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Abstract

In this work, a program of ray tracing program has been constructed. This

program includes ray tracing for:
1. Skew ray tracing for spherical surfaces;
2. Skew ray tracing for Cartesian or quadric surfaces of revolution (conic surfaces).

A study for the effect of asphericity factor (¢) on the reflecting telescope
parameters under investigation of this thesis has been accomplished by using the ray
tracing code. These parameters are the A-values (values for surface departure from the
spherical), ray aberrations both the transverse (TA) and the longitudinal (LA), and the

angle the incident ray makes with the surface normal vector.

This study was useful to design a two-mirror reflecting telescope; it gave a
suitable scope of understanding the problem sides, and provided a vision to minimize,

directly, aberrations and consequently improving the optical system performance.

Accomplishing this study demanded considering the bundle of incoming light
rays as completely parallel to the optical axis; therefore, the design of the optical

system is corrected for spherical aberrations only.

The ray tracing code has been employed to exhibit the performance of the
reflecting surfaces (mirrors) when the asphericity factor (¢) is varying. Rays
aberrations (transverse and longitudinal) aberrations have been considered as a

measure to exhibit the performance of any conic reflecting surface (mirror) versus &.

Aberrations reduction has been achieved through modifying, first, the
secondary mirror radius of curvature and, second, the aspherisity factor (¢) by using

the principle of the Extreme-Value Theorem.

The design of the telescope, achieved upon this study, is a two-mirror system
of 2.5m focal length corrected for spherical aberrations; the primary mirror is
paraboloid of Im aperture and 5m radius of curvature and the secondary is

hyperboloid of asphericity factor ¢ =- 0.21.

The considered light wavelength in the calculations concerning the telescope is

550nm because it is in the middle of visible spectrum of light.
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Chapter

1.1 Introduction

The telescope invention in the 17" century opened up a window that
completely revolutionized the face of astronomy. This instrument allowed
an observer to study the precise configuration of celestial bodies and piece
together theories about the structure of the universe in a way previously

impossible [1].

Ground- and space-based optical astronomy has developed rapidly
over the last decade. A series of sensational discoveries has been made in
stellar and extragalactic astronomy: proto-planetary disks and even planets
have been detected around nearby stars; compelling evidence has been
found of the presence of a massive black hole in the central part of many
galaxies, including our own; the ages of distant galaxies and quasars have
been estimated. These astonishing achievements in optical astronomy are
mainly associated with the successful completion of several large optical
telescope projects. With a new generation of ground-based telescopes
having a primary mirror diameter of 8-10 meters, the total collecting area
of optical telescopes has grown exponentially and now exceeds 1000
square meters. The creation of these large optical ground-based telescopes
with even higher image quality than their predecessors has become possible
due to[2]:

* progress in computer control techniques;
* technological advances in manufacturing of large astronomical mirrors;
* successful employment of adaptive optics (AO) for the correction of

image distortion introduced by turbulence in the Earth’s atmosphere.
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Together with the increasing aperture size of this new generation of
telescopes, the accuracy of their operation and guiding system has become
exceedingly high. This is partly due to a substantial mass reduction for the
primary mirror and the telescope as a whole. By actively supporting the
light, thin primary mirrors, their shape can be maintained under changing

orientation (pointing) of the telescopes.

Image stabilization and correction of atmospheric distortion are
achieved using AO systems, which are capable of correcting for the effect
of the Earth’s atmosphere. Within such corrected fields, the image quality
1s limited only by telescope optics, which thanks to current technology can
be made diffraction-limited. Taking these facts into account, it is a common
belief that the creation of an Extremely Large Telescope (ELT) with 25-100
m aperture is realistic nowadays. Whether such a complex project
succeeds, primarily depends on the correct choice of the telescope system

configuration.

The focal ratio and asphericity of the primary are the main factors
influencing the system configuration. Since minimization of the total
number of optical components and system complexity is of great
importance, integration of an AO system into the telescope is one of the
key considerations for the ELT concept. The optical system for an ELT
should have [2]:

e A fast primary mirror;

e An AO system as an integrated part of the telescope design;

e Diffraction-limited image quality over 1'-2’ field of view.
These basic requirements have been considered and fulfilled for the Euro50
ELT with an aperture of 50 m; where Euro50 is the most modern telescope

project under achievement [2].
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Most optical surfaces are spherical because a spherical surface is the
easiest to produce [3]. The difficulty of figuring aspheric optics by
traditional means is approximately in proportion to the slope of the aspheric
departure. As surfaces depart more and more from a spherical shape,
increasingly smaller tools are required to obtain a reasonably good fit
between the tool and the optical surface [4]. However, non-spherical are
necessary for some purposes, especially when they appear as the solution
of particular optical problems, where one of these surfaces, ellipse, is the
one that verifies Fermat’s principle which states that the optical path length

of each ray will be identical [3].

On the light of this introduction, it is believed that investigating the
effect of the asphericity factor is of great deal of importance since the
aspherical (non-spherical) surfaces provide a solution to the problem of
image forming systems; and reflecting telescopes are, of course, type of

these systems.

1.2 Reflecting Telescopes Configurations
Reflecting telescope are mainly come in four configurations [5]:

1. Herschel Telescopes :

These telescopes consist of one mirror (the primary only) aligned in
such a manner that allows the gathered light to pass out the telescope
housing tube, in order to enable the observer to see the formed image, by
flipping the mirror slightly from the right angle the mirror makes with the
optical axis. The essence of this design (arrangement) is to make the full
use of the whole aperture(whole surface area of the mirror), i.e., without
obstruction as shown in figure 1.1. The existence of another mirror
(secondary) before the primary, the secondary, will prevent (obstruct) some
of the light coming from the left to reach the primary mirror. And this is

exactly the case of the next types. But the advantage of the next types over
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the Herschel are the control of aberrations with more symmetrical mirror
arrangements is easier.

2. Newtonian Telescopes:

Besides the primary mirror there is a small plane mirror near to its
focus. The function of the plane mirror is to guide the light outside the
housing tube of the telescope to enable the observer to see the formed
image as shown in figure 1.2.

3. Gregorian Telescopes:

These telescopes consist of two mirrors. The second one (secondary)
is also concave but of much smaller aperture lest it should obstruct large
amount of light the primary should gather. So, the secondary main function
is to direct the light reflected from the primary to be focused behind the
primary mirror through a cavity at the center of the latter as shown in the
figure 1.3.

4. Cassegrian Telescopes:

These telescopes do not differ from the Gregorian accept that
secondary mirror is convex rather than being concave as shown in

figurel 4.

~—

Figurel.1 Herschel Telescope [5]. Figurel.2 Newtonian Telescope [5].

et

v

Figurel.3 Gregorian Telescope [5]. Figurel.4 Cassegrian Telescope [5].




Chapter One Introduction 5

1.3 Advantages of Reflecting Telescope

There are several advantages for these telescopes over the refraction
telescopes because of using mirrors rather than lenses. These advantages
are [5, and 6]:

1. Reflecting telescopes are free of chromatic aberration.

2. It is easier to increase the aperture of a mirror than increasing the
aperture of a lens. This because as it's very well know that lens has
thickness; so, if the increase in the mirror diameter weight is in
hundreds of kilograms; the similar increase in the diameter of lens in
meters leads to the increase in the lens weight in tons of kilograms.
And this in turn would make any attempt for porting or moving it
very hard; besides it is approximately impossible to manufacture
such lenses with high lens performance (image quality), unless they
would be broken under their extensive weight, due to the problems
arise from bubbles formation and cracks during manufacturing.

3. Reflecting telescopes form images brighter than that refraction
telescopes form.

4. as it's known, lenses are suitable for gathering light through
refraction for a very narrow band width of the spectrum(visible
region 400-700 nm and IR light); whilst mirror are suitable for
gathering light through reflection for very vast range of wavelength;
from the X-rays up to the radio waves; and that's why reflecting
telescopes enables user to observer and see different pictures of the

celestial bodies to be observed.
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1.4 Telescope Three Powers

There are three features (powers) of a telescope that enable them to
extend the power of our vision: a telescope's superior light-gathering
ability(light-gathering power) enables us to see faint objects, a telescope's
superior resolving power enables us to see even the tiniest of details, and
the magnification power enables us to enlarge tiny images. Magnification is
the least important power of a telescope. Specialists know that the light-
gathering power and resolving power are the most important. These two
abilities depend critically on the objective, so they make sure the optics of

the objective are excellent [7].

1.4.1 Magnification Power

It is the ability to make the image bigger. Since the amount of detail
we can see 1s limited by the seeing conditions and the resolving power,
very high magnification does not necessarily show us more detail.
Magnification can be changed by simply switching eyepieces in the
telescope [5]. The magnification of a telescope is the ratio of the focal
length of the objective lens or mirror £, divided by the focal length of the
eyepiece Fr[5]: M=Fy/ Fg (1.1)

1.4.2 Resolving Power

It is a measure of how sharp and well-defined an image the telescope
can produce or the telescope's ability to resolve fine details. This ability
depends on a combination of both its aperture and telescope optics.
Whenever light is focused into an image, a blurred fringe surrounds the
image. Because this diffraction fringe surrounds every point of light in the
image, we can never see any detail smaller than the fringe. There is
nothing we can do to eliminate diffraction fringes; they are produced by the

wave nature of light. If we use a large diameter telescope, however, the
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fringes are smaller and we can see smaller details. Thus; the larger the is

telescope, the better its Resolving Power [5].

Suppose a telescope is used to observe two stars close together. In
the focal plane the best possible images instead of being points are two
Airy diffraction patterns, each being a circular spot surrounded by alternate
bright and dark rings. Rayleigh suggested that the angular (separation)
resolution of a telescope should be defined as the angle between two stars
when the maximum of the diffraction pattern of one falls exactly on the

first minimum of the other. That’s to say [5]:

A

Angular resolution power =¢, = 1.225 (1.2)

where 4 is the wavelength and D is the objective diameter(aperture).

If the angular separation (resolution power) of the two stars is «, then the
centers of the two diffraction patterns are separated by a distance «, f in

the focal plane. Hence according to equation(1.2), the linear separation

between the centers of the diffraction patterns is expressed as:
Linear separation=1.22 % S (1.3)

So, this expression enables scaling the system up and down simply by
changing f but unfortunately without altering the relative size of the

diffraction patterns and their separation [5].

According to [8], equation (1.3) is not very accurate, because it
depends on the focal length to the diameter ratio (for most telescopes, the
radius of the primary mirror is small in comparison to the focal length),
which means that the primary mirror is relatively “flat” and that’s why it is
just an approximation. The same reference introduced another expression

derived for exact linear separation as:

Linear separation = 1.22 A (1.4)

n.sin(U)
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where n is the surface refractive index and U is the extremely
marginal ray convergence angle. Reference [8] predicts that in the case of
paraboloid, primary mirror the focal length is nearly equal to the mirror
diameter, a very small Airy disc which can be attained, of course, means
exceptional resolution. In fact, it attains a resolution better than any
conventional telescope. And, since it was shown that resolution is
determined by the angle U, and not by the ratio of focal length to the
diameter, as is implied by the “approximation” equation (1.2), this
configuration (deep-dish mirrors) can be used for mirrors of any size, even

very small sizes, while still remaining exceptional resolution [8].

1.4.3 Light-Gathering Power

Refers to the ability of a telescope to gather (collect) light. Light-
gathering power is probably its most important feature. Stars are faint.
Even the brightest stars appear 25 billion times fainter than the Sun, and
most interesting celestial objects are much fainter than that [9], so we need
a telescope that can gather large amounts of light to produce a bright
1mage.

Catching light in a telescope is like catching rain in a bucket, the
bigger the bucket, the more rain it catches. A large diameter telescope
(large aperture) gathers more light and has a brighter image than does a
smaller telescope of the same focal length. Light-gathering power is
proportional to the area of the telescope objective. A lens or mirror with a
large area gathers a large amount of light. Because the area of a circular
lens or mirror of diameter D is pi(D/2)?, we can compare the areas of two
telescopes, and therefore their relative light-gathering powers, by
comparing the square of their diameters. That is, the ratio of the light-
gathering power (LGP) of the two telescopes A and B is equal to the ratio

of their diameters squared [10]:
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LGP, / LGP = (DA/Dg)? (1.5)

That’s why astronomers use big telescopes and why they refer to telescopes
by diameter. In optical telescopes the increase of light-gathering power
which is given bigger objectives brings with it an increase of resolving
power. The world’s biggest telescopes have been made big for light-
gathering power rather than high resolution, and in practice the theoretical
diffraction limits of resolution is not attained because of bad “seeing”
through the atmosphere. This is why the best earth-based photographs of
the moon and the planets come from observatories famous for good seeing

rather than for big telescopes [5].

1.5 Ideal Image Formation
Before introducing aberrations it is important to define the formation

of ideal image for a comprehensive understanding to aberrations.

