550 .14740 .28740 .0703
```

\DeltaY
2
3
0.16790.11390.18890.2167
0.1680 0.1431 0.11250.0581

* In all systems using P.R (EOS) to determine partial molar fugacities in vapor phase with no interacting parameters.

```
    The ratio \((\gamma\)
1
\(T\)
\(/ \gamma\)
1
B
) of the binary system Ethyl-acetatelWater was predicted
using the M.WILSON, NRTL, UNIQUAC and UNIFAC equations. The
NRTL equation gave the lowest average \(\Delta(\gamma\)
in tables 4-18 and 4-19.
1
\(T\)
\(/ \gamma\)
1
) values as can be noticed
111

Chapter Five
Discussion \&
Conclusions

\subsection*{5.4 Correlation Method}

The adjustable parameters of the activity coefficient equations M.WILSON, NRTL and UNIQUAC and the interacting parameters of the Peng-Robinson (EOS) were determined by applying non-linear constrained
optimization with the objective function given by equation 4.3.1 subjected to the constraint given by equation 4.3.2.

The Generalized Reduced Gradient (GRG) search [47] was used. The
adjustable and interacting parameters used in the prediction method where
used as initial values to start the search as shown in appendix D. The activity
coefficient equations M.WILSON, NRTL, UNIQUAC and the PengRobinson
(EOS) were used to determine
the value of Y
i
theoretically by:
1- Using the Peng-Robinson (EOS) for the vapor and liquid phases the partial
molar fugacity coefficients for both phases were determined with interacting
parameters obtained by correlation of the equilibrium data obtained from the assembled still.

2- Using the Peng-Robinson (EOS) for vapor phase and using the activity coefficient equations M.WILSON, NRTL and UNIQUAC in liquid phase.
The adjustable parameters of the activity coefficient equations were obtained
from correlation of equilibrium data. The parameters of the ternary system
Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water were obtained by using the adjustable and interacting parameters of the binary systems Toluene \(\backslash\) Water, Ethylacetate \}
Water and Toluene \(\backslash\) Ethyl-acetate as initial values to start the search, the parameters of the binary system Toluene \(\backslash\) Ethyl-acetate were set constant since it's a miscible system, the average values of \(\alpha\) in the NRTL equation
and \(\mathrm{Z} / 2\) in the UNIQUAC equation were also taken as initial values.

\section*{112}

\section*{Chapter Five}

Discussion \&
Conclusions

The average of the absolute deviations in mole fraction of the vapor phase ( \(\Delta \boldsymbol{Y}\)
) for the binary system Ethyl-acetate \(\backslash\) Water using the
M.WILSON, NRTL and the UNIQUAC equation and the Peng-Robinson (EOS) were \(0.1161,0.0694,0.0743\) and 0.2125 respectively as shown in tables 4-31 and 4-48. And for the binary system Toluene \Water the average
values of \(\Delta \boldsymbol{Y}\)
\(i\)
using M.WILSON, NRTL and UNIQUAC equations and the
Peng-Robinson (EOS) were 0.1010, 0.0749, 0.0570 and 0.0913
respectively
as shown in tables 4-36 and 4-48. And for the ternary system Toluene \}
Ethylacetate
\ Water the average values of \(\Delta \boldsymbol{Y}\)
\(i\)
using M.WILSON, NRTL,
UNIQUAC equations and the Peng-Robinson (EOS) were 0.0610, 0.0600,
0.0482 and 0.0716 respectively as shown in tables 4-41, 4-45 and 4-51.
\({ }^{i}\)
The UNIQUAC and the NRTL equations gave the lowest average \(\Delta \boldsymbol{Y}\)
values for the binary systems and for the ternary system the UNIQUAC equation gave the lowest average \(\Delta \boldsymbol{Y}\)
values; these equations contain three
adjustable parameters this gives a better representation of the equilibrium data. The Peng-Robinson (EOS) gave high average \(\Delta \boldsymbol{Y}\)
i
, according to the
Lattice Model [3] which considers the liquid phase as a dense and highly nonideal-gas
whose properties can be described
by some
(EOS); this is not
correct
in VLLE systems ( Partialmiscible
and immiscible ) were the liquid
\(i\)
phases in equilibrium are highly non ideal.
Table 5-2 summarizes the average absolute deviation in mole fraction of
vapor phase values by correlation method of the two binary systems and the
ternary system measured in the present study.

\section*{Chapter Five}

Table 5-2 Values of \(\Delta \mathrm{Y}\)
by Correlation method for the systems measured in the present study.

