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Abstract   

In this work it is attempted to find a model describes potential, 

current, and concentration distributions in addition to hydrodynamic 

study along an electrochemical fluidized bed reactor. Electrochemical 

fluidized bed reactor consists of a bed of particles which fluidizes and 

expands by an upward moving electrolyte. An electrical potential 

difference is applied between the upper and lower parts of the bed 

which induces the electrochemical reaction to take place on the 

surfaces of the particles. Electrochemical fluidized bed reactor 

represents one of the most useful applications in electrochemical 

engineering and its main uses are: electrowinning, pollution inhibition, 

and purification. 

Three cases have been considered in this work linear, Tafel, and 

concentration polarization models. Models have been developed 

starting from Ohm s law and using Laplace transformation to solve for 

the potential distribution across the bed. Tafel polarization has been 

tested and found that the resistivity equation suggested by Fleischmann 

et al (1971) is invalid since Fleischmann suggestion assumes constant 

metal phase resistivity along the bed while in fact this is not the case 

since the particles are discrete in the bottom of the bed and become 

closer up to the end of the reactor. So, an expression has been 

developed to describe the local metal phase resistivity which depends 

on both local position and bed expansion due to fluidization. A 

correction factor has been used and inserted to equation suggested by 



 

II

 
Fleischmann et al and it covers a wide range of particle diameter. The 

error has been reduced greatly by this assumption for both solution and 

metal phase potential profiles. Concentration profiles have also been 

studied in this work in addition to velocity change and pressure drop 

change with percentage expansion of fluidized bed.                     
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Symbol    Definition     Unit

 
A    Cross Sectional area of bed            m2 

AR    Area of reaction surface   m2 

a

    

1) Surface area of particles/unit  m2/m3  

volume of bed      

2) First Tafel coefficient   Volts 

Ra

    

Activity of reduced species  - 

Oa

    

Activity of oxidized species  - 

a

    

Surface area of particles per unit m2/m3     

volume of bed at static conditions 

b    Second Tafel coefficient   Volts 

C    Double layer capacity   Farads/m2 

Cav    Average bulk concentration  mol/m3 

bOC

    

Bulk concentration of oxidized   mol/m3      

species 

sOC

    

Surface concentration of oxidized  mol/m3      

species 

Ci    Concentration of species i  mol/m3 

bRC

    

Bulk concentration of reduced  mol/m3      

species 

sRC

    

Surface concentration of reduced mol/m3      

species 

D    Diffusivity      m2/s 



 

VI

 
jD

    
Diffusivity of component j  m2/s 

d    Diameter of particle   m 

F    Faraday constant 96487       coulomb/equiv. 

fr    Collision frequencies of particles Hertz=1/s     

per unit area 

g    Gravitational acceleration 9.81  m/s2 

I    Total current density   A/m2 

Ij    Current density of component j  A 

Itotal    Total current    A 

i    Local current density   A/m2 

ai

    

Anodic current density   A/m2 

ci

    

Cathodic current density   A/m2 

iL    Limiting current density   A/m2 

im    Metal phase current density  A/m2 

io    Exchange current density   A/m2 

is    Solution phase current density  A/m2 

Jj    Molar flux per unit area    mol/s.m2 

Dj

    

Mass transfer j-factor
2

3av

av

K
Sc

U

  

- 

ak

    

Anodic reaction rate constant    m/s 

ck

    

Cathodic reaction rate constant  m/s 

Kav    Mass transfer coefficient   m/s 

Ks    Solution conductivity   1 1.m

 

Km    Metal phase conductivity   1 1.m

 

L    Height of bed    m 

Mj    Molecular weight of species j  g/g.mole 
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nj    Molar flux of component j  mol/s 

R    Gas constant 8.314    J/g.mole.K 

Rep    Reynolds number= av pU d

  
- 

r    Radius of particle    m 

Sc    Schmidt number= D

   

- 

T    Temperature  of fluidized bed  K 

Uav    Superficial average velocity in   m/s     

empty section of bed 

up    Velocity of particle   m/s 

tu

    

Terminal settling velocity  m/s 

ux    Local Velocity     m/s 

V    a) Voltage of electrolysis   Volts     

b) Specific volume of diffusion layer m3 

aV

    

Anodic potential    Volts 

cV

    

Cathodic potential    Volts 

Vohm    Voltage contribution due to   Volts     

solution resistance 

Vmin    Minimum voltage of electrolysis Volts 

x     Distance from bottom of bed  m 

z    Number of electrons associated   -     

with electrochemical reaction  

Greek Letters  Definition     Unit

     

Transfer coefficient   - 

    

Diffusion layer thickness   m 
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Expansion coefficient   - 

    
Porosity of bed= (volume   -     

of spaces/ volume of bed) 

j

    
Current efficiency    - 

    

1) Sphericity of particle   -     

2) Potential     Volts 

m

    

Metal potential    Volts 

s

    

Solution potential    Volts 

    

Overpotential    Volts 

a

    

Anodic overpotential   Volts 

c

    

Cathodic potential    Volts 

    

Dynamic viscosity    Kg/m.s 

    

Kinematic viscosity   m2/s  

jv

    

Stoichiometric coefficient  - 

p

    

Interstitial velocity    m/s 

    

Density of solution    Kg/m3 

m

    

Density of solid    Kg/m3 

m

    

Resistivity of metal phase  .m 

s

    

Resistivity of solution phase  .m 

    

Local resistivity correction factor  -  

Abbreviations

 

c.d.    Current density 

EFBR    Electrochemical fluidized bed reactor 

emf    Electromotive force 
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Chapter One 

Introduction  

1.1 Introduction 

Since 1960, there were significant developments in electrolytic cells, 

partly by the application of chemical engineering principles to their design 

and partly by the development and use of new materials of construction. This 

has resulted in a trend away from the concept of an electrolytic cell as 

represented by a number of plate electrodes dipping into a rectangular tank 

and has led to the use of the so called three dimensional electrodes in the form 

of fixed and fluidized beds of electronically conducting particles in contact 

with a usually metallic plate, rod or gauze, termed the current feeder. As a 

result of these developments, packed and fluidized beds are now competitive 

with other types in terms of space time yield, the purity of product, and 

production costs [1].  

An electrochemical fluidized bed reactor (EFBR) consists of a bed of 

electrically conducting particles fluidized by electrolyte flow, to which direct 

current is fed by one or more connecting rods or plates known as the current 

feeder, and which are often separated from one or more immersed counter 

electrodes by a diaphragm of porous or ionically conductive material that is 

desirably long lasting. Provided the bed expansion from the static condition is 

small, e.g. 5-25%, some electrical contact is maintained between the particles 

and the current feeder and between the particles themselves, so that the 

surfaces of the particles then act as a large extension of the feeder surface, 

thereby greatly increasing the current density based on the counter electrode 

surface area. Though the many trials and proposed applications of EFBRs 

include their use for fuel cell, organic and inorganic synthesis, industrial 



 
wastewater treatment and electrowinning( or electrodeposition) of metals, the 

qualified success of this technology has been mainly in the area of 

electrowinning, especially from dilute solutions, with the concomitant 

reduction of metallic components in the solutions involved [2]. It has the 

advantages that material transport and adsorption/desorption are spatially 

separated from electron transfer process (which is usually rapid), high space 

time yield, and giving very high specific surface area per unit volume of the 

bed for low real current densities. This advantage allows very dilute solutions 

to be electrolyzed [3].   

1.2 Scope of Present Work 

This work studies the potential, overpotential, and concentration profile 

in an EFBR in copper electrolyte system. New equations have been developed 

using Laplace transformation for the two cases of linear and concentration 

overpotentials. For the case of Tafel overpotential, a trial and error equation 

developed by Fleischmann (1971) has been simplified to a simpler one. The 

main problem was the great difference between experimental and theoretical 

solution potential profile. By developing an equation for the metal phase 

resistivity (or dispersed phase) varying with distance and percent expansion 

rather than a constant value along the bed suggested by Fleischmann. An 

important issue is that all the equations based on integration of an Ohm s law 

equation which contains metal phase resistivity as a parameter. Assuming that 

metal phase resistivity is constant along the bed will eventually lead to false 

potential profiles. So, using local values of resistivity will greatly reduce the 

difference and could be generalized to other electrochemical systems.    



      
Chapter Two 

Electrochemical Reactors and Literature Survey of  

Electrochemical Fluidized Bed Reactor  

2.1 Introduction 

The electrochemical reactor which is also called electrolyser or 

electrolytic cell or electrochemical cell which consists of two 

compartments (electrodes) connected to external direct current (d.c.) power 

supply and immersed in a conducting liquid called electrolyte. When an 

electromotive force (emf) of a sufficient magnitude is applied, electrons 

transfer occurs between each electrode and the liquid. Electrical conduction in 

the liquid phase is due to the motion of charged species called ions which 

results from the dissolving or melting of the chemical compound. This ionic 

movement or migration which takes place due to the potential gradient is in 

fact is a slow process. The main means of ionic transfer is nearly always due 

to mass transfer arising from concentration differences between various parts 

of the solution [4].  

An electrode is a material in which electrons are the mobile species and 

therefore can be used to sense (or control) the potential of electrons. In  

electrochemistry, an electrode is considered to be an electronic conductor that 

carries out an electrochemical reaction or some similar interaction with an 

adjacent phase. Electronic conductivity generally decreases slightly with 

increasing temperature and is of the order 102 to 104 S/cm, where a siemens 

(S) is an inverse ohm ( 1 ).The primary distinction between an 

electrochemical reaction and a chemical redox reaction is that, in an 

electrochemical reaction, reduction occurs at one electrode and oxidation 



 
occurs at the other, while in a chemical reaction, both reduction and oxidation 

occur in the same place [5].  

Electrolysis is the conversion of electrical energy into chemical energy 

in order to convert substances by oxidation or reduction, so that products are 

formed as the element or an appropriate compound. Also included is the 

generation of charged intermediates that link to other species, as in 

electrosynthesis. The design of the cells where these reactions take place, 

together with associated operations, is electrochemical engineering [6].  

One of the most essential characteristics of electrochemical systems is 

their ability to conduct electric currents. No matter whether they are ionic or 

electronic conductors, neutral components are always used in their 

construction, and the electrical conductivity is possible due to the 

decomposition of some of them in mobile charged species (i.e., ions, 

electrons, etc.) [7].  

The general form of the electrochemical reaction equations can 

generally be written as [8] 

'j j j j
ox red

X ze X

      

2.1 

where Xj are the species involved in the reaction and j are their 

stoichiometric coefficients. The summation index ox and red implies that 

the sum is taken over the oxidized and reduced form of the principal reaction 

components respectively and z is the number of electron associated with the 

overall electrochemical reaction. Sometimes a general conventional 

formulation can be used for relatively simple redox reactions [8]  

Ox+ze Red         2.2 

where Ox and Red are the oxidized and reduced form of the principal reaction 

components respectively.  



 
2.2 Factors Affecting Electrode Reaction Rate and Current 

Consider an overall electrode reaction, Ox+ze Red, composed of a 

series of steps that cause the conversion of the dissolved oxidized species, Ox, 

to a reduced form, Red. In general, the current (or electrode reaction rate) is 

governed by the rates of processes such as [9]: 

1. Mass transfer (e.g., of Ox from the bulk solution to the electrode  

surface). 

2. Electron transfer at the electrode surface. 

3. Chemical reactions preceding or following the electron transfer. These  

might be homogeneous processes (e.g., protonation or dimerization) or  

heterogeneous ones (e.g., catalytic decomposition) on the electrode  

surface. 

4. Other surface reactions, such as adsorption, desorption, or  

crystallization (electrodeposition) [9].  

2.3 Types of Electrochemical Reactors 

Several types of electrochemical reactors have been used in chemical 

industries starting from the simplest one which is the two plate reactors and 

rectangular tank reactor, then for more difficult ones, which includes filter 

press type, and goes further with complexity to the packed and fluidized bed 

reactors. The most known types of electrochemical reactors which are 

commonly used in chemical industry are:  

1) Plate and frame cell: The most frequently employed in industrial 

organic electrochemical synthesis is the plate and frame cell or filter 

press design. In this cell, anolyte and catholyte streams flow in parallel 



 
and are separated from each other by a diaphragm. Electrodes are 

normally linked in bipolar manner as shown in Fig. 2.1.   

 

Fig. 2.1 Schematic drawing of filter press reactor. a, anode;c, cathode; d, 

diaphragm; a.f, anolyte flow; c.f, catholyte flow [1].  

2) Seachlor Cell: is shown in Fig. 2.2 and was designed by De Nora, 

for the production of hypochlorite from seawater. It is undivided 

cell with bipolar electrodes, and its most important feature is the 

flow of electrolyte through successive anodic and cathodic 

regions. In this way, the design avoids the deposition of 

hydroxides on the cathode when the pH becomes too high [1].   

3) Chemelec Cell: was developed by the Electricity Research Council 

at Capenhurst for the removal of metal from dilute solutions. Its 

construction is similar to the plate and frame cell shown in Fig. 

2.1. The metal is deposited on a gauze cathode in contact with a 

bed of non conducting glass beads, which are fluidized by the flow 

of electrolyte [1].  



  

Fig. 2.2 Schematic diagram of a Seachlor cell [1].  

4) Fluidized bed cell: Figure 2.3 shows a typical rectangular fluidized 

bed. The fluidized beds have been dealt with extensively through 

the body of this thesis. 

5) Fixed bed cell: Figure 2.4 shows an example developed by the 

Nalco Chemical Company for the production of alkyl lead 

compounds. The modeling is easier than fluidized bed since the 

metal particles are in close contact with each other and hence 

charge transfer by electron flow as through a continuous conductor 

can be assumed [4].  



    

Fig. 2.3 Fluidized bed cell with rectangular geometry [1].      

 

Fig. 2.4 Fixed bed cell with cylindrical shell [1].   



 
2.4 Modes of Mass Transfer 

The movement of material from one location in solution to another 

arises from differences in electrical or chemical potential at the two locations, 

or from movement of volume element of solution. The modes of mass transfer 

are: 

1) Migration which is the movement of a charged body under the 

influence of an electric field (a gradient of electrical potential). 

2) Diffusion which is the movement of a species under the influence of 

a gradient of chemical potential (concentration gradient). 

3) Convection which is the stirring or hydrodynamic transport [5, 9, 10] as 

shown in Fig. 2.5.   

 

Fig. 2.5 The three modes of mass transfer [10]. 



  
Mass transfer to an electrode is governed by the Nernst-Planck 

equation, written for one dimensional mass transfer along the x-axis as  

( ) ( )
( ) ( )j j

j j j j j
C x z F x

J x D D C C u x
x RT x

   
2.3 

where ( )jJ x is the flux of species j (mol/sec.m2) at distance x from the surface, 

jD is the diffusion coefficient (m2/s), ( )jC x
x

 

is the concentration gradient at 

distance x, ( )x
x is the potential gradient, zj is the number of electrons 

associated with the production of a molecule j, F is the Faraday number, Cj is 

the concentration of species i (mol/m3), and ( )u x

 

is the velocity (m/s) with 

which a volume element in solution moves along the axis [9]. 

The rate of electrochemical reaction is measured by the number of moles 

produced nj at an electrode by a current Ij for t seconds [4].  

Fz

tI
n

j

j
j

         

2.4 

for a number of reactions at an electrode we can write [4]  

j
j

j

It
n

F n

        

2.5 

where jn is the total number of moles produced. The total current I is the 

sum of all currents [4].  

jII         2.6 

 The current efficiency j  of a given species j is given by [4]  

I

I j
j

         

2.7 

The sum of the respective current efficiencies for all of the reactions in the 

systems is equal to unity ( 1j ) [4].  



 
2.5 Voltage Required for Electrolysis 

The voltage required for electrolysis is the difference between the two 

terminals potential of the power supply, which is [6]  

V

         
2.8 

where and are the electrical potentials of the positive and negative 

terminals of the power supply. When there is no current applied, the voltage is 

called the minimum voltage (Vmin) which is [6]  

min
G

V
zF

         

2.9 

where G

 

is the Gibbs free energy of the electrochemical reaction in J/mol. 

