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Abstract

The main objective of thisthesisis divided in to three directions which
are:

The first one is to study and overview the main and basic concepts of
stochastic calculus, as well as, studying stochastic ordinary differentia
equations.

The second objective is to study explicit stochastic Runge-Kutta
methods, then generalize this scheme for semi-explicit, implicit and mixed
schemes and study theirs numerical stability.

The third objective isto introduce variable step size method for solving
stochastic ordinary differential equations, which has the utility of improving

the accuracy of the obtained results.



Basic Notations and Abbreviations

-a Delete the first components of amulti index a.

a- Delete the last components of a multi index a.

a’ Delete all zero components of amulti index a.

a(t) Number of ways for labeling the vertices of t.

q(t) The corresponding Jintegral associated with treet.

B The s-algebraof Borel subsetsof ™.

dij Kronecker deltafunction, where d;; = ii :: : 1_;

| =

F .o F. The fundamental solution.

G Weak hierarchical set.

ot) Density of tree.

L Strong hierarchical set.

r (t) Number of vertices.

r(r) Thefirst characteristic Polynomial.

s(t) Symmetry of atree.

DW, Random increment, such that DW, = DW, =W, _ -
W, -

o dwW Stratonovich calculus integration symbol.

° Deterministic node.

o Stochastic node.

A Filtration, which is an increasing family of s-algebra
fields.

A s-Algebra

(A Filtration satisfy the usua conditions, i.e, (A)g, is a

right-continuous filtration (satisfies A = | e>0AHefor
al t3 0) and A, contains al P-negligible events in A.
Further, let (Ayq, be such that W is a martingale of
(Adi

e(t) Local error coefficient.



Basic Notations and Abbreviations

C(i™ i)
cGi™ i)

c™@a- RY, R)

F(O)(y)
H

I(.),h I
I{}’ IA

I, DW,

‘](.),tl ‘J
Ko(a)

Ki(a)

L(a)
L(v)
R
L,(Wi")

—
>

The space of continuous functionsf: " 3%® j .

The space of k-times continuously differentiable
functionsf: M %® | .

The space of h-times and k-times (for time and
stochastic  process respectively)  continuously
differentiable functionsf: |~ id u® § .
Elementary differential.

Hierarchical set.

Multiple It6 integrals.

The indicator function of a set A = {.}, where
_11 if Alistrue

AT % 0, otherwise

|s arandom variable and must be Ay, -measurable,

where D\/A\/n = Tl = Why - Whand Tl IS another
multiple It6 integrals

~

Multiple Stratonovich integrals.

The number of zero components in multi index a that
precede the first non-zero components of a or until
theend of a if all of its components are zeros.

The number of zeros between the i™ and (i + D)™
non-zero components of multi index a or the end of
a,suchthati=1,2,...,L@".

The class of functions, such that E((‘atxgds)< ¥,

where E(.) is standing for expectation operators.
Length of multi index a = (j1, j2, ..., JL)-

Length of multi index v and equal to zero.

The drift and the diffusion operators, respectively.
The space of all square integrable functions defined
fromQto j".

Local truncation error.

The set of al multi indices.



Basic Notations and Abbreviations

MSRKM's
MSRKM1
MSRKM2
MSRKM3
MSRKM4
MSRKM5
MSRKM6
n(a)

P

PL

A

R2
RKM

SODE
SRKM's

SLMM's

u, v

Mixed Stochastic Runge-Kutta M ethods.

The method (3.15) will be referenced by this code.
The method (3.19) will be referenced by this code.
The method (3.23) will be referenced by this code.
The method (3.27) will be referenced by this code.
The method (3.31) will be referenced by this code.
The method (3.35) will be referenced by this code.
Number of zero components of amulti index a.

All measurable functions, such that
P (thg ds<¥) =1 where P(.) is standing for

probability set function.
Probability measure.
The method (2.55) will be referenced by this code.

The remainder set.
The remainder of deterministic part.

The method (2.54) will be referenced by this code.
Runge-K utta methods.

Stability region.

Stochastic ordinary differential equation.
Stochastic Runge-Kutta methods.

Theremainder of stochastic part.

Stochastic Linear Multi-step Methods.

Variables, such that u £ 0, v 3 0, and Re(u - v) +
Re(v) £ 0.

Thefirst Weiner process on timet.

The n™ Weiner process on timet.

P converges with probability one.
Random variables, wi W.

Stochastic process.

X as a function of the variables replaced by the dot
for fixed w.
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Xi(.) X as a function of the variables replaced by the dot
for fixed t.
N The norm of L,(W,i") space and if ZT Lo(W,i")
1

then 2] =(EIzP)2.
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Introduction

In recent years, stochastic processes and stochastic calculus have been
applied to a wide range of scientific disciplines such as physics, engineering,
and finance. Stochastic calculus concerns with a specific class of stochastic
processes that are stochastically integrable and are often expressed as
solutions to the stochastic differential equations, [26]. They are typically
describing the time dynamics of the evolution of a state vector, based on the
(approximate) physics of the rea system, together with a deriving noise
process. It often represents processes not included in the model, but presented
in real system, [2]. In the physical and engineering sciences, on the other
hand, stochastic differential equations (SDE's for short) arise in aquite natural
manner in the description of systems on which so-called "white noise" acts,
[26], many physical systems are modeled by SDE's, where random effect are
being modeled by a Wiener process (for more details, see for example [40]).
A natural extension is given by systems of SDE's, where system noise is
modeled by including a diffusion on term of some suitable formin the driving
equations, [13]. Statistical inference for diffusion type processes satisfying the
SDE's driven by Wiener process has been studied earlier and a comprehensive
survey of various methods is given in, [34]. Recent years have witnessed that
the most efficient and widely applicable approach in solving SDE's seems to
be the simulation of sample paths of time discrete approximations on digital
computers. Thisis based on afinite discretization of time interval [0, T] under
consideration and generates an approximate values of sample paths step by
step at the discretization times, [19].

Stochastic differential equations are differential equationsin which one
or more of its terms are stochastic processes, and therefore will give solutions
which are itself stochastic process, [3]. SDE's are used in wide range of
applicationsin environmental modeling, engineering and biological modeling,
[20], and SDE's are a fundamental tool for mathematics and its applications,
[18].

The types of SDE's incorporated into the systems are aso very
important; therefore, various authors have made extensive work on the
analytic solution of SDE's, [14], [15], [28], [39] and the numerical solution of
SDE's, [19], [27]. Since sometimes SDE's rarely have explicit solutions and
hence in some cases accurate numerical methods are vital in order to make
their implementation viable. Due to features of the stochastic calculus, the
numerical analysis for solving SDE's differs in some key areas from the

Vil
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aready well-developed area of the numerical analysis of ordinary differential
equations, [27].

There are two basic type of tasks connected with the simulation of
solutions of SDE's. The first occurs in situation where a good pathwise
approximation is required, for instance in direct ssimulations, filtering or
testing statistical estimators. The second interest focuses on approximating
expectations of functional of the I1t0 process, such as its probability
distribution and its moments, [19]. As more realistic mathematical models
become required to take into account random effects and influences in real
world systems SDE's have become essentia in the accurate description of
such situations, [26].

Many SDE's have unknown analytical solution, so it is necessary
to derive numerical methods to generate approximations to the exact solution,
[7].

Nowdays, there are many researchers, who deals with numerica
methods for solving SDE’s. Y et the gap between the well-devel oped theory of
SDE’s and its application is still wide in range. A crucial task in bridging this
gap is the development of an efficient numerical methods for solving SDE's
[22], and in this regard one of such numerical methods is the Runge-Kutta
methods, which was one of the most important of development numerical
methods to give the optimal accuracy to the approximate solution, where
RUmelin in (1982) [38], who is first investigated systematically stochastic
Runge-K utta type schemes of strong order. Further derivation of free schemes
may be found by Platen in (1984) [32] and Kloeden and Platen in (1995) [22].
Some stochastic Runge-Kutta schemes of strong order 1.5 have been
developed by Burrage ([5], [7]) using the rooted tree analysis for calculating
the order conditions, [37]. By the same last style of construction with some
modification, the derived SRK schemes of weak order 1 and 2 are developed
by RoBler in (2003) [37] by using rooted tree analysis for calculating order
conditions. At any rate, for simplicity, in this thesis we shall restrict our
attention to use a one-dimensional Stratonovich or 1t0 process X; with one
Wiener process W, .

viii



Introduction

In contrast to strong approximations, which require that the simulated
paths are close to the exact solution X; of the SDE, weak approximations do
not necessarily need to approximate these paths.

This thesis is composed of three chapters. The first chapter gives a short
introduction to some results of stochastic calculus, especially in view of the
Wiener process. Rudiments for both Ito and Stratonovich stochastic
integration bringing forth 1t6 and Stratonovich stochastic differential
equations are considered. 1t0's formula serves as a powerful tool applied for
introduction of stochastic Taylor expansions due to Platen and Wagner [35],
Representing a generalization of the deterministic Taylor formula. Truncated
stochastic Taylor expansions can be used as a numerical schemes for strong
convergence. That followed we gave the expectation of stochastic integrals at
the end of this chapter.

In chapter two some concepts and definitions, which are needed to study
the numerical solutions of stochastic differential equations and some formulae
of Runge-Kutta methods are previewed, and used as approach to overcome
the disadvantages of Taylor schemes. Therefore, the well known concepts of
such methods are reflected for deterministic ordinary differential equations
with the powerful theory of rooted trees. This concept builds a basis for the
development of stochastic Runge-Kutta methods and the calculation of order
conditions for strong convergence. The rooted tree theory was introduced for
the stochastic setting by the application of two different kinds of coloured
nodes. These representations are the key for the main theory of this chapter,
giving general order conditions for stochastic Runge-Kutta methods which
can be calculated very easily with the aid of rooted tree theory. It turns out
that these conditions are a generalization of the well known deterministic
order conditions. The stability of the numerical method was also studied.

In chapter three, the derivations of some semi-explicit, implicit and
mixed stochastic Runge-Kutta methods are introduced individually and then
studying the stability of such schemes which is given for completeness. Also
in addition, variable step size method for stochastic version has been proposed
and implemented in this chapter; some illustrative examples are given for
comparison purpose between the given different schemes and that proposed in
this study.
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Chapter One

Basic Concepts of Stochastic Calculus

| ntroduction:

Stochastic calculus is concerned with the study of stochastic processes,
which involve randomness or noise. Intuitively, this requires knowledge of
random variables and probability measures. Therefore, this chapter provides
the background definitions and concepts that will be required later.

Only those definitions which are of direct relevance to this exposition
are given here. For more details see Arnold [3], Gard (1988) [17], Kloeden
and Platen [22] for example.

This chapter consists of five sections. In section (1.1), some basic
concepts related to the probability theory are given. In section (1.2), we
discuss stochastic properties with some related properties are discussed. In
section (1.3), theory of stochastic ODE's are given. In section (1.4) the theory
of stochastic Taylor series expansion was discussed and giving some concepts
about multiple (It6 and Stratonovich) integrals and multi-index basis and
finally in section (1.5) the expectation of stochastic integrals was considered.
1.1 Probability Theory Background [3],[7]:

This section contains the background materials of probability theory
that directly required for the work carried out in this thesis.

Definition (1.1):

The s-algebra A of subsets of a sample space W and satisfies the
following:

1. Wi A.
2. IfAT A thenA°={wl W|wi A} A.
3. For any sequence{A.} | A, then UﬁzlAnT A and |?f:1AnT A.

The elements of A are called probability measurable sets and the pair
(W, A) is called a probability measurable space.
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For example, aBord Set (B) in i™ isas-agebra generated by open

setsin j ™ (and so includes open, closed, half open and other m-dimensiona
intervals).

Definition(1.2):
A probability space triplet (Q, A, P[.]), where Q is a sample space (set
of all possible outcomes of random increment), A is class of al subset of Q

and p[.] isaprobability set function whose domain is Q and counter domainis
theinterval [0,1].

Definition (1.3):
A random vector X=(Xy, X, ..., X;)) is said to have multivariate Normal (or
Gaussian) distribution, denoted by X~N(y, X) if X hasp.d.f. is:
1 e-;(X-rnTé (X-m
(2p)"'? 18 /2

F(X)=

a1 S1p K 8540

where u=( w1, fa, ...,1n)" isthe mean vector and & :g I O I Zis

8Sn1 Sh2 L Snnz
n" n symmetric positive definite variance-covariance matrix.

Conditional expectations are used to provide estimates of X based on
possibly incomplete information about X. Thusif some event A has occurred,
then the estimate of X can be improved upon by calculating the conditional
expectation of X give the event A, where now only the values of X, as
determined by the event A, need to be considered. For example, suppose that
X is a continuous random variable with probability density function f(x), and
let A ={wl W:a£ X(w)£ b}. Then the conditional density function of X

given Ais

h b

-:-f(x)/(‘j‘(x)dx ; aEXED

i a

F(x[A)=i
i O ;elsewhere

)\
I

The corresponding conditional expectation of X given event A is
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b

E(X |A) = &¢f (x| A)dx
a
b b

=O¢f(x)dx/ ¢ (x)dx

If there is an infinite sequence of random variables, then it is
important to know how the sequence converges. There is a number of
different modes of convergence, asit isgive in the next definitions:

Definition (1.4):

A sequence of random variables { X (o)} converges with probability
one (denoted by P-w.p.1 or w.p.1) to X(w) if

PoT W: lim Xy(0) = X(0)}) = 1.

n® ¥

Thisisalso called almost sure convergence.
Definition (1.5):

A sequence of random variables { X,(0)} such that E(Xﬁ) <¥ for dll

nissad to be convergesin the mean squareto X(w) if:

lim E(X,, - X[*) =0.
n® ¥
Definition (1.6):
A sequence of random variables { X,(®)} convergesin probability (or
stochastically) to X(o), if:

Igg PloT W: X (®)- X(w)|3 €)=0," e>0.

1.2 Stochastic Process:

In many physical applications, there are many processes in which the
random variables depends on the space and/or time and this introductory
materia will be the main subject of the present section.

Definition (1.7), [7]:
A stochastic process X (t,w) isafamily of random variables which is

denoted by Xiw) (or briefly X, of two variables t and ®, where
tT [to, T11 [0, ¥), TT i,wl W on a probability space (W, A, P), which
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assumes real values and is P-measurable as a function of o for each fixed t.
The parameter t is interpreted as atime and X(.) represents a random variable

on the above probability space W, while X (o) is called a sample path or
trajectory of the stochastic process.

Definition (1.8), [7]:
Let X,,t1 [a,b] be a stochastic process on probability space

(W, A, P) and let { A} (a5 PE@non-decreasing family of s-algebras of A,

such that for esch t T [a, b], X; is A-measurable. Then X, is a martingale
with respect to A, if:

E(Xi+s| A) =X, forals>0.

Martingales are particularly relevant in the theory of stochastic
integrals and it is another important class of stochastic process. Ottinger in
(1996), [30] links martingale to a "courtroom process in which the truth is
exposed in the course of time".

Now, an important class of stochastic processes is that with
independent increments; that is, where the differences X - X; are

independent, for any finite sequence {t} 1 | with t; < tj.; where I=[to, T].
Definition (1.9), [7]:

A stochastic process W;, t T [0, ¥), is said to be a Brownian motion
or Wiener process, if:

1. P{ol QWyw)=0})=1.

2. For 0 <to <ty <..<t, theincrements W, - W, , W, - W, ...,

W - W, _, areindependent.
3. For an arbitrary t and h > 0, W, . - W, has a Normal distribution with
mean 0 and variance h.
Remark (1.1), [7]:
In general, a standard Weiner process has the properties that:
Wo=0w.p.1, E(W) =0, Var(W;- Wy =t- s

for al 0 £ s£ t; and so the increments are stationary.




Chapter One Basic Concepts of Stochastic Calculus

The property E(WsW;) = min(s, t) can be used to demonstrate the
independence of Wiener increments. Supposethat 0 £tg < ... <t <t <...
<tj-l<tj <..<t, then:

E(Wti_lwtj) + E(Wti_lwtj_l) =t- G-ttt = 0

and hence the increments W;. - W, and Wtj - Wtj_ , areindependent.

Definition (1.10), [3]:

A (d” m matrix)-valued function G = G(t,w) defined on |~ W and
measurable in (t, o) is said to be nonanticipating (with respect to afamily A,
of nonanticipating s-algebra A\) if G(t, .) is A-measurablefor al t1 1.

1.3 Theory of Stochastic Differential Equations.

This section contains some definitions and theorems about SDE's and
their models that shows by studying the calculations of stochastic integrals
and finally giving some analytical methods for solving severa types of SDE's
with different ways.

1.3.1 Stochastic | ntegrals and their Models [37]:

A sequence of node points is considered in the interval | =[tg, T|
given by:

o=t <tV <. <t{) =7

with the property that they are refinements for increasing n and with:

max {t0)- "} %® 0 as nviE ¥
OEIEN,- 1

It we define t = gt + (1 - q)t{", for a fixed i [0, 1], then the

follwing series of random variables is called an approximation of stochastic

integral, viz ;
! o N,-1
OX,mdWi=a iy X, (Wt_(n% - Wm) .. (1.2)
tO I | |+ i
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converges as n %® ¥ in probability if Wy, t™ 3 0 be a Wiener process

and X; a red-valued stochastic process (sometimes, caled a stochastic
function or briefly a function) with respect to Wiener process W,. It is
necessary that X and W are both defined on the same probability space

(W, A, P).

Now, let A, be an increasing family of s-algebra fields, which is
caled aso filtration, for all t 3 0, i.e, Atli A, if ty <ty, such that
Al A, where A(W,, 0£s£t) isin A, and AW, . — W,,| >0)
IS independent of A for al t 3 0. One can take, for instance,
A;=A(W;,0£s£t) [16]. The filtration (Ay¢)g, satisfy the usud
conditions, i.e, (Ay)i; is a right-continuous filtration (satisfies

A= | osoP\treforal t2 0) and A, contains al P-negligible eventsin A.
Further, (Ay)q | be such that W isamartingale of (Ay)yq 1, [37].

Definition (1.11), [7]:
Consider a probability space (W, A, P) with filtration (Ay)g then a

nonnegative random variable t(w) on (W, A, P) is caled a Markov time ( or
stopping time) if the event {wl W:t(w) £t}T A, for eacht>0.

Definition (1.12), [21]:

Let X, t 1 | be a stochastic process defined on a probability space
(W, A, P) and let (Ay)q be afiltration s-algebra. The process X; is adapted
to the family (A)q | if X;is A -measurablefor every t1 1, or:

E(X | Ap) =X, th 1

A\ -adapted random processes are also A -measurable.

It is also necessary that X; be a non-anticipating (see[3]), by whichitis
meant that information about X; at timet does not depend on events occurring
after timet. In the next definition more details about X; are given:
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Definition (1.13), [37]:
The set L is the class of al # A-measurable A-adapted processes

Xi: 1”7 W3%® R where BistheBord setin R™ for which:
t,, 2 o)
E&HX (W) ds@<¥, t>0 (12
g(a s (W) p (1.2)
holds and the set P isthe class of al 7 A-measurable A-adapted processes
Xiil” W¥%® R, satisfying:
P(gX2Ww) ds<¥)=1, t>0 . (L3)
Now, back to equation (1.1), when equation (1.1) converges as
n %® ¥ in probability if X; T P and in the mean-square sense given in
equation (1.2) if X1 L.

However, the integral for dWg are unlike the Riemann-Stieltjes
integral, here is the selection of g makes a difference. For

g =0, which is means that t{" represent the left end point t{"), we have the
1t6 calculus. Thelimit of equation (1.1), denotes the first model given by:

(‘ptoxs W,
and is called the It0 stochastic integral. At Stratonovich calculus, we have to
set q = % and t{"™ described the mid point of [t(™, t{)]. Now, the limit of
equation (1.1) denotes the second model which is given by:

(‘pto Xg o dW;
and is called the Stratonovich stochastic integral.

To determine a value for the integral (‘f W, dW, , approximate W; by

the function j 'n(t) , Where:

ROEL W oy + (L 1) W (o), tWete 1) . (1.4)
k+1 k
for | T [0, 1], and then the integration of ] 'n(t) in [a, b] equals to the

approximate stochastic integral given in equation (1.1):
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b . 0 No-1 .
Q I n(® =850 (0D (W - W) - (15)

The right hand side of equation (1.5) may be written as:
o Nn-1 o Nnh-1
laZo” W (W -Wm)+-1)a Zo™ W (Wam - W)
tk+1 tk+1 tk tk tk+1 tk

By arranging the terms algebraically, when n %2 ® ¥, then [1]:

: o Nh-1 T o Nn-1 2
lima g Wt(kn)[Wt(le- Wt(k”>] =lima % [Wt(kn)wt(n) - W2 ]

(n)
k+1 tk

1. _
=2 1im & P T2W Wy - 2W2  + W2 - W2
2 k=0 <7T¢(m T (n) (n) (n)
ko kil t t+1 t+1

.2 Np-1 2 2
im &N W2 S W2 W - W 12

Such that:

& Np-Lna2 2 1o 2 W2 1=wW2_W?2
Ima o TWy - Wiy 1= MWy - Wi 1= We - W3
k+1 k Np 0

where lim istaken asthelimit in probability, then [1]:
n® ¥

. ] 1 1
lim & No-hw o TWo - W 1= = W2 - W2
iy Ao Wy W) = W 125 Wy = 5 W,
2 lim A N w oW TP
n®¥ak_o[ t(kn) t(kn)]

W [TW.(n)

- Wt(”) ], such that:
k+1 k+1 k

2 Np-1 - :1 2_ 1 2
A k=0 Wt(krl)l[wt(krl)l Wt(kn)] 2Wb 2Wa

1. o N.-1 2
+=|im AWy - W
20y & ko Vg, = Wy

According to [1]:
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1

Nn-1.
a n Jln(t)[W(n) W(n)]_l[ WZ-—WZ
k+1 2
2

+§'2@r§a W - Wi - DEW
1 | W
E a 2 gr;éa [ (n) t(kn)]]
=tw2 tweila g W WP
E b-z a E( ) Imak =0 [ t(krl.)]_- t(kn)]

... (1.6)

Now, by the next theorem, the last limit in probability equalsto b- a
JTheorem (1.1), [1]:

Let X; be a Wiener process, and II, a sequence of partitions

(o t&”ﬂ} of a finite closed interval [a, b] with |[T,| %® O if

N® ¥ Let:
S\ = a [Xt(n) Q) 1°
-1
Then S, ® b- a inthe mean.
The interval [a, b] has been partitioned into n-equal subintervals of

length H, so for each k the expected value of [W(n) Wt(”)]2 is
n 1 k

ffl)l -t whichis equal to %. Conseguently, the mean-square limit of

ab

the sum of squares given in equation (1.6) is ng—a = b - a Therefore,

0

2

taking the mean-square limit of equation (1.6) as tgl)l ( ) ® 0, yields to:
b 1 1

Q Wtthzz(WE - W2)+( - E)(b- a).