The rays from each point object intersect the Gaussian image point
and spherical wave converges to the latter so that the disturbances, which
have passed through different zones of the aperture, arrive exactly in phase
(perfect imagery definition) [11]. This means, in ideal or perfect, optical
system must surely be one in which every point in an object space
corresponds precisely to a point in an image space, being connected to it by
rays passing through all points of all optical system (perfect image forming
system definition)[5]. So, the optical path from any object point to its

image point is therefore the same along all rays [5].
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1.6 Aberrations
Aberrations are the problem of all image—forming systems. They,
in general, are defined as the departure from the Gaussian (paraxial)
image formation [5]. Sometimes, they are called image defects or
imperfections, because their presence causes deformation or complete
damage to the image features. Therefore, optical systems possessing
aberrations must be redesigned to get systems with an acceptable
performance. The defect of the image may be said to be caused by the
failure of the rays from a point source to unite at the Gaussian image
point (rays aberration), or by the failure of the emergent wavefront to be
a sphere converging on this point and the consequent failure of the
disturbance to arrive exactly in phase (wavefront aberrations)[11].
The two concepts of rays and waves are the two basic ways to
characterize aberrations. Rays aberrations come in three types [12]:
1. Longitudinal the rays intersect the optical axis);
2.  Transverse or lateral (whereas the rays intersect the Gaussian
Image plane);

3.  Angular (directly related to the transverse);

Figure (1.5) shows these aberrations as LA, TA, and a, respectively.
The wavefront is the actual light wave, where the ray is its normal
vector reference and the reference sphere is the one that is responsible

for free aberration.

Reference sphere Focal Plane

a

Axis

O
B

N

Wavefront LA

Figure (1.5) Longitudinal aberration (LA), transverse aberration (TA),
and angular aberration of the meridianal ray (a) [12].
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The position of an object relative to the optical axis produces two
divisions of aberrations, the on—axis and off—axis. The on—axis one is the
one that is produced by objects on the axis of revolution (optical axis), and
its only effect is *“ spherical aberration”, representing the different actions
of the axial and peripheral rays [13]. But this is not the general case. The
off-axis 1s the general one, which produces the five kinds of
monochromatic aberrations. The aberrations, which occur when the laws
of refraction and reflection are applied to mathematically correct surfaces
and which are not a consequence of material inhomogenity or fabrication

errors, are as follows[13]:

1. Spherical aberration:

It is defined as the longitudinal variation of the focus with aperture
[14]. This phenomenon occurs wherein rays passing through different zones
of a surface come to different foci. It is like chromatic aberration both have
longitudinal (axial) and transverse (lateral) variety [15];

2. Coma:

Coma is the result of oblique rays, It is defined as the variation of
magnification, i.e., image size with aperture. Thus, when a bundle of
oblique rays are incident on a lens, the rays passing through the edge
portions of the lens are imaged at a different height than those passing
through the center portion [15];

3. Astigmatism :

It is another off-axis aberration. It is caused by the fact that the lens
has different powers in the sagittal and the tangential sections;

4. Field curvature or Petzval:

It is another off-axis aberration, closely related to astigmatism (and it
nearly accompanies astigmatism). But this type does not cause any image
blur as the previous three do [14]. It is usually indicated as the departure of

the image from a flat image plane [16];
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5.Distortion:

It is the counterpart of field curvature. Like the later, distortion refers
to a side way (radial) displacement of the image points, either toward or a
way from the optical axis, in other word, it refers to a change of

magnification [16].

These are monochromatic aberrations and were originally defined by
Seidel in 1856. The importance of this classification declines as the system
1s more highly corrected. The higher order aberrations are not easily
visualized as the primaries, and their particular forms differ according to
which of several systems is used for expressing them. In actual image—
forming system, deformed image is not because one of these aberrations

but is, mostly, of a mixture of them [12].
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1.7 Historical Aspect

In attempting to present, in an orderly way, the knowledge acquired
over a period of several centuries in such a vast field; It is almost
impossible, in this thesis, to follow the development of telescope designs
due to the large variety of types, applications, and techniques. So, it is
found that giving a brief historical aspect, in this section, and recent
advances in telescopes in the coming sections would cover the story of

literature survey.

According to [17] in the 17" century, 1608 a Holland(meant Dutch)
spectacle maker, Hans Lippershy, is said to have been holding two lenses
and he happened to align them before his eyes with the steeple of a near by
church he was astonished to find the weather cock to appear nearer. Then
when he fitted the two lenses in a tube to maintain their spacing, he had
constructed the first telescope. Galilo Galilie in Venice heard about the new
telescope in June 1609, and immediately began to make telescope of his
own. His first had magnification of 3X, but his instruments were rapidly

improved until he achieved magnification of about 32X.

Developers of early telescope soon recognized spherical aberration
as a reason for defective images and a considerable effort was spent to
overcome this fault. And when the telescope magnification approached
50X the developers noticed the appearance of chromatic aberration. In
1666, Isaac Newton discovered that refractive by given lens depended upon
the color and he correctly concluded that the most significant defect of the
then current telescopes was what we know as "chromatic aberration". He
hastily concluded that all glasses had the same relation between refraction

and color, so he turned to reflectors to solve the color problem [17].
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1.8Recent Advances in Astronomical
Telescope Design

A major rationale for building a new generation of telescopes with
larger apertures is to increase the angular resolution and the signal-to-noise
ratio so that telescopes become more sensitive to dim or distant objects.
The signal-to-noise ratio depends on the physical parameters of a telescope

and the sky background. For a dim point source with brightness not

exceeding the sky background this ratio is [l]Jr (coming references denoted
by [#]Jr belongs to [2] and pointed out in the references by the same manner

]
also.): % =k, %ﬁ

where £k, i1s a coefficient depending on source brightness, D is the
telescope aperture, 7 is the effective throughput of the telescope to the focal
plane (taking into account atmosphere, telescope optics and quantum
efficiency of the detector), p is the angular size of the image, and ¢ is the
effective emissivity of the sky background. Thanks to advances in detector

quantum efficiency and readout noise, the effective throughput is

approaching its maximum value. The sky background has minimum
emissivity at some of the best astronomical sites [Z]T. Therefore one may
increase telescope sensitivity only by enlarging the telescope aperture D
and delivering images of smaller diameters [3]T. As shown in section 1.8.1,

primary mirrors with larger diameters can be constructed due to improved

fabrication and optical testing methods. Point source images with diameters

comparable to the Airy disk have been achieved by means of acz‘ive[4]T and

adaptive optics systems [5-7]T.
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The use of thin and fast segmented primary mirrors makes it possible
for telescopes to be more compact, significantly reducing their total mass,

and thereby leading to more cost-effective solutions. Telescope cost is

related to aperture size via the well-known empirical expression [8]Jr

LT = kTD 2'6.

For the new generation of telescopes, the proportionality coefficient kr has

been reduced by a factor of three [8]T.

At present, it seems feasible to construct an ELT with an aperture of
25-100 m [9-12]T. Both cost and practical considerations influence the

optical design of ELTs. The general requirements that an optical design

should satisfy are identified in the following sections.

1.8.1 Fabrication of Large Astronomical Mirrors

The most distinctive feature of the new generation of telescopes is a
lightweighted primary mirror of 8-10 m diameter [13—2O]T. This feature

brings down the cost and increases the resonance frequency of the
telescope structure. Reduction in the mirror mass is accomplished by the
use of thin glass blanks or blanks with a honeycomb structure on the
backside.

Progress in technology of thin meniscus mirror blank fabrication has
enabled designers to reduce the mass of the mirrors, for which the aspect
ratios (diameter/thickness) have been increased to 40, whereas for mirrors
in the previous generation of telescopes, the aspect ratios did not exceed 8.
Mass reduction plays a key role in successful fabrication of large
monolithic mirror blanks.

At the present time, there are several well-established methods for
fabrication of large, light-weighted astronomical mirror blanks. One

method consists of assembling the mirror from a set of hexagonal fused
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silica plates, followed by sealing in the furnace, grinding the resultant blank

and sagging it to a required radius on a sagging mould under secondary
heating [21]T. The advantage of such a method is predictability of the

fabrication process and its scalability also for even larger mirror blanks. At
the moment, the largest mirror fabricated according to this method is the
8.3-m primary mirror with a 0.2-m thickness and 23-ton mass for the
Subaru National Japanese Telescope [22]T.

The second fabrication method for large, lightweighted mirrors is
based on a spin-casting process using a special glass ceramic material,
Zerodur, with zero coefficient of thermal expansion. The mirror blank is
cast into a form in the furnace rotating with constant velocity, thus
achieving a parabolic shape with a required radius of curvature. For
primary mirrors of 8.2-m diameter with a thickness of 0.175 m and a mass

of 23 tons have been successfully obtained by applying this method for the
Very Large Telescope (VLT) [23]T.

If the casting is made into a form with a bottom having a regular
honeycomb structure, then the resulting mirror blank will get a negative

(hollow) honeycomb structure on its back side. This method was pioneered
by Roger Angel [24]T. The honeycomb structure allows a reduction of the

mirror mass, while preserving the mirror bending stiffness. For this
process, inexpensive borosilicate glass with low coefficient of thermal
expansion is used, since it can be processed at a lower temperature than
zero-expansion glass-ceramics. Of two blanks of equal diameter, the one
with honeycomb structure can be made two times lighter and almost ten
times more rigid than the other one with a thin meniscus shape. The
currently largest monolithic mirror of 8.4m diameter and a mass of 16 tons

has been made using the honeycomb method for the Large Binocular

Telescope (LBT) [16]T.
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1.8.2 Active Optics Control Systems

The shape of giant, thin, and, hence, quite flexible mirrors is
maintained by means of an active support system, which can compensate
for slowly varying deformations of the mirror shape with frequency up to
T
]

0.1Hz [25-27] . Active support systems are preferable for mirrors with

diameter larger than 2.5m. Smaller mirrors typically have enough rigidity
to sustain their own weight and maintain their shape, in which case the use
of passive support systems is more appropriate. Active support systems
become mandatory for large monolithic mirrors with diameters exceeding
4m. Such systems have hundreds of support points with a spacing on the

order of D/10, where D i1s the mirror diameter.

The active support system is part of the active optics system, which
contains also an optical part monitoring the shapes and displacements of
the mirrors. The main function of the active optics system is to keep the
required mirror shape through compensation of slow-varying deformations.
The ultimate goal is to improve the quality of the telescope image.
Correction of mirror shapes and relative positions is carried out using
prescribed tables taking into account gradual changes in temperature and
gravity during telescope operation. Edge sensors are used to detect relative
displacements of mirror segments. Detection of residual errors in shape and
displacement is accomplished in a closed loop with the use of an image
analyser. Together with the temperature, wind and edge sensors the image
analyser gives complete information on slowly varying sources of optical

image degradation.

The principal component of the image analyser is a wavefront
sensor. Usually it is a Shack-Hartmann wavefront sensor working with

natural guide stars (NGS) in the telescope field of view and measuring

local slopes of the wavefront in each sub-aperture [28,29]T. Wavefront
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measurements from several NGSs permit estimation of additional detailed
anomalous changes in temperature and gravity perturbing the shape of the

mirrors and their positions in the telescope.

Together with corrections prescribed in a table for varying mirror
deformations, the active support system is capable of compensating for up
to some 20 microns (RMS) of that global figuring error caused by
inaccuracy in the fabrication process. Assuming the active support system
is functional, certain manufacturing tolerances for the global figuring error,
e.g. astigmatism and spherical aberration, can be relaxed for large active
mirrors. Further improvements of the active control system may allow

varying the radius of curvature of a mirror, as well as its asphericity.

For a segmented mirror, the active optical system can also be applied
to position the segments of the primary mirror if the upper spatial
frequency of the wavefront sensor is high enough to resolve the segment
tilts. The operation of such a system was successfully demonstrated on the
two large optical telescopes Keck I and II, each having a 10-m primary

mirror consisting of 36 hexagonal segments that form a single hyperbolic
surface after proper positioning [14,15]T. A similar system will be used for

the Gran Telescopio Canarias (GTC), which also has a 10-m segmented
hyperbolic primary mirror [17, 3O]T.
1.8.3 Primary Mirror Segmentation

Segmentation is an effective way to obtain a lightweighted primary
mirror for large aperture optical telescopes. Therefore, mirrors with
diameters 10m or larger are composed of small (1-2m) hexagonal
segments. This also makes mirror handling and transportation manageable.
The main optical problem associated with segmentation is to eliminate

wavefront errors caused by inaccuracy in positioning of the segments. The
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technical challenge in maintaining the correct shape of a large segmented
mirror is greater than for a large monolithic mirror of the same size. Hence,

a majority of large optical telescopes in the 8 m class are built with thin

monolithic primary mirrors [13, 16, 19, 2O]T.

Segmentation of the primary mirror is an efficient way to extend the
mirror size without extrapolating the corresponding process for mirror
fabrication. Consequently, future giant telescopes will have fast segmented
primary mirrors. The upper diameter limit of a mirror composed of small
passive segments is defined by the complexity of their positioning system

and the feasibility of rapid mass production of the segments.

To reduce the number of segments one wishes to use segments that
are as large as possible. Unfortunately, large segments are difficult to
transport and are thicker and thereby heavier than small segments. It has

been shown that employment of active segments with diameters larger than
4m 1is not attractive [12]T. At present, the concept of a segmented primary

mirror with 1-2 m passive segments is considered most realistic.

