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A systematic study of isotope chains in the rare–earth region is 

presented. For the chains 144 , , , and 150 , 

energy levels, E2 transition rates, and two–neutron separation energies (S

Nd154
60

− Sm160146
62

− Gd162148
64

− Dy166
66

−

2n) 

are described by using the most general (up to two–body terms) IBM-1 

Hamiltonian. For each isotope chain a general fit is performed in such a way 

that all parameters but one are kept fixed to describe the whole chain. 

 In this region, nuclei evolve from spherical to deformed shapes and        

a method based on catastrophe theory, in combination with a coherent state 

analysis to generate the IBM-1 energy surfaces, is used to identify critical 

phase transition points. 

The approach used to fix the Hamiltonian parameters leads to a very 

good global agreement with the recent available experimental data 

corresponding to excitation energies, B(E2)’s and S2n values. In particular, an 

excellent agreement with the measured S2n values is obtained, which is 

considered a key observable to locate phase transitional regions. The analysis 

presented here is consistent with previous CQF studies in the same region. As 

a result we find that 148Nd and 150Sm are the best candidates to be critical, 

but we should remark that 150Nd and 152Sm are not far away from it. 
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Chapter  

  

Introduction 

1.1 Geometric Symmetries 

Symmetry is a unifying concept, introduced in physics in the second part of 

the 19th century, when it referred mainly to the geometric arrangement of 

constituent parts into the whole. An example is the arrangement of atoms in 

molecules and crystals (point group symmetries). At the beginning of the        

20th century the concept was enlarged to include “kinematical (or space-time) 

symmetries”, sometimes called “fundamental” symmetries. These symmetries are 

a generalization of the familiar translational and rotational invariance of non-

relativistic systems to include time (Lorentz and Poincare’ invariance). These 

symmetries are expected to be exact. To these symmetries parity, P, charge 

conjugation, C, and time reversal, T, invariance were later added. Although the 

product PCT is expected to be an exact symmetry (PCT theorem), the individual 
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parts may be broken [1].  

1.2 Quantal Symmetries-Dynamical and Gauge 

With the advent of quantum mechanics, the concept of symmetry was 

further enlarged. Two new types emerged: dynamic symmetries and gauge 

symmetries. Both are symmetries of the interactions, but dynamic symmetries 

govern the motion of particles in physical systems, while gauge symmetries 

relate to the fundamental interactions of Nature. Both of these symmetries have 

played a major role in the development of Physics in the 20th
 century. It is now 

believed that all fundamental interactions are governed by gauge symmetries, 

U(1) for electromagnetism, SU(2) for weak interactions and SU(3) for strong 

interactions [1]. 

1.3 Symmetries in Complex Systems 

The symmetries of particular importance for complex systems, such as the 

atomic nucleus, are dynamic symmetries. The oldest example of this type of 

symmetry is that introduced in Atomic Physics by Wolfgang Pauli in 1926 

(Dynamic symmetry of the Coulomb interaction). Murray Gell’Mann and Yuval 

Ne’eman introduced them in the 1960’s in Particle Physics (Flavor symmetry). 

In 1974, they were introduced in Nuclear Physics (Interacting Boson Model) and 

in 1981 in Molecular Physics (Vibron Model) [2].  

1.4 Dynamical Symmetries 

In the last 30 years, several examples of dynamic symmetries have been 

discovered in nuclei. The quantum states of a physical system are characterized 

by a set of energy levels. Dynamic symmetries provide patterns of energy levels 

that can be easily recognized experimentally.  
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The patterns are characteristic of a certain group of transformations. For 

collective quadrupole motion U(5), SU(3) and SO(6). All of these symmetries 

have been discovered and plotted in form of symmetry triangle known as 

“Casten triangle” as shown in Figure 1.1 [2]. 

 

 

U(5) SU(3) • •

•SO(6) 
 

 

 

 

 

 

 Figure 1.1: Symmetry triangle of the Interacting Boson Model (IBM-1)
indicating the three limiting symmetries on each of the vertices and the
transition legs between symmetries, taken from Ref. [2].  

 

1.5 Dynamical Supersymmetries 

The concept of symmetry was further enlarged in the 1970’s to include 

symmetries involving simultaneously particles with integer and half integer spin 

(bosons and fermions). Such symmetries play a role in more than one area of 

physics. In particle physics, supersymmetries involving fundamental particles, 

quarks and squarks, photons and photinos, have been sought for decades but not 

yet found. Supersymmetries were introduced in nuclear physics in 1980 

(Interacting Boson-Fermion Model). Contrary to the case of particle physics, 
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here the bosonic structures are composite entities, consisting of pairs of 

nucleons, similar to the Cooper pairs of the electron gas. Evidence for 

supersymmetry in nuclei was discovered in the 1980’s and recently confirmed 

[2].  

1.6 Critical Point Symmetries 

Very recently, an astonishing result has been found, wherein systems at the 

critical point of quantum phase transitions (that is phase transitions that occur as 

a function of a coupling constant rather than the temperature) display a simple 

behavior. This simple behavior has been associated with the occurrence of a 

dynamical symmetry (meaning here solvability of the Hamiltonian problem). 

This suggestion, that appears to be experimentally verified in some nuclei, opens 

the way for a new area of symmetries studies, namely those of systems that are at 

the critical point of first and second order transitions [2].  

In the last few years, interest for the study of phase transitions and phase 

coexistence in atomic nuclei has been revived [3, 4, 5, 6]. A new class of 

symmetries that applies to systems localized at the critical points has been 

proposed. In particular, the “critical symmetry” E(5) [7] has been suggested to 

describe critical points in the phase transition from spherical to γ-unstable shapes 

while X(5) is designed to describe systems lying at the critical point in the 

transition from spherical to axially deformed systems as shown in Figure 1.2 [8]. 

 The Critical symmetries X(5) and E(5) are based originally on particular 

solutions of the Bohr-Mottelson differential equations, but are usually applied in 

the context of the Interacting Boson Model (IBM-1) [9], since the latter provides 

a simple but detailed framework in which first and second order phase transitions 

can be studied. In the IBM-1 language, the symmetry E(5) corresponds to the 

critical point between the U(5) and O(6) symmetry limits, while the X(5) 
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symmetry should describe the phase transition region between the U(5) and the 

SU(3) dynamical symmetries, although the connection is not  a rigorous one. 

Very recently the O(6) limit itself has also been proposed to correspond to a 

critical point as shown in Figure 1.2 [10]. 

Figure 1.2: Phase diagram of the Interacting Boson Model (IBM-1) taken from Ref. [11].  

Usually, the IBM-1 analyses of phase transitions have been carried out 

using schematic  Hamiltonians in which the transition from one phase to the other 

is governed by a single  parameter. It is thus necessary to see how much these 

predictions vary when a more general Hamiltonian is used.  

The global approach was first used by Castaños et al. for the study  of series 

of isotopes [12, 13, 14]. An alternative procedure is provided by the use of the 

Consistent Q Formalism (CQF) [15]. In this case, although the Hamiltonian is 

simpler than the general one, the main ingredients are included (the term 

concerning the U(5) limit and Quadrupole –Quadrupole (Q-Q) interaction term 

concerning the SU(3) limit). Within this scheme a whole isotope chain is 

described in terms of few parameters that change smoothly from one isotope to 

the next.  
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1.7 Literature Review  

The first evidence for existence of critical point symmetries in nuclei were 

predicted by F. Iachello [7]. Iachello found analytic solutions at the critical point 

of such phase transitions: E(5) for a transition between spherical and deformed   

γ-soft nuclei and X(5) for a transition between spherical and axially deformed 

nuclei [8]. His approach is based on analytic solutions of Schrödinger equation 

corresponding to a geometric (Bohr) Hamiltonian with a square-well potential.  

Extensive studies of R.F. Casten and R. Krücken et al. have shown that 
152Sm [16] and 150Nd [17] are close manifestation of the X(5) critical point 

model, by comparing the experimental data and their theoretical calculations of 

the ration of excitation energies,  and , 

also they compared their theoretical calculations for the transition probabilities 

B(E2) with the measured transition probabilities. 

)2(/)4( 1142
++≡ EER )2(/)0( 1202

++≡ EER

J. Escher and A. Leviatan [18], presented the first example of a partial 

dynamical symmetry (PDS) in an interacting fermions system and demonstrated 

the close relationship of the associated hamiltonians with a realistic quadrupole-

quadrupole interaction, thus shedding new light on this important interaction. 

Specifically, in the framework of the symplectic shell model of nuclei, they 

proved the existence of a family of fermionic Hamiltonians with partial SU(3) 

symmetry. They briefly reviewed the symplectic theory, outlined the 

construction process for the PDS eigenstates with good symmetry and gave 

analytic expressions for the energies of these states and E2 transition strengths 

between them. Characteristics of both pure and mixed-symmetry PDS 

eigenstates are discussed and the resulting spectra and transition strengths are 
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compared to those of real nuclei. Their results showed that the PDS concept is 

relevant to the description of prolate, oblate, as well as triaxially deformed 

nuclei. They also considered similarities and differences between the fermion 

case and the previously established partial SU(3) symmetry in the Interacting 

Boson Model. 

D. Bonatsos et al. [19], suggested a chain of potentials between the U(5) 

symmetry of the 5-dimensional harmonic oscillator and the E(5) symmetry, 

corresponding to U(5)↔O(6) phase transition. They predicted the Hamiltonian 

parameters independently for the spectra and B(E2) values. The ratio of 

excitation energies,  are derived numerically and compared 

with existing experimental data. In Addition they also suggested a chain 

potentials to the U(5) ↔SU(3) phase transition. They predicted the Hamiltonian 

parameters independently for the spectra and B(E2) values. The ratio of 

excitation energies,  are derived numerically and compared 

with existing experimental data. 

)2(/)4( 1142
++≡ EER

)2(/)4( 1142
++≡ EER

V. Werner et al. [20], studied in terms of the Interacting Boson Model, the 

shape invariance for the ground state, formed by quadrupole moments up to sixth 

order, in the dynamical symmetry limits and over the whole structural range of 

the IBM-1.The results were related to the effective deformation parameters and 

their fluctuations in the geometrical model. They identified new signatures that 

can distinguish between vibrator and γ-soft rotor structures, and the one that is 

related to shape coexistence. 

J. N.Ginocchio and A. Leviatan [21], studied the properties of critical points 

in the Interacting Boson Model (IBM-1), corresponding to flat-bottomed 

potentials as encountered in second-order phase transition between spherical and 
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deformed γ-unstable nuclei. They showed that the intrinsic states with an 

effective β-deformation reproduce the dynamics of the underlying non-rigid 

shapes. They concluded that the effective deformation could be determined from 

the global minimum of the energy surface after projection onto the appropriate 

symmetry and states of fixed number of bosons (N) and good O(5) symmetry 

projected from these intrinsic states provided good analytic estimates to the exact 

eigenstates, energies and quadrupole transition rates at the critical point. 

