INVESTIGATION OF THE CORRELATIONS FOR PREDICTION OF SATURATED VAPOR VOLUME FOR PURE COMPONENTS AND MIXTURES

A Thesis
Submitted to the College of Engineering of Nahrain University in Partial Fulfillment of the Requirements for the Degree of Master of Science in
Chemical Engineering
by

Warqa'a Abdulredha Kadhem Al-Shumarry B.Sc. in Chemical Engineering 2003
Rabia II 1427
May 2006

Certification

I certify that this thesis entitled "Investigation of the Correlations for Prediction of Saturated Vapor Volume for Pure Components and Mixtures" was prepared by (Warqa'a Abdulredha Kadhem) under my supervision at Nahrain University/College of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

Signature: Mahmond Comar Rendullah
Name : Prof. Dr. Mahmmod Omar Abdullah
Date: / 6 /fV 2006

Date: / / 2006

Certificate

We certify that as an examining Committee, that we have read this thesis entitled "Investigation of the Correlations for Prediction of Saturated Vapor Volume for Pure Components and Mixtures", examined the Student (Warqa'a Abdulredha Kadhem) in its content and found that it meets the standard of thesis for the degree of Master of Science in Chemical Engineering.

Name: Prof.Dr. Mahmmod Omar Abdullah (Supervisor)
Date! 6/11) 2066

Signature:

Name: Dr. Malek M. Mohamed (Member)

Name: Dr. Aprael Sarkis Yaro (Member)
Date: / /
Signature: $(3,10)$

Name: Prof. Dr.Balasim A. Abid (Chairman)

Approval for the College of Engineering
Signature: $M-工$ ww eeg
Name: Prof. Dr. Muhsin J. Jweeg (Acting Dean)
Date: 1/3/2ט07

Abstract

The prediction of molar volume of saturated vapor can be calculated from many equations of state, some of these equations applied for both gas and liquid phase , and some of them applied for gas phase only. The accuracy of these equations are different. For pure compounds the molar volume of saturated vapor can be calculated from many equations, such as Lee-Kesler equation that gave a very high deviation from the molar volume calculated from the PVT data , it is used to calculate the molar volume of three compounds (72 data points polar and non-polar) with (average absolute percent deviation) $\mathrm{AAD} \% 62.432 \%$, and when its deviation found to be very high there is no need to used this equation for other compounds. Redlich Soave equation was the second equation of state that used to calculate the deviation of the molar volume in this project , it gave AAD\% 15.3125 for 299 data points for 14 compounds polar and non-polar. Peng -Robinson equation of state was used in this project and applied for 299 data points and gave AAD\% 14.3476\% which is relatively better than that obtained from RedlichSoave equation .And finally Virial equation of state that can be used to calculate the molar volume with Virial truncated to second term and Virial truncated to third term ,the use of Virial equation truncated to second term gave $\mathrm{AAD} \% \mathrm{7.5525} \mathrm{\%}$ for 299 data points (polar and non-polar) this relatively high deviation is because of the ranges of pressures of some compounds in this project was relatively high , and the second term of Virial equation is used for pressures relatively low 9not accede 15 bar). While Virial equation truncated to third term gave better deviation the $\mathrm{AAD} \%$ is 1.0955\% this because it can be used for pressure range greater than that of second term (up to 50 bar) .

From the above comparison, it is Easley considered that the truncated Virial equation is the best equation that can be used to calculate the molar volume of the saturated vapor ,and it is clearly showed that the Virial truncated to third coefficient is much better than second term for the conditions of this project (temperatures and pressures). Correlations must be done on these coefficients of Virial equation in order to reduce the deviation of the calculated molar volume. For second Virial coefficient and by using statistical methods, the correlation was developed and this correlation modified the percent deviation from 7.5525% to 3.5209% by using 89data points for 4 compounds (Cyclo propane, propanol, i-Butane, R.245) and then applied this correlation to 210 data points

The correlation developed to modify the percent deviation of the calculated molar volume of saturated vapor by using Virial truncated to third term gave a relatively acceptable deviation and reduce the deviation from 1.0955% to 0.7899% this correlation developed by using 60 data points for 3 compounds polar and non-polar and applied for 239 data points for 11 compounds (polar and non-polar).

For binary mixtures ,the calculation of the molar volume of saturated vapor done by using three methods. The first method is done by using Virial equation truncated to second term with Virial mixing rule and this gave relatively high deviation from the molar volume obtained from the PVT data the $\mathrm{AAD} \%$ is 8.3919% for 142 data points for 6 mixtures. The second method is done by using Teja equation with Virial mixing rule ,where the compressibility factor calculated from Teja equation and the pseudo critical properties of each compounds calculated from Virial mixing rule and this gave $\mathrm{AAD} \%$ is 3.4669% for 142 data points for 6 mixtures , and this is relatively better than that obtained from the modified Virial truncated to second term .The third method is done by using the modified Virial equation truncated to third term with Virial mixing rule and this method gave the lowest deviation and the best accuracy than other two methods used to calculate the molar volume of saturated vapor for binary mixtures ,the AAD\% is 1.4967% for 142 data points (6 mixtures).

List of Content

Abstract	I
List of content	III
Nomenclature	V
Greek symbol	VII
Chapter One: Introduction	

Introduction 1

Chapter Two: Literature Review
2.1 The PVT Behavior of fluids. 3
2.2 Saturated Vapor density. 5
2.3 Pure component models for calculating 5
the saturated molar volume.
2.4 Models for calculating the molar Volume 13
of gas mixtures.
2.4.1 Models for truncated Virial equation. 14
2.4.2 Methods based on Volume shifting method. 15
Chapter Three: Theories and Definitions
3.1 Equation of state 16
3.2 Classification of equations of state 16
3.2.1 Standard P-V-T forms 17
3.2.2 Fundamental form 17
3.3 Law of corresponding state 18
3.3.1 Two parameter Correlations (spherical molecules) 18
3.3.2 Three parameter correlations(non-spherical molecules) 20
3.3.3 Four parameter model (polar molecules) 20
3.4VanderWaalsequation 22
3.5 Lee-Kesler equation 24
3.6 Redlich-Kowing equation 24
3.7 Soave equation 25
3.8 Peng-Robinson equation 26
3.9 Virial equation 27
3.9.1 Second Virial coefficient 28
3.9.1.1 Tsonpolous correlation 28
3.9.2 Third Virial coefficient 31
3.9.2.1 Orbey Vera correlation 31
3.10 Mixing rules 33
3.10.1 Virial equation Mixing rule 33
3.10.2 Teja equation mixing rule 35
Chapter four : Investigation and Development
4.1 Investigation of the equations of state 36
4.2 Choice of the Virial equation 42
4.3 Development of the correlation 43
4.4 Investigation to the mixtures 49
Chapter five : Discussion and Conclusions
5.1 Discussion 51
5.2 Conclusions 67
5.3 Recommendations. 70
References 71
Appendix A A-1
Appendix B B-1
Appendix CC-1
Appendix D D-1

CHAPTER ONE

INTRODUCTION

The saturated vapor density (volume) of the substance represents a point on the saturated vapor envelope of a PVT surface and therefore depicts the limiting value of a gaseous isotherm just before condensation is initiated .Thus ,the saturated vapor state becomes the point of intersection between a super heated gas isotherm and the corresponding vaporizing liquid isotherm .There are many equations of states that calculate the saturated vapor density (volume) . The equations of state are widely used in the prediction of thermodynamic properties of pure fluids and fluid mixtures.

The term equation of state is used to describe an empirically derived function which provides a relation between pressures, temperature, molar volumes and (for mixtures) composition.

Many equations of state can represent the properties of the gas phase, some of them are applicable for the liquid phase only, but the most important category of equations of state that applied in the same form to both gaseous and liquid phases.

Peng and Robinson and Soave -Redlich Kowing equations of states are applicable for both liquid and vapor phases , and can be used for calculating the molar volumes by calculating the compressibility factor .The accuracy of these equations is good at low ranges of temperatures and pressures but this
accuracy is decreased when the ranges of temperatures and pressures are increased.

Virial equation is one of the equations of state that provides a method of describing the gas behavior, it is an important equation for the gas phase because it is not applicable for the liquid phase and its coefficients are related to intermolecular potential energy.

The form of the Virial equation is a power series in the reciprocal molar volume, (1/v).

$$
\begin{equation*}
z=1+\frac{B}{V}+\frac{C}{V^{2}}+\ldots \tag{1.1}
\end{equation*}
$$

Where B,and C are the second and third Virial coefficients respectively.

So, there are many equations to calculate the molar volumes, the methods to be used in this work are based on the experimental data and fitting these data to the equations in terms of suitable parameter.

Pure gases are classified as polar and non polar gases. Non polar gases are classified as:

1. Simple fluids that have zero acentric factor.
2. Quantum gases that have negative acentric factor.
3. Other non polar gases that have positive acentric factor.

Polar gases are classified as:

1. Non hydrogen bonding components as aldehydes.
2. Hydrogen bonding components as water.

The aim of this work is to calculate the molar volume of saturated vapor using many equations and find the best one that gives the lowest deviation (and highest accuracy) and then efforts will be done to modify this equation to obtain if possible an expression that increases the accuracy as much as possible at moderate conditions and ranges of temperatures and pressures, this modification will be tried by using a statistical methods. The same procedures are used for the multi component mixtures.

The saturated vapor volume is necessary for many chemical engineering applications such as separation and distillation and the vapor liquid application processes.

CHAPTER TWO Literature Review

2.1 : THE P-V-T BEHAVIOR OF FLUIDS : [46],[18]

A pure fluid is an equilibrium state when two intensive variables are fixed and all properties are uniform throughout .the PVT behavior of a fluid is usually displayed on a PV diagram on which constant temperature curves, isotherms are drawn, Fig 2.2 shows the general behavior of a pure fluid on these coordinates .Three isotherms are shown ,the critical temperature ,one higher temperature and one lower temperature . Above the critical temperature where no liquid phase can exist ,pressure in monotonic fashion . Below the critical temperature isotherms show discontinuity at the two-phase envelope. To the left of this envelope is the liquid region where it is seen that isotherm is nearly a vertical line showing that the volume of a liquid changes only slightly with large changes in pressure .As the temperature, where liquid and vapor become indistinguishable ,the length of the horizontal segment ,Vg-Vl, approaches zero .This means that at the critical point the critical isotherm exhibits as a point of inflection as in equation (2.1),(2.2).

$$
\begin{equation*}
\left(\frac{\partial P}{\partial V}\right)_{T c}=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T_{c}}=0 \tag{2.2}
\end{equation*}
$$

Some times PVT data are plotted as isochors , lines of constant density , on a P-T diagram .Fig.(2.1) shows the general behavior of pure fluid on such a plot

The heavy curve terminating at the critical point C is the vapor pressure curve which separates the vapor and liquid regions .

The experimental determination of PVT data usually follows one of two courses :measurements of pressure as a function of temperature at a series of fixed volume , and the second course is the measurement of temperature as a function of volume at a series of fixed pressures.

Figer 2.1 The P-T behavior of the fluid

Figer 2.2 The P-V behavior of the fluid

2.2 Saturated vapor density : [7]

The saturated vapor density of a substance represents a point on the saturated vapor envelope of a PVT surface and therefore depicts the limiting value of gaseous isotherm just before condensation is initiated .Thus the saturated vapor state becomes the point of intersection between a superheated gas isotherm and the corresponding vaporizing liquid isotherm .

2.3 Models for calculating the saturated molar volume of Pure

component :

2.3.1 Caillet and Mathias (1886):

Caillet and Mathias [3] attempted to relate the saturated vapor density with temperature ,their efforts resulted in the formulation of the empirical
"rectilinear diameter rule " which states that the mean saturated density is linearly dependent on temperature as follows :
$\frac{1}{2}\left(\rho_{L}+\rho_{v}\right)=m T+K$
Where m and K are constants .

2.3.2 Bendict - Web - Rubin model :[42],[8]

Using Bendict-Web-Rubin equation of state to give analytical expression for the volume. The vapor pressure data calculated from the modified Antoine equation :

$$
\begin{equation*}
P=\frac{R T}{V}+\frac{B 0 R T-A 0-\left(C 0 / T^{2}\right)}{V^{2}}+\frac{b R T-a}{V^{3}}+\frac{C}{T^{2} V^{3}} *\left[\left(1+\frac{\gamma}{V^{2}}\right)^{\frac{-\gamma}{V^{2}}}\right] \tag{2.4}
\end{equation*}
$$

Constants for the B-W-R equation have been determined by using least squares method [47].

Comparison between the density from experimental data and the density resulted from this equation ,for example for i-Pentane the deviation agrees very well , within 0.2% maximum difference .

2.3.3 Hirschfelder model (1958) : [46]

The three expressions reported by Hirschofelder constitute a generalized approach where each relationship is valid over
particular region of PVT surface . For 2601 selected values ,this equation of state reproduces the densities with average deviation of 0.48%.These deviations represent considerable improvement over corresponding values obtained from the BWR equation of state and compare with those resulting from the model proposed by Stewart (1981). This model is qualitatively correct and qualitatively exact and offers the most complete representation for the PVT behavior of fluid.

The compressibility factor of this model is given by the following form :
$z=1+(0.99769 Z c-1) \operatorname{Tr}^{0.4} \exp \left(-0.6161(1-\operatorname{Tr})^{0.2809}\right)$

Wilsok (1982),suggested the following reduced vapor pressure equation:

$$
\begin{equation*}
\ln P_{R}=4.6334-\frac{4.5397}{T r}-\frac{0.22715}{T r^{2}}+0.13114 * \operatorname{Tr}^{5.7406} \tag{2.6}
\end{equation*}
$$

The two equations above are capable of reproducing the experimental density measurements with an average deviation of 0.83%

2.3.4 EDWARD AND THODOS MODEL : [7]

A Relationship was developed between saturated vapor density and reduced temperature, reduced pressure and critical compressibility factor capable of predicting saturated vapor density.

For 276 points considered an average deviation of 1.9% resulted for Tr up to 0.985 .

The equation of EDWARD AND THODOS (1974) for saturated vapor density is :

$$
\begin{equation*}
\rho_{r v}=\frac{\operatorname{Pr}}{\operatorname{Tr}}\left[z c+0.26 \operatorname{Pr}+\frac{0.74-Z c}{\left(2-\operatorname{Pr}^{3}\right)^{6.33}}\right] \tag{2.7}
\end{equation*}
$$

2.3.5 HALL AND EUBANK MODEL: [46]

HALL AND EUBANK (1976) have applied a vapor density equation of the form :
$\rho_{\mathrm{rs}}=1 \mp k_{1}|\Delta T| \beta+k_{2} \mathrm{H} T+k_{3}|\Delta T|(1-\alpha)$
where $\mathrm{k} 1, \mathrm{k} 2$, and k 3 are material constants. The minus sign corresponds to the vapor boundary ,the plus sign corresponds to the liquid boundary .

2.3.6 DAVIS and RICE MODEL : [9],[10]

Experimental values of the density ,together with the saturated vapor densities ,were fitted to a differential regional of Bendict-web-Rubin (DRBWR) EOS .The method proposed by DAVIS and Rice (1977) is given as :
$\left(\rho_{s l}+\rho_{s v}\right)=a 1+b 1\left(\rho_{s l}+\rho_{s v}\right)^{3}$
where a1 and b1 are different values for each compound and these values are listed in tables .

This equation was tested with many experimental data of saturated densities of many compounds such that for n-butane and n-pentane , with experimental data from saturated vapor and liquid density measurements of Kay (1945)near the critical point and Liquid and vapor density measurements of Sliwinski (1942)) and the results were acceptable with its error limits to 1%

2.3.7 Peneloux MODEL (1982): [5]

One method that has become quite popular to improve the density prediction from cubic equations of state is called volume shifting and it is a correction to the calculated molar volume .

$$
\begin{equation*}
V_{\text {corrected }}=V_{\text {EOS }}+C \tag{2.10}
\end{equation*}
$$

In this case C is constant . If C is properly selected, then the corrected volume should be an improved estimate of the true molar volume .

2.3.8 Mathias MODEL : [5]

Mathias (1989) noted that the volume -shift method of Peneoloux improved the prediction of the density only up to reduced temperatures of about 0.85 .

To improve the prediction over the entire range, Mathias (1989)[9] proposed the following equation:

$$
\begin{equation*}
V_{\text {corrected }}=V_{E O S}+S+f c\left[\frac{0.41}{0.41+\delta}\right] \tag{2.11}
\end{equation*}
$$

where S is constant and δ is defined as :

$$
\begin{equation*}
\delta=-\frac{V^{2}}{R T}\left(\frac{\partial p}{\partial V}\right)_{T} \tag{2.12}
\end{equation*}
$$

Finally the function fc was chosen such that the volume shifting procedure calculated the true critical point .for the PR equation this function is given by the following expression:

$$
\begin{equation*}
f c=V c-(3.946 b+s) \tag{2.13}
\end{equation*}
$$

2.3.9 Riaza and Mansoori MODEL : [14]

The RK equation that is a modification of the Van der Waals equation, was a considerable improvement over other equations of relatively simple forms at the time of its introduction .Riaza and Mansoori (1993) stated that parameter b for the RK equation is more effective for the volume of the molecules. They modified the parameter b of RK equation by β,that depends on the refractive index of the compound .

$$
\begin{equation*}
Z=\frac{v+\gamma b}{v-b}-\frac{a v / R T}{T^{\varepsilon}(v+\eta c)(v+\lambda c)} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\Omega a \alpha R^{2} T c^{(3+\varepsilon)} / p c \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
b=c=\Omega b^{*} \beta R T c / P c \tag{2.16}
\end{equation*}
$$

2.3.10 ANCILLARY MODEL : [24]

The saturated vapor density is represented by the Ancillary equation (1985) :

$$
\begin{equation*}
\frac{\bar{\rho}}{\rho_{c}}=1+N 1 \theta^{0.38}+N 2 \theta^{1.22}+N 3 \theta^{3.3}+N 4 \theta^{6.9} \tag{2.17}
\end{equation*}
$$

where $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3$, and N 4 are constant values for each refrigerant .
The accuracy of this equation tested and compared with accuracy of the equation of state and found its deviation was approximately 0.3%.