Correlation method \(\Delta \boldsymbol{Y}\)
(Average)
System M.W
*
NRTL
1
UNIQ.
P.R(EOS)

Ethyl-acetate(1)\Water(2) 0.116130 .069360 .074290 .21254
Toluene(1)\Water(2) 0.100960 .074910 .057000 .09129
Average M.W NRTL UNIQ. P.R(EOS)
Toluene(1)\Ethyl-
acetate(2)\Water(3)
\(\Delta \boldsymbol{Y}\)
\({ }_{*}^{1}\)
0.06100 .06000 .048170 .0716
\(\Delta \boldsymbol{Y}\)
\(\Delta \boldsymbol{Y}\)
2
3
0.06100 .06000 .048170 .0716
0.06100 .06000 .048170 .0716
* In all systems using P.R (EOS) to determine partial molar fugacities in vapor phase with no interacting parameters.

The co-ordination number \((Z / 2)\) which has a value of 5 for typical liquids
at ordinary conditions (miscible) [3] was considered as a third adjustable parameter in the UNIQUAC equation. This was applied to the two binary systems and the ternary system measured in the present study and also to four
binary systems and one ternary system obtained from literature. This modification gave low average \(\Delta \boldsymbol{Y}\)
values especially for the binary systems

Toluene \Water and MEK \Water and the ternary systems Toluene \(\backslash\) Ethylacetate
\ Water and MEK \Benzene \ Water
as can be noticed in tables 452and
\(4-53\). The value of \((Z / 2)\) can reach
to a value of 6 depending on the
type
of packing of dissimilar
molecules
(molecule
1, molecule
2) \([3]\).
\({ }^{i}\)
The average boiling temperature was determined theoretically by solving
equation 4.5.1 for T where the Newton-Raphson method [45] was used with
T
exp.
as the initial value to start the calculation. For the binary system Ethylacetate \(\backslash\) Water both the UNIQUAC and NRTL equations gave low average
\(\Delta \mathrm{T}\) values as shown in table 4-55. And for the binary system Toluene \(\backslash\) Water
the M.WILSON equation gave low average \(\Delta \mathrm{T}\) values as shown in table 4-57.
And for the ternary system the UNIQUAC and M.WILSON equations gave
low average \(\Delta \mathrm{T}\) value as shown in table 4-59.
```

1 1 4

```

\subsection*{5.5 Azeotropic Point}

The determination of the Azeotrope point (X
Azo
, T
Azo
) of partial and
immiscible systems is very complex due to the difficulties in determination of the experimental data of such systems, the fluctuations in the temperature of
boiling due to the immiscible layers in the boiling section of the equilibrium
still. Such systems appear to have more than one Azeotropic point especially
minimum boiling mixtures where these mixtures boil at a temperature below
the boiling point of any pure component in the mixture. Usually the point with the lowest boiling temperature in the equilibrium data could be considered as the Azeotropic point. In the present study two binary systems
were studied, the system Ethyl-acetate \(\backslash\) Water showed a minimum boiling
behavior at certain compositions as can be noticed from table 3-5 and figure
4-1 the data points T-Y
1
and T-X
appear to meet in a straight line in the
composition range 50 To 80 mole \% Ethyl-acetate.
1
The Azeotropic point of the system Ethyl-acetate \Water was determined
by equation 2.6.3 where the minimum temperature was \(\mathrm{T}=71.157\)
=
0.5172 mole fraction Ethyl-acetate. The binary system Toluene \Water also
showed a minimum boiling behavior as can be noticed from table 3-6 and in
figure 4-4 the data points T-Y
1
and T-X
appear to meet in a straight line in
the composition range 35 To 53 mole \% Toluene. The Azeotropic point
of the
1
system Toluene \(\backslash\) Water was determined by equation 2.6 .3 where the
minimum temperature was \(\mathrm{T}=92.180\)
o
C at X
\(=0.3567\) mole fraction

Toluene.

1
The ternary system Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water showed a minimum
boiling temperature as can be noticed in table 3-7 and figure 4-5 below the
temperature contour of 79.808
o
C lies mixtures with minimum boiling
temperature especially the temperature contour of 76.349
o
C.
o
C at X

\section*{115}

1

The Azeotropic point of the system Toluene \(\backslash\) Ethyl-acetate \(\backslash\) Water was
determined by equation 2.6 .5 where the minimum temperature was \(\mathrm{T}=\) 73.29
o
C at X
1
\(=0.1532\) mole fraction Toluene and X

\subsection*{5.6 Conclusions}

2
\(=0.5543\) Ethyl-acetate.
From the VLLE measurements achieved in the present study the following
conclusions were observed:
1- The assembled equilibrium still with mechanical mixing in both the boiling
and condensation sections appeared to be suitable for the measurements of partial and immiscible systems.

2- Using the Peng-Robinson (EOS) in both phases generally gave higher
deviation in the vapor phase mole fraction than using the Peng-Robinson (EOS) in the vapor phase and one of the activity coefficient equations M.WILSON, NRTL, UNIQUAC and UNIFAC in the liquid phase in both prediction and correlation methods and shown in tables 5-1 and 5-2.

3- The prediction method gave a higher average absolute deviation in the vapor phase mole fraction than the correlation method for the two binary systems and the ternary system measured in the present study.