For instance, in the daring Overwhelmingly Large Telescope project
(OWL) [12]T, the spherical 100-m primary mirror is composed of 2000

passive identical 2-m segments. For the California ELT project (CELT), it
has been proposed to make the 30m hyperbolic primary mirror out of 1098

passive 1m off-axis segments [9]T.

A more extreme example of a telescope having a segmented primary
mirror is a “telescope” with a non-filled aperture. Such a telescope may be
regarded as consisting of many separate small telescopes distributed in a

certain pattern to cover the aperture [31, 32]T. A special optical system

should provide both angular combination and phasing of the light beams

from the individual telescopes into a common focus. Notably, the first
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telescope of this type built was the Multiple Mirror Telescope (MMT)

[33]T. A similar project, the National New Technology Telescope (NNTT),
was proposed but not realized [34]T. Also the LBT, currently under

construction, belongs to this group [16]T.

The main advantage of a non-filled aperture telescope is its compact
construction, as the telescope length can be much smaller than the diameter
of the working aperture (defined as the distance between the most remote
small telescopes). The size of the working aperture exceeds the size of the
combined collecting telescopes, resulting in higher angular resolution for
some spatial orientations. The optical phasing system combines all beams
in the common focus by means of auxiliary mirrors. This implies 5-7 extra

reflections on the way to the final focus.

High-reflectance coatings for astronomical mirrors have been under
development for many years. New methods may reduce light losses in
multi-mirror optical systems for ELTs. Technology studies of protective
silver coatings carried out at the Optikzentrum in Bochum, Germany, show
T

very promising results [35] . In the near future, one may expect an

efficient technology for producing robust, highly reflective coatings on
large (primary) mirrors resulting in reflection coefficients above 0.95 [36]T.

Another study has been carried out in connection with the Gemini project,

which involves the construction of two large telescopes with 8.2 m primary
mirrors [2O]T. Consequent reductions in light loss may lead to more

extensive usage of multimirror optical systems, in particular four-mirror

systems for ELTs with total optical throughput about 80% or higher.
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1.8.4 Progress in Polishing of Large Mirrors
New methods for optical fabrication provide high-quality, fast
mirrors of large diameters as required in compact optical systems for ELTs

[37]T. The main difficulty in achieving steep aspherical surfaces is not

related to the amount of material to be removed (proportional to the
deviation of the surface from the corresponding best-fit sphere), but to the
removal at different rates over neighbouring areas. Therefore the maximum
slope difference between the aspheric surface and the best-fit sphere

defines the effort needed for polishing.

Referring to Dierickx [ZI]T, for a conic surface, a polishing difficulty

criterion o, can be defined as:
5 -8 f /Dy
©
where f1s the focal length, D is the diameter of the optical surface and b is
the deformation constant. The value o, i1s inversely proportional to the
slope difference between the conic surface and the corresponding best-fit
sphere. The smaller the value of &, , the more difficult is the aspherization.

Small focal ratios (f /D) present severe problems for polishing. A rapid
increase in polishing difficulty towards small focal ratios (as a third power

of /D) has been a major constraining factor for the former generation of

telescopes with relatively slow primaries [8]T.

The technological revolution permitted by computer controlled
polishing techniques and modern optical testing methods has made it
possible to overcome limitations of the conventional techniques of the past.
The amount of optical surface wavefront RMS misfigure achieved recently
for large primary mirrors is only a small fraction of a micron. For the 1.8-

m primary mirror of the Vatican telescope, RMS = 34 nm and &c = 8 [38]',
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for the 1.1m secondary mirrors of the 8m Very Large Telescopes, RMS=15

nm and oc =30, for the 3.5m primary mirror of the Galileo telescope,
RMS=16 nm and o, = 84 [39]T. For the 1.8m segments of the Keck I

telescope, RMS = 16 nm and oc =32. These large mirrors possess the
highest quality of optical surfaces yet produced, which demonstrates the

recent remarkable progress in polishing techniques.

An extensive review of modern controlled figuring techniques is
given in [40, and 41]". The classical techniques with large and stiff
polishing tools are used with an innovative modification, namely stress
polishing. The workpiece is stressed by active support forces or bending
moments in such a way that its surface can be figured spherical or flat.
Deforming forces are chosen so that after being released the workpiece
assumes the desired aspherical shape. This technique has been used for

producing the off-axis hyperbolic segments of the Keck telescope projects.

Grinding and polishing processes affect the distribution of residual
stresses within the workpiece, leading to uncontrolled surface warping
which could exceed some microns after relaxation. A similar effect occurs
in connection with the cutting segments into hexagons after the figuring
process. In order to correct for such residual figure errors, Argon ion-beam
polishing in a vacuum chamber is applied [42]". This method is highly
accurate and enables figure compensation to about 1 micron without

degrading the microroughness.

The ability to measure the figure error during the fabrication process
is a necessary feature for modern technology to deliver diffraction-limited

quality of steep (/1.0) aspheric mirrors.
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1.8.5 Progress in Optical Testing of Large Mirrors

There are two principal testing methods for measuring the current
mirror shape, optical [43]Jr and mechanical [44]T. Mechanical methods
based on profilometer measurements are used at the initial and intermediate
stages of the figuring process, since their precision is about one order of

magnitude lower than that of optical test methods.

Interferometric testing methods with spherical test plates are not
always possible because the deviation of an aspherical surface from the
corresponding best-fit sphere can exceed hundreds of microns. For large
mirrors, autocollimation schemes employing null lenses are used. In the
presence of strong spherical aberration a null system provides stigmatic test
conditions. A detailed description of optical test methods for aspherical
mirrors is presented in [43, 45, 46]T.

Concave mirrors are effectively tested at the centre of curvature
through null systems providing an autocollimation path. This means that
after passing the null-lenses, the rays become normal to the optical surface
being tested. Unfortunately, the null system is a potential source of errors
during the test and therefore its quality needs crosschecking. Use of two
independent null systems improves reliability of the test results. A
crosscheck of the null-lens against a computer generated hologram (CGH),
which mimics aberrations of the optical surface, enables easy verification

of null system quality. In the modified scheme using CGH technology one

can test off-axis aspherical segments [47]T.

The optical testing of large convex aspherical mirrors is most
challenging, since it requires a compensator (glass matrix or Hindle sphere)
at least as large as the mirror itself. A spherical matrix in the shape of a
meniscus lens with a coated concentric hologram provides a means of

testing convex aspherical mirrors using autocollimation schemes. This test
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method with a spherical matrix has been successfully demonstrated for the
convex secondary mirrors of the LBT and the Magellan telescope [48]T. It

should be noted that the ability of the optical test methods mentioned is
such that it is possible to perform data sampling over entire surfaces in

several hundred points with a precision in the range of a few nm.

1.9 The Aim of Thesis

The aim of this thesis is, first, to study how the asphericity factor
effects the reflecting telescope parameters under investigation of this thesis.
These parameters are:

1. the A-values (length segment from the tangent x-y plane to the
surface);
2. ray aberrations both the transverse (TA) and the longitudinal (LA);
3. the angle the incident ray makes with the surface normal vector.
and second, to design a two-mirror reflecting telescope based upon this
study.

The design fulfillments are 1m aperture (for comparison between

surfaces of unified aperture), and 2.5m telescope (costless) with best

possible features (light gathering power, and resolving power).



Chapter

Ray Tracing
2.1Ray Tracing

Ray tracing procedures are the mainstay and the mathematical tools
essential for system evaluation before being constructed; because the
obtained results are used in aberration calculations; and that’s why it is of a
fundamental importance in optical design. There are different types of ray
tracing methods for the different types of the incoming rays. The
programming work involved is skew ray tracing (exact ray tracing) through

spherical surface and quadric surfaces of revolution ( Cartesian surfaces).

Since the Gaussian region is a very small one in comparison with the
total optical element (lens or mirror) size, especially, when large elements
are used. Therefore, there is an insisting necessity to use more general
procedure for tracing rays in three dimensions by using solid geometry
instead of using paraxial ray tracing because it is just an approximation. So,
the used procedure for such case takes into account the most general type
of rays known as skew. The meaning of skew rays is those which are not
co-planar with axis (optical axis) [18]. So, a skew ray must be defined in
three coordinates X, y, and z. The only way to achieve further generality is
to make use of this technique to get an exact analysis for ray tracing of such
general case [6]. Figure (2.1) shows the diagram that illustrates the case of

a skew ray.

25
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Transfered Ray
Coordinates
y (at tangent x-y
A plane):
' Equation 2.4
a 4y
M 5 .
Coming Ray ' Refracted ray Y Refracted ray with
Coordinates E with Lj, Mj, Nj E Lj+1, Mj+1, Nj+1
(At tangent ' X '
x-y plane): E . i
X=X 1, Y=Yi-1 t !
z=0 0/ ____________ ]
with L, M, N - 7 Z-axis.
¥ d >
v \/ !
Incident Ray Incident Ray
Coordinates Coordinates
(at surface # J): (at surface # J+1):
Equation 2.5 Equation 2.5

Figure ( 2.1) Geometry and notation used for tracing a skew ray

between spherical surfaces.

2.2 Skew Ray Tracing through Spherical Surfaces

Before giving a flowchart that explains the programming work for a

skew ray, exhibiting the used formulae is of great importance to illustrate

the mathematical analysis for this case geometrically.

Lets consider the optical axis is a long the z-axis, passing through the

(x-y) plane that are tangent to the surfaces of the optical elements from

their vertices (figure 2.1). The starting equation that gives z—coordinates of

a spherical surface is [19]:

z:%(x2 +y? +22)

2.1)

where C is the curvature of the surface, and X and y are the coordinates of

the incident ray and the spherical surface.

To employ Snell’s law of the refraction in terms of geometrical

forms, it has been reformulated as [19]:
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n'L'—nL=ka
nN'M’"—nM =kg (2.2)
n'N'—nN =ky
where
k=n"cosl"—ncosl (2.3)

L, M, and N are the direction cosines of the incident rays. a, 3, and y are the
components of the unit normal at the point of incidence. The non—primed
parameters belong to the previous medium. This method involves two sets
of equations; the first for the transfer between spherical surface and the

second for the refraction.

Transfer between Spherical Surfaces

The equations for transferring skew rays between spherical surfaces are

[19]:

X, = X, +£(d ~-7.,)
N 2.4)
M

Yo =Y "‘W(d - 2—1)

(X.1, Y1) are the coordinates of the coming ray, and (X, Y,) are the
coordinates of the ray intersection with the (x—y) plane. The ray intersects

the spherical surface in the coordinates are given by [19]:

X=X, + LA
y=Y, + MA (2.5)
z=NA

where A is the length segment from the (x—y) plane to the surface; which is

expressed as [19]:

A F

G+G? —cF

(2.6)
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F=c(x2 +y2) 2.7)

G =N —¢(Lx, + My,) (2.8)

Refraction (Reflection) through Spherical Surfaces

It 1s important to refer that the expressions and notation used in this
section for refraction are exactly the same expressions and notations used
for reflection, taking into consideration that the angle of reflection is equal

to the angle of incidence and the mirror index of refraction is equal to -1.

To obtain refraction (reflection) equations through spherical surface it
is needed to know the components of the unit normal (. o, B, y) at the point

of incidence. These components can be obtained from [19]:
_[oF oF oF
ox’ oy’ oz
(8F )2 oF Y (aF T
OX oy 0z

where F stands for equation (2.1). Using (2.9) in equation (2.2), the new

(2.9)

(a,ﬂﬂ)\/

values of the directional cosines (after refraction) can be expressed as [19]:

n'L"=nL — Kx
n'M’=nM — Ky (2.10)
N'N'=nN —Kz+n'cosl'—ncos|

where
K=c(n'cosl'—ncosl) (2.11)
cos| =+G? —cF (2.12)
ncos I’ =+/(n")* —n?(1—cos’ 1) (2.13)

equations (2.10) up to (2.13) complete the refraction (reflection) process.

Substituting the direction cosines of equation (2.10) in (2.4), the transfer
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process from one surface to another is done. After each refraction
(reflection) process the direction cosines should be checked in order to

assert the tracing validity. This can be done by [19]:
(LY +(M")? +(N")* =1 (2.14)

The flowchart that explains the procedure used for skew ray tracing

through spherical surfaces is shown in figure (2.2)
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(Initialization) putting the origin
in the vertex of the first curvature

Input ray information
direction cosines & X, y

Input system information, curvature,

refractive index and separations

Calculating ray intersection
coordinates with the tangent
(x-y) plane

Calculating F and G

Calculating the cosine of the
angle of incidence

Calculating the length segment A

Calculating the ray intersection
coordinates with the surface

Calculating the angle cosine
of the reflected ray

Calculating surface power

Calculating the new values of
the direction cosines for the
refracted ray

Figure (2.2) Flowchart for skew ray tracing through spherical surfaces.
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2.3 Ray Tracing through Quadric of Revolution

Most optical surfaces are spherical because a spherical surface is the
easiest to produce. However, non-spherical are necessary for some
purposes, especially when they appear as the solution of particular optical
problems, where one of these surfaces, ellipse, is the one that verifies
Fermat’s principle which states that the optical path length of each ray will
be identical [5] . So, a code for tracing rays through aspherical surfaces is
an essential and without such code, ray—tracing procedures are incomplete.
With this code, ray—tracing procedures are suitable to trace rays through,

approximately, all types of optical element surfaces.