This comparison based on the experimental data for many refrigerants such as R-125 where :
$\mathrm{N} 1=-2.8403$, N2=-7.2738
$\mathrm{N} 3=-21.890, \mathrm{~N} 4=-58.82$

2.3.11 KYONG KUHN PARK MODEL : [31]

A saturated vapor density correlation, which relates logarithmic density to the inverse of temperature, is used to fit the saturated vapor density data for 41 pure substances. The equation with 4 terms in it yields an average AAD OF 0.12%,which compares with 0.27% of 5 term conventional equation so the performance is improved while the number of terms is
reduced . This equation is valid over the entire temperature range from critical point to the triple point.

$$
\begin{equation*}
\ln \left(\frac{\rho_{g}}{\rho_{c}}\right)=\sum_{i=1}^{N} C_{i} \theta^{k i} \tag{2.18}
\end{equation*}
$$

Where $\theta=\frac{1-T}{T_{c}}$

The four term equation is :

$$
\begin{equation*}
\ln \left(\frac{\rho_{g}}{\rho_{c}}\right)=C_{1} \theta^{k 1}+C_{2} \theta^{k 2}+C_{3} \theta^{k 3}+C_{4} \theta^{k 4} \tag{2.20}
\end{equation*}
$$

Where $K 1=1 / 3<K 2<K 3<K 4$
There are many tables that give the values of K2,K3 and K4 as shown in reference [26] .There is another form of this equation :

$$
\begin{equation*}
\ln \left(\frac{\rho_{g}}{\rho_{c}}\right)=\sum_{i=1}^{N} C_{i} \tau^{k i} \tag{2.21}
\end{equation*}
$$

Where $\tau=\frac{T_{C}}{T-1}$
Four term equation :

$$
\begin{equation*}
\ln \left(\frac{\rho_{g}}{\rho_{c}}\right)=C_{1} \tau^{\nu 3}+C_{2} \tau^{k 2}+C_{3} \tau^{k 3}+C_{4} \tau^{k 4} \tag{2.23}
\end{equation*}
$$

2.4 Molar volume for gas mixtures : [38]

No comprehensive tests have been made of all estimation techniques. Generally, errors were found to be less than 2 to 3 percent, except near the critical point or for mixtures containing high polar components in significant concentrations .Recommendations to estimate the molar volume of hydrocarbon gas mixtures (including those component associated with natural gas ,as CO2 and H2S), are essentially the same as for pure gases . for small deviations from ideal-gas behavior , the truncated Virial equation is satisfactory . Otherwise values of binary interaction coefficients (Kij's) determined from VLE data can be used in volume calculations. Mixtures molar volume is much less sensitive to Kij values than are VLE calculations .

There are many models that are developed to calculate the molar volume of saturated vapors as follows :

2.4.1 Models for truncated Virial equation :

2.4.1.1 PITZ CURL model : [4]

There are many mixing rules that can be used to calculate the molar volume of binary mixtures . Pitz Curl calculated the density of binary mixtures of hydrocarbon gases according to a aforementioned method by using Virial equation truncated to third term .

$$
\begin{equation*}
\rho_{c a l}=\frac{P}{R T\left(1+B_{\text {mix }} * \rho_{\text {exp }}+C_{m i x} * \rho_{\text {exp }}^{2}\right.} \tag{2.2.2}
\end{equation*}
$$

2.4.1.2GERG method [4]:

This equation is based on three-term truncated Virial equation, it predicts the density of mixtures up to 13 common components of natural gas with an estimated uncertainty of 0.1% :

$$
\begin{align*}
& Z=1+B_{\text {mix }}{ }^{*} \rho_{\text {exp }}+C_{m i x} \rho_{\text {exp }}^{2} \tag{2.25}\\
& \rho_{\text {cal }}=\frac{P}{Z R T} \tag{2.26}
\end{align*}
$$

1

2.4.2 Methods based on volume -shifting method :

2.4.2.1 Peneloux model for mixture : [5]

To apply this method to the mixtures, it is assumed that C for the mixture, C mix is the mole fraction weighted as average of the parameters for the pure components.

$$
\begin{equation*}
C_{\text {mix }}=\sum_{i=1}^{N_{c}} x_{i} * C_{i} \tag{2.27}
\end{equation*}
$$

Then substituting this in the Peneoloux equation:

$$
\begin{equation*}
V_{\substack{\text { correcered } \\ \text { formixues }}}=V_{\text {EOS }}+C_{\text {mix }} \tag{2.28}
\end{equation*}
$$

2.4.2.2 Mathias model for mixture: [5]

To apply this method to mixtures, it is assumed that:

$$
\begin{equation*}
S_{m i x}=\sum_{i=1}^{N c} X_{i} * S_{i} \tag{2.29}
\end{equation*}
$$

Then substituting this value in the Mathias equation :

CHAPTER THREE
 Theories and Definitions

3.1 Equation of state :[46],[38]

The term equation of state means an equation that relates volume to pressure and temperature .

The simplest equation of state is ideal gas equation :
$P V=n R T$

This equation is only true at zero pressure.
Many equation of state of varying degrees of complexity have been proposed and while a few have some basis in molecular theory ,all are used empirically .the advantages offered by equation of state are mainly data reduction and ease of use in subsequent calculations .

A large number of PVT equations have been developed to describe non-ideal or real gas behavior.

3.2 Classification of Equations of state : [4]

The need for accurate prediction of the thermodynamic properties of many fluids and mixtures has led to the development of equations of state with different forms .before proceeding with the discussion of specific equations of state it is useful to make some general classification in to which they may fall.

The main types of equation of state may be classified conveniently according to their mathematical form as follows:

3.2.1 :Standerd P-V-T forms :

This type of equation of state may be written for a pure fluid as :
$\mathrm{P}=\mathrm{p}\left(\mathrm{T}, V_{m}\right)$ or $\mathrm{Z}=\mathrm{Z}\left(\mathrm{T}, V_{m}\right)$
a. Truncated Virial equation in which p is given by polynomial in $1 / V_{m}$ with temperature and composition dependent coefficients.
b. Complex empirical equations: which represent p by some combination of polynomial and other term (e.g. BWR and related equations).

It is also possible to invert the functional relationships to give V_{m} or Z in terms of T,P and the composition variables .However ,although this choice of independent variables may be convenient in the analysis of experimental data for a single fluid phase ,it is almost never used in thermodynamic modeling .

3.2.2 Fundamental form :

A fundamental equation gives one of the state functions in terms of its natural independent variables .The most common choice is the molar Helmoltz energy Am as a function of temperature and the molar volume .

$$
\begin{equation*}
A_{m}=A_{m}\left(\mathrm{~T}, V_{m}\right) \tag{3.3}
\end{equation*}
$$

In order to achieve a precise representation of the experimental data over a wide range of conditions ,the structure of the functional relationship is
often very complicated ,Am is split into perfect gas and residual parts which are parameterized separately .

Although accurate fundamental equations of state exist for only about twenty of the most important pure fluids , one or more of these may form the basis of a corresponding states treatment of the residual properties of a wide variety of other fluids including mixtures .

3.3 Law of corresponding states:[38]

The principle of corresponding states establishes a connection between the configuration integrals of different substances and thereby allows each of configurationally and residual thermodynamic properties are related in a very simple way .

The assumption in applying corresponding states is that the PVT behavior of the mixture will be the same as that of pure component whose critical temperature and pressure are equal to the pseudo critical temperature and pressure of the mixture .

To apply the corresponding states to the mixture ,one must determine appropriate scaling factor.

3.3.1 Two parameter correlations (spherical molecules): [

38],[4]
The non ideality of the gas is conveniently expressed by the compressibility factor z .

The compressibility factor is often correlated with Tr, Pr as :
$\mathrm{Z}=\mathrm{f}(\mathrm{Tr}, \operatorname{Pr})$
equation (3.6) is an example of the law of corresponding states in this equation Vr is not defined in the usual manner ,that is ,(V/Vc),but instead is an "ideal reduced volume "given by :

Vri $=\frac{V}{R T c / p c}$
This law ,though not exact ,suggest that reduced properties of all fluids are essentially the same if compared at equal reduced temperature and pressures :
for PVT properties, this law gives :
$V_{r=} \frac{V}{V_{C}}=\frac{\left(Z / Z_{C}\right)\left(T / T_{C}\right)}{p / p_{C}}=f_{1}(\operatorname{Tr}, \operatorname{Pr})$
$\mathrm{Z}=\mathrm{Zc} f_{2}(\operatorname{Tr}, \operatorname{Pr})$
Except for monatomic gases ,highly polar fluids , and fluids composed of large molecules, value of zc for most organic compounds range form .27 to .29 if it is assumed to be a constant .

3.3.2 Three parameter correlations (non spherical molecules): [51],[39]

In general successful Eos have included one or more dimensionless characteristic parameters in to the function the first step in accomplishing this is to introduce a third parameter ; usually it is related to the vapor pressure ,Pvp ,or volumetric property at or near the critical point . Historically several different third parameters were introduced at about the same time but the most popular have been zc (lyderson,1955) and the acentric factor w(Pitzer and Curl 1955,1057 ab).Lyderson and later revision by Hougan ,et .al.(1959) tabulated z (and reduced thermodynamic properties) at increment of (Tr) and (Pr)for different values of zc in practice, this correlation has been used only occasionally, such as by Edward and Thodos (1974)for estimating saturated vapor densities of non polar compounds .

The much more commonly used third parameter is the acentric factor . for example the compressibility factor was given as :

$$
\begin{equation*}
z=z 0(\operatorname{Tr}, \operatorname{Pr})+\omega z 1(\operatorname{Tr}, \operatorname{Pr}) \tag{3.8}
\end{equation*}
$$

3.3.3 Four parameter model (polar molecules) : [4]

WU and Stiel[52]modified the Lee-kesler[24]scheme by incorporating the polar substance water as a third reference fluid .The compression factor is given by :

$$
\begin{equation*}
z=z 0+\omega z 1+\gamma z 2 \tag{3.9}
\end{equation*}
$$

Where γ is a fourth parameter characteristic of polar molecules. Here ,z0 and z1 are given by the original Lee-kesler scheme, while z2 was defined in terms of the compression factor Zw of water by means of the equation :
$z 2=z \omega-(z 0+\omega w z 1)$

In which $\omega=0.344$ is the acentric factor of the water .

This definition ensures that for non-polar systems ,the compression factor reverts to the Lee-Kesler formulation while ,for ($\gamma=1$) ,eq .(3.9) reduced to the compression factor zW of water .

WU and Stile argued that a definition based on the molar volume of the saturated liquid at specified reduced temperature had the desired properties .thus they defined γ by means of equation :
$v r \sigma=.1326-.0547-.0222 \gamma$
Where $V_{r}{ }^{\delta}=V_{m}{ }^{\delta}\left(\frac{P_{C}}{R T_{C}}\right)$

3.4 Van der waals Equation : [22]

Undoubtedly ,the best known equation of state is the Van der Waals equation :

$$
\begin{equation*}
p=\frac{R T}{V-b}-\frac{a}{V^{2}} \tag{3.13}
\end{equation*}
$$

according to Van der Waals derivation.The term (a/v2)accounts for attractive forces between molecules , and b is a correction for the volume occupied by the molecules themselves. This equation is cubic in v , and at temperatures below the critical there are three real root ,as indicated in fig (2.1) it can be shown that the segment of the isotherm lying between A and B represents unstable state , and therefore in the pressure range PA to PB there are only two values of v which correspond to stable states.

While this suggests the application of Van der waals equation to calculations in the two phase region ,the form of the equation is far too simple to be capable of closely representing the isotherm in this region.

When an equation of state contain only two parameters in the term of critical temperature and pressure. Evaluating these derivatives and the equation of state at the critical point results in three equations involving a,b,tc,pc and Vc.Because Vc is not always available .It can be eliminated at the remaining equations solved for a , and b in terms of Tc and Pc.for Van der waals equation this results in :
$a=\frac{27 R^{2} T_{C}^{2}}{64 P_{C}}$
, $b=\frac{R T c}{8 P c}$

Because Tc and Pc are known as for many substances ,it is convenient to evaluate parameters in this manner .

3.5 Lee-kesler Equation : [38],[2]

This is one of the equations of state that calculates the compressibility factor as :

$$
\begin{equation*}
z=z 0+\frac{\omega}{\omega(r)}(z(r)-z(0)) \tag{3.15}
\end{equation*}
$$

The equation is based on the law of corresponding states of three parameter it states that there are two fluids ,simple one and reference one ,and the compressibility factor of any interesting fluid $\mathrm{z}(0)$ and the reference fluid $z(r)$ have been represented by the following reduced form of a modified BWR equation of state :

$$
\begin{align*}
& Z=\frac{\mathrm{Pr}^{*} V r}{T r}=1+\frac{B}{V r}+\frac{C}{V r^{2}}+\frac{D}{V r^{3}}+\frac{c 4}{T r^{3} * V r^{2}}\left(B+\frac{\gamma}{V r^{2}}\right) * \exp \left(-\frac{\gamma}{V r^{2}}\right) \tag{3.16}\\
& B=b 1-\frac{b 2}{t r}-\frac{b 3}{t r^{2}}-\frac{b 4}{t r^{3}} \tag{3.31}\\
& C=c 1-\frac{c 2}{t r}+\frac{c 3}{t r^{3}} \tag{3.32}\\
& D=d 1+\frac{d 2}{t r} \tag{3.33}
\end{align*}
$$

3.11 REDLICH -KWONG EQUATION OF STATE : [49],[28]

Redlich and Kwong were very much concerned about the limiting behavior of the EOS .They wanted correct representation at low density and at high density and proposed the following equation :

$$
\begin{equation*}
\alpha(T)=a_{C} / T^{0.5}, a c=\Omega a R^{2} T c^{2.5} / P c, \tag{3.34}
\end{equation*}
$$

$$
\begin{equation*}
\Omega a=.4278, \Omega b=.0867 \tag{3.35}
\end{equation*}
$$

$$
\begin{equation*}
b=\Omega b R T c / P c \tag{3.36}
\end{equation*}
$$

This equation did not have strong theoretical background but proved to give good results for many gaseous systems ,it should be also mentioned that, when Redlich and Kwong proposed their celebrated equation of state they were inserted in developing a good equation for gases only .

3.12 SOAVE EQUATION OF STATE : [4],[16]

soave modification of Redlich -kowing equation involved replacing the term $\left(a / T^{0.5}\right)$ by amore complicated function of temperature , $a \alpha(T)$,incorporating the acentric factor ,the form of the cubic equation of state is as follow :

$$
\begin{equation*}
p=\frac{R T}{V-b}-\frac{a}{V^{2}+u b V+\omega b^{2}} \tag{3.37}
\end{equation*}
$$

an equivalent form of equation is :

$$
\begin{equation*}
\left.Z^{3}-\left(1+B^{*}-U B^{*}\right) Z^{2}+\left(A^{*}+\omega B^{* 2}-2 U B^{*^{2}}-2 U B^{*}\right) Z-A^{*} B^{*}-\omega B^{* 2}-\omega B^{* 3}\right) \tag{3.38}
\end{equation*}
$$

Where $A^{*}=\frac{a P}{R^{2} T^{2}}$
And $B^{*}=\frac{b p}{R T}$

$$
\begin{align*}
& \mathrm{U}=1, \omega=0 \tag{3.40}\\
& b=\frac{0.08664 R T c}{P c}
\end{align*}
$$

$$
\begin{align*}
& \text { and } a=\frac{0.42748 * R^{2} * T c^{2}}{P c}\left[1+f w\left(1-\operatorname{Tr}^{0.5}\right)\right]^{2} \tag{3.42}\\
& f w=0.48+1.574 \omega-0.176 \omega^{2} \tag{3.43}
\end{align*}
$$

The form of this function was devised primarily to obtain a good representation of the vapor pressure curve for a number of hydrocarbons .Subsequently ,this term was modified further by Graboski and Daubert

3.13Peng -Robinson equation of state : [4],[52]

Peng and Robinson equation is structurally rather similar to the RKS equation ,requires only the critical constants and the acentric factor for its application to pure fluids .

The form of the cubic equation as follows :

$$
\begin{equation*}
p=\frac{R T}{V-b}-\frac{a}{V^{2}+u b V+\omega b^{2}} \tag{3.44}
\end{equation*}
$$

and the equivalent form :

$$
z^{3}-\left(1+B^{*}-u B^{*}\right) z^{2}+\left(A^{*}+\omega B^{*^{2}}-u B^{*}-u B^{*^{2}}\right) z-A^{*} B^{*}-\omega B^{*^{2}}-\omega B^{*^{3}}=0
$$

$$
\begin{equation*}
\text { wfere } \quad A^{*}=\frac{a P}{R^{2} T^{2}} \tag{3.45}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } B^{*}=\frac{b P}{R T} \tag{3.47}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{u}=2, \omega=-1 \tag{3.48}
\end{equation*}
$$

$$
\begin{equation*}
a=\frac{0.07780 R T c}{P c} \tag{3.49}
\end{equation*}
$$

$$
\begin{equation*}
b=\frac{0.45724 R^{2} T c^{2}}{P c}\left[1+f w\left(1-T r^{0.5}\right)\right]^{2} \tag{3.50}
\end{equation*}
$$

$$
\begin{equation*}
f w=0.37464+1.5226 \omega-0.26992 \omega^{2} \tag{3.51}
\end{equation*}
$$

Soave equation together with that of peng-Robinson are today probably the two most widely used equations of state. Because of the way in which the attractive term have been tailored to achieve a fit to vapor pressure data , and the incorporation of the acentric factor ,these equations usually permit VLE calculations to be made with acceptable accuracy.

3.14VIRIAL EQUATION OF STATE : [4],[46],[2],[43]

Virial equation of state is one of the most important equations of state which are used to describe the PVT properties of the fluids , and it is initially developed in 1901 by Kamerlingh Onnes .

The coefficients of the Virial series ,known as Virial coefficients ,they are function of temperature and composition but not of density .the form of Virial equation is as follows:

$$
\begin{equation*}
z=\frac{p v}{R T}=1+\frac{B}{v}+\frac{C}{v 2}+\ldots \tag{3.52}
\end{equation*}
$$

this equation gives a great use at low to moderate pressure where it can be safely truncated after the second term .

Many other equations of state have been proposed for gases ,but the Virial equation is the only one having a firm basis in theory .the methods of statistical mechanics allow derivation of the Virial equation and provide physical significance to Virial coefficients .

3.14.1 Second Virial coefficients: [38],[39],[2],[48]

Second Virial coefficient can be determine from experimental data mostly complied by Dymond and smith (1968) or calculated with a suitable correlation.

It is well known that accurate procedures are required for the calculation of second Virial coefficient of gases .One of the correlations used to compute the second Virial coefficient is that based on semi empirical equations, this semi empirical estimation has the major advantage when theoretical approaches are tedious. Though it is possible to derive correlations from the original and modified Redlich kowing equations and molecular theory , such expressions are usually more complicated than those cited ,even for simple substances , and so they have not been evaluated ,we give an explanation for one of the practical techniques for estimating values for most types of pure substances (Tsonpoulos,1974).

