ENHANCEMENT OF HEAT TRANSFER USING TURBULENCE PROMOTERS

A Thesis

Submitted to the College of Engineering of Nahrain University in Partial Fulfillment of the Requirements for the Degree of Master of Science

in

Chemical Engineering

by ABBAS NAWAR ZNAD (B.Sc., 1995)

Rabee I	1432
February	2011

Certification

I certify that this thesis entitled "Enhancement of Heat Transfer Using Turbulence Promoters" was prepared by Abbas Nawar Znad under my supervision at Nahrain University/College of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering ...

Signature: Name: Prof. Dr. Qasim J. M. Slaiman (Supervisor) Date: 13 1 2 1 2611

Signature:

Name: Asst. Prof. Dr. Basim O. Hasan (Head of Department)

Date:

13/2/2011

Certificate

We certify, as an examining committee, that we have read the thesis entitled "Enhancement of Heat Transfer Using Turbulence Promoters", examined the student Abbas Nawar Znad in its content and found it meets the standard of thesis for the degree of Master of Science in Chemical Engineering..

Signature: Offen. S______ Signature: Name: Prof. Dr. Qasim J. M. Slaiman Name: Asst. Prof. Dr. Basim O. Hasan (Supervisor) (Member) (Member) Date: 13/2/2011 Date: 13/2/2011 Adam Signature: Signature: BA Name: Asst. Prof. Dr. Basma Abbas Name: Asst. Prof. Dr. Balasim A. Abid (Member) (Chairman)

Dete: 13 / 2/2011

13/2.12011 Date:

Approval of the College of Engineering

Signature: M. J. JWeeg Name: Prof. Dr. Muhsin J. Jweeg (Dean) Date: 21 / 2 / 2011

ABSTRACT

Three cases of heat transfer enhancement by turbulence promoters were adopted in order to increase the thermal performance of a double pipe heat exchanger of 1245 mm effective length, 28 mm outer diameter and changeable inner diameter (11 or 14 mm). Wire coils of 1 mm diameter and 10, 20, 30 and 40 mm coiling pitches were used as turbulence promoters to augment heart transfer inside the inner tube of heat exchanger at a Reynolds number range of 5000 to 40000 based on smooth tube diameter. Two new types of turbulence promoters are used to enhance heat transfer in the annulus of the same double pipe heat exchanger for a Reynolds number range of 3000 to 10000 based on smooth annulus equivalent diameter. The first was by wire coils of 1 and 2.2 mm diameters and 10, 20, 30 and 40 mm coiling pitches set up on the outer surface of the inner tube. The second was by circular ribs of 2.2 mm diameter and the same pitches and position. Water was used as the working fluid in the two sides. Variation in the experimental conditions was attained by changing the mass flowrates of unenhanced side and changing the inlet temperature of hot fluid. These conditions were followed in order to increase the data points in addition to observe the effect of these conditions.

Heat transfer is increased inside the inner tube by 2.43 folds compared to smooth tube at the same Reynolds number accompanied by friction factor increase of 4.75 folds. For the annulus-side enhancement, heat transfer is increased by 3.25 folds, compared to smooth annulus with an increase of friction factor of 2.63 folds. New correlations of Nusselt number and friction factor for the tube and annulus sides were proposed as functions of Reynolds number, Prandtl number and geometrical characteristics of inserts and sizes of tubes and annuli. In addition, performance evaluation criteria (PEC) were applied to the results, in order to determine the most beneficial method.

List of Contents

Contents		Page
Abstract		Ι
List of Con	tents	II
Notations		VI
List of Tabl	les	IX
List of Figu	ires	XIV
СНАРТЕБ	RONE: Introduction	1
1.1	Introduction	1
1.2	Classification of Heat Transfer Enhancement Techniques	1
1.3	Scope of the present work	3
СНАРТЕБ	R TWO: Literature Review	4
2.1	The Problem of Turbulence	4
2.2	Enhancement of Heat Transfer	5
2.2.1	Enhancement of Heat Transfer by Turbulence	5
2.2.1.1	Wire coil inserts	5
2.2.1.2	Twisted tapes, helical inserts and twisted angles	8
2.2.1.3	Rod-pin inserts and louvered strips	11
2.2.1.4	Disk and mesh inserts	12
2.2.1.5	Conical nozzles	13
2.2.1.6	Twisted and corrugated tubes	13
2.2.1.7	Ribbed surfaces and channels	15
2.2.2	Enhancement of heat transfer in the annulus of a double-pipe heat exchanger	16
СНАРТЕБ	R THREE: Theoretical Background	18
3.1	Introduction	18
3.2	Turbulent Fluid Flow and Heat Transfer	18
3.2.1	Fluid Flow and Heat Transfer in Circular Tubes	18

3.2.2	Fluid Flow and Heat Transfer in the Annulus of Concentric Tubes	21
3.2.3	Empirical Correlations of Turbulent Fluid Flow and Heat Transfer in Tubes Inserted with Wire Coils	24
3.3	Mechanisms of Heat Transfer Augmentation by Turbulence Promoters	26
3.4	Performance Evaluation Criteria (PEC)	29
3.4.1	Objective Functions and Constraints	30
3.4.2	Algebraic Formulation of the PEC	31
3.5	Thermal Design of the Double Pipe Heat Exchangers	33
СНАРТЕН	R FOUR: Experimental Work	34
4.1	Experimental Rig Design and Assembly	34
4.1.1	Components of the Experimental Rig	37
4.1.1.1	Hot Fluid Unit	37
4.1.1.2	Cold Fluid Unit	37
4.1.1.3	Flow Measurement Instrumentation	38
4.1.1.4	Pressure Measurement Instrumentation	39
4.1.1.5	Temperature Measurement Instrumentation	40
4.1.1.6	Pipes, Pumps, and Valves	40
4.1.1.7	Test Section (Double-Pipe Heat Exchanger)	40
4.1.2	Turbulence Promoter Selection and Fabrication	43
4.2	Operation of the System	44
4.2.1	Isothermal Pressure Drop Experiments	44
4.2.2	Heat Exchange Experiments	46
4.3	Calculation procedure	48
4.3.1	Prediction of Physical Properties	48
4.3.2	Isothermal Pressure Drop Calculations	49
4.3.3	Heat Transfer Calculations	49
4.4	Error Sources and Uncertainty	51

CHAPTER	R FIVE: Experimental Results	52
5.1	Introduction	52
5.2	Test of Authenticity of Using the Present Heat Exchanger	52
5.3	The Effect of Turbulence Promoters on Heat Transfer Rate and Pressure Drop	55
5.4	Effect of Turbulence Promoters on Friction Factor	60
5.4.1	Friction Factor in Heat Exchange Process	60
5.4.2	Friction Factor in Isothermal Process	62
5.5	Effect of Turbulence Promoters on Heat Transfer	65
5.6	Proposed Correlations of Friction Factor and Nusselt Number	70
5.6.1	Concise Description of Inserts	70
5.6.2	Proposed Correlations of Friction Factor	70
5.6.3	Proposed Correlations of Nusselt Number	74
СНАРТЕБ	R SIX: Discussion	77
6.1	Introduction	77
6.2	The Influence of the Experimental Conditions	77
6.3	Friction Factor in Enhanced Tubes and Annuli	80
6.3.1	The Effect of the Wire or Rib Diameter and Coiling or Ribbing Pitch on Friction Factor	80
6.3.2	The Effect of the Annulus Diameter Ratio (D_i/D_o)	82
6.3.3	The Effect of Disruption Shape of Insert on Friction Factor	83
6.3.4	The Dependency of Friction Factor on Reynolds Number	83
6.3.5	Friction Factor Augmentation	84
6.3.5.1	Friction Factor Augmentation for Tube-Side Heat Transfer Enhancement	84
6.3.5.2	Friction Factor Augmentation for Annulus-Side Heat Transfer Enhancement by Wire Coil	87

6.3.5.3	Friction Factor Augmentation for Annulus-Side Heat Transfer Enhancement by Circular Ribs	89
6.4	Heat Transfer in Enhanced Tubes and Annuli	90
6.4.1	The Effect of the Wire or Rib Diameter and Coiling or Ribbing Pitch on Nusselt Number	91
6.4.2	The Effect of the Annulus Diameter Ratio (D_i/D_o)	93
6.4.3	The Dependency of Nusselt Number on Reynolds Number	94
6.4.4	The Effect of Prandtl Number on Heat Transfer	95
6.4.5	Nusselt Number Augmentation	95
6.4.5.1	Nusselt Number Augmentation for Tube-Side Heat Transfer Enhancement	95
6.4.5.2	Nusselt Number Augmentation for Annulus-Side Heat Transfer Enhancement by Wire Coil	99
6.4.5.3	Nusselt Number Augmentation for Annulus-Side Heat Transfer Enhancement by Circular Ribs	101
6.5	Performance Evaluation Criteria (PEC)	103
6.5.1	PEC Application for Tube-Side Heat Transfer Enhancement	104
6.5.2	PEC Application for Annulus-Side Heat Transfer Enhancement	112
CHAPTER	R SEVEN: Conclusions and Recommendations	120
7.1	Conclusions	120
7.2	Recommendations	121
References		122
Appendix A	A Physical Properties of Liquid Water	A-1

Appendix B	Calibration of Measurement Instrumentations	B-1
Appendix C	Experimental and Predicted Results	C-1

<u>Notations</u>

<u>Symbols</u>	Description
А	Heat exchange surface area [m ²]
A _c	Cross-sectional area [m ²]
\mathbf{C}_{f}	Fanning friction factor []
Ср	Heat capacity [J/kg.°C]
d	Tube diameter [m]
D _e	Equivalent diameter of annulus based on fluid flow [m]
De	Equivalent of annulus [m]
D_i	Inner diameter of annulus[m]
Do	Outer diameter of annulus [m]
e	Wire or rib diameter [m]
E_{h}	Enhancement ratio [—]
f	Darcy friction factor []
G	Mass flux [kg/m ² s]
h	Convective heat transfer coefficient [W/m ² .°C]
j	Colburn factor (Nu/Re Pr ^{1/3}) [—]
k	Thermal conductivity [W/m.°C]
L	Length [m]
ṁ	Mass flowrate [kg/s]
Ν	Number of tubes of shell and tube heat exchanger
Nu	Nusselt number (hd/k) [—]
р	Coiling or ribbing pitch [m]
Р	Pumping Power [W]
Pr	Prandtl number (Cpµ/k) [—]
q	Heat transfer rate [W]
r	Radius [m]
Re	Reynolds number ($\rho d \nu/\mu$) [—]

Re _o	Reynolds number in smooth tube for PEC calculations [—]
St	Stanton number (Nu/Re Pr) []
Т	Temperature [°C]
U	Overall heat transfer coefficient
у	Twist ratio (twisted tape insert) []
ΔH	Enthalpy difference [kJ/kg]
Δp	Pressure drop [N/m ²]
ΔT_i	Approach temperature difference [°C]
Q	Volumetric flowrate [m ³ /s]

Greek Symbols

μ	Dynamic viscosity [Pa.s]	

 β Coiling angle (Bergles equation)

 δ Tape thickness (twisted tape) [m]

 θ Disruption shape corner (Bergles equation)

- v Fluid Velocity [m/s]
- ρ Density [kg/m³]

<u>Subscripts</u>

1,2,3,4	The four temperatures of the heat exchanger
а	Augmented
b	Bulk, both
c	Cold, cross-sectional, corrected
e	Equivalent
h	Hot, hydraulic
i	Inner, inlet
m	Mean
0	Outer, outlet, smooth in PEC calculations

p Pass

- s Smooth
- w Wall

<u>Superscript</u>

n exponent of Prandtl number

Abbreviations

ID	Inner diameter of tube
OD	Outer diameter of tube
PEC	Performance Evaluation criteria
LMTD	Logarithmic Mean Temperature Difference

List of Tables

<u>Table No.</u>	<u>Title of Table</u>	Page
3-1	Performance Evaluation Criteria for Single-Phase Forced Convection in Enhanced Tubes	30
5-1	Deviations of Experimental Nusselt and Friction Factor from Theoretical Values for Smooth Inner Tubes and Annuli	55
A-1	Physical Properties of Liquid Water	A-1
B-1	Calibration of Thermocouples	B-1
B-2	Calibration of the Rotameter at 20, 40, 60 and 70 °C	B-2
В-3	Calibration of the Orifice Plate at 60 and 70 °C	B-4
C-1	Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Smooth Tube)	C-2
C-2	Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire coil, e=1 mm, p = 10 mm)	C-3
C-3	Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire coil, e=1 mm, p=20 mm)	C-4
C-4	Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire coil, e=1 mm, p = 30 mm)	C-5
C-5	Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire coil, e=1 mm, p = 40 mm)	C-6
C-6	Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Smooth Annulus)	C-7
C-7	Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, $e = 1$ mm, $p = 10$ mm)	C-8

- C-8 Experimental Results of Annulus-Side Heat Transfer C-9 Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 20 mm)
- C-9 Experimental Results of Annulus-Side Heat Transfer C-10 Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 30 mm)
- C-10 Experimental Results of Annulus-Side Heat Transfer C-11 Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 40 mm)
- C-11 Experimental Results of Annulus-Side Heat Transfer C-12 Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 10 mm)
- C-12 Experimental Results of Annulus-Side Heat Transfer C-13 Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 20 mm)
- C-13 Experimental Results of Annulus-Side Heat Transfer C-14 Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 30 mm)
- C-14 Experimental Results of Annulus-Side Heat Transfer C-15 Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 40 mm)
- C-15 Experimental Results of Annulus-Side Heat Transfer C-16 Enhancement for Two Annulus Sizes (Circular Ribs, e=2.2 mm, p = 10 mm)
- C-16 Experimental Results of Annulus-Side Heat Transfer C-17 Enhancement for Two Annulus Sizes (Circular Ribs, e =2.2 mm, p = 20 mm)
- C-17 Experimental Results of Annulus-Side Heat Transfer C-18 Enhancement for Two Annulus Sizes (Ribs, e =2.2 mm, p = 30 mm)
- C-18 Experimental Results of Annulus-Side Heat Transfer C-19 Enhancement for Two Annulus Sizes (Circular Ribs, e =2.2 mm, p = 40 mm)

- C-19 Predicted Results ($\text{Re}_{s,c}$, Pr, f, h, Nu and empirical values C-20 of $f_{s,i}$, and $\text{Nu}_{s,i}$) for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Tube)
- C-20 Predicted Results (Re_{s,c}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-21 for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire Coil, e =1 mm, p = 10 mm)
- C-21 Predicted Results (Re_{s,c}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-22 for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire Coil, e =1 mm, p = 20 mm)
- C-22 Predicted Results (Re_{s,c}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-23 for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire Coil, e =1 mm, p = 30 mm)
- C-23 Predicted Results (Re_{s,c}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-24 for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Wire Coil, e =1 mm, p = 40 mm)
- C-24 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu and empirical values C-25 of $f_{s,o}$, and $\text{Nu}_{s,o}$) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Smooth Annulus)
- C-25 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-26 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 10 mm)
- C-26 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-27 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 20 mm)
- C-27 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-28 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 30 mm)
- C-28 Predicted Results (Re_{s,h}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-29 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =1 mm, p = 40 mm)
- C-29 Predicted Results (Re_{s,h}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-30 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 10 mm)

- C-30 Predicted Results (Re_{s,h}, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-31 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e =2.2 mm, p = 20 mm)
- C-31 Predicted Results (Re_{s,h}, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-32 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e = 2.2 mm, p = 30 mm)
- C-32 Predicted Results (Re_{s,h}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-33 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Wire Coil, e = 2.2 mm, p = 40 mm)
- C-33 Predicted Results (Re_{s,h}, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-34 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Circular Ribs, e = 2.2 mm, p = 10 mm)
- C-34 Predicted Results (Re_{s,h}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) C-35 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Circular Ribs, e = 2.2 mm, p = 20 mm)
- C-35 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-36 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Circular Ribs, e = 2.2 mm, p = 30 mm)
- C-36 Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) C-37 for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Circular Ribs, e = 2.2 mm, p = 40 mm)
- C-37 Isothermal Pressure Drop and Friction Factor for Smooth C-38 and Augmented Tubes (Using a Wire Coil of e = 1 mmand p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C
- C-38 Isothermal Pressure Drop and Friction Factor for Smooth C-39 and Augmented Annuli (Using a Wire Coil of e = 1 mmand p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C
- C-39 Isothermal Pressure Drop and Friction Factor for Smooth C-40 and Augmented Annuli (Using a Wire Coil of e = 2.2mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C

- C-40 Isothermal Pressure Drop and Friction Factor for Smooth C-41 and Augmented Annuli (Using Circular Ribs of e = 2.2mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C
- C-41 Description of Turbulence Promoters (Inserts) in Terms C-42 of the Dimensionless Parameters (e/d_i) and (p/d_i) or (e/D_e) and (p/D_e)
- C-42 Application of FG-2a Criterion to the Tube-Side Heat C-43 Transfer Enhancement for all Geometrical Characteristics and Conditions
- C-43 Application of FG-3 Criterion to the Tube-Side Heat C-44 Transfer Enhancement for all Geometrical Characteristics and Conditions
- C-44 Application of FN-1 Criterion to the Tube-Side Heat C-45 Transfer Enhancement for all Geometrical Characteristics and Conditions
- C-45 Application of FG-2a Criterion to the Annulus-Side Heat C-46 Transfer Enhancement for all Geometrical Characteristics and Conditions
- C-46 Application of FG-3 Criterion to the Annulus-Side Heat C-47 Transfer Enhancement for all Geometrical Characteristics and Conditions
- C-47 Application of FN-1 Criterion to the Annulus-Side Heat C-48 Transfer Enhancement for all Geometrical Characteristics and Conditions

List of Figures

<u>Figure No.</u>	<u>Title of Figure</u>	<u>Page</u>
1-1	Enhanced tubes for augmentation of single-phase heat transfer	2
2-1	compound wire coil/ twisted tape insert tested by Eiamsa-ard et al	8
2-2	Devices used by Promvonge, et al.	9
2-3	Test tube used by Eiamsa-ard and Promvonge	10
2-4	A twisted angle	11
2-5	Rod-pin inserts used by Nazrul Islam et al.	12
2-6	Louvered strips with forward and backward arrangements	12
2-7	Mesh inserts	13
2-8	Completed twisted tube bundle	14
2-9	The V corrugated plates used by Naphon	15
2-10	Enhanced annulus adopted by Agrawal et al.	16
2-11	Schematic representation of angled spiraling tape heat exchanger	17
3-1	Internal enhancement geometries and profile shapes considered by Ravigururajan and Bergles	25
3-2	An enhanced tube with the separation and reattachment mechanism	27
3-3	Recirculation flow patterns over transverse ribs as a function of rib spacing	28
4-1	A photograph of the experimental rig	35
4-2	A schematic flow diagram of the experimental rig	36
4-3	Sketch of the double-pipe heat exchanger used in the present work	41
4-4	Pressure taps	42
4-5	Turbulence promoters used in the present work	43

- 4-6 An algorithm for calculations of tube-side heat transfer 50 enhancement
- 5-1 Comparison of empirical and experimental friction 53 factor of smooth tubes used in tube-side heat transfer enhancement experiments for two tube sizes
- 5-2 Comparison of empirical and experimental Nusselt 53 number inside the smooth tubes used in tube-side heat transfer enhancement experiments
- 5-3 Comparison of empirical and experimental friction 54 factor of smooth annuli used in annulus-side heat transfer enhancement experiments
- 5-4 Comparison of empirical and experimental Nusselt 54 number of smooth annuli used in annulus-side heat transfer enhancement experiments
- 5-5 Heat transfer rate (W) and pressure drop (N/m^2) vs. 56 Reynolds number for tube-side heat transfer enhancement using a wire coil of e = 1 mm
- 5-6 Heat transfer rate (W) and pressure drop (N/m^2) vs. 57 Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 1 mm
- 5-7 Heat transfer rate (W) and pressure drop (N/m^2) vs. 58 Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 2.2 mm
- 5-8 Heat transfer rate (W) and pressure drop (N/m^2) vs. 59 Reynolds number for annulus-side heat transfer enhancement by circular ribs of e = 2.2 mm
- 5-9 Friction factor vs. Reynolds number for heat exchange 60 process inside the inner tube inserted with a wire coil of e = 1 mm
- 5-10 Friction factor vs. Reynolds number for annulus-side 61 heat transfer enhancement by wire coils of e = 1 mm (heat exchange process)
- 5-11 Friction factor vs. Reynolds number for annulus-side 61

heat transfer enhancement by wire coils of e = 2.2 mm (heat exchange process)

- 5-12 Friction factor vs. Reynolds number for annulus-side 62 heat transfer enhancement by circular ribs of e = 2.2mm (heat exchange process)
- 5-13 Friction factor vs. Reynolds number for smooth tube 63 and roughened by a wire coil of e = 1 mm in isothermal conditions
- 5-14 Friction factor vs. Reynolds number for smooth 63 annulus and with a wire coil of e = 1 mm in isothermal conditions
- 5-15 Friction factor vs. Reynolds number for smooth 64 annulus and with a wire coil of e = 2.2 mm in isothermal conditions
- 5-16 Friction factor vs. Reynolds number for smooth 64 annulus and with circular ribs of e = 2.2 mm in isothermal conditions
- 5-17 Nusselt number vs. Reynolds number for tube-side heat 66 transfer enhancement using a wire coil of e = 1 mm
- 5-18 Nusselt number vs. Reynolds number for annulus-side 67 heat transfer enhancement using a wire coil of e=1 mm
- 5-19 Nusselt number vs. Reynolds number for annulus-side 68 heat transfer enhancement using a wire coil of e = 2.2 mm
- 5-20 Nusselt number vs. Reynolds number for annulus-side 69 heat transfer enhancement using circular ribs of e = 2.2 mm
- 6-1 Friction factor augmentation vs. Reynolds number for 85 tube-side heat transfer enhancement using a wire coil of e=1 mm
- 6-2 Comparison of present work friction factor with that of 87 previous works for tube-side heat transfer enhancement by wire coil of $e/d_i=0.1$ and $p/d_i=1.2$

6-3	Friction factor augmentation vs. Reynolds number for annulus-side heat transfer enhancement using two wire coils of 1 and $e=2.2$ mm	88
6-4	Friction factor augmentation vs. Reynolds number for annulus-side heat transfer enhancement using circular ribs of $e = 2.2$ mm for two annulus sizes	90
6-5	Nusselt number augmentation vs. Reynolds number for inner tube-side heat transfer enhancement using a wire coil of $e=1$ mm	97
6-6	Comparison of Nusselt number resulted in the present work with that of previous works for tube-side heat transfer enhancement with wire coil of $e/d_i=0.1$ and $p/d_i=1.2$ and Pr = 3.0	98
6-7	Nusselt number augmentation vs. Reynolds number for annulus-side heat transfer enhancement using two wire coils of $e = 1$ and 2.2 mm for two annulus sizes	100
6-8	Nusselt number augmentation vs. Reynolds number for annulus-side heat transfer enhancement using circular ribs of $e= 2.2$ mm	102
6-9	Application of the performance evaluation criterion (FG-2a) to the tube-side heat transfer enhancement by wire coils	106
6-10	Application of the performance evaluation criterion (FG-3) to the tube-side heat transfer enhancement by wire coils	108
6-11	Application of the performance evaluation criterion (FN-1) to the tube-side heat transfer enhancement by wire coils	111
6-12	Application of the performance evaluation criterion (FG-2a) to the annulus-side heat transfer enhancement by wire coils and circular ribs	115
6-13	Application of the performance evaluation criterion (FG-3) to the annulus-side heat transfer enhancement	117

XVII

by wire coils and circular ribs

6-14	Application of the performance evaluation criterion (FN-1) to the annulus-side heat transfer enhancement	119
	by wire coils and circular ribs	
A-1	Physical properties of liquid water	A-2
B-1	Calibration of the rotameter at 20, 40, 60 and 70 $^{\circ}$ C	B-2
B-2	An orifice plate design	B-3
B-3	Calibration of the orifice at 60 and 70 °C	B-4

CHAPTER ONE

Introduction

1.1 Introduction

The conversion, utilization, and recovery of energy in every industrial, commercial, and domestic application involve a heat exchange process. Some common examples are steam generation in power plants; sensible heating and cooling of viscous media in thermal processing of chemical, pharmaceutical, and agricultural products; refrigerant evaporation and condensation in air conditioning and refrigeration; gas flow heating in manufacturing and wasteheat recovery; air and liquid cooling of engine and turbomachinery systems; and cooling of electrical machines and electronic devices. Improved heat exchange, can significantly improve the thermal efficiency in such applications as well as the economics of their design and operation.