Another expression for Vmin is found by Nernst equation[6]  

min min ln
r

o

v
R

v
O

RT a
V V

zF a

      

2.10  

minV is the standard minimum electrolyzing voltage corresponding to unit 

activities of the oxidized and reduced species Oa and Ra . The electrolyzing 

voltage is written as [5]  

1 1 2 2( ) ( ) ( )a s s s s cV

     

2.11 

where 1s and 2s are the solution potentials adjacent to the anode and cathode 

respectively, a and c are the anode and cathode potentials and equal to the 

positive and negative power supply terminals respectively. Fig. 2.6 shows the 

cases when there is a current flowing in the system, and the case of zero 

current [4]. 



   

Fig. 2.6 The voltage components in a two compartment reactor. (a) Finite 

current (b) Zero current [4]  

Equation 2.11 can be written in an alternative form by replacing the first and 

last term by the voltage of anode and cathode compartments, as follows [4]  

1 2( )a s s cV V V

       

2.12 

or 1 2( ) ( )a c s sV V V

      

2.13 

The anodic and cathodic potential can be written in accordance with equation 

2.10 as [6]  

ln M
a a z

M

aRT
V V

zF a

        

2.14 

and ( ) ( ) ln N
c c z

N

aRT
V V

zF a

       

2.15 

where aV and cV are the standard anode and cathode potentials respectively, 

and M and N are the oxidized and reduced species respectively. 

For processes which occur in a single compartment reactor, 

1 2( )s s vanishes and equation 2.13 becomes at equilibrium [4]  

V

 
Vmin

 
+

   
+

 

a

  

1s

 

c

 

2s

 

(a) (b) 



  
min( )a cV V V V

       
2.16 

If both the electrode processes were perfectly reversible in the thermodynamic 

sense, it would be possible to pass a large current through the reactor without 

the electrode potentials deviating noticeably from their equilibrium values, an 

electrode which is capable of participating in a perfectly reversible process is 

referred to as non polarizing electrode

 

under such operation. In practical 

processes, an electrode shows deviation from any equilibrium potential and is 

said to be polarized or to exhibit polarization. The magnitude of this 

deviation in potential is known as the overpotential ( ) or less frequently as 

the overvoltage. So, equation 2.16 can be written as [4]  

* *( )a c ohmV V V V

       

2.17 

where Vohm represents the voltage contribution due to the solution resistance. 

Subtracting equation 2.16 from 2.17and rearranging to get [5]  

* *
min ( ) ( ( ))a a c c ohmV V V V V V V

    

2.18  

min a c ohmV V V

       

2.19 

where a and c are the anodic and cathodic overpotentials defined by [5]  

*
a a aV V

         

2.20 

and *( ) ( )c c cV V

        

2.21 

Since the overpotential has a negative value but causes an increase in the 

operating voltage, we can write equation 2.19 in an alternative form [5]  

min | |a c ohmV V V

       

2.22  

Two types of overpotential are arises in most of the systems. The first 

one is the concentration overpotential which is caused by change in the 

concentration of species participating in an electrode reaction. The second one 

is the activation overpotential which arises due to phenomena associated 

with an electrode reaction. The essential feature of any electrode reaction is 



 
electron transfer across the electrode/solution interface but this process is only 

one in a sequence of reaction steps. The typical sequence includes adsorption 

and desorption of reactants, products and intermediates together with surface 

diffusion and surface chemical reactions. The rate determining step will be the 

slowest step between them. The rate determining step represents the state of 

maximum energy for a system and the difference between these states and the 

original state is known as the activation energy [4].  

2.6 Current, Exchange Current, Limiting Current and Tafel 

Equation 

The general electrode reaction isO ze R . The current which flows 

when the electrode is polarized cathodically represent the difference between 

the rates of forward (cathodic) and reverse (anodic) reactions [11]. 

The current density (i) , which will be considered a positive quantity is [4]   

c ai i i

         

2.23 

where ci and ai

 

is the partial current density for the cathodic and anodic 

reaction. By analogy with chemical kinetics, the rate of the forward reaction 

can be written as [4]  

c
c OS

i
k C

zF

         

2.24 

where ck is the electrochemical rate constant and OSC

 

is the concentration of O 

at the point close to the electrode surface, for reverse reaction we can write [4]   

a
a RS

i
k C

zF
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where ak

 

and RSC

 

have corresponding meaning to those above. By 

substituting equations 2.24 and 2.25 into 2.23 to get  

c OS a RSi zFk C zFk C

       

2.26 



 
Using an Arrhenius type of rate constant activation energy type [11]  

*( )
exp c

c c
zF V

k k
RT

      
2.27 

and 
*(1 ) ( )

exp c
a a

zF V
k k

RT
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where ck

 

and ak

 

are standard rate constants referenced to some particular 

electrode potential, and 

 

is the transfer coefficient. Substituting 2.27 and 

2.28 into equation 2.26 to eliminate the rate constants ck and ak . We get [6]  

* *( ) (1 ) ( )
exp expc c

c OS a RS
zF V zF V

i zFk C zFk C
RT RT
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At equilibrium, *
c cV V , the bulk concentration of O and R are denoted by 

bOC and 
bRC  respectively, and 0i , so that [6]  

( ) (1 ) ( )
exp expc c

c Ob a Rb
zF V zF V

i zFk C zFk C
RT RT

  

2.30 

where i

 

is the exchange current density and represents the rates of forward 

and reverse reactions at equilibrium. Substituting equations 2.30 into 2.29 to 

get [6]  

(1 )
exp expOS RS

Ob Rb

C CzF zF
i i

C RT C RT
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Cathodic polarization causes an increase in the forward reaction rate, and 

simultaneously, a decrease in the reverse reaction rate, so that initially the 

current arises steeply. The increase in the forward reaction rate is 

accompanied by a decrease in the concentration of O at the electrode surface. 

At low to moderate overpotentials, the rate of reduction of O is compensated 

by the low rate of mass transfer of O from the solution bulk, but at high 

overpotential, the surface concentration of O is limited by the rate of mass 

transfer. This results in a constant current density known as the limiting 



 
current density

 
[4]. Fig. 2.7 shows the relation between overpotential and 

current.  

 

Fig. 2.7 The effect of the value of  

 

on the current density, i (a) = 0.25: 

oxidation favored (b) 

 

= 0.50: symmetric (c) = 0.75: reduction favored [6].  

At low overpotentials, surface concentration of O and R do not much differ 

from their values in the bulk, so, equation 2.32 can be approximated to [5]:  

(1 )
exp exp

zF zF
i i

RT RT
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For appreciable cathodic polarization, the second exponential term is almost 

zero, so, equation 2.32 can be written as  

exp
zF

i i
RT
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or ln ln
RT RT

i i
zF zF
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It has been found experimentally that for many reactions, the cathodic 

overpotential can be expressed by an empirical equation [10]  

loga b i

        

2.35 



 
where ( / ) lna RT zF i and 2.303 /b RT zF

 
Nernst and Merriam suggested that mass transfer occurs solely by 

molecular diffusion through a thin layer of solution adjacent to an electrode. 

This layer has a linear concentration gradient across it and the outer edge 

which is assumed to be maintained at constant bulk concentration by 

migration and convection as shown in the next figure [9].    

 

Fig. 2.8 Diffusion layer thickness [9]  

The molar flux of O, No, across this diffusion layer can be expressed by 

Fick s Law as [4]  

( )o Ob Os

D
N C C
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Flux can be expressed in terms of current density by Faraday s Law so that  

( )Ob Os

i D
C C

zF
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Noting that the smaller , the larger the concentration gradient at the electrode 

surface, leading to higher currents. The factor /D can be replaced by the 

mass transfer coefficient Kc. So, equation 2.37 can be written as [5]  

( )c Ob Os

i
K C C

zF
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As the current density increases, the surface concentration of O decreases 

until it becomes so small that a substantially constant current density is 

reached. This constant current or limiting current density (iL) can be expressed 

in the form of equation 2.38 with 0OsC  so that [5]  

L
c Ob

i
K C

zF
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2.7 Pattern of Flow in Fluidized Bed 

Fluidization is the operation by which fine solids are transformed into a 

fluidlike state through contact with a gas or liquid. By passing a fluid upward 

through a bed of fine particles as shown in Fig. 2.9, patterns of flow will 

appear in the bed. At a low flow rate, fluid merely percolates through the void 

spaces between stationary particles. This is a fixed bed. With an increase in 

flow rate, particles move apart and a few are seen to vibrate and move about 

in restricted regions. This is the expanded bed. At a still higher velocity, a 

point is reached when the particles are all just suspended in the upward 

flowing gas or liquid. At this point the frictional force between a particle and 

fluid counterbalances the weight of the particle. This is referred as an 

incipiently fluidized bed or a bed at minimum fluidization. In liquid solid 

systems, an increase in flow rate above minimum fluidization usually results 

in a smooth, progressive expansion of the bed. Gross flow instabilities are 

damped and remain small, and large scale bubbling or heterogeneity is not 

observed under normal conditions. A bed such as is called a particulate 

fluidized bed, a homogeneous fluidized bed, a smooth fluidized bed, or 

simply a liquid fluidized bed. Gas solid systems are beyond the scope of this 

thesis and generally, they behave in a quite different manner. With an increase 

in flow rate beyond minimum fluidization, large instabilities with bubbling 

and channeling of gas are observed [11]. 



  

Fig. 2.9 Various kinds of contacting of a batch of solid by a fluid [11].  

2.8 Literature Survey on Electrochemical Fluidized Bed 

Many have written on bipolarity of electrochemical fluidized bed, 

Goodridge in 1977 [12] studied monopolar and bipolar electrochemical 

fluidized bed. In monopolar bed all the particles behave either in a cathodic or 

anodic manner, while in bipolar bed each individual particle exhibits a 

cathodic and anodic side. Goodridge suggested that in monopolar fluidized 

beds, the electronic current Im leaves or enters the bed via the current feeder; 

whilst the ionic current Is does the same at the opposing boundary. The two 

basic equations for flow of current in the particulate bed and the electrolyte 

phase are:  

m
m m

d
I K A

dx
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and s
s s

d
I K A

dx

        

2.41 

where m and s  are the potentials in the metallic (dispersed phase) and in the 

solution phase respectively. x is the direction of current flow, A

 

is the cross 



 
sectional area of the plane. sK is the effective specific conductivity of the 

electrolyte modified by the voidage of the particulate phase, and mK is 

dependent on hydrodynamic conditions and not simply the conductivity of 

solid modified by the porosity, two cases have been considered by assuming 

two relative values of sK and mK , first when assuming m sK K

 

then for a 

potential dependent reaction, most of the activity occurs in the region furthest 

away from the current feeder in direction of current flow, whilst for case 

m sK K , an inactive region is found in the center of that coordinate as 

shown in Fig. 2.10a and b. 

 

Fig.2.10 Potential and current distribution from monopolar bed prospective.  

In bipolar bed, Goodridge suggested that the particle has anodic and cathodic 

sides, and because of particle rotation, anodic areas become cathodic and vice 

versa which leads to a self cleaning action which is analogous to an automatic 

current reversal. 
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Lee, Shemilt, and Chun in 1989 [13] studied the bipolarity in fluidized 

bed electrode; a series of experiments to determine the anodic reaction 

products on fluidized bed electrode reactor. The anodic reaction products 

were qualitatively measured in the reactor for both silver particle in acidic 

chloride solution system and copper particle in basic chloride solution system, 

and were quantitatively measured using the lead particle basic carbonate 

solution system. From the results, it may be concluded that charge transfer 

occurs by the bipolar mechanism in a nominally monopolar fluidized bed 

electrode. In the nominally cathodic fluidized bed electrode under the 

kinetically controlling step, the experimental current efficiencies have been 

found to be lower than the theoretical ones. This phenomenon can be 

explained by the presence of bipolarity in the bed. Anodic overpotentials due 

to the bipolarity causes metal dissolution to take place partly in the metal 

electrodeposition system, and therefore give current efficiencies lower than 

the theoretical ones. It has been found that the bipolar intensity increases for a 

decrease in superficial current density and slightly increased for an increase in 

bed voidage.  

Goodridge, King, and Wright in 1977 [14] studied bipolar beds. They 

investigated three reactions, the production of hypobromite, the electrolysis of 

sea water, and the synthesis of dimethyl sebacate. It was shown that 

electrochemical fluidized bed can be used for a variety of different reaction 

systems, both inorganic and organic in nature. Advantages of the design are 

seen to be the simplicity of construction, the possibility of scale up, and the 

self cleaning action of the bed particles.  

Fleischmann and Kersall in 1984 [15]studied copper deposition in 

fluidized bed electrode, they used solid copper powder sieved into the sizes 

ranges of  355-420, 420-500, 500-600, 600-710, 710-850, and 850-1000 m . 

The supporting electrolyte was 0.5 M Na2SO4, and 10-3 M H2SO4. It was 



 
found that the data obtained in the investigation could be fitted by the 

equation  

1.11 0.09 1.17 0.08 0.40 0.202126I d L M u
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where d is the particle diameter in m, L is the bed length in m, 

 
is the 

overpotential in Volts, 

 

is the porosity, M is the concentration of copper in 

feed in mol/liter, and u is the superficial velocity in m/s. There is uncertainty 

in the exponent coefficients of L lay in the range 0.122 to 0.054 and 

 

in 

the range 0.1 to 0.056. It is significant that these two parameters were 

those containing the largest errors, as the bed lengths were merely read from a 

graduated scale.  

Coeuret in 1980 [16] worked on continuous recovery of metals. 

Reviewing the application of the fluidized bed electrode to the recovery of 

metals and principally copper. In case of copper, Coeuret stated the problems 

of agglomeration and redissolution have been noted for solutions containing 

more than 1g/l of Cu+2. Particle agglomeration is the problem which limits the 

operating duration time of electrochemical fluidized bed for metal recovery. 

In copper systems, the experiments showed anodic or pseudo anodic parts 

which do not exist when the bed is fixed, leads one to consider the 

significance that should be given to the concept of electrochemical fluidized 

bed. It could be that the bipolarity of the particles is the principal drawback, 

essentially due to the homogeneous character of the liquid solid fluidization.  

Germain and Goodridge in 1976 [17] have studied the copper 

deposition using a mathematical analysis technique to obtain a potential 

distribution in the dispersed phase. Charge transfer occurring in fluidized bed 

can be expressed in terms of two charge transfer coefficients Km for 

particulate phase and Ks for the electrolyte. The flowing current equations are 

the same as in equation 2.40 and 2.41 and the current and flow are having the 



 
same direction. The directions are the same as in Fig. 2.10. The total current 

(Itotal) is written as:  

total M SI I I
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or s s m
total s s m

xL x

d d d
I K A K A K A

dx dx dx
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and by rearranging  

s s sm

mx L x

K d dd

dx K dx dx
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and by integration to get  

0

x
s s s

m x
m L x

K d d
x dx

K dx dx
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And by the least square fitting and comparing with experimental data, they 

found that Km decreases with increasing bed expansion as expected since it is 

a function of the frequency of particle contact.   

Fleischmann and Kersall in 1984 [18] made a study of mercury 

deposition in a lead fluidized bed electrode as continuity to their work on 

copper deposition. The experimental results established that a lead fluidized 

bed electrode can be used for the removal of Hg(II) species from aqueous 

chloride solutions, as typified by chlor-alkali plant effluent. With careful 

choice of operating conditions, typical current efficiencies of 99% can be 

achieved, leaving too small amount of Hg(II) in solution.   

