
Republic of Iraq  
Ministry of Higher Education and Scientific Research 
Al-Nahrain University 
 
 
 
 
 
 
 
 

Analytical –Computational Study of the 
Reflecting Telescope Parameters 

 
 
 
 
 

A Thesis 
Submitted to the College of Science in Partial Fulfillment of the 

Requirements for the Degree of Master of Science  
in  

Physics 
 
 
 

NOUR MOHAMMED HASSAN YASEEN 
B.Sc. Phys.2004 

 
 
 
 
 
 
Muharram                                                                                          1428 H.     
December                                                                              2006A.D 



  
 

 
 
 

  ١٩١-١٩٠  عمرانسورة آل 
 



 ألأهداء
ليك يا من لاتمر لحظة ألا وأحبك أكثر وأفتقدك أكثر وأكثر وأدرك أ�ك أكبر وأكبر أ

ربما رحلت عني ولكنك هنا أبداً في قلبي وروحي وفي .من الحياة والموت معاً
...صحوي وأحلامي  

 أخي مظهر
 
 
 
...أليك يا من أ�ت لي قيمة أعلى ومعناً أسمى  

صباح محمود جمعة.د.أ  
 
 
 



      تقدير  و  شكر                                        

يا كل من أحمل لهم كل ألتقديرو أدين لهم بكل ألشكر لنصائحهم ودعمهم وتشجيعهم المتواصل .. في البدء
ان ولكن عذري الوحيد  . لي،أستميحكم عذراً لان ابلغ كلمات الشكر وأجزلها معنى لاتفيكم ولو قليلا من حقكم علي

الكلمات هي لغة تواصلنا الوحيدة التي تتجاوزها تطورا  بقرون لغة المعا�ي والمشاعر و منهاعميق الاحترام الذي اكنه 
  لحضراتكم 

..جزيل شكري اليكم   
صباح لكل الجهود الذي .د. ستاذي الفاضل رمز كل القيم الا�سا�ية ، و مثلا ًأتشرف السير على خطاه، أأ..

.ستاذ و الأب الموجه والمعلمٔلبحث، رحمك ا تعالى فقد كنت وستظل �عِم الابذلتها في مشروع ا  
أحمد لحثيث الجهود والأشراف العلمي المتواصل والدعم الذي تفضلتم به حضرتكم . استاذي القدير د... 

.كأستاذ مشرف على أطروحتي و كرئيس لقسم الفيزياء  
. زملائي الأعزاء لكل مساعداتهم القيمة    والشكر موصول لكل منتسبي قسم الفيزياء  و  

.لا ان أتقدم بعميق التقدير وكثيرالشكرالى عميد كلية العلوم الدكتورليث عبد العزيز العا�يٳولايسعني   
.ملاذي الأمن دوماً أمي الحبيبة،أختي العزيزة سهير ، وبقية افراد أسرتي  

براهيم هودات اكبر من ان ٕلي أستاذي وزوجي العزيزأستاذ اوأخيراً في سياق الترتيب  فحسب والأول دائماً بالنسبة 
.تسعفها الكلمات  

 
 
 

  �ور محمد                                                                                 
  2006الاول   كا�ون

 
 



 
Certificate  

 
 

I certify that this thesis, entitled: Analytical-Computational Study of the 

Reflecting Telescope Parameters” prepared by  NOUR  MUHAMMED HASSAN YASSIN 

was under  my supervision at AL-Nahrain University, College of Science in  partial  

fulfillment of the requirements for the degree of Master of  Science in Physics. 

 
 
 

 
                                                Signature        
                                                Supervisor : Dr. Ahmad Kamal Ahmad 
                                                Date :       / 12 / 2006     

 
 
 
 
 
 
In view of the recommendation, I present this thesis for debate by the examining 
committee 

 
 
 

                                                Signature        
                                                Head of Department: Dr. Ahmad Kamal Ahmad 
                                                Date :       / 12 / 2006     

 
 
 



Examining Committee Certificate 
 
 

We certify that we have read this thesis, entitled“Analytical- Computational 

Study of the Reflecting Telescope Parameters”, and as an examining committee, 

examined the student NOUR MOHAMMED HASSAN YASEEN on its contents, 

and that in our opinion it is adequate for the partial fulfillment of the requirements for 

the degree of Master of Science in Physics. 

 

 

Signature:                                                           Signature: 
Name: Ayad A. Al-Ani (Chairman)                  Name: Mohammed Ahmed Salih (Member) 
Title: Assistant Professor                                 Title:  Senior Scientific Researcher                   
Date:     / 2 / 2007                                              Date:     / 2 / 2007    

 
 

Signature:                                                           Signature: 
Name: Dr. Ali H. Al-Hamdani (Member)         Name: Dr. Ahmad Kamal Ahmad (Member) 
Title: Assistant Professor                                  Title: Assistant Professor                    
Date:     / 2 / 2007                                               Date:     / 2 / 2007 

 
 
 
 

Approved to the University Committee of Postgraduate Studies.  
                  

 
 
 
                             Signature: 
                             Dean of College of Science: Dr. Laith Abdulaziz Al-Ani                                       
                             Title:  (Assistant Professor)                                                                                    

                                         Date:     / 2 / 2007                                         



I 

Abstract 
 

In this work, a program of ray tracing program has been constructed. This 

program includes ray tracing for:   

1. Skew ray tracing for spherical surfaces; 

2. Skew ray tracing for Cartesian or quadric surfaces of revolution (conic surfaces). 
 

A study for the effect of asphericity factor (ε) on the reflecting telescope 

parameters under investigation of this thesis has been accomplished by using the ray 

tracing code. These parameters are the ∆-values (values for surface departure from the 

spherical), ray aberrations both the transverse (TA) and the longitudinal (LA), and the 

angle the incident ray makes with the surface normal vector. 
 

This study was useful to design a two-mirror reflecting telescope; it gave a 

suitable scope of understanding the problem sides, and provided a vision to minimize, 

directly, aberrations and consequently improving the optical system performance. 
 

Accomplishing this study demanded considering the bundle of incoming light 

rays as completely parallel to the optical axis; therefore, the design of the optical 

system is corrected for spherical aberrations only.   
 

The ray tracing code has been employed to exhibit the performance of the 

reflecting surfaces (mirrors) when the asphericity factor (ε) is varying. Rays 

aberrations (transverse and longitudinal) aberrations have been considered as a 

measure to exhibit the performance of any conic reflecting surface (mirror) versus ε. 
 

Aberrations reduction has been achieved through modifying, first, the 

secondary mirror radius of curvature and, second, the aspherisity factor (ε) by using 

the principle of the Extreme-Value Theorem.  
 

The design of the telescope, achieved upon this study, is a two-mirror system 

of 2.5m focal length corrected for spherical aberrations; the primary mirror is 

paraboloid of 1m aperture and 5m radius of curvature and the secondary is 

hyperboloid of asphericity factor ε = - 0.21. 
 

The considered light wavelength in the calculations concerning the telescope is 

550nm because it is in the middle of visible spectrum of light. 
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         Chapter  
                                                                                                                                     

1.1 Introduction 
The telescope invention in the 17th century opened up a window that 

completely revolutionized the face of astronomy. This instrument allowed 

an observer to study the precise configuration of celestial bodies and piece 

together theories about the structure of the universe in a way previously 

impossible [1].  
 

Ground- and space-based optical astronomy has developed rapidly 

over the last decade. A series of sensational discoveries has been made in 

stellar and extragalactic astronomy: proto-planetary disks and even planets 

have been detected around nearby stars; compelling evidence has been 

found of the presence of a massive black hole in the central part of many 

galaxies, including our own; the ages of distant galaxies and quasars have 

been estimated. These astonishing achievements in optical astronomy are 

mainly associated with the successful completion of several large optical 

telescope projects. With a new generation of ground-based telescopes 

having a primary mirror diameter of 8-10 meters, the total collecting area 

of optical telescopes has grown exponentially and now exceeds 1000 

square meters. The creation of these large optical ground-based telescopes 

with even higher image quality than their predecessors has become possible 

due to[2]:  

* progress in computer control techniques; 

* technological advances in manufacturing of large astronomical mirrors; 

* successful employment of adaptive optics (AO) for the correction of 

   image distortion introduced by turbulence in the Earth’s atmosphere. 

1 



 Chapter One                                          Introduction                                                    2 

Together with the increasing aperture size of this new generation of 

telescopes, the accuracy of their operation and guiding system has become 

exceedingly high. This is partly due to a substantial mass reduction for the 

primary mirror and the telescope as a whole. By actively supporting the 

light, thin primary mirrors, their shape can be maintained under changing 

orientation (pointing) of the telescopes. 
 

Image stabilization and correction of atmospheric distortion are 

achieved using AO systems, which are capable of correcting for the effect 

of the Earth’s atmosphere. Within such corrected fields, the image quality 

is limited only by telescope optics, which thanks to current technology can 

be made diffraction-limited. Taking these facts into account, it is a common 

belief that the creation of an Extremely Large Telescope (ELT) with 25-100 

m aperture is realistic nowadays. Whether such a complex project 

succeeds, primarily depends on the correct choice of the telescope system 

configuration.  
 

The focal ratio and asphericity of the primary are the main factors 

influencing the system configuration. Since minimization of the total 

number of optical components and system complexity is of great 

importance, integration of an AO system into the telescope is one of the 

key considerations for the ELT concept. The optical system for an ELT 

should have [2]: 

• A fast primary mirror; 

• An AO system as an integrated part of the telescope design; 

• Diffraction-limited image quality over 1′-2′ field of view. 

These basic requirements have been considered and fulfilled for the Euro50 

ELT with an aperture of 50 m; where Euro50 is the most modern telescope 

project under achievement [2].  
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Most optical surfaces are spherical because a spherical surface is the 

easiest to produce [3]. The difficulty of figuring aspheric optics by 

traditional means is approximately in proportion to the slope of the aspheric 

departure. As surfaces depart more and more from a spherical shape, 

increasingly smaller tools are required to obtain a reasonably good fit 

between the tool and the optical surface [4]. However, non-spherical are 

necessary for some purposes, especially when they appear as the solution 

of particular optical problems, where one of these surfaces, ellipse, is the 

one that verifies Fermat’s principle which states that the optical path length 

of each ray will be identical [3].  
 

On the light of this introduction, it is believed that investigating the 

effect of the asphericity factor is of great deal of importance since the 

aspherical (non-spherical) surfaces provide a solution to the problem of 

image forming systems; and reflecting telescopes are, of course, type of 

these systems. 
 

1.2 Reflecting Telescopes Configurations 

Reflecting telescope are mainly come in four configurations [5]: 

1. Herschel Telescopes : 

   These telescopes consist of one mirror (the primary only) aligned in 

such a manner that allows the gathered light  to pass out the telescope 

housing tube, in order to enable the observer to see the formed image, by 

flipping the mirror slightly from the right angle the mirror makes with the 

optical axis. The essence of this design (arrangement) is to make the full 

use of the whole aperture(whole surface area of the mirror), i.e., without 

obstruction as shown in figure 1.1. The existence of another mirror 

(secondary) before the primary, the secondary, will prevent (obstruct) some 

of the light coming from the left to reach the primary mirror. And this is 

exactly the case of the next types. But the advantage of the next types over 
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Figure1.1 Herschel Telescope [5]. Figure1.2 Newtonian Telescope [5]. 

Figure1.3 Gregorian Telescope [5]. Figure1.4 Cassegrian Telescope [5]. 

the Herschel are the control of aberrations with more symmetrical mirror 

arrangements is easier. 

2. Newtonian Telescopes:  

Besides the primary mirror there is a small plane mirror near to its 

focus. The function of the plane mirror is to guide the light outside the 

housing tube of the telescope to enable the observer to see the formed 

image as shown in figure 1.2. 

3. Gregorian Telescopes: 

These telescopes consist of two mirrors. The second one (secondary) 

is also concave but of much smaller aperture lest it should obstruct large 

amount of light the primary should gather. So, the secondary main function 

is to direct the light reflected from the primary to be focused behind the 

primary mirror through a cavity at the center of the latter as shown in the 

figure 1.3. 

4. Cassegrian Telescopes:  

These telescopes do not differ from the Gregorian accept that 

secondary mirror is convex rather than being concave as shown in 

figure1.4.  
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1.3 Advantages of Reflecting Telescope  

There are several advantages for these telescopes over the refraction 

telescopes because of using mirrors rather than lenses. These advantages 

are [5, and 6]:  

1. Reflecting telescopes are free of chromatic aberration. 

2. It is easier to increase the aperture of a mirror than increasing the 

aperture of a lens. This because as it's very well know that lens has 

thickness; so, if the increase in the mirror diameter weight is in 

hundreds of kilograms; the similar increase in the diameter of lens in 

meters leads to the increase in the lens weight in tons of kilograms. 

And this in turn would make any attempt for porting or moving it 

very hard;  besides it is approximately impossible to manufacture 

such lenses with high lens performance (image quality), unless they 

would be broken under their extensive weight, due to the problems 

arise from bubbles formation and cracks during manufacturing. 

3. Reflecting telescopes form images brighter than that refraction 

telescopes form. 

4. as it's known, lenses are suitable for gathering light through 

refraction for a very narrow band width of the spectrum(visible 

region 400-700 nm and IR light); whilst mirror are suitable for 

gathering light through reflection for very vast range of wavelength; 

from the X-rays up to the radio waves; and that's why reflecting 

telescopes enables user to observer and see different pictures of the 

celestial bodies to be observed.  
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1.4 Telescope Three Powers 

There are three features (powers) of a telescope that enable them to 

extend the power of our vision: a telescope's superior light-gathering 

ability(light-gathering power) enables us to see faint objects, a telescope's 

superior resolving power enables us to see even the tiniest of details, and 

the magnification power enables us to enlarge tiny images. Magnification is 

the least important power of a telescope. Specialists know that the light-

gathering power and resolving power are the most important. These two 

abilities depend critically on the objective, so they make sure the optics of 

the objective are excellent [7].  
 

1.4.1 Magnification Power     

It is the ability to make the image bigger.  Since the amount of detail 

we can see is limited by the seeing conditions and the resolving power, 

very high magnification does not necessarily show us more detail. 