Enhancement techniques essentially reduce the thermal resistance in a conventional heat exchanger by promoting higher convective heat transfer coefficient with or without surface area increases. As a result, the size of a heat exchanger can be reduced, or the heat duty of an existing exchanger can be increased, or the pumping power requirements can be reduced, or the exchanger's operating approach temperature difference can be decreased [1].

1.2 Classification of Heat Transfer Enhancement Techniques

Generally, enhancement techniques can be classified either as passive or active methods. In the first class, no direct application of external power is required, but, to the surface configuration, the enhancement of heat transfer belongs. Treated or roughened surfaces are used for boiling and condensation by coating the surface with fine-scale roughness which also might be beneficial, when its height is larger to enhance heat transfer in single-phase. The latter might be produced in many configurations ranging from random sand-grain type roughness to discrete protuberances, all to disturb the laminar sublayer rather than increasing the heat transfer surface area.

Displaced enhancement devices, such as in fig. 1-1are inserted into the flow channel, in forced flow operation, so as indirectly to improve energy transport at the heated surface. A category of those is Swirl-flow devices which include a number of geometric arrangements or tube inserts that create rotating and secondary flow, for example coiled tubes, inlet vortex generators, twisted-tape inserts, wire coils.

Figure 1-1: Enhanced tubes for augmentation of single-phase heat transfer.

The second class of enhancement techniques requires external power. It might include Mechanical aids which involve stirring the fluid by mechanical means or by rotating the surface especially in batch processing of viscous liquids in the chemical process industry; vibration of surface at either low or high frequency or vibration of fluid itself with a range from pulsations of about 1 Hz to ultrasound. Single-phase fluids are of primary concern; AC or

DC electrostatic fields; injection of particular gas to the stagnant or flowing liquids; and suction or removal of vapors in nucleate boiling [1, 2].

In many cases heat transfer enhancement in tubes can be supplemented by heat transfer enhancement on the outside wall of tubes, as for double pipe heat exchangers. An application is in vapor compression hot-water heat pumps. The condensing refrigerant may typically flow in the inner tube and the water to be heated in a counter flow direction in the annulus. In this case, heat transfer enhancement on the outer wall is also important. Like these heat exchangers are suitable when one or both of the fluids is at very high pressure because containment in the small-diameter pipe or tubing is less costly than containment in a large-diameter shell. Furthermore, double pipe exchangers are generally used for small-capacity applications where the total heat transfer surface area required is 50 m² or less [3, 4].

1.3 Scope of the present work

The present work aims to study the application of wire coil inserts and circular ribs as turbulence promoters to enhance heat transfer, with different conditions and assembling positions of a double pipe heat exchanger. It is comprised of three parts; the first is using the coiled wire insert as a turbulence promoter inside the inner tube of heat exchanger using a wire with one diameter; the second part is using a coiled wire with two diameters on the outer surface of the inner tube; and finally using circular rib turbulence promoters on the outer surface of the inner tube.

All experiments would be implemented using the same double pipe heat exchanger but with two inner tubes. Different experimental conditions and dimensions are employed to obtain large quantity of data to be used to obtain empirical correlations for heat transfer and pressure drop.

CHAPTER TWO

Literature Review

2.1 The Problem of Turbulence

Turbulent fluid flow is a complex, nonlinear multiscale phenomenon, which poses some of the most difficult and fundamental problems in classical physics. It is also of tremendous practical importance in making predictions, for example, about heat transfer in nuclear reactors, drag in oil pipelines, the weather, and the circulation of the atmosphere and the oceans. Many generations of scientists have struggled valiantly to understand both the physical essence and the mathematical structure of turbulent fluid motion. **Leonardo da Vinci in (1507)** named the phenomenon observed in swirling flow "la turbolenza" [5].

The scientific study of turbulence had generally begun with the work of **Osborne Reynolds in (1883)**. The problem that Reynolds had studied was the classic one of flow through long straight pipes of constant diameter and circular cross-section. Using his "method of color bands", he was the first person to show that, for a given fluid and pipe, the flow would be orderly (laminar) for velocities below a certain critical speed. At the critical speed, the flow abruptly became turbulent at some distances from the pipe entrance.

Reynolds found that the criterion for the transition from laminar to turbulent flow could be expressed in universal form in the terms of the value taken by dimensionless group

$$\operatorname{Re} = \frac{\rho dv}{\mu} \qquad \dots (2.1)$$

where Re is what is now called the Reynolds number [6].

Reynolds noted that the main motion of the flow took place in the direction of the axis of the pipe. Because of the flow fluctuations, a great amount of mixing occurred in the turbulent flow, leading to a transverse motion perpendicular to the main motion. Reynolds discovered that the transition from laminar to turbulent flow always took place at almost exactly the same Reynolds number (Re_{crit} =2300). For $Re < Re_{crit}$, the flow is laminar, and turbulent for $Re > Re_{crit}$. He already suspected that the critical Reynolds number will be larger if the disturbances in the incoming flow are smaller [7].

2.2 Enhancement of Heat Transfer.

Here, a brief survey for the most recent works performed in the field of heat transfer enhancement in single-phase flow is included concentrating on those that depends on turbulence caused by devices or inserts installed in the flow passage which may be referred to as "turbulence promoters". Some studies, stated here, ascribe the enhancement of heat transfer to vortices or swirls generated by these devices; the present survey will include, for the reason that such phenomena may occur together with turbulence.

2.2.1 Enhancement of Heat Transfer by Turbulence Promoters

To make it easy to understand and compare the different types of turbulence promoters, a simple classification, built on the basis of similarity in configuration and the manner of work for each group, is introduced in the following sections.

2.2.1.1 Wire coil inserts.

Wire coils inserts are currently used in applications as oil cooling devices, preheaters or fire boilers. They showed several advantages with respect to other enhancement techniques: 1. Low cost.

- 2. Easy installation and removal.
- 3. Preservation of original plain tube mechanical strength.
- 4. Possibility of installation in an existing smooth tube heat exchanger [8].

Many correlations had been set for predicting the heat transfer and pressure drop. **Ravigururajan and Bergles in (1985)** [1, 2] proposed what might be the most famous method for predicting heat transfer and pressure drop inside internally ribbed tubes and plain tubes with coiled wire inserts.

Kumar et al., in (1970) [9] examined the influence of wire coils inserted in a tube on the heat transfer and the pressure drop. Water was used as the test fluid. The pitch ($p/d_i=1.05-5.5$) and the wire size ($e/d_i=0.1-0.15$) were employed. They had maximum increase of heat transfer of 280% with a large increase of pressure drop. They developed the following relation:

$$\frac{Nu_a}{\Pr^{1/3}} = 0.0554 (f \operatorname{Re}^3)^{0.286} \dots (2.2)$$

This equation was found to be independent of the tube diameter d_i , the wire diameter e, the pitch p and the test fluid [9].

Zhang et al., in (1991) [10] investigated heat transfer and friction factor of hot air, regarding the influence of pitches and wire diameter of the helical coils in tubes. They used air as the flowing fluid, heated to $200\pm5^{\circ}$ C, and obtained the following correlation

$$Nu_a = 0.253 \operatorname{Re}^{0.716} \left(\frac{e}{d_i}\right)^{0.372} \left(\frac{p}{d_i}\right)^{-0.171} \dots (2.3)$$

which was considered to be valid for: $6000 \le Re \le 100000, \ 0.037 \le e/d_i \le 0.10$ and $0.35 \le p/d_i \le 2.50$.

Viedma, et al. in (2005) [8], had experimentally studied wire coils inserted in a round tube in order to obtain their thermodynamic behavior in laminar, transition and turbulent flows. They used water and propylene glycol mixtures at different concentrations, for a range of Reynolds number of 100 to 90,000 and Prandtl number from 2.8 to 200. They tested six wire coil inserts with different geometric range of helical pitch and wire diameter. Their results showed that the wire coil increased pressure drop up to 9 times and heat transfer up to 4 times compared to the empty smooth tube. Their proposed correlation for Nusselt number was:

$$Nu_a = 0.132 (p/d_i)^{-0.372} \text{ Re}^{0.72} \text{ Pr}^{0.37}$$
 ... (2.4)

They concluded that the wire coil diameter had a slight influence on heat transfer. The corresponding correlation of friction factor for Reynolds numbers from 2000 to 30000 was:

$$C_{f_a} = 5.76 \left(e/d_i \right)^{0.95} \left(p/d_i \right)^{1.21} \text{Re}^{0.217}$$
 ... (2.5)

They recommended that equation (2.5) might overpredict up to 15 % the experimental values.

Eiamsa-ard et al., in (2010) [11] studied experimentally heat transfer, friction factor and thermal performance behaviors in a tube equipped with the combined devices between the twisted tape and constant and periodically varying wire coil pitch ratio. The experiments were conducted in a turbulent flow regime with Reynolds numbers ranging from 4600 to 20000 using air as the test fluid. They found that heat transfer rate was further augmented by the compound devices by 3.65 times compared to plane tube, 1.39 times compared to wire coil insert and 2.34 times compared to tube inserted with twisted tape. Correspondingly, the friction factor augmentation was about 28.8, 2.24 and 8.37 respectively.

Figure 2-1: Compound wire coil/ twisted tape insert tested by Eiamsa-ard et al [11].

2.2.1.2 Twisted tapes, helical inserts and twisted angles.

Twisted tape inserts cause the flow to spiral along the tube. Their potential performance is diminished because the thermal contact of the tape and the tube wall is not ideal, so they do not perform as "wall-attached roughness". They enhance the heat transfer due to the increased tangential velocity component and reduced flow cross section [51].

Manglik and Bergles in 1992 [12] proposed the following friction factor correlation for tubes with twisted tape inserts in turbulent flow regime:

$$C_{fa} = \frac{0.0791}{\text{Re}^{0.25}} \left[\frac{\pi}{\pi - 4(\delta/d_i)} \right]^{1.75} \left[\frac{\pi + 2 - 2(\delta/d_i)}{\pi - 4(\delta/d_i)} \right]^{1.25} \left[1 + \frac{2.752}{y^{1.29}} \right] \qquad \dots (2.6)$$

where:

$$y = \frac{p}{2d_i} \qquad \dots (2.7)$$

Their corresponding heat transfer correlation for turbulent flows was:

$$\frac{Nu_a}{Nu_{y=\infty}} = 1 + \frac{0.769}{y} \qquad \dots (2.8)$$

and $Nu_{y=\infty}$ for straight tape:

$$Nu_{y=\infty} = 0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4} \left(\frac{\pi}{\pi - 4\delta/d_i} \right)^{0.8} \left(\frac{\pi + 2 - 2t/d_i}{\pi - 4\delta/d_i} \right)^{0.2} \left(\frac{\mu_b}{\mu_w} \right)^n \dots (2.9)$$

where the exponent n is equal to 0.18 for heating and 0.30 for cooling.

Promvonge, et al., in 2004 [13] studied experimentally the influence of helical tapes inserted in a tube on heat transfer enhancement, fig. 2-2. Their swirling flow devices were a full-length helical tape with or without a centered-rod, and a regularly-spaced helical tape, inserted in the inner tube of a concentric tube heat exchanger. Hot air was passed through the inner tube, whereas cold water flowed in the annulus. They concluded that full-length helical tape with rod provides the highest heat transfer rate about 10% better than that without rod but with increased pressure drop. They found that regularly spaced helical tape inserts at spacing ratio=0.5 yielded the highest Nusselt number which was about 50% above the plain tube.

Figure 2-2: Devices used by Promvonge, et al., [13].

Ahmed et al., in 2005 [14] performed an experimental investigation on heat transfer and pressure drop characteristics in a circular tube fitted with twisted tape inserts, at three different twist ratios (y=23, 11.5 and 8). They concluded that the average heat transfer coefficient was about 1.3 to 3 times higher than that of the smooth tube.

Promvonge et al., in 2006 [15] studied experimentally the influence of the twisted tape insertion on heat transfer and flow friction in double pipe heat exchanger. In the experiments, the swirling flow was introduced by using twisted tape placed inside the inner test tube of the heat exchanger with

different twist ratios, y=5 and 7. Over the range investigated, they found that the maximum increase in Nusselt number was for using the enhancement devices with y=5 became 188% higher than that for plain tube.

Eiamsa-ard and Promvonge in 2006 [16] investigated the heat transfer and pressure drop characteristics in a circular wavy-surfaced tube with a helical-tape insert, fig. 2-3. In the experiment, the turbulence flow near the tube wall was produced by using wavy surfaced wall while the swirling flow was generated by inserting the helical-tape along the core region. The Nusselt numbers for the tube with wavy-surfaced wall was found 1.9 to 2.0 times that for the plain tube, while for the tube combined with wavy-surfaced wall and a helical-tape insert, were 2.48 to 2.67 times, and pressure drops were seen to be 9.3 to 22.3 times the plain tube.

(b) a circular wavy-surfaced tube combined

Figure 2-3: Test tube used by Eiamsa-ard and Promvonge [16].

Kumar et al., in 2008 [17], studied the development and testing of modified solar water heater having twisted tape inserted inside the tubes along with plain one for the range of flow Reynolds number as 4000 < Re < 20000, and twist pitch ratio of between 3 and 12. Experimental results showed that in the range of parameters investigated, thermal enhancement factor varied between 1.18 to 2.7 and the maximum value of collector efficiency increased by about 30% compared to that of plain ones at same operational conditions.

Gouda and Bikram in 2008 [18] studied the determination of friction factor and heat transfer coefficient for various twisted angles, fig. 2-4, having different twist ratios. They observed that the heat transfer coefficient could vary from 1.16 to 2.87 times the smooth tube value but the corresponding friction factor increased by 4 to 9.6 times the smooth tube values.

Figure 2-4: A twisted angle [18].

Yadav in 2009 [19] investigated experimentally influences of the half length twisted tape inserted inside the inner tube of a U-bend double pipe heat exchanger. The heat transfer coefficient was found to increase by 40% with half-length twisted tape inserts when compared with plain heat exchanger. It was found that on the basis of equal mass flow rate, the heat transfer performance of half-length twisted tape was better than plain heat exchanger.

Thianpong et al. in 2009 [20] investigated experimentally the friction factor heat transfer behaviors in a dimpled tube fitted with a twisted tape swirl generator using air as working fluid in the range of Reynolds number of 12000 to 44000. They found that both heat transfer coefficient and friction factor in the dimpled tube fitted with the twisted tape, were higher than those in the dimple tube acting alone and plain tube.

2.2.1.3 Rod-pin inserts and louvered strips.

Nazrul Islam et al., in 2007 [21] investigated experimentally the pressure drop and heat transfer in a tube with rod-pin, fig. 2-5 with air as the working fluid. They indicated that heat transfer increased by three folds.

Figure 2-5: Rod-pin inserts used by Nazrul Islam et al., [21].

Promvonge et al., in 2007 [22] investigated experimentally, heat transfer and friction characteristics, employing louvered strips inserted in a concentric tube heat exchanger, fig. 2-6 with water used as working fluid. They obtained increases in average Nusselt number and friction loss for the inclined forward louvered strip about 284% and 413% while those for the backward louvered strip were 263% and 233% over the plain tube, respectively.

Figure 2-6: Louvered strips with forward and backward arrangements [22].

2.2.1.4 Disk and mesh inserts

Alemrajabi et al., in 2006 [23] studied experimentally the effects of insertion of disks with different geometries on heat transfer in the flow of air in a tube. The disks were elliptic in shape with an elliptical or rectangular hole in the center and were either perpendicular to the flow or at angle relative to the flow. They found that disks were more effective at higher Reynolds numbers.

Raju et al., in 2009 [24] investigated experimentally the augmentation of turbulent flow heat transfer in a horizontal tube by means of mesh inserts, fig. 2-7, with air as the working fluid with different types of mesh inserts with

different screen diameters and distances between the screens in the porosity range of 99.73 to 99.98 were considered for experimentation. It was observed that the enhancement of heat transfer by using mesh inserts when compared to plain tube at the same mass flow rate was more by a factor of 2 times, where as the pressure drop was only about a factor of 1.45 times.

Figure 2-7: Mesh inserts [24].

2.2.1.5 Conical nozzles.

Promvonge et al., in 2009 [25] investigated experimentally the enhancements of heat transfer characteristics in a uniform heat flux circular tube fitted with conical nozzles and swirl generator. The conical nozzles, assumed as a turbulator/reverse flow generator, were placed in a model pipe line through which air was flowing as working fluid. In addition, the snail was also employed to provide swirling flow at the inlet of the test tube. They found that application of the conical nozzle and the snail could help to increase heat transfer rate over that of the plain tube by about 278% and 206%, respectively. The use of the conical nozzle with the snail led to a maximum heat transfer rate that was up by 316%.

2.2.1.6 Twisted and corrugated tubes

A new innovation or developed technology, known as twisted tube technology, fig. 2-8, which has been able to overcome the limitations of the conventional technology, and in addition, provide superior overall heat transfer coefficients through tube side enhancement. The twisted tube exchanger consists of a bundle of uniquely formed tubes assembled in a bundle without the use of baffles. That type is giving 40% increase in heat transfer coefficient compared to a conventional shell and tube heat exchanger with the same pressure drop [26].

Figure 2-8: Completed twisted tube bundle [26].

Rainieri, et al., [27] investigated experimentally the effect of the internal helical ridging tubes on the heat transfer coefficient and friction factor for laminar flow forced convection to. They found that in the spirally enhanced geometries the transition to the turbulent flow might occur at Reynolds number values much lower than 2000. This early transition is accompanied by a significant heat transfer enhancement values between 1.1 and 6 in the Reynolds number range 300-1800.

Zimparov et al., [28], studied performance evaluation criteria, used to assess the benefit of replacing the smooth tubes with deeper corrugated tubes in shell and-tube heat exchangers in the case of condensers with steam condensing on the outside of the vertically or horizontally mounted tubes and water in forced convection (non-boiling) flow being pumped through the tubes. It was concluded that in all the cases considered, corrugated tubes with large pitches and small helix angle have low thermal efficiency.

2.2.1.7 Ribbed surfaces and channels

Kotcioglu et al., in 1998 [29] studied experimentally heat transfer using winglet-type vortex generators in the range of Reynolds number between 3,000 and 30,000. The installation of wings was organized, in such a way that periodically interrupted enlarged and contracted channel flow domains could be established. Wings were aligned at various angles of 7-20° positively and negatively with the direction of main air flow direction. They concluded an increase of heat transfer coefficient was observed with accompanying large pressure drops, increasing with the inclination angle.

Layek, et al., in 2006 [30] studied the effect of compound turbulator on heat transfer coefficient and friction factor in rectangular ducts with repeated transverse integral chamfered rib groove roughness on one broad uniformly heated. They found that heat transfer performance of chamfered rib-groove roughened ducts was much better than the ribbed ducts only, and compared to smooth duct the chamfered rib-groove roughened walls enhanced the Nusselt number and friction factor 3.03 and 3.6 folds respectively.

Naphon in 2006 [31] tested the heat transfer characteristics and pressure drop in a channel with V corrugated upper and lower plates under constant heat flux, fig. 2-9. They concluded that the corrugated surface had higher heat transfer as well as pressure drop, and that was because of the presence of recirculation zones.

Figure 2-9: The V corrugated plates used by Naphon [31].
Fletcher et al., in 2008 [32] conducted an investigation to determine whether dimpled surfaces (spherical and elliptical or trenched dimples) could improve the heat transfer in a heat sink under laminar airflows. They found that heat transfer enhancement was up to a 6% relative to a flat plate were consistently observed for Reynolds number (based on channel height) in the range of 500 to 1650 on both circular and oval dimples. The pressure drop over the dimpled plates was either equivalent to or less than that of the flat plate with no dimples.

2.2.2 Enhancement of heat transfer in the annulus of a double-pipe heat exchanger.

Agrawal et al., in 1992 [33] investigated numerically the laminar forced convection in a double pipe heat exchanger which with an isothermal tube with periodic enhancements (promoters) placed concentrically inside an insulated circular tube; fig. 2-10. Comparing to an unenhanced tube annulus of identical length and heat transfer surface area and mass flow rate and Reynolds number kept the same, they found that the effects of promoter length and spacing on the pressure drop and heat transfer were small and the pressure drop was influenced significantly by the promoter height and the annular gap, while the promoter height was the only significant geometric parameter affecting the heat transfer.

Figure 2-10: Enhanced annulus adopted by Agrawal et al. [33]

Coetzee in 2001 [34] studied the heat transfer and pressure drop characteristics of an angled spiraling tape used in the annulus of a double pipe heat exchanger, fig. 2-11 to induce swirl and then increase heat transfer. Three heat exchangers were tested with angled spiraling tape in the annulus with different pitches. It was determined that the heat exchanger with the smallest pitch of the angled spiraling tape and with flow against the curvature of the tape resulted in the highest increase in the Nusselt number of 206%. As penalty this heat exchanger also had the highest increase of the pressure drop of 203%.

Figure 2-11: Schematic representation of angled spiraling tape heat exchanger [34].

The second and third parts of the present work fall into this type of enhancement inserts, where a wire coil and circular ribs with different diameters, different coiling pitches and different experimental conditions have been used to enhance heat transfer in the annulus of a double pipe heat exchanger. The first part is a conventional method which is the coiled wire insert in the inside of the inner tube of the double pipe heat exchanger but with new conditions and with exploiting the most recent correlations in calculating heat transfer and pressure drop in smooth tubes which had undergone numerous developments in the last decades.

CHAPTER THREE

Theoretical Background

3.1 Introduction

The subject of enhanced heat transfer has developed to the stage that it is of serious interest for heat exchanger application. The refrigeration and automotive industries routinely use enhanced surfaces in their heat exchangers. The process industry is aggressively working to incorporate enhanced heat transfer surfaces in its heat exchangers. Virtually, every heat exchanger is a potential candidate for enhanced heat transfer. However, each potential application must be tested to see if enhanced heat transfer "makes sense". Heat exchangers were initially developed to use plain (or smooth) heat transfer surfaces. An "enhanced heat transfer surface" has a special surface geometry that provides a higher (hA) value, per unit base surface area than a plain surface. The term "enhancement ratio" (E_h), is the ratio of the (hA) of an enhanced surface to that of a plain surface [35]. Thus:

$$E_h = \frac{hA}{(hA)_s} \qquad \dots (3.1)$$

3.2 Turbulent Fluid Flow and Heat Transfer

3.2.1 Fluid Flow and Heat Transfer in Circular Tubes

Turbulent flow is commonly utilized in practice because of the higher heat transfer coefficients that is associated with. Most correlations for the friction and heat transfer coefficients in turbulent flow are based on experimental studies because of the difficulty in dealing with turbulent flow theoretically. For smooth tubes, the friction factor in turbulent flow can be determined from the first Petukhov equation [36]

$$f = (0.79 \ln \text{Re} - 1.64)^{-2}$$
 ... (3.3)

or from the well-known Moody diagram. The friction factor considered in equation (3.3) is the Darcy friction factor that is used to calculate the pressure drop using the equation

$$\Delta p = f \frac{L}{d_i} \rho \frac{v^2}{2} \qquad \dots (3.4)$$

which is well-known as Darcy-Weisbach equation [37, 38].

