






Acknowledgments 

 

Praise to Allah for providing me the willingness, energy and 

patience to accomplish this work. 
 

I would like to express my sincere gratitude and grateful 

admiration to my supervisors Asst. Prof. Dr. Fadhel Subhi Fadhel and 

Asst. Prof. Dr. Osama H. Mohammed for their over seeing, guidance, 

interests and suggestions that were very helpful for the completion of 

this thesis. 

I'm so grateful to the College of Science at Al-Nahrain 

University, which gave me the chance to be one of its students. 
 

I would like also to express my appreciation to the staff members 

of the Department of Mathematics and Computer Applications  at Al-

Nahrain University for their support and ongoing help. 
 

Heartfelt thanks goes to my beloved family, in particular my 

father, mother, brothers and sister, for their love and giving me the 

facilities during my work. 
 

Finally, I'd like to thank my friends and all  those who have 

participated in any way or another during the work. 
 

Mustafa Mohommed Subhi 

                                                         March, 2012 



 

Supervisors Certifications 
 

We certify that this thesis was prepared under our supervision at 

the department of Mathematics, College of Science, Al-Nahrain 

University, in partial fulfillment of the requirements for the degree of 

Master of Science in Mathematics 

 

 

Signature:                               

Name: Asst. Prof. Dr. Fadhel S. Fadhel 

Data:       /       /  2012 

 

Signature:                               

Name: Asst. Prof. Dr. Osama H. Mohammed 

Data:       /       /  2012 

 

 

 

In view of the available recommendations, I forward this thesis 

for debate by the examining committee.    

 

Signature: 

Name: Asst. Prof. Dr. Fadhel S. Fadhel 

Head of the Department of Mathematics and 

Computer Applications 

Data:       /       / 2012 
 
 
 
 
 



 

Examining Committee Certification 
 

We certify that we have read this thesis entitled "Solutions of Stochastic Ordinary 
Differential Equations Using Variable Step Size Runge-Kutta Methods" and as 
examining committee examined the student (Mustafa Mohammed Subhi) in its 
contents and in what it connected with, and that, in our opinion, it meets the 
standards of a thesis for the degree of Master of Science in Mathematics. 
 

(Chairman) 

Signature: 

Name: Dr. Akram M. Al-Abood 

                 Asst. Prof. 

Date:      /      / 2012 
 

(Member) 

Signature: 

Name: Dr. Radhi A. Zaboon 

               Asst. Prof. 

Date:      /      / 2012 

(Member) 

Signature: 

Name: Dr. Shatha A. Salman 

                     Asst. Prof. 

Date:      /      / 2012 
 

(Member and Supervisor) 

Signature: 

Name: Dr. Fadhel S. Fadhel 

                       Asst. Prof. 

Date:      /      / 2012 

          (Member and Supervisor) 

Signature: 

Name: Dr. Osama H. Mohammed 

                       Asst. Prof. 

Date:      /      / 2012 
 
 

Approved by the Collage of Science 
 

                                             Signature 

                                             Name: Prof. Dr.  Khulood Whyeb Abood 

                                             Dean of the Collage of Science 

                                             Data:       /       / 2012 
 



Abstract 
 
 
 The main objective of this thesis is divided in to three directions which 

are: 

The first one is to study and overview the main and basic concepts of 

stochastic calculus, as well as, studying stochastic ordinary differential 

equations. 

 The second objective is to study explicit stochastic Runge-Kutta 

methods, then generalize this scheme for semi-explicit, implicit and mixed 

schemes and study theirs numerical stability. 

 The third objective is to introduce variable step size method for solving 

stochastic ordinary differential equations, which has the utility of improving 

the accuracy of the obtained results. 
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Basic Notations and Abbreviations 
 

−α Delete the first components of a multi index α. 
α−  Delete the last components of a multi index α. 
α+  Delete all zero components of a multi index α. 
α(t) Number of ways for labeling the vertices of t. 
θ(t) The corresponding J-integral associated with tree t. 
ß The σ-algebra of Borel subsets of m¡ . 

δij Kronecker delta function, where δij = 
0, if  i j
1, if  i j

≠
 =

 

0,t.Φ , .Φ  The fundamental solution. 

Γ. Weak hierarchical set. 
γ(t) Density of tree. 
Λ. Strong hierarchical set. 
ρ(t) Number of vertices. 
ρ(r) The first characteristic Polynomial. 
σ(t) Symmetry of a tree. 
∆Wn Random increment, such that ∆Wn = 

ntW∆ = 
n 1tW

+
− 

ntW . 

○ dW Stratonovich calculus integration symbol. 
● Deterministic node. 
○ Stochastic node. 
A t Filtration, which is an increasing family of σ-algebra 

fields. 
A σ-Algebra. 
(A

t
)t∈I Filtration satisfy the usual conditions, i.e., ( tA )t∈I is a 

right-continuous filtration (satisfies At = t0 +εε>I A for 

all t 0≥ ) and A0 contains all P-negligible events in A. 
Further, let (At)t∈I be such that W is a martingale of 
(At)t∈I 

e(t) Local error coefficient. 
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C( m¡ , ¡ ) The space of continuous functions f : m¡  → ¡ . 
Ck( m¡ , ¡ ) The space of k-times continuously differentiable 

functions f : m¡  → ¡ . 
Ch,k (I × dR , R ) The space of h-times and k-times (for time and 

stochastic process respectively) continuously 
differentiable  functions f : I × d¡  → ¡ . 

F(t)(y) Elementary differential. 
H Hierarchical set. 
I(.),t, I. Multiple Itô integrals. 
I{.}, IA The indicator function of a set A = {.}, where 

A
1, if A is true

I
0, otherwise


= 


 

1Î , ∆ nŴ   Is a random variable and must be 
n 1T +

A -measurable, 

where ∆ nŴ  = 1Î  = n 1Ŵ +  − nŴ and 1Î  is another 
multiple Itô integrals. 

J(.),t, J. Multiple Stratonovich integrals. 
K0(α) The number of zero components in multi index α that 

precede the first non-zero components of α or until 
the end of α if  all of its components are zeros. 

Ki(α) The number of zeros  between the ith and (i + 1)th 
non-zero components of  multi index α or the end of 
α, such that i = 1, 2, …, L(α+). 

L The class of functions, such that ( )t 2
s0

E X ds∫ < ∞, 

where E(.) is standing for expectation operators. 
L(α) Length of multi index α = (j1, j2, …, jL). 
L(v) Length of multi index v and equal to zero. 
L0, L1 The drift and the diffusion operators, respectively. 

n
2L ( , )Ω ¡  The space of all square integrable functions defined 

from Ω to n¡ . 
Ln Local truncation error. 
M The set of all multi indices. 
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MSRKM's Mixed Stochastic Runge-Kutta Methods. 
MSRKM1  The method (3.15) will be referenced by this code. 
MSRKM2 The method (3.19) will be referenced by this code. 
MSRKM3 The method (3.23) will be referenced by this code. 
MSRKM4 The method (3.27) will be referenced by this code. 
MSRKM5  The method (3.31) will be referenced by this code. 
MSRKM6  The method (3.35) will be referenced by this code. 
n(α) Number of zero components of a multi index α. 
P All measurable functions, such that  

( )t 2
s0

X ds < ∞∫P  = 1 where P(.) is standing for 

probability set function. 
P Probability measure. 
PL The method (2.55) will be referenced by this code. 
R The remainder set. 
Rn  The remainder of deterministic part. 
R2 The method (2.54) will be referenced by this code. 
RKM Runge-Kutta methods. 
S Stability region. 
SODE Stochastic ordinary differential equation. 
SRKM's Stochastic Runge-Kutta methods. 
Sn The remainder  of stochastic part. 
SLMM's Stochastic Linear Multi-step Methods. 

u, v Variables, such that u ≤ 0, v ≥ 0, and Re(u − v) + 
Re(v) ≤ 0. 

Wt, t
1W  The first Weiner process on time t. 

t
nW   The nth Weiner process on time t. 

w.p.1, P-w.p.1 P converges with probability one. 
X, X(ω) Random variables, ω∈Ω . 
Xt(ω), Xt Stochastic process. 

X.(ω) X as a function of the variables replaced by the dot 
for fixed ω. 
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Xt(.) X as a function of the variables replaced by the dot 
for fixed t. 

2L.  The norm of n
2L ( , )Ω ¡  space and if n

2Z L ( , )∈ Ω ¡  

then 
2

1
2 2

LZ (E | Z | )= . 
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Introduction 

 
In recent years, stochastic processes and stochastic calculus have been 

applied to a wide range of scientific disciplines such as physics, engineering, 
and finance. Stochastic calculus concerns with a specific class of stochastic 
processes that are stochastically integrable and are often expressed as 
solutions to the stochastic differential equations, [26]. They are typically 
describing the time dynamics of the evolution of a state vector, based on the 
(approximate) physics of the real system, together with a deriving noise 
process. It often represents processes not included in the model, but presented 
in real system, [2]. In the physical and engineering sciences, on the other 
hand, stochastic differential equations (SDE's for short) arise in a quite natural 
manner in the description of systems on which so-called "white noise" acts, 
[26], many physical systems are modeled by SDE's, where random effect are 
being modeled by a Wiener process (for more details, see for example [40]). 
A natural extension is given by systems of SDE's, where system noise is 
modeled by including a diffusion on term of some suitable form in the driving 
equations, [13]. Statistical inference for diffusion type processes satisfying the 
SDE's driven by Wiener process has been studied earlier and a comprehensive 
survey of various methods is given in, [34]. Recent years have witnessed that 
the most efficient and widely applicable approach in solving SDE's seems to 
be the simulation of sample paths of time discrete approximations on digital 
computers. This is based on a finite discretization of time interval [0, T] under 
consideration and generates an approximate values of sample paths step by 
step at the discretization times, [19]. 

 

Stochastic differential equations are differential equations in which one 
or more of its terms are stochastic processes, and therefore will give solutions 
which are itself stochastic process, [3]. SDE's are used in wide range of 
applications in environmental modeling, engineering and biological modeling, 
[20], and SDE's are a fundamental tool for mathematics and its applications, 
[18]. 

 

The types of SDE's incorporated into the systems are also very 
important; therefore, various authors have made extensive work on the 
analytic solution of SDE's, [14], [15], [28], [39] and the numerical solution of 
SDE's, [19], [27]. Since sometimes SDE's rarely have explicit solutions and 
hence in some cases accurate numerical methods are vital in order to make 
their implementation viable. Due to features of the stochastic calculus, the 
numerical analysis for solving SDE's differs in some key areas from the 
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already well-developed area of the numerical analysis of ordinary differential 
equations, [27]. 

 

There are two basic type of tasks connected with the simulation of 
solutions of SDE's. The first occurs in situation where a good pathwise 
approximation is required, for instance in direct simulations, filtering or 
testing statistical estimators. The second interest focuses on approximating 
expectations of functional of the Itô process, such as its probability 
distribution and its moments, [19]. As more realistic mathematical models 
become required to take into account random effects and influences in real 
world systems SDE's have become essential in the accurate description of 
such situations, [26]. 

 

Many SDE's have unknown analytical solution, so it is necessary 
to derive numerical methods to generate approximations to the exact solution, 
[7]. 

Nowdays, there are many researchers, who deals with numerical 
methods for solving SDE’s. Yet the gap between the well-developed theory of 
SDE’s and its application is still wide in range. A crucial task in bridging this 
gap is the development of an efficient numerical methods for solving SDE's 
[22], and in this regard one of such numerical methods is the Runge-Kutta 
methods, which was one of the most important of development numerical 
methods to give the optimal accuracy to the approximate solution, where 
Rümelin in (1982) [38], who is first investigated systematically stochastic 
Runge-Kutta type schemes of strong order. Further derivation of free schemes 
may be found by Platen in (1984) [32] and Kloeden and Platen in (1995) [22]. 
Some stochastic Runge-Kutta schemes of strong order 1.5 have been 
developed by Burrage ([5], [7]) using the rooted tree analysis for calculating 
the order conditions, [37]. By the same last style of construction with some 
modification, the derived SRK schemes of weak order 1 and 2 are developed 
by Rößler in (2003) [37] by using rooted tree analysis for calculating order 
conditions. At any rate, for simplicity, in this thesis we shall restrict our 
attention to use a one-dimensional Stratonovich or Itô process Xt with one 
Wiener process Wt . 
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In contrast to strong approximations, which require that the simulated 
paths are close to the exact solution Xt of the SDE, weak approximations do 
not necessarily need to approximate these paths. 

 

This thesis is composed of three chapters. The first chapter gives a short 
introduction to some results of stochastic calculus, especially in view of the 
Wiener process. Rudiments for both Ito and Stratonovich stochastic 
integration bringing forth Itô and Stratonovich stochastic differential 
equations are considered. Itô's formula serves as a powerful tool applied for 
introduction of stochastic Taylor expansions due to Platen and Wagner [35], 
Representing a generalization of the deterministic Taylor formula. Truncated 
stochastic Taylor expansions can be used as a numerical schemes for strong 
convergence. That followed we gave the expectation of stochastic integrals at 
the end of this chapter. 

 

In chapter two some concepts and definitions , which are needed to study 
the numerical solutions of stochastic differential equations and some formulae 
of Runge-Kutta methods are previewed, and used as approach to overcome 
the disadvantages of Taylor schemes. Therefore, the well known concepts of 
such methods are reflected for deterministic ordinary differential equations 
with the powerful theory of rooted trees. This concept builds a basis for the 
development of stochastic Runge-Kutta methods and the calculation of order 
conditions for strong convergence. The rooted tree theory was introduced for 
the stochastic setting by the application of two different kinds of coloured 
nodes. These representations are the key for the main theory of this chapter, 
giving general order conditions for stochastic Runge-Kutta methods which 
can be calculated very easily with the aid of rooted tree theory. It turns out 
that these conditions are a generalization of the well known deterministic 
order conditions. The stability of the numerical method was also studied. 

In chapter three, the derivations of some semi-explicit, implicit and 
mixed stochastic Runge-Kutta methods are introduced individually and then 
studying the stability of such schemes which is given for completeness. Also 
in addition, variable step size method for stochastic version has been proposed 
and implemented in this chapter; some illustrative examples are given for 
comparison purpose between the given different schemes and that proposed in 
this study. 
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Chapter One 

Basic Concepts of Stochastic Calculus 

 
Introduction: 
 

Stochastic calculus is concerned with the study of stochastic processes, 
which involve randomness or noise. Intuitively, this requires knowledge of 
random variables and probability measures. Therefore, this chapter provides 
the background definitions and concepts that will be required later. 

Only those definitions which are of direct relevance to this exposition 
are given here. For more details see Arnold [3], Gard (1988) [17], Kloeden 
and Platen [22] for example. 
 This chapter consists of five sections. In section (1.1), some basic 
concepts related to the probability theory are given. In section (1.2), we 
discuss stochastic properties with some related properties are discussed. In 
section (1.3), theory of stochastic ODE's are given. In section (1.4) the theory 
of stochastic Taylor series expansion was discussed and giving some concepts 
about multiple (Itô and Stratonovich) integrals and multi-index basis and 
finally in section (1.5) the expectation of stochastic integrals was considered. 
1.1 Probability Theory Background [3],[7]: 
 This section contains the background materials of probability theory 
that directly required for the work carried out in this thesis. 
Definition (1.1): 

The σ-algebra A of subsets of a sample space Ω and satisfies the 
following: 

1. Ω ∈ A. 

2. If A ∈ A, then Ac = {ω ∈ Ω | ω ∉ A}∈ A. 

3. For any sequence {An} ⊆ A, then nn 1A∞
=U ∈ A and nn 1A .∞

= ∈I A  

The elements of A are called probability measurable sets and the pair 

(Ω, A) is called a probability measurable space. 
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For example, a Borel Set (ß) in m¡  is a σ-algebra generated by open 
sets in m¡ (and so includes open, closed, half open and other m-dimensional 
intervals). 
Definition(1.2): 

A probability space triplet (Ω, A, P[.]), where Ω is a sample space (set 
of all possible outcomes of random increment), A is class of all subset of Ω 
and p[.] is a probability set function whose domain is Ω and counter domain is 
the interval [0,1]. 
 

Definition (1.3): 
A random vector X=(X1, X2, …, Xn) is said to have multivariate Normal (or 
Gaussian) distribution, denoted by X~N(μ, Σ) if X has p.d.f. is: 

T1(X ) (X )
2

n/2 1/2
1f (X) e

(2 ) | |

− −µ ∑ −µ
=

π ∑
 

where μ=( μ1, μ2, …,μn)T is the mean vector and 
11 12 1n

n1 n2 nn

σ σ σ 
 

∑ =  
 σ σ σ 

K

M O M
L

 is 

n n×  symmetric positive definite variance-covariance matrix. 
Conditional expectations are used to provide estimates of X based on 

possibly incomplete information about X. Thus if some event A has occurred, 
then the estimate of X can be improved upon by calculating the conditional 
expectation of X give the event A, where now only the values of X, as 
determined by the event A, need to be considered. For example, suppose that 
X is a continuous random variable with probability density function f(x), and 
let A { : a X( ) b}= ω∈Ω ≤ ω ≤ . Then the conditional density function of X 
given A is 

b

a
f (x)/ f (x)dx ; a x b

0 ;elsewhere
f (x | A)

≤ ≤


∫
= 



 

The corresponding conditional expectation of X given event A is  
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b

a
b b

a a

E(X | A) x f (x | A)dx

x f (x)dx / f (x)dx

=

=

∫

∫ ∫
 

If there is an infinite sequence of random variables, then it is 
important to know how the sequence converges. There is a number of 
different modes of convergence, as it is give in the next definitions: 

Definition (1.4): 
A sequence of random variables {Xn(ω)} converges with probability 

one (denoted by P-w.p.1 or w.p.1) to X(ω) if  

P({ω ∈ Ω : 
n
lim
→∞

Xn(ω) = X(ω)}) = 1.  

This is also called almost sure convergence. 

Definition (1.5): 

A sequence of random variables {Xn(ω)} such that E( 2
nX ) < ∞ for all 

n is said to be converges in the mean square to X(ω) if: 
2

nn
lim E( X X ) 0
→∞

− = . 

Definition (1.6): 
A sequence of random variables {Xn(ω)} converges in probability (or 

stochastically) to X(ω), if: 

n
lim
→∞

P({ω ∈ Ω : |Xn(ω) − X(ω)| ≥ ε}) = 0, ∀ ε > 0. 

1.2 Stochastic Process: 
In many physical applications, there are many processes in which the 

random variables depends on the space and/or time and this introductory 
material will be the main subject of the present section. 

Definition (1.7), [7]: 
A stochastic process X(t, )ω  is a family of random variables which is 

denoted by Xt(ω) (or briefly Xt) of two variables t and ω, where 

0t [t , T] [0, )∈ ⊂ ∞ , T ∈¡ ,ω∈Ω  on a probability space (Ω, A, P), which 
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assumes real values and is P-measurable as a function of ω for each fixed t. 
The parameter t is interpreted as a time and Xt(.) represents a random variable 

on the above probability space Ω, while X.(ω) is called a sample path or 
trajectory of the stochastic process. 

Definition (1.8), [7]: 

Let tX , t [a,b]∈  be a stochastic process on probability space  

(Ω, A, P) and let t t [a,b]{ } ∈A  be a non-decreasing family of σ-algebras of A, 

such that for each t ∈ [a, b], Xt is At-measurable. Then Xt is a martingale 

with respect to At, if: 

E(Xt + s | At) = Xt,    for all s > 0. 

Martingales are particularly relevant in the theory of stochastic 
integrals and it is another important class of stochastic process. Öttinger in 
(1996), [30] links martingale to a "courtroom process in which the truth is 
exposed in the course of time". 

Now, an important class of stochastic processes is that with 
independent increments; that is, where the differences 

i 1 it tX X
+

−  are 

independent, for any finite sequence {ti} ⊆ I with ti < ti+1 where I=[t0, T].  
Definition (1.9), [7]: 

A stochastic process Wt, t ∈ [0, ∞), is said to be a Brownian motion 
or Wiener process, if: 

1. P({ω ∈ Ω| W0(ω) = 0}) = 1. 

2. For 0 < t0 < t1 < … < tn, the increments 
1 0t tW W− , 

2 1t tW W− …, 

n n 1t tW W
−

− are independent. 

3. For an arbitrary t and h > 0, Wt + h − Wt has a Normal distribution with 
mean 0 and variance h. 

Remark (1.1), [7]: 
In general, a standard Weiner process has the properties that: 

W0 = 0 w.p.1,   E(Wt) = 0,   Var(Wt − Ws) = t − s 

for all 0 ≤ s ≤ t; and so the increments are stationary. 
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The property E(WsWt) = min(s, t) can be used to demonstrate the 
independence of Wiener increments. Suppose that 0 ≤ t0 < … < ti−1 < ti < … 
< tj−1 < tj < … < tn; then: 

E[(
i i 1t tW W

−
− ) (

j j 1t tW W
−

− )] = E(
i jt tW W ) − E(

i j 1t tW W
−

) − 

E(
i 1 jt tW W
−

) + E(
i 1 j 1t tW W
− −

) = ti − ti −ti−1 + ti−1 = 0 

and hence the increments 
i i 1t tW W

−
− and 

j j 1t tW W
−

−  are independent. 

Definition (1.10), [3]: 
A (d m×  matrix)-valued function G G(t, )= ω  defined on I× Ω  and 

measurable in (t, ω) is said to be nonanticipating (with respect to a family At 

of nonanticipating σ-algebra A) if G(t, .) is At-measurable for all t I∈ . 

1.3 Theory of Stochastic Differential Equations. 
This section contains some definitions and theorems about SDE's and 

their models that shows by studying the calculations of stochastic integrals 
and finally giving some analytical methods for solving several types of SDE's 
with different ways. 

1.3.1 Stochastic Integrals and their Models [37]: 

A sequence of node points is considered in the interval [ ]0I t ,T=  

given by: 

t0 = (n)
0t  < (n)

1t  < … < 
n

(n)
Nt  = T 

with the property that they are refinements for increasing n and with: 

n0 i N 1
max

≤ ≤ −
{ }(n) (n)

i 1 it t+ −  → 0  as  n → ∞ 

If we define (n)
iτ  = θ (n)

i 1t +  + (1 − θ) (n)
it , for a fixed θ∈ [0, 1], then the 

follwing series of random variables is called an approximation of stochastic 
integral, viz ; 

n
(n) (n) (n) (n)
i i i 1 i

0

T
N 1

t i 0 t t
t

X dW X (W W )
+

−
=τ τ

= −∑∫  … (1.1) 
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converges as n → ∞ in probability if (n)t
W , t(n) ≥ 0 be a Wiener process 

and Xt a real-valued stochastic process (sometimes, called a stochastic 
function or briefly a function) with respect to Wiener process Wt. It is 
necessary that X and W are both defined on the same probability space  
(Ω, A, P). 

Now, let At  be an increasing family of σ-algebra fields, which is 

called also filtration, for all t ≥ 0, i.e., 
1 2t t⊂A A  if 1 2t t< , such that 

t ⊂A A , where s(W ,  0 s t)≤ ≤A  is in tA , and t t(W –  W , 0)λ+ λ >A  

is independent of At, for all t ≥ 0. One can take, for instance, 

t s(W ,0 s t)= ≤ ≤A A  [16]. The filtration ( tA )t∈I satisfy the usual 

conditions, i.e., ( tA )t∈I is a right-continuous filtration (satisfies  

At = t0 +εε>I A for all t 0≥ ) and A0 contains all P-negligible events in A. 

Further, (At)t∈I be such that W is a martingale of (At)t∈I, [37]. 
 
Definition (1.11), [7]: 

Consider a probability space (Ω, A, P) with filtration (At)t∈I then a 

nonnegative random variable τ(ω) on (Ω, A, P) is called a Markov time ( or 

stopping time) if the event { } t: ( ) tω∈Ω τ ω ≤ ∈A , for each t ≥ 0. 

 
Definition (1.12), [21]: 

Let Xt, t ∈ I be a stochastic process defined on a probability space  
(Ω, A, P) and let (At)t∈I be a filtration σ-algebra. The process Xt is adapted 

to the family (At)t∈I if Xt is At -measurable for every t ∈ I, or: 

t t tE(X |  ) X , t I= ∈A  

At -adapted random processes are also At -measurable. 

It is also necessary that Xt be a non-anticipating (see [3]), by which it is 
meant that information about Xt at time t does not depend on events occurring 
after time t. In the next definition more details about Xt are given: 
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Definition (1.13), [37]: 
The set L is the class of all ß×A-measurable At-adapted processes 

Xt : I × Ω → R ,where ß is the Borel set in mR  for which: 
2t
s0

E X ( ) ds ω 
 ∫  < ∞,     t > 0 ... (1.2) 

holds and the set P is the class of all ß×A-measurable At-adapted processes 

Xt : I × Ω → R , satisfying: 

( )t 2
s0

X ( ) ds 1ω < ∞ =∫P ,    t > 0 ... (1.3) 

Now, back to equation (1.1), when equation (1.1) converges as  
n → ∞ in probability if Xt ∈ P and in the mean-square sense given in 

equation (1.2) if Xt ∈ L. 
However, the integral for dWs are unlike the Riemann-Stieltjes 

integral, here is the selection of θ makes a difference. For 

θ = 0, which is means that (n)
iτ  represent the left end point (n)

it , we have the 

Itô calculus. The limit of equation (1.1), denotes the first model given by: 

0

t
s st

X dW∫  

and is called the Itô stochastic integral. At Stratonovich calculus, we have to 

set θ = 
1
2

 and (n)
iτ  described the mid point of [ (n)

it , (n)
i 1t + ]. Now, the limit of 

equation (1.1) denotes the second model which is given by: 

0

t
st

X∫  ○ dWs 

and is called the Stratonovich stochastic integral. 

To determine a value for the integral 
b

t ta
W dW∫ , approximate Wt by 

the function n (t)λϕ , where: 

n (t)λϕ  = λ (n)
k 1t

W
+

+ (1 − λ) 
(n)
kt

W ,   (n)
kt ≤ t ≤ (n)

k 1t +  ... (1.4) 

for λ ∈ [0, 1], and then the integration of n (t)λϕ  in [a, b] equals to the 
approximate stochastic integral given in equation (1.1): 
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b
a∫ n (t)λϕ  dWt = nN 1

k 0
−

=∑ n k(t )λϕ ( (n)
k 1t

W
+

− (n)
kt

W ) ... (1.5) 

The right hand side of equation (1.5) may be written as: 

λ nN 1
k 0

−
=∑ (n)

k 1t
W

+
( (n)

k 1t
W

+
− (n)

kt
W )+(1−λ) nN 1

k 0
−

=∑ (n)
kt

W ( (n)
k 1t

W
+

− (n)
kt

W ) 

By arranging the terms algebraically, when n → ∞, then [1]: 
 

n n
(n) (n) (n) (n) (n) (n)tk k 1 k k k 1 k

N 1 N 1 2
k 0 k 0t t t t tn n

lim W [ W W ] lim [ W W W ]
+ +

− −
= =→∞ →∞

− = −∑ ∑  

n
(n) (n) (n) (n) (n)t t tk k 1 k k 1 k 1

N 1 2 2 2
k 0 t tn

1 lim 2W W 2W W W
2 + + +

−
=→∞

= − + −∑  

n
(n) (n)(n) (n)t t k 1 kk 1 k

N 1 2 2 2
k 0 t tn

1 lim [W W [W W ] ]
2 ++

−
=→∞

= − − −∑  

Such that: 
 

n
(n) (n) (n) (n) b at t t t0k 1 k Nn

N 1 2 2 2 2 2 2
k 0n n

lim [W W ] lim [W W ] W W
+

−
=→∞ →∞

− = − = −∑  

where 
n
lim
→∞

 is taken as the limit in probability, then [1]: 

 

n
(n) (n) (n) b a
k k 1 k

n
(n) (n)
k 1 k

N 1 2 2
k 0 t t tn

N 1 2
k 0 t tn

1 1lim W [W W ] W W
2 2
1 lim [W W ]
2

+

+

−
=→∞

−
=→∞

− = −

− −

∑

∑
 

In a similar manner with nN 1
k 0

−
=∑ (n)

k 1t
W

+
[ (n)

k 1t
W

+
− (n)

kt
W ], such that: 

 

n
(n) (n) (n) b a
k 1 k 1 k

n
(n) (n)
k 1 k

N 1 2 2
k 0 t t t

2N 1
k 0 t tn

1 1W [W W ] W W
2 2
1 lim [W W ]
2

+ +

+

−
=

−
=→∞

− = −

+ −

∑

∑
 

According to [1]: 
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n
(n) (n) b a
k 1 k

n
(n) (n) b
k 1 k

n
(n) (n)a
k 1 k

N 1 2 2
nk 0 t t

2N 1 2
k 0 t tn

2N 12
k 0 t tn

1 1(t)[W W ] [ W W
2 2

1 1lim [W W ] ] (1 )[ W
2 2
1 1W lim [W W ] ]
2 2

+

+

+

− λ
=

−
=→∞

−
=→∞

ϕ − = λ −

+ − + − λ

− − −

∑

∑

∑

 

n
(n) (n)b a k 1 k

2N 12 2
k 0 t tn

1 1 1W W (2 1) lim [W W ]
2 2 2 +

−
=→∞

= − + λ − −∑  

 ... (1.6) 

Now, by the next theorem, the last limit in probability equals to   b − a 
.Theorem (1.1), [1]: 

Let Xt be a Wiener process, and Пn a sequence of partitions  

{ (n)
1t , (n)

2t …, 
n

(n)
Nt } of a finite closed interval [a, b] with |Пn| → 0 if 

n → ∞  Let: 

Sn = nN
k 1=∑ [ (n)

kt
X − (n)

k 1t
X

−
]2 

Then nS b a→ −  in the mean. 
The interval [a, b] has been partitioned into n-equal subintervals of 

length 
b a

n
−

, so for each k the expected value of [ (n)
k 1t

W
+

− (n)
kt

W ]2 is  

(n)
k 1t +  − (n)

kt , which is equal to 
b a

n
−

. Consequently, the mean-square limit of 

the sum of squares given in equation (1.6) is 
b an

n
− 

 
 

 = b − a. Therefore, 

taking the mean-square limit of equation (1.6) as (n) (n)
k 1 kt t 0+ − → , yields to: 

b
a∫ Wt dWt = 

1
2

 (
b
2W  − 

a
2W  ) + (λ − 

1
2

) (b − a). 