3.14.1.1 Tsonpolous correlation :

A new correlation of second Virial coefficient of both polar and non polar system is presented :

$$
\begin{align*}
& \frac{B P C}{R T C}=B 0+\omega B 1+B 2 \tag{3.53}\\
& B 0=.1445-\frac{0.33}{T r}-\frac{0.1385}{T r^{2}}-\frac{0.0121}{T r^{3}}-\frac{0.000607}{T r^{8}} \tag{3.54}
\end{align*}
$$

$$
\begin{equation*}
B 1=0.0637+\frac{0.331}{T r^{2}}-\frac{0.423}{T r^{3}}-\frac{0.008}{T r^{8}} \tag{3.55}
\end{equation*}
$$

where the polar term B 2 is given by :

$$
\begin{equation*}
B 2=\frac{a}{T r^{6}} \tag{3.56}
\end{equation*}
$$

This Equation can be applied only for non-hydrogen bonding compounds .in the case of ketones , a is best expressed as a linear function of MR :

$$
\begin{equation*}
\mathrm{a}=-0.00020483 * \mathrm{MR} \tag{3.57}
\end{equation*}
$$

And for ethers :
$\mathrm{a}=-12.63147+2.09681 * \ln \mathrm{MR}$
For alcohols ,a is constant and equal to 0.0878 .
For hydrogen bonding compounds the polar term contains two parameters :

$$
\begin{equation*}
B 2=\frac{a}{T r^{6}}-\frac{b}{T r^{8}} \tag{3.59}
\end{equation*}
$$

The value of a for non hydrogen bonding compounds and the value of a and b for hydrogen bonding compounds are given in tables .

The value of b for hydrogen bonding compound is expressed as function of MR as:
$B=0.00908+0.0006957^{*} \mathrm{MR}$

CROSS COEFFICIENTS FOR MIXTURES :

The second Virial cross coefficient Bij has the same temperature dependence that Bii and Bjj have ,but the parameters to be used are Tcij, ωi, aij and bij .

The mixing rule are given below :

$$
\begin{align*}
& T c i j=(1-K i j) \sqrt{T c i . T c j} \tag{3.61}\\
& P c i j=\frac{4 T c i j\left[\frac{P c i * V c i}{T c i}+\frac{P c j * V c j}{T c j}\right]}{\left(V c i / 3+V c j^{1 / 3}\right)^{3}} \tag{3.62}\\
& \omega i j=0.5(\omega i+\omega j) \tag{3.63}
\end{align*}
$$

For polar/non polar binary mixture , Bij is assumed to have no polar
term :aij=0
bij=0
For polar/polar binary mixtures, the polar contribution to bij is calculated by assuming that :

$$
\begin{align*}
& \mathrm{aij}=0.5(\mathrm{ai}+\mathrm{aj}) \tag{3.66}\\
& \mathrm{bij}=0.5(\mathrm{bi}+\mathrm{bj}) \tag{3.67}
\end{align*}
$$

3.14.2 Third virial coefficient: [39],[30],[17]

It is possible to derive the third Virial coefficient correlations from molecular theory ,but these are not very successful .
The principle theoretical problem is that the trio intermolecular potential includes significant contributions that can not be determined from their pair potentials that describe second Virial coefficients .Thus ,CSP is also used
for calculating c ,though the range of substances considered has been much more limited .

This means that the users often must choose to use a complete equation of state .

For high pressure above 15 bar ,eq.(3.52) may be truncated after three terms .There are many correlations for third Virial coefficient such that Orbey Vera correlation .

3.14.2.10RBEY VERA CORRELATION : [39]

An empirical correlation for the third coefficient of non polar gases was developed .the correlation required acknowledge of the critical temperature ,critical pressure , acentric factor of the component for the prediction of the third Virial coefficient in the absence of the experimental data . The third Virial coefficient C was correlated as a function of acentric factor :

$$
\begin{align*}
& \frac{C c P C^{2}}{(R T C)^{2}}=0.03526+0.02566 \omega \tag{3.68}\\
& C 0(\operatorname{Tr})=0.399+\frac{.68972}{T r^{2.8}}-\frac{.08872}{\operatorname{Tr}^{10.5}} \tag{3.69}\\
& \bar{C}=\omega^{*}\left(-0.037+\frac{0.04}{\operatorname{Tr}^{3}}-\frac{0.003}{\operatorname{Tr}^{6}}\right) \tag{3.70}
\end{align*}
$$

Combination of the two equations above gives the final form for the generalized empirical correlation :

$$
\begin{equation*}
\frac{C c^{*} P c^{2}}{(R T c)^{2}}=C 0+\omega \bar{C} \tag{3.71}
\end{equation*}
$$

Where

$$
\begin{align*}
C 0 & =0.01407+\frac{0.02432}{T r^{2.8}}-\frac{0.00313}{\operatorname{Tr}^{10.5}} \tag{3.72}\\
\bar{C} & =-0.02676+\frac{0.0177}{T r^{2.8}}+\frac{0.04}{\operatorname{Tr}^{3}}-\frac{0.003}{T r^{6}}-\frac{0.00228}{T r^{10.5}} \tag{3.73}
\end{align*}
$$

The correlation applied in this work may be applied to quantum gases ,the following temperature dependent effective critical parameter :

$$
\begin{align*}
T c & =\frac{T c 0}{1+\frac{21.8}{m t}} \tag{3.74}\\
P c & =\frac{P c 0}{1+\frac{44.2}{m t}} \tag{3.75}
\end{align*}
$$

For mixture :
The third coefficient of a mixture was given by the following rigorous expression :

$$
\begin{equation*}
C=\sum_{i} \sum_{j} \sum_{k} y i * y j * y k * C i j k \tag{3.76}
\end{equation*}
$$

3.15 MIXING RULES : [4]

3.15.1 Mixing rule for Virial coefficients:

The second Virial coefficient of multicomponent gas mixture is given exactly by quadratic expression in the mole fractions :

$$
\begin{equation*}
\operatorname{Bmix}(T)=\sum_{i=1}^{v} \sum_{j=1}^{v} x i . x j B i j(T) \tag{3.77}
\end{equation*}
$$

For binary mixture this reduced to :

$$
\begin{equation*}
\operatorname{Bmix}(T)=x_{12} B_{11}(T)+2 x_{1} \times 2 B_{12}(T)+x_{22} B_{22}(T) \tag{3.78}
\end{equation*}
$$

Bij is defined as the second Virial coefficient corresponding to the potential energy function ϕ ij (r) which describes the interaction of one molecule of species I with one of species j . Bij is also referred to as the cross Virial coefficient ,the cross Virial coefficient ,or the mixed Virial coefficient .

To calculate the mixture interaction Virials Bij ,combination rules must be devised to obtain Tcij, Pcij,and wij .this problem have been discussed from a theoretical point of view by land and Chappelear [25] and Ramaiah and Stiel [35] .For typical engineering calculations involving normal fluids ,the following simple rules are useful [44]:

$$
\begin{equation*}
T c_{i j}=\left(T c_{i} \cdot T c_{j}\right)^{0.5} *\left(1-K_{i j}\right) \tag{3.79}
\end{equation*}
$$

$$
\begin{align*}
& V_{c i j}=\left[\frac{V_{c i}{ }^{1 / 3} \cdot V c j}{2}\right]^{1 / 3} \tag{3.80}\\
& Z c i j=\frac{Z c i+Z c j}{2} \tag{3.81}\\
& \omega i j=\frac{\omega i+\omega j}{2} \tag{3.82}\\
& P c i j=\frac{Z c i j R T c i j}{V c i j} \tag{3.83}\\
& K i j=1-\frac{8(V c i . V c j)^{0.5}}{\left.\left(V c i^{1 / 3}+V c\right)^{1 / 3}\right)^{3}} \tag{3.84}
\end{align*}
$$

The third Virial coefficient of multicomponent mixture is cubic in the mole fractions and given by :

$$
\begin{equation*}
\operatorname{Cmix}(T)=\sum_{i=1}^{v} \sum_{j=1}^{v} \sum_{k=1}^{v} x i . x j . x k . \operatorname{Cijk}(T) \tag{3.85}
\end{equation*}
$$

Here, Ciii is the third Virial coefficient of pure I ,and Cijk is the contribution that arises from the interaction of one molecule of species I ,one molecule of species j and one molecule of species k.

Depending upon the availability of experimental data ,one of two general approaches may be adopted when dealing with multicomponent mixtures .one can fit the experimental data to the viral equation truncated to
the third coefficient and obtain each of the possible pure component and interaction Virial coefficients .

This requires experimental data for each of the possible binary and ternary combinations of the components .

3.15.2 Teja equation mixing rule:[38]

Teja equation which was derived to calculate the compressibility factor for mixture .its used primarily on hydrocarbons for both vapor and liquid phases for calculating molar volumes of mixtures. Teja method needs to evaluate the compressibility factor $\mathrm{Zr} 1, \mathrm{Zr} 2$ can be calculated from any equation of state for pure saturated vapors like Virial equation but at the same reduced temperature (Trm) and reduced pressure (Prm) of mixture The Teja equation is :

$$
\begin{equation*}
Z=Z r 1+\frac{\omega-\omega_{r 1}}{\omega_{r 2}-\omega_{r 1}}(Z r 2-Z r 1) \tag{3.86}
\end{equation*}
$$

CHAPTER FOUR Investigation and Development

4.1 investigation of the equations of state :

Vapor densities can be calculated from equations of state. Usually the accuracy of some equations of state to calculate the saturated molar volumes of pure components is not satisfactory . on the other hand the accuracy of many models of equations of state are not good enough for mixtures, mainly due to the problems in formulating the mixing rule .

It is well known fact that the evaluation of any correlation or prediction method is done by comparison of the results obtained from the correlation with those results obtained from the experimental data which will measure the accuracy of this prediction .The experimental data needed in this prediction is PVT data for pure components and PVTX for mixtures at saturation conditions .

Table 4.1 :Non-polar compounds PVT experimental data_

Compounds	Temp.range(k)	Press.range(bar)	No.of data points	Ref.
n-pentane	$469.8-305.37$	$33.1-.7605$	11	8
Carbon dioxide	$304.2-212.94$	$73.815-4.3701$	10	7

Carbon monoxide	$131.705-73.26$	$31.202-.3415$	12	7
Ref.410	$173.15-204.15$	$0.037-0.382$	32	19
n-butane	$272.67-420$	$1.01325-34.946$	25	8
Neopentane	$282.628-431$	$1.01325-30.632$	23	36
Cyclo propane	$357.03-380.46$	$44.4155-71.058$	28	26
i-pentane	$255.372-365.92$	$0.1502-601980$	21	7
Ref.245	$232.59-333.705$	$0.3493-3.005$	16	42
i-butane	$261.32-400$	$1.01325-301927$	21	8

Table 4.2 :Polar compounds PVT experimental data .

Compound	Temp.range(k)	Press.range(bar)	No.of data points	Ref.
Water	$263.15-305.37$	$0.00286-1.0505$	23	6
Propanol	$304.2-212.94$	$0.02683-41.255$	24	29
Propyl alcohol	$277.59-377.59$	$0.08-19.078$	20	25
ammonia	$357.03-394.91$	$45-94$	33	13

There are several equations of state that are used to describe the thermodynamic properties of the fluids ,such as Lee-Kesler ,Soave ,Peng Robinson ,Truncated Virial equation, and many other equations of state
.These equations are considered the most important and accurate equations that are used to determined the thermodynamic properties of the fluids (liquid and vapor phases).

4.1.1 Lee-Kesler equation of state:

The use of Lee-Kesler equation in this moderate conditions is not accurate, the accuracy of this equation can be much better at expanded ranges of temperatures and pressures. The results obtained from this equation are listed in table 4.3 for 3 pure compounds only because the absolute average deviation obtained from this equation is very high as shown in table 4.3 :

Table 4.3 : The AAD\% of Lee-Kesler from the experimental data .

compounds	No.of data points	AAD\%
Water	23	70.0209
Cyclo propane	28	55.1232
i-pentane	21	63.8654
		$\mathrm{AAD} \%=62.432$

4.1.2 : Soave equation of state .

Soave equation (1972) is a modification of Redlich-Kwong equation . It is derived primarily to obtain a good representation of vapor pressure curve for a number of hydrocarbons without any constraints on the densities of the co-existing phases . This equation reforms best for height by hydrocarbons and other small non-polar molecules. The results obtained when using this equation to calculate the molar volumes of saturated vapor of pure non-polar
compounds were not very satisfactory, however they were better than when using Lee-Kesler method. The results using this equation are shown in table

4.4.

_Table 4.4 :The AAD\% of Soave from the experimental data .

compounds	No.of data points	AAD\%
n-pentane	11	38.8108
Carbon monoxide	10	34.3104
Ref. 410	12	0.7255
Carbon dioxide	32	1.7775
Water	23	0.4275
n-Butane	25	15.1264
n-Propanol	24	5.6818
Propylalcohol	20	1.5026
Neopentane	23	43.084
Cyclopropane	28	25.8715
I-pentane	21	2.4031
Ref. 245	16	3.5006
Ammonia	33	24.4484
I-butane	21	26.6583
AA \%D	299	15.3125

4.1.3 Peng-Robinson equation of state :

Peng Robinson equation (1976) is structurally rather similar to the RKS equation and like the RKS, requires only the critical constants and the acentric factor for the application to a pure fluid. The Soave and Peng Robinson equations are roughly of equal reliability although the
representation of PVT data in vicinity of the critical point is better with the Peng -Robinson equation. The results of using Peng -Robinson equation to calculate the molar volumes of saturated vapor for pure non-polar compounds are shown in table 4.5. The table indicates that the overall average deviation is somewhat better than in case of using RKS equation but still was not very satisfactory.

Table 4.5 :The AAD\% of Peng -Robinson from the experimental data .

compounds	No.of points	AAD\%	
n-pentane	11	18.0767	
Carbon monoxide	10	33.0754	
Ref.410	12	0.5528	
Carbon monoxide	32	11.0508	
Water	23	0.4414	
n-Butane	25	15.072	
n-Propanol	24	6.5217	
Propyl Alcohol	20	23.14222	
Neopentane	23	26.191	
Cyclo propane	28	1.14222	1.6895
I-pentane	16	24.3876	
Ref.245	33	214598	
Ammonia	299		
I-butane	AA\%D		

4.1.4 Truncated Virial equation of state :

Truncated Viral equation is one of the most important equations of state that are used to describe the PVT properties of the vapor phase .It is found that truncated Virial equation is the best equation to calculate the molar volumes of the saturated vapor, Virial equation truncated to the second coefficient,and Virial equation truncated to the third coefficient gives very accurate results that reduced the average deviation from the previous equations of state as considered in table 4.6 .

Table 4.6 : The AAD\% of Virial truncated to second and third coefficient from the experimental data .

compounds	No.of Data points	AA\%D truncated at B	AA\%D truncated at C
n-pentane	11	9.9576	0.9088
Carbon monoxide	10	6.190603	1.5539
Carbon dioxide	12	25.7386	0.5922
Ref.410	32	0.42185	0.6737
Water	23	0.5425	0.1884
n-Butane	25	15.072	1.1236
n-Propanol	23	6.5217	1.4087
Propylaacohol	20	1.1945	0.8735
Neopentane	23	9.0546	1.7228
Cyclopropane	21	0.3274	1.8200
I-pentane	16	0.9546	1.6740
Ref.245	33	$\mathbf{2 3}$	0.50607
Ammonia	21	0.9531	1.19848
I-butane	$\mathbf{2 9 9}$	$\mathbf{1 . 0 9 5 5}$	
AA\%D			

The comparison in appendix C indicates that Soave and Peng Robinson accuracy increase when temperature and pressure range decreases and the equation losses the accuracy when calculating for higher temperatures and pressures . This finding is shown clearly when observing that the Virial equation results are closer to the experimental PVT data. It was found that the accuracy gain is dependent on the number of terms in the truncated Virial equation used in the calculations .

The compressibility factor explicit Virial equation of state ,truncated after the second Virial coefficient is a useful expression for the calculation of thermodynamic properties of gases at conditions such that the reduced volume is greater than 2 . The addition of the third Virial coefficient extended the applicability of the Virial equation to conditions of temperatures and pressures for which the reduced volume is greater than 1.3 .(31)

4.2 CHOICE OF THE VIRIAL EQUATION :

It is known that there are many forms of Virial equation .it Is not easy to choose any form of them. Some of these forms can not be utilized and require the availability of the experimental data that enables to fit the forms of the equations to be constructed .Other forms of the Virial equation mentioned were so mathematically complicated as to render the control on its form or coefficients is very difficult.

However, one of these forms depends on the law of corresponding states was found relatively easy. Particular instances of this form is of Orbey
and Tsonpoulos which were applied to compounds at moderate condition .This form is used in this work.

4.3 DEVELOPMENT OF THE CORRELATION :

The results indicate clearly that when using Virial equation of state to predict the saturated vapor volume of the compounds ,the deviations from experimental data are much less (more accurate results) than when using other equations .

In order to build a general idea about the results obtained from the Virial equation ,it was applied to some of the compounds that are listed in table (4.1) and (4.2) .It was found that the effect of including third Virial coefficient results in increasing the accuracy for higher ranges of temperatures and pressures. It means that the second Virial coefficient is very accurate at pressure range up to 15 bar , when the pressure increases the accuracy when using only the second Virial coefficient (B) decreases. When including also the third Virial coefficient (C) the accuracy remains good at higher pressure ranges .The effect of the pressure on the accuracy of Virial equation is illustrated in appendix C .

4.3.1 CORRELATION OF SECOND VIRIAL

COEFFICIENT:

Table (4.6) indicates that for most of the compounds, the deviations occurred while introducing the third Virial coefficient (C) is generally less
than when retaining the second coefficient (B) only .For the second Virial coefficient the generalized correlation of Tsonpoulos was developed:

$$
\begin{equation*}
B=\left(\frac{R^{*} T c}{P c}\right)(B 0+\omega B 1) \tag{4.1}
\end{equation*}
$$

Where :

$$
\begin{align*}
& B 0=0.1445-\frac{0.33}{\operatorname{Tr}}-\frac{0.1385}{\operatorname{Tr}^{2}}-\frac{0.0121}{T r^{3}}-\frac{0.000607}{\operatorname{Tr}^{8}} \tag{4.2}\\
& B 1=0.0637+\frac{0.331}{T r^{2}}-\frac{0.423}{T r^{3}}-\frac{0.008}{T r^{8}} \tag{4.3}
\end{align*}
$$

Using experimental data to calculate B (eq.4.1) and then B 0 (eq.4.2),writing B 0 as function of polynomial series :
$B 0=A 1+\frac{A 2}{T r^{A 3}}+\frac{A 4}{T r^{A 5}}+\frac{A 6}{T r^{A 7}}+\frac{A 8}{\operatorname{Tr}^{A 9}}$

With $\mathrm{R}=0.9988$, where R is the correlation coefficient of this fitting .
Substituting B0 values obtained from experimental data and Tr , the coefficients A1,A2,A3,A4,A5,A6,A7,A8 and A9 were evaluated using statistical methods .

