¢t

B

¢t

B

¢t

v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
v/\
(2L
(2L
v/\

S8

N,
4

9N Y
b, 4 |1,

N,
4

R

IR R/ RN
ARRRA

R

9N
b, 4

N,

KRR

)

%8
4

R A R
A Thesis

Submitted to the College of Science of Al-Nahrain
University in Partial Fulfillment of the Requirements

Mathematics

e

KRR

YIS, NS PN,
4

9N
4|,

Generating Random Variates for
Estimating the Parameters of Logistic
Distribution by Monte Carlo Simulation
for the Degree of Master of Science in

RIRIRGR

YN Y
4

LS 2N YN PN PN
AJARERARGRAR
Department of Mathematics and

Ministry of Higher Education
Computer Applications

and Scientific Research
Al-Nahrain University

Republic of Iraq
College of Science

»ga
»ga
il
»ga
il
»ga
il
»ga
il
»ga
il
»ga
il
»ga
il
»ga

B9

y

B
Zahraa Ammory Ali Al-Hajar

Supervised by
Asst. Proof. Dr. Akram Mohammed Al-Abood

(B.Sc., Al-Nahrain University, 2006)

Shaa’ban 1430

August 2009
PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

“1

"T‘

PNOSESE D

,/\_‘_/\;ll 9:\.\;11/4&1 f—““,

RS

.n'.t.".n".n.'.s'.n"'L".s"L'A*A*&'&';‘;‘;*A'f‘a_

W

. e

;'g';'h'nfaT“A‘_’Lf;'n'a'&'n‘n?ﬂ'&

freravaravavas
r9

B 43 3R @ull 2y auly Ul
Ly Ul 5 ol oa olastl |
e 41p oBll ol2 ull gy 28t

0 sl o o ol

syl flall AL 3an

4|

Slell & 59

v

.'"' F

‘.

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

sVl

Ot A D 1y 31 e )
Ay yp Bl 2B, e )
((..L.») 45\)4.,1;‘&\ Gl..a) M&})\Lﬁj

gy sb-i g eeid )
2 g o8 g A1 )
8 51541 ‘}.U\j
Sk Ul s d)
dole jad (o gl g1 pudt
2l el
il &l glasl U
B! (833l o 98 o )
1690 3 55
3,5 fas g 3L Aalnl )
G G (3980 y o0 )
O ) e
G Vg8 e
Sl IS 0 wglsl o
ol S st
o ) @l gugr gl

#) 25

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Acknowledgements

Praise to Allah for providing me the willingness, energy and

patience to accomplish this work.

| wish to express sincere gratitude and grateful admiration to my
supervisor Asst. Proof. Dr. Akram M. Al-Abood, for his over seeing
guidance, interests and suggestions that were very helpful for the

completion of thisthesis.

| would like also to express my appreciation to the staff members
of the Department of Mathematics and Computer Applications, namely
Dr. Alaudeen N. Ahmed, Dr. Ahlam J. Khaleel, Dr. Radhi A. Zboon, Dr.
Fadhel Subhi Fadhel, Dr. Osama H. Mohammed, Dr. Zainab A. Salman
and Dr. Shatha A. Aziz.

I'm grateful to the College of Science of Al-Nahrain University,

which gave me the chance to be one of their students.

Heartfelt thanks go to my beloved family, in particular my father,
mother and brothers, for their love and giving me the facilities during my

work.

My deepest thanks to my dearest friends Hussna, Roaa, Sora,
Rana, Noor, Zainab, Tgreed, Mohanad, Akram, Salam, Omar and

Mohammed, for their support and encouragement.

Finally, I'd like to thank all those who hand participated in any
way during the work.

Zahraa ?
August, 2009

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Supervisor Certification

| certify that this thesis was prepared under my supervision at the
department of Mathematics, College of Science, Al-Nahrain University,

in partia fulfillment of the requirements for the degree of Master of
Science in Mathematics

Signature:

Name: Asst. Prof. Dr. Akram M. Al-Abood
Data: / [/ 2009

In view of the available recommendations, | forward this thesis
for debate by the examining committee.

Signature:
Name: Asst. Prof. Dr. Akram M. Al-Abood

Head of the Department of Mathematics

and Computer Applications

Data: / / 2009

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Examining Committee Certification

We certify that we have read this thesis entitled "Generating Random
Variates for Estimating the Parameters of Logistic Distribution by Monte
Carlo Simulation” and as examining committee examined the student
(Zahraa Ammory Ali) in its contents and in what it connected with, and that, in

our opinion, it meets the standards of a thesis for the degree of Master of
Science in Mathematics.

(Chairman) (Member)
Signature: Signature:
Name: Dr. Tarig S. Aabdul-Razaq Name: Dr. Ahlam J. Khaleel
Proof. Asst. Proof.
Date. / /2009 Date. / /2009
(Member) (Member and Supervisor)
Signature: Signature:
Name: Dr. Hzim M. Gorgees Name: Dr. Akram M. Al-Abood
Lecturer Asst. Proof.
Date:. / /2009 Date. / /2009

Approved by the Collage of Science

Signature

Name: Asst. Prof. Dr. Laith Abdul Aziz Al-Ani
Dean of the Collage of Science

Data: /12009

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Notations and Abbreviations

rV.
rv.s
r.s.
distn.
distn s,
M.L.E.
eq.

eq.s

m.1.e

M.M.M.

M.L.M.

Probability Density Function
Cumulative Distribution Function
Moment Generating Function
Random Variable

Random Variables

Random Sample

Distribution

Distributions

Maximum Likelihood Estimator
Equation

Equations

Maximum Likelihood Estimate
Logistic Distribution With Parameters «, b
Least Square Method

Moments Method

Modified Moments Method

Maximum Likelihood Method
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Notations and Abbreviations

IT

m.s.e
Exp(1)
R.H.S

Inverse Transform

r t moment about the mean
r t moment about the origin

Variance
Mean Square Error

Exponential Distribution With Parameter 1
Right Hand Side
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Abstract

In this work, we consider the Logistic distribution of two
parameters for its importance in statistics. Mathematical and statistical
properties of Logistic distribution are considered, moments and higher
moments are illustrated to the distribution parameters, namely, moments
methods, maximum likelihood method, modified moments method, |east
squares method are discussed theoretically and assessed practically by
utilizing two procedures of Monte Carlo simulation for generating
random variates from the Logistic distribution. Properties of the
estimators, such as Bias, variance, skewness, kurtosis and mean square

error measurement are tabulated.
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I ntroduction

The Logistic growth function was first proposed as a tool for use
in demographic studies by Verhulst (1838-1845), [7]. Logistic function
used in the present work had been discovered by Pearl and Reed in
(1920). It was firstly used in (1924) as a model of growth field of
biology. In (1929) this function was given its present name by Reed and
Berkson, [7]. It was used by Schultz (1930) as a function of estimating
the growth of human population. Persk (1932) proposed a very general
class of distributions which includes the Logistic and used it in the
graduation of mortality statistics. Pearl et al. (1940) used Logistic
function for estimating the growth of human population, while Pearl
(1940), Emmens (1941), Wilson and Worcester (1943), Berkson (1944,
1951, 1953) and Finney (1947, 1952) gave studies for some applications
of the Logistic function in bioassay problems. Plackett (1959) used the
Logistic function in the analysis of survival data. Fisk (1961) used it in
the study of income distributions. Furthermore, the Logistic function
was used by Oliver (1964) as a model for agricultural production data,
[7], and in the studies of physiochemical phenomenon, geological
studies and psychological studies by Sanathanan (1974) and Formann
(1983), [6].

Balakrishnan (1985) [28] established some recurrence relations for
the moment and product moments of order statistics for half Logistic
distribution.
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Introduction

Balakrishnan and Leung (1988) [27] show the probability density
function of arandom variable X that hastype | generalized logistic distn.
which is given by:

be *
)b+l !

f(x;b)= -¥ <X<¥,b>0

(1+ e

The log-Logistic distn. is obtained by applying the logarithmic
transformation to the Logistic distn. in much the same way the log-
Normal distn. is obtained from Normal distn..

Singh et al. (1993) derived a new method of parameter estimation
for 3-parameter log-Logistic distn. and used Monte Carlo simulation to
evaluate the parameter estimates and compare it with the methods of
moments, probability weighted moments and maximum Likelihood
estimators, [24]. In (1994) Rassol et a. estimated the probability
weighted moments of the generalized Logistic distn. [22].

In (1996) Scerri and Farrugia compared between the Logistic and
Weibull distn. for modeling wind speed data, [29]. Al-Y ousef (1999) [5]
discuss the problem of estimating the parameters of the doubly truncated
Logistic distn. when truncation points are unknown and he estimated the
parameters of the distn. and the truncation points by using the method of
maximum likelihood estimation where he utilize an iterative techniques
for approximating the unknown parameters. Wujong-Wuu et a. (2000)
made an extension to the usual four-parameter generalized Logistic
distn. to the density function involve five-parameters. Olapade (2000)
stated some properties of the Logistic distn. in relation to other
probability distn®., [27].
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Introduction

Rasool et al. (2002) made an applications for generalized Logistic
distn. and they estimated by probability weighted moments on 24 hour
maximum rainfall events recorded for different cities of Pakistan, [22].
In (2004) [21] Ojo and Olapad define a suitabler.v. to represent the six-
parameters generalized Logistic distn. and gave an approximation to the
distn. c.d.f. and proved some theorems related to the Logistic distn..
Jones (2006) [25] discovered that the Logistic distn. is a special case of

the class formula:
f(x) =f(x; a, b) = FF(x)(1 - F(x))°,whena =b = 1.

The density function of the Logistic distn. is symmetric and uni-
model. It is similar in appearance to the normal distn. and in practical
applications, [29]. The Logistic gives anice looking S-shaped curve with
arelatively ssmple mathematical formula. The S-shaped curveisused in
what so called Logistic regression model, which uses input variables to
make predictions about how Likelihood of certain outcomes.

The S-shaped curve of the Logistic c.d.f. is though to be a
substantively useful description of how the probability of an "event" or
other outcome rises as a function of some input variables. The Logistic
distn. was used instead "as an approximation to other symmetrical distn®.
due to the mathematical tractability of its c.d.f", [29]. The simplicity of
the Logistic distn. and itsimportance as a growth curve have madeit one
of theimportant statistical distn®., [5].

It was also attracted interesting applications in the modeling of the
dependence of chronic obstructive respiratory disease prevalence on
smoking and age, degrees of pneumoconiosis in coal miners, geological

Issues hemolytic uremic syndrome data for children, physiochemical
i
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Introduction

phenomenon, psychological issues, survival time of diagnosed leukemia
patients, and weighted gain data, [20].

Literaturey published show that there is alittle work dealing with
parameters estimate of Logistic distn. by using the implemented four
methods of estimation and procedures of generating random variates
from Logistic distn. by using Monte Carlo simulation. Hence, this work
IS an attempt to study the possibility of parameters estimation of Logistic

distn. by using Monte Carlo simulation.

This thesis involve three chapters. In chapter one, we introduce
some properties of Logistic distn. and moment properties of the distn.
are illustrated and modified. Four methods of estimation for the distn.
parameters are discussed theoretically. Finaly, we proved a theorem
related to Logistic distn.

In chapter two, we introduce some concepts of the history of
stochastic simulation. Procedures for generating random numbers and
random variates from different distn. is discussed theoretically and
supported by various examples. Two procedures for generating random
variates from Logistic distn. are considered and their algorithms are
illustrated.