4- In the correlation method using the P.R (EOS) in the vapor phase and the
activity coefficient equation UNIQUAC gave the lowest absolute average deviation in the vapor mole fraction for the systems measured in the present
study with an overall value of \(\Delta \mathrm{Y} 0.0552\).

\section*{116}

Chapter Five
Discussion \&
Conclusions

5- The Generalized Reduced Gradient (GRG) search approved to be more
accurate and fast in determining the adjustable parameters of the activity coefficient equations and the interacting parameters of the Peng-Robinson (EOS) especially when taking the initial values of the parameters to start the
search from the prediction method.
6- The increase in the number of the adjustable parameters of the activity coefficient equations gave a better representation of the equilibrium data as
was noticed in the UNIQUAC equation.

\subsection*{5.7 Recommendations for future work}

The present study was achieved in a circulating still (circulation method)
under atmospheric pressure. The following is recommended for future work:

1- Studying partial and immiscible system under a pressure higher than atmospheric pressure where there is a wide application for these systems especially in the petroleum industries.

2- Studying the hydrodynamics of partial and immiscible systems on a plate
of a distillation column and studying the composition and temperature distribution on this plate.

117

References

\section*{REFERENCES}
[1] Colburn A.P., Schoenborn E.M., "Equilibrium still for partially miscible liquids", Industrial and Engineering Chemistry, Vol. 35, No. 12, Dec. 1943.
[2] Ellis S.R.M., Garbett R.D., "A new equilibrium still for the study of partially miscible systems", Ind.Eng.Chem., Vol. 52, p.385, 1960.
[3] John M.Prausnitz, Rudiger N.Lichtenthaler, Edmundo Gomes de Azevedo, "Molecular Thermodynamics Of Fluid-Phase Equilibria", 3 edithion, Prentice Hall PTR 1999.
[4] Ding-Yu Peng, Donald B. Robinson, "Two and Three Phase Equilibrium
Calculations for Systems Containing Water", Canadian J. Chem. Eng., Vol.
54, Dec. 1976.
[5] John J. Carroll, Alan E. Mather, "Phase Equilibrium in The system WaterHydrogen
Sulphide: Modelling the Phase
Behavior with an Equation of
State",
Canadian J. Chem.
Eng., Vol. 67, Dec. 1989.
[6]
Constantine Tsonopoulos, "An empirical
Correlation of Second Virial
Coefficients",
AlChE Journal, Vol. 20, No.2, March, 1974.
[7]
Cited in [ Shuzo Ohe, " Vapor-Liquid equilibrium
data", Kodansha 1989
].
[8] Marc J. Assael, J.P. Martin Trusler, Thomas F. Tsolakis, "Thermophysical
Properties Of Fluids An Introduction to their Prediction", imperial Collage
Press 1996.
[9] J.M.Smith, H.C.Van Ness, M.M.Abbott, "Introduction to Chemical Engineering Thermodynamics" 5
th
edition, McGraw-Hill, 1996.
[10] Schreiber,D.R. and K.S. Pitzer, Fluid Phase Equilibria, 46: 113: 1989.
[11] Wohl, K., Trans. AIChE, 42:215, 1946.

118
rd

\section*{References}
[12] Wilson, G. M., J. Am. Chem. Soc., 86: 127, 1964.
[13] Orye, R. V. and J. M. Prausnitz, Ind. Eng. Chem., 57: 19, 1965.
[14] J. Gmehling, U. Onken, and W. Arlt, DECHEMICA Chemistry Data Series, 1981.
[15] T. Tsuboka, T. Katayama. J.Chem. Eng. Japan 8, 181, (1975).
[16] Renon, H. and J. M. Prausnitz, AIChE J., 14: 135, 1968.
[17] Abrams, D. and J.M. Prausntitz, AIChE J., 21: 116, 1975.
[18] A. Fredenslund, R.I., Jones and J.M. Prausnitz, AIChE J. 21, 1086, (1975).
[19] H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352-2355, 1991.
[20] Altsheler W. B., Unger E. D. and Kolachov P., Ind. Eng. Chem. 43, 2559
(1954).
[21] Gillespie D. T. C., Ind. Eng. Chem. 18, 575 (1946).
[22] Eduard Hala, Jiri Pick, Vojtech Fried and Otakar Vilim, "VAPORLIQUID
EQUILIBRIUM", Pergamon
Press (1958).
[23]
Othmer
D. F., Ind. Eng. Chem.

20, 743 (1928).
[24]
Othmer
D. F., Ind. Eng. Chem.

4, 232 (1932).
[25] Othmer D. F., Ind. Eng. Chem. 35, 614 (1943).
[26] Othmer D. F., Ind. Eng. Chem. 20, 763 (1948).
[27] Fenske M. R., Myers H. S. and Quiggle D., Ind. Eng. Chem. 42, 649 (1950).
[28] Gelus E., Stanley M., Jr. and Miller M. E., Ind. Eng. Chem. 41, 1757 (1949).

