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Abstract

In this research the effect of electron correlation can be described by
evaluating the difference in the one-particle radial distribution function.
The other effect of the electron correlation can be described by evauating
Coulomb hole. It also can be described by evaluating the change which
occurs in the two—particle radial distribution function to study the radial
correlation for He atom and compared the result with the series of He-
like. Four types of wave functions can be used in this research, the
Hartree-Fock HF (uncorrelated wave function), configuration interaction,
Eckaret-Hyllears and Simple Configuration-Interaction wave functions.

We conclude that the difference in one-particle increase as Z
increase and the location is closed to nucleus. And the radius of Coulomb
hole decrease and the area increase as Z increase. Also the radius of
Coulomb hole for Configuration-Interaction and Hartree-Fock wave
function is larger Simple Configuration-Interaction and Hartree-Fock
wave function is larger Eckart-Hyllears and Hartree-Fock wave function
for He atom. And the change in the two-particle increase and the location
of this change decrease as Z increase. Also we conclude that the electron

correlation increase as Z increases.

The properties and parameters studied in this work:-

1. The inter-particle distribution function f(ryy).
Two-particle distribution function D(r, ry).
One-particle distribution function D(r,).
The inter-particle expectation value «r;»> " where -2<n>2.
One-particle expectation value <«ry> where -2<n>2.
Coulomb Hole A f (ry).

N o a0 bk~ 0D

Partial Coulomb Hole g(rlz,rl).



8. The change AD¢ .k (r1, 2) which occursin the two —particle radial
distribution function.

All results were obtained numerically using computer program

(MathCAD/ 2003).
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Chapter One Introduction

| ntroduction

1-1 General I ntroduction:

It is well known that the laws of classical physics are applicable
only to motion of macroscopic particles and not applicable to electron
motion in atoms and molecules. Consequently the microscopic particle
requires a new form of mechanics, termed quantum mechanics (or wave
mechanics). Quantum mechanics is based on many hypotheses postul ated
by Plank, Einstein, Bohr and de Broglie [1].

In (1927), Heisenberg found that impossible to measure the
momentum and place of a particle in same time with infinitesmal
(uncertainty principle), where he found that as the place is measured
accurately will be an account of uncertainty in measurement of
momentum. Likewise, if the momentum is measured accurately on
account of uncertainty in measurement of place. There are two variables
followed the uncertainty, energy E and the time t. While in the principle
of classic mechanics the accurate measurement of the momentum and the

place in the same timeis possible [1].

The gquantum mechanics is primarily described by two different
methods [1]. The first method is applied by Werner Heisenberg. He used
in this description properties of mathematic matrix, called matrix
mechanics. The second method is applied by Schrodinger. Schrédinger
method which is formulated in term of partial differential equation, to

describe the behavior of matter waves.
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Paul Dirac found that the formulaof those two methods are identical
and described the system with mathematical function called ket, gaveit a
ggn |ii where i is the definite case of the function. He described the
coupling of this function with mathematical function called bra, has a
sgn §g|.
The central feature of which partial differential equation knowsas[2]:

Hy =Ey 1l

where Y represent the wave function (eigen function) and it determined
the behavior of the electron. When Schrédinger equation is written as in

equation (1-1), it seen to be an eigen value equation E , so the factor E is

called the eigen value of the operatorH .

The German scientist M. Bron in 1926 gave the exact physical
interpretation of the square of wave function at any point gives the

probability of finding the particle at that point

¥

(‘)dex =1 12
-¥

Equation (1-2) is the mathematical statement of Borns interpretation is
Y “dx is equal to the probability of finding the particle in region between
x and x+dx. A wave function which satisfies (1-2) is said to normalized.
We are judified by the physical interpretation of ¥ which will be
discussed below, but are best regarded as postulate of the theory; they can
be summarized as following:

1-¥ mugt be a wel-defined function of position particle; it must be
single-valued.

2- ¥ cannot be infinite.
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3- ¥ must be continuous, and not jump abruptly from one value to
another

4- The first differential of ¥ must be continuous, except at a point where
the potential isinfinite [3].

The important property for the wave functions is antisymmetric
property. In case a system has two electrons, although the electrons are
indistinguished particles then the permutation process in coordinates

impossible changeb/ (rl,rz)\z, where the permutation process leave two

probabilities to influence ony asfollowing[4]:

y (r,r,) =y (r,,1,) (Symmetric wave function)

y (r,,ry)=-y (r,,1) (Anti-symmetric wave function)

For system contains several electrons, the two probabilities can be written

as.

Py (r,r,rLL,ry) =GPy (r,r,r;LLry) ..1-3

where P is permutation operator which effects only on the particles
coordinates permutation 'y (ry, rp, Iz, ...... ,ry) and (- 1)° equal to (+1) and

this equivalent material or singular numbers of the permutations.

The particles that have spin movement equal to integer number or O
such as photons and deuterons and helium nucleus that called bosons are
described by identical wave functions. While the particles that have spin
movement accounted to half integer number such as electrons, protons,

and neutrons which called fermions are described by contrary identical

wave functions[5]:
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From equation (1-1) the factor H is the Hamiltonian operator which

defined for asingle atom of charge Z as.

- h? Nz-fz 14
o r

H =

where h congtant equals to%, N? is Laplacin operator and identify by
spherical coordinates [3, 6]:

1 1 9,. 9 1 1°
r?qr ‘Hr) r’sing ﬂq(anﬂq)+rzsinq qf 2

. N N 7e? o & e

H:-—éN-z-é_—+a a— 1-6
2m i=1 I iz [ iaj =l r'l

or

H=T +V, +V_ N EY

where the first term represents the kinetic energy operators for
the n-electrons; the second term is the potential energy for the
attractions between the electrons and the nucleus of charge Z, and r is
the distance between the nucleus and the electron, and the last termis
the potential energy of an electron at infinite distance from the
nucleus is zero. The potential energy of an electron in an atom is a
negative quantity because the energy is lower than that when the
nucleus and electron are separated by an infinite distance. The

restriction  j > i avoids counting the same interelectronic repulsion

twice, and avoids terms like e2/ f j .The Schrodinger equation for the
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atom is not separable because of the interelectronic repulsion
termsezlrij [7].

The Schrodinger equation for a multi-electron atom can be
solved numerically, although V gectron-dectron Ca@nNNot be included as
an explicit term in the Hamiltonian. Rather, its effect on ¥ can be
accounted for by a mathematically simpler approach: that each
electron interacts with an average of the nucleus + all other electrons
(Self-Consistent Field) approximation. The techniques were
originally introduced by D.R. Hartree (before computer was
available) and V. Fock to take into account the Pauli principle

correctly. In broad outline, the Haretree-Fock self-consistent field

(SCF) [7].

There unit system defined the atomic unit, the unit mass in atomic
unit system is eectron mass while the unit distance is half Bohr-atom

diameter (a,). The unit energy is defined by Hartree and can be

expressed as[3]:

1Hartree=r:]i=e—=27.21ev 18
a,

The Hamiltonian operative in Eq. (1-6) can be expressed by using
atomic units(h° me °el1l)as
N
[}

vz 8
afi-a

i=1

A

H=-

N |-

z
r-i



Chapter One Introduction

Eqg. (1-9) contains a boundary that represents the repulsion between
electrons, and because of this boundary the Schrédinger equation can not
be solved accurately. Therefore, we have to be used an approximation
method to solve Schrédinger equation. Simplest methods return to
Hartree, where he assumed that every electron moved in an effort range
arises from other electrons. i.e. the number of electrons movement (e) is
independent of each other. Thus, the wave function for sum of electrons
will equal to multiply results of sngular electron wave functions (orbital)
[8]:

y 1.23.....N) =f, (f , (2 5(3)....... fu(N) ... 110

N
:_C_)fi(i)

where f (i) represents the spatial coordinates function of electron i, while

N is number of electronsin the atom.

One of the difficulty and main problemsin Eq. (1-10) is represented
by neglecting the electrons correlation movement at their moving around
the nucleus. A consequence of that the measurement of repulsion energy
will be differed from the exact value. This difference caled correlation

energy and is neglected in Hartree pattern as mentioned above.

As the Hartree approximation mentioned in Eqg. (1-10) cannot verify
the Pauli principle, and can not verify the indistinguishable property
between electrons and unconformity wave function property. In order to
verify that the Fock used spin idea in 1930 and this method called
(Hartree-Fock method), where treated the weak point in Hartree
equation and the wave function defined by Slater determinant [1, 9]:

o]
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f,) £, L f,(N)
L0 f,2 L fy(N)
! TR

f.@ @ L fy(N)

y L23LLN) :% 111

Where i' is the normalization factor and f, (i) represents the spatial

JN!
spin function that it's multiply result of spatia wave function and spin
function a orb. The number between brackets referred to the electrons

and the numbers under the function referred to the spin orbital [9].

The Slater determinant can be characterized as following:

1. The determinant sign changed at replacing two rows or two columns
in the determinant.

2. The determinant value is 0 if two rows or two columns in the

determinant are equalized.

The first characterize referred that at replacement of two electronsin
this determinant, the determinant sign is changed without change in its
value. Hence, the wave function verifies exception Pauli principle where
it's reverse conformity. While the second characterize mean, if equalized
two spin orbital in the determinant, hence the determinant value equal to
0 and this equivalents to exception Pauli principle (in any atom can not be
the forth quantum number (n, |, m;, mg) of two electrons equalized. i.e.
the quantum spin number (a orb) has to be different for two similarity

electrons in the spatial wave function (f) [9].

Eqg. (1-11) explained that the repulsion of electrons has parallel spin

more than electrons has reverse spin, which causes to decrease
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Coulombic repulson energy between parallel spin electrons and this

symmetry to Hund’ s rule [10].

By opening Eq. (1-11) results N! Limits, every limit are consisted of
multiply results of N from wave function of singular particles. Thereby
those limits (N!) is consisted of definite series where the particles, N, in
the limits is attributed to the once N levels. Therefore, those limits (N!)
will cover amost the possible permutation probabilities of N particlesin
between N levelss and example for once of that
limitsf , (3),f ,(4),.....f y (N). lL.e. the particle (3) islocated in level 1, while
the particle (4) located in level 2, etc... [11].

In Hartree-Fock approximation is taking coulomb repulson value
between two electrons by integration repulsion, and this gave the range of

repulsion effect [12].

