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Abstract
In this research the effect of electron correlation can be described by

evaluating the difference in the one-particle radial distribution function.

The other effect of the electron correlation can be described by evaluating

Coulomb hole. It also can be described by evaluating the change which

occurs in the two–particle radial distribution function to study the radial

correlation for He atom and compared the result with the series of He-

like. Four types of wave functions can be used in this research, the

Hartree-Fock HF (uncorrelated wave function), configuration interaction,

Eckaret-Hyllears and Simple Configuration-Interaction wave functions.

We conclude that the difference in one-particle increase as Z

increase and the location is closed to nucleus. And the radius of Coulomb

hole decrease and the area increase as Z increase. Also the radius of

Coulomb hole for Configuration-Interaction and Hartree-Fock wave

function is larger Simple Configuration-Interaction and Hartree-Fock

wave function is larger Eckart-Hyllears and Hartree-Fock wave function

for He atom. And the change in the two-particle increase and the location

of this change decrease as Z increase. Also we conclude that the electron

correlation increase as Z increases.

The properties and parameters studied in this work:-

1. The inter-particle distribution function f(r12).

2. Two-particle distribution function D(r1, r2).

3. One-particle distribution function D(r1).

4. The inter-particle expectation value ‹r12› ^n where -2 2.

5. One-particle expectation value ‹r1› where -2 2.

6. Coulomb Hole  f (r12).

7. Partial Coulomb Hole
12 1

( , )g r r .



8. The change DCI-HF (r1, r2) which occurs in the two –particle radial

distribution function.

All results were obtained numerically using computer program

(MathCAD/ 2003).



                   

           .                  

.         

        .  

                                     -                           

(Configuration-Interaction)     (Eckart-

Hyllears).(Simple Configuration-Interaction)

               .              

   .   )HF (

  (CI)    (HF)(SCI)(EH)   .    

     .

.

:

1 -f(r12).

2 - .D(r1,r2)

3 -.D(r1)

4 -‹r12›-2 2
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7 -g(r12,r1)
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Introduction

1-1 General Introduction:
It is well known that the laws of classical physics are applicable

only to motion of macroscopic particles and not applicable to electron

motion in atoms and molecules. Consequently the microscopic particle

requires a new form of mechanics, termed quantum mechanics (or wave

mechanics). Quantum mechanics is based on many hypotheses postulated

by Plank, Einstein, Bohr and de Broglie [1].

In (1927), Heisenberg found that impossible to measure the

momentum and place of a particle in same time with infinitesimal

(uncertainty principle), where he found that as the place is measured

accurately will be an account of uncertainty in measurement of

momentum. Likewise, if the momentum is measured accurately on

account of uncertainty in measurement of place. There are two variables

followed the uncertainty, energy E and the time t. While in the principle

of classic mechanics the accurate measurement of the momentum and the

place in the same time is possible [1].

The quantum mechanics is primarily described by two different

methods [1]. The first method is applied by Werner Heisenberg. He used

in this description properties of mathematic matrix, called matrix

mechanics. The second method is applied by Schrödinger. Schrödinger

method which is formulated in term of partial differential equation, to

describe the behavior of matter waves.
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Paul Dirac found that the formula of those two methods are identical

and described the system with mathematical function called ket, gave it a

sign |i〉, where i is the definite case of the function. He described the

coupling of this function with mathematical function called bra, has a

sign 〈j|.

The central feature of which partial differential equation knows as [2]:

ψψ EH =                                               …. 1-1

where Ψ  represent the wave function (eigen function) and it determined

the behavior of the electron. When Schrödinger equation is written as in

equation (1-1), it seen to be an eigen value equation E , so the factor E is

called the eigen value of the operator H
∧

.

The German scientist M. Bron in 1926 gave the exact physical

interpretation of the square of wave function at any point gives the

probability of finding the particle at that point

2 1dx
+∞

−∞

Ψ =∫                                                                   ….1-2

Equation (1-2) is the mathematical statement of Borns interpretation is
2dxΨ is equal to the probability of finding the particle in region between

x and x+dx. A wave function which satisfies (1-2) is said to normalized.

We are justified by the physical interpretation of  which will be

discussed below, but are best regarded as postulate of the theory; they can

be summarized as following:

1-  must be a well-defined function of position particle; it must be

single-valued.

2-  cannot be infinite.
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3-  must be continuous, and not jump abruptly from one value to

another

4- The first differential of  must be continuous, except at a point where

the potential is infinite [3].

The important property for the wave functions is antisymmetric

property. In case a system has two electrons, although the electrons are

indistinguished particles then the permutation process in coordinates

impossible change 2
1 2( , )r rψ , where the permutation process leave two

probabilities to influence on ψ as following[4]:

),(),( 1221 rrrr ψψ =    (Symmetric wave function)

),(),( 1221 rrrr ψψ −=   (Anti-symmetric wave function)

For system contains several electrons, the two probabilities can be written

as:

where P is permutation operator which effects only on the particles

coordinates permutation ψ (r1, r2, r3, ……, rN) and (−1)P equal to (±1) and

this equivalent material or singular numbers of the permutations.

The particles that have spin movement equal to integer number or 0

such as photons and deuterons and helium nucleus that called bosons are

described by identical wave functions. While the particles that have spin

movement accounted to half integer number such as electrons, protons,

and neutrons which called fermions are described by contrary identical

wave functions [5]:

),,()1(),,,,( 321321 N
p

N rrrrrrrrP LLLL ψψ −= …1-3
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From equation (1-1) the factor H is the Hamiltonian operator which

defined for a single atom of charge Z as:

r
ze

me
H

2
2

2

2
−∇

−
=

h                            ….1-4

where h constant equals to
π2
h , ∇2 is Laplacin operator and identify by

spherical coordinates [3, 6]:

The Hamiltonian for an atom with k electrons is given by:

∑ ∑∑∑
〈 ===

+−∇−=
ji

N

i ij

N

i i

N

i
i r

e
r

Ze
m

H
1

2

1

2

1

2
2

2
h

                         ….1-6

or

eeene VVTH ++=                                                          ….1-7

where the first term represents the kinetic energy operators for

the n-electrons; the second term is the potential energy for the

attractions between the electrons and the nucleus of charge Z, and r is

the distance between the nucleus and the electron, and the last term is

the potential energy of an electron at infinite distance from the

nucleus is zero. The potential energy of an electron in an atom is a

negative quantity because the energy is lower than that when the

nucleus and electron are separated by an infinite distance. The

restriction     j > i avoids counting the same interelectronic repulsion

twice, and avoids terms like ijre /2 .The Schrödinger equation for the

)(
sin
1)(sin

sin
1)(1

2

2

222
2

2
2

φθθ
θ

θθ ∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=∇
rrr

r
rr

….1-5
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atom is not separable because of the interelectronic repulsion

terms ijre /2 [7].

The Schrödinger equation for a multi-electron atom can be

solved numerically, although V electron-electron cannot be included as

an explicit term in the Hamiltonian. Rather, its effect on can be

accounted for by a mathematically simpler approach: that each

electron interacts with an average of the nucleus + all other electrons

(Self-Consistent Field) approximation. The techniques were

originally introduced by D.R. Hartree (before computer was

available) and V. Fock to take into account the Pauli principle

correctly. In broad outline, the Haretree-Fock self-consistent field

(SCF) [7].

There unit system defined the atomic unit, the unit mass in atomic

unit system is electron mass while the unit distance is half Bohr-atom

diameter ( οa ). The unit energy is defined by Hartree and can be

expressed as [3]:

eV
a
emeHartree 21.271

2

2

4

===
o

h
                ….1-8

The Hamiltonian operative in Eq. (1-6) can be expressed by using

atomic units ( 1m ee≡ ≡ ≡h ) as:

                                                                                        ….1-9∑ ∑∑∑
〈 ==

+−∇−=
ji

N

i ij

N

i i

N

i
i rr

zH
11

2 1
2
1
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Eq. (1-9) contains a boundary that represents the repulsion between

electrons, and because of this boundary the Schrödinger equation can not

be solved accurately. Therefore, we have to be used an approximation

method to solve Schrödinger equation. Simplest methods return to

Hartree, where he assumed that every electron moved in an effort range

arises from other electrons. i.e. the number of electrons movement (e) is

independent of each other. Thus, the wave function for sum of electrons

will equal to multiply results of singular electron wave functions (orbital)

[8]:

)()........3()2()1(),.....,3,2,1( 321 NN Nφφφφψ =     …. 1-10

where )(iiφ represents the spatial coordinates function of electron i, while

N is number of electrons in the atom.

One of the difficulty and main problems in Eq. (1-10) is represented

by neglecting the electrons correlation movement at their moving around

the nucleus. A consequence of that the measurement of repulsion energy

will be differed from the exact value. This difference called correlation

energy and is neglected in Hartree pattern as mentioned above.

As the Hartree approximation mentioned in Eq. (1-10) cannot verify

the Pauli principle, and can not verify the indistinguishable property

between electrons and unconformity wave function property. In order to

verify that the Fock used spin idea in 1930 and this method called

(Hartree-Fock method), where treated the weak point in Hartree

equation and the wave function defined by Slater determinant [1, 9]:

∏
=

=
N

i
i i

1
)(φ
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1 1 1

2 2 2

(1) (2) ( )
(1) (2) ( )1(1,2,3, )

!
(1) (2) ( )N N N

N
N

N
N

N

φ φ φ
φ φ φ

ψ

φ φ φ

=

L

L
LL

M M M M

L

       ….1-11

Where
!

1
N

is the normalization factor and )(iiφ represents the spatial

spin function that it’s multiply result of spatial wave function and spin

function α orβ. The number between brackets referred to the electrons

and the numbers under the function referred to the spin orbital [9].

The Slater determinant can be characterized as following:

1. The determinant sign changed at replacing two rows or two columns

in the determinant.

2. The determinant value is 0 if two rows or two columns in the

determinant are equalized.

The first characterize referred that at replacement of two electrons in

this determinant, the determinant sign is changed without change in its

value. Hence, the wave function verifies exception Pauli principle where

it’s reverse conformity. While the second characterize mean, if equalized

two spin orbital in the determinant, hence the determinant value equal to

0 and this equivalents to exception Pauli principle (in any atom can not be

the forth quantum number (n, l, ml,  ms) of two electrons equalized. i.e.

the quantum spin number (α orβ) has to be different for two similarity

electrons in the spatial wave function (φ) [9].

Eq. (1-11) explained that the repulsion of electrons has parallel spin

more than electrons has reverse spin, which causes to decrease
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Coulombic repulsion energy between parallel spin electrons and this

symmetry to Hund’s rule [10].

By opening Eq. (1-11) results N! Limits, every limit are consisted of

multiply results of N from wave function of singular particles. Thereby

those limits (N!) is consisted of definite series where the particles, N, in

the limits is attributed to the once N levels. Therefore, those limits (N!)

will cover almost the possible permutation probabilities of N particles in

between N levels, and example for once of that

limits )(),......4(),3( 21 NNφφφ . I.e. the particle (3) is located in level 1, while

the particle (4) located in level 2, etc… [11].

In Hartree-Fock approximation is taking coulomb repulsion value

between two electrons by integration repulsion, and this gave the range of

repulsion effect [12].

Thereby the Central-Field Approximation method is developed through

discovering the electron spin by Uhlenbeck and Coudsmit and exception

pauli rule in 1925, then completed with using Self Consistent Field (SCF)

method by Hartree in 1928 and Hartree-Fock in 1930 [7,8].