J. M. Arias et al. [22], investigated the quantum phase transition 

mechanisms that arise in the Interacting Boson Model (IBM-1). They showed 

that the second-order nature of the phase transition from U(5) to O(6) may be 

attributed to quantum integrability, whereas all the first-order phase transitions of 

the model are due to level with one singular point of level crossing. They 

proposed a model Hamiltonian with a true first-order phase transition for finite 

systems due to level crossing.  

J. Dukelsky et al. [23], used the exact solution of the boson pairing 

Hamiltonian given by Richardson in the sixties to study the phenomena of level 

crossing and quantum phase transitions in the integrable regions of the sd and 

sdg interacting boson model. 

J. P. Draayer et al. [24], used a mixed-symmetry nuclear shell-model 

scheme for carrying out calculations in regimes where there is a competition 

between two or more modes. A one dimensional toy model is used to 

demonstrate the concept. The theory is then applied to 24Mg and 44Ti. They also 

considered the X(5) symmetry that falls along the U(5)↔SU(3) leg of the 

interacting boson model. They concluded that the mixed-symmetry concept is 

effective, even when strong symmetry breaking occurs. 
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V. Werner et al. [25], discussed the concept of critical points in nuclear 

phase transitional regions from the standpoints of Q-invariants, simple 

observables and wave function entropy. They showed that these critical points 

are very closely coincide with the turning points of the discussed quantities, 

establishing the singular character of these points in nuclear phase transition 

regions between vibrational and rotational nuclei, with a finite number of 

particles. 

E. A. McCutchan et al. [26], Populated excited, nonyrast states in 162Yb via 

 decay and studied through off-beam γ-ray spectroscopy at Yale 

University moving tape collector. New coincidence data provided evidence for a 

substational revision of the previous level scheme of 

εβ /+

162Yb is compared to the 

prediction of the X(5) critical point symmetry. They obtained good agreement for 

most energies while significant discrepancies exist with the current values of 

intraband B(E2) values. 

R. Bijker et al. [27], presented the first extensive test of the critical point 

symmetry X(5) for the  degree of freedom, based in part on recent measurements 

for the γ-band in 152Sm. The agreement is good for some observable quantities 

including the energies and most intra- and inter-band transitions, but there is also 

a serious discrepancy for one transition. 

Z. Jin-Fu et al. [28], analyzed the known low-lying levels and the E2 

transition rates, they found that the empirical scheme of 114Cd is in good overall 

agreement with the predictions of the transitional dynamical symmetry E(5) 

proposed by Iachello [8]. This suggests that 114Cd may be better described by an 

E(5) nucleus than a U(5) nucleus as known before. 
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Z. Da-Li and L. Yu-Xin [29], analyzed the energy spectrum and E2 

transition branching ratios, they show that the E(5) symmetry predictions agree 

well with the experimental data of nucleus 130Xe. Compared the calculated 

results with those within the framework of the interacting boson model, it is 

found that the nucleus 130Xe is definitely a nucleus in the transitional region from 

U(5) to O(6) symmetry. The Nucleus 130Xe is then another empirical evidence 

with E(5) symmetry. 

V. N. Zamfir and R. F. Casten [30], presented empirical realization of the 

X(5) symmetry for recently studied phase transitional behavior in the evolution 

of nuclear structure from spherical to deformed shapes, their study has led to the 

development of a new class of symmetries, E(5) and X(5), describing analytically 

nuclei at the critical point of the phase transitions.  

D. Tonev [31], measured the lifetime of states in 154Gd by using the recoil 

distance Doppler-shift method following Coulomb excitation of 154Gd by            

a 110 MeV 32S beam. The experiment was performed at the University of 

Cologne. Reduced transition probabilities in 154Gd are compared to the 

predictions of the critical point symmetry X(5) of the phase/shape transition that 

occurs for the neutron number (N=90) rare earth isotones. Very good agreement 

was observed between the free parameter of X(5) predictions and the low-spin 

level scheme of 154Gd, revealing this nucleus as one of the best cases found thus 

far for the realization of the X(5) symmetry. 

In this work we follow references [12, 13, 14, 32, 33] and use a more 

general one–and two–body IBM-1 Hamiltonian to obtain the model parameters 

from a fit to energy levels of chains of isotopes. In this way a set of fixed 

parameters, with the exception of one that varies from isotope to isotope, is 
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obtained for each isotope chain and the transition phase can be studied in the 

general model space. The fit to a large data set in many nuclei diminishes the 

uncertainties in the parameter determination. A possible problem arising from 

working with such a general Hamiltonian is the difficulty in determining the 

position of the critical points. Fortunately, the methods of catastrophe theory 

[34] allow the definition of the essential parameters needed to classify the shape 

and stability of the energy surface [32, 33]. 

The aim of this research work is to study and analyze diverse spectroscopic 

properties of several isotope chains in the rare-earth region, in which shape 

transition from spherical to deformed shapes is observed. We combine this study 

with a coherent-state analysis and with catastrophe theory in order to localize the 

critical points and test the X(5) predictions. In this proposal we show that the 

critical points can be clearly identified by means of a general theoretical 

approach. 

1.8 Thesis Outline  

The thesis is structured as follows: In chapter 2 we present the basic theory 

of the IBM-1 Hamiltonian used, the electromagnetic transition operators and the 

Hamiltonian for Consistent Q Formalism (CQF). 

Global description of the least-square fit method made for the different 

isotope chains to obtain the best set of parameters Hamiltonian is presented in 

chapter 3.  

Chapter 4 of this thesis is devoted to the description of the intrinsic state 

formalism that is used to generate the energy surfaces produced by the 

parameters obtained by the fit method presented in chapter 3, and how to identify 
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the location of the critical point in the shape transition for each isotope by using 

catastrophe theory, also in this chapter an alternative description provided by the 

CQF for the rare-earth region is briefly discussed. 

Comparisons of the theoretical results with the experimental data for 

excitation energies, E2 transition rates and two-neutron separation energies are 

presented in Chapter 5. Also this chapter includes a comparison of experimental 

spectrum of 152Sm with X(5) model, our work and the work using CQF 

Hamiltonian. The discussion of these results with the conclusions and future 

work are presented in chapter 5.  
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Chapter  

  

IBM-1 DESCRIPTION 

2.1 Introduction  

The Interacting Boson Model-1 (IBM-1) originated from early ideas of 

Feshbach and Iachello [9], who in 1969 described some properties of light nuclei 

in terms of interacting bosons, and from the work of Janssen et al. [35], who in 

1974 suggested a description of collective quadrupole states in nuclei in terms of 

SU(6) group. The latter description was subsequently cast into a different 

mathematical form by Arima and Iachello [36] with the introduction of an         

s-boson, which made the SU(6), or rather U(6), structure more apparent. The 

success of this phonological approach to the structure of nuclei has led to major 

developments in understanding of nuclear structure.  
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The major new development was the realization that the bosons could be 

interpreted as nucleon pairs [37] in much the same way as Cooper pairs in the 

electron gas. This provided a framework for a microscopic description of 

collective quadrupole states in nuclei and stimulated a large number of 

theoretical investigations.  

2.2 Boson Operators  

In the interacting boson model, collective excitations of nuclei are described 

by bosons. An appropriate formalism to describe the situation is provided by 

second quantization. One thus introduces bosons creation (and annihilation) 

operators of multipolarity l and z-component m, . A boson model is 

specified by number of boson operators that are introduced. In IBM-1, it is 

assumed that low-lying collective states of nuclei can be described in terms of a 

monopole bosons with angular momentum and parity 

)( ,
†
, mlml bb

+= 0pJ , called s, and a 

quadrupole boson with += 2pJ , called d. Thus, the building blocks of this 

model are [9]: 

     (2.1) 






±±=

±±=

).2,1,0(,

),2,1,0(, ††

µ

µ

µ

µ

ds

ds

The operators in Eq. (2.1) satisfy Bose commutations relations:  

  (2.2) 

.0],[],[],[],[

;0],[],[;],[

;0],[],[;1],[

††††

†††

†††

====

===

===

′′′′

µµµµ

µµµµµµµµ δ

dsdsdsds

dddddd

ssssss
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The boson operators can be written in a more compact form as [9]: 

  (2.3) ),;2,0(;; ,
†
, lmllbb mlml ≤≤−=

or 

  (2.4) ),6,,1(;;† K=ααα bb

with 

 26150413221 ,,,,, −−++ ====== dbdbdbdbdbsb  (2.5) 

The commutation relations Eq. (2.2) are written then as: 

   (2.6) 
,0],[],[

;],[
†
,

†
,,

†
,,

==

=

′′′′

′′′′

mlmlmlml

mmllmlml

bbbb

bb δδ

or as 

 .  (2.7) 0],[],[;],[ ††† === ′′′′ αααααααα δ bbbbbb

For applications, one needs to construct with boson operators spherical tensors 

 of degree k, in the sense of Racah, i.e. operators that transform as basis 

vectors of a (2k+1) dimensional representation of the rotation group 

)(kTκ
)(kR κκ ′

 ∑
′

′′
− =ℜℜ

κ
κκκκ
)()(1)( kkk RTT   (2.8) 

The creation operators can be defined as Eq. (2.8). However, the annihilation 

operators  

 ml
ml

ml bb −
+−= ,, )1(~  (2.9) 

Eq. (2.9) gives, when applied to the present case, 
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 µ
µ

µ −−== ddss )1(~,~  (2.10) 

With spherical tensors one can form tensor products. Using the notation of 

[38]: 

   (2.11) )()()()( ][ 21 kkkk TTT κκ ×=

for the tensor product of )( 1kT  and )( 2kT , i.e. the square bracket indicates  

  (2.12) ∑=×
21

2
2

1
1

21 )()(
2211

)()()( )|(][
κκ

κκκ κκκ kkkkk TTkkkTT

where the symbol )|( 2211 κκκ kkk denotes a Clebsch-Gordon coefficient.             

A particular case of tensor product is the scalar product.  

 ( ) )0(
0

)()()()( ][)12()1( 2
1 kkkkk VUkVU ×+−=⋅  (2.13) 

This product can also be rewritten as 

 ( ) )()()()( )1( kkkk VUVU κ
κ

κ
κ

−∑ −=⋅   (2.14) 

2.3 Basis States   

Basis states can be constructed by repeated application of boson operators 

on a boson vacuum 0  [9],  

 : .0†† Kαα ′bb  (2.15) 

It is convenient to construct states of good angular momentum by coupling 

the boson operators appropriately, 

   : .0] )(†† L
Mlb L×′[ l b×  (2.16) 
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However, the total angular momentum alone is not, in general, sufficient to 

characterize the states uniquely, since there may be several states with the same 

L for a given number of bosons, N. 