Magnification can be changed by simply switching eyepieces in the 

telescope [5]. The magnification of a telescope is the ratio of the focal 

length of the objective lens or mirror FO divided by the focal length of the 

eyepiece FE [5]:                      M = FO / FE                                             (1.1) 
 

 1.4.2 Resolving Power 

It is a measure of how sharp and well-defined an image the telescope 

can produce or the telescope's ability to resolve fine details. This  ability 

depends on a combination of both its aperture and telescope optics. 

Whenever light is focused into an image, a blurred fringe surrounds the 

image.  Because this diffraction fringe surrounds every point of light in the 

image, we can never see any detail smaller than the fringe.  There is 

nothing we can do to eliminate diffraction fringes; they are produced by the 

wave nature of light.  If we use a large diameter telescope, however, the 



 Chapter One                                          Introduction                                                    7 

fringes are smaller and we can see smaller details. Thus; the larger the is 

telescope, the better its Resolving Power [5]. 
 

Suppose a telescope is used to observe two stars close together. In 

the focal plane the best possible images instead of being points are two 

Airy diffraction patterns, each being a circular spot surrounded by alternate 

bright and dark rings. Rayleigh suggested that the angular (separation) 

resolution of a telescope should be defined as the angle between two stars 

when the maximum of the diffraction pattern of one falls exactly on the 

first minimum of the other. That’s to say [5]:  

Angular resolution power =
Do
λα 22.1=                                                  (1.2) 

where λ is the wavelength and D is the objective diameter(aperture). 

If the angular separation (resolution power) of the two stars is oα  then the 

centers of the two diffraction patterns are separated by a distance foα  in 

the focal plane. Hence according to equation(1.2), the linear separation 

between the centers of the diffraction patterns is expressed as:                                 

                        Linear separation= f
D

.22.1 λ                                      (1.3)   

So, this expression enables scaling the system up and down  simply by 

changing f but unfortunately without altering the relative size of the 

diffraction patterns and their separation [5]. 
 

According to [8], equation (1.3) is not very accurate, because it 

depends on the focal length to the diameter ratio (for most telescopes, the 

radius of the primary mirror is small in comparison to the focal length), 

which means that the primary mirror is relatively “flat” and that’s why it is 

just an approximation. The same reference introduced another expression 

derived for exact linear separation as: 

Linear separation = 1.22 
)sin(. Un

λ                                              (1.4)             
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where n is the surface refractive index and U is the extremely 

marginal ray convergence angle. Reference [8] predicts that in the case of 

paraboloid, primary mirror the focal length is nearly equal to the mirror 

diameter, a very small Airy disc which can be attained, of course, means 

exceptional resolution. In fact, it attains a resolution better than any 

conventional telescope. And, since it was shown that resolution is 

determined by the angle U, and not by the ratio of focal length  to the 

diameter, as is implied by the “approximation” equation (1.2), this 

configuration (deep-dish mirrors)  can be used for mirrors of any size, even 

very small sizes, while still remaining exceptional resolution [8]. 
 

1.4.3 Light-Gathering Power 

Refers to the ability of a telescope to gather (collect) light. Light-

gathering power is probably its most important feature. Stars are faint. 

Even the brightest stars appear 25 billion times fainter than the Sun, and 

most interesting celestial objects are much fainter than that [9], so we need 

a telescope that can gather large amounts of light to produce a bright 

image. 
  

Catching light in a telescope is like catching rain in a bucket, the 

bigger the bucket, the more rain it catches. A large diameter telescope 

(large aperture) gathers more light and has a brighter image than does a 

smaller telescope of the same focal length. Light-gathering power is 

proportional to the area of the telescope objective. A lens or mirror with a 

large area gathers a large amount of light. Because the area of a circular 

lens or mirror of diameter D is pi(D/2)², we can compare the areas of two 

telescopes, and therefore their relative light-gathering powers, by 

comparing the square of their diameters. That is, the ratio of the light-

gathering power (LGP) of the two telescopes A and B is equal to the ratio 

of their diameters squared [10]: 
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       LGPA / LGPB = (DA/DB)²                                                     (1.5) 
 

That’s why astronomers use big telescopes and why they refer to telescopes 

by diameter. In optical telescopes the increase of light-gathering power 

which is given bigger objectives brings with it an increase of resolving 

power. The world’s biggest telescopes have been made big for light-

gathering power rather than high resolution, and in practice the theoretical 

diffraction limits of resolution is not attained because of bad “seeing” 

through the atmosphere. This is why the best earth-based photographs of 

the moon and the planets come from observatories famous for good seeing 

rather than for big telescopes [5].  
 

1.5 Ideal Image Formation 

Before introducing aberrations it is important to define the formation 

of ideal image for a comprehensive understanding to aberrations.  
 

The rays from each point object intersect the Gaussian image point 

and spherical wave converges to the latter so that the disturbances, which 

have passed through different zones of the aperture, arrive exactly in phase 

(perfect imagery definition) [11]. This means, in ideal or perfect, optical 

system must surely be one in which every point  in an object space 

corresponds precisely to a point in an image space, being connected to it by 

rays passing through all points of all optical system (perfect image forming 

system definition)[5]. So, the optical path from any object point to its 

image point is therefore the same along all rays [5]. 
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a

Reference sphere 

Wavefront

O΄ 

TA

LA

Figure (1.5) Longitudinal aberration (LA), transverse aberration (TA), 
                 and angular aberration of the meridianal ray (a) [12]. 

Focal Plane 

Axis 

1.6 Aberrations 

Aberrations are the problem of all image–forming systems. They, 

in general, are defined as the departure from the Gaussian (paraxial) 

image formation [5]. Sometimes, they are called image defects or 

imperfections, because their presence causes deformation or complete 

damage to the image features. Therefore, optical systems possessing 

aberrations must be redesigned to get systems with an acceptable 

performance. The defect of the image may be said to be caused by the 

failure of the rays from a point source to unite at the Gaussian image 

point (rays aberration), or by the failure of the emergent wavefront to be 

a sphere converging on this point and the consequent failure of the 

disturbance to arrive exactly in phase (wavefront aberrations)[11].  

The two concepts of rays and waves are the two basic ways to 

characterize aberrations. Rays aberrations come in three types [12]:                                       

1. Longitudinal the rays intersect the optical axis); 

2. Transverse or lateral (whereas the rays intersect the Gaussian 

       Image plane); 

3. Angular (directly related to the transverse); 

Figure (1.5) shows these aberrations as LA, TA, and a, respectively. 

The wavefront is the actual light wave, where the ray is its normal 

vector reference and the reference sphere is the one that is responsible 

for free aberration. 
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The position of an object relative to the optical axis produces two 

divisions of aberrations, the on–axis and off–axis. The on–axis one is the 

one that is produced by objects on the axis of revolution (optical axis), and 

its only effect is “ spherical aberration”, representing the different actions 

of the axial and peripheral rays [13]. But this is not the general case. The 

off–axis is the general one, which produces the five kinds of 

monochromatic aberrations.  The aberrations, which occur when the laws 

of refraction and reflection are applied to mathematically correct surfaces 

and which are not a consequence of material inhomogenity or fabrication 

errors, are as follows[13]: 
 

1. Spherical aberration:  

It is defined as the longitudinal variation of the focus with aperture 

[14]. This phenomenon occurs wherein rays passing through different zones 

of a surface come to different foci. It is like chromatic aberration both have 

longitudinal (axial) and transverse (lateral) variety [15];  

2. Coma: 

Coma is the result of oblique rays, It is defined as the variation of 

magnification, i.e., image size with aperture. Thus, when a bundle of 

oblique rays are incident on a lens, the rays passing through the edge 

portions of the lens are imaged at a different height than those passing 

through the center portion [15]; 

3. Astigmatism : 

It is another off-axis aberration. It is caused by the fact that the lens 

has different powers in the sagittal and the tangential sections; 

4. Field curvature or Petzval:  

It is another off-axis aberration, closely related to astigmatism (and it 

nearly accompanies astigmatism). But this type does not cause any image 

blur as the previous three do [14]. It is usually indicated as the departure of 

the image from a flat image plane [16]; 
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5.Distortion:  

It is the counterpart of field curvature. Like the later, distortion refers 

to a side way (radial) displacement of the image points, either toward or a 

way from the optical axis, in other word, it refers to a change of 

magnification [16]. 
 

These are monochromatic aberrations and were originally defined by 

Seidel in 1856. The importance of this classification declines as the system 

is more highly corrected. The higher order aberrations are not easily 

visualized as the primaries, and their particular forms differ according to 

which of several systems is used for expressing them. In actual image–

forming system, deformed image is not because one of these aberrations 

but is, mostly, of a mixture of them [12]. 
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1.7 Historical Aspect  

In attempting to present, in an orderly way, the knowledge acquired 

over a period of several centuries in such a vast field; It is almost 

impossible, in  this thesis,  to follow the development of telescope designs 

due to the large variety of types, applications, and techniques. So, it is 

found that giving a brief historical aspect, in this section, and recent 

advances in telescopes in the coming sections would cover the story of 

literature survey.    
 

According to [17] in the 17th century, 1608 a Holland(meant Dutch) 

spectacle maker, Hans Lippershy, is said to have been holding two lenses 

and he happened to align them before his eyes with the steeple of a near by 

church he was astonished to find the weather cock to appear nearer. Then 

when he fitted the two lenses in a tube to maintain their spacing, he had 

constructed the first telescope. Galilo Galilie in Venice heard about the new 

telescope in June 1609, and immediately began to make telescope of his 

own. His first had magnification of 3X, but his instruments were rapidly 

improved until he achieved magnification of about 32X.  
 

Developers of early telescope soon recognized spherical aberration 

as a reason for defective images and a considerable effort was spent to 

overcome this fault. And when the telescope magnification approached 

50X the developers noticed the appearance of chromatic aberration. In 

1666, Isaac Newton discovered that refractive by given lens depended upon 

the color and he correctly concluded that the most significant defect of the 

then current telescopes was what we know as "chromatic aberration". He 

hastily concluded that all glasses had the same relation between refraction 

and color, so he turned to reflectors to solve the color problem [17]. 
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1.8Recent Advances in Astronomical 
Telescope Design 

A major rationale for building a new generation of telescopes with 

larger apertures is to increase the angular resolution and the signal-to-noise 

ratio so that telescopes become more sensitive to dim or distant objects. 

The signal-to-noise ratio depends on the physical parameters of a telescope 

and the sky background. For a dim point source with brightness not 

exceeding the sky background this ratio is [1]† (coming references denoted 

by [#]† belongs to [2] and pointed out in the references by the same manner 

also.):                                                   
2

1

2
1

ρε
τDk

N
S

m=                                                      

 

where km is a coefficient depending on source brightness, D is the  

telescope aperture, τ is the effective throughput of the telescope to the focal 

plane (taking into account atmosphere, telescope optics and quantum 

efficiency of the detector), ρ is the angular size of the image, and ε is the 

effective emissivity of the sky background. Thanks to advances in detector 

quantum efficiency and readout noise, the effective throughput is 

approaching its maximum value. The sky background has minimum 

emissivity at some of the best astronomical sites [2]†. Therefore one may 

increase telescope sensitivity only by enlarging the telescope aperture D 

and delivering images of smaller diameters [3]†. As shown in section 1.8.1, 

primary mirrors with larger diameters can be constructed due to improved 

fabrication and optical testing methods. Point source images with diameters 

comparable to the Airy disk have been achieved by means of active[4]† and 

adaptive optics systems [5-7]†. 
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The use of thin and fast segmented primary mirrors makes it possible 

for telescopes to be more compact, significantly reducing their total mass, 

and thereby leading to more cost-effective solutions. Telescope cost is 

related to aperture size via the well-known empirical expression [8]† : 

 LT = kT D 2.6.  

For the new generation of telescopes, the proportionality coefficient kT has 

been reduced by a factor of three [8]†.  
 

At present, it seems feasible to construct an ELT with an aperture of 

25-100 m [9-12]†. Both cost and practical considerations influence the 

optical design of ELTs. The general requirements that an optical design 

should satisfy are identified in the following sections.  
 

1.8.1 Fabrication of Large Astronomical Mirrors 

The most distinctive feature of the new generation of telescopes is a 

lightweighted primary mirror of 8-10 m diameter [13-20]†. This feature 

brings down the cost and increases the resonance frequency of the 

telescope structure. Reduction in the mirror mass is accomplished by the 

use of thin glass blanks or blanks with a honeycomb structure on the 

backside. 
 

Progress in technology of thin meniscus mirror blank fabrication has 

enabled designers to reduce the mass of the mirrors, for which the aspect 

ratios (diameter/thickness) have been increased to 40, whereas for mirrors 

in the previous generation of telescopes, the aspect ratios did not exceed 8. 

Mass reduction plays a key role in successful fabrication of large 

monolithic mirror blanks. 
 

At the present time, there are several well-established methods for 

fabrication of large, light-weighted astronomical mirror blanks. One 

method consists of assembling the mirror from a set of hexagonal fused 
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silica plates, followed by sealing in the furnace, grinding the resultant blank 

and sagging it to a required radius on a sagging mould under secondary 

heating [21]†. The advantage of such a method is predictability of the 

fabrication process and its scalability also for even larger mirror blanks. At 

the moment, the largest mirror fabricated according to this method is the 

8.3-m primary mirror with a 0.2-m thickness and 23-ton mass for the 

Subaru National Japanese Telescope [22]†. 
 

The second fabrication method for large, lightweighted mirrors is 

based on a spin-casting process using a special glass ceramic material, 

Zerodur, with zero coefficient of thermal expansion. The mirror blank is 

cast into a form in the furnace rotating with constant velocity, thus 

achieving a parabolic shape with a required radius of curvature. For 

primary mirrors of 8.2-m diameter with a thickness of 0.175 m and a mass 

of 23 tons have been successfully obtained by applying this method for the 

Very Large Telescope (VLT) [23]†. 
 