The self particle wave function for the multiple electrons system is

preferment throughout energy insight; it’s introduced by Hartree-Fock

approximation that allowed of some spatial correlation between parallel

spin electrons which lead to form Fermi-effect or Fermi-hole [12]. Indeed

all electrons repulsion among each other because of Coulomb potential

(
12

2

r
e ) that present among them. Therefore, each electron is covered by

Coulomb-hole [13].
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1-2 Historical Review:

A-General Historical Review of Electron Correlation in

Atomic Systems:

Roothaan et al. (1960) [14] have developed the generalized SCF

formalism in their paper and applied it to atomic configurations and they

have presented in there work the results that are obtained for the

configurations 1s2,1s22s and 1s22s2 for atoms and ions up to Z=10.

Roothaan and Weiss (1960) [15] have obtained an accurate wave

function for the ground state of Helium-like systems. They have chosen a

convenient function with adjustable parameters and determined the best

wavefunction within this class by minimizing the expectation value of the

energy, computed from that wavefunction with respect to these

parameters. They have found one of the most successful models is the

Hartree-Fock approximation.

Watson (1960) [16] has done a configuration interaction calculation

involving thirty-seven configurations and including the 1s22s2 Hartree-

Fock function for the ground state of Beryllium atom. The results indicate

the effect of the “correlation hole”.

Weiss (1961) [17] has done successful approaches to many-particle

quantum mechanics for the ground and excited state of Helium, Lithium

and Beryllium atoms using a configuration interaction approximation

Banyard (1968) [18] has analysed and compared five wave functions

for −H , two functions were based on the single determinant independent-

particle model and three were correlated wave functions. He has

discussed the two-particle density )r,(r 21  and the radial density )r(D .
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Banyard and Baker (1969) [19] have studied the electron correlation

of an isoelectronic series possessing electrons with antiparallel spins −H ,

He, and Li+

The study was of three wave functions, two introduce correlation:

one by configuration interaction and the other by including Hylleraas-

type correlation factors. For comparison, the third function is based on

the Hartree-Fock approach. The correlation within the wave functions

was demonstrated by presenting two-particle density difference maps,

)r,r(D 21  relative to the uncorrelated approach, and graphs of the radial

density )r(D . The maxima values of D(r) were decreased with the nuclear

charge (atomic number Z) increasing.

Taylor and Banyard (1973) [20] have applied the method of

Sinano lu in his many-electron theory, which arise from electron-

correlation effects, for He (1S state), Li (2S and 2P states) and Be (1S state)

like ions, which gave an improved orbital representation as far as the one-

particle density is considered.

Brown and Larsson (1977) have calculated one-electron properties

such as ><><>∇< − 22 r,....,r,
2
1,)0(ρ and >< −1

12r . Calculations have

made on various small atoms and their positive and negative   ions.

Cohen and Frishberg (1983) [21] have obtained the probability of the

inter-particle distance for the N-body problem where the potential is an

attractive delta function. This was done for both the exact wavefunction

and the Hartree wave function allowing the calculation of the correlation

hole.

Koga et al. (1999) [22] have studied electron-pair intracule (relative

motion) and extracule (center-of-mass motion) densities in both position

and momentum spaces for the 1p and 3p terms of the group 2 atoms Be
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(atomic number Z=4), Mg (Z=12), Ca (Z=20), Sr (Z=38), Ba (Z=56) and

Ra (Z=88). The extracule density in momentum space shows that the 1P

term has a distribution larger in a large center-of-mass momentum region

than the 3P term.

B-Historical Review of Coulomb Hole:

Coulson and Neilson (1961) [23] have obtained formulae for the

distribution function )f(r12 of the inter-electronic distance 12r  in the

ground state of Helium, and for the mean value of 12r . Five different wave

functions were considered, showing varying degrees of electron

correlation. They have also evaluated the Coulomb hole.

Curl et al. (1965) [24] have calculated the Coulomb hole )(rf 12c  in

the ground state of two-electron atoms, where the Coulomb hole was

defined by Coulson and Neilson (1961).

 Banyard and Seddon (1973) [25] have examined, in depth, several

wave functions for the two-electron systems +++− Beand,LiHe,,H . Three

noncorrelated wave functions and ten explicitly correlated wave

functions. For each wave function they have calculated the inter-particle

distribution function )r(f 12 , by comparing the results for different wave

functions some insight were obtained into the roles played by different

types of correlation factor.

Seddon and Banyard (1973) [26] have calculated the Coulomb hole

and several two-electron expectation values using a series of

configuration interaction (CI) wave functions of differing accuracy for

helium like ions. The behaviour of these properties was examined. As the
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basis set was increased a comparison with the values obtained using

explicitly correlated (EC) wave functions.

Boyd (1975) [27] has discussed the radius of the Coulomb hole in an

atom or molecule in general terms and illustrated in detail for the ground

state of the helium isoelectronic sequence. The calculations demonstrate a

general tendency for the radius of the Coulomb hole to increase as a

function of the distance of the reference electron from the nucleus

Banyard and Mashat (1977) [28] have obtained an expression for the

Coulomb hole associated with any pair of occupied HF spin orbitals for a

many-electron system. The required partitioning of the known correlated

was achieved in their work by using the many–particle theory proposed

by Sinano lu. Ground state wavefunctions were then analyzed for the Be-

like ions when 8Z3 ≤≤  which, besides validating the partitioning

technique, provided insight into the radial and angular components of

intra-shell correlation effects.

Banyard and Mobbs (1981) [29] have used a partitioning technique

to examine correlation trends in individual electronic shell for a series of

ions. It has been extended and applied to a detailed comparison of four

well-correlated wave functions for Be atom. For each correlated

description of Be, Coulomb holes have been evaluated.

Banyard and AL-Bayati (1986) [30] have examined electron

correlation in detail within the LKandLK,KK  shells in position space

for a series of Li-like systems in their ground state. Using existing wave

functions, Coulomb holes, partial Coulomb holes and several one-and

two-particle expectation values were evaluated for the intra-and inter-
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electronic shells. The findings for the Li-like intra-and inter-shells were

compared both with a previous analysis of He-like and Be-like series of

ions and with a similar examination of the 2 1S and 2 3S excited states of

He

Youngman and Banyard (1987) [31] have analysed the electron

correlation effects in momentum space for excited states of He, Coulomb

shifts and partial Coulomb shifts had been determined, as well as certain

radial and angular distribution functions. Angular and radial correlation

had opposing effects on the momentum distribution.

Banyard and Youngman (1987) [32] have examined electron

correlation in momentum space for the individual intra-and inter-shell

electron pairs in the ground state of Li ( 2S). It was established that the

radial and angular components of correlation have opposing influences on

the inter-particle momentum distributions )f(p12 and )p,g(p 112 . They have

also examined the Coulomb shifts )f(p12  and partial Coulomb

shifts )p,g(p 112 .

Banyard (1990) [33] has examined K-shell electron correlation

effects with S)(LiP),Li(S),Li( ,S)(Li 1-221+ P)(BeS),(BeS),(Be 2212 +++  and

S)Be( 1 . In position and momentum space, Coulomb holes )f(r12 and

shifts )f(p12 and partial coulomb holes )r,g(r 112 and shifts )p,g(p 112 have

been studied.

Banyard et al. (1992) [34] have analysed correlation effects for the

doubly excited state 2p2 3P for 4Z1 ≤≤ . Coulomb holes and partial

Coulomb holes have been derived from explicitly correlated wave

function.
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Ellis (1996) [35] has defined a two-electron spin independent

operator to represent the spatial correlation of the electrons in a general

atom or ion. The spherical-tensor expansion for this operator has

provided a systematic method for evaluating the two-electron correlation

function implied by a Hartree-Fock N-electron wavefunction with

arbitrary configuration mixing. This technique for computing correlation

function provides a useful tool of wide applicability in comparing

different theoretical approaches to the structure of complex atoms.
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1-3 Electron Correlation:
The correlation energy is usually defined as the part of the total

energy of a system that is not taken into account in the Hartree-Fock

description of atoms and molecules. Although there are many definitions

for electron correlation found in the literature the one commonly used is

the one by Löwdin [36].

“The correlation energy for a certain state with respect to a specific

Hamiltonian is the difference between the exact eigen value of the

Hamiltonian and its expectation value in the Hartree-Fock approximation

for the state under consideration.”

This does not mean that the Hartree-Fock approximation does not

have any electron correlation built in it, but it does not capture the total

correlation. The part of the correlation it captures is the so-called Fermi

correlation that arises from the antisymmetry of the wave function and

basically prevents electrons of the same spin to occupy the same region of

space. It is noteworthy to mention that the correlation energy is usually of

the same order of magnitude as the dissociation energy of a molecule

[36].

Generally there are three factors that affect the electron correlation.

The first factor is the Coulomb repulsion that has the 1/r
ij

dependence and

thus becomes infinite when electrons are in close and zero when their

separation becomes infinite. This generates called Coulomb hole in

electronic structure computations. There are molecular systems where

this is the only type of correlation present apart from the Fermi

correlation. The two classical examples are He and Hydrogen molecular.

The second factor of correlation is termed as the Fermi hole. The third

factor that has influence on electron correlation is the point group to

which the one-electron wave functions are restricted. In this case lower
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symmetry point groups impose less restriction onto the one-electron wave

functions and result in higher correlation effects. [36]

1-4 Electron Correlation Problems:
The many-body problem is not exactly soluble in either classical or

quantum mechanics. In quantum mechanics the exact form of the

Schrödinger's equation for an atom with more than one electron includes

in the potential energy (V) not only the attraction interaction between the

electron and nucleus,
2

4 ij

Ze
rπε

−
o

, but also the repulsion

interaction,

2

4 ij

Ze
rπε

+
o , between each pair electrons, these cross terms

(rij) prevent separation into equations each involving co-ordinates of only

one electron, which can be solved exactly. To overcome this problem we

must use approximation methods [37].

The simplest approximation is due to Hartree, who assumed that

each electron moves only in the average field of all the other electrons of

the system. The straight forward products wave function proposed by

Hartree dose not satisfies the quantum mechanical requirement that many

electron wave functions must be anti-symmetric with respect to the

exchange of the coordinates of any two electron [37].

To meet this requirement, Slater and Fock re-derived the equation of

Hartree, such that, the wave function written as Slater determinant in eq

(1-11).

Although the Hartree-Fock calculation generate a great deal of

information about the electronic energy and density of the molecules. It

dose have two major shortcomings. The first is that the excited states are

difficult to calculate. The second is that the electron correlation is

ignored, except in an average sense (electron correlation is the interaction
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between the motions of the individual electrons in the system). Because

Hartree-Fock approximation calculates an electron's motion in the

average field produced by the other electrons rather than the exact

position of the other electrons, it leaves much of the electron correlation

out. Usually, the Hartree-Fock is described as "uncorrelated" wave

function [37].

One method of correcting the shortcomings of Hartree-Fock

approximation is Configuration-Interaction (CI). CI considers the

interaction of excited wave function with ground state wave function, the

excited wave function give additional functional freedom to the total CI

wave function to find the optimal energy. In addition to CI, there are two

types of CI according to electrons arrangement in the orbital basis set, the

first, complete CI in which all electrons are arrange in all possible ways

(consistent with symmetry requirement) in a complete (infinite) orbital

basis set (this is unattainable), the second, full CI in which all electrons

are arrange in all possible ways for a finite orbital basis set [37].

1-5 Coulomb Correlation:
In the HF approximation, the motions of an  and  electrons are not

correlated; the  pair probability is simply the product of the individual

(one-electron) probabilities. In reality the electrons try to avoid each

other, due to the Coulomb repulsion between them. The resulting

correlation of the electronic motions is called (Coulomb Correlation).

Coulomb correlation introduce changes in the pair-probability that

two electrons (with respect to the HF pair-probability): the probability

that two electrons are at short distance decrease. While the probability

that the inter-electronic distance is long increase.

Two electrons of the same spin of course also repel each other.