For ray tracing purposes the equation used to represent the conic of

revolution is [19]:
z:g(x2+y2+gzz) (2.15)

This equation represents a surface of revolution about the z—axis, passing
through the origin and having curvature c at that point. The parameter ¢

determines the asphericity as follows [19]:

e<0 , hyperboloid

e =0 , Pparaboloid
0<e<l1l , prolate ellipsoid
e=1 , Sphere

e>1 , oblate ellipsoid

The utility of equation (2.15) is to give a range for aspherities while
keeping the paraxial curvature constant, which is essential in designing
conic surfaces (Cartesian). The followed steps to trace rays through these
surfaces are similar to those illustrated in the last section for skew rays

between spherical surfaces.
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Transfer between Quadrics

The transfer equations for the quadric are obtained by proceeding
exactly the procedure for spherical surfaces given in 82.1 the only different
formulae in this set is that for the length segment A, which is now
expressed as (kindly, see the appendix):

Ao F

- 2.16
G ++G> —cF(1+(e—N?) 210

from equation (2.16), it is quite evident the result for a sphere (spherical
surface) i1s recovered if € is put equal to unity. The coordinates of ray

intersection with the surface are obtained by using (2.16) in (2.5).

Refraction (Reflection) through Quadric

Refraction (reflection) calculations must again be restarted from
finding the cosine of the angle of incidence; by applying equation (2.9) to
equation (2.15) to obtain the direction cosines of the normal as (kindly, see

the appendix):

e —cX
J1-2c(e =Dz +c’e(e 1)z’

_ 2.17)
\/1 —2c(e-1z+c’e(e -1)z?

l-cez
}/: 2 2
J1-2c(s -1z +c2e(s —1)2° |

The cosine of the angle of incidence cosl can be obtained by the scalar
multiplication with the direction cosines of the ray tracing, it is expressed

as (kindly, see the appendix):

N —c(Lx+ My + N¢ z)

(2.18)
\/1 —2c(e-Dz+c’e(e-1)2°

cosl =
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Refraction (reflection) calculations are completed by using equation
(2.13), (2.3), and (2.2) respectively. The condition (equation 2.14) of
direction cosines can be used for the same purposes as before. The new
values of the direction cosines of the refracted (reflected) ray should be
substituted in equation (2.4) to complete the transfer process from one
surface to another.

The flowchart that explains the procedure used for skew ray tracing

through quadric surfaces is shown in figure (2.3)

In order to identify my personal contribution to the formulation of
the skew ray tracing, equations 2.16, 2.17, and 2.18 have been
reformulated. This reformulation is based upon analytical derivation to
these formulas by using the same notation of [19], (kindly see the

appendix).
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Figure (2.3) Flowchart for ray tracing through conic surfaces.
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2.4 Computing Transverse (TA) and
Longitudinal (LA) Aberrations

This section exhibits the expressions used to compute the results of
TA, and LA in Chapter 3. Concerning TA results, they computed by using

one of the skew ray tracing equations (equation2.4):
M
yO:y_1+W(f -z,) (2.19)

In this equation, Y, stands for TA, where Y, is the incident ray height at the
focal plane of the optical element(mirror), y; is the ray height in the
previous surface (mirror surface), N, and M are the ray direction cosines, f |
1s the mirror focal length, and z; is the length segment from the(x-y) plane

tangent to the surface(mirror).

Concerning LA results, they computed by using the following

equation

TA

LA=
tan(convergence angle)

(2.20)

where convergence = 2 x angle of reflection

Since the angle of reflection is equal to the incident angle, thus it can be

obtained from equation 2.18

N —c(Lx+ My + N¢ 2)

cosl =
J1-2¢(e -z +c’e(e - 1)2°

The angle values ( | )computers display are in radian, and those displayed

in degrees in chapter three are obtained by:

Ix180

T

Angle = (2.21)
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Results & Discussion

First of all, before setting off to discuss the results of figures and
tables, it is very important to refer that all the results appear in this chapter
are based upon considering the surfaces (mirrors) of Sm radius of curvature
(R=500cm). This means that the paraxial curvature (c, where c=1/R) is kept
invariant (constant) in all mirrors. Keeping the paraxial curvature c
constant is very essential for two reasons (keeping the paraxial curvature

constant, which is essential in designing conic surfaces [19]):

1. It is difficult to compare, judge, and select the proper type of surfaces
(mirrors) to represent a telescope mirrors unless all surfaces have the
same paraxial curvature.

2. To study the effect of the asphericity factor € on the parameters of the

reflecting surfaces, the paraxial curvature is kept constant. This is because

mirrors are single-surface optical elements with no thickness parameter;
while lenses have two surfaces and thickness. So, in the case of mirrors
there is only one and unique optical design parameter that controls mirrors

performance (focal length and magnification); it is the paraxial curvature c.

3.1 Discussing Surfaces’ Shapes

36
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It is important, here, to refer that the considered aperture used to
achieve the task of this section is 9Im (900cm) aperture except the case of
oblate ellipsoid; where the considered aperture is Im. In this section the
effect of changing the asphericitry factor (g) on the shapes of quadric (conic
or Cartesian) surfaces will be discussed. This task achieved exhibiting the
A-values of those surfaces (along the optical axis) versus the aperture
diameter. The aperture diameter of the surface is represented as the height
(y in cm) of the incident light ray on these surfaces. The A-values of these
surfaces represent, in skew ray tracing procedure, the length segment from
the plane that passes through the optical axis(z-axis) and tangent to the
surface at the origin (surface vertex), so the ray height axis (aperture
diameter axis) can represent the tangent x-y plane. The actual A-values
those listed in the tables have negative sign, because the length segment
from the tangent x-y plane to mirrors’ surfaces is from right to left, and
according to the sign convention these values are negative. But figures
from 3.1 up to 3.4, exhibited A-values as positive when plotted against the

ray height values just to compare between one figure and another.

The asphericity factor (&) factor changes the shapes of quadric
surfaces. Figures 3.1, 3.2, 3.3, and 3.4 obviously clear this fact. These
figures exhibit the A-values of these surfaces versus the ray height or the

aperture diameter, where the A- axis represents the optical axis.

Figure 3.1 shows the effect of decreasing (¢) on the shapes of
surfaces in the region of hyperboloid (¢<0). In the interval [-100,100]cm
along the aperture diameter axis, the surfaces curves seem to coincide.
Beyond this interval the surfaces begin to depart from each other. This
figure also shows that as €=-0.01 the surface shape is very close to that of
paraboloid and as € decreases down to €=-1000 the shapes become more
and more flattened. In other words, it means that the A -values begin to

become closer and closer to the plane tangent to the surface at its vertex.
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Geometrically (in terms of skew ray tracing), this means that the length
segment between a point on a surface and the tangent plane is getting
smaller and smaller as (€¢) decreases from £=-0.1 down to é=-1000, (kindly,
see table 3.1) consequently, this behavior leads to the conclusion that when

¢ = -oo the surface becomes plane.

Figure 3.2 compares between the shape of spherical surface (e=1)
and the shape of the paraboloid (¢=0). The A-values of both seems to
coincide for a while or interval of aperture diameter [-250,250] cm. beyond
this interval the A-values those belong to the spherical surface begin to
show higher response to the increase in aperture diameter as they get higher
A-values for the same aperture diameter. Geometrically, this means that the
length segment between a point on a spherical surface and the tangent
plane is larger than the length segment between a point on the surface of

paraboloid and the tangent plane(kindly, see table 3.2).

Figure 3.3 shows how & works in the region of prolate ellipsoid
(0<e<1), this is very clear that the shapes of prolate ellipsoid € forms are
ranging between paraboloid (¢=0) and spherical surface (e=1). When £=0.2
the surface shape is very close to that of paraboloid and when £=0.8 the

surface shape is very close to that of spherical surface (kindly, see table

3.2).
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Fig. 3.1 hyperboloid surfaces.
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Figure 3.4 shows the influence of increasing ¢ in the region of oblate
ellipsoid (e>1). In this region, the case is quite the contrast to that for
hyperboloid; the story of A-values response to the aperture diameter in the
comparison between spherical surface and paraboloid is going on but with
higher response. The previous figures 3.1, 3.2, and 3.3, the domain of the
aperture diameter was [-500cm, 500cm] to get a noticeable change in A-
values (shape of the surfaces). While in this case, the domain of the
aperture diameter is [-50, 50]cm due to the higher response the A-values

showed versus the increase in €. (kindly, see table 3.3)

Table 3.1 A- values versus the ray heights forming hyperboloids
surfaces of 500 cm radii.

A(cm)
y(cm) | £€=-1000 | & =-100 e=-10 e=-1 £=-0.01
450 | -13.73903 | -40.27693 | -100.831 | -172.6812 | -202.0916
400 | -12.15899 | -35.31129 | -86.0147 | -140.3124 | -159.7448
350 | -10.57926 | -30.35534 | -71.44958 | -110.3278 | -122.3503
300 | -9 -25.41381 | -57.23806 | -83.09519 | -89.91915
250 | -7.42149 | -20.4951 | -43.54144 | -59.017 -62.46099
200 | -5.844289 | -15.61553 | -30.62258 | 38.51648 | -39.98401
150 | -4.269696 | -10.81139 | -18.92024 | -22.01533 | -22.49494
100 | -2.701562 | -6.18034 | -9.160798 | -9.901952 | -9.999001
50 | -1.158312 | -2.071068 | -2.440442 | -2.493781 | -2.499938
-50 | -1.158312 | -2.071068 | -2.440442 | -2.493781 | -2.499938
-100 | -2.701562 | -6.18034 | -9.160798 | -9.901952 | -9.999001
-150 | -4.269696 | -10.81139 | -18.92024 | -22.01533 | -39.98401
-200 | -5.844289 | -15.61553 | -30.62258 | -38.51648 | -62.46099
-250 | -7.42149 | -20.4951 | -43.54144 | -59.017 -89.91915
-300 | -9 -25.41381 | -57.23806 | -83.09519 | -122.3503
-350 | -10.57926 | -30.35534 | -71.44958 | -110.3278 | -202.0916
-400 | -12.15899 | -35.31129 | -86.0147 | -140.3124 | -159.7448
-450 | -13.73903 | -40.27693 | -100.831 | -172.6812 | -202.0916
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Table 3.2 A- values versus the ray heights forming paraboloid, prolate ellipsoid
surfaces, and spherical surface, all of 500 cm radius.

A(cm)
Paraboloid Prolate ellipsoid Sphere
Y(cm) (e=0) (e=0.2) (e=0.4) (¢=0.6) (e=0.8) (e=1)

450 | -202.5 -211.4415 | -222.2598 | -235.8851 | -254.1901 | -282.0551
400 | -160 -165.4765 | -171.8071 | -179.2861 | -188.3938 | -200

350 | -122.5 -125.658 | -129.1744 | -133.135 | -137.6603 | -142.9286
300 | -90.00001 | -91.68109 | -93.49666 | -95.46855 | -97.62444 | -100

250 | -62.5 -63.30142 | -64.14588 | -65.03796 | -65.98301 | -66.9873
200 | -40 -40.32523 | -40.66134 | -41.00904 | -41.36913 | -41.74243
150 | -22.5 -22.60217 | -22.70623 | -22.81224 | -22.92027 | -23.0304
100 | -10 -10.02008 | -10.04032 | -10.06073 | -10.08131 | -10.10205
50 -2.5 -2.501251 | -2.502505 | -2.503761 | -2.50502 | -2.506281
-50 | -2.5 -2.501251 | -2.502505 | -2.503761 | -2.50502 | -2.506281
-100 | -10 -10.02008 | -10.04032 | -10.06073 | -10.08131 | -10.10205
-150 | -22.5 -22.60217 | -22.70623 | -22.81224 | -22.92027 | -23.0304
-200 | -40 -40.32523 | -40.66134 | -41.00904 | -41.36913 | -41.74243
-250 | -62.5 -63.30142 | -64.14588 | -65.03796 | -65.98301 | -66.9873
-300 | -90.00001 | -91.68109 | -93.49666 | -95.46855 | -97.62444 | -100
-350 | -122.5 -125.658 | -129.1744 | -133.135 | -137.6603 | -142.9286
-400 | -160 -165.4765 | -171.8071 | -179.2861 | -188.3938 | -200
-450 | -202.5 -211.4415 | -222.2598 | -235.8851 | -254.1901 | -282.0551

Table 3.3 A- values versus the ray heights forming oblate ellipsoid
surfaces of 500 cm radii.