Thereby the Central-Field Approximation method is developed through
discovering the electron spin by Uhlenbeck and Coudsmit and exception
pauli rule in 1925, then completed with using Self Consistent Field (SCF)
method by Hartreein 1928 and Hartree-Fock in 1930 [7,8].

The sdf particle wave function for the multiple electrons system is
preferment throughout energy insight; it's introduced by Hartree-Fock
approximation that allowed of some spatial correlation between parallel
spin electrons which lead to form Fermi-effect or Fermi-hole [12]. Indeed

all electrons repulson among each other because of Coulomb potential

(e—z) that present among them. Therefore, each electron is covered by

12

Coulomb-hole[13].
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1-2 Historical Review:
A-General Historical Review of Electron Correlation in

Atomic Systems:

Roothaan et al. (1960) [14] have developed the generalized SCF
formalism in their paper and applied it to atomic configurations and they
have presented in there work the results that are obtained for the
configurations 15°,1s°2s and 1s°2<° for atoms and ions up to Z=10.

Roothaan and Weiss (1960) [15] have obtained an accurate wave
function for the ground state of Helium-like systems. They have chosen a
convenient function with adjustable parameters and determined the best
wavefunction within this class by minimizing the expectation value of the
energy, computed from that wavefunction with respect to these
parameters. They have found one of the most successful models is the

Hartree-Fock approximation.

Watson (1960) [16] has done a configuration interaction calculation
involving thirty-seven configurations and including the 15’25 Hartree-
Fock function for the ground state of Beryllium atom. The results indicate

the effect of the “correlation hole’.

Weiss (1961) [17] has done successful approaches to many-particle
guantum mechanics for the ground and excited state of Helium, Lithium

and Beryllium atoms using a configuration interaction approximation

Banyard (1968) [18] has analysed and compared five wave functions
for H-, two functions were based on the single determinant independent-
particle model and three were correlated wave functions. He has

discussed the two-particle density p(r,,r,) and theradial density D(r).

(o]
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Banyard and Baker (1969) [19] have studied the electron correlation
of an isoelectronic series possessing electrons with antiparallel spinsH™,
He, and Li*

The study was of three wave functions, two introduce correlation:
one by configuration interaction and the other by including Hylleraas-
type correlation factors. For comparison, the third function is based on
the Hartree-Fock approach. The correlation within the wave functions
was demondgrated by presenting two-particle density difference maps,
4D(r,,r,) relative to the uncorrelated approach, and graphs of the radial
density D(r ). The maxima vaues of D(r) were decreased with the nuclear
charge (atomic number Z) increasing.

Taylor and Banyard (1973) [20] have applied the method of
Sinanoglu in his many-éectron theory, which arise from electron-
correlation effects, for He (!S state), Li (S and 2P states) and Be (*S state)

like ions, which gave an improved orbital representation as far as the one-

particle density is considered.
Brown and Larsson (1977) have calculated one-electron properties
such as r(0) ,<%N > <r?> .., <r?>and<ry'>. Cadculations have

made on various small atoms and their positive and negative ions.

Cohen and Frishberg (1983) [21] have obtained the probability of the
inter-particle distance for the N-body problem where the potentia is an
attractive delta function. This was done for both the exact wavefunction
and the Hartree wave function alowing the calculation of the correlation

hole.

Koga et al. (1999) [22] have studied electron-pair intracule (relative
motion) and extracule (center-of-mass motion) dendties in both position

and momentum spaces for the 1p and *p terms of the group 2 atoms Be
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(atomic number Z=4), Mg (Z=12), Ca (Z=20), Sr (Z=38), Ba(Z=56) and
Ra (Z=88). The extracule density in momentum space shows that the 1P
term has a distribution larger in a large center-of-mass momentum region
than the 3P term.

B-Historical Review of Coulomb Hole:

Coulson and Neilson (1961) [23] have obtained formulae for the
distribution function f(r,,)of the inter-electronic disance r, in the
ground state of Helium, and for the mean value of r,,. Five different wave

functions were consdered, showing varying degrees of electron

correlation. They have also evaluated the Coulomb hole.

Curl et al. (1965) [24] have calculated the Coulomb hole 4f_(r,) in

the ground state of two-electron atoms, where the Coulomb hole was

defined by Coulson and Neilson (1961).

Banyard and Seddon (1973) [25] have examined, in depth, several
wave functions for the two-electron systemsH™,He,Li*,and Be™*. Three
noncorrelated wave functions and ten explicitly correlated wave
functions. For each wave function they have calculated the inter-particle
digtribution function f(r,), by comparing the results for different wave
functions some insight were obtained into the roles played by different

types of correlation factor.

Seddon and Banyard (1973) [26] have calculated the Coulomb hole
and several two-electron expectation values using a series of
configuration interaction (Cl) wave functions of differing accuracy for

helium like ions. The behaviour of these properties was examined. As the



Chapter One Introduction

basis set was increased a comparison with the values obtained using

explicitly correlated (EC) wave functions.

Boyd (1975) [27] has discussed the radius of the Coulomb holein an
atom or molecule in general terms and illustrated in detail for the ground
state of the helium isoelectronic sequence. The calculations demonstrate a
general tendency for the radius of the Coulomb hole to increase as a

function of the distance of the reference electron from the nucleus

Banyard and Mashat (1977) [28] have obtained an expresson for the
Coulomb hole associated with any pair of occupied HF spin orbitalsfor a
many-electron system. The required partitioning of the known correlated
was achieved in their work by using the many—particle theory proposed
by Sinanoglu. Ground state wavefunctions were then analyzed for the Be-
like ions when 3£z £8 which, besides validating the partitioning
technique, provided insght into the radial and angular components of

intra-shell correlation effects.

Banyard and Mobbs (1981) [29] have used a partitioning technique
to examine correlation trends in individual electronic shell for a series of
ions. It has been extended and applied to a detailed comparison of four
well-correlated wave functions for Be atom. For each correlated

description of Be, Coulomb holes have been evaluated.

Banyard and AL-Bayati (1986) [30] have examined electron
correlation in detail within the K K, K, L, and KL, shellsin position space
for a series of Li-like systems in their ground state. Using existing wave

functions, Coulomb holes, partial Coulomb holes and several one-and

two-particle expectation values were evaluated for the intra-and inter-
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electronic shells. The findings for the Li-like intra-and inter-shells were
compared both with a previous anaysis of He-like and Be-like series of
ions and with a similar examination of the 2 'S and 2 *S excited states of

He

Youngman and Banyard (1987) [31] have analysed the electron
correlation effects in momentum space for excited states of He, Coulomb
shifts and partial Coulomb shifts had been determined, as well as certain
radial and angular distribution functions. Angular and radial correlation

had opposing effects on the momentum distribution.

Banyard and Youngman (1987) [32] have examined electron
correlation in momentum space for the individua intra-and inter-shell
electron pairs in the ground state of Li ( %S). It was established that the
radial and angular components of correlation have opposing influences on
the inter-particle momentum distributions f(p,,)and g(p,,,p,). They have
aso examined the Coulomb shifts 4f(p,) and partial Coulomb

shifts4g(p,,. p,) -

Banyard (1990) [33] has examined K-shell electron correlation
effects with  Li*('9),Li( ?9),Li( °P),Li ('S Be**('9),Be'(%S),Be’(°P) and
Be('S). In position and momentum space, Coulomb holes f(r,, )and
shifts f(p,, )and partial coulomb holes Ag(r,,,r,)and shifts 4g(p,,, p, ) have
been studied.

Banyard et a. (1992) [34] have analysed correlation effects for the
doubly excited state 2p® 3P for1£z £4. Coulomb holes and partial
Coulomb holes have been derived from explicitly correlated wave

function.
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Ellis (1996) [35] has defined a two-electron spin independent
operator to represent the spatial correlation of the electrons in a general
atom or ion. The spherical-tensor expansion for this operator has
provided a systematic method for evaluating the two-electron correlation
function implied by a Hartree-Fock N-electron wavefunction with
arbitrary configuration mixing. This technique for computing correlation
function provides a useful tool of wide applicability in comparing

different theoretical approaches to the structure of complex atoms.
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1-3 Electron Correlation:
The correlation energy is usually defined as the part of the total

energy of a sysem that is not taken into account in the Hartree-Fock
description of atoms and molecules. Although there are many definitions
for electron correlation found in the literature the one commonly used is
the one by Lowdin [36].

“The correlation energy for a certain state with respect to a specific
Hamiltonian is the difference between the exact eigen value of the
Hamiltonian and its expectation value in the Hartree-Fock approximation
for the state under consideration.”

This does not mean that the Hartree-Fock approximation does not
have any electron correlation built in it, but it does not capture the total
correlation. The part of the correlation it captures is the so-called Fermi
correlation that arises from the antisymmetry of the wave function and
basically prevents electrons of the same spin to occupy the same region of
gpace. It is noteworthy to mention that the correlation energy isusually of
the same order of magnitude as the dissociation energy of a molecule
[36].

Generally there are three factors that affect the electron correlation.

The first factor is the Coulomb repulsion that has the 1/rij dependence and

thus becomes infinite when electrons are in close and zero when their
separation becomes infinite. This generates called Coulomb hole in
electronic structure computations. There are molecular systems where
this is the only type of correlation present apart from the Fermi
correlation. The two classical examples are He and Hydrogen molecular.
The second factor of correlation is termed as the Fermi hole. The third
factor that has influence on electron correlation is the point group to

which the one-electron wave functions are restricted. In this case lower
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symmetry point groups impose less restriction onto the one-electron wave

functions and result in higher correlation effects. [36]

1-4 Electron Correlation Problems:

The many-body problem is not exactly soluble in either classical or
guantum mechanics. In quantum mechanics the exact form of the
Schrédinger's equation for an atom with more than one electron includes

in the potential energy (V) not only the attraction interaction between the

electron and nucleus,'z%er, but aso the repulson

+Ze*
. . er.
mteractlon, 4p ol

() prevent separation into equations each involving co-ordinates of only

, between each pair electrons, these cross terms

one electron, which can be solved exactly. To overcome this problem we
must use approximation methods [37].

The simplest approximation is due to Hartree, who assumed that
each electron moves only in the average field of all the other electrons of
the system. The straight forward products wave function proposed by
Hartree dose not satisfies the quantum mechanical requirement that many
electron wave functions must be anti-symmetric with respect to the
exchange of the coordinates of any two electron [37].

To meet this requirement, Slater and Fock re-derived the equation of
Hartree, such that, the wave function written as Slater determinant in eq
(1-12).