119

\section*{References}
[29] Harper B. G. and Moore J. C., Ind. Eng. Chem. 49, 411 (1957).
[30] Hipkin H. and myers H. S., Ind. Eng. Chem. 46, 2524 (1954).
[31] Smith T. E. and Bonner R. F., "Vapor-Liquid Equilibrium Still for Partially Miscible Liquids", Ind. Eng. Chem. 41, 2867 (1949).
[32] Malesinski, W., "Azeotropy and other Theoretical Problems of VaporLiquid
Equilibrium",
Interscience, PWN, New York, 1965.
[33]
Cho, T.H., Ochi, K. and Kojima,
K., "Measurement of vapor-liquid
equilibrium
for systems
of limited
miscibility",
Fluid Phase Equilibria,
11(1982)
137-152.
[34]
B. S. Rawat and Shiri Krishna, "Isobaric

Vapor-Liquid Equilibria for the
Partially Miscible System of Water-Methyl Isobutyl Ketone",
J.

Chem. Eng. Data, vol. 29, No. 4, 1984.
[35] R. Fuchs, M. Gipser and J. Gaube, "Calculation Of Ternary VaporLiquid-Liquid Equlibria For Design Of Three-Phase Distillation", Fluid Phase Equilibria, 14 (1983) 325-334.
[36]
David S. H. Wong and Stanley I. Sandler, "Calculation of Vapor-LiquidLiquid with Cubic Equation of State and a Corresponding States Principle", Ind.
Eng. Chem.
Fundam.,
Vol. 23, No. 3, 1984.
[37]
K. Tochigi and K. Kojima, "Prediction

Of Vapor-Liquid-Liquid
Equibrium
Using The Unifac Modified, and GC-EOS Models" Fluid Phase
Equilibria
25 (1986) 231-235.
[38]
J. S. Stockhardt and
C. M. Hull, "Vapor-Liquid Equilibria and BoilingPoint Composition Relations for Systems n-Butanol-Water and
IsobutannolWater",
Ind. Eng. Chemistry,
vol. 23, No. 12, Dec. 1931.
[39]
Shubham
P. Chopade, Atul D. Dhale, Angela M. Clark, Chris W.

Kiesling,
Laurie K. Myrant, James
E. Jackson, and Dennis J.
Miller, "VaporLiquid-Liquid
Equilibrium
(VLLE) and Vapor
Pressure Data for the Systems
2-Methyl-1,3-dioxolane
(2MD) + Water and 2,4-Dimethyl-1,3-dioxolane
(24DMD)
+ Water", J. Chem.
Data 2003, 48, 44-47.
[40] R. J. Mitchell, "Solvent Drying", Chem. Eng. Prog. Vol. 47, No. 12, 1951.

120

\section*{References}
[41] LUCIEN A. J. VERHOEYE, "The System Cyclohexane-2PropanolWater', J.Chem.

Eng. Data. Vol. 13, No. 4, 1968.

> [42]
J. M. Prausntiz, "Molecular Thermodynamics of Fluid-Phase Equilibria"
1
st
edition Prentice Hall 1969.
[43] Khalid Farhod Chasib Al-Juboury, "VLE of Ternary Systems Involving
Experimental and Theoretical Correlations using Cubic EOS" Ph.D. thesis AlNahrain University, Baghdad-Iraq 2001.
[44]
Martha Windholz, Susan
Budavari, Lorraine Y. Stroumtsos,
Margaret
Noether
Fertig, "THE MERCK INDEX", 9
th
edition, MERCK \& CO. 1976.
[45] Curtis F. Gerald, Patrick O. Wheatly, "Applied Numerical Analysis" 4 edition, Addison-Wesely Publishing Company 1989.
[46] Carr,A.D,, Kropholler,H.M., J.Chem.Eng.Data , Vol.7, p26, (1962).
[47] T.F. Edgar, D.M.Himmelblau, "Optimization Of Chemical Processes"
McGraw-Hill, Inc. 1988.

121
th

Appendix A

\section*{APPENDIX A}

\section*{A. 1 Quick-fit heads of the Equilibrium Still}

The Quick-fit heads of the equilibrium still used in the present study are shown in detail in Figure A-1.

Electric motor
Rubber
tube
Multiimpeller
shaft
P.E Bushing
```

ring
Quick-fit head
Rubber cork
Boiling or
Condensation
section
P.E Bushing
ring
Figure A-1 Quick-fit head assembly of the Equilibrium still used in the present study.

```

\section*{A-1}

\section*{Appendix A}

\section*{A. 2 CASSY Module Interface}

Experimental determination of the equilibrium data of a mixture, determination of the boiling temperature, also the measurement, recording and graphic representation of the boiling temperature and time, are all preformed via a CASSY interface in conjunction with a personal computer and the software "Universal Data Acquisition". The schematic diagram of the CASSY Module Interface is given in Figure A-2.