The Nusselt number in turbulent flow is related to the friction factor through the Chilton–Colburn analogy [39] expressed as:

$$Nu = 0.125 f \operatorname{Re} \operatorname{Pr}^{(1/3)} \dots (3.5)$$

With the friction factor is available, equation (3.5) can be used conveniently to evaluate the Nusselt number for both smooth and rough tubes. For fully developed turbulent flow in smooth tubes, a simple relation for the Nusselt number can be obtained by substituting the simple power law relation

$$f = 0.184 \text{ Re}^{-2}$$
 ... (3.6)

for the friction factor into equation (3.5), it gives

$$Nu = 0.023 \text{Re}^{0.8} \text{Pr}^{1/3}$$
 (0.7 \le Pr \le 160, Re $>$ 10,000) ... (3.7)

which is known as the Colburn equation. The accuracy of this equation can be improved by modifying it as:

$$Nu = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^n \qquad \dots (3.8)$$

where n = 0.4 for heating and 0.3 for cooling of the fluid flowing through the tube. This equation is known as the Dittus–Boelter equation [40], with properties of the fluid concerned evaluated at the bulk mean fluid temperature $T_b = (T_i - T_o)/2$. When the temperature difference between the fluid and the

wall is very large, a correction factor is used to account for the different viscosities near the wall and at the tube center. Sieder and Tate [41] suggested a correction factor to be used with all the equations above

$$Nu_c = Nu \left(\frac{\mu_b}{\mu_w}\right)^{0.14} \qquad \dots (3.9)$$

where μ_b is evaluated at bulk mean temperature while μ_w at the temperature of the wall. The Nusselt number relations above are fairly simple, but they may give errors as large as 25% [42].

Comparing a great number of experimental data on heat transfer in tubes with the correlations included in the literature, **Gnielinski** [43] found that a semiempirical type of equation similar to that proposed by Prandtl correlates the data best. The equation of Prandtl for fully developed turbulent flow is of the form

$$Nu = \frac{(f/8) \operatorname{Re} \operatorname{Pr}}{1 + 8.7 (f/8)^{0.5} (\operatorname{Pr}-1)} \dots (3.10)$$

A number of modifications of equation (3.10) are to be found in the literature and may be summarized by the equation

$$Nu = \frac{(f/8)\text{RePr}}{k_1 + k_2(f/8)^{0.5}(\text{Pr}^n - 1)} \qquad \dots (3.11)$$

For it, **Petukhov and Popov [44]** had suggested that $k_1 = 1$, $k_2 = 12.7$ and n = 2/3, where data were correlated best in the region of fully developed turbulent flow by this expression. Since equation (3.11) is based on a model for fully developed turbulent flow (Re > 10000), it does not account for entrance effects and it is not applicable in the transition range between laminar and fully developed turbulent flow where the Reynolds numbers are between 2300 and 10⁴. To overcome these disadvantages of Eq. (3.11), Gnielinski modified it by replacing Re by (Re -1000) and by multiplying with the entrance correction factor derived by **Hausen** [45]. The equation becomes

$$Nu = \frac{(f/8)(\text{Re}-1000)\text{Pr}}{1+12.7(f/8)^{0.5}(\text{Pr}^{2/3}-1)} \left[1 + \left(\frac{d_i}{L}\right)^{2/3}\right] \qquad \dots (3.12)$$

For estimation purposes, Gnielinski suggested the following simplified forms for equation (3.12);

$$Nu = 0.0214 \left(\text{Re}^{0.8} - 100 \right) \text{Pr}^{0.4} \left[1 + \left(\frac{d_i}{L} \right)^{2/3} \right] \qquad \dots (3.13)$$

for 0.5 < Pr < 1.5; and $10^4 < Re < 5 \times 10^6$ and

$$Nu = 0.012 \left(\text{Re}^{0.87} - 280 \right) \text{Pr}^{0.4} \left[1 + \left(\frac{d_i}{L} \right)^{2/3} \right] \qquad \dots (3.14)$$

for 1.5 < Pr < 500; and $3000 < Re < 5 \times 10^6$

Nowadays equation (3.12) is known as Gnielinski equation where f is Darcy friction factor for turbulent flow in smooth tubes obtained using equation (3.3). The viscosity correction, equation (3.9) also can be used to correct for the difference between the temperature of the wall of tube and the bulk temperature of the fluid.

Equation (3.3) in connection with equation (3.12) has been shown to represent the majority of the experimental data within 20%. This equation is valid for developing or fully developed turbulent flow $2300 < Re < 5 \ge 10^6$, 0.5 < Pr < 2000 and $d_i /L < 1[43]$.

3.2.2 Fluid Flow and Heat Transfer in the Annulus of Concentric Tubes.

When a fluid flows in a conduit having a non-circular cross section, such as an annulus, it is convenient to express heat transfer coefficients and friction factors by the same types of equations and curves used for pipes and tubes. To permit this type of representation for annulus heat transfer, it has been found advantageous to employ an equivalent diameter D_e . The equivalent diameter is four times the hydraulic radius, and the hydraulic radius is, in turn, the radius of a pipe equivalent to the annulus cross section.

The hydraulic radius is obtained as the ratio of the flow area to the wetted perimeter. For a fluid flowing in an annulus the flow area is $(\pi/4)(D_o^2 - D_i^2)$ but the wetted perimeters for heat transfer and pressure drop are different. For heat transfer the wetted perimeter is the outer circumstance of the inner tube

$$D'_{e} = 4r_{h} = \frac{4 \times (\text{flow area})}{(\text{heat transfer wetted perimeter})} = \frac{4\pi (D_{o}^{2} - D_{i}^{2})}{4\pi D_{i}} = \frac{D_{o}^{2} - D_{i}^{2}}{D_{i}}$$
... (3.15)

In pressure drop calculations the friction not only results from the resistance of the outer tube but it is also affected by the outer surface of the inner tube. The total wetted perimeter is $\pi(D_o + D_i)$ and the equivalent diameter for pressure drop calculations in the annulus is:

$$D_e = 4r_h = \frac{4 \times (\text{flow area})}{(\text{frictional wetted perimeter})} = \frac{4\pi (D_o^2 - D_i^2)}{4\pi (D_o + D_i)} = D_o - D_i$$
... (3.16)

This leads to the anomalous result that the Reynolds numbers for the same flow conditions are different for heat transfer and pressure drop. Since Reynolds number evaluated using D'_e might be above 2100 while that using D_e is below 2100. Actually, both Reynolds numbers should be considered only approximations, since the sharp distinction between streamline and turbulent flow at the Reynolds number of 2100 is not completely valid in annuli [46].

The details above are very decisive, if equations like that of Dittus and Boelter, equation (3.8), are used in calculating the Nusselt number, where two values for Reynolds number must be estimated, one for friction factor calculations and another for heat transfer calculations [4, 46, 47, 48, 49]. As an effort in the field, **Davis** [50] has proposed the equation;

$$\frac{hD_i}{k} = 0.03 \, \ln \left(\frac{D_i G}{\mu}\right)^{0.8} \Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14} \left(\frac{D_o}{D_i}\right)^{0.15} \qquad \dots (3.17)$$

to be used to estimate the Nusselt number in the annulus of D_i and D_o as the inner and outer diameter of the annulus respectively, using the outer diameter of the inner tube as the characteristic dimension, which is the surface through which heat transfer occurs.

Heat transfer in turbulent flow of gases and liquids in concentric annuli may be obtained using a modified form of equation (3.12) in tubes using the hydraulic or equivalent diameter $D_e = D_o - D_i$ to evaluate Nu, Re and D/L in equation (3.12). According to **Petukhov and Roizen** [51], the Nusselt number in case of heat transfer at the inner wall, and the outer wall insulated, might be calculated using

$$\frac{Nu_i}{Nu_{iube}} = 0.86 \left(\frac{D_i}{D_o}\right)^{-0.16} \dots (3.18)$$

for cases, the heat transfer at the outer wall, and the inner wall insulated

$$\frac{Nu_o}{Nu_{tube}} = 1 - 0.14 \left(\frac{D_i}{D_o}\right)^{0.6} \qquad \dots (3.19)$$

The third case is when heat transfer on both walls of the passage, and equal temperatures on both walls, Nusselt number is calculated using

$$\frac{Nu_b}{Nu_{ube}} = \frac{0.86 \left(\frac{D_i}{D_o}\right)^{0.84} + \left[1 - 0.14 \left(\frac{D_i}{D_o}\right)^{0.6}\right]}{1 + \frac{D_i}{D_o}} \dots (3.20)$$

Nowadays numerous studies [42, 52, 53, 54, and 55] do ignore the physical fact of what surface in the annulus is concerned with heat transfer and use the Reynolds number value, based on the equivalent diameter $D_e = D_o - D_i$ in both heat transfer and pressure drop calculations regardless of what correlation is used.

Since all calculations of the present work are based on equation (3.12), then no need for obtaining two values for Reynolds number, i.e. friction factor as well as Nusselt number calculations in the annulus will include the same Reynolds number with the hydraulic diameter defined by $D_e = D_o - D_i$. By equation (3.18), the use of equation (3.12) for the annulus is acceptably accurate. Furthermore, for the two sides, equation (3.12) includes the entrance effect term as well as working in larger range of Reynolds number.

3.2.3 Empirical Correlations of Turbulent Fluid Flow and Heat Transfer in Tubes Inserted with Wire Coils

Many correlations had been set for predicting the heat transfer and pressure drop. **Ravigururajan and Bergles in (1985) [56]** proposed what might be considered to be the most general and accurate method for predicting heat transfer and pressure drop inside internally ribbed tubes (and plain tubes with coiled wire inserts). Figure 3-1 depicts the rib geometries and profiles (and wire geometry) that were included in their study. The $n_{corners}$ here is the number of sharp corners of the rib facing the flow (two for triangular or rectangular cross-section ribs and infinity for smoother profiles). The profile

contact angle for a circular sector and circular profiles is taken as 90°. Their method is applicable to the following range of parameters: $0.01 < e/d_i < 0.02$, $0.1 < p/d_i < 7.0$, $0.3 < \beta/90 < 1.0$, 5000 < Re < 250000 and 0.66 < Pr < 37.6. Their ribbed tube heat transfer correlation is:

$$\frac{Nu_a}{Nu_s} = \left\{ 1 + \left[2.64 \operatorname{Re}^{0.036} \left(\frac{e}{d_i} \right)^{0.212} \left(\frac{p}{d_i} \right)^{-0.21} \left(\frac{\beta}{90} \right)^{0.29} \operatorname{Pr}^{-0.024} \right]^7 \right\}^{1/7} \dots (3.21)$$

The friction factor is correlated as a ratio to the value for a smooth tube of the same internal diameter as:

$$\frac{f_a}{f_s} = \left\{ 1 + \left[29.1 \operatorname{Re}^{a_1} \left(\frac{e}{d_i} \right)^{a_2} \left(\frac{p}{d_i} \right)^{a_3} \left(\frac{\beta}{90} \right)^{a_4} \left(1 + \frac{2.94}{n_{corners}} \right) \sin \theta \right]^{15/16} \right\}^{16/15} \dots (3.22a)$$
$$a_1 = 0.67 - 0.06 \left(\frac{p}{d_i} \right) - 0.49 \left(\frac{\beta}{90} \right) \quad a_2 = 1.37 - 0.157 \left(\frac{p}{d_i} \right)$$

$$\begin{pmatrix} d_i \end{pmatrix} \begin{pmatrix} 90 \end{pmatrix} \begin{pmatrix} d_i \end{pmatrix}$$

$$a3 = -1.66 \times 10^{-6} \text{ Re} - 0.33 \left(\frac{\beta}{90}\right) \quad a4 = 4.59 + 4.11 \times 10^{-6} \text{ Re} - 0.15 \left(\frac{p}{d_i}\right)$$

... (3.22b)

Figure 3-1: Internal enhancement geometries and profile shapes considered by Ravigururajan and Bergles (1985) [57].

In equations (3.21) and (3.22), equations (3.3) and (3.11) are used to determine the friction factor and Nusselt number of the reference tube (smooth, plain surface tube) [1, 2, 57, 35, and 58]. But because the friction factor correlation above reported to predict 96% of the data within \pm 50%, and the heat transfer correlation to predict the 99% of the data within \pm 50%, these correlations are not recommended for general use [35].

3.3 Mechanisms of Heat Transfer Augmentation by Turbulence Promoters

One of the most important mechanisms of augmenting heat transfer is the displacement of the turbulent boundary layer. Figure 3-2 depicts a diagram that **Arman and Rabas [59, 60]** used to illustrate this process, showing the separation of the flow as it passes over a transverse rib (creating a small recirculation zone in front of the rib), the formation of a recirculation zone behind the rib, flow reattachment on the base wall, and then flow up and over the next rib. Recirculation eddies are formed above these flow regions. They commented as follows on a rib's effect on the heat transfer process:

- There are six distinct heat transfer regions, although some are more important than others (the upstream recirculation zone, the rib's upstream, top and downstream faces, the downstream recirculation zone, and finally the boundary layer reattachment zone);
- 2. Two peaks in local heat transfer occur, one at the top of the rib and the other in the downstream recirculation zone just before the reattachment point;
- Heat transfer enhancement increases substantially with increasing Prandtl number, so that for large Prandtl number, fluids heat transfer is dominated by flow around the rib surfaces;

- 4. The surface-averaged heat transfer performance is directly proportional to the maximum enhancement at the rib;
- 5. The point of the local maximum in the heat transfer coefficient on the base wall between ribs moves upstream towards the back of the rib with increasing Reynolds and Prandtl numbers, and is located on the base wall between the reattachment point and the point of maximum wall shear stress;
- 6. The Prandtl number has the same influence on thermal performance in the downstream recirculation region as at the rib;
- 7. The high heat transfer augmentation in the downstream recirculation region is due to the high turbulence levels near the surface;
- 8. Two more local maximums in heat transfer occur at large Reynolds numbers in the front recirculation zone before the rib and on the rear face of the rib [59, 60].

Figure 3-2: An enhanced tube with the separation and reattachment mechanism [59].

Webb, Eckert and Goldstein in 1971 [61] have presented an interesting composite diagram of the recirculation and reattachment zones as a function of rib spacing for ribs oriented normal to the flow. Figure 3-3 shows this diagram where the flows are characterized by the axial rib pitch to rib height (p/e) ratio. For closely spaced ribs (at bottom of diagram), one large recirculation eddy is trapped between two successive ribs with two small

eddies in the corners. As the (p/e) ratio increases, the large recirculation eddy elongates until it is broken and a reattachment zone is formed, such that two dominant eddies exist at larger ratios. The separation occurs at the ribs, which leads to the formation of a shear layer and finally reattaches at about 6-8 times the rib height, downstream of the rib. The reverse flow boundary was found to originate from the reattachment point and had grown in thickness. The wall shear stress is zero at the reattachment point and was found to increase in the reverse flow region. Webb had shown that reattachment does not take place below a particular (p/e) ratio [61].

Figure 3-3: Recirculation flow patterns over transverse ribs as a function of rib spacing [61].

Similarly, but using an advanced technique, Acharya et al., [62, 63] adopted a laser-Doppler measurement system to investigate the effect of the rib on local heat transfer. They reported a peak in stream-wise turbulence intensity that occurred directly above the rib. Cross-stream turbulence intensity profiles were found to reach a maximum downstream of the rib as well as a peak in heat transfer upstream of the point of flow reattachment.

3.4 Performance Evaluation Criteria (PEC)

It is impossible to establish an absolute applicable selection criterion for the use of enhancement techniques, because numerous factors influence the designer's decision. In addition to the relative thermal-hydraulic performance improvements brought about by the enhancement devices, there are many factors that must be considered. They include economic (capital, installation, maintenance, etc.), manufacturability (machining, forming, etc.), reliability (material compatibility, and long-time performance), and finally safety.

Common thermal-hydraulic goals include reducing the size of a heat exchanger required for a specified heat duty, increasing the heat duty of an existing heat exchanger, reducing the approach temperature difference for the process streams, or reducing the pumping power. The presence of system and design constraints leads to a number of performance evaluation criteria (PECs). The geometric variables for tube-side flow in a shell-and-tube heat exchanger are tube diameter, tube length, and number of tubes per pass. The heat exchanger performance is represented by two dependent variables: heat transfer rate (q) and pressure drop (Δp) or pumping power (P), as

$$q = (UA)\Delta T_m \qquad \dots (3.23)$$

$$\Delta p = f \frac{L}{d_i} \frac{G^2}{2\rho} \qquad \dots (3.24)$$

$$P = \Delta p \frac{GA_c}{\rho} \qquad \dots (3.25)$$

The primary independent operating variables are the approach temperature difference and the mass flow rate (\dot{m}), and in the case of the tubular geometry, the design variables (heat transfer surface area (A) or exchanger size) are the diameter (d_i) and length (L) of tubes and number of

tubes (N) per pass. PECs are established for the process stream of interest by selecting one of the operational variables for the performance objective and applying the design constraints on the remaining variables [1, 2, 35, 58].

3.4.1 Objective Functions and Constraints

For single-phase flow heat transfer inside enhanced and smooth tubes of the same diameter, PECs for 12 different cases outlined by Webb and Bergles are listed in table 3-1. They represent criteria for comparing the enhanced performance on the basis of three broad geometry constraints [35, 58].

Table 3-1: Performance Evaluation Criteria for Single-Phase Forced Convection in Enhanced Tubes Diameter (d_i) as the Smooth Tube [58].

							Consequences						
Fixed							Nu _a	L_a	m _a	Re _a	P_a	q_a	ΔT_{ia}
Case	Geom.	'n	Р	q	ΔT_i	Objective	Nu _s	L_{s}	m _s	Res	P_s	q_s	ΔT_{is}
FG-1a	N, L	х	-	_	x	\uparrow_q	1	1	1	1	>1	>1	1
FG-1b	N, L	х	_	х		$\downarrow \Delta T_i$	1	1	1	1	1	1	<1
FG-2a	N, L	-	X	-	x	\uparrow_q	1	1	<1	<1	1	>1	1
FG-2b	N, L		X	X		$\downarrow \Delta T_i$	1	1	<1	<1	1	1	<1
FG-3	N, L	-	_	x	X	↓P	1	1	<1	<1	<1	1	1
FN-1	N	_	х	Х	х	$\downarrow L$	1	<1	<1	<1	1	1	1
FN-2	N	X		X	X	\downarrow_L	1	<1	1	1	<1	1	1
FN-3	N	X	—	X	X	↓Р	1	<1	1	1	<1	1	1
VG-1		х	х	Х	Х	$\downarrow NL$	>1	<1	1	<1	1	1	1
VG-2a	NL	X	x	<u> </u>	x	\uparrow_q	>1	<1	1	<1	1	>1	1
VG-2b	NL	Х	X	X		$\downarrow \Delta T_i$	>1	<1	1	<1	1	1	<1
VG-3	NL	x		x	x	↓P	<1	<1	1	<1	<1	1	1

1. FG criteria. The cross-sectional envelope area (N and d_i) and tube length (L) are held constant. This would typically be applicable for retrofitting the smooth tubes of an existing exchanger with enhanced tubes. That means maintaining the same basic geometry and size (N, d_i , and L). The objectives then could be to increase the heat load capacity (q) for the same approach temperature (ΔT_i) and mass flow rate (\dot{m}) or pumping power (P); that is (FG-1a) and (FG-2a) respectively; or decrease (ΔT_i) or (P) for fixed (q) and (\dot{m}), i.e. (FG-1b) or (P), i.e. (FG-2b); or reduce (P) for fixed (q), i.e. (FG-3).

2. FN criteria. These criteria maintain fixed cross-sectional area (N and d_i) and allowing the heat exchanger length to vary. Here the objectives are to seek a reduction in either the heat transfer surface area (A \rightarrow L), i.e. (FN-1) and (FN-2); or the pumping power (P), i.e. (FN-3) for a fixed heat load.

3. VG criteria. In many cases, a heat exchanger is sized for a required thermal duty with specified flow rate. In these situations the FG and FN criteria are not applicable. Because the tube-side velocity must be reduced to accommodate the higher friction characteristics of the enhanced surface, it is necessary to increase the flow area to maintain constant flow rate. This is accomplished by using a greater number of parallel flow circuits. Maintaining a constant exchanger flow rate eliminates the penalty of operating at higher thermal effectiveness encountered in the previous FG and FN cases [58].

3.4.2 Algebraic Formulation of the PEC

Calculation of the performance evaluation criteria for any of the 12 cases in Table 3-1 requires algebraic relations that quantify the objective function and constraints. It is convenient to develop the algebraic relations relative to a smooth surface operating at the same fluid temperature. This allows cancellation of the fluid properties from the equations.

The different cases listed in table 3-1 are derived for flow inside enhanced and smooth tubes of the same inside diameter. Considering a shell and tube heat exchanger of length *L*, having *N* tubes in each pass, and N_p passes. The total tube-side surface area in the heat exchanger is

$$A = \pi d_i LNN_p \qquad \dots (3.26)$$

The basic heat transfer and friction performance characteristics of the enhanced and smooth tubes are normally presented as Colburn factor (j)

defined as $j = St \operatorname{Pr}^{2/3} = Nu/\operatorname{Re} \operatorname{Pr}^{1/3}$ and f vs. $\operatorname{Re} = d_i G/\mu$. Because the tube inside diameter is held constant, one may write

$$h = \frac{C_p jG}{\Pr^{2/3}}$$
... (3.27)

The value of (hA) of the enhanced surface, as in equation (3.1), relative to that of the smooth surface is the aim of interest. Writing equation (3.27) as the ratio, relative to a smooth surface gives

$$\frac{hA}{h_sA_s} = \frac{j}{j_s}\frac{A}{A_s}\frac{G}{G_s} \qquad \dots (3.28)$$

Substituting equation (3.24) in (3.25) and replacing A_c by $[(\pi/4)d_i^2]$ gives equation (3.29) for pumping power

$$P = \frac{fAG^3}{8\rho^2} \qquad ... (3.29)$$

Writing equation (3.29) as the ratio, relative to the smooth surface, gives

$$\frac{P}{P_s} = \frac{f}{f_s} \frac{A}{A_s} \left(\frac{G}{G_s}\right)^3 \qquad \dots (3.30)$$

Elimination of the term G/G_s from equations (3.28) and (3.30) gives

$$\frac{hA/h_sA_s}{(P/P_s)^{1/3}(A/A_s)^{2/3}} = \frac{j/j_s}{(f/f_s)^{1/3}} \qquad \dots (3.31)$$

To apply one of the PECs, one of the variables on the left side of equation (3.31) is set as the objective function, and the remaining two are set as operating constraints (equal to unity). It is necessary to determine the G/G_s ratio that satisfies Equation (3.31). The equations of the j_s and f_s as a function of Re_s and the *j* and *f* as a function of Re must be known [35]. Accordingly, in the present work, these equations would be created from the experimental data to accommodate the requirements of these PECs either for the tube-side or annulus-side heat transfer enhancement.

3.5 Thermal Design of the Double Pipe Heat Exchangers

Only two important relationships constitute the entire thermal design procedure of a heat exchanger. These are:

1. Heat transfer rate for a non-adiabatic single-phase flow:

$$q = \dot{m}\Delta H = \dot{m}Cp(T_o - T_i) \qquad \dots (3.32)$$

2. Heat transfer rate equation:

$$q = UA \Delta T_m \qquad \dots (3.33)$$

Equation (3.33) reflects a convection-conduction heat transfer phenomenon in a two-fluid heat exchanger. Heat transfer rate is proportional to the heat transfer area (A) and mean temperature difference (T_m) between the fluids. This mean temperature difference is a log-mean temperature difference (LMTD), for counterflow and parallelflow exchangers, it is

$$\Delta T_m = LMTD \equiv \frac{(T_{h2} - T_{c2}) - (T_{h1} - T_{c1})}{\ln[(T_{h2} - T_{c2})/(T_{h1} - T_{c1})]} \dots (3.34)$$

If a wall of a hollow cylinder (like a double pipe heat exchanger) is considered, the overall heat transfer coefficient (U) in equation (3.33) may be based on either the inside or outside area of the tube. Accordingly,

$$U_{i} = \frac{1}{\frac{1}{h_{i}} + \frac{A_{i}\ln(r_{o}/r_{i})}{2\pi kL} + \frac{A_{i}}{A_{o}}\frac{1}{h_{o}}} \dots (3.35)$$
$$U_{o} = \frac{1}{\frac{A_{o}}{A_{i}}\frac{1}{h_{i}} + \frac{A_{o}\ln(r_{o}/r_{i})}{2\pi kL} + \frac{1}{h_{o}}} \dots (3.36)$$

Equations (3.35) and (3.36) include three thermal resistances, heat is transferred through. Two are concerned with convection heat transfer in the two sides of the exchanger and the other is caused by the wall itself [4, 64].