If the casting is made into a form with a bottom having a regular 

honeycomb structure, then the resulting mirror blank will get a negative 

(hollow) honeycomb structure on its back side. This method was pioneered 

by Roger Angel [24]†. The honeycomb structure allows a reduction of the 

mirror mass, while preserving the mirror bending stiffness. For this 

process, inexpensive borosilicate glass with low coefficient of thermal 

expansion is used, since it can be processed at a lower temperature than 

zero-expansion glass-ceramics. Of two blanks of equal diameter, the one 

with honeycomb structure can be made two times lighter and almost ten 

times more rigid than the other one with a thin meniscus shape. The 

currently largest monolithic mirror of 8.4m diameter and a mass of 16 tons 

has been made using the honeycomb method for the Large Binocular 

Telescope (LBT) [16]†. 
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1.8.2 Active Optics Control Systems 

The shape of giant, thin, and, hence, quite flexible mirrors is 

maintained by means of an active support system, which can compensate 

for slowly varying deformations of the mirror shape with frequency up to 

0.1Hz [25–27]†. Active support systems are preferable for mirrors with 

diameter larger than 2.5m. Smaller mirrors typically have enough rigidity 

to sustain their own weight and maintain their shape, in which case the use 

of passive support systems is more appropriate. Active support systems 

become mandatory for large monolithic mirrors with diameters exceeding 

4m. Such systems have hundreds of support points with a spacing on the 

order of D/10, where D is the mirror diameter. 
 

The active support system is part of the active optics system, which 

contains also an optical part monitoring the shapes and displacements of 

the mirrors. The main function of the active optics system is to keep the 

required mirror shape through compensation of slow-varying deformations. 

The ultimate goal is to improve the quality of the telescope image. 

Correction of mirror shapes and relative positions is carried out using 

prescribed tables taking into account gradual changes in temperature and 

gravity during telescope operation. Edge sensors are used to detect relative 

displacements of mirror segments. Detection of residual errors in shape and 

displacement is accomplished in a closed loop with the use of an image 

analyser. Together with the temperature, wind and edge sensors the image 

analyser gives complete information on slowly varying sources of optical 

image degradation.  
 

The principal component of the image analyser is a wavefront 

sensor. Usually it is a Shack-Hartmann wavefront sensor working with 

natural guide stars (NGS) in the telescope field of view and measuring 

local slopes of the wavefront in each sub-aperture [28,29]†. Wavefront 
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measurements from several NGSs permit estimation of additional detailed 

anomalous changes in temperature and gravity perturbing the shape of the 

mirrors and their positions in the telescope. 
 

Together with corrections prescribed in a table for varying mirror 

deformations, the active support system is capable of compensating for up 

to some 20 microns (RMS) of that global figuring error caused by 

inaccuracy in the fabrication process. Assuming the active support system 

is functional, certain manufacturing tolerances for the global figuring error, 

e.g. astigmatism and spherical aberration, can be relaxed for large active 

mirrors. Further improvements of the active control system may allow 

varying the radius of curvature of a mirror, as well as its asphericity. 
 

For a segmented mirror, the active optical system can also be applied 

to position the segments of the primary mirror if the upper spatial 

frequency of the wavefront sensor is high enough to resolve the segment 

tilts. The operation of such a system was successfully demonstrated on the 

two large optical telescopes Keck I and II, each having a 10-m primary 

mirror consisting of 36 hexagonal segments that form a single hyperbolic 

surface after proper positioning [14,15]†. A similar system will be used for 

the Gran Telescopio Canarias (GTC), which also has a 10-m segmented 

hyperbolic primary mirror [17, 30]†. 

 

1.8.3 Primary Mirror Segmentation 

Segmentation is an effective way to obtain a lightweighted primary 

mirror for large aperture optical telescopes. Therefore, mirrors with 

diameters 10m or larger are composed of small (1-2m) hexagonal 

segments. This also makes mirror handling and transportation manageable. 

The main optical problem associated with segmentation is to eliminate 

wavefront errors caused by inaccuracy in positioning of the segments. The 
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technical challenge in maintaining the correct shape of a large segmented 

mirror is greater than for a large monolithic mirror of the same size. Hence, 

a majority of large optical telescopes in the 8 m class are built with thin 

monolithic primary mirrors [13, 16, 19, 20]†. 
 

Segmentation of the primary mirror is an efficient way to extend the 

mirror size without extrapolating the corresponding process for mirror 

fabrication. Consequently, future giant telescopes will have fast segmented 

primary mirrors. The upper diameter limit of a mirror composed of small 

passive segments is defined by the complexity of their positioning system 

and the feasibility of rapid mass production of the segments. 
 

To reduce the number of segments one wishes to use segments that 

are as large as possible. Unfortunately, large segments are difficult to 

transport and are thicker and thereby heavier than small segments. It has 

been shown that employment of active segments with diameters larger than 

4m is not attractive [12]†. At present, the concept of a segmented primary 

mirror with 1-2 m passive segments is considered most realistic. 
 

For instance, in the daring Overwhelmingly Large Telescope project 

(OWL) [12]†, the spherical 100-m primary mirror is composed of 2000 

passive identical 2-m segments. For the California ELT project (CELT), it 

has been proposed to make the 30m hyperbolic primary mirror out of 1098 

passive 1m off-axis segments [9]†. 
 

A more extreme example of a telescope having a segmented primary 

mirror is a “telescope” with a non-filled aperture. Such a telescope may be 

regarded as consisting of many separate small telescopes distributed in a 

certain pattern to cover the aperture [31, 32]†. A special optical system 

should provide both angular combination and phasing of the light beams 

from the individual telescopes into a common focus. Notably, the first 
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telescope of this type built was the Multiple Mirror Telescope (MMT) 

[33]†. A similar project, the National New Technology Telescope (NNTT), 

was proposed but not realized [34]†. Also the LBT, currently under 

construction, belongs to this group [16]†. 
 

The main advantage of a non-filled aperture telescope is its compact 

construction, as the telescope length can be much smaller than the diameter 

of the working aperture (defined as the distance between the most remote 

small telescopes). The size of the working aperture exceeds the size of the 

combined collecting telescopes, resulting in higher angular resolution for 

some spatial orientations. The optical phasing system combines all beams 

in the common focus by means of auxiliary mirrors. This implies 5–7 extra 

reflections on the way to the final focus. 
 

High-reflectance coatings for astronomical mirrors have been under 

development for many years.  New methods may reduce light losses in 

multi-mirror optical systems for ELTs. Technology studies of protective 

silver coatings carried out at the Optikzentrum in Bochum, Germany, show 

very promising results [35]†.  In the near future, one may expect an 

efficient technology for producing robust, highly reflective coatings on 

large (primary) mirrors resulting in reflection coefficients above 0.95 [36]†.  

Another study has been carried out in connection with the Gemini project, 

which involves the construction of two large telescopes with 8.2 m primary 

mirrors [20]†. Consequent reductions in light loss may lead to more 

extensive usage of multimirror optical systems, in particular four-mirror 

systems for ELTs with total optical throughput about 80% or higher. 
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1.8.4 Progress in Polishing of Large Mirrors 

New methods for optical fabrication provide high-quality, fast 

mirrors of large diameters as required in compact optical systems for ELTs 

[37]†. The main difficulty in achieving steep aspherical surfaces is not 

related to the amount of material to be removed (proportional to the 

deviation of the surface from the corresponding best-fit sphere), but to the 

removal at different rates over neighbouring areas. Therefore the maximum 

slope difference between the aspheric surface and the best-fit sphere 

defines the effort needed for polishing. 
 

Referring to Dierickx [21]†, for a conic surface, a polishing difficulty 

criterion δc can be defined as:  

                                    
b

Df
c

3)/(8
=δ  

where f is the focal length, D is the diameter of the optical surface and b is 

the deformation constant. The value δc is inversely proportional to the 

slope difference between the conic surface and the corresponding best-fit 

sphere. The smaller the value of δc , the more difficult is the aspherization. 

Small focal ratios (f /D) present severe problems for polishing. A rapid 

increase in polishing difficulty towards small focal ratios (as a third power 

of f /D) has been a major constraining factor for the former generation of 

telescopes with relatively slow primaries [8]†. 
 

The technological revolution permitted by computer controlled 

polishing techniques and modern optical testing methods has made it 

possible to overcome limitations of the conventional techniques of the past. 

The amount of optical surface wavefront RMS misfigure achieved recently 

for large primary mirrors is only a small fraction of a micron.  For the 1.8-

m primary mirror of the Vatican telescope, RMS = 34 nm and δc = 8 [38]†, 



 Chapter One                                          Introduction                                                    22 

for the 1.1m secondary mirrors of the 8m Very Large Telescopes, RMS=15 

nm and δc =30, for the 3.5m primary mirror of the Galileo telescope, 

RMS=16 nm and δc = 84 [39]†. For the 1.8m segments of the Keck I 

telescope, RMS = 16 nm and δc =32. These large mirrors possess the 

highest quality of optical surfaces yet produced, which demonstrates the 

recent remarkable progress in polishing techniques.  
 

An extensive review of modern controlled figuring techniques is 

given in [40, and 41]†. The classical techniques with large and stiff 

polishing tools are used with an innovative modification, namely stress 

polishing. The workpiece is stressed by active support forces or bending 

moments in such a way that its surface can be figured spherical or flat. 

Deforming forces are chosen so that after being released the workpiece 

assumes the desired aspherical shape. This technique has been used for 

producing the off-axis hyperbolic segments of the Keck telescope projects.  
 

Grinding and polishing processes affect the distribution of residual 

stresses within the workpiece, leading to uncontrolled surface warping 

which could exceed some microns after relaxation. A similar effect occurs 

in connection with the cutting segments into hexagons after the figuring 

process. In order to correct for such residual figure errors, Argon ion-beam 

polishing in a vacuum chamber is applied [42]†. This method is highly 

accurate and enables figure compensation to about 1 micron without 

degrading the microroughness. 
 

The ability to measure the figure error during the fabrication process 

is a necessary feature for modern technology to deliver diffraction-limited 

quality of steep (f/1.0) aspheric mirrors.  
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1.8.5 Progress in Optical Testing of Large Mirrors 

There are two principal testing methods for measuring the current 

mirror shape, optical [43]† and mechanical [44]†. Mechanical methods 

based on profilometer measurements are used at the initial and intermediate 

stages of the figuring process, since their precision is about one order of 

magnitude lower than that of optical test methods. 
 

Interferometric testing methods with spherical test plates are not 

always possible because the deviation of an aspherical surface from the 

corresponding best-fit sphere can exceed hundreds of microns. For large 

mirrors, autocollimation schemes employing null lenses are used. In the 

presence of strong spherical aberration a null system provides stigmatic test 

conditions. A detailed description of optical test methods for aspherical 

mirrors is presented in [43, 45, 46]†. 
 

Concave mirrors are effectively tested at the centre of curvature 

through null systems providing an autocollimation path. This means that 

after passing the null-lenses, the rays become normal to the optical surface 

being tested. Unfortunately, the null system is a potential source of errors 

during the test and therefore its quality needs crosschecking. Use of two 

independent null systems improves reliability of the test results. A 

crosscheck of the null-lens against a computer generated hologram (CGH), 

which mimics aberrations of the optical surface, enables easy verification 

of null system quality. In the modified scheme using CGH technology one 

can test off-axis aspherical segments [47]†. 
 

The optical testing of large convex aspherical mirrors is most 

challenging, since it requires a compensator (glass matrix or Hindle sphere) 

at least as large as the mirror itself. A spherical matrix in the shape of a 

meniscus lens with a coated concentric hologram provides a means of 

testing convex aspherical mirrors using autocollimation schemes. This test 



 Chapter One                                          Introduction                                                    24 

method with a spherical matrix has been successfully demonstrated for the 

convex secondary mirrors of the LBT and the Magellan telescope [48]†. It 

should be noted that the ability of the optical test methods mentioned is 

such that it is possible to perform data sampling over entire surfaces in 

several hundred points with a precision in the range of a few nm. 
 

1.9 The Aim of Thesis 

The aim of this thesis is, first, to study how the asphericity factor 

effects the reflecting telescope parameters under investigation of this thesis. 

These parameters are: 

1. the ∆-values (length segment from the tangent x-y plane to the 

surface); 

2.  ray aberrations both the transverse (TA) and the longitudinal (LA); 

3. the angle the incident ray makes with the surface normal vector.  

and second, to design a two-mirror reflecting telescope based upon this 

study. 

 The design fulfillments are 1m aperture (for comparison between 

surfaces of unified aperture), and 2.5m telescope (costless) with best 

possible features (light gathering power, and resolving power).  



25 

 

 

    Chapter       

 

Ray Tracing 
2.1Ray Tracing 

Ray tracing procedures are the mainstay and the mathematical tools 

essential for system evaluation before being constructed; because the 

obtained results are used in aberration calculations; and that’s why it is of a 

fundamental importance in optical design. There are different types of ray 

tracing methods for the different types of the incoming rays. The 

programming work involved is skew ray tracing (exact ray tracing) through 

spherical surface and quadric surfaces of revolution ( Cartesian surfaces). 
 

Since the Gaussian region is a very small one in comparison with the 

total optical element (lens or mirror) size, especially, when large elements 

are used. Therefore, there is an insisting necessity to use more general 

procedure for tracing rays in three dimensions by using solid geometry 

instead of using paraxial ray tracing because it is just an approximation. So, 

the used procedure for such case takes into account the most general type 

of rays known as skew. The meaning of skew rays is those which are not 

co-planar with axis (optical axis) [18]. So, a skew ray must be defined in 

three coordinates x, y, and z. The only way to achieve further generality is 

to make use of this technique to get an exact analysis for ray tracing of such 

general case [6]. Figure (2.1) shows the diagram that illustrates the case of 

a skew ray.  

2 
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2.2 Skew Ray Tracing through Spherical Surfaces  

Before giving a flowchart that explains the programming work for a 

skew ray, exhibiting the used formulae is of great importance to illustrate 

the mathematical analysis for this case geometrically. 

Lets consider the optical axis is a long the z-axis, passing through the 

(x-y) plane that are tangent to the surfaces of the optical elements from 

their vertices (figure 2.1). The starting equation that gives z–coordinates of 

a spherical surface is [19]: 

( )222

2
zyxcz ++=                                                                    (2.1) 

where c is the curvature of the surface, and x and y are the coordinates of 

the incident ray and the spherical surface.  