Fleischmann, Oldfield, and Tennakoon in 1971 [19] studied 

electrodeposition of copper in a fluidized bed of copper coated spheres. They 

developed an expression for m

 

which is the effective resistivity of the 

discontinuous metal phase based on the assumption of charge sharing between 

the particles following elastic collisions in the fluidized bed. The theoretical 

expression which has been derived for m

 

is  
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where 

 
is the expansion coefficient, E is the modulus of elasticity, s is the 

effective specific resistivity of solution phase, m  is the density of solid , s  is 

the density of solution, and vp is the mean particle velocity. The basic 

assumptions of this model are: 

1) The collisions between particles are elastic. 

2) The particle motion can be described by the simple kinetic theory of 

gases. 

3) Charge transfer occurs by complete or partial charge sharing during 

collisions.    

Kreysa in 1980[20] studied the particle phase conductivity of an 

electrochemical fluidized bed. Kreysa developed an expression for the particle 

phase conductivity and resistivity as  

1 1
3 31
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m

u C
K
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where Km is the conductivity of particle phase, m

 

is the resistivity,

 

is the 

relative bed expansion, 

 

is the voidage, pu is particle velocity, and C is the 

double layer capacity. It was found that at high bed expansions a good 

agreement between experimental work and theory. But at low bed expansions, 

the experimental values are lower than theory.  

LeRoy in 1987 [21, 22] studied the electrowinning in electrochemical 

fluidized bed, LeRoy studied the general modes of operation and the 

operation at constant current density. LeRoy developed a model which allows 

calculation of a fluidized bed under semi-continuous operating condition. The 

results showed the distribution of particle diameters in the cathode evolving 



 
from its initial form towards a steady state condition over a period of 10 to 40 

electrowinning cycles. The steady state is attained as the last of the original 

electrode particles are removed from the electrode. By operating at constant 

current density, LeRoy found that decreasing electrowinning fractions will 

decrease the steady state electrode weight in the constant current density 

mode. Thus, a wide range of possible operating conditions could be 

envisioned under which a fluidized bed could be operated at constant current 

density.  

Kreysa, Juttner, and Bisang in 1993 [23] studied packed and fluidized 

bed electrodes under limiting current conditions. These two types are also 

known as three dimensional electrodes. They can be realized by different 

arrangements with respect to the direction of current flow, electrolyte flow, 

and electrode positions. The following possibilities exist  

A: Parallel current and electrolyte flow. (There is no principal difference 

between rectangular and cylindrical arrangements): 

i) Counter electrode positioned at the current feeder side of the bed 

electrode. 

ii) Counter electrode positioned opposite the feeder side of the bed 

electrode. 

B:  Current and electrolyte flowing at right angles. 

i) Rectangular arrangement with a counter electrode positioned at the 

feeder side of the bed electrode. 

ii) Rectangular arrangement with a counter electrode positioned 

opposite the feeder side of the bed electrode. 

iii) Cylindrical concentric arrangement with inner position of both the 

counter electrode and the feeder with a separator between them. 



 
iv) Cylindrical concentric arrangement with outer position of the 

counter electrode and the feeder positioned centrally. 

v) Cylindrical concentric arrangement with outer position of both the 

counter electrode and the feeder with a separator between them. 

vi) Cylindrical concentric arrangement with central position of the 

counter electrode and outer position of the feeder.  

From the experiments made by them, a number of conclusions have 

been reached: 

1) The cylindrical arrangement of the bed presents a more complex 

situation than rectangular arrangement and the calculation of bed length 

requires a more detailed analysis of the effective resistivities of both 

phases together with geometric parameters. 

2) For cylindrical packed bed electrodes with current and electrolyte flows 

at right angles, the largest bed depth is obtained with an external 

counter electrode.  

Dweik, Liu, and Savinell in 1996 [24] studied the hydrodynamic 

modeling of the liquid solid behavior in the electrochemical fluidized bed. 

The experiments demonstrated that the fluid and particle dynamics of the 

liquid solid particle bed are a function of several parameters such as, particle 

size, particle density, solution flow rate, and cell tilt angle. Observations 

showed that as the fluid flow rate increases, the bed expands and begins to 

divide perpendicular to the flow direction into two distinct dynamic regions. 

The first region is the rising layer which is characterized by a narrow zone of 

particles moving upward with the fluid flow. The volume fraction in this zone 

is dilute. As the particles reach the top of the bed, the action of the gravity 

causes them to spill to the downward moving packed bed region of the cell 

thus forming the second region, the descending layer. This region is slightly 

expanded packed bed and it occupies the majority of the bed. When the 



 
particles reach the bottom of the cell, they reenter the rising layer. The 

pressure drop has been used to define the relative interstitial velocity in the 

descending layer. The rising layer is assumed to behave as an entrained bed, 

while the descending bed is assumed to be an expanded packed bed.  

Hutin and Coeuret in 1977 [25] made experimental study on copper 

deposition in electrochemical fluidized bed. Hutin, and Coeuret used three 

electrolytes with different copper concentration with cylindrical copper 

particles (diameter 1mm, length 1.2mm). It is found that by using relatively 

high bed heights and high expansions, the bed is almost anodic and 80% of 

the bed is completely anodic. This very example is considered in detail in the 

next chapter. They found that copper deposition improved by increasing the 

current density and/ or decreasing bed porosity, and bed thickness in the 

direction of current flow. Low current efficiencies seem to be due to the 

existence of a definite dissolution zone within the bed.  

Kreysa in 1978 [26] studied the kinetic behavior of electrochemical 

packed and fluidized beds. Kreysa stated that the electrochemical rate 

equation for reactions with full or partial diffusion is  

( , , , )i f c u T
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where i is the current, is the overvoltage, u is the flow velocity, and T is the 

temperature. The current is related to rate by Faraday s Law. Equation 2.49 

can be observed at a plane electrode in a laboratory cell. It was stated that 

electrochemical behavior of packed and fluidized beds is much more 

complicated by some more parameters  

( , , , , , , , , )s m pi f c u T K K d L

      

2.50 

where sK

 

is the electrolyte conductivity, Km is the particle conductivity, pd

 

is 

the particle diameter, 

 

is the voidage, and L is the bed depth. It was noted 

that not all of the parameters in equation 2.50 are independent from each 



 
other. The particle conductivity sK is constant for a certain metal and 

changing only with voidage. Voidage also could be related to empty tube flow 

velocity. Because of small local current densities within electrochemical 

packed and fluidized beds, an isothermal behavior results, therefore the 

influence of temperature can be neglected. Also the particle diameter is 

constant, as only particles with constant diameter were available. Also, 

concentration could be assumed constant in entrance.  

, ,( , , , )
ps c T di f u K L
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It was concluded that both packed and fluidized bed electrodes can be 

described by the same theoretical concept.   

Jiricny and Stanek in 1994 [27] studied the production of D-arabinose 

in a pilot plant fluidized bed electrochemical reactor. A new method was 

developed for the production of D-arabinose by direct electrochemical 

oxidation in an electrochemical tank type pilot plant reactor with the fluidized 

bed anode with an annual capacity of 1 metric ton of D-arabinose. This 

method has the following advantages: 

i) The starting material is the reaction mixture from the fermentation 

oxidation of D-gluconate without addition of auxiliary electrolytes. 

ii) The apparatus is constructed from non toxic materials satisfying 

criteria for a pharmaceutical production. 

iii) Subsequent separation of the product from the reaction mixture is 

simple and unreacted gluconate is recycled. 

iv) The amount of salts generated in the process is by several orders of 

magnitude less in comparison with other processes, such as the 

hypochlorite method. 

v) The associated investment costs are low compared to plate-plate 

electrolysers, while the operation and maintenance is simple. 



   
Walker and Wragg in 1980 [28] studied the mass transfer in fluidized 

bed electrochemical reactors. Two distinct cases have been studied: 

a) Determination of mass transfer rates at a plane wall electrode in the 

presence of a fluidized bed of inert particles (glass beads). In this work, 

bed height, particle size, and fluidization conditions have been varied 

and a correlating equation:  
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is suggested over the range   

Re
0.936 67

(1 )
dp

 

b) Determination of mass transfer rates between electrolyte and particles 

within an active bed of conducting copper particles. Analysis of the 

data yields a correlating equation:  
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in the range   

Re
2.6 30

(1 )
dp

 

where Dj

 

is the mass transfer j-factor, 

 

is the bed voidage, avK is the mass 

transfer coefficient, u is the fluid velocity, Sc D , 

 

is the kinematic 

viscosity, D is the diffusion coefficient, Re pd u
, dp is the particle diameter, 

and de is the channel equivalent diameter.  

Shvab, Stefanjak, Kazdobin, and Wragg in 2000 [29,30] studied mass 

transfer in fluidized bed of inert particles. First they studied the role of 



 
collision currents in mass transfer to electrode with the bed containing PVC or 

Nylon spheres with electrolyte containing Cu+2 ions. A model describing the 

influence of particle-wall collisions on the mass transfer rate is proposed. The 

model assumes that the Cu+2 ions, penetrating the diffusion layer during 

collision and are completely consumed in electrochemical reaction, so, the 

collision currents can be calculated from the equation:  

c ri zFc f V
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where z is the number of electrons associated with the reaction, F is the 

Faraday s number, co is the bulk concentration of the electroactive species, fr 

is collision frequency of particles per unit area, and V

 

is the value of the 

specific microvolume introduced into the diffusion layer by a single particle. 

The values of the collision currents ic , to mass transfer to electrodes in 

fluidized beds of inert particles can be calculated from the proposed model 

and compared to those obtained from experimental data which is the 

experimental method of measuring ic. This is explained in detail in the 

original paper. The values of ic obtained by the two independent methods are 

in good agreement. So, the mass transfer contribution due to electrolyte flow 

increases with increase in particle diameter, while that due to particle collision 

decreases.   

The second study is the effect of particle size and density on mass 

transfer. It was found that the use of particles of materials of different density 

in fluidized bed of inert particles allows variation of the contributory 

influences on mass transfer. In fluidized bed of inert particles, if the materials 

are of low density, then the influence of collisions prevails. If the bed is of 

high density, then the influence of interstitial velocity dominates. The ratio of 

the influences changes with reduction in the size of particles of the same 

density, since with reduction of particle size the influence of collision currents 



 
increases. These phenomena explain the smoothing of mass transfer maxima 

in beds of particles of both small and high density.  

Roessler, Crettenand, Dossenbach, and Rys in 2003 [31] studied the 

reduction of indigo in fixed and fluidized beds of graphite granules. Graphite 

granules were used as electrode material in a fixed and fluidized bed reactor 

to address the question of the industrial feasibility of this new direct 

electrochemical reduction method for vat dyes. Optimized conditions in the 

system were required, and a scale-up in indigo concentration to 10 g/liter was 

achieved. Increasing pH and temperature can enhance the reduction rate, and 

a maximum conversion has been found by optimizing current density and 

flow velocity in the reactor. Special pretreatment of the graphite (i.e., soaking 

with hydrogen peroxide or preanodization) enhances the reduction rate by 

inducing the formation of quinine-like functional groups. Immobilizing noble 

metal particles on the graphite surface cause electrocatalytic hydrogenation in 

addition to the electron transfer process resulting in fair and good 

electrogenolysis efficiencies. These results are a basis for the further 

development of a cheap, continuously and ecologically working cell for the 

direct electrochemical reduction of dispersed indigo and other vat dyes. 

Especially, the introduction of surface functionalities by chemical reaction 

routes is at present an exciting research area. Hopefully, the immobilization of 

redox-active substances (i.e., metal complexes) will lead to even higher 

reduction rates. However, the next step will be pilot-plant trials after a scale-

up procedure. Increasing the reactor size and indigo concentration to more 

than 100 g/liter may cause a blocking of the fixed bed. Therefore, 

optimization of the cell design will be a requirement for the successful 

realization of this method.   



  
Scott in 1988 [32] studied circulating packed and fluidized bed 

electrochemical reactors. Scott studied the recovery of copper and proved that 

the recovery is more efficient when electrolyte solutions are of low pH. When 

only moderately acidic electrolytes are treated, the energy consumption incurs 

a double penalty in terms of lower current efficiency and a higher cell voltage 

resulting from the low electrolyte conductivity. The treatment of dilute metal 

bearing liquors may therefore benefit from the addition of a low grade acid. In 

general, the selection of device used in this application will be based on other 

factors as:  

i) Mode of operation: to induce bed circulation relatively high liquid 

velocities are required to initiate particle transport. Only a relatively 

small fraction of the total flow passes through the packed bed region.  

ii) Gas evolution: the occurrence of hydrogen evolution in metal 

deposition reactions is common and has to be identified as a 

contributing factor in the current efficiency of circulating electrodes. If 

the rate of gas evolution is relatively small, then due to the downward 

motion of the bed, slugging may occur.  

iii) Scale up: this factor is of a prime importance if adoption of 

circulating bed technology is to be realized. In flow by electrodes, 

an increase in scale can only be effectively achieved in the two 

dimensions associated with the diaphragm or feeder cross sectional 

areas. Experience with a similar configuration of moving bed has 

shown that on scale up perpendicular to electrolyte flow, regions of 

the bed become stationary and susceptible to agglomeration during 

deposition.     

Huh, Savaskan, and Evans in 1992 [33] studied regeneration of zinc 

particles and electrolyte by fluidized bed electrodeposition. It was suggested 

that this method appears to be an efficient way of regenerating zinc particles 



 
and electrolyte using different particles of copper, graphite, and lead. 

Reacheing the following results after a series of experiments: 

i) The zinc particles can be regenerated without any operating 

problems by means of fluidized bed electrodeposition. 

ii) Lead and graphite are more suitable materials than copper in terms 

of current efficiency. When cell voltage is considered, lead appears 

superior to graphite.  

Zhou, Wu, Ma, Cong, Ye, and Wang in 2004 [34] studied 

electrochemical fluidized bed reactor for organic pollutant abatement. By 

investigating many parameters affecting the pollutant removal, it was found 

that higher liquid flowrate could improve mass transfer, which makes mass 

transfer no longer the reaction limiting step.  

Rozik, Orinakova, Markusova, and Trnkova in 2006 [35] studied Ni-

Co binary alloy deposition on iron powder particles in an electrochemical 

fluidized bed using voltammetric measurements. Electrodeposition of 

individual metals (Ni, Co) and binary alloy (Ni-Co) was studied. It was found 

that the deposition potentials were 1.000 V, 1.000 V, 1.120 V for Co, 

Ni-Co, and Ni, respectively. Using Tafel plot for the calculation of the charge 

transfer coefficient(conductivity of metal phase) in close proximity to the 

deposition potential of metals. It is found that with the increase of the number 

of powder particles in the bed, the charge transfer coefficient ( metal phase 

conductivity) decreases, i.e. electrodeposition of the binary Ni-Co layer slows 

down. The values of charge transfer coefficient for the Ni-Co co-deposition 

were found to be lower than that for individual metals. It was found that the 

rate of binary alloy deposition increases with increasing cobalt ions 

concentration but it decreases with increasing nickel ion concentration. It was 

concluded that the co-deposition of Ni-Co was enhanced by less noble metal 

(Co) and inhibited by more noble metal (Ni).  



  
Zhou and Lei in 2006 [36] studied the electrochemical regeneration of 

activated carbon loaded with p-nitrophenol in electrochemical fluidized bed. 

The regeneration parameters such as current density, flow rate, NaCl 

concentration, pH of the solution and regeneration time were systematically 

investigated to optimize performance and improve the cost-effectiveness of 

the process. Higher current density can achieve better regeneration efficiency 

but energy cost would also be elevated. It was also confirmed that the 

adsorption of organics was occurred in the micro pore of activated carbon, 

and during activated carbon regeneration the micro pore recovered gradually 

with the decomposition of organics by attack of active species such as 

hydroxyl radicals that generated by electrochemical oxidation.   
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Chapter Three 

Theory of Particulate Beds  

3.1 Introduction 

Electrochemical fluidized bed is a type of electrochemical particulate bed 

reactors which utilizes a considerably large surface area available for the reaction 

and an electrical potential difference which induces the reaction. It  provides a 

very large electrode area in proportion to their size (e.g. 106m2/m3 volume) and 

this is several times greater in magnitude than that for non porous structure 

(typically not greater than 102m2/m3 for a parallel plate system). These devices 

are exceptionally useful when dealing with low reactant concentration or slow 

reactions since they realize reasonable overall reaction rates. Particulate bed 

includes packed and fluidized beds and anything with the general category of 

porous electrodes such as sintered or a pasted electrode (a lead acid battery 

electrode) and those which are composed of discrete particles with little or no 

mechanical adhesion [4].  