Figure A-2 CASSY Module Interface Used in the Present Study.

24- CASSY Module Interface.
25- CPS voltage supply, switch-able.
26- Cable, 25 cm , red.
27- Cable, 25 cm , blue.
28- Socket of switch-able power supply.
29- Temperature sensor, NiCr-Ni.
30- Temperature box.
31- CPS panel frame.

A-2

\section*{A. 3 Universal Data Acquisition}
"Universal Data Acquisition" is a software package for all purpose use in computer-supported measurement and control in the area of chemical engineering and technology. It runs on a personal computer (minimum 486 AT with 4MB RAM) under Microsoft Windows version 3.1 or Windows 95, 98 or higher.

Using the program "Universal Data Acquisition", one can observe and record the temperature curve representing the boiling point in the boiling section of the equilibrium still via the virtual instrument TA1.

After starting the software Windows, double-click the "Universal Data Acquisition" icon, one can make the following settings:

1- Temperature TA1 (boiling temperature in the boiling section):
Channels / Input / Analog Input / Input A / Quantity / Temperature TA1 / Zero point left / Range 0 to 120
。
C / Mean Values / Digital Instrument /
OK.
2- Controlling the housing heating mantle:
Channels / Outputs / Digital Output / Output O
0
/ Formula TA1 < 119
C
and t < 2:00:00.
The formula causes the heating mantle to switch off when the temperature exceeds 119
o
C or when the measurements runs longer than two hours (safety cutout).

3- Time t :
Channel / Time / Unit min / Interval 0.1 min. / Formula 1 / Digital Instrument / OK.

4- Diagram t TA1:
Channels / Diagram / X-axis t/Y-axis TA1 / OK.

\section*{A-3}

\section*{Appendix A}

When the settings for the software "Universal Data Acquisition" program had been selected and a measurement had been taken the display on the monitor is as shown in Figure A-3.

Figure A-4 Display of "Universal Data Acquisition" in the Present Study.
A picture of the interface and the personal computer (control unit) used in the present study is shown in Figure A-4.

Figure A-4 Control Unit of the Still Used in the Present Study.

\section*{A-4}

\section*{Appendix B}

\section*{B. 1 Refractometer}

\section*{APPENDIX B}

For measurement of the refractive index of liquid and solid objects using light at a wave length of \(\lambda=589.3 \mathrm{~nm}\). The prisms are illuminated by an illumination unit. Measurements can be made of transmitted and reflected light. The prism housing is provided with connector for a thermostat for keeping the samples at a constant temperature. The temperature of the prisms can be read from a thermometer mounted on the side of the prism housing. Complete with transformer, illumination unit, thermometer, tools for alignment, calibration object with engraved refractive index and contact liquid. The schematic diagram of the laboratory Refractometer is shown in Figure B-1.

Figure B-1 Refracometer Used in the Present Study. B-1

\section*{Appendix B}

Technical data on the Refractometer used in the present study are given in table B-1.

Table B-1 Technical Data of Refractometer Used in Present Study. Measurement range (n D
) 1.3 to 1.7
Scale division (n
) 0.0005
Measurement inaccuracy (n
D
) \(\pm 0.0002\)
Dimensions 115*222*263 mm
Weight 4.5 kg
n
D
D
Refractive index

The refractive index is the most important optical data of a substance with which the purity, concentration and optical condition can be tested. It is necessary to keep the temperature constant for exact measurement because the refractive index of liquids alters with the temperature. First, turning the locking knob to lift up the illuminating prism, putting one or two drops of liquids on the measuring prism, then lowering the illuminating prism to its former position and locking with the knob. Looking through the ocular and sharply defining the reticle by turning to the right or left. By turning the scale adjustment knob moving along the measuring range until a light / dark division appears, the separation line must now lie on the point of intersection of the reticle, as shown in Figure B-2.

Figure B-2 The Light and Dark Divisions.
Eliminating the color round the division line with the compensation knob until a black-white division is reached. The dispersion of the light is

\section*{B-2}

\section*{Appendix B}
compensated. Adjusting the light / dark line exactly on the point of intersection of the reticle and then the display will show the refractive index of the liquid sample.

\section*{B. 2 Circulation Thermostat with Refrigeration Unit}

Compact, silent instrument for regulating the temperature of external loads in the minus and positive range (e.g. Refractometer), simultaneous temperature regulation in the thermostat bath, is used in the experiment to control the temperature of water at 20
\({ }^{\circ}\). The schematic diagram of the circulation thermostat with refrigeration is shown in Figure B-3.

Figure B-3 Circulation Thermostat with Refrigeration Unit Used in the Present Study.
Technical data on the circulation unit used in the present study is given in table B-2.