Although the Hartree-Fock calculation generate a great deal of
information about the electronic energy and density of the molecules. It
dose have two major shortcomings. The first is that the excited states are
difficult to calculate. The second is that the electron correlation is

ignored, except in an average sense (electron correlation is the interaction
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between the motions of the individual electrons in the system). Because
Hartree-Fock approximation calculates an electron's motion in the
average field produced by the other electrons rather than the exact
position of the other electrons, it leaves much of the electron correlation
out. Usually, the Hartree-Fock is described as "uncorrelated” wave
function [37].

One method of correcting the shortcomings of Hartree-Fock
approximation is Configuration-Interaction (Cl). Cl considers the
interaction of excited wave function with ground state wave function, the
excited wave function give additional functional freedom to the total ClI
wave function to find the optimal energy. In addition to Cl, there are two
types of Cl according to electrons arrangement in the orbital basis set, the
first, complete ClI in which all electrons are arrange in al possble ways
(consistent with symmetry requirement) in a complete (infinite) orbital
basis set (this is unattainable), the second, full ClI in which all electrons

are arrange in all possible ways for afinite orbital basis set [37].

1-5 Coulomb Correlation:

In the HF approximation, the motions of an a and  electrons are not
correlated; the a-f pair probability issimply the product of the individual
(one-electron) probabilities. In redlity the electrons try to avoid each
other, due to the Coulomb repulson between them. The resulting
correlation of the electronic motionsis called (Coulomb Correlation).

Coulomb correlation introduce changes in the pair-probability that
two electrons (with respect to the HF pair-probability): the probability
that two electrons are at short distance decrease. While the probability
that the inter-electronic distance is long increase.

Two electrons of the same spin of course also repel each other.

However, two o or two B electrons already try to avoid each other on the
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HF level, due to the antisymmetry of the wave function. The changes in
a-o. and B-p pair probability (and associated changes in energy) when
Coulomb Correlation relation istaken into account will therefore be much

lessimportant, compared to changesin the a-f pair-probability [38].

1-6 Coulomb Hole:
A Coulomb hole is defined as a region surrounding each electron
in atom in which the probability of finding another electronissmall [39].

In Hartree-Fock (SCF) wave function takes into account the

interactions between the electrons only in an average way. In redlity, all

electrons repel each other due to the Coulomb potential e2/rij which

exist between them, and each electron is therefore surrounded by a
Coulomb hole with respect to the other electrons this is a region in
which the probability of finding another electron is small. The motions of

electrons are correlated with each other, and we speak of electron

correlation.

Within the Hartree-Fock (HF) approximation the probability of
finding two electrons with paralel spin -- at the same point in space is
zero. Such appoint may be the centre of a Fermi hole, and is consequence
of the antisymmetry of the wave function (one some times refers to a
Fermi hole around each electrons in Hartree-Fock (HF) wave function,
thereby indicating a region in which the probability of finding another
electron with the same spin is small) .Although the Hartree-Fock (HF)
method allows electrons with the same spin properties to avoid one
another, no alowance is made for any spatial correlation between
electrons with opposite spin .The effect of correlation between all

electrons can only be examined by means of wave function which are
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more flexible than the Hartree-Fock(HF) determinant .\WWhen described by
wave function which go beyond the Hartree-Fock(HF) level of accuracy ,
each electron lies in a region of space which is largely devoid of other
electrons , this is a consequence of a more realistic description of the
Coulomb repulsions.

Correlation thus refers to the residua error in the Hartree-Fock (HF)
model when describing the electron-electron Coulomb interactions.
In a Self Congstent Field (SCF) and Configuration Interaction (Cl)

calculation are reasonably well-defined as a “hole” around a reference
electron centered at any point in space, thereby reflecting a reduction in
the simultaneous probability density of finding two unlike-spin electrons

there [35].

The Coulomb hole, aswell asthe Fermi holeisclearly associated
with the notation of a hole is the atomic or molecular charge cloud any
chosen electron and therefore, the total amount of electron charge
displaced is indicative of the size of the hole interest (Coulson and
Neilson 1961).Alternatively the size of a hole could be described in
terms of its depth and its radius. The two quantities could then be through
of as the “dimensions’ of the hole whereas the displaced electronic
charge provides a measure of the “volume” of hole [27].

The Pauli principle keeps electrons of parallel spin apart. And
the second kind of the electron correlation is the classical Coulomb
repulsion between each pair of electrons leads to the formation of a
“hol€” in the atomic or molecular charge cloud around any chosen
electron [40].
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The Coulomb hole it arises from the classical Coulomb repulsion
between each pair of electrons.

Mathematically Coulomb hole for the singlet state is defined as a
difference between the Correlated and Hartree-Fock wave function

approximations [25].

1-7 The Correlation Energy:
The correlation energy is the energy recovered by fully allowing the
electronsto avoid each other, and is defined as the difference between the

energy in the HF limited and the exact non relativistic energy (E,) of a
system [12]:

:EO- E ....1-13

ECOIT HF

This energy Ecorr will always be negative because the HF energy is

an upper bound to the exact energy, the exact non relativistic energy can,
in principle, be calculated by a full Cl in a complete one-electron basis
set, where the energy predicted by a correlated wave function takes into
account all the instantaneous particle interaction which occurred within a
many electron system, therefore, such calculation go well beyond the

description provided by independent-particle model.
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1-8 The Aim of The Project:

The aim of thisresearch isto study the theoretical properties of He-
Like ions, usng Hartree-Fock uncorrelated wave function and three
different correlated wave functions Configuration Interaction, Eckart-
Hyllears and Simple Configuration-Interaction wave functions accounts
for only the averaged interaction arisng from the classical Coulomb
repulsion between each pairs of electrons, this means that the (HF)and

exact density distribution are virtually indistinguishable.

Also in this research study the Coulomb correlation (i.e the
correlation of the electronic movements due to the electronic repulsion) is
neglected in the HF approximation. In this thesis the correlation problem
is studied with the purpose to get a better ingght into the shortcomings of
the HF model and to get a deeper understanding of electron correlation in
aphyscal and visual manner.

Our study aim to analyss the calculations by using of partitioning

technique for He-Like ions then compare the results with other workers.

The present work data of Clementi and Rotti [1974] for Hartree-Fock
wave function, Wiess [1960] for Configuration-Interaction, Nelsion and
Coulsion for Eckart-Hyllaers wave function and Masten and sturat [1964]

for the Simple Configuration-Interaction.
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2-1 INTRODUCTION:

Any system can be described by wave function Y (r.,r.,...r,)where

it is a mathematical expression to describe the system properties as
position, momentum, energy and etc. The exact calculation of wave
functions for many electron atoms becomes difficult because of the much
electron-electron repulsion that should be ignored for simplicity. There
are four main kinds of the wave function approximation methods,used in
the present work, Hartree-Fock (HF), Configuration Interaction
approximation methods, Eckart-Hyllears and the Simple Configuration-

Interaction wave functions respectively.

2-2 HARTREE-FOCK THEORY (HF)

2-2-1 Wave function and Basis set:

In an independent practical model the total wave function for many

electrons system is given by Slater determinant:

YHF(Xl’XZ’ ....... ,xn):‘Fl(xl)F 2(x2) ..... F N(XN)> 2.1

where F;(x) is the single electron wave function and X denotes spin-

orbital components.
F(x)=f;(7)ad) 2.2

or.

F(%)=f;(r)b(d) ..2.3
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I ,denotes a radial and angular co-ordinate , while a(d) and B(d) are the

pin wave function of a single electron . an a and p refer to the two
components of the spin part , where, a- spin up and B-spin down .

The spin wave functions are orthonormal, where:

oa (d)a(d)dd =1 ob ()b (d)dd =1
d d 2.4

o2’ (d)b(d)dd =0 C?b*(d)a(d)dd =0
d

The spatia part f,(r;) can be written as an expansion in some set of

analytic basisfunction [41]:

_ o~
f (r)‘?cncnl .25

where C is a coefficient taken to minimize the energy. The basis set of
one-electron functions (basis function) chosen here consist of the
normalized Slater-type orbital defined by:

Cym(A.3) =R (V@) .26

where Rnl (r) and len(q,J) represent the radial and angular parts

respectively.
Theradial part isgiven by:
n+1;
_(2) 2 n- 12 %
R (r)=""—fF—wr 2.7
i (") Je@n)

where n, | and m are quantum numbers and the { an exponential
parameter.

For the HF ground state calculations of He-like ion we used data for
(C, ¢, and n) introduced by [42]
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2-2-2 Two—Particle Density:
For any N —electron atomic system, the two particle density can be

written as [43]:

N, .
Glxm:Xn) =e, §OY Xy )Y (o X, ) .28

where , dx mean that the integration summation takes over al N —
p

electron except m and n and the factor é\lﬂ isabinomial coefficient and
2 Y

used to ensure that second order density matrix G(X y-X yy) is normalized

to the number of electron pair , so that :

eN U
0FHE XmXm)dx,dx, =a ... 29
@PHE m ) H
where:
éNu_ NI
For two electron system the wave function can be written as
1
Y e (X%) :ﬁ(F L()F 5(%,) - F L, (%)F 4(X,)) 211
then
Y -1 Bm”F -1V 2.12
HF(Xm,Xn)—ﬁ(.a) K el
i4j
where
B = &F | )F | (%)= F i (%)F (X ...213

The symbol ¥ means the number of interchanges

Inasimilar way:
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2
|_”:(xm,xm)_f Iaj an F k(x)(- )V .24

The binomial coefficient for He-atom and He-likeionsis:

eNu_  N!
2 220
Substituting binomial coefficient and equations (2.12, 2.14) into
equation (2.8) and integrating over particle we get [29].

o215

12
q:'”: Xy X)) = 4 BIVJ“” Bf™ ..2.16

The above equation represent the two-particle density for pair wise
component (i, j), wherei and j refer to occupied spin-orbital, and m and n
are electron labels. For the present work m and n are taken as 1, 2

respectively.