A conducting particle fluidized bed electrode has some advantages over a 

conventional electrode as high space time yields, low inventory of materials, and 

low operating costs. It also has uses in metal recovery from dilute solutions, and 

in the electrolysis of reactants with high activation energies. Several mechanisms 

for the charge transfer or flow of current through a conducting particle fluidized 

bed electrode have been proposed. One of the first postulated mechanisms was 

the so called collisional mechanisms which described the passage of current in 

terms of the transfer of discrete packages of charge from feeder to particle and 

particle to particle by a charge sharing process following collision. Simple 
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calculations based on the capacitance of a single particle indicated that for this 

mechanism to account for observed currents, collision frequencies with the order 

of 105-106 s-1cm-2 would be necessary. Such a frequency seems unrealistically 

high, concluding that charge transfer based upon single particle collisions was 

unable to account for the observed behavior of fluidized beds. The second 

mechanism is based on the collision of aggregates of particles, based on 

measurements of bed effective resistivities as a function of the frequency of an 

imposed alternating current. In this mechanism, chains of particle are assumed to 

be in contact with the current feeder, and the current is passed through these 

continuous chains. However, these two monopolar mechanisms may not be 

appropriate for explaining the phenomenon of a non-cathodically protected zone 

(or anodic zones) appearing in the bed when the overpotential distributions are 

measured in a nominally cathodic fluidized bed. At low current density and high 

bed voidages, the current efficiencies are negative. Fluidized systems are, 

however, dynamic and when conditions in the bed are examined as a function of 

time it is observed that the local overpotentials in a nominally monopolar bed are 

characterized by rapid fluctuations, both anodic and cathodic, and that the peak 

values attained on either side of the rest potential are comparable [13]. This leads 

to the recently proposed the bipolar mechanisms

 

which will be explained in 

this thesis.   

A particulate bed electrode may consist of one of the three configurations 

shown in Fig. 3-1.    
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(a)      (b)                    

(c)  

Fig. 3-1 Particulate electrode configurations  (a) flow through two compartment 

reactor(packed bed) (b) flow by two compartment reactor(packed bed) (c)  

Flow through  single compartment reactor(fluidized bed) [4]. 
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In Fig. 3-1 (a) two compartment reactor with flow through model is 

considered. The electrode is a slab of porous material with a perforated solid 

backing plate at one end which functions as the current feeder

 
or collector . 

Flow of current goes through the metal and solution phases concurrently with the 

solution. In Fig. 3-1 (b) the flow of solution and electricity are orthogonal and we 

could distinguish between situations (a) and (b) as flow through or flow by 

systems respectively. In Fig. 3-1 (c) a flow through single compartment reactor 

model is considered. Two modes of reactions are considered here; fast and slow 

reaction. The complexity of operation of a particulate electrode is easily 

envisaged from the one dimensional sketch in Fig. 3-2. The total electric charge 

passing through the electrode normal to the flow is constant from continuity 

considerations [4].  

                                         porous or packed bed cathode 

                                                  

        (a)  i=is                                                          i=im 

                    Flow   

          x=0       x=L      

                                                                s 

                    (b)                                            m 

                                   m=constant 

                                                  Infinite metal conductivity  

Fig. 3-2 One dimensional particulate bed cathode a) current and solution paths   

b) solution and metal potential distribution along the electrode [4].  
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3.2 Bipolarity in Electrochemical Fluidized Bed 

In the bipolar mechanism, it is proposed that particle aggregates formed in 

a nominally monopolar electrochemical fluidized bed are made partly bipolar 

when they are isolated from the current feeder. Aggregates in contact with the 

feeder take on the same polarity as the feeder. Anodic and cathodic polarities on 

each side of an aggregate isolated from the feeder give rise to appropriate anodic 

and cathodic reactions in the coulombic sense [13]. The behavior of single particle 

is shown in the next figure (Fig. 3.3) where *( )cV

 

is the potential difference and r 

is the radius.  

   

                    +                              *
cV

   

         

         

       

   

       +                  

i        

   

  

Fig. 3.3 Polarization of particles [14]. 

r
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Typical fluidized bed behaves in one of two ways. When the bed height is 

relatively low, the bed behaves as a monopolar cathodic bed with no anodic 

pockets appearing. When the bed height increases, the bipolarity reveals and 

increases rapidly and about 80% of the bed is completely anodic. Fig 3.4 

represents the work of Hutin, and Coeuret [25]. In their work the influence of bed 

height L on the overpotential 

 

at constant current density and bed porosity was 

considered. One can see that a thin fluidized bed electrode behaves cathodically 

at every point including the current feeder but that the local electrochemical 

activity increases rapidly with the distance above the feeder. For higher bed 

heights, positive values of the overpotential which characterize anodic behavior 

appear in the distributions [25].  
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Fig.3.4  Effect of height on fluidized bed electrode overpotential distributions [25].   
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3.3 Metal Phase Resistivity  

A number of papers have been published concerning metal phase 

resistivities, the papers were mentioned in Chapter Two. However, they will be 

dealt with again:  

A) Model based on charge sharing during collision: The metal phase resistivity 

which is the reciprocal of conductivity has been derived based on the following 

assumptions [37]:  

i) Charge transfer in an electrochemical fluidized bed occurs by 

complete or partial charge sharing during collision. 

ii) Collisions between particles are elastic. 

iii) The motion of a single particle can be satisfactorily mapped by 

assuming that the remaining particles from a stationary matrix (as in 

the simple kinetic theory of gases).  

Fleischmann and Oldfield [37] reached the following expression for 

resistivity of metal phase m  which is  

2 1 1
3 3 3

1 2
3 3

0.28(1 ) ((1 ) 1)

( )

s
m

m p

E

v

     

2.47 

where 

 

is the expansion coefficient of fluidized bed, E

 

is the modulus of 

elasticity, s is the effective specific resistivity of solution phase,  is the density 

of electrolyte, m is the density of metal, and vp is the interstitial velocity. The 

interstitial velocity equals /avU
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B) Model based on resistance of the solution between two particles, Kreysa [20] 

developed the expression   

1 1
3 31

0.159(1 ) ((1 ) 1)(1 ) /m p
m

u C
K

   
2.48 

where mK  is the conductivity, m  is the resistivity,

 

is the relative bed expansion, 

 is the voidage, pu is particle velocity, and C is the double layer capacity.   

The work of Fleischmann, and Oldfield [19] found that the numerical factor 

in equation 2.47 must be divided by 6.7. So, equation 2.47 becomes  

2 1 1
3 3 3

1 2
3 3

0.04179(1 ) ((1 ) 1)

( )

s
m

m p

E

    

3.1  

The reason for this discrepancy that the fluidization being not uniform 

across the bed and there is a small stagnation zone close to the feeder. Equation 

3.1 has been tested and a good agreement was obtained. In order to be used in 

this work, the reciprocal of resistivity which is the conductivity is adopted as 

shown  in equation 3.2  

1/ 3 2 / 3

1/ 3 1/ 3 1/ 3

23.928 ( )

(1 ) [(1 ) 1]

s m p
m

K
K

E

     

3.2 

The solution resistivity s

 

is a function of porosity and can be found from the 

following expression [38]   

/s s

         

3.3 

where s  is the resistivity of particles free solution, and  is the porosity of bed.    
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3.4 Hydrodynamics of Fluidized Bed  

Fluidization is the process by which a bed of solids is changed to a fluid-

like state by the passage of a gas or liquid through the bed. If the fluid velocity is 

initially very low, the bed behaves as a packed bed. If the fluid velocity continues 

to rise, then fluidization occurs [39].  

The fractional expansion 

 

in equation 3.2 can be easily related to the 

voidage of the electrode under static conditions 

 

and height at static and 

fluidized conditions [40].  

=
1

         

3.4a  

 =
L L

L

         

3.4b 

where L and L are the bed heights under static and fluidized conditions 

respectively. The average velocity can be found by [4].  

=

0.1
0.225 tu d

av

t

U

u

       

3.5 

where ut is the terminal settling velocity and is calculated from the following 

relationships, Uav is the average solution velocity in the empty section of the bed, 

and 

 

is the kinematic viscosity. The terminal settling velocity is calculated from 

the following relations [11]:  

2( )

18
s

t
g d

u

   

for   Rep<0.4    3.6a  

1/ 32 24 ( )

225
m

t
g

u d       for  0.4<Rep<500  3.6b 
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1/ 2

3.1 ( )m
t

g d
u

  
for 500<Rep<200,000  3.6c 

where g is the gravitational acceleration, 

 
is the density of solution, m is the 

particle density,  is the viscosity, and pRe tu d . 

For nonspherical particles the diameter may be replaced by equivalent diameter 

which is defined as [11]  

deq.=(diameter of sphere having the volume of particle)  3.7 

For nonspherical particles, a variety of measures of nonsphericity can be used; we 

define sphericity as [39]  

(surface of sphere/surface of particle)both of same volume  3.8 

With this definition, 1

 

for sphere, and 0 < < 1 for all other particle shapes. 

Table 4.1 lists calculated sphericities of different solids. Each equation contains 

the term (d) is replaced by ( d)  [45].    

                Table 3.1 Data on sphericity 

 

[11]. 

Material        

 

Sand 0.600-0.861 

Iron catalyst 0.578 

Bituminous coal  0.625 

Celite cylinders 0861 

broken solids 0.63 

Silica 0.554-0.628 

pulverized coal 0.696 
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The pressure drop through fixed beds of uniformly sized solids has been 

correlated by Ergun using the equation [45].  

22

3 2 3

(1 ) (1 )
150 1.75av av

pp

U Up

L dd

    
3.9 

Fluidization occurs when   

(drag force by upward moving fluid)= (weight of particles) 

or  

(pressure drop across bed)(cross sectional area of tube)=   

(volume of bed)(fraction of solids)(specific weight of solids) 

or  

. . (1 )( )mp A A L g

 

by rearranging , we find that for fluidized condition [11].  

(1 )( )m

p
g

L

       

3.10 

The pressure drop P is drawn versus Reynolds number Re avU d as shown 

[41].  

Fig. 3.5 Pressure drop change with Reynolds number [41]. 

log( )P

 

Log(Re) 

A

 

B

 

C 
D

 

Fixed bed

 

Fluidized bed
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The minimum fluidizing velocity( mfU ) can be found by combining equation 3.9 

and 3.10 so that [11]  

2 3

3 2 3 2

1.75 150(1 ) ( )mf mf mf m

mf mf

dU dU d g

 
3.11 

where mf is the porosity at minimum fluidization, and is found experimentally. 

The surface area per unit volume in an expanding bed is found by [4]:  

a =
(1 )

(1 )

a

         

3.12 

The surface area per unit volume for a spherical particle can be found from 

definition as [39]  

2

3

4 3 6
(1 ) (1 ) (1 )

4
3

r
a

r dr

    

3.13  

3.5 Mass Transfer in Fluidized Bed 

In order to use this model for designing an electrochemical fluidized bed 

reactor, a suitable mass transfer correlation is required [40]. The equation for mass 

transfer is  

1/ 2
1/ 2 1/ 3(1 )

1.52 Reav
d

K d
Sc

D

     

3.14 

where  Red= avU d

 

and Sc=
D
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3.6 Mathematical Modeling of Polarization Equations and Potential 

Distribution  

Two models have been developed in two different ways, the first one is the 

Fleishmann and Oldfield model [38] which uses direct integration of second order 

equations , and the second one is using the Laplace  transformation to solve the 

differential equations of overpotential distribution.  

3.6.1 Fleischmann and Oldfield Model  

Starting with Ohm s law, we can apply it to the mobile solid section of the 

electrode. The current flow through the electrode can be expressed in the 

following way as [38]  

1 m
m

d
i

dx

         

3.15    

where i is the local current density, m

 

is the effective resistivity of the 

discontinuous metallic phase, m

 

is the metal potential, and x is the distance. By 

applying Ohm s law for the flow of solution within the continuous phase. [4]  

1 s
s

d
i

dx

        

3.16 

where s

 

is the effective resistivity of the solution phase, and S

 

is the solution 

potential. If we consider the current flow in a section of the electrode dx , then the 

polarization equation can be written as [38]  

( , )di f C adx

        

3.17 

Where  is the local activation polarization, m s , C is the concentration of the 

reactive species and a is the surface area per unit volume. Combining equations 

3.15, 3.16, and 3.17 to get the two primary equations [38]: 
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2

1
2

( , ) 0m
m

d
af C

dx

       
3.18  

2
1

2
( , ) 0s

s
d

af C
dx

       
3.19  

The two cases of polarization have been considered, activation, and 

concentration polarization.  

Starting with Butler-Volmer equation 2.32 as a starting point, two cases 

have been considered, but with the overpotential has a negative sign [5,38]  

( 1)
exp exp

zF zF
i i

RT RT

     

2.32 

The first case is when 
RT

zF

 

or close to equilibrium, the second case is when 

RT

zF
 or far from equilibrium, and the third case is mass transfer controlled.  

3.6.1.1 Irreversible Process Close to Equilibrium  

For the case when 
RT

zF
, equation 3.19 can be reduced by taking the 

first two terms of the power series of the exponent terms. So,  

( 1)
( , ) 1 1

zF zF i zF
i f C i

RT RT RT

  

3.20 

by substituting equation 3.20 into 3.18 and 3.19 to get [38]  

2
1

2
0m

m
d i zF

a
RTdx

       

3.21 

and 
2

1
2

0s
s

d i zF
a

RTdx

       

3.22 
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Multiplying 3.21 by m

 
and 3.22 by s , and subtracting the second equation 

from the first one to get  

22

2 2

( )
0s m sm d ai zFd

RTdx dx

     
3.23 

The overpotential is defined as [19]  

m s

         

3.24 

differentiating equation 3.24 twice to get  

22 2

2 2 2
sm dd d

dx dx dx

        

3.25 

substituting equation 3.25 into 3.23 yields [38]  

2

2

( )
0m sai zFd

RTdx

      

3.26 

Equation 3.26 can be integrated to get *[38]  

1
2 2

1
( )m sai zFd

Y
dx RT

     

3.27  

1
21

2
( )

cosh
( )

m s

m s

ai zFRTY
x Y

ai zF RT

  

3.28 

where Y1 and Y2 are the integration constants. 