\section*{B-3}

\section*{Appendix B}

Table B-2 Technical Data of Circulation Unit Used in Present Study.
Heat capacity 2000 W
Refrigeration capacity 260 W at 20
C
Coolant R 135 a
Range of operating temperature -25 to 100
-
。
C
Constancy of temperature \(\pm 0.03\) ©
Pump capacity \(300 \mathrm{hPa}, 15 \mathrm{l} / \mathrm{min}\)

Volume of bath 3 to 4.51
Power supply \(230 \mathrm{~V} \mathrm{Ac} / 50 \mathrm{~Hz}\)
Weight 30 kg

\section*{B-4}

Appendix C

\section*{C. 1 Microsoft Excel}

APPENDIX C
The software Microsoft Excel was used in most of the calculations of
the present study its one of the tools available in the software Microsoft Office. The software consists mainly of a work book that contains work sheets (Spread sheet) which are able to form many simple and complex calculations and the software contains many statistical functions and able to plot data in many types of charts. A work book was opened for each measurement (e.g. VLLE1) which contained two work sheets.

\section*{C.1.1 Exp. Sheet}

The Exp. Sheet contained the recorded temperature from the software "Universal Data Acquisition" and the measured refractive index of the withdrawn samples and the material balance preformed to determine the numerical values of the mole \(\%\) of the boiling liquid and the mole \(\%\) of the condensed vapor. A sample of this sheet is shown in Figure C-1.

Figure C-1 Exp. Sheet for Mole \% Determination of Measurement VLLE

\section*{C-1}

1

\section*{Appendix C}

The measured volume of each layer ( \(\alpha, 5\) ) of the withdrawn samples of the condensed vapor and the boiling liquid and the measured refractive index are inserted in the gray colored cells (e.g. C87, C88) then the work sheet will obtain the mole \% in each layer by cells C90 and D90 which solves the calibration equations of Figures 3-5 and 3-6. Then cells G87 and H 87 will give the total moles of each layer \((\alpha, 5)\) by material balance as shown below:
\(\mathrm{G} 87=100 * \mathrm{C} 87 /(\mathrm{C} 90 * \mathrm{E} 5 / \mathrm{D} 5+(100-\mathrm{C} 90) * \mathrm{E} 6 / \mathrm{D} 6)\)
\(\mathrm{H} 87=100 * \mathrm{D} 87 /(\mathrm{D} 90 * \mathrm{E} 5 / \mathrm{D} 5+(100-\mathrm{D} 90) * \mathrm{E} 6 / \mathrm{D} 6)\)
Where D5, D6 and E5, E6 are the cells which contain the densities and the molecular weights of the components present in the layers \((\alpha, 5)\) respectively. Then the amount of moles of each component in the sample (vapor) is calculated by cells I88 and I89 as shown below:
\(\mathrm{I} 88=\mathrm{G} 87 * \mathrm{C} 90 / 100+\mathrm{H} 87 *\) D90/100
\(\mathrm{I} 89=\mathrm{G} 87+\mathrm{H} 87-\mathrm{I} 88\)

The mole \(\%\) of each component in the sample (vapor) is determined by cells D100 and F100 as shown below:
\(\mathrm{D} 100=100 * \mathrm{I} 88 /(\mathrm{I} 88+\mathrm{I} 89)\)
\(F 100=100-D 100\)
The same is applied to the other sample (liquid). The Exp. sheets for the measurements VLLE
\(\mathrm{C}-2\) to Figure \(\mathrm{C}-5\).
12
, VLLE
23

C-2
, VLLE
46
and LLE
6
are given in Figure

\section*{Appendix C}

Figure C-2 Exp. Sheet for Mole \% Determination of Measurement VLLE

Figure C-3 Exp. Sheet for Mole \% Determination of Measurement VLLE C-3
12
23

Appendix C

Figure C-4 Exp. Sheet for Mole \% Determination of Measurement VLLE

Figure C-5 Exp. Sheet for Mole \% Determination of Measurement LLE

\section*{C-4 \\ 6 \\ .}

\section*{Appendix C}

\section*{C.1.2 Calc. Sheet}

The Calc. Sheet contained the calculations performed to obtain the values of b
\({ }^{i}\)
, b
i
, P
i
S
and b
i
S
where the Peng-Robinson equation of state
is programmed in the cells of the Calc. Sheet in connection with the cells in the Exp. Sheets. The Calc. Sheet for the VLLE measurements of the binary system Ethyl-acetate(1)\Water(2) is given in Figure C-6.