TABLE 4.7 : Values of coefficients in equation 4.4 obtained from experimental data

Coefficient	Value	Coefficient	value
A1	0.1258	A5	2.311
A2	-0.3017	A6	-0.00574
A3	1	A7	7.85
A4	-0.1258		

Using the same procedure to evaluate the coefficients n equation 4.5

$$
\begin{equation*}
B^{1}=A 1+\frac{A 2}{T r^{A 3}}+\frac{A 4}{\operatorname{Tr}^{A 5}}+\frac{A 6}{\operatorname{Tr}^{A 7}} \tag{4.5}
\end{equation*}
$$

TABLE 4.8: Values of coefficients in equation 4.5 obtained from experimental data .

Coefficient	Value	Coefficient	value
A1	0.05257	A5	3
A2	0.3575	A6	-0.002184
A3	1.8	A7	7.85
A4	-0.47155		

About 70 data points for three compounds were used in this fitting, (IPentane ,Cyclo Propane, and I-Butane),they contain 28 points for polar compounds and 42 points for non-polar compounds .

4.3.3 Correlation of third Virial coefficient :

The third Virial coefficient was taken from Orbey and Vera correlation as follows:

$$
\begin{equation*}
C=\left(\frac{R^{*} T c}{P c}\right)^{2}(C 0+\omega C 1) \tag{4.6}
\end{equation*}
$$

Where:

$$
\begin{equation*}
C 0=0.01407+\frac{0.02432}{\operatorname{Tr}^{2.8}}-\frac{0.00313}{\operatorname{Tr}}{ }^{10.5} \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
C 1=-0.02676+\frac{0.0177}{\operatorname{Tr}^{2.8}}+\frac{0.04}{T r^{3}}-\frac{0.003}{\operatorname{Tr}^{6}}-\frac{0.00228}{T r^{10.5}} \tag{4.8}
\end{equation*}
$$

C can be calculated from experimental data, and C0 obtained as:
$C=\left(\frac{R T c}{P c}\right)^{2} *(C 0+\omega c 1)$
Inserting the values of $C 0$ from experimental data and Tr of 46 points in the computer program and by using statistical methods calculating the coefficients of the following equation can be determined :

$$
\begin{equation*}
c 0=A 1+\frac{A 2}{\operatorname{Tr}^{A 3}}+\frac{A 4}{\operatorname{Tr}^{A 5}}+\frac{A 6}{\operatorname{Tr}^{A 7}} \tag{4.9}
\end{equation*}
$$

TABLE 4.9: Values of coefficients in equation 4.9 obtained from experimental data.

Coefficient	Value	Coefficient	Value
A1	-42.98302	A5	0.01
A2	0.15025	A6	-0.00369
A3	2	A7	10
A4	-0.507		

By using the same procedure to calculate the coefficients of the following equation were calculated :

$$
\begin{equation*}
C 1=A 1+\frac{A 2}{T r^{A 3}}+\frac{A 4}{T r^{A 5}}+\frac{A 6}{T r^{A 7}} \tag{4.10}
\end{equation*}
$$

TABLE 4.10: Values of coefficients in equation 4.10 obtained from experimental data .

coefficient	Value	Coefficient	Value
A1	0.022501	A5	5.5
A2	1.26968	A6	-0.75663
A3	5	A7	4.4
A4	-0.507		

The modified Virial equations truncated to second Virial coefficient with :

$$
\begin{aligned}
& B 0 m=0.1258-\frac{0.3017}{\operatorname{Tr}}-\frac{0.1258}{\operatorname{Tr}^{2.31}}-\frac{0.01325}{\operatorname{Tr}^{3.21}}-\frac{0.005748}{\operatorname{Tr}^{7.85}} \\
& B 1 m=0.05257+\frac{0.3575}{T r^{1.8}}-\frac{0.47155}{T r^{3}}-\frac{0.002184}{T r^{7.85}}
\end{aligned}
$$

And the modified Virial equation truncated to third Virial coefficients with :
$C 0=0.01407+\frac{0.02432}{\operatorname{Tr}^{2.8}}-\frac{0.00313}{\operatorname{Tr}^{10.5}}$
$C 1 m=0.022501+\frac{1.265968}{\operatorname{Tr}^{5}}-\frac{0.507}{\operatorname{Tr}^{5.5}}-\frac{0.75663}{\operatorname{Tr}^{4.4}}$
These modified Virial equations can be considered as generalized equations to predict the molar volume of saturated vapor for pure polar and non-polar compounds .

Table 4.6 : The AAD\% of modified Virial truncated to second and third coefficient from the experimental data .

compounds	No.of points	AA\%D truncated at B	AA\%D truncated at C
n-pentane	11	9.9576	0.9088
Carbon monoxide	10	6.190603	0.5922
Carbon dioxide	12	25.73869	0.67376
Ref.410	32	0.42185	0.9537
Water	23	0.542523	0.1884
n-Butane	25	5.0164	1.1236
n-Propanol	24	1.1044	1.4087
Propylalcohol	20	5.9473	0.8735
Neopentane	23	0.3274	0.6157
I-pentane	21	1.6786	
Ammonia	33	$\mathbf{3 . 5 2 0 9}$	1.8750
\%	$\mathbf{0 . 7 A D}$	299	

4.4 Investigation to the mixtures:

It is well known fact that the calculations of the thermodynamic properties of the mixtures are not as easy as the calculations for pure components. This is because of finding the critical constants that represents the mixture from critical constants of pure components and this is done by using what is called mixing rules . The mixing rules are not very accurate due to difference in chemical structures of the components .Usually adjustable parameter or parameters are needed to calculate any thermodynamic property of mixture very accurately .

In this work the prediction of the molar volume of saturated vapors for binary mixtures are done by using two methods :

The first method is by using Virial equation for calculating the compressibility factor and Virial mixing rule. The second method is by using Teja equation for calculate the compressibility factor and Virial mixing rule the results obtained from these two methods are listed in table (4.11).

Comparison of the results obtained from the Virial mixing rule (Virial equation truncated to second and Virial equation truncated to third coefficient) and the results obtained fromTeja -Virial mixing rule are listed in appendix D.The accuracy of Virial mixing rules (truncated to the third coefficient) is much better than that of Teja-Virial mixing rules as listed in table 4.11 .

Many developments were done in order to increase the accuracy of this equation by using statistical program using the following form :
$Z=a 1+a 2 * \exp \left(x 1^{*} \text { Zcal }\right)^{a 3}+a 4 * \exp (x 2 * \text { Zcal })^{a 5}$

It is found that this correlations were accurate for some mixtures and not accurate for some mixtures ,this may be due to the fact that some of the mixtures are consisting of polar and non-polar compounds, So it is clearly that the form of Virial mixing rule truncated to third coefficient is acceptable and gives accurate results .

Table (4.11) : The molar volume of saturated vapor for binary mixtures.

Mixture	No.of points	AAD\%by Virial(truncated to B) mixing rule	AAD\%Virial (truncated to C)mixing rule	AA\%D Virial-Teja mixing rule
Propane - n-Octane	34	21.6112	2.2192	7.0232
n-Butane- n-Octane	18	21.51446	1.565104	5.70306
Nitrogen- Heluim	50	0.52387	0.1999	0.9357
Carbon dioxide- Etheylene	17	2.19566	2.195	0.2224
H2s- Methane	13	5.10206	2.2303	5.58004
Hydrogen- Methane	10	7.4038	5.6559	8.32369
AAD\%	142	8.39192	1.4967	3.4669

CHAPTER FIVE Discussion and Conclusions

5.1 Discussion

5.1.1 Equation of state used :

There are many equations of state that are used to calculate the molar volume of fluids. In this research the equations of state used to calculate the molar volume of saturated vapor of compounds were: Lee-Kesler, RedlichSoave, Peng-Robinson and Virial equations truncated to second and to third terms.

Tables 5.1 and 5.2 indicate the molar volume of saturated vapor in these moderate ranges of temperatures and pressures. The molar volume calculated by using Lee-Kesler equation is not accurate .The AAD\% is 62.432% for 3 compounds (polar and non-polar)and 72 data points .Usually Lee-Kesler equation gives good results in superheated region and this accuracy decreases when using this equation for saturated region .

The average percent deviation for 10 non-polar compounds of Redlich-Soave equation and 201 data points is 18.6292 and the AAD\% is 16.1791 when using Peng-Robinson equation for 10 non-polar compounds 201 data points .On the other hand the average percent deviation for 4 compounds and 110 data points for polar compounds is 7.7664% when using Soave equation and 7.5256% when using Peng Robinson equation. However these two equations (Soave and Peng-Robinson) gave very accurate results
when they were used to calculate the molar volume of saturated vapor of water. This is probably due to their methods of derivation. However Peng Robinson equation can be considered better than Redlich -Soave equation to predict the molar volume of saturated vapors.

The generalized Virial equation truncated to two terms and Virial equation truncated to three terms are considered to be more accurate than all the previous equations mentioned as shown in tables 5.1 and 5.2 . Virial equation truncated to third term gave relatively better results than those obtained from Virial equation truncated to second term.

After these comparisons one can conclude that the generalized Virial equations truncated to second term and truncated to third term are the most suitable equations to calculate the molar volume of saturated vapor. Thus efforts were directed to modify these equations to increase their accuracy (decrease the deviation from the experimental data).The average percent deviation for 10 non-polar compounds and 201 data points is 11.8566% when using Virial equation truncated to second term and 1.4620% for Virial equation truncated to third term .For 4 polar compounds and 114 data points the $\mathrm{AAD} \%$ of Virial equation truncated to second term is 1.7645% and for Virial equation truncated to third term is 1.1085%.Figers 5.1 to 5.7 show the deviations from experimental data using the equations : Redlich -Soave equation , Peng -Robinson equation, Virial equation truncated to B and Virial equation truncated to C after these comparison one can conclude that the generalized Virial equation truncated to third term is the most suitable equations to calculate the molar volume of saturated vapor. Thus efforts were directed to modify this equation to increase its accuracy (decrease the deviation obtained from experimental data). These figures is clearly indicate
that Virial equation truncated to C is the best equation for the moderate conditions studied in this research.

Table 5.1 Comparison of the calculated molar volume obtained from different equations for non-polar compounds.

Compound	No. of points	AAD\% Lee- Kesler Eq.	AAD\% Redlich- Soave Eq.	AAD\% PR Eq.	AAD\% Virial truncated to B	AAD\% Virial truncated to
n-Pentane	11		38.8108	18.0767	9.7192	1.318
Carbon dioxide	12		34.3104	33.0754	29.498	1.4013
Ref.410	32		0.72559	0.5528	0.2918	1.1643
Carbon monoxide	10		17.0017	11.0508	8.5177	1.5526
n-Butane	25		15.12	15.072	15.0724	1.886
Neopentane	23		43.0845	43.0928	32.054	1.7225
Cyclopropane	28	55.1232	25.8715	26.191	9.2764	1.820
I-Pentane	21	63.8654	2.4031	1.1422	1.6678	0.8822
Ref.245	16		3.5765	1.6895	0.9497	0.9546
I-Butane	21		26.6583	24.159	11.4591	
AAD\%		58.8698	18.6292	16.1791	11.8566	1.4620

Table 5.2 Comparison of the calculated molar volume obtained from different equations for polar compounds

compounds	No.of points	AAD\%Lee- Kesler eq.	AAD\% Redlich- Soave eq.	AAD\% Peng- Robinson eq.	AAD\%Virial eq.truncated to B	AAD\% Virial truncated to C
H2O	23	70.0209	0.4275	0.4414	0.1595	0.763
n-Propanol	24		5.6818	6.5217	2.7508	1.61
Propyl Alcohol	20		1.5026	1.1448	1.1945	1.25
Ammonia	47		24.448	24.3876	3.4504	0.9296
AAD\%		70.0209	7.7664	7.5256	1.7645	1.1085

Figer 5.1 Molar volume of saturated Vapor vs.Saturated temperature for Neopentane by using Different equations.

Figure 5.2 Molar volume of saturated vapor vs. saturated temperature for Carbon monoxide using Virial equation truncated to \mathbf{C}

Figure 5.3 Molar volume of saturated vapor vs. saturated temperature for REF. 410 using Virial equation truncated to \mathbf{C}

Figure 5.4 Molar volume of saturated vapor vs. saturated temperature for Carbon monoxide using Virial equation truncated to B

Figure 5.5 Molar volume of saturated vapor vs. saturated temperature for \mathbf{n}-Butane using peng-Robinson equation

Figure 5.6 Molar volume of saturated vapor vs. saturated temperature for n-Butane using Virial equation truncated to B

Figure 5.7 Molar volume of saturated vapor vs. saturated temperature for Ammonia using Redlich-Soave equation.

5.1.2 : The developed correlation :

After concluded that the best equation that calculates the molar volume of vapor for saturation conditions (temperatures and pressures) was Virial equation , efforts were tried to modify the two different forms of Virial equation (truncated to second term and to the third term)to decrease the percent deviation as much as possible ,this may done by using a statistical program and statistical methods that give the best form of the correlation . Two modifications were developed in this thesis, the first modification was developed to correlate Virial equation truncated to second term where the AAD\% was 7.5535 for 14 pure compounds (299 data points) which is relatively high deviation .Many attempts were done to modify this equation in order to reduce the percent deviation as much as possible, this modification was applied for 10 compounds (210 data points) polar and non-polar compounds and it is reduced the percent average absolute deviation from
7.5535% to 3.5209%. For example (for carbon dioxide the AAD\% by using Virial equation truncated to B is 29.498%, while the AAD\% by using the developed Virial equation truncated to B is 25.7386%) and (for n-Butane the AAD\% by using Virial truncated to B is 15.0724% where the AAD\% by using the modified equation is 5.0164). The second correlation developed in this thesis is for Virial equation truncated to third term .In spite of the good accuracy obtained using this equation where the AAD\% 1.0955% for 299 data points polar and non-polar compounds a modification was developed to reduce the average percent absolute deviation for 11 compounds and 229 data points from 1.0955% to 0.7899%. Thus this modification resulted in an equation which can be considered` as very accurate equation to predict the saturated vapor for polar and non-polar compounds. Table 5.3 show the effect of the correlation developed in this project on the molar volume calculated from many equations.

Table 5.3 The effect of the modifications on the molar volume calculated from different equations .

Compounds	No.of points	AAD\%Virial Truncated to B	AAD\% developed virial truncated to B	AAD\% Virial truncated to c	AAD\%develope Virial truncated to C
n-Pentane	11	9.7192	9.9576	1.318	0.9088
Carbon Dioxide	12	29.498	25.7386	1.4013	0.5922
Ref.410	32	0.2918	0.42185	1.1643	0.67376
Carbon monoxide	10	8.5177	6.1906	1.5526	1.2697

n-Butane	25	15.0724	5.0164	1.886	1.1236
Neopentane	23	32.054	5.9473	1.7235	0.6157
Cyclopropane	28	9.2764		1.820	
i-Pentane	21	1.6678	0.3274	1.6740	
Ref.410	16	0.9497		0.8822	0.5061
i-Butane	21	11.4591		1.1984	
Water	23	0.1595	0.5425	0.763	0.1884
n-Propanol	24	2.7508		1.61	1.4087
Propyl Alcohol	20	1.1945	1.1044	1.25	0.8735
Ammonia	47	2.9531	1.6786	0.9296	1.6785
AAD\%	299	7.5535	3.5209	1.0955	0.8769

5.1.3 : The molar volume of saturated vapor for binary mixtures

ㄹ
It is well known fact that the calculation of the thermodynamic properties of the mixtures is not as easy as the calculation for pure components. This is because of using the mixing rules to calculate the pseudo critical properties and acentric factor of mixture from the critical properties and acentric factors of pure components .Many of the mixing rules are not quite accurate and need one or more adjustable parameters .

In this research the prediction of the saturated molar volume of binary mixtures were done by using two methods :The first method was done by using Virial mixing rules which is given by the following equations :

$$
\begin{aligned}
& \omega 12=\omega 1^{*} x 1+\omega 2^{*} \times 2 \\
& T c 12=T c 1^{*} \times 1+T c 2^{*} \times 2 \\
& \mathrm{Z} 12=\mathrm{z} 1^{*} \mathrm{x} 1+\mathrm{z} 2^{*} \mathrm{x} 2 \\
& V c 12=\frac{1}{8}\left(V c_{1}^{1 / 3}+V c_{2}^{1 / 3}\right)^{3} \\
& \text { Pc12 }=p c 1^{*} x 1+P c 2^{*} \times 2
\end{aligned}
$$

These equations were used to calculate the pseudo critical properties and acentric factor for the mixture then using the developed Virial equation truncated to second term and also the developed Virial equation truncated to third term to calculate the compressibility factor of the mixtures .

The second method was accomplished by using the developed Virial equation truncated to second term and the developed Virial equation truncated to third term to calculate the compressibility factor of the mixture from the compressibility factor of the individual component obtained at the same reduced conditions of Tr and Pr as the mixture. The reduced conditions of the mixture were obtained by using properties and acentric factor of the mixture .

This method is Similar to Teja [1] method for calculating the compressibility factor of the mixture from the compressibility factors of individual component.

Table 5.4 shows the results of deviation of saturated molar volume of vapor for binary mixtures from experimental data using the modified Virial equation truncated to second term and modified Virial equation truncated to third term by the two methods motioned above .

Table 5.4 indicates the best deviation (more accuracy) are obtained when using Virial equation truncated to third term and Virial mixing rules .The overall average percent absolute deviation for 6 mixtures and 142 data point is 1.4967 .

For the same 6 mixtures and 142 data point the $\mathrm{AAD} \%$ is 3.4669 when using Virial equation truncated to third term withTeja method and Virial mixing rules . this $\mathrm{AAD} \%$ is increased to 8.3919 when using the modified Virial equation truncated to second term and Virial mixing rules .