Most numerical calculations are performed by using so-called spherical 

basis in which the s and d bosons are explicitly separated. 

 (1): .0][ ds ††
LLMvn

nn d
∆

s  (2.17) 

These are states with total boson number  

  (2.18) ds nnN +=

where and are the numbers of s and  d bosons. The numbers v are 

additional quantum numbers to identify all the possible resulted states. 

sn dn ∆n,

2.4 The Lie Algebra U(6) 

If we introduce the operators as in [39]: 

  (2.19) )(† ]~[)( k
ll

k bbllG κκ ′×=′

where . It so happens that the commutation relations of 

these operators equations among themselves are the same as the commutation 

relations of the Lie algebra of the group U(6) of unitary transformation in 6 

dimensions (Appendix B). These operators are thus identified as the generators 

of the algebra U(6). Since they are the building blocks of the most general 

Hamiltonian one can write in the IBM-1 model, thus the Hamiltonian has the 

group structure of U(6). There are in total 36=6

dsll ,2,0, ≡=′

2 of these generators, which can 

be written down explicitly as [39]; 
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


















×=

×=

×=

×=

×=

×=

×=

×=

.]~[)(

,]~[)(

,]~[)(

,]~[)(

,]~[)(

,]~[)(

,]~[)(

,]~[)(

)2(†2

)2(†2

)4(†4

)3(†3

)2(†2

)1(†1

)0(
0

†0
0

)0(
0

†0
0

κκ

κκ

κκ

κκ

κκ

κκ

dssdG

sddsG

ddddG

ddddG

ddddG

ddddG

ddddG

ssssG

 (2.20) 

2.5 Casimir Operator   

If  be the generators of the Lie algebra G. One can identify some 

operators C, called Casimir operators, which have the property [39]; 

kGκ

 0     for any   ],[ =kGC κ .,κk  (2.21) 

Thus by definition the Casimir operators of the group G commute with all 

generators of the group G, defined in Eq. (2.20). There exists at least one 

Casimir operator for each of the Lie algebras under study.  

2.6 Physical Operators 

2.6.1 The Hamiltonian operator 

In order to calculate properties of physical system described by the bosons, 

one can write all operators in terms of boson operators. If the number of bosons 

N is conserved, the Hamiltonian operator of the system can be written as [9]:    

∑ ∑ +++=
αβ αβγδ

δγβααβγδβααβε .††
2
1†

0 LbbbbubbEH  (2.22) 

Here E0 is a constant number, the second term with b  represents one-

body contributions, the next one represents two-body contributions, etc. The 

b†

 18



presence of the interaction terms gives the name ‘Interacting boson models’ to 

this type of models.  

In most calculations, only up to two-body terms have been retained. When 

written explicitly in terms of s and d bosons as: 

.]]~~[][[]]~~[][[

]]~~[][]~~[][[

]]~~[][]~~[][[
2

1

]]~~[][[)12(

)~()~(

)0(
0

)0()0(††
02

1)0(
0

)2()2(††
2

)0(
0

)0()0(††)0()0(††
02

1

)0(
0

)2()2(††)2()2(††
2

4,2,0

)0(
0

)()(††
2
1

††
0

2
1

ssssusdsdu

ddssssddv

ddsdsdddv

ddddcL

ddssEH

L

LL
L

ds

×××+×××+

×××+×××+

×××+×××+

×××++

×+⋅+=

∑
=

εε

 (2.23) 

The Hamiltonian operator in Eq. (2.23) is a Hermitian operator, i.e. 

HH =†

,, ds

. Thus, there are two one-body terms, specified by the parameters 

εε  and seven two-body terms, specified by the parameters c   (L=0, 2, 4),              

v

L

L (L=0, 2), uL (L=0, 2), to this order. 

The general IBM-1 Hamiltonian can be expressed as [9]; 

 
)]3([)]6([)]3([
)]5([)]5([)]5([

262524

2322110

SUCSOCSOC
SOCUCUCEH

ααα
ααα

+++
+++=

 (2.24) 

where  54321 ,,,, ααααα and 6α are six independent free parameters, which are 

fitted to experimental data, C1 and C2 stand for the first and the second rank  

Casimir invariants of the algebras entering the reduction chains of the U(6) 

algebra [39]: 

 








⊃⊃⊃⊃
⊃⊃⊃⊃
⊃⊃⊃⊃

IIISOSOSOSOU
IISOSOSUUU
ISOSOSOUU

)2()3()5()6()6(
)2()3()3()3()6(
)2()3()5()5()6(

 (2.25)
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 The generators of algebras U(6), U(5), SU(3), SO(6), SO(5) and SO(3), can 

be written in multipolar form operators as in Table (2-1)  [31];  

 

Table (2-1): Generators of U(6), U(5), SU(3), SO(6), SO(5) and SO(3) algebras 

Algebra Generators 
U(6) )2(† ][ κsd × , [ , ,T , k=0,1,2, 3, 4 )2(† ]~

κds × )0(
0

† ][ˆ ssS ×= )(†)( ]~[ˆ kk dd κκ ×=

U(5) )(†)( ]~[ˆ kk ddT κκ ×=  , k=0,1,2, 3, 4 

SU(3) )2(†
2
7)2(†† ]~[]~[ˆ

κκκ dddssdQ ×−×+×= ,  )1(† ]~[ˆ
κκ ddL ×=

SO(6) )2(††0 ]~[ κκ dssdQ ×+×= , T ,  k=1, 3 )(†)( ]~[ˆ kk dd κκ ×=

SO(5) )(†)( ]~[ˆ kk ddT κκ ×= , k=1, 3 

SO(3) )1(† ]~[ˆ
κκ ddL ×=  

 
 
The Casimir operators can be written in terms of the generators of the reduction 

chains of the U(6) algebra as [9]:  

 










⋅+⋅=⋅=

⋅−+=+=

⋅+⋅==

).ˆˆ()ˆˆ(2)]3([),ˆˆ(10)]3([

),ˆˆ(4)4ˆ(ˆ)]6([),4ˆ(ˆ)]5([

),ˆˆ(2)ˆˆ(2)]5([,ˆ)]5([

)1()1(
2

15
2

)1()1(
2

†
22

)1()1()3()3(
21

TTQQSUCTTSOC

PPNNSOCnnUC

TTTTSOCnUC

dd

d

 (2.26) 

where generators of the groups entering reduction chains Eq. (2.25) are given in 

Table (2-1), and 

 
( )














−
+=

⋅=

⋅−⋅=

⋅=

2
)1ˆ(ˆ~ˆ~

,)~(10ˆ
,)()~~(ˆ

),~(ˆ

0

)1(†

†

NNBNAE

ddL

ssddP

ddnd

 (2.27)
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 Combining equations (2.24), (2.26) and (2.27), the most general (including 

up to two–body terms) IBM-1 Hamiltonian, can be written as [9]: 

44433321

†
0

ˆˆˆˆˆˆˆˆ

ˆˆˆ
2

)1ˆ(ˆ~ˆ~ˆ

TTkTTkQQkLLk

PPknNNBNAH dd

⋅+⋅+⋅+⋅+

++
−

+= ε
 (2.28) 

where N̂ , and n  are the total boson number operator, and the d boson number 

operator, respectively. The six independent free parameters 

dˆ

,,,,, 3210 kkkkdε and 

 to be determined by using the least square fit method to experimental data. 4k

The first two terms in the Hamiltonian do not affect the spectra but only the 

binding energy. Therefore, they can be removed from the Hamiltonian if only the 

excitation spectrum of the system is of interest. However, a complete description 

of both excitation and binding energies requires the use of the full Hamiltonian 

Eq. (2.28). 

2.6.2 Transition operators  

Operators inducing electromagnetic transitions of multipolarity L can also 

be written in terms of boson operators as [9]: 

   (2.29) ∑ ++=
αβ

βααβδ LbbttT L
L

L †)(
0

)0(
0

)(

 Again, since the operators must transform as tensors of rank L under 

rotations, it is more convenient to introduce coupled tensors as 

 ∑
′

′′ +×+=
ll

L
ll

L
llL

L bbttT .]~[ )(†)(
0

)0(
0

)( Lµµ δ   (2.30) 
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 Usually, one stops at one body terms. One can again write down explicitly 

the operators Eq. (2.30) in terms of s and d bosons as [9]: 

 ( ) ( )
















×=

×=

×+×+×=

×=

×+×+=

)4(†
4

)E4(

)3(†
3

)3M(

2†
2

2††
2

2E

)1(†
1

)1M(

)0(
0

†
0

)0(
0

†
00

)0E(
0

]~[

,]~[

,]~[]~~[

,]~[

,]~[]~[

µµ

µµ

µµµ

µµ

β

β

βα

β

βαγ

ddT

ddT

ddsddsT

ddT

ddssT

 (2.31) 

 In this work we will focus on E2 transitions. The most general E2 transition 

operator including up to one-body terms can be written as [7]: 

( )( ) ( )( )




 ×+×+×=

2†2††2 ~~~ˆ
MMeff

E
M ddsddseT χ  (2.32) 

where eeff  is the boson effective charge measured in units (e.b) and χ is               

a structure parameter. 

2.7 Neutron separation energies  

Two-neutron separation energies (S2n) studied in the present work defined 

as the difference in binding energy between an even-even isotope and the 

preceding even-even one [40]: 

)1()(2 −−= NBENBES n  (2.33) 

where N corresponds to the total number of bosons. Note that if only the first two 

terms in equation (2.28) are considered and A~ and B~  are assumed to be constant 

along the isotope chain, S2n would be given by [40]: 

BNANBBAS n +=−





 −−= ~~

2
1~

2  (2.34) 
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2.8 The CQF Hamiltonian 

An alternative approach to describe long chains of rare-earth nuclei is to use 

the CQF. The CQF Hamiltonian is given as [41]: 

QQknH d ′⋅′+= ˆˆˆˆ ε  (2.35) 

with 

( )( ) ( )( )2†2†† ~~~ˆ ddsddsQ ×+×+×=′ χ  (2.36) 

For each nucleus the parameters ε, k and χ are determined in order to fit the 

excitation energies and B(E2)’s. In particular in Ref. [42] the parameters of the 

Hamiltonian are calculated within the CQF framework where the strength of the 

quadrupole term (Q-Q interaction term concerning the SU(3) limit) of the 

Hamiltonian remains constant along a wide region of the mass table. As in the 

present thesis they compare experimental data and theoretical values for 

excitation energies and B(E2) transition rates.  