To employ Snell’s law of the refraction in terms of geometrical 

forms, it has been reformulated as [19]: 

y 

x 

z-axis.  
O 

Coming Ray  
Coordinates 
(At tangent  
x-y plane):     
x=xj-1, y=yj-1, 
z=0 
with L, M, N 

Incident Ray 
Coordinates 
(at surface # J): 
Equation 2.5 

Incident Ray 
Coordinates 
(at surface # J+1): 
Equation 2.5 

Transfered Ray  
Coordinates 
 (at tangent x-y 
plane):  
Equation 2.4     

dj 

∆j ∆j+1 

Refracted ray 
with Lj, Mj, Nj 

Refracted ray with  
  Lj+1, Mj+1, Nj+1 

Figure ( 2.1) Geometry and notation used for tracing a skew ray 
between spherical surfaces.  
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where  

InInk coscos −′′=                                                                   (2.3) 

L, M, and N are the direction cosines of the incident rays. α, β, and γ are the 

components of the unit normal at the point of incidence. The non–primed 

parameters belong to the previous medium. This method involves two sets 

of equations; the first for the transfer between spherical surface and the 

second for the refraction. 
 

Transfer between Spherical Surfaces 

The equations for transferring skew rays between spherical surfaces are 

[19]: 
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(x-1, y-1) are the coordinates of the coming ray, and (x0, y0) are the 

coordinates of the ray intersection with the (x–y) plane. The ray intersects 

the spherical surface in the coordinates are given by  [19]: 
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where ∆ is the length segment from the (x–y) plane to the surface; which is 

expressed as [19]: 
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Refraction (Reflection) through Spherical Surfaces 

 It is important to refer that the expressions and notation used in this 

section for refraction are exactly the same expressions and notations used 

for reflection, taking into consideration that the angle of reflection is equal 

to the angle of incidence and the mirror index of refraction is equal to -1. 
 

 To obtain refraction (reflection) equations through spherical surface it 

is needed to know the components of the unit normal (. α, β, γ) at the point 

of incidence. These components can be obtained from [19]: 
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where F stands for equation (2.1). Using (2.9) in equation (2.2), the new 

values of the directional cosines (after refraction) can be expressed as [19]: 
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where  

 ( )InIncK coscos −′′=                                                              (2.11) 

 cFGI −= 2cos                                                                        (2.12) 

 )cos1()(cos 222 InnIn −−′=′′                                              (2.13) 

equations (2.10) up to (2.13) complete the refraction (reflection) process. 

Substituting the direction cosines of equation (2.10) in (2.4), the transfer 
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process from one surface to another is done. After each refraction 

(reflection) process the direction cosines should be checked in order to 

assert the tracing validity. This can be done by [19]: 

1)()()( 222 =′+′+′ NML                                                           (2.14) 

 

 The flowchart that explains the procedure used for skew ray tracing 

through spherical surfaces is shown in figure (2.2)  
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Figure (2.2) Flowchart for skew ray tracing through spherical surfaces. 
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2.3 Ray Tracing through Quadric of Revolution  

Most optical surfaces are spherical because a spherical surface is the 

easiest to produce. However, non-spherical are necessary for some 

purposes, especially when they appear as the solution of particular optical 

problems, where one of these surfaces, ellipse, is the one that verifies 

Fermat’s principle which states that the optical path length of each ray will 

be identical [5] . So, a code for tracing rays through aspherical surfaces is 

an essential and without such code, ray–tracing procedures are incomplete. 

With this code, ray–tracing procedures are suitable to trace rays through, 

approximately, all types of optical element surfaces. 
 

For ray tracing purposes the equation used to represent the conic of 

revolution is [19]: 

 ( )222

2
zyxcz ε++=                                                                (2.15) 

This equation represents a surface of revolution about the z–axis, passing 

through the origin and having curvature c at that point. The parameter ε 

determines the asphericity as follows [19]: 

   ε < 0           ,   hyperboloid 

   ε =0            ,   paraboloid 

          0 < ε < 1     ,   prolate ellipsoid         

          ε=1              ,  sphere  

          ε > 1              , oblate ellipsoid  

The utility of equation (2.15) is to give a range for aspherities while 

keeping the paraxial curvature constant, which is essential in designing 

conic surfaces (Cartesian). The followed steps to trace rays through these 

surfaces are similar to those illustrated in the last section for skew rays 

between spherical surfaces.  
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Transfer between Quadrics  

 The transfer equations for the quadric are obtained by proceeding 

exactly the procedure for spherical surfaces given in §2.1 the only different 

formulae in this set is that for the length segment ∆, which is now 

expressed as (kindly, see the appendix): 

 
))1(1( 22 NcFGG

F

−+−+
=∆

ε
                                            (2.16) 

from equation (2.16), it is quite evident the result for a sphere (spherical 

surface) is recovered if ε is put equal to unity. The coordinates of ray 

intersection with the surface are obtained by using (2.16) in (2.5). 
 

Refraction (Reflection) through Quadric 

 Refraction (reflection) calculations must again be restarted from 

finding the cosine of the angle of incidence; by applying equation (2.9) to 

equation (2.15) to obtain the direction cosines of the normal as (kindly, see 

the appendix):  
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The cosine of the angle of incidence cosI can be obtained by the scalar 

multiplication with the direction cosines of the ray tracing, it is expressed 

as (kindly, see the appendix): 
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Refraction (reflection) calculations are completed by using equation 

(2.13), (2.3), and (2.2) respectively. The condition (equation 2.14) of 

direction cosines can be used for the same purposes as before. The new 

values of the direction cosines of the refracted (reflected) ray should be 

substituted in equation (2.4) to complete the transfer process from one 

surface to another.  

The flowchart that explains the procedure used for skew ray tracing 

through quadric surfaces is shown in figure (2.3) 
 

In order to identify my personal contribution to the formulation of  

the skew ray tracing, equations 2.16, 2.17, and 2.18 have been 

reformulated. This reformulation is based upon analytical derivation to 

these formulas by using the same notation of [19], (kindly see the 

appendix). 
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Figure (2.3) Flowchart for ray tracing through conic surfaces. 
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2.4 Computing Transverse (TA) and  

Longitudinal (LA) Aberrations  

 This section exhibits the expressions used to compute the results of 

TA, and LA in Chapter 3. Concerning TA results, they computed by using 

one of the skew ray tracing equations (equation2.4): 

           ( )11 −− −+= zf
N
Myyo                                                                                        (2.19) 

In this equation,  yo stands for TA, where yo is the incident ray height at the 

focal plane of the optical element(mirror), y-1 is the ray height in the 

previous surface (mirror surface), N, and M are the ray direction cosines, f l 

is the mirror focal length, and z-1 is the length segment from the(x-y) plane 

tangent to the surface(mirror). 

 Concerning LA results, they computed by using the following 

equation 

         
)tan( angleeconvergenc

TALA =                                                    (2.20) 

where  reflectionofangle2 econvergenc ×=  

Since the angle of reflection is equal to the incident angle, thus it can be 

obtained from equation 2.18                 

               
22 )1()1(21

)(
cos

zczc

zNMyLxcN
I

−+−−

++−
=

εεε

ε
 

The angle values ( I )computers display are in radian, and those displayed 

in degrees in chapter three are obtained by: 

π
180IAngle          ×

=                                                                         (2.21) 
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 Chapter   
 

Results & Discussion 

 

First of all, before setting off to discuss the results of  figures and 

tables, it is very important to refer that all the results appear in this chapter  

are based upon considering the surfaces (mirrors) of 5m radius of curvature 

(R=500cm). This means that the paraxial curvature (c, where c=1/R) is kept 

invariant (constant) in all mirrors. Keeping the paraxial curvature c 

constant is very essential for two reasons (keeping the paraxial curvature 

constant, which is essential in designing conic surfaces [19]):  
 

1. It is difficult to compare, judge, and select the proper type of surfaces  

    (mirrors) to represent a telescope mirrors unless all surfaces have the  

    same paraxial curvature. 

2. To study the effect of the asphericity factor ε on the parameters of the 

reflecting surfaces, the paraxial curvature is kept constant. This is because 

mirrors are single-surface optical elements with no thickness parameter; 

while lenses have two surfaces and thickness. So, in the case of mirrors 

there is only one and unique optical design parameter that controls mirrors 

performance (focal length and magnification); it is the paraxial curvature c. 
 

 

 

3.1 Discussing Surfaces’ Shapes 

3
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  It is important, here, to refer that the considered aperture used to 

achieve the task of this section is 9m (900cm) aperture except the case of 

oblate ellipsoid; where the considered aperture is 1m. In this section the 

effect of changing the asphericitry factor (ε) on the shapes of quadric (conic 

or Cartesian) surfaces will be discussed. This task achieved exhibiting the 

∆-values of those surfaces (along the optical axis) versus the aperture 

diameter. The aperture diameter of the surface is represented as the height 

(y in cm) of the incident light ray on these surfaces. The ∆-values of these 

surfaces represent, in skew ray tracing procedure, the length segment from 

the plane that passes through the optical axis(z-axis) and tangent to the 

surface at the origin (surface vertex), so the ray height axis (aperture 

diameter axis) can represent the tangent x-y plane. The actual ∆-values 

those listed in the tables have negative sign, because the length segment 

from the tangent x-y plane to mirrors’ surfaces is from right to left, and 

according to the sign convention these values are negative. But figures 

from 3.1 up to 3.4, exhibited ∆-values as positive when plotted against the 

ray height values just to compare between one figure and another.  

 

The asphericity factor (ε) factor changes the shapes of quadric 

surfaces. Figures 3.1, 3.2, 3.3, and 3.4 obviously clear this fact. These 

figures exhibit the ∆-values of these surfaces versus the ray height or the 

aperture diameter, where the ∆- axis represents the optical axis. 
 

Figure 3.1 shows the effect of decreasing (ε) on the shapes of 

surfaces in the region of hyperboloid (ε<0). In the interval [-100,100]cm 

along the aperture diameter axis, the surfaces curves seem to coincide. 

Beyond this interval the surfaces begin to depart from each other. This 

figure also shows that as ε=-0.01 the surface shape is very close to that of 

paraboloid and as ε decreases down to ε=-1000 the shapes become more 

and more flattened. In other words, it means that the ∆ -values begin to 

become closer and closer to the plane tangent to the surface at its vertex. 
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Geometrically (in terms of skew ray tracing), this means that the length 

segment between a point on a surface and the tangent plane is getting 

smaller and smaller as (ε) decreases from ε=-0.1 down to ε=-1000, (kindly, 

see table 3.1) consequently, this behavior leads to the conclusion that when 

ε = -∞ the surface becomes plane. 
 

Figure 3.2 compares between the shape of spherical surface (ε=1) 

and the shape of the paraboloid (ε=0). The ∆-values of both seems to 

coincide for a while or interval of aperture diameter [-250,250] cm. beyond 

this interval the ∆-values those belong to the spherical surface begin to 

show higher response to the increase in aperture diameter as they get higher 

∆-values for the same aperture diameter. Geometrically, this means that the 

length segment between a point on a spherical surface and the tangent 

plane is larger than the length segment between a point on the surface of 

paraboloid and the tangent plane(kindly, see table 3.2). 
 

Figure 3.3 shows how ε works in the region of prolate ellipsoid 

(0<ε<1), this is very clear that the shapes of prolate ellipsoid ε forms are 

ranging between paraboloid (ε=0) and spherical surface (ε=1). When ε=0.2 

the surface shape is very close to that of paraboloid and when ε=0.8 the 

surface shape is very close to that of spherical surface (kindly, see table 

3.2). 
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Fig. 3.2  Spherical surface  
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Figure 3.4 shows the influence of increasing ε in the region of oblate 

ellipsoid (ε>1). In this region, the case is quite the contrast to that for 

hyperboloid; the story of ∆-values response to the aperture diameter in the 

comparison between spherical surface and paraboloid is going on but with 

higher response. The previous figures 3.1, 3.2, and 3.3, the domain of the 

aperture diameter was [-500cm, 500cm] to get a noticeable change in ∆-

values (shape of the surfaces). While in this case, the domain of the 

aperture diameter is [-50, 50]cm due to the higher response the ∆-values 

showed versus the increase in ε. (kindly, see table 3.3) 

 
                   Table 3.1 ∆- values versus the ray heights forming hyperboloids  
                                                    surfaces of 500 cm radii. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         

 ∆(cm) 
y(cm) ε =-1000 ε  =-100  ε =-10 ε =-1   ε =-0.01 

450 -13.73903 -40.27693 -100.831 -172.6812 -202.0916 
400 -12.15899 -35.31129 -86.0147 -140.3124 -159.7448 
350 -10.57926 -30.35534 -71.44958 -110.3278 -122.3503 
300 -9 -25.41381 -57.23806 -83.09519 -89.91915 
250 -7.42149 -20.4951 -43.54144 -59.017 -62.46099 
200 -5.844289 -15.61553 -30.62258 38.51648 -39.98401 
150 -4.269696 -10.81139 -18.92024 -22.01533 -22.49494 
100 -2.701562 -6.18034 -9.160798 -9.901952 -9.999001 
50 -1.158312 -2.071068 -2.440442 -2.493781 -2.499938 
-50 -1.158312 -2.071068 -2.440442 -2.493781 -2.499938 

-100 -2.701562 -6.18034 -9.160798 -9.901952 -9.999001 
-150 -4.269696 -10.81139 -18.92024 -22.01533 -39.98401 
-200 -5.844289 -15.61553 -30.62258 -38.51648 -62.46099 
-250 -7.42149 -20.4951 -43.54144 -59.017 -89.91915 
-300 -9 -25.41381 -57.23806 -83.09519 -122.3503 
-350 -10.57926 -30.35534 -71.44958 -110.3278 -202.0916 
-400 -12.15899 -35.31129 -86.0147 -140.3124 -159.7448 
-450 -13.73903 -40.27693 -100.831 -172.6812 -202.0916 
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Table 3.2 ∆- values versus the ray heights forming paraboloid, prolate ellipsoid 
                             surfaces, and spherical surface, all of 500 cm radius. 