For K, Kg-shell (i=1, j=2):
_l 7 l\/12
G, X )=5d  (Ja(@)F (r)b@)-F (bE)F (r)a(d);
L2217
where r, , contains both radial and angular parts.
2ea(d )b(d ) - a(d )b(d )0

Gip(x,1X,) =F 1 () F 1 ()78 e 5 E....2.18

For K, L, inter-shell (i=1, j=3)

Goal,1%.) =5 6 1 (DA E)F po ()8 (@)~ F g (1) (A)F oo (r)a @l

....2.19
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s uz{éFlS(f )FZS(r ) - Fls(r )F2 (r)up
G (x ,x )=a(d)ad )y © 1 2 2 ¢S 1U
B 9 ga 1 )4 € J2 u
e u

...2.20

2-2-3 Two-Particle Radial DensityD (r,,r,):
In each individual electronic shell of HF-system, the two-particle
radial density isgiven by [18]:

_ . 2.2
Dij (rry) —\%ﬁlj (r, r)r T dWdW, ...2.21
where G”. (r,,1,) is a spinless function, r; and r are radial co-ordinate.
d\/\l2 :sinqidqidj i (i=1, 2) denote that the integration is taken over all
angular co-ordinates of the position vectorsr; and r, such that:
Qpij (rl,rz)drldr2 =1 . 2.22

The two particle radial density function is a measure of the
probability of finding the two electrons, smultaneoudy, in their radial co-
ordinate ry and r, respectively.

2-2-4 One-Particle Radial DensityD(r,):
In each individual electronic shell, thisfunction is defined by [18]:

D(r) =P, (r,r)dr, ....2.23

which is a measure of the probability of finding in its radial co-ordinate

r. ThisD(rl)is very useful to determine the one-particle expectation

value, and the coherent X-ray scattering.
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2-2-5 One-Particle Expectation Valuea," i:

The moments &;"fi can be calculated from [19]:
n ¥
a;n= Od)(ri)xri dr, ...2.24

Values for &;"fiwhen -2£n£2 are evaluated for each electronic shell. For
n=0 the expectation vaue érinﬁ must be equal to one to ensure that D(rl)

isnormalized to unity.

The case n=-1 leads to the electron-nuclear potential energy and it is
useful to determine nuclear magnetic shielding and when n=2 is used to

determine the root-mean-square (standard deviation) [18].

2-2-6 One-Particle Standard DeviationDr, :

The measure of the spread or diffuseness of one-particle radial
density can be obtained by evaluated Ar;; the root-mean-square deviation

from the mean érif isdefined as[19]:

Dr; = . |&2f- & P ...2.25

2-2-7 Two-Particle Expectation Valuea,"r)'fi:

For -2£n£2, the expectation value &;'rJ'f is evaluated by using:
¥

a,'r) = P (r,.r,) =" 3 drg, ....2.26
0

At n=0, this leads to normalize D(rl,rz) to unity. The two-particle

expectation vaue is important in the determination of the radial

correlation coefficient.
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2-2-8 Inter Electron-Electron Distribution Function i (r2)

For the ground state He-atom, the radial electron-electron distribution
function fij (r;,) fortheindividual shell is given by [13]:

fj (rp) =05r, (1 +1,) 2,27
where:
I 1= léﬁdrl lzc‘)le(rl’ rz)rzdrz ....2.28
0 2.1
¥ fp+0
I 2~ Gldrl f) G(rl’rz)rzdrz ....2.29

f12 f12. 11

For more detail see appendix (A).

This function is used to determine the inter-particle expectation

value érlg A and the coulomb holeDf (r,,).

2-2-9 I nter-Electronic Expectation Valuea,) fi:

The mean value of inter-electronic separation can be determined by
the formula[13]:

¥
AN _ n
a, = i (r,) X ,dr, ...2.30
0
where -2£n£2. At n=0 the function fij (r,,) is normalized to unity, n=1

gives the average distance between electrons and n=-1 leads to electron-

electron repulsion energy. [44]
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2-2-10 I nter-Electronic Standard DeviationDr,,

The measurement of the spread or diffuseness of electron-electron

distribution function fij (r,,) about its mean value ér,fis standard
deviation, which is given by:

R
Dr, =& 2ii- &, it ..231

2-2-11 The Ground State EnergyéE i

In term of the expectation value the ground state potential energy is
given by [44, 45]:
aVﬁ:-zga’r n+aar]1” ..2.32
! i i
but, the total energy of ground state E is given by:
= ..2.33

therefore:

Zaar n+aar ng ...2.34
28 R

where Z is the atomic number and energy isin atomic units (a.u.).

For more detail see appendix (B)
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2-3 Configuration-I nteraction theory (Cl)

2-3-1 Wave function and Basis set:

In this work the CI method is used to study the effect of the
electron correlation in term of correlation energy. The correlation
description of the ground state of He-atom ions has been taken from
Weiss (1960) [17]. Also the partitioning technique is used to describe
correlation effects. The use of partitioning technique enables the
correlation effects to be examined in depth for various inter-shell electron
pair [17].

In this approach, the correlated wave function is expanded as a linear
combination of Slater determinants[17]

YCI :?CIfI ....2.35

where each of fi s (configurations) is antisymmetrized product of one-
electron functions (spin orbital), and the coefficients c ae taken as those

which minimize the total energy. Applying the variation theorem and
solving an infinite set of secular equations may in principle, obtain the

exact wave function.

The specific form of the configuration used for the two-electron
system studied here are the following linear combination of single Slater

determinant using fifteen configuration of ssymmetry.

( c)=%éj (Dac (2)b| 236

The basis set of one-eéectron function chosen is consisted of the
normalized Slater-type orbital defined by eq 2.6 [15, 47, 48].
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(22)™?2
C =
M [eni

e 2y @) ..2.37

M
2-3-2 The Two-Particle Density I",, (1,2) for He-Like ions:

The particle density function G,(1,2) for He-like ions can be given
as[17]:

( c):%au (Mac (2)b| ..2.38

where:
i @ac(2)b|=j Mac(2b-j (2ac@Db ....2.39

where f (i) and c (i) refersto the one-particle function.

by using eq (2.8) we get
Q(ry.r,) =di Mac(b -j (2ac®b] Hj Mac(2)b - j (Dac@Bbldx dx.,
....2-40

Let A =j (Dac(2)b ...2.41
and B =j (2ac (Db ....2.42

by integrating over al spinsand angular part we can get:

Yy :%EA*A+B*B+A*B+B*A% ..2.43

a(@®b(ldd =0
 (Da (Ddd =1
G ....2.44

P a@®dd =0
¢b(Db@)dd =1
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=R O @
2= Y

¢ (1) = R (OYC (1) ....2.45
c(2)=R: (9Yc(2)
Grorr (1:1) = 5 S ORE 2+ RE OR? ()] ..2.46

where G& (r,,r,) represents the two-particle density function for He-like

corr

ions.

2-3-3 The Change in Two-Particle Density:
For N-electron system, the change in the two-particle density due to

the electron correlation which can be written as follows [30]:

DG; (Xm:Xn) = G5™ (m.Xn) - G (Xm.Xn) ...2.47

2-3-4 The Change in Two-Particle Radial Distribution

Function:
This change can be given by [19]:

DD;; (rp:12) = @G (1. 1)1 ZAW, AW, ....2.48
where;
@PD;; (ry.r,)drdr, = ....2.49

Because the correlated and HF descriptions of D(rl, r2) are each

normalized to unity.
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2-3-5 The Change in One-Particle Radial Density

Distribution:
This can give by [49]:
DD (r)) =D, (r) - Dy (r) ....2.50
or
¥
DD(rl) = P (r, 1, ), ....2.51
0
aso:

oD (r.,r.)dr.dr, =0
@0 (12 7)o ..252
2-3-6 The Change in Inter-Particle Distribution Function:

The change is due to the correlation in the inter-particle distribution

function fij (rlz)defined as coulomb hole and isgiven by [46]:

drmdrn
Dfij (rmn) = dDGIj (rm,rn) drmn ....2.53

Then asin appendix (A) we get:
_ ....2.54
Dfij (r,) = 0.5>r12(ll+ I2)

I, = ¢ydr, & DQ(r,,r,)rdr, ...255

0 .11

¥ 1+
I, = oydr, ¢ DG(r,r,)r.dr, ....2.56

f12 f12. 11
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2-4 Eckart-Hyllears Wave function:

This type of wave function allowed for "in-out" correlation since the
two electrons may be supposed to bein digtinct orbital. The parameter of
the inner orbital has a=1.19, and the outer orbital has b=2.18. [13]. The
wave function is

5 - (ax, D) +e (bx; +ax,) u

y (r,r,) =N ge g

where N isthe normalization wave function and equals to:

... 2.57

165{axh)s {a+b)’

p ><§(a+b)3 +8>(a>b)ga

To find the two particle density we used eq (2.8):

N =

— &\ € - (ax,+bx,) - (bx +ax,) uu A é.- (ax+hx,) -(b>rl+a>r2)@‘
G(r,r1,) (%eN ge +e 5 ng ge +e fet .,

....2.58
wheret isequal r?sinqdqdfdr

So the two particle density for Eckart-hyllears wave function is

G(r,,r,) =y (r,r *(rl,rz) ....2.59
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2-5 Special Configuration-Interactions for Two-Electron

Case:

Congder a simple configuration-interaction normalized wave function
[50]:

Y :%g:l 1s1s) +c, {1s2s®) +c, { 2s@sdy ....2.60

i.e. we have three configurations whose determinates are composed of
normalized Slater-type orbital.

For He profile

c,=1.14803

c,=-0.01865
c,=-3.0462

y = 1 € ’)18(1)a(1) 15(1)b (1) ‘e ”1s(1)a (1) 2s€1)b(2) N

Ner 2 [1s(2a(2) 1s(2)b(2) 152)a(2) 2s¢2)b(2)

c 2s€1)a (1) 1s(1)b(1) ‘e 2s¢l)a (1) 1s(1)b(1)|u
27ost2)a(2) 1s(2)b(2) -

....2.61
Datafor this configuration are taken from Sturat and Matsen [50].
Factoring off the spin yields:

Y =[c, ¥s(D)1s(2) +c, As(1)25€2) +c, RsED1s(2) +c, Rs§2)25¢2)]
faDb(2)-aEb@u
8 V2 t

....2.62
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N = | L
e u .

2 Y ! é 39 € p u

cc, € Utcc, a +C. a &

1 23483/2(2 +7 ) H g_ 5/2(Z +Z H 3ese ZZ;H
é ez 5/2 3/2 Z 3/2Z 5/2 u
(Cl 3 +C )ELQ ; 2 3(6p e 4 4 L;I
g2z, +z, é322 64" & 2.z, o

....2.63

where z, =155 z, =215

We have four distinct spin orbital, but since they are made up from
doubly-filled spatial orbital, we can now on talk about two natural orbital.