A(cm)

y(cm) | (e=10) (£=20) (¢=40) (=60) (e=80)
50 -2.565835 | -2.63932 -2.817542 | -3.062871 | -3.454915
45 -2.067756 | -2.114415 | -2.222598 | -2.358851 | -2.541901
40 | -1.626454 | -1.654765 | -1.718071 | -1.792861 | -1.883938
35 | -1.240386 | -1.25658 -1.291744 | -1.331349 | -1.376603
30 | -0.9082492 | -0.9168109 | -0.9349665 | -0.9546855 | -0.9762443
25 -0.6289558 | -0.6330141 | -0.6414587 | -0.6503796 | -0.65983
20 -0.4016129 | -0.4032522 | -0.4066134 | -0.4100904 | -0.4136913
15 | -0.2255086 | -0.2260217 | -0.2270623 | -0.2281224 | -0.2292027
10 | -0.1001002 | -0.1002008 | -0.1004032 | -0.1006073 | -0.1008131
-10 ] -0.1001002 | -0.1002008 | -0.1004032 | -0.1006073 | -0.1008131
-15 ] -0.2255086 | -0.2260217 | -0.2270623 | -0.2281224 | -0.2292027
-20 | -0.4016129 | -0.4032522 | -0.4066134 | -0.4100904 | -0.4136913
-25 [ -0.6289558 | -0.6330141 | -0.6414587 | -0.6503796 | -0.65983
-30 | -0.9082492 | -0.9168109 | -0.9349665 | -0.9546855 | -0.9762443
-35 | -1.240386 | -1.25658 -1.291744 | -1.331349 | -1.376603
-40 | -1.626454 | -1.654765 | -1.718071 | -1.792861 | -1.883938
45 | -2.067756 | -2.114415 | -2.222598 | -2.358851 | -2.541901
-50 | -2.565835 | -2.63932 -2.817542 | -3.062871 | -3.454915
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3.2 Discussing the Telescope’s Parameters
In this section, all the considered surfaces (mirrors) are of D=1m
aperture diameter (-50cm<y< 50cm), and R=5m radius of curvature for

selecting the surface with best features to stand for the primary mirror.

This section discusses the effect of changing the shapes of surfaces,
due to varying €, on the reflecting telescope parameters under investigation

of the project of this thesis. These parameters are:

1. The length segment A—values.

2. The angle (in degrees)the incident ray makes with the normal to the
surface at the point of incidence. It is necessary to mention, here, that
this angle determines the power of surface for each individual ray
height (y-coordinates in cm). So, different angles give different
powers (focal length or magnification) and this leads to (the two
following parameters)rays aberrations.

3. Longitudinal Aberrations (LA), directly related to the distance, ray
makes when intersects the optical axis, before or behind the focus.

4. The Transverse Aberrations (TA) which refers to the distance above

or below the optical axis to the ray intersection with the focal plane.

Table 3.4 for spherical surface (¢=1)shows that the length segment
(A-values) from the tangent plane to the surface increases from 0.10001cm
to 2.50628cm when the ray height (y in cm) varies from 10cm to 50cm
away from the optical axis. This was associated with angle variation, the
angle the incident ray makes with the vector normal to surface, from
1.14603° to 5.739° to the same interval of ray height. This, in turn, changed
the power of the surface along the aperture for each individual ray height,
and then the appearance of TA as consequent. The marginal rays (y=50cm
and y=-50cm) produce TA =0.225c¢m and -0.255cm respectively. As shown

in the table the rays above the optical axis intersect the focal plane below
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the focal point and the rays below the optical axis intersects the focal plane
above the focal point. And this means that the rays in the case of spherical
surfaces (e=1) intersect the optical axis before the paraxial focal point

which justifies the positive values for the LA (maximum value for

LA=1.259cm).

Table 3.4 Results of 500cm radius, 100cm aperture diameter
spherical mirror (e=1).

Y(cm) z(cm) Angle(®) | LA(cm) TA(cm) | L+M° +N°
50 -2.506281 | 5.739176 | 1.259664 -0.2557378 1
45 -2.029117 | 5.163612 | 1.018917 -0.1856209 1
40 -1.602568 | 4.588554 | 0.803224 -0.1298644 1
35 -1.226504 | 4.014004 | 0.6157961 -8.669955¢e-2 1
30 -0.9008115 | 3.4398 | 0.4503085 -0.0544386 1
25 -0.6253911 | 2.866008 | 0.3152064 | -3.142375e-2 1
20 -0.4001601 | 2.29243 | 0.1988541 -1.605671e-2 1
15 -0.2250507 | 1.71908 | 0.1051648 -6.761057¢-3 1
10 -0.10001 1.14603 | 5.823889¢-2 | -2.00056¢-3 1
-10 | -0.10001 1.14603 | 5.823889¢-2 | 2.00056¢-3 1
-15 | -0.2250507 | 1.71908 | 0.1051648 6.761057¢-3 1
-20 | -0.4001601 | 2.29243 | 0.1988541 1.605671e-2 1
-25 | -0.6253911 | 2.866008 | 0.3152064 | 3.142375e-2 1
-30 | -0.9008115| 3.4398 | 0.4503085 0.0544386 1
-35 | -1.226504 | 4.014004 | 0.6157961 8.669955¢e-2 1
-40 | -1.602568 | 4.588554 | 0.803224 0.1298644 1
-45 | -2.029117 | 5.163612 | 1.018917 0.1856209 1
-50 | -2.506281 | 5.739176 | 1.259664 0.2557378 1

Table 3.5 for paraboloid (¢=0) shows that the length segment from
the tangent plane to the surface ( A-values) varies from 0.Icm to 2.5cm
when the ray height varies from 10cm to 50cm. For the same interval of y
the table shows variation in the angle from 1.14589° to 5.710623°. A
comparison between the results in table 3.4 and 3.5 shows that the
difference in the A-values for the marginal ray is 0.006cm or 60pum and
difference between the angles those rays made is 0.003° which are very

fine. But these very fine differences yield a complete elimination to

spherical aberrations; since lemx107'=Inm. Thus, 97nm (highest TA

value) is much less than that of the visible region (400nm< A <700nm).
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Table 3.5 Results of 500cm radius, 100cm aperture diameter
paraboloid mirror (£=0).

y(cm) | z(cm) | Angle(®) LA(cm) TA(cm) | L*+M° +N°
50 |-2.5 [5.710623 | -2.4749867¢-6 | 5.00e-7 | 0.9999995
45 | -2.0255.142737 | -8.5303867¢-6 | 15.48¢-7 | 1
40 |-1.6 |4.573932 | -6.4583845¢-6 | 10.40e-7 | 0.9999998
35 | -1.225 | 4.004186 | -38.986467¢-6 | 54.85¢-7 | 0.9999999
30 |-0.9 |[3.433648 | -81.040113¢-6 | 97.60e-7 | 0.9999998
25 | -0.625|2.862386 | -66.084821e-6 | 66.25¢-7 | 1
20 [-0.4 [2.290551 | -15.974813¢-6 | 12.80e-7 | 1
15 [-0.225]1.718397 | -35.950130e-6 | 21.59¢-7 | 0.9999999
10 [-0.1 [ 1.145859 | -39.980640¢-6 | 16.0e-7 | 0.9999997
210 [-0.1 | 1.145859 | -39.980640e-6 | -16.0e-7 | 0.9999997
.15 [-0.225 | 1.718397 | -35.950130e-6 | -21.59¢-7 | 0.9999999
20 |-04 2290551 | -15.974813¢-6 | -12.80e-7 | 1
25 -0.625 | 2.862386 | -66.084821¢-6 | -66.25¢-7 | 1
30 [-0.9 |3.433648 | -81.040113¢-6 | -97.60e-7 | 0.9999998
35 | -1.225 | 4.004186 | -38.986467¢-6 | -54.85¢-7 | 0.9999999
40 |-1.6 | 4.573932 | -6.4583845¢-6 | -10.40e-7 | 0.9999998
-45 | -2.025 | 5.142737 | -8.5303867¢-6 | -15.48¢-7 | 1
50 | -2.5  |5.710623 | -2.4749867¢-6 | -5.00e-7 | 0.9999995

Tables 3.6, 3.7, 3.8, and 3.9 (for prolate ellipsoid); these tables show

that their results are ranging between those in the case of paraboloid and

the case of spherical surface. It is very clear that when €=0.2 (table3.6) the

results are very close to those of paraboloid (¢=0) and when &=0.8

(table3.9) the results are close to those of spherical surface (¢=1), and when

£=0.4 and £=0.6 the results are in between.
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Table 3.6 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid

mirror of €=0.2

y(cm) z(cm) Angle(’) | LA(cm) TA(cm) | L+M° +N°
50 |-2.501251 |5.716318 | 0.2532806 | -5.084326¢-2 | 0.9999995
45 -2.025821 | 5.146888 | 0.2021759 -3.694014e-2 | 1
40 |-1.600512 | 4.576799 | 0.1583835 -2.587078e-2 | 1
35 -1.2253 4.006191 | 0.1266284 -0.0172962 0.9999994
30 | -0.9001621 | 3.434902 | 9.292567¢-2 | -1.086728¢-2 | 0.9999996
25 1-0.6250781 | 2.86307 | 5.817991e-2 | -6.272856e-3 | 1
20 -0.400032 | 2.290978 | 4.026034e-2 | -3.207913¢-3 | 0.9999999
15 |-0.2250101 | 1.718397 | 5.68749¢-3 | -0.0013494 1
10 -0.100002 | 1.145859 | 2.095442¢-2 | -4.005632¢-4 | 0.9999998
-10 | -0.100002 | 1.145859 | 2.095442¢-2 | 4.005632¢-4 | 0.9999998
-15 | -0.2250101 | 1.718397 | 5.68749¢-3 | 0.0013494 1
-20 | -0.400032 | 2.290978 | 4.026034¢-2 | 3.207913¢-3 | 0.9999999
-25 | -0.6250781 | 2.86307 | 5.817991e-2 | 6.272856e-3 | 1
-30 | -0.9001621 | 3.434902 | 9.292567¢-2 | 1.086728¢e-2 | 0.9999996
-35 | -1.2253 4.006191 | 0.1266284 0.0172962 0.9999994
-40 | -1.600512 | 4.576799 | 0.1583835 2.587078e-2 |1
-45 1 -2.025821 | 5.146888 | 0.2021759 3.694014e-2 | 1
-50 | -2.501251 | 5.716318 | 0.2532806 5.084326e-2 | 0.9999995

Table 3.7 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid
mirror of €=0.4

y(cm) z(cm) Angle(’) | LA(cm) TA(cm) | L°+M° +N°
50 | -2.502505 | 5.721972 | 0.5029576 | -0.1018295 1
45 -2.026643 | 5.151113 | 0.4089954 -7.398331e-2 | 0.9999995
40 |-1.601025 | 4.579795 | 0.3230317 -0.0517997 | 0.9999996
35 | -1.225601 | 4.008048 | 0.2430423 -0.0345981 1
30 -0.9003243 | 3.436099 | 0.1803337 -2.174047¢-2 | 0.9999999
25 1-0.6251563 | 2.863822 | 0.1240197 -1.255654e-2 | 1
20 -0.400064 | 2.291406 | 8.696601e-2 | -6.421361e-3 | 0.9999996
15 |-0.2250203 | 1.718739 | 0.0554668 -2.70465¢e-3 | 0.9999997
10 -0.100004 1.14603 | 0.0582449 -8.016349¢-4 | 0.9999995
-10 | -0.100004 1.14603 | 0.0582449 8.016349e-4 | 0.9999995
-15 1-0.2250203 | 1.718739 | 0.0554668 | 2.70465e-3 0.9999997
-20 | -0.400064 | 2.291406 | 8.696601e-2 | 6.421361e-3 | 0.9999996
-25 1 -0.6251563 | 2.863822 | 0.1240197 1.255654e-2 | 1
-30 | -0.9003243 | 3.436099 | 0.1803337 2.174047¢-2 | 0.9999999
-35 | -1.225601 | 4.008048 | 0.2430423 0.0345981 1
-40 | -1.601025 | 4.579795 | 0.3230317 0.0517997 0.9999996
-45 | -2.026643 | 5.151113 | 0.4089954 7.398331e-2 | 0.9999995
-50 | -2.502505 | 5.721972 | 0.5029576 | 0.1018295 1
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Table 3.8 Results of 500cm radius, 100cm aperture diameter

prolate ellipsoid mirror of €=0.6

y(cm) z(cm) Angle(’) | LA(cm) TA(cm) | L+M° +N°
50 | -2.503761 | 5.727655 | 0.7534409 -0.1529703 1
45 -2.027467 | 5.155257 | 0.611541 -0.1111 0.9999998
40 |-1.601539 | 4.582745 | 0.4849783 -7.777584e-2 | 0.9999994
35 -1.225902 4.01005 | 0.3684891 -5.194262e-2 | 1
30 |-0.9004866 | 3.437352 | 0.2717851 -0.0326285 0.9999999
25 1-0.6252345 | 2.864505 | 0.1838017 -1.883985e-2 | 1
20 -0.4000961 | 2.291747 | 0.124257 -9.631894¢-3 | 0.9999998
15 |-0.2250304 | 1.718853 | 7.204297¢-2 | -4.056463¢-3 | 0.9999999
10 -0.100006 | 1.145859 | 2.095042¢-2 | -1.200729¢-3 | 1
-10 | -0.100006 | 1.145859 | 2.095042¢-2 | 1.200729¢-3 | 1
-15 | -0.2250304 | 1.718853 | 7.204297e-2 | 4.056463¢-3 | 0.9999999
-20 | -0.4000961 | 2.291747 | 0.124257 9.631894¢-3 | 0.9999998
-25 1 -0.6252345 | 2.864505 | 0.1838017 1.883985e-2 | 1
-30 | -0.9004866 | 3.437352 | 0.2717851 0.0326285 0.9999999
-35 1 -1.225902 | 4.01005 | 0.3684891 5.194262¢-2 | 1
-40 | -1.601539 | 4.582745 | 0.4849783 7.777584e-2 | 0.9999994
-45 1 -2.027467 | 5.155257 | 0.611541 0.1111 0.9999998
-50 | -2.503761 | 5.727655 | 0.7534409 0.1529703 1