The boundary conditions for solving this equation are [38]:  

m m ;   0s

 

at   x=0      3.29  

0md

dx
 ;   sd d

dx dx
  at   x=L       3.30 

                                                

 

* The details of integration are in Appendix A-1 
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0sd

dx
  ;   md d

dx dx

 
at  x=0

      
3.31 

The boundary conditions can be used to find the polarization equation as follows 
[38] 

2
1 1 1
22 2 2 1 1

2 2
1 1
2 2

1 / / ( )
exp ( )

1 / ( )

m s m s m m s

m s

m m m s

I I
L

I

           

. 3.32 

where 

ai zF
RT

        

3.33 

The solution and metal phases potential profiles are found from Ohm s Law as 

follow [4]:  

1 s
s s

d
i

dx

        

3.34  

1 m
m m

d
i

dx

        

3.35 

The total current density (I) is defined as [16]  

I=im+is         3.36 

Equation 3.34 and 3.35 substituted into 3.36, rearranged and integrated to get [38]  

( ) (1 )m
m s m m s

s
x I x

    

3.37 

substituting equation 3.37 and the boundary conditions into equation 3.28 to get 

the solution potential profile as [38] 
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1

2 2 2 2 1 12
2 2

1 1
2 2

(1 ) 2 / ( )
exp ( )

1 / ( )

m m m s
m s

m m m s

I
x

I

   3.38 

where  1m
m s m

s
I x

     

    3.39 

3.6.1.2 Irreversible Process Far from Equilibrium  

For the case when 
RT

zF
, equation 2.32 can be reduced by neglecting 

the second exponent term. So, [5]  

( , ) exp
zF

i f C i
RT

      

   3.40 

Substituting equation 3.40 into 3.18 and 3.19 and subtracting in the same way 

before to get the following equation:  

2

2
( )exp 0m s

d zFai RTdx

     

3.41 

Equation 3.41 can be integrated to get [38]:  

1
2

3
2

( )expm s
d i aRT zF YRTdx zF

   

3.42  

1 1
2 2

3 3
4ln cos ln

2 2 ( )m s

zFY x Y zFRT
Y

zF RT i aRT

 

3.43 

where Y3 and Y4 are the integration constants, finding the constants will give the 

following polarization equation 

                                                

 

 The details of integration are in Appendix A-2 
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1
2 2 21

2 2 21 1
2 2 2

1 exp
( )

cos 1 exp cos
( ) ( )

1 exp
( )

m
m

m sm
m

m s m s
m

m s

I
f

I
f

I
f

  

     

1
1 1 2 2 2
2 21 1

( ) 1 exp exp
2 ( ) 2

m
m s m m

m s

I
Lf f f    3.44 

The solution potential profile equation is [38] 

1
22 2

1
2 2 21 1

1 exp
( )

cos 1 exp cos
( )

exp 1

m
m

m sm
m

m s m
m s

s

I
f

I
f

f I x

   

1
1 1 2 2 2
2 21 1

( ) 1 exp exp
2 ( ) 2

m
m s m m

m s

I
xf f f

 

3.45 

where  2i aRT

zF

         

3.46  

zF
f

RT

         

3.47  

3.6.1.3 Concentration Polarization  

The polarization equation relevant to mass transfer process (diffusion 

controlled) is defined in the following equation [4]  

( , ) ( ) /i f C zFDC x

       

3.48 

Where C(x) is the concentration of the reacting species as a function of electrode 

length, D is the diffusion coefficient of the reacting species, and 

 

is the 

diffusion layer thickness. 
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A material balance over an elemental length operating at limiting current is 

done . According to the law of conservation of mass:  

mass in mass out+generation consumption =accumulation 

mass in=UavAC 

mass out= UavA(C+dC) 

generation=0 

consumption=KavARC 

AR is the surface area of reaction, A is the cross sectional area of bed. 

AR=aA dx

 

 consumption= KavaA dx C 

At steady state: accumulation =0 

 

UavAC UavA(C+dC)+0  KavaA dx C=0 

Rearranging to get equation 3.49 [4, 39]. 

dC

dx
= av

av

a K C

U

        

3.49 

Integrating equation 3.49 yields [39]  

( ) exp
x

C x C

       

3.50 

 where   

av

av

U

K a

         

3.51 

where a

 

is the electrode area per unit volume of electrode, U is the average 

velocity, and Kav is the average mass transfer coefficient assumed independent of 

                                                

 

 This derivation is done by the writer of this thesis. 



 

54

 
length. The solution potential profile can be found by substituting equation 3.48 

into 3.19 [38]  

2
1

2

( )
0s

s
d azFDC x

dx

       
3.52 

substituting 3.50 into 3.52   

2

2
exps sd azFDC x

dx

      

3.53 

integrating equation 3.53 twice and applying the boundary conditions 3.29 and 

3.31 gives [38]  

1 exps av s
x

C zFU x

    

3.54 

The metal phase potential profile can be found by substituting equation 3.48 into 

3.18 gives  

2
1

2

( )
0s

m
d azFDC x

dx

       

rearranging yields  

2

2
expm md azFDC x

dx

        

by integrating this equation twice and applying 3.29 and 3.30 yields [38]  

1 exp expm m av m
x L

C zFU x

  

3.55 

The current is found by substituting 3.48 into 3.49 [4]  

1 exp( / )avI C zFU L

      

3.56   
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3.6.2 Modeling With Laplace Transformation (Present Work)  

Alternative ways of finding the potential distributions are described below 

in a more convienent way than that mentioned before. Rearranging equation 3.34 

to get   

s
s s

d
i

dx

         

3.57 

and equation 3.35 to get           

( )m
m m m m

d
i I i

dx

      

3.58 

subtract 3.57 from 3.58 to get  

( )sm
s m s s

dd
I i i

dx dx

      

3.59 

differentiating equation 3.24 once with respect to x gives  

sm dd d

dx dx dx

        

3.60 

substituting equation 3.60 into 3.59   

( )m s s m
d

I i
dx

      

3.61 

Substituting equation 3.34 into 3.61 leads to  

(1 ) sm
m

s

dd
I

dx dx

      

3.62 

differentiate eqution 3.62 with respect to x  

2

2
( ) s

s m
did

dxdx

       

3.63 

Scott [44] stated that the first derivative of the solution current with respect to x is 

equal to the local current density multiplied by the bed specific surface area per 

unit volume 
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sdi

ai
dx

         
3.64 

substituting equation 3.64 into 3.63  

2

2
( )s m

d
ai

dx

        

3.65 

Current density will be substituted in equation 3.65 for the three distinct cases of 

polarisation.  

3.6.2.1 Linear Polarisation Region 

At linear polarisation, the local current density is defined previously as 

i zF
i

RT

         

3.20 

Substituting equation 3.20 into 3.65 gives the same as equation 3.26 which is   

2

2
( )s m

d i zF
a

RTdx

       

3.26   

' ( )s m
i zF

K a
RT

       

3.66 

so, the equation can be reduced to  

2

2
'

d
K

dx

         

3.67 

Taking Laplace transform [46] of equation 3.67 yields  

L    ( )x

  

2 ( ) (0) (0 ) ' ( )s s s K s

      

3.68 

Overpotential ( )x

 

at x=0 and the first derivative is found by applying the 

boundary condition of equations 3.29 into equation 3.37 

so,  (0) m

         

3.69 
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by taking the first derivative, we get   

( ) (1 ) sm
m

s

d
x I

dx

       

0sd

dx
  at x=0  

from equation 3.31  

(0) mI

        

3.70 

substituting equations 3.69 and 3.70 into equation 3.68 yields  

2 ( ) ' ( )m ms s s I K s

      

3.71 

rearranging yields  

2( )( ') m ms s K s I

  

2 2
( )

( ') ( ')
m ms I

s
s K s K

       

taking inverse Laplace of former equation  

L -1 ( )s

  

( ) cosh ' sinh 'm
m

I
x K x K x

K

     

3.72 

Equation 3.72 clearly satisfy boundary conditions previously defined, and could 

be further equilized with equation 3.37 to get the solution potential profile as:  

1
cosh ' sinh '

1

m
s m m m

m
s

I
I x K x K x

K
    3.73  

3.6.2.2 Tafel Polarisation Region 

Considering equation 3.65 again, but substituing for the case of Tafel 

polarisation equation as following 
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2

2
( )s m

d
ai

dx

        
3.65 

and 

( , ) exp
zF

i f C i
RT

      

3.40 

substituting 3.40 into 3.65 gives  

2

2
( ) exps m

d zF
ai

RTdx

      

3.74 

Equation 3.74 can not be solved by Laplace transformation because the 

exponential term contains , and the numerical solution of this equation gives 

results far from experimental. So, it will be integrated using analytical methode 

as in integrating equation 3.41 which gives the same as equation 3.45. Equation 

3.45 can be rearranged in terms of solution potential as follows  

let  
2 2

1 1 exp
( )

m
m

m s

I
K f

      

3.75 

and  

1
1 1 2 2 2
2 2

2
1 1

( ) 1 exp exp
2 ( ) 2

m
m s m m

m s

I
K f f f

 

3.76 

so, equation 3.45 can be written as   

1
2

1
1 1 121 2cos cos

exp 1m
m s

s

K
K K x

f I x

      

by rearranging  
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1
2

1
1 11 22 1cos cos

exp 1m
m s

s

K
K x K

f I x

 

taking cosine of both sides gives  

1
2

1
11 22 1cos cos

exp 1m
m s

s

K
K x K

f I x

 

Squaring both sides of the equation  

1
2 11 22 1cos cos

exp 1m
m s

s

K
K x K

f I x

  

1
1

2 1
22 1

exp 1

cos cos

m
m s

s

K
f I x

K x K

 

Taking natural logarithm of both sides  

1
2 1

22 1

1

cos cos

1 ln

f

m
m s

s

K x K

I x
K

  

1
2 1

22 1

1

cos cos
1

ln

1 1

f

m
s

m m

s s

K x K
I x

K
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1

1 1

m
s

m m

s s

I x

 
1 1

1 1 2 2 2 22 2
2 12 2

2 2

1 1
cos ( ) 1 exp exp cos 1 exp

2 ( ) 2 ( )

ln

1 exp
( )

f

m m
m s m m m

m s m s

m
m

m s

I I
fx f f f

I
f

           

..3.77  

3.6.2.2 Concentration Polarisation Region  

For the concentration polarisation case. The local current density is found to 

be as 

( ) expav av
x

i zFK C x zFK C

     

3.78 

substituting equation 3.78 into equation 3.65  

2

2
( ) exps m av

d x
azFK C

dx

     

3.79 

let  ( )s m avK azFK C          3.80 

 

2

2
exp

d x
K

dx

        

3.81 

taking laplace of the equation 3.81 gives  

L    ( )x
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2 ( ) (0) (0)

1
K

s s s
s

  
2 ( )

1 m m
K

s s s I
s

  

2 22
( )

1
m mK s I

s
s ss s

      

3.82 

simplifying the second term  

22 11
K As B C

s ss s

         

2 2As B
K As Bs Cs

        

A C  : 
A

B

  

B K

  

2A K

  

2C K

 

substituting A, B, and C into gives  

2 2

2 2 2 2
( )

1
m mKs K K s I

s
s s s ss

    

3.83 

taking laplace inverse of eqution 3.83 gives  

2 2( ) exp m m
x

x K Kx K I x

   

3.84 

equalizing equation 3.84 with equation 3.37 
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2 2(1 ) expm

m m s m m
s

x
I x K Kx K I x

  
rearranging   

2 21
exp

1
s

m

s

x
K Kx K

    

3.85 

substituting  ( )s m avK azFK C  and rearranging yields  

2 2 exps av s
x

azFK C x

    

3.86 

or expav s
s

zFU C x
x

     

3.87 

and the metal phase distribution is easily found for each case by substituting the 

values of solution metal in the over potential equation.             
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Chapter Four 

Calculations and Interpretations  

4.1 Hydrodynamic of fluidized bed  

Considering spherical copper particles with different expansions and 

different particle sizes to find out how the superficial velocity of the fluid 

changes. The terminal settling velocity of particle is calculated from the 

following equations.  

2( )

18
s

t
g d

u

   

for   Rep<0.4    3.6a  

1/ 32 24 ( )

225
m

t
g

u d       for  0.4<Rep<500  3.6b  

1/ 2
3.1 ( )m

t
g d

u

  

for 500<Rep<200,000  3.6c 

Noting that terminal settling velocity is independent of bed expansion. 

The density of copper and solution are 8920, and1000 Kg/m3 respectively and the 

solution viscosity is 10-3Kg.m-1.s-1. Data obtained from Perry s Chemical 

Engineers Handbook [42]. 

The sizes of particles are ranging normally from 200 to 2000 m depending on 

number of references indicating that the particles practically used in 

electrochemical fluidized bed are within this range [13, 15, 29, and 31]. 

The average velocity is found by substituting terminal velocity and porosity into 

equation 3.5. 
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=

0.1
0.225 tu d

av

t

U

u

       
3.5 

Voidage ( ) is calculated from equation 3.4  

=
1

         

3.4  

volume of spaces between particles/ volume of bed  

volume of spaces = volume of bed volume of particles  

1 (volume of particles/ volume of bed)  

0.42 for this system[4, 39] 

This volume of spaces between particles at static condition is found 

experimentally by measurement of the volume of liquid displaced by a given 

volume of spheres. 

By rearranging equation 3.4 we get  

1

         

4.1 

Simple tables can be constructed for the variation of average velocity with 

expansion and particle diameter change. Average superficial velocity is 

calculated for 5, 10, and 20% expansion for copper particles ranging from 200 to 

2000 m in diameter. 

For 5% expansion. The porosity is found from equation 4.1  

0.05 0.42
0.448

0.05 1

 

0.473 at =0.1  

0.517  at =0.2  
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Table 4.1 Average superficial and minimum fluidizing velocities change with 

copper particle diameter at 5% expansion .   

Table 4.2 The variation of velocity with copper particle diameter for 10%, and 

20% expansion. 

Particle diameter in m Terminal velocity in m/s Average velocity in m/s 

200

 

0.0950

 

0.00666

 

300

 

0.1426

 

0.01229

 

400

 

0.1901

 

0.01879

 

500

 

0.2376

 

0.02598

 

600

 

0.2851

 

0.03375

 

700

 

0.3326

 

0.04201

 

800

 

0.3801

 

0.05070

 

900

 

0.4276

 

0.05978

 

1000

 

0.4752

 

0.06920

 

1200

 

0.5376

 

0.08296

 

1400

 

0.5807

 

0.09352

 

1600

 

0.6208

 

0.10367

 

1800

 

0.6584

 

0.11346

 

2000

 

0.6941

 

0.12294

 

Particle diameter 

in m 

Average velocity in m/s for 

10% expansion 

Average velocity in m/s for 

20% expansion 

200

 

0.007966

 

0.010694

 

300

 

0.014556

 

0.019096

 

400

 

0.021959

 

0.028376

 

500

 

0.030236

 

0.038636

 

600

 

0.038967

 

0.049359

 

700

 

0.048379

 

0.060841

 

800

 

0.05807

 

0.072591

 

900

 

0.068344

 

0.084989

 

1000

 

0.07879

 

0.097537

 

1200

 

0.100831

 

0.123871

 

1400

 

0.123988

 

0.151371

 

1600

 

0.148113

 

0.179876

 

1800

 

0.173094

 

0.209265

 

2000

 

0.19884

 

0.239442
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The superficial average velocities in Tables 4.1 and 4.2 are plotted in the next 
figure.  
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Fig. 4.1 Average velocity change with particle diameter at different fluidizing 

porosities.  

From equation 3.11 , it is possible to calculate the pressure drop per unit length of 

the fluidized phase 

(1 )( )m
p

g
L

       

3.11 

(1 )(8920 1000)9.81 77,695.2(1 )
p

L
 Pa/m for copper particles bed. 

By increasing porosity, the pressure drop decreases per unit length of the bed.    
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4.2 Solution and Metal Phase Resistivities   

Fleischmann, Oldfield, and Tennakoon [19] worked on fluidized bed of 535 

m copper coated glass spheres. The density of copper coated glass spheres is 

3000 Kg/m3 and that of solution is 1000 Kg/m3, Young s modulus is 1012 N/m2, 

the viscosity is 10-3 Kg.m-1.s-1, the resistivity of solution is 0.02285 .mand 

porosity at static condition is 0.42[19]. The terminal settling velocity is found from 

equation 3.6b  

1/ 32 2
6

3

4 (3000 1000) 9.81
535 10 0.1016

225 1000 10
tu  m/s  

Rep=
6

6

0.1016 535 10
54.356

10
 within the range of equation 3.6b 

porosity can be found from equation 4.1  

0.42

1 1

 

and the average velocity is found from equation 3.5  

6

6

0.1
0.1016 535 10

0.225
10

0.1016
avU

   

Using equation 3.1, 2.47 and 3.3, a simple table can be constructed to find the 

solution and metal phase resistivities as a function of bed expansion. The 

interstitial velocity ( )pv  equals /avU

 

2 1 1
3 3 3

1 2
3 3

0.04179(1 ) ((1 ) 1)

( )

s
m

m p

E

    

3.1  
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Table 4.3 Solution and metal phase resistivities in .m  as function of percentage 

bed expansion for 535 m copper coated glass spheres.  