Thus, for any choice | there are different results. In particular, if | =0, then
the integral is known as It stochastic integral, and this leads to a calculus

based on It0 chain rule, while taking | = % then the resulting integral is the

Stratonovich stochastic integral (where the symbol o is employed), and the
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Stratonovich calculus follows the same results for the regular Riemann-
Stieltjes calculus. Theintegra evaluation is;

b 1 1

ththZE(WE- Waz)'E(b- a)
and

b 1

Q Wtoth:E(WS- W?)

for the It6 or Stratonovich calculus, respectively.
Remark (1.2), [37]:

The advantages of Stratonovich calculus is the availability of its rules
similar to ordinary integration. However:

(‘atwsodwszéwf, " Wo=0
whereas for 1t6 calculus:
(‘atwdeS:%Wf- %t, " Wo=0

A nice feature of the It stochastic integral isthat it can be defined for
a genera class of non-anticipating random functions in such a way as to
preserve various Wiener process properties, as well as, alowing easy
calculation of moments of the solution of an SDE.

One of the main advantages of the It0 calculus in contrast to
Stratonovich calculus is the fact that 110 integrals inherit some good properties
of the Wiener process.

Definition (1.14) [16]:

A stochastic process X; defined on [a, b] is called a step function if

there existsapartitiona=t,<t; < ... <t, =b of [a, b], such that:

Xi= Xt' ,f ti £t£ti+l’ | =01...,r-1
i

Theorem (1.2), [16]:
If fisastep functioninset L of interval [a, b], then:

E((‘ff(t,w)dwt) =0,

7

.
E%c‘ff(t,w)olvvt 3

= EQf2(twt
G

10
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Only for the non-anticipating 1t0 case (I = 0) does the martingale
property (and theorem (1.2)) hold. However, to offset this advantage, there is
a disadvantage of the extra term in the chain rule, which is comes about as
(dW,)? behaves like dt in the mean square sense in theorem (1.2), [7].

Finally, there are many of theorems concerning stochastic integral but
superior theorem with d-dimensional random variable is given next.

Theorem (1.3), [3]:
If f isindependent of ® and belongsto P of interva [to, T], it belongs

to L of same interval for any sub s-algebras A E B [to, 5], such that B is a
Borel set of s-algebrain the interval [to, | and f denotesd © m-dimensional

matrix valued function, then the It6 stochastic integral (‘pT f(sw)dW; is a
0
normally distributed d-dimensional random vector with distribution:
N (0, g f(sw) fT(sw)ds
0
1.3.2 Stochastic Differential Equations and their Models, [7], [22], [37].
Consider the SDE:
dy; = f(t, yy) dt + g(t, y;) dW;, Yty = Yo .. (L.7)

wheref: 1" R%® R,g: 1" R %® R beaBorel-measurable functions, we
call f the drift function and g the diffusion function.

The stochastic differential equation given in equation (1.7) may be
written as an equivalent SDE of the form:

R R
Ye= Yy t Qof(s, Yys)ds + Q, a(s,ys) dWs .. (1.8)

However, the second integral given in equation (1.8) cannot be defined in a
following meaning, where W;s is the Wiener. The variance of the Wiener
process satisfies Var(W;) = t, and so this increases as time increases even
thought the mean stays at 0. Because of this, typical sample paths of a Wiener
process attain larger values in magnitude as time progresses, and
consequently the sample paths of the Wiener process are not bounded; hence
the second integral in equation (1.8) cannot be considered as a Riemann-
Stieltjes integral. Note that, more general process which has the martingale
property can be used in place of W, but in this thesis only Wiener process
will be used in the formulation of SDE. Also, note that the formulation in

11
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equation (1.8) assumes initially that there is only a single scalar Wiener
process, so the SDE is then represented by rewriting the integral equation
given in equation (1.8), as:

N &€ N
Yi= Vi + Q,F(SYs)ds+ G 9(s,ys) ™ dWs .. (1.9)

Or
dy,=f(t, y;) dt +g(t, y;) * dW,, yto =Yo ... (1.10)

where (‘Sog(s,ys)* dW, refers to either Itd stochastic integral

(‘5 g(s,ys)dW, or Stratonovich stochastic integral (‘5 g(s,ys)odW; such
0 0

that the first integral in equation (1.9) is pathwise Lebsegue-integrable. Since
the paths of Wiener process are amost sure of unbounded variation, we
cannot interpret the second integral in equation (1.9) in the sense of a
pathwise Riemann-Stieltijes integral.

Now, when considering the 1t6 and Stratonovich calculus, then we get
a simple connection between the solution of an 1t6 SDE and that of a

Stratonovich SDE. Let (Y,)q be the solution of one-dimensiona 1t6 SDE,
such that:

dy=f(t, yy) dt+9(t, yy) dW,, Yy, =Yo - (1.11)
then:

&€ ¢
Ye=Yot+ @ T(SYs) s+ @ 9(Sys) dWs

where W; is a one-dimensional Wiener process. Y; is also a solution of the
Stratonovich SDE, such that when:

dy,=f(tyy) dt+g(t y) odWy, Yy =Yo .. (1L.12)
then:

N N
Y =Yot+ @ L(SYs)ds + @ 9(SYs) o dW,

of Stratonovich calculus, where:

£(tyy) =1t y,) - %%(t, Vo) ot, Vo) - (113)

12
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Therefore, whichever interpretation of the SDE is appropriate in particular
situation, we can switch to the corresponding SDE in the other calculus. For
instance, we can apply the existence and uniqueness theorem for an [t6 SDE
given in equation (1.11) to obtain analogous results for the corresponding
Stratonovich SDE given in equation (1.12).
Remark (1.3), [37]:

The class of 1td process may be introduced as follows:
A stochastic process Y of the form:

Yi=Yo+ Qtf(s,w)ds + (‘atg(s,w) dW, .. (1.14)
with f and g are A-adapted, and:

P ((‘at|f(s,w) |ds<¥, for dl t3 o) =1 .. (L.15)
and withgisa B8° A-measurable and

P ((‘atgz(s,w)ds<¥, for all t3 O) =1 .. (1.16)

which is called 116 process.
We are now in position to define the solution of an 1t6 SDE.
Definition (1.15), [37]:

A process Y = (Y;)q with valuesin RY iscaled a strong solution of

the stochastic differential equation given in equation (1.11) with respect to
the fixed Wiener process (W,;)q, and the initial condition yg, if the

following properties hold:
1.Y isadapted to thefiltration (Ayg |-
2.'Y has continuous sample paths.
3. For multi-dimensions given in equation (1.11), suchthati =1, 2, ..., d; | =
1,2, ...,mandtl | satisfy:
§Ifi(s.Ys) [+02(s. Vo) ds <¥, P-wp.l.
4. Y, satisfy with P-w.p.1. the following stochastic integral equation given
by:
Y, = Yo+ Q;f(s,YS)ds+ (‘atg(s,Ys)dW Ut

13
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Theorem (1.4) (The Existence and Unigueness Theorem), [3]:
Suppose that we have a stochastic differential equation given by:

dX, =F(t,X,)dt+G(t, X ) AW, X, =C Lo ETETEY,

where W, is an R™-valued Wiener process and c is the random variable
independent of W, - WtO for t3 ty. Suppose that the RY-valued function
f(t,X;) and the (d” m matrix)-valued function G(t,X;) are defined and
measurable on 1” RY where | =[ty, T] and have the following properties:
There exists a constant K > 0 such that
a) (Lipschitz condition) for al t1 I, xt,ytT RY-valued random vector,
[F(tx) - F Ly [+1G(Lx) - G(LY) EK X, - Ve |,

(IGP=trGG") .. (117)

b) (Restriction on growth) For al tl | and xtT RY-valued random
vector,

|(t.x) P +1G(tx) PEK2@+ [x, P) .. (L18)

Then the stochastic differential equation given in this theorem has on | a
unique RY-valued solution X¢, continuous w.p.1, that satisfy the initial
condition X, =c; that is, if X, and Y; are continuous solution of SDE

given above, with the sameinitial value c, then: P( sup [X;- Y;|>0)=0.
t,EtET

In contrast to strong solution of stochastic differential equations, a
notion of solvability for the equation (1.11) may be defined, which is a
weaker condition.
Definition (1.16), [37]:

A weak solution of the stochastic differential equation given in
equation (1.11) isatriple (W, A, P), (Aq 1, (Y, W)), such that:

1. (W, A, P) is aprobability space, (Ayq, is a right-continuous filtration in

A and A contains all P-negligible eventsin A.

2. W is an m-dimensional Wiener process of (Ayq, and Y is a continuous,

adapted RY-values process.

14
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3. Conditions (3) and (4) of the definition (1.15) are satisfied.

Remarks (1.4):

1. If f(t, yp) and g(t, y;) satisfy the conditions of theorem (1.4), then the
following holds; A solution (weak or strong) of the SDE given in equation
(1.11) is weakly unique, where weak uniqueness means that solutions
(weak or strong) have the same finite-dimensional distributions, [37].

2. In this work, we shall talk only about the strong solution of SDE's and the
considered examplesin chapters one and three are only of strong solution.

Consider the stochastic differential equation:
dy,=f(t, y;) dt + g(t, y;) dW, .. (1.19)

Then, for a given function F and with certain smoothness, measurability and
boundedness properties on f and g in equation (1.19) to guarantee the
existence, pathwise-uniqueness and bounded second moments, the muilti-
dimensional stochastic chain rule gives.

TF F 1 : T°F F
dF(t, i) = — dt + —f dt + = trace(g g’ —) dt + —g dW
(. yo) i ™ 5 trace(g g yt2) gy, W

... (1.20)
which is known as the Itd formula in its condensed vector-matrix notation.
The scalar casein equation (1.20) can be written as:

2 0
AF  IF l_ﬂ F gzi dt + Eg dw, .. (1.21)

it Ty, 2 ﬂytz 1) iy
I.e., one of the most important tools for the stochastic calculus and especially
for the 1t6 calculusisthe 10 formula.
Theorem (1.5) (TheIt6 Formula), [3], [22], [37]:
Let dY, = u dt + v dW, be a d-dimensional 1t0 process of an m-
dimensiona Wiener process W;. Suppose that each of the processes u; and v
satisfy the conditions given in equations (1.15) and (1.16), for 1 £ £ d and

1EjEm. Letf(t,y) = (Fu(t, y), fat, ), ... Tt Y) T CY2(1° RY, RP). Then:
X, =1(t, Y,)

IS an It process, whose k-th component X't‘ iIsP-w.p.1, given by:

15
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2
dXxk :ﬂf—k(t, Y)dt+ M t, Y dYd + 1aL
It = Ty (t 2 L Ty Dy

t Y,) dYt(i)dYt(j) .. (1.22)

where dW" dW" =g, dt, and d; iss the Kronecker delta function.

In fact equation (1.19) is sufficiently general to represent an m-
dimensional, d-Wiener process system in which g(t, y;) isan m” d matrix and

W, = (Wt(l), Wt(z) . Wt(d) )" is a d-dimensiona vector consisting of d
independent Wiener processes. By letting the columns of g(t, y,) be labeled
as ta(t, Vi), Go(t, Vi), ---s Qa(t, Y¢); then the m-dimensional d-Wiener process
system can also be written as:

dy,=f(t, y,) dt+ & ?=1 g(t vy, th(j) .. (1.23)

In this case, the component-by-component version of 1té's formulais for
k=12, ...,m

R A °R, ©
dR(t, y) = th’ =1l ﬂ et a o =1 9||91|ﬂ—— dt +
Wity g
a _18. —1g|| 11-[13( dWI .- (124)
|

There has been much discussion about whether to use the It6 or
Stratonovich interpretation of the integral and while both approaches are
correct, the choice depends on modeling process that leads to the SDE
formulation. Indeed, it is possible to convert from one interpretation to the
other in order to take advantages of the particular features of one of the
approaches as appropriate. In the scalar case, if the It6 SDE is as given in
equation (1.19), then the related Stratonovich SDE is given by:

dy = f (t,y) dt + g(t, y) o dW, ... (1.25)
where:

fty)=fty)- ——(t y) g(t, y) ... (1.26)

16
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In other words, the two equations (1.19) and (1.25) under different rules of
calculus have the same solution. As an illustration, consider the following
example:
Example (1.1), [7], [22]:

When the It SDE is:

dyi=aydt+by; dW

has the solution:
i=Yooxp((a- - b) t+bW)
as while Stratonovich SDE is:
dy,=(a- % b%) y.dt +b y, o dW,

Which can be written as:
dy,=ay,dt+by, o dW, where a=a- % b’

has solution:
Yi = Yoexp(at + b Wy)

In the case of additive noise (where g is independent of y), the I1t6 and
Stratonovich representations are equiva ent.
In vector form, the relationship between the two integralsis:

6t Y 5 & a8 jk(t,y)%jk(t,y) i=12...m
.. (L.27)
If Stratonovich calculus is used, then the chain rule becomes the familiar one
from Riemann-Stieltjes calculus.
1.3.3 Analytical Methods for Solving SODE's[3], [22]:
Stochastic ordinary differential equations may be solved analytically
dependent on the nature and the type of the stochastic differential equation,

and these methods may be summarized as follows:

|. Linear stochastic differential equations:
1. The linear random differential equation given by:

X &= dd)it = a(Wy) X + b(t, W) ... (1.28)

17
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has the solution for an initial value X,(W,) at t, =0 given by:

& t 0
X (t,W,) =Wt (W) + og 25 b(s, W) dss ... (1.29)
g 0 2
2. The general linear stochastic differential equation given by:
dX; = (A(t) X+ at)) dt + § (B, (t) X, + b (1)) dW, ... (1.30)
i=1
where A(t), By(t) are d” d-matrix-valued and a(t), by(t) are RY-valued since
k=1,2,...mand W, = (W.,..., W™)" has the solution given by:

t e m o}
Xy =F[ct QF s cals) - a Bi(s) b(s)+ds
é

to i=1 a

m t _
+a OF <* bi(s) dwl] . (131)
i=lt0

Where; ¢ =X and

B . FB9°0, B 0
F =exp¢ OgA(s) - aTidS+a OBi(s) dWg+ ... (1.32)
to i=1 [1/] i:lto ﬂ

Isthe solution of the homogeneous equation related to equation (1.30).
m .
dF  =A(t)F dt+3 B;()F , dW; , with initial value F =1.
i=1
(Note that, equation (1.30) is said to be homogeneous if a(t)=b.(t)=0, k=1, 2,
... m, Also, it issaid to belinear in the narrow sense if By (t)=0, k=1, 2, ... m.

[3D).

3. The solution of the SDE in the narrow sense [3]:
dX; = (A(t) X + at)) dt + B(t) dW;, X, =c,t1 [to, T] .. (1.33)

where A(t) isd” d matrix, a(t) are vector with componentsin RY, B(t) isd” m-
matrix and W, is an m-dimensional Wiener process, is given by:

e t t 0
X, =F Gc+ OF ta(s)ds+ (‘)Fng(s)dWSi
to to 2

18
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Here, c is constant or a Gaussian random variable, and F; is the fundamental
matrix solution of deterministic equation X§ = A(t) X;isgiven by [3]:

et u
F, =exp€pA(s)dsu .. (1.34)
&o H
since Fy =1.
Example (1.2) :
Consider the SDE:

dXIZdet, XtO:XO at tO:O

where b isconstant and F; = 1, then:

t t
Xi=Xog+ P 1dt+p” 1dw,
0 0

=Xo+ b(Wt' Wo) =Xo+ bWt, WhereWozo.

Example (1.3):
Consider the SDE:
dX;=b X; dW,
where b is constant, B(t) © b and A(t) = a(t) = b(t) °© 0 in equation (1.30)
where m=1 and applying equation (1.32), then with t, = O:

Ft=exp8éb2t+bwt9,wherewo=0
&2 @
Now applying (1.31), yields to:
L2 tebw t C lp2upw,
X, =e2 [Xo+¢0- b" 0)e? ds
0
t o I2upw
+(P” e’ dw, ]
0
L2 tinw,
- XO ez

19
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Example (1.4), [3], [22], [41]:
The exponential process of the SDE
dX;=aX,dt + b X, dW,, XtO =Xy & ty=0

where a and b are constants , t 3 0, A(t) © a B(t) © band a(t) = b(t) © 0 in
equation (1.30) and applying equation (1.32), then:

1
a(t- o) - 5% (t- o) +b (W, - W)

Ft,to —e
at- Zb2t+bw, _
Now, when to =0, Wp = O then F, =e 2 , and applying (1.31),
yieldsto:
at—1b2t+bWt§ t 3 at—1b2t+bWt
X,=e 2 EXo+f0- b" 0)e 2 ds
0
t at-lp2tepw u
tPe ? dws
0 H

at- Tb2t+b W,
= Xoe 2

at- b2t +b W,
andwhen Xo=1,then X, =e 2 .
(Note that, in examples (1.3), (1.4), we take d=m =1 in equations (1.30),
(1.31) and (1.32).
|1. Nonlinear stochastic differential equations[22]:

With an appropriate substitution X; = U(t, Y), certain nonlinear SDE's
of the form:

dY,=a(t, Y, dt + b(t, Y,) dW, ... (1.35)
can be reduced to alinear SDE in X; of the form:
dX¢ = (au(t) Xe + &(t)) dt + (by(t) X¢ + by(t)) dW, . (1.36)

In general, if 11]]—U(t,y)1 0, the inverse function theorem ensures the
y

existence of a loca inverse y=V(t,x) of x=U(t,y)that is with
X :U(t,V(t,x)) andy:V(t,U(t,y)). A solution Y, of equation (1.35)

20



Chapter One Basic Concepts of Stochastic Calculus

then has the form Y, = V(t, X;), where X; is the solution of the SDE given in
equation (1.36) for an appropriate coefficients ay, &, b; and b,.

Now, some formulae ready-made from reducible SDE's, in which the
next three cases may be considered as a special case of the SDE given in
equation (1.36), (when a(t), b(t) are scalars, k=1,2) which are given and
discussed in [22] using different approaches.

Casel:
The 1t6 SDE given by:

1
dX =§gQXt) 9(Xy) dt+g(X)dW,, Xy (0) =Xq .. (1.37)
has the solution of the form:

Xy = U'l(w +U(Xp) U

U(x) = p O——ds;g(s)? Oly ... (1.38)
0 g( s) b

Casell:
The 1t6 SDE given by:

1 o
dX, :g%g<xt)+59<xt) gEX )i+ (X)W, .. (L39)
with X, (0) =Xq,al i, hasthe solution given by:

X =U" (at+W +U(Xo))U

7 .. (1.40)
U(x) = o—dS o[
09(s) b

Caselll:
The 1t6 SDE given by:

X =GR 00X UX,) + S0(X) 08X,) St 00X )W 141
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where X, (0) =Xg,al j,hasthesolution given by:

X, =U HU(X,)e?! +e Oeanvv).
) 'y . (1.42)
U(x) = Oﬂds NOERY io

Remarks (1.5):

1. The SDE in case | may be written as a Stratonovich SDE, such that the
equivalent Stratonovich SDE is
dXi = g(Xy) o dW,

By ordinary calculus the separable ODE dU(x) = % has the solution

Ux) = wkx) + U(xg), where W(x):(‘é(%;g(s)lo. Hence, the

Stratonovich SDE has dso the solution U(X;) = W; + U(Xg), that is
X = U H (W, + U(Xq)), where U(X) = faxids :g(s)t 0,[22].
g(s)

2. Every examplein case | may be modified to Cases |l and IIl.
Example (1.5), [12] :
Using case | to solve the scalar nonlinear 1t6 SDE:

dXx; = X dt+X dw,

when f(X;) = Xt (X)) = Xt and since:

f(X, ):—g(x ) g&X, )— 2x XZ=X3

Now when
1 ; 1.1
y=U(X)= g——ds= —ds--—+—
° 98 D X X
and since x = U™ (y) =- 11 and X, = U {(W, + U(X,)), then:
y_
X0
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Xo
1- XoW,
Example (1.6), [21], [22]:
Using case |l to solve the scalar nonlinear 1t6 SDE:

dX, :ge—lxt +X2 +1%t + /X2 +1dW,, X,(0) =0, where:
2 a

f(X,) = —x +XZ+1,9(X,) =

and since;

X, = , where XoW, 1 0, " t1 |

F(X,) =ag(X,) +%g(xt) gex,)

—ayXZ+1+ ; X2 +1 Al =%xt+ X2 +1, when

JX2+1

a =1, then f (X,) :lxt + /X% +1.Now, when:

y=U(X) = O—dS Oid
g() 0 S +1

theny =U(x) = In(x ++/1+ X2) and sincex = U *(y), then

& =x+y1+x?,

and thus
2
e?y = (x +/1+ X2 ) = 2x% + 2X\/1+ X2 +1:
hence:
e-ev
x(t) = = sinh(y(t))

when X; = U [a t + W+ U(X()], wherea = 1, then:
= sinh(t + W, + sinh }(X,)).
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The next example may be solved using all previous cases, which will
give the same solution.

Example (1.7), [11] :
Consider the SDE:

dX, =dt +2,/X, dW, , X{(0)=0 a ty =0

Then using case I, with :

f(xt)%g(xt)gqxt):l, a(x) =X,

the solution is found to be:

= (%)

and when using case l1, with:
1
9(X1) = 2%, F(X;) =ag(X,) + 9(X;) g¥X,)

=a /X, +1=1

when a = 0, and thus f(X;)=1, and since y:U(x):\/;.Hence, the

solution isfound to be:

(o

Similarly, when using case I11, with:
1
9(X¢) =2y X, T(X) =ag(X ) U(Xe) +59(X ) g&X¢)
such that U(x) :y:& and since
1 1. 1
f(X;)=a2X; JX; +=2X;=2—=1
( t) t tTs t \/Xj
when a =0. Thiswill give the solution:

(o

24



Chapter One Basic Concepts of Stochastic Calculus

1.4 Stochastic Taylor Series Expansion, [7], [22], [37].

Taylor series expansion is well-known for deterministic functions
where they turn out to be useful tool especially in numerical analysis. This
idea can be carried over the stochastic setting by applying 1td's formula. Thus,
following Platen and Wagner [31], we get the stochastic Taylor formula,
which represents a generalization of the deterministic Taylor formula. In the
sequel, we distinguish the 1td Taylor expansion from the Stratonovich-Taylor
expansion due to the different rules of calculus.