We shall ignore the spin function during this analysis.
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2-6 Calculation Method of Coulomb Hole:

In this work we have taken into account some of atomic properties

such as inter-particle distribution ) and partial distribution

fij (o
function g(rlz,rl) to calculate Coulomb hole DfC(rlz) and partial

Coulomb holeDg C(rlz, r).

We have aso taken into account the two-particle distribution

function D(r,,r,) to study the change or the difference in two-particle

radial distribution functionDD(r,,r,) .

2-6-1 Coulomb Hole Calculation:

In this section, Coulomb hoIeDfC(rlZ), partial  Coulomb hole
Dgc(rlz,rl) and the change in two-particle radial distribution function

DD(r,,r,) Of correlated wave function for He-like ions are calcul ated.

The correlated wave function for He-like ions showsin eq (2.46).

The HF wave function can be written as follows:

G (r.r)=R2(r)R%(r) ..2.64
HF 12 151 1s 2

where both two-density functions are normalized to unity.
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2-6-2 Calculation Method of Coulomb HoIeDfC(rlz):

The €electron-electron distribution function f(rlz), which describes

the probability of locating two electrons separated by inter-electronic
distance ry,, was first introduced by Coulson and Nielson [13]. Coulomb
hoIeDfC(rlz) was then defined in eq (2.53) [13, 26, 51, 28]. Where the

inter-particle distribution function of K (*S) shell for the correlated wave
function show in eq (2.54), (2.55), and (2.56) respectively.

2-6-3 Calculation Method of Partial Coulomb HoIeDgC(rlz,rl) :

From the definition, the partial Coulomb hole can be written as
follows [51]:

D9 (1) = Georr (f01) = IHE (01) +:2.65
The partial Coulomb hole Dgc(rlz,rl) represents the change in

behavior of Coulomb hole as the position of the test electron is varied.

The partial distribution function for correlated wave

function approximation can be calculated as follows:

[y +ry]

gcorr (rlZ’ rl) = 0'5rlr12 c\y;;orr (rl’ rz)rzdrz e 266

iz~ 14
To calculate g(r,,,r,) for HF wave function approximation we can write:

|rap+ry]

e (12 11) =050, () G (1 rz)rzdr2 ....2.67

Ir2- 1
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2-6-4 The Change in the Two-Particle Radial Distribution

DD, (1,.1,) Of the Cl and HF Wave function:

The change in the two-particle radial distribution function

DD, .. (r,.1,) IS defined as a difference between the two-particle radial

distribution function D (ry, r2) for correlated and HF approximation [52]

DD )=D__ (r ....2.68

a - el COI’r(l’rZ)- Dpe ()
where the two-particle radial distribution function of K (*S) for the

correlated wave function approximation is given by:

(r,r,)=G_ (r,r)r 2,2 ....2.69

corr corr 1 2

and the two-particle radial distribution function for HF wave function

approximation can be written as follows:

_ 2.2
DHF (rl, r2) —GHF(rl, r2)rl r ....2.70
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3-Results, Discussion and Conclusions

The analysis of eectron position distribution in the He-like ions is
performed using 15-trem Cl correlated wave function of Wiess [17],
Echart-Hyllears wave function [13], Simple configuration-interaction
wave function [50], the Hartree-Fock wave function is taken from the
work of Clementi and Rotti [42]. In this chapter we will show the result
and graphics achieved in this research and its analysis for He-like ions of
all properties with concluson and some future work.(in this chapter the
symbols HF refers to Hartree-Fock and Cl refer to Configuration-
interaction and EH refer to Eckart-Hyllears and SCI refer to simple

configuration-interaction ).

3-1 One-Particle Expectation Valuea,"i:

Table (3-1) Presents, the one particle expectation value &,"fi and the
dandard deviation Dr, for n=-2 to 2 for K-shell. These values are
displayed graphically in Figures (3-1), (3-2), (3-3). It showsthe following
statements:

1. In Figure (3-1) for each Z the one particle expectation value &,"fi
for both Hartree-Fock (HF), and Configuration-Interaction (Cl)
wave function increase when n goes from -1 to -2, and decrease
when n goes from 1 to 2, these value mean that expectation values
weight different regions of place. For example when we deal with
position space, the value of one particle expectation value & °f
indicates how the density distribution is closer to nucleus, so the

result of &,*fi when n goes from 1 to 2 decrease and the values of
&, *f indicate how the density distribution is in outer region of the

charge clouds.
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2. In Figure (3-3) for each wave function Hartree-Fock (HF),
Configuration-Interaction(Cl), when n = 1 to 2 the one particle

expectation value &, decrease by increasing Z, thisis due to the

attraction force of nucleusto the charge which leadsto decrease the
probability of finding the electron near the nucleus.

3. In Figure (3-3) for negative values of n, when n=-1,-2, the
expectation values increases by increasng Z due to strongly
attraction force between the nucleus and the electron in the outer
shell.

4. For n=-1to -2, the one particle expectation value &," i obtained by

Configuration-Interaction (Cl)-wave function are larger than those
obtained by Hartree-Fock(HF)-wave function. Radial correlation
(i.e. the Configuration—Interaction (Cl) method takes into account
the regulation forces between the electrons) cusses increases in
&,"fi values which is aso shown by the change of &,"fi due to the
correlation effect.

5. Theone particle expectation value &,"fi obtained by Configuration-

Interaction (Cl), wave function smaller than those obtained
Hartree-Fock (HF)- wave function when n=1,2 for all Z, because
the electron correlation in (Cl) approximation is better than that in
(HF)-wave function, where the shortcoming of Hartree-Fock (HF)
method are due to the neglecting of the electronic repulsions.

6. For n=0 all methods configuration-interaction (Cl), Hartree-Fock
(HF), Eckart-Hyllears (EH) and Simple configuration-interaction
(SCI) wave functions have the same value which equal to unity,

because the normalization condition has been applied.
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7. Figure (3-1) and Figure (3-3) plot the one particle expectation &,"fi
for He-like ions using both Hartree-Fock (HF), and Configuration-
interaction wave function.

8. Figure (3-2) plot the one particle expectation value for K-shell for
He atom obtain each Hartree-Fock (HF), and Configuration-
interaction (ClI), Eckart-Hyllears (EH) and Simple Configuration-

Interaction (SimpleCl) wave function.

e N
Table (3-1): The one particle expectation value €T for He ike
ions of the Hartree-Fock (HF), and Configuration-Interaction (Cl), and

Eckart-Hyllraes (EH), and Simple Configuration Interaction wave

function.
Atom éranf .
or shell - — - - -, | 4t
“Gite n=- n=-1 n=0 n=1 n=

HF 5981 | 1.681 | 1.000 | 0.919 1.17 | 0.507

Ref (51) | 5995 | 1.687 | 1.000 | 0.917 1.18

Cl 7148 | 1.767 | 1.000 | 094 | 1.275 | 0.625

He | Ref (49) | 6.017 | 1.688 | 1.000 | 0.92 | 1.193

5.95 | 1.685 | 1.000 | 0.938 | 1.237 | 0.598

SCl 5446 | 1.63 | 1.000 | 0.931 | 1.159 | 0.540

HF 14912 | 2.687 | 1.000 | 0.572 | 0.445 | 0.343

Li*t | Ref(51) | 14.888 | 2.685 | 1.000 | 0.573 | 0.446

Cl 16.947 | 2725 | 1.000 | 0.61 054 | 0.409

Ref (49) | 14.929 | 2.687 | 1.000 | 0.572 | 0.446

HF 27507 | 3.664 | 1.000 | 0.417 | 0.235 | 0.247

+2
Be Ref(51) | 27.753 | 3.681 | 1.000 | 0.414 | 0.232

Cl 30.474 | 3.682 | 1.000 | 0.446 | 0.286 | 0.295

HF 44744 | 4.687 | 1.000 | 0.324 | 0.142 | 0.191

Ref(51) | 44538 | 4.674 | 1.000 | 0.325 | 0.143

B* Cl 48.022 | 466 | 1.000 | 0.349 | 0.173 | 0.227

Ref (49) | 44.757 | 4687 | 1.000 | 0.324 | 0.141

2]



Chapter Three Results, Discussion and Conclusions

(C): Be™ (D): B*

Ve m~
Figure (3-1): The one-particle radial distributions function q for He-
Like lon usng Hartree-Fock and Configuration-Interaction wave

function.
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Figure (3-2): The one particle radial distribution function &1 Nfor He

atom using Hartree-Fock , Configuration-Interaction, Eckart-Hyllears and
Simple Configuration-Interaction wave functions.
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(A): Hartree-Fock (HF) wave function.
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(B): Configuration-Interaction (ClI) wave function.

Figure (3-3): The one particle expectation values &;"i for He-like ions
when n=-2 to 2.
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3-2 The One-Particle Radial Distribution FunctionD(r,):

Table (3-2) presents, the location and maximum value for one-

particle radia distribution function for He-like ions. These values are

displayed graphically in Figures (3-4 to 3-9), These figures showse the

following statements:

1-

Figures (3-4), (3-5) are shown the one-particle radia distribution

function D (r,) for He-likeions using both Hartree-Fock (HF), and

Configuration-interaction wave function.

In Figure (3-4) increase the maximum value for one-particle radial
distribution function with increasing the atomic number Z, and
close the position of maxima value from nucleus with increasing
the atomic number Z, this mean that the increase in coulomb
attraction for K-shell with nucleus.

In Figure (3-4) the maximum vaue for one-particle radial
distribution function by Configuration-Interaction (Cl) is smaller
from the maximum value for Hartree-Fock (HF) because the
electron correlation Cl is better than HF.

In Figure (3-5) Always "(Cl) < "1(HF) for all atom and ions. And

in In Figure (3-6) For Heatom " (Cl) < "1 (EH) < "1 (HF) < (SCI).
Figures (3-7) shows the one-particle radia distribution function
D (r,)for K-shell for He-like ions using each Hartree-Fock (HF),

and Configuration-interaction (Cl), Eckart-Hyllears (EH) and
Simple Configuration-Interaction (SCI) wave function.

The correlation effect on D (r,) can be seen in Figure (3-8), which

represents the difference DD(1) petween the correlated wave

function Cl and uncorrelated wave function HF plotted against the

distance':. The shape difference appears as positive and negative
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contribution. Where the positive contribution refers to an increase

D (1) and negative region decrease in P (") this change caused
correlation effect, the correlation effect comes from the separation
of two electrons of this shell, where we put each one in a virtual
state (configuration).