∆(cm)  
Paraboloid Prolate ellipsoid Sphere 

Y(cm) (ε=0) (ε=0.2) (ε=0.4) (ε=0.6) (ε=0.8) (ε=1) 

450 -202.5 -211.4415 -222.2598 -235.8851 -254.1901 -282.0551 
400 -160 -165.4765 -171.8071 -179.2861 -188.3938 -200 
350 -122.5 -125.658 -129.1744 -133.135 -137.6603 -142.9286 
300 -90.00001 -91.68109 -93.49666 -95.46855 -97.62444 -100 
250 -62.5 -63.30142 -64.14588 -65.03796 -65.98301 -66.9873 
200 -40 -40.32523 -40.66134 -41.00904 -41.36913 -41.74243 
150 -22.5 -22.60217 -22.70623 -22.81224 -22.92027 -23.0304 
100 -10 -10.02008 -10.04032 -10.06073 -10.08131 -10.10205 
50 -2.5 -2.501251 -2.502505 -2.503761 -2.50502 -2.506281 
-50 -2.5 -2.501251 -2.502505 -2.503761 -2.50502 -2.506281 

-100 -10 -10.02008 -10.04032 -10.06073 -10.08131 -10.10205 
-150 -22.5 -22.60217 -22.70623 -22.81224 -22.92027 -23.0304 
-200 -40 -40.32523 -40.66134 -41.00904 -41.36913 -41.74243 
-250 -62.5 -63.30142 -64.14588 -65.03796 -65.98301 -66.9873 
-300 -90.00001 -91.68109 -93.49666 -95.46855 -97.62444 -100 
-350 -122.5 -125.658 -129.1744 -133.135 -137.6603 -142.9286 
-400 -160 -165.4765 -171.8071 -179.2861 -188.3938 -200 
-450 -202.5 -211.4415 -222.2598 -235.8851 -254.1901 -282.0551 

 
                 

              
 
                  Table 3.3 ∆- values versus the ray heights forming oblate ellipsoid    
                                               surfaces of 500 cm radii. 

 ∆(cm) 
y(cm) (ε=10) (ε=20) (ε=40) (ε=60) (ε=80) 

50 -2.565835 -2.63932 -2.817542 -3.062871 -3.454915 
45 -2.067756 -2.114415 -2.222598 -2.358851 -2.541901 
40 -1.626454 -1.654765 -1.718071 -1.792861 -1.883938 
35 -1.240386 -1.25658 -1.291744 -1.331349 -1.376603 
30 -0.9082492 -0.9168109 -0.9349665 -0.9546855 -0.9762443 
25 -0.6289558 -0.6330141 -0.6414587 -0.6503796 -0.65983 
20 -0.4016129 -0.4032522 -0.4066134 -0.4100904 -0.4136913 
15 -0.2255086 -0.2260217 -0.2270623 -0.2281224 -0.2292027 
10 -0.1001002 -0.1002008 -0.1004032 -0.1006073 -0.1008131 
-10 -0.1001002 -0.1002008 -0.1004032 -0.1006073 -0.1008131 
-15 -0.2255086 -0.2260217 -0.2270623 -0.2281224 -0.2292027 
-20 -0.4016129 -0.4032522 -0.4066134 -0.4100904 -0.4136913 
-25 -0.6289558 -0.6330141 -0.6414587 -0.6503796 -0.65983 
-30 -0.9082492 -0.9168109 -0.9349665 -0.9546855 -0.9762443 
-35 -1.240386 -1.25658 -1.291744 -1.331349 -1.376603 
-40 -1.626454 -1.654765 -1.718071 -1.792861 -1.883938 
-45 -2.067756 -2.114415 -2.222598 -2.358851 -2.541901 
-50 -2.565835 -2.63932 -2.817542 -3.062871 -3.454915 
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3.2 Discussing the Telescope’s Parameters 

In this section, all the considered surfaces (mirrors) are of D=1m 

aperture diameter (-50cm≤y≤ 50cm), and R=5m radius of curvature for 

selecting the surface with best features to stand for the primary mirror.  
 

This section discusses the effect of changing the shapes of surfaces, 

due to varying ε, on the reflecting telescope parameters under investigation 

of the project of this thesis. These parameters are: 
 

1. The length segment ∆–values. 

2. The angle (in degrees)the incident ray makes with the normal to the 

surface at the point of incidence. It is necessary to mention, here, that 

this angle determines the power of surface for each individual ray 

height (y-coordinates in cm). So, different angles give different 

powers (focal length or magnification) and this leads to (the two 

following parameters)rays aberrations. 

3. Longitudinal Aberrations (LA), directly related to the distance, ray 

makes when intersects the optical axis, before or behind the focus. 

4. The Transverse Aberrations (TA) which refers to the distance above 

or below the optical axis to the ray intersection with the focal plane. 
 

 

 

Table 3.4  for spherical surface (ε=1)shows that the length segment 

(∆-values) from the tangent plane to the surface increases from 0.10001cm 

to 2.50628cm when the ray height (y in cm) varies from 10cm to 50cm 

away from the optical axis. This was associated with angle variation, the 

angle the incident ray makes with the vector normal to surface, from 

1.14603o to 5.739o to the same interval of ray height. This, in turn, changed 

the power of the surface along the aperture for each individual ray height, 

and then the appearance of TA as consequent. The marginal rays (y=50cm 

and y=-50cm) produce TA =0.225cm and -0.255cm respectively. As shown 

in the table the rays above the optical axis intersect the focal plane below 
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the focal point and the rays below the optical axis intersects the focal plane 

above the focal point. And this means that the rays in the case of spherical 

surfaces (ε=1) intersect the optical axis before the paraxial focal point 

which justifies the positive values for the LA (maximum value for 

LA=1.259cm). 
 

Table 3.4 Results of 500cm radius, 100cm aperture diameter 
spherical mirror (ε=1). 

 

Table 3.5 for paraboloid (ε=0) shows that the length segment from 

the tangent plane to the surface ( ∆-values) varies from 0.1cm to 2.5cm 

when the ray height varies from 10cm to 50cm. For the same interval of y 

the table shows variation in the angle from 1.14589o to 5.710623o. A 

comparison between the results in table 3.4 and 3.5 shows that the 

difference in the ∆-values for the marginal ray is 0.006cm or 60µm and 

difference between the angles those rays made is 0.003o which are very 

fine. But these very fine differences yield a complete elimination to 

spherical aberrations; since 1cm 710−× =1nm. Thus, 97nm (highest TA 

value) is much less than that of the visible region (400nm< λ <700nm). 

Y(cm) z(cm) Angle( o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.506281 5.739176 1.259664 -0.2557378 1 
45 -2.029117 5.163612 1.018917 -0.1856209 1 
40 -1.602568 4.588554 0.803224 -0.1298644 1 
35 -1.226504 4.014004 0.6157961 -8.669955e-2 1 
30 -0.9008115 3.4398 0.4503085 -0.0544386 1 
25 -0.6253911 2.866008 0.3152064 -3.142375e-2 1 
20 -0.4001601 2.29243 0.1988541 -1.605671e-2 1 
15 -0.2250507 1.71908 0.1051648 -6.761057e-3 1 
10 -0.10001 1.14603 5.823889e-2 -2.00056e-3 1 
-10 -0.10001 1.14603 5.823889e-2 2.00056e-3 1 
-15 -0.2250507 1.71908 0.1051648 6.761057e-3 1 
-20 -0.4001601 2.29243 0.1988541 1.605671e-2 1 
-25 -0.6253911 2.866008 0.3152064 3.142375e-2 1 
-30 -0.9008115 3.4398 0.4503085 0.0544386 1 
-35 -1.226504 4.014004 0.6157961 8.669955e-2 1 
-40 -1.602568 4.588554 0.803224 0.1298644 1 
-45 -2.029117 5.163612 1.018917 0.1856209 1 
-50 -2.506281 5.739176 1.259664 0.2557378 1 
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Table 3.5 Results of 500cm radius, 100cm aperture diameter 
paraboloid mirror (ε=0). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tables 3.6, 3.7, 3.8, and 3.9 (for prolate ellipsoid); these tables show 

that their results are ranging between those in the case of paraboloid and 

the case of spherical surface. It is very clear that when ε=0.2 (table3.6) the 

results are very close to those of paraboloid (ε=0) and when ε=0.8 

(table3.9) the results are close to those of spherical surface (ε=1), and when 

ε=0.4 and ε=0.6 the results are in between.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.5 

 

5.710623 -2.4749867e-6 5.00e-7 0.9999995 
45 -2.025 

 

5.142737 -8.5303867e-6 15.48e-7 1 
40 -1.6 

 

4.573932 -6.4583845e-6 10.40e-7 0.9999998 
35 -1.225 

 

4.004186 -38.986467e-6 54.85e-7 0.9999999 
30 -0.9 

 

3.433648 -81.040113e-6 97.60e-7 0.9999998 
25 -0.625 

 

2.862386 -66.084821e-6 66.25e-7 1 
20 -0.4 

[[ 

2.290551 -15.974813e-6 12.80e-7 1 
15 -0.225 

[ 

1.718397 -35.950130e-6 21.59e-7 0.9999999 
10 -0.1 

[ 

1.145859 -39.980640e-6 16.0e-7 0.9999997 
-10 -0.1 

[ 

1.145859 -39.980640e-6 -16.0e-7 0.9999997 
-15 -0.225 

 

1.718397 -35.950130e-6 -21.59e-7 0.9999999 
-20 -0.4 

 

2.290551 -15.974813e-6 -12.80e-7 1 
-25 -0.625 

[ 

2.862386 -66.084821e-6 -66.25e-7 1 
-30 -0.9 

[[ 

3.433648 -81.040113e-6 -97.60e-7 0.9999998 
-35 -1.225 

[ 

4.004186 -38.986467e-6 -54.85e-7 0.9999999 
-40 -1.6 

[ 

4.573932 -6.4583845e-6 -10.40e-7 0.9999998 
-45 -2.025 

 

5.142737 -8.5303867e-6 -15.48e-7 1 
-50 -2.5 5.710623 -2.4749867e-6 -5.00e-7 0.9999995 
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Table 3.6 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid 
mirror of ε=0.2 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.501251 5.716318 0.2532806 -5.084326e-2 0.9999995 
45 -2.025821 5.146888 0.2021759 -3.694014e-2 1 
40 -1.600512 4.576799 0.1583835 -2.587078e-2 1 
35 -1.2253 4.006191 0.1266284 -0.0172962 0.9999994 
30 -0.9001621 3.434902 9.292567e-2 -1.086728e-2 0.9999996 
25 -0.6250781 2.86307 5.817991e-2 -6.272856e-3 1 
20 -0.400032 2.290978 4.026034e-2 -3.207913e-3 0.9999999 
15 -0.2250101 1.718397 5.68749e-3 -0.0013494 1 
10 -0.100002 1.145859 2.095442e-2 -4.005632e-4 0.9999998 
-10 -0.100002 1.145859 2.095442e-2 4.005632e-4 0.9999998 
-15 -0.2250101 1.718397 5.68749e-3 0.0013494 1 
-20 -0.400032 2.290978 4.026034e-2 3.207913e-3 0.9999999 
-25 -0.6250781 2.86307 5.817991e-2 6.272856e-3 1 
-30 -0.9001621 3.434902 9.292567e-2 1.086728e-2 0.9999996 
-35 -1.2253 4.006191 0.1266284 0.0172962 0.9999994 
-40 -1.600512 4.576799 0.1583835 2.587078e-2 1 
-45 -2.025821 5.146888 0.2021759 3.694014e-2 1 
-50 -2.501251 5.716318 0.2532806 5.084326e-2 0.9999995 

    
 

Table 3.7 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid 
mirror of ε=0.4 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.502505 5.721972 0.5029576 -0.1018295 1 
45 -2.026643 5.151113 0.4089954 -7.398331e-2 0.9999995 
40 -1.601025 4.579795 0.3230317 -0.0517997 0.9999996 
35 -1.225601 4.008048 0.2430423 -0.0345981 1 
30 -0.9003243 3.436099 0.1803337 -2.174047e-2 0.9999999 
25 -0.6251563 2.863822 0.1240197 -1.255654e-2 1 
20 -0.400064 2.291406 8.696601e-2 -6.421361e-3 0.9999996 
15 -0.2250203 1.718739 0.0554668 -2.70465e-3 0.9999997 
10 -0.100004 1.14603 0.0582449 -8.016349e-4 0.9999995 
-10 -0.100004 1.14603 0.0582449 8.016349e-4 0.9999995 
-15 -0.2250203 1.718739 0.0554668 2.70465e-3 0.9999997 
-20 -0.400064 2.291406 8.696601e-2 6.421361e-3 0.9999996 
-25 -0.6251563 2.863822 0.1240197 1.255654e-2 1 
-30 -0.9003243 3.436099 0.1803337 2.174047e-2 0.9999999 
-35 -1.225601 4.008048 0.2430423 0.0345981 1 
-40 -1.601025 4.579795 0.3230317 0.0517997 0.9999996 
-45 -2.026643 5.151113 0.4089954 7.398331e-2 0.9999995 
-50 -2.502505 5.721972 0.5029576 0.1018295 1 
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Table 3.8 Results of 500cm radius, 100cm aperture diameter 
prolate ellipsoid mirror of ε=0.6 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.503761 5.727655 0.7534409 -0.1529703 1 
45 -2.027467 5.155257 0.611541 -0.1111 0.9999998 
40 -1.601539 4.582745 0.4849783 -7.777584e-2 0.9999994 
35 -1.225902 4.01005 0.3684891 -5.194262e-2 1 
30 -0.9004866 3.437352 0.2717851 -0.0326285 0.9999999 
25 -0.6252345 2.864505 0.1838017 -1.883985e-2 1 
20 -0.4000961 2.291747 0.124257 -9.631894e-3 0.9999998 
15 -0.2250304 1.718853 7.204297e-2 -4.056463e-3 0.9999999 
10 -0.100006 1.145859 2.095042e-2 -1.200729e-3 1 
-10 -0.100006 1.145859 2.095042e-2  1.200729e-3 1 
-15 -0.2250304 1.718853 7.204297e-2  4.056463e-3 0.9999999 
-20 -0.4000961 2.291747 0.124257   9.631894e-3 0.9999998 
-25 -0.6252345 2.864505 0.1838017  1.883985e-2 1 
-30 -0.9004866 3.437352 0.2717851  0.0326285 0.9999999 
-35 -1.225902 4.01005 0.3684891  5.194262e-2 1 
-40 -1.601539 4.582745 0.4849783  7.777584e-2 0.9999994 
-45 -2.027467 5.155257 0.611541  0.1111 0.9999998 
-50 -2.503761 5.727655 0.7534409  0.1529703 1 