With deterministic differential equation methods, a numerical method
may be derived by comparing the expansion of the method and the solution of
the ordinary differential equation in a Taylor series, and exactly the same
procedure can take place in the stochastic setting, using a stochastic version of
Taylor series. The It6 -Taylor expansion was first established by Wanger and
Platen in 1978 and 1982 [31], [42], and full details are given by Kloeden and
Platen in 1995 [22]. It allows Yy, (or any function of Y, to be expanded about

the point Yi,Up 0 the required degree of accuracy) in terms of multiple
stochastic integrals along with function evaluations at Y, . In order to derive

the expansion, the 1t6 formula is applied successively to the SDE given in
equation (1.19) asit is represented in the autonomous integral form:

t t
= +0f ds+ ¢ dWs ... (1.43
Yi yto QO (Ys) QO a(Ys) ( )
From the stochastic chain rule (1.21) in autonomous form:
& %dF N 1 ﬁ 5,0 t

dF
F(Y) - F(Ye )= g—f =ds+ ) —gdWs
(Yo) - FYy,) = Q, gdys 2dy§g : Q, dysg

R R
= Q, LOF(y,) ds+ Q, L' F(ys) dWs .. (1.44)
where the operators for scalar problems are:
2
LRy = S 292,
dy  2dy;
dF
L'F(y1) = —9
dy
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Applying the It6 formula given by equation (1.44) for f and g in
equation (1.43), then one application gives:

i=Yig + )1 0)+ G L0 () G LA () o,k

SRR ALC ORI ECORE ALY

.. (1.45)
Consequently, by applying the 1t formulaand using L°, L*f, L% and L'g,
the I1t6-Taylor expansion is given by:

Yt = Vi +f(ytO)Q ds+g(yt0)Q W, +Q @, L°f (y,)duds

t
+\
@

+Q Q y L (y,)dW, ds+Q Q y L%g(y,,) dudw,

+Q, ), Koy,) W, aw,

Similarly, the Stratonovich-Taylor expansion is developed, using this
time the following operators:

da
L%a(y,) = —f,
L a(y;) dy,

da
Lla(y,)=—=
L a(y;, dy, g

Then the first few termsin the Stratonovich-Taylor series are thus given by:
S

Yt = yt0+f(yt0)Q dst+o(Yy, ) Q OdW+Q Q L°f(y,) duds+

d s S S

el LH(y,) o dW, ds+c5 o) L°g(y,) du o dws+ Q o)

klg(yu) o dW, o dW;
and applying the standard chain rule in Stratonovich calculus to gof, Llf, gog

and ng will yieldsto the next terms in the expansion.

Remarks (1.6), [37]:

1. The above discussion is given for one-dimensional autonomous SDE's, and
we shall consider next the nonautonomous SDE's, and deriving its related
stochastic Taylor series expansion. Let X, be the solution of the 1t SDE in
genera form:

26



Chapter One Basic Concepts of Stochastic Calculus

X¢ = Xy, + Qto a(s, X) ds+ Qto b(s, X) dWs ... (1.46)

andletf: 1"~ R %® R withfl C**(1° R, R). By applying the It
formula, we get for Y, =f(t, X,), thefollowing equation:

Vo= Yig * G, G (6X0) +als Xo) (6 Xs) + b8 X9

1 6
—Z(S,XS)ids + Q b(s, Xs) (s Xg) dW,
T p
For simplicity of notations, the operators L°. = . + al + 1 b? = .
Tt T™x 2 qx°
and L' = b% are introduced and rewriting the above mentioned equations
X

as.
- N! 0 N 1
Y=Yy t QOL f(s, Xg) ds+ QOL f(s, Xg) dWs
and by applying the 1t6 formula given in equation (1.21) to the functions
f =aand f =bin equation (1.46), getting:

& S
X=X +Q (a(to,xto)+Q0 L%(u, X, )du+
(‘50Lla(u,xu)olvvu)o|s+(‘5O (b(tg, X¢) +

S0 S 1
L-b(u,X,)du+ & L'b(u,X,)dwW )dW .. (.47
@, L°b(u, X, )du+ ¢ L'b(u,X,)dW, |dW (L47)
which may be also written as:
N\ N\
X = Xy, + o, Xto)QO ds + b(to, Xto)QO dWs+ R

where R denotes the remainder. Continuing in this way by applying the 1t6
formula to the functionsf =L'aand f =L'b, fori = 0, 1 in equation (1.47)
to get the ItG-Taylor series expansion.

2. The Stratonovich-Taylor expansion works now anaogously to the It6-
Taylor expansion. Let X; be the solution of the Stratonovich SDE in

integral form:
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X¢ = Xy, + Qto a(s, Xo) ds+ Qto b(s, X.) o dW, .. (1.48)

Since a Stratonovich SDE transforms according to the deterministic chain
rule, we get for f:I” R%® R withfl C**(I” R,R) the equation:

ot o
LX) = o Xigh+Q) Gy (5X0) +alsXo)T(sX0) s +

Ri qif
Q, b(s, XS)'H_X(S’ Xg) o dWi .. (1.49)
Introducing the operators L0 = i+ g% and Lt = b%, then one can
X X

also write;
_ Lo {ot
f(tl Xt) - f(t01 Xt0)+ QO k f(Ss XS) dS+ QO k f(S, XS) o dWS
Continuing in the same way as for the 1t6 calculus and applying
equation (1.49) to the functionsf = aand f = b in equation (1.48), getting:
— N S, 0 S 1
Xt - Xto + QO [g(tO’Xto) + QOL Q(U!Xu)du + QO L Q(Uaxu) ©

dW, ] ds+ Qto[ bty X,) + Qsogob(u,xu)du+
(‘50 'o(u, X ;) o dW,] o dw,

€ €
= Xy, *+ alto, Xy,) Q, ds + b(to, Xy, ) Q, ° dWs

+R ... (1.50)
with remainder R. Again, continue in the expansion applying for instance
equation (1.49) to integrands Q a and Qb, fori =0, 1in equation (1.50) to
get the Stratonovich Taylor expansion recursively.

L eaving the one-dimensional case treating the general setting with a d-
dimensional solution of SDE's of m-dimensional Wiener process, we make
use of a convenient notation applying the concept of hierarchical sets. In the
following, leta |~ RY %.® RY be adrift vector andb: 1~ RY %® RY ™
be the diffusion matrix and let X; be the solution of the SDE:

Xi = Xy, + Qto a(s, X) ds+ Qto b(s, X) dWs ... (L51)
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In order to describe the stochastic Taylor series expansion, a multi-
dimensional and for multi Wiener process setting, the following terminology
will be used:

1. A multiple1t0 integral is given by:

NI T ) j j

i)t = Q@ Q) AW ..dW .. (L52)

whereas above j 1T {0, 1, ..., m} for m -Weiner processes, and where
0 _
dWs =ds;.
2. A multiple Stratonovich integral isgiven by:
S S2 j j
vz i)t = QQ ~Q © dWSl1 0...0 dWSI'_- ... (1.53)

where j;i T {0, 1, ., m} form m -Weiner process; the brackets and the
dependence on t will be dropped when the meaning is clear. Here, aso

odWy =ds;.
For more explanation to this context, we start with the definition of multi-
indices and hierarchical sets which provide an efficient notation in the
following. Let:

M={a=(uvjz...j0)1 {0,1,....,m": LT ¥} U {v}

... (1.54)
be set of all multi-indices. The length L(a) of a multi-index a = (j4, j2, ...,
ju), whereji T {0,1,..,m},iT {0,1,.,L} andm=1, 2, ... may be defined
as.

L(@)=L, LT ¥ ... (1.55)
Where v is the multi-index of length O, such that:
L(v)=0 ... (1.56)

Thus, for example L((1, 0)) =2and L((1, 0, 1)) = 3.
In addition let n(a) denote the number of components of a multi-index
a, which are equal to O, such that:

n(a) =n ... (1.57)
where n is the number of zero components of a, for example
n((1, 0, 1)) =1, n((0, 1, 0)) =2, n((0, 0)) = 2.

Now, for a = (ju, jo, ..., ju) 1T MwithL =L(a) 3 1, define:
-a=(z2 3 ., juanda- =(g, j2 .., jr-1) .. (1.58)
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by deleting the first and the last components of a, respectively. For
example:
-(1,0=(0),(1,0- =(2),-(0,1,1) =(1,1),(0,1,1)- =(0, 1)
Asubset H 1 Miscaledahierarchical setif H* Aandif:
sup L(a)<¥ and -al H, foreachal H \{v} ..(159)
al H
For example, the sets{v}, {v, (0), (1)}, {v, (0), (1), (1, 1)} are hierarchical
sets.
The corresponding remainder set R(H) for the hierarchical set H is
defined as:
RH)={al M\H:-al H} ... (1.60)
For example:
R({v}) ={(0), M)}, R{V, (0), (1)}) ={(0, 0), (0, 1), (1, 0),
(1, D}, and R{v, (0), (1), (1, }) ={(0, 0), (G, 1), (1, 0),
(0,1,1),(1,1,1)}
and consists of all next following multi-indices with respect to the given
hierarchical set H.

We are now able to define multiple stochastic integrals. Let us
introduce three classes of adapted right continuous stochastic processes (fy)g |
with left hand limits. We say:

f1 H, if[f(t, 0)|<¥, P-wp.l foreacht30 ..(1.61)
and we say for eacht® 0, f1 H if f satisfies condition given by:

P(QIf(sw)|ds<¥|=1, Pwp.1 .. (1.62)
In addition, define Hy isthe set of all f satisfying the condition:
& If(s. @) ds< ¥, w.p.L for each t3 0 ... (1.63)

Furthermore, definef1 Hg, foreachj1 {2,...,m} if fT P holds.

Now, letr and t be two stopping times with:
Ofr(0) £t(w) £T, P-w.p.1 ... (1.64)
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For amulti-index a = (jy, j2, ..., ju) T M and aprocessf1 Ha, we define the
multiple 1t6 integral 1,[f(.)];; with respect to the m-dimensiona Wiener
process W = (W*, W2, ..., W™) recursively by:

:::f(t), if L=0
LI < = :I’:(‘ptla_[f Ol sOs  if L2 1and j =0

i |
%(‘SIa_[f(.)]r,SdWSJL if L3landj, 21

... (1.65)

Here, we note the H, with a = (jy, j», ..., ju) and L 3 2 describes the
totality of adapted right continuous process f with left hand limits, such that
the integral process (l..[f(.)]; )1 considered as a function of t satisfies
Lo [F()] T Heiy - If the integrand is constant, i.e., f(t, ®) °© 1, we abbreviate

l[f()];+ as |, if the limits r and t are obvious from the context. In the
following, we denote WtO =t, thO =dtandl,;=14[1]o; whenr =0 and
t =t.

As an illustration of this terminology, consider the following

examples:

MO0 =0, 1lf Oy 1, = QM) ds

Ilf (o= § (8) WG, TonlfOoc= § ¢ f(s2) dsrd WG

Remarks (1.7), [7]:

By the same way, the multiple Stratonovich integral may be defined
which is denoted by J,[f(.)]; : with respect to m-dimensional Weiner process
and use the same modifications of multiple 1t6 integral about the function and
thelimitsr and t, i.e, f(t, ®) = 1, L[f()]r+ = J = J[1]or, Wwhenr =0, t =1,

which will be denoted by W, =t and o dW{ = i, such that:
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:::f(t), if L=0
MOV = {33 [f Ol o5 if L2 1and j =0
.I.

L. Ol 0. if L3 1and j 21
... (1.66)
For example:
Jory[Iot® Joryt = Q; Jox o dWg
=9 O Joo AW o dwi
=3 § @ dseo dWE o dw}

Ri R
Jo10[1ot® Jor0) = Q J(O,]_)dsl =Q 61 J(O) o dW_g2 ds,

—+

\

= Qfl QSZ dsso dWL ds;
Lemma (1.1), [7], [22]:
Letal (ujz ..o ), b T (i)%,...J8), withL,p=1,2 ...; and

wherej;, j# T {0,1, ..., m}, for m-Wiener processes, then:

R b g - R
Ia,t Ib,t: Q Ia,s Ib-,s dWs + Q Ia-,s Ib,s dWsJL + Q Ia-,s Ib-,s

iL=ipr oy 9
for t 3 0 and where the indicator function:
Loy _1Lif Alstrue
AT OLEIF O T Lo, otherwise

Lemma (1.2), [7], [22]:

_ L
J - 21 . L .
Wt Ia,t __aOI(Jl,JZ,...,Ji,J,Ji+1 ..... L)t
1=
L
+A L s : :

al Gi=i* O (i iz 1.0, 410 ) 8
|:

-~

for dl t 3 O, where a = {j1, jo, ..., ju}, Ji | {0, 1, ..., m} for m-Wiener
Processes.
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Example (1.8), [7]:
Use lemma (1.2) to evaluate lg lo;, when a = (ju, j2), sincejq, j» 1 {0,
1},L(a) =2

2
VV(t) lae =

2
i=
=it it iz
*li=iral it Thi=ira Hion
Now, whenj; =0, j,=1,]=0,andfori =1, 2, then:
lti=irg = Lo=orgp =00 Ijp=jrgp = lpz=01 g =0, andthus
lolor = tlor = Wgy o = loone + loons + oo
Then Io oy = 2 loor + loto.-
Also, using lemma (1.1), such that a = (0), b = (0, 1), then:
Lot lone = (at 05105 dWs + (at (1) lonsdWs + (at Dloslio=1:0
ds
Where o = ¢y ds, dW2 = dt, loxo = ¢ 005, I, = O; and by using the
il if Alistrue
},0, otherwise
Now, when a = (0), b = (0), then:
lolo= ¢ (1) lod W + ¢ (1) lod W2 + ¢ (1) (1) o=y IS

indicator function I = Iy =if 0 =

ZZQ; |0d3=2|00

N 1
Then l gl = Q 2 1(0,0)sdWg + 110 = 2 loos + loao.

We aso have the following special cases of lemmas (1.1) and (1.2).
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lol1 =1y +119 U

| |11—|110+|101+|011: (167)
|1|01—2|011+|101+|oo?/ S
1110 = lio1 + 211330 + oo p

Lemma (1.3), [22]:

Supposethat a = (ju, j2, ..., ju) Withj: =jo =...=j.=jT {0, 1, ..., m}
for m-Wiener processes; whereL 3 2. Thenfort3 O
il
e j b

1 L
I (Wi la- - tlauye o) i §2 1

ik, ifj=0

Example (1.9), [22]:
Using lemma (1.3) to evaluate I 14, 1111 and l oo, yields to:

1. 1o = %ﬁ wherea = (0, 0, 0), L(a) = 3.

2. Whena =(1,1),L(a)=2,a- =(1), then:
_ 1 _ 1y _ i
ly = E(W(t)|(1),t- t(l)) = E(I(l“_ t), where 15 =W},
]=12,....
3. Whena=(1,1,1),L(a)=3,a- =(1,1), (a-)- =(12), then:

1 1 0]
I = §(W(t) I(ll)t - tl(l)t) ?(mgzl(l)t ) E ) tl(l)t—
1@. 3 1 (@) 1 3
=—c=lpi- =lpit- Ipi== =1l - Sl «t
352 D),t 2 (D,t D).t ﬁ 3l ( @t D)t )

Now, lemmas (1.2) and (1.3) may be rewritten in another form to
obtain relationshi ps between multiple Stratonovich integrals, as follows:

Lemma (1.4), [7], [22]:

L
WY = aJ(Jllz sdibisgeed )t foralt? 0.a=Gu gz -0 0.
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Lemma (1.5), [22]:

Ja,t: U(‘](j),t)l_l forall t3 0, a= (J]_,Jz, ...,JL),J]_:Jz: =L =) and

L30
For the later use, we state now some specia cases of the last two
lemmas:

Jodi =Jo1 1o u

|

JoJ11 = d110 *+ d1o1 + Jo1ay

Jdo1 =2dp1 tdor !
Jdig = dio1 + 24159 ly .. (1.68)

1 T

Jii = > N i

|'

_13 i

Ji11 5 Jp b

Also, the following results obtained in [22], expresses the relationship
between multiple Stratonovich and It0 integrals:

Jy =13, whereL(a)=0or1 :J
1 i

J; :Ia"'EI{jl:jle}IO’ whereL(a) =2 i
|

_ 1 _
Ja =la +§('{j1=jzl 01 0a)t +ip=ia 0 0yt WhereL(a) =3y
|

_ 1 | 1 | | i
T2 =la * 5 =it 0 Yia=iar ot f0 0 +§( {h=i2* 0 'Oz ja)t T ¥
I
ltio=igt 0 1(G,0,i2).t ¥ {ia=ig2 01 |(j1,j2,o),t), whereL(a) = 4b
.. (1.69)

Kloeden and Platen in (1995), [22] also express this relationship as
recursive formulafor J,. Thus, if L(a) 3 2anda = (4, j2, ..., jL), then:

1
Ja = IJL [Ja_ ] +§ I{jszL-ll o) IO[‘](a-)- ] (170)
where:

1§ (s)ds, if j_=0
IJ'|_[f]:'l i
fg()dws, if j_ >0
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Example (1.10), [7], [22]:
1. Whena = (1), then J, = I;.
2.When a = (1, 1), L(a) =2,a- = (1) and I{jL:jL-ll o)} = |{1:11 o)} =1

: : 1
when applying equation (1.70), then Ju 1y = 11[Ja)d + E(l) lo[(1)],
since J(l),t = I(l),t: Il[l(l),t] = |(1,1),t, e,
\t \t Y
|1[|(1),[] = Q |(1)dWé = Q Qf d\Nﬂ;d\N:SL = I(l,l),t

1
Hence, J;1 =141 + E lo.

3. S|m||ar|y, i =11 + %lo]_"‘ %l]_o.

Theorem (1.6) (TheIt6 -Taylor Expansion), [22], [37]:
Let Hi M be ahierarchical set, let r and t be two stopping times

withto £1(0) £t(0) ET<¥ Pwplandletf: 1" §9® i, then for the
solution (X;)q, of the 1t6 SDE given in equation (1.51). The 1t6 -Taylor
expansion:

(X)) = @ lalfar, X leet @ alfaly X)les

al H alR(H)
.. (L.71)
holds, provided that al of the derivatives of f, aand b and al of the multiple
It0 integrals appearing in (1.71) exist.

Theorem (1.7) (The Stratonovich-Taylor Expansion), [22]:
Let Hi M be ahierarchical set, let r and t be two stopping times

Withto £1(0) £t(0) ET<¥ Pwpladlet f:1” §9® j, thenfor the
solution (X(t))g , of the Stratonovich SDE given in equation:
Xi = Xy, + ¢ (s Xg) ds+ ¢y b(s, Xs) 0 AW

Then, the Stratonovich-Taylor expansion:

ft,X)= a Lfar, X))ot & &lfal XDl
al H alR(H)

- (L.72)
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holds, provided that al of the derivatives of f, a and b and all of the
multiple Stratonovich integrals appearing in equation (1.72) exist.

1.5 Expectation of Stochastic I ntegrals, [7], [22]:

It is adso necessary when studying the order of convergence of a
numerical method, to be able to determine the expected value of multiple
stochastic integrals. The following lemmas, adopted from [7] and [22] provide
a means for calculating these expected values. Firstly, however, some
additional terminologiesis required.

If a = (g, J2, ..., Ju) IS the index of the multiple stochastic integral,
then a” is the index obtained from a by deleting al zero components, for

example, if a = (1, 0, 2, 1), then we have:

a’=(1,021)"=(121
and Ko(a) will denote the number of zero components in a that precede the
first non-zero component of a or until the end of a if all of its components are
zeros, and K;(a), for i =1, 2, ..., L(@"), will count the number of zeros
between the i™ and (i + 1)™ non-zero components of a For example,
ifa=(0,1,10,2),thena”=(1,1,2),L@)=5 L@") =3, Kya) =1,
Ki(a) =0, K@) =1, Ks(@) =0; and for a = (0, 1, 2, 0), we havea™ = (1, 2),
L(a) =4, L(a") =2and Ke(a) =1, Ky(a) =0, Ky(a) = 1.
Lemma (1.6), [22]:

Letal M\ {v} withL(@)?* n(a),letf] H,andletr andt betwo
stopping timeswithto£r £t £T <¥, w.p.1. Then:

E(1[f()] tJAr) =0, w.p.1 .. (L.73)

Lemma (1.7), [7], [22]:

Leta, bl M,letfT H,, gl Hpandletr and t be two stopping

timeswithtoE£Er £t £T <¥,w.p.1.,wheret is A,-measurable Then:

1=0, if at1p*

E(Ia[f(-)]r,t’lb[g(-)]r,t|Ar)}£K (t- H)WEDLE) (k@) +k; ) .

iEKt g ,ifa”=b"
£ w@b)! i k@)t ko)

.. (L.74)
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L@™)
whereo(a,b) =L@") + & (k;(@)+k; (b)) and
i=0
Kig= sup E(fUS)Y(S,)|IAr). Moreover, (1.74) holdswith f° g© 1.
S, Sl [r ot

Remark (1.8), [22]:

By using lemma (1.7) and the moment estimates given in equations
(2.73) and (1.74) for multiple 1t6 integrals, the values of the conditional
expectations may be evaluated as.