Table 5.4 indicates clearly that the best method that gives highest accuracy (best deviation) for calculating the saturated molar volume of vapor
for binary mixtures is to use the modified Virial equation truncated to third term and Virial mixing rules.

Figers 5.8 to 5.13 show the deviation of the calculated molar volume of saturated vapor for propane-n-Octane system and CO2 -He system by using modified Virial equation truncated to second term with Virial mixing rule and modified Virial equation truncated to third term with Virial mixing rule and Teja equation with Virial mixing rule.

Further attempts were done to possible decrease the deviations further using statistical methods, for example the following form of correlation was used to decreases the deviation:

$$
Z=a 1+a 2 * \exp \left(x 1^{*} \text { Zcal }\right)^{a 3}+a 4 * \exp (x 2 * \text { Zcal })^{a 5}
$$

Unfortunately all these attempts did not lead to generalized equation to decrease further deviation than those obtained using developed Virial equation truncated to third term and Virial mixing rules .

Table 5.4 The AAD\% of the molar volume of the saturated vapors of binary mixtures calculated from different equations .

Mixture	No.of points	AAD\%Developed Virial eq.(truncated to B)with Virial mixing rule	AAD\%Developed Virial eq.(truncated to C)with Virial mixing rule	AAD\%Teja eq. with Virial mixing rule
Propane- n-Octane	34	21.6112	2.2192	7.0232
n-Butane- n-Octane	18	21.5144	1.5651	5.7031
Nitrogen- Heluim	50	0.5238	0.1999	0.9357
Carbon Dioxide- ethylene	17	2.19566	2.195	0.2224
H2S- Methane	13	5.1020	2.2303	5.5800
Hydrogen- Methane	10	7.4038	5.6559	8.3236
AAD\%	142	8.3919	3.4669	1.4967

Figer 5.8 Molar volume of saturated vapor vs. saturated temperature of mixture of 0.2143 mole \% Propane and 0.7857 mole \% of n-Octane by using three methods.

Figer 5.9 Molar volume of saturated vapor vs. saturated temperature of mixture of $\mathbf{0 . 3 3 0 6}$ mole \% Propane and $\mathbf{0 . 6 6 9 4}$ mole \% of n-Octane by using three methods

Figer 5.10 Molar volume of saturated vapor vs. saturated temperature of mixture of 0.5729 mole \% Propane and 0.4271 mole \% of n-Octane by using three methods

Figer 5.11 Molar volume of saturated vapor vs. saturated temperature of mixture of $\mathbf{0 . 8 1 8 3}$ mole \% Propane and 0.1817 mole \% of n-Octane by using three methods

Figer 5.12 Molar volume of saturated vapor vs. saturated temperature of mixture of 0.119 mole \% CO2 and 0.881mole \% of He by using three methods

Figer 5.13 Molar volume of saturated vapor vs. saturated temperature of mixture of 0.15 mole $\% \mathrm{H} 2$ and $0.85 \mathrm{~mole} \%$ of CH 4 by using three methods

5.2Conclusions :

1. There are many equations of state that can be used to calculate the molar volume of saturated vapor .In this research and for these moderate ranges of temperatures and pressures ,four equations of state were used to calculate the molar volume of saturated vapor (polar and non polar). Lee-Kesler equation was applied for 3 compounds (72 data points including polar and non polar) with AAD\% 62.432\%. Redlich Soave equation was applied for 14 pure compounds (299 data points polar and non-polar compounds) with AAD\% 15.3125\%. Peng Robinson equation was the third equation used to calculate the molar volume of saturated vapor and gave AAD\% 14.3476\% .These three equations proved to be unsatisfactory although the Peng-Robinson equation gave the best deviations.
2. Truncated Virial equation used in this research, Virial equation truncated to second term that applied for 14 compounds (299 data points) with AAD\% 7.5535, while Virial equation truncated to third term gave $\mathrm{AAD} \%$ is 1.0955%. It is clearly shown that for the same compounds truncated Virial equation truncated to third term is the best equation that can be used to calculate the molar volume of saturated vapor and gave the lowest deviation.

$$
\begin{aligned}
& Z=1+\frac{B}{V \exp }+\frac{C}{V \exp ^{2}}+\ldots . \\
& B=\frac{R^{*} T c}{P c}(B 0+\omega B 1)
\end{aligned}
$$

$$
\begin{aligned}
& B 0=0.1445-\frac{0.33}{T r}-\frac{0.1385}{T r^{2}}-\frac{0.0121}{T r^{3}}-\frac{0.000607}{T r^{8}} \\
& B 1=0.0637+\frac{0.331}{T r^{2}}-\frac{0.423}{T r^{3}}-\frac{0.008}{T r^{8}}
\end{aligned}
$$

And third Virial coefficient :
$C=\frac{R T c}{P c}(c c c c c c c)$
$c 0=0.01407+\frac{0.02432}{T r^{2.8}}-\frac{0.00313}{\operatorname{Tr}^{10.5}}$
$c 1=-0.02676+\frac{0.0177}{T r^{2.8}}+\frac{0.04}{T r^{3}}-\frac{0.003}{T r^{6}}-\frac{0.00228}{T r^{10.5}}$
3. A statistical program was used to modify the Virial equation truncated to second term and a general correlation was developed (applied for 210 data points for polar and non-polar compounds).This correlation modified the average deviation obtained from this equation from 7.5535% to 3.5209%. The correlation is given as the following equations :

$$
B 0 m=0.1258-\frac{0.3017}{\operatorname{Tr}}-\frac{0.1258}{\operatorname{Tr}^{2.31}}-\frac{0.01325}{\operatorname{Tr}^{3.21}}-\frac{0.005748}{\operatorname{Tr}^{7.85}}
$$

$B 1 m=0.05257+\frac{0.3575}{\operatorname{Tr}^{1.8}}-\frac{0.47155}{\operatorname{Tr}^{3}}-\frac{0.002184}{\operatorname{Tr}^{7.85}}$
4. The same procedure was used to modify the Virial equation truncated to third term. A general correlation was developed using 70 data point for three compounds and the result equations applied to 11 compounds (polar and non-
polar). The modified Virial equation truncated to third term reduced the average percent absolute deviation from 1.0955 to 0.7899 . The correlation is given as the following equation:
$C 1 m=0.022501+\frac{1.265968}{T r^{5}}-\frac{0.507}{T r^{5.5}}-\frac{0.75663}{T r^{4.4}}$
Thus the modified Virial equation truncated to the third term can be considered as the best equation that gives the highest accuracy for prediction the molar volume of saturated vapor .
5. For binary mixtures, the modified Virial equation truncated to second term and truncated to third term ,with Virial mixing rule and with the compressibility factor obtained from Teja equation. For 142 data points (6 mixtures) polar and non-polar the AAD\% of the modified Virial equation truncated to second term with Virial mixing rules is 8.39192%. While the AAD\% of modified Virial equation truncated to third term with Teja method based on Virial mixing rule is 3.4669%. On the other hand the AAD\% for the modified Virial equation truncated to third term with Virial mixing rules is 1.4967%. It can be considered that the modified Virial equation truncated to third term with Virial mixing rule is the best equation for predicting the molar volume of saturated vapor for binary mixture.

5.3 Recommendations :

For future work, the following recommendations can be taken in to the consideration:

1. Applying the developed correlation for further available experimental data at saturation conditions (polar and non-polar)
2. Applying these correlations to other thermodynamic properties like Enthalpy , Gibbes free energy for saturated conditions .
3. Studying the possibility of applying Virial mixing rule for ternary mixtures with an acceptable accuracy .

References

1. Al-Mosawe,Y.J.,"Development of Generalized correlation for determining the compressibility factor of polar compounds",M.Sc .Thesies,Alnahreen university (1995).
2. Alrawi,U.A.,"Application of truncated Virial equation for Gases at high Pressures and temperatures ",M.SC. Thesis, alnahrain university, 2002.
3. Arnold,E.W.,Lion,D.W.andEldridge,J.W, "Thermodynamic properties of Isopentane ",J.Chem and Eng.Data 10,88, April (1965) .
4. Assael,J.,Trusler,J.P.M.,andTsolakis,T.F."Thermophysiscal properties of fluid ",London and Thessaloniki , February ,1996.
5. Boyle.T.B., and Carrol,J.J.,"Calculation of acid gas density in the Vapor , liquid and Dense regions",2001 .
6. Brough,H.W.,Schlinger,W.B.,Sage,B.H.,ind.Eng.Chem.43,2442(195 1).
7. Das,T.R. and Reed,C.O.and Eubank,P.T. ,"PVT surface and thermodynamic properties of n-Pentane ",J.Chem and Eng.Data ,22,1,3,(1977).
8. Das,T.R. and Reed,C.O. Jr.and Philip, Eubank,T., "pvt surface and thermodynamic properties of isobutene ", J.Chem .Eng.Data, 18, 253, (1973).
9. Das,T.R.,Kuloor,N.R.,Indian J.Technol.,5,40(1967).
10.Davis,B.W.,Rice ,O.K.,J.Chem .Eng.,47,177(1969).
11.Douslin,B.F.,"chemical Engineering thermodynamics"MC Graw Hill (1994).
12.Edwards,M.N.B., and Thodos,G."Prediction of saturated vapor densities for non Polar Substance ", J.Chem and Eng. Data, vol.19, no. 1 (1974).
10. Haar.L and Gallacher,J.S.,"Thermodynamic properties of Ammonia"'J.phys.Chem.Ref.Data ,Vol.7,No.3,(1978).
14.Hartono.R.,, Mansoori, G.A., "Prediction of molar volumes, vapor pressure",Published in Chem..Eng.Comm.,vol.173,p.23-24,(1999).
15.Halm,R.I., and Stiel,L.I., ,"Saturated liquid and vapor densities for polar fluids ",AICHE Journal ,Vol.16,No.1,January(1970).
16.Holman,J.P.,"Thermodynamics ",MC Graw-Hill Book company,Third edition ,1980.
17.Hoover,A.E.,Canfield,F.B.,Kobayashi,R,andLeland,T.W., "Determination of Virial coefficients by Burnett method " ,J.of Chem..Eng.and Eng.Data,vol.9,No.4,October (1964).
18.http://www.av8n.com/phsics/vapor.html/2003.
19.http://www.personal.ps4.edu/faculty/d/h/dhj1/classes/thermo/chapter 2.html./2002.
20.kay,W.B.,Genco,J., and Fichtner,D.A. , "Vapor liquid equilibrium relationships of binary systems Propane-n-Octane and n-Butane nOctane ",J.of Chem. And Eng.Data .Vol.19,No.3,1974.
21.Kesler.M.G.,and Lee,B.I.,:AICHE J.,21:510(1975)
22.Kyle,B.G.,"Chemical and process thermodynamics" secod edition ,prentice Hall international seriesin the physical and chemical sciences, 1992
23.Kohn,J.P., Kurata,F.,"volumetric behavior of methane -Hydrogen Sulfied system ",J.of Chem. Eng.Data,vol.4,No.1,January (1959).
24.Lemmon,E.W.,Tjacobsen,R. ,"An equation of state for pentafluoro ethane (HFC-125) for temperatures from the triplepoint to near critical point",J.of Physical and Chemical Refrences Data,(1985).
25.Leland,T.W.,Jr.,andChappelear,P.S.,Ind.Eng.chem ,60(7) ;15 (1968)
26.link,D.C.,andKetta,J.J.,andSilberberg,L.H.,
"Thermodynamic properties of CycloPropane ", J.Chem .and Eng.Data ,16,4,416,(1971).
27.Magee,J.W., and Kobayashi,R.,"Isochoric ($\mathrm{P}, \rho, \mathrm{T}$) measurements on (H2+CH4)at different temperatures and pressures",J.Chem Thermodynamics 18,847-858,(1986).
11. Mihajlov-DudukoVic,A.N.M.,andTasic,A.Z.,"Correlation of second Virial coefficients of polar gases by Redlich-Kowing Equation of state ", AICHE Journal ,vol 26,No 5,Page 858.
29.Moreland,M.PM,Mcketta,J.J.,and Silberberg,I.H.,"Compressibility factors and Virial coefficients of 2-Propanol",J.chem.Eng.and Eng.data ,Vol.12,No.3,July(1967).
30.Orbey,H.,and Vera,J.H.,"Correlation for the third Virial coefficient using Tc,Pcand W as parameters",AICHE J. 29,107(1983).
31.Park.K.K., ,"Comparative study on the performance of saturated vapor density correlations for pure substances", Korean Chem.Eng.Res.,Vol.42,no.1,February (2004).
32.Peng,D.Y.,and Robinson,D.B.,Ind.Eng.Chem.Fundam.,15:59(1976).
33.Perry,J.H.,"Chemical engineering handbook",Third edition,Mc GrawHill Book company . 1950.
34.prausnitz,J.M."Molecular Thermodynamics of fluid phase equilibria,prentice Hall ,Englewood cliffs,N.J.,1969,P.(128-129).
35.Prausnitz,j.M.,and Gunn,R.D., AICHE J.,4:430,494(1958).
36.Peh ,S., and Dodge,B.F.,"Compressibility of the binary systems: Helium-Nitrogen and Carbon dioxide - ethylene ", Journal of Chemical and Engineering Data ,vol.12,No.2,April(1967).
37.Pitzer,K.S.,D.Z.Lippman,curl.R.F.,Jr.,O.M.Huggins,and peterson,D.E.,J.Am.Chem.soc.,77,3433(1955).
38.Ramaiah,V.,and Stiel,L.I.,Ind.Eng.Chem, Process Design Develop.,11,501(1972),12:305(1973).
39.Redlich,O. and Kowing,J.N.S.,Chem.Review 44(1949)233.
40.Ried, R.C., M.prausntiz,J.M. and Poling,B.E. ,"The properties of gases and liquid ", 4th edition, Mc Graw -Hill Book company (1989).
41.Reid,R.C.,Prausntiz,J.M., and Poling,B.E.,"properties of gases and Liquids "2001.
12. Shank,R.I.,"Thermodynamic properties of 1,1,2,2-Pentafluropropane (refrigerant 245)", J.Chem .and Eng.Data ,12,14,474,(1967) .
13. Simth,J.M and Van Ness ,H.C.,"introduction to chemical Engineering Thermodynamics" $5^{\text {th }}$ Edition,MC Graw Hill ,singapora(1996).
44.Smith,J.M.,VanNess,H.C.,and Abbott,M.M.,"Introduction to chemical engineering thermodynamics ",sixth edition ,2001.
14. Soave,G.:Chem.Eng.Sci.,27:1197(1972).
15. Thompson,P.A., and Sullivan,D. "A simple formula for saturated vapor volume ", J.Ind.Chem.Fumdum. vol.18, no.1,(1979).
47.Thodos,R.A.W.G.,"An equation of state its application to other substances ", AICHE Journal,Vol. 3 ,No.5,May (1985).
48.Tsonpoulos ,C.,"An empirical correlation of second Virial coefficients ",AICHhE ,20,263,(1974).
16. Valderrama,J.O., " The state of the cubic equations of state ",Ind.Eng.Chem.Res.,vol 42 ,no.8,1603-1618,(2003).
50.Wilding,W.V., and Rowely, R.L.Int.J.Thermophys.8,(1987)717.
17. Winnick,J.,"Chemical engineering thermodynamics", John wiely and sons ,(1997).
52.Zemansky ,M.W.,Abott,M.M.,and Van Ness,H.C.,"Basic engineering thermodynamics" $2^{\text {nd }}$ Edition ,MC Graw Hill (1975).

APPENDIX A

PHYSICAL PROPERTIES OF THE COMPONENTS.

COMPONENT	M.WT	Tc(k)	Pc(bar)	W	Zc	Vc(cm3/mole)
n-pentane	72.151	469.7	33.7	0.251	0.263	304
n-butane	58.124	425.2	38	0.199	0.274	255
i-butane	58.124	408.2	36.5	0.183	0.283	263
Carbon dioxid	44.101	304.1	73.8	0.239	0.274	93.9
Ref. 410	120.22	345.28	36.15	0.234	0.271	211.30
Carbon monoxide	28.010	132.9	35.0	0.066	0.295	93.2
Water	18.015	647.3	221.2	0.344	0.235	57.1
n-propanol	60.096	536.8	51.7	0.623	0.253	219
Propyl alcohol	60.096	508.3	47.6	0.665	0.248	220
Neopentane		433.8	32	0.19		
Cyclopentane	42.081	379.8	54.9	0.130	0.274	163
i-pentane	70.135	511.7	45.1	0.196	0.275	260
Ref. 245	134.047	685.05	456.704	0.308	0.267	291.02
Ammonia	17.031	504.5	113.5	0.250	0.244	72.5
Propane	44.094	369.8	42.5	0.153	0.244	203
Nitrogen	28.013	126.2	33.9	0.039	0.281	89.8
n-Octane	114.232	568.8	24.9	0.398	0.29	492.0
Heluim	4.003	5.19	2.27	-0.36	0.259	57.4
Ethylene	28.054	282.4	50.4	0.089	2.27	130.4
H2s	34.080	373.2	89.4	0.081	0.284	98.6
Methane	16.043	190.4	46	0.011	0.288	99.2
Hydrogen	2.016	33.2	13	-0.21	0.306	65.1

APPENDIX B

Computer program for calculating the Volume of saturated vapor .