 
 

Table 3.9 Results of 500cm radius, 100cm aperture diameter prolate ellipsoid mirror 
of  ε=0.8 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.50502 5.733401 1.00618 -0.2042748 1 
45 -2.028291 5.159398 0.8136125 -0.1483158 1 
40 -1.602053 4.585608 0.6419042 -0.1037858 1 
35 -1.226203 4.011954 0.4876491 -6.930795e-2 1.000001 
30 -0.900649 3.438548 0.3590099 -4.352804e-2 1 
25 -0.6253128 2.865257 0.2495499 -2.513105e-2 1 
20 -0.4001281 2.292089 0.1615784 -0.0128443 0.9999999 
15 -0.2250405 1.718967 8.860388e-2 -5.41014e-3 1 
10 -0.100008 1.14603 0.0582409 -1.601801e-3 0.9999997 
-10 -0.100008 1.14603 0.0582409 1.601801e-3 0.9999997 
-15 -0.2250405 1.718967 8.860388e-2 5.41014e-3 1 
-20 -0.4001281 2.292089 0.1615784 0.0128443 0.9999999 
-25 -0.6253128 2.865257 0.2495499 2.513105e-2 1 
-30 -0.900649 3.438548 0.3590099 4.352804e-2 1 
-35 -1.226203 4.011954 0.4876491 6.930795e-2 1.000001 
-40 -1.602053 4.585608 0.6419042 0.1037858 1 
-45 -2.028291 5.159398 0.8136125 0.1483158 1 
-50 -2.50502 5.733401 1.00618 0.2042748 1 
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Tables 3.10, 3.11, 3.12, and 3.13 (for oblate ellipsoid), show that for 

the set of ε = {20, 40, 60, 80}there is a set of ∆= {-2.63932, -2.817542, -

3.062871, -3.454915} cm, and for the same interval of asphericity factor 

the angles’ set={6.379349o, 7.356153o, 8.984894o, 12.60439o} when the 

ray height y=50cm. So, it is clear that increasing ε leads to increase both ∆-

values and the angle the incident ray makes with normal. And, as 

consequent, there is increase in aberrations (TA and LA) over those of 

spherical mirror of the same paraxial curvature as ε increases. For the same 

set of ε above the sets of TA and LA are, respectively, {-6.011672, -

14.90397, -30.09065, -66.06139} and {26.54819, 56.76044, 92.77639, 

140.3319}. The signs of TA and LA refer that the power of the mirror 

increased with increasing ε. So, it is concluded that, the ray above the 

optical axis intersected the focal plane below the optical axis and vise 

versa. And that’s why the LA has positive values, since all rays intersects 

the optical axis before the paraxial focal length. 
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Table 3.10 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid 
mirror of ε=20 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.63932 6.379349 26.54819  -6.011672 1 
45 -2.114415 5.614995 21.24168  -4.21755 1 
40 -1.654765 4.89657 16.60451  -2.866372 1 
35 -1.25658 4.215332 12.59848  -1.86736 1 
30 -0.9168109 3.564033 9.186903  -1.148687 0.9999999 
25 -0.6330141 2.93665 6.339413  -0.6520168 0.9999999 
20 -0.4032522 2.328097 4.033119  -0.3287014 1 
15 -0.2260217 1.734042 2.263602  -0.137038 0.9999999 
10 -0.1002008 1.150291 0.9845008  -4.026527e-2 1 
-10 -0.1002008 1.150291 0.9845008    4.026527e-2 1 
-15 -0.2260217 1.734042 2.263602    0.137038 0.9999999 
-20 -0.4032522 2.328097 4.033119    0.3287014 1 
-25 -0.6330141 2.93665 6.339413    0.6520168 0.9999999 
-30 -0.9168109 3.564033 9.186903    1.148687 0.9999999 
-35 -1.25658 4.215332 12.59848    1.86736 1 
-40 -1.654765 4.89657 16.60451    2.866372 1 
-45 -2.114415 5.614995 21.24168    4.21755 1 
-50 -2.63932 6.379349 26.54819    6.011672 1 

 

     
 

Table 3.11 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid 
 mirror  of ε=40 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.817542 7.356153 56.76044  -14.90397 1 
45 -2.222598 6.246953 44.69329  -9.903011 0.9999995 
40 -1.718071 5.298903 34.49854  -6.454811 0.9999999 
35 -1.291744 4.463877 25.90908  -4.070153 1 
30 -0.9349665 3.710457 18.73611  -2.440494 1 
25 -0.6414587 3.016945 12.84521  -1.357915 1 
20 -0.4066134 2.367529 8.137897  -0.6741723 1 
15 -0.2270623 1.750106 4.540058  -0.2779032 1 
10 -0.1004032 1.155044 2.009765 - 8.102299e-2 0.9999999 
-10 -0.1004032 1.155044 2.009765   8.102299e-2 0.9999999 
-15 -0.2270623 1.750106 4.540058   0.2779032 1 
-20 -0.4066134 2.367529 8.137897   0.6741723 1 
-25 -0.6414587 3.016945 12.84521   1.357915 1 
-30 -0.9349665 3.710457 18.73611   2.440494 1 
-35 -1.291744 4.463877 25.90908   4.070153 1 
-40 -1.718071 5.298903 34.49854   6.454811 0.9999999 
-45 -2.222598 6.246953 44.69329   9.903011 0.9999995 
-50 -2.817542 7.356153 56.76044   14.90397 1 
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 Table 3.12 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid 
mirror of  ε=60. 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -3.062871 8.984894 92.77639  -30.09065 0.9999996 
45 -2.358851 7.155109 71.23057  -18.17019 1 
40 -1.792861 5.820057 54.03262  -11.13046 0.9999996 
35 -1.331349 4.762261 40.06538  -6.722603 1 
30 -0.9546855 3.876614 28.70239  -3.907861 1 
25 -0.6503796 3.104254 19.53851  -2.125546 1 
20 -0.4100904 2.408997 12.30997  -1.037885 1 
15 -0.2281224 1.766689 6.846631  -0.4227766 1 
10 -0.1006073 1.159778 3.022516  -0.1222796 0.9999999 
-10 -0.1006073 1.159778 3.022516   0.1222796 0.9999999 
-15 -0.2281224 1.766689 6.846631   0.4227766 1 
-20 -0.4100904 2.408997 12.30997   1.037885 1 
-25 -0.6503796 3.104254 19.53851   2.125546 1 
-30 -0.9546855 3.876614 28.70239   3.907861 1 
-35 -1.331349 4.762261 40.06538   6.722603 1 
-40 -1.792861 5.820057 54.03262   11.13046 0.9999996 
-45 -2.358851 7.155109 71.23057   18.17019 1 
-50 -3.062871 8.984894 92.77639   30.09065 0.9999996 

 
              

Table 3.13 Results of 500cm radius, 100cm aperture diameter oblate ellipsoid 
mirror of ε=80.  

Y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
  50 -3.454915 12.60439 140.3319 -66.06139 0.9999999 

45 -2.541901 8.625732 102.5475 -31.84461 0.9999998 
40 -1.883938 6.533 75.76304 -17.58352 1.000001 
35 -1.376603 5.129882 55.25905 -10.00207 0.9999998 
30 -0.9762443 4.067268 39.13975 -5.594545 1 
25 -0.65983 3.199594 26.43162 -2.964467 1 
20 -0.4136913 2.452799 16.56389 -1.421511 0.9999999 
15 -0.2292027 1.783777 9.178543 -0.5718549 0.9999998 
10 -0.1008131 1.164493 4.022921 -0.1640472 1 
-10 -0.1008131 1.164493 4.022921  0.1640472 1 
-15 -0.2292027 1.783777 9.178543  0.5718549 0.9999998 
-20 -0.4136913 2.452799 16.56389  1.421511 0.9999999 
-25 -0.65983 3.199594 26.43162  2.964467 1 
-30 -0.9762443 4.067268 39.13975  5.594545 1 
-35 -1.376603 5.129882 55.25905  10.00207 0.9999998 
-40 -1.883938 6.533 75.76304  17.58352 1.000001 
-45 -2.541901 8.625732 102.5475  31.84461 0.9999998 
-50 -3.454915 12.60439 140.3319  66.06139 0.9999999 
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Tables from 3.14 to 3.17 (for hyperboloids); show a different story to 

that for all mirrors having ε>0. For the set of   ε = {-0.01, -1, -10, -100, -

1000} there is a set of ∆ = {-2.499938, -2.493781, -2.440442, -2.071068,      

-1.158312}cm, and for the same interval of  asphericity factor the angles’ 

set={5.710314 o, 5.682445 o, 5.446473 o, 4.04472 o, 1.72703 o}when the ray 

height y=50cm. So, it is clear that negatively increase in ε leads to decrease 

both ∆-values and the angle the incident ray makes with normal. And, as 

consequent, there is increase in aberrations (TA and LA) over  those of 

spherical mirror of the same paraxial curvature as ε decreases. For the same 

set of ε above the sets of TA and LA are, respectively, {2.533558E-3, 

0.2518625, 2.359148, 14.76136, 34.98063}cm and{-1.235819E-2, -

1.252814, -12.25906, -103.8542, -579.5505}cm. The signs of TA and LA 

refer that the power of the mirror decreased with decreasing ε. So, it is 

concluded that, the ray above the optical axis intersected the focal plane 

above the optical axis and vise versa. And that’s why the LA has negative 

values, since all rays intersect the optical axis after the paraxial focal 

length.  
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Table 3.14 Results of 500cm radius, 100cm aperture diameter hyperboloid 
mirror of ε=-0. 01. 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.499938 5.710314 -1.235819e-2 2.533558e-3 0.9999999 
45 -2.024959 5.142585 -8.815289e-3 1.842362e-3 0.9999997 
40 -1.599974 4.57376 -8.894682e-3 1.292719e-3 1 
35 -1.224985 4.004088 -5.334735e-3 8.63673e-4 0.9999999 
30 -0.8999919 3.433591 -2.912462e-3 5.426802e-4 0.9999998 
25 -0.6249961 2.862386 -1.70505e-3 3.125207e-4 0.9999999 
20 -0.3999984 2.290551 -6.458968e-3 1.602463e-4 1 
15 -0.2249995 1.718397  -5.69813e-3 6.777774e-5 0.9999998 
10 -0.0999999 1.145688 -1.632071e-2 2.007022e-5 1 
-10 -0.0999999 1.145688 -1.632071e-2  -2.007022e-5 1 
-15 -0.2249995 1.718397  -5.69813e-3 - 6.777774e-5 0.9999998 
-20 -0.3999984 2.290551 -6.458968e-3 -1.602463e-4 1 
-25 -0.6249961 2.862386 -1.70505e-3 -3.125207e-4 0.9999999 
-30 -0.8999919 3.433591 -2.912462e-3 -5.426802e-4 0.9999998 
-35 -1.224985 4.004088 -5.334735e-3 -8.63673e-4 0.9999999 
-40 -1.599974 4.57376 -8.894682e-3 -1.292719e-3 1 
-45 -2.024959 5.142585 -8.815289e-3 -1.842362e-3 0.9999997 
-50 -2.499938 5.710314 -1.235819e-2 -2.533558e-3 0.9999999 

          

    
Table 3.15 Results of 500cm radius, 100cm aperture diameter hyperboloid 

mirror of ε=-1.0 . 
y(cm) z(cm) Angle( o ) LA(cm) TA(cm) L2+M2 +N2 

50 -2.493781 5.682445 -1.252814  0.2518625 0.9999999 
45 -2.020916 5.122199 -1.01321  0.1833478 0.9999996 
40 -1.597448 4.55939 -0.8027095  0.1286117 1 
35 -1.223503 3.994442 -0.6125259  8.606552e-2 0.9999999 
30 -0.8991915 3.427484 -0.4502016   5.414477e-2 0.9999999 
25 -0.6246099 2.858759 -0.3198003  3.131366e-2 1.000001 
20 -0.3998401 2.288756 -0.2028797  1.601995e-2 1 
15 -0.2249494 1.717486 -0.1270948  6.756505e-3 1 
10 -0.09999 1.145688 -0.0163108  1.999526e-3 0.9999995 
-10 -0.09999 1.145688 -0.0163108  -1.999526e-3 0.9999995 
-15 -0.2249494 1.717486 -0.1270948  -6.756505e-3 1 
-20 -0.3998401 2.288756 -0.2028797  -1.601995e-2 1 
-25 -0.6246099 2.858759 -0.3198003  -3.131366e-2 1.000001 
-30 -0.8991915 3.427484 -0.4502016  -5.414477e-2 0.9999999 
-35 -1.223503 3.994442 -0.6125259  -8.606552e-2 0.9999999 
-40 -1.597448 4.55939 -0.8027095  -0.1286117 1 
-45 -2.020916 5.122199 -1.01321  -0.1833478 0.9999996 
-50 -2.493781 5.682445 -1.252814  -0.2518625 0.9999999 
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Table 3.16 Results of 500cm radius, 100cm aperture diameter hyperboloid 
mirror of ε=-10 . 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.440442 5.446473 -12.25906   2.359148 1 
45 -1.985575 4.94728 -9.968561   1.738363 1.000001 
40 -1.575188 4.434779 -7.900764   1.232813 1  
35 -1.210351 3.909811 -6.067437    0.8330724 1 
30 -0.8920426 3.373594 -4.467406   0.5286022 0.9999999 
25 -0.6211419 2.827293 -3.113696   0.3078906 1 
20 -0.3984127 2.272536 -1.99198   0.1584802 0.9999999 
15 -0.224496 1.710636 -1.129769   6.713851e-2 1 
10 -0.0999002 1.143637 -0.4649667   1.995033e-2 0.9999995 
-10 -0.0999002 1.143637 -0.4649667  -1.995033e-2 0.9999995 
-15 -0.224496 1.710636 -1.129769  -6.713851e-2 1 
-20 -0.3984127 2.272536 -1.99198  -0.1584802 0.9999999 
-25 -0.6211419 2.827293 -3.113696  -0.3078906 1 
-30 -0.8920426 3.373594 -4.467406  -0.5286022 0.9999999 
-35 -1.210351 3.909811 -6.067437  -0.8330724 1 
-40 -1.575188 4.434779 -7.900764  -1.232813 1  
-45 -1.985575 4.94728 -9.968561  -1.738363 1.000001 
-50 -2.440442 5.446473 -12.25906  -2.359148 1 