CHAPTER FOUR

Experimental Work

4.1 Experimental Rig Design and Assembly.

An experimental rig was designed and assembled to carry out the experiments that require particular fluid temperatures, particular fluid flow rates, and for each run, temperatures of four points and pressure drop in specific sections, which represent the heart of the present work, must be measured in acceptable accuracy.

Simply, the concerned rig is an assembly of several parts when operated, the result is two streams of fluids having particular temperatures that the study needs, flowing separately and sometimes mixed for specific tasks. In addition, two specialized streams were used in the isothermal pressure drop experiments, which might stop the working as a heat exchange system and mixing the two streams to work under constant temperature conditions. No automatic temperature control devices are available, so manual control is widely adopted to regulate temperatures of fluid streams. Figure 4-1 shows a photograph of the rig whose parts are detailed in the schematic flow diagram depicted in fig. 4-2.

Water was used as the working hot fluid and cold fluid streams for its availability; high heat capacity, which enables easy control of temperature; and conventionality of using it as the cold fluid in many actual heat exchange processes.

Figure 4-1: A photograph of the experimental rig.

4.1.1 Components of the Experimental Rig.

4.1.1.1 Hot Fluid Unit.

As depicted in fig. 4-2 the hot fluid unit consists mainly of the following:

(i) Insulated Tank: A tank of $(50 \times 50 \times 100 \text{ cm})$ dimensions well-insulated using 5 cm thick of mineral wool insulation to forbid loss of heating energy.

(ii) Electric heaters: 4 electric heaters with 3 kW power for each in addition to a 3.5 kW power supplied by 1500, 1000, and 500 W heaters and 500 W heater controlled by a variac are used to supply thermal energy needed for heat transfer. The partitioned 3.5 kW power is exploited to control temperature of the hot stream to the required value, where the heat transferred from the hot to cold stream through the heat exchanger at any time, is guessed by calculations as shown later.

Hot fluid unit is supplied with water (as the working fluid) after passing through a filter assembled at the inlet of the system. Hot water is circulated throughout the system and returned to the hot fluid tank. Water is replaced periodically so as to keep it free from salts which may be concentrated as a result of continuous heating.

4.1.1.2 Cold Fluid Unit

The cold fluid unit consists of the following:

(i) Main Stream of Tap Water: The cold fluid used throughout the system is filtered tap water used for one pass without circulating, but since it may come in different temperatures during the different seasons of the year, its temperature must be maintained to the required temperature which is 20 °C.

(ii) Heating Tank: To maintain tap water at 20 °C which may arrive in temperature less than this degree (during winter), a heating tank provided with

a 6 kW electric heater is used for the task. In most cases, tap water is divided into two streams before entering the unit; one is passed through the heating tank. The two streams are mixed in a joint point before entering the system. The flowrates of the two streams are maintained manually till the temperature of the "mixture" is being settled at the required value.

(iii) Water Cooler: In summer, the task may be different where the tap water is arriving in temperature more than 20 °C, so it is necessary to lower to this temperature. The task is carried out in a manner similar to that used in the preceding case but instead of passing one of the two streams, the water have been divided into the heating tank, it is now passed through a water cooler. The concerned stream is passed through a shell-and-tube heat exchanger immersed inside the pool of the water cooler and exchanging heat with cold water (its temperature is below 5 °C, pumped by a centrifugal pump) without mixing. This exit stream is mixed with the other stream and again controlled manually to produce water at the required temperature. Depending on the techniques discussed above and enough experience, temperature of cold water was controlled to 20 ± 0.5 .

4.1.1.3 Flow Measurement Instrumentation

Two flow measurement devices have been used, one for each stream:

(i) Rotameter:

A rotameter type (FLOWTECH, LZS-25) with flowrate range between 0.16 and $1.5m^3/hr$, were used to measure the flowrate of cold water (20 °C). But in case of isothermal pressure drop experiments, which would be explained later, the rotameter was used to measure the flowrate of hotter water, reaches 70 °C, so an accurate calibration was required in order to ensure obtaining results as

acceptable as possible. Calibration of rotameter was performed to produce calibration curves for flowrate of water, at four temperatures (20, 40, 60, and 70 $^{\circ}$ C). Details of calibration of the rotameter and calibration curves, produced are fixed in appendix B.

(ii) Orifice plate.

An orifice plate was designed and manually fabricated to be used in measuring hot water flowrate. This device is supplied with two manometers, an inverted manometer filled with mercury to be used in measuring relatively high flowrates (between 0.3 and 0.9 m³/hr), and the other is an ordinary water manometer to be used in measuring low flowrates (0.3 m³/hr and lower). Design and calibration of the orifice plate for the two temperatures (60 and 70 °C) is detailed in appendix B. The mercury manometer graduation is directly fixed on the orifice manometer panel, while the water manometer must be treated differently. That is by using a computer program written for the purpose because the water manometer readings cannot be adjusted directly.

4.1.1.4 Pressure Measurement Instrumentation

One of the most important data to be obtained in the present work is the pressure drop inside the test section (double-pipe heat exchanger), so four pressure taps were fixed in the inlet and exit of the hot and cold fluid streams to measure pressure drop inside the inner tube and the annulus. Three manometers were used. Two of the manometers-that use water-are employed to measure low pressure drops and the third that uses mercury is employed to measure high pressure drops. The latter is connected to each of the others if needed. When working together, the water manometer must be closed, when measuring high flowrates, or else it might overflow.

4.1.1.5 **Temperature Measurement Instrumentation**

Four thermocouples type (J) fixed at the inlet and outlet of the hot and cold fluid streams to measure temperature of the intended fluids at specific points. The ends of thermocouples are screwed to be tightly fixed in the external tubes near the inlet and outlet points. The thermocouples are connected to a temperature reader device type (DORIC) with five buttons.

Since these temperature values play a decisive role in calculating the Nusselt number, and to ensure that the temperatures obtained are as accurate as possible, an accurate calibration for the four thermocouples and the temperature reader device were carried out using a mercury thermometer. The latter was calibrated using boiling distilled water and a mixture of distilled water and ice [65]. The result of the calibration process was converted to four calibration curves to be used to predict the actual values of temperature. Details of calibration are fixed in appendix B.

4.1.1.6 Pipes, Pumps, and Valves

All pipes used in the construction of the rig are made of galvanized iron pipes of ID=16mm, well-insulated to save energy. Three centrifugal pumps, with maximum volumetric flowrate of 4 m³/hr, are included, one for the cold fluid unit and the others are employed to pump the hot and cold fluids in concerned streams. 26 ball valves are used in the rig. This type of valve had been used because it could be easily and rapidly opened and sealed and easily used in controlling the volumetric flowrates of the two streams.

4.1.1.7 Test Section (Double-Pipe Heat Exchanger)

The most important part of the experimental rig is the test section which is a double pipe heat exchanger. Figure 4-3 illustrates its main parts:

Figure 4-3: Sketch of the double-pipe heat exchanger used in the present work.

(i) The outer tube: It is made of stainless steel to avoid corrosion during operation. It is 1.2 m length, ID=2.8 cm and OD=3.0 cm.

(ii) The inner tube: It is made of pure copper (South African Origin) for its low thermal resistance with two sizes used. The first is 1.4 m length, ID=1.1 cm and OD=1.25 cm. The second has the same length but with ID=1.4 cm and OD=1.55 cm.

(iii) Pipe fittings: Two 1-¹/₂ inch reducing tee lateral fits are connected to the two ends of the stainless steel tube with making their branches in opposite directions. In addition, four hexagon bushings with their hollows filled with rubber plugs, were used. These were perforated in a way can hold the inner tube without leakage. Two were used to conjoin the inner with the outer tube in a manner enables the operator to disassemble the two tubes in order to change the inner tube easily after each experiment. The other two were used to connect the two ends of the inner tube to the external pipes of the rig [66].

(iv) **Pressure taps:** Four pressure taps are installed in four points around the double-pipe heat exchanger, and connected to the manometer panel detailed above. Two pressure taps concerning the pressure drop in the inner tube are fixed directly in that tube by perforating it carefully near the two ends keeping

a distance of 134.5 cm between the two perforations. This distance was larger than the effective heat transfer length (124.5 cm) which equals to the distance between the inlet and outlet of cold water or the two centers of the tee fittings, so all pressure drop values registered for the tube side would be multiplied by the ration of (124.5/134.5) to obtain the real value of pressure drop. To avoid leakage in these points, an adhesive material was used, taking into consideration that no protrusion was left inside the tube which may cause an error in reading the actual pressure drop. The annulus side pressure taps were fixed in the centre of the tee lateral body. That was in order to calculate the actual pressure drop in the annulus without that caused by the entrance. The registered value in that case was adopted directly without correction. These taps not like those of the inner tube, they were not removable because the outer tube connected to the reducing tee laterals were left without disassembling all the experimental work. Fig. 4-4 shows the pressure taps.

Figure 4-4: Pressure taps.

The temperature thermocouples installation was easier because they were fixed in the external tubes belonging to the rig itself and left without removing all the experimental work.

The whole body of the heat exchanger was insulated with a layer of mineral wool insulation to avoid heat loss.

4.1.2 Turbulence Promoter Selection and Fabrication

Three types of inserts with different pitch length and wire diameter, (defined in fig. 4-5a), was used in the present work:

Figure 4-5: Turbulence promoters used in the present work, (a) Definition of pitch length p and wire diameter e, (b) Inner coiled wire inserts, (c) Coiled wire on the outer surface of the inner tube e = 1 mm, (d) Coiled wire on the outer surface of the inner tube e = 2.2 mm, (e) Circular rib on the outer surface of the inner tube e = 2.2 mm.

(i) Wire coil insert inside the inner tube: 1 mm diameter copper wire was coiled around a steel bar of about 8.5 and 12 mm diameter to produce wire coils with outside coiling diameters of 11 and 14 mm. Four coiling pitches had been studied (10, 20, 30, and 40 mm), as in fig.4-5b.

(ii) Wire coil insert on the outer surface of the inner tube: Two copper wire sizes were used (1 and 2.2 mm diameter). That was by coiling the interested wires around the copper tubes directly with keeping four coiling pitches to be used (10, 20, 30, and 40 mm), fig. 4-5c, and d.

(iii) Circular ribs on the outer surface of the inner tube: A copper wire with diameter of 2.2 mm was used in fabricating circular ribs to be used as turbulence promoters on the outer surface of the inner tube with four pitch lengths (10, 20, 30, and 40 mm).

4.2 Operation of the System

In the present work, experiments were divided into two kinds, isothermal pressure drop experiments and heat exchange experiments:

4.2.1 Isothermal Pressure Drop Experiments

The aim of the isothermal pressure drop experiments is to obtain the friction factor or pressure drop, in mm H₂O, for the range of Reynolds numbers of working fluid flowing through the tube or annulus side of the heat exchanger at constant temperature (no heat exchange). In the present work experiments were performed at four temperatures 20, 40, 60, and 70 °C, which give a satisfactory variety of physical properties, with 8 values for Reynolds number, from 5000 through 40000 for the tube-side enhancement experiments and from 3000 through 10000 based on the equivalent diameter for annulus-side enhancement experiments. The operation of isothermal pressure drop, in case,

if the tube side is intended to study the pressure drop inside, can be summarized in the following steps (referring to fig. 4-2):

- The first step was filling the hot water tank with water at one of the temperatures above. Then temperature is changed to the next.
- The isothermal pressure drop operation was a closed-loop process. That was by sealing valves V-17, V-23, and V-25.
- The interested loop of water was being determined according to its temperature. For 20 and 40 °C water circulated the loop was started from the hot water tank passing through V-2, pumped by the hot water centrifugal pump through V-4, V-6, passing through the rotameter and then V-7 entering the inner tube of the heat exchanger and returning to the tank. V-5 and V-18 was tightly sealed. That loop was decided because the orifice plate was designed and calibrated to work at 60 and 70 °C, while that was accessible in the rotameter. For 60 and 70 °C, the loop was different, starting from the hot water tank, through V-2, V-5 pumped through the orifice plate to the inner tube of the heat exchanger and finally returned to the tank. V-6 and V-7 was tightly sealed.
- Flowrate measured by the rotameter was the wanted one in case of 20 and 40 °C temperatures while that measured by the orifice plate for 60 and 70 °C. For each case, the pressure drop was registered. Then the flowrate was raised for the next using valve V-4.
- Valves V-18, V-20, V-21, V-24, and V-26 were left open, while V-19 and V-22 there was no problem if were being forgotten open.

If the annulus side was intended to study the pressure drop inside, with the aid of fig. 4.2, the main steps are summarized by the following points:

- Filling the hot water tank with water at a specific temperature.
- Sealing valves V-17, V-23, and V-25.

- Valve V-7 should be tightly sealed.
- Valves V-19 and V-22 were left sealed.
- In the present case the path of water was: the hot water tank, V-2, the hot water pump, V-7, the rotameter, V-18, V-20, V-21, V-24, V-26, and returning to the tank. The flowrate measured by the rotameter was the intended flowrate. Then, pressure drop was registered.
- V-5 was left slightly open and V-8 and V-9 were being left open to permit some of water to pass through the inner tube to ensure that no heat exchange was happening.

4.2.2 Heat Exchange Experiments

The second part of the present work was the heat transfer experiments. Cold water was flowing in open cycle, through the annulus of the double pipe heat exchanger, counter-currently with hot water stream which was flowing in closed cycle through the inner tube. The implementation of a heat transfer experiment can be summarized in the following steps:

- Valves V-23 and V-26 were kept sealed during all the work.
- Valves V-6 and V-7 should be tightly sealed to keep the two streams separated.
- V-11 was the inlet of the water, so it should be opened.
- The cold fluid unit work was depending on whether the water was coming with temperature less or greater than 20 °C (working temperature of cold water for all heat transfer experiments). If less than 20 °C, V-13 and V-14 were both sealed, i.e., the water cooler and its accessories were shut down, while the heating tank was being used (V-15 opened). If the water temperature was greater than 20 °C, then the

water cooler and its accessories were being operated (V-13 and V-14 open), while the heating tank was shut down (V-15 sealed).

- In the mixing point, two streams were mixed, the fresh stream of water and either that coming from the cooling or the heating tank, manually controlled to obtain a water stream at 20 ± 0.5 °C to be used as the cold fluid.
- V-19 and V-22 were always left sealed.
- The cold water path was: the mixing point, pumped by the cold water pump through V-17, the rotameter, V-18, V-20, counter-currently through the annulus of the heat exchanger, V-21, V-24, and through V-25 water was drained outside the system.
- The volumetric flowrate assigned by the rotameter is the flowrate of cold water under study.
- Valves V-1, V-3, and V-10 were left sealed.
- In the present work, all experiments were performed with two temperatures for the hot water stream, 60 and 70 °C. These temperatures were controlled manually. Heat transferred in the exchanger was always known due to the computer program employed, so, by using the variety of heaters, provided to the hot water tank especially those controlled by the variac, temperature of the produced water would be controlled to 60 or 70 ± 0.5 °C. The large volume of the hot water tank was widely helping in forbidding the fluctuations in these temperatures.
- The path of hot water was: the hot water tank, V-2, pumped by the hot water pump through V-4 and V-5, and then through the orifice plate and V-8 entering into the inner tube of the double pipe heat exchanger, and finally through V-9 returning to the hot water tank.

- Two divisions of heat exchange experiments were performed, the first was carried out for the case of enhancement of heat transfer inside the inner tube. In that kind, the cold water mass flowrate was kept constant at two values (0.1 and 0.15 kg/s) and hot water was changed for 8 values of Reynolds number in the inner tube starting from 5000 through 40000. The second kind was performed when the annulus as the enhanced side, where constant mass flowrates for the hot water stream (0.1125 and 0.2 kg/s), while the cold water was changed for 8 values of Reynolds number starting from 3000 through 10000.
- Valves V-4 and V-17 were used as control valves of the hot and cold flowrates respectively.
- All steps stated above were in need to wait for few minutes until the steady state conditions were reached for each change in the hot or cold flowrate. When the approval value of volumetric flowrate (determined by using the computer program) was reached, four temperatures of the inlet and outlet points, as well as the pressure drop in the two sides, read on the manometers panel, were being registered.

4.3 Calculation Procedure

4.3.1 Prediction of Physical Properties

The use of a computer program (fig. 4-6) to perform calculation of the system which includes widely the properties of water like density, dynamic viscosity, conductivity, and heat capacity, needs to deduce equations for these properties to be used in the computer program. Appendix A includes tabulated properties of water which have been converted by curve fitting to polynomial equations. Equations (A.1), (A.2) and (A.3) would be used in the computer program to predict the physical properties of water instead of direct use of table A-1.

4.3.2 Isothermal Pressure Drop Calculations

This class of calculations includes the calculation of Darcy-Weisbach friction factor for all cases studied using the values of isothermal pressure drop obtained during the experiments of isothermal pressure drop, discussed previously, using the equation (3.4). Thus, a large number of points would be available to be used in predicting an isothermal friction factor correlation.

4.3.3 Heat Transfer Calculations

The more complicated calculations are that of heat transfer which includes:

(i) Calculation of Reynolds number: It is an implicit problem where Reynolds number was intended to be calculated with unknown physical properties and mass flowrate in order to appear in the form of an integer (5000, 10000, 15000, etc.) in addition to the great physical meaning might be included if all readings had been taken for particular Reynolds numbers instead of volumetric or mass flowrates. In other words, a specified Reynolds number at particular temperature (particular physical properties) might mean a mass flowrate, different from that at another temperature. A trial and error procedure is adopted for the purpose which may be explained as: an initial volumetric flowrate Q is assumed as the required value for the Reynolds number under study, using the temperatures of the inlet and outlet streams of the double pipe heat exchanger resulted to predict physical properties which would lead to a new value for Q for the interested stream, repeating the process until convergence would be reached as illustrated in fig. 4-6 which represents an algorithm for a computer program. Figure 4-6 was written for tube-side enhancement, similar one for annulus enhancement, easily could be imitated by excluding the part of the orifice plate operation which was unnecessary in that case, with some changes in the equations used for calculations to be suitable for the annulus instead of the inner tube.

Figure 4-6: An algorithm for calculations of tube-side heat transfer enhancement.

(ii) Friction factor calculations: For both enhanced or unenhanced sides of the heat exchanger, friction factor was calculated directly by using equation (3.4) adopting the pressure drop measured by the manometer,

(iii) Nusselt number calculations: The procedure of calculating Nusselt number might be summarized as:

- 1. Heat Transfer rate is calculated by equation (3.32) for the two sides and the average value is considered.
- 2. The overall heat transfer coeff. U_o was calculated by eq. (3.33).

- 3. Friction factor for the unenhanced side is predicted by equation (3.4).
- 4. Nusselt number (and then the heat transfer coefficient) for the unenhanced side is calculated by equation (3.12), alone, if it is the tube side or with equation (3.18), if it is the annulus side.
- 5. By equation (3.36), the heat transfer coefficient is obtained for the enhanced side, and then Nusselt number for that side.

4.4 Error Sources and Uncertainty

In the present work, some of the error sources which may be fixed as the sources of uncertainty in predicting volumetric flowrates, temperatures and pressure drops which might lead to errors in the predicted values:

- 1- Electric power instability.
- 2- Uncertainty in temperature reading resulted from manufacturing defects in the thermocouples and temperature reader device.
- 3- Errors in flow measurements.
- 4- Temperature control difficulties.

The first three might lead to that the heat transfer calculated by $q = \dot{m}Cp\Delta T$ be not equal, so the average value was used in all calculations with an acceptable deviation ratio defined as:

Deviation ratio =
$$\frac{|q_h - q_c|}{q_{avg.}} \times 100 \leq 5\%$$
. ... (4.1)

The fourth source was constrained to ± 0.5 °C for the inlet temperatures with keeping the inlet temperature approach as close to 40 or 50 °C as possible.
CHAPTER FIVE Experimental Results

5.1 Introduction

Experiments on thirty six cases of smooth and augmented tubes and annuli were carried out in order to study the effect of different types of inserts on heat transfer and pressure drop in a double pipe heat exchanger. The primary experimental data taken are temperatures of the four inlets and outlets, pressure drop in the two sides and heat transfer rate at different experimental conditions. Tables C-1 through C-18 includes the experimental results for the smooth, as well as augmented tubes and annuli. In addition, experiments on isothermal pressure drop for all cases have been performed. Their results are displayed in tables C-37 through C-40.

5.2 Test of Authenticity of Using the Present Heat Exchanger.

First of all calculations and comparisons among the heat transfer and pressure drop or friction factor for augmented and smooth tubes annuli, these smooth tubes and annuli must be tested for authenticity to be used in the experimental work. For heat transfer authenticity test, a comparison between Nusselt number calculated empirically by Gnielinski equation (equation 3.12) and that calculated by using the experimental data obtained, has been performed. For the pressure drop authenticity test a comparison between the friction factor calculated theoretically by Petukhov equation (equation 3.3) and that obtained by experimental work (equation (3.4)). Theoretical and experimental Nusselt number and friction factor (for heat exchange and isothermal conditions) are presented in tables C-19, C-24, C-37 and C-38 and plotted in figs. 5-1 through 5-4.

Figure 5-1: Comparison of empirical (eq. (3.3)) and experimental friction factor of smooth tubes used in tube-side heat transfer enhancement experiments for two tube sizes.

Figure 5-2: Comparison of empirical (eq. (3.12)) and experimental Nusselt number inside the smooth tubes used in tube-side heat transfer enhancement experiments.

Figure 5-3: Comparison of theoretical and experimental friction factor of smooth annuli used in annulus-side heat transfer enhancement experiments.

Figure 5-4: Comparison of theoretical and experimental Nusselt number of smooth annuli used in annulus-side heat transfer enhancement experiments

Deviations from theoretical values are fixed in table 5-1. These values were obtained by dividing the absolute difference of the experimental and theoretical value by the theoretical value for all values of the friction factor and Nusselt number and then the average value is considered.

Type of experiment	Inner tube				Annulus			
	$d_i = 11$		$d_i = 14$		$D_i = 12.5$ $D_o = 28.0$		$D_i = 15.5$ $D_o = 28.0$	
	% dev. in Nu	% dev. in f	% dev. in Nu	% dev. in f	% dev. in Nu	% dev. in <i>f</i>	% dev. in Nu	% dev. in f
Dev. in heat exch. exp.	+ 8.66	+ 8.36	+ 8.55	+ 9.18	+ 8.88	+ 10.79	+ 7.77	+ 11.35
Dev. in isothermal pressure drop exp.	_	+ 8.12	_	+ 6.96	_	+ 9.79	—	+ 7.46
Average deviation	+8.66	+8.24	+8.55	+8.07	+8.88	+10.29	+ 7.77	+ 9.41

Table 5-1: Deviations of Experimental Nusselt and Friction Factor from Values obtained

 from empirical equations for Smooth Inner Tubes and Annuli.

5.3 The Effect of Turbulence Promoters on Heat Transfer Rate and Pressure Drop.

To have a general view of the effect of turbulence promoters, used in the present work, on heat transfer rate and pressure drop in the inner tube and annulus, values of heat transfer rate and pressure drop (tables C-1 through C-18) are plotted versus Reynolds number in figs. 5-5 through 5-8 for all cases.