E(Ial ap - ak)_ gC)'a to.tg+h AO?
17/
forhT [0, T- tg anday, a,, ...,axl {al M:L(@)£b}\{v}; wherebl
{1, 2, ...}, we have:
E(lay la, -+ la ) =0 .. (1.75)

When the number of nonzero components of the multi-indices
k

involved | := & (L(a;) - n(a))) is odd. Furthermore, when | is even we find
i=1
that:
|E(]

a az

k
N2 IEK N, wherer = %I +8 n@) ..(176)
i=1

We shall say that the expectation given in equation (1.76) has an order
r in the time increment h. Excluding those aready given in equation (1.75)
and those of constants I = h, 1) = %hz, loo0) = %hs
Example (1.11), [7]:

Leta =(1) and b = (1, 0). Thena” = (1) = b", and so by lemma (1.7)
the expectation E(I1110) is non-zero. Counting the zero components, Kq(a) =
Ki(a) =0and Kg(b) =0, Ky(b) = 1, such that:

L(a )

o(@ b)=L@)+ a (Kia)+Kib)

i=0

=1+Ko(a) + Ko(b) + Ky(a) + Ky(b) =2
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Therefore, from lemma (1.7), witht = h, r = 0 and where a* = b" and
fO gO

t- )Y@ LED (K, (a) +K; (b))!

w(a,b)! 5, K@) K;(b)!

h? (Kg(@) +Ko(0)! (Ky(a) +Ky(b))! _ 1

21 Ko(@)! Ko(b)!  Ky@)! Ky(b)! 2

where, K;; = di; and upon taking the supremum value of E(l; I10), we get

E(11130) £ Ky

11

E(ly 110) = %hz. Then:

1
i 20 =B il @) =5 Wy j, - (A77)

Example (1.12), [7]:
In order to calculate the expectation of 11l10l101, first apply lemma (1.7)
and from equation (1.67), hence:

l1110=2 1130+ 101 + 0o
Then:

E(l11101101) = B((2 110 + 1101 + l0o) l101)
=2 E(l110l101) + E(|1201) + E(loo l101)
Lettinga =(1,1,0) andb =(1, 0, 1), then L(a*) =2 and a* = b". Noting that
Ko(@) =Ky(a) =0, Ky(a) =1, Kg(b) =0, Ky(b) =1, Ky(b) =0, then:

L(a )
o@b)=L@Y+ & (K@) +Kib)=2+2=4
i=0

andsowitht =h,r =0andf° g° 1, and thusK;4 =1, we have:

(t- r)"@P L@ (K, () +K; (b)!

w(a,b)! 5, Ki(a)!K-(b)!

h4 £ (Ki(a)+K; (b)) h_4
i .C% @K D) ) (1)(1)(1)—

Now, ifa =b = (1,0, 1) and L(a*) = L(b*) = 2, then Ko(a) = Ko(b) =
0, K1(a) = Ka(b) = 1, Kx(a) = Ko(b) =0, o(a, b) =2 + 2 = 4, and:

E(l110l101) £ K g
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, h* 2 (K;(@)+K; (b))!
E(1701) = E(l101l101) £ K11 Al 90 Ki(a)! Ki(b)!

_ . h? _h?
=0 W@M=7

Finally, E(log 1101) = 0, since a(0, 0) and b = (1, 0, 1) givesa™ 1 b".
Consequently:

h* h* n*

E(l; 1] £2—+ —=—

(1 10 101) 4| 12 6
Example (1.13), [7]:

Leta =b =(1, 1) and thusa™ = b" = (1, 1). Then by using lemma

(22) to find E(‘]fl)’ such that Jll - Ill + % Io, then:

E(3) =E((ly + % 10)%) = E(12) + 2 E(lo 1) + % E(13)

To find E(1Z,) use lemma (1.7), such that Ko(a) = Ky(a) = Ky(a) = Ko(b) =

L@™)
K1(b) = Ky(b) =0, and then o(a, b) =L(@") + a (Ki(a) + Ki(b)) =2, and
i=0

sowitht =h,r =0andf® g° 1,

(t- V@R LED (K, (a) +K; (b))!
w(@,b)! 5 Kj(@)! K;(b)!
h* 2 (Ki(@)+K;(h) 1

T ,90 Ki(@)K (b)! 2

E(l11111) £ Kt g

and by [22] then:
1

_ 2
B0 Gt aiant) = 5 1 iy g Gig g - (178)
and E(l112) =0, wherea = (0) =b = (L, 1), thena* * b". Finally, E(12) =
such that 1o = ¢y dt = h and E(¥) = . Consequently:

1 1 3
E()E = h+0+=h=2HR
(J1) > 2 2
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Remark (1.9):

For al examples considered in this section, we can apply remark (1.8),
for example, when back to example (1.11), such that E(l,1,0) and since
a;=(1),a,=(1,0andL(a;) =1, L(ay) =2,n(a;) =0, n(ay) =1, then:

2

| =4 (L@)+n(@))=3-1=2

i=1
and since 2 is even, then:

1 8 1
r=—1 + na)=—2)+1=2
> El() 2()

1 : : :
and thus |E(11 l10)| £ K h?, where K = 2 according to the solution of this

examplein lemma (1.7).

Since the result of lemma (1.7) is applied only to the It integral and
because in this work, we will study the order of convergence of the numerical
methods will be analyzed when solving SDE’s in Stratonovich formulation,
therefore in this section we will includes three additional important theorems
which give the results concerning the expectation of products of multiple
Stratonovich integrals. These theorems are applied in the derivation of
stochastic Runge-Kutta methods in chapter two. The known result from [22],

whichis E(l,, 15, ...15,) = 0if the total number of non-zero indices in aj,

a, ..., axisodd is applied in the following theorem which extends the result
to Stratonovich integrals:

Theorem (1.8), [7]:
If the total number of non-zero indicesin a4, a,, ..., ax 1S odd, then

aek o]
E(}O JaL - = 0.
eL=1 @
Theorem (1.9), [7]:
Let J, be a Stratonovich integral with L(a) =k, n(@) =k - t,i.e, k-t
zeros. Then E(J3) = O(h*).

The result in theorem (1.9) may be extended to the product of an
arbitrary number of Stratonovich integrals, as in the next theorem:
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Theorem (1.10), [7]:
E(Jay Ja, - da, ) = O(h"), for | iseven, where

X 1 &
| = a (L(aj) - n(aj)) andr = EI + a n(a;).

i=1 i=1
Now, when back to the example (1.13), then:
2.
E(3) = Eé‘é‘ : (by lemma (1.5))

- - 4 - =
= 4E(~31) 4E(~]1~]1~]1~]1)

By theorem (1.10), when a; = (1), L(a;) =1, n(a;) =0, for al i =1, 2, 3, 4,
4

[0}

then| = g (L(aj) - n(a)) = 4 and since 4 is an even number, then
i=1
1 g 4 2
=§I +a n(a;) = 2 and thus E(J;’) = O(h").
i=1

In equations (1.69), when J; = |, then by remark (1.8):
IE(I111111,)| £ K h?
and K = 3 according to [22], such that:
i3h2 if 1=02=13=1a
_ 1 h?, if {j1,i2, i3 ja} consistsof 2 distinct
| pairs of identical numbers
%0, otherwise

E( Gy ey (a)) =1

.. (1.79)
1 1 3
ThenE(J%) = = E(JN = = E(13) = = K?
en E(J}) 4 (&) 4 (17) 4
Example (1.14), [7]:

Using the above theorems, it can be shown that E(J, J, J1) £ % h?.

Consequently, as J; J, = Ji» + by, then by lemma (1.4):

E(J &) = E((J12 +321)321) = E(di2dn + ng)
Now, by theorem (1.10), E(J» b1) = O(h?),
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but when Ji, = 115, B = |1 (by equation (1.69)), such that I{j1=j21 o= 0),

then E(l1» 1,1) = 0 (by equation (1.78)) suchthat d. ;. =d._; =0,

i3 ™ Y2.a
or, according to equation (1.75) and E( ng) = O(h?) (by theorem (1.10)),
or when J; = I,; (by equation (1.69), since I{j1=j21 =0

Therefore, E(J5,) = E(15,) = % h* (by equation (1.78) such that dj ; =
d; ,.ja = 1, or according to equation (1.76)).
Hence:

1
E(hbdn) = EQpdy + J5) = E(J5) = Ehz.

These examples demonstrate the systematic way that the lemmas can
be applied to calculate the expectation of products of stochastic integrals.

Finally, it is noted that if two random variables X; and X, are
independent, then E(X; X,) = E(X4) E(X,) . Thisfact can be used to calculate,

for example E(Jl2 Jg) as J; and J, are independent.

Example (1.15), [7], [1]:
First approach:
E(J 35) = E(%) E(J)
Whena=(1)=a",b=(2)=b"and L(a") = L(b") = 1, then Ky(a) = Ky(b) =

L@™)
Ki@) =Kib) =0, w(@, b)=L@")+ a (Ki@)+Kib)=1witht=h,r
i=0
=0andf=g=1,1;=J (by equation (1.69), since:
E(Illl) £ Kf’g = h
In this example when by [22], K11 = d;; in equation (1.77), then:
E(I(j1)1t I(j2)1t) =h dj]_,jz (180)

and by the same way followed previoudy E(Jg) = h and by theorem (1.10),
E(J) = E(J) = O(h).



Chapter One Basic Concepts of Stochastic Calculus

Second approach:
Also, using theorem (1.2) with J; = |; (by equation (1.69)) and with
f(t)=1,a=0, b =h, hence:

, . \
S T0Ta) = B0 O)a) = E€Q 0= ES3T2( ol
u

e

hence
2 u

E(J?):Egé‘d E?thu E)=h, i=12

Therefore, E(J? J5) = E(J%) E(J5) = h?.
Third approach:
This result may also be obtained as follows:

By equation (1.69), JZ = 1Z and 12 = 21y + lo. Also, J5 = 15 =21 + Ig
Hence:
E(J2J5) = E((2 111 + 10)(2 111 + 1))
=4 E(l112) + 2 E(lol11) + 2 E(lol2) + E(13)

such that from equation (1.78) E(l1; 1) = 0 and since d; .. = d.

i3 i2.:]4

According to equation (1.75) or using lemma (1.7) when a = (0), b = (1, 1),
then a+ 1 b+. AISO, E(IO |22) = E(I Ill) =0.

Finally, E(12) = Ea%(ahdtu = = E(h?) = b2 Then:

E(J J5) =4 E(ly112) + 2 E(lol11) + 2 E(lgl22) + E(13) = h?
Fourth approach:
Also, we can use equation (1.79) to find E(Jf J%), o)
E(J J5) = E(J L 1 &) = h? such that J, = 15, J, = |, (by equation (1.69) and
{ai},i=1,2,3 40f Jai consists of two distinct pairs of identical numbers).
Extending thisto N random variables yieldsto the result:
E(¥J5...3%)=h" ... (1.81)

The independence of random variables also results in the following
examples.



Chapter One Basic Concepts of Stochastic Calculus

1. E(J} J5) = E(J) E(J5) (by equations (1.79) and (1.81))
= (3h) (h) =3h°
2. E(J J33) = E(J7) E(J5) (by equation (1.79))
= (3h% (3h?) = 9h*
3. E(J 35) = E(F) E(%)
= (15h° (h) = 15h*
Such that E(J5) = h, hence using theorem (1.10) E(J°) = O(h%) and
when J; =1 in equation (1.69), then by remark (1.8)
IE(I1 111111119 EK R®
and K =15 according to [22], such that:

115h°, if jy =, =..= s

:'}3h2, if 1 pair and 1 quadruple of identical j
j:j h®, if 3different pairsof identical j
%O, otherwise

E(I |

11|12|j3lj4 j5|J6)

.. (1.82)
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Chapter Two
Runge-Kutta Methods for Solving Ordinary

Stochastic Differential Equations

| ntroduction:

In this chapter, we give some conceptions about strong and weak
convergence and give some models of stochastic Runge-K utta methods.

Pamela in 1999 [7] derived some models with multiples stages
stochastic Runge-Kutta methods (SRKM's for short) with strong order of
convergence and proved that those models are stable using the mean square
stability and asymptotically stability sachems.

This chapter consists of four sections. In section 2.1 some conceptions
about strong and weak convergence are given. In section 2.2 the previous
work of stochastic Runge-Kutta schemes are illustrated in details. In section
2.3 the derivation and analysis of stochastic Runge-kutta methods are given.
Finally in section 2.4 the stability of the explicit SRKM's using the mean
square concept of stability.

It is remarkable that in this chapter, we shall discuss the derivation of
explicit Stratonovich stochastic Runge-K utta methods for solving autonomous
SDE's with strong order 1 according to the style of Burrage in (1999) [7], and
its stability also will be considered.

2.1 Fundamental Concepts, [7], [22],[39].

In order to determine the quality of the scheme, i.e., the accuracy of
the discrete time approximation, we have to specify a criterion for the type of
the convergence, since there are mainly two different objectives connected
with the approximation of solutions of SDE's of the form:

dX, =f (£, X )dt+g(t, X )dW, ; X, =X .. (21
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Definition (2.1) (Strong Convergence), [22], [37]:

A discrete time approximation Y" is said to be converges strongly
with order p > 0 at time T if there exists a positive constant C, which does not
depend on the step size h, and 5, > 0, such that:

E(IXT - Y|) £ChP .. (2.2)

T- ty-
where h = Ttol (0,dp) , N isthe number of subintervals of theinterval | =

[to, T], Xt isthe actual solutionat T andY{1 isthe numerical solutionat T.

Remark (2.1), [7], [22], [37]:

If we want to construct the 1t6-Taylor scheme of strong order p = 0.5,
1.0, 15, ...; i.e, the stochastic Taylor expansion is constructed using
definition (2.1).

We need to take the association with the hierarchical set defined by:

Lo,={al M:L@)+n@)£2porL(@)=n@)=p+ %} ... (2.3

where M, L(a), n(a) are defined in section (1.4).

In the general multidimensional case, with a d-dimensiona SDE and
m-dimensional Wiener process, the 1t0-Taylor scheme of strong order p
defined by the vector equation:

Yo =Yn+ a  faltnYn) lag v, Yo=Xo .. (2.9
al Lp\{v}
recursively with F(t, x) = x, for al (t, x)T |~ RY and for n =0,1...,.N-1;
{v} is defined in chapter one (see equation (1.56)), provided that all
derivatives of f and g appearing in equation (2.1) exist, [22].

It is remarkable that, the above discussion is given for the It6-Taylor
formula, and by the same way, the Stratonovich-Taylor scheme of strong
order p=0.5, 1.0, 1.5, ...; may be discussed only by replacing f(t, X;) in [t0
SDE’s with {(t, X,) in Stratonovich SDE’sand I, ; ; .. ininequation (2.4)

with ‘Ja,tn,tn+1'
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However, in some cases it is not necessary to find an accurate path
wise approximation of an Itd6 process. Instead, only some of the moments
which may be of interest, or more generaly E(f(X)) for some function f. This
Is, amuch weaker condition, which give the reason for the next definition:
Definition (2.2) (Weak Convergence), [22], [37]:

A discrete time approximation Y" with step size h is said to be
converges weakly with order p > 0to Xtat time T ash %® O, if for each

~

f1 c2rD (Rd, R) there exists positive constant C, which does not depend

on h and afinite number d, > 0, such that:
|E(f (X1))- E(F(YT)) [EChP," hT (0,dp).
Remarks (2.2), [22], [37]:

1. Inorder to construct aweak Taylor scheme of order p=1, 2, 3,...; for the
genera d-dimensional SDE, one have to consider the hierarchical set:
G={al M:L(@)£p} ... (2.5)
then an m-dimensional Wiener process, the It6-Taylor scheme of weak
order pisrecursively defined by the vector equation:

Y1 = Yot . é. fa (tn’Yn) Ia,'[|n,'tn+1’ Yto = Xo ... (2.6)
al Gy\{v}
with F(t, x) = x, foral (t, x) T 1~ R®andforn=0,1, ..., N - 1

provided that al derivatives of f and g appearing in equation (2.1) exists.

Similarly, as in the case of It06-Taylor expansion, we may use the
Stratonovich-Taylor expansion of weak order p =1, 2, 3, ...; by replacing
f(t, Xy in the 1t6 SDE (2.1) with f(t, X,) in Stratonovich SDE's and
I in equation (2.6) with Jy ¢ ¢ ..

a,tn,tn+1

2. On the one hand, the partial derivatives appearing in the Taylor scheme
must be calculated and on the other hand to simulate the correlated
random variables.

| —tnrls‘f S%olwf"lolwaz dw2k
atntnyg -~ O OO0 S s, OWg
tI’] tI’] tI’]
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where dWS =dt whena =0, foral al L ,for strong schemeanda i G,

for weak scheme.
For the weak approximation of order p, the multiple It0 integrals |, may

be replaced by other random variables Ta, if there exists a constant C > 0O,

such that the moment condition:

L .

go ot - kol attnag | AN, 3 < C (tpey - to)"* .. (27)
holds for al choices of multi-indicesa, T G\{v}, fork =1, 2, ..., L and
withL=1,2,...,2(p+1).

In the next section, some models which are formulated for
autonomous SRK methods according to strong or weak convergence are given
and thereafter, models of autonomous and non-autonomous SRK methods
have been discussed.

2.2 Previous Work on Stochastic Runge-Kutta Methods.

In this section, the SRKM are classified into two types:

1. Autonomous SRKM's which may be also classified into two types:

(&) Autonomous SRK methods of strong convergence and following some
well-known models for this type:

When the 116 SDE is given by:
dy,=f(Yy dt + g(Yy) dW,, Y, =Y, ... (2.8

then the strong order 1.0 SRKM is:
1
Yo = Yo+ f(Y0) B+ g(Y0) DWo + Z[g(Ys + a(Y)Vh) - g(Ys)]

(DW? - h) .. (2.9)
where h =ty - t,, DW, = W,
RUmelinin (1982), [38].
When the Stratonovich SDE is given by:
dY.=f (Y) dt+g(Y) o dW, ... (2.10)

T th. This model is proposed by

where;
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£ =1V - oY) 94V, Y, =Yo

The strong order 1.0 SRKM are:

& S . U
Yi :yn + ha. a” f_(YJ) + +J1a b” g(YJ) N :1,2 ..... S|
= = V . (2.12)

S S
Yo =Ya + hA 2;E(Y)+3Q g;9(Y) ;
j=1 j=1 ,o
where A = (&;) and B = (b;) are s s-matrices of real elements with a'=

(@, @y, ..., a) and d = (¢, @, ..., @) are row the vectors in R®,

h=twi- th, h=DW,=W, - th and sis the stages of the method.

n+1
If both A and B are strictly triangular matrices, then equation (2.11) is
said to be explicit, otherwise it is implicit. This model is proposed by
Burrage and Burrage in (1996-1999), [4], [5], [7]-
(b) Autonomous SRK methods of weak convergence and next some of the
most well-known models of this type:

When the SDE is as given in equation (2.8), then the weak order 2
SRKM is:

Yot = Yot % [f(u) + f(Y.)] h + % [g(u) + () + 2 g(Y,)] DW,, +

~

1 DW? - h
—[o(u) - g(u.)]—=— ... (2.12)
4 Jh
where;
h = tn+1 = tn.
DW, =1, = th - th.

U=Yn+f(Ys) h+g(Y,) DW. .
U =Y+ (Y h+g(Y,) vh.
uw =Yy +g(Ye) h- g(Ys) Vh.

50



Chapter Two Runge-Kutta Methods for Solving
Ordinary Stochastic Differential Equations

Such that DWn is a random variable and must be Ay -measurable

and satisfy the moment condition given in equation (2.7).
This model is proposed by Platen and Kloeden in (1992), [22] and
Platenin (1987), [33].

When the Stratonovich SDE is given by equation (2.10), the weak order
2.0SRKM is given by:

Yo =Y+ a a; f(H?)h,+ a g g(HP) & Y, =Y. (213)
=1 =1
forn=0,1,...,N- 1, with supportlng values:

H(O) =Y, + a A(O) f (H(O))h + a B(l)(o) g(Hgl))‘]l
J

HO =y +3 AP (H)h, + 3 BPWg(H) 3,
ji=1 j=1

where hn =11 - T, J]_ = DW W a1 th and Al(j())’ Al(jl)’ Bi(jl)(O)’

Bi(jl)(l) are s’ smatrices of real dementswitha™ = (ay, a,, ..., a)) and

0 = (% & --., &) arerow vectorsin R®. Thismodel was proposed by
RoBler in (2003), [37].
2. Non-autonomous SRKM's, which may be also classified into two types:

(a) Non-autonomous SRK methods which is worked according to the
strong or weak convergence and following some well-known models:

When the It0 SDE is given by:
dY; =f(t,Yy)dt +9(t,Y)dW, .. (2.14)
then the strong order 1.0 SRKM is.

Y, = Yo u
I

Yn+1 = Yo +f (ther, Yner) N+ 9(th, Yy ) DW, + \/,[g(t Y) ... (2.15)

+ (t, Yn) h+0(t, Yn)Vh) - g(tn, Yo )II(OW,)? - h]|O

Where h = tn+1 = tn, DVVn = Wt "

.. - W, . This model was proposed by
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Platen and Kloeden in (1992), [22].

When the SDE is as in equation.(2.14), then the weak order 2.0 SRKM
IS

Yo=Yt %g(tn,vn) DWW, + %[f(tn,vn) - gt gt Y )] h+
1 ~ 2 1
E o(t,,Y,) gkt,, Y,) (DWn) + Ef(’[ml,Yn +f(t,, Y) h+

g(tn, Yr) DW, ) h+ leg(tnﬂ, Yo+t Yo) h+ ——g(ty, V)

V3

A A 1 1
DW DW + — tn+ ,Yn + f tn, Yn h = tn, Yn
n) DWn + 200 (tn, Yn) 73 9(tns Yn)

DW,) DW., Y, =Y, ... (2.16)
n n to

~ ~

Where Y, = Yo, h=tn - tyand DW,, = I; = W,

n+1 tn b
This model was proposed by Milsteinin (1992), [22].

(b) Non-autonomous SRKM which is derived without introducing the
strong or weak convergence (i.e., it is derived in a similar manner as
in the ordinary derivation of deterministic RKM) in order to throw off
expectations complications, i.e., we shall deal with deterministic terms
separately from the stochastic terms and this model is called stochastic

Runge-Kutta Maruyama methods and it is proposed by Buckwar ,
RoBler and Winkler, [35] [36], which is given by:

S
Yo=Y oth@ af(t+chK)+gtn,Y)DWn, Yy = Yo ... (2.17)
i=1

with stage valuesfor i =1,2,%4,sand h=1t,,; - t,,

S
DWh =Whi1- Wi, K=Y+ ha a; f(t, + ¢ h, Kj)
=1
The previous classifications are worked due to what we find by alarge
class of models to SRKM's in orders specific above, and this does not mean
that there are no other models of SRKM's. There are also other models for
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SRK of higher order. In addition, it is possible to make some modification on
the models of autonomous SRKM to be transformed into non-autonomous
SRKM, and vice versa.

2.3 Analysis and Derivation of Stochastic Runge-Kutta M ethods.

In the case of RKM for deterministic problems, the order of accuracy
is found by comparing the computed solution with the exact solution over one
step assuming exact initial values. This is accomplished by expanding both
the actual and the numerical solutions in Taylor series expansion, and this
approach may be carried over SDE's when a stochastic Taylor series
expansion (using either the 1t6 or Stratonovich calculus) is applied [5], [7].