In chapter three, we found practically moments properties of the
estimators such as bias, variance, skewness, kurtosis and mean square
error measurement by using four methods of estimation. The
professional Mathcad, 13 computer software is used to make the

programs of thesis.

iv
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Chapter One

On L_ogistic Distribution
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On L_ogistic Distribution

1.1 Introduction

The aim of this chapter is to find the estimators to the parameters
of Logistic distn. by using four methods of estimation. In section (1.2),
we introduce some important mathematical and statistical properties of
Logistic distn., in section (1.3) we represent the genesis of the Logistic
distn., in section (1.4) moment properties of the distn. areillustrated and
unified, section (1.5) weillustrated point estimation and some important
definitions about the estimators, and four methods of estimation are
discussed theoretically. Finaly, in section (1.6) we introduced some
related theorem about the Logistic distn. .

1.2 Some Basic Concepts of Logistic Distribution

In this section, we shall give some mathematical and statistical
properties of Logistic distribution.

Definition (1.1), [30]:

A continuousr.v. X issaid to have Logistic distn., denoted by X ~
L(a, b) if X has p.d.f:

1
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Chapter One On Logistic Distribution

=0, ew.

where a and b are respectively known as the shape and scale parameters.

When a =0, b = 1 thedistn. is called the standard Logistic distn. that is
X ~L(0, 1).

To verify that f(x; a, b) of eq.(1.1) isvalid p.d.f., we have to show
that:

(i) f(x;a,b)>0," xT (-¥,¥), obvious.

(i) Theintegral sideof eq.(1.1) is unity viz.

_&X-ao
¥ ¥ e &b b
O fx;a,b)dx= @ - — dx
-¥ -¥ € a&-aou
pé+e € b ol
€ u
e
¥
= 1 ~ =1
_&-ao
1+e8 b ﬂ_¥

The Logistic distn. depends on two parameters a and b, whose
graph is bell shape extended indefinitely in both directions.

2
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Chapter One On Logistic Distribution

Figure (1.1) show a graphical representation of the p.d.f. of

ed.(1.1) for any values of a and b.

f(x;a,b) A

Fig.(1.1) Graph of Logistic distn.

The graph of the Logistic distn. as shown in Fig.(1.1) have

generally the following properties:

1.

2.

Symmetric about X = a.

Have the x- axis as a horizontal asymptote.

Increasing for - ¥ < x <a and decreasingfora <x <¥.
Have maximum point at x = a.

Have two inflection pointsat x =a - bIn(2 + +/3).

Concave up for - ¥<x<a- bIn(2+~/3) and for a- bIn(2- /3)<x<¥
and concave downward for a- bln(2++/3)<x<a- bIn(2- /3).

3
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Chapter One On Logistic Distribution

1.2.1 The Cumulative Distribution Function:;

The c.d.f. of Logistic distn. is known by the following integral:

X

F(x;a,b)= ¢ f(t;a, b)dt

-¥
@-as
X b g
= 5—0  dt
-y € 4-a 6y
bél+e b ol
: G
8
i 0, X® -¥
|
i1 vex<y
Foca,b)=prX Ex)= | eoe (1.2)
’ ’ p :1+eg b g e .
!
11, X® ¥

1.3 Genesis of the Logistic Distn.

The Belgian scientist Pierre Francois VERHVLST [2] (1804-1849)
proposed in (1838) a "demographic growth curve" which was called

later as the Logistic function of the form:

A

Y = B+ea+bx

where x 2 0, a, b > 0, e being the Euler's number (e ; 2.71828). The

usual form used in econometric studies[17]:

4
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Chapter One On Logistic Distribution

A
B+e

Y = N = T o 0 T I o (1.4)

Cx

The Vechulst's function given by eq.(1.8) is obtained from a
differential equation by taking:

U(Y) S Y = Y2 ettt en e (1.5)
Therefore:

dy dy _

— = - or = 0 ) G 1.6

o Yd-y) Y- y) (1.6)

where y(x) is considered as a c.d.f. of agivenrv. X .y = KX) =
pr(X £ x).

If we differentiate eq.(1.7), we obtain the p.d.f. of standardized
Logistic distn. of the form:

f(x):L ¥ X ¥ e (1.8)

1+e %)’

The form of eg.(1.8) generates the well-known BURR-HATKE
family of distributions (1942 [8] and 1949 [10]).

5
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Chapter One On Logistic Distribution

1.4 Moments and Higher Moments Properties of Logistic
Distribution, [19]

Moments are set of constants used for measuring a distn.
properties and under certain circumstances they specify the distn.. The

moments of r.v. X (or distn.) are defined in terms of the mathematical

expectation of a certain power of X, when they exist. For instance nf =

E(X" is called the '™ moment of X about the origin and m = E[(x - m)']

is called the r'" central moments of X. That is:

1§ x"f(x), xisdiscreter..
i
m=E0)= | -
i Ox f(x) dx, X iscontinuousr.v.
T x

and

14 (x-m'f(x), xisdiscreter.v.
o
m=E[(x- M= o

i gx- m f(x)dx, Xxiscontinuousr.v.

T x
provided that the sum or integral converges absolutely. The generating
function reflector certain properties of the distn., they could be used to
generate moments. Sometimes they are defining some specific distn®.,
and also have a particular usefulness in connection with sums of

independent r.v".

First, we shall consider a function of areal t called the moment
generating function, denoted by n{t) which can be used to generate

moments of r.v. X. For continuousr.v. X, the m.g.f is defined by:

6
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4
M(t) = E(€) = ¢e™f(x) dx
-¥
provided the integral converge absolutely.

To find the m.g.f of Logistic distn.:

¥
M(t) = E(€) = ¢e™f(x) dx
-¥
-2
¥ &b 5
= 9e” © 5 dx
-y e ax-a oy
pél+e 8 b ol
& G
8

Sety:%b X =a +byb dx=bhdy

¥ .
M@ = gel@rty €

70 dy

0 - bt
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Chapter One On Logistic Distribution

Letx:i p uzl_—x P du= -izdx.Therefore:
1+u X X
0 - bt .
M(t) = " ‘aé—XE x2 & iZde
18 X g X° @

1
- eatO((l-'-bt)-l(l' X)(l- bt)-1 dX
0

&'G(1 + bt)&(1- bt), t> - %. .................................... (1.9)

The R.H.Sof eg. (1.9) could be simplified as [30]:

G(1 + bt)G(1 - bt) = pbtcsc (Pbt)...ccovveveieiececece e, (1.10)
Then the m.g.f of eq.(1.9) becomes:

M (t) = PBLETCSC(PDL) ..o, (1.112)

Many methods could be used to find the moments and higher
moments of Logistic distn. such as direct expectation approach,
differentiation of m.g.f, or representing the Maclurian series expansion
of the m.g.f.

We shall write the Maclurian series expansion for finding the
moments of the Logistic distn. as follow:

For simplicity, set pb = g, and expansion of the m.g.f given by
eq.(1.11) is:

ntt) = qte™ csc(qt)

qteat
sin(qt)

8
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44 .2

gt

a’ts
+

6
+o(t%) = +..

5! :

et ey enly end

3!

4 4.4
A
36

+

q2

=l+at+(@°+—
3
2q” | t* 5
=y +oft
3 )4! )

t 3 2t3 4 2.2
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Chapter One On Logistic Distribution

r
The r'™ moment E(X") is the coefficient of t—l r=12, ...

rl
The first four moments are:
1.E(X)=a i
2,2 '
2E(X)=a?+ 22 |
3 J oevererseessessses e (1.13)
3.E(X3) =a3+aph? i
7 !
4.E(X*) =a* +2a%p%b? +—p*p?i
(X%) p T b

1) Mean:

E(X) = m= m¢is caled the mean of the r.v. X. It is measure of

central tendency. Use of eq.(1.13), we have:

1) Variance:

Var(X) = s% = E[(X - M = E(X? - nfis called the variance of
ther.v. X. It isameasure of dispersion. Use of eg.(1.13) we have:

2,2 2,2
2:a2+pb 2_ pb

S
1) Coefficient of Variation:

C.V. = s is called the variationa coefficient of ther.v. X. Itisa
m

measure of dispersion. Use of eq.(1.13), we have:

O
<
I

S
m a+/3

10
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Chapter One On Logistic Distribution

Iv) Coefficient of Skewness:

g = =3 = E[(X - m/(s)* is caled the coefficient of

yi

skewness. It is a measure of the departure of the frequency curve from
symmetry.

If @ = 0, the curve is not skewed, g > 0, the curve is positively
skewed, and g, < 0, the curveis negatively skewed. Use of eg.(1.13) with
m = E[(X - m)°] = E(X®) - 3nE(X?) + 2
212 ¢

e o]
= ad+ap??- 3a a2+ﬂi+2a3
2

=a’+ap??- 3a3- ap?+2a3=0

v) Coefficient of Kurtosis

_m o _ E[(X-m*
TR T Ty

It is a measure of the degree of flatting of the frequency curve. If g =0,

- 3 is caled the coefficient of kurtosis.

the curve is called mesokurtic, if g > 0, the curve is called leptokurtic,

and if @ <0, the curveiscalled platykurtic. Use eq.(1.13) with
m = E[(X - m’]

= E(X") - 4nE(X3) + 6nfE(X?) - 3

11

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter One On Logistic Distribution

= a*+2a%p%? +1—75p4b4 - d4a(a®+ap?h?) +
6a2552 4 P07 *p*0 O 344 = lp4b4
p 15
Thus:
7 44
b=15 3
3 5
S (1.18)
5 5
vi) Mode:

A mode of distn. isthe value x of ar.v. X that maximize the p.d.f

f(x). For continuous distn®., the mode x is a solution of:

2
df () _ g g S g
dx dx

A mode is ameasure of location. Also, we note that the mode may

not exist or may have more than one mode.

For Logistic case we take the logarithm of the p.d.f given by
eg.(1.1), are have

e
Lnf(x; a,b) = - Lnb - ae('ag- o8 +eé b ol
8

S b

12
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Chapter One On Logistic Distribution

_ae<-ao
§b
dLnf(x,a,b):_}_'_ ,2e L ¥<x<¥,-¥ <a<¥,b>0
dx b ¢é _&ady
pel+e & b ol
€ U
e
............................ (1.19)
f @-ab  ax-ab
dLnf (x,a,b) _0b 1+eg b ,;,:288 b &
dx
_x-ab
P 1:e8 b 5
b Ln(1) = -¢22
éb
P x=a
e u
é 0
é _ex-ad (
d?Lnf (x,a,b) _ 2€ eéPo 0
2 = €0- 2 U
dx ba ¢ _a-aoi
& p8reeb sl U
e ¢ 0
e e (Y
_x-ad
2e€b o
= , 2
é ax-a oy
b2+ e € b ol
e u
e 9]
dLnf(x,a,b) _ -2 _ -1
) 2 on2 <0
a? | b2a+® b
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Chapter One On Logistic Distribution

vii) Median:
A median of adistn. is defined to be the value of x of r.v. X such

that F(x) = pr(X £ x) = % The median is ameasure of location.

For Logistic case, the c.d.f. given by eq.(1.2), we have:

1_ 1
2 =-ab
1+ o

1.5 Point Estimation

The point estimation concerned with inference about the unknown
parameters of a distn. from a sample. It provides a single value for each
unknown parameter. The following definitions are needed for the

interest of this work.

Definition (1.2) (Statistic), [16]:

A statistic is a function of one or more r.v. which does not

depends on any unknown parameters.