Figure (3-9) shows that the difference between Hartree-Fock and
Configuration-Interaction the location of maximum value close to
nucleus when Z increases because the correlation effect increase as

Z increases.



Chapter Three

Results, Discussion and Conclusions

Table (3-2): Maximum and Location of the One-Particle Distribution

Function for He-like lons of the Hartree-Fock HF wave function, and

Configuration-interaction Cl, Eckart-Hyllears EH wave function and

Simple Configuration-Interaction (SCI).

Atom or ion Wave function r,au Max D(ra)
HF 0.57 0.86359
He Cl 0.52 0.84113
EH 0.56 0.872

SCI 0.61 0.85886
Li+1 HF 0.36 1.4076
Cl 0.34 1.3123
Bet2 HF 0.27 1.9353
Cl 0.26 1.8042
B+3 HF 0.21 2.4904
Cl 0.20 2.3169
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Figure (3-4): The one-particle radial distribution function D(r1) for He-
likeionsfor Hartree-Fock (HF) and Configuration-Interaction (CI).
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Figure (3-5): The one-particle radial distribution function D(r1) for He-
likeionsusing A-Hartree-Fock, B- Configuration-Interaction wave

function.
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Figure (3-6): The one particle radial distribution function D (I,) for He

atom using A-Hartree-Fock and Eckart-Hyllears wave function.
B- Hartree-Fock and Simple Configuration-Interaction.
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0251«
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Cl —_— 0 4
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Figure (3-7): The one particle radial distribution functions D (r,)for He

atom using Hartree-Fock, Configuration-Interaction, Eckart-Hyllears, and
Simple Configuration-Interaction wave functions.
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Figure (3-8): The difference of one particle radial distribution functions
DD(r,) between Hartree-Fock and Configuration-Interaction wave

function for He-likeions.
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Figure (3-9): The difference of one particle radia distribution function
DD(r,) For He-like ions obtained Hartree-Fock and Configuration-

Interaction wave function.
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3-3 Coulomb Hole Df (r,,):

The probability of finding the inter-particle distribution function

f(r12) between electrons with unlike spin in of Hartree-Fock and Cl wave

function for He iso electronic sequence (He-Like ions) can be observed in
the Figures(3-10),(3-11) and (3-12).

1.

In Figure (3-16) and Figure (3-17) the maximum value for SCI > EH
> HF > CI and the location for each wave function r1» SCI > EH > HF

> Cl.

The Coulomb holes plotted as a difference between the fqo(r12) figure
(3-13-A)and fue(rp)figure (3-13-B) are presented in figure(3-14)for

each Z.

The locations and the maximum values of the density distribution
function maxf(ry,) for different types of wave function are tabulated in

Table (3-3) for He-Likeions.

Figure(3-13) and Table (3-3) show that, as Z increases, the maximum
probability of the inter-particle distribution functions f(r,,) for HF and
Cl approximations increase and it also observed that the location of
these maxima decreases as Z becomes large. Because the electron

correlation increases as Z increases.

Coulomb holes of the ch(rlz) are presented in figure (3-15) for the

He-Like ions. These holes are to possess considerable similarity when
plotted against the scaled coordinate Zr 5.

The balance between the positive and negative contribution for a
given Df (r,) curveis aconsequence of the normalization conditions
on feorr(rp) and fue(rp) whereas the magnitude and ,in particular, the

location of each extremum of a Coulomb hole gives valuable insight
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into the various effects introduced by correlation. Since the negative

region of Df.(r,) indicates a reduction in f(r;;) relative to the
Hartree-Fock curve, the value of ry, such that Df.(r,)=0 may be

interpreted as the radius of Coulomb hole . It was found that radius
decreases as Z increases. The radius and the area of the holes for
groups of He are tabulated in Table (3-4). From Table (3-4) and figure
(3-18) the radius of coulomb hole for HF& Cl > HF& SCI > HF& EH.
And the area of coulomb hole HF& Cl > HF& SCI > HF& EH.

3-3-1 The I nter-Particle Expectation Value (r;)

The inter-particle expectation values (r;) of HF and Cl wave

function approximations for the He-Like ions are tabulated in Table (3-5).

1. Figure(3-19) represents the (r;) for each Z for HF and CI wave
functions, The result from this figure (3-19) and Table (3-5) show that
<rj >, isgreaterthan <r} >, an=-1,-2 and a n=1,2<rj, >, IS
less than<r), >, . Comparing between the expectation values for the
HF and CI wave functions as Z series are plotted in figure(3-20), that
the <r) >, < Li* < Be® < B®or -ve n and for +ve n the

<t} >, of He> Li* > Be*> B*. Thisinfluence has caused f(ry,) to
become more contracted towards the origin.

2. Figure (3-21-A) shows that the inter expectation value for Eckart-
Hylleras (EH) when n=-1, -2 isless than that for Hartree-Fock, and for

n=1, 2 the value of Eckart-Hyllears (EH) is larger than the Hartree-
Fock.

3. Figure (3-21-B) shows that the inter expectation value for Simple
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Configuration-Interaction (SCI) when n=-1, -2 islessthan for Hartree-
Fock. And for n=1, 2 the value of Simple Configuration-Interaction

(SCI) islarger than the Hartree-Fock.

From Figure (3-21-C) and table (3-5) we found the relation for

=-2 <r > ><rn> ><r > ><r > .
12/HF ~\ 12/c 12/EH 12/ scl
Forn:2<r”> ><r > ><r > ><r > .
12/cl 12/ EH 12/HF ~ \ 12/scl
Forn:-1<r > ><r”> ><r > ><r > .
12/HF ~\ 12/c 12/EH 12/ scl
Forn:1<r > ><r”> ><r > ><r > .
12/ EH 12/cl 12/scl 12/ HF

3-3-2 The partial Coulomb hole

The g(rip,r1) diagrams show the change in behavior of the inter-
particle probability functions as the position of the test electron is varied
These surfaces are presented in figure(3-22) and figure(3-23) for the HF

and CI wave functions for each Z

1. The contour diagrams for the g(ri,,r1) surface mentioned above are
presented in figure (3-24) and figure (3-25) for HF and Cl wave

functions respectively.

2. The locations and the maximum values of the partid dendty
distribution function g(r2,r1) of HF and ClI for each Z are tabulated in
Table (3-6).

3. The surface diagrams show that the maximum of g(rq,r1) increases as
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Z increases for He iso electronic sequences and the contour diagrams
show that the g(rip,ri) becomes more diffuses and decreases in

magnitude as Z increases for He iso electronic sequences.

4. The change in the partial Coulomb holes for He-Like ionsis plotted as
surface diagrams of the series of Z (He, Li*, Be*, B™) in the figure
(3-26). Figure (3-27) show contour diagrams for He-Like ions for the

same series.

5. The surface diagrams show that the depth of Coulomb hole increases
and the radius decreases as Z increases and the contour diagrams show
coulomb hole becomes more diffuses and decreases in magnitude as Z

iNncreases.
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Table (3-3): Maximum and Location of The Inter-Particle Distribution
Function for He-like lons of the Hartree-Fock (HF) wave function, and
Configuration-interaction (Cl), Eckart-Hyllears (EH) wave function and

Simple Configuration-Interaction (SCI).

Atomor ions | Wave function r, au f(r,)
HF 0.98 0.624

He Cl 0.97 0.623
Eckart-Hyllears 1.04 0.622

SCi 1.08 0.647

Li+1 HF 0.63 1.029
Cl 0.61 0.945

Bet2 HF 0.49 1.407
Cl 0.42 1.278

B+3 HF 0.35 1.826
Cl 0.33 1.629

Table (3-4): The radius and the area of Coulomb hole Df(r,, )for He-like

ions.
Atoms or Wave Radius of Area of coulomb
ions Function | coulomb hole au hole au
HF &ClI 1.13 0.015
HF&EH 1.10 0.0176
He HF & SCI 1.11 0.0177
Ref (13) 1.1
Li*t HF &ClI 1.05 0.055
Be* HF &Cl 0.84 0.066
B*3 HF &Cl 0.66 0.078
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Table (3-5): The Inter-Expectation Vaue a,f For He-Like lons of

Hartree-Fock, Configuration-interaction, Eckart-Hyllears and Simple

Configuration-Interaction wave functions.

Atom | Wwave a,nau
function ) -1 0 1 2 Dr,
HF 1828 | 1.017 | 1.000 | 1.340 | 2.313 | 0.719
Cl 1815 | 1.016 | 1.000 | 1.389 | 2512 | 0.763
He Eckart- | 1.701 | 0.992 | 1.000 | 1.395 | 2.472 | 0.725
SCI 1612 | 0.983 | 1.000 | 1.368 | 2.314 | 0.665
Ref (26) | 1.480 | 0.946 | 1.000 | 1.422 | 2,513 | 0.702
HF 4727 | 1652 | 1.000 | 0.838 | 0.89 | 0.433
Li*t Cl 4474 | 1583 | 1.000 | 0.84 091 | 0452
Ref (26) | 4.114 | 1.569 | 1.000 | 0.862 | 0.926 | 0.427
HF 8.827 | 2261 | 1.000 | 0.609 | 0.469 | 0.313
Be* Cl 8.305 | 2158 | 1.000 | 0.663 | 0.573 | 0.365
Ref (26) | 8.078 | 2.192 @ 1.000 | 0.618 | 0.477 | 0.38
HF 14.495 | 2902 | 1.000 | 0.474 | 0.284 | 0.243
B* Cl 13.309 | 2721 | 1.000 | 0.51 | 0.342 | 0.286

Table (3-6): The Maximum and Location of the Partial Coulomb Hole

g(r,r,)for

He-Like

Configuration-Interaction Wave function.

lons obtained by Hartree-Fock,

Atlcc))rrr:sor Wave function r,au r, au g(r,r,)
He HF 0.57 0.98 0.673
Cl 0.52 0.97 0.622
Lt HF 0.36 0.63 1.75
Cl 0.34 0.61 1.64
Be?? HF 0.27 0.49 3.127
Cl 0.26 0.42 3.025
5+ HF 0.21 0.35 5.652
Cl 0.2 0.33 5.632
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Figure (3-10): The Inter-Particle Distribution Function f(ry)for He-Like
ions obtained by Hartree-Fock Wave function.
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Figure (3-11): The Inter-Particle Distribution Function f(rip)for He-Like
ions obtained by Configuration-Interaction wave function.
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Figure (3-12): The Inter-Particle Distribution Function f(ry,)for He-Like
ions obtained by Hartree-Fock and Configuration-Interaction wave
functions.
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Figure (3-13): The Inter-Particle Digribution Function f(r1)for He-Like
ions.
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Figure (3-14): The Coulomb hole as a difference between Inter-Particle
Distribution Function for He-Like lons obtained by Hartree-Fock and
Configuration-Interaction Wave Functions.
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Figure (3-15): The Coulomb hole as a difference between Inter-Particle
Distribution Function for He-Like lons obtained by Hartree-Fock and
Configuration-Interaction Wave Functions.
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ions obtained by

A- Eckart-Hylleras Wave Function.