 After getting the best set of parameters from the least square fit method, 

the Hamiltonian equation (2.28) is calculated by the modified version of the 

computer code PHINT originally written by O. Scholten [43] with technical 

notes (Appendix A) which is called (PCIBAXW) [44], where the boson energy 

matrix element are constructed using Fractional Parentage Coefficient (FPC) is 

diagonalized to get the excitation energy for each isotope in each isotopic chain, 

while the probability of transition  B(E2) values are calculated using the 

computer code (PCIBAEM) [45]. 
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Chapter  

  

 

Least-Squares Fitting Method  
 
 

3.1 Selection of Experimental Data 

Several isotope chains belonging to the rare-earth region were analyzed 

using the most general IBM-1 Hamiltonian, Eq. (2.28), and E2 transition 

operator, Eq. (2.32). For each chain of isotopes we will assume a single 

Hamiltonian, and a single E2 transition operator. All parameters in these 

operators are kept fixed for a given isotope chain, except for the single particle 

energy which is allowed to vary slightly from isotope to isotope. The way of 

fixing the best set of parameters in the Hamiltonian is to carry out a least-square 

fit procedure of the excitation energies of selected states (      

   3 , and ) and the two neutron separation energies of all isotopes 

+
12 , +

14 , +
16 , +

18 , +
20 ,

+
32 , +

34 , +
22 , +

1
+
24
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in each isotopic chain. Once the parameters in the Hamiltonian are obtained, the 

B(E2) transition probabilities 2 ,   , and 

of the set of isotopes are used to fix e

++ → 11 0 ++ → 11 24 , ++ → 12 02 , ++ → 13 02

++ → 13 20 eff and χ by carrying out a least-

square fit. The experimental data for excitation and binding energies and B(E2)’s 

have been taken from references [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. 

Finally, following Ref. [40] the Hamiltonian parameters were fixed just using the 

data for excitation energies and then A and B were adjusted to reproduce the 

experimental values of S2n.  

3.2 Determination of Parameters   

The general procedure of each step will be outlined below, is illustrated 

schematically in Figure 3.1. First the eigenvalues of the Hamiltonian are 

expressed linearly in terms of the parameters appeared in Eq. (2.28). This can be 

done once the Hamiltonian matrix H is diagonalized for initial set of (guessed) 

parameters. The eigenvalues obtained from the initial set of parameters will, in 

general, not yield the optimum agreement with the experimental data. The set of 

parameters can be improved in a second step from least-square fit to the data that 

is wanted. With the new set of parameters, one can constructs and diagonalizes 

the Hamiltonian again [58].  

 Select: 
Initial set of (guessed) 
parameters             

            
            
            
            
            
            
            
             

Obtain: 
new  set of 
parameters  

Perform: 
least square 
fit to data  
 

Construct: 
linear 
equations 

Poor 

good 
Stop

Judge: 
enegrgy 
agreement  

Calculate: 
eigenvalues 
eigenvectors
 

Set up: 
Hamiltonian 
Matrix 

Figure 3.1: Schematic illustration of the various steps necessary to obtain the best 
set of parameters from a fit to experimental energies. 
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3.2.1 Construction of linear equations  

The determination of the single-particle energies and two-body matrix 

elements from a comparison between calculated and experimentally determined 

energy levels is not a linear problem. The energy levels are obtained as the 

eigenvalues of the Hamiltonian matrices.  

The energies of a nuclear system are determined by solving the eigenvalue 

problem for the Hamiltonian [58]: 

 Ψ=Ψ EH   (3.1) 

Each eigenvector , belonging to eigenvalue , can be expanded 

in terms of the basis states  as 

),,1( npp K=Ψ

kΦ

pE

 nnpppp aaa Φ++Φ+Φ=Ψ K2211  (3.2) 

The Shrödinger equation (3.1) can now be rewritten in matrix form as 

       for p=1, 2,…,n. (3.3) 
















=
































np

p

p

np

p

nmn

n

a

a

E
a

a

HH

HH
MM

K

MM

K 11

1

111

The matrix elements  can be written for the n eigenvalue equations 

(3.3) can be represented by one matrix equation as  

lkkl HH =

 

   (3.4) 




















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
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
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
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
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E

E

E
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HH
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1

1
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K
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Here the orthogonal matrix A is obtained by juxtaposition of the n column 

vectors . Since the matrix A is orthogonal, the inverse and 

transpose are equal, 

),,2,1( nkakp K=

TAA =−1 . Eq (3.4) reads with the summations in explicit 

form, 

 ∑∑
= =

′′′

− ==
n

j

n

i
pppipjipjpp

EaHaHAA
1 1

1 δ     for npp ,,1, K=′  (3.5) 

This equation is equivalent to the relation  

 ppppp EH ′′ =ΨΨ δ        for  .,,1, npp K=′    (3.6) 

Since each matrix element of the Hamiltonian is a linear combination of 

the single-particle energies and/or two-body matrix elements, we can write 

jiH

   (3.7) ∑
=

==
xN

r
r

ij
rijji xcHH

1

)( ,

where  gives the total number of parameters  and the geometrical 

coefficients  derive from Racah algebra. Substitution of Eq. (3.7) into        

Eq. (3.5) yields  

xN rx

)(ij
rc

  (3.8) ∑ ∑ ∑
= = =

=
n

j

n

i

N

r
pipr

ij
rjp

x

Eaxca
1 1 1

)( .)(

A rearrangement of the coefficients then leads to a set of simultaneous linear 

equations in the parameters  given by rx

           for  p=1,…,n. (3.9) ∑
=

=
xN

r
pr

p
r Exb

1

)(

with  
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  (3.10) ∑ ∑
= =

=
n

j

n

i

ij
ripjp

p
r caab

1 1

)()(

Thus, the Hamiltonian can be evaluated for some initial “best-guess” set of 

parameters and subsequently be diagonalized. This diagonalization leads to         

a matrix  . Then Eq. (3.10) will provide us with an initial set of coefficients 

 to be used in Eq. (3.9). Substitution of the “best-guess” set of parameters 

into Eq. (3.9) leads to same eigenvalues  that were obtained already from the 

diagonalization of the Hamiltonian.  

ija

)( p
rb

pE

Now if we replace the right-hand side of Eq. (3.9) by the corresponding 

experimental energies   and consider the  as unknown parameters. This 

leads to a set of equations  

)(
exp
pE rx

        with  p=1,…,n.   (3.11) ∑
=

=
xN

r

p
r

p
r Exb

1

)(
exp

)(

where the coefficients  are defined in Eq. (3.10). It is not necessary to 

consider only one nucleus at a time for the fitting procedure. Usually one takes 

into account many levels of different spin J in several neighboring nuclei 

simultaneously. The total number of parameters   then remains the same of 

course, but the number of equations to be satisfied increases appreciably. 

Therefore, the index p (labelling states of one matrix) by the index q, which 

labels the complete set of equations that result from all matrices taken together  

)( p
rb

xN

        with q=1,…,   (3.12) ∑
=

=
xN

r

q
r

q
r Exb

1

)(
exp

)(
qN

In order to obtain meaningful solution of this set of equations in  qN xN
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parameters with least square fitting procedure, the condition  must be 

satisfied.  

xq NN >

(
r

So far we have restricted ourselves to the determination of the interaction 

parameters with Eq. (3.12), where the values   denote the Coulomb-

corrected binding energies of the states labeled q. Since the Coulomb 

contribution is usually assumed to be equal for ground-state and excited-state 

binding energies of one nucleus, it has no effect on differences of binding 

energies. Thus, knowledge of the Coulomb contribution is in general not 

necessary when only experimental excitation energies instead of binding 

energies are used in the fit. Thus, the parameters from the set of equations can be 

determined.  
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where the coefficients b  refer to excited states and the coefficients b  to the 

corresponding ground states.  
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3.2.2 The least-square fitting procedure  

The set of constructed linear equations can be expressed as [58]:  
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the parameters determined with the condition that the left-hand side 

approximates  the experimental energies as closely as possible.  

rx
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In least square method one minimizes the function: 
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since the experimental energies are uncorrelated, thus by varying parameters  

until the minimum value of Q  is reached when the partial derivatives satisfy the 

relations: 
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Insertion Eq. (3.2) into Eq. (3.3) leads to: 
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  The set of  linear equations in the  parameters can be written into 

matrix notation as follows: 
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or    

  (3.20) expEBBXB TT =
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finally the resulted linear non-homogenous equations for the   parameters 

can be solved with standard procedures leading to a new set of 

parameters . 

xN

xNxxx ,,, 21 L

(
rx
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3.2.3  The iteration procedure  

 As the set of parameters improved one recalculates the matrix 

elements of the Hamiltonian. After diagonalization a new set of eigenvectors a  

is obtained. From these one constructs set of equations (3.12) with coefficients 

. 
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rx
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)(q
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After least-squares fitting this leads to a second set of parameters . This 

procedure must be repeated until convergence is obtained, i.e. until . 

It is found that the number of iteration needed is of the order of the times smaller 

than the number of equations . For  a faster convergence can be 

expected. 

)2(
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The best set of parameters can be reached as the root mean square (RMS) 

deviation made minimum. The RMS deviation is defined as [58]: 
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Chapter  

  

 

ENERGY SURFACES AND 

PHASE TRANSITIONS 

 
4.1 Intrinsic-State Formalism 

The study of phase transitions in the IBM-1 requires the use of the so-called 

intrinsic-state formalism [59, 60, 61], although other approaches can be used      

[5, 62]. This formalism is very useful to discuss phase transitions in finite 

systems such nuclei and atoms because it provides a description of the behavior 

of a macroscopic system up to 1/N effects. To define the intrinsic, or coherent 

state, it is assumed that the dynamical behavior of the system can be described in 

terms of independent bosons “dressed bosons” moving in an average field [63].  
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The ground state of the system is a condensate, c  of bosons occupying the 

lowest–energy phonon state, Γ , †
c

( ) 0
!

1 † N
cN

c Γ=  (4.1) 
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( )





 +++

+
=Γ −

†
2

†
2

†
0

†
2

† sin
2

1cos
1

1 dddsc γβγβ
β

 (4.2) 

and β and γ are variational parameters related with the shape variables in the 

geometrical collective model. The expectation value of the Hamiltonian in the 

intrinsic state Eq. (4.1) provides the energy surface of the system, 

cHcNE ˆ),,( =γβ . The energy surface in terms of the parameters of the 

Hamiltonian Eq. (2.28) and the shape variables can be readily obtained [64], 
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 (4.3) 

where the terms which do not depend on β and/or γ (corresponding to A~ and B~   

in Eq. (2.28) have not been included. 