As mentioned earlier in chapter one, because of the simplified nature
of the Stratonovich calculus, only the Stratonovich form of the stochastic
Taylor series will be used here in this section.

2.3.1 Taylor Series Expansion for the Actual Solution [7].

Consider the autonomous, one Weiner process and Stratonovich SDE
given in equation (2.10), which may be rewritten as:

dy,=f(y,) dt +9(yy) o dWy, Yy, = Yo ... (2.18)

wheref refersto f for simplicity, and as an integral equation form:

t t
Yt = Yi,* Of(Ys) ds+ Qa(ys) o dWs ... (2.19)
to to
[t6’s formula states that a given function a of the solution y may be
written as.

t t
ayy) =a(yy,) + OLa(Ys) ds+ L ays) o dWi ... (2.20)
to to

where in the Itd form, the operators L° and L* are given by:
da, 1d%a da
L%a(y) = —f+>——¢" Lay)=--¢
dy  2dy” dy

While in Stratonovich form:
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L%(y) = g—;‘f, L'a(y) = %ag ... (2.21)

Applying theorem (1.7), and using equations (2.19) and (2.21) with
a(y) ° y and one Weiner process, and letting Y, o= Yo then the actual solution

given by, [7]:
Yi = Yo + f(yod + 9(yod + f &yo)(f(Yo))do + T &yo)(9(Yo))Jwo +

gkyo)f(Yo)dor + 9&Y))(O(Yo)du + F  &yo)(f(Yo)f(Yo)dooo +
f &yo)f &yo)(f(Yo))doo + f ®yo)(f(Yo)a(Yo)doo + f &yo)
(f &0 (OY))dho + f ®yo) (AYo)f(Yo)dowo + f &Yyo)(9&Yo)
(f(Y0)))Joro + f ®Y0)(9(Yo) 9(Yo))di1o + f &KYo) (9KY0)(9(Y0))) Juro +
9®yo)(f(Yo)f(Yo))Joor + 9%Yo) (F €yo)(f(Y0)))Joor + 9¥kyo)(f(Yo)a(Yo))
Jion + 9&Yo)(f €Yo) (9(Y0)))Jor + 9®Yo) (I(Yo)f(Yo))dorr + 9&Yo)
(9%Y0)(F(Y0)))Jo11 + 9%Yo0)(d(Yo) 9(Yo)di11 + 9KYo)(9&Yo) (9(Yo)))d1
+ R .. (2.22)

where R refers to the remainder term and lejz---jk

multiple integral, which are with respect to dsif j; = 0 or odW(s) if j; = 1.

represents the Stratonovich

It should be noticed that there is a multiplicity factor associated with
some of the higher derivative terms. For example:

LOf = fef
LOLOf = LO(FCf) = (FGF)CF = fAPF > + (FQ°f
LOLOLOf = LO(FQBF 2 + (FQ2F) = (FGF )CF + ((FO2F)Cf
= fQIPF ° + 3FABFCT 2 + FOFAPF 2 + (FQf ... (2.23)
Thus, in the expression of L°L°Lf, there is afactor 3 associated with the term
faEe 2.

Equation (2.22) is the generdization of Taylor series expansion for
deterministic equations with g © 0. By comparing this expansion with the
application of the numerical method being considered, it is possible to choose
the coefficients of the numerical method to obtain a particular order.
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2.3.2 Rooted Tree Theory [7]:

For the analysis of order conditions for RKM for ordinary differentia
equations, Butcher in (1987) [9] demonstrated the correspondence between
elementary differentials and rooted tree theory in the Taylor series expansion
of the actual solution. This technique (which is first introduced by Butcher in
(1963) [8]) simplifies markedly the derivation of order conditions for higher
order RKM.

The main results on rooted tree theory (for deterministic ordinary
differential equations) are presented in [9]. Then, this theory was extended to
the stochastic setting, so that although the order conditions for lower-order
RKM may be obtained by comparing directly the RK scheme with stochastic
Stratonovich Taylor expansion, this theory may be used to develop the order
conditions for more general RKM's.

Order conditions for deriving RKM may be obtained by expanding
both the actual and numerical solutions of the differential equation in a Taylor
series. By formally differentiating y&x) = f(y(x)), the higher derivatives of y
may be represented as follows:

y®x) = fGy(x)) y&x) = fE, yasgx) = f&f * + (f §°F, ...
The ordinary derivatives fCand f®are linear and bilinear, respectively.

In vector notation (and for m-dimensional system), the i component f& and

@ 2 can be written as;

_ .. m o qfl |
tary=fti=g T ¢l
j=1 X

. ik m ﬂZfi -,
(e £))' = f'f° = § f If
j’kzlﬂxjﬂxk
The complexity of these expressions builds up very quickly, so it simplifies
matters to use the pattern of rooted trees for constructing these expressions. In
the deterministic setting, t is used to denote the tree node e, and other trees
can be build up recursively by defining a new tree t (which is formed by
joining treesty, to, ..., ty toanew root t) as.
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t=[ty, to, ..., t
each tree corresponds to an elementary differential F(t)(y(x)), defined by:
Ft)(y(x)) = f “F(t) () Ft)(Y()) ... Ft(y(1))
and consequently forms part of Taylor series. Full detaills of this are in
Butcher (1987), [9] and (1994), [10], but here just a brief summary will be
provided so as to form a basis for the extension of the concept to the
stochastic area.
Remarks (2.3):
1. Consider the s-stages RKM (for solving the deterministic problem) given
by:

S _ U
Yi=yntha &;f(Y));i=12..5si
= .. (2.24)

|
s Y
Yn+1 = ¥n + ha bj f (Yj) :
=1 b

S
since b; = é a;; j=12,...,s, which may be represented in tabulated form,
i=1
as.
C | A
| b
wheeC=Aee=(L1, .., 1"
2. Each rooted tree of the above formulation has a corresponding elementary
weight F p(t) = b'y (t), wherey (t) is defined recursively by:
y®) =ey(t, tz ..., t]) = (Ay (t)) *(Ay (2)) *... *(Ay (t))
where * denotes the component-wise multiplication (see [10]).

3. A number of functions on trees may be defined recursively. The order of a
treer (t) or number of vertices of t satisfies the recursion, [9]:

k
r)=1,r(t,ts ... tJ) =1+ & r()
j=1

4. The function (t) is used to represent the density of a tree (which is a
measure of its non-bushiness) and is defined recursively by:
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3
qt) =1, Q[tl, t, ..., tk]) =r ([t]_, t, ..., tk]) O qtj)

=1
5. The symmetry of atree, b(t), can also be defined recursively, as:

J .
b(t) =1, b([ t:Tl ,tgz ) ...,tEk ]) =n! nol...ng! O b(tj) N
=1

6. The function a(t) is the number of ways to label the vertices of t (with
labels 1, 2, ..., r (t)) so that the labels increase outwardly along the arcs,
symmetry of the tree must be taken into account, and hence a(t) takes the

form, [9]:

__r@t . 1q
a(y) = o0 b(D) o(t) b(t)* 0," t

7. By using some of the above functions on trees, the formal deterministic

Taylor seriesfor the actual solution is[10]:

r(t)
Yoo+ ) =yo+ & alt) FO(e) -
T r(t)!

where T isthe set of all rooted trees.

8. For the numerical solution given by equation (2.24), Butcher in (1987) has

shown that, [9]:

r(t)
906+ M) =yo+ & a() o) Fol® FOE)
T r(t)!

9. By comparing the expansions of the actual and the numerical solutions
term by term up to and including trees with p vertices, an RKM will have

an order pif and only if Fp(t) = 1

ot)

10. Noting also that the local truncation error over one step give an exact

initial value which may be written as.

L(Xo+h) =y(xo + h) - ¥ (X0 + h)

- &l o(t) 0 r(t)
tiaTa(t)gr(,[)! r(t)!FD(t)Eh F(t)(Yo)
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and the term:

_ 1 o)
e(t)_r(t)! r(t)!FD(t)

will be called the local truncation error coefficient for atreet.

The extension of this rooted tree theory to the stochastic setting with
one Wiener process is based on the consideration of the set of bi-colored
rooted trees T, where the roots of each tree is either o (t for a deterministic
node) or o (s for stochastic node), see for more details [24].

If t3, ty, ..., t, @re bi-colored trees, then [ty, to, ..., ty] and {t;, t5, ...,
tn} aretreesinwhich ty, ty, ..., t,, are each joined by a single branch e or o,
respectively. For example, if t; = [s] and t; = s, then figures (2.1) and (2.2)
shows the two trees [ty, t;] and {t;, t,}, respectively.

s
t1 = [s] =l = I , t2=s =0

[ ]

S
[t1, t2] = [[5],s] = [[¢ ; s] =

Figure (2.1) Thetree[ty, t,].

S
t=[s]1= | = T , to=s =0
[ ]

S
(i =(slst={ V.s} = |
[

]

] S

N
{1}

Figure (2.2) Thetree{t,, t;}.
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In a similar manner to the deterministic case, an elementary
differential may be associated with any t1 T, such that:

F(t)(y) =f (y), F(s)(y) =g(y) !
FOY) =F W OFEDY) - Ftn) W)t =[tyentmly . (2:25)
F(Y) = g™ DFE)Y) - Fltm) )t ={ty, etk

For example, t = [t, s] is associated with f &y)(f(y)g(y)), i.e., t reads

as (faky)(F(t)(y)F(s)(Y)=(Fay)(f(y)a(y))), and t=[[s]] is associated with
f&y) (f€y) ((9(v))), i.e, when t = [s], then f&y) (F(s)(y)) =f&y)(a(y)) and
when t = [[s]], then fgy)(f &y)(F(s)(¥))=f&y)(F&y) (a(y)))-

In addition, an elementary weight may be associated with each
elementary differential by associating the integer O with deterministic node o
and the integer 1 with a stochastic node o. These elementary weights are in
fact Stratonovich integrals.

An easy way to determine the J-integral associated with each treeisto
read the tree from top to bottom and simultaneously from right to left,
replacing t-nodes with 0's and s-nodes with 1's. Thisis equivaent to read the
bracket representation from the inside to outside, and within a bracket from
right to left (just the left bracket of the pairs makes a contribution) and then
writing the index of the J-integral from left to right. For this last example, t =
{t, s} isassociated with Jyoy, i€, t ={t,s} readsas(s®° 1bp t° 0P {}©°
1), whereas 101 is to consider the subscript of Ji; andt = {{t}} is associated
with Jopp, i.e, t ={{t}} readingas(t ° OP { }insee® 1P
{ Yousde © 1) whereas 011 is to consider the subscript of Jy;. Hence, the
following remark is easily shown to be true.

Remark (2.4), [7]:
The Stratonovich Taylor series for the actual solution of the SDE
given by equation (2.18) is:

yH= a at) FOy(t) a® ... (2.26)
T
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where q(t) represents the corresponding J-integral associated with tree t as
described above. A direct comparison of entries in table (2.1) with the terms
in the Stratonovich Taylor series given by equation (2.22) demonstrates this
compact way of representing y(t)

Table (2.1)
Trees and elementary differentials.

t F(t) q(t) t F(t) q(t)
f Yo 1 [ {t,s} 9®yo) (f(yo) 9(yo)) | Jn
t f(yo) b || {s.t} | 9%yo) (9(yo) f(Yo)) | Jous
S 9(Yo) d | {s,s} | 9%yo) (9(Yo) 9(Yo)) | J
[t] f &yo) (f(yo)) Jo [ [ItIT | f&yo) (F &yo) (F(Y0))) | Jooo
[s] f €yo) (9(Yo)) Jo [ [[s1] | T&yo) (f &Kyo) (9(Y))) | oo
{t} g&Yo) (f(yo)) Jo | [{t}] f €yo) (9%Yo) (f(Y0))) | Jowo
{s} 9%Yo) (9(Yo)) Ju [ [{s}] | f&yo) (9kYo) (9(Y0))) | Jro
[t,t] | fayo) (F(yo) (o)) | Jooo | {[t]} | 9Kyo) (f €yo) (F((Y0))) | Joor
[t,s] | f&&yo) (f (o) 9(Yo)) | Jwo [ {[SI} | 9%yo) (f €Yo) (3(Y0))) | Jron
[s.t] | f®&yo) (9(Yo) f(Yo)) | Joo [ {{t}} | 9%yo) (9kYo) (f(¥o))) | Jour
[s.s] | f®&yo)(9(Yo) 9(Yo)) | Juo || {{S}} | 9%&Yyo) (9kYo) (9(¥0))) | Ju

{t,t} | 9%yo) (f(yo) f(yo)) | Joos

The one-Wiener process case hides a lot of the potential complexities
that can arise with multiple Wiener processes.

2.3.3 Order Conditions for Runge-Kutta Methods.

In the preceding subsection, the Stratonovich Taylor series for the
actual solution was established. In this subsection, the corresponding
Stratonovich Taylor series for the numerical solution needs to be derived. The
numerical methods under considerations will belong to the general family of
s-stages SRKM's, where there can be an arbitrary number of random variables
included in the formulation of the method. Previously, however, there have
been other classes of methods using just one random variable J;.
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In [17], certain classes of s-stages methods have been introduced for
solving the autonomous SDE given by equation (2.18) along with the initial

value Yi,= Yo- Perhaps the most genera class of methods considered so far

takes the form:

3 3 . U
Yi =Y¥Yn + ha a1]f(Y]) +‘]1a bl] g(YJ)sI ::L2,1/4,S|
= = y .. (227)

S S 4
Yosr =Yn + ha a;f(Y) + A g oY) io
j=1 j=1

where A = (g;) and B = (b;) are sxs-matrices of real elements while a' = (ay,

..,agandy’ = (yq, ...,y arerow vectorsin R®. If both A and B are strictly
lower triangular, then equation (2.27) is said to be explicit, otherwise it is
implicit. The stochastic component comes from the J; integrd

th+1
J = ¢ odW; associated with B and g Most researchers, such as Riimelinin

tn
[38] and Gard in [17] consider only for simplicity explicit methods.
RUmelin in (1982) [38], has shown that if f and g and the necessary
partial derivatives of f and g are bounded then equation (2.27) converges
uniformly on [to, T] in the quadratic mean sense to the [t6 solution of:

dy = (f(y) +| 2—3 g(y)) dt +g(y) dW

where:
| =g'Be
Furthermore, if | = 1/2, then equation (2.27) converges to the solution of the
corresponding Stratonovich equation.
Remarks (2.5), [7]:

1. Itwill beseenthat g’ B e= % IS a necessary condition for equation (2.27)

to have strong order 1, so that any method of strong order 1 or higher will
converge to the solution of the Stratonovich equation.

2. Inparticular RUmelin in (1982), [38] has proven:

61



Chapter Two Runge-Kutta Methods for Solving
Ordinary Stochastic Differential Equations

If f and g are arbitrary functions and have continuous and bounded
partia derivatives up to the sixth order, then the strong order of equation
(2.27) cannot exceed 1.

An example of SRKM of the form given in equation (2.27) with

strong order 1 includes the method of Platen which can be written with
s=2,as.

A= B—éa@ 09, a'=(1,0), d —(— —) .. (2.28)

Thus if higher stronger order methods are required, equation (2.27)
needs to be modified in some way so as to include other stochastic elements
as a part from just J;. This will be done by the introduction of an arbitrary
matrix Z% and vector zYT whose elements are themselves random variables.

Since the stepsize hisjust J = (‘Ser ds, for consistency the stepsize will be

included in the parameter matrix associated with the deterministic
components (so Z© = h A and Z%7 = h a"). Hence, the genera family of s-
stages SRKM for one Wiener process case will be given by:

u
o+ a ZPR(Y)) +a ZPg(Y)),i=12,..5i
= = ? ... (2.29)
Vo= Yo+ & ZOf(Y;) + a ZMg(Y;) |
j=1 j=t b
By studying the general strong order properties of equation (2.29) for
an arbitrary random variable elements within Z® and z*“, the order condition
will be used to construct two-stages method of the form given in equation
(2.27), which is optimal in terms of minimizing the local truncation error
coefficients.

Of course, equation (2.29) is a very genera representation, and so a
simplifying assumption which often be placed on the Zi(jl) and 251) in that it
will be assumed that each of these random variables can be written as alinear
combination of p similar random variables gy, 0y, ..., g, such as J; (i.e., 0 =
J2=... =0y =Jy) inthiscase ZI(JO), A : Zi(jl) and zgl) will be written as:
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Z{¥ =hay; i, j=12%s

ZEO) =haj,; j=1 2, Ya,s

i
;
:
!
O_f Wy =& 1O ; . (2.30)
Zi’=a bij . =a bij J.1,1=1 2,1/4,813.’
L=1 L=1 ;
Zj(l) = g. bJ(L)QL = g b?—)‘]l,i,j =1, 2,1/4,3':'

L=1 L=1 b

and equation (2.29) can be written as generalization of equation (2.27)
(SRKM with amulti-Weiner process).

$ S o] u
Y, =y, + hd a;f(Y))+ 5 aeé. bi(jL)g(Yj)i‘]l,i =1,2%,s
j=1 L=1&j=1 7} 1
y - (231)
!
i

> S &S 0
Vs =Yn + hQ a,T(Y))+ & cd ¢ oY)z
j=1 L=18j=1 g b
This family of methods may be characterized by the following table:
‘ A B® L ®
‘ a o L ¢P

In order to study the order conditions in equation (2.27), which is
associated with equation (2.29), then equation (2.29) will be written as a
function of t:

. S i S . i U
YO =y, +8 ZOHYD) +& ZPa(v )i =125
j=1 =1 v

; (232

S _ S .
Yna =Y t a ZOf(v ") + a z9g(Y{") :

j=1 =1 b

By substituting Yt(i) = thl,Ytz,...,Ytsg in the expression for Y (t), thef(Yt(i))

and g(Yt(i)) analogously, but with operator L° and L*, can be expanded in a

Taylor series representation, as:
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y (LOYKfy®y 0
f(y )= f(Y('))+é( )i to)ﬁ'ﬁ
k=1 k! '|'

¥ (LYK g(v('))u

o(Y )= g(Y"’)+a i
to” k! b

.. (2.33)

where the operators L° and L' are as in equation (2.21) and where it is
assumed that f and g are sufficiently differentiable.

By recursively substituting for the Yt(i) back into equation (2.32) and

using equation (2.33) (and asimilar formulafor g(Y (i))) it is seen that:

s df (Y9) s of (Y(' )
Of(Y(I)) a Z(O) to f(Yt(I)) Z(l) a(Y ('))
j=1 dY(') 0 j=1 dY()

dg(Y D) S dg(Y(' )
Lg(Y(')) a Z(O) to f(Yt(I)) Z(l) a(Y ('))
j=1 dY() 0 j=1 dY()

Now, for the second derivative terms, asimilar analysis gives.

(Lo)zf(Yt(:))) = L°Lf(yo)
- Loea ZP1€yo)f (vo) +a Z ff(yo)g(yo)u

Bi-1 j=1

(0) M uf
= ea Z;” £ &yo)f (o) +a Ziy” T&Y0)9(Yo) 1
=1 =1 9]

0
zjg F&yo)f (Vo) +a Z{1€y0)9(¥o)y
u

G(l k=1

when back to equation (2.23), recall that L°L% = (f )¢ =f &f f + f ¢ &; then:

64



Chapter Two Runge-Kutta Methods for Solving
Ordinary Stochastic Differential Equations

& ('52
(L )Zf(Y(”)— ZO T f |yo) (yo) fyo) +2 & 20 20 tayo)
When - when
j=k 7} tk

(F dyo) f(yo) + & Z{D & Z{ 1 dyo) (F(yo) a(¥o)) +
J j

28 2 zQ1 dyo) (F dyo) atyo) +2 & Z Z{) 1 dyo)
V\_/hekn Whekn
j* j*

(9%y0) fyo) + & Z8¥ & Z1? £ atyo) (a(yo) F(¥o)) +
j j

e ('52

§8 Z0C fay) Gy avo) +2 & Z0 ZH  fay)
when - when
j=k [} itk

(9%Yo) 9(Yo))-

Analogous results hold for (L*)? g(Yt((i))).

Now, the numerical method may be expanded in a Taylor series, as:

S (0 rviy i S D)
Y=y taz f (Y ) +a 27 o(v")
i=1 i=1

S 5 1 .
= Yip + & 2% G ) L i) + 5 (N 33+
i=1 '

S Ve N
o (1)e 1 1 172 u
a z7 OY.)tLoly,) +=(L)aly, )+
) I gg to to 2l to H

Now, whene' = (1, 1, ..., 1)" contains s of elements 1. Then:

adleaéo
s G, TGt
8 2=577 ¢ =7
i1 QMIQMT
2.5 &y

and in asimilar manner:
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80

3 17

a Zi:(Zl,Zz,...,ZS)Q T:ZG.
&y

Then:

Vo= i, 2 e(y0) + 277 20 e fly) () + 27720 ey gy + -
207 (200 18yo) (7(yo) 1(ya) + 27 (Z9)e Tlyo)
(180 fy0) + 22772 2 e ye) () 9y + 2"
2979 e flyo) (fhyo) g(yo)) + 2" 2 29 e flyo) (9Gyo) f(yo))
+ 229720 20 Wy (9) 1) + 527 (2 Mhyo) (90
6(y0) +27 2% e lyo) (lyo) 9a) +--- +2”" eqi(yo)
+ 28779 e glyo) f(yo) + 277 2" e glkyo) 9(yo) +% 21(Z%y?
ahyo) (190 ) + 2 (2% e gy (1) Ty + 5272
Z% e gkyo) (f(yo) 9(¥a))+2"" 2% 2% e glhyo) (f&yo) 9(¥o))
+ 2972020 e gy (o) ) + - 27220 e glyo) (4
fy9) + - 27 (2% & g8y (9 0v) + 27 (29 e oy

(9%yo) 9(yo)) + ... .