However, two  or two  electrons already try to avoid each other on the
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HF level, due to the antisymmetry of the wave function. The changes in

 and  pair probability (and associated changes in energy) when

Coulomb Correlation relation is taken into account will therefore be much

less important, compared to changes in the  pair-probability [38].

1-6 Coulomb Hole:

A Coulomb hole is defined as a region surrounding each electron

in atom in which the probability of finding another electron is small [39].

 In Hartree-Fock (SCF) wave function takes into account the

interactions between the electrons only in an average way. In reality, all

electrons repel each other due to the Coulomb potential ijre /2 which

exist between them, and each electron is therefore surrounded by a

Coulomb hole with respect to the other electrons this is a region in

which the probability of finding another electron is small. The motions of

electrons are correlated with each other, and we speak of electron

correlation.

Within the Hartree-Fock (HF) approximation the probability of

finding two electrons with parallel spin ↑↑   at the same point in space is

zero. Such appoint may be the centre of a Fermi hole, and is consequence

of the antisymmetry of the wave function (one some times refers to a

Fermi hole around each electrons in Hartree-Fock (HF) wave function,

thereby indicating a region in which the probability of finding another

electron with the same spin is small) .Although the Hartree-Fock (HF)

method allows electrons with the same spin properties to avoid one

another, no allowance is made for any spatial correlation between

electrons with opposite spin .The effect of correlation between all

electrons can only be examined by means of wave function which are



Chapter One                                                                             Introduction

19

more flexible than the Hartree-Fock(HF) determinant .When described by

wave function which go beyond the Hartree-Fock(HF) level of accuracy ,

each electron lies in a region of space which is largely devoid of other

electrons , this is a consequence of a more realistic description of the

Coulomb repulsions.
Correlation thus refers to the residual error in the Hartree-Fock (HF)

model when describing the electron-electron Coulomb interactions.

In a Self Consistent Field (SCF) and Configuration Interaction (CI)

calculation are reasonably well-defined as a “hole” around a reference

electron centered at any point in space, thereby reflecting a reduction in

the simultaneous probability density of finding two unlike-spin electrons

there [35].

The Coulomb hole, as well as the Fermi hole is clearly associated

with the notation of a hole is the atomic or molecular charge cloud any

chosen electron and therefore, the total amount of electron charge

displaced is indicative of the size of the hole interest (Coulson and

Neilson 1961).Alternatively the size of a hole could be described in

terms of its depth and its radius. The two quantities could then be through

of as the “dimensions” of the hole whereas the displaced electronic

charge provides a measure of the “volume” of hole [27].

  The Pauli principle keeps electrons of parallel spin apart. And

the second kind of the electron correlation is the classical Coulomb

repulsion between each pair of electrons leads to the formation of a

“hole” in the atomic or molecular charge cloud around any chosen

electron [40].
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The Coulomb hole it arises from the classical Coulomb repulsion

between each pair of electrons.

Mathematically Coulomb hole for the singlet state is defined as a

difference between the Correlated and Hartree-Fock wave function

approximations [25].

1-7 The Correlation Energy:
The correlation energy is the energy recovered by fully allowing the

electrons to avoid each other, and is defined as the difference between the

energy in the HF limited and the exact non relativistic energy ( E
o
) of a

system [12]:

E E Ecorr HF= −
o

                                                           ….1-13

This energy corrE  will always be negative because the HF energy is

an upper bound to the exact energy, the exact non relativistic energy can,

in principle, be calculated by a full CI in a complete one-electron basis

set, where the energy predicted by a correlated wave function takes into

account all the instantaneous particle interaction which occurred within a

many electron system, therefore, such calculation go well beyond the

description provided by independent-particle model.
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1-8 The Aim of The Project:

The aim of this research is to study the theoretical properties of He-

Like ions, using Hartree-Fock uncorrelated wave function and three

different correlated wave functions Configuration Interaction, Eckart-

Hyllears and Simple Configuration-Interaction wave functions accounts

for only the averaged interaction arising from the classical Coulomb

repulsion between each pairs of electrons, this means that the (HF)and

exact density distribution are virtually indistinguishable.

Also in this research study the Coulomb correlation (i.e the

correlation of the electronic movements due to the electronic repulsion) is

neglected in the HF approximation. In this thesis the correlation problem

is studied with the purpose to get a better insight into the shortcomings of

the HF model and to get a deeper understanding of electron correlation in

a physical and visual manner.

Our study aim to  analysis the calculations by using of partitioning

technique for He-Like ions then compare the results with other workers.

The present work data of Clementi and Rotti [1974] for Hartree-Fock

wave function, Wiess [1960] for Configuration-Interaction, Nelsion and

Coulsion for Eckart-Hyllaers wave function and Masten and sturat [1964]

for the Simple Configuration-Interaction.
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2-1 INTRODUCTION:
Any system can be described by wave function 1 2( , ,.... )nr r rΨ where

it is a mathematical expression to describe the system properties as

position, momentum, energy and etc. The exact calculation of wave

functions for many electron atoms becomes difficult because of the much

electron-electron repulsion that should be ignored for simplicity. There

are four main kinds of the wave function approximation methods,used in

the present work, Hartree-Fock (HF), Configuration Interaction

approximation methods, Eckart-Hyllears and the Simple Configuration-

Interaction wave functions respectively.

2-2 HARTREE-FOCK THEORY (HF)

2-2-1 Wave function and Basis set:

In an independent practical model the total wave function for many

electrons system is given by Slater determinant:

( ) )().....2(2)1(1,.......,2,1 NxNxxnxxxHF ΦΦΦ=Ψ …2.1

where )( ixiΦ  is the single electron wave function and ix  denotes spin-

orbital components:

)()()( δαφ iriix =Φ                                     ....2.2

or:

)()()( δβφ iriix =Φ                                   ....2.3
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ir ,denotes a radial and angular co-ordinate , while  ) and  ) are the

spin wave function of a single electron . an  and   refer to the two

components of the spin part , where , - spin up and  -spin down .

The spin wave functions are orthonormal, where:

( ) ( ) 1dα δ α δ δ
δ

∗ =∫ ( ) ( ) 1dβ δ β δ δ
δ

∗ =∫

( ) ( ) 0dα δ β δ δ
δ

∗ =∫ ( ) ( ) 0dβ δ α δ δ
δ

∗ =∫

The spatial part )( iriφ  can be written as an expansion in some set of

analytic basis function [41]:

∑ Χ=
i

i
nl

i
nCrnl )(φ                                          ….2.5

where C is a coefficient taken to minimize the energy. The basis set of

one-electron functions (basis function) chosen here consist of the

normalized Slater-type orbital defined by:

),()(),,( ϑθϑθ lmYrnlRrnlm =Χ                       ….2.6

where )(rnlR  and ),( ϑθlmY  represent the radial and angular parts

respectively.

The radial part is given by:

renr
n

n
rnlR ⋅−−

+
= ζζ 1

)!2(

2
1

)2()(                            ….2.7

 where n, l and m are quantum numbers and the  an exponential

parameter.

For the HF ground state calculations of He-like ion we used data for

 (C, , and n) introduced by [42]

….2.4
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2-2-2 Two–Particle Density:
For any N –electron atomic system, the two particle density can be

written as [43]:

*( , ) (...., ....) (...., ,....)
2 p p

N
x x x x dxm n p

 
Γ = Ψ Ψ 

  ∫
                       ….2.8

where ,
p

dx  mean that the integration summation takes over all N –

electron except m and n and the factor 







2
N  is a binomial coefficient and

used to ensure that second order density matrix ( . )x xm mΓ is normalized

to the number of electron pair , so that :

( . )
2m n

N
x x dx dxm mHF

 
Γ = 

 ∫∫                              …. 2.9

where:

)!2(!2
!

2 −
=








N
NN                                                  ….2.10

For two electron system the wave function can be written as

))()()()((
!2

1),( 2112221121 xxxxxxHF ΦΦ−ΦΦ=Ψ                      ….2.11

then

∑ −Φ=Ψ
〈

2

)(

)1)((
!2

1),(
ji

vxk
mn
ijBnxmxHF                               ….2.12

where





 ΦΦ−ΦΦ= )()()()( mxjnxinxjmxi

mn
ijB                            ….2.13

The symbol v  means the number of interchanges

In a similar way:
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∑
〈

−Φ=Ψ
2

)(
)1)((**

!2
1),(*

ji
vxk

mn
ijBnxmxHF                             ….2.14

The binomial coefficient for He-atom and He-like ions is:

! 1
2 2!( 2)!
N N

N
 

= =  − 
                                            ….2.15

Substituting binomial coefficient and equations (2.12, 2.14) into

equation (2.8) and integrating over particle we get [29].

∑
〈

=Γ
2 *

2
1),(

ji
mn
ijBmn

ijBnxmxHF
ij                                   ….2.16

The above equation represent the two-particle density for pair wise

component (i, j), where i and j refer to occupied spin-orbital, and m and n

are electron labels. For the present work m and n are taken as 1, 2

respectively.

For K  K -shell (i=1, j=2):

2

12 1 1 2 2 1 1 2 21 2

1( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 1 1

x x r r r r
s s s s

α δ β δ β δ α δ Γ = Φ Φ − Φ Φ  

                                                                                                ….2.17

where ir , contains both radial and angular parts.
2

1 2
1 2 2 1

12 1 2

( ) ( ) ( ) ( )2 2( , ) ( ) ( )1 1 2
x x r rs s

α δ β δ α δ β δ− 
Γ = Φ Φ  

  
….2.18

For K  L  inter-shell (i=1, j=3)
2

1 223 1 1 2 2 2 1 12
1( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 22

x x r r r rs s s sα δ α δ α δ α δ Γ = Φ Φ − Φ Φ 

                                                                                                  ….2.19
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1 2 2 1
23 1 2 1 2

( ) ( ) ( ) ( )2 21 2 1 2( , ) ( ) ( )
2

r r r r
s s s sx x α δ α δ

Φ Φ − Φ Φ 
   Γ =     

 

….2.20

2-2-3 Two-Particle Radial Density 1 2( , )D r r :

In each individual electronic shell of HF-system, the two-particle

radial density is given by [18]:

/
1 2 1 2 1 2 1 2

2 2( , ) ( , )D r r r r r r d dij ijΩ
= Γ Ω Ω∫∫                  ….2.21

where /
1 2( , )r rijΓ is a spinless function, r1 and  r2 are radial co-ordinate.

ididid ϕθθsin2 =Ω  (i=1, 2) denote that the integration is taken over all

angular co-ordinates of the position vectors r1 and r2 such that:

1 21 2
( , ) 1

j
D r r dr dri =∫∫                       ….2.22

The two particle radial density function is a measure of the

probability of finding the two electrons, simultaneously, in their radial co-

ordinate r1 and r2 respectively.

2-2-4 One-Particle Radial Density 1( )D r :

In each individual electronic shell, this function is defined by [18]:

1 2 2
0

1( ) ( , )ijD r D r r dr
∞

= ∫                              ….2.23

which is a measure of the probability of finding in its radial co-ordinate

r1. This 1( )D r is very useful to determine the one-particle expectation

value, and the coherent X-ray scattering.
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2-2-5 One-Particle Expectation Value 1
nr〈 〉 :

  The moments 〉〈 n
ir  can be calculated from [19]:

0

( ) n
i i i

nr D r r dri

∞

〈 〉 = ⋅∫                                  ….2.24

Values for 〉〈 n
ir when -2 ≤ n ≤2 are evaluated for each electronic shell. For

n=0 the expectation value 〉〈 n
ir  must be equal to one to ensure that )1(rD

is normalized to unity.

The case n=-1 leads to the electron-nuclear potential energy and it is

useful to determine nuclear magnetic shielding and when n=2 is used to

determine the root-mean-square (standard deviation) [18].