Table 3.9 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid mirror

of £=0.8
y(cm) | z(cm) | Angle(®) | LA(cm) TA(cm) | L°+M° +N°
50 |-2.50502 | 5.733401 | 1.00618 -0.2042748 | 1
45 [-2.028291 |5.159398 | 0.8136125 |-0.1483158 |1
40 |-1.602053 | 4.585608 | 0.6419042 |-0.1037858 |1
35 | -1.226203 | 4.011954 | 0.4876491 | -6.930795¢-2 | 1.000001
30 |-0.900649 |3.438548 | 0.3590099 | -4.352804e-2 | 1
25 [-0.6253128 | 2.865257 | 0.2495499 | -2.513105¢-2 | 1
20 |-0.4001281 | 2.292089 | 0.1615784 | -0.0128443 | 0.9999999
15 | -0.2250405 | 1.718967 | 8.860388¢-2 | -5.41014e-3 | 1
10 [-0.100008 | 1.14603 | 0.0582409 |-1.601801e-3 | 0.9999997
-10 [ -0.100008 | 1.14603 [0.0582409 [ 1.601801e-3 | 0.9999997
-15 | -0.2250405 | 1.718967 | 8.860388e-2 | 5.41014e-3 | 1
20 | -0.4001281 | 2.292089 | 0.1615784 | 0.0128443 | 0.9999999
25 | -0.6253128 | 2.865257 | 0.2495499 | 2.513105¢-2 | 1
30 | -0.900649 | 3.438548 | 0.3590099 | 4.352804e-2 | 1
35 [ -1.226203 | 4.011954 [ 0.4876491 | 6.930795¢-2 | 1.000001
-40 | -1.602053 | 4.585608 | 0.6419042 |0.1037858 |1
-45 [ -2.028291 |5.159398 [ 0.8136125 [0.1483158 |1
50 | -2.50502 | 5.733401 | 1.00618 02042748 |1
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Tables 3.10, 3.11, 3.12, and 3.13 (for oblate ellipsoid), show that for
the set of € = {20, 40, 60, 80}there is a set of A= {-2.63932, -2.817542, -
3.062871, -3.454915} cm, and for the same interval of asphericity factor
the angles’ set={6.379349°, 7.356153°, 8.984894°, 12.60439°} when the
ray height y=50cm. So, it is clear that increasing ¢ leads to increase both A-
values and the angle the incident ray makes with normal. And, as
consequent, there is increase in aberrations (TA and LA) over those of
spherical mirror of the same paraxial curvature as € increases. For the same
set of € above the sets of TA and LA are, respectively, {-6.011672, -
14.90397, -30.09065, -66.06139} and {26.54819, 56.76044, 92.77639,
140.3319}. The signs of TA and LA refer that the power of the mirror
increased with increasing €. So, it is concluded that, the ray above the
optical axis intersected the focal plane below the optical axis and vise
versa. And that’s why the LA has positive values, since all rays intersects

the optical axis before the paraxial focal length.
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Table 3.10 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid
mirror of =20

y(cm) z(cm) Angle(’) | LA(cm) TA(cm) L’+M° +N°
50 | -2.63932 6.379349 | 26.54819 | -6.011672 1
45 -2.114415 | 5.614995 | 21.24168 -4.21755 1
40 | -1.654765 | 4.89657 | 16.60451 -2.866372 1
35 -1.25658 4215332 | 12.59848 -1.86736 1
30 ]-0.9168109 | 3.564033 | 9.186903 | -1.148687 0.9999999
25 |-0.6330141 | 2.93665 | 6.339413 | -0.6520168 0.9999999
20 | -0.4032522 | 2.328097 | 4.033119 -0.3287014 1
15 1-0.2260217 | 1.734042 | 2.263602 | -0.137038 0.9999999
10 | -0.1002008 | 1.150291 | 0.9845008 | -4.026527¢-2 | 1
-10 | -0.1002008 | 1.150291 | 0.9845008 | 4.026527e-2 | 1
-15 | -0.2260217 | 1.734042 | 2.263602 0.137038 0.9999999
-20 | -0.4032522 | 2.328097 | 4.033119 0.3287014 1
-25 1-0.6330141 | 2.93665 | 6.339413 0.6520168 0.9999999
-30 | -0.9168109 | 3.564033 | 9.186903 1.148687 0.9999999
-35 | -1.25658 4.215332 | 12.59848 1.86736 1
-40 | -1.654765 | 4.89657 | 16.60451 2.866372 1
-45 | -2.114415 | 5.614995 | 21.24168 421755 1
-50 | -2.63932 6.379349 | 26.54819 6.011672 1

Table 3.11 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid
mirror of e=40

y(cm) | z(cm) | Angle(®) | LA(cm) TA(cm) | L°+M° +N°
50 |-2.817542 |7.356153 | 56.76044 | -14.90397 1
45 | -2.222598 |6.246953 | 44.69329 | -9.903011 0.9999995
40 | -1.718071 |5.298903 | 34.49854 | -6.454811 0.9999999
35 | -1.291744 | 4.463877 | 25.90908 | -4.070153 1
30 | -0.9349665 | 3.710457 | 18.73611 | -2.440494 1
25 | -0.6414587 | 3.016945 | 12.84521 | -1.357915 1
20 |-0.4066134 | 2.367529 | 8.137897 | -0.6741723 |1
15 |-0.2270623 | 1.750106 | 4.540058 | -0.2779032 |1
10 | -0.1004032 | 1.155044 | 2.009765 | - 8.102299¢-2 | 0.9999999
-10 | -0.1004032 | 1.155044 | 2.009765 | 8.102299¢-2 | 0.9999999
-15 | -0.2270623 | 1.750106 | 4.540058 | 0.2779032 |1
20 | -0.4066134 | 2.367529 | 8.137897 | 0.6741723 |1
25 | -0.6414587 | 3.016945 | 12.84521 | 1.357915 1
-30 | -0.9349665 | 3.710457 | 18.73611 | 2.440494 1
35 [ -1.291744 | 4.463877 | 25.90908 | 4.070153 1
40 | -1.718071 [5.298903 | 34.49854 | 6.454811 0.9999999
45 | -2.222598 | 6.246953 | 44.69329 | 9.903011 0.9999995
-50 | -2.817542 | 7.356153 | 56.76044 | 14.90397 1
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Table 3.12 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid

mirror of €=60.

y(cm) z(cm) Angle(®) | LA(cm) | TA(cm) | L*+M° +N°
50 | -3.062871 | 8.984894 | 92.77639 | -30.09065 | 0.9999996
45 -2.358851 | 7.155109 | 71.23057 | -18.17019 |1
40 |-1.792861 | 5.820057 | 54.03262 | -11.13046 | 0.9999996
35 -1.331349 | 4.762261 | 40.06538 | -6.722603 |1
30 | -0.9546855 | 3.876614 | 28.70239 | -3.907861 | 1
25 |-0.6503796 | 3.104254 | 19.53851 | -2.125546 |1
20 | -0.4100904 | 2.408997 | 12.30997 | -1.037885 |1
15 ]-0.2281224 | 1.766689 | 6.846631 | -0.4227766 | 1
10 | -0.1006073 | 1.159778 | 3.022516 | -0.1222796 | 0.9999999
-10 | -0.1006073 | 1.159778 | 3.022516 | 0.1222796 | 0.9999999
-15 | -0.2281224 | 1.766689 | 6.846631 | 0.4227766 | 1
-20 | -0.4100904 | 2.408997 | 12.30997 | 1.037885 |1
-25 1 -0.6503796 | 3.104254 | 19.53851 | 2.125546 |1
-30 | -0.9546855 | 3.876614 | 28.70239 | 3.907861 1
-35 | -1.331349 | 4.762261 | 40.06538 | 6.722603 |1
-40 | -1.792861 | 5.820057 | 54.03262 | 11.13046 | 0.9999996
-45 | -2.358851 | 7.155109 | 71.23057 | 18.17019 |1
-50 | -3.062871 | 8.984894 | 92.77639 | 30.09065 | 0.9999996

Table 3.13 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid

mirror of e=80.

Y(cm) | z(cm) | Angle(®) | LA(cm) | TA(cm) | L°+M°+N°
50 | -3.454915 | 12.60439 | 140.3319 | -66.06139 | 0.9999999
45 | -2.541901 |8.625732 | 102.5475 | -31.84461 | 0.9999998
40 |-1.883938 |6.533 75.76304 | -17.58352 | 1.000001
35 | -1.376603 [5.129882 | 55.25905 | -10.00207 | 0.9999998
30 |-0.9762443 | 4.067268 | 39.13975 | -5.594545 | 1
25 |-0.65983 [3.199594 | 26.43162 | -2.964467 |1
20 |-0.4136913 | 2.452799 | 16.56389 | -1.421511 | 0.9999999
15 ]-0.2292027 | 1.783777 | 9.178543 | -0.5718549 | 0.9999998
10 |-0.1008131 | 1.164493 | 4.022921 | -0.1640472 | 1
10 |-0.1008131 | 1.164493 | 4.022921 | 0.1640472 | 1
15 [-0.2292027 | 1.783777 | 9.178543 | 0.5718549 | 0.9999998
20 |-0.4136913 | 2.452799 | 16.56389 | 1.421511 | 0.9999999
25 |-0.65983 | 3.199594 | 26.43162 | 2.964467 |1
30 |-0.9762443 | 4.067268 | 39.13975 | 5.594545 | 1
35 | -1.376603 | 5.129882 | 55.25905 | 10.00207 | 0.9999998
-40 |-1.883938 |6.533 75.76304 | 17.58352 | 1.000001
-45 | -2.541901 |8.625732]102.5475 | 31.84461 |0.9999998
50 | -3.454915 | 12.60439 | 140.3319 | 66.06139 | 0.9999999
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Tables from 3.14 to 3.17 (for hyperboloids); show a different story to
that for all mirrors having €>0. For the set of &= {-0.01, -1, -10, -100, -
1000} there is a set of A = {-2.499938, -2.493781, -2.440442, -2.071068,
-1.158312}cm, and for the same interval of asphericity factor the angles’
set={5.710314°, 5.682445°, 5.446473 °, 4.04472°, 1.72703 °} when the ray
height y=50cm. So, it is clear that negatively increase in € leads to decrease
both A-values and the angle the incident ray makes with normal. And, as
consequent, there is increase in aberrations (TA and LA) over those of
spherical mirror of the same paraxial curvature as € decreases. For the same
set of € above the sets of TA and LA are, respectively, {2.533558E-3,
0.2518625, 2.359148, 14.76136, 34.98063}cm and{-1.235819E-2, -
1.252814, -12.25906, -103.8542, -579.5505}cm. The signs of TA and LA
refer that the power of the mirror decreased with decreasing €. So, it is
concluded that, the ray above the optical axis intersected the focal plane
above the optical axis and vise versa. And that’s why the LA has negative
values, since all rays intersect the optical axis after the paraxial focal

length.
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Table 3.14 Results of 500cm radius, 100cm aperture diameter hyperboloid

mirror of e=-0. 01.

y(cm) | z(cm) | Angle() | LA(cm) TA(cm) | L+M° +N°
50 | -2.499938 |5.710314 | -1.235819¢-2 | 2.533558e-3 | 0.9999999
45 [-2.024959 |5.142585 | -8.815289¢-3 | 1.842362¢-3 | 0.9999997
40 [-1.599974 | 4.57376 | -8.894682e-3 | 1.292719¢-3 | 1
35 |-1.224985 | 4.004088 | -5.334735¢-3 | 8.63673¢-4 | 0.9999999
30 | -0.8999919 | 3.433591 | -2.912462¢-3 | 5.426802e-4 | 0.9999998
25 | -0.6249961 | 2.862386 | -1.70505¢-3 | 3.125207e-4 | 0.9999999
20 | -0.3999984 | 2.290551 | -6.458968¢-3 | 1.602463e-4 | 1
15 [-0.2249995 | 1.718397 | -5.69813¢-3 | 6.777774e-5 | 0.9999998
10 | -0.0999999 | 1.145688 | -1.632071e-2 | 2.007022¢-5 | 1
-10 | -0.0999999 | 1.145688 | -1.632071e-2 | -2.007022¢-5 | 1
-15 | -0.2249995 | 1.718397 | -5.69813e-3 | - 6.777774¢-5 | 0.9999998
220 | -0.3999984 | 2.290551 | -6.458968¢-3 | -1.602463e-4 | 1
25 | -0.6249961 | 2.862386 | -1.70505¢-3 | -3.125207e-4 | 0.9999999
-30 | -0.8999919 | 3.433591 | -2.912462¢-3 | -5.426802e-4 | 0.9999998
-35 | -1.224985 | 4.004088 | -5.334735¢-3 | -8.63673e-4 | 0.9999999
-40 |-1.599974 | 4.57376 | -8.894682¢-3 | -1.292719¢-3 | 1
45 | -2.024959 | 5.142585 | -8.815289¢-3 | -1.842362e-3 | 0.9999997
-50 | -2.499938 |[5.710314 | -1.235819¢-2 | -2.533558e-3 | 0.9999999