Thus, for any choice λ there are different results. In particular, if λ = 0, then 
the integral is known as Itô stochastic integral, and this leads to a calculus 

based on Itô chain rule, while taking λ = 1
2

, then the resulting integral is the 

Stratonovich stochastic integral (where the symbol ○ is employed), and the 
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Stratonovich calculus follows the same results for the regular Riemann-
Stieltjes calculus. The integral evaluation is: 

b
a∫ Wt dWt = 

1
2

 (
b
2W  − 

a
2W ) − 

1
2

 (b − a) 

and 
b
a∫ Wt ○ dWt = 

1
2

 (
b
2W  − 

a
2W ) 

for the Itô or Stratonovich calculus, respectively. 
Remark (1.2), [37]: 

The advantages of Stratonovich calculus is the availability of its rules 
similar to ordinary integration. However: 

t
0∫ Ws ○ dWs = 

1
2 t

2W ,         ∀ W0 = 0 

whereas for Itô calculus: 
t
0∫ Ws dWs = 

1
2 t

2W  − 
1
2

t,        ∀ W0 = 0 

A nice feature of the Itô stochastic integral is that it can be defined for 
a general class of non-anticipating random functions in such a way as to 
preserve various Wiener process properties, as well as, allowing easy 
calculation of moments of the solution of an SDE. 

One of the main advantages of the Itô calculus in contrast to 
Stratonovich calculus is the fact that Itô integrals inherit some good properties 
of the Wiener process. 
Definition (1.14) [16]: 

A stochastic process Xt defined on [a, b] is called a step function if 
there exists a partition a = t0 < t1 < … < tr = b of [a, b], such that: 

Xt = 
ti

X ,   if  i i 1t t t +≤ ≤ , i 0,1,..., r 1= −  

Theorem (1.2), [16]: 
If f is a step function in set L of interval [a, b], then: 

( )b
ta

E f (t, )dWω∫  = 0,  

2b
ta

E f (t, )dW
 

ω 
 
∫  = 

b 2
a

E f (t, )dtω∫  
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Only for the non-anticipating Itô case (λ = 0) does the martingale 
property (and theorem (1.2)) hold. However, to offset this advantage, there is 
a disadvantage of the extra term in the chain rule, which is comes about as 
(dWt)2 behaves like dt in the mean square sense in theorem (1.2), [7]. 

Finally, there are many of theorems concerning stochastic integral but 
superior theorem with d-dimensional random variable is given next. 
 

Theorem (1.3), [3]: 
If f is independent of ω and belongs to P of interval [t0, T], it belongs 

to L of same interval for any sub σ-algebras As ⊃ ß [t0, s], such that ß is a 
Borel set of σ-algebra in the interval [t0, s] and f denotes d × m-dimensional 

matrix valued function, then the Itô stochastic integral 
0

T
st

f (s, )dWω∫  is a 

normally distributed d-dimensional random vector with distribution: 

( )0

t T
t

0, f (s, ) f (s, )dsω ω∫N  

1.3.2 Stochastic Differential Equations and their Models, [7], [22], [37]. 
Consider the SDE: 
dyt = f(t, yt) dt + g(t, yt) dWt,    0ty  = y0 ... (1.7) 

where f : I×R → R , g : I×R  → R  be a Borel-measurable functions, we 
call f the drift function and g the diffusion function.  

The stochastic differential equation given in equation (1.7) may be 
written as an equivalent SDE of the form: 

yt = 
0ty  + 

0

t
st

f (s, y )ds∫  + 
0

t
st

g(s, y )∫  dWs ... (1.8) 

However, the second integral given in equation (1.8) cannot be defined in a 
following meaning, where Ws is the Wiener. The variance of the Wiener 
process satisfies Var(Wt) = t, and so this increases as time increases even 
thought the mean stays at 0. Because of this, typical sample paths of a Wiener 
process attain larger values in magnitude as time progresses, and 
consequently the sample paths of the Wiener process are not bounded; hence 
the second integral in equation (1.8) cannot be considered as a Riemann-
Stieltjes integral. Note that, more general process which has the martingale 
property can be used in place of Ws, but in this thesis only Wiener process 
will be used in the formulation of SDE. Also, note that the formulation in 
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equation (1.8) assumes initially that there is only a single scalar Wiener 
process, so the SDE is then represented by rewriting the integral equation 
given in equation (1.8), as: 

yt = 
0ty  + 

0

t
st

f (s, y )ds∫  + 
0

t
s st

g(s, y ) dW∗∫  ... (1.9) 

Or 
d ty = f(t, ty ) dt + g(t, ty ) ∗  dWt,    0ty  = y0 ... (1.10) 

where 
0

t
s st

g(s, y ) dW∗∫  refers to either Itô stochastic integral 

0

t
s st

g(s, y )dW∫  or Stratonovich stochastic integral 
0

t
s st

g(s, y ) dW∫ o  such 

that the first integral in equation (1.9) is pathwise Lebsegue-integrable. Since 
the paths of Wiener process are almost sure of unbounded variation, we 
cannot interpret the second integral in equation (1.9) in the sense of a 
pathwise Riemann-Stieltijes integral. 

Now, when considering the Itô and Stratonovich calculus, then we get 
a simple connection between the solution of an Itô SDE and that of a 
Stratonovich SDE. Let ( ty )t∈I be the solution of one-dimensional Itô SDE, 

such that: 
d ty = f(t, ty ) dt + g(t, ty ) dWt,     0ty  = y0 ... (1.11) 

then: 

ty  = y0 + 
0

t
st

f (s, y ) ds∫  + 
0

t
s st

g(s, y ) dW∫  

where Wt is a one-dimensional Wiener process. ty  is also a solution of the 

Stratonovich SDE, such that when: 
d ty = tf (t, y )  dt + g (t, ty ) ○ dWt,    0ty  = y0 ... (1.12) 

then: 

ty  = y0 + 
0

t
st

f (s, y )ds∫  + 
0

t
st

g(s, y )∫  ○ dWt 

of Stratonovich calculus, where: 

tf (t, y )  = f(t, ty ) − 
1
2

g
y

∂
∂

(t, ty ) g(t, ty ) ... (1.13) 
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Therefore, whichever interpretation of the SDE is appropriate in particular 
situation, we can switch to the corresponding SDE in the other calculus. For 
instance, we can apply the existence and uniqueness theorem for an Itô SDE 
given in equation (1.11) to obtain analogous results for the corresponding 
Stratonovich SDE given in equation (1.12). 
Remark (1.3), [37]: 

The class of Itô process may be introduced as follows: 
A stochastic process Y of the form: 

tY  = Y0 + 
t
0

f (s, )dsω∫  + 
t

s0
g(s, ) dWω∫  ... (1.14) 

with f and g are At-adapted, and: 

( )t
0
| f (s, ) | ds , for all t 0ω < ∞ ≥∫P  = 1 ... (1.15) 

and with g is a  ß × A-measurable and 

( )t 2
0

g (s, )ds , for all t 0ω < ∞ ≥∫P  = 1 ... (1.16) 

which is called Itô process. 
We are now in position to define the solution of an Itô SDE. 

Definition (1.15), [37]: 

A process Y = ( tY )t∈I with values in dR  is called a strong solution of 

the stochastic differential equation given in equation (1.11) with respect to 
the fixed Wiener process t t I(W ) ∈  and the initial condition 0y , if the 

following properties hold: 
1. Y is adapted to the filtration (At)t∈I. 
2. Y has continuous sample paths. 
3. For multi-dimensions given in equation (1.11), such that i = 1, 2, …, d; j = 
1, 2, …, m and t ∈ I satisfy: 

t 2
i s ij s0

| f (s,Y ) | g (s,Y )ds+∫  < ∞, P-w.p.1. 

4. tY  satisfy with P-w.p.1.  the following stochastic integral equation given 

by: 

tY  = Y0 + 
t

s0
f (s,Y )ds∫  + 

t
s s0

g(s,Y )dW∫ , t I∀ ∈  
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Theorem (1.4) (The Existence and Uniqueness Theorem), [3]: 
 Suppose that we have a stochastic differential equation given by: 

0t t t t t 0dX f (t,X )dt G(t,X )dW ,X c, t t T ,= + = ≤ ≤ ≤ ∞  

where Wt is an mR -valued Wiener process and c is the random variable 

independent of 
0t tW W−  for 0t t≥ . Suppose that the dR -valued function 

tf (t,X )  and the (d m×  matrix)-valued function tG(t,X )  are defined and 

measurable on dI R×  where 0I [t ,T]=  and have the following properties: 

There exists a constant K > 0 such that 

a) (Lipschitz condition) for all t I∈ , d
t tx , y R∈ -valued random vector, 

t t t t t t| f (t, x ) f (t, y ) | | G(t, x ) G(t, y ) | K | x y |− + − ≤ − , 

( 2 T| G | tr GG= ) … (1.17) 

b) (Restriction on growth) For all t I∈  and d
tx R∈ -valued random 

vector, 
2 2 2 2

t t t| f (t, x ) | | G(t, x ) | K (1 | x | )+ ≤ +  … (1.18) 

Then the stochastic differential equation given in this theorem has on I a 

unique dR -valued solution tX , continuous w.p.1, that satisfy the initial 

condition 
0tX c= ; that is, if tX  and tY  are continuous solution of SDE 

given above, with the same initial value c, then: P
0

t t
t t T

( sup | X Y | 0) 0
≤ ≤

− > = . 

In contrast to strong solution of stochastic differential equations, a 
notion of solvability for the equation (1.11) may be defined, which is a 
weaker condition. 
Definition (1.16), [37]: 

A weak solution of the stochastic differential equation given in 
equation (1.11) is a triple ((Ω, A, P), (At)t∈I, (Y, W)), such that: 

1. (Ω, A, P) is a probability space, (At)t∈I is a right-continuous filtration in 

A and A0 contains all P-negligible events in A. 

2. W is an m-dimensional Wiener process of (At)t∈I and Y is a continuous, 

adapted dR -values process. 
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3. Conditions (3) and (4) of the definition (1.15) are satisfied. 
Remarks (1.4): 
1. If f(t, yt) and g(t, yt) satisfy the conditions of theorem (1.4), then the 

following holds; A solution (weak or strong) of the SDE given in equation 
(1.11) is weakly unique, where weak uniqueness means that solutions 
(weak or strong) have the same finite-dimensional distributions, [37]. 

2. In this work, we shall talk only about the strong solution of SDE's and the 
considered examples in chapters one and three are only of strong solution. 

Consider the stochastic differential equation: 
d ty = f(t, ty ) dt + g(t, ty ) dWt ... (1.19) 

Then, for a given function F and with certain smoothness, measurability and 
boundedness properties on f and g in equation (1.19) to guarantee the 
existence, pathwise-uniqueness and bounded second moments, the multi-
dimensional stochastic chain rule gives: 

dF(t, yt) = 
F
t

∂
∂

 dt + 
t

F
y

∂
∂

f dt + 
1
2

 trace(g gT 
2

2
t

F
y

∂
∂

) dt + 
t

F
y

∂
∂

g dWt 

 ... (1.20) 
which is known as the Itô formula in its condensed vector-matrix notation. 
The scalar case in equation (1.20) can be written as: 

dF(t, yt) =
2

2
2

t t

F F 1 Ff g
t y 2 y

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

 dt + 
t

F
y

∂
∂

g dWt ... (1.21) 

i.e., one of the most important tools for the stochastic calculus and especially 
for the Itô calculus is the Itô formula. 
Theorem (1.5) (The Itô Formula), [3], [22], [37]: 

Let dYt = u dt + v dWt be a d-dimensional Itô process of an m-
dimensional Wiener process Wt. Suppose that each of the processes ui and vi,j 
satisfy the conditions given in equations (1.15) and (1.16), for 1 ≤ i ≤ d and 

1 ≤ j ≤ m. Let f(t, y) = (f1(t, y), f2(t, y), …, fp(t, y)) ∈ C1,2 (I × dR , pR ). Then: 

tX = f(t, tY )  

is an Itô process, whose k-th component k
tX  is P-w.p.1, given by: 
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d k
tX  = kf

t
∂
∂

(t, tY ) dt + k

i i

f
y (t)
∂

∂∑ (t, tY ) d (i)
tY  + 

1
2 (i) ( j)

2
k

i, j t t

f

y y

∂

∂ ∂
∑  

(t, tY ) d
t
(i)Y d

t
( j)Y  ... (1.22) 

where d
t
(i)W d

t
( j)W  = δij dt, and δij is the Kronecker delta function. 

In fact equation (1.19) is sufficiently general to represent an m-
dimensional, d-Wiener process system in which g(t, yt) is an m×d matrix and 

t
W  = (

t
(1)W , 

t
(2)W  , …, 

t
(d)W )T is a d-dimensional vector consisting of d 

independent Wiener processes. By letting the columns of g(t, ty ) be labeled 

as g1(t, ty ), g2(t, ty ), …, gd(t, ty ); then the m-dimensional d-Wiener process 

system can also be written as: 

d ty = f(t, ty ) dt + d
j 1=∑ gj(t, ty ) d

t
( j)W  ... (1.23) 

In this case, the component-by-component version of Itô's formula is for  
k = 1, 2, …, m: 

dFk(t, y) = 
2

m d mk k k
i il jli 1 l 1 i, j 1

i j

F F F1f g g
t y 2 y y= = =

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ ∂ 

∑ ∑ ∑  dt + 

d m k
ill 1 i 1

i

Fg
y= =

∂
∂∑ ∑  dWl ...  (1.24) 

There has been much discussion about whether to use the Itô or 
Stratonovich interpretation of the integral and while both approaches are 
correct, the choice depends on modeling process that leads to the SDE 
formulation. Indeed, it is possible to convert from one interpretation to the 
other in order to take advantages of the particular features of one of the 
approaches as appropriate. In the scalar case, if the Itô SDE is as given in 
equation (1.19), then the related Stratonovich SDE is given by: 

dy = f (t, y) dt + g(t, y) ○ dWt ... (1.25) 
where: 

f (t, y) = f(t, y) − 
1
2

g
y

∂
∂

(t, y) g(t, y) ... (1.26) 
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In other words, the two equations (1.19) and (1.25) under different rules of 
calculus have the same solution. As an illustration, consider the following 
example:  
Example (1.1), [7], [22]: 

When the Itô SDE is: 
d ty = a ty dt + b ty  dWt 

has the solution:  

ty = y0 exp((a − 
1
2

 b2) t + b Wt)  

as while Stratonovich SDE is: 

d ty = (a − 
1
2

 b2) ty dt + b ty ○ dWt 

Which can be written as: 

d ty = a ty dt + b ty  ○ dWt, where  a = a − 1
2

 b2 

has solution: 

ty  = y0 exp(a t + b Wt)  

In the case of additive noise (where g is independent of y), the Itô and 
Stratonovich representations are equivalent. 

In vector form, the relationship between the two integrals is: 

if (t, y)=fi(t, y)−
1
2

m d ik
jkj 1 k 1

j

gg (t, y) (t, y)
y= =

∂
∂∑ ∑ ,i=1,2,…,m 

 ... (1.27) 
If Stratonovich calculus is used, then the chain rule becomes the familiar one 
from Riemann-Stieltjes calculus. 
1.3.3 Analytical Methods for Solving SODE's [3], [22]: 
 Stochastic ordinary differential equations may be solved analytically 
dependent on the nature and the type of the stochastic differential equation, 
and these methods may be summarized as follows: 
 

I. Linear stochastic differential equations: 
1. The linear random differential equation given by: 

Xt′= td X
d t

 = a(Wt) Xt + b(t, Wt) ... (1.28) 
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has the solution for an initial value 0 tX (W )  at 0t 0=  given by: 

t s
t

a(W )t a(W )s
t 0 s s

0
X(t, W ) e X (W ) e b(s, W )ds− 

= +  
 

∫  ... (1.29) 

2. The general linear stochastic differential equation given by: 

dXt = (A(t) Xt + a(t)) dt + ∑
=

+
m

1i

i
titi dW))t(bX)t(B(  ... (1.30) 

where A(t), Bk(t) are d×d-matrix-valued and a(t), bk(t) are dR -valued since 

k=1,2,….m and 1 m T
t t tW (W ,..., W )= has the solution given by: 

0

t m
1

t t s i i
i 1t

X [c a(s) B (s) b (s) ds−

=

 
= Φ + Φ − 

 
∑∫  

0

tm
1 i

s i s
i 1 t

b (s) dW ]−

=
+ Φ∑ ∫  ... (1.31) 

Where; 
0tc X= and  

0 0

t t2m m
ii

t i s
i 1 i 1t t

B (s)exp A(s) ds B (s) dW
2= =

  
 Φ = − +     

∑ ∑∫ ∫  ... (1.32) 

is the solution of the homogeneous equation related to equation (1.30). 
m

i
t t i t t

i 1
d A(t) dt B (t) dW

=
Φ = Φ + Φ∑ , with initial value 

0t 1.Φ =   

(Note that, equation (1.30) is said to be homogeneous if a(t)=bk(t)=0, k=1, 2, 
... m, Also, it is said to be linear in the narrow sense if Bk(t)=0, k=1, 2, ... m. 
[3]). 
3. The solution of the SDE in the narrow sense [3]: 

dXt = (A(t) Xt + a(t)) dt + B(t) dWt, 0tX  = c, t ∈ [t0, T] ... (1.33) 

where A(t) is d×d matrix, a(t) are vector with components in dR , B(t) is d×m-
matrix and Wt is an m-dimensional Wiener process, is given by: 

0 0

t t
1 1

t t s s s
t t

X c a(s)ds B(s)dW− −
 
 = Φ + Φ + Φ
 
 

∫ ∫  
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Here, c is constant or a Gaussian random variable, and Φt is the fundamental 
matrix solution of deterministic equation tX′  = A(t) Xt is given by [3]: 

0

t

t
t

exp A(s)ds
 
 Φ =
  
∫  ... (1.34) 

since    
0t IΦ =  . 

 
Example (1.2) : 

Consider the SDE:  

dXt = b dWt ,       0t 0 0X X at t 0= =  

where b is constant and Φt = 1, then: 

Xt = 
t t

0 t
0 0

X 0 1 dt b 1 dW+ × + ×∫ ∫  

= X0 + b (Wt − W0) = X0 + b Wt,  where W0 = 0. 

 
Example (1.3): 

Consider the SDE: 
dXt = b Xt dWt  

where b is constant, B(t) ≡ b and A(t) = a(t) = b(t) ≡ 0 in equation (1.30) 
where m=1 and applying equation (1.32), then with t0 = 0: 







 +=Φ t

2
t Wbtb

2
1exp , where W0 = 0  

Now applying (1.31), yields to:  
2 2

t t
1 1tb t b W b t bW
2 2

t 0
0

X e [X (0 b 0)e ds
+ +

= + − ×∫  

2
t

1t b t b W
2

t
0
0 e dW

+
+ ×∫ ] 

= X0 
2

t
1 b t b W
2e

+
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Example (1.4), [3], [22], [41]: 
The exponential process of the SDE  
dXt = a Xt dt + b Xt dWt , 0t 0 0X X at t 0= =  

where a and b are constants , t ≥ 0, A(t) ≡ a, B(t) ≡ b and a(t) = b(t) ≡ 0 in 
equation (1.30) and applying equation (1.32), then: 

2
0 0 t t0

0

1a (t t ) b (t t ) b (W W )
2

t,t e
− − − + −

Φ =  

Now, when t0 = 0, W0 = 0 then 
2

t
1a t b t b W
2

t e
− +

Φ = , and applying (1.31), 

yields to: 
2 2

t t
1 1ta t b t b W a t b t b W
2 2

t 0
0

X e X (0 b 0)e ds
− + − +

= + − ×


∫

2
t

1t a t b t b W
2

s
0
0 e dW

− + 
+ ×


∫  

= 
2

t
1a t b t b W
2

0X e
− +

 

and when X0 = 1, then    
2

t
1a t b t b W
2

tX e
− +

= . 

(Note that, in examples (1.3), (1.4), we take d m 1= =  in equations (1.30), 
(1.31) and (1.32). 
II. Nonlinear stochastic differential equations [22]: 

With an appropriate substitution Xt = U(t, Yt), certain nonlinear SDE's 
of the form: 

dYt = a(t, Yt) dt + b(t, Yt) dWt ... (1.35) 
can be reduced to a linear SDE in Xt of the form: 

dXt = (a1(t) Xt + a2(t)) dt + (b1(t) Xt + b2(t)) dWt ... (1.36) 

In general, if 
U (t, y) 0
y

∂
≠

∂
, the inverse function theorem ensures the 

existence of a local inverse ( )y V t, x=  of ( )x U t, y= ,that is with 

( )( )x U t,V t, x=  and ( )( )y V t, U t, y= . A solution Yt of equation (1.35) 
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then has the form Yt = V(t, Xt), where Xt is the solution of the SDE given in 
equation (1.36) for an appropriate coefficients a1, a2, b1 and b2.  

Now, some formulae ready-made from reducible SDE's, in which the 
next three cases may be considered as a special case of the SDE given in 
equation (1.36), (when ak(t), bk(t) are scalars, k=1,2) which are given and 
discussed in [22] using different approaches. 

 
Case I:  

The Itô SDE given by:  

t t t t t
1dX g (X ) g(X ) dt g(X )dW
2

′= + , 
0t 0X (0) X=  ... (1.37) 

has the solution of the form: 
1

t t 0
x

0

X U (W U(X ))

1U(x) ds ;g(s) 0
g(s)

− = +



= ≠ 


∫
 ... (1.38) 

 
Case II:  

The Itô SDE given by: 

t t t t t t
1dX g(X ) g(X ) g (X ) dt g(X )dW
2

 ′= α + + 
 

 ... (1.39) 

with 
0t 0X (0) X ,= α ∈¡ , has the solution given by:  

1
t t 0

x

0

X U ( t W U(X ))

1U(x) ds ;g(s) 0
g(s)

− = α + +



= ≠ 


∫
 ... (1.40) 

 
Case III: 

The Itô SDE given by: 

t t t t t t t
1dX g(X ) U(X ) g(X ) g (X ) dt g(X )dW
2

 ′= α + + 
 

... (1.41) 
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where 
0t 0X (0) X ,= α ∈¡ , has the solution given by: 

t
1 t t s

t 0 s
0

x

0

X U (U(X )e e e dW )

1U(x) ds ;g(s) 0
g(s)

− α α −α 
= + 



= ≠ 


∫

∫
 ... (1.42) 

Remarks (1.5):  
1. The SDE in case I may be written as a Stratonovich SDE, such that the 

equivalent Stratonovich SDE is  
dXt = g(Xt) ○ dWt 

By ordinary calculus the separable ODE dU(x) = 
)x(g

dx  has the solution 

U(x) = w(x) + U(x0), where 
x
0

dsw(x) ;g(s) 0
g(s)

= ≠∫ . Hence, the 

Stratonovich SDE has also the solution U(Xt) = Wt + U(X0), that is 

Xt = U−1(Wt + U(X0)), where 
x
0

1U(x) ds ;g(s) 0
g(s)

= ≠∫ , [22]. 

2. Every example in case I may be modified to Cases II and III. 

Example (1.5), [12] : 
Using case I to solve the scalar nonlinear Itô SDE:  

dXt = 3
tX  dt + 2

tX  dWt 

when 3 2
t t t tf (X ) X ,g(X ) X= =  and since: 

2 3
t t t t t t

1 1f (X ) g(X ) g (X ) 2X X X
2 2

′= = =  

Now when  

0 0

x x

2
0x x

1 1 1 1y U(x) ds ds
g(s) x xx

= = = = − +∫ ∫   

and since ( )1

0

1x U y  1y
x

−= = −
−

. and Xt = U−1(Wt + U(X0)), then: 
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0
t

0 t

XX
1 X W

=
−

, where 0 tX W 0, t I≠ ∀ ∈  

Example (1.6), [21], [22]: 
Using case II to solve the scalar nonlinear Itô SDE: 

2 2
t t t t t

1dX X X 1 dt X 1dW
2

 = + + + + 
 

, tX (0) 0= , where: 

2
t t t

1f (X ) X X 1
2

= + + , 2
t tg(X ) X 1= +  

and since: 

t t t t
1f (X ) g(X ) g(X ) g (X )
2

′= α +  

2 2 2t
t t t t2

t

X1 1X 1 X 1 X X 1
2 2X 1

= α + + + = + +
+

, when 

1α = , then 2
t t t

1f (X ) X X 1
2

= + + .Now, when: 

x x

2
0 0

1 1y U(x) ds ds
g(s) s 1

= = =
+

∫ ∫  

then y = U(x) = ( )2ln x 1 x+ +  and since x = U−1(y), then 

y 2e x 1 x= + + ,  

and thus  

( )2
2 y 2 2 2e x 1 x 2x 2x 1 x 1= + + = + + + ; 

hence: 
y ye ex(t)

2

−−
=  = sinh(y(t)) 

when Xt = U−1[α t + Wt + U(X0)], where α = 1, then: 

Xt = sinh(t + Wt + sinh−1(X0)). 
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The next example may be solved using all previous cases, which will 
give the same solution. 
 

Example (1.7), [11] : 
Consider the SDE:  

t t tdX dt 2 X dW= +  , tX (0) 0=  at 0t 0=  

Then using case I, with : 

t t t
1f (X ) g(X ) g (X ) 1
2

′= = , ( ) tg x X= ,  

the solution is found to be: 

( )2
t 0 tX X W= +  

 

and when using case II, with: 

t tg(X ) 2 X= , t t t t
1f (X ) g(X ) g(X ) g (X )
2

′= α +  

  tX 1 1= α + =  

when α = 0, and thus tf (X ) 1= , and since y U(x) x= = .Hence, the 

solution is found to be: 

( )2
t 0 tX X W= +  

Similarly, when using case III, with: 

t tg(X ) 2 X= , t t t t t
1f (X ) g(X ) U(X ) g(X ) g (X )
2

′= α +  

such that U(x) y x= =  and since  

( )t t t t
t

1 1 1f X 2 X X 2 X 2 1
2 2 X

= α + =  

when  α = 0. This will give the solution: 

( )2
t 0 tX X W= +  
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1.4 Stochastic Taylor Series Expansion, [7], [22], [37]. 
Taylor series expansion is well-known for deterministic functions 

where they turn out to be useful tool especially in numerical analysis. This 
idea can be carried over the stochastic setting by applying Itô's formula. Thus, 
following Platen and Wagner [31], we get the stochastic Taylor formula, 
which represents a generalization of the deterministic Taylor formula. In the 
sequel, we distinguish the Itô Taylor expansion from the Stratonovich-Taylor 
expansion due to the different rules of calculus. 