B- Simple Configuration-Interaction Wave Function.
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Figure (3-17): The Inter-Particle Distribution Function f(r,)for He-atom
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A- Hartree-Fock.
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Functions.
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Figure (3-22): The surface partial Coulomb hole g(r12,r1) for He-Like
lons obtained by Hartree-Fock.
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Figure (3-23): The surface partial Coulomb hole g(r12,r1) for He-Like
lons obtained by Configuration-Interaction.
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Figure (3-24): The contour partia Coulomb hole g(r12,r1) for He-Like
ions obtained by Hartree-Fock.
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Figure (3-25): The contour partia Coulomb hole g(r12,r1) for He-Like
ions obtained by Configuration-Interaction.
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Figure (3-26): The surface delta partial Coulomb hole Ag(r12,r1) for He-
Like lons obtained by Hartree-Fock and Configuration-Interaction.
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Figure (3-27): The contour delta partial Coulomb hole Ag(r12,r1) for He-

like ions obtained by Hartree-Fock and Configuration-Interaction.
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3-4 The Change in the Two-Particle Radial Distribution
Function AD¢.pe(r,ro) of Cl and HF Wave Functions:

Table (3-7): Presents the maximum value for the two particle radial

distribution function D(r1, r2) and the location of r1, r2. These values are

displayed graphically
1. The maximum value D(r1, r2) of HF is larger than the maximum
value for Cl for each Z. The maximum D(r1, r2) increases when Z

increases for each HF and Cl wave function.

2. The surface diagrams shows in figure (3-28) and figure (3-30) are
shows the maximum of D(ry,rp) increases as Z increases for both
HF and CI wave functions for He iso electronic sequences and the
contour diagrams show that the D(r4,r») in figure (3-29), figure (3-
31) that becomes more diffuses and decreases in magnitude as Z
increases for both HF and CI wave functions for He iso electronic

sequences.

3. InTable (3-7) the Max D(r1, r2)ye > D(r1, r2)c and max D(r1, r2)
He<Li** <Be™ <B™ and the location of max D(rl, r2) for He>

L|+1>Be+2>B+3_

4. The change 4D¢ .k (r1, rl) which occurs in the two-particle radial
digtribution function D(ry,r,) for Cl and HF wave functions is
plotted as surface diagramsin the figure (3-32). and it is plotted as
contour diagrams in figure (3-33) He-Like ions. The surface
diagrams show that the depth of the change increases and the
radius decreases as Z increases and the contour diagrams show that
the change becomes more diffuses and decreases in magnitude as Z

increasing, because the nuclear charge increases.
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Table (3-7): Maximum and Location of two-particle distribution function
D(ry,ro)for He-like ions of the Hartree-Fock wave function, and

Configuration-interaction wave function.

MIBNET | WELE riau r- au | D(ryr2)
I1ons function
HE 0.57 0.57 0.746
He 0.57 0.57 0.746
cl 0.52 0.53 0.705
0.52 0.52 0.705
0.36 0.36 1.981
. HF 0.36 0.36 1.981
Li+1
Cl 0.37 0.38 1.657
0.38 0.37 1.657
0.27 0.27 3.745
HF 0.27 0.27 3.745
Be+2
cl 0.26 0.27 3.138
0.27 0.26 3.138
0.21 0.21 6.202
HF 0.21 0.21 6.202
B+3
Cl 0.2 0.19 5.209
0.19 0.2 5.209




Chapter Three Results, Discussion and Conclusions

)

(A): He (B): Li**

Mc

Figure (3-28): Surface Diagram for the two-particle radial distribution

function D(ry,r) for HF wave function.
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Figure: (3-29) Counter Diagram for the two-particle radial distribution
function D(ry,r;) for HF wave function.
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Figure (3-28): Surface Diagram for the two-particle radial distribution

function D(r,,rp) for Cl wave function.
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Figure (3-31) Counter Diagram for the two-particle radial distribution
function D(rq,r,) for Cl wave function.
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Figure (3-32) Surface Diagram for the difference of the two-particle
radial distribution function D(r4,r,) for each HF, Cl wave function.
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Figure (3-33) Counter Diagram for the difference of the two-particle
radial distribution function D(r4,r,) for each HF, Cl wave function.



Chapter Three Results, Discussion and Conclusions

3-5 Calculation of Energy:

3-5-1 Repulsion Energy Expectation Values & _i
The values of <r,'>is used to evaluate the repulson energy

expectation values <Vge > for He-likeions. Examination of the repulsion
energy expectation values <Vg > of He-like are presented in Table (3-8)

and from this table we report the following statements:

1- If the atomic number (Z) increases the repulsion energy between the
electrons increase. This behavior arises from the fact that the each
shell shrinkage toward the nucleus because the attraction force
between the electrons and the nucleus increase too, while the distances
between the electrons decrease so the repulsion energy increase the
repulsion energy between two charge proportion with the values of the
two charge, and inversely with the squared distance between them).

2- For each (Z) the repulsion energy expectation value <Vgg> for

correlated wave function is less than that for uncorrelated wave
function because the correlation between the electrons was taken in

account.
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Table (3-8): Repulsion energy expectation value & _fi for He-like ions of

Hartree-Focck (HF), Configuration-Interaction (Cl), Eckart-Hyllears

(EH), and Simple Configuration-Interaction Wave Function.

Atomorlon | WaveFunction | & _fi=&,'fiau
HF 1.017
Cl 1.016
He

EH 0.992
SCl 0.983
Litt HF 1.652
Cl 1.583
v HF 2.261

Be
Cl 2.158
s HF 2.902

B

Cl 2.721
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3-5-2 Attractive Energy Expectation Value & _ i
Table (3-9) illustrates the attractive energy expectation values

<Ven > for He-likeions and it shows:

1- 1-The attractive energy expectation values <Vgn> increases as

atomic number (Z) increases and this behavior from the fact that the

K-shell shrinkage toward the nucleus because of the attraction force

between the el ectrons and the nucleus decrease.

2- The attractive energy expectation values <Vgp, > is larger than the

repulsion energy expectation value <Vge> by comparison between

Table (3-8), and Table(3-9) for atom or ions and this is caused to

reduce the distance between the el ectrons and the nucleus smaller than

the distance between the electrons and this difference decreases as the

atomic number Z increase.

Table (3-9): Attractive energy expectation value & _fi for He-like ions of

Hartree-Fock (HF), Configuration-Interaction (Cl), Eckart-Hyllears (EH),
and Simple Configuration-Interaction Wave Functions.

S B ke
Atomor lon | Wave function é/f" nl—N 26l a:u
a n -& N
HF 1.681 6.724
e Cl 1.767 7.068
Eckart-Hyllears 1.685 6.74
SCl 1.63 6.52
ol HF 2.687 16.122
o Cl 2.725 16.35
Be'? HF 3.664 29.312
Cl 3.682 29.456
e HF 4.687 46.665
Cl 4.66 46.786
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3-5-3 Total Energy Expectation Values & i

Table (3-10) shows the values of the attractive energy expectation

values<Vgn >, repulsive energy expectation values<Vge>, and total

energy expectation values <E> and we noted that:

1- Thetotal energy expectation value <E> for He-atom of Hartree-Fock

(HF) approximation is larger than those for the correlation wave
function and that behavior is not found in ions because the electron
correlation has been taken in account in the correlated wave function
and the electron correlation increase as the atomic number (2)

increases.

2- As atomic number (Z) increases the attractive potential energy (which

results from the attractive potential energy between the electrons and
the nucleus), and the repulson energy (which results from the

repulsion potential energy between the electrons) increase.

Table (3-10): Total energy expectation value & _fi for He-like ions of

Hartree-Fock (HF), Configuration-Interaction (Cl), Eckart-Hyllears (EH),
and Simple Configuration-Interaction Wave Function.

Atom Wave & o 1., .
) - =- = E
orlon | function | -& | & | -&i EN=- SN -
HF 6.724 | 1.016| 5.388 2.854
HF&CI | 0.008
Cl 7.068 | 1.017| 5.692 2,846
He _
Eckart 6.74 | 0.992| 5.668 2.874 HF&EH | 0.02
Hyllears
scl 6.52 | 0.983| 5.645 28225 HF&SCI | 0.031
» HF 16.122 | 1.652| 14.47 7.235
Li 0.14
Cl 16.35 | 1.583| 14.75 7.375
B HF 20.312 | 2.261| 27.051 13526
Be 0.247
Cl 20.456 | 2.158 | 27.298 13.649
» HF 46.87 | 2.902 | 43.968 21.964
B 0.020
Cl 466 |2721| 4393 21.985
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3-6 Conclusions:

1.

As Z increases, the one-particle expectation value &;"f for each

Hartree-Fock and Configuration-Interaction increase when we
study the charge density distribution near to nuclear and decrease

when we study the charge density distribution far too nuclear.

As Z increases, the one-particle radial distribution functions for
each Hartree-Fock and Configuration-Interaction increasesD (r,) .
As Z increase, the difference one-particle radial distribution

function bD(r) increase and the location closed to nucleus.

As Z increases, the inter-particle expectation value (ry;) for each

Hartree-Fock and Configuration-Interaction increase when n=-1, -2

and decrease whenn= 1, 2.

As Z increases, the maximum probabilities of the inter-particle
digtribution function f(r,) of HF and ClI wave functions increases
and also the locations of these maxima decrease as Z goes from 2
to 5.

The magnitude density of g(ri,,r1) of the HF and Cl wave functions

Increases as Z increases.

The maximum of D(ry,r,) increases as Z increases of HF and CI

wave function for K-shell.