 
   

Table 3.17 Results of 500cm radius, 100cm aperture diameter hyperboloid 
mirror  of ε=-100. 

y(cm) z(cm) Angle(o) LA(cm) TA(cm) L2+M2 +N2 
50 -2.071068 4.04472 -103.8542   14.76136 0.9999997 
45 -1.726812 3.827201 -86.56066   11.63348 0.9999998 
40 -1.403124 3.57462 -70.30765   8.818869 0.9999998 
35 -1.103278 3.282112 -55.26275   6.359231 0.9999999 
30 -0.8309519 2.945236 -41.60782   4.29267 1 
25 -0.59017 2.560632 -29.54044   2.647403 1 
20 -0.3851648 2.126884 -19.27834   1.433467 1 
15 -0.2201533 1.645919 -11.01396   0.6333959 1 
10 -9.901951E-2 1.123439 -4.970037   0.194307 1 
-10 -9.901951E-2 1.123439 -4.970037 - 0.194307 1 
-15 -0.2201533 1.645919 -11.01396  -0.6333959 1 
-20 -0.3851648 2.126884 -19.27834  -1.433467 1 
-25 -0.59017 2.560632 -29.54044  -2.-647403 1 
-30 -0.8309519 2.945236 -41.60782  -4.29267 1 
-35 -1.103278 3.282112 -55.26275  -6.359231 0.9999999 
-40 -1.403124 3.57462 -70.30765  -8.818869 0.9999998 
-45 -1.726812 3.827201 -86.56066  -11.63348 0.9999998 
-50 -2.071068 4.04472 -103.8542  -14.76136 0.9999997 
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After discussing the previous tables, one thing should be cleared; the 

previous tables included column entitled “L2+M2 +N2”. This column gives 

the validity of the skew ray tracing condition pointed out in equation 2.14 

of §2.2. Those columns, often, show the L2+M2 +N2 ≈1, this can be 

ascribed to the very well-known machine intrinsic numerical errors, 

specifically, truncation (cut-off) error and rounding-off error. 
 

Summary  

It is, somewhat, necessary to summarize the previous discussion 

before going to the next section. Table 3.18 gives a brief comparison and 

summarizes the discussion of the tables form 3.4 to 3.17 ,since it shows the 

variation in the values of  angle the incident ray (marginal or semi-aperture 

ray, when y=50cm)makes, and the corresponding ∆, LA, and TA. This 

table, also, shows the ∆-values in region near to the paraxial one, when 

y=10cm. 
 

Table 3.18 Results of 500cm radius, 100cm aperture conic surfaces. 

 

 

y=50cm y=10cm     
ε ∆(cm) Angle( o) LA (cm) TA (cm) ∆ (cm) 

80 -3.454915 12.60439 140.3319 -66.06139 -0.1008131 
60 -3.062871 8.984894 92.77639 -30.09065 -0.1006073 
40 -2.817542 7.356153 56.76044 -14.90397 -0.1004032 

 
Oblate 

ellipsoid 
20 -2.63932 6.379349 26.54819 -6.011672 -0.1002008 

Sphere 1 -2.506281 5.739176 1.259664 -0.2557378 -0.10001 
0.8 -2.50502 5.733401 1.00618 -0.2042748 -0.100008 
0.6 -2.503761 5.727655 0.7534409 -0.1529703 -0.100006 
0.4 -2.502505 5.721972 0.5029576 -0.1018295 -0.100004 

 
 
Prolate 
ellipsoid 0.2 -2.501251 5.716318 0.2532806 -5.084326e-2 -0.100002 
Parabo- 
 Loid 

0 -2.5 5.710623 0 5.164608e-6 -0.1 

-0.01 -2.499938 5.710314 -1.235819e-2 2.533558e-3 -0.0999999 
-1 -2.493781 5.682445 -1.252814 0.2518625 -0.09999 
-10 -2.440442 5.446473 -12.25906 2.359148 -0.0999002 

-100 -2.071068 4.04472 -103.8542 14.76136 -9.901951e-2 

As
ph

er
ic

ity
 fa

ct
or

 (ε
) 

 
 
hyper- 
 boloid 

-1000 -1.158312 1.727031 -579.5505 34.98063 -9.160798e-2 
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It is clear that increasing ε leads to increase ∆ and LA, and TA (with 

negative sign) referring to the increase in the power of the mirror surface 

that made the reflected ray intersect the optical axis before the focal point 

and then intersects the focal image plane below the optical axis. All this is 

ascribed to the increase in the angle the incident rays make with surface 

normal. Surfaces with ε>0 represent this behavior (prolate ellipsoids, 

spherical surfaces, and oblate ellipsoids). 
 

In the case of hyperboloids the situation is the contrast. TA in this 

case possesses positive vales while LA possesses negative values because 

the reflected rays intersect the focal image plane above the optical axis and 

then intersect the optical axis behind the focal point due to the decrease in 

the angle the reflected rays made with the surface. 
 

This table shows the case of paraboloid as the interface between the 

region of positive LA, and negative TA to negative LA, and positive TA. 
 

∆-values when y=50cm varies from1.158cm to 3.454cm, when ε 

varies form -1000 to 80. And when y=10cm(R.H.S column), the region 

near to the paraxial one, ∆- values varies from 9.160798E-2cm to 

0.1008131cm for the same  interval of  ε. These infinitesimal variation in 

∆- values refers that they are slightly affect by ε and at the same time 

exhibit the dominance of the paraxial curvature.  
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3.3 Conclusions 

1. The asphericity factor changes the shape of conic surfaces and 

consequently changes the telescope mirrors parameters of this thesis (the 

TA, LA, and the ∆-values);  

2. ε varies the distance between the conic surfaces and the tangent plane at 

the edge of the surface for  D =1m is in the range of µm for the interval 

[ε<1]. i.e., all conics except the oblate elliposoid; while the distance 

between the surfaces and the tangent plane at the edge of the surface is 

in the range of mm (ε>1). This is shown by ∆-values column for the 

marginal ray (semi-aperture ray, y=50cm) in table 3.18. and that’s why 

the domain of aperture diameter of oblate ellipsoid is [-50, 50]cm, and  

that  for  others is[-500, 500]cm;  

3. more negatively values of ε (hyperboloids) produces more flattened 

surfaces, and when ε goes to -∞  the surface becomes plane; 

4. in the interval ε > 1, the angles incident rays make with the vector 

normal to the surface are getting bigger, and in the interval ε < 0 the 

angles become smaller and smaller; thus when ε goes to -∞ the angle 

becomes zero, i.e. the incident ray completely coincides the vector 

normal to the surface; 

5. increasing ε increases the power of the surface leading to negatively TA 

values and vise versa; 

6. when ε>0 the power of the surface beyond the paraxial region is larger 

than that for the paraxial one, and when ε<0 the power of the surface 

beyond the paraxial region is lower than that for the paraxial one; 

7.  according to figures 3.1, 3.2, 3.3, and 3.4 and the corresponding tables 

(3.1, 3.2, 3.3), it is concluded that when the aperture diameter 

D≤ R/10, the of paraxial curvature (c=1/R) is the dominant factor in 

shaping the conic surfaces, since the change in ∆-values (departure from 

the spherical surface) is in the rang of µm; beyond this region (D≤   
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R/10) the influence of ε increases dramatically in shaping the conic 

(Cartesian) surfaces and the ∆-values increases from millimeters to 

centimeters; and this in turn has, of course, its reflection on the power of 

the surface; 

8. According to the performance surfaces showed, the paraboloid should be 

considered to stand for the telescope primary mirror; because of its 

excellent performance.  
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         Chapter     

 
 

 

The Basic Design of Reflecting Telescope 
 

This chapter explains the design steps and the considered procedures 

to determine and to choose the optimum secondary mirror radius. This 

procedure based upon the Extreme-Value Theorem; therefore this chapter 

introduces it in short. Also, it exhibits the characteristics and the features of 

the complete system. The following section gives the priority of design 

steps in a descending manner.  
 

4.1 Design Steps 

1. The telescope configuration 

    The chosen configuration of mirrors arrangement is that of Cassegrian 

because it is symmetrical about the axis of revolution (easier to control 

aberrations in such systems) and shortest among other configurations. 

2. the choice of paraboloid, with R1=-5m and apertuere diameter D1=1m,  

as primary mirror is for two goals: 

    first, eliminating spherical aberrations, and second improving the 

resolving power.  

3. On the light of light gathering power importance, minimum light 

obstruction should be taken into account. The distance of separation (d) 

between the two mirror is the key for this point. So, for 0.25% 

obstruction (light obstruction) from the area of the primary, the 

secondary aperture diameter shouldn’t exceed 5cm. 

4 
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      This means that the height of the semi-aperture ray(marginal ray, y=50) 

at the secondary mirror is ≤ 2.5cm. To obtain this light obstruction the 

distance separating (d) the two mirrors, equation ( )110 −− −+= zd
N
Myy  

has been employed by applying the skew ray tracing code through the 

primary mirror (paraboloid) and the yielded d is=237.625cm, so the 

considered  separating distance between the two mirrors is d=238cm. 

4.  The system focal plane: 

 The key for this point is the selection of radius of curvature (R2). The 

proper determination of R2 is restricted by the value of aberration 

yielded.  
 

4.2 The Extreme-Value Theorem 

The Extreme-Value Theorem (very well-known in Calculus) is the 

one for solving optimization problems. It helps to find out the point that 

verifies the local maximum or local minimum of a certain function; and the 

local minimum, of course, is the point of search to stands for R2 while TA 

stands for the function. The point of local minimum (or maximum) is very 

special one; because at this point the function behavior witnesses a change. 

This change is either form positive function values to the negative or from 

decreasing to increasing or vice versa; Figure 4.1 shows this meaning 

 

 

 

 

 

 

 

 

 

R2 

  f(R2)=TA 

Point of conflict 
(Optimum R2) 

Figure 4.1 Extreme-Value Theorem. 



  Chapter Four                      The Design of Reflecting Telescope                            59 

 

4.3 Optimum Secondary Mirror Radius Determination  

The selection of the proper R2 is of great importance; because it is 

the dominant factor as explained in the §3.2 and §3.3. Thus, designer 

should consider the radius of curvature as the master key to reduce mirrors 

aberration besides being the unique parameter that defines the system focal 

length. Determining R2 has achieved by applying the skew ray tracing code 

through the primary and the secondary mirrors taking into account the 

telescope configuration and characteristics determined in §.4.1. The 

procedure used for R2 determination is based upon the Extreme-Value 

Theorem. The procedure steps are:    
 

1. since the considered system configuration is that for Cassegrian, 

hence, R2 has a negative sign   

2. initially, the secondary mirror surface has considered as spherical 

surface. In this part, the search of the proper R2 is based upon 

observing the performance of the surface that has certain value of R2 

and resuming in the direction that shows aberration reduction at the 

image focal plane. 

3. the procedure of the previouspoint goes on until the performance 

witnesses a behavior change. The point of behavior change is the 

proper R2.  
 

Table 4.1 shows the ray tracing results through the telescope system, 

where y1 is the height of ray incident on the primary mirror (M1), y2 is 

the height of the ray reflected from M1 at the secondary mirror (M2), 

y(x-y)plane is the  height of ray reflected from M1 at the (x-y) plane 

that is tangent to M2, angle1 and angle2 are the angles the incident ray 

makes with the normal vectors at the points of incidence at M1 and M2 

respectively, and finally, TA is used as the performance meter. 

According to table 4.1 the proper R2=-25cm; because before this point 
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(value) at R2=-26cm, TA values were < 0, and after this point (at R2=-

24cm), TA values were>0 and greater than those for R2=-25cm.  
 

4. although R2 at -25cm represents the confliction point but the yielded 

TA-values (0.0402654cm and 0.6576515cm) are quite not satisfying. 

To improve the performance (reducing TA) of M2, point No.2 

should be repeated but between R2=-25cm and the neighbor R2 

value that gives least differences in TA values, i.e. between R2= -25 

cm and R2=-26cm. Then, the new point of confliction in the 

performance is the optimum R2 value. 
 

Table 4.2 shows that R2=-25.21cm is the point of confliction, which is 

the optimum desired radius of curvature that gives TA= 2.832694e-4cm or 

2832.694nm when yM1=5cm (in the region near the paraxial). Since, the 

wavelength average value of light (visible region) λ=550nm, hence, TA 

≈5λ. Optical systems possessing aberrations in the range of only multiple 

number of wavelength, its performance is considered as excellent and this 

is the goal of optical design. But, at the edge (yM1=50cm) there is a 

considerable amount of TA= 0.2596356cm.  
 

Table 4.1 Proper R2 Determination 
R2 

(cm) 
 

y1(cm) 
 

Angle1(o) y(x-y)plane
(cm) 

 

Y2(cm) 
 

Angle2(o) 
 

TA(cm) 

5 0.5726662 0.2400243 0.2400021 0.6161205 -0.144342  

-26 
50 5.710623   2.424235     2.401776 6.120997 -1.180455 
5 0.5726662 0.2400243 0.2400021 0.5947903 0.0402654  

-25 50 5.710623 2.424235 2.400891 5.91039 0.6576515 
5 0.5726662 0.2400243 0.2400003 .5719823 0.2402559  

-24 50 5.710623 2.424235 2.399933 5.682307 2.648018 
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                            Table 4.2 Optimum R2 Determination   

            

5.  the value of TA yielded at the mirror edge of M2 and the region beyond 

     the paraxial can be moderated (reduced) by varying ε of M2, i.e.  

     adapting quadratic or Cartesian surface rather than spherical, to obtain  

     the maximum acceptable aberrations. 