With deterministic differential equation methods, a numerical method 
may be derived by comparing the expansion of the method and the solution of 
the ordinary differential equation in a Taylor series; and exactly the same 
procedure can take place in the stochastic setting, using a stochastic version of 
Taylor series. The Itô -Taylor expansion was first established by Wanger and 
Platen in 1978 and 1982 [31], [42], and full details are given by Kloeden and 
Platen in 1995 [22]. It allows ty  (or any function of ty  to be expanded about 

the point 
0ty up to the required degree of accuracy) in terms of multiple 

stochastic integrals along with function evaluations at 
0ty . In order to derive 

the expansion, the Itô formula is applied successively to the SDE given in 
equation (1.19) as it is represented in the autonomous integral form: 

ty  = 
0ty  + 

0

t
t∫ f( sy ) ds + 

0

t
t∫ g( sy ) dWs ... (1.43) 

From the stochastic chain rule (1.21) in autonomous form: 

F( ty ) − F(
0ty ) = 

0

t
t∫

2
2

2
s s

dF 1 d Ff g
dy 2 dy

 
+  

 
 ds + 

0

t
t∫

s

dF
dy

g dWs 

= 
0

t
t∫ L0 F( sy ) ds + 

0

t
t∫ L1 F( sy ) dWs ... (1.44) 

where the operators for scalar problems are: 

L0F( ty ) = 
dF
dy

f + 
2

2
2
t

1 d F g
2 dy

, 

L1F( ty ) = 
t

dF
dy

g 
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Applying the Itô formula given by equation (1.44) for f and g in 
equation (1.43), then one application gives: 

( )0 00 0 0

t s s0 1
t t t u u ut t t

y  y f (y ) L (f (y )du L (f (y ) dW ds= + + +∫ ∫ ∫    

( )00 0 0

t s s0 1
t u u u st t t

g(y ) L (g(y )du L (g(y )dW dW+ + +∫ ∫ ∫  

 ... (1.45) 
Consequently, by applying the Itô formula and using L0f, L1f, L0g and L1g, 
the Itô-Taylor expansion is given by: 

0 0 00 0 0 0

0 0 0 0

0 0

t t t s 0
t t t t s ut t t t

t s t s1 0
u u u st t t t

t s 1
u u st t

y y f (y ) ds g(y ) dW L f (y )du ds

L f (y )dW ds L g(y )du dW

L g(y )dW dW

= + + +

+ +

+

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

 

Similarly, the Stratonovich-Taylor expansion is developed, using this 
time the following operators: 

0
t

t

daL a(y ) f ,
dy

=  

1
t

t

daL a(y ) g
dy

=  

Then the first few terms in the Stratonovich-Taylor series are thus given by: 

ty  = 
0ty +f(

0ty )
0

t
t∫ ds+g(

0ty )
0

t
t∫ ○ dWs+

0

t
t∫ 0

s
t∫

0L f( uy ) du ds + 

0

t
t∫ 0

s
t∫

1L f( uy ) ○ dWu ds + 
0

t
t∫ 0

s
t∫

0L g( uy ) du ○ dWs + 
0

t
t∫  

0

s
t∫  

1L g( uy ) ○ dWu ○ dWs 

and applying the standard chain rule in Stratonovich calculus to 0L f, 1L f, 0L g 

and 1L g will yields to the next terms in the expansion.  
Remarks (1.6), [37]: 
1. The above discussion is given for one-dimensional autonomous SDE's, and 

we shall consider next the nonautonomous SDE's, and deriving its related 
stochastic Taylor series expansion. Let Xt be the solution of the Itô SDE in 
general form: 
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tX  = 
0tX  + 

0

t
t∫ a(s, sX ) ds + 

0

t
t∫ b(s, sX ) dWs ... (1.46) 

and let f : I × R  → R  with f ∈ C1,2 (I × R , R ). By applying the Itô 
formula, we get for tY  = f(t, tX ), the following equation: 

tY  = 
0tY  + 

0

t
t∫ s s s

f f 1(s,X ) a(s,X ) (s,X )
t x 2

∂ ∂ + + ∂ ∂
b2(s, sX ) 

2

s2
f (s,X ) ds

x

∂
∂ 

 + 
0

t
t∫ b(s, sX )

f
x

∂
∂

(s, sX ) dWs. 

For simplicity of notations, the operators L0. = a
t x
. .∂ ∂

+ +
∂ ∂

 
2

2
2

1 b
2 x

.∂
∂

 

and L1. = b
x
.∂

∂
 are introduced and rewriting the above mentioned equations 

as: 

tY  = 
0tY  + 

0

t
t∫ L0 f(s, sX ) ds + 

0

t
t∫ L1 f(s, sX ) dWs  

and by applying the Itô formula given in equation (1.21) to the functions 
f = a and f = b in equation (1.46), getting: 

(0 00 0

t s 0
t t 0 t ut t

X X a(t ,X ) L a(u,X )du= + + +∫ ∫  

) ( 00 0

s t1
u u 0 tt t

L a(u,X )dW ds b(t ,X )+ +∫ ∫  

0

s 0
ut

L b(u,X )du +∫ )0

s 1
u u st

L b(u,X )dW dW∫  ... (1.47) 

which may be also written as: 

tX  = 
0tX  + a(t0, 0tX )

0

t
t∫ ds + b(t0, 0tX )

0

t
t∫ dWs + R 

where R denotes the remainder. Continuing in this way by applying the Itô 
formula to the functions f = Li a and f = Li b, for i = 0, 1 in equation (1.47) 
to get the Itô-Taylor series expansion. 

2. The Stratonovich-Taylor expansion works now analogously to the Itô-
Taylor expansion. Let tX  be the solution of the Stratonovich SDE in 

integral form: 
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tX  = 
0tX  + 

0

t
t∫ a (s, sX ) ds + 

0

t
t∫ b(s, sX ) ○ dWs ... (1.48) 

Since a Stratonovich SDE transforms according to the deterministic chain 
rule, we get for f:I×R →R  with f∈C1,2(I×R ,R ) the equation: 

f(t, tX ) = f(t0, 0tX )+
0

t
t∫ s s s

f f(s,X ) a(s,X ) (s,X ) ds
t x

∂ ∂ + ∂ ∂ 
 + 

0

t
t∫ b(s, sX )

f
x

∂
∂

(s, sX ) ○ dWs ... (1.49) 

Introducing the operators 0L . = a
t x
. .∂ ∂

+
∂ ∂

 and 1L . = b
x
.∂

∂
, then one can 

also write: 

f(t, tX ) = f(t0, 0tX )+
0

t
t∫

0L f(s, sX ) ds + 
0

t
t∫

1L f(s, sX ) ○ dWs 

Continuing in the same way as for the Itô calculus and applying 
equation (1.49) to the functions f = a and f = b in equation (1.48), getting: 

tX  = 
0tX  + 

0

t
t∫ [

0 0

s 0
0 t ut

a(t ,X ) L a(u,X )du+ +∫  
0

s 1
ut

L a(u,X )∫  ○ 

dWu ] ds + 
0

t
t∫ [ b( 0t ,

0tX ) +  
0

s 0
ut

L b(u,X )du +∫  

0

s 1
ut

L b(u,X )∫  ○ dWu] ○ dWs  

= 
0tX  + 

00 ta(t , X )  
0

t
t∫  ds + b(t0, 0tX ) 

0

t
t∫  ○ dWs   

+ R ... (1.50) 
with remainder R. Again, continue in the expansion applying for instance 

equation (1.49) to integrands iL a  and iL b , for i = 0, 1 in equation (1.50) to 
get the Stratonovich Taylor expansion recursively. 

Leaving the one-dimensional case treating the general setting with a d-
dimensional solution of SDE's of m-dimensional Wiener process, we make 
use of a convenient notation applying the concept of hierarchical sets. In the 

following, let a: I × dR  → dR  be a drift vector and b: I × dR  → d m×R  
be the diffusion matrix and let Xt be the solution of the SDE: 

tX  = 
0tX  + 

0

t
t∫ a(s, sX ) ds + 

0

t
t∫ b(s, sX ) dWs ... (1.51) 
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In order to describe the stochastic Taylor series expansion, a multi-
dimensional and for multi Wiener process setting, the following terminology 
will be used: 
1. A multiple Itô integral is given by: 

1 2 L( j , j ,..., j ),tI  = L 2 1 L
1 L

t s s j j
s s0 0 0

... dW ...dW∫ ∫ ∫  ... (1.52) 

whereas above ji ∈ {0, 1, …, m} for m -Weiner processes, and where 

i
0
s idW ds= .  

2. A multiple Stratonovich integral is given by: 

1 2 L( j , j ,..., j ),tJ  = L 2t s s
0 0 0

...∫ ∫ ∫ ○ 1
1
j

sdW  ○ … ○ L
L
j

sdW  ... (1.53) 

where ji ∈ {0, 1, .., m} form  m -Weiner process; the brackets and the 
dependence on t will be dropped when the meaning is clear. Here, also 

i
0
s idW dsο = . 

For more explanation to this context, we start with the definition of multi-
indices and hierarchical sets which provide an efficient notation in the 
following. Let: 

M = {α = (j1, j2, …, jL) ∈ {0, 1, …, m}L : L ∈ ¥ } U  {v} 
 ... (1.54) 

be set of all multi-indices. The length L(α) of a multi-index α = (j1, j2, …, 
jL), where ji ∈ {0, 1, .., m}, i ∈ {0, 1, .., L} and m = 1, 2, … may be defined 
as: 

L(α) = L, L∈¥  ... (1.55) 
Where v is the multi-index of length 0, such that: 

L(v) = 0 ... (1.56) 
Thus, for example L((1, 0)) = 2 and L((1, 0, 1)) = 3. 

In addition let n(α) denote the number of components of a multi-index 
α, which are equal to 0, such that: 

n(α) = n ... (1.57) 
where n is the number of zero components of α, for example 
n((1, 0, 1)) = 1, n((0, 1, 0)) = 2, n((0, 0)) = 2. 

Now, for α = (j1, j2, …, jL) ∈ M with L = L(α) ≥ 1, define: 
−α = (j2, j3, …, jL) and α− = (j1, j2, …, jL−1) ... (1.58) 
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by deleting the first and the last components of α, respectively. For 
example: 

−(1, 0) = (0), (1, 0)− = (1), −(0, 1, 1) = (1, 1), (0, 1, 1)− = (0, 1) 
A subset H ⊂  M is called a hierarchical set if H ≠ ∅ and if: 

sup
α∈H

L(α) < ∞    and    −α ∈ H,  for each α ∈ H  \ {v} ... (1.59) 

For example, the sets {v}, {v, (0), (1)}, {v, (0), (1), (1, 1)} are hierarchical 
sets.  

The corresponding remainder set R(H) for the hierarchical set H is 
defined as: 

R(H) = {α ∈ M \ H : −α ∈ H} ... (1.60) 
For example: 

R({v}) = {(0), (1)}, R({v, (0), (1)}) = {(0, 0), (0, 1), (1, 0),  

(1, 1)}, and R({v, (0), (1), (1, 1)}) = {(0, 0), (0, 1), (1, 0),  
(0, 1, 1), (1, 1, 1)} 

and consists of all next following multi-indices with respect to the given 
hierarchical set H. 

 

We are now able to define multiple stochastic integrals. Let us 
introduce three classes of adapted right continuous stochastic processes (ft)t∈I 
with left hand limits. We say: 

f ∈ Hv      if |f(t, ω)| < ∞,     P-w.p.1     for each t ≥ 0 ... (1.61) 
and we say for each t ≥ 0, f ∈ H(0) if f satisfies condition given by: 

( )t
0
| f (s, ) | dsω < ∞∫P  = 1,  P-w.p.1 ... (1.62) 

In addition, define H(1) is the set of all f satisfying the condition: 
t
0∫ |f(s, ω)|2 ds < ∞, w.p.1 for each t ≥ 0 ... (1.63) 

Furthermore, define f ∈ H(j) for each j ∈ {2, …, m} if f ∈ P holds. 

Now, let ρ and τ be two stopping times with: 
0 ≤ ρ(ω) ≤ τ(ω) ≤ T, P-w.p.1 ... (1.64) 
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For a multi-index α = (j1, j2, …, jL) ∈ M and a process f ∈ Hα, we define the 

multiple Itô integral Iα[f(.)]ρ,τ with respect to the m-dimensional Wiener 
process W = (W1, W2, …, Wm) recursively by: 
 

Iα[f(.)]ρ,τ = 

jL

,s L

,s s L

f ( ), if L 0

I [f (.)] ds, if L 1 and j 0

I [f (.)] dW , if L 1 and j 1

τ
α− ρρ

τ
α− ρρ


τ =

 ≥ =

 ≥ ≥

∫

∫

 

 ... (1.65) 
 
Here, we note the Hα with α = (j1, j2, …, jL) and L ≥ 2 describes the 

totality of adapted right continuous process f with left hand limits, such that 
the integral process (Iα−[f(.)]ρ,t)t∈I considered as a function of t satisfies 
Iα−[f(.)]ρ,. ∈ H

L( j ) . If the integrand is constant, i.e., f(t, ω) ≡ 1, we abbreviate 

Iα[f(.)]ρ,τ as Iα if the limits ρ and τ are obvious from the context. In the 

following, we denote 0
tW  = t, d 0

tW  = dt and Iα,t = Iα[1]0,t when ρ = 0 and  

τ = t. 
As an illustration of this terminology, consider the following 

examples: 

Iv[f(.)]0,t = f(t),  
i i 1(0) ,I [f (.)]

+τ τ  = i 1

i

+τ

τ∫ f(s) ds,  

I(1)[f(.)]0,t = 
t
0∫ f(s) d 1

sW , I(0,1)[f(.)]0,t = 
t
0∫

1s
0∫ f(s2) ds2 d 1

1
SW  

 
Remarks (1.7), [7]: 

By the same way, the multiple Stratonovich integral may be defined 
which is denoted by Jα[f(.)]ρ,τ with respect to m-dimensional Weiner process 
and use the same modifications of multiple Itô integral about the function and 
the limits ρ and τ, i.e., f(t, ω) = 1, Jα[f(t)]ρ,τ = Jα = Jα[1]0,t, when ρ = 0, τ = t, 

which will be denoted by 0
tW  = t and ○ d 0

tW  = dt, such that:  
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Jα[f(.)]ρ,τ = 

jL

,s L

,s s L

f ( ), if L 0

J [f (.)] ds, if L 1 and j 0

J [f (.)] dW , if L 1 and j 1

τ
α− ρρ

τ
α− ρρ


τ =

 ≥ =

 ≥ ≥

∫

∫ o
 

 ... (1.66) 
For example: 

J(0,1,1)[1]0,t ≡ J(0,1,1),t = 
t
0∫ J(0,1) ○ d

1

1
sW  

= 
t
0∫

1s
0∫  J(0) ○ 

2

1
sdW  ○ 

1

1
sdW  

= 
t
0∫

1s
0∫

2s
0∫ ds3 ○ d

2

1
sW  ○ d

1

1
sW  

J(0,1,0)[1]0,t ≡ J(0,1,0),t = 
t
0∫ (0,1)J ds1 = 

t
0∫

1s
0∫ (0)J  ○ d

2

1
sW  ds1 

= 
t
0∫

1s
0∫

2s
0∫ ds3 ○ d

2

1
sW  ds1 

Lemma (1.1), [7], [22]: 
Let α ∈ (j1, j2, …, jL), β ∈ 1 2 p( j , j ,..., j )′ ′ ′ , with L, p = 1, 2, …; and 

where ji, kj′  ∈ {0, 1, …, m}, for m-Wiener processes, then: 

Iα,t  Iβ,t = 
t
0∫ Iα,s  Iβ−,s 

jp
sdW

′
 + 

t
0∫ Iα−,s  Iβ,s 

Lj
sdW  + 

t
0∫  Iα−,s   Iβ−,s 

L p{j j 0}I ′= ≠  ds 

for t ≥ 0 and where the indicator function: 

IA = 
L p{j j 0}I ′= ≠  = 

1, if A is true
0, otherwise





 

Lemma (1.2), [7], [22]: 

1 2 i i 1 L

i 1 2 i 1 i 1 L

L
j
t ,t ( j , j ,..., j , j, j ,..., j ),t

i 0
L

{j j 0} ( j , j ,..., j ,0, j ,..., j ),t
i 1

W I I

I I

+

− +

α
=

= ≠
=

=

+

∑

∑
 

for all t ≥ 0, where α = {j1, j2, …, jL}, ji ∈ {0, 1, …, m} for m-Wiener 
processes. 
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Example (1.8), [7]: 
Use lemma (1.2) to evaluate I0 I01, when α = (j1, j2), since j1, j2 ∈ {0, 

1}, L(α) = 2 

1 2 i i 1 L

i 1 2 i 1 i 1 L

1 2 1 2 1 2

1 2 2 1

2
j

,t ( j , j ,..., j , j, j ,..., j ),t(t)
i 0
2

{j j 0} ( j , j ,..., j ,0, j ,..., j ),t
i 1

( j, j , j ),t ( j , j, j ),t ( j , j , j),t

{j j 0} (0, j ),t {j j 0} ( j ,0),t

W I I

I I

I I I

I I I I

+

− +

α
=

= ≠
=

= ≠ = ≠

=

+

= + +

+ +

∑

∑  

Now, when j1 = 0, j2 = 1, j = 0, and for i = 1, 2, then: 

1{j j 0}I = ≠  = {0 0 0}I = ≠  = 0, 
2{j j 0}I = ≠  = {1 0 0}I = ≠  = 0, and thus: 

I0 I01 = t I01 = 0
(t)W  I(0,1),t = I(0,0,1),t + I(0,0,1),t + I(0,1,0),t 

Then I0 I01 = 2 I001 + I010 . 
Also, using lemma (1.1), such that α = (0), β = (0, 1), then: 

I(0),t I(0,1),t = 
t
0∫ I(0),s I(0),s d 1

sW  + 
t
0∫ (1) I(0,1),s d 0

sW  + 
t
0∫ (1)I(0),s I{0=1≠0} 

ds 

Where I0 = 
t
0∫ ds, d 0

sW  = dt, I010 = 
t
0∫ I(0,1),s ds, I{0=1≠0} = 0; and by using the 

indicator function IA = 
i p{j j 0}I ′= ≠  = 

1, if A is true
0, otherwise





. 

Now, when α = (0), β = (0), then: 

I0 I0 = 
t
0∫ (1) I0 d 0

sW  + 
t
0∫ (1) I0 d 0

sW  + 
t
0∫ (1) (1) I{0=0≠0} ds  

= 2 
t
0∫  I0 ds = 2 I00 

Then I(0),t I(0,1),t = 
t
0∫ 2 I(0,0),s d 1

sW  + I010 = 2 I001 + I010. 

We also have the following special cases of lemmas (1.1) and (1.2). 
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0 1 01 10

0 11 110 101 011

1 01 011 101 00

1 10 101 110 00

I I I I
I I I I I
I I 2 I I I
I I I 2I I

= + 
= + + 
= + + 
= + + 

 ... (1.67) 

 
Lemma (1.3), [22]: 

Suppose that α = (j1, j2, …, jL) with j1 = j2 =…= jL = j ∈ {0, 1, …, m} 
for m-Wiener processes; where L ≥ 2. Then for t ≥ 0 

Iα,t = 

( )

L

j
,t ( ) ,t(t)

1 t , if j 0
L!
1 W I t I , if j 1
L α− α− −

 =

 − ≥


 

 
Example (1.9), [22]: 

Using lemma (1.3) to evaluate I11, I111 and I000, yields to: 

1. I000 = 
1
3!

t3, where α = (0, 0, 0), L(α) = 3. 

2. When α = (1, 1), L(α) = 2, α− = (1), then: 

I11 = 
1
2 ( )1

(t) (1),tW I t (1)−  = 
1
2 ( )2

(1),tI t− , where j
( j),t (t)I W= , 

j 1,2,...=  . 

3. When α = (1, 1, 1), L(α) = 3, α− = (1, 1), (α−)− = (1), then: 

I111 = 
1
3 ( )1

(t) (1,1),t (1),tW I t I−  = 
1
3

2
(1),t (1),t (1),t

1 tI I t I
2 2

  − −    
 

= 
1
3

3
(1),t (1),t (1),t

1 1I I t I
2 2

 − − 
 

 = 
1
3! ( )3

(1),t (1),tI 3I t−  

Now, lemmas (1.2) and (1.3) may be rewritten in another form to 
obtain relationships between multiple Stratonovich integrals, as follows: 
Lemma (1.4), [7], [22]: 

j
tW Jα,t = 

1 2 i i 1 L

L

( j , j ,..., j , j, j ,..., j ),t
i 0

J
+

=
∑ , for all t ≥ 0, α = (j1, j2, …, jL). 
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Lemma (1.5), [22]: 

Jα,t = 
1
L!

(J(j),t)L, for all t ≥ 0, α = (j1, j2, …, jL), j1 = j2 = … = jL = j and 

L ≥ 0 
For the later use, we state now some special cases of the last two 

lemmas: 

0 1 01 10

0 11 110 101 011

1 01 011 101

1 10 101 110

2
11 1

3
111 1

J J J J
J J J J J
J J 2J J
J J J 2J

1J J
2
1J J
6

= + 
= + + 
= +
= + 


= 

= 

 ... (1.68) 

Also, the following results obtained in [22], expresses the relationship 
between multiple Stratonovich and Itô integrals: 

( )
(

1 2

1 2 3 2 3 1

1 2 3 4 1 2 3 4

2 3 1 4 3

{j j 0} 0

{j j 0} (0, j ),t {j j 0} ( j ,0),t

{j j 0} {j j 0} (0,0),t {j j 0} (0, j , j ),t

{j j 0} ( j ,0, j ),t {j

J I , where L( ) 0 or 1
1J I I I , where L( ) 2
2
1J I I I I I , where L( ) 3
2
1 1J I I I I I I
4 2

I I I

α α

α α = ≠

α α = ≠ = ≠

α α = ≠ = ≠ = ≠

= ≠

= α =

= + α =

= + + α =

= + + +

+ )4 1 2j 0} ( j , j ,0),tI , where L( ) 4= ≠












α = 

 

 ... (1.69) 
Kloeden and Platen in (1995), [22] also express this relationship as 

recursive formula for Jα. Thus, if L(α) ≥ 2 and α = (j1, j2, …, jL), then: 

Jα = L L L 1j {j j 0} 0 ( )
1I [J ] I I [J ]
2 −α− = ≠ α− −+  ... (1.70) 

where: 

jL L

L
j

s L

f (s)ds, if j 0
I [f ]

f (s)dW , if j 0

 == 
 >

∫

∫
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Example (1.10), [7], [22]: 
1. When α = (1), then J1 = I1. 
2. When α = (1, 1), L(α) = 2, α− = (1) and 

L L 1{j j 0} {1 1 0}I I 1
−= ≠ = ≠= =  

when applying equation (1.70), then  J(1,1),t = I1[J(1),t] + 
1
2

(1) I0[(1)],  

since J(1),t = I(1),t, I1[I(1),t] = I(1,1),t, i.e., 

I1[I(1),t] = 
t
0∫ I(1)d 1

SW = 
t
0∫

s
0∫ d 1

uW d 1
SW  = I(1,1),t 

Hence, J11 = I11 + 
1
2

 I0. 

3. Similarly, J111 = I111 + 
1
2

I01 + 
1
2

I10. 

Theorem (1.6) (The Itô -Taylor Expansion), [22], [37]: 
Let H ⊆ M be a hierarchical set, let ρ and τ be two stopping times 

with t0 ≤ ρ(ω) ≤ τ(ω) ≤ T < ∞ P-w.p.1 and let df :  I× →¡ ¡ , then for the 
solution ( tX )t∈I of the Itô SDE given in equation (1.51). The Itô -Taylor 

expansion: 
f(τ, Xτ ) = 

α∈
∑
H

Iα[fα(ρ, Xρ )]ρ,τ + 
( )α∈

∑
R H

Iα[fα(., .X )]ρ,τ 

 ... (1.71) 
holds, provided that all of the derivatives of f, a and b and all of the multiple 
Itô integrals appearing in (1.71) exist. 
 

Theorem (1.7) (The Stratonovich-Taylor Expansion), [22]: 
Let H ⊆ M be a hierarchical set, let ρ and τ be two stopping times 

with t0 ≤ ρ(ω) ≤ τ(ω) ≤ T < ∞ P-w.p.1 and let df :  I× →¡ ¡ , then for the 

solution (X(t))t∈I of the Stratonovich SDE given in equation: 

tX  = 
0tX  + 

t
0∫ a (s, sX ) ds + 

t
0∫ b(s, sX ) ○ dWs 

Then, the Stratonovich-Taylor expansion:  
f(τ, Xτ ) = 

α∈
∑
H

Jα[ f α(ρ, Xρ )]ρ,τ+
( )α∈

∑
R H

Jα[ f α(., .X )]ρ,τ 

 ... (1.72) 
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holds, provided that all of the derivatives of f , a  and b  and all of the 
multiple Stratonovich integrals appearing in equation (1.72) exist. 
 

1.5 Expectation of Stochastic Integrals, [7], [22]: 
It is also necessary when studying the order of convergence of a 

numerical method, to be able to determine the expected value of multiple 
stochastic integrals. The following lemmas, adopted from [7] and [22] provide 
a means for calculating these expected values. Firstly, however, some 
additional terminologies is required. 

If α = (j1, j2, …, jL) is the index of the multiple stochastic integral, 
then α+ is the index obtained from α by deleting all zero components, for 
example, if α = (1, 0, 2, 1), then we have: 

α+ = (1, 0, 2, 1)+ = (1, 2, 1) 
and K0(α) will denote the number of zero components in α that precede the 
first non-zero component of α or until the end of α if all of its components are 
zeros, and Ki(α), for i = 1, 2, …, L(α+), will count the number of zeros 
between the ith and (i + 1)th non-zero components of α For example, 
if α = (0, 1, 1, 0, 2), then α+ = (1, 1, 2), L(α) = 5, L(α+) = 3, K0(α) = 1,  
K1(α) = 0, K2(α) = 1, K3(α) = 0; and for α = (0, 1, 2, 0), we have α+ = (1, 2), 
L(α) = 4, L(α+) = 2 and K0(α) = 1, K1(α) = 0, K2(α) = 1. 
Lemma (1.6), [22]: 

Let α ∈ M \ {v} with L(α) ≠ n(α), let f ∈ Hα and let ρ and τ be two 

stopping times with t0 ≤ ρ ≤ τ ≤ T < ∞, w.p.1. Then: 
E(Iα[f(.)]ρ,τ|Aρ) = 0,  w.p.1 ... (1.73) 

Lemma (1.7), [7], [22]: 
Let α, β ∈ M, let f ∈ Hα, g ∈ Hβ and let ρ and τ be two stopping 

times with t0 ≤ ρ ≤ τ ≤ T < ∞, w.p.1.,where τ is Aρ-measurable Then: 

( , ) L( ), , i i
f ,g

i ii 0

0, if

E(I [f(.)] ,I [g(.)] | ) (k ( ) k ( ))!( )K , if
( , ) ! k ( )! k ( )!

+

+ +

ω α β αα ρ τ β ρ τ ρ + +

=

= α ≠β


α + β τ−ρ
≤ α =β ω α β α β

∏
A  

 ... (1.74) 
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where ω(α, β) = L(α+) +
L( )

i i
i 0

(k ( ) k ( ))
+α

=
α + β∑  and  

1 2
f ,g 1 2

S ,S [ , ]
K sup E( f1(S )g(S ) | )ρ

∈ ρ τ
= A . Moreover, (1.74) holds with f ≡ g ≡ 1. 

 
Remark (1.8), [22]: 

By using lemma (1.7) and the moment estimates given in equations 
(1.73) and (1.74) for multiple Itô integrals, the values of the conditional 
expectations may be evaluated as: 

E(
1

Iα 2
Iα …

k
Iα ) = 

i 0 0

k

,t ,t h 0
i 1

E Iα +
=

 
  
 
∏ A  

for h ∈ [0, T − t0] and α1, α2, …, αk ∈ {α ∈ M : L(α) ≤ β} \ {v}; where β ∈ 
{1, 2, …}, we have: 

E(
1

Iα 2
Iα …

k
Iα ) = 0 ... (1.75) 

When the number of nonzero components of the multi-indices 

involved λ := 
k

i 1=
∑ (L(αi) − n(αi)) is odd. Furthermore, when λ is even we find 

that: 

|E(
1

Iα 2
Iα …

k
Iα )| ≤ K hρ, where ρ = 

1
2

λ + 
k

i 1=
∑ n(αi) ... (1.76) 

We shall say that the expectation given in equation (1.76) has an order 
ρ in the time increment h. Excluding those already given in equation (1.75) 

and those of constants I(0) = h, I(0,0) = 
1
2

h2, I(0,0,0) = 
1
3!

h3,  

 

Example (1.11), [7]: 
Let α = (1) and β = (1, 0). Then α+ = (1) = β+, and so by lemma (1.7) 

the expectation E(I1I10) is non-zero. Counting the zero components, K0(α) = 
K1(α) = 0 and K0(β) = 0, K1(β) = 1, such that: 

ω(α, β) = L(α+) + 
L( )

i 0

+α

=
∑ (Ki(α) + Ki(β))  

= 1 + K0(α) + K0(β) + K1(α) + K1(β) = 2 
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Therefore, from lemma (1.7), with τ = h, ρ = 0 and where α+ = β+ and  
f ≡ g ≡ 1 

E(I1 I10) ≤ Kf,g

( , ) L( )
i i

i ii 0

(K ( ) K ( ))!( )
( , )! K ( )! K ( )!