The radius of Coulomb hole decreases with increasing the atomic
number Z, and the area of Coulomb hole increase with increase of

the atomic number Z.
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9. AsZ increases the depth of the change AD¢,.ne(r1,r2) which occurs
in two-particle radia distribution function D(ry,r2) increases, and

the location of the two-particle decreases.

3-7Future work and suggestions:
Study the Fermi Hole and Coulomb Hole for some atomic system using

new correlated wave function.
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Appendix A

Determination of Electron-Electron Distribution Function
For any N-electron atomic system, the distribution function f (r,,) of
the interelectronic separation r, isdefined as[37]:
dr; dr;

i) =896y rerp—g

i . (A-D)

G(Z) isthe spin-free-2 matrix defined by:

N\ N

éN CI *
G(Z)(ri ,rj‘rid;rﬁ:):;& g(ﬂ)Y(lexz ..... Xj X yeXn) Y (XX, X G X E, . x §)dx; dX  dX

o (A-2)
Where dx, , indicate an integration- summation over all the combined

space and spin co-ordinate X, except k =i and j. the binomial coefficient
?&N Hensure that the spin-free-2 matrix is normalized to the number of the
u

electron pair with the system.

After settingr¢=r,,r¢=r, the integration is achieved over al co-

ordinates except r, [28] therefore:

f(rij )y = Q§(ri 1 ) dr ... (A-3)
¥

Suchthat ¥ (r;)dr; =1 ... (A-9)
0

The integration in equation (A-3) is taken over all positions of the two

electrons such that the inter-electronic distance lies between r_,and

r, +dr, [13].



In order to obtain the fina form of the radia electron-electron
distribution function, we will transform the volume element [28] see
figure (A-1).

dr, =rjdr,sing,dqdf, ... (A-5)
At the same way:
dr, =r’dr,singdq,df, ... (A-6)

Now in a appropriate manner, choosing the r;- direction as the new polar
axis seefigure (A-2).

dr, =rjdr,sinwdwdg - (A7)

Where g shows an angle of rotation of the plane 012 around 01.

Now from the law of cosine:

ro=r?+r}- 2rr,cosw ... (A-8)

Then by dervitation with kept ry, 1,

rdr, =rr,sinwdw ... (A-9)

Therefore, the combined volume element becomes:

drdr, =rr,r,sing, sinwdrdr,dgdf dwdg .... (A-10)

It isconvenient to set i=1, j=2, then the equation (A-3) becomes:

f (r,) = X r)nr,r,sing sinwdrdr,dgdf dwdg .... (A-11)

By integration over al the angles gets.

f(r,) =8p°r, (g¥r,,r)r.r.drar, ... (A-12)

For a given ry, the alowed values of ry and r, are defined by the
rotations:

r,-nLELEr,+r, a(ra,) ....(A_13)

r-r,Er,E£r+r, at (r,fr,)



Generdly:

&2 CPRACY ¥ [CRasts O
f(r,)=8 2rlzgdldrl O, r)rdr, + gdr, Q41 r)rdr, < .... (A-14)
0 2= 1 0 - Tp (%]

The vector r in G(r,,r,) means that the density contains both radial and

el o

angular part, where the angular part of each orbital is -~ . Therefore,
gx/4p @
the inter-particle radial digribution function of the individual shells can
be written as:
fij (rlz):0-5’r12(|1+|2) .... (A-15)
Where
I, = Qrdr, Q Gry,rp)r.dr, ... (A-16)
0 M2
¥ fp+h
I, = ordn, O Gy, r,)r.dr, ... (A-17)

f12 -1



= dry

Figure (A-1): Volume element in spherical co-ordinate.

2, ("ngz-‘f)g)

Figure (A-2): Co-ordinate sysems of the distribution function
determination Numerals| and 2 show the electrons, 0O is the nucleus.



Appendix B

Determination of the Total Energy in Terms of Expectation

.. (B-1)

.. (B-2)

.. (B-3)

Values
The total energy of our trail wave function is given by [45]:
(YH]Y)
E=>"—
(YY)
Since the wave function is normalized the denominator becomes one,
therefore:
:<Y HY)
Where:
s _o€ 1., &l ,e0
H a é _NI g_ + a g_T,
i e 2 i 4j er g

1~
"5 N’, represent the Kinetic energy (T).

The potential energy isrepresented by:

Substituting equation (B-3) into equation (B-1) we get:

E=(YT +V|Y)

Now, from the viral theorem [45] <T > =- % >

.. (B-4)

.. (B-5)

.. (B-6)

.. (B-7)



Appendix C

Data of Hartree-Fock for He-lIsoelectric series [1974]

Data of Hartree-Fock He atom

n | 4 C

1 0 1.45286 0.91795

1 0 2.77954 0.18334

1 0 4.34600 0.00824
Data of Hartree-Fock Li** ions

n | 4 C

1 0 2.45055 0.89066

1 0 457259 0.12328

1 0 6.67032 0.00088
Data of Hartree-Fock Be*? ions

n I ¢ C

1 0 3.43071 0.89855

1 0 5.63150 0.09068

1 0 7.35143 0.02158
Data of Hartree-Fock B* ions

n | 4 C

1 0 4.44422 0.93036

1 0 7.90274 0.07786

1 0 11.31380 0.00013




Appendix D

Data of configuration-interaction for He-Isoelectric series Wiess [1960]

Data of configuration-interaction He atom

Cl n nl 4 g1 C
1s 1s 1 1 1.48 1.48 0.30709
1s 2s 1 2 1.48 1.48 -0.8623
25 25 2 2 1.48 1.48 0.14117
1s 1s 1 1 1.48 3.7 -0.59306
2s 1s 2 1 1.48 3.7 0.12052
1s 1s 1 1 3.7 3.7 0.07324
1s 25 1 2 1.48 3.7 -0.29466
25 25 2 2 1.48 3.7 0.05457
1s 25 1 2 3.7 3.7 0.05529
25 25 2 2 3.7 3.7 0.07434
1s 3s 1 3 1.48 3.7 -0.55471
25 3s 2 3 1.48 3.7 0.16365
1s 3s 1 3 3.7 3.7 0.14812
2s 3s 2 3 3.7 3.7 -0.00026
3s 3s 3 3 3.7 3.7 0.14627
Data of configuration-interaction Li** ions
Cl n nl 4 g1 C
1s 1s 1 1 2.52 2.52 0.51545
1s 2s 1 2 2.52 2.52 -0.76338
25 25 2 2 2.52 2.52 0.15375
1s 1s 1 1 2.52 5.75 -0.74523
2s 1s 2 1 2.52 5.75 0.19361
1s 1s 1 1 5.75 5.75 0.10743
1s 25 1 2 2.52 5.75 -0.39384
25 25 2 2 2.52 5.75 0.10211
1s 2s 1 2 5.75 5.75 0.10123
25 25 2 2 5.75 5.75 0.07174
1s 3s 1 3 2.52 5.75 -0.64785
25 3s 2 3 2.52 5.75 0.19433
1s 3s 1 3 5.75 5.75 0.19574
2s 3s 2 3 5.75 5.75 0.04921
35 3s 3 3 5.75 5.75 0.14061




Data of configuration-interaction Be** ions

Cl n nl ¢ ¢1 C
1s 1s 1 1 3.55 3.55 0.52909
15 25 1 2 3.55 3.55 -0.77925
25 25 2 2 3.55 3.55 0.14548
1s 1s 1 1 3.55 7.8 -0.77651
25 1s 2 1 3.55 7.8 0.21295
1s 1s 1 1 7.8 7.8 0.11900
1s 25 1 2 3.55 7.8 -0.41769
25 25 2 2 3.55 7.8 0.11532
1s 2s 1 2 7.8 7.8 0.11853
25 25 2 2 7.8 7.8 0.06726
1s 3s 1 3 3.55 7.8 -0.63526
25 3s 2 3 3.55 7.8 0.18946
1s 3s 1 3 7.8 7.8 0.20199
2s 3s 2 3 7.8 7.8 0.06600
35 3s 3 3 7.8 7.8 0.12579
Data of configuration-interaction B* ions
Cl n nl ¢ ¢1 C
1s 1s 1 1 4.65 4.65 0.46506
1s 2s 1 2 4.65 4.65 -0.74102
25 25 2 2 4.65 4.65 0.13445
1s 1s 1 1 4.65 9.85 -0.75189
25 1s 2 1 4.65 9.85 0.21196
1s 1s 1 1 4.65 9.85 0.11866
1s 25 1 2 4.65 9.85 -0.40700
25 25 2 2 4.65 9.85 0.11571
1s 25 1 2 9.85 9.85 0.12075
25 25 2 2 9.85 9.85 0.06176
1s 3s 1 3 4.65 9.85 -0.59439
2s 3s 2 3 4.65 9.85 0.17777
1s 3s 1 3 9.85 9.85 0.19356
2s 3s 2 3 9.85 9.85 0.06968
3s 35’ 3 3 9.85 9.85 0.11181




Appendix E

Compare the result of the repulsion energy with the reference 12

Atom or lon Wave Function & f=&,'n
He Ref 12 1.025
Li*? Ref 12 1.651
Be™ Ref 12 2.277

Compare the result of the attraction energy with the reference 12

Atomor lon | Wave function é/e”lrj: el lna~
a -¥ i

He Ref 12 1.687 6.749

Li*t Ref 12 2.687 16.124
Be*? Ref 12 3.687 29.499

Compare the result of the total energy with the references

Atom Or Wave Exact energy
ions function
Ref 52 2.8616
Ref 17 2.878
He For S
symmetry
Ref 13 2.875
2.9037
Ref 52 7.236
120 Ref 17 7.252
For S
7.279
Be™2 Ref 42 13.611
Ref 17 13.655
g+ Ref 42 21.986
Ref 17 22.030




Compare the result of the one-Particle Radial Digtribution Function with

result 12
Atom or ion Wave function r, Max D(ry)
He Ref 12 0.56 0.866
Li*t Ref 12 0.36 1.4074
Be'™? Ref 12 0.26 1.948

Compare the result of the Inter-Particle Radial Distribution Function with

result 13

Atom or ions

Wave function

f(r,)

He

Eckart-Hyllears

1.04

0.622

Ref 13

1.00

0.625

Compare the result of the Radius and Area of coulomb Hole with

reference.
Atomsorions | Wave Function Radius of Area of coulomb
coulomb hole hole
He Ref 39 1.11 0.044
Li*t Ref 39 0.66 0.042
Be™ Ref 39 0.05 0.42
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