This program in QBASIC Language :

CLS

REM "***"
REM "Computer Program for calculation the molar volume of pure compounds"
REM $" * " ~$
INPUT "inter the universal Gas constant $\mathbf{R}=$ "; \mathbf{R}
INPUT "inter the critical temperature Tc="; Tc
INPUT "inter the critical Pressure Pc="; Pc
INPUT "inter the A centric factor w="; w
INPUT "inter the Experimental Temperature T="; T
INPUT "inter the Experimental pressure $\mathrm{P}=$ "; P
INPUT "inter the Experimental volume V="; V
PRINT TAB(11);"**********************************"
PRINT TAB (16);"RESULTS OF COMPUTER PROGRAM
FOR CALCULATION OF MOLAR VOLUME OF
SATURATED VAPOR FROM"
PRINT TAB (32);"VIRIAL EQUATION OF STATE "
PRINT TAB (11);"**********************************"
PRINT TAB (1);"**--------**";TAB(16);"**----------
";TAB(33);"--------**";TAB(51);"**----------
";ТАВ(68);"
----------**"
PRINTTAB (4);"Техр";TAB(19);"Рехр";TAB(25);"Vexp";
TAB(36);"Z";TAB(54);"Vcal";TAB (71);"AAD\%"

PRINT	TAB(1)	TAB(51);"**-----------		
; TAB	'**			
;TAB	*-----			

REM"***"

REM"CALCULATION OF SECOND VIRIAL

 COEFFICIENT "REMI ${ }^{\text {I }} *!$
B0 $=0.1445-(0.33 /(T / T c))-\left(0.1385 /(T / T c)^{\wedge} 2\right)-\left(0.0121 /(T / T c)^{\wedge} 3\right)-$
0.000607/(T/Tc)^8)

B1 $=0.0637+\left(0.331 /(T / T c)^{\wedge 2}\right)-\left(0.423 /(T / T c)^{\wedge} 3\right)-\left(0.008 /(T / T c)^{\wedge 8)}\right.$
B=(R*Tc/Pc)*(B0+WB1)
REM"***"
REM"CALCULATION OF THIRD VIRIAL COEFFICIENT"
REM"***"
C0 $=0.01407+\left(0.02432 /(T / T c)^{\wedge 2.8)-(0.00313 /(T / T c) \wedge 10.5 ~}\right.$
C1 $=-0.02676+\left(0.0177 /(\mathrm{T} / \mathrm{Tc})^{\wedge 2.8)+(0.04 /(T / T c)}\right)^{\wedge} 3-$
(0.003/(T/Tc)^6)-(0.00228/(T/Tc)^10.5)
$\mathrm{C}=\left(\mathrm{R}^{*} \mathrm{Tc} / \mathrm{Pc}\right)^{\wedge} \mathbf{2}^{*}(\mathrm{c} 0+\mathrm{wc} 1)$
REM"***"
REM"CALCULATION OF COMPRESSIBILITY FACTOR "
REM"**"
$\mathrm{Z}=1+(\mathrm{B} / \mathrm{V})+\left(\mathrm{C} / \mathrm{V}^{\wedge} 2\right)$
REM"**"
REM"CALCULATION OF MOLAR VOLUME "
Vcal =(Z*R*T/P)
PERCENT=ABS((Vexp-Vcal)/Vexp)*100
REM"**"
REM "PRINT OF COMPUTER PROGRAM RESULTS"
REM $" * " ~$
PRINT TAB(5);"T=";T
PRINT TAB(17);"P=";P
PRINT TAB(32);"Vcal=";Vcal
PRINT TAB (51);"PERCENT="PERCENT
PRINT
END

Appendix C
 Results of Investigation for Pure Components

TABLE(C-1) n-propanol

T(K)	P(bar)	VEXP (cm $\mathbf{3 / m o}$ le)	DEV SOAVE	DEV PR	DEV VIRIAL/ B	DEV VI RIAL/ \mathbf{C}	DEV THIS WORK
298.1	.02683	87876	2.6265	3.6798	3.4595	3.45	3.48644
303.1	.03711	64890	3.1165	3.18525	2.9183	2.91	2.94795
313.1	.06816	36720	2.3621	2.47172	2.09183	2.08	2.12446
323.1	.1193	21708	1.9039	2.0709	1.5436	1.542	1.57941
333.1	.1999	13380	1.4666	1.7095	1.00451	1.0026	1.03829
343.1	.3221	85380	1.2965	1.63637	.715203	.71196	0.74188
353.1	.5017	56100	1.3983	1.8571	.6730	.6689	0.68692
363.1	.7575	37920	1.5724	2.1705	.67800	.672	0.67032
373.1	1.113	26244	1.8884	2.6435	0.7821	.7766	0.74571
383.1	1.594	18576	2.2900	3.2136	.91720	.914	0.84246
393.1	2.232	13362	3.1091	4.2082	1.3590	1.365	1.23788
403.1	3.059	9792	3.9859	5.2536	1.7320	1.7601	1.55866
413.1	4.1040	7308	4.9609	6.3751	2.0324	2.1043	1.80663
423.1	5.403	5538	6.1059	7.63216	2.2626	2.414	1.9935
433.1	6.991	4260	7.3084	8.8954	2.2591	2.549	1.97314
443.1	8.907	3318	8.6570	10.2405	2.0126	2.53	1.76356
453.1	11.189	2064	10.568	12.0765	1.7124	2.6032	1.5988
463.1	13.878	2064	12.671	14.0109	.92960	2.4071	1.12812
473.1	17.878	1638	15.853	16.9270	.02690	2.41	0.80336
483.1	20.017	1308	19.494	20.1784	1.8804	2.06	0.13413
			5.681	6.5217	$\mathbf{2 . 7 5 0 8}$	$\mathbf{1 . 6 1}$	$\mathbf{1 . 4 0 8 7}$

TABLE (C-2) water

T(c)	(mmh g)	$\begin{array}{r} \text { VEXP } \\ \left(\mathrm{cm}^{\wedge} 3\right. \\ / \\ \text { mole) } \end{array}$	$\begin{array}{r} \text { DEV } \\ \text { SOAV } \\ E \end{array}$	$\begin{array}{r} \hline \text { DEV } \\ \text { PR } \end{array}$	$\begin{array}{\|r} \hline \text { DEV } \\ \text { VIRIAL/ } \\ \text { B } \end{array}$	$\begin{aligned} & \text { DEV } \\ & \text { VI RI } \\ & \text { AI / C } \end{aligned}$	DEV THIS WORK
-10	2.15	7627.11	. 0653	. 0657	. 1337	. 071	. 02391
0	4.58	3711.34	1977	1985	. 09965	. 210	. 13377
5	6.54	2647.05	1777	. 1788	. 0027	. 194	. 09965
10	9.21	1914.89	. 09678	. 0982	. 02141	. 119	. 002734
11	9.84	1798.20	11893	. 1205	. 02312	. 143	. 02141
12	10.52	1688.55	. 0779	. 07961	. 0749	. 103	. 02312
13	11.23	1585.70	1798	. 18166	. 00828	. 446	. 074972
14	11.99	1491.30	1167	. 11868	. 00827	. 902	. 008283
15	12.79	1402.96	1100	. 1120	. 00227	. 140	. 002279
20	17.54	1040	1754	. 17804	. 04246	170	. 04246
25	23.76	782.608	. 0628	. 05956	21773	. 0113	. 21773
30	31.8	594.480	3348	. 33901	12863	. 4011	. 15348
37	47.07	410.898	. 3493	. 3551	. 09366	. 4418	128689
40	55.3	353.129	1438	. 1503	19139	. 249	093662
60	149.4	139.058	5733	. 5876	. 07429	. 817	. 19139
80	355.1	62.0176	6283	. 6556	1.1978	1.123	. 07429
95	634.0	36.2111	1.9231	1.965	12219	1.592	1.19782
96	658.0	34.9851	. 8338	. 87669	. 1606	$\begin{array}{\|l} \hline 1.651 \\ \hline 2 \\ \hline \end{array}$. 12219
98	707	32.7368	. 8828	. 9268	. 2469	1.847	. 16061
99	733	31.6606	. 9812	1.0264	. 2062	1.841	. 2469
100	760	30.1003	9500	. 9963	. 1606	1.719	. 20629
			. 4275	. 4414	. 1595	. 763	. 1884

TABLE(C-3) N-PENTANE

T(K)	P(bar)	$\begin{array}{r} \hline \text { VEXP } \\ \left(\mathrm{cm}^{\wedge} 3\right. \\ / \\ \text { mole) } \end{array}$	$\begin{array}{r} \text { DEV } \\ \text { SOAVE } \end{array}$	$\begin{array}{r} \hline \text { DEV } \\ \text { PR } \end{array}$	$\begin{array}{r} \text { DEV } \\ \text { VIRIAL/ } \\ \text { B } \end{array}$		DEV THIS WORK
469.8	33.100	310.344	180.86	171.583	310.344	. 744	1.9822
462.75	29.723	564.263	71.773	66.7532	40.787	2.198	1.8801
458.05	27.813	671.742	53.857	49.6076	26.779	2.484	1.1045
446.31	23.121	907.441	36.607	33.3947	13.051	1.401	1.3768
434.55	19.053	1184.52	26.594	23.9805	6.883	. 730	1.4139
422.82	15.490	1499.25	22.626	20.3495	2.502	1.306	2.7455
399.33	10.029	2482.75	12.980	11.1469	0.314	. 611	1.5955
375.84	6.1956	4165.70	6.8415	5.2848	0.7616	. 662	10468
352.35	3.5641	7251.04	3.6981	2.3617	1.157	1.284	95784
328.86	1.8686	13319.5	3.3801	2.3883	0.0385	1906	. 029657
305.37	0.8760	25862.1	7.6971	6.9927	4.916	4.7934	0.8974
			38.81	35.804	37.048	1.46	0.9088

TABLE(C-4) CARBON DIOXIDE

T(K)	P(bar)	VEXP (cm^3 l mole)	DEV SOAVE	DEV PR	DEV VI RI AL B	DEV VI RI AI / C	DEV THIS WORK
304.2	72.85	94.2184	171.93	162.825	44.325	.0873	0.5530
299.63	65.93	168.247	67.77	62.7004	40.34	2.4355	0.8966
296.59	61.19	196.288	54.84	50.5391	27.5013	1.6542	0.4408
288.99	50.99	269.195	35.04	31.8440	13.4283	1.3009	0.6258
281.38	42.54	351.561	23.299	20.6745	8.5723	2.0346	0.6783
273.78	34.97	446.532	17.523	15.2505	5.5585	1.7087	0.5528
258.57	22.95	7190.24	9.723	7.8641	3.1164	1.8064	0.8603
243.36	14.21	1170.41	6.853	5.2512	1.2183	8301.	0.9492
228.15	8.32	2013.24	3.0681	1.7375	1.994	1.9471	1.0421
212.94	4.313	3709.38	3.889	2.8692	.2526	.20899	0.1762
			$\mathbf{3 4 . 3 1 0}$	$\mathbf{3 3 . 0 7 5}$	$\mathbf{2 9 . 4 9 8}$	$\mathbf{1 . 4 0 1}$	$\mathbf{0 . 6 7 7}$

C-3

Table (C-5) n-Butane

T(K)	$\begin{array}{\|l} \hline \mathbf{P} \\ \text { (atm) } \end{array}$	VEXP (cm ${ }^{\wedge}$ 3/ mole)	$\begin{aligned} & \text { \% DEV } \\ & \text { SOAVE } \end{aligned}$	$\begin{aligned} & \hline \text { DEV } \\ & \text { PR } \end{aligned}$	$\begin{aligned} & \hline \text { DEV } \\ & \text { VI RIAL/ } \\ & \text { B } \end{aligned}$	$\begin{array}{\|l} \text { \% DE } \\ \text { V } \\ \text { VIRIA } \\ \text { I / C } \\ \hline \end{array}$	\% DEV THI S WORK
272.67	1	21384	1.003	1.151	. 6111	. 6633	0.63566
280.0	1.317	16636	0.4398	0.6141	1.2986	1.35	1.3199
290	1.856	12070	0.5468	0.7544	1.4505	1.51	1.4585
300	2.552	8958	0.5654	0.8051	1.75	1.808	1.73625
310	3.430	6778	0.6699	0.9395	2.09	2.11	2.01704
320	4.518	5216	0.8600	1.1555	2.49	2.45	2.3317
330	5.848	4056	1.5367	1.85	2.706	2.5	2.39411
340	7.449	3182	2.7504	3.084	2.7838	2.43	2.24098
350	9.355	2511	4.6518	4.9959	2.7686	2.107	1.86381
360	11.60	1992	7.2091	7.555	2.8924	1.7162	1.42126
370	14.22	1584	10.668	11.009	3.2901	1.27	0.91918
380	17.25	1262	15.072	15.395	4.3604	9616.	0.55255
390	20.75	1004	20.671	20.9633	6.6545	952.	0.48994
400	24.75	790.7	27.0803	29.0159	10.926	1.08	0.57857
405	26.95	696.6	27.9380	34.6168	14.460	1.23	0.70366
410	29.31	609.6	30.4160	42.2245	21.8050	1.616	1.17478
411	29.79	$\begin{array}{\|c\|} \hline 593.73 \\ 2 \\ \hline \end{array}$	33.2376	42.8402	20.967	1.7126	1.9655
413	31.30	560.5	36.6661	43.3613	25.2694	3.5	2.09824
414	31.81	543.1	46.5925	45.5767	27.0803	3.6	2.4508
415	31.81	526.0	45.435	50.9642	27.9380	2.04	2.3408
416	32.33	507.7	50.831	53.8785	30.4160	2.133	2.6382
417	32.86	489.6	53.755	56.9751	33.2376	2.233	3.0216
418	33.40	470.6	60.544	60.6468	36.6661	2.344	2.0123
419	33.94	451.1	73.183	73.2795	46.5925	1.35	1.3981
420	33.49	429.3	77.5236	75.2365	46.3068	2.5	0.9862
			15.12	13.116	15.072	1.886	1.1236

TABLE (C-6) CARBON MONOXIDE

T(K)	P(bar)	VEXP (cm / mole)	DEV SOAVE	DEV PR	DEV V/ RIAL /B	DEV VI RIAI /C	DEV THIS WORK
129.8	29.739	174.855	69.865	65.276	27.2517	2.5710	.47517
126.5	25.53	232.558	56.027	51.761	14.7807	2.5854	2.4145
123.2	21.735	295.311	35.480	32.33	9.8409	2.9062	2.4193
119.8	18.181	369.139	24.273	21.789	6.6396	2.4575	2.7453
113.2	12.696	553.709	18.026	16.013	4.1261	2.5222	2.3245
106.5	8.4525	826.873	10.468	8.9213	1.3191	.7750	2.3915
99.9	5.4665	1281.31	8.591	7.2868	1.6259	1.5677	.66737
93.24	3.2154	2076.41	5.002	3.8676	1.0635	.9383	1.4903
86.58	1.725	378.433	3.7219	5.2467	.1128	.0285	.99066
79.92	.814	7593.73	3.194	3.0040	4677.	.3681	.00119
73.26	.3415	17226.5	.7398	2.7045	1.2409	1.2927	.38056
			$\mathbf{1 7 . 0 2 5}$	$\mathbf{1 1 . 0 5}$	$\mathbf{8 . 5 7 7 7}$	$\mathbf{1 . 5 5 3 9}$	$\mathbf{1 . 2 6 9}$

TABLE C-7 Ref. 245

T(R)	P (Psia)	Vexp (ft^3/lb)	DEV SOVE	DEV PR	DEV VIRIAL/B	DEV VIRIA/C	DEV THIS work
420	5.067	870.175	0.9865	0.4331	0.5585	0.5758	0.0181
430	6.742	665.560	1.1632	0.4860	0.6007	0.6223	0.1763
440	8.841	516.239	1.3614	0.5455	0.6391	0.6651	0.2501
450	11.430	405.586	1.5844	0.6154	0.6729	0.7027	0.3356
460	14.584	322.424	1.8313	0.6957	0.7062	0.7386	0.4302
470	18.383	259.055	2.1202	0.8057	0.7270	0.7596	0.4451
480	22.910	210.245	2.4213	0.9173	0.7685	0.7974	0.5602
490	28.253	172.143	2.7787	1.0757	0.7985	0.8180	0.7692
500	34.503	142.118	3.1748	1.2652	0.8426	0.8843	0.7909
510	41.755	118.201	3.6323	1.5095	0.8929	0.8654	0.8058
520	50.656	98.972	4.1600	1.8187	0.9566	0.8842	0.8414
530	59.656	83.375	4.7694	2.2051	1.0423	0.9038	0.9191
540	70.509	70.803	5.3246	2.4182	1.3699	1.1389	1.1075
550	82.773	60.098	6.0231	3.2855	1.3103	1.9459	0.8983
560	96.559	51.358	6.8325	4.0235	1.5167	1.9711	0.7848
570	111.98	44.044	7.8471	4.9322	1.7927	1.002	0.7784
			3.5006	1.6895	0.9497	0.9546	0.5061

TABLE C-8 Ref. 410

T(c)	$\begin{array}{\|l} \hline \mathbf{P} \\ (\mathrm{KPa} \\ \text {) } \\ \hline \end{array}$	Vexp (m^3/ mole)	$\begin{array}{\|l\|} \hline \text { DEV } \\ \text { SOAVE } \end{array}$	$\begin{aligned} & \hline \text { DEV } \\ & \text { PR } \end{aligned}$	DEV VI RIAI / B	DEV VI RIAL / C	DEV THIS WORK
-100	3.7	386.619	0.4969	0.4335	0.0871	0.6364	0.1473
-99	4.1	354.785	0.6119	0.6803	1.0349	0.4632	0.9738
-98	4.4	325.978	1.3656	1.2921	0.9110	1.5261	0.9748
-97	4.9	299.878	0.5067	0.5857	0.9702	0.3332	0.9060
-96	5.3	276.191	0.4284	0.3437	0.0619	0.6156	0.0043
-95	5.8	254.668	0.0734	0.0174	0.4360	0.2747	0.3686
-94	6.3	235.093	0.3474	0.2502	0.1859	0.5644	0.1170
-93	6.8	217.268	1.1436	1.0395	0.5814	1.3767	0.6522
-92	7.4	201.003	1.0039	0.8927	0.4195	1.2542	0.4914
-91	8.1	186.160	0.1620	0.0435	0.4388	0.4305	0.3664
-90	8.8	172.595	0.033	0.1594	0.6560	0.2546	0.5827
-89	9.5	160.176	0.3057	0.1711	0.3447	0.6138	0.2702
-88	10.2	148.803	1.0896	0.9463	0.4062	1.4190	0.4823
-87	11.1	138.374	0.4096	0.2574	0.2923	0.7616	0.2159
-86	12	128.800	0.2942	0.1327	0.4324	0.670	0.3553
-85	13	120.004	0.1297	0.3011	0.8779	0.2709	0.8005
-84	14	111.911	0.0544	0.2359	0.8300	0.3723	0.7521
-83	15	104.449	0.4498	0.2576	0.0156	0.9034	0.2803
-82	16.2	96.8212	0.8329	0.6279	0.7474	1.32	0.0645
-81	17.4	91.240	0.5702	0.1018	0.3252	0.6266	0.6682
-80	18.6	85.383	0.3366	0.3434	0.5845	1.1156	0.2454
-79	20	79.976	0.5283	0.0974	0.4254	0.9152	0.5047
-78	21.4	74.961	0.6167	0.2761	0.3684	1.1416	0.3455
-77	22.9	70.323	0.6390	0.3511	0.3769	1.266	0.2886
-76	24.5	66.026	1.0218	0.3595	0.0398	1.326	0.2974
-75	26.1	62.034	1.3330	0.7279	0.2421	1.3608	0.0477
-74	27.8	58.333	1.2583	0.9888	0.1364	2.1016	0.3214
-73	29.7	54.892	1.2162	0.9341	0.0624	2.069	0.2151
-72	31.7	51.684	1.4917	0.8761	0.2993	2.07	0.1405
-71	33.7	48.705	2.0563	1.1353	0.8182	2.370	0.3768
-70	35.7	45.928	1.5069	1.6828	0.2464	2.300	0.8953
-69	38.2	43.344	1.4586	1.1162	0.2254	2.500	0.3222
			0.7255	0.552	0.2918	1.1643	0.6737