14
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Chapter One On Logistic Distribution

Definition (1.3) (Estimator), [16]:

Any statistic whose value used to estimate the unknown parameter

g for some function of q say t(q) is called point estimator

Definition (1.4) (Unbiased Estimator), [19]:

An estimator g = u(Xy, Xz, ..., Xn) is defined to be an unbiased
estimator of q if and only if E(E{) =qforal gl W where Wis a

parameter space. Theterm E(E;) - giscalled the bias of the estimator E; :

Definition (1.5) (Asymptotically Unbiased Estimator), [18]:

An estimator q = u(Xy, X, ..., Xy) is defined to be asymptotically
unbiased estimator for q if Ii@n; E(E{) =q.
n

Definition (1.6) (Consistent Estimator), [19]:

An estimator q is called consistent estimator for g if g converge

stochastically to g.

Remark (1.1) [16]:

Point estimation admits two problems:

First, developing methods for obtaining a statistic, to represent or
estimate the unknown parameters in the p.d.f. such statistic is called
point estimator.

15
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Chapter One On Logistic Distribution

Second, selecting criteria and technique to define and find the best

estimator among many possible estimators.

1.5.1 Methods of Finding Estimators, [1]:

Many techniques have been proposed in the literatures of finding
estimators for the distn. parameters, such as Moments, Maximum
Likelihood, Minimum Chi-Square, Minimum Distance, Least Square,
and Bayesian method. These methods provide a single value for each
unknown parameter of the distn. .

For Logistic case, we shall consider four methods for finding
estimators of distn. parameters.

(i) Moments method (M.M).
(i) Maximum Likelihood method (M.L.M).
(iii) Modified Moments method (M.M.M).

(iv) Least-Square method (L.S.M).

1.5.1.1 Estimation of Parameters by Moments Method, [1]:

Let X;, X5, ..., X, be ar.s. of size n from distn. whose p.d.f

f(x; d), 9 =(Qy, 0z ..., k) Isavector of unknown parameters. Let mg =

n
E(X") be the r'™ moment of the distn. about the origin and M, = lé X/
Nz

be the '™ moment of the sample about origin. The method of Moments
can be describe as follows:

16
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Chapter One On Logistic Distribution

~

Since, we have k-unknown parameters, equate n to M, at g = g

a

That is:

m=M a g=9,r=12, ...k
For these k equations, we find a unique solution for al,az,...,ak and we
say that E]r (r=1, 2,..., k) is an estimator of g, obtained by method of

moments and the corresponding statistic Qr IS an estimator of q,. For

Logistic distn. case:

Let X1, Xy, ..., X, bear.s. of sizen from L(a, b) istaken. Since

L(a, b) distn. involve two unknown parameters, we set:

~

m=M, aa=a,b=b,r=1,2
Forr=1,wehaventi =E(X)=aand M, =

a=

X
A~
=
N
=)

where a isthe M.M estimator for a.

02?2
For r = 2, we have np = E(X%) = a’ + 2 and

n - —
Mzzléxiz :n_182+ X2
) n
2.2
which impliesthat X2+ P2~ = "1 %2 andhence
n
, J/2
b= SE N D U e (1.21)
p€ n H
17
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n N
where & = ilé‘ (X, - X)? and b isthe M.M. estimator for b.
-liz

The estimators & and b given by eq®(1.20) and (1.21) have the

following properties:

(i) & = X isan unbiased estimator for a, since

E(A)=E(X) =M= Qe (1.22)
with
2 2.2
Var (a) =var (X)= 3 = PO (1.23)
n 3n
12
(ii)b = E?(nn- 1)2 |s asymptotically unbiased estimator for b, since:
/4]
L2y 12
E(b) _ ASa@(n Do _ las(n- 1)2 9
@pg o g pé 2

Since & converge stochastically to s?, [11].

Implies S converge stochastically to s

So:
/2
E (D) » 1a§(n 1)
pé&

- Lagin- 1)9”2_
p8 g 3

/2

_an-10"

n o

18
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lim E(b) =b lim ‘/1- 2 =D 0) =D e (1.24)

With:

1a§(n 1) 52 U

Var(b) Var
@pg t';

_1a8n-1)6
" p2& n QV ¥

Since:
5 n- 354l
Var( )——gml js H
— ¥y . m*u=
whereml—Eg(X m) 0

elé n- 3 uu]j2
Var(S) = a— Ay - s?
(S Sngml Hu

Therefore:

Var(py» LB Docla, n-334<-jgy2
28 n-1 ﬂe 8 % ......................

Definition (1.7) (Likelihood Function), [1]:

The likelihood function of r.vs. X1, X2,... X, of size n from a
distn. having f(x; g), where g = (q, 0, ..., 0k) is avector of unknown

parameters, is defined to be the joint p.d.f. of the r.v® Xy, Xo, ..., Xu

which is considered as a function of g and denoted by L(g, X) is:

19
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Chapter One On Logistic Distribution

1.5.1.2 Estimation of Parameters by Maximum Likelihood
Method:
Maximum likelihood method (together with some of itsvariants) is

the most widely used method of estimation, and alist of its applications
would cover practically the whole field of statistics, [9].

Let L(g, x) be the likelihood function of ar.s. X;, Xz, ..., Xn of

size n from adistn. whose p.d.f f(x; g), 9 = (01, 0z, ..., dk) IS avector of
unknown parameters. Let g = u(x) = (Uy(X),Up(X),.... U (X)) be a
vector of statistics of observations X = (xi, Xz, ..., X«)- I ncA/] have the value
of g which maximize L(g,x), then g is the ml.e of g and the

corresponding statistic (nAQ = u(x) isthem.l.eof g. We note that:
(i) Many likelihood functions satisfy the condition that the m.l.e is a

solution of the likelihood eq®.

fla, -

1,2, ..,k

(i) Since L(g,%) and Ln L(qg,x) have their maximum at the same value

of g so sometimes it is easier to find the maximum of the logarithm

of the likelihood. In such case, the M.L.E ncA/] of g which maximizes

L(g,x) may be give the solution of the likelihood eq®.

[/ A

Ln L(g,x
1 (% %) =0, a g
79,

A

1,2, ...,k [8].

:g’r

For Logistic distn. case:

20
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Let X4, Xy, ..., Xy bear.s. of sizenfromL(a, b), where the distn.
p.d.f isgiven by eq.(1.1). The likelihood function is:

L(a, b, x) =f(x, a, b)

0
= Of(xj,a,b)
i=1
@-a0
0 e8 b ¢
:O - 3
i=1 & _a&-aol
b§L+e8 b ol
: G
e
n
-8 (x-a)
_ e i:l
= ) 2
n € &i-aou
" Gl+e € P ol
e
e axi-aoy
18 5. S b 4l
LnL=-=3(x,-a)- nLnb - ZaL n8+e oU
b .5, i € u
e J
&j-a o
flnL _n 2§ e®® ¢
ﬂa b bi:]_ & ag
1+e8 P o
e u
n 25 é 1 u
=—- = Al - L ettt e et eeareeenseareaenrenrees 1.26
b b3 § T el 29
C $b 54
e 1l+e 20
and
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_aeq-a?
LnL 1 & n 2 & x--aegbfj
ﬂ :_za(xi_a)____z (I )-- _
b b iz b b*ixy _&i-a9
1+e€ P o
e u
_ 18 § S 1 U
_?Ia_.l(xfa)'g__zia:-l(xfa)gl' e aQH
& b 5
e 1l+e 20
............................ (1.27)
Set:
nbt _gad "L —paa=a,b=b
fa b
We have
¢ 0
n 2§ € 1 u
=~ - =q él- —— 0= 0, (1.28)
b bime - -®aY
8 1+ec P o
and
¢ 0
1 8 ~. h 27 - € 1 u
—a(x-a)-=-—=a (x;-a)él- —(1=0....(1.29)
b2 5 b 0% é A2
8 1+e¢ P o

Solution for & and b can not be found anaytically from the nonlinear

eq°®. (1.28) and (1.29).

22
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An approximate solution for & and b from eg®. (1.28) and (1.29)
can be made iteratively by using Newton-Raphson method for solving a

non-linear eq®. as follows:

Let:
¢ 0
~ .. h 28 € 1 u
fi=fi(a,b)==- =g él- —u=0
b bize - .2ad
& 1+e¢ P of
and
e u
~ o1 8 ~, nh 207 é 1 a
f=f(a,b)=—a (X; - a)- = X; - a)él- =0
2=f( )bzi:l(l )bbza( )é = 3
8 1+eé P 9f

Suppose that (a ), 6(5)) represent the approximate solution of
(4,b) at stage (s). Then approximate solution at stage (s + 1) for (& ,b)
IS:

a (st1) — =a o T o TP (130)

6(S+1) = b(s) i 0 7 SRR (131)

In matrix form, we may write:

¢, MUl
L4 - €qa R U .
4= &ht_ g% Tbg g éfo (1.32)
v — Q -_— A e O ] srrrrrrr .
dha ET, I, U &
gl  Tbeg
Provided that:
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1f, 1f,
3 -
LGOI
1f, 1f,
Tag b
Set:
aeq-éo
Firal
a—ﬂfl—_ién eebfa
ﬂé.(s) b2 i=1 é ae(l'é'él;l
e b gU
dret oy
e A
_ffﬁ-é?
b= 1, ff, _ n ZQ(X,-é)eeb”_l_
- 6 _ﬂé. - L2 A_3a , o 2
o s) b b ix ¢ ®-aou
&b gl
dret " oy
e A
¢ ;
2 8 € 1 u
b* =1 & -ge(i_agl:l
& 1+e€ P 9§
_aeq-ég
", 28 2 0 (x-a)%et b o
C:A—:'A—ga(xl-a)+,\—2-,\—4a > +
ﬂb(s) b~ i=1 b™ =1 & a&xj-aoy
SHeg b HU
C u
e A
¢ ;
4 0 N 1
= d (Xi'a)é':l-' a0y
i=1 e -g—=Uu
8 1+e€ P o
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We have:
édu_ e by éhu
& 0=
&, So cti &t
c -buéf
= L 23 ﬂelu forac- b’t 0
“a-bPED afE,l
Then:
_ 1
d; = - - b2 (Cfl' bfz)

o
o= - = (- bl + )

and according eg®. (1.30) and (1.31), we have:

dsy=agt-

b(s+1) b(s) + - 5 (-BfL+ )i (1.34)
ac-b

1.5.1.3 Estimation of Parameters by Modified Moments
Method, [18]:
This method can be described as follows:

Let X4, Xz, ..., Xnbear.s. of size n from distn. whose p.d.f f(x, q)
where g = (Qi, 02, .., O), IS a vector of k-unknown parameters. Let
Y1 <Y,<..<Y,represent the arrangement of the sample set { X} in

ascending order of magnitude. Let mt = E(X") be the r" distn. moment

25
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n
about the origin and M, = lé X{ is the ™ sample moment about the
Ni=o

origin,r=1, 2, ...k

In this method, we equate mt = M at g = q; ,i =1, 2, ..., k with
r = 1 and ranking E(Y;) = Y; beginning with i = 1 until i = k - 1 this
process will gives k eg®. to provide aunique solution for g; at E]i ,1=1, 2,
.o k.