2-2-6 One-Particle Standard Deviation ir∆ :

The measure of the spread or diffuseness of one-particle radial

density can be obtained by evaluated ri; the root-mean-square deviation

from the mean 〉〈 ir  is defined as [19]:

22 〉〈−〉〈=∆ iririr                                        ….2.25

2-2-7 Two-Particle Expectation Value 〉〈 nrnr 21 :

For -2 ≤ n ≤2, the expectation value 〉〈 nrnr 21  is evaluated by using:

1 2 1 2 1 2
0

1 2 ( , ) n nn nr r D r r r r drdr
∞

〈 〉 = ⋅ ⋅∫                          ….2.26

At n=0, this leads to normalize ),(
21

rrD to unity. The two-particle

expectation value is important in the determination of the radial

correlation coefficient.
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2-2-8 Inter Electron-Electron Distribution Function )( 12rijf :

 For the ground state He-atom, the radial electron-electron distribution

function )( 12rijf  for the individual shell is given by [13]:

)(5.0)(
211212 IIrrijf +⋅=                                     ….2.27

where:
12 12 1

12 1

1 1 1 1 2 2 2
0

( , )
r r r

r r

I rdr r r r dr
−

+

= Γ∫ ∫                          ….2.28

12 1

12 12 1

2 1 1 1 2 2 2( , )
r r

r r r

I rdr r r r dr
−

+∞

= Γ∫ ∫                                ….2.29

For more detail see appendix (A).

This function is used to determine the inter-particle expectation

value 12
nr〈 〉  and the coulomb hole 12( )f r∆ .

2-2-9 Inter-Electronic Expectation Value 12
nr〈 〉 :

The mean value of inter-electronic separation can be determined by

the formula [13]:

12 12 12 12
0

( )n nr f r r drij

∞

〈 〉 = ⋅∫                                       ….2.30

where -2 ≤n ≤2. At n=0 the function 12( )f rij is normalized to unity, n=1

gives the average distance between electrons and n=-1 leads to electron-

electron repulsion energy. [44]
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2-2-10 Inter-Electronic Standard Deviation 12r∆ :

The measurement of the spread or diffuseness of electron-electron

distribution function )( 12rijf about its mean value 〉〈 12r is standard

deviation, which is given by:

12 12 12
2 2r r r∆ = 〈 〉 − 〈 〉                             ….2.31

2-2-11 The Ground State Energy E〈 〉 :
In term of the expectation value the ground state potential energy is

given by [44, 45]:

1 1
N N

i i j

V Z r ri ij
〉

− −〈 〉 = − 〈 〉 + 〈 〉∑ ∑                  ….2.32

but, the total energy of ground state E  is given by:

1
2

E V〈 〉 = 〈 〉                                 ….2.33

therefore:

1 11
2

N N

i ij
i i j

E Z r r− −

〉

 
〈 〉 = − 〈 〉 + 〈 〉 

 
∑ ∑                  ….2.34

where Z is the atomic number and energy is in atomic units (a.u.).

For more detail see appendix (B)
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2-3 Configuration-Interaction theory (CI)

2-3-1 Wave function and Basis set:

  In this work the CI method is used to study the effect of the

electron correlation in term of correlation energy. The correlation

description of the ground state of He-atom ions has been taken from

Weiss (1960) [17]. Also the partitioning technique is used to describe

correlation effects. The use of partitioning technique enables the

correlation effects to be examined in depth for various inter-shell electron

pair [17].

In this approach, the correlated wave function is expanded as a linear

combination of Slater determinants [17]

∑=Ψ
i iicCI φ                                        ….2.35

where each of iφ s (configurations) is antisymmetrized product of one-

electron functions (spin orbital), and the coefficients ic are taken as those

which minimize the total energy. Applying the variation theorem and

solving an infinite set of secular equations may in principle, obtain the

exact wave function.

The specific form of the configuration used for the two-electron

system studied here are the following linear combination of single Slater

determinant using fifteen configuration of s symmetry.

( ) 1 (1) (2)
2

ϕχ ϕ αχ β= ∑                             ….2.36

The basis set of one-electron function chosen is consisted of the

normalized Slater-type orbital defined by eq 2.6 [15, 47, 48].
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[ ]
),(

)!2(

)2( 1

2
1

2
1

ϕθζζχ
llmYrenr

n

n

nlm
⋅−⋅−

+
=           ….2.37

2-3-2 The Two-Particle Density (1,2)corr  for He-Like ions:

The particle density function )2,1(12Γ  for He-like ions can be given

as [17]:

( ) ∑= βαχϕϕχ )2()1(
2

1                                ….2.38

where:

(1) (2) (1) (2) (2) (1)ϕ αχ β ϕ αχ β ϕ αχ β= −               ….2.39

where )(iφ  and )(iχ  refers to the one-particle function.

by using eq (2.8) we get

[ ] [ ]*( , ) (1) (2) (2) (1) (1) (2) (2) (1)1 2 1 2r r dx dxϕ αχ β ϕ αχ β ϕ αχ β ϕ αχ βΓ = − ⋅ −∫

                                                                                            ….2-40

                               Let (1) (2)A ϕ αχ β=                               ….2.41

                              and (2) (1)B ϕ αχ β=                               ….2.42

by integrating over all spins and angular part we can get:





 +++=ΨΨ ABBABBAA ****

2
1*                         ….2.43

1)1()1(

0)1()1(

1)1()1(

0)1()1(

=

=

=

=

∫
∫
∫
∫

δββ

δαβ

δαα

δβα

d

d

d

d

                                      ….2.44
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)2()2()2(

)1()1()1(
)2()2()2(

)1()1()1(

χχχ

χχχ

ϕϕϕ

ϕϕϕ

YR
YR
YR

YR

=

=

=

=

                               ….2.45





 +=Γ )2()1()2()1(

2
1),(" 2222

1 2 φχχφ RRRRrrcorr                   ….2.46

where 1 2( , )corr r r′′Γ  represents the two-particle density function for He-like

ions.

2-3-3 The Change in Two-Particle Density:
 For N-electron system, the change in the two-particle density due to

the electron correlation which can be written as follows [30]:

),(),(),( nxmxijnxmxijnxmxij
HFcorr Γ−Γ=∆Γ                        ….2.47

2-3-4 The Change in Two-Particle Radial Distribution

Function:
This change can be given by [19]:

∫∫
Ω

ΩΩ∆Γ∆ = 212121
22),()2,1( ddrrrrijrrijD                            ….2.48

where:

1 2 1 2( , ) 0D r r dr drij∆ =∫∫                   ….2.49

Because the correlated and HF descriptions of ( , )
1 2

D r r are each

normalized to unity.



Chapter Two

33

Wave Functions and Some Atomic Properties

33

2-3-5 The Change in One-Particle Radial Density

Distribution:
This can give by [49]:

1 1 1( ) ( ) ( )HFCID r D r D r∆ = −                                                  ….2.50

or

1 2 1
0

1
( , )( ) D r r drD r

∞

∆∆ = ∫                                                            ….2.51

also:

1 2 1 2( , ) 0D r r dr dr∆ =∫∫

2-3-6 The Change in Inter-Particle Distribution Function:
The change is due to the correlation in the inter-particle distribution

function )( 12rijf defined as coulomb hole and is given by [46]:

∫∆Γ=∆
mndr

ndrmdr

nrmrijmnrijf ),()(                                        ….2.53

Then as in appendix (A) we get:

                                                ….2.54

12 12 1

12 1

1 1 1 1 2 2 2
0

( , )
r r r

r r

I rdr r r r dr
−

+

= ∆Γ∫ ∫

12 1

12 12 1

2 1 1 1 2 2 2( , )
r r

r r r

I rdr r r r dr
−

+∞

= ∆Γ∫ ∫                                                  ….2.56

)(5.0)(
211212 IIrrijf +⋅=∆

   ….2.52

….2.55
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2-4 Eckart-Hyllears Wave function:

This type of wave function allowed for "in-out" correlation since the

two electrons may be supposed to be in distinct orbital. The parameter of

the inner orbital has a=1.19, and the outer orbital has b=2.18. [13]. The

wave function is:

1 2 1 2
1 2

( ) ( )( , ) a r b r b r a rr r N e eψ − ⋅ + ⋅ − ⋅ + ⋅ = +  
                                ….2.57

where N is the normalization wave function and equals to:

( ) ( )
( ) ( )

3 3
2

33
2

16

8

a b a b
N

a b a bπ

⋅ ⋅ ⋅ +
=

 ⋅ + + ⋅ ⋅  

To find the two particle density we used eq (2.8):
*

1 2 1 2
1 2 1 2 1 2 1 2( ) ( ) ( ) ( )( , ) a r b r b r a r a r b r b r a rr r N e e N e e d dτ τ− ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + ⋅      Γ = + ⋅ +            ∫

                                                                                             ….2.58

where τ  is equal 2 sinr d d drθ θ φ

So the two particle density for Eckart-hyllears wave function is

1 2 1 2 1 2( , ) ( , ) ( , )r r r r r rψ ψ ∗Γ =                                                   ….2.59
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2-5 Special Configuration-Interactions for Two-Electron

Case:
Consider a simple configuration-interaction normalized wave function

[50]:

( ) ( ) ( )1 2 3

1 1 1 1 2 2 2
2

c s s c s s c s s′ ′ ′Ψ = ⋅ + ⋅ + ⋅                    ….2.60

i.e. we have three configurations whose determinates are composed of

normalized Slater-type orbital.

For He profile

1c =1.14803

2c =-0.01865

3c =-3.0462

1 2

2 3

1s(1) (1)  1s(1) (1) 1s(1) (1)  2s (1) (1)1
1s(2) (2)   1s(2) (2) 1s(2) (2)   2s (2) (2)2

2s (1) (1)  1s(1) (1) 2s (1) (1)  1s(1) (1)
2s (2) (2)   1s(2) (2) 2s (2) (2)   1s(2) (2)

c c

c c

α β α β
α β α β

α β α β
α β α β

 ′
Ψ = ⋅ + ⋅ +

′
′ ′

⋅ + ⋅ ′ ′ 

                                                                                        ….2.61

    Data for this configuration are taken from Sturat and Matsen [50].

Factoring off the spin yields:

[ ]1 2 2 31 (1)1 (2) 1 (1)2 (2) 2 (1)1 (2) 2 (2)2 (2)

(1) (2) (2) (1)
2

c s s c s s c s s c s s

α β α β

′ ′ ′ ′Ψ = ⋅ + ⋅ + ⋅ + ⋅

− ⋅  

                                                                                  ….2.62
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( )
1

2
1 2 2 3 35/ 2 2 423 / 2

2 1 2 21 2

5 / 2 3/ 2 3 / 2 5/ 2
2 2 1 2 1 2

1 3 2 1 2 34 3 4 4
1 2 1 1 2

1

3
14 ( ) 324

6( ) ( )
2( ) 32 64

N

c c c c c

c c c c c c

π π π
ζ ζ ζ ζζ ζ ζ

ζ ζ ζ ζπ π π
ζ ζ ζ ζ ζ

=
       + + +     + +      

     +
+ + +     +     

                                                                              ….2.63

where 1 1.55ζ = 1 2.15ζ =

We have four distinct spin orbital, but since they are made up from

doubly-filled spatial orbital, we can now on talk about two natural orbital.

We shall ignore the spin function during this analysis.



Chapter Two

37

Wave Functions and Some Atomic Properties

37

2-6 Calculation Method of Coulomb Hole:

In this work we have taken into account some of atomic properties

such as inter-particle distribution )( 12rijf  and partial distribution

function ),( 112
rrg  to calculate Coulomb hole )( 12rcf∆  and partial

Coulomb hole ),( 112
rrcg∆ .