Figures 5-5 through 5-8 reveals an expected increase of pressure drop with decreasing the coiling or ribbing pitches either in tube-side or annulusside heat transfer enhancement. On the other hand, the heat transfer rate does not behave in a similar manner except in case of tube-side heat transfer enhancement (fig. 5-5) where the above description becomes valid only for the wire coil of e = 1 mm used on the outer surface of the inner tube (fig. 5-6) for the two annulus sizes, while this fact becomes invalid for the e = 2.2 mm wire coil or circular rib where decreasing the coiling or ribbing pitch for that wire or rib diameter means decreasing heat transfer rate (fig. 5-7 and 5-8).

Figure 5-5: Heat transfer rate (W) and pressure drop (N/m^2) vs. Reynolds number for tube-side heat transfer enhancement using a wire coil of e = 1 mm for two inner tube sizes and four experimental conditions (Notation above belongs to all cases).

Figure 5-6: Heat transfer rate (W) and pressure drop (N/m^2) vs. Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 1 mm for two annulus sizes and four experimental conditions (Notation above belongs to all cases).

Figure 5-7: Heat transfer rate (W) and pressure drop (N/m^2) vs. Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 2.2 mm for two annulus sizes and four experimental conditions (Notation above belongs to all cases).

Figure 5-8: Heat transfer rate (W) and pressure drop (N/m^2) vs. Reynolds number for annulus-side heat transfer enhancement by circular ribs of e = 2.2 mm for two annulus sizes and four experimental conditions (Notation above belongs to all cases).

5.4 Effect of Turbulence Promoters on Friction Factor

Two collections of friction factor were obtained for each promoter used to augment heat transfer. The first is that for real heat exchange process. These values of friction factor, graphically or in correlation form, would be used for comparisons and PECs to study the effect and usefulness of each insert. The second is that for isothermal operation conditions. The latter might be converted to correlations to be used in design of heat exchangers.

5.4.1 Friction Factor in Heat Exchange Process

Friction factor inside the inner tube and annulus either smooth or with wire coil inserts (for all wire diameters adopted), have been calculated using the experimental values of pressure drop using equation (3.4), as tabulated in tables C-19 through C-36 and plotted in fig. 5-9 through 5-12 versus Reynolds number.

Figure 5-9: Friction factor vs. Reynolds number for heat exchange process inside the inner tube inserted with a wire coil of e = 1 mm for two inner tube sizes.

Figure 5-10: Friction factor vs. Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 1 mm (heat exchange process) for two annulus sizes.

Figure 5-11: Friction factor vs. Reynolds number for annulus-side heat transfer enhancement by wire coils of e = 2.2 mm (heat exchange process) for two annulus sizes.

Figure 5-12: Friction factor vs. Reynolds number for annulus-side heat transfer enhancement by circular ribs of e = 2.2 mm (heat exchange process) for two annulus sizes.

In figs. 5-9 through 5-12, no sign for the operational conditions have been included and the curve fit represented the average value of friction factor for the four operation conditions for each case considered, because only the geometrical parameters, in addition to Reynolds number, would be included in the proposed correlations produced in the present work. That would be in a similar manner to those appearing in Petukhov equation for smooth tubes or the previous works [1, 2, 8, 9, 10, 11, 35, 51, and 52] for augmented tubes.

5.4.2 Friction Factor in Isothermal Process.

That was performed by using similar calculations to that adopted in heat exchange process but with using the isothermal pressure drop values. Isothermal pressure drop and friction factor obtained are tabulated in tables C-37 through C-40) and plotted in figs. 5-13 through 5-16 versus Reynolds number.

Figure 5-13: Friction factor vs. Reynolds number for smooth tube and roughened by a wire coil of e = 1 mm in isothermal conditions for two inner tube sizes.

Figure 5-14: Friction factor vs. Reynolds number for smooth annulus and with a wire coil of e = 1 mm in isothermal conditions for two annulus sizes.

Figure 5-15: Friction factor vs. Reynolds number for smooth annulus and with a wire coil of e = 2.2 mm in isothermal conditions for two annulus sizes.

Figure 5-16: Friction factor vs. Reynolds number for smooth annulus and with circular ribs of e = 2.2 mm in isothermal conditions for two annulus sizes.

5.5 Effect of Turbulence Promoters on Heat Transfer

In addition to friction factor, heat transfer represented by Nusselt number is the most important factor might be studied in a heat transfer enhancement study, because it might be considered as the real indication to the variations in heat transfer in smooth tubes or those obtained by using turbulence promoters, rather than heat transfer rate plotted in figs. 5-5 through 5-8. Nusselt number values for different types of inserts, different positions, different tube or annulus sizes, and operational conditions are tabulated in tables C-19 through C-36 and plotted in figs. 5-17 through 5-20.

In these plots, the adopted operation conditions are strictly considered because they are the only way to indicate to the Prandtl number which is importantly included in all Nusselt number relationships either for smooth or roughened tubes and annuli.

Similar to relationships of heat transfer rate, the Nusselt number versus Reynolds number curve fits behave, where Nusselt number, for different conditions, increases with Reynolds number and coiling pitch in case of tubeside heat transfer enhancement while that does not occur in the other two cases and the same statement can be said for the variation in wire diameter.

Figure 5-17: Nusselt number vs. Reynolds number for tube-side heat transfer enhancement using a wire coil of e = 1 mm for two inner tube sizes and four experimental conditions (Notation above belongs to all cases).

Figure 5-18: Nusselt number vs. Reynolds number for annulus-side heat transfer enhancement using a wire coil of e = 1 mm for two annulus sizes and four experimental conditions (Notation above belongs to all cases).

Figure 5-19: Nusselt number vs. Reynolds number for annulus-side heat transfer enhancement using a wire coil of e = 2.2 mm for two annulus sizes and four experimental conditions.

Figure 5-20: Nusselt number vs. Reynolds number for annulus-side heat transfer enhancement using circular ribs of e = 2.2 mm for two annulus sizes and four experimental conditions.

5.6 Proposed Correlations of Friction Factor and Nusselt Number.

Comprehensive correlations of friction factor and Nusselt number can be proposed for the three heat transfer enhancement methods. Like these correlations must include all geometrical parameters and operation conditions which are thought to influence the friction factor and Nusselt number. The first step is describing the studied inserts concisely in terms of the most effective geometrical parameters.

5.6.1 Concise Description of Inserts.

()

A concise description of inserts used in the present work has been accommodated in terms of the most effective geometrical parameters which can be summarized as:

 $\left(\frac{e}{d_i}\right)$ or $\left(\frac{e}{D_e}\right)$: This parameter represents the effect of the wire or circular rib diameter related to the inner diameter of the tube or the equivalent diameter of the annulus.

$$\left(\frac{p}{d_i}\right)$$
 or $\left(\frac{p}{D_e}\right)$: This parameter represents the effect of the coiling or ribbing pitch related to the inner diameter of the tube or the equivalent diameter of the annulus.

The values of these parameters are set in table C-41.

5.6.2 Proposed Correlations of Friction Factor

Curve fits in figures 5-9 through 5-16 each apart represents a correlation for friction factor versus Reynolds number for the intended inner tube or annulus with particular insert type, position of installation, size of tube or annulus or operation conditions. To have more useful correlations of friction factor to be

used in comparing the efficiency of different turbulence promoters in augmenting heat transfer or to be used in heat transfer equipment design, 256 points of friction factor versus Reynolds number for four heat exchange conditions inside the inner tube of the double pipe heat exchanger which have been used in plotting the mentioned figures ware admitted together into the STATISTICA software package (a computer software concerned with statistical calculations) to produce a comprehensive empirical correlation of friction factor as a function of Reynolds number, and the two parameters (e/d_i) and (p/d_i) whose values are calculated for tube-side in table C-41. The correlation proposed is:

$$f_a = 3.6346 \operatorname{Re}^{-0.0964} \left(\frac{e}{d_i}\right)^{0.8912} \left(\frac{p}{d_i}\right)^{-0.7856} \dots (5.1)$$

Equation (5.1) has a coefficient of determination of 0.9915. The latter may be defined as the criterion often used to judge the adequacy of a regression model [67].

Using the 256 friction factor points obtained for isothermal pressure drop experiments (plotted in fig. 5-13 except those for smooth tube), a similar correlation with a coefficient of determination equal to 0.9912 was obtained for isothermal operation conditions. That is:

$$f_a = 4.1497 \operatorname{Re}^{-0.0945} \left(\frac{e}{d_i}\right)^{0.9576} \left(\frac{p}{d_i}\right)^{-0.7963} \dots (5.2)$$

The validity of equations (5.1) and (5.2) is in the range of Reynolds number of 5000 to 40000, $e/d_i = 0.0714$ to 0.0909 and $p/d_i = 0.7143$ to 3.6364. Of course, equation (5.2) is more authenticable than equation (5.1), because the latter has been created using points fixed in isothermal conditions which mean real physical properties to be used in calculating the Reynolds number, while Reynolds number calculated using physical properties at arithmetic mean temperature.

For the case of annulus-side heat transfer enhancement using a wire coil set up on the outer surface of the inner tube, 512 friction factor versus Reynolds number points (used in fig. 5-10 and 5-11 except those for smooth tube) are available to be used in correlating an empirical equation for the friction factor as a function of Reynolds number and (e/D_e) and (p/D_e) . That is

$$f_a = 16.0619 \operatorname{Re}^{-0.2491} \left(\frac{e}{D_e}\right)^{1.0872} \left(\frac{p}{D_e}\right)^{-0.4652} \dots (5.3)$$

Equation (5.3) has a coefficient of determination of 0.9709. An attempt to improve the value of that criterion (or enhancing the accuracy of equation (5.3)), may be by enforcing a new parameter which may be thought to be an influence in the friction factor in the annulus. That is the ratio of the inner to outer diameter of the annulus or (D_i/D_o) , which has the value of 0.4464 and 0.5536 for the annulus of D_i = 12.5 mm and D_o =28.0 mm and D_i = 15.5 mm and D_o =28.0 mm respectively. The resulting correlation is

$$f_a = 21.8417 \operatorname{Re}^{-0.2467} \left(\frac{e}{D_e}\right)^{1.0126} \left(\frac{p}{D_e}\right)^{-0.4870} \left(\frac{D_i}{D_o}\right)^{0.6875} \dots (5.4)$$

with a coefficient of determination something larger than that of equation (5.3) to be equal to 0.9820. For the isothermal operation conditions, also the 512 points (used in fig. 5-14 and 5-15 except those for smooth tube) are available to be used to obtain an equation similar to equation (5.3). That is:

$$f_a = 11.5288 \operatorname{Re}^{-0.2088} \left(\frac{e}{D_e}\right)^{1.1142} \left(\frac{p}{D_e}\right)^{-0.4479} \dots (5.5)$$

which has a coefficient of determination of 0.9636, but inserting the parameter (D_i/D_o) enables having an equation with larger coefficient of determination of 0.9829 with producing the following equation

$$f_a = 17.4238 \operatorname{Re}^{-0.2069} \left(\frac{e}{D_e}\right)^{1.0108} \left(\frac{p}{D_e}\right)^{-0.4774} \left(\frac{D_i}{D_o}\right)^{0.9179} \dots (5.6)$$

Equations (5.4) and (5.6) are valid for the range of Reynolds number of 3000 to 10000, $D_i/D_o = 0.4464$ to 0.5536, $e/D_e = 0.0645$ to 0.176 and $p/D_e = 0.6452$ to 3.2.

The third part of the present work was using circular ribs set up on the outer surface of the inner tube. Using the 256 points of friction factor versus Reynolds number plotted in fig. 5-12 except those of smooth tube gives the equation:

$$f_a = 204.7049 \operatorname{Re}^{-0.2666} \left(\frac{e}{D_e}\right)^{2.1579} \left(\frac{p}{D_e}\right)^{-0.4821} \left(\frac{D_i}{D_o}\right)^{0.0001} \dots (5.7)$$

with a coefficient of determination of 0.9833 while the empirical correlation for friction factor under isothermal conditions is obtained by adopting the 256 points plotted in fig. 5-16 (except those for smooth annulus) to obtain equation (5.8) with a coefficient of determination of 0.9803

$$f_a = 169.1513 \text{ Re}^{-0.2657} \left(\frac{e}{D_e}\right)^{2.0482} \left(\frac{p}{D_e}\right)^{-0.4967} \left(\frac{D_i}{D_o}\right)^{0.0001} \dots (5.8)$$

Equations (5.7) and (5.8) look not greatly dependent on the parameter (D_i/D_o) as its power seems. They are valid for the range of Reynolds number

of 3000 to 10000, $D_i/D_o = 0.4464$ to 0.5536, $e/D_e = 0.1419$ to 0.1760 and $p/D_e = 0.6452$ to 3.2.

In the subsequent calculations, correlations of friction factor for smooth tube and annulus under heat exchange conditions are needed. For the smooth tube, friction factor as a function of Reynolds number could be obtained using data depicted in table C-1. The best fit is

$$f_s = 0.4185 \text{ Re}^{-0.2708}$$
 ... (5.9)

having a coefficient of determination of 0.9847 and validity for water with the range of Reynolds number of 5000 to 40000. For smooth annulus, the friction factor correlation using the data in table C-5 is

$$f_s = 0.8168 \text{Re}^{-0.3395} \left(\frac{D_i}{D_o}\right)^{0.0672}$$
 ... (5.10)

with a coefficient of determination of 0.9123. Equation (5.10) is valid for water flowing in an annulus of (D_i/D_o) of 0.4464 to 0.5536 for the range of Reynolds number of 3000 to 10000.

5.6.3 Proposed Correlations of Nusselt Number

Making use of the STATISTICA software, empirical equations for the Nusselt number as a function of Reynolds number, geometrical characteristics of inserts (table C-41) and the inner tube and annuli, and Prandtl number which plays a vital role in heat transfer can be obtained for the three cases studied in the present work. In case of the tube-side heat transfer enhancement, it is expected that the affecting factors in the final correlation of Nusselt number are the Reynolds number, Prandtl number, and the geometrical parameters (e/d_i) and (p/d_i). Using the 256 points of Nusselt

number plotted in fig. 5-17 give equation (5.11) which has a coefficient of determination of 0.9796.

$$\overline{N}u_a = 0.0668 \operatorname{Re}^{0.7938} \operatorname{Pr}^{0.2741} \left(\frac{e}{d_i}\right)^{0.2049} \left(\frac{p}{d_i}\right)^{-0.3532} \dots (5.11)$$

Equation (5.11) is valid for the range of Reynolds number of 5000 to 40000, $e/d_i = 0.0714$ to 0.0909 and $p/d_i = 0.7143$ to 3.6364. In addition, this equation is valid for water only in the range of temperatures employed in the hot fluid stream of the present work which is about 50 to 70 °C.

For the case of annulus-side heat transfer enhancement using wire coil set up on the outer surface of the inner tube, the form of the correlation of Nusselt number is expected to be more complicated than that of tube-side heat transfer enhancement. The best curve fit of the 512 points of Nusselt number plotted in figs. 5-18 and 5-19 that might be suggested is the equation

$$\overline{N}u_{a} = 0.002 \operatorname{Re}^{1.1462 \left(\frac{e}{D_{e}}\right)^{0.2464} \left(\frac{p}{D_{e}}\right)^{0.1475}} \operatorname{Pr}^{0.3} \\ \times \left[\frac{\left(\frac{e}{D_{e}}\right)^{-0.8156}}{\left(\frac{e}{D_{e}}\right)^{2.5892} + 0.01}\right] \left[\frac{\left(\frac{p}{D_{e}}\right)^{-0.5503}}{\left(\frac{p}{D_{e}}\right)^{1.515} + 3.8717}\right] \left(\frac{D_{i}}{D_{o}}\right)^{-0.3823} \dots (5.12)$$

which has a coefficient of determination of 0.9563. This correlation is considered to be valid for the range of Reynolds number of 3000 to 10000, $D_i/D_o=0.4464$ to 0.5536, $e/D_e=0.0645$ to 0.176 and $p/D_e=0.6452$ to 3.2.

For the case of annulus-side heat transfer enhancement using circular ribs set up on the outer surface of the inner tube the best curve fit of the 256 points plotted in fig. 5-20 is the following equation:

$$\overline{N}u_{a} = 0.1006 \operatorname{Re}^{0.3298 \left(\frac{e}{D_{e}}\right)^{-0.4696} \left(\frac{p}{D_{e}}\right)^{-0.0645}} \operatorname{Pr}^{0.29} \\ \times \left[\frac{\left(\frac{e}{D_{e}}\right)^{0.0527}}{\left(\frac{e}{D_{e}}\right)^{-2.3452} + 0.5044} \right] \left[\frac{\left(\frac{p}{D_{e}}\right)^{0.51}}{\left(\frac{p}{D_{e}}\right)^{0.001} - 0.983} \right] \left(\frac{D_{i}}{D_{o}}\right)^{-0.12} \dots (5.13)$$

which has a coefficient of determination of 0.9503 and valid for the range of Reynolds number of 3000 to 10000, $D_i/D_o=0.4464$ to 0.5536, $e/D_e=0.1419$ to 0.1760 and $p/D_e = 0.6452$ to 3.2. Equations (5.12) and (5.13) are valid to be used for water in the range of temperature of about 20 to 35 °C.

For smooth tube, the empirical correlations of Nusselt number corresponding to equation (3.12) is

$$\overline{N}u_s = 0.013 \text{ Re}^{0.833} \text{ Pr}^{0.265}$$
 ... (5.14)

with a coefficient of determination of 0.9952, and for the smooth annulus, it is

$$\overline{N}u_s = 0.0124 \operatorname{Re}^{0.843} \operatorname{Pr}^{0.45} \left(\frac{D_i}{D_o}\right)^{-0.2392} \dots (5.15)$$

having a coefficient of determination of 0.9947 and valid for $D_i/D_o=0.4464$ to 0.5536. The last two correlations are valid for water with the ranges of Prandtl and Reynolds number adopted in the present work.

It is important to mention that equations (5.9) and (5.10) and equations (5.14) and (5.15) are assumed to be more accurate than Petukhov and Gnielinski equation respectively, for the double pipe heat exchanger used in the present work including the deviation values depicted in table 5-1.

CHAPTER SIX

Discussion

6.1 Introduction

The study of heat transfer enhancement in heat exchangers by mechanical methods, like those adopted in the present work, consists of two principal results; the first is the gain of the enhancement process represented by augmentation of heat transfer (Nusselt number), and the second is the penalty paid for this gain; it is the growth of friction factor which is axiomatically followed by increasing pumping power. In general, implementation of the aim for which, one suggests to enhance or design an enhanced heat exchanger, is based on the judgment whether the followed method is beneficial or not.

6.2 The Influence of the Experimental Conditions

In the present work, the variation of the operational conditions, represented by the mass flow rate of the unenhanced side and the inlet temperature of the hot fluid stream (60 or 70 °C) have given the chance to have a large quantity of experimental data to correlate as accurate relationships as possible, either for friction factor or Nusselt number. These variations are the only way available to have a variety in the physical properties especially in the calculations of Nusselt number. These properties are briefly expressed by Prandtl number which has a vital role in heat transfer since it relates the convective and conductive heat transfer in the fluid as being a function of temperature [64]. Prandtl number in the present work has been varied from 2.6 to 3.4 in hot fluid stream in tube-side heat transfer enhancement experiments and from 5.5 to 6.5 in cold fluid stream in annulus-

side heat transfer enhancement experiments. So these ranges do not represent wide scopes to consider that the experimental results, obtained assess the proper influence of Prandtl number. Hence, using different liquids as the working fluid or by adding different quantities of a particular substance like propylene glycol to water may produce an enough variation of Prandtl number [8].

The change of the experimental conditions represented by changing the mass flow rate of cold fluid stream in case of tube-side enhancement or by changing the mass flow rate of hot fluid stream in case of annulus-side enhancement, both at a given inlet temperature of hot fluid stream, have given an observable change in heat transfer rate as shown in figs. 5-5 through 5-8. That is axiomatic since that any change in the mass flow rate of the unenhanced side would affect the heat transfer coefficient in that side and then affect the heat transfer coefficient leading to influence heat transfer rate in the enhanced side through equation (3.35) or (3.36). Accidentally that change is leading to a slight change in Prandtl number which could not be considered as an effective influence on heat transfer.

On the other hand, changing the hot fluid temperature, for both enhancement cases, affects directly Prandtl number which leads to affect the heat transfer not only in the hot fluid stream but also in the other side. In another word, raising the hot fluid inlet temperature (in case of tube-side enhancement) leads to lower Prandtl number which leads to lower heat transfer, represented by Nusselt number and not the heat transfer rate which axiomatically increases due to the increase in temperature difference. This is obvious in fig. 5-17, where for the two tube sizes, values of Nusselt number in case of hot fluid temperature is70 °C, are lower than those when it is 60 °C.

The same behavior happens, but with lesser magnitude, when the case is the annulus-side enhancement, where raising the hot fluid inlet temperature means making the other side working at higher temperature which leads to lower the Prandtl number and then lowering the Nusselt number as shown in figs. 5-18 through 5-20, i.e., relatively lowering heat transfer. The whole situation is agreeing with the information concerning heat transfer in smooth tubes or annuli as in equations (3.8) and (3.12) or with that of Arman and Rabas [59, 60] for ribbed surfaces to enhance heat transfer as discussed in chapter three but to a lesser degree that cannot be considered as picturing the relationship between the heat transfer and Prandtl number.

What happens for the pressure drop or friction factor, either in heat exchange or isothermal conditions, starting with the tube-side enhancement (fig. 5-5), is that raising the mass flowrate of the unenhanced side (in heat exchange conditions) means raising heat transfer and then lowering the mean temperature of the other side. That means that the enhanced side fluid density will be increased, but with larger manner the viscosity will do (that is obvious in the density or viscosity versus temperature relationships as shown in appendix A). That means that the Reynolds number at which the reading is taken needs larger mass flowrate which means larger velocity, and then larger pressure drop according to equation (3.4).

The reverse occurs for the annulus-side enhancement case (figs. 5-6 through 5-8), where increasing the hot stream mass flowrate leads to increase the mean temperature of the annulus side fluid which means lowering the mass flowrate required for a particular Reynolds number and lowering the pressure drop in that stream. On the other hand, raising the inlet temperature of hot fluid, in both enhancement cases, means lowering the mass flowrate required for a particular Reynolds number and lowering the mass flowrate required for a particular cases, means lowering the mass flowrate required for a particular Reynolds number leading to lower the pressure drop.

The friction factor, in both heat exchange and isothermal processes, has been intended to be calculated as a function of geometrical parameters in addition to Reynolds number without granting an importance to the physical properties outside the Reynolds number. As a result, the curves in figs. 5-9 through 5-16 represent the average value for each case. To reduce complexity in the coming calculations, the experimental conditions would be reduced to only two conditions that concern the working at a particular hot stream inlet temperature (60 or 70 °C), considering the average values for the two groups working at a specified mass flowrate of unenhanced side.

6.3 Friction Factor in Enhanced Tubes and Annuli

It is important to point out that the heat transfer enhancement by turbulence promoters is simply an action to disturb the laminar sublayer which prevents or decreases heat transfer. Such enhancement always is accompanied by pressure drop or drag due to the obstruction created by adding these turbulence promoters. So, looking for a suitable promoter, one must take into consideration reducing the pressure drop might be reached by investigating an affluent passage through which the fluid could pass with keeping the promoter to work as efficient heat transfer enhancer as possible.

6.3.1 The Effect of the Wire or Rib Diameter and Coiling or Ribbing Pitch on Friction Factor.

In the tube-side heat transfer enhancement, fast propagation of pressure drop or friction factor with increasing the intensity of coils or decreasing the coiling pitches of the wire coil is observed. A glance at figs. 5-9 and 5-13 shows that the friction factor in the inner tube inserted with a wire coil is developing non-linearly; for example, increasing the wire coiling from p=20to p=10 leads to increase the friction factor about three times that when increasing the wire coiling from p=40 to p=30 with slightly greater propagation at large Reynolds numbers than that at lower ones. This fact emphasizes an attention to avoid the exaggeration in increasing the intensity of coils inside the tube even when that leads to increase heat transfer.