For Logistic distn. case:

We have two unknown parameters a and b and if we take ar.s. of

size n from L(a, b), we let Y, represent the first order statistic of the

sample.
From the statistic theory the p.d.f of Y, is

gu(ys) = n[1 - F(y)]™ *(y), and hence:

n-1 _&y1-ad

egbz

1
-a0;
'?lb P & s
1+e %0 p&teé b ol
e
e

duy) =n

MD: D ('B('D) M-
[ ey ety ent’

To find E(Y,),we shall consider the m.g.f of Y,
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e _®1-adu
née & b aU
¥ e u
Mya(t) = E(e™) = e € J —7 dy;
-y ? 88/1-69Q
b&+e€ P ol
& U
e
Letx= 22" 2 thenbdx = dy,

— é:\)et(a+bx) n(e-x)n b d

X
. oy ontl
¥ bgeery
n
N ¥\ ebtx (e-x)
=ne QO o\
Vfove)
_ neat ¥\ ( -x)-bt+n-l(_ e—X) dX
v (1+e-x)n+l
Letu=€e"b du=-e*dx
tO u-bt+n-1
M(t) = - ne™ ¢ du
O dara
t¥ u-bt+n-1
M(t) = ne™ ¢ du
7 S
Letx:ib uzl_—xb du:%L dx
1+u X X
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0 -bt+n-1 N

at \88- X Xo nt1ee 10
My(t) = ne X — - dx

& X g X* @

- ne (L+bt)- l(l X)(n bt)-1 dX

~ et G1+bt)3(n- bt)
Gn+)

Setj (t) = Ln My(t)

=Ln(n)+at+LnG1+bt)+LnGn- bt)- LnG(n+1)

dldit) =0+a+by (L+bt)- by (M- B (1.35)

Wherey (n) = a LnG(Xx) is known as diagamma function.

am a+by (1) - by (n)=E(Y,)
dt |-

Now, we apply the modified moments method by setting:
mi=X and E(Y;) =Y, a a=4a,b=b,whichleadsto:
B T X ettt (1.36)

A+ DY (L) - DY (M) =Yt eeeeeen (1.37)

From egq®. (1.36) and (1.37) the estimators of a and b are

respectively:
R R (1.38)
L B (1.39)
y@-y(n)

wherey (1) =-0.577 and y (n) is approximated by:
28
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1 1 1 1 1
n)=Ln(n)- —- + - + , [3]
y(n) (" 2n 12n? 120n* 252n°  240n®

The estimators & and b given by eq.(1.38) and (1.39), have the
following properties:

(i) & = X isan unbiased estimator for a, since :

E(A)=E(X)=m=a

........................................................... (1.40)
with:
o S%  p?
Var(@) =Var(X) = 2= = E2 (1.41)
(i) b =—L1"" jsan unbiased estimator for B, since
y@-ym)
~ é Y,-X U 1 -
E(b)=EaQ—- "= E&Y, - X§
O = Ee oyl y@-ym € *H
:m[(a"'bY(l)' by (n)) - a]
Hence:
5 1
E(b)=———(b(y (1) - =D e 1.42
(b) y(1)-y(n)( (@) -yn)) (1.42)
With:
Var(b) = L vay,- X)

(y(@D-y(n)?

Var(Y1- X)=Var(Y,) + Var(X) - 2Cov(Y1, X)
From eg.(1.35), we have:
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d3 (1)

e =b% €1 + bt) + b%y &n - bt)

2
Where y &x)= % LnG(Xx) is known as trigamma function.
X

d3 (1)

2| =Dy by an)

t=0

=b*[y §1) +y &n)] = Var(Y1)
Wherey €1) = 1.645 and y &n) is approximated by:

1 1 1 1 1
+

Y=+ +
n

- - , [3]
2n®> 6n° 30n° 24n’ 30n°

Cov(Y1, X) = E(Y1X) - E(Y)E(X)

- . -, _1_¢€& & o
E(Y.1X) = E[min(X)) X] = —Eémin(X;)ca X; <
n g ezl &

E[min(X) X1+ min(X)X, + ... + min(Xj)X,]

n
E(X?) + & E(X X))
j=1
it

E(X?) + & E(X)E(X))
=1
it]

S
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%[Var(X) +[ECOTT + & E(X)E(X))
J=1

€ 52 u
_1épb 2 & _2U
==a +a*+3a‘y
Ng 3 =g
e -] u
S22
__eﬂ+a2+(n-l)a2u
n@ 3 9]
S22
_leﬂ+na23
n@ 3 a
Hence:
- 1 é “p? U
Var(h) = - 2y @) +y gn) + P>
y@-ym)>* g 3N g
e 2h2 ,0 u
lgb +na-- (a2+aby 1) - aby (n))u(l43)
an

1.5.1.4 Estimation of Parameters by Least Squares
Method, [18]:

The Least squares method is a general technique for estimating
parameters in fitting a set of points to generate a curve whose trend
might be linear, quadratic, or of higher order. In order to utilize this
method, the error terms due to experiment must satisfy the following

conditions;
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(i) They have zero mean.
(i) They have the same variance.
(ii1) They must be uncorrelated.

For good results of fitting curve to the data set, the error must be

minimized as small as possible.

Let us assume that we have a set of n data points (x;, t;)) through
which we desire to pass a straight line. This line is representing the best

fit in the least square sense.

Suppose that the best fitting straight line to the data (x;, t) is
X =1o+1t, wherel o and | ; are two unknown parameters representing
respectively the vertical intercept and the slop. To assist in visualizing
the process, assume that the data points as well as the line to be fitted,
unless the data fall in a straight line, usually the general curve will not
pass through all of the data points. For convenience, let us consider the
i point where ordinate of the point is given as x;.

XA

Fig.(L.2).
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Figure (1.2) show the best fitted line to the data (t; x;,). The
ordinate x; as given by the genera line is | o + | 1t; .The difference
between these two values is the error of fit at thei™ point e = x; - (I o +
| 1t;). Let the sum of squares of all errors at the data points be:

9 2 9 2

W=aeg =ax-lg-14t)

i=1 i=1
For minimum, we set:

~

M:O and M:O,E':II|o:|A0,|1:I1

o 1,
n ~ ~
I =28 (- T o= T4t) = O (1.44)
Molo=lo i=1
|1=|1
n ~ ~
W = 28 (- T Tt =0 (1.45)
M 1lro=lo i=1
I1=11

From (1.44) and (1.45), we can get two eq°. as;

A ~ h n
Mg+ T 1A T A X e (1.46)
i=1 i=1
s J ~ 4 o _ 4
loA@ti Hliaty = QX s (1.47)
i=1 i=1 i=1

Equations (1.46) and (1.47) are simultaneous algebraic eq®. for the

two parameters| gand | ;.

In matrix notation (1.46) and (1.47) may be written as:
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where:
e o u én u
en aty & 0 eaxq
A:é i=1 ljl":éou —éi=l
. én n a AIA P én U
ééti é.tizu €18 éétixil:l
=1 i=1 O é=1 QO
The solution of eq.(1.48) is:
| = A 'bifand only if |A| exists.
Thus, whenever the data points t;, " i are given, then the two

matrices A and b may be computed and hence I; IS determined as

follows:
_— — g
Xa t?- T4 tx
| o= ';1 : _';1 ......................................................... (1.49)
at -tat
i=1 i=1
g S\
~ a t|Xi - ta Xj
| =122 SRRSO (1.50)
é. t|2 - Té t|
i=1 i=1
8.0 o g — g
provided that ad\a t2 - tat=! 0, where X = 1a Xi, t = 1a t;
caAa [ [ [
€i=1 i=1 @ Nz Nz

For the Logistic distn. case, suppose that X;, X,, ..., X, be a
random sample of size n from Logistic distn. having cumulative

function:
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i0, X® -¥
i
T 1 — - ¥ <X<¥
FO=PrXEx)= | -ore
:1+egb e
i
I1 X® ¥
We set u; = F(X), then u; = L —, which implies:
axj-a0
1+e8 P o
&eu 0.
= QHBLNG—— 2,1 = 1,2, ooy Moo (1.51)
él- Ui g
& 0 . ~ -
Sety.—x.,t.—Lngu— 1=1,2,...,n and |,=a,l;=Db. Then
&-u g

Vi=lo+lat,i=1,2,...,n

~

Utilizing eq.(1.51) for obtaining the estimator |, and I,

therefore; the least squares estimators & and b can be obtained from the

(151):

The estimators & and b given by (1.52) and (1.53) have the

following properties:

g S\
_oatx-tax
(Yb=1= =L isan unbiased estimator.
ati-tat

=1 i=1
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Set:
& &
Qa t -
=8 (4- 17 —a(t Ty, =12 - & @
i=1 i=1 n
& 6
ga Xi =
SR (- 2= A (- X)x = Axk- 8L O
i=1 i=1 i=1 n
& . 6l 6
n . n n ca lj+ca X+
= é (ti - T)(Xi - X) = é (ti - T)Xi — é tX; - ei=1 g@ei=1 g
= i=1 i=1 n
So b may be written as:
b = S
St
66[x _ 1e . u
E(b) E - E(Sx) E— ea(t t)X'l'J
ESio S St &i=1 G
1 &
= & (- DEK) = 2-& (4~ Da+bt)
S[ i=1 t i=1
1 é D
=saal(t- T)+bA (t - t)tIUI
S[t e i=1 i=1 9]
Hence:
. 1
E(D) = (DSt) = b, (1.54)
Sy
with:
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Var(b) = Varg = 12Var(8x)
et g Sy

_ 13 2 _ 17 2.2
== a-tH)Valx)==al(-t)s
t =1 t =1

Hence:

A 2 2.2
Va(h)= Ssg == P (1.55)
S X gga- 17
i=1

(ii) a isan unbiased estimator. From eq.(1.46), we have:

A=X-bt

E(A)=E(X - bT)=E(X)- TE(b)
Since x; = a + bt; + e, then:

& & &
ax =na+tbat +ase

i=1 i=1 i=1
Which impliesto:

X=a+bt+®

E(X)=a+bt +0

Hence:
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E(A) =@ +DT = DT S @ eee e (1.56)
Var(d) =Var(X- bt)=Var(X)+ TVar(b) - 2T Cov(X, b)

2b2 2b2

—pgn +72_P _ 2T Cov(X, b)
3a (t - 1)°
i=1
Cov(X, b) Covg—a x,,S‘X-
St g

1 a) .0
= —Covca x,a (t - 1)x; =+
NSy ei=1 i=l %

= ié’{ Cov(x;,(t; - 1)x,)

t =1
= L A &gt - Dx2D- E(x)E[(t; - T)x;]u
n ti:lé e\l i 0 i i G
1
=— (t - t)eE(X )- (E(x;))? U
NS, —1
1 & -
——a (t - tHVar(x;)
t =1
:LS a(t_t)_S_O_O
nS; = NS,
Hence:
¢
2.2 € 2 u
var@) =P e e ] (157)
3 én —o U
e af(-tH)y
& iz U
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1.6 Theorem Related to the Logistic Distribution

In this section, we illustrate theorem related with Logistic distn.
given in the [13] without proof.

1.6.1 Theorem (1.1) :

& g% 0
If ther.v. X ~ Exp(1), then ther.v. Y = - Lngl%u ~L(0, 1).
ey

Proof:

Given X ~ Exp(1), then the p.d.f of X is:

TeX 0<x<¥
() = |
10, ew.

e g* u
The functiony = - Ln é%u define a one-to-one transformation that

el-e"g
maps the space A = {x : O<x<¥} onto the space B ={y : O<y<¥} with

Inverse:
_X _y
e’ = pex=_2
1- €”* 1+e
Hence:
-y
x:y+Ln(1+e'y),andJ:%:1- €
dy 1+e Y

Thenthep.dfof Y is:
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g(y) =f(y + Ln(1 +€”)) ||

e 3% ey O
1+ey§

i -y
1+e 5

-y
- ae—y)z which is the p.d.f of L(0, 1).
+e
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Sampling Techniques for L_ogistic
Distribution by Monte-Carlo Methods

2.1 Introduction

After constructing mathematical model for the problem under
consideration, the next step isto derive asolution. There are analytic and
numerical solution methods. The analytic solution is usually obtained
directly from its mathematical representation in the form of a formula,
while the numerical solution is generally an approximate solution
obtained as a result of substitution of numerical values for the variable
and parameters of the model. Many numerical methods are iterative,
that is, each successive step in the solution uses the results from the
previous step, such as Newton's method for approximating the root of
non-linear equation. Two special types of numerical methods simulation
and Monte Carlo are designed for a solution of deterministic and
stochastic problem. Simulation in awide sense is defined as a numerical
technique for conducting experiments on a digital computer which
involve certain types of mathematical and logical models that describes
the behavior of a system over extended periods of real time, for example,
simulating a football game, supersonic jet flight, a telephone
communication system, wind tunnel, a large scale military battle (to
evaluate defensive or offensive weapon system), or a maintenance
operation (to determine the optimal size of repair crews) and alive

application of real equipment in work combat scenarios or firing range,
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these allow pilots, tank drivers and other soldiers to practice the physical

activities of war with their real equipment, etc. .