+ω α β α

=

α + βτ − ρ
ω α β α β∏  

≤ K1,1

2h
2!

0 0

0 0

(K ( ) K ( ))!
K ( )! K ( )!

α + β
α β

1 1

1 1

(K ( ) K ( ))!
K ( )! K ( )!

α + β
α β

 = 
1
2

h2 

where, K1,1 = δi,j and upon taking the supremum value of E(I1 I10), we get  

E(I1 I10) = 
1
2

h2. Then: 

1 2 1 2( j ),t ( j ,0),t ( j ),t (0, j ),tE(I I ) E(I I )= =
1
2

 h2 
1 2j , jδ  ...  (1.77) 

Example (1.12), [7]: 
In order to calculate the expectation of I1I10I101, first apply lemma (1.7) 

and from equation (1.67), hence: 
I1 I10 = 2 I110 + I101 + I00 

Then: 
E(I1 I10 I101) = E((2 I110 + I101 + I00) I101) 

= 2 E(I110 I101) + E( 2
101I ) + E(I00 I101) 

Letting α = (1, 1, 0) and β = (1, 0, 1), then L(α+) = 2 and α+ = β+. Noting that 
K0(α) = K1(α) = 0, K2(α) = 1, K0(β) = 0, K1(β) = 1, K2(β) = 0, then: 

ω(α, β) = L(α+) + 
L( )

i 0

+α

=
∑ (Ki(α) + Ki(β)) = 2 + 2 = 4 

and so with τ = h, ρ = 0 and f ≡ g ≡ 1, and thus Kf,g = 1, we have: 

E(I110I101) ≤ Kf,g

( , ) L( )
i i

i ii 0

(K ( ) K ( ))!( )
( , )! K ( )!K ( )!

+ω α β α

=

α + βτ − ρ
ω α β α β∏  

≤ K1,1

4h
4!

2
i i

i ji 0

(K ( ) K ( ))!
K ( )!K ( )!=

α + β
α β∏  = (1) 

4h
4!

(1)(1)(1) = 
4h

4!
 

Now, if α = β = (1, 0, 1) and L(α+) = L(β+) = 2, then K0(α) = K0(β) = 
0, K1(α) = K1(β) = 1, K2(α) = K2(β) = 0, ω(α, β) = 2 + 2 =  4, and: 
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E( 2
101I ) = E(I101I101) ≤ K1,1

4h
4!

2
i i

i ii 0

(K ( ) K ( ))!
K ( )! K ( )!=

α + β
α β∏   

= (1) 
4h

4!
(1) (2) (1) = 

4h
12

 

Finally, E(I00 I101) = 0, since α(0, 0) and β = (1, 0, 1) gives α+ ≠ β+. 
Consequently: 

E(I1 I10 I101) ≤  2 
4h

4!
 + 

4h
12

 = 
4h

6
 

Example (1.13), [7]: 
Let α = β = (1, 1) and thus α+ = β+ = (1, 1). Then by using lemma 

(2.2) to find E( 2
11J ), such that J11 = I11 + 

1
2

 I0, then: 

E( 2
11J ) = E((I11 + 

1
2

 I0)2) = E( 2
11I ) + 2 E(I0 I11) + 

1
4

 E( 2
0I ) 

To find E( 2
11I ) use lemma (1.7), such that K0(α) = K1(α) = K2(α) = K0(β) = 

K1(β) = K2(β) = 0, and then ω(α, β) = L(α+) + 
L( )

i 0

+α

=
∑ (Ki(α) + Ki(β)) = 2, and 

so with τ = h, ρ = 0 and f ≡ g ≡ 1, 

E(I11 I11) ≤ Kf,g

( , ) L( )
i i

i ii 0

(K ( ) K ( ))!( )
( , )! K ( )! K ( )!

+ω α β α

=

α + βτ − ρ
ω α β α β∏  

≤ K1,1

2h
2!

2
i i

i ii 0

(K ( ) K ( ))!
K ( )!K ( )!=

α + β
α β∏  = 

1
2

h2 

and by [22] then: 

E(
1 2 3 4( j , j ),t ( j , j ),tI I ) = 

1
2

 h2 
1 3j , jδ

2 4j , jδ  … (1.78) 

and E(I0 I11) = 0, where α = (0) = β = (1, 1), then α+ ≠ β+. Finally, E( 2
0I ) = h2, 

such that I0 = 
h
0

dt∫  = h and E(h2) = h2. Consequently: 

E( 2
11J ) ≤ 

1
2

 h2 + 0 + 
1
4

 h2 = 
3
4

 h2. 
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Remark (1.9): 
For all examples considered in this section, we can apply remark (1.8), 

for example, when back to example (1.11), such that E(I1 I10) and since  
α1 = (1), α2 = (1, 0) and L(α1) = 1, L(α2) = 2, n(α1) = 0, n(α2) = 1, then: 

λ = 
2

i 1=
∑ (L(αi) + n(αi)) = 3 − 1 = 2 

and since 2 is even, then: 

ρ = 
1
2

 λ + 
2

i 1=
∑ n(αi) = 

1
2

(2) + 1 = 2 

and thus |E(I1 I10)| ≤ K h2, where K = 
1
2

 according to the solution of this 

example in lemma (1.7).  
Since the result of lemma (1.7) is applied only to the Itô integral and 

because in this work, we will study the order of convergence of the numerical 
methods will be analyzed when solving SDE’s in Stratonovich formulation, 
therefore in this section we will includes three additional important theorems 
which give the results concerning the expectation of products of multiple 
Stratonovich integrals. These theorems are applied in the derivation of 
stochastic Runge-Kutta methods in chapter two. The known result from [22], 
which is E(

1
Iα 2

Iα …
k

Iα ) = 0 if the total number of non-zero indices in α1, 

α2, …, αk is odd is applied in the following theorem which extends the result 
to Stratonovich integrals: 
 

Theorem (1.8), [7]: 
If the total number of non-zero indices in α1, α2, …, αk is odd, then 

L

k

L 1
E Jα

=

 
 
 
∏  = 0. 

 

Theorem (1.9), [7]: 
Let Jα be a Stratonovich integral with L(α) = k, n(α) = k − t, i.e., k − t 

zeros. Then E( 2Jα ) = O(h2k−t). 

The result in theorem (1.9) may be extended to the product of an 
arbitrary number of Stratonovich integrals, as in the next theorem: 
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Theorem (1.10), [7]: 
E(

1
Jα 2

Jα …
k

Jα ) = O(hρ), for λ is even, where  

λ = 
k

i 1=
∑ (L(αi) − n(αi)) and ρ = 

1
2

λ + 
k

i 1=
∑ n(αi). 

Now, when back to the example (1.13), then: 

E( 2
11J ) = E

2
2
1

1 J
2

       
 (by lemma (1.5)) 

= 
1
4

E( 4
1J ) = 

1
4

E(J1 J1 J1 J1) 

By theorem (1.10), when αi = (1), L(αi) = 1, n(αi) = 0, for all i = 1, 2, 3, 4, 

then λ = 
4

i 1=
∑ (L(αi) − n(αi)) = 4 and since 4 is an even number, then  

ρ = 
1
2

λ + 
2

i 1=
∑ n(αi) = 2 and thus E( 4

1J ) = O(h2).  

In equations (1.69), when J1 = I1 then by remark (1.8): 
|E(I1 I1 I1 I1)| ≤ K h2 

and K = 3 according to [22], such that: 

1 2 3 4

2
1 2 3 4

2
1 2 3 4

( j ) ( j ) ( j ) ( j )

3h , if j j j j

h , if {j , j , j , j } consistsof 2 distinctE(I I I I )
 pairs of identical numbers

0, otherwise

 = = =

= 




 

 … (1.79) 

Then E( 2
11J ) = 

1
4

 E( 4
1J ) = 

1
4

 E( 4
1I ) = 

3
4

 h2. 

Example (1.14), [7]: 

Using the above theorems, it can be shown that E(J1 J2 J21) ≤ 
1
2

 h2. 

Consequently, as J1 J2 = J12 + J21, then by lemma (1.4): 

E(J1 J2 J21) = 12 21 21E((J J )J )+  = E(J12 J21 + 2
21J ) 

Now, by theorem (1.10), E(J12 J21) = O(h2), 
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but when J12 = I12, J21 = I21 (by equation (1.69)), such that 
1 2{j j 0}I 0= ≠ = ), 

then E(I12 I21) = 0 (by equation (1.78)) such that 
1 3j , jδ = 

2 4j , jδ = 0,  

or, according to equation (1.75) and E( 2
21J ) = O(h2) (by theorem (1.10)), 

or when J21 = I21 (by equation (1.69), since 
1 2{j j 0}I = ≠ = 0)  

Therefore, E( 2
21J ) = E( 2

21I ) = 
1
2

 h2 (by equation (1.78) such that 
1 3j , jδ = 

2 4j , jδ = 1, or according to equation (1.76)).  

Hence: 

E(J1 J2 J21) = E(J12 J21 + 2
21J ) = E( 2

21J ) = 
1
2

h2. 

These examples demonstrate the systematic way that the lemmas can 
be applied to calculate the expectation of products of stochastic integrals. 

 
Finally, it is noted that if two random variables X1 and X2 are 

independent, then E(X1 X2) = E(X1) E(X2) . This fact can be used to calculate, 

for example E( 2
1J 2

2J ) as J1 and J2 are independent. 
 
Example (1.15), [7], [1]: 
First approach: 

E( 2
1J 2

2J ) = E( 2
1J ) E( 2

2J ) 

When α = (1) = α+, β = (2) = β+ and L(α+) = L(β+) = 1, then K0(α) = K0(β) = 

K1(α) = K1(β) = 0, ω(α, β) = L(α+) + 
L( )

i 0

+α

=
∑ (Ki(α) + Ki(β)) = 1 with τ = h, ρ 

= 0 and f = g = 1, I1 = J1 (by equation (1.69), since: 
E(I1 I1) ≤ Kf,g = h 

In this example when by [22], K1,1 = δi,j in equation (1.77), then: 
E(

1( j ),tI
2( j ),tI ) = h 

1 2j , jδ  … (1.80) 

and by the same way followed previously E( 2
2J ) = h and by theorem (1.10), 

E( 2
1J ) = E( 2

2J ) = O(h).  
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Second approach: 
Also, using theorem (1.2) with J1 = I1 (by equation (1.69)) and with 

f(t) = 1, a = 0, b = h, hence: 

E( 2
iJ [f(.)],a,b) = E( 2

iI [f(.)],a,b) = 
2b

ta
E f (t) dW

 
 
 
∫  = 

b 2
a

E f (t) dt 
  ∫ , 

hence  

E( 2
iJ ) = 

2h
t0

E dW
 
 
 
∫  = 

h
0

E dt 
  ∫  = E(h) = h,      i = 1, 2. 

Therefore, E( 2
1J 2

2J ) = E( 2
1J ) E( 2

2J ) = h2. 

Third approach: 
This result may also be obtained as follows: 

By equation (1.69), 2
1J  = 2

1I  and 2
1I  = 2 I11 + I0. Also, 2

2J  = 2
2I  = 2 I22 + I0 

Hence: 

E( 2
1J 2

2J ) = E((2 I11 + I0)(2 I11 + I0)) 

= 4 E(I11 I22) + 2 E(I0 I11) + 2 E(I0 I22) + E( 2
0I ) 

such that from equation (1.78) E(I11 I22) = 0 and since 
1 3j , jδ  = 

2 4j , jδ  = 0. 

According to equation (1.75) or using lemma (1.7) when α = (0), β = (1, 1), 
then α+ ≠ β+. Also, E(I0 I22) = E(I0 I11) = 0. 

Finally, E( 2
0I ) = 

2h
0

E dt
      

∫  = E(h2) = h2. Then: 

E( 2
1J 2

2J ) = 4 E(I11 I22) + 2 E(I0 I11) + 2 E(I0 I22) + E( 2
0I ) = h2 

Fourth approach: 

Also, we can use equation (1.79) to find E( 2
1J 2

2J ), so 

E( 2
1J 2

2J ) = E(J1 J1 J2 J2) = h2, such that J1 = I1, J2 = I2 (by equation (1.69) and 

{αi}, i = 1, 2, 3, 4 of 
i

Jα  consists of two distinct pairs of identical numbers). 

Extending this to N random variables yields to the result: 

E( 2
1J 2

2J … 2
NJ ) = hN … (1.81) 

The independence of random variables also results in the following 
examples: 
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1. E( 4
1J 2

2J ) = E( 4
1J ) E( 2

2J ) (by equations (1.79) and (1.81)) 

= (3h2) (h) = 3h3 

2. E( 4
1J 4

2J ) = E( 4
1J ) E( 4

2J ) (by equation (1.79)) 

= (3h2) (3h2) = 9h4 

3. E( 6
1J 2

2J ) = E( 6
1J ) E( 2

2J ) 

= (15h3) (h) = 15h4 

Such that E( 2
2J ) = h, hence using theorem (1.10) E( 6

1J ) = O(h3) and 

when J1 = I1 in equation (1.69), then by remark (1.8) 
|E(I1 I1 I1 I1 I1 I1)| ≤ K h3 

and K = 15 according to [22], such that: 

1 2 3 4 5 6

3
1 2 6

2
i

j j j j j j 3
i

15h , if j j ... j

3h , if 1 pair and 1 quadruple of identical jE(I I I I I I )
h , if 3 different pairs of identical j
0, otherwise

 = = =



= 




 

 … (1.82) 
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Chapter Two 

Runge-Kutta Methods for Solving Ordinary 

Stochastic Differential Equations 

 
 

Introduction: 
 

In this chapter, we give some conceptions about strong and weak 
convergence and give some models of stochastic Runge-Kutta methods. 

Pamela in 1999 [7] derived some models with multiples stages 
stochastic Runge-Kutta methods (SRKM's for short) with strong order of 
convergence and proved that those models are stable using the mean square 
stability and asymptotically stability sachems. 

This chapter consists of four sections. In section 2.1 some conceptions 
about strong and weak convergence are given. In section 2.2 the previous 
work of stochastic Runge-Kutta schemes are illustrated in details. In section 
2.3 the derivation and analysis of stochastic Runge-kutta methods are given. 
Finally in section 2.4 the stability of the explicit SRKM's using the mean 
square concept of stability. 

It is remarkable that in this chapter, we shall discuss the derivation of 
explicit Stratonovich stochastic Runge-Kutta methods for solving autonomous 
SDE's with strong order 1 according to the style of Burrage in (1999) [7], and 
its stability also will be considered. 
 

2.1 Fundamental Concepts, [7], [22],[39]. 
In order to determine the quality of the scheme, i.e., the accuracy of 

the discrete time approximation, we have to specify a criterion for the type of 
the convergence, since there are mainly two different objectives connected 
with the approximation of solutions of SDE's of the form: 

0t t t t t 0dX f (t,X )dt g(t,X )dW ; X X= + =  … (2.1) 

 

 



Chapter Two                                     Runge-Kutta Methods for Solving 
                                         Ordinary Stochastic Differential Equations 
 

 47 

Definition (2.1) (Strong Convergence), [22], [37]: 
A discrete time approximation Yh is said to be converges strongly 

with order p > 0 at time T if there exists a positive constant C, which does not 
depend on the step size h, and δ0 > 0, such that: 

h p
T TE(|| X Y ||) Ch− ≤   … (2.2) 

where 0
0

T th (0, )
N
−

= ∈ δ , N is the number of subintervals of the interval I = 

[t0, T], XT is the actual solution at T and h
TY  is the numerical solution at T. 

 

Remark (2.1), [7], [22], [37]:  

If we want to construct the Itô-Taylor scheme of strong order p = 0.5, 
1.0, 1.5, …; i.e., the stochastic Taylor expansion is constructed using 
definition (2.1).  

We need to take the association with the hierarchical set defined by: 

Λp = {α ∈ M : L(α) + n(α) ≤ 2 p or L(α) = n(α) = p + 1
2

} … (2.3) 

where M, L(α), n(α) are defined in section (1.4). 

In the general multidimensional case, with a d-dimensional SDE and 
m-dimensional Wiener process, the Itô-Taylor scheme of strong order p 
defined by the vector equation: 

n n 1
p

n 1 n n n ,t ,t 0 0
\{v}

Y Y f (t ,Y ) I ;Y x
++ α α

α∈Λ
= + =∑  … (2.4) 

recursively with F(t, x) = x, for all (t, x) ∈ I × dR  and for n 0,1,..., N 1= − ; 
{v} is defined in chapter one (see equation (1.56)), provided that all 
derivatives of f and g appearing in equation (2.1) exist, [22]. 

It is remarkable that, the above discussion is given for the Itô-Taylor 
formula, and by the same way, the Stratonovich-Taylor scheme of strong 
order p = 0.5, 1.0, 1.5, …; may be discussed only by replacing f(t, Xt) in Itô 
SDE’s with f(t, Xt) in Stratonovich SDE’s and 

n n 1,t ,tI
+α  in in equation (2.4) 

with 
n n 1,t ,tJ

+α . 
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However, in some cases it is not necessary to find an accurate path 
wise approximation of an Itô process. Instead, only some of the moments 
which may be of interest, or more generally E(f(X)) for some function f. This 
is, a much weaker condition, which give the reason for the next definition: 

Definition (2.2) (Weak Convergence), [22], [37]: 
A discrete time approximation Yh with step size h is said to be 

converges weakly with order p > 0 to TX at time T as h → 0, if for each  

f ∈ 2(p 1) dC ( , )+ R R  there exists positive constant C, which does not depend 

on h and a finite number δ0 > 0, such that: 
h p

T T 0| E(f (X )) E(f (Y )) | Ch , h (0, )− ≤ ∀ ∈ δ . 

Remarks (2.2), [22], [37]: 

1. In order to construct a weak Taylor scheme of order p = 1, 2, 3,…; for the 
general d-dimensional SDE, one have to consider the hierarchical set: 

Γp = {α ∈ M : L(α) ≤ p} … (2.5) 

then an m-dimensional Wiener process, the Itô-Taylor scheme of weak 
order p is recursively defined by the vector equation: 

Yn+1 = Yn + n n 1
p

n n ,t ,t
\{v}

f (t ,Y ) I
+α α

α∈Γ
∑ , 

0tY  = x0 … (2.6) 

with F(t, x) = x, for all (t, x) ∈ I × dR  and for n = 0, 1, …, N − 1; 
provided that all derivatives of f and g appearing in equation (2.1) exists. 

Similarly, as in the case of Itô-Taylor expansion, we may use the 
Stratonovich-Taylor expansion of weak order p = 1, 2, 3, …; by replacing 
f(t, Xt) in the Itô SDE (2.1) with f(t, Xt) in Stratonovich SDE's and 

n n 1,t ,tI
+α  in equation (2.6) with 

n n 1,t ,tJ
+α . 

2. On the one hand, the partial derivatives appearing in the Taylor scheme 
must be calculated and on the other hand to simulate the correlated 
random variables. 

n n 1,t ,tI
+α  = 

n 1 k 2
1 2 k

1 2 k
n n n

t S S

S S S
t t t

... dW dW ...dW
+

α α α∫ ∫ ∫  
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where SdW dtα =  when α = 0, for all α ∈ Λ p for strong scheme and α ∈ Γp 

for weak scheme. 
For the weak approximation of order p, the multiple Itô integrals Iα may 

be replaced by other random variables Îα , if there exists a constant C > 0, 

such that the moment condition: 

k n n 1 k n n 1 n

L L

,t ,t ,t ,t t
k 1 k 1

ˆE I I
+ +α α

= =

 
−  

 
∏ ∏ A  < C (tn+1 − tn)p+1 … (2.7) 

holds for all choices of multi-indices αk ∈ Γp\{v}, for k = 1, 2, …, L and 
with L = 1, 2, …, 2 (p + 1). 

In the next section, some models which are formulated for 
autonomous SRK methods according to strong or weak convergence are given 
and thereafter, models of autonomous and non-autonomous SRK methods 
have been discussed. 
2.2 Previous Work on Stochastic Runge-Kutta Methods. 

In this section, the SRKM are classified into two types: 

1. Autonomous SRKM's which may be also classified into two types: 

(a) Autonomous SRK methods of strong convergence and following some 
well-known models for this type: 

• When the Itô SDE is given by: 

dYt = f(Yt) dt + g(Yt) dWt, 0tY  = Y0 … (2.8) 

then the strong order 1.0 SRKM  is:  

Yn+1 = Yn + f(Yn) h + g(Yn) ∆Wn + 1
2

[g(Yn + g(Yn) h ) − g(Yn)] 

(∆ 2
nW  − h) … (2.9) 

where h = tn+1 − tn, ∆Wn = 
n 1tW

+
 − 

ntW . This model is proposed by 

Rümelin in (1982), [38]. 

• When the Stratonovich SDE is given by: 

dYt = f (Yt) dt + g(Yt) ○ dWt … (2.10) 

where: 
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f (Yt) = f(Yt)  − 1
2  

g(Yt) g′(Yt), 0t 0y y=  

The strong order 1.0 SRKM are: 
s s

i n ij j 1 ij j
j 1 j 1

s s

n 1 n j j 1 j j
j 1 j 1

Y y  h a f (Y ) J b g(Y ) ;i 1,2,...,s

y y  h f (Y ) J g(Y )

= =

+
= =


= + + + = 



= + α + γ 


∑ ∑

∑ ∑
 … (2.11) 

where A = (aij) and B = (bij) are s×s-matrices of real elements with αT = 

(α1, α2, …, αs) and γT = (γ1, γ2, …, γs) are row the vectors in sR ,  
h = tn+1 − tn, J1 = ∆Wn = 

n 1tW
+

 − 
ntW and s is the stages of the method. 

If both A and B are strictly triangular matrices, then equation (2.11) is 
said to be explicit, otherwise it is implicit. This model is proposed by 
Burrage and Burrage in (1996-1999), [4], [5], [7]. 

(b) Autonomous SRK methods of weak convergence and next some of the 
most well-known models of this type: 

• When the SDE is as given in equation (2.8), then the weak order 2 
SRKM is: 

0tY = Y0 

Yn+1 = Yn + 1
2  

[f(u) + f(Yn)] h + 1
4  

[g(u+) + g(u−) + 2 g(Yn)] ∆ nŴ  + 

1
4

[g(u+) − g(u−)]
2
nŴ h
h

∆ −  … (2.12) 

where: 

h = tn+1 − tn. 

∆ nŴ  = 1Î  = 
n 1tŴ

+
 − 

ntŴ . 

u = Yn + f(Yn) h + g(Yn) ∆ nŴ . 

u+ = Yn + f(Yn) h + g(Yn) h . 

u− = Yn + g(Yn) h − g(Yn) h . 
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Such that ∆ nŴ  is a random variable and must be 
n 1T +

A -measurable 

and satisfy the moment condition given in equation (2.7).  

This model is proposed by Platen and Kloeden in (1992), [22] and 
Platen in (1987), [33]. 

• When the Stratonovich SDE is given by equation (2.10), the weak order 
2.0 SRKM is given by: 

Yn+1 = Yn + 
s

(0)
j i

j 1
f (H )

=
α∑ hn + 

s
(1) (1)
i i

j 1
g(H )

=
γ∑ J1; 0t 0Y Y= ... (2.13) 

for n = 0, 1, …, N − 1; with supporting values: 
i 1 i 1

(0) (0) (0) (1)(0) (1)
n n 1i ij j ij j

j 1 j 1

i 1 i 1
(1) (1) (0) (1)(1) (1)

n n 1i ij j ij j
j 1 j 1

H Y A f (H )h B g(H )J

H Y A f (H )h B g(H )J

− −

= =

− −

= =

= + +

= + +

∑ ∑

∑ ∑
 

where hn = tn+1 − tn, J1 = ∆Wn = 
n 1tW

+
 − 

ntW  and (0)
ijA , (1)

ijA , (1)(0)
ijB , 

(1)(1)
ijB  are s×s matrices of real elements with αT = (α1, α2, …, αs) and 

γT = (γ1, γ2, …, γs) are row vectors in sR . This model was proposed by 
Rößler in (2003), [37]. 

2. Non-autonomous SRKM's, which may be also classified into two types: 

(a) Non-autonomous SRK methods which is worked according to the 
strong or weak convergence and following some well-known models: 

• When the Itô SDE is given by: 

t t t tdY f (t,Y )dt g(t,Y )dW= +  … (2.14) 

then the strong order 1.0 SRKM is: 

( ) ( )

( ) ( ) ( )

0t 0

n 1 n n 1 n 1 n n n n n

2
n n n n n n n

Y Y

1Y Y f t , Y h g t ,Y W [g(t ,Y )
2 h

 f t ,Y h g t ,Y h) g t ,  Y ][( W ) h]

+ + +

=

= + + ∆ + 

+ + − ∆ − 

 ... (2.15) 

Where h = tn+1 − tn, ∆Wn = 
n 1tW

+
 − 

ntW . This model was proposed by 
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Platen and Kloeden in (1992), [22]. 

• When the SDE is as in equation.(2.14), then the weak order 2.0 SRKM 
is: 

Yn+1 = Yn + 1
2

g(tn,Yn) ∆ nŴ  + 1
2

[f(tn,Yn) − g(tn,Yn)g′(tn,Yn)] h +  

          

1
2  

g(tn,Yn) g′(tn, Yn) (∆ nŴ )2 + 1
2

f(tn+1,Yn + f(tn, Yn) h + 

          g(tn, Yn) ∆ nŴ ) h + 1
4

g(tn+1, Yn + f(tn, Yn) h + 
1
3

g(tn, Yn)  

          ∆ nŴ ) ∆ nŴ  + 1
4

g(tn+1,Yn + f(tn, Yn) h − 
1
3

g(tn, Yn) 

         ∆ nŴ ) ∆ nŴ , 
0tY = Y0 … (2.16) 

Where 
0tY = Y0, h = tn+1 − tn and ∆ nŴ  = 1Î  = 

n 1tŴ
+

 − 
ntŴ . 

This model was proposed by Milstein in (1992), [22]. 

(b) Non-autonomous SRKM which is derived without introducing the 
strong or weak convergence (i.e., it is derived in a similar manner as 
in the ordinary derivation of deterministic RKM) in order to throw off 
expectations complications, i.e., we shall deal with deterministic terms 
separately from the stochastic terms and this model is called stochastic 
Runge-Kutta Maruyama methods and it is proposed by Buckwar , 
Rößler  and Winkler, [35] [36], which is given by: 

Yn+1=Yn+h
s

i 1=
∑ αif(tn+cih,Ki)+g(tn,Yn)∆Wn, 0tY = Y0 … (2.17) 

with stage values for i 1,2, ,s= …  and n 1 nh t t+= − ,  

n n 1 nW W W+∆ = − , Ki = Yn + h
s

j 1=
∑ aij f(tn + ci h, Kj) 

The previous classifications are worked due to what we find by a large 
class of models to SRKM's in orders specific above, and this does not mean 
that there are no other models of SRKM's. There are also other models for 
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SRK of higher order. In addition, it is possible to make some modification on 
the models of autonomous SRKM to be transformed into non-autonomous 
SRKM, and vice versa. 

2.3 Analysis and Derivation of Stochastic Runge-Kutta Methods. 
In the case of RKM for deterministic problems, the order of accuracy 

is found by comparing the computed solution with the exact solution over one 
step assuming exact initial values. This is accomplished by expanding both 
the actual and the numerical solutions in Taylor series expansion, and this 
approach may be carried over SDE's when a stochastic Taylor series 
expansion (using either the Itô or Stratonovich calculus) is applied [5], [7].  

As mentioned earlier in chapter one, because of the simplified nature 
of the Stratonovich calculus, only the Stratonovich form of the stochastic 
Taylor series will be used here in this section. 