Figure C-6 Calc. Sheet for b
\(\stackrel{i}{\mathrm{~V}}\)
\(\stackrel{\text { i }}{\substack{\text { i } \\ \text { L }}}\)
, P
\(\stackrel{1}{\mathrm{~S}}\)
and b
\({ }_{s}^{i}\)
Determination of VLLE
Measurements of the Binary system Ethyl-acetate(1)\Water(2).
Column (D) in the above figure determines the vapor pressure of Ethylacetate(1)\Water(2)
as follows:

Column (Q) solves equation (2.3.38) by Newton-Raphson method (see appendix D) to determine the value of Z
```

v
in column (P) as follows:

```
```

Q9 = P9^3-(1-O9)*P9^2+(N9-3*O9^2-2*O9)*P9-(N9*O9-O9^2-O9^3)

```

\section*{C-5}

\section*{Appendix C}

The parameters of equation (2.3.38) are determined by the hidden columns between (D) and (P). Also column (S) solves equation (2.3.38) by Newton-Raphson method to determine Z
```

L

```
in column ( R ). Columns
(W), (Y) and (AE) determine b
1
v
, b
1
L
    and b
1
L
respectively by equation
(2.3.42a) as follows:
W9 \(=\mathrm{EXP}((\mathrm{L} 9 / \mathrm{O} 9) *(\mathrm{P} 9-1)-\mathrm{LN}(\mathrm{P} 9-\)
O9)+(N9/(2.828*O9))*(L9/O9(2/V9)*(C9*(T9*H9*T9*H9)^0.5+E9*(1\$
\(\left.\left.\left.\mathrm{R} \$ 6)^{*}(\mathrm{~T} 9 * \mathrm{H} 9 * \mathrm{I} 9 * \mathrm{U} 9)^{\wedge} 0.5\right)\right)^{*} \mathrm{LN}((\mathrm{P} 9+2.414 * \mathrm{O} 9) /(\mathrm{P} 9-0.414 * \mathrm{O} 9))\right)\)

The parameters of equation (2.3.38) are determined by the hidden columns between ( S ) and ( W ).

The same is applied to the binary system Toluene(1)\Water(2) and to the Ternary System Toluene(1)\Ethyl-acetate(2)\Water(3) as shown in figures C-7 and C-8. Also column AM represents equation 2.2.6 and column AO represents equation 4.2.1.

Figure C-7 Calc. Sheet for
```

,b
L
, P
S
and b
1
s
Determination of VLLE
Measurements of the Binary system Toluene(1)\Water(2).

```

\section*{C-6}

\section*{Appendix C}

Figure C-8a Calc. Sheet for b
\(\stackrel{1}{\mathrm{~V}}\)
, ط
\(\stackrel{1}{\mathrm{i}}\)
, P
i
S
and b
\(\stackrel{i}{\mathrm{i}}\)
Determination of VLLE
Measurements of the Ternary system Toluene(1)\Ethyl-acetate(2)\Water(3).
Figure C-8b Calc. Sheet for b
\(\stackrel{i}{\mathrm{i}}\)
, b
i
L
, P
i
S
and b
\(\stackrel{i}{\text { i }}\)
Determination of VLLE
Measurements of the Ternary system Toluene(1)\Ethyl-acetate(2)\Water(3).

\section*{C-7}

\section*{Appendix C}

\section*{C.1.3 A.C. Sheet}

The Calc. sheet is connected to A.C. sheet (Activity coefficient sheet) this sheet determines the activity coefficients \(\gamma\) using parameters obtained from references and also determines the values of Y 1
as
shown in figure C.1.9. Columns \(\mathrm{B}, \mathrm{C}, \mathrm{D}\) and E represent the experimental values which are connected to the Calc. sheet. Column H represents equation 2.4.15a as follows:

H7 =
\(\operatorname{EXP}(\mathrm{LN}((\mathrm{B} 7+\mathrm{C} 7 * \mathrm{G} 7 / \mathrm{F} 7) /(\mathrm{B} 7+\mathrm{C} 7 *(\mathrm{G} 7 / \mathrm{F} 7) * \mathrm{EXP}(\$ \mathrm{I} \$ 3 /(\mathrm{E} 7+0)))+\mathrm{B} 7 *(1 /\) (B7+C7*G7/F7)-
\(1 /(\mathrm{B} 7+\mathrm{C} 7 *(\mathrm{G} 7 / \mathrm{F} 7) * \mathrm{EXP}(\$ \mathrm{I} 3 /(\mathrm{E} 7+0))))+\mathrm{C} 7 *((\mathrm{~F} 7 / \mathrm{G} 7) /(\mathrm{C} 7+\mathrm{B} 7 * \mathrm{~F} 7 / \mathrm{G} 7)-\) \((\mathrm{F} 7 / \mathrm{G} 7) * \mathrm{EXP}(\$ \mathrm{~J} \$ 3 /(\mathrm{E} 7+0)) /(\mathrm{C} 7+\mathrm{B} 7 *(\mathrm{~F} 7 / \mathrm{G} 7) * \mathrm{EXP}(-\$ \mathrm{~J} 33 /(\mathrm{E} 7+0))))))\)

Column I represents equation 2.2.3 and column J represents equation 4.2.1. Figure C-9 shows the A.C sheet of the MODIFIED WILSON (M.W) equation while figures \(\mathrm{C}-10, \mathrm{C}-11\) and \(\mathrm{C}-12\) shows the \(\mathrm{A} . \mathrm{C}\) sheets for the NRTL, UNIQUAC and UNIFAC equations.