Whereas, simulation in a narrow sense (also called stochastic
simulation) is defined as experimenting with the model over time, it
includes sampling stochastic variates from probability distn. Often
simulation is viewed as "Method of Last resort" to be used when every
things else has failed. Software building and technical development have
made simulation one of the most widely used and accepted tools for
designers in the system analysis and operational research, [23].
Application areas for simulation are numerous and diverse, we can point
out some particular kinds of problems for which simulation has been

found to be a useful and powerful tool, [14]:
Designing and analyzing manufacturing systems.
Evaluating military weapons systems or their logistics requirements.

Designing and operating transportation systems such as airports,

freeways, ports, and subways.

Reengineering of business process.

Determining ordinary policies for an inventory system.
Analyzing financia or economic system.

The goal of this chapter is to generate random variates from
Logistic distn. by using inverse transformation method given by theorem
(2.1) and by using theorem (1.1). This chapter involves five sections, in
section (2.2) weintroduce the historic genesis of Monte Carlo simulation
and the uses of its methods. In section (2.3), we illustrate the

congruential method and its fundamental relationship model for random
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number generation. Sections (2.4) show the random variates generation
form continuous distn®. which consists of inverse transform method (I T).
In section (2.5) we consider two procedures for generating random
variates from Logistic distn.

2.2 Monte Carlo Simulation

Historically, the Monte Carlo method was considered as a
technique using random or pseudorandom numbers, for solution of a
model. The term "Monte Carlo" was introduced by Von Neumann and
Ulam during World War 1, as a code war for the secret work at Los
Alamos; it was suggested by the gambling casinos at the city of Monte
Carloin Monaco, [23].

The idea behind Monte Carlo simulation gained its work to
develop the first mgjor use in 1944 in the research work to develop the
first atomic bomb, [26].

The general accepted birth date of the Monte Carlo methods is
1949 when the first article entitled "The Monte Carlo Method" by N.
Metropolis and S. Ulam appeared in the Journa of the American
Statistical Association. The Monte Carlo method is a method of
approximately solving mathematical and real life problems "in physics

or engineering" by simulation of random quantities, [9].

In the beginning of the 20" century the Monte Carlo method was
used to examine the Boltzman equation. In 1908, the famous statistician
W. S. Gooset (student) used the Monte Carlo method (experimental
sampling) for estimating the correlation coefficient in his distn., [23].
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Kolmogorov (1931) showed the relationship between Markov
stochastic processes and certain integro-differential equations. About
1948, Fermi, Metropolis and Ulam obtained Monte Carlo estimates the
eigenvalues of Schrodinger equation. Shortly thereafter Monte Carlo
methods used to evaluate complex multidimensional integrals, stochastic
problems, and deterministic problems if they have the same formal
expression as some stochastic process. Also, Monte Carlo method is
used for solution of certain integrals and differential eq®, sampling of
random variates from probability distn®., and for analyzing complex
problem (such as radiation transport to rivers), [4]. Monte Carlo results
are not efficient for small samples, since the error is of order N2, where

N isthe total number of observations, [9].

2.3 Random Number Generation

Many techniques for generating random numbers on digital
computers by Monte Carlo method and simulation have been suggested,
tested and used in recent years. Some of these methods are based on

random phenomena, others on deterministic recurrence procedures, [ 23].

Initially manual methods were used to generate a sequence of
numbers such as coin flipping, dice rolling, card shuffling, and roulette
wheels, but these methods were to slow for general use, and moreover
the generated sequence by such methods could not be reproduced.
Within the computer aid it becomes possible to obtain random numbers.
In (1951) Von Neumann suggested the mid-square method using the

arithmetic operations of computer. His idea was to take the square of the
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preceding number and extract the middle digits. For instance, suppose

we wish to generate 4-digits numbers
1. Choose any 4-digits to generate 4-digits numbers, say 4103.
2. Sguareit to have 16834609.

3. The next 4-digits numbers is the middle 4-digits in step (2), that is
8346.

4. Repeat the process.

The method prove slow and not suitable for statistical analysis,
furthermore the sequence tend to cyclicity, and once a zero is
encountered the sequence terminates, [23]. One method for generating
random numbers on digital computers was published by RAND
Corporation (1955); consists of preparing a table of million random
digits stored in the computer memory, [4]. The advantage of this method
IS reproducibility and its disadvantage, was its slow and the risk of
exhausting the table. It mentioned in the literature that the random
numbers generated by any method is a "good one" if the random
numbers are uniformly distributed, statistically independent and
reproducible; moreover the method is necessarily fast and requires
minimum capacity in the computer memory. The congruential methods
of generating pseudorandom numbers are designed specifically to satisfy

as many of the above requirements as possible.

These methods produce a nonrandom sequence of numbers
according to some recursive formula based on calculating the residues

module of some integer m of a linear transformation. The congruential
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methods are based on a fundamental congruence relationship which may
be formulated as:

Xis1 = (@ +Cc)(mod m), OEXEm,i=1,2,...,m. ..(2.1)

where a is the multiplier, c is the increment and m is the modulus (a, c,
m are nonnegative integers), (mod m) mean that eg.(2.1) can be written
as:

Xjis1 =&+ C- m[z], ...(2.2)

dax; +CuU . : : : — :
e l'J|sthelarge'stmtegerm z. Given an initia starting

g€ m {

value x; with fixed values of a, c and m; then eq.(2.2) yields congruence

where [z] =

relationship (modulo m) for any values i of the sequence {xi}. The
sequence { xi} will repeat itself in at most m steps and will be therefore
periodic.

For example:

Let a=c=x; =5, and m =9, then the sequence obtained from the

recursive formula:

Xi+1 = (5%; + 5)(mod 9)

xi=5,3,2,6,80,5, ...
The random number on the unit interval [0, 1] can be obtained by:

U=2li=1,2 .., m (23
m

It follows from eq.(2.3) that x; £ m, " i, this inequality means that the

period of the generator cannot exceed m, that is, the sequence {xi}
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contains at most m distinct numbers. So, we should choose m as large as
possible to ensure, a sufficiently large sequence of distinct numbers in
the cycle. It isnoted in the literature, [14] that good statistical results can

be achieved from computers by choosinga=2"+1, c=1and m = 2%,

2.4 Random Variates Generation from Continuous
Distribution

Many methods and procedures are proposed in the literatures for
generating random numbers from different distributions. We shall utilize

the inverse transform method, (IT).

2.4.1 Inverse Transform Method:;

One of the more useful ways of generating random variates is
through the inverse transformation techniques which are based on the
following theorem [12]:

Theorem (2.1), [26]:

The random variable U = F(X) ~ U(0, 1) if and only if the random
variable X = F (U) has c.d.f pr (X £ X) = F(x).

Proof:

Let the random variable U = F(X) ~ U(0, 1) then U has c.d.f

10, UED
Gu)=pr(U£Eu) = {u, O<u<l
11, uz1
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Now:
pr(X £ x) = pr[F (V) £ x] = pr[U £ F(xX)] = F(X)

Conversely, let the random variable X has c.d.f pr (X £ x) = F(X)
and let g(u) be the c.d.f of U ,then

G(u) = pr(U £ u) = pr[F(X) £u] = pr[X £ F }(u)]

= F[F *(u)] = u.

The algorithm of generating random variates by inverse transform

method can be described by the steps of 1 T-algorithm:

IT-Algorithm:

1. Generate U from U(O, 1).
2. Set X = F }(U).
3. Déeliver X as arandom variable generated from the p.d.f f(x).

4. Stop.

As an application of IT-Algorithm, we shall consider the following

examples:

Example (2.1):[26]

Consider, we wish to generate ar.v. X from C(0, 1), where the
distn. p.d.f:

f(x) = ¥ <X<¥

p(L+x?)
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then, the c.d.f of this p.d.f

X

F)=prXEX = § T di=2 L
b 0 9 141
‘1
_ tan "(x) 1
p 2

Set u = F(x), implies:

aelou

= tan - =
PP 2
Apply IT-Algorithm:

1. Generate U from U(O, 1).

2. SetX -tanepa%- 1
21
3. Déeliver X as arandom variable generated from f(x) = ;2
p(+Xx7)

4. Stop.

Example (2.2), [26]:

If ar.v. X required from the distn. whose distn. p.d.f:

€, -¥<x£0
)= 2eh=
2

e X, 0<x<¥

I\J||—‘ I\J||—‘

i
i
i
i
)

then, the c.d.f of thisp.d.fis:
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I ' X433 - ¥
i
P X
i of (Ddt, ¥ <x£0
F(X):pl‘(Xﬁx):}.';‘ )
I ~ N
- Of (Ddt+ ¥ (dt, 0£x<¥
T-¥ 0
h X2 ¥
So:
}-0' X Vs 30 - ¥
:::%ex, -¥<X£0
|:(X):_l_ 1
11- Ze*, 0Ex<¥
12
%l XYad® ¥

For-¥ <x£0,setu=FXx) P u:%ex,implies:
1
x:Ln(2u),forO<u<E
ForOEx<¥,setu=FXx)P u=1- %e‘x,implies:

:-Ln(2u),for%£u<1

Apply IT-Algorithm:
1. Generate U from U(O, 1).

2. If0<U< % set X = Ln(2U): go to step (4).

3. Else, sat X =-Ln(2V).
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4. Déliver X asarandom variable generated from f(x)z%e‘ My <x<¥.

5. Stop.

To apply the inverse transform method, the c.d.f F(x) must exist in
a form for which the corresponding inverse transform can be solve
anaytically.

Some probability distn., it's either impossible or difficult to find

X
the inverse transform , that is, to solve, u = F(x) = ¢ f(t) dt.
-¥

For example:
1. X ~Exp(l ), where f(x) = Iie'”' 0<x<¥ (possible).

2. X ~G(2, 1), where f(x) = xe*, 0 < x < ¥ (difficult).

W
3. X~N(0, 1), wheref(x) = ie 2" , - ¥ <X <¥ (impossible).

J2p

2.5 Procedures for generating Random Variates of Logistic
Distribution

In this section, we shall consider the procedures for generating
random variates from Logistic distn. by utilizing theorems (1.1) and
theorem (2.1).
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2.5.1 Procedure (L-1):

This procedure is based on Inverse Transform method given by

theorem (2.1):
i &x-ad
[ &b o
| 5, ¥ <X<¥,-¥<a<¥Db>0
_ e _=aoy
M=1,8.,0c80 a0
) u
8
% 0, ew
Thedistn. c.dfis:
_aet-_ao
X 1% eébo
FX)=pr(XEx)= ¢ f)dt== ¢ dt
b , 2
- ¥ -y e &-aouy
8 +e 8D ol
& G
e
Implies:
.0, XY % - ¥
| -¥ <X <¥,
F(x)::' 1 -, -¥ <ac<¥,
;o -ocal
|1+e8b s b>0
b XYa ¥ ¥
. _ o 1 o _
Settlngu—F(x)lmpllesu—T__a(?,lmpllesthat.
1+ o
X=a- bLnaé—uo
u g

The (L-1) algorithm describes the necessary steps for generating

random variates by the inverse transform method.
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Algorithm (L-1);

1. Read a, b.

2. Generate U form U(O, 1).

3, SetX=a- bLnE Y0
8Ufa

4. Deliver X asar.v. generated from L(a, b).

5. Stop.

2.5.2 Procedure (L-2):

This procedure is based on theorem (1.1) and the L-2 algorithm

describe the steps of generation.