2.3.1 Taylor Series Expansion for the Actual Solution [7]. 
Consider the autonomous, one Weiner process and Stratonovich SDE 

given in equation (2.10), which may be rewritten as: 

d ty = f( ty ) dt + g( ty ) ○ dWt, 0ty = y0 … (2.18) 

where f refers to f  for simplicity, and as an integral equation form: 

ty  = 
0ty + 

0

t

t
∫ f( sy ) ds + 

0

t

t
∫ g( sy ) ○ dWs … (2.19) 

Itô’s formula states that a given function a of the solution y may be 
written as: 

a( ty ) = a(
0ty ) + 

0

t

t
∫ L0a( sy ) ds + 

0

t

t
∫ L1a( sy ) ○ dWs … (2.20) 

where in the Itô form, the operators L0 and L1 are given by: 

L0a(y) = 
da
dy

f + 1
2

2

2
d a
dy

g2,     L1a(y) = 
da
dy

g 

While in Stratonovich form: 
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L0a(y) = 
da
dy

f,       L1a(y) = 
da
dy

g … (2.21) 

Applying theorem (1.7), and using equations (2.19) and (2.21) with 
a(y) ≡ y and one Weiner process, and letting 

0ty = y0, then the actual solution 

given by, [7]: 

ty = y0 + f(y0)J0 + g(y0)J1 +  f ′(y0)(f(y0))J00 + f ′(y0)(g(y0))J10 + 

g′(y0)f(y0))J01 + g′(y0)(g(y0))J11 + f ′′(y0)(f(y0)f(y0))J000 +  
f ′(y0)(f ′(y0)(f(y0)))J000 + f ′′(y0)(f(y0)g(y0))J100 + f ′(y0) 
(f ′(y0) (g(y0)))J100 + f ′′(y0) (g(y0)f(y0))J010 + f ′(y0)(g′(y0) 
(f(y0)))J010 + f ′′(y0)(g(y0) g(y0))J110 + f ′(y0) (g′(y0)(g(y0))) J110 + 
g′′(y0)(f(y0)f(y0))J001 + g′(y0) (f ′(y0)(f(y0)))J001 + g′′(y0)(f(y0)g(y0)) 
J101 + g′(y0)(f ′(y0) (g(y0)))J101 + g′′(y0) (g(y0)f(y0))J011 + g′(y0) 
(g′(y0)(f(y0)))J011 + g′′(y0)(g(y0) g(y0)J111 + g′(y0)(g′(y0) (g(y0)))J111 
+ R … (2.22) 

where R refers to the remainder term and 
1 2 kj j ... jJ  represents the Stratonovich 

multiple integral, which are with respect to ds if ji = 0 or ○dW(s) if ji = 1. 

It should be noticed that there is a multiplicity factor associated with 
some of the higher derivative terms. For example: 

L0f = f′ f 

L0L0f = L0(f′ f) = (f′ f)′ f = f′′ f 2 + (f′)2 f 

L0L0L0f = L0(f′′ f 2 + (f′)2 f) = (f′′ f 2)′ f + ((f′)2 f)′ f  

= f′′′ f 3 + 3 f′′ f′ f 2 + f′ f′′ f 2 + (f′)3 f … (2.23) 

Thus, in the expression of L0L0L0f, there is a factor 3 associated with the term 

f′′f′f 2. 
 

Equation (2.22) is the generalization of Taylor series expansion for 
deterministic equations with g ≡ 0. By comparing this expansion with the 
application of the numerical method being considered, it is possible to choose 
the coefficients of the numerical method to obtain a particular order. 
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2.3.2 Rooted Tree Theory [7]: 
For the analysis of order conditions for RKM for ordinary differential 

equations, Butcher in (1987) [9] demonstrated the correspondence between 
elementary differentials and rooted tree theory in the Taylor series expansion 
of the actual solution. This technique (which is first introduced by Butcher in 
(1963) [8]) simplifies markedly the derivation of order conditions for higher 
order RKM. 

The main results on rooted tree theory (for deterministic ordinary 
differential equations) are presented in [9]. Then, this theory was extended to 
the stochastic setting, so that although the order conditions for lower-order 
RKM may be obtained by comparing directly the RK scheme with stochastic 
Stratonovich Taylor expansion, this theory may be used to develop the order 
conditions for more general RKM's. 

Order conditions for deriving RKM may be obtained by expanding 
both the actual and numerical solutions of the differential equation in a Taylor 
series. By formally differentiating y′(x) = f(y(x)), the higher derivatives of y 
may be represented as follows: 

y′′(x) = f′(y(x)) y′(x) = f′f, y′′′(x) = f′′ f 2 + (f ′)2 f, … 

The ordinary derivatives f′ and f′′ are linear and bilinear, respectively. 

In vector notation (and for m-dimensional system), the ith component f′f and  

f′′f 2 can be written as: 

(f ′(f))i = i
jf jf  = 

im
j

j 1 j

f f
x=

∂
∂∑ ,  

(f′′(f f))i = i i k
jkf f f  = 

2 im
j k

j,k 1 j k

f f f
x x=

∂
∂ ∂∑  

The complexity of these expressions builds up very quickly, so it simplifies 
matters to use the pattern of rooted trees for constructing these expressions. In 
the deterministic setting, τ is used to denote the tree node ●, and other trees 
can be build up recursively by defining a new tree t (which is formed by 
joining trees t1, t2, …, tk to a new root τ) as: 
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t = [t1, t2, …, tk] 

each tree corresponds to an elementary differential F(t)(y(x)), defined by: 

F(t)(y(x)) = f (k)(F(t1)(y(x)) F(t2)(y(x)) … F(tk)(y(t))) 

and consequently forms part of Taylor series. Full details of this are in 
Butcher (1987), [9] and (1994), [10], but here just a brief summary will be 
provided so as to form a basis for the extension of the concept to the 
stochastic area. 

Remarks (2.3): 
1. Consider the s-stages RKM (for solving the deterministic problem) given 

by: 
s

i n ij j
j 1

s

n 1 n j j
j 1

Y y h a f (Y ); i 1,2,...,s

y y h b f (Y )

=

+
=


= + = 



= + 


∑

∑
 … (2.24) 

since 
s

j ij
i 1

b a ; j 1,2,...,s
=

= =∑ , which may be represented in tabulated form, 

as: 

C A 
 bT 

where C = A e, e = (1, 1, …, 1)T. 

2. Each rooted tree of the above formulation has a corresponding elementary 
weight ΦD(t) = bTψ(t), where ψ(t) is defined recursively by: 

ψ(τ) = e, ψ([t1, t2, …, tk]) = (Aψ(t1))∗(Aψ(t2))∗…∗(Aψ(tk)) 

where ∗ denotes the component-wise multiplication (see [10]). 
3. A number of functions on trees may be defined recursively. The order of a 

tree ρ(t) or number of vertices of t satisfies the recursion, [9]: 

ρ(τ) = 1, ρ([t1, t2, …, tk]) = 1 + 
k

j 1=
∑ ρ(tj) 

4. The function γ(t) is used to represent the density of a tree (which is a 
measure of its non-bushiness) and is defined recursively by: 
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γ(τ) = 1, γ([t1, t2, …, tk]) = ρ([t1, t2, …, tk]) 
k

j 1=
∏ γ(tj) 

5. The symmetry of a tree, β(τ), can also be defined recursively, as: 

β(τ) = 1, β([ 1n
1t , 2n

2t , …, kn
kt ]) = n1! n2!...nk! 

k

j 1=
∏ β(tj) jn  

6. The function α(t) is the number of ways to label the vertices of t (with 
labels 1, 2, …, ρ(t)) so that the labels increase outwardly along the arcs, 
symmetry of the tree must be taken into account, and hence α(t) takes the 
form, [9]: 

α(t) = 
(t)!

(t) (t)
ρ

γ β
; (t) (t) 0, tγ β ≠ ∀  

7. By using some of the above functions on trees, the formal deterministic 
Taylor series for the actual solution is [10]: 

y(x0 + h) = y0 + 
t T∈
∑ α(t) F(t)(y0) 

(t)h
(t)!

ρ

ρ
 

where T is the set of all rooted trees. 

8. For the numerical solution given by equation (2.24), Butcher in (1987) has 
shown that, [9]: 

ŷ (x0 + h) = y0 + 
t T∈
∑ α(t) γ(t) ΦD(t) F(t)(y0) 

(t)h
(t)!

ρ

ρ
 

9. By comparing the expansions of the actual and the numerical solutions 
term by term up to and including trees with p vertices, an RKM will have 

an order p if and only if ΦD(t) = 
1
(t)γ

. 

10. Noting also that the local truncation error over one step give an exact 
initial value which may be written as: 

L(x0 + h) = y(x0 + h) − ŷ (x0 + h)  

t T∈
= ∑ α(t) D

1 (t) (t)
(t)! (t)!

 γ
− Φ ρ ρ 

hρ(t) F(t)(y0) 
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and the term: 

e(t) = D
1 (t) (t)
(t)! (t)!

γ
− Φ

ρ ρ
 

will be called the local truncation error coefficient for a tree t. 
The extension of this rooted tree theory to the stochastic setting with 

one Wiener process is based on the consideration of the set of bi-colored 
rooted trees T, where the roots of each tree is either ● (τ for a deterministic 
node) or ○ (σ for stochastic node), see for more details [24]. 

If t1, t2, …, tm are bi-colored trees, then [t1, t2, …, tm] and {t1, t2, …, 
tm} are trees in which t1, t2, …, tm are each joined by a single branch ● or ○, 
respectively. For example, if t1 = [σ] and t2 = σ, then figures (2.1) and (2.2) 
shows the two trees [t1, t2] and {t1, t2}, respectively. 

[t1, t 2] = [[σ], σ] = [    ,  σ] = 

=

 
1t = = ,    t 2 = σ =

σ

[   ]

[  ]

σ

σ

[    ]

σ

[   ]

[σ]   =

 
Figure (2.1) The tree [t1, t2]. 

{t1,t 2} = {[σ], σ} = {    ,  σ} = 

 1t = ,    t 2 = σ =  [σ] = =
[   ]

σ

σ

[   ]

{ }

=

σ

[   ] σ

 
Figure (2.2) The tree {t1, t2}. 
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In a similar manner to the deterministic case, an elementary 
differential may be associated with any t ∈ T, such that: 

(m)
1 m 1 m

(m)
1 m 1 m

F( )(y) f (y), F( )(y) g(y)

F(t)(y) f (y)(F(t )(y) ... F(t )(y)), t [t ,..., t ]

F(t)(y) g (y)(F(t )(y) ... F(t )(y)), t {t ,..., t }

τ = σ = 


= = 


= = 

 … (2.25) 

For example, t = [τ, σ] is associated with f ′′(y)(f(y)g(y)), i.e., t reads 
as (f′′(y)(F(τ)(y)F(σ)(y)))=(f′′(y)(f(y)g(y))), and t=[[σ]] is associated with 
f′(y) (f′(y) ((g(y))), i.e., when t = [σ], then f′(y) (F(σ)(y)) =f′(y)(g(y)) and 
when t = [[σ]], then f′(y)(f ′(y)(F(σ)(y)))=f′(y)(f′(y) (g(y))). 

In addition, an elementary weight may be associated with each 
elementary differential by associating the integer 0 with deterministic node ● 
and the integer 1 with a stochastic node ○. These elementary weights are in 
fact Stratonovich integrals. 

An easy way to determine the J-integral associated with each tree is to 
read the tree from top to bottom and simultaneously from right to left, 
replacing τ-nodes with 0's and σ-nodes with 1's. This is equivalent to read the 
bracket representation from the inside to outside, and within a bracket from 
right to left (just the left bracket of the pairs makes a contribution) and then 
writing the index of the J-integral from left to right. For this last example, t = 
{τ, σ} is associated with J101, i.e., t = {τ, σ} reads as (σ ≡ 1 ⇒ τ ≡ 0 ⇒ { } ≡ 
1), whereas 101 is to consider the subscript of J101 and t = {{τ}} is associated 
with J011, i.e., t = {{τ}} reading as (τ ≡ 0 ⇒ { }inside ≡ 1 ⇒  

{ }outside ≡ 1) whereas 011 is to consider the subscript of J011. Hence, the 
following remark is easily shown to be true. 

 
Remark (2.4), [7]: 

The Stratonovich Taylor series for the actual solution of the SDE 
given by equation (2.18) is: 

y(t)= 
t T∈
∑ α(t) F(t)(y(t0)) θ(t) … (2.26) 
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where θ(t) represents the corresponding J-integral associated with tree t as 
described above. A direct comparison of entries in table (2.1) with the terms 
in the Stratonovich Taylor series given by equation (2.22) demonstrates this 
compact way of representing y(t) 

Table (2.1) 
Trees and elementary differentials. 

t F(t) θ(t) t F(t) θ(t) 

φ y0 1 {τ, σ} g′′(y0) (f(y0) g(y0)) J101 

τ f(y0) J0 {σ, τ} g′′(y0) (g(y0) f(y0)) J011 

σ g(y0) J1 {σ, σ} g′′(y0) (g(y0) g(y0)) J111 

[τ] f ′(y0) (f(y0)) J00 [[τ]] f ′(y0) (f ′(y0) (f(y0))) J000 

[σ] f ′(y0) (g(y0)) J10 [[σ]] f ′(y0) (f ′(y0) (g(y0))) J100 

{τ} g′(y0) (f(y0)) J01 [{τ}] f ′(y0) (g′(y0) (f(y0))) J010 

{σ} g′(y0) (g(y0)) J11 [{σ}] f ′(y0) (g′(y0) (g(y0))) J110 

[τ, τ] f ′′(y0) (f(y0) f(y0)) J000 {[τ]} g′(y0) (f ′(y0) (f((y0))) J001 

[τ, σ] f ′′(y0) (f (y0) g(y0)) J100 {[σ]} g′(y0) (f ′(y0) (g(y0))) J101 

[σ, τ] f ′′(y0) (g(y0) f(y0)) J010 {{τ}} g′(y0) (g′(y0) (f(y0))) J011 

[σ, σ] f ′′(y0) (g(y0) g(y0)) J110 {{σ}} g′(y0) (g′(y0) (g(y0))) J111 

{τ, τ} g′′(y0) (f(y0) f(y0)) J001    
 

The one-Wiener process case hides a lot of the potential complexities 
that can arise with multiple Wiener processes. 

2.3.3 Order Conditions for Runge-Kutta Methods. 
In the preceding subsection, the Stratonovich Taylor series for the 

actual solution was established. In this subsection, the corresponding 
Stratonovich Taylor series for the numerical solution needs to be derived. The 
numerical methods under considerations will belong to the general family of 
s-stages SRKM's, where there can be an arbitrary number of random variables 
included in the formulation of the method. Previously, however, there have 
been other classes of methods using just one random variable J1. 
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In [17], certain classes of s-stages methods have been introduced for 
solving the autonomous SDE given by equation (2.18) along with the initial 
value 

0ty = y0.  Perhaps the most general class of methods considered so far 

takes the form: 
s s

i n ij j 1 ij j
j 1 j 1

s s

n 1 n j j 1 j j
j 1 j 1

Y y  h a f (Y ) J b g(Y ),i 1,2, ,s

y y  h f (Y ) J g(Y )

= =

+
= =


= + + = … 



= + α + γ 


∑ ∑

∑ ∑
 … (2.27) 

where A = (aij) and B = (bij) are s×s-matrices of real elements while αT = (α1, 

…, αs) and γT = (γ1, …,γs) are row vectors in sR . If both A and B are strictly 
lower triangular, then equation (2.27) is said to be explicit, otherwise it is 
implicit. The stochastic component comes from the J1 integral  

n 1

n

t

1 s
t

J dW
+

= ο∫  associated with B and γ. Most researchers, such as Rümelin in 

[38] and Gard in [17] consider only for simplicity explicit methods. 

Rümelin in (1982) [38], has shown that if f and g and the necessary 
partial derivatives of f and g are bounded then equation (2.27) converges 
uniformly on [t0, T] in the quadratic mean sense to the Itô solution of: 

dy = (f(y) + λ 
g
y

∂
∂

 g(y)) dt + g(y) dW 

where: 

λ = γT B e. 

Furthermore, if λ = 1/2, then equation (2.27) converges to the solution of the 
corresponding Stratonovich equation. 

Remarks (2.5), [7]: 

1. It will be seen that γT B e = 1
2

 is a necessary condition for equation (2.27) 

to have strong order 1, so that any method of strong order 1 or higher will 
converge to the solution of the Stratonovich equation. 

2.  In particular Rümelin in (1982), [38] has proven: 
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If f and g are arbitrary functions and have continuous and bounded 
partial derivatives up to the sixth order, then the strong order of equation 
(2.27) cannot exceed 1. 

An example of SRKM of the form given in equation (2.27) with 
strong order 1 includes the method of Platen which can be written with  
s = 2, as: 

A = B = 
0 0
1 0

 
 
 

,  αT = (1, 0),  γT = ( 1
2

, 1
2

) ... (2.28) 

Thus if higher stronger order methods are required, equation (2.27) 
needs to be modified in some way so as to include other stochastic elements 
as a part from just J1. This will be done by the introduction of an arbitrary 
matrix Z(1) and vector z(1)T whose elements are themselves random variables. 

Since the stepsize h is just J0 = 0

0

t h
t

ds+
∫ , for consistency the stepsize will be 

included in the parameter matrix associated with the deterministic 
components (so Z(0) = h A and z(0)T = h αT). Hence, the general family of s-
stages SRKM for one Wiener process case will be given by: 

s s
(0) (1)

i n j jij ij
j 1 j 1

s s
(0) (1)

n 1 n j jj j
j 1 j 1

Y y Z f(Y ) Z g(Y ),i 1,2,..,s

y y z f(Y ) z g(Y )

= =

+
= =


= + + = 



= + + 


∑ ∑

∑ ∑
 … (2.29) 

By studying the general strong order properties of equation (2.29) for 
an arbitrary random variable elements within Z(1) and z(1), the order condition 
will be used to construct two-stages method of the form given in equation 
(2.27), which is optimal in terms of minimizing the local truncation error 
coefficients. 

Of course, equation (2.29) is a very general representation, and so a 

simplifying assumption which often be placed on the (1)
ijZ  and (1)

jz  in that it 

will be assumed that each of these random variables can be written as a linear 
combination of p similar random variables θ1, θ2, …, θp, such as J1 (i.e., θ1 = 

θ2 = … = θp = J1) in this case (0)
ijZ , (0)

jz , (1)
ijZ  and (1)

jz  will be written as: 
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(0)
ijij

(0)
jj

p p
(1) (L) (L)

L 1ij ij ij
L 1 L 1
p p

(1) (L) (L)
L 1j j j

L 1 L 1

Z h a ;  i,  j 1,2, ,s

z h ,;  j 1,  2,  ,s

Z b b J ,i, j 1,  2, ,s

z b b J ,i, j 1,  2, ,s

= =

= =

= = …

= α = … 

= θ = = …




= θ = = … 


∑ ∑

∑ ∑

 ... (2.30) 

and equation (2.29) can be written as generalization of equation (2.27) 
(SRKM with a multi-Weiner process). 

ps s
(L)

i n ij j j 1ij
j 1 L 1 j 1

ps s
(L)

n 1 n j j j 1j
j 1 L 1 j 1

Y y  h a f (Y ) b g(Y ) J ,i 1,2, ,s

y y  h f (Y ) g(Y ) J

= = =

+
= = =

 
= + + = …     


  
= + α + γ      

∑ ∑ ∑

∑ ∑ ∑
 ... (2.31) 

This family of methods may be characterized by the following table: 
(1) (p)

(1) (p)

A B B

α γ γ

L

L
 

In order to study the order conditions in equation (2.27), which is 
associated with equation (2.29), then equation (2.29) will be written as a 
function of t: 

0

0

s s
(i) (0) ( j) (1) ( j)
t t t tij ij

j 1 j 1

s s
(0) (i) (1) (i)

n 1 t t ti i
j 1 j 1

Y y Z f(Y ) Z g(Y ),i 1,2,..,s

y y z f(Y ) z g(Y )

= =

+
= =


= + + = 



= + + 


∑ ∑

∑ ∑
 … (2.32) 

By substituting 
t
(i) 1 2 s

t t tY Y ,Y ,...,Y =    in the expression for Y(t), the f(
t
(i)Y ) 

and g(
t
(i)Y ) analogously, but with operator L0 and L1, can be expanded in a 

Taylor series representation, as: 
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0
t t0

0
t t0

(i)0 k
t(i) (i)

k 1
(i)1 k
t(i) (i)

k 1

(L ) f (Y )
f(Y )=f(Y )+

k!

(L ) g(Y )
g(Y )=g(Y )+

k!

∞

=

∞

=









∑

∑

 ... (2.33) 

where the operators L0 and L1 are as in equation (2.21) and where it is 
assumed that f and g are sufficiently differentiable. 

By recursively substituting for the 
t
(i)Y  back into equation (2.32) and 

using equation (2.33) (and a similar formula for g(
t
(i)Y )) it is seen that: 

L0f(
t0

(i)Y )=
s

j 1=
∑ (0)

ijZ
( )i
0

(i)
0

t

t

df (Y )

dY
f(

t0

(i)Y )+
s

j 1=
∑ (1)

ijZ
( )i
0

(i)
0

t

t

df (Y )

dY
g(

t0

(i)Y ) 

L1g(
t0

(i)Y )=
s

j 1=
∑ (0)

ijZ
( )i
0

(i)
0

t

t

dg(Y )

dY
f(

t0

(i)Y )+
s

j 1=
∑ (1)

ijZ
( )i
0

(i)
0

t

t

dg(Y )

dY
g(

t0

(i)Y ). 

Now, for the second derivative terms, a similar analysis gives:
 
 

 

(L0)2f(
t0

(i)Y ) = L0L0f(y0)  

= L0
s s

(0) (1)
0 0 0 0ij ij

j 1 j 1
Z f (y )f (y ) Z f (y )g(y )

= =

 
′ ′+ 

  
∑ ∑  

= 
s s

(0) (1)
0 0 0 0ij ij

j 1 j 1
Z f (y )f (y ) Z f (y )g(y )

= =

′ 
′ ′+ 

  
∑ ∑

 
s s

(0) (1)
0 0 0 0jk jk

k 1 k 1
Z f (y )f (y ) Z f (y )g(y )

= =

 
′ ′+ 

 
∑ ∑  

 

when back to equation (2.23), recall that L0L0f = (f ′f)′f = f ′′f f + f ′f ′f; then: 
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(L0)2f(
t0

(i)Y ) = 

2

(0)
ij

when
j k

Z

=

 
 
 
 
 

∑  f ′′(y0) (f(y0) f(y0)) + 2 (0)
ij

when
j k

Z

≠

∑ (0)
jkZ

    
f′(y0) 

(f ′(y0) f(y0)) + (0)
ij

j
Z∑ (1)

ij
j

Z∑ f ′′(y0) (f(y0) g(y0)) + 

2 (0)
ij

when
j k

Z

≠

∑ (1)
jkZ f ′(y0) (f ′(y0) g(y0)) + 2 (1)

ij
when
j k

Z

≠

∑ (0)
jkZ  f ′(y0) 

(g′(y0) f(y0)) + (1)
ij

j
Z∑ (0)

ij
j

Z∑
    

f ′′(y0) (g(y0) f(y0)) + 

2

(1)
ij

when
j k

Z

=

 
 
 
 
 

∑ f ′′(y0) (g(y0) g(y0)) + 2 (1)
ij

when
j k

Z

≠

∑ (1)
jkZ

     
f ′(y0) 

(g′(y0) g(y0)). 

Analogous results hold for (L1)2 g(
t0

(i)Y ). 

Now, the numerical method may be expanded in a Taylor series, as: 

tY = 
0ty + (i) (i)

s s
(0) (1)

t ti i
i 1 i 1

z f (Y ) z g(Y )
= =

+∑ ∑  

= 
0ty  + 

s

i 1=
∑ (0)

iz
0 0 0

0 0 2
t t t

1f (y ) L f (y ) (L ) f (y ) ...
2!

 + + +  
 + 

s

i 1=
∑ (1)

iz
0 0 0

1 1 2
t t t

1g(y ) L g(y ) (L ) g(y ) ...
2!

 + + +  
 

Now, when eT = (1, 1, …, 1)T contains s of elements 1. Then: 

s

i 1=
∑ zi = 

T
1

2

s

z
z

z

 
 
 
 
 
 

M

1
1

1

 
 
 
 
 
 

M
 = zT e 

and in a similar manner: 
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s

j 1=
∑ Zi = (Z1, Z2, …, Zs)

1
1

1

 
 
 
 
 
 

M
 = Ze. 

Then: 

tY = 
0ty + z(0)T e f(y0) + z(0)T Z(0) e f′(y0) f(y0) + z(0)T Z(1) e f′(y0) g(y0) + 1

2  

z(0)T (Z(0)e)2 f′′(y0) (f(y0) f(y0)) + z(0)T (Z(0))2 e f′(y0) 

(f′(y0) f(y0)) + 1
2

z(0)T Z(0) e Z(1) e f′′(y0) (f(y0) g(y0)) + z(0)T  

Z(0) Z(1) e f′(y0) (f′(y0) g(y0)) + z(0)T Z(1) Z(0) e f′(y0) (g′(y0) f(y0))  

+ 1
2  

z(0)T Z(1) e Z(0) e f′′(y0) (g(y0) f(y0)) + 1
2

z(0)T (Z(1) e)2f′′(y0) (g(y0) 

g(y0)) +z(0)T (Z(1))2 e f′(y0) (g′(y0) g(y0)) +… +z(1)T e g(y0) 

+ z(1)T Z(0) e g′(y0) f(y0) + z(1)T Z(1) e g′(y0) g(y0) +
1
2  

z(1)T(Z(0)e)2  

g′′(y0) (f(y0) f(y0)) + z(1)T (Z(0))2 e g′(y0) (f′(y0) f(y0)) + 1
2

z(1)T Z(0) e 

Z(1) e g′′(y0) (f(y0) g(y0))+z(1)T Z(0) Z(1) e g′(y0) (f′(y0) g(y0))  

+ z(1)T Z(1) Z(0) e g′(y0) (g′(y0) f(y0)) + 1
2  

z(1)T Z(1) e Z(0) e g′′(y0) (g(y0) 

f(y0)) + 1
2  

z(1)T (Z(1) e)2 g′′(y0) (g(y0) g(y0)) + z(1)T (Z(1))2 e g′(y0) 

(g′(y0) g(y0)) + … . 

 

Let φ(t) be defined recursively, as: 

K(φ) =e 
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













φ(t) = ρ(t) z(0)T
m

L 1=
∏ K(tL), t = [t1, t2, …, tm]     

 ... (2.34) 

φ(t) = ρ(t) z(1)T
m

L 1=
∏ K(tL), t = {t1, t2, …, tm}  

where: 

K(t) = ρ(t) Z(0)
m

L 1=
∏ K(tL), t = [t1, t2, …, tm] 

 ... (2.35) 

K(t) = ρ(t) Z(1)
m

L 1=
∏ K(tL), t = {t1, t2, …, tm} 

where the multiplication of vectors is considered component wise. 

As an illustration, consider the following examples: 

Examples (2.6) [1], [7]: 

1. By taking z(0)T e f(y0), then ρ(τ) = 1, because τ is one node, φ(t) = ρ(t) z(0)T 

m

L 1=
∏ K(tL) implies to φ(τ) = 1 z(0)T K(φ), such that K(φ) = e, then φ(τ) = z(0)T 

e and f(y) = F(τ)(y(t0)) (back to table (2.1)), and hence: 

z(0)Tef(y0)= φ(τ) F(τ)(y(t0)) 

2. By taking z(0)T Z(1) e f ′(y0) g(y0), then f ′(y0) g(y0) = F([σ])(y(t0)) and ρ([σ]) 
= 2 (because [σ] is two nodes (σ+ [ ])), and hence: 

φ([σ]) = 2 z(0)T 
1

L 1=
∏ K(tL) = 2 z(0)T K(t1) = 2 z(0)T K(σ) 

such that K(σ) = ρ(σ) Z(1) K(φ) = 1 Z(1) e, implies that φ([σ]) =2 z(0)T Z(1) e 

and thus z(0)T Z(1) e f ′(y0) g(y0) = 1
2  

φ([σ]) F([σ])(y(t0)). 
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3. By taking
 

1
2  

z(1)T Z(0) e Z(1) e g′′(y0) (f(y0) g(y0)), then g′′(y0) (f(y0) g(y0)) = 

F({τ, σ})y(t0) and ρ({τ, σ}) = 3(because{τ, σ} is three nodes (τ+σ+{})). 