Table 3.15 Results of 500cm radius, 100cm aperture diameter hyperboloid
mirror of e=-1.0..

y(cm) | z(cm) | Angle(°)| LA(cm) TA(cm) | L°+M° +N°
50 |-2.493781 | 5.682445 | -1.252814 | 0.2518625 | 0.9999999
45 [-2.020916 | 5.122199 | -1.01321 0.1833478 | 0.9999996
40 |-1.597448 | 4.55939 |-0.8027095 | 0.1286117 |1
35 |-1.223503 | 3.994442 | -0.6125259 | 8.606552¢-2 | 0.9999999
30 | -0.8991915 | 3.427484 | -0.4502016 | 5.414477¢-2 | 0.9999999
25 |-0.6246099 | 2.858759 | -0.3198003 | 3.131366e-2 | 1.000001
20 |-0.3998401 | 2.288756 | -0.2028797 | 1.601995¢-2 | 1
15 [-0.2249494 | 1.717486 | -0.1270948 | 6.756505¢-3 | 1
10 [-0.09999 | 1.145688 | -0.0163108 | 1.999526e-3 | 0.9999995
210 [-0.09999 | 1.145688 | -0.0163108 | -1.999526¢-3 | 0.9999995
-15 | -0.2249494 | 1.717486 | -0.1270948 | -6.756505¢-3 | 1
20 |-0.3998401 | 2.288756 | -0.2028797 | -1.601995¢-2 | 1
25 | -0.6246099 | 2.858759 | -0.3198003 | -3.131366¢-2 | 1.000001
30 | -0.8991915 | 3.427484 | -0.4502016 | -5.414477¢-2 | 0.9999999
35 | -1.223503 | 3.994442 | -0.6125259 | -8.606552¢-2 | 0.9999999
40 |-1.597448 | 4.55939 |-0.8027095 | -0.1286117 |1
45 |-2.020916 | 5.122199 | -1.01321 -0.1833478 | 0.9999996
50 | -2.493781 | 5.682445 | -1.252814 | -0.2518625 | 0.9999999
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Table 3.16 Results of 500cm radius, 100cm aperture diameter hyperboloid

mirror of e=-10 .

y(cm) z(cm) Angle(’) | LA(cm) TA(cm) L’+M° +N°

50 |-2.440442 | 5.446473 | -12.25906 2.359148 1

45 -1.985575 494728 | -9.968561 1.738363 1.000001
40 | -1.575188 | 4.434779 | -7.900764 1.232813 1

35 -1.210351 | 3.909811 | -6.067437 0.8330724 1

30 | -0.8920426 | 3.373594 | -4.467406 0.5286022 0.9999999
25 1-0.6211419 | 2.827293 | -3.113696 0.3078906 1

20 | -0.3984127 | 2.272536 | -1.99198 0.1584802 0.9999999
15 |-0.224496 | 1.710636 | -1.129769 6.713851e-2 | 1

10 | -0.0999002 | 1.143637 | -0.4649667 | 1.995033¢-2 | 0.9999995
-10 | -0.0999002 | 1.143637 | -0.4649667 | -1.995033e-2 | 0.9999995
-15 | -0.224496 | 1.710636 | -1.129769 -6.713851e-2 | 1

-20 | -0.3984127 | 2.272536 | -1.99198 -0.1584802 | 0.9999999
-25 1-0.6211419 | 2.827293 | -3.113696 | -0.3078906 1

-30 | -0.8920426 | 3.373594 | -4.467406 -0.5286022 0.9999999
-35 | -1.210351 | 3.909811 | -6.067437 | -0.8330724 1

-40 | -1.575188 | 4.434779 | -7.900764 -1.232813 1

-45 | -1.985575 | 4.94728 | -9.968561 -1.738363 1.000001
-50 | -2.440442 | 5.446473 | -12.25906 -2.359148 1

Table 3.17 Results of 500cm radius, 100cm aperture diameter hyperboloid
mirror of e=-100.

y(cm) z(cm) Angle(®) | LA(cm) | TA(cm) | L*+M° +N°
50 |-2.071068 4.04472 |-103.8542 | 14.76136 | 0.9999997
45 |-1.726812 3.827201 | -86.56066 | 11.63348 | 0.9999998
40 |-1.403124 3.57462 |-70.30765 | 8.818869 [ 0.9999998
35 |-1.103278 3.282112 | -55.26275 | 6.359231 | 0.9999999
30 |-0.8309519 | 2.945236 | -41.60782 | 4.29267 |1
25 [-0.59017 2.560632 | -29.54044 | 2.647403 |1
20 |-0.3851648 |2.126884 |-19.27834 | 1.433467 |1
15 [-0.2201533 [ 1.645919 | -11.01396 | 0.6333959 | 1
10 [-9.901951E-2 | 1.123439 | -4.970037 | 0.194307 |1
-10 [ -9.901951E-2 | 1.123439 | -4.970037 | - 0.194307 | 1
-15 [-0.2201533 | 1.645919 | -11.01396 | -0.6333959 | 1
20 [-0.3851648 | 2.126884 | -19.27834 | -1.433467 | 1
25 [-0.59017 2.560632 | -29.54044 | -2.-647403 | 1
-30 [ -0.8309519 | 2.945236 | -41.60782 | -4.29267 |1
-35 [ -1.103278 3.282112 | -55.26275 | -6.359231 | 0.9999999
-40 |-1.403124 3.57462 |-70.30765 | -8.818869 | 0.9999998
-45 [ -1.726812 3.827201 | -86.56066 | -11.63348 | 0.9999998
-50 | -2.071068 4.04472 | -103.8542 | -14.76136 | 0.9999997
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After discussing the previous tables, one thing should be cleared; the
previous tables included column entitled “L°+M? +N°”. This column gives
the validity of the skew ray tracing condition pointed out in equation 2.14
of §2.2. Those columns, often, show the L°+M’ +N° =1, this can be
ascribed to the very well-known machine intrinsic numerical errors,

specifically, truncation (cut-off) error and rounding-off error.

Summary

It is, somewhat, necessary to summarize the previous discussion
before going to the next section. Table 3.18 gives a brief comparison and
summarizes the discussion of the tables form 3.4 to 3.17 ,since it shows the
variation in the values of angle the incident ray (marginal or semi-aperture
ray, when y=50cm)makes, and the corresponding A, LA, and TA. This
table, also, shows the A-values in region near to the paraxial one, when

y=10cm.

Table 3.18 Results of 500cm radius, 100cm aperture conic surfaces.

y=50cm y=10cm
¢ A(cm) | Angle(®) | LA (cm) TA (cm) A (cm)
80 | -3.454915 | 12.60439 | 140.3319 -66.06139 -0.1008131
Oblate 60 | -3.062871 | 8.984894 | 92.77639 -30.09065 -0.1006073
ellipsoid |_40__| -2.817542 | 7.356153 | 56.76044 -14.90397 -0.1004032
20 | -2.63932 | 6.379349 | 26.54819 -6.011672 -0.1002008
> Sphere 1 -2.506281 | 5.739176 | 1.259664 -0.2557378 -0.10001
\; 0.8 |-2.50502 | 5.733401 | 1.00618 -0.2042748 -0.100008
*g 0.6 | -2.503761 | 5.727655 | 0.7534409 -0.1529703 -0.100006
S | Prolate | 04 |-2.502505 [ 5.721972 [ 0.5029576 | -0.1018295 | -0.100004
£ | ellipsoid | 02 [-2501251| 5716318 | 02532806 | -5.084326¢-2 | -0.100002
S | Parabo- | 0 [-25 5710623 | 0 5.164608¢-6 | -0.1
§ Loid
~ -0.01 | -2.499938 | 5.710314 | -1.235819e-2 | 2.533558e-3 | -0.0999999
-1 -2.493781 | 5.682445 | -1.252814 0.2518625 -0.09999
hyper- -10 | -2.440442 | 5446473 | -12.25906 2.359148 -0.0999002
boloid | -100 [ -2.071068 | 404472 [ -103.8542 | 14.76136 -9.901951e-2

-1000 | -1.158312 | 1.727031 | -579.5505 34.98063 -9.160798e-2
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It is clear that increasing € leads to increase A and LA, and TA (with
negative sign) referring to the increase in the power of the mirror surface
that made the reflected ray intersect the optical axis before the focal point
and then intersects the focal image plane below the optical axis. All this is
ascribed to the increase in the angle the incident rays make with surface
normal. Surfaces with €>0 represent this behavior (prolate ellipsoids,

spherical surfaces, and oblate ellipsoids).

In the case of hyperboloids the situation is the contrast. TA in this
case possesses positive vales while LA possesses negative values because
the reflected rays intersect the focal image plane above the optical axis and
then intersect the optical axis behind the focal point due to the decrease in

the angle the reflected rays made with the surface.

This table shows the case of paraboloid as the interface between the

region of positive LA, and negative TA to negative LA, and positive TA.

A-values when y=50cm varies froml1.158cm to 3.454cm, when ¢
varies form -1000 to 80. And when y=10cm(R.H.S column), the region
near to the paraxial one, A- values varies from 9.160798E-2cm to
0.1008131cm for the same interval of &. These infinitesimal variation in
A- values refers that they are slightly affect by € and at the same time

exhibit the dominance of the paraxial curvature.
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3.3 Conclusions

1. The asphericity factor changes the shape of conic surfaces and
consequently changes the telescope mirrors parameters of this thesis (the
TA, LA, and the A-values);

2. e varies the distance between the conic surfaces and the tangent plane at
the edge of the surface for D =Im is in the range of um for the interval
[e<I]. i.e., all conics except the oblate elliposoid; while the distance
between the surfaces and the tangent plane at the edge of the surface is
in the range of mm (&¢>1). This is shown by A-values column for the
marginal ray (semi-aperture ray, y=50cm) in table 3.18. and that’s why
the domain of aperture diameter of oblate ellipsoid is [-50, 50]cm, and
that for others 1s[-500, 500]cm;

3. more negatively values of & (hyperboloids) produces more flattened
surfaces, and when € goes to - the surface becomes plane;

4. in the interval ¢ > 1, the angles incident rays make with the vector
normal to the surface are getting bigger, and in the interval ¢ < O the
angles become smaller and smaller; thus when & goes to -oothe angle
becomes zero, i.e. the incident ray completely coincides the vector
normal to the surface;

5. increasing € increases the power of the surface leading to negatively TA
values and vise versa;

6. when £>0 the power of the surface beyond the paraxial region is larger
than that for the paraxial one, and when €<0 the power of the surface
beyond the paraxial region is lower than that for the paraxial one;

7. according to figures 3.1, 3.2, 3.3, and 3.4 and the corresponding tables
(3.1, 3.2, 3.3), it is concluded that when the aperture diameter

D< R/10, the of paraxial curvature (c=1/R) is the dominant factor in

shaping the conic surfaces, since the change in A-values (departure from

the spherical surface) is in the rang of um; beyond this region (D<
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R/10) the influence of € increases dramatically in shaping the conic
(Cartesian) surfaces and the A-values increases from millimeters to
centimeters; and this in turn has, of course, its reflection on the power of
the surface;

8. According to the performance surfaces showed, the paraboloid should be
considered to stand for the telescope primary mirror; because of its

excellent performance.



Chapter

The Basic Design of Reflecting Telescope

This chapter explains the design steps and the considered procedures
to determine and to choose the optimum secondary mirror radius. This
procedure based upon the Extreme-Value Theorem; therefore this chapter
introduces it in short. Also, it exhibits the characteristics and the features of
the complete system. The following section gives the priority of design

steps in a descending manner.

4.1 Design Steps
1. The telescope configuration
The chosen configuration of mirrors arrangement is that of Cassegrian
because it is symmetrical about the axis of revolution (easier to control
aberrations in such systems) and shortest among other configurations.

2. the choice of paraboloid, with R1=-5m and apertuere diameter D1=1m,

as primary mirror is for two goals:
first, eliminating spherical aberrations, and second improving the
resolving power.

3. On the light of light gathering power importance, minimum light
obstruction should be taken into account. The distance of separation (d)
between the two mirror is the key for this point. So, for 0.25%
obstruction (light obstruction) from the area of the primary, the

secondary aperture diameter shouldn’t exceed Scm.

57
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This means that the height of the semi-aperture ray(marginal ray, y=50)

at the secondary mirror is < 2.5cm. To obtain this light obstruction the
distance separating (d) the two mirrors, equation y, =Y, + W(d — Z_l)

has been employed by applying the skew ray tracing code through the
primary mirror (paraboloid) and the yielded d is=237.625cm, so the
considered separating distance between the two mirrors is d=238cm.

4. The system focal plane:
The key for this point is the selection of radius of curvature (R2). The
proper determination of R2 is restricted by the value of aberration

yielded.