We have also taken into account the two-particle distribution

function ),( 21 rrD  to study the change or the difference in two-particle

radial distribution function ),( 21 rrD∆ .

2-6-1 Coulomb Hole Calculation:
In this section, Coulomb hole )( 12rcf∆ , partial Coulomb hole

),( 112
rrcg∆  and the change in two-particle radial distribution function

),( 21 rrD∆  of correlated wave function for He-like ions are calculated.

The correlated wave function for He-like ions shows in eq (2.46).

The HF wave function can be written as follows:

2 2( , ) ( ) ( )
1 2 1 1 1 2
r r R r R r

HF s s
Γ =                                         ….2.64

where both two-density functions are normalized to unity.
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2-6-2 Calculation Method of Coulomb Hole )( 12rcf∆ :

The electron-electron distribution function )12(rf , which describes

the probability of locating two electrons separated by inter-electronic

distance r12, was first introduced by Coulson and Nielson [13]. Coulomb

hole )( 12rcf∆  was then defined in eq (2.53) [13, 26, 51, 28]. Where the

inter-particle distribution function of K (1S) shell for the correlated wave

function show in eq (2.54), (2.55), and (2.56) respectively.

2-6-3 Calculation Method of Partial Coulomb Hole ),( 112
rrcg∆ :

From the definition, the partial Coulomb hole can be written as

follows [51]:

),(),()(
1121121

,
12

rrHFgrrcorrgrcg r −=∆                  ….2.65

The partial Coulomb hole ),( 112
rrcg∆  represents the change in

behavior of Coulomb hole as the position of the test electron is varied.

The partial distribution function
),( 112

rrcg∆
 for correlated wave

function approximation can be calculated as follows:

22

112

112

),(5.0),( 21
"

121112 drr
rr

rr

corrcorr rrrrrrg ∫
+

−

Γ=                            ….2.66

To calculate ),( 112 rrg for HF wave function approximation we can write:

12 1

12 1

"
12 1 1 12 1 2

2 2
( , ) 0.5 ( , )

r r

HF HF

r r

g r r r r r r r dr
+

−

= Γ∫                             ….2.67
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2-6-4 The Change in the Two-Particle Radial Distribution

),( 21 rrD HFCI −∆  of the CI and HF Wave function:

The change in the two-particle radial distribution function

),( 21 rrD HFCI −∆  is defined as a difference between the two-particle radial

distribution function D (r1, r2) for correlated and HF approximation [52]

),(),(),(
212121

rrHFDrrcorrDrrD
HFCI

−=∆
−

          ….2.68

where the two-particle radial distribution function of K (1S) for the

correlated wave function approximation is given by:

                              ….2.69

and the two-particle radial distribution function for HF wave function

approximation can be written as follows:

1 2 1 2 1 2
2 2( , ) ( , )

HF HF
D r r r r r r= Γ                          ….2.70

1 2 1 2 1 2
" 2 2( , ) ( , )

corr corr
D r r r r r r= Γ
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3-Results, Discussion and Conclusions
The analysis of electron position distribution in the He-like ions is

performed using 15-trem CI correlated wave function of Wiess [17],

Echart-Hyllears wave function [13], Simple configuration-interaction

wave function [50], the Hartree-Fock wave function is taken from the

work of Clementi and Rotti [42]. In this chapter we will show the result

and graphics achieved in this research and its analysis for He-like ions of

all properties with conclusion and some future work.(in this chapter the

symbols HF refers to Hartree-Fock and CI refer to Configuration-

interaction and EH refer to Eckart-Hyllears and SCI refer to simple

configuration-interaction ).

3-1 One-Particle Expectation Value 1
nr〈 〉 :

Table (3-1) Presents, the one particle expectation value 1
nr〈 〉  and the

standard deviation 1r∆  for n=-2 to 2 for K-shell. These values are

displayed graphically in Figures (3-1), (3-2), (3-3). It shows the following

statements:

1. In Figure (3-1) for each Z the one particle expectation value 1
nr〈 〉

for both Hartree-Fock (HF), and Configuration-Interaction (CI)

wave function increase when n goes from -1 to -2, and decrease

when n goes from 1 to 2, these value mean that expectation values

weight different regions of place. For example when we deal with

position space, the value of one particle expectation value 2
1r〈 〉

indicates how the density distribution is closer to nucleus, so the

result of 2
1r〈 〉 when n goes from 1 to 2 decrease and the values of

2
1r

−〈 〉  indicate how the density distribution is in outer region of the

charge clouds.
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2. In Figure (3-3) for each wave function Hartree-Fock (HF),

Configuration-Interaction(CI), when n = 1 to 2 the one particle

expectation value 1
nr〈 〉  decrease by increasing Z, this is due to the

attraction force of nucleus to the charge which leads to decrease the

probability of finding the electron near the nucleus.

3. In Figure (3-3) for negative values of n, when n=-1,-2, the

expectation values increases by increasing Z due to strongly

attraction force between the nucleus and the electron in the outer

shell.

4. For n=-1 to -2, the one particle expectation value 1
nr〈 〉  obtained by

Configuration-Interaction (CI)-wave function are larger than those

obtained by Hartree-Fock(HF)-wave function. Radial correlation

(i.e. the Configuration–Interaction (CI) method takes into account

the regulation forces between the electrons) cusses increases in

1
nr〈 〉  values which is also shown by the change of 1

nr〈 〉 due to the

correlation effect.

5. The one particle expectation value 1
nr〈 〉  obtained by Configuration-

Interaction (CI), wave function smaller than those obtained

Hartree-Fock (HF)- wave function when n=1,2 for all Z, because

the electron correlation in (CI) approximation is better than that in

(HF)-wave function, where the shortcoming of Hartree-Fock (HF)

method are due to the neglecting of the electronic repulsions.

6. For n=0 all methods configuration-interaction (CI), Hartree-Fock

(HF), Eckart-Hyllears (EH) and Simple configuration-interaction

(SCI)  wave functions have the same value which equal to unity,

because the normalization condition has been applied.
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7. Figure (3-1) and Figure (3-3) plot the one particle expectation 1
nr〈 〉

for He-like ions using both Hartree-Fock (HF), and Configuration-

interaction wave function.

8. Figure (3-2) plot the one particle expectation value for K-shell for

He atom obtain each Hartree-Fock (HF), and Configuration-

interaction (CI), Eckart-Hyllears (EH) and Simple Configuration-

Interaction (SimpleCI) wave function.

Table (3-1): The one particle expectation value 〉〈 nr1  for He –like

ions of the Hartree-Fock (HF), and Configuration-Interaction (CI), and

Eckart-Hyllraes (EH), and Simple Configuration Interaction wave

function.

a.u〉〈 nr1
r1

n =2n =1n=0n =-1n =-2
shell

Atom
or

ions
0.5071.170.9191.0001.6815.981HF

1.180.9171.0001.6875.995Ref (51)

0.6251.2750.941.0001.7677.148CI

1.1930.921.0001.6886.017Ref (49)

0.5981.2370.9381.0001.6855.956Eckart-
Hyllears

0.5401.1590.9311.0001.635.446SCI

He

0.3430.4450.5721.0002.68714.912HF
0.4460.5731.0002.68514.888Ref(51)

0.4090.540.611.0002.72516.947CI

0.4460.5721.0002.68714.929Ref (49)

Li+1

0.2470.2350.4171.0003.66427.507HF

0.2320.4141.0003.68127.753Ref(51)
0.2950.2860.4461.0003.68230.474CI

Be+2

0.1910.1420.3241.0004.68744.744HF

0.1430.3251.0004.67444.538Ref(51)
0.2270.1730.3491.0004.6648.022CI

0.1410.3241.0004.68744.757Ref (49)

B+3
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.

(A): He                                                           (B): Li+1

                 (C): Be+2                                                            (D): B+3

Figure (3-1): The one-particle radial distributions function 1
mr〈 〉

for He-

Like Ion using Hartree-Fock and Configuration-Interaction wave

function.
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Figure (3-2): The one particle radial distribution function 1
nr〈 〉 for He

atom using Hartree-Fock , Configuration-Interaction, Eckart-Hyllears and
Simple Configuration-Interaction wave functions.
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(A): Hartree-Fock (HF) wave function.

                                                 (B)

(B): Configuration-Interaction (CI) wave function.

 Figure (3-3): The one particle expectation values 1
nr〈 〉  for He-like ions

when n=-2 to 2.
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3-2 The One-Particle Radial Distribution Function 1( )D r :

Table (3-2) presents, the location and maximum value for one-

particle radial distribution function for He-like ions. These values are

displayed graphically in Figures (3-4 to 3-9), These figures showse the

following statements:

1- Figures (3-4), (3-5) are shown the one-particle radial distribution

function 1( )D r  for He-like ions using both Hartree-Fock (HF), and

Configuration-interaction wave function.

2- In Figure (3-4) increase the maximum value for one-particle radial

distribution function with increasing the atomic number Z, and

close the position of maxima value from nucleus with increasing

the atomic number Z, this mean that the increase in coulomb

attraction for K-shell with nucleus.

3- In Figure (3-4) the maximum value for one-particle radial

distribution function by Configuration-Interaction (CI) is smaller

from the maximum value for Hartree-Fock (HF) because the

electron correlation CI is better than HF.

4- In Figure (3-5) Always 1r (CI) < 1r (HF) for all atom and ions. And

in In Figure (3-6) For He atom 1r  (CI) < 1r  (EH) < 1r  (HF) < (SCI).

5- Figures (3-7) shows the one-particle radial distribution function

1( )D r for K-shell for He-like ions using each Hartree-Fock (HF),

and Configuration-interaction (CI), Eckart-Hyllears (EH) and

Simple Configuration-Interaction (SCI) wave function.

6- The correlation effect on 1( )D r  can be seen in Figure (3-8), which

represents the difference )( 1rD∆ between the correlated wave

function CI and uncorrelated wave function HF plotted against the

distance 1r . The shape difference appears as positive and negative
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contribution. Where the positive contribution refers to an increase

1( )D r  and negative region decrease in 1( )D r  this change caused

correlation effect, the correlation effect comes from the separation

of two electrons of this shell, where we put each one in a virtual

state (configuration).

7- Figure (3-9) shows that the difference between Hartree-Fock and

Configuration-Interaction the location of maximum value close to

nucleus when Z increases because the correlation effect increase as

Z increases.
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Table (3-2): Maximum and Location of the One-Particle Distribution

Function for He-like Ions of the Hartree-Fock HF wave function, and

Configuration-interaction CI, Eckart-Hyllears EH wave function and

Simple Configuration-Interaction (SCI).

Atom or ion Wave function 1r a.u Max )( 1rD

HF 0.57 0.86359
CI 0.52 0.84113
EH 0.56 0.872

He

SCI 0.61 0.85886
HF 0.36 1.4076Li+1
CI 0.34 1.3123
HF 0.27 1.9353Be+2
CI 0.26 1.8042
HF 0.21 2.4904B+3
CI 0.20 2.3169
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Figure (3-4): The one-particle radial distribution function )( 1rD   for He-
like ions for Hartree-Fock (HF) and Configuration-Interaction (CI).
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Fig (): Fig (): The one-particle radial distribution function 1( )D r  for He-
Like ions using: (A)- Hartree-Fock (HF) wave function,

 (B)- Configuration-Interaction (CI) wave function.

1( )HFD r
Fig (): the one-particle radial distribution function for K-shell for He

atom using Hartree-Fock (HF), Configuration-Interaction (CI), Eckart-

Hyllears (EH) and Simple Configuration-Interaction (SCI) wave

functions.