Algorithm (L-2);

1. Read a, b.
2. Generate U form U(O, 1).
3. Set X=-Ln(1- V).

kX 0
© _s=X+Ln(L- &%)
G- e X5

5. SetZ=a +DbY.

4, SetY =-Ln

6. Deliver Z asar.v. generated from L(a, b).

7. Stop.
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Monte Carlo Results

3.1 Introduction

In this chapter, a large scale of samples generated from the
Logistic distn. by procedures (L-1) and (L-2) of chapter two where the
sample sizes n = 5(1) 10(2) 20(5) 30 and the run size m = 500 is used.

These samples are used to estimate the parameters of the Logistic
distn. by the four methods of estimation namely, Moments method,
Maximum likelihood method, Modified moments method and Least
squares method. Moments properties of the estimators, such as bias,
variance, skewness, and kurtosis are tabulated, efficiency of the methods

areillustrated and discussed by using mean square error measurements.

3.2 The Estimates of the Parameters Using Procedure (L-1)

To access the results obtained by the four methods of estimation,
we generate samples of different sizesfrom Logistic distn. by theinverse
transform method.

A computer program (5) of Appendix (B) uses procedure (L-1) of
section (2.5.1) is made which utilize the Inverse Transform Method,
which generate samples from L(0, 1).

The samples of program (5) of Appendix (B) is used in Appendix
(A) in programs (1), (2), (3), and (4) for estimating the unknown
parameters of L(0, 1)
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Monte-Carlo Results

The estimators by the four methods of estimations are displayed in

table (3.1).

Table (3.1)
Parameters estimation.

Estimation of (&,b)

(0.054, 1.018)

M.L.M

(0.1, 1.626)

M.M.M

(0.054, 0.97)

(0.045, 0.963)

(-0.026, 1.01)

(0.09, 1.654)

(- 0.026, 1.106)

(0.012, 0.967)

(- 0.037, 1.009)

(0.0941, 1.528)

(-0.037, 1.02)

(0.032, 0.968)

(-0.023, 1.012)

(- 0.071, 1.434)

(- 0.023, 0.96)

(0.028, 0.999)

(-0.016, 1.001)

(-0.032, 1.428)

(-0.016, 1.03)

(8.204° 10°3,1.003)

(9.794° 10°31.107)

(0.044, 1.415)

(9.794° 10°31.061)

(9.719" 10°31.003)

(- 0.023, 0.998)

(-0.014, 1.301)

(- 0.023, 1.035)

(- 0.34, 0.986)

(-3.405 10°31.032)

(-0.038, 1.34)

(3.405 10°3, 1.017)

(4.667" 10°3,0.99)

(0.035, 1.011)

(0.017, 1.271)

(0.035, 1.055)

(- 0.015, 0.996)

(0.036, 1.032)

(-0.031, 1.236)

(0.036, 0.99)

(-0.013, 0.97)

(- 0.023, 1.005)

(0.018, 1.201)

(- 0.023, 0.968)

(- 6.648 10°3,1.003)

(-0.01, 0.997)

(0.028, 1.167)

(-0.01, 1.046)

(5.313 10'*,0.974)

(2.032° 10°31.011)

(0.02, 1.112)

(2.032" 10°31.019)

(0.047, 0.971)

Table(3.1) show that methods M.M, M.M.M ,and L.S.M give a

good agreement between the true values of the parameters a=0 and b=1

with the estimators (4 ) and (b) for al sample sizes, while the M.L.M
give higher values for small and moderate sample sizes and become ad

gate for large sample sizes.
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3.3 The Bias of Estimators Using Procedure (L-1)

The biases of estimators & and b which can be obtained by:

Tables (3.2) and (3.3) show the biases of estimators (a) and (6)
obtained by the four methods of estimation:

Table (3.2)
Bias of Estimator (a ).

Bias of Estimation (&)

0.054

M.L.M

M.M.M

0.054

0.045

- 0.026

- 0.026

0.12

- 0.037

- 0.037

0.032

- 0.023

- 0.023

0.028

- 0.016

- 0.016

8.204° 103

9.794 103

9.794 103

9.719 103

- 0.023

- 0.023

-0.034

-3.405 103

-3.405 103

5.667 103

0.035

0.035

- 0.015

0.036

0.036

- 0.013

- 0.023

- 0.023

-6.648 10°°

-0.01

-0.01

5.313 104

2.023 103
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Table (3.3)
Bias of Estimator (b ).

Bias of Estimation (5)

M.L.M M.M.M

3.4 The Variance of Estimators Using Procedure (L-1)

The variances of estimator (&) are shown in table (3.4), where the

true values of variances are given:
1- Equation (1.23) by moments method.
2- Equation (1.41) by modified moments method.

3- Equation (1.57) by least squares method.
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Table (3.4) show the variance of estimator (a) where the true

value of variance (a) are shown in parenthesis.

Table (3.4)
Variance of Estimator (a ).

Variance of Estimation (& )

0.715 (0.658)

M.L.M

M.M.M

0.715 (0.658)

0.024 (0.048)

0.604 (0.548)

0.604 (0.548)

0.0202 (0.033)

0.389 (0.4703)

0.389 (0.4703)

0.189 (0.036)

0.415 (0.4115)

0.415 (0.4115)

0.286 (0.034)

0.176 (0.365)

0.176 (0.365)

0.259 (0.014)

0.351 (0.3922)

0.351 (0.3922)

0.187 (0.011)

0.264 (0.274)

0.264 (0.274)

0.131 (7.536" 10

0.205 (0.235)

0.205 (0.235)

0.143 (5.719 10°¥

0.259 (0.205)

0.259 (0.205)

0.131 (4.179 10°¥

0.282 (0.1829)

0.282 (0.1829)

0.064 (3.308" 10

0.138 (0.1646)

0.138 (0.1646)

0.091 (2.633 10

0.118 (0.1317)

0.118 (0.1317)

0.028 (1.676" 10°

0.16 (0.1097)

0.16 (0.1097)

0.085 (1.201" 10°¥

Table (3.4) show that the variances values of the estimator a are
close to the true variance values given by eq.(1.23) and (1.41),while the

variances values given by L.S.M are not satisfactory

The variances of estimator (6) are shown in table (3.5), where the

true values of variances are given:

58

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Monte-Carlo Results

1- Equation (1.25) by moments method.
2- Equation (1.43) by modified moments method.

3- Equation (1.55) by least squares method.

Table (3.5) show the variance of estimator (6) where the true

value of variance (6) are shown in parenthesis.

Table (3.5)

Variance of Estimator (6 ).

Variance of Estimation (6 )

M.L.M M.M.M

0.353 (0.688) 0.197 (0.521) 0.081 (0.036)

0.468 (0.645) 0.124 (0.42) 0.065 (0.075)

0.213 (0.609) 0.236 (0.356) |  0.086 (7.86" 10°3)

0.125 (0.578) 0.208 (0.31) 0.073 (0.015)

0.232 (0.55)

0.109 (0.277)

0.089 (0.018)

0.261 (0.526)

0.122 (0.252)

0.084 (0.011)

0.102 (0.487)

0.121 (0.215)

0.077 (0.015)

0.113 (0.454)

0.072 (0.19)

0.055 (3.008" 10°%)

0.054 (0.428)

0.068 (0.172)

0.048 (1.535 10°%)

0.067 (0.405)

0.055 (0.158)

0.046 (1.001" 1073

0.061 (0.386)

0.047 (0.147)

0.039 (1.499" 10°%)

0.042 (0.348)

0.032 (0.127)

0.026 (9.356" 10°%)

0.028 (0.319)

0.027 (0.114)
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Table (3.5) show that the variances values of the estimator (6) are

less than true values given by eq.(1.25) and (1.43) while the L.S.M is
higher than the values given by eq.(1.55).

3.5 The Skewness of Estimators Using Procedure (L-1)

The skewness of estimators (a ) and (6) which can be obtained by:

1€8 3 ax8 (N2, n228 ~3U
—aa (a;)”- 3aa (a;)" +3a"a (a;)- a’y
SkeNneSS(é.): nei=l i=1 i=1 u
(32)3/2
1éJ ~ J o ~5U
= a8 (by)%- 308 (b))% +30%3 (by)- b
SN a=1 i=1 i=1 u
Skewness (b) = (32)3’2

Tables (3.6) and (3.7) show the skewness of estimators (&) and
(6) by the four methods of estimation.
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Table (3.6)
Skewness of Estimator (a ).

Skewness of Estimation (& )

M.L.M M.M.M

Table (3.6) show that al methods give avery little skewness to left
and to the right which indicate that the estimator (&) approach rapidly to

normal distn.
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Table (3.7)

Skewness of Estimator (6 ).

Skewness of Estimation (5 )

M.L.M M.M.M

4.406 8.872 27.69

3.587 25.923 44.039

10.158 8.996 30.644

21.124 8.812 44.189

9.113 27.18 33.417

8.265 25.123 36.578

28.471 24.758 42.743

27.072 51.121 69.608

76.928 62.471 88.056

62.002 73.752 88.823

64.683 86.649 125.656

110.405 195.319 210.945

213.813 233.612 1.125" 10°

Table (3.7) show that when the sample size increase the skewness

loose centrality
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3.6 The Kurtosis of Estimators Using Procedure (L-1)

The kurtosis of estimators (&) and (6) which can be obtained by:

1ef 4 a0 3. n20 .34 U
—ea (@) -4aa (@) +6a"aa;-4a7aay
Kurtosis (4 )=—2=2 = = R
(s%)°
1€8 ~ 0 28 38 U
- (b)*- 4b3 (b;)° +6b°Q b; - 40°4 by
Kurtosis (b)=—2 == = U3
(s)

Tables (3.8) and (3.9) show the kurtosis of estimators (a ) and (6)
by the four methods of estimation.

Table (3.8)
Kurtosis of Estimator (a ).

Kurtosis of Estimation (& )
M.L.M M.M.M
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Table (3.8) show that al methods give alittle kurtosis which make
the maximum point of the distn. osculate up and down on the y-axis
which indicate that the estimator (&) have limiting N (0,1) distn.

Table (3.9)

Kurtosis of Estimator (6 ).

Kurtosis of Estimation (5 )

M.L.M M.M.M

-8.74 - 19.632 - 20211 - 95.705

- 4.567 -27.333 -85.24 -171.762

- 20.225 - 26.59 -17.09 -104.117

- 60.346 -38.671 - 18.476 - 165.637

-17.393 -41.203 -84.912 - 115.33

- 13.639 - 48.762 - 77.398 - 131.452

- 86.414 -957.92 - 72.376 - 143.444

- 48.016 -95.9 - 19.449 - 289.346

- 330.577

-104.754

- 252.579

-402.27

- 239.972

- 184.851

- 308.5

- 395.159

- 258.073

- 355.288

- 383.713

- 643.913

- 533.601

- 505.262

-1.147 10°

-1.27 10°

-1.292° 10°

- 707.416

-1.459 10°

-1.184" 10*

Table (3.9) show that all methods give higher kurtosis which make
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3.7 Mean Square Error of Estimators Using Procedure (L-1)

The mean square error of estimators (a) and (6) which can be
obtained by:

m.s.e (&) = Variance(4 ) + [bias(a )]

m.s.e (b) = Variance(b) + [bias(b)]?