Bed expansion %

 
Solution resistivity 

equation 3.3 

Metal phase resistivity 

equation 3.1 

Metal phase resistivity 

equation 2.47 

0

 

0.0548

 

0.02085

 

0.139695

 

5

 

0.0514

 

0.1777

 

1.19059

 

10

 

0.0487

 

0.3182

 

2.13194

 

15

 

0.0464

 

0.4341

 

2.90847

 

20

 

0.0445

 

0.5332

 

3.57244

 

25

 

0.0429

 

0.6203

 

4.15601

 

30

 

0.0415

 

0.6988

 

4.68196

  

The metal phase resistivities of equation 3.1 and 2.47 and the solution phase 

resistivity from table 4.3 are plotted versus percentage expansion as shown.  
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Fig. 4.2 Metal phase resistivities of equation 2.47 and 3.1 and solution phase 

resistivities with percent expansion. 
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Previous data of metal phase resistivities are calculated using matlab 

programming for many variables of electrolyte average velocity, porosity, 

particle diameter, or solution phase resistivity. The programs are in Appendix B-

1,and B-2.   

4.3 Potential Distribution Along an Electrochemical Fluidized Bed  

In order to find a model, Fleischmann, Oldfield, and Tennakoon [19]worked 

on fluidized bed of 535 m copper coated glass spheres. The density of copper 

coated glass spheres as mentioned before is 3000 Kg/m3 and that of solution is 

1000 Kg/m3.The viscosity is 10-3 Kg.m-1.s-1, the diffusivity of copper ions is 

4 10-10 m2/s and porosity at static condition is 0.42 [19]. 

For 13.6 % expansion the porosity can be found by equation 4.1  

0.136 0.42
0.4894

1 1 0.136

 

The terminal settling velocity is found from equation 3.6b   
1/32 2

6
3

4 (3000 1000) 9.81
535 10 0.1016

225 1000 10tu  m/s 

and the average velocity is found from equation 3.5  

0.16

6
0.1016 535 10

0.225
10

0.1016
avU

 Uav=0.012076 m/s  

Re av
d

U d
=

6

6

0.012076 535 10

10
=6.46075 within range of equation 3.6b.  

10.65L  mm [19]  

From equation 3.4b it is found that (1 )L L

  

12.1L  mm 
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The surface area per unit volume is given as 5720 m-1, and the inlet concentration 

of cupric sulphate is 10 mol/m3. The reaction is activation controlled and far from 

equilibrium [10], so we can apply equation 3.77. To find the total current density, 

equation 3.44 has been solved by trial and error calculations as follows 

       

1
2 2 2

1
2 2 2

1 1
2 2 2

1 exp
( )

cos 1 exp cos
( )( )

1 exp
( )

m
m

m sm
m

m sm s
m

m s

I
f

I
f

I
f

  

1
1 1 2 2 2
2 21 1

( ) 1 exp exp
2 ( ) 2

m
m s m m

m s

I
Lf f f

 

3.44 

The reaction temperature is 25C , the exchange coefficient ( ) is 0.5 , the reaction 

of deposition is  

2 2Cu e Cu

        

4.2 

The number of electrons associated with the reaction (z) is 2, the exchange 

current density ( )i  is 9.6 A/m2.  and f  are found from equation 3.46 and 3.47 

2i aRT

zF

         

3.46  

zF
f

RT

         

3.47  

2 9.6 5720 8.314 298.15
2,821.1 . /

0.5 2 96500
AV m

 

10.5 2 96500
38.929

8.314 298.15
f V

      

The solution resistivity ( s ) is 0.02285 .m . So, by applying equation 3.3 we get  

0.02285/ 0.4894=0.0467s .m

 

and that of metal phase according to equation 3.1 is found to be  
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2 1 1

113 3 3

1 2
3 3

0.04179(1 0.136) ((1 0.136) 1)(1.1 10 ) 0.02285
0.414 .

0.012076(3000 1000) 0.4894

m m

 

and that according to equation 2.47  

2 1 1
113 3 3

1 2
3 3

0.28(1 0.136) ((1 0.136) 1)(1.1 10 ) 0.02285
2.77 .

0.012076 (3000 1000) 0.4894

m m

 

The value of total current density is found for different bed lengths, a program 

developed using Matlab Programming. The details of the program are in 

Appendix B-3   

I=207 A/m2 when L=12.1 mm and 0.414 .m m

  

I=82 A/m2 when L=12.1 mm and 2.77 .m m

 

Noting that equation 2.47 gave much higher resistivity, but much lower current 

density, which is far from the experimental value I=210A/m2. The current density 

is variable with L as in the following table, using resistivity of equation 3.1.  

Table 4.4 Total current change with increasing length of bed at 13.6% expansion 

and 535 m diameter coppper particles. 

Length of bed in mm

 

Total current

 

density A/m2

 

6

 

172

 

8

 

189

 

10

 

200

 

12

 

207

 

14

 

212

 

16

 

215

 

18

 

218

 

20

 

220

 

30

 

225

 

40

 

227

 

50

 

228
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The data in Table 4.4 is plotted in Fig. 4.3   
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Fig.4.3 Total current requirement for different bed lengths.  

The solution potential distribution from equation 3.77 is solved using Matlab 

program§ as follows and compared with experimental values [19] and using 

resistivity of equation 3.1 since equation 2.47 gives very low estimate of the 

current and much higher values of potential difference. An error exist because 

Fleischmann et al [37] suggested that metal phase resistivity is constant along the 

bed which is far from reality as will be explained later. 

The error is taken as: 

error%=
exp

100%
exp

theoretical erimental
abs

erimental

   

4.2   

                                                

 

§  Details of program in Appendix B-4 
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Table 4.5 Theoretical and experimental potential distribution at 13.6%expansion. 

Distance x in 

mm 

Theoretical solution 

potential in V 

Experimental solution potential 

in V 

Error % 

0 0 0 0 
1 -0.0076 -0.002 280 
2 -0.0155 -0.005 210 
3 -0.0235 -0.011 113.6 
4 -0.0317 -0.018 76.1 
5 -0.0399 -0.024 66.25 
6 -0.0483 -0.033 46.36 
7 -0.0568 -0.042 35.24 
8 -0.0653 -0.054 20.93 
9 -0.0739 -0.065 13.69 

10 -0.0826 -0.076 8.68 
11 -0.0914 -0.086 6.28 
12 -0.1002 -0.096 4.38 

  

Figure 4.4 shows the theoretical and experimental solution potential profile.            
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Fig. 4.4 Theoretical and experimental potential profiles at 13.6 % expansion. 
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For 18.2% expansion the same procedure has been repeated as follows 

0.5094 : 0.1509 /tu m s : Uav=0.01359m/s: vp=0.02668m/s: 

0.04526 .s m : 0.5159 .m m : (1 ) 12.58L L mm

  

2
36

6 6
(1 ) (1 0.5094) 5,500

535 10
ma

d m

  

2 9.6 5500 8.314 298.15
2,713.9 . /

0.5 2 96500
AV m

  

10.5 2 96500
38.929

8.314 298.15
f V

 

The current is also found by trial and error calculation  

I=188 A/m2 

So, the potential profile can be calculated and compared with experimental 

values, the following table can be constructed.  

Table 4.6 Theoretical and experimental potential profiles at 18.2%expansion. 

Distance x in 
mm 

Theoretical solution 
potential in Volts 

Experimental 
solution potential 

in Volts 

Error% 

 

0

 

0

 

0

 

0

 

1

 

-0.0069

 

-0.003

 

130

 

2

 

-0.014

 

-0.007

 

100

 

3

 

-0.0213

 

-0.013

 

63.84

 

4

 

-0.0287

 

-0.019

 

51.05

 

5

 

-0.0361

 

-0.025

 

44.4

 

6

 

-0.0437

 

-0.034

 

28.52

 

7

 

-0.0513

 

-0.041

 

25.12

 

8

 

-0.059

 

-0.047

 

25.53

 

9

 

-0.0667

 

-0.055

 

21.27

 

10

 

-0.0745

 

-0.064

 

16.40

 

11

 

-0.0823

 

-0.074

 

11.21

 

12

 

-0.0902

 

-0.083

 

8.67

 

13

 

-0.0982

 

-0.092

 

6.74
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Data in Table 4.6 are plotted in Fig. 4.5 as shown  
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Fig. 4.5 Theoretical and experimental potential profiles at 18.2 % expansion.  

At 27% expansion 

0.5433 : 0.1509 /tu m s : Uav= 0.01647 m/s: vp= 0.0303m/s: 

0.04243 .s m : 0.674 .m m

  

2
36

6 6
(1 ) (1 0.5435) 5,120

535 10
ma

d m

  

2 9.6 5120 8.314 298.15
2,526.4 . /

0.5 2 96500
AV m

  

10.5 2 96500
38.929

8.314 298.15
f V

   

(1 ) 13.52L L mm

 

The current is equal to 

I=161 A/m2 

So, the potential profile can be calculated and compared with experimental 

values, the following table can be constructed. 
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Table 4.7 Theoretical and experimental potential distributions at 27%expansion. 

Distance x in 
mm 

Theoretical solution 
potential in V 

Experimental solution 
potential in V 

Error% 

0 0 0 0 
1 -0.0057 -0.004 42.5 
2 -0.0115 -0.008 43.75 
3 -0.0175 -0.011 59.09 
4 -0.0236 -0.017 38.82 
5 -0.0297 -0.023 29.13 
6 -0.0359 -0.028 28.21 
7 -0.0421 -0.035 20.28 
8 -0.0484 -0.041 18.05 
9 -0.0547 -0.05 9.4 

10 -0.0611 -0.057 7.19 
11 -0.0675 -0.067 0.74 
12 -0.0739 -0.077 4.03 
13 -0.0804 -0.083 3.13 
14 -0.0864 -0.091 5.05 

 

Previous Data are plotted in the next figure. 
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Fig. 4.6 Theoretical and experimental potential profiles at 27% expansion.  
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The maximum error is originated near the current feeder as shown in Fig. 4.4, 

4.5, and 4.6. As we move toward the end of the reactor, the discrepancies become 

less evident. This is attributed to the assumptions that the metal phase resistivity 

is taken as a constant value along the bed, while in fact, the resistivity is variable 

along the bed since the particles are discrete at the bed entrance and closer at 

higher levels in the bed. It is also evident from Fig. 4.4, 4.5, and 4.6 that the 

difference between experimental and theoretical values of the potential become 

smaller with increasing bed expansion. This will be explained later. So, a factor 

will be introduced into the resistivity equation( equation 3.1) to replace the 6.7 

suggested by Fleischmann, and Oldfield[37]   

4.4 Local Metal Phase Resistivity or Local Dispersed Phase Resistivity  

The value of metal phase resistivity at each point along the bed is found by 

using experimental values of solution potential in solving equation 3.77 by trial 

and error for m

 

values, as tabulated in Table 4.8.  

1

1 1

m
s

m m

s s

I x

 

1 1
1 1 2 2 2 22 2

2 12 2

2 2

1 1
cos ( ) 1 exp exp cos 1 exp

2 ( ) 2 ( )

ln

1 exp
( )

f

m m
m s m m m

m s m s

m
m

m s

I I
fx f f f

I
f

           

..3.77 
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Table 4.8 Local metal phase resistivity at 13.6, 18.2, and 27% expansion and 

535 mdiameter. 

Distance 
x in mm 

Metal phase resistivity 
.m  at 13.6%expansion 

Metal phase resistivity 
.m  at 18.2 % 
expansion 

Metal phase 
resistivity .m at 
27% expansion 

1

 

0.0125

 

0.027

 

0.0375

 

2

 

0.016

 

0.034

 

0.0495

 

3

 

0.028

 

0.0495

 

0.051

 

4

 

0.039

 

0.0575

 

0.0705

 

5

 

0.0415

 

0.0605

 

0.0715

 

6

 

0.0535

 

0.082

 

0.079

 

7

 

0.063

 

0.0835

 

0.092

 

8

 

0.0855

 

0.076

 

0.1005

 

9

 

0.1015

 

0.078

 

0.103

 

10

 

0.1125

 

0.0815

 

0.1095

 

11

 

0.1075

 

0.0855

 

0.1285

 

12

 

0.0925

 

0.078

 

0.1285

 

13

 

/

 

0.066

 

0.088

 

14

 

/

 

/

 

0.0675

  

The data before is plotted in Fig. 4.7 
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Fig. 4.7 Metal phase resistivity profiles at different expansions and 535 m

 

diameter copper particle. 
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Since there are too large differences in the values of metal phase resistivities 

between that calculated from equation 2.47 or even by inserting the factor 6.7 

into it suggested by Fleischmann et.al. A correction factor is suggested to be 

introduced into equation 2.47. So, equation 2.47 could be written as: 

2 1 1
3 3 3

1 2
3 3

0.28(1 ) ((1 ) 1)
( ) ( , )

( )

s
m

m p

E
x x

    

4.3 

where 

 

is suggested to be function of x and expansion coefficient ( ) . Dividing 

the local values of  resistivity by that calculated from equation 2.47 will give 

local values for the correction factor  as tabulated in Table 4.9.   

Table 4.9 Correction factor distribution at 13.6, 18.2, and 27% expansion and 

535 mdiameter. 

Distance 
x in mm 

Correction factor at 
13.6%expansion 

Correction factor at  
18.2 % expansion 

Correction factor at 27% 
expansion 

1 0.004513 0.007895 0.008304 
2 0.005776 0.009942 0.010961 
3 0.010108 0.014474 0.011293 
4 0.014079 0.016813 0.015611 
5 0.014982 0.01769 0.015833 
6 0.019314 0.023977 0.017493 
7 0.022744 0.024415 0.020372 
8 0.030866 0.022222 0.022254 
9 0.036643 0.022807 0.022808 

10 0.040614 0.02383 0.024247 
11 0.038809 0.025 0.028454 
12 0.033394 0.022807 0.028454 
13 / 

/

 

0.019298 0.019486 
14 / / 0.014947 
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The data in Table 4.9 is plotted in Fig.4.7 
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Fig. 4.8 Correction factor profiles at different expansions and535 m  particle 

diameter.  

Now, by curve fitting, the following equations are concluded: 

Fourth degree polynomial fit: 

= 2 3 4a bx cx dx ex

      

4.4 

where x is in mm. The constants at different expansions are tabulated below:  

Table 4.10 Coefficient of correction factor equation 4.4. 

Coefficient

 

13.6% expansion

 

18.2% expansion

 

27% expansion

 

a

 

-0.003764 0.0035946 0.0031954 

b

 

0.009995 0.0039096 0.0060247 

c

 

-0.0029408 -0.00011876 -0.0013923 

d

 

0.0004411 -6.4844 610

 

0.00017467 

e

 

-2.03335 510

 

-4.19923 910

 

-7.27829 610
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Converting this equation in terms of normalized length. 

2 3 4

2 3 4
' ' ' ' '

x x x x
a b c d e

L L L L

     
4.5 

The constants related to dimensionless distance along the bed are as below  

Table 4.11 Coefficient of correction factor equation 4.5. 