(A)

(B)
Figure (3-5): The one-particle radial distribution function )( 1rD for He-
like ions using A-Hartree-Fock,  B- Configuration-Interaction wave
function.
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                        (A)                                                              (B)
Figure (3-6): The one particle radial distribution function 1( )D r  for He
atom using A-Hartree-Fock and Eckart-Hyllears wave function.
                  B- Hartree-Fock and Simple Configuration-Interaction.

Figure (3-7): The one particle radial distribution functions 1( )D r for He
atom using Hartree-Fock, Configuration-Interaction, Eckart-Hyllears, and
Simple Configuration-Interaction wave functions.
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                        (A): He                                                             (B): Li+1

                      (C): Be+2                                                          (D): B+3

Figure (3-8): The difference of one particle radial distribution functions
)( 1rD∆ between Hartree-Fock and Configuration-Interaction wave

function for He-like ions.
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Figure (3-9): The difference of one particle radial distribution function
)( 1rD∆ For He-like ions obtained Hartree-Fock and Configuration-

Interaction wave function.
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3-3 Coulomb Hole 12( )f r∆ :
The probability of finding the inter-particle distribution function

f(r12) between electrons with unlike spin in of Hartree-Fock and CI wave

function for He iso electronic sequence (He-Like ions) can be observed in

the Figures(3-10),(3-11) and (3-12).

1. In Figure (3-16) and Figure (3-17) the maximum value for SCI > EH

> HF > CI and the location for each wave function r12 SCI > EH > HF

> CI.

2. The Coulomb holes plotted as a difference between the fcorr(r12) figure

(3-13-A)and fHF(r12)figure (3-13-B) are presented in figure(3-14)for

each Z.

3. The locations and the maximum values of the density distribution

function maxf(r12) for different types of wave function are tabulated in

Table (3-3) for He-Like ions.

4. Figure(3-13) and Table (3-3) show that, as Z increases, the maximum

probability of the inter-particle distribution functions f(r12) for HF and

CI approximations  increase  and it also observed that the location of

these maxima decreases as Z becomes large. Because the electron

correlation increases as Z increases.

5. Coulomb holes of the
12

( )
c

f r∆ are presented in figure (3-15) for the

He-Like ions. These holes are to possess considerable similarity when

plotted against the scaled coordinate Zr12.

6. The balance between the positive and negative contribution for a

given )r(f 12C∆  curve is a consequence of the normalization conditions

on fcorr(r12) and fHF(r12) whereas the magnitude and ,in particular, the

location of each extremum of a Coulomb hole gives valuable insight
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into  the various effects  introduced by correlation. Since the negative

region of )r(f 12C∆  indicates a reduction in f(r12) relative to the

Hartree-Fock curve, the value of r12 such that )r(f 12C∆ =0 may be

interpreted as the radius of Coulomb hole . It was found that radius

decreases as Z increases. The radius and the area of the holes for

groups of He are tabulated in Table (3-4). From Table (3-4) and figure

(3-18) the radius of coulomb hole for HF&CI > HF&SCI > HF&EH.

And the area of coulomb hole HF&CI > HF&SCI > HF&EH.

3-3-1 The Inter-Particle Expectation Value n
12r

The inter-particle expectation values n
12r  of HF and CI wave

function approximations for the He-Like ions are tabulated in Table (3-5).

1. Figure(3-19) represents the n
12r  for each Z for HF and CI wave

functions, The result from this figure (3-19) and Table (3-5) show that

HF
n

12r >< is greater than CI
n

12r ><  at n = -1,-2  and  at n=1,2 HF
n

12r >< is

less than CI
n

12r >< . Comparing between the expectation values for the

HF and CI wave functions as Z series are plotted in figure(3-20), that

the HF
n

12r >< < Li+ <  Be2+ <  B+3for –ve n  and  for +ve n  the

HF
n

12r >< of He > Li+ > Be2+> B+3 . This influence has caused f(r12) to

become more contracted towards the origin.

2. Figure (3-21-A) shows that the inter expectation value for Eckart-

Hylleras (EH) when n=-1, -2 is less than that for Hartree-Fock, and for

n=1, 2 the value of Eckart-Hyllears (EH) is larger than the Hartree-

Fock.

3. Figure (3-21-B) shows that the inter expectation value for Simple
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Configuration-Interaction (SCI) when n=-1, -2 is less than for Hartree-

Fock. And for n=1, 2 the value of Simple Configuration-Interaction

(SCI) is larger than the Hartree-Fock.

From Figure (3-21-C) and table (3-5) we found the relation for

 n=-2
12 12 12 12

n n nn
HF CI EH SCI

r r r r>> > .

For n=2
12 12 12 12

n n nn
CI EH HF SCI

r r r r> > > .

For n=-1
12 12 12 12

n n nn
HF CI EH SCI

r r r r> > > .

For n=1
12 12 12 12

n n nn
EH CI SCI HF

r r r r> > > .

3-3-2 The partial Coulomb hole

The g(r12,r1) diagrams show the change in behavior of the inter-

particle probability functions as  the position of the test electron is varied

These surfaces are presented in figure(3-22) and figure(3-23)  for the   HF

and CI wave functions for each Z

1. The contour diagrams for the g(r12,r1) surface mentioned above   are

presented in figure (3-24) and figure (3-25) for HF and CI wave

functions respectively.

2. The locations and the maximum values of the partial density

distribution function g(r12,r1) of HF and CI  for each Z are tabulated in

Table (3-6).

3. The surface diagrams show that the maximum of g(r12,r1) increases as
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Z increases for  He iso electronic sequences and the contour diagrams

show that the g(r12,r1) becomes more diffuses and decreases in

magnitude as Z increases for  He iso electronic sequences.

4. The change in the partial Coulomb holes for He-Like ions is plotted as

surface diagrams of the series of Z (He, Li+, Be+2,  B+3) in the figure

(3-26). Figure (3-27) show contour diagrams for He-Like ions for the

same series.

5. The surface diagrams show that the depth of Coulomb hole increases

and the radius decreases as Z increases and the contour diagrams show

coulomb hole becomes more diffuses and decreases in magnitude as Z

increases.
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Table (3-3): Maximum and Location of The Inter-Particle Distribution

Function for He-like Ions of the Hartree-Fock (HF) wave function, and

Configuration-interaction (CI), Eckart-Hyllears (EH) wave function and

Simple Configuration-Interaction (SCI).

Table (3-4): The radius and the area of Coulomb hole )r(f 12C∆ for He-like
ions.

Atom or ions Wave function 12r  a.u 12( )f r
HF 0.98 0.624
CI 0.97 0.623

Eckart-Hyllears 1.04 0.622
He

SCI 1.08 0.647
HF 0.63 1.029Li+1
CI 0.61 0.945
HF 0.49 1.407Be+2
CI 0.42 1.278
HF 0.35 1.826B+3
CI 0.33 1.629

Atoms or
ions

Wave
Function

Radius of
coulomb hole a.u

Area of coulomb
hole   a.u

HF &CI 1.13 0.015
HF&EH 1.10 0.0176

HF & SCI 1.11 0.0177
He

Ref (13) 1.1
Li+1 HF &CI 1.05 0.055
Be+2 HF &CI 0.84 0.066
B+3 HF &CI 0.66 0.078
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Table (3-5): The Inter-Expectation Value 12
nr〈 〉  For He-Like Ions of

Hartree-Fock, Configuration-interaction, Eckart-Hyllears and Simple

Configuration-Interaction wave functions.

Table (3-6): The Maximum and Location of the Partial Coulomb Hole
1 12( , )g r r for He-Like Ions obtained by Hartree-Fock,

Configuration-Interaction Wave function.

Atom
or ions

 a.u12
nr〈 〉Wave

function -2 -1 0 1 2 12r∆

HF 1.828 1.017 1.000 1.340 2.313 0.719
CI 1.815 1.016 1.000 1.389 2.512 0.763

Eckart-
Hyllears

1.701 0.992 1.000 1.395 2.472 0.725
SCI 1.612 0.983 1.000 1.368 2.314 0.665

He

Ref (26) 1.480 0.946 1.000 1.422 2.513 0.702
HF 4.727 1.652 1.000 0.838 0.89 0.433
CI 4.474 1.583 1.000 0.84 0.91 0.452Li+1

Ref (26) 4.114 1.569 1.000 0.862 0.926 0.427
HF 8.827 2.261 1.000 0.609 0.469 0.313
CI 8.305 2.158 1.000 0.663 0.573 0.365Be+2

Ref (26) 8.078 2.192 1.000 0.618 0.477 0.38
HF 14.495 2.902 1.000 0.474 0.284 0.243

B+3 CI 13.309 2.721 1.000 0.51 0.342 0.286

Atom or
Ions Wave function 1r  a.u  a.u12r 1 12( , )g r r

HF 0.57 0.98 0.673He
CI 0.52 0.97 0.622
HF 0.36 0.63 1.75

Li+1

CI 0.34 0.61 1.64
HF 0.27 0.49 3.127

Be+2

CI 0.26 0.42 3.025
HF 0.21 0.35 5.652

B+3

CI 0.2 0.33 5.632
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  (A): He                                                 (B): Li+1

     (C): Be+2                                                 (D): B+3

Figure (3-10): The Inter-Particle Distribution Function f(r12)for He-Like
ions obtained by Hartree-Fock Wave function.
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  (A): He                                                     (B): Li+1

 (C): Be+2                                                     (D): B+3

Figure (3-11): The Inter-Particle Distribution Function f(r12)for He-Like
ions obtained by Configuration-Interaction wave function.
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 (A): He                                              (B): Li+1

        (C): Be+2                                             (D): B+3

Figure (3-12): The Inter-Particle Distribution Function f(r12)for He-Like
ions obtained by Hartree-Fock and Configuration-Interaction wave
functions.
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A- Hartree-Fock wave function

B-Configuration-Interaction wave function

Figure (3-13): The Inter-Particle Distribution Function f(r12)for He-Like
ions.
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  (A): He                                                 (B): Li+1

  (C): Be+2                                                   (D): B+3

Figure (3-14): The Coulomb hole as a difference between Inter-Particle
Distribution Function for He-Like Ions obtained by Hartree-Fock and
Configuration-Interaction Wave Functions.
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(A)

(B)

Figure (3-15): The Coulomb hole as a difference between Inter-Particle
Distribution Function for He-Like Ions obtained by Hartree-Fock and
Configuration-Interaction Wave Functions.
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(A)                                                            (B)

Figure (3-16): The Inter-Particle Distribution Function f(r12)for He-Like
ions obtained by

A- Eckart-Hylleras Wave Function.
B- Simple Configuration-Interaction Wave Function.

Figure (3-17): The Inter-Particle Distribution Function f(r12)for He-atom
obtained by

A- Hartree-Fock.
B- Configuration-Interaction.
C- Eckart-Hylleras
D- Simple Configuration-Interaction
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       (A)                                                             (B)

 (C)

Figure (3-18): The Coulomb hole as a difference between Inter-Particle
Distribution Function for He-atom obtained by and Configuration-
Interaction Wave Functions.