The equilibrium values of the variational parameters β and γ are obtained 

by minimization of the ground state energy cHc ˆ . As mentioned above these 

parameters are related to the parameters of the Geometrical Collective Model 

and provide an image of the nuclear shape for a given IBM-1 Hamiltonian.  
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A spherical nucleus has a minimum in the energy surface at β = 0, while 

for a deformed one the energy surface has a minimum at a finite value of β and   

γ = 0 (prolate nucleus) or γ = π/3 (oblate nucleus). Finally, a γ-unstable nucleus 

corresponds to the case in which the energy surface has a minimum at a 

particular value of β and is independent of the value of γ. The equilibrium values 

of β and γ are the order parameters to study the phase transition of the system, 

although in the case under consideration (IBM-1) only β has to be taken into 

account, since the minima in γ are well defined.  

4.2 The Separatrix Plane 

For the study of phase transitions in the IBM-1 within the framework of 

catastrophe theory we already have the basic ingredients: the Hamiltonian of the 

system, Eq. (2.28), and the intrinsic state, Eq. (4.1). With them, the 

corresponding energy surface, Eq. (4.3) can be generated, in terms of the 

Hamiltonian parameters and the shape variables [22]. It is our purpose to find the 

values of the parameters of the Hamiltonian that correspond to critical points. In 

principle this analysis involves the 6 parameters of the Hamiltonian, but a first 

simplification occurs since the energy surface only depends on 5 parameters: 
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where: 
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 (4.5) 

Fortunately, it is possible to reduce the number of relevant (or essential) 

parameters to just two and study all phase transitions by using catastrophe 

theory.  

4.3 Catastrophe Theory  

The term catastrophe in mathematics, unlike the usual meaning as 

“disaster”, means that smooth alterations in the controlling variables cause 

sudden changes in the phenomenon. It is originated by a French mathematician 

René Thom in the 1960s, catastrophe theory is a special branch of dynamical 

systems theory. It studies and classifies phenomena characterized by sudden 

shifts in behavior arising from small changes in circumstances [34]. 

 In mathematical terms catastrophe theory means that small changes in the 

parameters of a system causes a sudden change in the function that describes the 

phenomenon. Natural phenomena are usually described by governing equations. 

Generally the equations are nonlinear, containing variables, constants, time and 

space coordinates, time and space derivatives of the variables, and of integral 

forms [34].  

On the other hand, and in many cases, these equations can be simplified 

by assuming that they are of non-integral forms, and the problem can be 
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described by a set of partial nonlinear differential equations. Further assumptions 

can be made on the omission of the space coordinates and the space derivatives 

of the variables. 

Catastrophes are bifurcations between different equilibria, or fixed-point 

attractors. Due to their restricted nature, classification of catastrophes can be 

based on how many control parameters are being simultaneously varied. For 

example, if there are two controls, then one finds the most common type, called                    

a "cusp" catastrophe, as shown in Figure 4.1. If, however, there are move than 

five controls, there is no classification. 

Catastrophe theory has been applied to a number of different phenomena, 

such as the stability of ships at sea and their capsizing, bridge collapse, and, with 

some less convincing success, the fight-or-flight behavior of animals and prison 

riots. 

 

 

 

 

 

 

 

 

 

 Figure 4.1: The cusp catastrophe model
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References [32, 33] are refered for details of the application of catastrophe 

theory to the IBM-1case. The idea is to analyze the energy surface and obtain all 

equilibrium configurations, i.e. to find all the critical points of Eq. (4.4). First, 

the critical point of maximum degeneracy has to be identified. In our case, it 

corresponds to β = 0. Next, the bifurcation and Maxwell sets are constructed   

[32, 34]. Finally, the separatrix of the IBM-1 is obtained by the union of 

Maxwell and bifurcation sets.  

In general a bifurcation set, corresponding to minima, limits an area where 

two minima in the energy surface coexist. A second order phase transition 

develops when these minima become the same. The crossing of a Maxwell set 

corresponding to minima leads to a first order phase transition. 

In order to follow this scheme, one has to identify the catastrophe germ of 

the IBM-1, which is the first term in the expansion of the energy surface around 

the critical point of maximum degeneracy that cannot be cancelled by an 

arbitrary selection of parameters. In our case, one finds that the first derivative in 

β = 0 is always 0 because of the critical character of the point for any value of 

the parameters.  

The second and third derivatives can also be canceled with an appropriate 

selection of parameters. However, if one imposes the cancellation of the fourth 

derivative, the energy becomes a constant for any value of β. This means that the 

catastrophe germ is β4 and the number of essential parameters is equal to two, 

which can be defined, following reference [32, 33], as: 
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where ε~ , a1, a2, and a3 are defined in Eq.(4.5). The denominator in both 

expressions fixes the energy scale, which means that when it becomes negative, 

the energy surfaces are inverted. 

The essential parameters r1 and r2 can also be written in terms of the 

parameters appearing in Eq. (2.28) as: 
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A property of the parametrization used in this work is that the different 

chains of isotopes are located on a straight line that crosses the point 

corresponding to the U(5) limit. The equation of this line is given by: 

1
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kkk
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It should be remarked that the derivation of the essential parameters has 

nothing to do with catastrophe theory. The application of this theory begins once 

those parameters are obtained.  

The basic point is to translate every set of Hamiltonian parameters to the 

plane formed by the essential parameters r1 and r2. This plane is divided into 

several sectors by the bifurcation set, that form the geometrical place in the 

parameter space where 02

2
=

βd
Ed  for a critical value of β, and the Maxwell sets, the 

geometrical place in the space of parameters where two or more critical points 

are degenerate [34].  
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Both sets form the separatrix of the system, in this case of the IBM-1. In 

References [40, 41] the IBM-1 bifurcation (r2 axis, r2 = 0 and r1 < 0 semi-axis, 

r11, and r12) and Maxwell (negative r1 semi-axis, , and ) sets were obtained. +
13r −

13r
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Chapter  

  

 

Results, Discussion, Conclusions 

and Future Work 

5.1 Results and Discussion 

5.1.1 Fits 

The best set of parameters for the Hamiltonian and E2 transition parameters 

for each isotopic chain are summarized in Tables (5-1) and (5-2). 

Systematics of experimental and calculated energies for the states included 

in the least-square procedure is presented in order to show the goodness of the 

fitting procedure, as shown in Figures 5.1, 5.2, 5.3, and 5.4. 
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The experimental and calculated B(E2) values are compared, good 

agreement were obtained for all chains as presented in Figures 5.5, 5.6, 5.7, and 

5.8. 

 Finally, in Figure 5.9 the experimental and calculated S2n values are shown. 

This is a fundamental magnitude for identifying a phase transition since it is 

directly related to the derivative of the energy surface. First order phase 

transitions are related with the appearance of a kink in the S2n values. As shown 

in Figure 5.9, the calculation matches the experimentally observed behavior.  

The analysis of the preceding figures for different observables and for 

several isotope chains shows that the present procedure is appropriate for 

systematic studies and confirms that it provides a simple framework to describe 

long chains of isotopes and detect possible phase transitions. 
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Table (5-1): Values of dε  in the Hamiltonian (in keV) for each isotopic chain as 

a function of the neutron number. 

 

Neutron Number 
Element 

84 86 88 90 92 94 96 98 100 

60Nd 1686.3 1606.7 1645.4 1602.9 1536.1 1595.9    

62Sm 1427.3 1393.5 1289.3 1210.8 1158.6 1192.5 1312.2 1452.0  

64Gd 1479.3 1508.7 1409.0 1300.4 1221.5 1174.4 1162.0 1176.5  

66Dy 1558.8 1607.6 1562.4 1503.9 1461.0 1427.7 1413.4 1409.2 1443.1 
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Table (5-2): Rest of the parameters in the Hamiltonian and in the E2 transition operator. 

 

Isotopes A~ (MeV) B~ (MeV) k0 (keV) k1 (keV) k2 (keV) k3 (keV) k4 (keV) eeff (e.b) χ 

Nd154144
60

−  16.75         -0.51 83.753 -13.928 -17.151 -101.27 -187.57 0.119 -1.43

Sm160146
62

−  18.05         -0.46 53.209 -11.267 -14.674 -31.769 -131.24 0.119 -1.69

Gd162148
64

−  22.55         -0.76 45.207 -7.932 -13.129 -35.224 -156.24 0.110 -1.77

Dy166150
66

−  25.06         -0.80 38.651 -6.416 -13.638 -59.165 -163.05 0.103 -1.60
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Figure 5.1: Excitation energies of Nd isotopes.  
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 Figure 5.2: Excitation energies of Sm isotopes. 
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 Figure 5.3: Excitation energies of Gd isotopes. 
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 Figure 5.4: Excitation energies of Dy isotopes. 
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Figure 5.5: B(E2) transition rates for Nd isotopes.  
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 Figure 5.6: B(E2) transition rates for Sm isotopes. 
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 Figure 5.7: B(E2) transition rates for Gd isotopes. 
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 Figure 5.8: B(E2) transition rates for Dy isotopes. 
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 Figure 5.9: S2n values for Nd, Sm, Gd, and Dy isotopes. 
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The relevant transition rates for 152Sm were calculated in this work and 

compared with the recent experimental data, the work of X(5) Ref. [7] and CQF 

work   Ref. [4] as in the present work, they compare the experimental and 

theoretical values for excitation energies and B(E2) transition rates. The 

transition rates B(E2) may be written in Weiskopf units (W.u.) [58]. Both 

methods provide a consistent description of the rare-earth region with a similar 

number of parameters as can be observed in Figure 5.10 and in Table (5-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Spectrum of 152Sm: (a) experimental [56], (b) X(5) symmetry [7], 

(c) this work, and (d) using CQF [4]. 
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Table (5-3): Relevant transition rates for 152Sm (in W.u.). 

 

B(E2) Exp.(a) X(5)(b) This Work CQF(c) 

)02:2( 11
++ →EB  144 144 144 144 

)24:2( 11
++ →EB  209 228 210 216 

)46:2( 11
++ →EB  245 285 227 242 

)68:2( 11
++ →EB  285 327 317 248 

)810:2( 11
++ →EB  320 376 318 242 

)20:2( 12
++ →EB  33 91 24 57 

)42:2( 12
++ →EB  19 52 14 20 

)22:2( 12
++ →EB  6 13 5 11 

)02:2( 12
++ →EB  1 3 0.1 0.1 

)64:2( 12
++ →EB  4 40 7 14 

)44:2( 12
++ →EB  5 9 2 8 

)24:2( 12
++ →EB  1 13 0 0.1 

 

(a) Taken from Ref. [57] , (b) Following Ref. [7]  and (c) Following Ref. [4]. 
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5.1.2 Energy surface and phase transition 

In Figure 5.11 the energy surfaces for the isotopes of the different isotope 

chains studied in this thesis are plotted as a function of β. The Figure on the right 

is a zoom of the region close to β = 0. The classification of phase transitions that 

we follow in this thesis and that is followed traditionally in the IBM-1 is the 

Ehrenfest classification [65]. In this context, the origin of a phase transition 

resides in the way the energy surface (their minima positions) is changing as a 

function of the control parameter that, in this work, is a combination of 

parameters of the Hamiltonian. First order phase transitions appear when there 

exists a discontinuity in the first derivative of the energy with respect to the 

control parameter. This discontinuity appears when two degenerate minima exist 

in the energy surface for two values of the order parameter β. Second order phase 

transitions appear when the second derivative of the energy with respect to the 

control parameter displays a discontinuity. This happens when the energy surface 

presents a single minimum for β = 0 and the surface satisfies the condition 

( ) 0
0

2

2
=

=ββd
Ed . 