Let f (t) be defined recursively, as.
K(f) =e
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f(t)=r(t) z<°>T(m) K(t), t = [t, to, ..., tml]

.
L=1 III
y .. (2.34)
I
fO=r)z20 Kt),t={tuts ...t} P
L=1
where:
K(t) =r(t) 29 (’% K, t=[ty toy ..., t] U
L=1 1
Iy ... (2.35)
I
KO=r®Z?O K. t={tnto ...t} P

L=1

where the multiplication of vectorsis considered component wise.
Asanillustration, consider the following examples:

Examples (2.6) [1], [7]:

1. By taking 29T e f(yo), then r (t) = 1, because t is one node, f (t) = r (t) 27

m
O K(t)impliestof(t) =1 Z9TK(f), such that K(f) = e, then f (t) = 2O
L=1

e and f(y) = F(t)(y(to)) (back to table (2.1)), and hence:
2%ef(yo)=f (t) F(t)(y(to))

2. By taking %" 2\ e f &yo) g(yo), then f &yo) g(yo) = F([s])(¥(to)) and r ([s])
= 2 (because [s] istwo nodes (s+ [ ])), and hence:

f([s]) =227 ("lj K(t) =2 297K (ty) =2 29T K(s)
L=1

such that K(s) =r(s) ZPK(f) =1 Z® e impliesthat f ([s]) =2 297 zM e

and thus 27" Z% e f &yo) g(yo) = % f(Is]) F(sD(y(to).
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3. By taking % 297729 e 7Y e giyo) (f(Yo) 9(Yo)), then gdyo) (f(yo) 9(Yo)) =

F{t, s})y(ty) and r ({t, s}) = 3(because(t, s} is three nodes (t+s+{})).

Now, when f ({t, s})=3 27 ("Qj K(t) =3 Z0T (K(t) K(s)), such that K(t)
L=1

=r (t) ZOK(f), r(t) =1, then K(t) = 2% eand K(s) = r (s) ZVK(f), r(s) =

1, then K(s) = Z®¥ e and thus f({t,s})=3 2V z© e ¥ ¢, implies that

%z“” 20 6 70 e gys) (F(yo) 0(¥e)) = % f((t, s}) F{t. s)) (k).

4.By taking 297 29 79 e gdyo) (f €yo) 9(yo)), then gdyo) (f(Yo) 9(Yo)) =
FAIsI})(y(to)) and r{[s]}) = 3, (because {[s]} is three nodes

2

(s+[ ]+{ }). Now, when f {[s]}) =3ZY" O K(t) =3 2P K([s]), such
L=1

that when backing to example 2 above, f ([s]) = 2297 Z®We and thus K([s])

= 2797We (by substituting z7 in f([s]) with Z© in K([s]), because

applying in (3,36)), then f ({[s]}) = 3! ZVT 2@ z® ¢ implies that ZVT z©

Z" e gkyo) (f ®yo) 9(¥o)) = %f ({[s1}) FAIsIH(y(to)).

Thus, for trees with up to 3 nodes and using F(t) from table (2.1), the
Taylor series expansion of the numerical method may be written as:

Vo= Vi 1O FO,) +£(8) FOIYig) * 5 1) () +
Q1) FEEN,) + (D) FOsD(Ye,) + 5 1))
FSH(Yig) + 3 FED FILAD(Y) + 5 ()

FIESD(Yi) + 3 T[S0 FIS ) (Yy) * 5 £ (5.5
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F([sSD(¥ig) + 3 TALL) FALDY,) + 5 (s
FESDYig) + 3 TS (S (Yey) + 5 Ts8})
F{s SD(ip) * 5 FID FAID(Y;,) + 3 (s
ST (Y1) + 3 THED FHBDY,) + 3 F({SHD
F{SIe,) + 5 D FARIN(Y) + 5 TSI

FIST) * 5 FALD FUON) + 3 TS
FLLSI(Yeg) * -

and in general:

Y =& a(Of (HF()(Yy,) . (236)

0T r(t)!
where a(t) is the multiplicity factor associated with some of the higher
derivative terms, exactly as was required in the expansion of the actua
solution of the SDE as given in equation (2.26).

Hence, the loca truncation error at t = t,, of an SRKM can be written

f(t) 0

=4 a (t)gq(t) F( )(Yy,) .. (237)
T

1
+—
Thus, if \/E(|L, |)2 £ ChID 2, then amethod will have strong global order p.
Writing L, as.
a et F(t)(yt ) ... (2.38)

tI T
and letting:

c=29%¢ | =7We ... (2.39)
then table (2.2) gives g(t) for all treeswithr (t) £ 3.
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Table (2.2)
Local error coefficients.
No. t e(t) No. t e(t)

1 t J-2%e 12 [{t}] | Joo- 2972%¢

2 s J-29Te 13 | [{s}] | Juo- 29TZWI
1

3 [t] Jo- 297e 14 | [s,s] | Jio- > Z0T) 2

4 [s] Jo- 271 15 | {[th | Joi- 277Z%

{t} Jo- 29c 16 {[s]} Jio - 297 Z9

1

6 {s} Ju - 297 17 | {tt} | Joos- > 207 ¢?

7 [t,t] Jooo - % 297 ¢ 18 {t,s} | Jhot- % Z9T¢|

1
8 [[t]] Jooo -297Z%¢ 19 {s,t} | Jous- > ZOT

1
9 [[s]] Jioo - 29729 20 {s,s} | du- > 0T 2

1
10 [t ,S] J]_oo - E Z(O)T cl 21 {{t}} JO]_]_ - Z(l)T Z(l) C

1
11 [s,t] 301o-§z(°)Tc| 22 | {{s}} | Jn- ZVTZO

2.3.4 Derivation of the Methods.

Using the order condition discussed earlier, it is now possible to
analyse the parameters for different classes of methods. In comparison with
the deterministic case. There are many more trees to be analysed for
comparable order in the stochastic setting. For every treet in the deterministic
case, there are in the one Weiner process case 2'" trees (for p(t) = 1 or 2),
2" * 1 trees (for p(t) = 3) and 2'® * 2 trees (for p(t) = 4) that must be
considered in the stochastic case. Table (2.3) illustrates how quickly the
number of trees grows|[7].
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Table (2.3)
Number of trees.
p(t) 1 2 3
Deterministic 1 1 2
Stochastic 2 4 16 64

When back to table (2.2) one can see the first two components of t is the
p(t) = 1 and the four of t after the first two isthe p(t) = 2 and so on.

First, consider the class of methods given by equation (2.27) in which:
ZO9=hA Z9"=ha",zZP=3B,Z2%" =3 d,b=Bea=Ae

In an attempt to get strong global order 1.5, it is necessary that the
order conditions corresponding to trees 1 - 6, 20 and 22 in table (2.2) vanish
as these are the trees whose corresponding J-integals have expectation
behaving as O(h°), p < 2, i.e., when back to equation (2.3) and the definition
of the strong convergence, then the hierarchical set:

L,={al M:L@)+n@)£2p or L(a)=n(a)=p+%}

Now, (1, 1) is the unique element which give strong order 1.0 in
addition elements set L o5 (when back to tree 6 in table (2.2), then (1, 1) will
be find in the subscript J;;). Hence when a = (1, 1), thenL(a) =2,n(a) =0
impliesto fulfill the condition given in (2.3) such that
L(@a)+n(@)£2p,i.e,2+0£2p,thenp=1, andthus:

Lio=Los E {(1, 1)}
and aso the elements in the set b, given by b = {(0, 1), (1, 0), (0, 0),
(1, 1, 1)}, which are uniquely determined which gives strong order 1.5 in
addition elements set L ;o (look for the subscript Jin trees (3, 4, 5, 20, 22)
existing in table (2.2)). Now, we shall apply the elements of the set b in
condition (2.3) to prove their elements have a strong order 1.5.

Whena =(0,1),L(a)=2,n(@) =1,thenL(a) +n(@a) =2+ 1 £ 2 pand thus
p=15.
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Whena =(1,0),L(a)=2,n(@) =1,thenL(a) +n(a) =2+ 1 £ 2 p and thus
p=15.
Whena =(0,0),L(a) =2,n(a) =2,thenL(a) =n(a) =2=p+ % and thus
p=15.
Whena =(1,1,1),L@)=3,n(@a) =0,thenL(a) +n(a)=3+0£ 2pand
thusp = 1.5.

ThenL.s=L4oE {(0,1),(1,0), (0,0), (1,1, 1)}

As an illustration, the order condition associated with tree 4 in table

(2.2) should be after taking the square value of the trace and hence its
expectation, is:

E((Jo- hdy)) =0 or0 ... (2.40)
wherey =a'b.

To analyze this condition, first expand the |eft hand side, given by [1]:

E(J,) - 2y hE@Jpd) +y2hPE(F) .. (2.41)
But J,~ N (0,h) and using the results of chapter one, section (1.5), we get:

aﬁﬁ:?ﬁH%M:%Wﬁﬁﬁ:h .. (2.42)

and so equation (2.41) becomes:

1 1 1
“h-2y h(Zh)+y?hPh=h(=-vy +y)1 0
3 y (2 )ty (3 y +y°)

because when f(y) = % -y +y?=0, theny iscomplex number

Hence, for resultant on minimum real solution of y, we must derive

f(y) and equating the result to zero, yieldstoy = %
Thus in fact the minimum of the quadratic occurswheny = % in which case

the minimum valueis i
12

72



Chapter Two Runge-Kutta Methods for Solving
Ordinary Stochastic Differential Equations

Applying this analysis to the order conditions, leads to a complete
characterization of the class of explicit SRKM of the form given in equation
(2.27) with strong order 1 and minimum principle local truncation error.

In particular, trees 1, 2 and 6 have associated Jintegrals which are of

order h, /h and h, respectively, so for a method to have strong order 1, it is
necessary that to consider for [7]:
1. Fortreelintable (2.2)
EWdb - 297 e = E((&)* - 2 1 29 e + (Z97 €2 when = h,
Z9T =ha', andthus E(J, - 297 e)?=h?((a"e)*- 2(a'e) + 1) =0, when
h*1 0. Then:
a'e=1 ... (2.43)
2. Fortree2intable (2.2)
Ed- 2902 =E(3)?- 217 e+ (2 ) when 2V = 3, ¢, E(J)
= h. Hence:
E(J.- 277 e’=h((d e?- 2(d'e) +1)=0,whenh® 0
Then:
ge=1 ... (2.44)
3. Fortree6intable (2.2)
E(Jn- 2971 )2 =EQy - 297ZWe)? whenl =zWe
=EQu- ¥ dBe?=E(lu- ¥ db?
whenzZY"=J,d",zP=3,B,b=Be
Now:

E(Ju- J2 g b)?=E(J)-2bd EQuJ?) + Q) E() .. (2.45)

. P
SinceJ;, 1= — then [22]:
p!

21

E(2)= qu—o LEG )_—h2 E(3H)=3h2, E(0u 2 )_—h2

and equation (2.45) implies to h? (% - 3¢9’ b+ 3(g' b)) =0, when h? 1 0,

then:
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gb= % ... (2.46)

Now, when back to definition remainder set in (1.60) then:

R(L10) ={(0,0),(0,1),(1,0),(0,1,1),(1,1,1)}
and thus, the terms corresponding to the h'° terms arise from trees 4,5,20 and
22:

E(,- hda" b)zzg- aTb+(a’ |o)29h3 . (2.47)
A 0
E(Jy - hJ,g" @)% = =g37 9 Ta+(g a)2 =h® ... (2.48)
1.3 aa 2 015
E(Jy- =89 bH)2=c=- =g" b® +(g' b?)? h3 ... (2.49)
2 & 3
el
E(Jy,- £ g’ Bb)? _8—-—9 Bb+(g" Bb)2_15h3 ... (2.50)
These four equations are minimized if:
1 1 1 1
a'b==>,da==,db’==,gBb== ... (251
592359 3 5 (2.51)
in this case, the respective minimum in (2.47), (2.48), (2.49), (2.50) are:
h® hd
—,—,0, .. (2.52)
12 12
For a 2-stages explicit method, the last equation for equations (2.51):
JBb=(q, gz)an 06200
&by 05 &by g
then the equation (2.50) is:
. 3
Z 19T Bb+(g" B2 dsni=2T
836 g 12
and so in this case, the principal error constants are:
3 |13 3
h” h” 50 . (253)
12 12 12

From equations (2.46) and (2.51), for this 2-stages explicit method:
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&0 0
) (ay, az) =azby=—,
&byt

NI

&0 0
(%, gz)g = Qo =
1 g

NI, N~

while the following equation:
1 11
(bP=Z=orgb*=(=, =
g 3¢ (3 3)
isobtained in general asfollows:

boo & .
since B=8é)11 12gand e=aég then:
&boy by &g

b= pe=Pu D12 0230_adyy +0pp 0
&bo1 by gily &by + by
and hence

a1 +bp o
b*=bb' :gbz*_ bzzzg(bn"‘ b1, by + bzz)

_® (by+ by2)? (byy +byp)(pg + bzz)?
é(bll +by2) (D21 +b2p) (b +bp)® 5
therefore
2 (by +byy)? (b1 + by2)(byy +1020) 0
g'b? = (91’92)§ 11+ Do 11+ D12) (D21 2 22 :
(by1 +by5) (b +y5) (byy +byy) 2

_ Ry (byy + b12)? + Ga(brg + by2)(bog + byy) ET
égz(bzl +byp)% + g (byg + byo) (021 +b2o) 5

and since
ol L
g b= (3, 3)
so
88y (b + b1o)? + Go(byg + byo) (Dp1 + byy) ET = (l })
égZ(bﬂ +1)% + g0y +bpo) (b +hpp) 5 33

hence we get:
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=

g (0rg +012)” + G (byg +0y0) (g +byp) =

= W

92(b21 + b22)2 + gl(bll + b12)(b21 + b22) =—

w

Now, for explicit case, we get g b3, = 1

3
. . 1 2 1. .
i.e., to obtain such as g, then [1]: by = —, @ b5, =@—> =3, impliesto
O 0% 3
3 . . 2 3 2 3
= —, and this produces the solution b,y = —, b = —, &1 = —, a, = —. Then
=7 P e T

a;=1- a,= % a=1-= % and so the 2-stages method (with maximum

possible strong order equals 1) with minimum principle error constants is

represented by the tableau [7]:
0 0 0 0
2 2
- 0 =J 0 ... (254
1 3 1 3
- = =) =
4 4 PR

This method will be referenced by the code "R2".
Note that, the Platen method (referenced subsequently by the
code"PL"), isgiven by [7]:

0 O 0 0
1 0 J 0 ... (2.55)
1 0 1 1
2% ot
and has principal error constants
3 13 B3 3
USLILE . (256)
3 3 36 12
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2.4 Stability of Stochastic Runge-Kutta Methods, [7].

Having established the procedures for determining the stability of an
SDE, it is now appropriate to investigate the stability of the stochastic
numerical method when applied to such a problem.

An important concept is that the absolute stability (or A-stable), where
Kloeden and Platen in (1992) [22], consider the complex-valued linear test
equation with just additive noise:

dy;=1 y;+dw,; Re(l)<O0.
The numerical update by a one-step stochastic method can then be written as:
Yne1 = R(h I )yn +7Z,

where Z, is the random variable sampled to model the Wiener process W(t),
and the region of absolute stability of the numerical schemeis defined to be:

S={hl T £:Rel)<0,|RNI)<1}
They, then declare the numerical scheme to be A-stable if its region of
absolute stability contains the entire negative half complex plane. Thus, the

stability of the stochastic method is inherited from the stability of the
deterministic components.

In the following analysis, the deterministic equation y ¢ =1y is
extended in a natural way to the following Stratonovich scalar linear test
equation:

dy; =a y; dt+ b y,o dW; ... (2.57)
this equation has multiplicative noise, and the solution(t, =0,y, =1) is:
yi =exp(at+bWw,)

At first, when back to section (2.3) and precisely to Pamela’s model
which is given in equation (2.27), one can recall the general form of an s
stages SRKM applied to the general scalar Stratonovich SDE:

dyy =f(y) dt+9(y) o dW
yieldsto:
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Y =ype+hAf(Y)+BJqg(Y) il
y ... (2.58)
Yo =Ya+ha i) +d JgY) P

where A, B ares’ smatrices, Y isan s” 1 vector of “intermediate cal culations”
and eisthe s" 1 unit vector. The s" 1 vectors a, g contain the weights of the

method.

If the SRKM given in equation (2.58) are applied to the test equation
given in equation (2.57), then:

Y=y,et(@Ah+bBJ)Y

Y-(@aAh+bBJ)Y =y,e

which yieldsto:

Y=(-aAh-bBJ)'y.e

and consequently:

Vmi=Yntha'aY+J4gby
=y,+(ha'a+gb)(l-aAh-bBJ)'y.e
=[1+(tha'a+d db)(- aAh- bBX)'qy,
=R(h, a, b) y, ... (2.59)

where the stability function Ris defined to be:

Rh,a,b)=1+(ha'a+g yb)(I- aAh- bBJ)'e

To anayze the mean-square stability of the SRKM for the above

models, it is necessary to evaluate E(Ré(h, a, b)), where a method is mean
square stable if, when Re(a) + (Re(b))* £ 0, then:
E(Re(h,a, b)) <1 ... (2.60)

Note that this analysis is based on the stability function calculated for
just one step of the SRKM. In the scalar case, and due to the independence of
the Wiener increments over successive time steps, this is equivalent to the
analysis over h steps. Letting R to denote the evaluation of the stability
functional at the i"-time step, then application of n steps of SRKM, gives:

Y1 = Riu1 Ry RiYo = RYo
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and so after n-time steps:

ER'R) =E(R] R} ...R] R1;RR....R)

_ _ & ;0 :
In the scalar case, this can be written as EQO(Ri R.)+, which by
ei=1 %]

0
independenceis O E(RiT R:), so that equation (2.60) must be hold.
i=1
Also, note that, because its mean-sguare convergence that is used in
the stochastic case, the polynomia in h, a and b to be analyzed is of a higher
degree, then its counterpart in the deterministic setting.

Now, the stability functions for various methods will be derived. In
order to ad visuaization of the regions of stability, the stability plots are

restricted to the case when a and b are real numbers. To plot the stability
regions, a change of variables will be used, namely:
z=ha,v=hb?u=z+v ... (2.61)
and the stability region, will be:
S={(u,v):v>0,u£0, ER)<1}
which will be plotted in the (u, V) -plane. Note that we have u £ 0O, since the

condition Re(h @) + Re(h b ) £ 0 is necessary for the mean-square stability.

2.4.1 Stability of 2-Stages Explicit SRKM [7].

Now, backing to Pamela's model given in section (2.4), it will be
assumed that in general deterministic terms A, a' and genera stochastic
termsB and g', as follows:

0 006
= a'=(a; ap)
8321 Og
a0 0§
B= 0=( 9
&by O
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Moreover:

and thus satisfying those for R(h, a, b) in equation (2.59), then:
R(h,a,b)=(aa h+bb;J)(aah+bJg)+taah+aa,h+b
Jatbleg+1l
Then [1]:
R(h, a, b) = a®a3; b’h* J? g5 +a’b? b3, a5 h* J2+ a5 a5 a* h'
+ b5, 05 b* I +4anbya,pa’b’hPX +2aanbyh gab*F +
2aahg by bPF +2anbbydasa’h®+2ba,l g asa’h’
+2aauhggb’¥ +2abyahgb?y +2abyahgb?J? +
2anbadigpa’hP+2arbalyga’h’+2bbyajad a’h®+
4abyahgpb®) +4aybaga’h’+2aayhb’J g5 +2b
bpda’as h?+2anaa,8°h+2b, g ab®F + 248y a3 a°h®
+2by s b* B +alaihP+a’as 2 +b2 of +b? X s +2
aabhjgpt+t2abbya,h+2abahJg+2abahdop
+2abahdig+2abahdg+2aa,a’h?+2bypb? I +
2a,3,2°W+2ggb’J +2aah+2aah+2blg+2bd
@+1
Now, recall that E(Jy) = 0, E(J?) = h, E(J) = 0 and E(J}) = 3 h?, then the
expectation of RP(h, a, b) is:
E(R(h, a, b)) = a5;a5a*h* + a® a5, b? g5 h®+ a’b*b5 a5 h*+4
a1 a,pa’b?h® +3 b3 h? g5 b*+2ana.a,ah® + 2 aya3
a’h*+2aaqgb’h®+2abya;gpb’h+2abya,qb’h’ +4

abya,pb’h?+2aab?h’ g +a?aZ h*+a?as h’+2ana;
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a’h’+2a,a,a’°h?+hb*g? +hb® g5 +2byhgb?+2hggb?
+2aah+2aah+1 ... (2.62)
and when using equation (2.61) in equation (2.62), i.e., substitutinga h = z,
b’h=v, z =u- v, then we shall obtain:
E(R¥(u, v)) = a5,a52* + a5, g5 z°Vv + b3, a52%Vv + 4ay by a, @ 2°
v +3b5, 05 VP +2anaa,2° +2ay a5 22+ 28 Gz V + 2
bra;pzVv +2byaqazv+4bya,pzv+2ay g%z vV +
a? z’+ a5z’ +2aya,z’ +2a1a,2°+ FV + GGV + 2 b @
V+2qVv+2a;z+1
= a5a5 (U- V)*+ a5 g5(u- V)’V + b3 as(u- V)V +4a,by
a,3(U- V)’V +2anaiax(u- v)*+2aya5(u- v)*+as(u-
V)P+aj(u- vy +3 03 6 Vi +28nae(Uu- V) V+2baaig
(u-v)v+2bya,qg(u- V)v+4bpag(U- V)V+2a g%
(U- V) V+2ana,(U- V)?+2a8,(U- V)2 + PV + Qo +2
brev+2gaVv+2a;(u- v)+2a(u-v)+1 ... (2.63)

Now, to solve equation (2.63), we shall take v = 0 to obtain afunction

of u only (i.e., to obtain the u-intercept), where the stability regions S, will
be:

R, = E(R¥(U, 0)) = @5, 25U’ + 2a,2,8,U° + 2aa5U° + aZu® +
a5Uu? + 2ama,U? + 2a;8,U° + 2a,U + 2a,U + 1 ... (2.64)

Also, in order to find the v-intercept, take u = 0 in equation (2.63), to obtain
afunction of v only, which is:

R, = E(RA(0, v)) = @5, a5Vv* + a5, g5 V° + b3, a5V° + daybyua v’

+3 bgl gg V2 + 280818,V° - 281GV - 205210V - 20xa,gV -
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A8,V - 280105 VP + 28018,V7 + 2818,V + RV + G5V +
2b v + 200V - 2a;v - 2a,v + 1 ... (2.65)
Applying PL-model given by equation (2.55) in equation (2.64) and
& 00 & 06
equation (2.65), i.e., when A = -, B= ~a'=(1 0),
€1 05 &1 0
r_,1 1, . - .
g = (E E)’ yields to the stability subregions:
Ri=u’+2u+1<1andthusv=0,u>-2

3 2
\V/ v
Rzz—4 - —4 +1<1 andthusu=0,v£El

Thus, the stability region S obtained from R; C R, related to this model is
giveninFig (2.3).
Now, applying R2-model given by equation (2.54) in equation (2.64)
&0 00 &0 006

and equation (2.65), i.e., with A = -,B= -,
. (269 §2/3 05 &2/3 0

T

_ 103
a'=(; 2.d=

4
RlzuT +ul+2u?+2u+1<landthusv=0,u >-2

%), then the stability subregions are:

NS
NGy

4 3 2

R, = 2 + > +V2 +1<1,andthusu=0,v£\/§-1

Then, the stability region S obtained from R; C R, related to R2-model are
givenin Fig.(2.4)

Now, the next two figures represent the stability regions of R2 and
PL-models respectively, such that, in this figures the function f refers to Ry

and g to R,, while x refers either for u or v.
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-5 =595 -a4 - 145 -2 -1.75 =12 —A{L45 =Tkl 45
X

Figure (2.3) Stability region of PL-Model

13 305 34 TR 2l 175 1.2 LG5 L1 015

]

Figure (2.4) Stability region of R2-Model.
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Chapter three
Semi-Explicit, Implicit and Mixed stochastic
Runge-Kutta Methods

| ntroduction:

In this chapter, we will discuss in details two-stages semi-explicit and
implicit stochastic Runge-Kutta Methods of strong order 1, then mixing these
methods to obtain what is called the mixed stochastic Runge-K utta methods.
All of the presented methods are presented with minimum principal error
coefficients. Also, numerical results are presented in order to compare
between the convergence properties of the considered stochastic Runge-K utta
methods.