The friction factor recorded in case of the annulus-side enhancement using wire coil set up on the outer surface of the inner tube (figs. 5-10, 5-11, 5-14, and 5-15) is affected by the wire diameter or (e/D_e) as well as coiling pitches or (p/D_e) giving friction factor values in case of wire coil of e=2.2mm twice that of e=1 mm with the same coiling pitch and at the same Reynolds number. That is for the annulus of $D_i=12.5$ mm and with greater magnitude in case of the $D_i=15.5$ mm annulus which has a narrower annular gap. Here, the wire coil works as roughness installed on the outer surface of the inner tube helping the friction factor to increase, especially in case of e=1mm. This action might be one of two causes of increasing the friction factor in case of using the e=2.2 mm wire, which might be considered as swirl generator around the inner tube lengthening the path of fluid flow in a similar manner to the method of enhancing heat transfer in the annulus by using a spiraling tape to induce swirl leading to more friction [34]. Also, the wire of this size might work as a series of obstacles standing in that path increasing the friction factor, especially in case of the 10 mm coiling pitch, where fluid crosses over "ribs" that the close coils might formulate [68].

The obstruction encountered in the case of using the e=2.2 mm wire coil becomes larger in case of using circular ribs with the same diameter giving a huge friction factor values especially in case of the annulus of $D_i=15.5$ mm where the passage of flowing becomes relatively very narrow with consecutive obstacles (circular ribs) blocking the way of fluid flow without permitting to the fluid to flow spirally around the inner tube producing, as a result, greater friction factor, reaching to one fold as compared to that of the wire coil of 2.2 mm at the same Reynolds number, as shown in figs. 5-11 and 5-12. The last observation gives an urgent fact that the spiral coil permits the fluid to flow more easily than the ribs which work as obstacles, granting no chance to the fluid to flow in ease fluency [68].

In fact, each of the two sides of figs. 5-9 or 5-13 represents an (e/d_i) ratio, so comparing the act of the coiling pitch in case of the tube-side heat transfer enhancement, is simply by seeing the curve fits of the same colors in the two sides of each of these figures, while comparing the effect of the coil pitch ratio (p/d_i) at a particular (e/d_i) is accessible by comparing the curve fits in the same figure side. The same description might be said for the annulus-side heat transfer enhancement methods.

6.3.2 The Effect of the Annulus Diameter Ratio (D_i/D_o)

In addition to the geometrical parameters of inserts, another parameter, (D_i/D_o) , had appeared in the friction factor correlations in the annulus-side heat transfer enhancement, to distinguish between the two annuli used giving an importance to the extent of the annular gap. This parameter might be simply considered as a correction factor concerned with the double pipe heat exchanger, used in the present work. But, since it had appeared in values greater than the deviation values fixed in table 5-1 for the two annuli used in the present work (that can be proved easily by predicting the values of (D_i/D_o) with the exponents appearing in the concerned correlations). In addition, that factor had appeared in both friction factor and Nusselt number correlation, so it is apt to consider it in fluid flow and heat transfer in annulus.

In order to use this factor safely the whole boundary conditions concerning the present heat exchanger must be mentioned to give a perfect image about the authenticity of using this parameter. The boundary condition that might be absent in describing the annuli in chapter five is the effective length of the present heat exchanger which is 1.245 m, so a boundary condition including this length might be (L/D_e) having a value of between 80.32 and 99.60. Indeed, the parameter (D_i/D_o) had appeared in all correlations of friction factor belonging to the annulus either smooth or enhanced but with dissimilar exponents, so ignoring that parameter in case of the friction factor correlation for the annulus-side enhancement by circular ribs, where its exponent is close to zero, might be considered as a good approximation. Also, appearing in slight power in equation (5.10) for smooth annulus might lead to consider it as a correction factor for the present annuli.

6.3.3 The Effect of Disruption Shape of Insert on Friction Factor

In the three methods of heat transfer enhancement, adopted in the present work, a circular section of the enhancement devices (circular wires and ribs), have been used. This shape produces smaller friction factor than that given by a rectangular one or a shape with sharp corners but, unfortunately, produces smaller Nusselt number. This is due to the disruption effect of the owned corners [69].

6.3.4 The Dependency of Friction Factor on Reynolds Number

In general, dependency of friction factor on Reynolds number in the tube-side heat transfer enhancement using wire coil, as revealed in the present work, is low as compared to the dependency on the geometrical characteristics of the wire coil itself as shown in figs. 5-9 and 5-13 which are typified in equations (5.1) and (5.2). The relationship between friction factor and Reynolds number is slightly different in case of the two types of the annulus-side enhancement where the friction factor is more dependent on Reynolds number as obviously seen in figs 5-10 through 5-12 and 5-14 through 5-16 and presented in equations (5.3) through (5.8). Such observations might be considered as an agreement with the well-known Moody diagram, where the wire coil or the circular ribs might be considered as roughness on the inner or outer surface of the tube. It is to be admitted that the Reynolds number range adopted in the tube-side enhancement is larger than that adopted in the annulus-side enhancement where the dependency on Reynolds number decreases with increasing the relative roughness [38].

6.3.5 Friction Factor Augmentation

The friction factor augmentation is one of the most important purposes of heat transfer enhancement study, because it represents the magnitude of penalty, one might pay if he followed a specified enhancement method. It is defined by the ratio between the friction factors of enhanced (augmented) tube or annulus and that of smooth ones at the same Reynolds numbers [8,35].

6.3.5.1 Friction Factor Augmentation for Tube-Side Heat Transfer Enhancement

For the tube-side heat transfer enhancement, the equation of friction factor augmentation is obtained by dividing equation (5.1) by equation (5.9). The latter represents the actual friction factor relationship of smooth tube in the present work. The produced equation is:

$$\frac{f_a}{f_s} = 8.6848 \operatorname{Re}^{0.1744} \left(\frac{e}{d_i}\right)^{0.8912} \left(\frac{p}{d_i}\right)^{-0.7856} \dots (6.1)$$

Inserting values of the dimensionless parameters into equation (6.1) gives values of friction factor augmentation as listed in tables C-20 through C-23 and plotted in fig. 6-1 which shows the friction factor augmentation of tube-side heat transfer enhancement by wire coil in the adopted ranges.

Figure 6-1: Friction factor augmentation vs. Reynolds number for tube-side heat transfer enhancement using a wire coil of e = 1 mm for two inner tube sizes.

The maximum value recorded for friction factor augmentation is 7 times that for smooth tube. That value is for friction factor in the tube of $d_i=11$ mm inserted with a wire coil of e=1 mm and p=10 mm at Reynolds number of 40000, as compared to that of smooth tube, i.e., $e/d_i=0.0909$ and $p/d_i=0.9091$, and something less for the same values of e and p for the other tube size. It is obvious that the friction factor augmentation, like the friction factor itself, greatly affected by the coiling pitch or (p/d_i) depending largely upon Reynolds number at high (p/d_i) values and slightly at lower ones.

The values of friction factor augmentation calculated using equation (6.1) is agreeing with the experimental values of friction factor plotted in fig. 5-9. To have an idea about the agreement of the values obtained for the friction factor of the tube inserted with a wire coil, studied in the present

work, a comparison with previous works at least for specified values of dimensionless parameters and physical properties can be performed.

As a one of the most well-known studies in the field of heat transfer enhancement by wire coils was that of Ravigururajan and Bergles in (1985) [56] which led to equation (3.22), for friction factor, and (3.21), for Nusselt number, in (1996). The friction correlation predicted 96% of the data within \pm 50%, and the heat transfer correlation predicted 99% of the data within \pm 50%. Because of the high deviation, recently, these correlations are not recommended for general use [35]. Moreover, these equations cover ranges outside those adopted in the present work.

Viedma et al., in (2005) [8] showed a comparison between their results and correlations proposed by Sethumadhavan and Rao (1982), Zhang et al., (1991), and Inaba et al., (1994) for a wire coil of $e/d_i = 0.1$ and $p/d_i = 1.2$ for turbulent flow regime. The ranges adopted by that comparison fall in the ranges adopted in the present work for (p/d_i) , $(p/d_i = 0.7143$ to 3.6364) and slightly larger for (e/d_i) , $(e/d_i = 0.0714$ to 0.0909), but for comparison, these considered values can be inserted in the proposed equation (5.1), to give fig. 6-2. It reveals good agreement of the present work results with that of Sethumadhavan and Rao and good agreement in being not largely dependent on Reynolds number with that of Zhang et al. Also the present results disagree with the results of Viedma et al. Generally, the results of Zhang et al. and Viedma et al. overpredict the results of the present work while those of Sethumadhavan and Rao, and Inaba et al. underpredict [8].

The large contradiction in the friction factor results obtained by the mentioned works and other works might be, as an interpretation suggested by Rabas [8], resulting from the vibrations of the coil and the tube and the clearance that sometimes exists between the coil and the tube wall, enforcing

many authors not to correlate their experimental friction factor results [8]. In the present work, considerable care has been given to the registration of the pressure drop especially at high Reynolds numbers which increase these vibrations and always the average of many readings is considered.

Figure 6-2: Comparison of present work friction factor (equation (5.1)) with that of previous works for tube-side heat transfer enhancement by wire coil of $e/d_i = 0.1$ and $p/d_i = 1.2$.

6.3.5.2 Friction Factor Augmentation for Annulus-Side Heat Transfer Enhancement by Wire Coil

In case of the annulus-side heat transfer enhancement using wire coil set up on the outer surface of the inner tube, the experimental results collected in the present work are more numerous than those of the first case giving a more comprehensive relationship. Here the friction factor augmentation relationship can be obtained by dividing equation (5.4) by (5.10)

$$\frac{f_a}{f_s} = 26.7406 \operatorname{Re}^{0.0928} \left(\frac{e}{D_e}\right)^{1.0126} \left(\frac{p}{D_e}\right)^{-0.4870} \left(\frac{D_i}{D_o}\right)^{0.6203} \dots (6.2)$$
Using equation (6.2) directly with substituting values of the geometrical parameters to obtain the values of friction factor augmentation as listed in tables C-25 through C-32 which are plotted versus Reynolds number in fig. 6-3 which indicates a huge jump in friction factor augmentation registered for the wire of e=2.2 mm and of greater value in case of the annulus of the smallest gap (annulus of $D_i=15.5$ mm), reaching the greatest magnitude of 8.5 as compared to smooth annulus, registered for the wire coil of e=2.2 wound around the inner tube of 15.5 mm outer diameter with p=10 mm ($e/D_e=0.176$ and $p/D_e=0.8$) at Reynolds number of 10000.

Figure 6-3: Friction factor augmentation vs. Reynolds number for annulus-side heat transfer enhancement using two wire coils of 1 and e=2.2 mm for two annulus sizes.

That magnitude, when compared to the friction factor augmentation registered for the case of using 1 mm diameter wire with the same coiling pitch ($e/D_e=0.08$ and $p/D_e=0.80$) at the same Reynolds number, reveals a great dependency of friction factor augmentation on wire diameter, as clearly observed by equation (6.2). The wire coil here progressively formulates

obstacle not only increases friction factor but also decreases heat transfer as will be seen later giving an imagination that increasing the wire diameter as well as decreasing the coiling pitch might lead to unwanted result at least in the dimensions adopted in the present work. Here, the least friction factor augmentation registered is 1.275 at Reynolds number of 3000 in case of largest annulus with e=1 mm wire and p=40 mm.

6.3.5.3 Friction Factor Augmentation for Annulus-Side Heat Transfer Enhancement by Circular Ribs

There is no doubt that the results of the friction factor augmentation of annulus-side enhancement by wire coil foretells the magnification of that by circular ribs in similar manner to that in discussing the effect of the type of augmentation device on friction factor, but just to show the effect of changing to circular ribs instead of wire coil, the study continues. Friction factor augmentation of annulus-side heat transfer enhancement by circular ribs is obtained by dividing equation (5.7) by (5.10) as:

$$\frac{f_a}{f_s} = 250.6181 \operatorname{Re}^{0.0729} \left(\frac{e}{D_e}\right)^{2.1579} \left(\frac{p}{D_e}\right)^{-0.4821} \left(\frac{D_i}{D_o}\right)^{-0.0671} \dots (6-3)$$

Equation (6.3), after inserting the required parameters gives the values of friction factor augmentation as listed in tables C-33 through C-36 which are plotted in fig. 6-4. Figure 6-4 reveals a friction factor augmentation of more than one and a half times that for the same dimensions in case of the annulus-side enhancement by wire coil. This supports the previous interpretation of the effect of the swirl in reducing the friction factor. Friction factor augmentation ratio in equation (6-3) is Reynolds number-independent with greatest friction factor augmentation is in case of the least ribbing pitch with the least annular gap.

Figure 6-4: Friction factor augmentation vs. Reynolds number for annulus-side heat transfer enhancement using circular ribs of e = 2.2 mm for two annulus sizes.

It is important to state that the methods of heat transfer enhancement in the annulus of double pipe heat exchanger (by wire coils, as well as circular ribs), adopted in the present work are completely new, with no similar works to be compared with, for friction factor or Nusselt number, like those for tubeside heat transfer enhancement by wire coils.

6.4 Heat Transfer in Enhanced Tubes and Annuli

The enhancement of heat transfer by turbulence promoters has more difficult mechanisms than the manner by which the friction factor increases as a result of adding these turbulators, differing according to their types, their geometrical characteristics and, the position where they are attached to or in the vicinity of installment. In addition, Prandtl number plays an important role in the mechanism of heat transfer when using roughened tubes.

6.4.1 The Effect of the Wire or Rib Diameter and Coiling or Ribbing Pitch on Nusselt Number.

The geometrical characteristics of inserts either wire coils or circular ribs affect heat transfer differently as compared to magnifying the friction factor, where the latter increases with increasing the intensity of roughness either by decreasing the coiling or ribbing pitches or by increasing the diameter of wire coils or ribs, while that doesn't occur always in case of heat transfer. In case of tube-side heat transfer enhancement by wire coils, Nusselt number increases with decreasing the coiling pitches or (p/d_i) for the same tube size, as shown in fig. 5-17. In addition, the ratio (e/d_i) influences Nusselt number, in spite of using one wire size here, but with varying the tube diameter that is possible. The behavior discussed here cannot be generalized for geometrical dimensions outside the range adopted in the present work.

Enhancement of heat transfer by wire coils, inserted inside the inner tube, might be considered to act in two ways, one might overcome the other. The first is as a swirl flow generator, generating a helical flow at the periphery of the flow. This rotating flow is superimposed upon the axially directed central core flow and promotes centrifugal forces that aid convection. The second is as a turbulence promoter increasing the flow turbulence level by a separation and reattachment mechanism. Moreover, when wire coils are in contact with the tube wall, they act as roughness elements disturbing the existing laminar sublayer. Wire coils increase heat transfer rate through one or two of the mechanisms mentioned above, depending on flow conditions and wire geometry. However, it is expected that wire coils will act as random roughness at high Reynolds numbers [8]. When the coiling pitches approach one another reaching a limit which prevents the formation of these reattachment points, as obviously seen in fig. 3-3 where heat transfer will decrease [61]. This does not occur in case of tube-side heat transfer enhancement because the coiling pitch range, adopted in the present work, does not reach this limit. But in case of the annulus-side heat transfer, this is obvious, especially in case of 2.2 mm wire coil. In the annulus-side heat transfer like in tube-side, heat transfer is imposed upon the mechanism of separation and reattachment mechanism, as well as the enhancement of heat transfer by swirl generation. In case of using the wire coil of e=1 mm, for the two annulus sizes, Nusselt number was kept increasing with decreasing the coiling pitch as clearly presented in fig. 5-18. Very close values of Nusselt number are observed in case p=20 and 10, giving an idea that the coiling pitch plays no more role in enhancing heat transfer.

The last observation might be considered as a critical value to start a reverse relationship as in case of the e= 2.2 mm wire as clear in fig. 5-19, where heat transfer keeps increasing with decreasing coiling pitch to a specified value and then the relationship goes reversely when the coils become close to each other preventing the formation of the reattachment regions which increase the local heat transfer coefficient. In fig. 5-19, the maximum Nusselt number values are obtained for p=20 mm using the annulus of $D_i= 12.5$ mm, while for the annulus having the smallest annular gap, it is when p=30 mm. The last observation confirms the great role of the mechanism of separation and reattachment which needs enough space to form as in fig. 3-2 [59].

Considering the case of 2.2 mm wire coil, the role of swirl appears clearly as a heat transfer inducer in a manner similar to that of Coetzee [34],

who used a spiraling tape around the inner tube of the double pipe heat exchanger. The enhanced heat transfer is by swirls tending to increase the effective flow path of the fluid through the tube or annulus. This would increase heat transfer, as well as pressure drop, but this effect decreases or disappears altogether at higher helix angles since fluid flow simply passes axially over coils [57, 68].

What happens in case of annulus-side heat transfer enhancement by circular ribs supports the opinion of giving the swirl flow an importance in heat transfer. In this case, the effect of the swirl flow completely disappears, keeping the only means for enhancing heat transfer being the mechanism of separation and reattachment leading to lower Nusselt number values in addition to increase the friction factor as seen previously. In the last case the majority of experiments have given close values of Nusselt number especially in case of close ribs (the least values of (p/D_e)).

The complex situation encountered in case of annulus-side heat transfer enhancement has led to the complex correlations of Nusselt number (equation (5.12) and (5.13)). These correlations have been desired to express all points or curves included in figs. 5-18 through 5-20, but revealing an accurate description as these correlations do not express all these points or curves giving as reasonably accurate relationships as possible to express the majority of them and to surpass the irregular points or curves, as will be seen in the Nusselt number augmentation curves, depicted later.

6.4.2 The Effect of the Annulus Diameter Ratio (D_i/D_o)

The (D_i/D_o) parameter has appeared in Nusselt number correlations for the annulus-side heat transfer enhancement, giving significance to the annular gap size in enhanced annuli as well as smooth ones as in equations (5.12) and

(5.13) and (5.15) respectively. Since the exponent of that parameter in equation (5.15) makes it giving values close to those fixed as deviation values of Nusselt number in smooth annuli used in the present work (table 5-1), it might be valuable to consider it as a correction factor concerned with the smooth annuli used presently.

On the other hand, such parameter seems more effective in equations (5.12) and (5.13) to suppose reasonably that this factor is more than a correction factor in case of the annulus-side heat transfer either by wire coils or circular ribs. No clear explanation is available for such case in the literature, where most valuable description of fluid flow and heat transfer around ribs is cited for a flat plate or circular tube, as in fig. 3-2. The present situation might be different where the local circulation eddies are formed over the ribs and the separation and reattachment zones, undergoing an impedance caused by the outer wall of the annulus, meaning that the impedance is greatly affected by the annular gap size which is represented by the ratio (D_i/D_o) [59].

6.4.3 The Dependency of Nusselt Number on Reynolds Number

It seems clearly that the dependency of Nusselt number on Reynolds number in case of tube-side enhancement by wire coils as obviously seen in fig. 5-17 and equation (5.11), is very close to that for smooth tubes. On the other hand, the relation for the case of the annulus-side enhancement is different where the dependency is related to the geometrical characteristics of inserts themselves as obvious in equations (5.12) and (5.13). Indeed, the complex exponents of Reynolds number in these equations have come as a result of the complex physics of fluid flow and heat transfer in the annulus. Clearer picture would be formed later in the study of Nusselt number augmentation.

6.4.4 The Effect of Prandtl Number on Heat Transfer

Many studies refer to the great role, Prandtl number plays in the enhancement of heat transfer by wire coils or by other disruption shapes. Mathematically, the effect of Prandtl number appears significantly in the exponent of Prandtl number in Nusselt number correlations (e.g., equations (5.11), (5.12) and (5.13)). As a conclusion Webb et al., [61] attained that Prandtl number exponent doesn't differ greatly from the value of about 0.33 depending on Prandtl number itself. The value of this exponent decreases with Prandtl number.

In the present work, Prandtl number exponents are 0.27 for tube-side heat transfer enhancement and 0.3 and 0.29 for annulus-side enhancement by wire coils and circular ribs respectively. No doubt that the narrow range of Prandtl number adopted in the present work (using water as the only working fluid), doesn't anyway permit to have more accurate idea about the dependency of heat transfer in enhanced tubes and annuli.

6.4.5 Nusselt Number Augmentation

It is defined by the ratio between the Nusselt numbers of enhanced (augmented) tube or annulus and that of smooth ones at the same Prandtl and Reynolds numbers [8, 35].

6.4.5.1 Nusselt Number Augmentation for Tube-Side Heat Transfer Enhancement

The equation of Nusselt number augmentation for the tube-side heat transfer enhancement is obtained by dividing equation (5.11) by equation (5.14), which represents the actual Nusselt number correlation of smooth tube in the present work, to give the equation

$$\frac{\overline{N}u_a}{\overline{N}u_s} = 5.1385 \operatorname{Re}^{-0.0392} \operatorname{Pr}^{0.0091} \left(\frac{e}{d_i}\right)^{0.2049} \left(\frac{p}{d_i}\right)^{-0.3532} \dots (6.4)$$

Inserting the required values of dimensionless parameters from table C-41 into equation (6.4) gives the values of Nusselt number augmentation for tube-side heat transfer enhancement by wire coils for the two tube sizes and all values of the adopted geometrical characteristics as listed in tables C-20 through 23 and plotted in fig. 6-5. The latter reveals good agreement with fig. 5-17 that shows the Nusselt number-Reynolds number relationship for different conditions. The four experimental conditions have been summarized into two cases only (concerned with the change of the hot fluid inlet temperature), because Prandtl number has insignificant variation for the other two conditions. Also the variation of the inlet temperature of hot fluid with fixing that of cold one leads to variation of the approach temperature difference which would be adopted in the PEC calculations discussed later.

For all values of the characteristic variables in fig. 6-5, the Nusselt number augmentation decreases with Reynolds number leading to suggest that the heat transfer enhancement inside the inner tube by wire coils at low Reynolds numbers is more efficient than that at high Reynolds number especially when knowing that these low values of Reynolds number have given the lowest friction factor augmentation values as stated previously. But in general, Nusselt number augmentation is weakly dependent on Reynolds number especially at high values.

The maximum value of Nusselt number augmentation obtained is 2.43 for the 14 mm diameter tube and 2.34 for the other size, both at Reynolds number of 5000, e = 10 and p = 10, corresponding to maxima in friction factor augmentation of 4.75 and 4.88. For the same geometries, for high

Reynolds number (40000), the maxima registered, are 2.24 and 2.16 with corresponding friction factor augmentation values of 6.83 and 7.01 respectively. That means that the maximum heat transfer augmentation is 2.43 for the wire geometries of ($e/d_i = 0.0714$ and $p/d_i = 0.7143$). Close values for the two experimental conditions have been registered.

Figure 6-5: Nusselt number augmentation vs. Reynolds number for inner tube-side heat transfer enhancement using a wire coil of e = 1 mm for two inner tube sizes.

Similar to the comparison performed for friction factor correlation (equation (5.1)), another comparison must be performed for Nusselt number (equation (5.11)), with results or correlations proposed by other works which were carried out in similar ranges of Reynolds and Prandtl number as well as geometrical characteristics. The work of Sethumadhavan and Rao and Viedma [8], Kumar and Judd [9] and Klaczak [70], are chosen for the comparison. The comparison is for a specified Prandtl number equaling to 3, $e/d_i=0.1$ and $p/d_i=1.2$, as depicted in fig. 6-6. It reveals that the results of the present work are very close to those of Kumar and Judd and in good agreement with the results of Klaczak, and in general, lower than the results of Sethumadhavan and Rao and Viedma. Indeed, the latter has also high friction factor compared to the present work (fig. 6-2). At the same time the work of Klaczak is very appropriate to be compared with, because water was used as the only flowing fluid with similar geometrical characteristics [70].