With the introduction of the E(5) and X(5) symmetries to describe phase 

transitional behavior, diverse attempts to identify nuclei that could be located at 

the critical points have been made. The theoretical approaches have been mainly 

performed with restricted IBM-1 Hamiltonians. In particular, within the CQF, or 

other restricted Hamiltonians, the location of the critical point is obtained by 

imposing  02

2
=

βd
Ed  at β = 0, where E is the energy surface [4]. This condition 

leads to a flat surface in a region of small values of β, with a single minimum in 

the limit χ = 0 and two almost degenerate minima (one of them in β = 0) in the 
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other cases. In the CQF approximation it can be said that  ( ) 0
0

2

2
=

=ββd
Ed  

corresponds approximately to a “very flat energy surface” as happens for the 

E(5) and X(5) critical point models. Following this approach both 150Nd and 
152Sm have been found to be close to critical. However, when studying a 

transitional region in which the lighter nuclei are spherical and the heavier are 

well deformed, the priori restriction of the parameter space could play a crucial 

role in the identification of a particular isotope as critical. Thus, it is important to 

perform a general analysis in order to check whether the predictions obtained 

within the CQF for those nuclei close to a critical point are robust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.11: Energy surfaces for the different chain of isotopes. 
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5.1.3 Separatrix plane 

All Maxwell sets are indicated in Figure 5.12. In this representation it is 

required that the denominator in Eq. (4.6) and Eq. (4.7) is positive. The 

separatrix for r1 > 0 is associated to minima while for r1 < 0 is associated to 

maxima (except the negative r1 semi-axis). In order to clarify the Figure on the 

separatrix, the energy surfaces corresponding to each set are plotted as insets. 

The half plane with r2 > 0 corresponds to prolate nuclei, while the one with r2 < 

0 corresponds to oblate nuclei. Note that Eq.’s (4.9) and (4.10) are only valid for 

prolate nuclei, but can be readily obtained for the oblate case. On this Figure the 

symmetry limits and the correspondence with Casten’s triangle [9] are also 

represented. For completeness one should consider the case where the 

denominator of Eq. (4.6) and Eq. (4.7) is negative. It implies that the energy 

scale becomes negative and the energy surface should be inverted. The separatrix 

for this case is plotted in Figure 5.13 and corresponds to the inversion of Figure 

5.12. Again the schematic energy surfaces corresponding to each branch of the 

separatrix are shown as insets. Note that in this case the symmetry limits do not 

appear in the Figure because they correspond to positive denominators for r1 and 

r2. In our analysis only prolate nuclei are considered, because of that a new 

Figure, Figure 5.14, is included. In this Figure, the right panel corresponds to 

positive denominators for r1 and r2 while the left panel shows the case of 

negative denominator for r1 and r2. In the following we will follow the 

convention presented in this Figure. 

A set of parameters in the Hamiltonian corresponds to a point in the 

separatrix plane. The location of the point in that plane provides the required 

information on its transitional phase character. As mentioned in chapter 4, it 

follows that points located on a separatrix line correspond to critical points. Note 
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that the dynamical behavior of the system is controlled by the lowest minimum 

in the energy surface. In this sense we are adopting the Maxwell convention in 

the catastrophe theory language [38] and the only relevant branches of the 

separatrix are r  and r+
13 2 = 0 with r1 ≤ 0. All these branches correspond to first 

order phase transitions except for the single point (r1 = 0, r2 = 0) that corresponds 

to a second order phase transition. The rest of Maxwell lines do not correspond 

to a phase transition because they are related to maxima. The interest of the 

bifurcation set, corresponding to minima, arises from the fact that it defines 

regions where two minima exist. 
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 Figure 5.12: Separatrix plane with a positive energy scale. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13: Separatrix plane with a negative energy scale. 
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 Figure 5.14: Separatrix plane for prolate nuclei (χ< 0). 
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5.1.4 Rare-earth region on the separatrix plane 

The fits presented in Chapter 3 provide the parameter sets given in Tables 

(5-1) and  (5-2) for the four isotope chains studied in this work. In this section 

we plot the corresponding sequences of points representing the isotopes in each 

chain on the separatrix plane. As can be observed in the previous tables all the 

parameters for each chain are fixed except the value of dε  that changes along the 

chain. 

In Figure 5.15 the positions of the different isotopes in the chains studied 

are plotted in the separatrix plane. The interpretation of these lines is given in 

Figure 5.14. As mentioned above, all isotopes in a chain lie on a straight line. 

The lighter ones are close to the U(5) point (spherical shapes) while as the 

number of neutrons is increased the corresponding points get increasingly away. 

For the heavier isotopes of Gd, and Dy the denominator of r1 and r2 becomes 

negative, which means that the left panel in Figure 5.14 has to be used. 

The main feature for some nuclei is close to the Maxwell set : the closest 

are 

+
13r

148Nd (boson number N = 8) and 150Sm (boson number N = 9) and not far 

away 152Gd (boson number N = 10). This can be complemented with the image 

of the energy surfaces plotted in Figure 5.11. The energy surface for 148Nd and 
150Sm are rather flat around β = 0. For 152Gd the situation is not so clear. For Dy 

there is no isotope close to the critical point.  

According to our calculations, the transition from spherical to deformed 

shapes occurs between N = 11 and N = 12. The isotope 162Dy is close to the 

Maxwell set but in the left panel. In this situation there should be two degenerate 

maxima. This can be observed in the corresponding energy surface (boson 

number N = 15) in Figure 5.11. The isotopes 150Nd (N = 9) and 152Sm (N = 10) 
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(also can be included in this situation 154Gd (N = 11) and 158Dy (N = 13)) are 

close to the bifurcation set r2 axis. Again inspection of Figure 5.11 shows that 

the energy surfaces for these isotopes has a minimum for β > 0 and a maximum 

at β = 0.  

In Figure 5.16 we show an amplification of the critical area. In conclusion, 

from this global analysis, it is found that 148Nd, 150Sm, and (less clearly) 152Gd, 

are close to criticality. These isotopes are quite close but do not exactly coincide 

with previously proposed critical nuclei 150Nd and 152Sm [66, 17], where the 

quite basic criterion was the closeness of their low-lying excitation spectra and 

transition intensities with the X(5) values. 
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Figure 5.15:  Representation of isotopes in the separatrix plane
(with χ < 0). The numbers on the isotopes correspond to the number of
bosons. 
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Figure 5.16: Representation of isotopes in the separatrix plane in
a closest view. 
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5.1.5 Prediction of critical points within CQF 

The CQF uses a simplified Hamiltonian with only three parameters. For the 

description of transitional nuclei from the U(5) to the SU(3) limits the parameters 

are allowed to vary nucleus by nucleus.  

The representation of such calculations in the separatrix plane shows that all 

isotopes in a chain are basically on top of the straight line connecting the U(5) 

point, (r1, r2) = (1, 0), and the SU(3) point, (r1, r2) = (-4/3, 4√2/3). Note that this 

point corresponds strictly to the SU(3) Casimir operator.  

However, a more general CQF SU(3) Hamiltonian still lies very close to the 

latter point. In general, the same happens in the U(5) and O(6) points. This 

means that within this framework the exploration of only a limited area in the 

separatrix plane is allowed. If all isotopes in an isotopic chain are forced to be 

located on the line connecting the U(5) and SU(3) points, it follows that one will 

more often find an isotope close to the (unique) critical point. In the calculations 

presented here we have seen that within the general formalism this is not always 

the case. For example, for Dy we did not find an isotope close to a critical point. 

In previous systematic studies in the rare-earth region using the CQF formalism, 

Ref. [42] and [40], the corresponding energy surfaces were not presented.  

We have constructed them from the parameters given in those references 

and the results obtained are consistent with those given in the present work. In 

particular, 148Nd and 150Sm seem to be closest to a critical point. 
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5.2 Conclusions  

In this dissertation we have analyzed chains of isotopes in the rare-earth 

region. In these chains nuclei evolve from spherical to deformed shapes. We 

have performed an analysis of the corresponding shape transitions to look for 

possible nuclei at or close to a critical point. We have used the more general one- 

and two- body IBM-1 Hamiltonian and generated energy surfaces using the 

coherent state formalism. We have then used catastrophe theory to classify phase 

transitions and to decide if a nucleus is close to criticality. 

The approach used to fix the Hamiltonian parameters leads to a very good 

global agreement with the experimental data corresponding to excitation 

energies, B(E2)’s and S2n values. In particular, an excellent agreement with the 

measured S2n values is obtained, which is considered a key observable to locate 

phase transitional regions. The analysis presented here is consistent with 

previous CQF studies in the same region. As a result we find that 148Nd and 
150Sm are the best candidates to be critical, but we should remark that 150Nd and 
152Sm are not far away from it. 

A possible new way of defining critical nuclei is based on the “critical 

symmetries” E(5) or X(5) [7, 8]. The properties associated with these solutions 

allow the identification of critical points by comparing the experimental data 

with characteristic energy and transition rate ratios. Thus, it may be possible to 

decide whether a nucleus is critical by analyzing its spectrum and decay 

properties. A question may be arise here, whether a flat energy surface can be 

truly associated to a given nucleus with energy ratios close to X(5). A clear 

example is 152Sm; we have shown that according to our study the IBM-1 energy 

surface of this nucleus is not so flat as expected from previous analyses, i.e. in 

our work, it does not correspond to a critical point as suggested earlier. However, 
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if the spectrum and transition rates are analyzed (see Figure 5.10 and Table (5-

3)), this nucleus reproduces reasonably well the main X(5) features. We note that 

in the general IBM-1 framework there is no unique spectrum associated to a 

given potential energy surface, as implied by Eq.’s (4.6) and (4.7). Catastrophe 

theory constitutes a definite criterion regarding this issue, but does not provide a 

measurable signature in itself. 

5.3 Future work  

It seems clear that further work is required to find more identifiable features 

which signal criticality in an unequivocal way. This work can be repeated but 

instead of letting dε  changes from isotope to isotope, fix the value of dε  and 

change the structure parameter χ from 0→1 along the leg from U(5) to SU(3) 

limits and from 0→-1 along the leg from U(5) to )3(SU  limits.  