Tables (3.10) and (3.11) show the mean square error of estimators
(4) and (b) by the four methods of estimation.

Table (3.10)
Mean square error of Estimator (a ).

Mean square error of Estimation (a )

M.L.M M.M.M
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Table (3.10) show that the m.s.e of (a) is very good by using

L.S.M in comparison with other methods.

Table (3.11)

Mean sguare error of Estimator (6 ).

Mean square error of Estimation (6 )

M.L.M M.M.M

0.085

0.066

0.087

0.073

0.089

0.084

0.077

0.056

0.048

0.047

0.039

0.027

09349 103

Table (3.11) show that the m.s.e of (6) IS very good by using

L.S.M in comparison with other methods.
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3.8 Parameters Estimation Using Procedure (L-2)

To access the results obtained by the four methods of estimation,
we generate samples of different sizes from Logistic distn. by procedure
(L-2). A computer program (6) of Appendix (B) uses procedure (L-2) of
section (2.5.2) is made which utilize the procedure (L-2), which generate
samples from L(0, 1).

The samples of program (6) of Appendix (B) is used in Appendix
(A) in programs (1), (2), (3), and (4) for estimating the unknown
parameters of L(0, 1)

The estimators by the four methods of estimations are displayed in
table (3.12).

Table (3.12)
Parameters estimation

Estimation (& ,b )

(- 2.263 103,1.048)

M.L.M
(0.31,1.802)

M.M.M

(- 2.263 10°31.087)

(1.515" 10°3,0.966)

(-1.11° 10°*1.064)

(0.293,1.764)

(-1.11° 10°*1.098)

(6.743 10°3,0.951)

(- 0.033,1.013)

(0.265,1.711)

(- 0.033, 1.056)

(- 0.013,0.9691)

(- 0.038,1.011)

(0.227,1.689)

(- 0.038,1.056)

(0.013,0.975)

(- 0.038,1.006)

(0.201,1.624)

(- 0.038,1.043)

(0.047,0.949)

(5.535 10°3,1.039)

(0.198,1.58)

(5.535 10°3,0.98)

(- 0.014,0.984)

(-7.051" 10 31.015)

(0.203,1.421)

(-7.051 10°3, 1.032)

(0.013,0.973)

(0.016,1.017)

(0.199,1.491)

(0.016,1.041)

(7.801" 10°3,0.981)

(- 0.02,0.993)

(0.107,1.424)

(-0.02,1.011)

(1.936" 10°3,0.979)

(-9.484° 10°3,1.01)

(0.101,1.373)

(-9.484° 10°1.022)

(- 0.035,0.992)

(- 0.021,0.998)

(0.09,1.332)

(-0.021,1.016)

(0.032,1)

(0.021,1.004)

(0.081,1.269)

(0.021,1.005)

(- 0.028,0.984

(2.073 10°3,1.007)

(0.07,1.223)
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Table(3.12) show that methods M.M, M.M.M ,and L.S.M give a

good agreement between the true values of the parameters a=0 and b=1

with the estimators (4 ) and (b) for al sample sizes, while the M.L.M
give higher values for small and moderate sample sizes and become ad

gate for large sample sizes.

3.9 The Bias of Estimators Using Procedure (L-2)

The biases of estimators & and b which can be obtained by:

Tables (3.13) and (3.14) show the biases of estimators & and b
obtained by the four methods of estimation:
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Table (3.13)

Bias of Estimator (a ).

Bias of Estimation (&)

-2.263 103

M.L.M

M.M.M

-2.263 10°®

1.515 10°°

-1.11" 10°*

-1.11" 10°*

6.743 103

- 0.033

- 0.033

- 0.013

- 0.038

- 0.038

0.013

- 0.038

- 0.038

0.047

5.535 1073

5535 103

-0.014

-7.051" 103

-7.051" 10°®

0.013

0.016

0.016

7.801° 103

-0.02

-0.02

1.936" 10°°

-9.484 10°®

-9.484 10°®

- 0.035

-0.021

-0.21

0.032

0.021

0.021

- 0.028

2.072 103
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Table (3.14)

Bias of Estimator (6 ).

Bias of Estimation (5)

M.L.M

M.M.M
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3.10 The Variance of Estimators Using Procedure (L-2)
The variances of estimator (a) are shown in table (3.15), where
the true values of variances are given:
1- Equation (1.23) by moments method.
2- Equation (1.41) by modified moments method.
3- Equation (1.57) by least squares method.

Table (3.15) show the variance of estimator (a) where the true
value of variance (a) are shown in parenthesis.

Table (3.15)
Variance of Estimator (a ).

Variance of Estimation (& )

M.L.M M.M.M

0.94(0.658)

0.94(0.658)

0.181(0.048)

0.88(0.548)

0.88(0.548)

0.164(0.033)

0.442(0.4703)

0.442(0.4703)

0.153(0.036)

0.49(0.4115)

0.49(0.4115)

0.089(0.034)

0.475(0.365)

0.475(0.365)

0.119(0.014)

0.345(0.3922)

0.345(0.3922)

0.171(0.011)

0.368(0.274)

0.368(0.274)

0.091(7.536" 10°%)

0.273(0.235)

0.273(0.235)

0.098(5.719" 10

0.21(0.205)

0.21(0.205)

0.079(4.179 1073

0.19(0.1829)

0.19(0.1829)

0.093(3.308" 10°°)

0.155(0.1646)

0.155(0.1646)

0.096(2.633 10

0.132(0.1317)

0.132(0.1317)

0.075(1.676" 10

0.108(0.1097)
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Table (3.15) show that the variances values of the estimator a are
close to the true variance values given by eq.(1.23) and (1.41),while the

variances values given by L.S.M are not satisfactory

The variance of estimator (6) are shown in table (3.16), where the

true values of variances are given:
1- Equation (1.25) by moments method.
2- Equation (1.43) by modified moments method.
3- Equation (1.55) by least squares method.
Table (3.16) show the variance of estimator (6) where the true

value of variance (6) are shown in parenthesis.
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Table (3.16)

Variance of Estimator (6 ).

Variance of Estimation (6 )

0.358(0.688)

M.L.M

M.M.M

0.447(0.521)

0.024(0.036)

0.428(0.645)

0.362(0.42)

0.053(0.075)

0.334(0.609)

0.201(0.356)

0.047(0.015)

0.219(0.578)

0.215(0.31)

0.081(0.018)

0.284(0.55)

0.143(0.277)

0.057(0.011)

0.145(0.526)

0.118(0.252)

0.094(0.015)

0.118(0.487)

0.12(0.215)

0.041(3.214 10

0.149(0.454)

0.107(0.19)

0.076(3.008" 10 °)

0.091(0.428)

0.1(0.172)

0.056(1.535 10 °)

0.028(0.405)

0.078(0.158)

0.059(1.001" 10°3)

0.029(0.386)

0.05(0.147)

0.04(1.499 103

0.034(0.348)

0.041(0.127)

0.029(9.356" 10'*

0.028(0.319)

0.025(0.114)

0.032(2.779 10'%

Table (3.16) show that the variances values of the estimator (6)

are less than true values given by eq.(1.25) and (1.43) whilethe L.S.M is
higher than the values given by eq.(1.55).
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3.11 The Skewness of Estimators Using Procedure (L-2)
The skewness of estimator (a) and (6) which can be obtained by:

1€8 3 ax8 N2, n228 ~3U
—aa (a;)”- 3aa (a;)" +3a"a (a;)- ay
Ay — 6=l i=1 i=1 u
Skewness (a) = (32)3’2
1€4 ~ g ~o g ~3U
= a8 (by)%- 308 (b))% +30%3 (by)- b
SN a=1 i=1 i=1 u
Skewness (b) = (32)3’2

Tables (3.17) and (318) show the skewness of estimators (a ) and
(b) by the four method of estimation.

Table (3.17)
Skewness of Estimator (a ).

Skewness of Estimation (& )
M.L.M M.M.M
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Table (3.17) show that al methods give a very little skewness to
left and to the right which indicate that the estimator (&) approach
rapidly to normal distn.

Table (3.18)

Skewness of Estimator (6 ).

Skewness of Estimation ( b )

4.464

M.L.M

5.498

M.M.M

4.466

55.93

4.868

7.583

4.81

57.027

5.505

5.374

13.109

76.908

9.869

7.588

11.368

34.378

7.487

6.557

17.894

54.871

17.86

12.205

22.653

28.423

25.015

45.782

25.013

100.755

18.015

50.088

31777

41.684

32.74

82.108

31.873

65.263

204.605

86.169

47.202

64.844

194.806

141.034

90.796

119.341

156.217

174.633

115.448

184.024

213.108

215.044

245.577

168.303

Table (3.18) show that when the sample sizeincrease the skewness

loose centrality.
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3.12 The Kurtosis of Estimators Using Procedure (L-2)

The kurtosis of estimator (a) and (6) which can be obtained by:

1ef 4 a0 3. x00 .34 U
—ea (@) -4aa (a)"+6a"aa;-4a’aay
Kurtosis (4)=—2= = ) = R
eg ~ 9 o 8 ~3d U
88 (b)) - 464 (b)) +60%4 by - 4°4 by
~ na_ g o o X
Kurtosis (b) = —2=% = - = = U3
s

Tables (3.19) and (3.20) show the kurtosis of estimators (a) and
(6) by the four methods of estimation.

Table (3.19)
Kurtosis of Estimator (a ).

Kurtosis of Estimation (& )
M.L.M M.M.M
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Table (3.19) show that all methods give alittle kurtosis above and
below the y-axis which indicate that the estimator (&) have limiting
N(0,1) distn..

Table (3.20)

Kurtosis of Estimator (6 ).

Kurtosis of Estimation (5 )

M.L.M M.M.M

- 9.666 -14.722 -6.761 - 237.389

- 5.981 -20.33 -11.27 - 240.575

- 9.426 - 14.166 -24.931 - 342.492

-19.614 - 20.198 - 24.343 -121.764

-11.104 -17.211 - 52.764 - 223.908

- 51.418 - 34.136 - 57.584 -96.273

- 69.197 -176.244 - 74.28 -492.2

- 44.836 - 196.669 - 93.867 - 149.223

- 110.737

- 370.742

- 96.69

- 274.647

-1.234 10°

- 397.046

- 141.146

- 268.139

-1.15 10°

- 756.141

-412.213

- 992.727

-8.25 10°

- 996.427

- 573.247

-1.065 10°

-1.288 10°

-1.314 10°

-1.547 10°

- 933.451

Table (3.20) show that all methods give higher kurtosis above and
below the y-axis which indicate that maximum value of (b) lies in the

infinity.
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Chapter Three Monte-Carlo Results

3.13 Mean Square Error of Estimators Using Procedure (L-2)

The mean square error of estimators (a) and (6) which can be
obtained by:

m.s.e (&) = Variance(4 ) + [bias(a )]

m.s.e (b) = Variance(b) + [bias(b)]?

Tables (3.21) and (3.22) show the mean square error of estimators
(4) and (b) by the four methods of estimation.

Table (3.21)
Mean square error of Estimator (a ).

Mean square error of Estimation (a )

M.L.M M.M.M
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Chapter Three Monte-Carlo Results

Table (3.21)show that the m.s.e of (&) is very good by using

L.S.M in comparison with other methods.

Table (3.22)

Mean sguare error of Estimator (6 ).