Now, when φ({τ, σ})=3 z(1)T 
2

L 1=
∏ K(tL) = 3 z(1)T (K(τ) K(σ)), such that K(τ) 

=ρ(τ) Z(0) K(φ), ρ(τ) =1, then K(τ) = Z(0) e and K(σ) = ρ(σ) Z(1) K(φ), ρ(σ) = 
1, then K(σ) = Z(1) e and thus φ({τ,σ})=3 z(1)T Z(0) e Z(1) e, implies that 
1
2

z(1)T Z(0) e Z(1) e g′′(y0) (f(y0) g(y0)) = 1
3!  

φ({τ, σ}) F({τ, σ})(y(t0)). 

 

4. By taking z(1)T Z(0) Z(1) e g′(y0) (f ′(y0) g(y0)), then g′(y0) (f(y0) g(y0)) = 
F({[σ]})(y(t0)) and ρ({[σ]}) = 3, (because {[σ]} is three nodes  

(σ+[ ]+{ }). Now, when φ({[σ]}) = 3 z(1)T 
2

L 1=
∏ K(tL) = 3 z(1)T  K([σ]), such 

that when backing to example 2 above, φ([σ]) = 2z(0)T Z(1)e and thus K([σ]) 
= 2Z(0)Z(1)e (by substituting z(0)T in φ([σ]) with Z(0) in K([σ]), because 
applying in (3,36)), then φ({[σ]}) = 3! z(1)T Z(0) Z(1) e, implies that z(1)T Z(0) 

Z(1) e g′(y0) (f ′(y0) g(y0)) = 1
3!

φ({[σ]}) F({[σ]})(y(t0)).  

 
Thus, for trees with up to 3 nodes and using F(t) from table (2.1), the 

Taylor series expansion of the numerical method may be written as: 

tY = 
0ty + φ(τ) F(τ)(

0ty ) + φ(σ) F(σ)(
0ty ) + 1

2!  
φ([τ]) F([τ])(

0ty ) + 

1
2!  

φ({τ}) F({τ})(
0ty ) + 1

2!
φ([σ]) F([σ])(

0ty ) + 1
2!  

φ({σ}) 

F({σ})(
0ty ) + 1

3!  
φ([τ,τ]) F([τ,τ])(

0ty ) + 1
3!  

φ([τ,σ]) 

F([τ,σ])(
0ty ) + 1

3!  
φ([σ,τ]) F([σ,τ])(

0ty ) + 1
3!  

φ([σ,σ]) 
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F([σ,σ])(
0ty ) + 1

3!  
φ({τ,τ}) F({τ,τ})(

0ty ) + 1
3!  

φ({τ,σ}) 

F({τ,σ})(
0ty ) + 1

3!  
φ({σ,τ}) F({σ,τ})(

0ty ) + 1
3!  

φ({σ,σ}) 

F({σ,σ})(
0ty ) + 1

3!  
φ([[τ]]) F([[τ]])(

0ty ) + 1
3!  

φ([[σ]]) 

F([[σ]])(
0ty ) + 1

3!  
φ([{τ}]) F([{τ}])(

0ty ) + 1
3!  

φ([{σ}]) 

F([{σ}])(
0ty ) + 1

3!  
φ({[τ]}) F({[τ]})(

0ty ) + 1
3!  

φ({[σ]}) 

F({[σ]})(
0ty ) + 1

3!  
φ({{τ}}) F({{τ}})(

0ty ) + 1
3!  

φ({{σ}}) 

F({{σ}})(
0ty ) + … 

and in general: 

0t

t T

(t) (t)F(t)(y )
Y(t)

(t)!∈

α φ
=

ρ∑  … (2.36) 

where α(t) is the multiplicity factor associated with some of the higher 
derivative terms, exactly as was required in the expansion of the actual 
solution of the SDE as given in equation (2.26). 

Hence, the local truncation error at t = tn of an SRKM can be written 
as: 

nn t
t T

(t)L (t) (t) F(t)(y )
(t)!∈

 φ
= α θ − ρ 

∑  … (2.37) 

Thus, if 2
nE(| L |)  ≤ C

1p
2h

+
, then a method will have strong global order p. 

Writing Ln as: 

Ln = 
nt

t T
e(t)F(t)(y )

∈
∑  … (2.38) 

and letting: 

c = Z(0) e, λ = Z(1) e … (2.39) 

then table (2.2) gives e(t) for all trees with ρ(t) ≤ 3. 
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Table (2.2) 
Local error coefficients. 

No. t e(t) No. t e(t) 

1 τ J0 − z(0)T e 12 [{τ}] J010 − z(0)T Z(1) c 

2 σ J1 −z(1)T e 13 [{σ}] J110 − z(0)T Z(1) λ 

3 [τ] J00 − z(0)T e 14 [σ,σ] J110 −
1
2

 z(0)T λ2 

4 [σ] J10 − z(0)T λ 15 {[τ]} J001 − z(1)T Z(0) c 

5 {τ} J01 − z(1)T c 16 {[σ]} J101 − z(1)T Z(0) λ 

6 {σ} J11 − z(1)T λ 17 {τ,τ} J001 −
1
2

 z(1)T c2 

7 [τ,τ] J000 − 1
2  

z(0)T c2 18 {τ,σ} J101 − 1
2  

z(1)T c λ 

8 [[τ]] J000 −z(0)T Z(0) c 19 {σ,τ} J011 − 1
2  

z(1)T c λ 

9 [[σ]] J100 − z(0)T Z(0) λ 20 {σ,σ} J111 −
1
2

 z(1)T λ2 

10 [τ,σ] J100 − 1
2  

z(0)T c λ 21 {{τ}} J011 − z(1)T Z(1) c 

11 [σ,τ] J010 −
1
2  

z(0)T c λ 22 {{σ}} J111 − z(1)T Z(1) λ 

 
2.3.4 Derivation of the Methods. 

Using the order condition discussed earlier, it is now possible to 
analyse the parameters for different classes of methods. In comparison with 
the deterministic case. There are many more trees to be analysed for 
comparable order in the stochastic setting. For every tree t in the deterministic 
case, there are in the one Weiner process case 2ρ(t) trees (for ρ(t) = 1 or 2), 
2ρ(t) + 1 trees (for ρ(t) = 3) and 2ρ(t) + 2 trees (for ρ(t) = 4) that must be 
considered in the stochastic case. Table (2.3) illustrates how quickly the 
number of trees grows [7]. 
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Table (2.3)  
Number of trees. 

ρ(t) 1 2 3 4 

Deterministic 1 1 2 4 
Stochastic  2 4 16 64 

 

When back to table (2.2) one can see the first two components of t is the 
ρ(t) = 1 and the four of t after the first two is the ρ(t) = 2 and so on. 

First, consider the class of methods given by equation (2.27) in which: 

Z(0) = h A, z(0)T = h αT, Z(1) = J1 B, z(1)T = J1 γT, b = B e, a = A e. 

In an attempt to get strong global order 1.5, it is necessary that the 
order conditions corresponding to trees 1 - 6, 20 and 22 in table (2.2) vanish 
as these are the trees whose corresponding J-integals have expectation 
behaving as O(hp), p < 2, i.e., when back to equation (2.3) and the definition 
of the strong convergence, then the hierarchical set: 

Λp = {α ∈ M : L(α) + n(α) ≤ 2 p  or  L(α) = n(α) = p + 1
2

} 

Now, (1, 1) is the unique element which give strong order 1.0 in 
addition elements set Λ0.5 (when back to tree 6 in table (2.2), then (1, 1) will 
be find in the subscript J11). Hence when α = (1, 1), then L(α) = 2, n(α) = 0 
implies to fulfill the condition given in (2.3) such that  

L(α) + n(α) ≤ 2 p, i.e., 2 + 0 ≤ 2 p, then p = 1, and thus: 

Λ1.0 = Λ0.5 ∪ {(1, 1)} 

and also the elements in the set β, given by β = {(0, 1), (1, 0), (0, 0),  
(1, 1, 1)}, which are uniquely determined which gives strong order 1.5 in 
addition elements set Λ1.0 (look for the subscript J in trees (3, 4, 5, 20, 22) 
existing in table (2.2)). Now, we shall apply the elements of the set β in 
condition (2.3) to prove their elements have a strong order 1.5. 

When α = (0, 1), L(α) = 2, n(α) = 1, then L(α) + n(α) = 2 + 1 ≤ 2 p and thus  
p = 1.5. 
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When α = (1, 0), L(α) = 2, n(α) = 1, then L(α) + n(α) = 2 + 1 ≤ 2 p and thus  
p = 1.5. 

When α = (0, 0), L(α) = 2, n(α) = 2, then L(α) = n(α) = 2 = p + 1
2

 and thus  

p = 1.5. 

When α = (1, 1, 1), L(α) = 3, n(α) = 0, then L(α) + n(α) = 3 + 0 ≤ 2 p and 
thus p = 1.5. 

Then Λ1.5 = Λ1.0 ∪ {(0, 1), (1, 0), (0, 0), (1, 1, 1)} 

As an illustration, the order condition associated with tree 4 in table 
(2.2) should be after taking the square value of the trace and hence its 
expectation, is: 

E((J10 − h J1 ψ)2) = O(h4) or 0 … (2.40) 

where ψ = αT b. 

To analyze this condition, first expand the left hand side, given by [1]: 

E( 2
10J ) − 2 ψ h E(J10 J1) + ψ2 h2 E( 2

1J ) … (2.41) 

But J1 ∼ N ( )0,h  and using the results of chapter one, section (1.5), we get: 

E( 2
10J ) = 1

3  
h3, E(J10 J1) = 1

2  
h2, E( 2

1J ) = h … (2.42) 

and so equation (2.41) becomes: 
1
3  

h3 − 2 ψ h ( 1
2  

h2) + ψ2 h2 h = h3 ( 1
3

 − ψ + ψ2) ≠ 0 

because when f(ψ) = 1
3

 − ψ + ψ2 = 0, then ψ is complex number  

Hence, for resultant on minimum real solution of ψ, we must derive 

f(ψ) and equating the result to zero, yields to ψ = 1
2

. 

Thus in fact the minimum of the quadratic occurs when ψ = 1
2

 in which case 

the minimum value is 1
12

. 
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Applying this analysis to the order conditions, leads to a complete 
characterization of the class of explicit SRKM of the form given in equation 
(2.27) with strong order 1 and minimum principle local truncation error. 

In particular, trees 1, 2 and 6 have associated J-integrals which are of 

order h, h  and h, respectively, so for a method to have strong order 1, it is 
necessary that to consider for [7]: 
1. For tree 1 in table (2.2) 

E(J0 − z(0)T e)2 = E((J0)2 − 2 J0 z(0)T e + (z(0)T e)2, when J0 = h,  
z(0)T = h αT, and thus E(J0 − z(0)T e)2 = h2 ((αT e)2 − 2 (αT e) + 1) = 0, when 
h2 ≠ 0. Then:  

αT e = 1 … (2.43) 
2. For tree 2 in table (2.2) 

E(J1 − z(1)T e)2 = E((J1)2 − 2 J1 z(1)T e + (z(1)T e)2, when z(1)T = J1 γT, E( 2
1J ) 

= h. Hence: 
E(J1 − z(1)T e)2 = h ((γT e)2 − 2 (γT e) + 1) = 0, when h ≠ 0 

Then: 
γT e = 1 … (2.44) 

3. For tree 6 in table (2.2) 
E(J11 − z(1)T λ)2 = E(J11 − z(1)T Z(1) e)2, when λ = Z(1) e 

= E(J11 − 2
1J  γ

T B e)2 = E(J11 − 2
1J  γ

T b)2, 

when z(1)T = J1 γT, Z(1)=J1 B, b = B e 
Now: 

E(J11 − 2
1J  γ

T b)2 = E( 2
11J ) −2 b γT E(J11

2
1J ) + b2(γT)2 E( 4

1J ) ... (2.45) 

Since J1…1 = 
p
1J

p!
, then [22]: 

E( 2
11J )=

22
1JE
2

        
=

1
4

E( 4
1J )= 3

4
h2, E( 4

1J )=3h2, E(J11
2
1J )= 3

2
h2 

and equation (2.45) implies to h2 ( 3
4

 − 3γT b + 3(γT b)2) = 0, when h2 ≠ 0, 

then: 
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γT b = 1
2

 … (2.46) 

Now, when back to definition remainder set in (1.60) then: 
R(Λ1.0) = {(0, 0), (0, 1), (1, 0), (0, 1, 1), (1, 1, 1)} 

and thus, the terms corresponding to the h1.5 terms arise from trees 4,5,20 and 
22: 

T 2 T T 2 3
10 1

1E(J h J b) b ( b) h
3

 − α = − α + α 
 

 … (2.47) 

T 2 T T 2 3
01 1

1E(J h J a) a ( a) h
3

 − γ = − γ + γ 
 

 … (2.48) 

3 T 2 2 T 2 T 2 2 3
111 1

1 1 2 15E(J J b ) b ( b ) h
2 9 3 4

 − γ = − γ + γ 
 

 … (2.49) 

3 T 2 T T 2 3
111 1

1 1E(J J Bb) Bb ( Bb) 15h
36 3

 − γ = − γ + γ 
 

 … (2.50) 

These four equations are minimized if: 

αT b = 1
2

, γT a = 1
2

, γT b2 = 1
3

, γT B b = 1
6  

 … (2.51) 

in this case, the respective minimum in (2.47), (2.48), (2.49), (2.50) are: 
3h

12
, 

3h
12

, 0, 0 … (2.52) 

For a 2-stages explicit method, the last equation for equations (2.51): 

γT B b = (γ1, γ2) 
21

0 0
b 0

 
 
   2

0
b

 
 
 

 = 0 

then the equation (2.50) is:  

T T 2 31 1 Bb ( Bb) 15h
36 3

 − γ + γ 
 

=
35h

12
  

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 
35h

12
 … (2.53) 

From equations (2.46) and (2.51), for this 2-stages explicit method: 



Chapter Two                                     Runge-Kutta Methods for Solving 
                                         Ordinary Stochastic Differential Equations 
 

 75 

(γ1, γ2) 
21

0
b

 
 
 

= γ2 b21 = 1
2

,        (α1, α2) 
21

0
b

 
 
 

= α2 b21 = 1
2

,  

(γ1, γ2) 
21

0
a

 
 
 

= γ2 a21 = 1
2

 

while the following equation: 

γT b2 = 1
3

 or γT b2 = ( 1
3

, 1
3

) 

is obtained in general as follows: 

since 11 12

21 22

b b
B

b b
 

=  
 

 and 
1

e
1

 
=  

 
 then: 

 11 12 11 12

21 22 21 22

b b b b1
b Be

b b b b1
+    

= = =     +    
 

and hence 

 

)(11 122 T
11 12 21 22

21 22
2

11 12 11 12 21 22
2

11 12 21 22 21 22

b b
b b b b b ,b b

b b

(b b ) (b b )(b b )

(b b )(b b ) (b b )

+ 
= = + + + 

 + + +
 =
 + + + 

 

therefore  

 

2
11 12 11 12 21 22T 2

1 2 2
11 12 21 22 21 22

T2
1 11 12 2 11 12 21 22

2
2 21 22 1 11 12 21 22

(b b ) (b b )(b b )
b ( , )

(b b )(b b ) (b b )

(b b ) (b b )(b b )

(b b ) (b b )(b b )

 + + +
 γ = γ γ
 + + + 

 γ + + γ + +
 =
 γ + + γ + + 

 

and since 

γT b2 = ( 1
3

, 1
3

) 

so 
T2

1 11 12 2 11 12 21 22
2

2 21 22 1 11 12 21 22

(b b ) (b b )(b b ) 1 1( , )
3 3(b b ) (b b )(b b )

 γ + + γ + +
  =
 γ + + γ + + 

 

hence we get: 



Chapter Two                                     Runge-Kutta Methods for Solving 
                                         Ordinary Stochastic Differential Equations 
 

 76 

 

2
1 11 12 2 11 12 21 22

2
2 21 22 1 11 12 21 22

1(b b ) (b b )(b b )
3
1(b b ) (b b )(b b )
3

γ + + γ + + =

γ + + γ + + =
 

Now, for explicit case, we get γ2 
2
21b  = 1

3
  

i.e., to obtain such as γ2, then [1]: b21 = 
2

1
2γ

, γ2 
2
21b  = γ2 2

2

1
4 γ

 = 1
3

, implies to  

γ2 = 3
4

, and this produces the solution b21 = 2
3

, γ2 = 3
4

, a21 = 2
3

, α2 = 3
4

. Then 

α1 = 1 − α2 = 1
4

, γ1 = 1 − γ2 = 1
4

, and so the 2-stages method (with maximum 

possible strong order equals 1) with minimum principle error constants is 
represented by the tableau [7]: 

1

1 1

0 0 0 0
2 20 J 0
3 3
1 3 1 3J J
4 4 4 4

 … (2.54) 

This method will be referenced by the code "R2". 
Note that, the Platen method (referenced subsequently by the 

code "PL"), is given by [7]: 

1

1 1

0 0 0 0
1 0 J 0
1 0 1 1J J

2 2

 … (2.55) 

and has principal error constants 
3h

3
, 

3h
3

, 
3h

36
, 

35h
12

 … (2.56) 
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2.4 Stability of Stochastic Runge-Kutta Methods, [7]. 
Having established the procedures for determining the stability of an 

SDE, it is now appropriate to investigate the stability of the stochastic 
numerical method when applied to such a problem.  

An important concept is that the absolute stability (or A-stable), where 
Kloeden and Platen in (1992) [22], consider the complex-valued linear test 
equation with just additive noise: 

d ty = λ ty + dWt,  Re(λ) < 0. 

The numerical update by a one-step stochastic method can then be written as: 

yn+1 = R(h λ)yn + Zn 

where Zn is the random variable sampled to model the Wiener process W(t), 
and the region of absolute stability of the numerical scheme is defined to be: 

S = {h λ ∈ £  : Re(λ) < 0, |R(h λ)| < 1} 

They, then declare the numerical scheme to be A-stable if its region of 
absolute stability contains the entire negative half complex plane. Thus, the 
stability of the stochastic method is inherited from the stability of the 
deterministic components. 

In the following analysis, the deterministic equation y ′ = λy is 
extended in a natural way to the following Stratonovich scalar linear test 
equation: 

d ty  = a ty  dt+ b ty ○ dWt … (2.57) 

this equation has multiplicative noise, and the solution 0 0(t 0, y 1)= =  is: 

ty  = exp(a t + b Wt) 

At first, when back to section (2.3) and precisely to Pamela’s model 
which is given in equation (2.27), one can recall the general form of an s-
stages SRKM applied to the general scalar Stratonovich SDE:  

d ty  = f( ty ) dt + g( ty ) ○ dWt 

yields to: 
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



Y = yn e + h A f(Y) + B J1 g(Y) 
 … (2.58) 

yn+1 = yn + h αT f(Y) + γT J1 g(Y) 

where A, B are s×s matrices, Y is an s×1 vector of “intermediate calculations” 
and e is the s×1 unit vector. The s×1 vectors α, γ contain the weights of the 
method. 

If the SRKM given in equation (2.58) are applied to the test equation 
given in equation (2.57), then: 

Y = yn e + (a A h + b B J1) Y 

Y − (a A h + b B J1) Y  = yn e  

which yields to: 

Y = (I − a A h − b B J1)−1 yn e 

and consequently: 

yn+1 = yn + h αT a Y + J1 γT b Y 

 = yn + (h αT a + J1 γT b) (I − a A h − b B J1)−1 yn e 

 = [1 + (h αT a + γT J1 b) (I − a A h − b B J1)−1 e] yn 

 = R(h, a, b) yn … (2.59) 

where the stability function R is defined to be: 

R(h, a, b) = 1 + (h αT a + γT J1 b) (I − a A h − b B J1)−1 e. 

To analyze the mean-square stability of the SRKM for the above 
models, it is necessary to evaluate E(R2(h, a, b)), where a method is mean 

square stable if, when Re(a) + (Re(b))2 ≤ 0, then: 

E(R2(h, a, b)) < 1 … (2.60) 

Note that this analysis is based on the stability function calculated for 
just one step of the SRKM. In the scalar case, and due to the independence of 
the Wiener increments over successive time steps, this is equivalent to the 
analysis over h steps. Letting Ri to denote the evaluation of the stability 
functional at the ith -time step, then application of n steps of SRKM, gives: 

yn+1 = Rn+1 Rn …R1 y0 = R y0 
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and so after n-time steps: 

E(RTR) = E( 1
TR 2

TR … T
nR T

n 1R + Rn+1Rn…R1) 

In the scalar case, this can be written as 
n

T
i i

i 1
E ( )R R

=

 
 
 
∏ , which by 

independence is 
n

T
i i

i 1
E( )R R

=
∏ , so that equation (2.60) must be hold. 

Also, note that, because its mean-square convergence that is used in 
the stochastic case, the polynomial in h, a and b to be analyzed is of a higher 
degree, then its counterpart in the deterministic setting. 

Now, the stability functions for various methods will be derived. In 
order to aid visualization of the regions of stability, the stability plots are 
restricted to the case when a and b are real numbers. To plot the stability 
regions, a change of variables will be used, namely: 

z = h a, v = h b 2, u = z + v … (2.61) 

and the stability region, will be: 

S = {(u, v) : v ≥ 0, u ≤ 0, E(R2) < 1} 

which will be plotted in the (u, v) -plane. Note that we have u ≤ 0, since the 

condition Re(h a) + Re(h b 2) ≤ 0 is necessary for the mean-square stability. 
 

2.4.1 Stability of 2-Stages Explicit SRKM [7]. 
Now, backing to Pamela's model given in section (2.4), it will be 

assumed that in general deterministic terms A, αT and general stochastic 
terms B and γT, as follows: 

A = 
21

0 0
a 0

 
 
 

, αT = (α1    α2) 

B = 
21

0 0
b 0

 
 
 

, γT = (γ1    γ2) 
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Moreover: 

e = 
1
1

 
 
 

, I = 
1 0
0 1

 
 
 

 

and thus satisfying those for R(h, a, b) in equation (2.59), then: 

R(h, a, b) = (a a21 h + b b21 J1)(a α2 h + b J1 γ2) + a α1 h + a α2 h + b 

J1 γ1 + b J1 γ2 + 1 

Then [1]: 

R2(h, a, b) = a2 2
21a  b

2 h2 2
1J  

2
2γ  + a2 b2 2

21b 2
2α  h

2 2
1J + 2

21a 2
2α  a

4  h4 

+ 2
21b 2

2γ  b
4 4

1J  + 4 a21 b21 α2 γ2 a2 b2 h2 2
1J  + 2 a a21 b21 h 2

2γ b3 3
1J  + 

2 a α2 h γ2 
2
21b  b

3 3
1J  + 2 a21 b b21 J1 

2
2α a3 h3 + 2 b α2 J1 γ2 

2
21a a3 h3 

+ 2 a a21 h γ1 γ2 b2 2
1J  + 2 a b21 α1 h γ2 b2 2

1J  + 2 a b21 α2 h γ1 b2 2
1J  + 

2 a21 b α1 J1 γ2 a2 h2 + 2 a21 b α2 J1 γ1 a2 h2 + 2 b b21 α1 α2 J1 a2 h2 + 

4 a b21 α2 h γ2 b2 2
1J  + 4 a21 b α2 J1 γ2 a2 h2 + 2 a a21 h b2 2

1J 2
2γ  + 2 b 

b21 J1 a2 2
2α  h

2 + 2 a21 α1 α2 a3 h3 + 2 b21 γ1 γ2 b3 3
1J  + 2 a21 

2
2α  a

3 h3 

+ 2 b21 
2
2γ  b

3 3
1J  + a2 2

1α  h
2 + a2 2

2α  h
2 + b2 2

1J  
2
1γ  + b2 2

1J  
2
2γ  + 2 

a a21 b h J1 γ2 + 2 a b b21 α2 h J1 + 2 a b α1 h J1 γ1 + 2 a b α1 h J1 γ2 

+ 2 a b α2 h J1 γ1 + 2 a b α2 h J1 γ2 + 2 a21 α2 a2 h2 + 2 b21 γ2 b2 2
1J  + 

2 α1 α2 a2 h2 + 2 γ1 γ2 b2 2
1J  + 2 a α1 h + 2 a α2 h + 2 b J1 γ1 + 2 b J1 

γ2 + 1 

Now, recall that E(J1) = 0, E( 2
1J ) = h, E( 3

1J ) = 0 and E( 4
1J ) = 3 h2, then the 

expectation of R2(h, a, b) is: 

E(R2(h, a, b)) = 2
21a 2

2α a4 h4 + a2 2
21a  b

2 2
2γ  h

3 + a2 b2 2
21b 2

2α  h
3 + 4 

a21 b21 α2 γ2 a2 b2 h3 + 3 2
21b  h

2 2
2γ  b

4 + 2 a21 α1 α2 a3 h3 + 2 a21
2
2α  

a3 h3 + 2 a a21 γ1 γ2 b2 h2 + 2 a b21 α1 γ2 b2 h2 + 2 a b21 α2 γ1 b2 h2 + 4 

a b21 α2 γ2 b2 h2 + 2 a a21 b2 h2 2
2γ  + a2 2

1α  h
2 + a2 2

2α  h
2 + 2 a21 α2 
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a2 h2 + 2 α1 α2 a2 h2 + h b2 2
1γ  + h b2 2

2γ  + 2 b21 h γ2 b2 + 2 h γ1 γ2 b2 

+ 2 a α1 h + 2 a α2 h + 1 … (2.62) 

and when using equation (2.61) in equation (2.62), i.e., substituting a h = z, 

b2 h = v, z = u − v, then we shall obtain: 

E(R2(u, v)) = 2
21a 2

2α z4 + 2
21a 2

2γ  z
2 v + 2

21b 2
2α z2 v + 4a21 b21 α2 γ2 z2 

v + 3 2
21b 2

2γ  v
2 + 2 a21 α1 α2 z3 + 2 a21 

2
2α  z

3 + 2 a21 γ1 γ2 z v + 2 

b21 α1 γ2 z v + 2 b21 α2 γ1 z v + 4 b21 α2 γ2 z v + 2 a21 
2
2γ z v + 

2
1α  z

2 + 2
2α z2 + 2 a21 α2 z2 + 2 α1 α2 z2 + 2

1γ v + 2
2γ v + 2 b21 γ2 

v + 2 γ1 γ2 v + 2 α1 z + 1. 

= 2
21a 2

2α  (u − v)4 + 2
21a 2

2γ (u − v)2 v + 2
21b 2

2α (u − v)v + 4 a21 b21 

α2 γ2 (u − v)2 v + 2 a21 α1 α2 (u − v)3 + 2 a21 
2
2α (u − v)3 + 2

1α (u − 

v)2 + 2
2α (u − v)2 +3 2

21b  2
2γ  v2 + 2 a21 γ1 γ2 (u − v) v + 2 b21 α1 γ2 

(u − v) v + 2 b21 α2 γ1 (u − v) v + 4 b21 α2 γ2 (u − v) v + 2 a21
 2

2γ  

(u − v) v + 2 a21 α2 (u − v)2 + 2 α1 α2 (u − v)2 + 2
1γ v + 2

2γ v + 2 

b21 γ2 v + 2 γ1 γ2 v + 2 α1 (u − v) + 2 α2 (u − v) + 1 … (2.63) 

Now, to solve equation (2.63), we shall take v = 0 to obtain a function 

of u only (i.e., to obtain the u-intercept), where the stability regions S, will 
be: 

 

R1 = E(R2(u, 0)) = 2
21a 2

2α u4 + 2a21α1α2u3 + 2a21
2
2α u3 + 2

1α u2 + 
2
2α u2 + 2a21α2 u2 + 2α1α2u2 + 2α1u + 2α2u + 1 … (2.64) 

 

Also, in order to find the v-intercept, take u = 0 in equation (2.63), to obtain 

a function of v only, which is: 

R2 = E(R2(0, v)) = 2
21a 2

2α v4 + 2
21a 2

2γ v3 + 2
21b 2

2α v3 + 4a21b21α2γ2v3 

+ 3 2
21b 2

2γ v2 + 2a21α1α2v3 − 2a21γ1γ2v2 − 2b21α1γ2v2 − 2b21α2γ1v2 − 
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4b21α2γ2v2 − 2a21
2
2γ v2 + 2a21α2v2 + 2α1α2v2 + 2

1γ v + 2
2γ v + 

2b21v + 2γ1γ2v − 2α1v − 2α2v + 1 … (2.65) 

Applying PL-model given by equation (2.55) in equation (2.64) and 

equation (2.65), i.e., when 
0 0

A
1 0

 
=  

 
, 

0 0
B

1 0
 

=  
 

 αT = (1   0),  

γT = ( 1
2

   1
2

), yields to the stability subregions: 

R1 = u2 + 2 u + 1 < 1, and thus v = 0, u ≥ −2 

R2 = 
3

4
v

 − 
2

4
v

 + 1 < 1, and thus u = 0, v ≤ 1 

Thus, the stability region S obtained from R1 ∩ R2 related to this model is 
given in Fig (2.3). 