Coefficient

 

13.6% expansion

 

18.2% expansion

 

27% expansion

 

'a

 

-0.003764 0.0035946 0.0031954 

'b

 

0.1209395 0.049182768 0.081514191 

'c

 

-0.430562528 -0.01879453 -0.254875691 

'd

 

0.781435557 -0.012909568 0.432625097 

'e

 

-0.435866631 -0.00010517 -0.24390491 

 

Plotting the equations gives the following figure.  
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Fig. 4.9 Normalized correction factor profiles at different expansions and535 m

 

diameter copper particle. 
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By inserting the expansion coefficient as a variable. The general equation for  

expansions ranging between 5-30% becomes: 

'a  = -0.010827+0.051935

 

'b  = 0.1609532-0.294219

 

'c = -0.608872+1.3110958

 

'd = 1.1354521-2.603063

 

'e = -0.630693+1.4325502

 

2 3 4

2 3 4
' ' '

x x x x
a b c d e

L L L L

 

After this modification, the largest error in the values of metal phase resistivity is 

ranging between 7-30%. Now, the profiles of potential is calculated again using 

correction factor in the equations of resistivity and compared with Fleischmann 

assumption of constant resistivity.At 13.6% expansion, the potential profile is: 

Table 4.12 Normalized theoretical potential profile at 13.6% expansion and 

535 mdiameter after correction. 

x/L Theoretical solution 

potential in V 

0 0 
0.082645 -0.0017 
0.165289 -0.0059 
0.247934 -0.0109 
0.330579 -0.0168 
0.413223 -0.024 
0.495868 -0.03492 
0.578512 -0.043 
0.661157 -0.0538 
0.743802 -0.0648 
0.826446 -0.0757 

0.909091 -0.0863 
0.991736 -0.0958 



 

83

 
The data in Table 4.12 is plotted in Fig. 4.10. The two profiles after inserting this 

correction factor are not easily distinguished from each other. 
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Fig. 4.10 Normalized experimental , constant, and variable resistivity solution 

potential profiles at 13.6% expansion and 535 m diameter copper particles. 

Table 4.13 Theoretical and experimental potential profile at 18.2% expansion 

and 535 m diameter after correction. 

Distance x in 
mm 

Theoretical solution potential 
in V 

0

 

0

 

1

 

-0.0023

 

2

 

-0.0066

 

3

 

-0.0115

 

4

 

-0.0171

 

5

 

-0.0237

 

6

 

-0.0314

 

7

 

-0.04

 

8

 

-0.0494

 

9

 

-0.0592

 

10

 

-0.069

 

11

 

-0.079

 

12

 

-0.089

 

12.58

 

-0.096

 



 

84

 

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8 1

x/L

S
o

lu
ti

o
n

 p
o

te
n

ti
al

 in
 V

o
lt

s

Experimental

Constant resistivity

Variable resistivity

 

Fig. 4.11 Normalized experimental , constant, and variable resistivity solution 

potential profile at 18.2% expansion and 535 m diameter copper particles.  

Table 4.14 Normalized theoretical potential profile at 27% expansion and 

535 mdiameter copper particles after correction. 

Distance x in mm

 

Theoretical solution potential in V

 

0

 

0

 

1

 

-0.0029

 

2

 

-0.0069

 

3

 

-0.0115

 

4

 

-0.0165

 

5

 

-0.0219

 

6

 

-0.028

 

7

 

-0.0346

 

8

 

-0.0418

 

9

 

-0.0495

 

10

 

-0.057

 

11

 

-0.0664

 

12

 

-0.0757

 

13

 

-0.0852

 

14

 

-0.0888
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Fig. 4.12 Normalized experimental , constant, and variable resistivity solution 

potential profile at 27% expansion and 535 m copper particles after correction.  

Variable metal phase resistivity gives closer distribution to the experimental 

values than a single constant value as shown in the previous three figures. The 

metal phase potential profile at 27% can be found from equation [38]  

(1 )m
m s m m s

s
I x

    

         3.37 

Local metal potential along the bed is obtained by adding s for both sides of 

equation 3.37. So, 

m
m m m s

s
I x

       

4.6 

Three sets of metal phase potential data will be obtained, the experimental data, 

that obtained from constant resistivity, and that from variable resistivity or local 

resistivity equation.  
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Table 4.15 Theoretical and experimental metal phase potential distributions at 

27%expansion. 

Distance x 

in mm 

Metal phase potential 

for constant resistivity 

in V 

 
Metal phase potential 

for variable 

resistivity in V

 
Experimental metal 

phase potential in V 

0

 

0.0514

 

0.0514

 

0.0514

 

1

 

-0.01105

 

0.048049031

 

0.042

 

2

 

-0.05602

 

0.043501962

 

0.033

 

3

 

-0.09146

 

0.039068318

 

0.02

 

4

 

-0.12055

 

0.03486293

 

0.009

 

5

 

-0.14329

 

0.030757192

 

-0.002

 

6

 

-0.1549

 

0.027128981

 

-0.012

 

7

 

-0.15858

 

0.023769174

 

-0.019

 

8

 

-0.15272

 

0.021345913

 

-0.027

 

9

 

-0.13892

 

0.020419321

 

-0.036

 

10

 

-0.1283

 

0.019912171

 

-0.041

 

11

 

-0.08749

 

0.026345333

 

-0.046

 

12

 

-0.04827

 

0.03416645

 

-0.051

 

13

 

-0.00588

 

0.043026033

 

-0.049

 

14

 

-0.05721

 

0.04135139

 

-.083

  

The data in table 4.15 are plotted in Fig. 4.13 as shown  
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Fig. 4.13 Theoretical and experimental metal phase potential profiles at 27% 

expansion. 
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Table 4.15 and Fig. 4.13 show that neither the theoretical assumption of constant 

resistivity nor that of variable resistivity are precise. Using equation 3.24 and the 

experimental data to find the resistivity of metal phase and a new equation for the 

correction factor:  

Table 4.16 Local metal phase resistivity and correction factor distributions at 

27%expansion.   

= 2 3 4a bx cx dx ex

     

4.4 

The coefficient data for 27% expansion are 

a  =-0.0080944271 

b  =0.03629234 

c =-0.0072445192 

d = 0.000618544 

e  =-1.1335107 510

 

Distance x in mm along 

the bed 

Metal phase resistivity 

in .m

 

Correction factor 

 

1

 

0.101455

 

0.022467

 

2

 

0.115448

 

0.025565

 

3

 

0.148137

 

0.032804

 

4

 

0.166194

 

0.036803

 

5

 

0.184867

 

0.040938

 

6

 

0.207129

 

0.045868

 

7

 

0.225975

 

0.050041

 

8

 

0.258876

 

0.057327

 

9

 

0.30952

 

0.068542

 

10

 

0.346572

 

0.076747

 

11

 

0.472656

 

0.104667

 

12

 

0.69243

 

0.153335

 

13

 

1.251959

 

0.27724

 

14

 

0.672702

 

0.148966
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or in dimensionless form 

'a

 
=-0.0080944 

'b  =0.48922 

'c =-1.3164 

'd =1.51508 

'e =0.37427 

2 3 4

2 3 4
' ' ' ' '

x x x x
a b c d e

L L L L

     

4.7 

The previous coefficient could be used to predict the metal potential profiles. It is 

noticeable that the equation 4.4 for calculating metal phase potential is extremely 

sensetive to any minor change in the solution potential or resistivity, which leads 

that equation 4.5 with the previous coefficients could be hardly generalized with 

precaution. Using constant resistivity for calculating potential profile will give 

very fragment and high numerical values of potential.   
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Fig.4.14 Normalized metal phase profiles at27% and 535 m copper particles. 

The overpotential is found by equation 3.13 as 
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m s

         
3.24 

Table 4.17 Theoretical and experimental overpotential profiles at 27%expansion. 

Distance x in mm Experimental 

overpotential in Volts 

 
Theoretical 

overpotential at 

constant resistivity in V

 
Theoretical 

overpotential at variable 

resistivity in V 

0

 

0.0514

 

0.0514

 

0.0514

 

1

 

0.046

 

-0.00535

 

0.047206

 

2

 

0.041

 

-0.04452

 

0.035929

 

3

 

0.031

 

-0.07396

 

0.026917

 

4

 

0.026

 

-0.09695

 

0.022367

 

5

 

0.021

 

-0.11359

 

0.021599

 

6

 

0.016

 

-0.119

 

0.023521

 

7

 

0.016

 

-0.11648

 

0.023935

 

8

 

0.014

 

-0.10432

 

0.021185

 

9

 

0.014

 

-0.08422

 

0.014534

 

10

 

0.016

 

-0.0672

 

-0.00085

 

11

 

0.021

 

-0.01999

 

0.003496

 

12

 

0.026

 

0.025626

 

0.016999

 

13

 

0.034

 

0.074519

 

0.053151

 

13.48

 

0.053

 

0.085618

 

0.042001
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Fig. 4.15 Overpotentail distribution for 27% expansion and 535 m copper 

particles.  



 

90

 
4.5 Checking Correction Equation Suggested (Predicted Equation)  

Germain and Goodridge [17] have published data of potential distribution 

for copper deposition in an electrochemical fluidized bed of 500 m diameter 

copper particles. A bed height of 8.6mm is used, and 20% expansion. The total 

current density applied is 3010A/m2, and the metal potential at standard 

conditions m is -.045 Volt. The density of copper is 8920 Kg/m3 and that for 

the solution is 1000Kg/m3. The viscosity is 10-3 Kg.m-1.s-1 . Checking the 

consistency of the assumption of local resistivity by the experimental data. So, 

the porosity from equation 3.4a is:  

0.5167
1

 

The surface area per unit volume is calculated from equation 3.12 and 3.13   

2
36

6 6
(1 ) (1 0.42) 6980

500 10
ma

d m

  

2
3

(1 ) (1 0.5167)
6980 5816

(1 ) (1 .42)
ma a

m

 

To calculate potential distribution, the constants 

 

and f are found from 

equations 3.46 and 3.47 

2 9.6 5816 8.314 298.15
2,867 . /

0.5 2 96500
AV m

  

10.5 2 96500
38.929

8.314 298.15
f V

 

The terminal settling velocity is found from equation 3.6b  

1/ 32 24 ( )

225
m

t
g

u d       for  0.4<Rep<500  3.6b 
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1/ 32 2

6
3

4 (8920 1000) 9.81
500 10 0.2376 /

225 1000 10
tu m s

  
6

6

0.2376 500 10
Re 118.8

10
t

p
d

 within the range of equation 3.6b 

The average velocity is found from equation 3.5   

=

0.1
0.225 tu d

av

t

U

u

       

3.5  

0.5167=

0.16

6
0.2376 500 10

0.225
10 0.0364 /

0.2376
av

av
U

U m s

 

The solution resistivity for the system is 0.044 .m . The metal phase resistivity is 

found using equation 2.47 as:  

2 1 1
3 3 3

1 2
3 3

0.28(1 ) ((1 ) 1)

( )

s
m

m p

E

v

     

2.47 

where av
p

U

  

2 1 1
123 3 3

21
33

0.28(1 0.2) ((1 0.2) 1) 10 0.044
0.7365 .

0.2364
(8920 1000)

0.5167

m m

 

The metal phase resistivity from equation 3.1 is 

2 1 1
123 3 3

21
33

0.04179(1 0.2) ((1 0.2) 1) 10 0.044
0.1099 .

0.2364
(8920 1000)

0.5167

m m
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Now, the local resistivity is calculated as: 

( ) ( )m mx x

        
4.4  

2 3 4

2 3 4
( ) ' ' ' ' '
x x x x x

a b c d e
L L L L L

     
4.5 

Using constants of equation 4.5 which are: 

'a  = -0.010827+0.051935 =-44 510

 

'b  = 0.1609532-0.294219 =0.1021 

'c = -0.608872+1.3110958 =-.3466 

'd = 1.1354521-2.603063 =0.6148 

'e = -0.630693+1.4325502 =-0.3442  

Now using equation 4.5 to calculate the local resistivity at 20% expansion will 

give the following table:  

Table 4.18  Normalized metal phase resistivity for 500 m copper particles at 

20% expansion. 

x

L

 

Metal Phase 

potential in .m

 

0 0 
0.116279 0.005634 
0.232558 0.008311 
0.348837 0.010311 
0.465116 0.013124 
0.581395 0.017129 
0.697674 0.021592 
0.813953 0.024667 
0.930233 0.023395 

1 0.018899 
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The data on previous table are drawn in the next figure. 
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Fig.4.16 Normalized metal Phase resistivity for 500 m copper particles at 20% 

expansion. 

The local metal phase resistivity data are used to calculate the solution potential 

difference from equation 3.77. The following table can be constructed.  

Table 4.19  Normalized experimental, variable resistivity, constant resistivity 

solution potential at 500 m diameter copper particles at 20% expansion. 

x

L

 

Solution potential 
at variable 

resistivity in Volts

 

Experimental 
solution potential 

in Volts 

Solution potential 
at constant 

resistivity in Volts

 

0 0 0 0 
0.116279 -0.0126 -0.005 -0.078 
0.232558 -0.0356 -0.015 -0.156 
0.348837 -0.0639 -0.03 -0.235 
0.465116 -0.1031 -0.065 -0.313 
0.581395 -0.1567 -0.12 -0.391 
0.697674 -0.2201 -0.176 -0.47 
0.813953 -0.2797 -0.235 -0.541 
0.930233 -0.3095 -0.267 -0.628 

1 -0.2899 -0.275 -0.673 



 

94

 
the previous data are plotted in the next figure  
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Fig.4.17 Normalized experimental, variable resistivity, constant resistivity 

solution potential at 500 m diameter copper particles at 20% expansion.  

Now, to calculate the metal phase resistivity to be used in equation 4.6 

m
m m m s

s
I x

       

4.6 

The resistivity is found from equation 4.7 and the constants have been used 

earlier. So, the values of metal phase potential are found as:      
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Table 4.20 Normalized experimental, variable resistivity, constant resistivity 

metal phase potential at 500 m diameter copper particles at 20% expansion. 

x

L

 
Metal phase 
potential at 

variable resistivity 
in Volts 

Experimental 
metal phase  

potential in Volts 

Metal phase  
potential at 

constant resistivity 
in Volts 

0 0.045 0.045 0.045 
0.116279 0.029656 0.035 -0.09098 
0.232558 0.001691 0.022 -0.22695 
0.348837 -0.03314 0.013 -0.36043 
0.465116 -0.08226 0.003 -0.49641 
0.581395 -0.15179 -0.007 -0.63238 
0.697674 -0.23694 -0.022 -0.76586 
0.813953 -0.31793 -0.034 -0.91932 
0.930233 -0.35379 -0.04 -1.03282 

1 -0.31969 -0.042 -1.1189 

 

The previous data is plotted in the next Figure  

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

x/L

S
o

lu
ti

o
n

 p
o

te
n

ti
al

 i
n

 V
o

lt
s

Experimental

Variable resistivity

Constant resistivity

 

Fig. 4.18 Normalized experimental, variable resistivity, constant resistivity metal 

phase potential at 500 m diameter copper particles at 20% expansion  
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4.6 Concentration Distribution   

Concentration distribution along the bed could be obtained for the system 

in section 4.3 using mass transfer equations. A number of cases have been 

considered  

4.6.1 Variable Expansion  

( ) exp
x

C x C

       

3.50 

 where   

av

av

U

K a

         

3.51  

1/ 2
1/ 2 1/ 3(1 )

Reav
d

K d
Sc

D

      

3.14 

at 13.6% expansion 

0.5 0.3330.510 6 6

6 6 10

1 0.48944 10 0.012076 535 10 10
1.52

0.4894535 10 10 4 10
avK

 

55.7228 10avK m/s :
5

0.012076
0.0754

5.7228 10 5720 0.4894
m

 

at 18.2% expansion  

0.5 0.3330.510 6 6

6 6 10

1 0.50944 10 0.01359 535 10 10
1.52

0.5094535 10 10 4 10
avK

  

55.718 10avK m/s :
5

0.01359
0.0848

3.765 10 5500 0.5094
m

 

at 27% expansion   

0.5 0.3330.510 6 6

6 6 10

1 0.54334 10 0.01509 535 10 10
1.52

0.5433535 10 10 4 10
avK
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Fig. 4.19  Normalized concentration profile at 13.6, 18.2, and 27% expansion for 

535 m diameter copper particles.  

4.6.2 Effect of particle Diameter   

Considering number of copper particles at 27% expansion. 