A- Hartree-Fock and Eckart-Hyllears Wave Functions.
B- Hartree-Fock and Simple Configuration-Interaction Wave

Functions.
C- Hartree-Fock and Eckart-Hyllears and Simple

Configuration-Interaction Wave Functions.
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          (A): He                                                            (B): Li+1

     (C): Be2                                                           (D): B+3

Figure (3-19): The Inter-Particle Expectation Value 12
nr〈 〉  For He-Like

Ions using By Hartree-Fock and Configuration-Interaction Wave
Functions.
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 (A): Hartree-Fock

 (B): Configuration-Interaction
Figure (3-20): The Inter-Particle Expectation Value 12

nr〈 〉 for He-Like Ions
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     (A)                                                                       (B)

(C)

Figure (3-21): The Inter-Particle Expectation Value 12
nr〈 〉 for He-Like Ions

A- Hartree-Fock and Eckart-Hyllears.
B- Hartree-Fcok and Configuration-Interaction.
C- Hartree-Fock, Configuration-Interaction, Eckart-

Hylleras and Simple Configuration-Interaction.
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   (A): He                                                (B): Li+1

       (C): Be+2                                                 (D): B+3

Figure (3-22): The surface partial Coulomb hole g(r12,r1) for He-Like
Ions obtained by Hartree-Fock.
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(A): He                                                   (B): Li+1

          (C): Be+2                                               (D): B+3

Figure (3-23): The surface partial Coulomb hole g(r12,r1) for He-Like
Ions obtained by Configuration-Interaction.
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    (A): He                                            (B): Li+1

            (C): Be+2                                            (D): B+3

Figure (3-24): The contour partial Coulomb hole g(r12,r1) for He-Like
ions obtained by Hartree-Fock.
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(A): He                                            (B): Li+1

                          (C): Be+2                                         (D): B+3

Figure (3-25): The contour partial Coulomb hole g(r12,r1) for He-Like
ions obtained by Configuration-Interaction.
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                  (A): He                                          (B): Li+1

(C): Be+2                                        (D): B+3

Figure (3-26): The surface delta partial Coulomb hole g(r12,r1) for He-
Like Ions obtained by Hartree-Fock and Configuration-Interaction.
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   (A): He                                          (B): Li+1

(C): Be+2                                         (D): B+3

Figure (3-27): The contour delta partial Coulomb hole g(r12,r1) for He-
like ions obtained by Hartree-Fock and Configuration-Interaction.
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3-4 The Change in the Two-Particle Radial Distribution

Function DCI-HF(r1,r2)  of CI and HF Wave Functions:
Table (3-7): Presents the maximum value for the two particle radial

distribution function D(r1, r2)  and the location of r1, r2. These values are

displayed graphically

1. The maximum value D(r1, r2) of HF is larger than the maximum

value for CI for each Z. The maximum D(r1, r2) increases when Z

increases for each HF and CI wave function.

2. The surface diagrams shows in figure (3-28) and figure (3-30) are

shows the maximum of D(r1,r2) increases as Z increases for both

HF and CI wave functions for He iso electronic sequences and the

contour diagrams show that the D(r1,r2) in figure (3-29), figure (3-

31) that becomes more diffuses and decreases in magnitude as Z

increases for both HF and CI wave functions for He iso electronic

sequences.

3. In Table (3-7) the Max D(r1, r2)HF > D(r1, r2)CI and max D(r1, r2)

He<Li+1 <Be+2 <B+3 and the location of max D(r1, r2) for He>

Li+1>Be+2>B+3.

4.  The change DCI-HF (r1, r1) which occurs in the two-particle radial

distribution function D(r1,r2)  for CI and HF wave functions is

plotted as  surface diagrams in the  figure (3-32). and it is plotted as

contour diagrams in figure (3-33) He-Like ions. The surface

diagrams show that the depth of the change increases and the

radius decreases as Z increases and the contour diagrams show that

the change becomes more diffuses and decreases in magnitude as Z

increasing, because the nuclear charge increases.
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Table (3-7): Maximum and Location of two-particle distribution function

D(r1,r2)for He-like ions of the Hartree-Fock wave function, and

Configuration-interaction wave function.

Atom or
ions

Wave
function 1r  a.u 2r   a.u ),( 21 rrD

0.57 0.57 0.746
HF

0.57 0.57 0.746
0.52 0.53 0.705

He
CI

0.52 0.52 0.705
0.36 0.36 1.981

HF 0.36 0.36 1.981
0.37 0.38 1.657

Li+1
CI

0.38 0.37 1.657
0.27 0.27 3.745

HF 0.27 0.27 3.745
0.26 0.27 3.138

Be+2
CI

0.27 0.26 3.138
0.21 0.21 6.202

HF 0.21 0.21 6.202
0.2 0.19 5.209

B+3
CI

0.19 0.2 5.209



Chapter Three                                    Results, Discussion and Conclusions

7979

                       (A): He                                                (B): Li+1

(C): Be+2                                                     (D): B+3

Figure (3-28): Surface Diagram for the two-particle radial distribution

function D(r1,r2)  for HF wave function.
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(A): He                                                   (B): Li1

(C): Be+2                                                   (D): B+3

Figure: (3-29) Counter Diagram for the two-particle radial distribution
function D(r1,r2)  for HF wave function.
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(A): He                                           (B): Li+1

(C): Be+2                                         (D): B+3

Figure (3-28): Surface Diagram for the two-particle radial distribution

function D(r1,r2)  for CI wave function.
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(A): He                                                      (B): Li+1

(C): Be+2                                               (D): B+3

Figure (3-31) Counter Diagram for the two-particle radial distribution
function D(r1,r2)  for CI wave function.
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(A): He                                          (B): Li+1

(C): Be+2                                         (D): B+3

Figure (3-32) Surface Diagram for the difference of the two-particle
radial distribution function D(r1,r2)  for each HF, CI wave function.
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(A): He                                             (B): Li+1

(C): Be+2                                      (D): B+3

Figure (3-33) Counter Diagram for the difference of the two-particle
radial distribution function D(r1,r2)  for each HF, CI wave function.
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3-5 Calculation of Energy:

3-5-1 Repulsion Energy Expectation Values eeV〈 〉
The values of 1

12r −< > is used to evaluate the repulsion energy

expectation values >< eeV  for He-like ions. Examination of the repulsion

energy expectation values >< eeV  of He-like are presented in Table (3-8)

and from this table we report the following statements:

1- If the atomic number (Z) increases the repulsion energy between the

electrons increase. This behavior arises from the fact that the each

shell shrinkage toward the nucleus because the attraction force

between the electrons and the nucleus increase too, while the distances

between the electrons decrease so the repulsion energy increase the

repulsion energy between two charge proportion with the values of the

two charge, and inversely with the squared distance between them).

2- For each (Z) the repulsion energy expectation value >< eeV  for

correlated wave function is less than that for uncorrelated wave

function because the correlation between the electrons was taken in

account.
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Table (3-8): Repulsion energy expectation value eeV〈 〉  for He-like ions of

Hartree-Focck (HF), Configuration-Interaction (CI), Eckart-Hyllears

(EH), and Simple Configuration-Interaction Wave Function.

Atom or Ion Wave Function 1
12eeV r −〈 〉 = 〈 〉 a.u

HF 1.017
CI 1.016
EH 0.992

He

SCI 0.983
HF 1.652

Li+1

CI 1.583
HF 2.261

Be+2

CI 2.158
HF 2.902

B+3

CI 2.721
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3-5-2 Attractive Energy Expectation Value enV〈 〉
Table (3-9) illustrates the attractive energy expectation values

>< enV  for He-like ions and it shows:

1- 1-The attractive energy expectation values >< enV  increases as

atomic number (Z) increases and this behavior from the fact that the

K-shell shrinkage toward the nucleus because of the attraction force

between the electrons and the nucleus decrease.

2- The attractive energy expectation values >< enV  is larger than  the

repulsion energy expectation value >< eeV by comparison between

Table (3-8), and Table(3-9) for  atom or ions and this is caused to

reduce the distance between the electrons and the nucleus smaller than

the distance between the electrons and this difference decreases as the

atomic number Z increase.

Table (3-9): Attractive energy expectation value eeV〈 〉  for He-like ions of
Hartree-Fock (HF), Configuration-Interaction (CI), Eckart-Hyllears (EH),
and Simple Configuration-Interaction Wave Functions.

* 1
1enV Z N r −〈 〉 = − ⋅ 〈 〉    a.u

Atom or Ion Wave function
1

1r
−〈 〉 enV−〈 〉

HF 1.681 6.724
CI 1.767 7.068

Eckart-Hyllears 1.685 6.74
He

SCI 1.63 6.52
HF 2.687 16.122

Li+1

CI 2.725 16.35
HF 3.664 29.312

Be+2

CI 3.682 29.456
HF 4.687 46.665

B+3

CI 4.66 46.786
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3-5-3 Total Energy Expectation Values E〈 〉
Table (3-10) shows the values of the attractive energy expectation

values >< enV , repulsive energy expectation values >< eeV , and total

energy expectation values >< E  and we noted that:

1- The total energy expectation value >< E  for He-atom of Hartree-Fock

(HF) approximation is larger than those for the correlation wave

function and that behavior is not found in ions because the electron

correlation has been taken in account in the correlated wave function

and the electron correlation increase as the atomic number (Z)

increases.

2- As atomic number (Z) increases the attractive potential energy (which

results from the attractive potential energy between the electrons and

the nucleus), and the repulsion energy (which results from the

repulsion potential energy between the electrons) increase.

Table (3-10): Total energy expectation value eeV〈 〉  for He-like ions of
Hartree-Fock (HF), Configuration-Interaction (CI), Eckart-Hyllears (EH),
and Simple Configuration-Interaction Wave Function.

V〈 〉Atom
or Ion

Wave
function

enV−〈 〉 eeV〈 〉 V−〈 〉
1
2

E V−〈 〉 = − 〈 〉 corrE

HF 6.724 1.016 5.388 2.854
CI 7.068 1.017 5.692 2.846

HF&CI 0.008

Eckart-
Hyllears 6.74 0.992 5.668 2.874 HF&EH 0.02

He

SCI 6.52 0.983 5.645 2.8225 HF&SCI 0.031
HF 16.122 1.652 14.47 7.235

Li+1

CI 16.35 1.583 14.75 7.375
0.14

HF 29.312 2.261 27.051 13.526
Be+2

CI 29.456 2.158 27.298 13.649
0.247

HF 46.87 2.902 43.968 21.964
B+3

CI 46.6 2.721 43.93 21.985
0.020



Chapter Three                                  Results, Discussion and Conclusions

8989

3-6 Conclusions:
1. As Z increases, the one-particle expectation value 1

nr〈 〉  for each

Hartree-Fock and Configuration-Interaction increase when we

study the charge density distribution near to nuclear and decrease

when we study the charge density distribution far too nuclear.

2. As Z increases, the one-particle radial distribution functions for

each Hartree-Fock and Configuration-Interaction increases 1( )D r .

3. As Z increase, the difference one-particle radial distribution

function )( 1rD∆  increase and the location closed to nucleus.

4. As Z increases, the inter-particle expectation value n
12r  for each

Hartree-Fock and Configuration-Interaction increase when n=-1, -2

and decrease when n= 1, 2.

5. As Z increases, the maximum probabilities of the inter-particle

distribution function f(r12) of HF and CI wave functions increases

and also the locations of these maxima decrease as Z goes from 2

to 5.

6. The magnitude density of g(r12,r1) of the HF and CI wave functions

increases as Z increases.

7. The maximum of D(r1,r2) increases as Z increases of  HF and CI

wave function for K-shell.

8. The radius of Coulomb hole decreases with increasing the atomic

number Z, and the area of Coulomb hole increase with increase of

the atomic number Z.
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9. As Z increases the depth of the change DCI-HF(r1,r2) which occurs

in two-particle radial distribution function D(r1,r2) increases, and

the location of the two-particle decreases.

3-7Future work and suggestions:
Study the Fermi Hole and Coulomb Hole for some atomic system using

new correlated wave function.
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Appendix A

Determination of Electron-Electron Distribution Function
For any N-electron atomic system, the distribution function 12( )f r  of

the interelectronic separation ijr  is defined as [37]:

                        …. (A-1)

(2)Γ is the spin-free-2 matrix defined by:

*
1 2 1 2

(2)( , , ) ( , ,..., ,.... ,... ) ( , ,..., ,.... ,... )
2i j i j i j n i j n i j k
N

r r r r x x x x x x x x x x dx dx dx
 ′ ′ ′ ′ ′ ′ ′Γ = Ψ Ψ 
 

∫ ∫ ∫

                                                                                …. (A-2)

Where kdx , indicate an integration- summation over all the combined

space and spin co-ordinate kx except k =i and j. the binomial coefficient

2
N 

 
 

ensure that the spin-free-2 matrix is normalized to the number of the

electron pair with the system.