Now, applying R2-model given by equation (2.54) in equation (2.64) 

and equation (2.65), i.e., with 
0 0

A
2 / 3 0

 
=  

 
,

0 0
B

2 / 3 0
 

=  
 

, 

αT = ( 1
4

   3
4

), γT =( 1
4

   3
4

), then the stability subregions are: 

R1 = 
4

4
u

 + u3 + 2 u2 + 2 u + 1 < 1, and thus v = 0, u  ≥ −2 

R2 = 
4

4
v

 + 
3

2
v

 + 
2

2
v

 + 1 < 1, and thus u = 0, v ≤ 2  − 1 

Then, the stability region S obtained from R1 ∩ R2 related to R2-model are 
given in Fig.(2.4) 
 

Now, the next two figures represent the stability regions of  R2 and 
PL-models respectively, such that, in this figures the function f refers to R1 
and g to R2, while x refers either for u or v. 
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Figure (2.3) Stability region of PL-Model 

 
Figure (2.4) Stability region of R2-Model. 
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Chapter three 

Semi-Explicit, Implicit and Mixed stochastic 

Runge-Kutta Methods 
 

Introduction: 
In this chapter, we will discuss in details two-stages semi-explicit and 

implicit stochastic Runge-Kutta Methods of strong order 1, then mixing these 
methods to obtain what is called the mixed stochastic Runge-Kutta methods. 
All of the presented methods are presented with minimum principal error 
coefficients. Also, numerical results are presented in order to compare 
between the convergence properties of the considered stochastic Runge-Kutta 
methods. 

It is remarkable that the stochastic differential equation which will 
be considered here is given by: 

t t t tdy f (y )dt g(y ) dW= + ο , 
0t 0y y=  … (3.1) 

where t ∈ [t0,T], yt∈Rm and Wt is the Wiener process whose increment 

t t tW(t) W W+∆∆ = −  is a Gaussian random variable with mean 0 and variance 

Δt. It is assumed that equation (3.1) is autonomous in order to simplify 
notations. 

Runge–Kutta methods are one of the most efficient classes of methods 
used for solving ordinary differential equations (ODEs). Runge-Kutta 
methods resemble their structure in the discretization methods for ODEs of 
that name. Much work has been made on designing stochastic Runge–Kutta 
methods in recent years; see, for example, [4, 5, 6, 7, 23, 25, 29].  

This chapter consist five sections. In section 3.1 and section 3.2 the 
attentions was paid toward finding the formulations of semi-explicit, implicit 
and mixing the explicit, semi explicit and implicit stochastic Runge-Kutta 
methods to obtain the so called mixed stochastic Rung-Kutta methods that is 
abbreviated by MSRKM. In section 3.3 the stability of the derived SRKM's 
will be studied, in section 3.4 some illustrative examples which are solved 
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numerically are considered. Finally, in section 3.5 the Variable Step Size 
method have been introduced for the first time for solving SRKM's in order to 
improve the accuracy of the obtained methods. 
 

3.1 Derivation of Semi Explicit and Implicit Methods: 
In this section the derivation and the formulations of 2-stages semi 

explicit and implicit Runge-Kutta methods will be considered, as well as, 
studying the principal errors of derived methods. 
 

For 2=s , i=1,2 ، n 0.1,2,...= , equation (2.27) may be written as : 
 

2 2

i n ij j 1 ij j
j 1 j 1

2 2

n 1 n j j 1 j j
j 1 j 1

Y y h a f (Y ) J b g(Y ),i 1,2

y y h f (Y ) J g(Y )

= =

+
= =


= + + = 



= + α + γ 


∑ ∑

∑ ∑
 … (3.2) 

suppose that 11 12
ij

21 22

a a
A (a ) ,

a a
 

= =  
 

11 12
ij

21 22

b b
B (b ) ,

b b
 

= =  
 

 [ ]T
1 2 ,γ = γ γ  

and [ ]T
1 2 ,α = α α  when ij ij j ja ,b , andα γ which are constants to be evaluated 

with i, j 1,2= , n 1 nh t t+= − , n 1 n1 n t tJ W W W
+

= ∆ = − , then equation (3.2) for 

all n 0.1,2,...=  becomes: 

1 n 11 1 12 2 1 11 1 12 2

2 n 21 1 22 2 1 21 1 22 2

n 1 n 1 1 2 2 1 1 1 2 2

Y y h [a f(Y ) a f(Y )] J [b g(Y )+b g(Y )]
Y y h[a f(Y ) a f(Y )] J [b g(Y )+b g(Y )]
y y h[  f(Y )  f(Y )]+J [  g(Y )  g(Y )]+

= + + + 
= + + + 
= + α + α γ + γ 

 ... (3.3) 

By the same process in deriving the explicit method that is given in chapter 
two, we can construct the next cases:  
Remark (3.1): 
 It is easy to classify the SRKM's from it's matrices A and B that are 
given above as follows: 

1. If   ij ija b 0; i j= = ∀ <  when i, j 1,2= , then the method is called semi 

explicit SRKM. 
2. If   ij ija b 0; i j= = ∀ ≤  when i, j 1,2= , then the method is called explicit 

SRKM, otherwise it is called implicit SRKM. 
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In this chapter, a mixture between these matrices will be made in order to 
get a new SRKM's which are called Mixed Stochastic Runge-Kutta Methods 
(or breviate by MSRKM) that considered in section (3.2). 
 Now, consider the following two cases: 
Case 1: For 2- stages semi-explicit methods, then the matrices A, B, α  and γ  
will be given as: 

11
ij

21 22

a 0
A (a ) ,

a a
 

= =  
 

11
ij

21 22

b 0
B (b )

b b
 

= =  
 

and [ ]T
1 2 ,γ = γ γ  

[ ]T
1 2α = α α . 

Then equations (3.3) will take the form: 

1 n 11 1 1 11 1

2 n 21 1 22 2 1 21 1 22 2

n 1 n 1 1 2 2 1 1 1 2 2

Y y h a f(Y ) J b g(Y )
Y y h[a f(Y ) a f(Y )] J [b g(Y )+b g(Y )]
y y h[  f(Y )  f(Y )]+J [  g(Y )  g(Y )]+

= + + 
= + + + 
= + α + α γ + γ 

 … (3.4) 

Now; from equations (2.43), (2.44), (2.46) and (2.51) the following system of 
nonlinear algebraic equations related to equation (3.4) may be derived: 

1 2 1 2

1 11 2 21 22

1 11 2 21 22

1 11 2 21 22

2
1 11 2 11 21 22

2
2 21 22 1 11 21 22

2 2
1 11 2 11 21 21 22 22

1, 1
1b (b b )
2
1b (b b )
2

1a (a a )
2

1(b ) b (b b )
3

1(b b ) b (b b )
3

1b (b b b b b )
6


α + α = γ + γ =

γ + γ + =


α + α + =



γ + γ + = 

γ + γ + = 

γ + + γ + = 

γ + γ + + =


 … (3.5) 

Thus, by solving the above system, the following non unique results will be 
obtained: 

1 0.1233α = , 2 0.8639α = , 1 0.125γ = , 2 0.8605γ = , 11 21a 0.5007,a 0.2454,= − =

22a 0.435,=  11 21 22b 0.4936,b 0.3513,b 0.1802= = = , 
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or may be written in tabulated from as: 

1

1 1

1 1

0.5007 0 0.4936J 0
0.2454 0.435 0.3513J 0.1802J
0.1233 0.8639 0.125J 0.8605J

−

 

… (3.6) 

Now; equation (3.4) becomes:  

1 n 1 1 1

2 n 1 2 1 1

2

n 1 n 1 2 1 1

2

Y y 0.5007hf(Y ) 0.4936J g(Y )
Y y h[0.2454f(Y ) 0.435f(Y )] J [0.3513g(Y )

+0.1802g(Y )]
y y h[0.1233 f(Y ) 0.8639 f(Y )]+J [0.125 g(Y )

0.8605 g(Y )]
+

= − + 
= + + + 

= + + 

+ 

 … (3.7) 

which represent the semi-explicit SRKM. 
In the presented case, the respective minimum given in equations 

(2.47), (2.48), (2.49) and (2.50) are: 
3h

12
, 

3h
12

, 0, 0 … (3.8) 

and for a 2-stages semi-explicit method the last equation of system (2.51) 
becomes: 

γT B b = (γ1, γ2) 11

21 22

b 0
b b

 
 
   

11

21 22

b
b b

 
 + 

 = 0.2621 

hence equation (2.50) will take the form:  

 
T T 2 31 1 Bb ( Bb) 15h

36 3
 − γ + γ 
 

= 30.1366 h   

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 30.1366 h  … (3.9) 

 

Case 2: For 2- stages implicit method, the matrices A and B will be given as: 

11 12
ij

21 22

a a
A (a ) ,

a a
 

= =  
 

 11 12
ij

21 22

b b
B (b ) ,

b b
 

= =  
 

 and  

[ ]T
1 2 ,γ = γ γ  [ ]T

1 2 ,α = α α  yields to a set of equations which is identical 

with equation (3.3) and from the equations (2.43), (2.44), (2.46) and (2.51) in 
this case we get: 
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1 2 1 2

1 11 12 2 21 22

1 11 12 2 21 22

1 11 12 2 21 22

2
1 11 12 2 11 12 21 22

2
2 21 22 1 11 12 21 22

2
1 11 12 21 11 12 12 22 2 1

1, 1
1(b b ) (b b )
2
1(b b ) (b b )
2

1(a a ) (a a )
2

1(b b ) (b b )(b b )
3
1(b b ) (b b )(b b )
3

(b b b b b b b ) (b

α + α = γ + γ =

γ + + γ + =

α + + α + =

γ + + γ + =

γ + + γ + + =

γ + + γ + + =

γ + + + + γ 1 21

2
21 22 12 21 22

b
1b b b b b )
6


















+ + + =   .. (3.10) 

Thus, by solving the above system of nonlinear equations we get the 
following results: 

1 0.2222α = , 2 0.7591α = , 1 0.0569γ = , 2 0.9434γ = , 11 12a 0.2495,a 0.05,= − =

21a 0.2127,= , 22a 0.3293= , 11 12b 0.4115,b 0.1861,= = 21b 1.8567,= −

22b 2.387= ,  
which may be written in tabulated from as: 

1 1

1 1

1 1

0.2495 0.05 0.4115J 0.1861J
0.2127 0.3293 1.8567J 2.387J
0.2222 0.7591 0.0569J 0.9434J

−
−  … (3.11) 

and hence equation (3.3) becomes :  

1 n 1 2 1 1

2

1 n 1 2 1 1

2

n 1 n 1 2 1 1

2

Y y h[ 0.2495 f(Y ) 0.05 f(Y )] J [0.4115 g(Y )
+0.1861 g(Y )]

Y y h[0.2127 f(Y ) 0.3293 f(Y )] J [ 1.8567 g(Y )
+2.387 g(Y )]

y y h[0.2222 f(Y ) 0.7591 f(Y )]+J [0.0569 g(Y )
0.9434 g(Y )]

+

= + − + + 


= + + + − 


= + +
+ 






 … (3.12) 

Equations (3.12) represent the implicit SRKM. 
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In this case, the respective minimum given in equations (2.47), (2.48), 
(2.49) and (2.50) are: 

3h
12

, 
3h

12
, 0, 0 … (3.13) 

For a 2-stage implicit method the last equation of equations (2.51) becomes: 

γT B b = (γ1, γ2) 11 12

21 22

b b
b b

 
 
 

11 12

21 22

b b
b b

+ 
 + 

 = 0.16703 

and hence equation (2.50) will take the form:  

T T 2 31 1 Bb ( Bb) 15h
36 3

 − γ + γ 
 

= 7 31.93197 10 h−×   

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 7 31.93197 10 h−×  … (3.14) 

 

3.2 Mixed Stochastic Runge-Kutta Methods: 
In these methods the deterministic and stochastic results are mixed in 

the cases of explicit, semi explicit and implicit methods in order to obtain new 
schemes for solving SODE's using SRKM's, and as follows : 
 

Case1: MSRKM1-Semi-Explicit - Explicit: 
In this case, consider the semi-explicit form for the deterministic part and 

explicit form for the stochastic part, i.e. / 

11

21 22

a 0
A

a a
 

=  
 

, 
21

0 0
B

b 0
 

=  
 

, [ ]T
1 2 ,γ = γ γ  [ ]T

1 2α = α α   

and similarly by the same process followed and described previously, one 
may get: 

1 0.2389α = , 2 0.7602α = , 1 0.2385γ = , 2 0.761γ = , 21b 0.6594,= 11a 0.4435,= −

21 22a 0.2727,a 0.5236= = , 
which may be written in tabulated from as: 

1

1 1

0.4435 0 0 0
0.2727 0.5236 0.6594J 0
0.2389 0.7602 0.2385J 0.761J

−
 … (3.15) 

Then equations (3.3) will take the form: 
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1 n

2 n 1 2 1 1

n 1 n 1 2 1 1

2

Y y 0.4435 h
Y y h[0.2727 f(Y ) 0.5236 f(Y )] 0.6594 J g(Y )
y y h[0.2389 f(Y ) 0.7602 f(Y )]+J [0.2385 g(Y )

0.761 g(Y )]
+

= − 
= + + + 
= + + 
+ 

 … (3.16) 

Equations (3.16) represent the MSRKM1- semi-explicit - explicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) are: 
3h

12
, 

3h
12

, 0, 0 … (3.17) 

and for a 2-stage MSRKM1-semi-explicit – explicit, the last equation for 
equations (2.51) becomes: 

γT B b = (γ1, γ2)
21

0 0
b 0

 
 
  21

0
b

 
 
 

 = 0 

then equation (2.50) will be:  

 
T T 2 31 1 Bb ( Bb) 15h

36 3
 − γ + γ 
 

= 
35h

12
 

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 
35h

12
 … (3.18) 

 

Case 2: MSRKM2-Implicit - Explicit: 
 

In this case, consider the implicit form for the deterministic part and 
explicit form for the stochastic part, i.e. / 

11 12

21 22

a a
A

a a
 

=  
 

, 
21

0 0
B

b 0
 

=  
 

, [ ]T
1 2 ,γ = γ γ [ ]T

1 2 ,α = α α   

and similarly by the same process followed and described previously, one 
may get: 

1 0.2513α = , 2 0.749α = , 1 0.2504γ = , 2 0.7496γ = , 11a 0.3876,= − 12a 0.0253,=  

21a 0.5527= 22a 0.2357= , 21b 0.6671= , 
which may be written in tabulated from as: 
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1

1 1

0.3876 0.0253 0 0
0.5527 0.2357 0.6671J 0
0.2513 0.749 0.2504J 0.7496J

−
 … (3.19) 

Then equations (3.3) will take form: 

1 n 1 2

2 n 1 2 1 1

n 1 n 1 2 1 1

2

Y y h [-0.3876 f(Y ) 0.0253 f(Y )]
Y y h [0.5527 f(Y ) 0.2357 f(Y )] 0.6671 J g(Y )
y y h [0.2513 f(Y ) 0.749 f(Y )]+J  [0.2504 g(Y )

0.7496 g(Y )]
+

= + + 
= + + + 
= + + 
+ 

 … (3.20) 

Equations (3.20) represent the MSRKM2- implicit - explicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) becomes: 
3h

12
, 

3h
12

, 0, 0 … (3.21) 

and for a 2-stage MSRKM2- implicit - explicit, the last equation for equations 
(2.51) will be: 

γT B b = (γ1, γ2)
21

0 0
b 0

 
 
  21

0
b

 
 
 

 = 0 

then equation (2.50) become:  

 
T T 2 31 1 Bb ( Bb) 15h

36 3
 − γ + γ 
 

= 
35h

12
 

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 
35h

12
 … (3.22) 

 

Case 3: MSRKM3-Explicit – Semi-Explicit. 
In this case, consider the explicit form for the deterministic part and 

semi-explicit form for the stochastic part, i.e. / 

21

0 0
A ,

a 0
 

=  
 

11

21 22

b 0
B ,

b b
 

=  
 

[ ]T
1 2 ,γ = γ γ [ ]T

1 2α = α α  

and similarly by the same process followed and described previously, one 
may get: 
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1 0.4583α = , 2 0.5345α = , 1 0.4604γ = , 2 0.5363γ = , 21a 0.9105= , 11b 0.5638,=  

21 22b 0.2,b 0.6763= − = , 
which may be written in tabulated from as: 

1

1 1

1 1

0 0 0.5638J 0
0.9105 0 0.2J 0.6763J
0.4583 0.5345 0.4604J 0.5363J

−  … (3.23) 

Then equation (3.3) will take the form: 

1 n 1 1

2 n 1 1 1 2

n 1 n 1 2 1 1

2

Y y 0.5638 J g(Y )
Y y 0.9105 h f(Y ) J [ 0.2 g(Y )+0.6763 g(Y )]
y y h [0.4583 f(Y ) 0.5345 f(Y )]+J [0.4604 g(Y )

0.5363 g(Y )]
+

= + 
= + + − 
= + + 
+ 

 … (3.24) 

Equations (3.24) represent the MSRKM3- explicit – semi-explicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) becomes: 
3h

12
, 

3h
12

, 0, 0 … (3.25) 

and for a 2-stage MSRKM3- explicit - semi-explicit, the last equation for 
equations (2.51) will be: 

γT B b = (γ1, γ2) 11

21 22

b 0
b b

 
 
 

11

21 22

b
b b

 
 + 

 = 0.2586 

then equation (2.50) becomes: 

T T 2 31 1 Bb ( Bb) 15h
36 3

 − γ + γ 
 

= 30.1269 h  

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 30.1269 h  … (3.26) 

 

Case 4: MSRKM4-Implicit - Semi-Explicit. 
In this case, consider the implicit form for the deterministic part and 

semi-explicit form for the stochastic part, i.e. / 

11 12

21 22

a a
A ,

a a
 

=  
 

11

21 22

b 0
B ,

b b
 

=  
 

[ ]T
1 2 ,γ = γ γ [ ]T

1 2α = α α  
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and similarly by the same process followed and described previously, one 
may get: 

1 0.0968α = , 2 0.8907α = , 1 0.1676γ = , 2 0.8277γ = , 11 12a 0.6529,a 0.0965,= =

21a 0.201,= 22a 0.2528= , 11 21 22b 0.628,b 1.2303,b 1.7462= = − = , 
which may be written in tabulated from as: 

1

1 1

1 1

0.6529 0.0965 0.628J 0
0.201 0.2528 1.2303J 1.7462J

0.0968 0.8907 0.1676J 0.8277J
−  … (3.27) 

Then equations (3.3) will take the form: 
1 n 1 2 1 1

2 n 1 2 1 1

2

n 1 n 1 2 1 1

2

Y y h[0.6529 f(Y )+0.0965 f(Y )] 0.628 J g(Y )
Y y h[0.201 f(Y )+0.2528 f(Y )] J [ 1.2303 g(Y )

+1.7462 g(Y )]
y y h[0.0968 f(Y ) 0.8907 f(Y )]+J [0.1676 g(Y )

0.8277 g(Y )]
+

= + + 
= + + − 

= + + 
+ 

 … (3.28) 

Equations (3.28) represent the MSRKM4- implicit - semi-explicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) becomes: 
3h

12
, 

3h
12

, 0, 0 … (3.29) 

and for a 2-stage MSRKM4- implicit – semi-explicit, the last equation for 
equations (2.51) will be: 

γT B b = (γ1, γ2) 11

21 22

b 0
b b

 
 
 

11

21 22

b
b b

 
 + 

 = 0.1722 

then equation (2.50) becomes:  

T T 2 31 1 Bb ( Bb) 15h
36 3

 − γ + γ 
 

= 4 34.659 10 h−×  

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 4 34.659 10 h−×  … (3.30) 
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Case 5: MSRKM5-Explicit- Implicit: 
 In this case, consider the explicit form for the deterministic part and 

implicit form for the stochastic part, i.e. / 

21

0 0
A ,

a 0
 

=  
 

11 12

21 22

b b
B ,

b b
 

=  
 

[ ]T
1 2 ,γ = γ γ [ ]T

1 2α = α α , 

and similarly by the same process followed and described previously, one 
may get: 

1 0.1223α = , 2 0.8628α = , 1 0.1223γ = , 2 0.8758γ = , 21a 0.5709= , 11b 0.4864,=  

12 21 22b 0.1228,b 1.6469,b 2.1729,= = − =  
which may be written in tabulated from as: 

1 1

1 1

1 1

0 0 0.4864J 0.1228J
0.5709 0 1.6469J 2.1729J
0.1223 0.8628 0.1223J 0.8758J

−  … (3.31) 

Then equations (3.3) will take the form: 

1 n 1 1 2

2 n 1 1 1

2

n 1 n 1 2 1 1

2

Y y + J [0.4864 g(Y )+0.1228 g(Y )]
Y y 0.5709 h f(Y ) J [ 1.6469 g(Y )

+2.1729 g(Y )]
y y h[0.1223 f(Y ) 0.8628 f(Y )]+J [0.1223 g(Y )

0.8758 g(Y )]
+

= 
= + + − 

= + + 

+ 

 … (3.32) 

Equations (3.32) represent the MSRKM5- explicit - implicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) are: 
3h

12
, 

3h
12

, 0, 0 … (3.33) 

and for a 2-stage MSRKM5-explicit - implicit, the last equation for equations 
(2.51) becomes: 

γT B b = (γ1, γ2) 11 12

21 22

b b
b b

 
 
 

11 12

21 22

b b
b b

+ 
 + 

 = 0.1664 

then equation (2.50) will be:  

 
T T 2 31 1 Bb ( Bb) 15h

36 3
 − γ + γ 
 

= 7 37.178 10 h−×  

and so in this case, the principal error constants are: 
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3h
12

, 
3h

12
, 0,

 
7 37.178 10 h−×  … (3.34) 

 

Case 6: MSRKM6-Semi-Explicit - Implicit: 
In this case, consider the semi-explicit form for the deterministic part and 

implicit form for the stochastic part, i.e. / 

11

21 22

a 0
A ,

a a
 

=  
 

11 12

21 22

b b
B ,

b b
 

=  
 

[ ]T
1 2 ,γ = γ γ [ ]T

1 2 ,α = α α  

and similarly by the same process followed and described previously, one 
may get: 

1 0.1253α = , 2 0.8571α = , 1 0.1134γ = , 2 0.8553γ = , 11 21a 0.2521,a 0.3601,= − =

22a 0.1967,= 11 12 21 22b 0.52,b 0.1821,b 0.313,b 0.8113,= = = − =  
which may be written in tabulated from as: 

1 1

1 1

1 1

0.2521 0 0.52J 0.1821J
0.3601 0.1967 0.313J 0.8113J
0.1253 0.8571 0.1134J 0.8553J

−
−  … (3.35) 

Then equations (3.3) will take the form: 

1 n 1 1 1 2

2 n 1 2 1 1

2

n 1 n 1 2 1 1

2

Y y 0.2521 h f(Y ) J [0.52 g(Y )+0.1821 g(Y )]
Y y h[0.3601 f(Y )+0.1967 f(Y )] J [ 0.313 g(Y )

+0.8113 g(Y )]
y y h[0.1253 f(Y ) 0.8571 f(Y )]+J [0.1134 g(Y )

0.8553 g(Y )]
+

= − + 
= + + − 

= + + 

+ 

 … (3.36) 

Equations (3.36) represent the MSRKM6- semi-explicit - implicit. 
Also in this case, the respective minimum given in equations (2.47), 

(2.48), (2.49) and (2.50) are: 
3h

12
, 

3h
12

, 0, 0 … (3.37) 

and for a 2-stage MSRKM6-semi-explicit - implicit, the last equation for 
equations (2.51) becomes: 

γT B b = (γ1, γ2) 11 12

21 22

b b
b b

 
 
 

11 12

21 22

b b
b b

+ 
 + 

 = 0.2095 

then equation (2.50) will be:  
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T T 2 31 1 Bb ( Bb) 15h
36 3

 − γ + γ 
 

= 30.0275h  

and so in this case, the principal error constants are: 
3h

12
, 

3h
12

, 0, 30.0275h  … (3.38) 

 
Remarks (3,2): 
1. In all SRKM's were described in chapter two and three of this work and 

given in the form of equation (2.27) have maximum strong order 1.0 for 
any number of stages s, and all these methods have optimal principal error 
coefficients for s = 2 which are given by equations (2.54), (2.55), (3.6), 
(3.11), (3.15), (3.19), (3.23), (3.27), (3.31) and (3.35), respectively. 

2. The 1-norm is used to estimate the contribution of all the error terms to 
the principal error, note that as an illustration, the calculation of ||P.E.||1 
for PL model have been located by finding the sum of principal error 
constants terms which are given in equation (2.56) as a coefficients of h3. 
 i.e., The ||P.E.||1 for PL model is: 

1
1 1 1 5 10P.L. 1.111111
3 3 36 12 9

= + + + = ; . 

The following table (3.1) gives these values for PL, R2 and all new 
methods considered in sections two and three above.  

Table (3.1) 
Error Coefficients 

Models 1
P.E.  

PL 1.11111 
R2 0.58333 

Semi explicit 0.30323 
Implicit 0.16667 

MSRKM1 0.58333 
MSRKM2 0.58333 
MSRKM3 0.29352 
MSRKM4 0.16713 
MSRKM5 0.16667 
MSRKM6 0.19419 
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3.3 Stability of Stochastic Rung-Kutta Methods: 
 Consider the SODE in Stratonovih form with one Wiener process: 

t t t tdy f (t, y )dt g(t, y ) dW= + ο  … (3.39) 

In this section, the stability of the semi-explicit scheme, implicit 
scheme and all MSRK schemes that are described above will be discussed, 
and this will be made by comparing the stochastic linear one step method in 
the autonomous Stratonovich case with our schemes (semi explicit, implicit 
and mixed stochastic Runge-Kutta methods) and finally the consistency 
conditions are also derived. 
 

3.3.1 Modified Stochastic Linear Multi-Step Methods: 

Consider the modified stochastic linear k-step method for 
approximating the solution of the SODE given in equation (3.39), for 
n k,k 1,..., N= +  which takes the form: 

n j n j 1
k k k t ,t

j n j j n j n j j n j n j 1
j 0 j 0 j 1

Y h f (t ,Y ) g(t ,Y )J − − +
− − − − −

= = =
α = β + γ∑ ∑ ∑  … (3.40)  

where jα , jβ and jγ  are constants to be evaluated and set without loss of 

generality 0 1α =  and we require given initial and starting values 
n

0 1 k 1 2Y ,  Y ,  ,  Y L ( , )−… ∈ Ω ¡ .  

As in the deterministic case, usually only Y0 = Y(t0) is given by the 
stochastic initial value problem and the values Y1, Y2, …, Yk−1 need to be 
computed numerically as the starting values. This can be made by any 
suitable one-step method, where one has to be careful to achieve the desired 
accuracy. 
 
Definition (3.1): 

The local error of the stochastic linear multisteps methods given in 
equation (3.40) for the approximation of the solution of the SODE given in 
equation (3.39) for n = k, k+1, …, N, may be written as: 
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n j n j 1

k k k

j n j j n j n j j n j n j
j 0 j 0 j 1

t ,t
n 1

n n

Y h f (t ,Y ) g(t ,Y )

L J ; for n k,.., N

Y(t ) Y ;for n 0,...,k 1

− − +

− − − − −
= = =


α − β − γ


=  =


 − = −

∑ ∑ ∑
 

 … (3.41) 
and represent the local error in the following form: 

k

n n n n n j,n j 1
j 1

L R S ;L R S − +
=

= + = + ∑  ... (3.42) 

where n k,k 1,..., N= +  and j,n j 1S − +  is 
n j 1t − +

A -measurable with 

n jj,n j 1 tE(S | ) 0
−− + =A , n k,k 1,..., N∀ = + , j 1,2,...,k= . 

3.3.2 Stochastic Linear One Step Method for Stratonovich Case: 
 

In this subsection the consistent conditions for stochastic linear one 
step method with one Wiener process will be studied. 