TABLE C-9 Propyl Alcohol

T(R)	P $($ Psia)	Vexp $\left(\right.$ ft $^{\wedge} 3 /$ Ib l	DEV SOVE	DEV PR	DEV VI RI AL / B	DEV VI RI AI / C	DEV THI S work
501	0.0890	60113.4	0.4766	0.476	0.4475	0.447	0.476
511	0.1358	40175.4	0.5029	0.50206	0.4644	0.4644	0.502
521	0.2032	27363.0	0.5256	0.5243	0.4754	0.475	0.525
531	0.2986	18970.2	0.5578	0.555	0.4930	0.493	0.557
541	0.4313	13372.8	0.6027	0.600	0.5212	0.521	0.602
551	0.6131	9576	0.6597	0.65	0.5579	0.557	0.659
561	0.8582	6959.4	0.7293	0.72	0.6036	0.6035	0.729
571	1.1841	5128.14	0.8187	0.812	0.6653	0.665	0.818
581	1.6115	3828.66	0.9300	0.912	0.7447	0.744	0.830
591	2.165	2893.92	1.0602	1.0496	0.8387	0.8386	1.060
601	2.8735	2212.98	1.2143	1.2005	0.9520	0.9518	1.114
611	3.76	1710.9	1.3934	1.375	1.0856	1.058	1.093
621	4.891	1336.44	1.6035	1.5814	1.245	1.245	1.035
631	6.2812	1054.2	1.8432	1.815	1.4293	1.429	1.243
641	7.9861	839.22	2.118	2.084	1.643	1.643	1.118
651	10.059	673.86	2.4309	2.388	1.8900	1.883	1.359
661	12.556	545.712	2.7551	2.7037	2.142	2.14	1.525
668	14.696	469.452	3.0236	2.9643	2.3526	2.35	1.023
671	15.54	445.08	3.1833	3.12104	2.49	2.49	1.183
681	19.078	365.76	3.624	3.5498	2.85005	2.85	1.624
			1.502	1.1448	1.1945	1.25	0.95

TABLE C-10 Neopentane

T(K)	P (atm)	Vexp $\left(\right.$ cm $^{\wedge}$ $/$ mole) 2	DEV SOAVE	DEV PR	DEV VI RI AL / B	DEV VI RI AL / C	DEV THI S work
282.6	1	22103	1.4408	0.9716	0.8979	0.9510	0.8369
290	1.295	17265	2.1341	1.6177	0.5043	0.5620	0.4463
300	1.797	12670	2.552	1.9900	0.4984	0.5530	0.4298
310	2.434	9490	3.0625	2.4802	0.4870	0.5243	0.3808
320	3.227	7234	3.6870	3.1100	0.488	0.481	0.3026
330	4.199	5597	4.4368	3.9210	0.5430	0.4509	0.2172
340	5.373	4385	5.371	4.9501	0.6659	0.4265	0.1135
350	6.773	3472	6.5281	6.2622	0.9103	0.4301	0.0082
360	8.425	2772	7.995	7.9390	1.3258	0.4640	0.0999
370	10.357	2226	9.907	10.126	1.9830	0.5243	0.2246
380	12.596	1794	11.934	13.000	3.0133	0.6190	0.3646
390	15.176	1446	14.953	16.870	4.644	0.7570	0.5249
400	18.134	1161	19.055	22.186	7.342	0.9880	0.6748
410	21.513	920	24.708	30.196	12.062	1.2780	0.8885
415	23.377	809.6	33.237	36.147	15.958	1.4330	1.0569
420	25.336	706.9	39.563	43.959	21.742	1.6440	1.2247
425	27.489	603.6	47.851	55.282	31.833	2.1901	1.1386
426	27.931	583.4	59.868	58.095	34.614	2.3322	1.0953
427	28.380	561.9	62.847	61.524	37.9985	2.4710	1.0644
428	28.834	540.6	66.465	65.212	41.8682	2.651	1.0042
429	29.294	517.5	70.363	69.843	46.7895	2.8226	0.9455
430	29.758	493.2	75.238	75.400	52.9755	3.0276	0.8600
431	30.232	466.9	81.076	82.330	61.1808	3.2923	0.7104
432	30.711	436.7	88.345	91.850	73.1933	4.1833	0.4748
433	31.195	387.5	106.55	112.80	102.105	3.6241	0.1209
433.5	31.442	366.4	116.63	123.25	119.226	4.3697	0.4614
433.7	31.545	311	154.38	162.19	90.6239	3.4713	0.9533
			43.084	43.09	32.054	1.722	0.615

TABLE C-11 Cyclo Propane

T(K)	P $($ bar $)$	Vexp $\left(\right.$ cm $^{\wedge} /$ mole)	DEV SOAVE	DEV PRR	DEV VI RI AL/ B	DEV VI RI AI/ C
357.03	44.4155	456.2605	17.9413	18.2966	0.7848	2.1485
358.06	45.3985	444.6794	18.4609	18.8145	0.9606	2.1323
359.08	46.3854	433.6093	18.9491	19.3008	1.1605	2.1123
360.09	47.3723	422.8797	19.4754	19.8253	1.3543	2.1815
361.08	48.3592	412.6611	19.9804	20.3279	1.5719	2.0854
362.05	49.3462	402.6128	20.5553	20.9008	1.7770	2.0892
363.01	50.3331	393.0755	21.0995	21.4426	2.0066	2.0731
363.95	51.3200	393.0755	21.6511	21.9919	2.2501	2.0518
364.88	52.3069	375.0226	22.2094	22.5476	2.2504	2.0286
365.8	53.2938	366.5071	22.7223	23.0578	2.7863	2.0069
366.71	54.2807	358.162	23.3788	23.7117	3.0347	1.9907
367.6	55.2677	350.157	23.9743	24.3044	3.3229	1.9639
368.4	56.2543	342.4934	24.5527	24.8799	3.6309	1.9242
369.3	57.2415	334.9998	25.1706	25.4947	3.9428	1.8953
370.2	58.2284	327.676	25.8255	26.1466	4.2612	1.8751
371.0	59.2154	320.6937	26.4423	26.7601	4.6117	1.82845
371.8	60.2032	313.8813	27.0930	27.4076	4.9655	1.7934
372.7	61.1892	307.2393	27.7630	28.0750	5.3388	1.75248
373.5	62.1762	300.7675	28.4630	28.7709	5.7195	1.7235
374.3	63.1631	294.6363	29.1075	29.4117	6.1297	1.6656
375.1	64.1500	288.5052	29.8357	30.1364	6.5513	1.6251
375.9	65.1369	282.5443	30.5832	30.8802	6.9855	1.5883
376.7	66.1238	276.7538	31.3409	31.6342	7.4408	1.5465
377.4	67.1107	271.1335	32.1053	32.3947	7.9186	1.4985
378.2	68.0977	265.6836	32.4481	32.7326	8.4580	1.4428
378.9	69.0846	260.404	33.6216	33.9030	8.9470	1.3783
379.7	70.0715	255.2947	34.4007	34.6779	9.4965	1.3038
380.4	71.0585	250.1854	35.2514	35.5242	10.0615	1.25242
			25.8715	26.191	4.5705	1.820

TABLE C-12 I-Pentane

T(R)	P (psia)	Vexp (ft^3/ lb)	DEV SOAVE	DEV PR	DEV VIRI AL/ B	DEV RI AI/ C VI
460	2.18	2236.62	0.5603	0.2584	0.7932	0.8073
470	2.87	1715.85	0.6746	0.3035	0.8511	0.8695
480	3.73	1343.05	0.7976	0.3474	0.9106	0.9342
490	4.78	1065.27	0.8827	0.3442	1.0123	1.0418
500	6.05	854.779	1.0179	0.3815	1.0733	1.1093
510	7.59	691.286	1.2254	0.4793	1.0805	1.1238
520	9.42	564.634	1.3879	0.5230	1.1396	1.1903
530	11.57	465.5956	1.6459	0.6528	1.1199	1.1780
540	14.12	386.050	1.6024	0.4731	1.3974	1.4623
550	17.06	322.975	1.9491	0.6727	1.3300	1.4011
560	20.46	271.993	2.0581	0.6297	1.4970	1.5723
570	24.35	230.589	2.2757	0.6897	1.5870	1.6638
580	28.79	196.548	2.6359	0.8802	1.5808	1.6559
590	33.86	168.449	1.7735	0.1346	2.6556	2.7217
600	39.46	145.3154	2.7496	1.1760	2.1770	2.2308
610	45.77	125.8325	3.7728	1.3133	1.9892	2.0215
620	52.84	109.4002	4.4821	1.8283	2.1766	2.1762
630	60.72	95.3860	4.2956	1.4672	2.1185	2.0715
640	69.49	85.859	5.3641	2.3240	2.8270	2.7183
650	79.20	75.037	5.8596	2.6203	2.6679	2.4724
660	89.92	66.1625	5.4875	5.8596	3.0397	2.7328
			2.4031	1.1422	1.6678	1.6740

TABLE C-13 Ammonia

T(k)	P(atm)	Vexp $\left(\right.$ cm $^{\wedge}$ 3/ mole)	DEV SOAVE	DEV PR	DEV VI RIA L/ B	DEV VI RI AI / C	DEV This work
357.03	44.4115	456.260	15.283	15.4402	0.0966	2.1485	2.1070
358.06	45.398	444.679	16.1255	15.9190	0.0023	2.1323	2.1439
359.08	46.385	423.609	16.5784	16.3762	0.1449	2.1123	2.1426
360.09	47.372	422.879	16.9818	16.8753	0.2781	2.1081	2.1509
361.09	48.359	412.661	17.4051	17.3253	0.4474	2.0853	2.1421
362.05	49.346	402.612	17.8885	17.7953	0.6186	2.0891	2.1306
363.09	50.333	393.075	18.3275	18.3275	0.7708	2.0730	2.1485
363.95	51.3200	391.755	18.7645	18.8145	0.9606	2.0518	2.1323
365.8	53.2938	366.507	19.2395	19.3008	1.1605	2.0006	2.1123
366.71	54.2807	358.162	19.6919	19.8253	1.3543	1.9907	2.1081
367.6	55.2677	350.153	20.7048	20.3279	1.5719	1.9639	2.0891
368.48	56.2546	342.493	21.2026	20.9008	1.7770	1.9242	2.0730
370.21	58.2284	327.676	21.7061	21.4426	2.0066	1.8751	2.0518
371.05	59.2154	320.693	22.2091	21.9919	2.2501	1.8284	2.0286
371.89	60.2023	313.818	22.7634	22.5476	2.5041	1.7934	2.0006
372.71	61.1892	307.239	23.3023	23.10354	2.7711	1.7542	1.9907
372.71	62.1761	300.767	23.8235	23.7117	3.0347	1.7234	1.9639
373.53	63.1630	294.636	24.3832	24.3044	3.3229	1.6656	1.9242
374.34	64.1500	288.505	24.9790	24.8799	3.6309	1.6250	1.8952
375.13	65.1369	282.544	26.1272	25.4947	3.9428	1.5882	1.8751
375.92	66.1238	276.753	26.7375	26.1466	4.2612	1.5465	1.7934
376.7	67.1107	271.133	27.3747	27.4076	4.9655	1.4984	1.7542
377.47	68.0977	265.683	27.9570	28.0756	5.3388	1.4428	1.7234
378.23	70.0715	255.294	28.6223	28.7709	5.7195	1.3038	1.6656
379.72	71.0584	2501.18	29.3055	29.4117	5.8325	1.2524	1.6250
380.72	72.0454	245.246	29.9982	30.1364	5.9923	1.1889	1.5882
381.19	73.0323	2403.37	30.6969	30.8802	6.0276	1.1380	1.5465
381.0	74.0192	235.538	31.3980	31.6342	6.4645	1.0729	1.4984
382.62	75.0061	230.940	32.0977	32.3947	6.8023	0.9929	1.4428
383.32	75.9931	226.512	32.7922	33.1581	7.0135	0.9056	1.3783
384.02	76.9800	222.084	33.5733	33.7251	7.2432	0.8269	1.3038
384.71	77.9669	217.656	33.8251	34.0251	7.6758	0.7639	1.2524
385.40	78.9538	213.398	34.0221	34.3251	7.8805	0.6744	1.6425
AAD\%			24.448	24.3876	3.4504	0.929	1.875

C-11

TABLE C-14 i-Butane

T(k)	P (atm)	Vexp $\left(\right.$ cm $^{\wedge}$ 3/ mole) $)$	DEV SOAVE	DEV PR	DEV VI RI AL / B	DEV VI RI A/ C C
261.32	1	20682	0.7373	0.1101	0.0023	1.69852
270	1.39	15202	1.0312	0.2837	0.1449	1.7669
280	1.968	10921	1.8747	0.9314	0.2781	1.4371
290	2.714	8032	2.7049	1.6787	0.4474	1.2136
300	3.656	6031	3.5274	2.3716	0.6186	1.1166
310	4.826	4615	4.2171	2.9428	0.7708	1.2803
320	6.254	3577	5.2443	3.8573	0.9606	1.3619
330	7.975	2801	6.6687	5.1685	1.1605	1.3971
340	10.02	2209	8.7409	7.1161	1.3543	1.3050
350	12.44	1750	11.4798	9.7014	1.5719	1.2441
360	15.25	1387	15.5541	13.5686	1.7770	0.9788
370	18.52	1094	21.3483	19.0582	2.0066	0.7173
380	22.28	849.7	30.5465	27.7788	2.2501	0.3129
385	24.36	745.3	36.4548	33.3594	2.5041	0.3541
390	26.59	647.6	44.2023	40.6772	2.7711	0.5263
395	28.97	556.1	54.4850	50.3904	3.0347	0.9735
396	29.46	539.1	56.7822	52.5580	3.3229	1.1187
397	29.96	521.6	59.4119	55.0433	3.6309	1.2725
398	30.47	505.3	61.8717	57.3570	3.9428	1.4881
399	30.98	488.2	64.8632	60.1855	4.2612	1.6767
400	31.51	471	68.0776	63.2189	4.9655	1.9272
			26.6582	24.1598	1.9579	1.1984

APPENDIX D

Results of Investigations for Mixtures

Table D-1 : Mixture of 0.2143 mole \%Propane and 0.7857 mole $\%$ nOctane .

T(K)	P(bar)	Vexp $\left(\mathrm{cm}^{\wedge}\right.$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Viria I truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
520.55	17.001	1545.19	3.7139	0.4361	4.7273
530.15	20.402	1241.57	11.3808	2.5615	2.0873
538.85	23.809	1021.64	20.6820	4.8847	0.1345
545.65	27.211	826.678	35.1573	6.0385	1.4639
550.45	30.612	623.908	162.0557	9.1132	0.6824
549.85	34.013	451.121	49.251	19.3451	3.3896
			50.4982	5.10494	2.0808

Table D-2 : Mixture of 0.3306 mole \%Propane and 0.6694 mole \% nOctane .

T(K)	P(bar)	Vexp $\left(\mathrm{cm}^{\wedge}\right.$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
516.65	20.408	1300.63	6.1208	3.3272	3.01707
524.15	23.809	1110.29	12.9974	6.91655	0.47478
530.65	27.211	911.355	20.8161	7.7964	1.113233
536.15	30.612	771.652	31.3458	8.91726	2.64235
539.65	34.031	607.367	54.7068	6.4383	1.91642
539.65	37.414	535.870	76.5719	8.78195	6.65657
AAD\%			33.7598	7.0295	2.6367

D-1

Table D-3 : Mixture of 0.5729 mole \%Propane and 0.4271 mole $\%$ nOctane .

T(K)	P(bar)	Vexp (cm^3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
479.15	17.0068	1851.249	3.36317	7.4064	1.30037
487.65	20.4081	1511.223	4.65465	8.3314	1.46734
495.15	23.8095	1276.723	6.71127	9.5517	2.16838
500.65	27.2108	1073.188	8.4883	9.8859	1.7977
505.15	30.6123	949.3582	12.46742	12.0986	3.8891
508.65	34.0136	813.7357	15.99074	12.3299	3.7539
AAD\%			8.612588	7.3528	2.39614

Table D-4 : Mixture of 0.7175 mole \%Propane and 0.2825 mole $\%$ nOctane .

T(K)	P(bar)	Vexp $\left(\right.$ cm³/ $^{\wedge}$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
450.15	13.6054	2282.428	0.45137	4.0015	1.26228
458.75	17.0068	1831.175	1.50452	6.17836	0.1789
460.15	20.4082	1521.619	3.2233	7.8819	1.24178
472.15	23.8095	1278.16	4.18021	8.6533	1.26831
478.15	27.2108	1139.18	7.4886	11.3233	3.85705
484.15	30.6123	1065.133	12.17456	15.2366	8.2063
488.75	34.0136	819.333	7.12525	8.14707	0.7484
491.65	37.4149	727.0533	10.10858	9.5234	0.14095
492.75	38.2451	626.549	13.76164	9.9875	0.92391
AAD\%			6.6686	8.9925	1.98089

Table D-5 : Mixture of 0.864 mole \%Propane and 0.136 mole $\%$ nOctane .

T(K)	P(bar)	Vexp $\left(\mathrm{cm}^{\wedge}\right.$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
437.65	23.8095	1250.18	4.3497	8.78131	2.5558
441.95	27.2108	1115.026	7.6153	11.81644	5.3489
445.65	30.6122	940.925	6.5459	10.6820	3.1209
448.65	34.0136	812.617	6.8709	10.5598	2.0196
450.95	37.4144	715.1035	8.4083	11.2754	1.8778
452.45	40.8163	616.4868	9.8079	11.1742	0.39433
452.65	44.2176	511.2752	12.6328	10.5927	2.6992
AAD\%			8.03297	8.3202	2.00186

Table D-6 : Mixture of 0.1823 mole \%Propane and 0.8177 mole $\%$ nOctane .