After setting i ir r′ = , j jr r′ =  the integration is achieved over all co-

ordinates except ijr [28] therefore:

( ) ( , )ij ij i j i jf r dr r r dr dr= Γ∫ ∫                                         …. (A-3)

Such that
0

( ) 1ij ijf r dr
∞

=∫                                         …. (A-4)

The integration in equation (A-3) is taken over all positions of the two

electrons such that the inter-electronic distance lies between 12r and

12 12r dr+ [13].

(2)( ) ( , , )
dr dri jf r r r r rij i j i j drij

′ ′= Γ∫
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In order to obtain the final form of the radial electron-electron

distribution function, we will transform the volume element [28] see

figure (A-1).
2

2 2 2 2 2 2sindr r dr d dθ θ φ=                                             …. (A-5)

At the same way:
2

1 1 1 1 1 1sindr r dr d dθ θ φ=                                               …. (A-6)

Now in a appropriate manner, choosing the r1- direction as the new polar

axis see figure (A-2).
2

2 2 2 sindr r dr d dω ω γ=                                               …. (A-7)

Where γ  shows an angle of rotation of the plane 012 around 01.

Now from the law of cosine:
2 2 2

12 1 2 1 22 cosr r r r r ω= + −                                           …. (A-8)

Then by dervitation with kept r1, r2

12 12 1 2 sinr dr r r dω ω=                                                 …. (A-9)

Therefore, the combined volume element becomes:

1 2 1 2 12 1 1 2 1 1sin sindrdr r r r drdr d d d dθ ω θ φ ω γ=                …. (A-10)

It is convenient to set i=1, j=2, then the equation (A-3) becomes:

12 1 2 1 2 12 1 1 2 1 1( ) ( , ) sin sinf r r r r r r drdr d d d dθ ω θ φ ω γ= Γ∫   …. (A-11)

By integration over all the angles gets:
2

12 12 1 2 1 2 1 2( ) 8 ( , )f r r r r r r drdrπ= Γ∫∫                              …. (A-12)

For a given r12, the allowed values of r1 and r2 are defined by the

rotations:

12 1 2 12 1r r r r r− ≤ ≤ +       at ( 1 12r r〈 )                             ….(A_13)

1 12 2 1 12r r r r r− ≤ ≤ +        at ( 1 12r r〉 )
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Generally:

12 12 1 1 12

12 1 1 12

2
12 12 1 1 1 2 2 2 1 2 1 1 2 2

0 0

( ) 8 ( , ) ( , )
r r r r r

r r r r

f r r rdr r r r dr rdr r r r drπ
+ +∞

− −

 
= Γ + Γ  

 
∫ ∫ ∫ ∫   …. (A-14)

The vector r in 1 2( , )r rΓ  means that the density contains both radial and

angular part, where the angular part of each orbital is 1
4π

 
 
 

. Therefore,

the inter-particle radial distribution function of the individual shells can

be written as:

)(5.0)(
211212 IIrrijf +⋅=                                        …. (A-15)

Where
12 12 1

12 1

1 1 1 1 2 2 2
0

( , )
r r r

r r

I rdr r r r dr
−

+

= Γ∫ ∫                             …. (A-16)

12 1

12 12 1

2 1 1 1 2 2 2( , )
r r

r r r

I rdr r r r dr
−

+∞

= Γ∫ ∫                                …. (A-17)
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             Figure (A-1): Volume element in spherical co-ordinate.

Figure (A-2): Co-ordinate systems of the distribution function
determination Numerals l and 2 show the electrons, 0 is the nucleus.
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Appendix B

Determination of the Total Energy in Terms of Expectation

Values
The total energy of our trail wave function is given by [45]:

H
E

Ψ Ψ
=

Ψ Ψ
                                                             …. (B-1)

Since the wave function is normalized the denominator becomes one,

therefore:

E H= Ψ Ψ                                                              …. (B-2)

Where:

21 1 ,
2 i

i i ji ij

ZH
r r〈

   
= − ∇ − +    

    
∑ ∑                             …. (B-3)

21
2 i− ∇ , represent the Kinetic energy (T).

The potential energy is represented by:

1
i i ji ij

ZV
r r〈

 
= +  

 
∑ ∑                                                      …. (B-4)

Substituting equation (B-3) into equation (B-1) we get:

E T V= Ψ + Ψ                                                       …. (B-5)

Now, from the viral theorem [45]
1
2

T V= −

1

2

1
2

E V V= Ψ Ψ =                                                  …. (B-6)

Then:

1 1
2 i ij

ZE
r r

 −
= + 

  
                                                   …. (B-7)



Appendix C 
 

Data of Hartree-Fock for He-Isoelectric series [1974] 
 

 
Data of Hartree-Fock  He atom 

 
n l  ζ  C 
1 0 1.45286 0.91795 
1 0 2.77954 0.18334 
1 0 4.34600 0.00824 

 
Data of  Hartree-Fock Li+1 ions 

 
n l  ζ  C 
1 0 2.45055 0.89066 
1 0 4.57259 0.12328 
1 0 6.67032 0.00088 

 
Data of  Hartree-Fock Be+2 ions 

 
n l  ζ  C 
1 0 3.43071 0.89855 
1 0 5.63150 0.09068 
1 0 7.35143 0.02158 

 
Data of  Hartree-Fock B+3 ions 

 
n l  ζ  C 
1 0 4.44422 0.93036 
1 0 7.90274 0.07786 
1 0 11.31380 0.00013 
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Appendix D 
 

Data of configuration-interaction for He-Isoelectric series Wiess [1960] 

Data of configuration-interaction  He atom 
 

CI n n1 ζ  ζ 1 C 
1s 1s 1 1 1.48 1.48 0.30709 
1s 2s 1 2 1.48 1.48 -0.8623 
2s 2s 2 2 1.48 1.48 0.14117 
1s 1s' 1 1 1.48 3.7 -0.59306 
2s 1s' 2 1 1.48 3.7 0.12052 
1s' 1s' 1 1 3.7 3.7 0.07324 
1s 2s' 1 2 1.48 3.7 -0.29466 
2s 2s' 2 2 1.48 3.7 0.05457 
1s' 2s' 1 2 3.7 3.7 0.05529 
2s' 2s' 2 2 3.7 3.7 0.07434 
1s 3s' 1 3 1.48 3.7 -0.55471 
2s 3s' 2 3 1.48 3.7 0.16365 
1s' 3s' 1 3 3.7 3.7 0.14812 
2s' 3s' 2 3 3.7 3.7 -0.00026 
3s 3s' 3 3 3.7 3.7 0.14627 

 

Data of configuration-interaction  Li+1 ions 
 

CI n n1 ζ  ζ 1 C 
1s 1s 1 1 2.52 2.52 0.51545 
1s 2s 1 2 2.52 2.52 -0.76338 
2s 2s 2 2 2.52 2.52 0.15375 
1s 1s' 1 1 2.52 5.75 -0.74523 
2s 1s' 2 1 2.52 5.75 0.19361 
1s' 1s' 1 1 5.75 5.75 0.10743 
1s 2s' 1 2 2.52 5.75 -0.39384 
2s 2s' 2 2 2.52 5.75 0.10211 
1s' 2s' 1 2 5.75 5.75 0.10123 
2s' 2s' 2 2 5.75 5.75 0.07174 
1s 3s' 1 3 2.52 5.75 -0.64785 
2s 3s' 2 3 2.52 5.75 0.19433 
1s' 3s' 1 3 5.75 5.75 0.19574 
2s' 3s' 2 3 5.75 5.75 0.04921 
3s 3s' 3 3 5.75 5.75 0.14061 

 



 98 

 

Data of configuration-interaction  Be+2 ions 
 

CI n n1 ζ  ζ 1 C 
1s 1s 1 1 3.55 3.55 0.52909 
1s 2s 1 2 3.55 3.55 -0.77925 
2s 2s 2 2 3.55 3.55 0.14548 
1s 1s' 1 1 3.55 7.8 -0.77651 
2s 1s' 2 1 3.55 7.8 0.21295 
1s' 1s' 1 1 7.8 7.8 0.11900 
1s 2s' 1 2 3.55 7.8 -0.41769 
2s 2s' 2 2 3.55 7.8 0.11532 
1s' 2s' 1 2 7.8 7.8 0.11853 
2s' 2s' 2 2 7.8 7.8 0.06726 
1s 3s' 1 3 3.55 7.8 -0.63526 
2s 3s' 2 3 3.55 7.8 0.18946 
1s' 3s' 1 3 7.8 7.8 0.20199 
2s' 3s' 2 3 7.8 7.8 0.06600 
3s 3s' 3 3 7.8 7.8 0.12579 

 

Data of configuration-interaction  B+3 ions 
 

CI n n1 ζ  ζ 1 C 
1s 1s 1 1 4.65 4.65 0.46506 
1s 2s 1 2 4.65 4.65 -0.74102 
2s 2s 2 2 4.65 4.65 0.13445 
1s 1s' 1 1 4.65 9.85 -0.75189 
2s 1s' 2 1 4.65 9.85 0.21196 
1s' 1s' 1 1 4.65 9.85 0.11866 
1s 2s' 1 2 4.65 9.85 -0.40700 
2s 2s' 2 2 4.65 9.85 0.11571 
1s' 2s' 1 2 9.85 9.85 0.12075 
2s' 2s' 2 2 9.85 9.85 0.06176 
1s 3s' 1 3 4.65 9.85 -0.59439 
2s 3s' 2 3 4.65 9.85 0.17777 
1s' 3s' 1 3 9.85 9.85 0.19356 
2s' 3s' 2 3 9.85 9.85 0.06968 
3s 3s' 3 3 9.85 9.85 0.11181 
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Appendix E

Compare the result of the repulsion energy with the reference 12

Compare the result of the attraction energy with the reference 12

Compare the result of the total energy with the references

Atom or Ion Wave Function 1
12eeV r −〈 〉 = 〈 〉

He Ref 12 1.025
Li+1 Ref 12 1.651
Be+2 Ref 12 2.277

* 1
1enV Z N r −〈 〉 = − ⋅ 〈 〉  Atom or Ion Wave function

1
1r

−〈 〉 enV−〈 〉

He Ref 12 1.687 6.749

Li+1 Ref 12 2.687 16.124

Be+2 Ref 12 3.687 29.499

Atom Or
ions

Wave
function

Exact energy

Ref  52 2.8616
Ref  17 2.878

For S
symmetry

Ref  13 2.875

He

2.9037
Ref  52 7.236

7.252
For SLi+1 Ref  17

7.279
Ref  42 13.611Be+2

Ref  17 13.655
Ref  42 21.986B+3

Ref  17 22.030
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Compare the result of the one-Particle Radial Distribution Function with
result 12

Compare the result of the Inter-Particle Radial Distribution Function with
result 13

Compare the result of the Radius and Area of coulomb Hole with
reference.

Atom or ions Wave function 12r 12( )f r

Eckart-Hyllears 1.04 0.622
He

Ref 13 1.00 0.625

Atom or ion Wave function 1r Max )( 1rD

He Ref 12 0.56 0.866

Li+1 Ref 12 0.36 1.4074

Be+2 Ref 12 0.26 1.948

Atoms or ions Wave Function Radius of
coulomb hole

Area of coulomb
hole

He Ref 39 1.11 0.044
Li+1 Ref 39 0.66 0.042
Be+2 Ref 39 0.05 0.42
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