The consistent conditions for one step Stratonovich stochastic linear 
multistep method with one wiener process will be derived next. 
First, rewrite equation (3.40) with k=1 as follows: 
 

n 1 n

0 n 1 n 1 0 n n 1 n 1 n 1 1 n 1 n 1

t ,t
1

Y Y h [ f (t ,Y ) f (t ,Y )] g(t ,Y )

J ;n 1, ., N−

− − − − −α + α = β + β + γ

= …
 

 ... (3.43) 
 

Now, consider the operators: 

0 aL a f
y

∂
=

∂
 and 1 aL a g

y
∂

=
∂

 ... (3.44) 

For the present case; the local error for equation (3.40) may be 
rewritten as: 

n 1 n

0 n 1 n 1 0 n n 1 n 1 n 1 1 n 1 n 1
t ,t

n 1

n n

[ Y Y ] h[ f (t ,Y ) f (t ,Y )] g(t ,Y )

L J ;for n 1,..., N
Y(t ) Y ;for n 0

−

− − − − −α + α − β + β −γ


= =
 − =

 

 ... (3.45) 
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To derive the consistent conditions for Stratonovich case, we need to the next 
formulas: 

n j n jt ,s t ,s0 1
n j n j 0 1f (s,Y(s)) f (t ,Y(t )) J (L f ) J (L f )− −

− −= + +  ... (3.46) 

n j n jt ,s t ,s0 1
n j n j 0 1g(s,Y(s)) g(t ,Y(t )) J (L g) J (L g)− −

− −= + +  ... (3.47) 

Equations (3.46) and (3.47) represent the application of the Itô-
formula on the corresponding interval to the drift coefficient f, as well as, to 
the diffusion coefficient g, yields for s ∈ [tn-1, tn]: 

n 2 n 1 n 2 n 1t ,t t ,t0 1
n 1 n 1 n 2 n 2 0 1f (t ,Y(t )) f (t ,Y(t )) J (L f ) J (L f )− − − −

− − − −= + +  

 ... (3.48) 
n 1 n n 1 nt ,t t ,t0 1

n n n 1 n 1 0 1f (t ,Y(t )) f (t ,Y(t )) J (L f ) J (L f )− −
− −= + +  ... (3.49) 

by the analysis of the local error nL  given by equation (3.45) of the scheme 
(3.43) for solving the SODE given in equation (3.39), the consistency 
condition may be derived. The following lemma relates this result which is 
modified and improved here for Stratonovich case. 

Lemma (3.1): 
 Assume that the coefficients f and g of  the SODE given in equation 

(3.39) belong to the class C1,2 with 0 0 1L f ,L g,L f  and 1 kL g C∈ .Then the local 
error given in equation (3.45) of the stochastic linear one step method given in 
equation (3.43) allows the representation: 

0 0
n n nL R S= + ; for  n = 1, …, N ... (3.50) 

Where 0
nR  and 0

nS  are 
ntA -measurable with ( )n

0
n tE S | 0=A  and  

[ ] [ ]0 0
n 0 1 n 1 0 0 1 n 1 n 1 nR Y(t ) hf (t ,Y(t )) R− − −= α + α + α − β − β + %  

0 0
n 0 1 n 1 n 1 n 1 nS [ ] g(t ,Y(t )) W S− − −= α − γ ∆ + %  

with 

2 2
0 2 0
n L n L|| R || O(h ) ; || S || O(h)= =%%  ... (3.51) 
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Proof: 
To derive a representation of the local error in the form (3.50), the 

deterministic parts is evaluated and resumed at the point n 1 n 1(t ,  Y(t ))− −  and 

separate the stochastic terms carefully over the subinterval n 1 n[t , t ]− . This 
ensures the independence of the random variables. It does make the 
calculations more complicated, since: 

0 n 1 n 1 0 n 1 n 1 0 n 1 0 n 1Y(t ) Y(t ) Y(t ) Y(t ) Y(t ) Y(t )− − − −α + α = α + α − α + α  

0 n 1 n 1 0 1 n 1 0 n n 1Y(t ) Y(t ) [ ]Y(t ) [Y(t ) Y(t )]− − −α + α = α + α + α − ... (3.52) 
then the local error for linear one-step method given in equation (3.41) for 
k=1 may be expresses for n 1,2,..., N=  as:  

n 1 n

n 0 1 n 1 0 n n 1 0 n n
t ,t

1 n 1 n 1 1 n 1 n 1 1

L [ ]Y(t ) [Y(t ) Y(t )] h[ f (t ,Y )

f (t ,Y )] g(t ,Y )J −

− −

− − − −

= α + α + α − − β

+ β − γ
 

 ... (3.53) 
Hence, the SODE given in equation (3.39) implies the identities: 

n n

n 1 n 1

t t

n n 1
t t

Y(t ) Y(t ) f (s,Y(s))ds g(s,Y(s)) dw(s)
− −

−− = + ο∫ ∫  

or equivalently 

n 1 n n 1 nt ,t t ,t
n n 1 0 1Y(t ) Y(t ) J (f ) J (g)− −

−− = +  

Substituting equations (3.46) and (3.47) for n 1 nt ,t
0J (f )−  and n 1 nt ,t

1J (g)− , 

respectively, to obtain:  

n 1 n n 1 n

n 1 n n 1 n n 1 n

t ,t t , t0 1
n n 1 n 1 n 1 00 01

t ,t t , t t , t0 1
n 1 n 1 1 10 11

Y(t ) Y(t ) hf (t ,Y(t )) J (L f ) J (L f )

g(t ,Y(t ))J J (L g) J (L g)

− −

− − −

− − −

− −

− = + +

+ + +
 

 …(3.54) 
Inserting equation (3.54) and the expansion given in equation (3.49); into the 
local error formula given in equation (3.53) and reordering the terms yields 
to: 
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n 1 n

n 1 n n 1 n n 1 n

n 1 n n 1 n

n 1 n

t ,t 0
n 0 1 n 1 0 n 1 n 1 00

t ,t t ,t t ,t1 0
n 1 n 101 1 10

t ,t t ,t1 0
0 n 1 n 111 0

t ,t 1
1 n 1 n 1 11

L [ ]Y(t ) [hf (t ,Y(t )) J (L f )

J (L f ) g(t ,Y(t ))J J (L g)

J (L g)] h[ {f (t ,Y(t )) J (L f )

J (L f )} f (t ,Y(t )]

−

− − −

− −

−

− − −

− −

− −

− −

= α + α + α +

+ + +

+ − β +

+ + β − γ n 1 nt ,t
n 1 n 1 1g(t ,Y )J −

− −

 

 

n 1 n

n 1 n n 1 n n 1 n

n 1 n n 1 n

n 1 n

t ,t 0
0 1 n 1 0 n 1 n 1 0 00

t ,t t ,t t ,t1 0
0 0 n 1 n 1 001 1 10

t ,t t ,t1 0
0 0 n 1 n 1 011 0

t ,t 1
0 1 n 11

[ ]Y(t ) h f (t ,Y(t )) J (L f )

J (L f ) g(t ,Y(t ))J J (L g)

J (L g) h f (t ,Y(t )) h J (L f )

h J (L f ) h f (t ,Y

−

− − −

− −

−

− − −

− −

− −

−

= α + α + α + α

+ α + α + α

+ α − β − β

− β − β n 1 nt ,t
n 1 1 n 1 n 1 1(t )] g(t ,Y )J −

− − −− γ

 

 

[ ]
[ ]

n 1 n

n 1 n n 1 n

n 1 n n 1 n n 1 n

n 1 n

t ,t
0 1 n 1 0 0 1 n 1 n 1 0 00

t ,t t ,t0 0
0 0 1 n 1 n 10 1

t ,t t ,t t ,t1 1 0
0 0 011 1 10

t ,t 1
0 01

[ ]Y(t ) hf (t ,Y(t )) { J

(L f ) h J (L f )} g(t ,Y(t ))J

{ J (L g) h J (L f ) J (L g)

J (L f )}

−

− −

− − −

−

− − −

− −

= α + α + α − β − β + α

− β + α − γ

+ α − β + α

+ α

 

hence 

[ ]
[ ]

0
n 0 1 n 1 0 0 1 n 1 n 1 n

0
0 1 n 1 n 1 n 1 n

L [ ]Y(t ) hf (t ,Y(t )) R

g(t ,Y(t )) W S
− − −

− − −

= α + α + α − β − β +

+ α − γ ∆ +

%

%
 

 … (3.55) 
where 

n 1 n n 1 nt ,t t ,t0 0 0
n 0 000 0R J (L f ) h J (L f )− −= α − β%  … (3.56) 

and 
n 1 n n 1 n n 1 n

n 1 n

t ,t t ,t t ,t0 1 1 0
n 0 0 011 1 10

t ,t 1
0 01

S J (L g) h J (L f ) J (L g)

J (L f )

− − −

−

= α − β + α

+ α

%
 

 … (3.57) 

                                                ■ 
Remark (3.3): 
 The consistency conditions for the stochastic one step method in the 
Stratonovich case are then from lemma (3.1) read as follows: 

0 1[ ] 0α + α = , [ ]0 0 1 0α −β −β =  and [ ]0 1 0α − γ =  … (3.58) 
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Definition (3.2): 
The characteristic polynomial of equation (3.40) is given by: 

( ) k
k k 1

0 1r  r  r −ρ = α + α +…+ α  … (3.59) 

and the stochastic linear multistep method given in equation (3.40) is said to 
be stable if: 

(i) The roots of ρ(r) lie on or within the unit circle. 
(ii) The roots of ρ(r) on the unit circle are simple. 

Remark (3.4): 
 To study the stability of the semi-explicit, implicit, and mixed 
stochastic Runge-Kutta methods, we may compare the stochastic one step 
method given in equation (3.43) with stochastic Runge-Kutta methods given 
in equation (3.3)  
i.e., comparing 

n 1 n

0 n 1 n 1 0 n n 1 n 1 n 1
t ,t

n 1 n 1 1

y y h f (t , y(t )) h f (t , y(t ))

g(t , y(t )) J −

− − −

− −

α + α = β + β +
 

with the corresponding SRKM  
n 1 nt ,t

n 1 n 1 1 2 2 1 1 2 21y y h[  f(Y )  f(Y )] J [  g(Y )  g(Y )]−
+ = + α + α + γ + γ  

which may be rewritten as  
n n 1 n n 1t ,t t ,t

n 1 n n n n n1 1y y h (t , y(t ),h) J (t , y(t ),J )+ +
+ = + φ + ϕ  

hence we get: 

0 1 0 1 11, 1, 0, 1 and 1α = α = − β = β = γ =  
which satisfy the consistency conditions [see remark (3.3)] and by using 
definition (3.2) the stochastic Runge-Kutta methods are stable. 
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3.4 Illustrative Examples.  
 In this section some examples of autonomous SODE's are considered 
and will be solved using SRK schemes which considered in this work and 
note that, the obtain solutions for these examples are represented at average of 
10000 simulated solutions by using N(0,h) random number generations for 
wiener process tW . 

Example (3.1) [22]: 
Consider the Stratonovich SDE: 

2 2
t t t t 0dy (y 1)dt (0.1 0.1y ) dW ;y 0= − + − ο =  

when has the exact solution given by: 

t
t

t

exp( 2t 0.2W ) 1y
exp( 2t 0.2W ) 1

− + −
=

− + +
 

Following tables (3.2), (3.3), (3.4), (3.5) and (3.6) which represent the 
numerical solution of example (3.1) by using the SRKM's which are (Explicit 
(R2, PL) [7], Semi explicit, Implicit, MSRKM1, MSRKM2, MSRKM3, 
MSRKM4, MSRKM5 and MSRKM6) respectively: 
 

Table (3.2) 
The exact and numerical results of example (3.1) using explicit-R2 and 

semi- explicit methods. 
 

ti Exact 
Solutions 

Explicit- 
R2 

Absolute 
Errors 

Semi-
explicit 

Absolute 
Errors 

0.1 -0.09967 -0.10014 0.00047 -0.09791 0.00176 
0.2 -0.1971 -0.19697 0.00013 -0.19371 0.00339 
0.3 -0.29104 -0.29117 0.00013 -0.28551 0.00553 
0.4 -0.3802 -0.37905 0.00115 -0.37193 0.00827 
0.5 -0.46156 -0.46013 0.00143 -0.45205 0.00951 
0.6 -0.53684 -0.53417 0.00267 -0.52562 0.01122 
0.7 -0.60442 -0.60032 0.0041 -0.5915 0.01292 
0.8 -0.66395 -0.65904 0.00491 -0.65025 0.0137 
0.9 -0.71597 -0.71056 0.00541 -0.70201 0.01396 
1 -0.76159 -0.75544 0.00615 -0.74749 0.0141 
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Table (3.3) 
The exact and numerical results of example (3.1) using explicit-PL and 

implicit methods. 
 

ti 
Exact 

Solutions 
Explicit- 

PL 
Absolute 
Errors Implicit Absolute 

Errors 
0.1 -0.09967 -0.09985 0.00018 -0.09746 0.00221 
0.2 -0.1971 -0.19851 0.00141 -0.19369 0.00341 
0.3 -0.29104 -0.29306 0.00202 -0.28526 0.00578 
0.4 -0.3802 -0.38369 0.00349 -0.37212 0.00808 
0.5 -0.46156 -0.46763 0.00607 -0.45381 0.00775 
0.6 -0.53684 -0.54411 0.00727 -0.52816 0.00868 
0.7 -0.60442 -0.6135 0.00908 -0.59487 0.00955 
0.8 -0.66395 -0.67469 0.01074 -0.65463 0.00932 
0.9 -0.71597 -0.72761 0.01164 -0.70695 0.00902 
1 -0.76159 -0.77367 0.01208 -0.75241 0.00918 

 

 
 
 

Table (3.4) 
The exact and numerical results of example (3.1) using MSRKM1 and 

MSRKM2 methods. 
 

ti 
Exact 

Solutions MSRKM1 Absolute 
Errors MSRKM2 Absolute 

Errors 
0.1 -0.09967 -0.09898 0.00069 -0.09956 0.00011 
0.2 -0.1971 -0.1966 0.0005 -0.19696 0.00014 
0.3 -0.29104 -0.28918 0.00186 -0.29086 0.00018 
0.4 -0.3802 -0.37628 0.00392 -0.37868 0.00152 
0.5 -0.46156 -0.45729 0.00427 -0.4592 0.00236 
0.6 -0.53684 -0.53081 0.00603 -0.53295 0.00389 
0.7 -0.60442 -0.5974 0.00702 -0.59936 0.00506 
0.8 -0.66395 -0.65701 0.00694 -0.65821 0.00574 
0.9 -0.71597 -0.70936 0.00661 -0.71 0.00597 
1 -0.76159 -0.75437 0.00722 -0.75519 0.0064 
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Table (3.5) 
The exact and numerical results of example (3.1) using MSRKM3 and 

MSRKM4 methods. 
 

ti 
Exact 

Solutions MSRKM3 Absolute 
Errors MSRKM4 Absolute 

Errors 
0.1 -0.09967 -0.09894 0.00073 -0.09826 0.00141 
0.2 -0.1971 -0.19592 0.00118 -0.19438 0.00272 
0.3 -0.29104 -0.28796 0.00308 -0.28777 0.00327 
0.4 -0.3802 -0.37554 0.00466 -0.37419 0.00601 
0.5 -0.46156 -0.45595 0.00561 -0.45468 0.00688 
0.6 -0.53684 -0.52992 0.00692 -0.52793 0.00891 
0.7 -0.60442 -0.59636 0.00806 -0.59445 0.00997 
0.8 -0.66395 -0.65555 0.0084 -0.65367 0.01028 
0.9 -0.71597 -0.70747 0.0085 -0.70642 0.00955 
1 -0.76159 -0.75263 0.00896 -0.75205 0.00954 

 
 
 

Table (3.6) 
The exact and numerical results of example (3.1) using MSRKM5 and 

MSRKM6 methods. 
 
 

ti 
Exact 

Solutions MSRKM5 Absolute 
Errors MSRKM6 Absolute 

Errors 
0.1 -0.09967 -0.09832 0.00135 -0.09777 0.0019 
0.2 -0.1971 -0.19386 0.00324 -0.1935 0.0036 
0.3 -0.29104 -0.2856 0.00544 -0.28548 0.00556 
0.4 -0.3802 -0.37246 0.00774 -0.37261 0.00759 
0.5 -0.46156 -0.45248 0.00908 -0.45333 0.00823 
0.6 -0.53684 -0.52605 0.01079 -0.52662 0.01022 
0.7 -0.60442 -0.59251 0.01191 -0.59322 0.0112 
0.8 -0.66395 -0.65152 0.01243 -0.65221 0.01174 
0.9 -0.71597 -0.70381 0.01216 -0.70393 0.01204 
1 -0.76159 -0.74899 0.0126 -0.74928 0.01231 
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Example (3.2) [7]: 
Consider the Stratonovich SDE: 

2
t t t 0dy 0.5(1 y ) dW ;y 0.5= − ο =  

when has the exact solution given by: 
1

t t 0y tanh(0.5W tanh (y ))−= +  

Following tables (3.7), (3.8), (3.9), (3.10) and (3.11), which represent 
the numerical solution of example (3.2) by using the SRKM's which are  
(Explicit (R2, PL) [7], Semi explicit, Implicit, MSRKM1, MSRKM2, 
MSRKM3, MSRKM4, MSRKM5 and MSRKM6) respectively: 

 
 

Table (3.7) 
The exact and numerical results of example (3.2) using explicit-R2 and 

semi- explicit methods. 
 

ti 
Exact 

Solutions 
Explicit- 

R2 
Absolute 
Errors 

Semi-
explicit 

Absolute 
Errors 

0.1 0.5 0.49111 0.00889 0.49044 0.00956 
0.2 0.49325 0.47348 0.01977 0.47138 0.02187 
0.3 0.48932 0.45821 0.0311 0.45618 0.03313 
0.4 0.49094 0.44476 0.04619 0.44249 0.04845 
0.5 0.4907 0.4304 0.06029 0.43371 0.05698 
0.6 0.48821 0.41688 0.07133 0.41832 0.06989 
0.7 0.49051 0.40603 0.08448 0.40522 0.0853 
0.8 0.48943 0.39812 0.09132 0.39865 0.09078 
0.9 0.49223 0.3898 0.10243 0.3896 0.10263 
1 0.4919 0.38295 0.10895 0.38128 0.11062 
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Table (3.8) 
The exact and numerical results of example (3.2) using explicit-PL and 

implicit methods. 
 

ti 
Exact 

Solutions 
Explicit- 

PL 
Absolute 
Errors Implicit Absolute 

Errors 
0.1 0.5 0.47982 0.02018 0.49115 0.00885 
0.2 0.49325 0.46562 0.02763 0.46819 0.02506 
0.3 0.48932 0.44859 0.04073 0.45686 0.03246 
0.4 0.49094 0.43376 0.05718 0.44114 0.0498 
0.5 0.4907 0.41841 0.07228 0.44154 0.04916 
0.6 0.48821 0.40511 0.0831 0.42856 0.05965 
0.7 0.49051 0.39605 0.09446 0.42646 0.06405 
0.8 0.48943 0.386 0.10344 0.42904 0.0604 
0.9 0.49223 0.37713 0.1151 0.41659 0.07565 
1 0.4919 0.37111 0.12079 0.50281 0.01092 

 

 
 
 

Table (3.9) 
The exact and numerical results of example (3.2) using MSRKM1 and 

MSRKM2 methods. 
 

ti 
Exact 

Solutions MSRKM1 Absolute 
Errors MSRKM2 Absolute 

Errors 
0.1 0.5 0.48936 0.01064 0.49734 0.00266 
0.2 0.49325 0.47325 0.02 0.48127 0.01199 
0.3 0.48932 0.45934 0.02998 0.46935 0.01997 
0.4 0.49094 0.44684 0.0441 0.45352 0.03742 
0.5 0.4907 0.43429 0.05641 0.44555 0.04514 
0.6 0.48821 0.4232 0.065 0.4393 0.0489 
0.7 0.49051 0.41264 0.07787 0.43196 0.05855 
0.8 0.48943 0.40343 0.086 0.42664 0.0628 
0.9 0.49223 0.39537 0.09686 0.42583 0.0664 
1 0.4919 0.38538 0.10652 0.4044 0.0875 
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Table (3.10) 
The exact and numerical results of example (3.2) using MSRKM3 and 

MSRKM4 methods. 
 

ti 
Exact 

Solutions MSRKM3 Absolute 
Errors MSRKM4 Absolute 

Errors 
0.1 0.5 0.4881 0.0119 0.49181 0.00819 
0.2 0.49325 0.46943 0.02382 0.48201 0.01124 
0.3 0.48932 0.4554 0.03392 0.47284 0.01648 
0.4 0.49094 0.44231 0.04863 0.45815 0.0328 
0.5 0.4907 0.42657 0.06413 0.45052 0.04018 
0.6 0.48821 0.41359 0.07462 0.42643 0.06177 
0.7 0.49051 0.40483 0.08568 0.41396 0.07655 
0.8 0.48943 0.39607 0.09336 0.41445 0.07499 
0.9 0.49223 0.38857 0.10366 0.40106 0.09117 
1 0.4919 0.38455 0.10735 0.35367 0.13823 

 
 
 

Table (3.11) 
The exact and numerical results of example (3.2) using MSRKM5 and 

MSRKM6 methods. 
 
 

ti 
Exact 

Solutions MSRKM5 Absolute 
Errors MSRKM6 Absolute 

Errors 
0.1 0.5 0.48922 0.01078 0.49024 0.00976 
0.2 0.49325 0.47172 0.02153 0.47349 0.01976 
0.3 0.48932 0.47446 0.01485 0.45665 0.03267 
0.4 0.49094 0.45834 0.03261 0.44236 0.04858 
0.5 0.4907 0.44485 0.04584 0.43074 0.05996 
0.6 0.48821 0.43895 0.04926 0.41892 0.06928 
0.7 0.49051 0.43377 0.05674 0.40741 0.08311 
0.8 0.48943 0.45068 0.03875 0.39888 0.09055 
0.9 0.49223 0.44454 0.0477 0.3895 0.10273 
1 0.4919 0.48618 0.00572 0.38177 0.11013 
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3.5 Stochastic Variable Step Size Method of Solving SODE's: 
 

 In this thesis, we gave some models of stochastic Rung-Kutta methods, 
those methods considered in chapter two and three with fixed step size h. As 
it is known from the usual methods of numerical analysis, the step size is 
fixed in that methods during the approach of solution, but still there are some 
methods may be used to reduce the local truncation error, and among such 
methods is the variable step size method. 

In this section, the numerical solution of SODE's will be found using 
variable step size methods when may be considered as a new approach in this 
topic, where the considered SODE's is given by: 

t t t tdy f (y )dt g(y ) dW= + ο ; with 
0t 0y y=  … (3.60) 

In all fixed step-size methods the local truncation error will depends on 
step size h and on the numerical method used. But, in variable step-size 
methods, we shall find the numerical solution 

fty  for the SODE given in 

equation (3.60), that is accurate to within a specified tolerance ε. 

Therefore, it turns out for reasonable effective estimates of the step-size, 
it is required to attain a specified local truncation error (tolerance) ε. The 
variable step-size method which will be considered here, is based upon 
comparison between the estimates of the one and two steps of the numerical 
value of ty at some time obtained by the numerical method with local 

truncation error term that is of the form pCh , where C is unknown constant 
and p is the order of the method. Suppose that we started with the initial 

condition 
0ty  with step-size h using certain SRKM to find the solution 

0

(1)
t hy +  

and 
0

(2)
t hy +  using the step-size h and h

2
, respectively. Let: 

Eest. = ||
0

(1)
t hy +  − 

0

(2)
t hy + || … (3.61) 

And here if Eest. ≤ ε, then there is no problem and one may consider 
0

(2)
t hy +  as 

the solution at t0 + h. Otherwise if Eest. > ε, then one can to find another 
estimation of the step- size say hnew . If this approximation was accepted then 
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this value of  hnew will be used as the new value of h in the next step; if not, 
then it will be used as an old h and repeat similarly as above.  

A common question may arise, which is how to find hnew ?. In this work, 
a new criterion has been developed for estimating the local truncation error, 
which control the step- size. The problem of error estimation is the most 
important problem that impact the user while using variable step-size method. 

Theorem(3.1): 

Suppose the 
0

(1)
t hy +  and 

0

(2)
t hy +  are the numerical solution the SODE given 

in equation (3.60) using certain SRKM with step sizes h and h
2

, respectively; 

If ε is the tolerance and Eest. = ||
0

(1)
t hy +  − 

0

(2)
t hy + ||, then (the new value of the step 

size)  

old
new

est.

3hh
2E

ε
=  … (3.62) 

where hold refers to the old value of the step size. 
Proof: 

Suppose Y is the actual solution at t0+h, by taking expectation to the both 
sides of equation (3.61) yields: 

( )
0 0 0 0

(1) (2) (1) (2)
est. t h t h t h t hE E E(|| y y ||) E(|| y y Y Y ||)+ + + += − = − + −  

0 0
(1) (2)

est. T Tt h t hE E(|| y X || || y X ||)+ +≤ − + −  

0 0
(1) (2)

T Tt h t hE(|| y X ||) E(|| y X ||)+ += − + −  

h h 3Ch C( ) C(h ) Ch
2 2 2

≤ + = + =  

est.
3E Ch
2

≤  

also yields to  est.2EC
3h

=  
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since, est.
new new

old

2ECh h
3h

ε = =  

and so: 

old
new

est.

3hh
2E

ε
=  

                        ■ 
Example (3.3): 

Resolving example (3.2) using stochastic variable step size method in 
explicit case (R2), so the following table (3.12), represent the numerical 
solution of the example (3.2). 

 

Table (3.12) 
The exact and numerical results of example (3.2) using stochastic variable 

step size method in explicit case (R2). 
 

ti Exact Solution Numerical 
Solution Absolute Errors 

0.1 0.49993 0.50827 0.00834 
0.2 0.49998 0.49602 0.00396 
0.3 0.49995 0.50329 0.00334 
0.4 0.50001 0.49538 0.00463 
0.5 0.50001 0.49621 0.00381 
0.6 0.49987 0.49421 0.00565 
0.7 0.49999 0.50607 0.00608 
0.8 0.50006 0.49669 0.00337 
0.9 0.50001 0.49688 0.00313 
1 0.50002 0.49559 0.00443 
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Conclusions and Recommendation 
 
 

From the present study, one may conclude the following 

conclusion: 

1. Variable step size methods improve the accuracy of the results, but 

it required more calculation which is increase the consuming time. 

2. Implicit and mixed methods have some difficulties in programming 

since a nonlinear system must be solved at each step. 
 

 

Also from the present study the following conclusion may be 

drown: 

1. Study the stability of implicit SRKM's using the concept of mean 

square stability. 

2. Deriving 3-stages SRKM's for solving SODE's. 

3. Solving system of SODE's using the considered schemes followed 

in this thesis. 

4. Applying variable step size methods for solving SODE's based on 

implicit SRKM's. 

5. Introducing variable order methods for solving SODE's. 
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  ألمستخلص
  

ئيسي الرسالة ينقاد اڲى ثلاث اتجاهاتف الرئيسۜܣ لهذهداله   :هر 
  

ـــــاله اســــة و اســــتعراض المبــــادئ الاساســــية ࡩــــي الحــــساب التــــصادࡩي :لدف الاوـ ر هــــو لد

)Stochastic Calculus (اســــة المعــــادلات    التفاضــــلية الاعتياديــــة التــــصادفيةرأضــــافة اڲــــى د

)Stochastic Ordinary Differential Equations. (  
  

انــــــــــــــج:دف الثــــــــــــــانيــــــــــــــــأله اســــــــــــــة طرائــــــــــــــق  ر هــــــــــــــو لد    كوتــــــــــــــا التــــــــــــــصادفية الـــــــــــــــصريحة-ر

)Explicit Runge-Kutta Method(، عمـام هـذه الطرائـق اڲـى طرائـق شـبه صـريحة ومـن ثـم إ

)Semi-Explicit Runge-Kutta Method( ، طرائـــق ضـــمنية)Implicit Runge-Kutta 

Method ( وطرائـــق مختلطـــة)Mixed Schemes( ية هـــذه الطـــر اســـة اســـتقرا ق ومـــن ثـــم د ر ر

  .عدديا
  

ــــــــــــــــــــــــــــــــــدف الثالـــــــــــــــــــــــــــــــــث    طريقـــــــــــــــــــــــــــــــــة متغ؈ـــــــــــــــــــــــــــــــــرة الخطـــــــــــــــــــــــــــــــــوات عـــــــــــــــــــــــــــــــــرضهـــــــــــــــــــــــــــــــــو : ألهـ

)Variable Step Size Method( أعطـت نتـائج الۘـܣ لحـل المعـادلات التفاضـلية التـصادفية و

  .ذات دقة أعڴى
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