It is remarkable that the stochastic differential equation which will
be considered here is given by:

dy, =f(y;)dt +9(y;)odW,, y;, =Yq ... (31)

where t € [t,,T], i€R™ and W, is the Wiener process whose increment

DW(t) =W, - W, isaGaussian random variable with mean 0 and variance

At. It is assumed that equation (3.1) is autonomous in order to simplify
notations.

Runge-Kutta methods are one of the most efficient classes of methods
used for solving ordinary differential equations (ODESs). Runge-Kutta
methods resemble their structure in the discretization methods for ODEs of
that name. Much work has been made on designing stochastic Runge-Kutta
methods in recent years; see, for example, [4, 5, 6, 7, 23, 25, 29].

This chapter consist five sections. In section 3.1 and section 3.2 the
attentions was paid toward finding the formulations of semi-explicit, implicit
and mixing the explicit, semi explicit and implicit stochastic Runge-Kutta
methods to obtain the so called mixed stochastic Rung-Kutta methods that is
abbreviated by MSRKM. In section 3.3 the stability of the derived SRKM's
will be studied, in section 3.4 some illustrative examples which are solved

84



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

numerically are considered. Finally, in section 3.5 the Variable Step Size
method have been introduced for the first time for solving SRKM'sin order to
improve the accuracy of the obtained methods.

3.1 Derivation of Semi Explicit and Implicit Methods:

In this section the derivation and the formulations of 2-stages semi
explicit and implicit Runge-Kutta methods will be considered, as well as,
studying the principal errors of derived methods.

For s=2,i=1,2 « n=0.1,2,..., equation (2.27) may be written as:

+ha a1,f(Y)+31a b; 9(Y;),i ‘12|
=1 = y ... (3.2)
Yoot =¥y +hA a,-f(v,-)+alé go(Y)
j=1 =1 L)
suppose that Az(aﬂ):é 1 a12u’ B= (b”) eb11 b12U g :[g1 gz]’
ey An( g)zl bzzu

and a” =[a, a,], when g;,bjj,a andg;which are constants to be evaluated
withi,j=12, h=ty- ty, J =DWn =W, - W, then equation (3.2) for
al n=0.12,... becomes:

=Yn +h[anf(Yy) +a,f(Yo)] + J[b0(Y)+b,0(Y5)] G
= Yo + h[apf(Yy) + 85 f(Y,)] + 30, 0(Y)thpa(Y2)] y - (33)
Y = Yn Thlag f(Yy) +a; £(Y5)]+d[g 9(Y) + 0, Q(Yz)]b
By the same process in deriving the explicit method that is given in chapter
two, we can construct the next cases:
Remark (3.1):
It is easy to classify the SRKM's from it's matrices A and B that are
given above as follows:
1. 1f &=b;=0;" i<j when i,j=12, then the method is called semi
explicit SRKM.,
2. 1f a;=b;=0;" i£] when i,j=12, then the method is called explicit

SRKM, otherwiseit iscalled implicit SRKM.
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In this chapter, a mixture between these matrices will be made in order to
get a new SRKM's which are called Mixed Stochastic Runge-Kutta Methods
(or breviate by MSRKM) that considered in section (3.2).

Now, consider the following two cases:
Case 1: For 2- stages semi-explicit methods, then the matricesA, B, a and g
will be given as:

ea,, u éb, Ou T
A=(a) =g 1 B=(b) =4 yand ' =[g g,
J gaﬁ aﬂH J 8021 bzzH [ 2]

a'=[a, a,].
Then equations (3.3) will take the form:
Y1 =Yn +hayf(Yy) +3,by59(Y7) u
Yo = ¥y +hlapf(Yy) + 85f(Y,)] + A[bua(Yo)thpt(Y2)] y ... (34)
Y = Yn Thlag f(Yy) +a, 1(Y3)]+d[g 9(Y1) + G, g(Yz)]b
Now; from equations (2.43), (2.44), (2.46) and (2.51) the following system of
nonlinear algebraic equations related to equation (3.4) may be derived:

i
a,+a,=1g+g,=1 !
I
1 .
glbll + gz(bzl + bzz) = E :
1 !
albll + a2(b21 + bzz) = E :
1 i
02+ 0x(3 ¥ 8) =5 y ... (35)

1
gl(b11)2 + gzbll(bzl + bzz) = §

Wk

I'
i
I
|
O, (b, + bzz)2 +gby, (b, +by,) = :
i

1.
glb211 + gz(b11b21 + b21b22 + b222) — EII:)

Thus, by solving the above system, the following non unique results will be
obtained:
a, =0.1233,a, =0.8639,g, =0.125, g, =0.8605, a,, = - 0.5007,a,, = 0.2454,

a,, =0.435, b, =0.4936,b,, =0.3513,b,, =0.1802,
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or may be written in tabulated from as:
- 0.5007 0 0.4936J, 0
0.2454 0435 0.3513J; 0.1802J, ... (3.6)
| 01233 08639 | 0.125); 0.8605);

Now; equation (3.4) becomes:

Y, =y, - 0.5007hf(Y,) +0.4936g(Y,) i
Y, =y, +h[0.24541(Y,) + 0.435f(Y,)] + 3[0.3513g(Y;) .
+0.18029(Y,)] {, . (37)
Yns1 = Yn +h[0.1233 f(Y,) + 0.8639 f(Y,)]+J,[0.125 g(Yl):
+0.8605 g(Y,)] 3

which represent the semi-explicit SRKM.
In the presented case, the respective minimum given in equations
(2.47), (2.48), (2.49) and (2.50) are:
h® h?
12 12
and for a 2-stages semi-explicit method the last equation of system (2.51)
becomes:

,0,0 ... (3.8)

8b21 b g gb21 + bzz 2
hence equation (2.50) will take the form:

gdBb=(q, @) =0.2621

293_16-—9 Bb+(g" Bb)2_15h3 0.1366 h®

and so in this case, the principal error constants are:
3 13
" 1 0 01366 ... (39
1212
Case 2: For 2- stages implicit method, the matrices A and B will be given as:
a,Uu eb11 b12 U

A= P , B=(b,
@&, sl TTO Ty,

o' =[a 9,]. a"=[a, a,], yields to a set of equations which is identical

with equation (3.3) and from the equations (2.43), (2.44), (2.46) and (2.51) in
this case we get:

, and
22 U
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a,ta,=19+9,=
a.(b, +b,)+g,(b,, +b,) =%
a,(b, +b,)+a,(b,, +b,,) :%
6@y + ) + 0, (n, +B0) =%

6, (by, +by,)* +g,(by, +by,)(by, +by,) =

gZ(b21 +b 2) + gl(bll +b 2)(b21 +b 2) -

1:
3
1
3
gl(b211 +b,b,, +b,by, +b,b,,) + gz(b b

e i H I H L HE —.k<\—i—: e i H I H L HE c:

+ b21b22 + b12b21 + bzzz) = E

T

. (3.10)

Thus, by solving the above system of nonlinear equations we get the

following results:

a,=0.2222,a,=0.7591,q = 0.0569,g, = 0.9434,a,, = - 0.2495,a,, = 0.05,

a, =0.2127,,a,, =0.3293, b;; =0.4115,b;, = 0.1861, b,, =- 1.8567,
b,, =2.387,
which may be written in tabulated from as:

-0.2495 0.05 04115}, 0.1861)
0.2127 0.3293 -1.8567), 2.387)
| 02222 07591 | 0.0569) 0.9434}
and hence equation (3.3) becomes :
=y, +h[- 0.2495 f(Y,) + 0.05 f(Y,)] + J[0.4115 g(Y,)
+0.1861 g(Y,)] :
=y, +h[0.2127 f(Y,) + 0.3293 f(Y,)] + J[- 1.8567 g(Y,)f
+2.387 o(Y,)] v
Yia1 = Y +h[0.2222 f(Y,) +0.7591 f(Y,)]+J,[0.0569 g(Y,) :
+0.9434 g(Y,)] b

Equations (3.12) represent the implicit SRKM.

88

. (3.11)

. (3.12)



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

In this case, the respective minimum given in equations (2.47), (2.48),

(2.49) and (2.50) are:

h® h

1212
For a 2-stage implicit method the last equation of equations (2.51) becomes:
oy bp Gadny +015 0
§by1 b p&boy +050 5
and hence equation (2.50) will take the form:

&l Llrepi Bb)2_15h3 1.93197° 10" 'h°
&36 3
and so in this case, the principal error constants are:

h® h®

12

0,0 .. (3.13)

g Bb=(q, @) =0.16703

,0,1.93197" 10 'h3 ... (3.14)

3.2 Mixed Stochastic Runge-Kutta Methods:

In these methods the deterministic and stochastic results are mixed in
the cases of explicit, semi explicit and implicit methods in order to obtain new
schemes for solving SODE's using SRKM's, and as follows :

Casel: MSRKM1-Semi-Explicit - Explicit:
In this case, consider the semi-explicit form for the deterministic part and
explicit form for the stochastic part, i.e. /

e 2ot Sala sl ool
and similarly by the same process followed and described previously, one
may get:

a, =0.2389,a, =0.7602,g, =0.2385, g, =0.761,b,, = 0.6594, a,, = - 0.4435,
a, =0.2727,a,, =0.5236,
which may be written in tabulated from as:

- 0.4435 0 0 0

0.2727 0.5236 0.6594J 0 ... (3.15)

| 02389 07602 | 0.2385) 0.761}
Then equations (3.3) will take the form:
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=y, - 04435h U
=y, +h[0.2727 f(Y,) + 0.5236 f(Y,)] + 0.6594 J, o(Y,) 1
Vi =Y, +h[0.2389 f(Y,) +0.7602 f(Y,)]+J,[0.2385 g(Yl)-BI-/
+0.7619(Y,)] b
Equations (3.16) represent the MSRKM 1- semi-explicit - explicit.
Also in this case, the respective minimum given in equations (2.47),
(2.48), (2.49) and (2.50) are:

3 K3
h— h ,0,0 .. (3.17)
12" 12°
and for a 2-stage MSRKM 1-semi-explicit — explicit, the last equation for

equations (2.51) becomes:

(3.16)

20 00ae0 0
9 Bb=(a @) =0
by Opbyg

then equation (2.50) will be:

el 20 3_ 5h
- =g Bb+(g Bb)“:15h°=
$36 3 ~g"Bb+ (' )
and so in this case, the principal error constants are:
3 13 3
LI L .. (3.18)
12 12 12

Case 2: MSRKM2-Implicit - Explicit:

In this case, consider the implicit form for the deterministic part and
explicit form for the stochastic part, i.e. /

o e o sl )
and similarly by the same process followed and described previously, one
may get:

a, =0.2513,a, =0.749,g, = 0.2504, g, = 0.7496 ,a,, = - 0.3876, a,, = 0.0253,
a,; =0.5527 a,, =0.2357,b,, =0.6671,

which may be written in tabulated from as:
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-0.3876 0.0253 0 0
0.5527 0.2357 | 0.6671J, 0 ... (3.19)
| 0.2513 0749 [0.2504); 0.7496J,

Then equations (3.3) will take form:
Y, =Yy, +h[-0.3876 f(Y;) + 0.0253 f(Y,)] u
Y, =y, +h [0.5527 f(Y,) + 0.2357 f(Y,)] + 0.6671 J, o(Y;) |l
Vo1 = Yo+ [0.25131(Y,) +0.749 f(Y,)]+; [0.2504 g(Y)Y
+0.7496 g(Y,)] '[)
Equations (3.20) represent the MSRKM2- implicit - explicit.
Also in this case, the respective minimum given in equations (2.47),
(2.48), (2.49) and (2.50) becomes:

3 13
h—,h—,0,0 .. (3.21)
12 12
and for a 2-stage MSRKM2- implicit - explicit, the last equation for equations
(2.51) will be:

. (3.20)

then equation (2.50) become:

el 17 T o200, 3_ 5h°
S =g’ Bb+(g' Bb)2A5h3= 2
€36 37 (9 )g;, 12

and so in this case, the principal error constants are:
h® n® _ shd

515 %, .. (322)

12°12°
Case 3: MSRKM3-Explicit — Semi-Explicit.

In this case, consider the explicit form for the deterministic part and
semi-explicit form for the stochastic part, i.e. /

é0 Ou éb, Ou - T
A=ga 1, B=3a “, = ,a =la, a
eélﬂ OH 8321 b22 H g [ gl g2] [ ' 2]

and similarly by the same process followed and described previously, one
may get:

91



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

a, =0.4583,a, = 0.5345, g, = 0.4604, g, = 0.5363,a,, = 0.9105,b,, = 0.5638,
b, =-0.2,b,, =0.6763,
which may be written in tabulated from as:
0 0 0.5638; 0
09105 0 -0.2J, 0.6763), ... (3.23)
04583 0.5345 | 0.4604), 05363},

Then equation (3.3) will take the form:
=y, +0.5638 J, g(Y,)
Y, =y, +0.9105 hf(Y,) + J,[- 0.2 g(Y;)+0.6763 g(Y,)]
Y1 =Y, +h[0.4583 f(Y,) +0.5345 f(Y,)]+J,[0.4604 g(Yl)
+0.5363 g(Y5,)]
Equations (3.24) represent the MSRKM 3- explicit — semi-explicit.
Also in this case, the respective minimum given in equations (2.47),
(2.48), (2.49) and (2.50) becomes:

3 |13
h— h ,0,0 ... (3.25)
127 12°

and for a 2-stage MSRKM3- explicit - semi-explicit, the last equation for

equations (2.51) will be:

0 & b 5
@1 00® by 0_p o0
gb21 b22 @gb21 + bzz 2

then equation (2.50) becomes:

@&l 1repi Bb)2_15h3 0.1269 h3
36 3
and so in this case, the principal error constants are:

h’ h3

12"

. (3.24)

TR

g Bb=(q, &)

,0, 0.1269 h3 ... (3.26)

Case 4: MSRKM4-Implicit - Semi-Explicit.

In this case, consider the implicit form for the deterministic part and
semi-explicit form for the stochastic part, i.e. /
éaﬂ a12 eb

Ou
8 B ] ) gT = g ) a- T = a. a.
eéazl 2 u 8321 bzz H [ 91 2] [ ' 2]

A =
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and similarly by the same process followed and described previoudly, one
may get:
a, =0.0968,a, =0.8907,g, =0.1676,g, =0.8277,a,, = 0.6529,a,, = 0.0965,
a, =0.201, a,, =0.2528,b,, =0.628,b,, =- 1.2303,b,, =1.7462,
which may be written in tabulated from as:

0.6529 0.0965 0.628J, 0

0.201 0.2528 -1.2303J; 1.7462J, .. (3.27)

00968 0.8907 | 0.16763, 0.8277J

Then equations (3.3) will take the form:
Y1 = yp, +h[0.6529 f(Y;)+0.0965 f(Y,)] +0.628 J, g(Y;)
Y5 =y, +h[0.201 f(Y;)+0.2528 f(Y,)] + J;[- 1.2303 g(Y4)

-

+17462 g(Y5)] y ... (3.28)
Yn+1 = Yn +h[0.0968 f(Y1) +0.8907 f(Y2)]+3[0.1676 g(Yy); !
+0.8277 g(Y>)] b

Equations (3.28) represent the MSRKM4- implicit - semi-explicit.
Also in this case, the respective minimum given in equations (2.47),

(2.48), (2.49) and (2.50) becomes:

h® h’

1212
and for a 2-stage MSRKM4- implicit — semi-explicit, the last equation for
equations (2.51) will be:
aby 0 0ee by
§by1 by p&byy + bzzg
then equation (2.50) becomes:

0,0 ... (3.29)

g Bb=(q, @) =0.1722

L Lireb+(g Bb)2_15h3 4.659° 10°%h?

§36 3

and so in this case, the principal error constants are:
h® h° 43
—,—,0, 4659 10 “h ... (3.30)
12" 12
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Case 5: MSRKM5-Explicit- Implicit:

In this case, consider the explicit form for the deterministic part and

implicit form for the stochastic part, i.e. /
€0 00 ébll by, U

A= , g = g,|,a’ =|a
e Ou 8321 bzzu [91 2] [ '

2 20l)

a,],

and similarly by the same process followed and described previously, one

may get:
a, =0.1223,a, =0.8628,¢, =0.1223,g, = 0.8758,a,,
b, =0.1228,b,, =- 1.6469,b,, = 2.1729,
which may be written in tabulated from as:
0 0 0.4864J, 0.1228J,
05709 O -1.6469) 2.1729),
01223 08628 | 0.1223);, 0.8758);

Then equations (3.3) will take the form:
=y,+J3,[0.4864 g(Y;)+0.1228 g(Y,)]
Y, =y, +0.5709 hf(Y;) + J;[- 1.6469 g(Y,)
+2.1729 g(Y,)]

Yoa1 =Y, +h[0.1223 f(Y,) +0.8628 f(Y,)]+J,[0.1223 g(Yl)

+0.8758 g(Y,)]

Equations (3.32) represent the MSRKM5- explicit - implicit.

T

=0.5709, b,, = 0.4864,

.. (3.31)

.. (3.32)

Also in this case, the respective minimum given in equations (2.47),

(2.48), (2.49) and (2.50) are:

3 3
h_h_oo
12 12

.. (3.33)

and for a 2-stage MSRKM5-explicit - implicit, the last equation for equations

(2.51) becomes:

ab;; Dby dadyg +byp 0
gbZl boo ﬂgb21 +by g
then equation (2 50) will be:

xl
$36 3

and so in this case, the principal error constants are:

g Bb=(q, &)

-—g Bb+(g" Bb)z 5h3= 7.178" 10" 'h3
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h® h®
' 15" 7.178" 10 'h® ... (3.34)

Case 6: MSRKM6-Semi-Explicit - Implicit:
In this case, consider the semi-explicit form for the deterministic part and
implicit form for the stochastic part, i.e. /

A—Saﬂ OB,BZébll blZU
e an( g)zl bzz U
and similarly by the same process followed and described previously, one
may get:
a, =0.1253,a, =0.8571,g, = 0.1134, g, = 0.8553,4a,, =- 0.2521,a,, = 0.3601,
a,, =0.1967, b, =0.52,b,, =0.1821,b,, =- 0.313,b,, =0.8113,
which may be written in tabulated from as:

-0.2521 0 0.52J); 0.1821},

0.3601 0.1967 -0.313J; 0.8113J ... (3.35)

| 01253 08571 | 0.1134) 08553}

Then equations (3.3) will take the form:

Y, =Yy, - 0.2521 hf(Y,) + J,[0.52 g(Y,)+0.1821 g(Y,)] i

Y, =y, + h[0.3601 f(Y,)+0.1967 f(Y,)] + J[- 0.313 o(Y,) |
+0.8113 g(Y,)] t .. (3.36)

Yo = Yy, +h[0.1253 f(Y,) +0.8571 f(Y,)]+J,[0.1134 g(Yl)'

+0.8553 g(Y5,)] b
Equations (3.36) represent the MSRKM6- semi-explicit - implicit.
Also in this case, the respective minimum given in equations (2.47),

(2.48), (2.49) and (2.50) are:

h® h’

1212
and for a 2-stage MSRKM6-semi-explicit - implicit, the last equation for
equations (2.51) becomes:
abyy by 0ay +bp 6
§by1 b p&by + 03
then equation (2.50) will be:

g =[a g|a’=[a, a,]

0,0 ... (3.37)

g Bb=(q, @) = 0.2095
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§93_16-3gTBb+(g Bb)2_15h3 0.0275h3

and so in this case, the principal error constants are:

h® hs
,0, 0.0275h° ... (3.38)
1212

Remarks (3,2):

1. In al SRKM's were described in chapter two and three of this work and
given in the form of equation (2.27) have maximum strong order 1.0 for
any number of stages s, and all these methods have optimal principal error
coefficients for s = 2 which are given by equations (2.54), (2.55), (3.6),
(3.11), (3.15), (3.19), (3.23), (3.27), (3.31) and (3.35), respectively.

2. The 1-norm is used to estimate the contribution of all the error terms to
the principal error, note that as an illustration, the calculation of ||P.E.||.
for PL model have been located by finding the sum of principa error
constants terms which are given in equation (2.56) as a coefficients of h°.
i.e., The||P.E.||; for PL model is:

PLb =33

The following table (3.1) gives these values for PL, R2 and all new
methods considered in sections two and three above.

Table (3.1)
Error Coefficients

‘ ‘ ;1111111

PL 1.11111

R2 0.58333
Semi explicit 0.30323
Implicit 0.16667

MSRKM1 0.58333
MSRKM?2 0.58333
MSRKM3 0.29352
MSRKM4 0.16713
MSRKM5 0.16667
MSRKM©6 0.19419
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3.3 Stahility of Stochastic Rung-Kutta Methods:

Consider the SODE in Stratonovih form with one Wiener process:

dy; =f(t,y;)dt +9g(t,y;) odW; ... (3.39)

In this section, the stability of the semi-explicit scheme, implicit
scheme and all MSRK schemes that are described above will be discussed,
and this will be made by comparing the stochastic linear one step method in
the autonomous Stratonovich case with our schemes (semi explicit, implicit
and mixed stochastic Runge-Kutta methods) and finaly the consistency
conditions are also derived.