T(K)	P(bar)	Vexp $\left(\mathrm{cm}^{\wedge}\right.$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
546.15	23.8095	945.486	10.0756	2.62426	1.7634
553.65	27.2108	693.356	14.40127	6.6721	0.9286
555.45	28.5714	581.025	18.7638	17.8653	1.4944
AAD\%			14.41355	9.0538	1.3955

Table D-7 : Mixture 0.4631 mole \%Propane and 0.5369 mole \% n-Octane

T(K)	P(bar)	Vexp $\left(\right.$ cm^3/ 2 mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
527.25	30.6122	711.6806	4.6698	2.6892	0.17341
529.45	34.0136	562.0916	8.87988	2.7749	0.91889
529.55	35.3741	504.2765	11.9635	7.0594	1.14948
528.35	36.7347	443.4593	18.3069	12.4208	1.13542
AAD\%			10.95502	6.23607	0.84429

Table D-8 : Mixture 0.6709 mole \%Propane and 0.3291 mole \% n-Octane

T(K)	P(bar)	Vexp $\left(\mathrm{cm}^{\wedge}\right.$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
500.65	40.8163	411.7696	19.2566	1.5325	2.0974
498.95	41.4966	369.9958	23.5627	0.3519	2.1915
497.05	41.8367	331.5547	29.9298	1.7899	0.84651
AAD\%			24.2497	1.2247	1.7179

Table D-9 : Mixture 0.8183 mole \%Propane and 0.1817 mole \% n-Octane

T(K)	P(bar)	Vexp $\left(\right.$ cm $^{\wedge}$ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
20.40816	456.95	1366.376	2.93264	6.05611	1.69247
23.8095	463.55	1138.647	3.8599	6.6378	1.49397
27.21088	469.05	948.8726	6.3869	6.16013	2.2032
30.61225	473.35	803.7509	8.9455	5.8291	2.1751
34.01361	476.35	690.0892	11.45102	5.8787	1.2473
AAD\%			6.71519	6.11716	1.76243

Table D-10 : Mixture 0.9461 mole \%Propane and 0.0539 mole \% nOctane .

T(K)	P(bar)	Vexp $\left(\right.$ cm³/ $^{\text {3/ }}$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
443.55	39.4557	384.58	34.7854	4.7506	0.8354
443.15	39.7959	427.6099	21.9138	1.6439	2.5982
440.0	39.9524	258.0094	90.71753	11.2561	2.8827
AAD\%			49.13891	5.8835	2.1054

Table D-11 : Mixture 0.16 mole \%N2and 0.84 mole \% He .

T()	P()	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
311.65	2543.96	1.23573	0.03217	1.56013	0.0479
311.65	1765.79	1.471942	0.059917	1.09838	0.00398
311.65	1226.84	2.116553	0.0449	0.75516	0.005903
311.65	852.345	3.0444	0.06195	0.55021	0.03477
311.65	592.548	4.37773	0.632208	0.3000	0.02885
AAD\%			0.16623	0.85278	0.024288

Table D-12 Mixture 0.314mole \%N2and 0.686 mole \% He .

T()	P()	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to and Virial mixing rules
311.65	3706.67	0.707253	0.03357	1.5468	0.133375
311.65	2566.56	1.017025	0.053472	1.10614	0.01662
311.65	1780.17	1.4624	0.073417	0.78258	0.02434
311.65	1236.06	2.103009	0.06021	0.54213	0.025927
AAD\%			0.05516	0.9444	0.05006

Table D-13: Mixture of 0.564 mole $\% \mathrm{~N} 2$ and 0.436 mole $\%$ He

$\mathbf{T}()$	$\mathbf{P ()}$	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to and Virial mixing rules
311.6	4301.34	0.61537	0.8138	0.4149	0.7711
311.6	3167.52	0.8306	0.5512	0.3103	0.5198
311.6	2337.26	1.1212	0.4024	0.2085	0.3794
311.6	1726.18	1.5133	0.2889	0.1484	0.2720
311.6	1276.18	2.0426	0.2096	0.1060	0.1972
311.6	943.943	2.7523	0.1516	0.0776	0.1425
311.6	698.534	3.7216	0.1156	0.0527	0.1077
311.6	517.061	5.0235	0.0845	0.0381	0.0794
311.6	383.008	6.7807	0.1115	0.0215	0.1078
AAD\%			0.3032	2.6636	0.2863

Table D-14 : Mixture of 0.178 mole \%N2 and 0.822 mole \% He

T()	P()	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
373.15	4425.87	0.7103	0.3421	1.4645	0.4495
373.15	3265.09	0.9585	0.1557	1.1468	0.2359
373.15	2411.94	1.2936	0.0362	0.9087	0.0959
373.15	1783.32	1.7459	0.0421	0.7311	0.0023
373.15	1319.45	2.3561	0.0881	0.5925	0.0551
373.15	976.773	3.1800	0.0971	0.4673	0.0726
373.15	723.15	4.2915	0.0991	0.3715	0.0899
373.15	535.907	5.7911	0.0839	0.2846	0.0704
AAD\%			0.1057	0.7815	0.1328

Table D-15 : Mixture of 0.86 mole $\% \mathrm{~N} 2$ and 0.14 mole \% He

T()	P()	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
311.65	4245.51	0.6240	1.6753	0.4141	1.5507
311.65	3127.19	0.8373	0.6600	0.2455	0.5663
311.65	2307.27	1.1369	0.9347	0.2944	0.8659
311.65	1703.88	1.5346	0.6921	0.2300	0.6410
311.65	1259.36	2.0713	0.5143	0.1787	0.4764
311.65	931.58	2.7959	0.4044	0.1596	0.3763
311.65	689.31	3.7740	0.3123	0.1329	0.291
311.65	510.17	5.0941	0.2357	0.1040	0.2203
AAD\%			0.6786	0.2199	0.6236

Table D-16 : Mixture of 0.513 mole \%N2 and 0.487 mole \% He

$\mathbf{T}()$	$\mathbf{P ()}$	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to and Virial mixing rules
373.15	4388.58	0.7201	0.5986	0.8859	0.3883
373.15	3233.78	0.9718	0.8095	0.6992	0.2099
373.15	23869.6	1.3116	1.0939	0.5636	0.0905
373.15	1763.35	1.7701	1.477	0.4586	0.0153
373.15	1303.74	2.3889	1.9957	0.3958	0.0507
373.15	964.816	3.2240	2.6938	0.3168	0.0644
373.15	714.239	4.3508	3.6360	0.2612	0.0761
373.15	528.916	5.8716	4.9071	0.2121	0.0759
AAD\%			2.1515	0.5007	0.1214

Table D-17 : Mixture of 0.672 mole $\%$ N2 and 0.328 mole $\% \mathbf{H e}$

$\mathbf{T}()$	$\mathbf{P}()$	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
373.15	4488.69	0.7042	0.7242	0.9234	0.5580
373.15	3305.93	0.9505	0.4201	0.7656	0.2966
373.15	2439.70	1.2827	0.2348	0.6238	0.1431
373.15	1802.57	1.7311	0.1138	0.5114	0.0457
373.15	1332.82	2.3363	0.0240	0.4331	0.0264
373.15	986.196	3.1531	0.0279	0.3632	0.0653
373.15	730.046	4.2553	0.0565	0.3031	0.0843
373.15	401.044	7.7398	0.0528	0.1870	0.0681
AAD\%			0.2068	0.5372	0.1609

Table D-18 : Mixture of 0.199 mole \%N2 and 0.881 mole \% He

$\mathbf{T}()$	P()	Vexp()	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Viaal mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
373.15	1989	1.4748	4.5836	0.2249	4.5836
373.15	1423.6	2.0937	3.2769	0.2112	3.2769
373.15	1014.8	2.9728	2.2690	0.1143	2.2690
373.15	720.62	4.2203	1.6191	0.1028	1.6191
373.15	510.67	5.9916	1.1259	0.0590	1.1259
373.15	361.12	8.506	0.7979	0.0469	0.7979
373.15	255.23	12.0782	0.4994	0.0288	0.4994
AAD\%			2.0245	0.1125	2.0245

Table D-19 : Mixture of 0.248 mole \%CO2 and 0.752 mole \% ethylene

T(k)	P(kpa)	Vexp(m ^ $3 /$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
373.15	2045.95	1.4279	4.0540	0.4759	4.0540
373.15	1463.44	2.0369	2.5689	0.0646	2.5689
373.15	1043.14	2.8919	1.8165	0.0502	1.8165
373.15	740.787	4.1050	1.3058	0.0602	1.3058
373.15	524.965	5.8281	0.8993	0.0218	0.8993
AAD\%			2.1289	0.1345	2.1289

Table D-20 : Mixture of 0.695 mole \%CO2 and 0.305 mole \% ethylene

T(k)	P(kpa)	Vexp(m $3 /$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to and Virial mixing rules
373.15	3143	0.9097	4.6002	0.4603	4.6002
373.15	2266.43	1.2916	3.2973	0.3016	3.2973
373.15	1262.87	1.8339	2.1306	0.4133	2.1306
373.15	1161.18	2.6035	1.3294	0.4668	1.3294
373.15	825.292	3.6959	0.8099	0.4580	0.8099
AAD\%			2.4334	0.4200	2.4334

Table D-21 : Mixture of 0.933 mole \%H2S and 0.067mole \% CH4

T(k)	P(kpa)	Vexp(m ^ $3 /$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
230.594	213.678	8.7282	2.4389	2.4396	0.6442
262.816	758.214	2.5833	6.9098	6.9428	5.6898
289.261	1702.53	1.3016	11.1443	11.2739	0.5913
323.316	3687.67	0.6401	15.3498	16.0095	0.9198
352.983	6341.42	0.3780	16.8320	18.3251	1.4724
AAD\%			10.5349	10.9979	1.8635

Table D-22 : Mixture of 0.771 mole \%H2S and 0.229 mole \% CH4

$T(k)$	P(kpa)	Vexp(m^ $3 /$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
197.816	48.25	33.4289	1.6580	1.6584	1.1497
233.15	337.75	5.8382	2.9224	2.9107	4.6908
282.761	1654.28	1.3188	3.6850	3.9443	1.6223
311.5945	3446.42	0.6601	6.8349	7.8399	1.7103
AAD\%			3.7751	4.0883	2.2933

Table D-23 : Mixture of 0.458 mole \%H2S and 0.542 mole \% CH4

$T(k)$	P(kpa)	Vexp(m^^ 3/ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Virial mixing rules with Teja	AAD\% Virial Truncated to C and Virial mixing rules
198.205	117.178	13.9745	0.1849	0.1787	1.283
230.8722	544.535	3.3943	1.2798	1.3684	1.6995
254.1722	1316.53	1.5274	0.2994	0.7910	4.8746
276.7611	3012.17	0.63923	8.5171	11.6032	2.27813
AAD\%			2.57036	3.4853	2.5340

Table D-24 : Mixture of 0.15 mole $\% \mathrm{H} 2$ and 0.85 mole \% CH4

T(k)	P(kpa)	Vexp(m^ $3 /$ mole)	AAD\% Virial truncated to B and Virial mixing rules	AAD\% Virial truncated to C with Vialial mixing rules with Teja	AAD\% Virial Truncated to and Virial mixing rules
373.15	3510.1	0.617169	4.5891	5.4500	4.2067
270	3464	0.617169	4.7373	5.6011	4.2743
260	3315.2	0.617169	5.3122	6.187	4.5767
250	3169.4	0.617131	5.8466	6.7330	4.8111
240	3021.8	0.617131	6.4879	7.3880	5.1197
230	2869.8	0.617131	7.3585	8.2755	5.6170
220	2719.9	0.617131	8.2415	9.1775	6.0822
210	2569.7	0.617093	9.2456	10.2038	6.6139
200	2418.2	0.61709	10.4244	11.4091	7.2538
190	2266.1	0.61705	11.79512	12.8116	8.0042
AAD\%			7.40386	8.3236	5.6559

الخلاصة

التنبؤ بالحجم الهولي للبخار المشبع يمكن ان يحسب من عدد من معادلات الحالة، البعض
من هذه المعادلات يطبق على كلا الطورين السائل و الغازي ،و البعض منها يطبق على الطور الغازي فقط . ان دقة هذه المعادلات مختلفة. للمركبات النقية ،الحجم المولي للبخـار المشبع يدكن ان يحسب من عدد من المعادلات مثل معادلة لي كسلر التي تعطي انحراف عالي جدا عن الحجم المولي المقاس عمليا ،وقد استعطلت لحساب الحجم المولي لثلاث مركبات (72نقطة قطبية و غبر قطبية) مع نسبة مئويـة لمعدل الخطأ 62.8654 ،و عندما وجد ان انحر افه عـالي جدا فلا نوجـ حاجه لاستخدام هذه المعادلـة للمركبات الأخرى. معادلـة ريدلك سـو اف هي ثاني معاديلة حالـة استخذمت لحساب الانحراف للحجم المولي في هذا المشروع ،وقد أعطت نسبة مئوية لمعدل الخطأ 15.3125\% لأربع عشرة مركب (299نقطة). معادلة الحالـة بينغ- روبنسون استخدمت

في هذا المشروع وطبقت على 299 نططة وأعطت نسبة مئوية لمعدل الخطأ 14.3476 \% . واخيرا معادلـة الحالـة فيريـل والتـي يوكن ان تستعمل لحساب الحجم المولي (معادلـة فيريـلـ اللقطوعة للحد الثاني و معادلة فيريال المقطوعة للحد الثالث)،استخدام معادلـة فيريـل المقطوعة للحد الثاني تعطي نسبة مئويـة لمعدل الخطأ 27525\% ل299نقطـة (قطبيـة وغير قطبيـة)و هذا الانحر اف العالي نسبيا سببه أن حدود بعض المركبـات في هذا المشروع عاليـة نسبيا بينمـا الحد الثاني يستعمل لضغوطو واطئة نسبيا (لا تتجاوز 15 بـر) . بينمـا معادلـة فيريـال المقطو عـة للحد الثالث تعطي نتائج افضل حيث ان النسبة المئوية لمعدل الخطأ هي 1.0955\% هذا لانـ الانه يمكن

استخدامها لضغوط حدودها اكبر من معادلة فيريال المقطو عة للحد الثناني (تصل الى 50 بار).
 يكن استخدامها لحساب الحجم المولي ، ومن الواضح أيضا إن معادلة المقطوعة للحد الثالث هي أحسن مـن المقطو عـة للحد الثـناني بالنسبة للظروف الموجودة في هذا المشروع (الضغوطو درجات الحرارة) .
الارتباط يجب أن يتم على هذه المعاملات لمعلــة فيريـل لكي تقلل الانحر اف للحجم المولي المحسب من نلك المعادلات. بالنسبة لمعامل فير يال الثاني وباستخذام الطرق الإلحصائئية فان الارتباط قد طور وهذا التعديل قد حسن نسبة الانحر اف من 7.5525 إلى 3.5209 باستخدام 89 نقطة لأربع مركبات وبعدها طبق هذا التطوير على 210 نقاط .
$B 0 m=0.1258-\frac{0.3017}{\operatorname{Tr}}-\frac{0.1258}{\operatorname{Tr}^{2.31}}-\frac{0.01325}{\operatorname{Tr}^{3.21}}-\frac{0.005748}{\operatorname{Tr}^{7.85}}$
$B 1 m=0.05257+\frac{0.3575}{T r^{1.8}}-\frac{0.47155}{T r^{3}}-\frac{0.002184}{\operatorname{Tr}^{7.85}}$
إن الارتبـاط طـور لتــسين نـسبة الانحـراف للحجم المـولي المحسوب باسـتخدام معادلــة فيريـال المقطو عة للحد الثنالث تعطي انحر اف مقبول نسبيا ويقلل الانحر اف من 1.0955 الـى0.7899 \% هذا الارتبـاط طـور باسـتخدام 60 نقطـة ل3 مركبـات قطبيـة و غيـر القطبيـة وطبقت 239 نقطـة
(11مركب قطبي و غير قطبي).
$C 1 m=0.022501+\frac{1.265968}{\operatorname{Tr}^{5}}-\frac{0.507}{\operatorname{Tr}^{5.5}}-\frac{0.75663}{\operatorname{Tr}^{4.4}}$

بالنسبة للخلائط الثنائية ،حساب الحجم المولي للبخار المشبع تم باستخدام ثلاث طرق. الطريقة الأولى تتم عن طريق استخدام معادلة فيريال المطورة المقطو عة للحد الثاني مـع قانون فيريال للخلانُط وقد أعطت نسبة انحر اف عاليـة نسبيا عن الحجم المولي المستحصل من التجارب العملية ،النسبة المئوية لمعدل الخطا هي 8.3919\% استخدمت 142 نقطة (6 خلائط). الطريقة الثنانية تمت باستخدام معادلـة فيريـال المطورة المقطو عـة للحد الثالث و معادلـة تيجـا مـع قو انين فيريال للخلانُط و هذا يعطي نسبة مئويـة لمعدل الخطـأ 3.4669 \% باستخدام 142 نقطة (6خلائط) هو هذه النسبة هـي أفضل نـسبيا عـن تلـك المستحصلة مـن معادلــة فيريــال المطورة المقطو عة للحد الثناني
الطريقة الثالثة تمت باستخدام معادلـة فيريـال المطورة المقطو عـة للحد الثالث مـع قوانين فيريــال للخلائـط و هـذه الطريقـة أعطـت اقـل انحـر اف واحـسن دقــة مـن الطـريقتين الـسابقتين المستخدمة لحساب الحجم المولي للبخـار المشبع للخلائط الثنائية، نسبة مئويـة لمعدل الخطـا هي 1.4967 باستخدام 142 نقطة (6خلائط).

اتقدم بجزيل الثكر و الامتنــان الـى الاسـتاذ الـكتور محمود عمر عبدالله المحترم على الـى

 ومساعدة.
واخيرا اتقدم بجزيل شكري وعظيم امتناني الى اغلى من في هذه اللدنيا الـى ابـي وامـي والى زوجي شريك الافراح والاحزان والـى جميع افراد عائلتّي لدعمهم المتو اصـل وتشجيعهم الاائم ومساعدتّه في انجاز هذا المشروع .

التحقق من الارتباطات للتتبؤ بعجم البخار المشبع للمركبات النقية والخلانط

من قبل
$1 \leqslant r v$
$r . . r$
ربيع الثاني

$$
\begin{aligned}
& \text { رسالة } \\
& \text { مقدمة إلى كلية الهندسة } \\
& \text { في جامعة النهرين و هي جزء } \\
& \text { من متطلبات نيل درجة } \\
& \text { ماجستير علوم } \\
& \text { الهنذسة الكّيمياوية }
\end{aligned}
$$