Mean square error of Estimation (6 )

M.L.M M.M.M

Table (3.22) show that the m.s.e of (6) IS very good by using

L.S.M in comparison with other methods.
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Conclusions

1. The procedure (L-1) is superior (speed and accuracy) than the
procedure (L-2) for generating samples of different sizes from
Logistic distn.

2. In procedure (L-1), the values of maximum likelihood estimate are
better than the values of procedure (L-2) and as the sample size
Increase the estimate values in both procedure, because closer the
true parameters value.

3. In procedure (L-2), the M.M. and M.M.M. give estimate values to
the estimator a better than that of procedure (L-1).

4. In procedures (L-1) and (L-2), the M.M. and M.M.M. give variance
to the estimator & close to the true variance and at the same time

these variances are better than the variances of the other methods.
While the variances b in all methods give estimate value higher than
the actual true value.

5. In both procedures (L-1) and (L-2), al methods of estimation the
skewness of a gives values close to zero and that indicate that a is
almost sure approach normality, while the skewness of b increase
when the sample size increase and have positive values which lead to

skewness to right and that indicate that b loose centrality.

6. In both procedures (L-1) and (L-2) the kurtosis values of the

~

estimator a lies in the interval (- 1, 0), while the kurtosis of b
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Conclusions

Increase as the sample size increase and have negative value which
lead to kurtosis to right as expected in comparison with its skewness

mentioned above.

~

7. L.SM. gives smal m.se. of @ and b in comparison with other

methods.

8. The disadvantage of Monte Carlo methods depends on generating
pseudorandom variates and that might carry dirty data, and that

might affect the results of M.L.M. of estimation & and b when we

use Newton-Raphson iteration.
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Future Work and Recommendations

1. This work can be used for generalized Logistic distn. of three
parameters and other life distn.

2. Another methods of estimation could be used to estimate the distn.
parameters, such as minimum Chi-square, minimum distance,

Bayesian method, etc.

3. It can generate r.v®. from Logistic distn. by other new procedures

which can be compared with other used procedures.

4. True values of skewness and kurtosis could be found theoretically.
5. The skewness to right of b might be adjusted to behave normality.

6. We recommend procedure (L-1) and the priority method to be used
respectively L.SM., M.M., M.M.M., M.L.M.
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Mppondlin S
Compatr Tiagroms of Eotimalion
Mithodd

Program 1: Estimation by Moment Method

Enter your values of a ,b ,n and m

x:= | for jT 0.m-1
for i1 0.n- 1
u- rnd(1)
r..- a- bania'j- u9
) eug
r
r
i:=0.n-1 j:==0.m-1
n1 m-1
Xa = —X X alzixc> Xa
I n 0] " m I al=a
i=0 i=0

A-l
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Appendix A

Computer Programs of Estimation Methods

1t
bl :;]xa ij bl=4s
i=0
1 n-1
S = Xé (xa - al)2
n-1 J S =4
i=0
én-1 n-1 3
%éé (xa)3 - 3>~a1><é (xaj)2+ 3>~a12><é (xa}) - al*l
_ g=0 j=0 U
K= sk =1
1 é]c;l 4 n-1 3 MLix n-1 ZEJ
F?a (xa) - dalxq (xa]) + 6al ><.a (xa) - dalxq (xa}) +a ¢
ku:=—8 =2 =0 /=0 .z
mse::a12+ S
1 Bt 2
s2:= — 1><a (xbj - bl)
j=0
é-1 n-1 )
1 2
;>§-° (xbj)3- 3>b1><é. (xbj)2+ BH1xQ (x0) - bﬁ;
s2=—870 120 u «2 =4
13‘-’1 b)* 4>b1><n61 b)%+ b1  (xb)? %13:61 b +b1{1
—£a () - g (x) a (o) a (o) o1
__@=0 i=0 j=0 0 .
c = - <
C =1
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Appendix A Computer Programs of Estimation Methods

g:=bl-1 q=u

2
mse2:=q + Sz mse2 =

Program 2: Estimation by Maximum Likelihood Method

Enter your values of a ,b and n

x:=|for jT 0.n-1
for il 0.n-1
u- rnd(1)

£ - a- il
i) e u

9
2

A-3
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Appendix A Computer Programs of Estimation Methods
p=In- 1
a-
b-
for jT 0.n-1
for il 0.n-1
n-1 i
PR N NP N
X i
i=0€ - ’:)
e 1+e
n-1 n-1
5 . 1
f2 = —Xé (x.-a)-ﬂ-—xo gx -a)@- -al.I
1] b 2 Al X i-@
b i=o b” =0 € G 2 U
& e 1+e ° @
Xi’j'a
n-1 b
a- -_XO e
a .2
b i=0 & %,j-a0
C =
el+e b
¢ Xrag
1 < - p 1
n é(x -a)>e u n-
bﬂ_—z-%xo él’j a+£2x° 6- 1 0
~ Va ...a
b° b’ iz0€a  x,;86 0 b =6 "é +
€C L N =
géive ° 5@ e tre @
_Xpa
2 b
-1 1 - 1
c _—xno X a ML i><n° ("J a)>€ +i><nc> aﬁ :
a (I,j ) 4a 2 3 (I,j )
b i=o0 b- b j=o0 e X a0 b~ i=o0 ¢
C = N
&1+e b . e 1+e
- b1 + ax2
h, - p. oL+ af2
a>c-(b2)
cfl - b2
S )
a>c-(b)
b- h
J
a- Z
J
a
P=1
A-4
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Appendix A Computer Programs of Estimation Methods

ki=|n= 1
a-
b- 1
for jT 0.n-1
for i1 0.n- 1
n-1
flﬂ%-zxo 5- 1 9
X j-a -
|:0(; - 2
N b =
e 1l+e 7}
n-1 n-1
1 n 2 A 1
f2 - —Xé ( -a)-—-—xo gx -a)@- —al,l
2 1] b 2 Al %"
b” =0 b =o€ ¢ i
& & 1+e ° @
Xi’j'a
n-1 b
-2 o e
an —X
2 2
b i=0 & X.j-a0
C =
el+e b
¢ Hrag
1e - b L 1
n 2% 9(".,;""‘)’9 u o g 1 8
b — - —x é g+ —x 5- =
2 3 A 2 - 2 X j-a -
b b j=¢o€a a0 U b j=0€ - ’b
€ = ( 2 <
X b Y l1+e
éel+e g u € 4
_Xpa
2 b
1 1 - 1
- no n 2n° (I,j a)>e 4n° 1
Cc- —xa (x -a)+—-—>< + —x ( -a)ﬁ-
1] 2 4 2 3 I
b i=o0 b- b j=o0 & X j-a0 b =0 ¢
C = ?
&1+e b . e 1+e
-bX¥1+ axf2
h, - p. D1+ a2
a>c-(b2)
cfl- b2
S P
a>c-(b)
a - Z
J
b- h
J
b
k=1
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Appendix A

Computer Programs of Estimation Methods

i=0
Nn-1 n-1 n-1 )
1e]o 3 [} 2 2 o ¥
=€ - -
- @a (xaj) 3>~a1><a (xa]) + 3al xa (xa]) al v
o= g=0 j=0 - j=0 u
2
S
K =1
-1 n-1 n-1 n-1 )
1eq 4 o 3 2 o 2 3 o th
=€ - dalx + 6al x - dal x +
ea (q) - @ () a (q) -+ (q)rar;
k=979 =0 21—0 =0 u_.
s
ku=1
2
mse:=al +s mse =1
;™1 B
s2:= a (xbj - bl)‘
n-1 _ s2 =1
j=0
Nn-1 n-1 n-1 )
1e]o 3 [} 2 2 o ¥
s )7 - 3bl . 1 | - bl
—< (xbj) 3bi1xQ (xbj) +301>Q (xbj) b1}
g=0 i=0 i=0 0]
sk2:=
3 sk2 =1
322
-1 n-1 n-1 n-1 )
1@0 4 o} 3 2 o 2 3 o th
R b|" - 4blx b.|” + &bl x b.|- bl x b.| + bl
s (o) - g () a () a (&) oL
oo 8=0 j=0 j=0 j=0 a .
2
s2
gq:=bl-1 C=1
q=z
mse2::q2+sz mse2 =1
A-6
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Appendix A Computer Programs of Estimation Methods

Program 3: Estimation by Modified Moment Method

Enter your values of a ,b ,n and m

x:= | for jT 0.m- 1

for il 0.n-1
u- rnd(l)
r. .- a+b>¢nr&u 0
1] el-ug
r
r
i:=0.n-1 j:==0.m-1
- -1
— mi -—ixno:l 1-—i><n2>
y = min(X) xa].—n a Xi,j a = a xa
i=0 i=0

al=q

1
(n):=In(n) - — -
o " 2n 12>(n2) ' 120(n4) 252>(n6) 240»(n8)

y-al

bli=————
-0577- y (n) bl=1

A-7
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Computer Programs of Estimation Methods

Appendix A
-1 n-1 n-1 )
1 & 2
—@é (xaj)3-3>al><é (xaj)2+3>~a1 Xé xaj-al{J
né [
sk:=— 870 /=0 - =0 Uz
2
s
sk =1
-1
1no £ 3 2 2 3 4
WA g ) ealpa)- sfg)aratg
n
Zo
ku:= ! . ku=1u
s
2
mse:=al +s
mse =1
n-1 5
s22:= X (xbj - bl)
n-
j=0 s22=1
An- 1 n-1 n-1 )
1 & 2
~£8 (xbj)3- Pb1x] (xbj)2+3>bl - X, - bl{
né [
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822
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Computer Programs of Estimation Methods

Appendix A

Program 4: Estimation by Least Square Method

Enter your values of a ,b ,nand m

a:=a b= m:=a n:=a
x:= | for jT 0.m- 1
for i1 0.n-1
u- rnd(l)
r. .- a+b>{nraa 9
I el-ug
r
r
j:==0.m-1
u :=runif(n,0,1)
as1 0 al 0
ug 1lc = leo =
t—Ing'31 x =6 ti==% t
g u g YiThea K. i=ea b
€i=0 ¢ €i=0 ¢
n-1 nal )
tix % x t.
ia (l [ J) Yi (I)
=0 =0
all:= :
nol nc->1 )
(tl)xa. (ti) a (tl)
i=0 i=0
1 m-1
[]
al.=—x all
ma &
i=0 al=1a
A9
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Appendix A Computer Programs of Estimation Methods

nal nal
va v a ()
bllj::- i=0 i=0
n-1 nal )
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bl:=—x b1l
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Appendix A Computer Programs of Estimation Methods

1?‘-’1 b3 3>b1n61 b.)? 3>¢312n‘-’1 b bf{EJ
ned (0)"- o1 ()" + 3015q (x5) - v
s=_— 870 j=0 j=o0 a
3
322 sk2 =1
EE‘_’l b4-4>b1><n61 %0 + 6>b12><n61 xb 2-4>b13xn61 xb +b14EJ
via (o) - 4erg (o) a (v) a (&) oL
Co= g§=0 j=0 j=0 i=0 0_5
522
C =1
g:=bl-1
q=1
mse2::q2+sz
mse2 =1
A-11
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% w> ,@"lﬁ y»>

Program 5: procedure (L-1)

Enter your values of a ,b ,n and m

x:= | for jT 0.m-1
for il 0.n-1
u- md(d)

r..- a- bXng'j- u9
) e u g

B-1
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Appendix B Computer Programs for Generating Random Variates of Logistic Distribution

Program 6: procedure (L-2)

Enter your values of a ,b ,n and m

x:= | for jT 0.m-1
for il 0.n-1
u- rnd(1)
bi " -In(1- u)
- bi,j
w .= b . +Inll-e
1] ]

r. .- a+b>‘wi

i j

B-2
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