The present calculations can be performed in the framework of proton-

neutron Interacting Boson Model (IBM-2) which may enhance the calculations 

and leads to best results to identify the critical points in these chains of isotopes.  
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Appendix A 
 

 

The code PHINT calculates energies of nuclear states and reduced 

transition probabilities of the electromagnetic radiation in the interacting 

boson model (IBM-1). It was written by O. Scholten in FORTRAN 

language, published in Computational Nuclear Physics Ref. [43]. 

The IBM-1 calculations can be performed in the basic form of the 

Hamiltonian Eq. (2.28) with program PCIBAXW. The input parameters (in 

capitals in the block below) correspond to the following coefficients in      

Eq. (2.28). 

 

dε  HBAR 

k0 K(0) 

k1 K(1) 

k2 K(2) 

k3 K(3) 

k4 K(4) 
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The technical notes of O. Scholten (1991, p.88) the following remarks 

have to be added [44]: 

� The subroutine RDPAR in the packet PCIBALIB has to be corrected 

in order to enable it to read the input parameters as triplet (for example 

(3F10.4) has to be replaced by (3F7.4)). 

� Energies should be given in MeV. 

� In order to compile the source program no sensitive debug can be used 

(for example for the FORTRAN compiler of Microsoft only the 

command fl and not fl/4YP must be given). 

� Increasing the boson number N to 14 or 16 calls for changes in 

COMMON (READMAT) and in the corresponding DATA in various 

places of the programs.     
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Appendix B 

B.1 Basic definitions 

A group G is a set of distinct elements, for which a law of composition 

(such as addition, multiplication, matrix multiplication, etc.) is well defined, 

and which satisfies the following criteria [67]: 

1. If G1 and G2 are the elements of G, then their composition G3= G1 ⋅G2 

is also an element of G. 

2. The composition law is associative: (G1 ⋅ G2) ⋅G3 =G1⋅(G2⋅G3) 

3. There exists an identity element E such that E ⋅ G = G ⋅ E = G for each 

element G. 

4. For each element G from G, there exists a unique inverse element     

G-1such that G-1⋅G = G ⋅ G-1 = E. 

⌦ 

⌦ 

⌦ 

⌦ 

⌦ 

⌦ 

The number of group elements is called the order of the group. 

A group containing a finite number of elements is called a finite 

group. 

A group containing an infinite number of elements is called an 

infinite group. 

An infinite group can be discrete or continuous. 

If the number of group elements is denumerably infinite, the 

group is called discrete. 

If the number of group elements is non-denumerably infinite, 

the group is called continuous. 
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In general, the product G1 ⋅ G2 does not have to equal G2 ⋅ G1. 

However, if G1 ⋅ G2=G2 ⋅ G1, the group is called abelian. 

B.2 Point symmetry groups 

The transformations which preserve the distances between the points 

and bring the body into coincidence with itself are called symmetry 

transformations. All symmetry transformations form a symmetry group of 

the body. The symmetry groups of finite bodies which leave at least one 

point of the body fixed are called point symmetry groups. 

All point symmetry groups consist of three fundamental operations 

[67]: 

• Rotations through an angle 2π/n, (n is integer) around a certain 

axis: Cn. 

• Reflection in a symmetry plane: σ ;  

• Combined rotation through an angle 2π/n, (n is integer) around 

a certain axis and reflection in the perpendicular plane: Sn=Cn σh 

B.3 Symmetric group 

All permutations of n identical objects [68]: 

  (B.3.1) 








npppp
n

K

K

321

321

Form a group called a symmetric group of degree n, denoted as . The 

group contains n! elements. 

nS
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B.4 General linear group 

B.4.1 GL(2)  

 The linear group in two dimensions GL(2) is a group of all linear 

transformations of two coordinates (x , y),  

  (B.4.1.1) 
yaxay
yaxax

2221

1211

+=′
+=′

where the parameters a11, a12, a21 and a22 as well as the coordinates x and y 

can be complex and for which the determinant  

 ⋅≠ 0
2221

1211

aa
aa

 (B.4.1.2) 

The transformation (5) can be re-written in a matrix form. 

















=








′
′

y
x

aa
aa

y
x

2221

1211  (B.4.1.3) 

Thus, we can give an equivalent definition: GL(2) is a group formed by all 

regular complex (2×2) matrices.  

The group is characterized by eight real parameters (or four complex 

parameters a11, a12, a21 and a22). 

B.4.2 GL(n) 

 All regular complex (n × n) matrices form the general linear group 

GL(n), which is characterized by 2n2 real parameters.  

The group GL(n) is a non-compact group. 
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B.5 Unitary groups 

B.5.1 U(2) 

 The linear transformations in two dimensions can be read as [68]: 

  (B.5.1.1) 
yaxay
yaxax

2221

1211

+=′
+=′

with 

 ⋅≠ 0
2221

1211

aa
aa

 (B.5.1.2) 

satisfy the additional condition:  

 ⋅+=′+′ 2222 yxyx  (B.5.1.3) 

From (B.5.1.3), the parameters aij should obey the following relations:  

 

.0

,1

,1

22211211

2
22

2
21

2
12

2
11

=+

=+

=+

∗∗ aaaa

aa

aa

 (B.5.1.4) 

All such transformations form a unitary group in two dimensions U(2). 

An equivalent definition: U(2) is a group formed by all regular unitary        

(2 × 2) matrices. 

The group is characterized by four real parameters. 
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B.5.2  U(n) 

All unitary (n × n) matrices form the n2 -parameter unitary group U(n). 

The group U(n) is a subgroup of the group GL(n). 

The group U(n) is a compact group since 1
2

≤ija . 

B.5.3 SU(n) 

All unitary (n × n) matrices whose determinants are equal to +1 form 

the (n2-1) parameter special unitary group SU(n). 

The group SU(n) is a subgroup of the group U(n). 

B.6 Orthogonal groups 

B.6.1 O(2) 

The linear transformations in two dimensions, which preserve the 

distance between two-points is:  

  (B.6.1.1) 
yaxay
yaxax

2221

1211

+=′
+=′

where the parameters a11, a12, a21 and a22 as well as the coordinates x and y 

take only real values, 

 ⋅≠ 0
2221

1211

aa
aa

 (B.6.1.2) 

and 

  (B.6.1.3) 2222 yxyx +=′+′
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From (B.6.1.3) the parameters of such transformations should satisfy the 

following three relations: 

 
.0

,1

,1

22211211

2
22

2
21

2
12

2
11

=+

=+

=+

aaaa
aa

aa

 (B.6.1.4) 

All such transformations form an orthogonal group in two dimensions O(2).  

An equivalent definition: O(2) is a group formed by all real orthogonal       

(2 × 2) matrices.  

B.6.2 O(n) 

All real orthogonal (n × n) matrices form the n (n-1)/2 - parameter real 

orthogonal group O(n). 

The group O(n) is a subgroup of the group GL(n). 

B.6.3 SO(n) 

All real orthogonal (n × n) matrices whose determinants are equal to +1 

form the special orthogonal group SO(n).  

The group SO(n) is a subgroup of the group O(n). 

B.6.4 SO(1,1) 

Let us consider the linear transformations in two dimensions [69]: 

  (B.6.4.1) 
yaxay
yaxax

2221

1211

+=′
+=′

where the parameters a11, a12, a21 and a22 as well as the coordinates x and y 

take only real values, 
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 1
2221

1211 =
aa
aa

 (B.6.4.2) 

and which preserve the relation: 
  
  .2222 yxyx −=′−′

All such transformations form a group in two dimensions SO(1,1). 

B.6.5 SO(p,q) 

All real ((p + q) × (p + q)) matrices whose determinants are equal to +1 

and which keep invariant the quadratic form 

  (B.6.5.1) invxxxxx qppp =+++++ ++
22

1
22

2
2
1 K

comprise a group SO(p,q). 
 
B.7 Symplectic group  

Let us consider the linear transformations of two points in a plane     

(x1, y1), and (x2, y2) [69]: 

  (B.7.1) 
1221211

1121111

yaxay
yaxax

+=′
+=′

and 

  (B.7.2) 
2222212

2122112

yaxay
yaxax

+=′
+=′

and let us require that the following relation holds: 

 

 .21212121 xyyxxyyx −=′′−′′  (B.7.3) 
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All such transformations form a group in two dimensions called the 

symplectic group. If the parameters a11, a12, a21 and a22 are complex then the 

group is denoted as Sp(4, C). If the parameters a11, a12, a21 and a22 are real 

then the group is denoted as Sp(4,R). If we require that the transformations 

of Sp(4,C) be unitary, then we will get the unitary symplectic group denoted 

as Sp(4). 

 This can be generalized for n dimensions. Then the corresponding groups 

will be Sp(2n,C),  Sp(2n,R) and Sp(2n). 

 

 

 

 

 
 

 77



References 

[1] P. Van Isacker, “Symmetries in N∼Z Nuclei”, GANIL, France, 

(http://www.ganil.fr/research/nt/symmetry1). (Private communication) 

[2] P. Van Isacker, “The Interacting Boson Model”, GANIL, France, 

(http://www.ganil.fr/research/nt/symmetry2). 

[3] D. J. Rowe, C. Bahri, and W. Wijesundera, Phys. Rev. Lett. 80, 4394, 

(1998). 

[4] F. Iachello, N.V. Zamfir, and R.F. Casten, Phys. Rev. Lett. 81, 1191, (1998). 

[5] R.F. Casten, D. Kusnezov, and N.V. Zamfir, Phys. Rev. Lett. 82, 5000, 

(1999). 

[6] J. Jolie, P. Cejnar, and J. Dobeš, Phys. Rev. C 60, 061303, (1999). 

[7] F. Iachello, Phys. Rev. Lett. 85, 3580, (2000). (Private communication) 

[8] F. Iachello, Phys. Rev. Lett. 87, 052502, (2001). 

[9] F. Iachello and A. Arima, “The Interacting Boson Model”. Cambridge 

University Press, Cambridge, (1987). 

[10] J. Jolie, R.F. Casten, P. von Brentano and V. Werner, Phys. Rev. Lett. 87, 

162501, (2001). 

[11] D. D. Warner, “IBM symmetries and phases”, Nature, 420, 614, (2000). 

[12] O. Castaños, P. Federman, A. Frank, and S. Pittel, Nucl. Phys. A 379, 61, 

(1982). 

[13] A. Frank, Phys. Rev. C 39, 652, (1989). 

[14] A. Gómez, O. Castaños, and A. Frank, Nucl. Phys. A 589, 267, (1995).  

 78



 

[15] D.D. Warner and R.F. Casten, Phys. Rev. Lett. 48, 1385, (1982). 

[16] R.F. Casten and N.V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000). 

[17] R. Krücken et al, Phys. Rev. Lett. 88, 232501, (2002). 

[18] J. Escher and A. Leviatan, Phys. Rev. Lett. 84, 1866 (2000). 