4.2 The Extreme-Value Theorem

The Extreme-Value Theorem (very well-known in Calculus) is the
one for solving optimization problems. It helps to find out the point that
verifies the local maximum or local minimum of a certain function; and the
local minimum, of course, is the point of search to stands for R2 while TA
stands for the function. The point of local minimum (or maximum) is very
special one; because at this point the function behavior witnesses a change.
This change is either form positive function values to the negative or from

decreasing to increasing or vice versa; Figure 4.1 shows this meaning

4 f(R2)=TA

Point of conflict
(Optimum R2)

Figure 4.1 Extreme-Value Theorem.
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4.3 Optimum Secondary Mirror Radius Determination

The selection of the proper R2 is of great importance; because it is
the dominant factor as explained in the 83.2 and 83.3. Thus, designer
should consider the radius of curvature as the master key to reduce mirrors
aberration besides being the unique parameter that defines the system focal
length. Determining R2 has achieved by applying the skew ray tracing code
through the primary and the secondary mirrors taking into account the
telescope configuration and characteristics determined in 8.4.1. The
procedure used for R2 determination is based upon the Extreme-Value

Theorem. The procedure steps are:

1. since the considered system configuration is that for Cassegrian,
hence, R2 has a negative sign

2. initially, the secondary mirror surface has considered as spherical
surface. In this part, the search of the proper R2 is based upon
observing the performance of the surface that has certain value of R2
and resuming in the direction that shows aberration reduction at the
image focal plane.

3. the procedure of the previouspoint goes on until the performance
witnesses a behavior change. The point of behavior change is the

proper R2.

Table 4.1 shows the ray tracing results through the telescope system,
where y1 is the height of ray incident on the primary mirror (M1), y2 is
the height of the ray reflected from M1 at the secondary mirror (M2),
y(x-y)plane is the height of ray reflected from M1 at the (x-y) plane
that is tangent to M2, anglel and angle2 are the angles the incident ray
makes with the normal vectors at the points of incidence at M1 and M2
respectively, and finally, TA 1is used as the performance meter.

According to table 4.1 the proper R2=-25cm; because before this point
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(value) at R2=-26cm, TA values were < 0, and after this point (at R2=-

24cm), TA values were>0 and greater than those for R2=-25cm.

4. although R2 at -25cm represents the confliction point but the yielded
TA-values (0.0402654cm and 0.6576515¢cm) are quite not satisfying.
To improve the performance (reducing TA) of M2, point No.2
should be repeated but between R2=-25c¢m and the neighbor R2
value that gives least differences in TA values, i.e. between R2= -25
cm and R2=-26cm. Then, the new point of confliction in the

performance 1s the optimum R2 value.

Table 4.2 shows that R2=-25.21cm is the point of confliction, which is
the optimum desired radius of curvature that gives TA= 2.832694e-4cm or
2832.694nm when yM1=5cm (in the region near the paraxial). Since, the
wavelength average value of light (visible region) A=550nm, hence, TA
~5A. Optical systems possessing aberrations in the range of only multiple
number of wavelength, its performance is considered as excellent and this
is the goal of optical design. But, at the edge (yM1=50cm) there is a
considerable amount of TA=0.2596356cm.

Table 4.1 Proper R2 Determination

y(x-y)plane

(cm) yl(cm) | Anglel(®) (om) Y2(cm) | Angle2(°) | TA(cm)
96 5 0.5726662 | 0.2400243 | 0.2400021 | 0.6161205 | -0.144342
50 5.710623 | 2.424235 2401776 |6.120997 | -1.180455
95 5 0.5726662 | 0.2400243 | 0.2400021 | 0.5947903 | 0.0402654
50 5.710623 | 2.424235 2.400891 |5.91039 0.6576515
4 5 0.5726662 | 0.2400243 | 0.2400003 | .5719823 | 0.2402559
50 |5.710623 |2.424235 | 2.399933 | 5.682307 | 2.648018
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Table 4.2 Optimum R2 Determination
R2 o | Y(X-y)plane o

(cm) y(cm) | Angle(") (cm) Y2(cm) | Angle(®) TA(cm)
5 0.5726662 | 0.2400243 | .2400014 | 0.5990518 | 2.171709e-3

2520 50 |5.710623 |2.424235 |2.401073 | 5.953843 | 0.2784324
5 0.5726662 | 0.2400243 0.2400243 | 0.5993783 | 2.832694¢-4

-25.21 50 5.710623 | 2.424235 2.401082 | 5.955982 | 0.2596356
5 0.5726662 | 0.2400243 0.2400014 | 0.5997047 | -1.603802¢-3

-25.22 50 5.710623 | 2.424235 2.401091 5.958154 | 0.2408468

the value of TA yielded at the mirror edge of M2 and the region beyond

the paraxial can be moderated (reduced) by varying € of M2, i.e.

adapting quadratic or Cartesian surface rather than spherical, to obtain

the maximum acceptable aberrations.

6. according to 83.3 (referring to point 5 and 6 specifically), to moderate

aberration away from the paraxial region the needed surfaces to stand

for M2 are those of € <0, i.e. hyperboloids.

Table 4.3 shows that €=-0.21 is the required value that gives the

minimum possible aberrations; where TA= 225.2726nm <M\/2, and

3924.088nm (=7 folds of A) when yM1=5cm and 50cm respectively. The

basic concept for this choice is also the point of confliction considered

before to obtain the proper and optimum R2.

Table 4.3 Asphericity factor (¢) Determination of R2

> |yMiem) | Angle() y(x(ﬁm;a”e yM2(cm) | Angle(®) | TA(cm)
5 0.5726662 | 0.2400243 | 0.2400014 | 0.5993783 | 2.485558¢-5
-0.20 50 5710623 | 2.424235 | 2.401144 | 5.985365 |2.510515¢-3
5 0.5726662 | 0.2400243 | 0.2400014 | 0.5993783 | 2.252726¢-5
0.21 50 5710623 | 2.424235 | 2.401145 | 5.985662 | 3.924088¢-4
5 0.5726662 | 0.2400243 | 0.2400014 | 0.5997047 | 1.985069¢-5
0.22 50 5710623 | 2.424235 | 2.401145 | 5.985956 | -1.74245¢-3
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4.4 Telescope Characteristics

e Telescope configuration: Cassegrian.
e M1 central cavity of Scm diameter.

Table 4.4 Telescope Characteristics

R (cm) | D (cm) ¢ | Distance (cm) position
M1 | -500 100 0

M2 | -25.21 5 -0.21
dl -238 to the left of M1

d2 250 12 cm to the right of M1

A
[N
\)

v

Figure 3.5 The Telescope Configuration.

4.5 Telescope Features
Telescope features, this term refers to the telescope three powers.

1. according to equationl.1

250cm

=500 X, where 0.5cm 1s
0.5cm

the telescope magnification power

the focal length of the assumed eye-piece.
2. according to equation 1.4 :

A 550nm

= =3.388
nsin(lU) nsin(2x5.710623) A

the linear separation = 1.22

where, U is the convergence angle=2 x angle of reflection, while according

to equation 1.2 (for spherical surfaces)
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3.

the linear separation= 1.226 f=122

A 550nm
Im

x2.5m=1.677 um

D2* 5% 25
D1?> 100> 10000

Central light obstruction = 1x100%=0.25%

4.6 Conclusions

1.

3.

the procedure used in aberration reduction (finding out the point of
behavior change) showed acceptable results in aberrations reduction. It
may be, also, able to eliminate, completely, spherical aberration if the
distance (d) separating the two mirrors would be involved in the

optimization procedure.

. the paraboloid mirror showed improvement in resolution over that of

spherical surfaces, so increasing the primary depth of paraboloid, in
other words the aperture, would increase the resolution over the
resolution spherical surfaces, of the same aperture, give.
the design improved the light gathering power of Im aperture
telescope for light obstruction =0.25% (less than 1% ).

4.7 Future Work

1.

Designing a system corrected for both spherical and coma, where both

mirrors are hyperboloids;

. Considering the Strehel ratio as principal point for system aberration

reduction;

. Considering the wavefront aberration or the optical transfer function as a

measure for exhibiting the system performance.
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Derivation of A in Spherical Surfaces

z::g(x24-y2-kzz) 2.1)
X=X, + LA

y=Yy, + MA (2.5)
Z=NA

Substituting (2.5) in (2.1) yields

NA =%[(xo LAY +(y, + MAY + (NAY |

NA :%[xg + 2%, LA+ A% + y2 + 2y, MA + M A + N2A2]

NA:%c(xS + y§)+%0('—xo +Myo)A+%A2(L2 +M?+N?)
Since L2 +M? +N2 =1, andF =c(x? + y2)

Then the later equation in terms of equations (2.7) and (2.14) is:

NA:§+C(LXO + MyO)A+§A2

0 :%—[N —o(Lx, + Myo)]A+§A2

Now the later equation in terms of the equation G = N — ¢(Lx,+My, ) (2.8)

becomes:

CA A+ 0
2 2
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which is similar to ax* +bx + ¢ =0 that is solved by

—b++/b? —4ac

2a

X =

s 2ax=-b+4/b? -4ac

.. CA=G ++G? —cF
Now by multiplying the R.H.S of equation of the later equation with the
negative sign by the quantity (G ++G? —cF ) and dividing the result by

the same quantity (G ++G? —cF ) yields

A F

G+4/G? —cF

, which it is equation (2.6)

Derivation of A in Quadric Surfaces of Revolution

z=%(x2+y2+gzz) (2.15)
X=X, + LA

y=Y, +MA (2.5)
Z=NA

Appling (2.5) in (2.15) yields

NA=%[(XO +LA) +(y, +MA) +¢ N2A2]

NA = 2

—E[xg +2LX, A+ LPA* +y? +2My, A+ M2A* + ¢ N2A2]



Appendix
NA =%[(x§ +y2)+2(Lx, + My, )A+ L2A% + M 2A% + 2 N2A |

NAzg(xé + y§)+c(on +MyO)A+§A2(L2 +M? +gN2)

CA2.%(L2 +M?+eN2)=[N —c(Lx, + Myo)]A+§(x§ +y2)=0

since F=c(x2+y2) :and G =N—c(Lx,+My,)

hence, the later equation becomes:
%.(L2 FM? 4N —GA+§= 0

Since L>+M? + N? =1 hence, L> + M =1-N"?
Now the equation before later expression becomes:

%(1—N2+8N2)A2 —GA+§:O

%[1+(g—1)N2]A2—GA+%=O

‘o —b ++/b* —4ac

To solve for A using 2a

Tosolve ax’+bx+c=0,it’s found that

§[1+(g—1)N2] a, Gb, andgzc

F
Gt G2—4* lir(s—1N2]x"
Jor—arShee-one]

oA = [+ (e —1)N?]
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G++G> —cF(1+(s—1)N>
CA = | -
[+ (s —1)N?|

By the same manner used to obtain A in spherical surfaces

G —/G? —cF(1+ (¢~ DN’ .G+\/Gz _cF(1+ (g —)N?2

A
[+(e-1N?] G +4/G? —cF(1+ (- )N’

F
A=
G +4/G” —cF(1+ (e - N>

which is equation (2.16)

Derivation of the Direction Cosines of the Surface Normal Vector

Now, to find the cosine of the incident angle ray makes by applying

oF oF oF
- K@X’é‘y’az)]
a, B,y = (D)
oF., oF ., OF,,
()" + () + ()
OX oy 0z
To the equation of quadric surface Z= ¢ (x> +y> +e?) (2.15)

2
1. rewriting the later in the form of F=x’+y>+a’-2rz=0 (2
Where r=1/c and equation (2) is cx? +cy? +cez? —22=0 3)

2. differentiating equation (2) yields

a_F:_zcx , a_F:—zcy, 8—F:2ng—2 (4)
OX oy oz

(ﬁ)z — 402)(2, (ﬁ)z — 4C2y2, (ﬁ)Q — 4C2€222 _8cez +4
OX oy 0z

oF ., oF 2 42002 2
(&) +(E) =4c7 (X" +Yy7) (5)



Appendix 68
But according to (3) c=(x*+Yy*)=2z—Ce

(al:)2 +(8F)2 +(6F)2 :\/4c(2z —cez?)+4c’s?z? —8cez + 4
OX oy 0z

=220z — —c2ez? +¢2e222 —2cez +1

=21+ 2¢(1— &)z +¢* (e - Dz’

=2 1-2c(e -z +c’e(e -1z’ (6)
Substituting (6) and (4) in (1) yields

—[2¢cx,2¢cy,2¢cez — 2]
2c(e =)z +Cc’e(e —1)z?

a’ﬂ’yzz\/l—

— CX,—CY,l — cez
\/1 —2c(e =)z +c*e(e —1)z°

a, B,y =

and the final 1s equation (2.17)

Derivation of the Cosines of the incident Angle
cos | =(Li+ Mj+ NK) e (i + fj + 5K)

=Lieai+Mje [ + Nk e 5k

— X —cy
:L. +M [}
Jl —2c(e =)z +c’e(e -1)z° \/1 —2c(e =)z +c’s(e —-1)z°
I-cez

N

) J1-2¢c(e - Dz +c2e(e - 1)z’

—Lex—Mcey + N(1—-ce2)

cos | =
J1=2¢(e -z +c’e(s —1)2>

N —c(Lx+ Myl + N¢ 2)
J1=2c(e -z +c’e(e - 1)2>

cosl =

which is equation 2.18.

+
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