3.3.1 Modified Stochastic Linear Multi-Step M ethods:

Consider the modified stochastic linear k-step method for
approximating the solution of the SODE given in equation (3.39), for
n=Kk,k +1,...,N which takes the form:

k k k

o o) o) th- i th- i+
aaY,;=habft, ;Yo )+a got, Yo )H" """ ... (3.40)
J:O J:O J:]-

where a;, b;and g; are constants to be evaluated and set without loss of
generality ay=1 and we require given initial and dsarting values

Yo, Yl’ ]/4, Yk_l’[ Lz(\/\/, i n).

As in the deterministic case, usualy only Y, = Y(tp) is given by the
stochastic initial value problem and the values Y4, Y, ..., Y1 need to be
computed numerically as the starting values. This can be made by any
suitable one-step method, where one has to be careful to achieve the desired
accuracy.

Definition (3.1):

Theloca error of the stochastic linear multisteps methods givenin
equation (3.40) for the approximation of the solution of the SODE givenin
equation (3.39) for n=k, k+1, ..., N, may be written as:
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k
aaYnJ habf(tnjl nj) agjg(tn jr nj)

i
i
Ij=0 j=0 =1
I
Ln=i it forn=k,.., N
|
!
iy(t,)-Y, forn=0,..,k-1
.. (3.41)
and represent the local error in the following form:
&
Ly =Ry +SiLp =Ry +a S ju .. (342)

j=1
where n=kk+1.,N and S, ; s Atn_j+l-measjrable with

E(Sj,n-j+1|Atn_j) =0," n=k,k+1...,N,j=12,...,k

3.3.2 Stochastic Linear One Step Method for Stratonovich Case:

In this subsection the consistent conditions for stochastic linear one
step method with one Wiener process will be studied.

The consistent conditions for one step Stratonovich stochastic linear
multistep method with one wiener process will be derived next.
First, rewrite equation (3.40) with k=1 asfollows:

oY, ta Y, 1 =h[bof (t,,Y,)+bf (t, 1, Y D]+ 0t 1,Yn 1)
Jrthn n=1%.,N

.. (3.43)
Now, consider the operators:
L%a=18¢ and Lla=1g . (3.44)
Ty 1%

For the present case; the local error for equation (3.40) may be
rewritten as:

|[a0Y +a,Yn 4] - hbof (ty, Yi) +0of (th 1, Y )l - 9 9(th. 1, Y1)
Ln:.i_ Jr-tt forn=1,..,N
SY(ty)- Y, .forn=0

... (3.45)

98



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

To derive the consistent conditions for Stratonovich case, we need to the next
formulas:

FSY(9)=F (b .Y (g )+ 35 °(LF) + 3 °(LY) - (346)

05, Y () =9ty 1, Y (tn. ) + 35 (L%) + I (L) - (347)

Equations (3.46) and (3.47) represent the application of the It6-
formula on the corresponding interval to the drift coefficient f, as well as, to
the diffusion coefficient g, yieldsfor sT [to.1, to]:

Ftn-1, Y (th1) =F (t- 2, Y (1)) + Jg 2 -2 (LOF) + g2 -1 (L)
... (3.48)
f(t,, Y (L) =f(t 1, Y () +Ip-Lin(LoF) + In-vn (L) ... (3.49)
by the analysis of the local error L, given by equation (3.45) of the scheme

(3.43) for solving the SODE given in equation (3.39), the consistency
condition may be derived. The following lemma relates this result which is
modified and improved here for Stratonovich case.
Lemma (3.1):

Assume that the coefficients f and g of the SODE given in equation
(3.39) belong to the class C*? with L%, L%, LY and Lgi C*.Then the local

error given in equation (3.45) of the stochastic linear one step method givenin
equation (3.43) allows the representation:

L,=R%+S:for n=1,...,N ... (3.50)

Where Ry and S, are A, -measurable with E(éﬁ A, ) =0 and

Rp =[ag+ay] Y (ty.1) +[ag- bo- by]hf (to.1, Y (t.1)) + Ry

Sﬂ =[a0 - gl] g(tn-le(tn-l))DWn-l-'-@
with

IR [l =0(h?) ; 182 Il = O(h) .. (351)
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Proof:

To derive a representation of the local error in the form (3.50), the
deterministic parts is evaluated and resumed at the point (t,.1, Y (t4.1)) and
separate the stochastic terms carefully over the subinterval [t q,t,,]. This
ensures the independence of the random variables. It does make the
calculations more complicated, since:

agY (t,) +a,Y(th.1) =agY(ty) +asY(th.1)- agY(t,.1) +apY (th.1)

aOY(tn) + alY(tn-l) =[a0 + al]Y(tn-l) + aO[Y(tn) - Y(tn-l)] (3-52)
then the local error for linear one-step method given in equation (3.41) for
k=1 may be expressesfor n=1,2,...,N as:

I—n :[ao + al]Y(tn-l) + aO[Y(tn) - Y(tn-l)] - h[bof (thn)

+0yF(th 1, Yn-0)] - G9(th- 1, Yn-1) ‘]in_ Lt
... (353)
Hence, the SODE given in equation (3.39) impliesthe identities:

th th
Y(th)- Y(to.) = Of(sY(9)ds+ (s Y(s))odw(s)

th-1 th-1

or equivalently

Y(ty) - Y (t.0) =35+ (F) + I ()
Substituting equations (3.46) and (3.47) for Jy-t'n(f) and Jt'n(g),
respectively, to obtain:

Y(t,)- Y(t, ) =hf(t, 1, Y (t, 1))+ Lt (LoF) + I L (L)

+9(ty 1, Y (ty D)2 + 35 (Lg) + I3+ (L'g)
...(3.54)

Inserting equation (3.54) and the expansion given in equation (3.49); into the

local error formula given in equation (3.53) and reordering the terms yields
to:
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Lo =[a0+ag] Y (ty.1) +aolhf (ty.1, Y (t. 1)) + Iy " (L)
+IET (L) +9(ty 1, Y (. )M + gt (L%)
+ 3 (L) - hlooff (to.1, Y (ty. 1)) + g (LF)
+ 30 (L)} +byf (b0, Y (t0- )] - GOt 1, Yoo ) I 2
=[ag+a1]Y (tn.1) +haof (tn.1, Y (t.1)) + @I (L)
+agdf i (L) +ag(ty 1, Y (t, ) I +a dy i (Lg)
+aodf ' (L'g) - hidgf (th.1,Y (th.1)) - hbodg2n (LOF)
- hbodi 2t (L) - hbyf (ty 1, Y (t- )] - G 9(tn 1, Vo) I 0
=[ag +ay]Y (tn.1) +[a0 - bo- by]hf (ty.1,Y (ty.1) +{agdgs 2™

(L%F) - hogdy2 (L)} +[ag - 0 ]9(tn. 1, Y (tn. )32
+Hapki " (L'g) - hbodi™+' (L) +aediz ' (L)

+agdg i (L))
hence
L, =[ag+a]Y(ty.1) "'[ao - by - bl] hf (t,. 1, Y(th 1)) + I%g
"'[ao - gl]g(tn-l’Y(tn-l))DWn-l +8)
... (3.55)
where
RO =a,Jip 1 (L) - hby Jip-1'n (L °F) ... (3.56)
and
& =aody vt (L'g) - hbo i (Lf) +a, g™ (L)
+ao gt (L)
... (3.57)
[ |
Remark (3.3):

The consistency conditions for the stochastic one step method in the
Stratonovich case are then from lemma (3.1) read as follows:
[ao+a1]:O,[ao-bo-b1]:0 and [ao-gl]ZO (358)
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Definition (3.2):
The characteristic polynomial of equation (3.40) is given by:

r(r)=agrf+a, rt+vi+a, ... (3.59)

and the stochastic linear multistep method given in equation (3.40) issaid to
be stableif:

(i)  Therootsof r (r) lie on or within the unit circle.

(i)  Therootsof r (r) on the unit circle are ssmple.
Remark (3.4):

To study the stability of the semi-explicit, implicit, and mixed
stochastic Runge-Kutta methods, we may compare the stochastic one step
method given in equation (3.43) with stochastic Runge-Kutta methods given
in equation (3.3)

i.e., comparing
aoYn tayn1= th]c (tmy(tn)) + hblf (tn-11y(tn-1)) +

O(tn. 1,y (tn D) JT 2

with the corresponding SRKM

Yo = Yn +hlay f(Yy) +a, f(Y5)] + 3" g g(Ys) + g, 9(Y)]
which may be rewritten as

Vo1 =Yn *+ N (ta, Y (), ) + 340 (b, y(t,), I )
hence we get:

apg=1 a;=-1 by=0, b;=1 and g, =1
which satisfy the consistency conditions [see remark (3.3)] and by using
definition (3.2) the stochastic Runge-Kutta methods are stable.
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3.4 |llustrative Exampl es.

In this section some examples of autonomous SODE's are considered
and will be solved using SRK schemes which considered in this work and
note that, the obtain solutions for these examples are represented at average of
10000 simulated solutions by using N(0,h) random number generations for
wiener process W, .

Example (3.1) [22]:
Consider the Stratonovich SDE:
dy, = (y,%- Ddt+(0.1- 0.1y,*)odW, ;y, =0
when has the exact solution given by:
_exp(-2t+0.2W,) - 1
' exp(- 2t +0.2W,) +1

Following tables (3.2), (3.3), (3.4), (3.5) and (3.6) which represent the
numerical solution of example (3.1) by using the SRKM's which are (Explicit
(R2, PL) [7], Semi explicit, Implicit, MSRKM1, MSRKM2, MSRKM3,
MSRKM4, MSRKM5 and M SRKM®6) respectively:

Table (3.2)
The exact and numerical results of example (3.1) using explicit-R2 and
semi- explicit methods.

Exact
Solutions

-0.09967

Explicit-
R2
-0.10014

Absolute
Errors

0.00047

Semi-
explicit
-0.09791

Absolute
Errors

0.00176

-0.1971

-0.19697

0.00013

-0.19371

0.00339

-0.29104

-0.29117

0.00013

-0.28551

0.00553

-0.3802

-0.37905

0.00115

-0.37193

0.00827

-0.46156

-0.46013

0.00143

-0.45205

0.00951

-0.53684

-0.53417

0.00267

-0.52562

0.01122

-0.60442

-0.60032

0.0041

-0.5915

0.01292

-0.66395

-0.65904

0.00491

-0.65025

0.0137

-0.71597

-0.71056

0.00541

-0.70201

0.01396

-0.76159

-0.75544
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Exact
Solutions

-0.09967

Table (3.3)

implicit methods.

Explicit-
PL

-0.09985

Absolute
Errors

0.00018

Implicit

-0.09746

The exact and numerical results of example (3.1) using explicit-PL and

Absolute
Errors

0.00221

-0.1971

-0.19851

0.00141

-0.19369

0.00341

-0.29104

-0.29306

0.00202

-0.28526

0.00578

-0.3802

-0.38369

0.00349

-0.37212

0.00808

-0.46156

-0.46763

0.00607

-0.45381

0.00775

-0.53684

-0.54411

0.00727

-0.52816

0.00868

-0.60442

-0.6135

0.00908

-0.59487

0.00955

-0.66395

-0.67469

0.01074

-0.65463

0.00932

-0.71597

-0.72761

0.01164

-0.70695

0.00902

-0.76159

Exact
Solutions

-0.09967

-0.77/367

0.01208

Table (3.4)

MSRKM?2 methods.

MSRKM1
-0.09898

Absolute
Errors

0.00069

-0.75241

MSRKM2
-0.09956

0.00918

The exact and numerical results of example (3.1) usng MSRKM1 and

Absolute
Errors

0.00011

-0.1971

-0.1966

0.0005

-0.19696

0.00014

-0.29104

-0.28918

0.00186

-0.29086

0.00018

-0.3802

-0.37628

0.00392

-0.37868

0.00152

-0.46156

-0.45729

0.00427

-0.4592

0.00236

-0.53684

-0.53081

0.00603

-0.53295

0.00389

-0.60442

-0.5974

0.00702

-0.59936

0.00506

-0.66395

-0.65701

0.00694

-0.65821

0.00574

-0.71597

-0.70936

0.00661

-0.71

0.00597

-0.76159

-0.75437
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Table (3.5)
The exact and numerical results of example (3.1) usng MSRKM3 and

Exact
Solutions

-0.09967

MSRKM4 methods.

MSRKM3
-0.09894

Absolute
Errors

0.00073

MSRKM4
-0.09826

Absolute
Errors

0.00141

-0.1971

-0.19592

0.00118

-0.19438

0.00272

-0.29104

-0.28796

0.00308

-0.28777

0.00327

-0.3802

-0.37554

0.00466

-0.37419

0.00601

-0.46156

-0.45595

0.00561

-0.45468

0.00688

-0.53684

-0.52992

0.00692

-0.52793

0.00891

-0.60442

-0.59636

0.00806

-0.59445

0.00997

-0.66395

-0.65555

0.0084

-0.65367

0.01028

-0.71597

-0.70747

0.0085

-0.70642

0.00955

-0.76159

Exact
Solutions

-0.09967

-0.75263

0.00896

Table (3.6)

MSRKM®6 methods.

MSRKM5
-0.09832

Absolute
Errors

0.00135

-0.75205

MSRKM6
-0.09777

0.00954

The exact and numerical results of example (3.1) using MSRKM5 and

Absolute
Errors

0.0019

-0.1971

-0.19386

0.00324

-0.1935

0.0036

-0.29104

-0.2856

0.00544

-0.28548

0.00556

-0.3802

-0.37246

0.00774

-0.37261

0.00759

-0.46156

-0.45248

0.00908

-0.45333

0.00823

-0.53684

-0.52605

0.01079

-0.52662

0.01022

-0.60442

-0.59251

0.01191

-0.59322

0.0112

-0.66395

-0.65152

0.01243

-0.65221

0.01174

-0.71597

-0.70381

0.01216

-0.70393

0.01204

-0.76159

-0.74899
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Example (3.2) [7]:
Consider the Stratonovich SDE:
dy, =0.5(1- y,%)odW, ;y, =0.5
when has the exact solution given by:
y, =tanh(0.5W, +tanh™*(y,))

Following tables (3.7), (3.8), (3.9), (3.10) and (3.11), which represent
the numerical solution of example (3.2) by using the SRKM'swhich are
(Explicit (R2, PL) [7], Semi explicit, Implicit;, MSRKM1, MSRKM2,
MSRKM3, MSRKM4, MSRKM5 and MSRKM6) respectively:

Table (3.7)
The exact and numerical results of example (3.2) using explicit-R2 and
semi- explicit methods.

Exact
Solutions

0.5

Explicit-
R2
0.49111

Absolute
Errors

0.00889

0.49044

Absolute
Errors

0.00956

0.49325

0.47348

0.01977

0.47138

0.02187

0.48932

0.45821

0.0311

0.45618

0.03313

0.49094

0.44476

0.04619

0.44249

0.04845

0.4907

0.4304

0.06029

0.43371

0.05698

0.48821

0.41688

0.07133

0.41832

0.06989

0.49051

0.40603

0.08448

0.40522

0.0853

0.48943

0.39812

0.09132

0.39865

0.09078

0.49223

0.3898

0.10243

0.3896

0.10263

0.4919

0.38295
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Table (3.8)
The exact and numerical results of example (3.2) using explicit-PL and

Exact
Solutions

0.5

implicit methods.

Explicit-
PL

0.47982

Absolute
Errors

0.02018

Implicit

0.49115

Absolute
Errors

0.00885

0.49325

0.46562

0.02763

0.46819

0.02506

0.48932

0.44859

0.04073

0.45686

0.03246

0.49094

0.43376

0.05718

0.44114

0.0498

0.4907

0.41841

0.07228

0.44154

0.04916

0.48821

0.40511

0.0831

0.42856

0.05965

0.49051

0.39605

0.09446

0.42646

0.06405

0.48943

0.386

0.10344

0.42904

0.0604

0.49223

0.37713

0.1151

0.41659

0.07565

0.4919

Exact
Solutions

0.5

0.37111

0.12079

Table (3.9)

MSRKM?2 methods.

MSRKM1
0.48936

Absolute
Errors

0.01064

0.50281

MSRKM2
0.49734

0.01092

The exact and numerical results of example (3.2) usng MSRKM1 and

Absolute
Errors

0.00266

0.49325

0.47325

0.02

0.48127

0.01199

0.48932

0.45934

0.02998

0.46935

0.01997

0.49094

0.44684

0.0441

0.45352

0.03742

0.4907

0.43429

0.05641

0.44555

0.04514

0.48821

0.4232

0.065

0.4393

0.0489

0.49051

0.41264

0.07/87

0.43196

0.05855

0.48943

0.40343

0.086

0.42664

0.0628

0.49223

0.39537

0.09686

0.42583

0.0664

0.4919

0.38538
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Table (3.10)

The exact and numerical results of example (3.2) usng MSRKM3 and
MSRKM4 methods.

Exact

Solutions

0.5

MSRKM3
0.4881

Absolute
Errors

0.0119

MSRKM4

0.49181

Absolute
Errors

0.00819

0.49325

0.46943

0.02382

0.48201

0.01124

0.48932

0.4554

0.03392

0.47284

0.01648

0.49094

0.44231

0.04863

0.45815

0.0328

0.4907

0.42657

0.06413

0.45052

0.04018

0.48821

0.41359

0.07462

0.42643

0.06177

0.49051

0.40483

0.08568

0.41396

0.07655

0.48943

0.39607

0.09336

0.41445

0.07499

0.49223

0.38857

0.10366

0.40106

0.09117

0.4919

Exact

Solutions

0.5

0.38455

0.10735

Table (3.11)
The exact and numerical results of example (3.2) using MSRKM5 and
MSRKM6 methods.

MSRKM5
0.48922

Absolute
Errors

0.01078

0.35367

MSRKM6
0.49024

0.13823

Absolute
Errors

0.00976

0.49325

0.47172

0.02153

0.47349

0.01976

0.48932

0.47446

0.01485

0.45665

0.03267

0.49094

0.45834

0.03261

0.44236

0.04858

0.4907

0.44485

0.04584

0.43074

0.05996

0.48821

0.43895

0.04926

0.41892

0.06928

0.49051

0.43377

0.05674

0.40741

0.08311

0.48943

0.45068

0.03875

0.39888

0.09055

0.49223

0.44454

0.0477

0.3895

0.10273

0.4919

0.48618
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3.5 Stochastic Variable Step Size Method of Solving SODE's:

In this thesis, we gave some models of stochastic Rung-Kutta methods,
those methods considered in chapter two and three with fixed step size h. As
it is known from the usual methods of numerical anaysis, the step size is
fixed in that methods during the approach of solution, but still there are some
methods may be used to reduce the local truncation error, and among such
methods is the variabl e step size method.

In this section, the numerical solution of SODE's will be found using
variable step size methods when may be considered as a new approach in this
topic, where the considered SODE's is given by:

dy; =f(yy)dt+9(y) odW; with yy =Yg ... (3.60)

In all fixed step-size methods the local truncation error will depends on
step size h and on the numerical method used. But, in variable step-size
methods, we shall find the numerical solution Y, for the SODE given in

equation (3.60), that is accurate to within a specified tolerance e.

Therefore, it turns out for reasonabl e effective estimates of the step-size,
it is required to attain a specified local truncation error (tolerance) e. The
variable step-size method which will be considered here, is based upon
comparison between the estimates of the one and two steps of the numerical
value of y;at some time obtained by the numerical method with local

truncation error term that is of the form ChP, where C is unknown constant
and p is the order of the method. Suppose that we started with the initia

condition y  with step-size h using certain SRKM to find the solution ygh

and y{?), using the step-size h and g respectively. Let:

Eet = [1Yihn = Yool .. (361)
And here if E £ €, then there is no problem and one may consider y{%), as

the solution at t; + h. Otherwise if Es > €, then one can to find another
estimation of the step- size say he, . If this approximation was accepted then

109



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

this value of h,e, Will be used as the new value of h in the next step; if not,
then it will be used as an old h and repeat similarly as above.

A common question may arise, which is how to find hyg, ?. In this work,
a new criterion has been developed for estimating the local truncation error,
which control the step- size. The problem of error estimation is the most
important problem that impact the user while using variable step-size method.

Theorem(3.1):

Suppose the y{,, and y(?); are the numerical solution the SODE given
in equation (3.60) using certain SRKM with step sizes h and g respectively;

If eisthetolerance and Eog = || yg)m - yifih ||, then (the new value of the step

Size)
3h0|d e
= ... (3.62
new = o (3.62)
where hyq refersto the old value of the step size.
Proof:

Suppose Y isthe actual solution at to+h, by taking expectation to the both
sides of equation (3.61) yields:

E(Eest) ZEYE sy - Vi D=EUYL - V2 +Y - YD
Eest. £ E(1Yiosn - X7 1+ 1Y - X7 1D
=ElY; - X7 D +EAYEh, - X1 1)

cch+e =c+Dy=3cn
2 272

3
Eeg £=Ch
est. 2

alsoyieldsto C - 2Ee
3h

110



Chapter three Semi-Explicit, Implicit and
Mixed Stochastic Runge-Kutta Methods

2E

since, e=Chpay = 3y, Nhew
0

and so:

_3hgge€

|
Example (3.3):
Resolving example (3.2) using stochastic variable step size method in
explicit case (R2), so the following table (3.12), represent the numerica
solution of the example (3.2).

Table (3.12)
The exact and numerical results of example (3.2) using stochastic variable
step size method in explicit case (R2).

Exact Solution N“mef'ca' Absolute Errors
Solution

0.49993 0.50827 0.00834

0.49998 0.49602 0.00396

0.49995 0.50329 0.00334

0.50001 0.49538 0.00463

0.50001 0.49621 0.00381

0.49987 0.49421 0.00565

0.49999 0.50607 0.00608

0.50006 0.49669 0.00337

0.50001 0.49688 0.00313

0.50002 0.49559 0.00443
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Conclusions and Recommendation

From the present study, one may conclude the following
conclusion:
1. Variable step size methods improve the accuracy of the results, but
it required more calculation which isincrease the consuming time.
2. Implicit and mixed methods have some difficulties in programming

since a nonlinear system must be solved at each step.

Also from the present study the following conclusion may be

drown:

1. Study the stability of implicit SRKM's using the concept of mean
square stability.

2. Deriving 3-stages SRKM's for solving SODE's.

3. Solving system of SODE's using the considered schemes followed
in thisthesis.

4. Applying variable step size methods for solving SODE's based on
implicit SRKM's,

5. Introducing variable order methods for solving SODE's.
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