Figure C-9 A.C. Sheet for \(\gamma\)

\section*{C-8}

\section*{Appendix C}

Figure C-10 A.C. Sheet for \(\gamma\)
1
(NRTL) Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

Figure C-11 A.C. Sheet for \(\gamma\)
(UNIQUAC) Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

\section*{C-9}

\section*{Appendix C}

Figure C-12 A.C. Sheet for \(\gamma\)
(UNIFAC) Determination of the Measurement VLLE1.

Figure C.1.12 represents the A.C sheet of the UNIFAC method to determine the activity coefficients. The data is input in the dark cells and the sheet then determines the activity coefficient and determines the value of Y
1
and \(\Delta Y\)

The same is applied to the LEE measurements of the binary system Ethylacetate(1)\Water(2)
and to the binary system
Toluene(1)\Water(2) and the
ternary
system Toluene(1)\Ethyl-acetate(2)\Water(3).

C-10

Appendix D

\section*{APPENDIX D \\ D. 1 Newton-Raphson Method}

One of the most widely used methods of solving equations is the Newton-Raphson method [45]. The basic equation of this method is given in E.1.
```

ZF
XZ
i
ili
+
()
()
\=
Where F(Z
i
)1.D(...,3,2,1i,
ZF
i

```
```

) is a nonlinear equation and F
with respect to }\boldsymbol{Z
i

```
(Z
i
) is the derivative of \(\boldsymbol{F}(\boldsymbol{Z}\)
. Equation E. 1 was used to find the value of Z in
equation 2.3.38, the calculation was stopped when \(\boldsymbol{F}(\boldsymbol{Z}\)
    the
calculations were preformed by the Cal. Sheet as shown in figure C.1.6.
i+1
D. 2 Correlation of Experimental Data

The parameters of the activity coefficient equations M.WILSON, NRTL and UNIQUAC and the interacting parameters k of the PengRobinson
(EOS) were determined
using a non-linear constraint
optimization
search this was achieved by the aid of the soft-ware
Microsoft
Excel using the Solver tool.
The Solver tool solves an
optimization
problem
using the Generalized
Reduced Gradient
(GRG)
search
[47]
were it first reduces the
problem
to an unconstrained
optimization
problem.
It does this by solving
a set of non-linear equations
for
the basic variables in terms
of
the non-basic variables. Then the
unconstrained
problem
is solved using the quasi-Newton
approach
(BFGS)
or the conjugate
gradient approach.
```

A
spread sheet is preformed to correlate
the experimental
data similar
to
the A.C. sheets shown in figures C-9
to C-11 as mentioned
in appendix
C.
These sheets contain the objective function
of equation 4.3.1 to be
minimized
subject to the constraint of
equation 4.3.2. Figure D-1 shows
part
of the spread sheet performed to
correlate the VLLE measurements
of
the binary system Ethyl-acetate(1)\Water(2)
to obtain the parameters of
the
M.WILSON equation.

```

\section*{D-1}
```

ij
)}<1
-6
i
)

```

\section*{Appendix D}

Figure D-1 Part of the Sheet for M.WILSON Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

The initial values to start the determination of the parameters is taken from the A.C sheet as shown in figure \(\mathrm{D}-2\) below

Figure D-2 Part of the Sheet for M.WILSON Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

\section*{D-2}

\section*{Appendix D}

Then the solver tool is used to search for the parameters of the M.WILSON equation as shown in figures D-3 and D-4 below:

Figure D-3 Part of the Sheet for M.WILSON Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1) (Water(2).

Figure D-4 Part of the Sheet for M.WILSON Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1) WWater(2).

\section*{D-3}

\section*{Appendix D}

The parameters of the NRTL and UNIQUAC equations are calculated as before as shown in figures \(\mathrm{D}-5\) to \(\mathrm{D}-8\) below.

Figure D-5 Part of the Sheet for NRTL Parameters Determination of VLLE

Measurements of the Binary system Ethyl-acetate(1)|Water(2).
Figure D-6 Part of the Sheet for NRTL Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1) WWater(2).

\section*{D-4}

\section*{Appendix D}

Figure D-7 Part of the Sheet for UNIQUAC Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

Figure D-8 Part of the Sheet for UNIQUAC Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1)\Water(2).

\section*{D-5}

\section*{Appendix D}

The interacting parameters k
for the binary system Ethylacetate(1)\Water(2)
are also determined
as before as shown in figure D-9
below.
ij
Figure D-9 Sheet for P.R (EOS) Interacting Parameters Determination of VLLE Measurements of the Binary system Ethyl-acetate(1) \(W\) Water(2).

The same procedure is applied for the binary system
Toluene(1)\Water(2) and the ternary system Toluene(1)\Ethylacetate(2)\Water(3) to determine the parameters of the activity coefficient equations M.WILSON, NRTL and UNIQUAC and to determine the interacting parameters of the Peng-Robinson (EOS)```