L =10.6mm L=13.48mm. Simple table can be constructed explaining 

concentration profile along the bed.    
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Table 4.21 Concentration Profile for a bed of 200, 500, 1000 m copper particles 

at 27%. 

x

L

 
C

C
at 200 m

 
C

C
at 300 m

 
C

C
at 500 m

 
C

C
at 1000 m

 

0.074184 0.953023 0.980427 0.993519 0.998543 
0.148368 0.908253 0.961237 0.98708 0.997089 
0.222552 0.865586 0.942423 0.980683 0.995637 
0.296736 0.824923 0.923977 0.974327 0.994187 
0.37092 0.786171 0.905892 0.968013 0.992739 
0.445104 0.749239 0.88816 0.961739 0.991293 
0.519288 0.714042 0.870776 0.955507 0.989849 
0.593472 0.680498 0.853733 0.949314 0.988407 
0.667656 0.648531 0.837023 0.943162 0.986967 
0.74184 0.618064 0.820639 0.937049 0.98553 
0.816024 0.58903 0.804577 0.930976 0.984094 
0.890208 0.561359 0.788829 0.924943 0.982661 
0.964392 0.534988 0.773389 0.918948 0.98123 

1 0.522773 0.766086 0.916085 0.980543 
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Fig. 4.20 Concentration Profile for a bed of 200, 500,1000 m copper particles at 

27%.  
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Chapter Five 

Discussion   

5.1 Hydrodynamics of Fluidized Bed 

Studying hydrodynamics of fluidized bed showed a number of facts:  

1) The terminal settling velocity of certain particle (e.g copper particles) is 

independent on flow conditions. It is function of the particle diameter and 

physical properties as shown in equations 3.6a, 3.6b, and 3.6c  in a 

particular system and has no relation with bed expansion or flow velocity 

of that system. 

2) By examining Fig. 5.1 for the deposition of copper coated glass spheres, it 

is found that increasing particles diameter due to deposition and keeping 

flow velocity unchanged will reduce the expansion of bed. To maintain the 

same expansion, an increase in the velocity of flow must take place. The 

spaces between larger particles are more, this leads that the fluid flows 

with ease in the spaces and reducing the upward force which overcome the 

gravitational force. The velocity change with particle diameter and 

expansion is plotted in Fig. 5.1. 

3) The conditions of the system can be kept constant by feeding new particles 

to the system and venting out grown larger ones, due to deposition, from 

the bottom of the bed.  

4) The pressure drop per unit length of fluidized bed drops as the porosity 

increases since the spaces between particles increases leading to a lower 

pressure drop. 
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Fig. 5.1 Velocity change with expansion for different range of diameters.  

5) In the context, the maximum particle size is 2mm or around, larger 

particles will give lower surface area for mass transfer as explained in 

equation 3.12 and leads that the electrical charge will pass through metallic 

phase because of the large particle diameter and small bed thickness( 

normally not more than 15mm).  

5.2 Discussion of the Metal Phase Resistivity  

Fleischmann et al [19] developed an expression for the metal phase 

resistivity based on elastic collision between particles. This expression has been 

tested by Fleischmann et al [37] and a correction factor of 6.7 was suggested to be 

used in the denominator of equation 2.47 [37] to become equation 3.1[19]. 
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It is found that the factor suggested to be used as a correction for the metal 

phase resistivity will not give an accurate solution potential profile and definitely 

high error metal phase potential profile. The assumption of constant metal phase 

resistivity is not valid since the electrical charges will have variable tracks each 

second and the concentraion of particles(number of particles per unit volume 

element) is changing continuously along the bed. Equation 3.1 will still give very 

high values of resistivity in spite of the factor 6.7 inserted in the denominator of 

equation 2.47. Therefore, it is necessary to find local values of the resistivity. 

Solving experimental data of solution potential for local values of metal phase 
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resistivity as in section 4.4 give in general lower values of resistivity which 

means that the theory of elastic collision between particles is not precise and 

hence lower resistivities means higher conductance, it is suggested that the 

charge is transferred in different manner than that of elastic collision.  

The assumption of local metal phase resistivity could be attributed to the fact 

that the particles concentration is low close to the entrance of the reactor and 

rising continously up to the end of the reactor. The following conclusions have 

been reached from the work in section 4.4:  

1) Increasing the bed expansion will reduce the resistivity of the solution 

phase since the porosity increases leading that the particles will distribute 

on a larger volumes according to equation 3.3 

2)  Increasing the bed expansion will increase the resistivity of the 

discontinuous metal phase since the particles become more separated from 

each other as shown in Fig. 4.2 and table 4.3. It is worth saying that all the 

principle of metal phase resistivity is based on the collisions between 

particles, and larger spaces between particles leading to lower collisions 

and higher resistivity as given in equation 3.1. 

The obtained equation of resistivity from this work will have the form 

2 1 1
3 3 3

1 2
3 3

0.28(1 ) ((1 ) 1)
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s
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m p

E
x x

   

4.3 

where ,
x

L
 is the local correction factor inserted into equation 3.47. Using  

local resistivity equation is due to the following reasons: 
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1) The particles are discrete in the region close to the feeder because of the 

flow. The flow will displace most of the particles away from feeder, and 

leaving the rest of the particles which slipped from the upward force and 

the particles which are coming downward only. 

2) Higher concentration of particles will reduce the resistivity of metal phase 

because of the increased collisions between particles. 

The correction factor ( ) in this work is function of normalized local position 

and expansion and will have the following form: 

2 3 4

2 3 4
' ' '

x x x x
a b c d e

L L L L

     

4.5 

where the constant are: 

'a  = -0.010827+0.051935

 

'b  = 0.1609532-0.294219

 

'c = -0.608872+1.3110958

 

'd = 1.1354521-2.603063

 

'e = -0.630693+1.4325502

  

For a 10 and 30% expansion, the following Figure is plotted 
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Fig. 5.2 Normalized correction factor with expansion change.  

Noting from Fig.5.2 that the metal phase resistivity is rising up to 90% of 

the reactor and then falls. This is suggested to be due to the low concentration of 

the particles at the end of reactor due to low number of particles reaching the end. 

It could be due to fountain-like effect of particles distribution in the end of the 

reactor. Local phase resistivity equation will solve the problem started in the first 

place from integrating Ohm s law in the metal phase and assuming that the metal 

phase resistivity is constant with x.  

5.3 Discussion of the Potential Profiles  

The total current density for a certain system is function of bed length, 

increasing bed length at definite conditions will require an increment in the total 

current density applied to the bed as shown in Fig. 4.3.  
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Fig.4.3 Total current requirement for different bed lengths.   

However, the bed length could not be increased to very high values as 

shown in the same figure since the current becomes almost a constant value after 

1.5 to 2.0 cm length normally for the case of activation polarisation. This means 

that increasing the bed length will not particularly increase the performance of 

the bed, since bipolar and inert regions will appear in the bed as shown in Fig. 

3.4. Calculating the current using values of metal phase resistivity obtained from 

equation 2.47 will lead to false values of total current densities while equation 3.1 

will give better estimate and closer to the experimental values. So, equation 3.1 

will only be adopted for the calculation of total current density. In spite of the 

fact that the bed length can not exceed 15 to 20 mm as shown in Fig.4.3 and 

Fig.3.4. There will be no limitation for increasing bed in the other coordinates.  

Solution potential profiles calculated using Fleischmann et al model [37] is 

not precise because of the concept that assumes constant metal phase resistivity 

along the bed. Calculating local values of resistivity gives more precise values. 
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This is evident by examining Fig. 4.10, 4.11, and 4.12. After correction factor 

equation is used, a more precise curves for solution potential profiles is obtained 

as shown in Fig. 4.12.  
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Fig. 4.12 Normalized experimental , constant, and variable resistivity solution 

potential profile at 27% expansion and 535 m copper particles after correction.  

The equation has been tested for a different system [17] of  500 m copper particles 

and a very good agreement is obtained. This is shown in Fig. 4.16  
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Fig.4.16 Normalized experimental, variable resistivity, constant resistivity 

solution potential at 500 m diameter copper particles at 20% expansion.  

From previous figure it is evident that the variable resistivity model will 

give better estimate and much closer values to the experimental work than 

Fleischmann constant resistivity assumption. The importance of using local 

metal phase resistiviy values is to find the potential difference along the bed 

which is the main problem in designing any electrochemical reactor. the 

second thing is that accurate solution and metal phase potential distribution 

will give us an idea when the bed is working effectively and to check if the 

bed is well cathodically protected( no anodic zones). For the case of metal 

phase potential the curve obtained from local resistivity model is much 

closer to the experimental work than the constant metal phase potential as 

shown in Fig. 4.16.  
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5.4 Concentration Profile  

The concentration profile is studied for two cases as follows:   

5.4.1 Effect of Expansion  

From the work in section 4.6.1 it is found that increasing expansion will 

reduce the mass transfer rates in fluidized bed as shown in Fig. 4.19. the mass 

transfer coefficient is not greatly affected by increasing expansion as shown in 

table below. While expansion increases, the surface area per unit volume 

decreases. This leads that mass transfer rates decreases as shown in Fig. 4.19.   

Table 5.1 Mass transfer coefficient for 535 m diameter copper particles. 

Expansion %

 

avK in m/s 

13.6 55.7228 10

 

18.2 55.718 10

 

27 55.449 10

  

5.4.2 Effect of Particle Diameter  

Lower particle diameter leads to higher mass transfer rates as shown in 

Fig.4.20. As the diameter becomes smaller, higher transfer rates is accomplished. 

This is attributed to the surface area per unit volume which become greater for 

smaller particles. The conversion is relatively low due to thin bed thickness. The 

conversion could by greatly increased by recycling. The bed could be several 

millimeters in thickness but the other dimensions could be as large as wanted.   
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Chapter Six 

Conclusions and Recommendations for Future Work  

6.1 Conclusions  

Fluidized bed represents one of the promising fields in electrochemical 

industries for a number of reasons. A number of conclusions have been reached 

from the previous work:  

1) Variable metal phase resistivity will give very close estimate of the solution 

potential. So, this equation could be used in the range of 500 m copper particles 

and will definitely give a closer estimate of solution potential. Larger particles or 

smaller ones could show little deviation from experiments.  

2) Metal phase potential could be estimated with variable resistivity equation and 

will give much closer but not accurate values of the potential. 

3) Fluidized bed could be used in continuous operation by adding new particles 

and venting out the larger ones resulted from particle growth by deposition. The 

self cleaning action due to the bipolarity of the particle and the continuous motion 

of particles will prohibit agglomeration in the reactor.  

4) Conversion is relatively low and could be increased by series reactor or recycle 

streams. 

5) The bed thickness could be up 2 cm in most cases. However, there is no limits 

to the other coordinates.     
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6.2 Recommendations for Future Work   

Many issues could be studied for future work. The equation suggested as a 

correction could be developed by modifying it, changing numerical values for 

more accuracy, and inserting other variables such as particle diameter, 

temperature, and solution resistivity. Another issue is to study the case of two 

dimensional geometry where the current is perpendicular to the flow of 

electrolyte. Another point suggested by the examining committee is to use it in 

electromachining.                
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Appendix A  

A-1 Integration of Equation 3.26[48]  
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A-2 Integration of Equation 3.29[48]  
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Appendix B 

Matlab Programs  

B-1 Matlab Program for Calculating Metal Phase Resistivity Using 

Equation 3.1 

YO=input('Young Modulus=') 

RSO=input('Resistivity of solution=') 

D=input('Density of solution=') 

DS=input('Density of solid=') 

EO=input('Initial porosity=') 

V=input('Viscosity=') 

d=input('Particle diameter=') 

EX=input('Expansion=') 

E=(EX+EO)/(EX+1); 

VT=(4*(DS-D)^2*9.81^2/(225*D*V))^0.3333*d; 

C=0.225*(VT*d*D/V)^0.1; 

U=E^(1/C)*VT; 

VP=U/E; 

RS=RSO/E; 

RM=0.04179*(1+EX)^0.6667*((1+EX)^0.3333-1)*YO^0.3333*RS/((DS-

D)^0.3333*VP^0.6667)  

B-2 Matlab Program for Calculating Metal Phase Resistivity Using 

Equation 2.50 

YO=input('Young Modulus=')  
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RSO=input('Resistivity of solution=') 

D=input('Density of solution=') 

DS=input('Density of solid=') 

EO=input('Initial porosity=') 

V=input('Viscosity=') 

d=input('Particle diameter=') 

EX=input('Expansion=') 

E=(EX+EO)/(EX+1); 

VT=(4*(DS-D)^2*9.81^2/(225*D*V))^0.3333*d; 

C=0.225*(VT*d*D/V)^0.1; 

U=E^(1/C)*VT; 

VP=U/E; 

RS=RSO/E; 

RM=0.28*(1+EX)^0.6667*((1+EX)^0.3333-1)*YO^0.3333*RS/((DS-

D)^0.3333*VP^0.6667)  

B-3 Matlab Program for Calculating The Total Current Density 

for a Number of Different Conditions  

B=input('Beta Value=') 

f=input('f value=') 

L=input('Length=') 

XS=input('Solution resistivity=') 

XM=input('Metal phase resistivity=') 

PMO=input('Standard metal potential=')  
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for I=1:10000 

K1=1-(I^2)*(XM^2)*exp(f*PMO)/(B*(XM+XS)); 

K2=0.5*L*f*B^0.5*(XM+XS)^0.5*(K1)^0.5*exp(0.5*f*PMO); 

K3=1-(I^2*(XM^2-XS^2)*exp(f*PMO)/(B*(XS+XM))); 

fn=acos(K1^0.5)+acos((K1/K3)^0.5)-K2; 

if abs(fn)<=0.1 

break 

end 

end  

B-4 Matlab Program for Calculating The Solution Potential 

Distribution Profile at Different Bed Conditions 

B=input('Beta Value=') 

f=input('f value=') 

I=input('Total current density=') 

XS=input('Solution resistivity=') 

XM=input('Metal phase resistivity=') 

PMO=input('Standard metal potential=') 

L=input('Bed length approximated for the nearest millimeter=') 

K1=1-(I^2)*(XM^2)*exp(f*PMO)/(B*(XM+XS)); 

for x=.001:0.001:L  

K2=0.5*x*f*B^0.5*(XM+XS)^0.5*(K1)^0.5*exp(0.5*f*PMO); 

PS=(-I*XM*x-log(K1/(cos(K2-acos(K1^0.5)))^2)/f)*(1+XM/XS)^-1 

end 
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B-5 Program For Calculating Local Metal Phase Resistivity 

B=input('Beta Value=') 

f=input('f value=') 

I=input('Total current density=') 

XS=input('Solution resistivity=') 

PMO=input('Standard metal potential=') 

L=input('Length of bed for nearest millimeter=') 

for x=0.001:0.001:L 

PS=input('Solution potential=') 

for XM=.001:0.001:10 

K1=1-(I^2)*(XM^2)*exp(f*PMO)/(B*(XM+XS)); 

K2=0.5*x*f*B^0.5*(XM+XS)^0.5*(K1)^0.5*exp(0.5*f*PMO); 

D=PS-(-I*XM*x-log(K1/(cos(K2-acos(K1^0.5)))^2)/f)*(1+XM/XS)^-1; 

if abs(D)<0.0001 

x 

XM 

break 

end 

end 

end  

B-6 Matlab Program for Calculating The Solution Potential 

Distribution Profile Using Local Values of Resistivity  

B=input('Beta Value=') 
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f=input('f value=') 

I=input('Total current density=') 

XS=input('Solution resistivity=') 

PMO=input('Standard metal potential=') 

L=input('Bed length approximated for the nearest millimeter=') 

for x=.000:0.001:L  

XM=input('Metal phase resistivity=') 

K1=1-(I^2)*(XM^2)*exp(f*PMO)/(B*(XM+XS)); 

K2=0.5*x*f*B^0.5*(XM+XS)^0.5*(K1)^0.5*exp(0.5*f*PMO); 

PS=(-I*XM*x-log(K1/(cos(K2-acos(K1^0.5)))^2)/f)*(1+XM/XS)^-1 

end   
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