Figure 6-6: Comparison of Nusselt number resulted in the present work (equation (5.11)) with that of previous works for tube-side heat transfer enhancement with wire coil of $e/d_i=0.1$ and $p/d_i=1.2$ and Pr=3.0.

6.4.5.2 Nusselt Number Augmentation for Annulus-Side Heat Transfer Enhancement by Wire Coil

The Nusselt number augmentation relationship of annulus-side heat transfer enhancement by wire coil is obtained by dividing equation (5.12) by (5.15)

$$\frac{\overline{N}u_a}{\overline{N}u_s} = 0.1613 \text{ Re}^{-0.843+1.1462 \left(\frac{e}{D_e}\right)^{0.2464} \left(\frac{p}{D_e}\right)^{0.1475}} \text{ Pr}^{-0.15}$$

$$\times \left[\frac{\left(\frac{e}{D_e}\right)^{-0.8156}}{\left(\frac{e}{D_e}\right)^{2.5892} + 0.01} \right] \left[\frac{\left(\frac{p}{D_e}\right)^{-0.5503}}{\left(\frac{p}{D_e}\right)^{1.515} + 3.8717} \right] \left(\frac{D_i}{D_o}\right)^{-0.1431} \dots (6.5)$$

Substituting the required values of geometrical parameters from table C-41 for the two wire sizes produces the values of Nusselt number augmentation as listed in tables C-25 through C-32 and plotted in fig. 6-7 which shows a complex situation for Nusselt number augmentation specified in the range of the geometrical characteristics adopted in the present work. A great role is observed for the ratios (e/D_e) and (p/D_e) to determine the relationship of the augmentation ratio with Reynolds number. Unlike the tube-side heat transfer enhancement a great dependency of Nusselt number augmentation upon Reynolds number is observed specially for low values of (e/D_e) . The case of the group of greater (e/D_e) ratio (e=2.2 mm) reveals low Reynolds number dependency giving close augmentation ratio for the four (p/D_e) ratios with reflection in the relationship at the values of p=20 and 30 mm (e=2.2 mm) have given values of Nusselt number augmentation larger than p=10 and 40 mm. The maximum value of Nusselt number augmentation for annulus-side enhancement by wire coils is registered at Reynolds number of 3000 for e=1mm and p=10 mm for the annulus of $D_i=12.5$ mm ($e/D_e=0.0645$ and $p/D_e=0.6452$) having a value of 3.25. For the other annulus, it is 3.15. These

values are corresponding to friction factor augmentation of 2.63 and 3.37 respectively. The largest value for high Reynolds number (10000) is for e=2.2 mm and p=20 mm having a value of 2.49 and 2.3 with friction factor augmentation of 4.66 and 6.03 for the two annuli respectively. Then, the maximum for 10000 Reynolds number is 2.49 for ($e/D_e=0.176$ and $p/D_e=1.6$).

Figure 6-7: Nusselt number augmentation vs. Reynolds number for annulus-side heat transfer enhancement using two wire coils of e=1 and 2.2 mm for two annulus sizes.

6.4.5.3 Nusselt Number Augmentation for Annulus-Side Heat Transfer Enhancement by Circular Ribs

Nusselt number augmentation relationship of the annulus-side heat transfer enhancement by circular ribs can be obtained by dividing equation (5.13) by (5.15) to be

$$\frac{\overline{N}u_a}{\overline{N}u_s} = 8.1129 \operatorname{Re}^{-0.843+0.3298 \left(\frac{e}{D_e}\right)^{-0.4696} \left(\frac{p}{D_e}\right)^{-0.0645}} \operatorname{Pr}^{-0.16} \\ \times \left[\frac{\left(\frac{e}{D_e}\right)^{0.0527}}{\left(\frac{e}{D_e}\right)^{-2.3452} + 0.5044} \right] \left[\frac{\left(\frac{p}{D_e}\right)^{0.01}}{\left(\frac{p}{D_e}\right)^{0.001} - 0.983} \right] \left(\frac{D_i}{D_o}\right)^{0.1192} \dots (6.6)$$

Substituting values of the geometrical parameters from table C-41 gives fig. 6-8 (values are listed in tables C-33 through C-36) which shows close Nusselt number augmentation regardless of the values of the geometrical parameters of inserts with simple superiority for the coils with the largest coiling pitches especially in case of the annulus of D_i =15.5 mm which has the least annular gap. In general all Nusselt number augmentation ratios in case of using circular ribs are less than the corresponding values in case of using wire coils. The high friction factor augmentation ratios registered for this case, as explained previously, gives an impression that the use of circular ribs has less efficiency than the wire coil regardless of the geometrical dimensions.

A comparison between the proposed methods of annulus-side heat transfer enhancement with the method of Coetzee [34] shows that the proposed method has higher efficiency than Coetzee's which had a maximum value of Nusselt number augmentation of 2.06 with friction factor augmentation of 2.03. These are less than the values obtained in the present

work that equal to 3.25 with friction factor augmentation of 2.63 in case of wire coil insert as discussed previously.

Figure 6-8: Nusselt number augmentation vs. Reynolds number for annulus-side heat transfer enhancement using circular ribs of e = 2.2 mm for two annulus sizes (the axis scales, in spite of unclarity, have been taken the same as in fig. 6-7 to enable comparison between the two methods of annulus-side heat transfer enhancement).

6.5 Performance Evaluation Criteria (PEC)

One possibility to quantify the performance improvement is to calculate Nusselt number and friction factor augmentation ratios as detailed previously. That has led to the fact that the friction factor of an enhanced surface in single-phase flow is higher than that of the smooth surface, when operated at the same velocity (or Reynolds number). However, this method is not sufficient to describe the most effective enhancement method because it does not define the actual performance improvement, subject to specific operating constraints. If one simply calculated the Nusselt number augmentation ratio, at equal velocities, an unfair comparison may result. This is because the enhanced surface would be allowed to operate at a higher pressure drop. The plain surface would give a higher h value if it were allowed to operate at a higher velocity, giving the same pressure drop as the enhanced surface. Thus, the pressure drop constraint is a very important consideration for calculating the performance benefits of an enhanced surface in single-phase flow [35]. Twelve performance evaluation criteria (PECs) had been set to accommodate different cases that might be encountered in the industrial application as listed in table 3-1.

To apply these criteria to the results of the present work, starting from equation (3.31) derived previously. One of the groupings on the left side becomes the objective function, with the other two set as 1.0 for the corresponding operating constraints, which also provide the mass flux ratio (G_a/G_s) that satisfies equation (3.31). This ratio, equaling to the corresponding Reynolds number ratio (Re_a/Re_s), is usually for most cases larger than unity. To avoid confusion in defining the "smooth tube" term in equation (3.31) with that used in the previous calculations, a new notation is used "o" to

distinguish the smooth tube case at the same Reynolds number from that required to satisfy equation (3.31), leading to write it in the form

$$\frac{h_a A_a / h_o A_o}{\left(P_a / P_o\right)^{1/3} \left(A_a / A_o\right)^{2/3}} = \frac{j_a / j_o}{\left(f_a / f_o\right)^{1/3}} \qquad \dots (6.7)$$

The application of PECs requires to have fixed tube diameter, so each of the two tubes, used in the present work, would be considered separately. In addition, constant physical properties must be assumed, to qualify the requirements set by Webb and Bergles [35, 58]. Three cases of performance evaluation criteria will be applied to the results of the present work.

6.5.1 PEC Application for Tube-Side Heat Transfer Enhancement

In the tube-side heat transfer enhancement case, the four experimental conditions would be briefed into two only, concerning the inlet approach temperature difference (ΔT_i). The two approach temperature differences are 40 and 50 °C. Indeed, this classification is applied due to a difference in the average Prandtl number for each (ΔT_i). Prandtl number values would be fixed to the values of 3.14 and 2.72 and 3.14 and 2.71 for tubes of 11 and 14 mm inner diameter, respectively, as presented in figs. 6-9, 6-10 and 6-11.

(i) FG-2a criterion: the area of flow cross section (*N* and d_i) and tube length *L* are kept constant. This would typically be applicable for retrofitting the smooth tube of an existing exchanger with enhanced tubes, thereby maintaining the same basic geometry and size (*N*, d_i , and *L*). The objective then could be to increase the heat load capacity (q) for the same approach temperature (ΔT_i) and pumping power (P) [1, 35, 58].

To apply this criterion, the ratios (P_a/P_o) and (A_a/A_o) in equation (6.7) are set to unity. Then equation (6.7) becomes

$$h_a A_a / h_o A_o = \frac{j_a / j_o}{\left(f_a / f_o\right)^{1/3}} \qquad \dots (6.8)$$

Returning to the definition of Colburn factor, at fixed physical properties, equation (6.8) becomes

$$h_{a}A_{a}/h_{o}A_{o} = \frac{(Nu_{a}/Nu_{o})}{(f_{a}/f_{o})^{1/3}(\text{Re}_{a}/\text{Re}_{o})} \qquad \dots (6.9)$$

where Nu_o is the Nusselt number for smooth tube calculated at constant pumping power and heat exchange surface area. To satisfy the constrain of constant pumping power, Nu_o is evaluated at Re_o which is obtained by using the (P_a/P_o) that has been set to unity. Using equation (3.30) with changing the notation of smooth tube and replacing the mass flux by the Reynolds number (physical properties are constant), then

$$\left(f_o \operatorname{Re}_o^3\right) = \left(f_a \operatorname{Re}_a^3\right) \qquad \dots (6.10)$$

For the tube-side heat transfer enhancement, equations (6.10) and (5.9) for the value of Re_{0} which would be used to calculate Nu_{0} . In addition, equation (6.10) can be substituted in equation (6.9) to simplify it to be

$$\frac{h_a A_a}{h_o A_o} = \frac{N u_a}{N u_o} \qquad \dots (6.11)$$

Then the (FG-2a) criterion can be expressed as:

$$\frac{q_a}{q_o} = \left(\frac{Nu_a}{Nu_o}\right)_{L,d_i,\Delta T_i,P} \tag{6.12}$$

Equation (5.11) is used to calculate the values of Nu_a , for the range of Reynolds number (5000 to 40000), and with equation (6.12), to obtain the heat transfer ratios (FG-2a) for the tube-side heat transfer enhancement as listed in table C-42, and plotted in fig. 6-10.

Figure 6-9: Application of the performance evaluation criterion (FG-2a) to the tubeside heat transfer enhancement by wire coils for two tube sizes and two experimental conditions.

Indeed the (FG-2a) criterion represents the actual enhancement ratio (E_h) defined by equation (3.1) which refers to the most effective method of heat transfer enhancement [35].

In fig. 6-9, the wire coil of 10 mm coiling pitch has the best performance in case of the two tube sizes, having a value of 1.45 for the 11 mm diameter tube and 1.52 for the other size, both at Reynolds number of 5000. The best performance at 40000 Reynolds number is registered for the same geometrical dimensions having the values of 1.2 and 1.25 respectively. That means that the best enhancement ratio is 1.52 for the geometries of $e/d_i = 0.0714$ and $p/d_i = 0.7143$. It is obvious that the arrangement of the four geometries in the heat transfer augmentation depicted in fig. 6-5 has been left unchanged here.

(ii) FG-3 criterion: in this criterion the basic geometry and size (*N*, d_i , *L*) are also kept constant like the (FG-2a), i.e. constant heat exchange surface area. The objective then could be decreasing the pumping power with keeping the inlet temperature approach and the heat duty constant [1, 35, 58]. So, to apply this criterion the ratios (A_{α}/A_o) and ($h_a A_{\alpha}/h_o A_o$) in equation (6.7) are set to unity. Then equation (6.7), with substituting the definition of (*j*), becomes

$$\frac{P_a}{P_o} = \left(\frac{f_a}{f_o}\right) \left(\frac{Nu_o}{Nu_a}\right) \left(\frac{\operatorname{Re}_a}{\operatorname{Re}_o}\right)^3 \qquad \dots (6.13)$$

To satisfy the constrain of constant heat duty, f_0 and Nu₀ are evaluated at Re₀ which is obtained by using the ratio $h_a A_a / h_0 A_0 = 1$ to give

$$(Nu_o) = (Nu_a) \qquad \dots (6.14)$$

which enables omitting the Nusselt number ratio from equation (6.13) giving

$$\frac{P_a}{P_o} = \left[\left(\frac{f_a}{f_o} \right) \left(\frac{\operatorname{Re}_a}{\operatorname{Re}_o} \right)^3 \right]_{L,d_i,\Delta T_i,q} \qquad \dots (6.15)$$

By calculating the values of Nu_a (by using equation (5.11)) for equation (6.14), this equation and equation (5.14) are solved directly for Re_o. The values of the pumping power ratio (P_a/P_o) are fixed in table C-43 and plotted in fig. 6-10.

Figure 6-10: Application of the performance evaluation criterion (FG-3) to the tube-side heat transfer enhancement by wire coils for two tube sizes and two experimental conditions.

Figure 6-10 reveals that the pumping power, needed with adopting the wire coil of 10 mm coiling pitch is about 30% and 55% that for smooth tube for Re = 5000 and 40000, respectively for the 11 mm diameter tube and for the other tube size the values are 25% and 45% for Re = 5000 and 40000, respectively. The other three geometries have lesser pumping power with the conventional arrangement.

(iii) FN-1 criterion: the flow cross section (N and d_i) is kept constant, and the heat exchanger length is allowed to vary. Here, the objective is to seek a reduction in heat transfer surface area ($A \rightarrow L$) for a fixed heat load and pumping power [1, 35, 58]. To apply this criterion, the ratios ($h_a A_a/h_o A_o$) and (P_a/P_o) in equation (6.7) are set to unity. Then, equation (6.7), with substituting the definition of (*j*), becomes

$$\frac{A_a}{A_o} = \left(\frac{f_a}{f_o}\right)^{1/2} \left(\frac{Nu_o}{Nu_a}\right)^{3/2} \left(\frac{\operatorname{Re}_a}{\operatorname{Re}_o}\right)^{3/2} \dots (6.16)$$

To satisfy the constrain of constant heat duty and pumping power, f_o and Nu_o are evaluated at Re_o. The latter is obtained by setting both $(h_a A_a / h_o A_o)$ and (P_a / P_o) to unity as follows:

$$\frac{h_a A_a}{h_o A_o} = 1$$
... (6.17)

$$\left(\frac{Nu_a}{Nu_o}\right)\left(\frac{A_a}{A_o}\right) = 1 \qquad \dots (6.18)$$

and

$$\frac{P_a}{P_o} = 1$$
 ... (6.19)

Substituting equation (3.30) in equation (6.19) with replacing the mass flux ratio by the Reynolds number ratio

$$\frac{f_a}{f_o} \frac{A_a}{A_o} \left(\frac{\operatorname{Re}_a}{\operatorname{Re}_o}\right)^3 = 1 \qquad \dots (6.20)$$

Dividing equation (6.20) by equation (6.18) leads to the relationship

$$\left(f_o \operatorname{Re}_o^3/Nu_o\right) = \left(f_a \operatorname{Re}_a^3/Nu_a\right) \qquad \dots (6.21)$$

Equations (6.21), (5.9) and (5.14) could be solved iteratively for Re_{o} until convergence occurs to find the values of Re_{o} corresponding to those of Re_{a} . Furthermore, equation (6.21) can be substituted in equation (6.16) to give the final form of the heat exchange surface area reduction relationship as:

$$\frac{A_a}{A_o} = \left[\left(\frac{f_o}{f_a} \right) \left(\frac{\operatorname{Re}_o}{\operatorname{Re}_a} \right)^3 \right]_{d_i, \Delta T_i, q, P} \qquad \dots (6.22)$$

Values of heat exchange surface area reduction ratio (A_a/A_o) are fixed in table C-44 and plotted in fig. 6-11. It reveals that the best heat exchange surface area reduction is obtained by using the wire coil with the coiling pitch of 10 mm, where the enhanced surface area is about 0.58 and 0.77 of that for smooth tube for Re = 5000 and 40000 respectively using the tube of d_i = 11 mm. For the other tube, the ratios are 0.55 and 0.73 for the two Reynolds numbers respectively. Indeed these values, for a constant diameter, represent the reduction of tube lengths. Also, the conventional arrangement of the four geometries for the two tube sizes is kept the same.

Figure 6-11: Application of the performance evaluation criterion (FN-1) to the tubeside heat transfer enhancement by wire coils for two tube sizes and two experimental conditions.

In figs. 6-9 through 6-11, plots have been set to show the ratios (q_a/q_o) , (P_a/P_o) and (A_a/A_o) for two concise experimental conditions represented by working with two approach temperature differences. A very slight effect is

noticed in the three ratios to the extent that it cannot be read directly in the plots, but by observing the concerned tables (tables C-42 through C-44). Generally, the three ratios are slightly larger in case of working with the 40 °C approach temperature difference. This confirms the exergetic fact that working at lower approach temperature differences is the most efficient. Indeed, the only representation which can be fixed for the approach temperature difference in the mathematics of heat transfer is the changes in physical properties.

6.5.2 PEC Application for Annulus-Side Heat Transfer Enhancement

The performance evaluation criteria of Webb and Bergles [35, 58] had been set to accommodate the heat transfer enhancement inside tubes or ducts. To make these criteria suitable for annulus-side heat transfer enhancement, the general equation (6.7) must be checked to suit that use. First, (3.24) is substituted in equation (3.25) with changing the notations for annulus

$$P = f \frac{L}{D_e} \frac{G^3 A_c}{2\rho^2}$$
... (6.23)

Substituting the cross sectional area and the equivalent diameter of annulus in equation (6.23) leads to:

$$P = fL \frac{G^{3}}{8\rho^{2}} \pi (D_{o} + D_{i})$$
... (6.24)

Writing equation (6.24) as the ratio, relative to a smooth surface with omitting the property parameters gives:

$$\frac{P_a}{P_o} = \frac{f_a}{f_o} \frac{L_a}{L_o} \left(\frac{G_a}{G_o}\right)^3 \left[\frac{(D_o + D_i)_a}{(D_o + D_i)_o}\right] \qquad \dots (6.25)$$

Since the evaluation performance criteria had been set for equal diameter tubes, then equation (6.25) can be simplified for annuli having the same inner and outer diameters. The parenthesis of diameters in equation (6.25) can be omitted safely to give the equation:

$$\frac{P_a}{P_o} = \frac{f_a}{f_o} \frac{L_a}{L_o} \left(\frac{G_a}{G_o}\right)^3 \tag{6.26}$$

But the length ratio is equal to the ratio of the outer surface of the inner tube of the annulus, leading to:

$$\frac{P_a}{P_o} = \frac{f_a}{f_o} \frac{A_a}{A_o} \left(\frac{G_a}{G_o}\right)^3 \tag{6.27}$$

Equation (6.27) is the same as equation (3.30) having the area abbreviation referring to the area of the outer surface of the inner tube of the annulus. On the other hand, equation (3.28) can be used without any change because the area ratio stated there is the heat transfer surface area (outer surface of the inner tube in case of the annulus). Then, equations (3.28) and (6.27) can be used to produce the general equation of the performance evaluation criteria for annulus which is the same as equation (6.7) provided that both the inner and outer diameters of the annulus must be constant, i.e.

$$\left[\frac{h_a A_a / h_o A_o}{(P_a / P_o)^{1/3} (A_a / A_o)^{2/3}} = \frac{j_a / j_o}{(f_a / f_o)^{1/3}}\right]_{D_i, D_o} \dots (6.28)$$

This means that equations of the three ratios, derived for the tube-side enhancement, can be used for the annulus-side enhancement but with considering the specificity of the annulus, as shown later. It is important to state that the area ratios in both equations (6.7) and (6.28) are the same as the effective length ratio for the double pipe heat exchanger because the only way to change the surface area, with keeping the diameters constant, is by changing the effective length of the exchanger.

In the present work, the PECs are applied for the annulus-side heat transfer enhancement by wire coils and circular ribs together, with using the concerned equations for each type, to make a direct comparison for the two cases. Moreover, the four experimental conditions have been briefed in one only because the differences caused by changing these conditions are very slight and cannot be recognized for comparison. The average values for physical properties of the four conditions have been considered. The application of the three criteria is as follows:

(i) FG-2a criterion: using the modified conditions, the area of flow cross section is constant with keeping the D_i and D_o constant, as well as the tube length L is kept constant. This would typically be applicable for retrofitting the smooth annulus of an existing exchanger with an enhanced one. The objective then could be to increase the heat load capacity (q) for the same approach temperature (ΔT_i) and pumping power (P). The corresponding equation for the annulus-side heat enhancement is:

$$\frac{q_a}{q_o} = \left(\frac{Nu_a}{Nu_o}\right)_{L,D_i,D_o,\Delta T_i,P} \qquad \dots (6.29)$$

Likely, equation (6.10) also can be used safely to predict the corresponding Reynolds number Re_0 by direct solution with equation (5.10)

for smooth annulus. Nu_a is obtained by using equation (5.12) for annulus-side heat transfer enhancement by wire coil and by using equation (5.13) for the enhancement by circular ribs. Results obtained for the (q_a/q_o) are fixed in table C-45. The plot of these results is in fig. 6-12.

Figure 6-12: Application of the performance evaluation criterion (FG-2a) to the annulus-side heat transfer enhancement by wire coils and circular ribs for two annulus sizes and one experimental condition.

Figure 6-12 gives a very important conclusion for the annulus-side heat transfer enhancement study performed in the present work, where the most effective annulus-side insert geometries have become known which is the wire coil insert of geometries e=1 mm and p=20 mm (i.e. $e/D_e=0.0645$ and

 $p/D_e = 1.2903$) for the whole Reynolds number range adopted in the present work. The value of the enhancement ratio is 2.367 for Re = 3000 and 1.717 for Re = 10000. These results are for the annulus of $D_i=12.5$ mm, for the $D_i=15.5$ mm annulus the result is something different, where the superiority is registered for the insert of e=1 mm and p=20 mm (i.e. $e/D_e=0.08$ and $p/D_e=$ 1.6) for Reynolds number range larger than 4000, but for lower Reynolds numbers, the best is the insert of e=1 mm and p=10 mm ($e/D_e=0.08$ and $p/D_e=0.8$).

A general view of fig. 6-12 gives an imagination that the wire of 1 mm diameter has given the best thermal performance for all coiling pitches adopted, to the extent that even that of p = 40 has a thermal performance better than that of the insert of e = 2.2 mm for all coiling pitches. Moreover the circular ribs give the least performance to the extent that the circular ribs of 10 mm coiling pitches, in case of the annulus of D_i =15.5 mm, have a performance lower than smooth annulus.

(ii) FG-3 criterion: to apply this criterion the basic geometry and size (D_i , D_o and L) kept constant, i.e. constant heat exchange surface area. The objective then could be decreasing the pumping power with keeping the inlet temperature approach and the heat duty constant. Corresponding to equation (6.15), the equation of pumping power ratio for the annulus-side heat transfer enhancement is:

$$\frac{P_a}{P_o} = \left[\left(\frac{f_a}{f_o} \right) \left(\frac{\operatorname{Re}_a}{\operatorname{Re}_o} \right)^3 \right]_{L, D_i, D_o, \Delta T_i, q} \tag{6.30}$$

Equation (6.14) can be used for the annulus-side enhancement to evaluate the Re_o required for calculating f_o by equation (5.10) in a manner

similar to that used for the tube-side heat transfer enhancement but with using the concerned equations of friction factor and heat transfer for the annulusside heat transfer by wire coil and circular ribs which are equations (5.4) and (5.6) and (5.12) and (5.13) respectively. The predicted results of the (P_a/P_o) are listed in table C-46. Figure 6-13 shows these results.

Figure 6-13: Application of the performance evaluation criterion (FG-3) to the annulus-side heat transfer enhancement by wire coils and circular ribs for two annulus sizes and one experimental condition.