6. according to §3.3 (referring to point 5 and 6 specifically), to moderate  

     aberration away from the paraxial region the needed surfaces to stand    

     for M2 are those of ε < 0, i.e. hyperboloids. 
 

Table 4.3 shows that ε=-0.21 is the required value that gives the 

minimum possible aberrations; where TA= 225.2726nm <λ/2, and 

3924.088nm (≈7 folds of λ) when yM1=5cm and 50cm respectively. The 

basic concept for this choice is also the point of confliction considered 

before to obtain the proper and optimum R2. 
 

Table 4.3 Asphericity factor (ε) Determination  of  R2 
 

 
ε2 

 

 

yM1(cm)
 

Angle(o) 
y(x-y)plane

(cm) 
 

yM2(cm) 
 

Angle(o) 
 

TA(cm) 

5 0.5726662 0.2400243 0.2400014 0.5993783 2.485558e-5 
-0.20 50 5.710623 2.424235 2.401144 5.985365 2.510515e-3

5 0.5726662 0.2400243 0.2400014 0.5993783 2.252726e-5 
-0.21 50 5.710623 2.424235 2.401145 5.985662 3.924088e-4

5 0.5726662 0.2400243 0.2400014 0.5997047 1.985069e-5 
-0.22 50 5.710623 2.424235 2.401145 5.985956 -1.74245e-3 

 

 

 

R2 
(cm) 

 

y(cm) 
 

Angle(o) y(x-y)plane
(cm) 

 

Y2(cm) 
 

Angle(o) 
 

TA(cm) 

5 0.5726662 0.2400243 .2400014 0.5990518 2.171709e-3  
-25.20 50 5.710623  2.424235  2.401073 5.953843 0.2784324 

5 0.5726662 0.2400243 0.2400243 0.5993783 2.832694e-4  
-25.21 50 5.710623 2.424235 2.401082 5.955982 0.2596356 

5 0.5726662 0.2400243 0.2400014 0.5997047 -1.603802e-3 
-25.22 50 5.710623 2.424235 2.401091 5.958154 0.2408468 
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4.4 Telescope Characteristics  

• Telescope configuration: Cassegrian.   
• M1 central cavity of 5cm diameter. 

 

Table 4.4 Telescope Characteristics 

 R (cm) D (cm) ε Distance (cm) position 
M1 -500 100 0   
M2 -25.21 5 -0.21   
d1    -238 to the left of M1 
d2    250 12 cm to the right of M1 

 

 

 

 

 

 

 
  
 
                              
          
 
 
 
 
4.5 Telescope Features 

Telescope features, this term refers to the telescope three powers.  

1. according to equation1.1 

    the telescope magnification power 
cm
cm

5.0
250 = 500 X, where 0.5cm is 

    the focal length of the assumed eye-piece.  

2. according to equation 1.4 : 

    the linear separation = 1.22 m
n

nm
Un

µλ 388.3
5.710623)2sin(

550
)sin(

=
×

=  

 where, U is the convergence angle=2×angle of reflection, while according 

to equation 1.2 (for spherical surfaces) 

M1 

M2 

d1

d2

Figure 3.5 The Telescope Configuration. 
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    the linear separation= 1.22 mm
m
nmf

D
µλ 677.15.2

1
55022.1 =×=  

3.  Central light obstruction %100]
10000

25
100

5
D1
D2 [ 2

2

2

2

×=== =0.25%  

 

4.6 Conclusions 

1. the procedure used in aberration reduction (finding out the point of 

behavior change) showed acceptable results in aberrations reduction. It 

may be, also, able to eliminate, completely, spherical aberration if the 

distance (d) separating the two mirrors would be involved in the 

optimization   procedure. 

2. the paraboloid  mirror showed improvement in resolution over that of      

spherical surfaces, so increasing the primary depth of paraboloid, in     

other words the aperture, would increase the resolution over the            

resolution spherical surfaces, of the same aperture, give.    

3. the design improved the light gathering power of 1m aperture             

telescope  for light obstruction =0.25% (less than 1% ). 
 
4.7 Future Work 
1. Designing a system corrected for both spherical and coma, where both 

    mirrors are hyperboloids; 

2. Considering the Strehel ratio as principal point for system aberration  

    reduction; 

3. Considering the wavefront aberration or the optical transfer function as a  

    measure for exhibiting the system performance. 
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Appendix 

Derivation of  ∆   in Spherical Surfaces  

 ( )222

2
zyxcz ++=                                                                            (2.1) 

∆=
∆+=
∆+=

Nz
Myy
Lxx

o

o

                                                                                         (2.5) 

 

Substituting (2.5) in (2.1) yields 

( ) ( ) ( )[ ]222

2
∆+∆++∆+=∆ NMyLxcN oo  

[ ]22222222 22
2

∆+∆+∆++∆+∆+=∆ NMMyyLLxxcN oooo  

( ) ( ) ( )222222

22
2

2
1 NMLcMyLxcyxcN oooo ++∆+∆+++=∆                

  Since  1222 =++ NML , and ( )22
oo yxcF +=   

Then  the later equation in terms of  equations (2.7) and (2.14) is: 

( ) 2

22
∆+∆++=∆

cMyLxcFN oo  

( )[ ] 2

22
0 ∆+∆+−−=

cMyLxcNF
oo                                                            

Now the later equation in terms of the equation ( )oo MyLxcNG +−=  (2.8)  
 
becomes:  

  

 0
22

2 =+∆−∆
FGc



                                                                Appendix                                                     65 

which is similar  to 02 =++ cbxax  that is solved by   

a
acbbx

2
42 −±−

=  

acbbax 42 2 −±−=∴  

2
,,

2
FcGbca =−==∴  

cFGGc −±=∆∴ 2                                                                                  

Now by multiplying the R.H.S  of equation of the later equation with the 

negative sign by the quantity ( )cFGG −+ 2   and dividing the result by 

the same quantity ( )cFGG −+ 2   yields  

                                
cFGG

F

−+
=∆

2
  , which it is equation (2.6)                                      

 

Derivation of  ∆   in Quadric Surfaces of Revolution 

( )222

2
zyxcz ε++=                                                                     (2.15) 

∆=
∆+=
∆+=

Nz
Myy
Lxx

o

o

                                                                                          (2.5) 

Appling (2.5) in (2.15) yields 

( ) ( )[ ]2222

2
∆+∆++∆+=∆ NMyLxcN oo ε  

[ ]2222
0

2222 22
2

∆+∆+∆++∆+∆+=∆ NMMyyLLxxcN oo ε  
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( ) ( )[ ]22222222 2
2

∆+∆+∆+∆+++=∆ NMLMyLxyxcN oooo ε  

( ) ( ) ( )222222

22
NMLcMyLxcyxcN oooo ε++∆+∆+++=∆  

( ) ( )[ ] ( ) 0
22

1. 222222 =++∆+−−++∆ oooo yxcMyLxcNNMLc ε          

         since ( ) ( )oooo MyLxcNGandyxcF +−=+= ;22  

hence, the later equation becomes: 

( ) 0
2

.
2

2222 =+∆−∆++
FGNMLc ε                           

Since 1222 =++ NML hence, 222 1 NML −=+                                                             

Now the equation before later expression becomes: 

( ) 0
2

1
2

222 =+∆−∆+−
FGNNc ε       

( )[ ] 0
2

11
2

22 =+∆−∆−+
FGNc ε                                                              

To solve for ∆  using                       a
acbbx

2
42 −±−

=           

To solve     02 =++ cbxax  , it’s  found that  

( )[ ] aNc
=−+ 211

2
ε ,        G=b,   and cF

=
2

 

( )[ ]
( )[ ]2

22

11
2

*11
2

*4

N

FNcGG
c

−+

−+−±
=∆

ε

ε
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( )[ ]2

22

11
)1(1(

N
NcFGG

c
−+

−+−±
=∆

ε
ε

 

 By the same manner used to obtain ∆ in spherical surfaces 

( )[ ] 22

22

2

22

)1(1(

)1(1(
11

)1(1(

NcFGG

NcFGG
N

NcFGG

−+−+

−+−+
•

−+

−+−−
=∆

ε

ε
ε

ε
 

 

22 )1(1( NcFGG

F

−+−+
=∆

ε
   which  is equation  (2.16)                                               

 

Derivation of the Direction Cosines of the Surface Normal Vector 

Now, to find the cosine of the incident angle  ray makes  by applying  

222 )()()(

)],,[(
,,

z
F

y
F

x
F

z
F

y
F

x
F

∂
∂

+
∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

−
=γβα                                                         (1)                   

To the equation of quadric surface          )(
2

222 zyxcz ε++=          (2.15) 

1. rewriting the later in the form of       02222 =−++= rzzyxF ε       (2) 

Where  r=1/c  and equation (2) is           02222 =−++ zzccycx ε             (3) 

2. differentiating equation (2) yields 

           22,2,2 −=
∂
∂

−=
∂
∂

−=
∂
∂ zc

z
Fcy

y
Fcx

x
F ε                                                     (4) 

484)(,4)(,4)( 2222222222 +−=
∂
∂

=
∂
∂

=
∂
∂ zczc

z
Fyc

y
Fxc

x
F εε

)(4)()( 22222 yxc
y
F

x
F

+=
∂
∂

+
∂
∂

                                                                                     (5) 
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But according to (3)     zczyxc ε−=+= 2)( 22  

484)2(4)()()( 2222222 +−+−=
∂
∂

+
∂
∂

+
∂
∂

∴ zczczczc
z
F

y
F

x
F εεε  

1222 22222 +−+−−= zczczccz εεε  

22 )1()1(212 zczc εεε −+−+=  

22 )1()1(212 zczc −+−−= εεε                                                 (6) 

Substituting (6) and (4) in (1) yields 

22 )1()1(212

]22,2,2[,,
zczc

zccycx

−+−−

−−
=

εεε

εγβα  

22 )1()1(21

1,,,,
zczc

zccycx

−+−−

−−−
=

εεε

εγβα   and the final is equation (2.17) 

 
Derivation of the Cosines of the incident Angle 

)()(cos kjiNkMjLiI γβα ++•++=   

kNkjMjiLi γβα •+•+•=

22

2222

)1()1(21

1
)1()1(21)1()1(21

zczc

zc
N

zczc

cyM
zczc

cxL

−+−−

−
•

+
−+−−

−
•+

−+−−

−
•=

εεε

ε
εεεεεε

 

  

22

22

)1()1(21

)1(
cos

)1()1(21

)1(
cos

zczc

zNMyLxcN
I

zczc

zcNMcyLcx
I

−+−−

++−
=

−+−−

−+−−
=

εεε

ε

εεε

ε

  

which is equation 2.18.  
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 صةلاالخ
  

  
تـضمن  ي. مج لإقتفاء اثر الأشعة البصرية خلال الأنظمة البصرية       ناتم في هذا البحث بناء بر     

    :برنامج الاهذ
 spherical( خلال السطوح الكروية  )skew ray tracing( اقتفاء اثر الأشعة البصرية العامة .١

surfaces .(   
 conic or(روطية أو المسماة بالكارتيزية اقتفاء اثر الأشعة البصرية العامة خلال السطوح المخ .٢

Cartesian  .(   
  

 المقراب العـاكس parameters)( على معلمات )ε(لاتكور ل تمت دراسة تأثير عامل القد
(reflecting telescope)   قيد بحث هذه الرسالة، بأستخدام شفرة أقتفـاء ألأشـعة البـصرية ،  .

، و زيـوغ  )  المماس x-y مستويد السطح عنقيم ابتعا( ∆هي قيم : ومعلمات التلسكوب هذه 
، و الزاوية التي يصنعها الشعاع الساقط مع المتجه         (TA)والمستعرضة   )(LA لأشعة البصرية الطولية  ا

  ).المرآة(العمود على السطح العاكس 
  

عطـت هـذه    أ لتصميم مقراب عاكس ذو مرآتين؛ حيث        يدةفملقد كانت هذه الدراسة     
فهم أبعاد المشكلة كما وأعطت رؤية لتقليل، وبشكل مباشـر، زيـوغ            الدراسة منظارا مناسبا ل   

   .  وبالتالي تحسين أدآء النظام البصريبصريةشعة الالأ
 

 للمحور البصري، لذلك     تماما عتماد حزمة أشعة بصرية موازية    إ أنجاز هذه الدراسة تطلب     
 (spherical aberration) من الزيغ الكروي ًفان التصميم الناتج للنظام البصري سيكون مصححا

  .فقط 
  

عنـد  ) المرايا(لأشعة البصرية لأظهار أدآء السطوح  العاكسة        اقتفاء أثر   إلقد وظفت شفرة    
 والمـستعرضة   (LA)عتماد زيوغ ألأشعة البصرية الطولية      إكما وتم   . )ε(تغيير قيم عامل الاتكور     

(TA)م أما العاكسة   كمقياس لأظهار أدآء أي من السطوح المخروطيةε.   
  

 قد تم من خلال تغيير ،أولا، قيم نصف قطر تقـوس المـرآة              وءن تقليل زيوغ أشعة الض    إ
النهاية العظمى والنهاية   ( بأستخدام مبدأ نظرية القيمة النهائية       εالثانوية، وثانيا، من خلال تغيير قيم       

  ).الصغرى
 

طولـه    مرآتينن التصميم النهائي للمقراب، المنجز على اساس الدراسة، هو مقراب ذوإ
لية ذات قطع مكافىء و الثانوية ذات قطـع  و؛ المرآة الأ 1mوقطر مرآته ألأولية هو 2.5m البؤري 
  .0.21ε-=للثانوية لاتكور لوعامل ا ناقص،

  

 لأنه يمثل منتصف550nm ان الطول الموجي المعتمد في حسابات الخاصة بالتلسكوب هو 
  . ءالمرئي للضوالطيف 



  جمهوريةالعراق
  وزارة التعليم العالي والبحث العلمي

  جامعة النهرين

 
 

  
  

  تحليلة لمعلمات المقراب العاكس  - دراسة حسابية 
 
 

 أطروحة
لى كلية العلوم في جامعة النهرين وهي جزء من متطلبات نيل درجةإمقدمة   

  ماجستير علوم 
  في  الفيزياء

 

 نور محمد حسن ياسين
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