[19] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev and P. A. Terziev, Phys. 

Rev. Lett. 86, 2052 (2001). 

[20] V. Werner, N. Pietralla, P. von Brentano, R.F. Casten and R.V. Jolos, 

“Quadrupole shape invariants in the interacting boson model ”, 

(http://arXiv: nucl-th/0005013 v1, 6 May 2000). 

[21] J. N. Ginocchio, and A. Leviatan, “Critical points in nuclei and interacting 

boson model intrinsic states”, (http://arXiv: nucl-th/0305013 v1, 6 May 

2003). 

[22] J. M. Arias, C. E. Alonso, A. Vitturi, J. E. García-Ramos, J. Dukelsky and 

A. Frank, “The U(5)–O(6) transition in the Interacting Boson Model and 

the E(5) critical point symmetry ”, (http://arXiv: nucl-th/0309005 v1, 2 Sep. 

2003). 

[23] J. Dukelsky, J. M. Arias, J. E. García-Ramos and S. Pittel, “Integrability 

and quantum phase transitions in interacting boson models ”, (http://arXiv: 

nucl-th/ th/0310031 v1, 9 Oct. 2003). 

[24] J. P. Draayer, V. G. Gueorguiev, Feng Pan, and Yanan Luo, “Mixed 

symmetry nuclear shell model”, (http://arXiv: nucl-th/0311094 v1, 26 Nov. 

2003). 

 

 79



[25] V. Werner, P. von Brentano, R. F. Casten and J. Jolie, “Singular character 

of critical points in nuclei”, (http://arXiv: nucl-th/0106051 v2, 12 Dec. 

2001). 

[26] E. A. McCutchan, N. V. Zamfir, M. A. Caprio, R. F. Casten, H. Amro, C. 

W. Beausang, D. S. Brenner, A. A. Hecht, C. Hutter, S. D. Langdown, D. 

A. Meyer, P. H. Regan, J. J. Ressler and A.D. Yamamoto, Phys. Rev. C69, 

024308 (2004). 

[27] R. Bijker, R. F. Casten, N. V. Zamfir and E. A. McCutchan, “A Test of X(5) 

for the γ-degree of freedom ”, (http://arXiv: nucl-th/0311032 v1, 10 Nov. 

2003).  

[28]  Z. Jin-Fu, L. Gui-Lu, S. Yang, Z. Sheng-Jiang, L. Feng-Ying and Jia Ying,  

Chinese Phys. Lett. 20, 1231-1233 (2003). 

[29] Z. Da-Li and L. Yu-Xin, Chinese Phys. Lett. 20, 1028-1030 (2003) 

[30] V. N. Zamfir and R.  F. Casten, Proceedings Of The Romanian Academy, 

Series A, Vol. 4, No. 2, (2003). 

[31] D. Tonev, “Transition probabilities in 154Gd-test for Critical  

Point Symmetry X(5) ”,(http://arXiv: nucl-th/0402087 v1, 25 Feb. 2004). 

[32] E. López-Moreno and O. Castaños, Phys. Rev. C 54, 2374, (1996). 

[33] E. López-Moreno, PhD thesis, Universidad Nacional Autónoma de México, 

(1998). 

[34] R. Gilmore. “Catastrophe theory for scientists and engineers”. Wiley, New 

York, (1981). 

[35] D. Janssen, R. V. Jolos, and F. Dönau, Nucl. Phys. A 224,93,  (1974). 

[36] A. Arima, and  F. Iachello, Phys. Rev. Lett. 35, 1069, (1975). 

 80



[37] A. Arima, and F. Iachello, Phys. Rev. C16, 2085, (1977). 

[38] A. DeShalit and I. Talmi, “Nuclear shell theory”, Academic press, New 

York, (1963). 

[39] D. Bonatsos, “Interacting boson models of nuclear structure”, Clarendon 

Press, Oxford, (1988). 

[40] R. Fossion, C. De Coster, J.E. García-Ramos, T. Werner, and K. Heyde, 

Nucl. Phys. A 697,703, (2002). 

[41] G. Audi and A.H. Wapstra, Nucl. Phys. A 595, 409, (1995). 

[42] W.T. Chou, N.V. Zamfir, and R.F. Casten, Phys. Rev. C 56, 829, (1997). 

[43] O. Scholten, “Computer Program PHINT ”, Groningen Univ., The 

Netherlands, (1979). 

[44] O. Scholten, “The shortened version of PHINT ”, Published in 

Computational Nuclear Physics 1, p.88, (1991).  

(http://www.phys.washington.edu/users/bulgac/Koonin/IBA/pcibaxw.for) 

[45] O. Scholten, “The shortened version of PBEM ”, Published in 

Computational Nuclear Physics 1, p.88, (1991)  

(http://www.phys.washington.edu/users/bulgac/Koonin/IBA/pcibaem.for) 

[46] A.A. Sonzogni, Nucl. Data Sheets 93, 599, (2001). 

[47] L.K. Peker and J.K. Tuli, Nucl. Data Sheets 82, 187, (1997). 

[48] M.R. Bhat, Nucl. Data Sheets 89, 797, (2000). 

[49] E. Dermateosian and J.K Tuli, Nucl. Data Sheets 75, 827, (1995). 

[50] Agda Artna-Cohen, Nucl. Data Sheets 79, 1, (1996). 

[51] C.W. Reich and R.G. Helmer, Nucl. Data Sheets 85, 171, (1998). 

 81



[52] R.G. Helmer, Nucl. Data Sheets 65, 65, (1992). 

[53] R.G. Helmer, Nucl. Data Sheets 77, 471, (1996). 

[54] C.W. Reich, Nucl. Data Sheets 78, 547, (1996). 

[55] R.G. Helmer and C.W. Reich, Nucl. Data Sheets 87, 317, (1999). 

[56] Balraj Singh, Nucl. Data Sheets 93, 243, (2001). 

[57] E.N. Shurshikov and N.V. Timofeeva, Nucl. Data Sheets 67, 45, (1992). 

[58] P. J. Brussaard and P. W. M. Glaudemans, “Shell-Model Applications in 

Nuclear Spectroscopy”, North Holland Publishing Company, North 

Holland, (1977). 

[59] J.N. Ginocchio and M.W. Kirson, Nucl. Phys. A 350, 31, (1980). 

[60] A. E. L. Dieperink and O. Scholten, Nucl. Phys. A 346, 125, (1980). 

[61] A.E.L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747, 

(1980). 

[62] P. Cejnar and J. Jolie, Phys. Rev. E 61, 6237, (2000). 

[63] J. Dukelsky, G.G. Dussel, R.P.J. Perazzo, S.L. Reich, and H.M. Sofia, Nucl. 

Phys. A 425, 93, (1984). 

[64] P. Van Isacker and J.Q. Chen, Phys. Rev. C 24 684, (1981).    

[65] H.E. Standley, “Introduction to phase transitions and critical phenomena”, 

Oxford University Press, Oxford (1971). 

[66] R.F. Casten and N.V. Zamfir, Phys. Rev. Lett. 87, 052503, (2001). 

[67] E. Wigner, “Group Theory and its Application to the Quantum Mechanics 

of Atomic Spectra”, Academic Press, New York,  (1959). 

 

 82



 

[68] M. Hamermesh, “Group Theory and its Application to Physical Problems”, 

Addison-Wesley Reading, MA, (1962). 

[69] J. P. Elliott and P.G. Dawber, “Symmetry in Physics”, The Macmillan Press, 

London, (1979). 

 

 

 83



@òÔİäß@À@òu‹¨a@ÂbÔäÛaë@éíŠìİÛa@püìznÛa@òaŠ†

@xˆì¹@Šb g@åàš@ñŠ†bäÛa@òîšŠþa@‹–bäÈÛa

@òÜÇbÐn¾a@pbãëŒìjÛa (IBM-1) 

 

 رسالة مقدمّة إلى

  جامعة النهرين -مجلس كلية العلوم

 وهي جزء من متطلبات نيل درجة دكتوراه فلسفة في الفيزياء 
 
 
 
 
 

 من قبل 

×érÃÖ]<‚{é¥<íéŞÂ<]öÊê 
 )١٩٩٧بكالوريوس (

 )١٩٩٩ماجسـتير (
 
 
 
 

@‹Ð–                                              QTRV@ç 

æbîã                                             @RPPUâ@ 



ò–ý©a 

 
 

أجريت دراسة تصنيفيه لسلسله من النظائر في منطقة العناصر الأرضية النادرة،             
 وطاقات الفصل بين    E2صف لمستويات الطاقة ومعدلات الانتقال       حيث تمت عملية و   
  باستخدام   150 و       1 ،    ،   نيوترونين للسلاسل   

 ).IBM-1(الشكل العام للهاملتونين الخاص بنموذج البوزونات المتفاعلة 
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لكل سلسله من النظائر، بحيث تكون كل        )  General fit( أجراء ملائمة شمولية     تم
 .الثوابت المُحددة في داله الهاملتونين ثابتة ما عدا واحد متغيّر لوصف السلسلة بكاملها

في منطقة العناصر الأرضية النادرة تتحول النويات من الأشكال الكروية إلى               
عن طريق  )  Catastrophe theory(النظرية المسماة بـ    الأشكال المشوهة، وبالأعتماد على     

تم توليد أسطح الطاقة    )  Coherent state analysis(ربطها مع تحليلات الحالة المتشاكهة      
وبالتالي تعيين النويات التي تكون قريبة من نقاط        )  IBM-1(لنموذج البوزونات المتفاعلة    

 .التحول الطوري الحرجة

عها لحساب الثوابت المُحددة للهاملتونين قادت بشكل عام إلى         أن الطريقة التي تم أتبا    
نتائج جيده جداً مقارنةً مع النتائج العملية المتوفرة حديثاً لكل من طاقات التهيج ومعدلات               

من الجدير بالذكر هنا وبشكل خاص أنه       .  S2n وطاقات الفصل بين نيوترونين      E2الأنتقال  
از عند مقارنة النتائج النظرية مع النتائج العملية         تم الحصول على نتائج تتفق بشكل ممت       



ٍ والتي يمكن أعتبارها كمؤشر جدير بالملاحظة لتحديد        S2nلطاقات الفصل بين نيوترونين     
 .مناطق التحول الطوري

أن التحليلات المُتّبعة في هذا العمل أعطت نتائج متناغمة مع الدراسات السابقة التي             
     148Ndوكمحصلة لهذا العمل وجدنا أن       .  لنفس المنطقه )  CQF(أستخدم فيها هاملتونين    

 يعتبران المرشحين الأفضل ليكونا في النقطة الحرجة، ولكن مما تجدر الإشارة             150Smو  
 .       لا يبتعدان كثيرا عن النقطة الحرجة152Sm و 150Ndأليه أن 
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