In fig. 6-13 the best pumping power ratio, performed, is by the wire coil insert of geometries e=1 mm and p=20 mm ($e/D_e=0.0645$ and $p/D_e=1.2903$) for the annulus of $D_i=12.5$ mm having the value of 0.066 at Re = 3000 and

0.094 performed by the wire coil of e=1 mm and p=10 mm for the annulus of $D_i=15.5 \text{ mm}$. And the best values for Re = 10000 is 0.182 and 0.223 for the two annuli respectively, both for the wire coil having e=1 mm and p=20 mm. Close results for the inserts of e=1 mm are observed. Furthermore, the circular ribs have the worst pumping power ratio in an arrangement similar to that observed in case of (q_a/q_o) ratio.

(iii) FN-1 criterion: in this criterion the flow cross section is kept constant $(D_i \text{ and } D_o \text{ must} \text{ be constant})$, and the heat exchanger length is allowed to vary. Here the objective is to seek a reduction in heat transfer surface area for a fixed heat load and pumping power. The equation corresponding to equation (6.22) for the heat exchange area or length reduction of annulus-side heat transfer enhancement is:

$$\frac{A_a}{A_o} = \left[\left(\frac{f_o}{f_a} \right) \left(\frac{\operatorname{Re}_o}{\operatorname{Re}_a} \right)^3 \right]_{D_i, D_o, \Delta T_i, q, P} \qquad \dots (6.31)$$

The iterative solution of equation (6.21), (5.15) and (5.12) or (5.13) (the latter is for wire coil and circular ribs respectively) is followed to predict the requirements of equation (6.31) as explained previously. The predicted results are fixed in table C-47. These results are plotted in fig. 6-14 which shows that the best value of heat exchange surface area or length reduction in the double pipe heat exchanger is that performed by the wire coil of e=1 mm and p=20 mm equaling 0.283 for the annulus of $D_i=12.5$ mm at Re = 3000. For the other annulus size the best value is 0.335 for the wire coil of e=1 mm and p=10 at Re = 3000, and the best values for Re = 10000 are 0.453 and 0.498 for the two annuli respectively, both performed by the wire coil of e=1 mm

and p = 20 mm. The circular ribs also give the worst surface area reduction and the wire coil of 2.2 mm is in between.

Figure 6-14: Application of the performance evaluation criterion (FN-1) to the annulus-side heat transfer enhancement by wire coils and circular ribs for two annulus sizes and one experimental condition.

In general, the wire coil of geometries e = 1 mm and p = 20 can be considered as the best heat transfer enhancer in the annulus for the three PECs studied in the present work for the ranges of geometries and sizes and Reynolds number adopted.

CHAPTER SEVEN

Conclusions and Recommendations

7.1 Conclusions

In the present work, the following can be concluded:

- 1- According to high performance results, the proposed method of annulus-side heat transfer enhancement by wire coils can be considered as a promising method of promoting heat transfer in the annulus of the double pipe heat exchanger.
- 2- For both tube and annulus side heat transfer enhancement, Nusselt number and friction factor are more dependent on Reynolds number at low values than high ones.
- 3- In the annulus-side enhancement, swirl flow is greatly important for enhancing heat transfer especially when the mechanism of separation and reattachment becomes weak when coils become relatively close with relatively low pressure drop as compared to inserts that forbid the generation of swirls (like circular ribs).
- 4- Friction factor and heat transfer in enhanced annuli are affected by the annular gap size.
- 5- In annulus-side enhancement, the performance of wire coils is better than circular ribs in all calculations and PECs.
- 6- Heat transfer, as well as friction factor increases with decreasing the coiling pitch in the tube-side heat transfer enhancement by wire coils giving a maximum heat transfer augmentation ratio of 2.43 compared to smooth tube at Re = 5000 with 4.75 augmentation of friction factor. That is obtained with wire coil of e/d_i = 0.0714 and p/d_i = 0.7143. The

maximum values at Re = 40000 is given by the same wire coil. They are 2.24 and 6.83 respectively.

- 7- Heat transfer as well as friction factor increases with decreasing the coiling pitch in the annulus-side heat transfer enhancement by wire coil to a specified limit, then the relationship reflects giving a maximum heat transfer augmentation ratio of 3.25 compared to smooth annulus at Re = 3000 with 2.63 friction factor augmentation. That is obtained with wire coil of $(e/D_e=0.0645 \text{ and } p/D_e=0.6452)$. The maximum value at Re = 10000 is given by the wire coil of $(e/D_e=0.176 \text{ and } p/D_e=1.6)$. It is 2.49 with 4.66 friction factor augmentation.
- 8- The PEC calculations have determined that the best wire coil insert used in the tube-side enhancement in the ranges adopted is that having $e/d_i = 0.0909$ and $p/d_i = 0.9091$. In the annulus-side enhancement, the best insert is the wire coil of $e/D_e = 0.0645$ and $p/D_e = 1.2903$.

7.2 Recommendations

- Using chemical additives with water or using other fluids, in addition to water, enables attaining a wider range of Prandtl number, either in tubeside or annulus-side heat transfer enhancement.
- 2- Using additional tube sizes for the tube-side heat transfer enhancement in order to increase the number of points to make correlations obtained more comprehensive.
- 3- In case of the annulus-side heat transfer enhancement by wire coil, using a wire coil of diameter in between 1 and 2.2 mm might lead to a better maximum of heat transfer enhancement.
- 4- Using circular ribs of diameter less than 2.2 to check if the circular ribs carry out a better performance.

References

- [1]. Manglik, R. M., "Heat Transfer Enhancement", in "Heat Transfer Handbook", Chap. 14, A. Bejan, and A. D. Kraus (editors), John Wiley & Sons Inc., New Jersey, (2003).
- [2]. Bergles, A. E., "Heat Transfer Enhancement", in "The CRC Handbook of Thermal Engineering", F. Kreith (editor), CRC Press, NY (2000).
- [3]. Zimparov, V. D, Penchev, P. J., and Meyer, J., "Performance Evaluation of Tube-in-Tube Heat Exchangers with Heat Transfer Enhancement in the Annulus", Thermal Science, Vol. 10, (2006), pp. 45-56.
- [4]. Shah, R. K., and Sekulic, D. P., "Fundamentals of Heat Exchanger Design", John Wiley & Sons, Inc., New Jersey, (2003).
- [5]. Ecke, R., "The Turbulence Problem, An Experimentalist's Perspective", Los Alamos Science, Number 29 2005, pp. 124-125.
- [6]. McComb, W. D, "The Physics of Fluid Turbulence", Clarendon Press, Oxford, (1992), pp. 4-5.
- [7]. Oertel, H., "Prandtl's Essentials of Fluid Mechanics", 2nd edition, Springer-Verlag New York, Inc., (2004) pp. 126-127.
- [8]. Viedma, A., Garcia, A and Vicente, P. G., "Experimental Investigation on Heat Transfer and Frictional Characteristics of Wire Coils Inserts in Transition Flows at Different Prandtl Numbers", International Journal of Heat and Mass Transfer, Volume 48, Issues 21-22, October 2005, pp 4640-4651.
- [9]. Kumar, P., and Judd, R. L., "Heat Transfer with Coiled Wire Turbulence Promoters", The Canadian Journal of Chemical Engineering, Vol. 48, pp. 378-383, (1970).
- [10].Zhang, Y. F., Yue Li, F., and Liang, Z. M., "Heat transfer in spiral coil inserted tubes and its application", Advances in Heat Transfer Augmentation and Mixed Convection, ASME, pp. 31-36, (1991).

- [11]. Eiamsa-ard, S., Nivesrangsan, P., Chokphoemphun, P., and Promvonge,
 P., "Influence of Combined Non-Uniform Wire Coil and Twisted Tape
 Inserts on Thermal Performance Characteristics", International
 Communications in Heat and Mass Transfer 37 (2010) pp. 850–856.
- [12]. Manglik, R. M., and Bergles, A. E., "Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II – Transition and Turbulent Flows", Enhanced Heat Transfer, HTD Vol. 202, ASME, (1992), pp. 99-106, cited in "Engineering Data book III", Chap. 5, J. R. Thome, Wolverine Tube Inc., (2009).
- [13].Promvonge, P., Eiamsa-ard, S., "Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators", Elsevier Ltd., (2004).
- [14]. Ahmed, S. M., Deju, L., Sarkar M. A., and Nazrul Islam, S. M., "Heat Transfer in Turbulent Flow through a Circular Tube with Twisted Tape Inserts", The International Conference on Mechanical Engineering, December 2005, Dhaka, Bangladesh.
- [15].Promvonge, P., Eiamsa-ard, S., and Noothong1, W., "Effect of Twistedtape Inserts on Heat Transfer in a Tube", International Conference on Sustainable Energy and Environment, Bangkok, Thailand, (2006).
- [16].Eiamsa-ard, S., and Promvonge, P., "Enhancement of heat transfer in a circular wavy-surfaced tube with a helical-tape insert", International Conference on Sustainable Energy and Environment, Bangkok, Thailand, (2006).
- [17].Kumar, A., and Prasad, B. N., "Enhancement in Solar Water Heater Performance using Twisted Tape Inserts", IE (I) Journal, Volume 90 (2009).
- [18].Gouta, R., and Das, A. B., "Some Experimental Studies on Heat Transfer Augmentation for Flow of Liquid through Circular Tubes Using Twisted
Angles and Tapes", B.Tech. thesis, National Institute of Technology, Rourkela, India, (2008)

- [19]. Yadav, A. S., "Effect of Half Length Twisted-Tape Turbulators on Heat Transfer and Pressure Drop Characteristics inside a Double Pipe U-Bend Heat Exchanger", Jordan Journal of Mechanical and Industrial Engineering, Volume 3, (2009), pp. 17-22.
- [20]. Thianpong, C., Eiamsa-ard P, Wongcharee, K., "Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator", International Communications in Heat and Mass Transfer 36 (2009) pp. 698–704.
- [21]. Nazrul Islam, S. M., Chowdhuri, M. A., Hossain, R. A, and Sarkar, M. A., "Heat Transfer in Turbulent Flow through Tube with Rod-pin Inserts", The International Conference on Mechanical Engineering, December 2007, Dhaka, Bangladesh.
- [22]. Promvonge, P., Eiamsa-ard, S., Pethkool, S., and Thianpong, C., "Turbulent Flow Heat Transfer and Pressure Loss in a Double Pipe Heat Exchanger with Louvered Strip Inserts", Elsevier Ltd., (2007).
- [23]. Alemrajabi, A. A., and Karamipour, H., "Effect of Disks' Geometry on Heat Transfer in a Tube", International Conference on Energy and Environment, Iran (2006).
- [24].Raju, a. V., Sarda, N., and Radha, K. K., "Experimental Investigations in a Circular Tube to Enhance Turbulent Heat Transfer Using Mesh Inserts", ARPN Journal of Engineering and Applied Sciences, Vol.4, (2009), pp. 53-60.
- [25]. Promvonge, P., Eiamsa-ard, S., "Heat Transfer Enhancement in a Tube with Combined Conical-Nozzle Inserts and Swirl Generator", <u>www.thaiscience.info</u>, (2009).

- [26]. Morgan, R. D., "Twisted Tube Heat Exchanger Technology", Brown Finetube Company, Texas, USA.
- [27]. Rainieri, S., Farina, A., and Pagliarini, G., "Experimental Investigation of Heat Transfer and Pressure Drop Augmentation for Laminar Flow in Spirally Enhanced Tubes", Università di Parma, Parma, Spain.
- [28]. Zimparov, V., and Penchev, P., "Performance Evaluation of Deep Spirally Corrugated Tubes for Shell-and-Tube Heat Exchangers", 3rd International Symposium on Heat Transfer Enhancement and Energy Conservation, Guangzhou, China.
- [29].Kotcioglu, I., Ayhan, T., Olgun, H., and Ayhan, B., "Heat Transfer and Flow Structure in a Rectangular Channel with Wing-Type Vortex Generator", Tr. J. of Engineering and Environmental Science, 22, (1998), pp. 185-195.
- [30]. Layek, A., Saini, J. S., and Solanki, S. C., "Heat Transfer and Friction Characteristics of Solar Air Heater Having Compound Turbulator on Absorber Plate", Advances in Energy Research (2006).
- [31].Naphon, P., "Heat Transfer Characteristics and Pressure Drop in Channel with V-Corrugated Upper and Lower Plates", Elsevier Ltd., (2006).
- [32].Park, D., Silva, C., Marotta, E., and Fletcher, L., "Study of Laminar Forced Convection Heat Transfer for Dimpled Heat Sinks", Journal of Thermophysics and Heat Transfer, Vol. 22, No. 2, (2008).
- [33].Agrawal, A. K., and Sengupta, S., "Laminar Fluid Flow and Heat Transfer in an Annulus with an Externally Enhanced Inner Tube", Int. J. Heat and Fluid Flow, Vol. 14, No. 1, (1993), pp. 54-63.
- [34].Coetzee, H., "Heat Transfer and Pressure Drop Characteristics of Angled Spiraling Tape Inserts in a Heat Exchanger Annulus", M. Sc. thesis, Rand Afrikaans University, Johannesburg, South Africa, (2001).

- [35]. Webb, R. L., and Kim, N., "Principles of Enhanced Heat Transfer", 2nd edition, Taylor & Francis Routledge, New York, (2005).
- [36].Petukhov, B. S., "Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties", in "Advances in Heat Transfer", Vol.6, J. B. Hartnett, and T. F. Irvine, (editors) Academic Press Inc., (1970), pp. 503-564.
- [37]. Streeter, V. L., "Fluid Mechanics", 9th edition McGraw-Hill Inc., New York, (1998).
- [38]. Munson, B. R., and Young, D. F., "Fundamentals of Fluid Mechanics", 4th Edition, John Wiley & Sons, Inc., (2002).
- [39].Colburn, A. P., Transactions of the AICHE 26 (1933). pp 174, cited in "Heat Transfer, a Practical Approach", McGraw-Hill, New York, (2002).
- [40]. Dittus, F. W., and Boelter, L. M., University of California Publications on Engineering 2 (1930), p. 433, cited in "Heat Transfer, a Practical Approach", McGraw-Hill, New York, (2002).
- [41]. Sieder, E. N., and Tate, G. E., "Heat Transfer and Pressure Drop of Liquids in Tubes", Ind. Eng. Chem., vol. 8, pp. 1429-1435, 1936, cited in "Heat Exchanger Design Handbook", D. B. Spalding (editor), Hemisphere Publishing Corporation, New York, (1983).
- [42].Çengel, Y. A., "Heat Transfer, a Practical Approach", McGraw-Hill, New York, (2002).
- [43].Gnielinski, V., "Forced Convection in Ducts", in "Heat Exchanger Design Handbook", D. B. Spalding (editor), Hemisphere Publishing Corporation, New York, (1983).
- [44]. Petukhov, B. S., and Popov, V. N., "Theoretical Calculation of Heat Exchange and Frictional Resistance in Turbulent Flow in Tubes of an Incompressible Fluid with Variable Physical Properties", High Temp. (USSR), vol. 1, pp. 69-83, 1963, cited in "Heat Exchanger Design

Handbook", D. B. Spalding (editor), Hemisphere Publishing Corporation, New York, (1983).

- [45].Hausen H., "Darstellung des Warmeiiberganges in Rohren durch verallgemeinerte Potenzbeziehungen", Z. Ver. Dtsch. Ing., Beiheft Verfahrenstech., no. 4, pp. 91-134, 1943, cited in "Heat Exchanger Design Handbook", D. B. Spalding (editor), Hemisphere Publishing Corporation, New York, (1983).
- [46]. Kern, D. Q., "Process Heat Transfer", McGraw-Hill, New York, (1965).
- [47].Kakaç, S., and Liu, N, "Heat Exchangers, Selection, Rating, and Thermal Design", 2nd edition, CRC Press, Florida, (2002).
- [48].McKetta, J. J., "Heat Transfer Design Methods", Marcel Dekker Inc., New York, (1992)
- [49].Coa, E., "Heat Transfer in Process Engineering", McGraw-Hill, New York, (2010).
- [50].Davis, E. S., "Heat transfer and pressure drop in annuli", Trans. Am. Soc. Mech. Eng. 65 (1943), cited in "Chemical Engineering, Vol. 1, 6th edition, J. M. Coulson, and J. F. Richardson, Butterworth-Heinemann, Oxford, (1999).
- [51].Petukhov, B. S., and Roizen L. I., "Generalized Relationship for Heat Transfer in a Turbulent Flow of Gas in Tubes of Annular Section, High Temp. (USSR), vol. 2, pp. 65-68, (1964), cited in: "Heat Exchanger Design Handbook", D. B. Spalding (editor), Hemisphere Publishing Corporation, New York, (1983).
- [52].Kaviany, M., "Principles of Heat Transfer", John Wiley & Sons Inc., New York, (2002).
- [53]. Incropera, F. P., and DeWitt, D. P., "Fundamentals of Heat and mass Transfer", 6th edition, John Wiley & Sons Inc., New York, (2006).

- [54]. Jiji, L. M., "Heat Convection", 2nd edition, Springer-Verlag Berlin Heidelberg, (2009).
- [55]. Sinnott, R. K., "Chemical Engineering Design", 4th edition, Elsevier Butterworth-Heinemann, Oxford, (2005).
- [56].Ravigururajan, T.S. and Bergles, A.E., "General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes", Augmentation of Heat Transfer in Energy Systems, ASME Symp. Vol. HTD, 52, 9–20 (1985), cited in "Engineering Data Book III", Thome, J. R., Wolverine Tube Inc., Switzerland, (2009).
- [57]. Thome, J. R., "Engineering Data Book III", Wolverine Tube Inc., Switzerland, (2009).
- [58].Bergles, A. E., "Techniques to Enhance Heat Transfer", in "Handbook of Heat Transfer", chap. 11, 3rd edition, W. M. Rohsenow, J. R. Hartnett, and Y. I. Cho, (editors), McGraw-Hill, New York, (1998).
- [59].Arman, B. and Rabas, T. J., "Disruption Shape Effects on the Performance of Enhanced Tubes with the Separation and Reattachment Mechanism", Enhanced Heat Transfer, HTD Vol. 202, ASME, (1992), pp. 67-76.
- [60]. Arman, B. and Rabas, T. J., "The Influence of the Prandtl Number on the Thermal Performance of Tubes with the Separation and Reattachment Mechanism", Energy Systems Division, Argonne National Laboratory, (1992).
- [61]. Webb, R.L., Eckert, E.R.G. and Goldstein, R.J., "Heat Transfer and Friction in Tubes with Repeated-Rib Roughness", Int. J. Heat Mass Transfer, Vol. 14, (1971), pp. 601-617.

- [62]. Acharya, S., Myrum, T., and Baker, R., "Turbulent Flow and Heat Transfer Past a Surface Mounted Two Dimensional Rib", ASME HTD Vol. 239, (1993), pp. 27-34.
- [63]. Acharya, S., Dutta, S., Myrum, T., and Baker, R., "Turbulent flow past a surface mounted rib", Journal of fluid Engineering, Vol. 116, No.2, (1994), pp. 238-246.
- [64].Holman, J. P., "Heat Transfer", 9th edition, McGraw-Hill, New York, (2007).
- [65]. Eckert, E. R., and Goldstein, R. J., "Measurement Techniques in Heat Transfer", Technivision Services, Slough, England, (1970)
- [66]. Sherwood, D. R., and Wistance, D. J., "The Piping Handbook", (1973).
- [67]. Montgomery, D. C., and Runger, G. C., "Applied Statistics and Probability for Engineers", 3rd edition, John Wiley & Sons, Inc., (2003).
- [68].Henry, F. S., and Collins, M. W., "Prediction of Flow over Helically Ribbed Surfaces", International Journal for Numerical Methods in Fluids, Volume 13, Issue 3, pp. 321–340, 20 July 1991.
- [69]. Nunner, W., "Heat Transfer and Pressure Drop in Rough Tubes", United Kingdom Atomic Energy Authority, Harwell, (1956).
- [70].Klaczak, A., "Heat transfer in tubes with spiral and helical turbulators", Journal of Heat Transfer, (1973), pp. 557-559.
- [71].Perry, R. H., "Perry's Chemical Engineers' Handbook", 7th edit., McGraw-Hill Inc., New York, (1997).
- [72]. Wagner, W., "International Steam Tables", 2nd Springer-Verlag Berlin Heidelberg, (2008).

Appendix A: Physical Properties of Liquid Water

Physical properties of water needed in the calculations of the present work are listed in table A-1 and plotted versus temperature in fig. A-1.

Ziquiu		, <u>-</u>].	
T ℃	ρ (kg/m ³)	μ (10 ⁻³) (Pa.s)	k (W/m.°C)
12	999.5	1.2341	0.5856
14	999.2	1.1684	0.5892
16	998.9	1.1081	0.5927
18	998.6	1.0527	0.5961
20	998.2	1.0016	0.5995
22	997.8	0.9544	0.6027
24	997.3	0.9107	0.6059
26	996.8	0.8701	0.6090
28	996.2	0.8324	0.6120
30	995.6	0.7972	0.6150
32	995.0	0.7644	0.6178
34	994.4	0.7337	0.6206
36	993.7	0.7050	0.6233
38	993.0	0.6780	0.6260
40	992.2	0.6527	0.6286
42	991.4	0.6289	0.6311
44	990.6	0.6065	0.6335
46	989.8	0.5853	0.6359
48	988.9	0.5654	0.6382
50	988.0	0.5465	0.6405
52	987.1	0.5286	0.6426
54	986.2	0.5117	0.6448
56	985.2	0.4957	0.6468
58	984.2	0.4805	0.6488
60	983.2	0.4660	0.6508
62	982.2	0.4523	0.6526
64	981.1	0.4392	0.6545
66	980.0	0.4267	0.6562
68	978.9	0.4149	0.6579
70	977.8	0.4035	0.6596
72	976.6	0.3927	0.6612
74	975.4	0.3824	0.6627

Table A-1: Physical Properties of Liquid Water [71, 72].

Figure A-1: Physical properties of liquid water.

These properties are correlated in three polynomials (as functions of temperature) to make them easy to be used in computer programs as below:

$$\rho = 1000.1 + 0.02215T - 0.00627T^2 + 0.00002T^3 \qquad \dots (A-1)$$

$$\mu = (1777.2 - 58.616T + 1.3358T^2 - 0.02068T^3 + 0.00019T^4) \times 10^{-6} \dots (A-2)$$

$$k = 0.56837 + 0.00211T - 1.11452 \times 10^{-5}T^{2} + 1.9724 \times 10^{-8}T^{3} \qquad \dots \text{ (A-3)}$$

where T in degree centigrade. In addition, the heat capacity, Cp is fixed at a value of 4.184 kJ/kg.K and 4.182 kJ/kg.K for hot and cold water, respectively, because the change in the heat capacity values is very slight through the range of temperatures, adopted.

Appendix B: Calibration of Measurement Instrumentations

B.1 Calibration of Thermocouples and Temperature Reader

The four thermocouples together with the temperature reader device are calibrated by using a mercury thermometer. Calibration results are fixed in table B-1

				I
T _{real} ℃	T _{h1} ℃	T _{h2} °C	T _{c1} ℃	T _{c2} ℃
17.5	16.77	16.85	16.70	16.63
19.0	18.23	18.39	18.52	18.44
21.0	20.36	20.65	20.57	20.45
22.5	21.80	21.99	22.08	21.56
24.0	23.45	23.53	23.64	23.47
25.0	24.40	24.25	24.66	24.48
27.0	26.49	26.61	26.50	26.79
29.5	29.04	29.17	29.47	29.01
31.0	30.50	30.91	30.97	30.52
33.0	32.69	32.77	32.85	32.53
34.5	34.10	34.31	34.38	34.15
35.5	35.23	35.04	35.01	35.05
37.0	36.70	36.88	36.94	36.56
39.0	38.82	38.93	38.99	38.58
41.0	40.80	40.78	41.33	40.59
43.0	42.91	43.04	43.08	42.44
45.0	44.80	45.49	45.20	44.62
47.5	47.59	47.66	47.68	47.14
49.0	49.23	49.21	49.22	48.65
51.0	51.09	51.05	51.06	50.21
53.0	53.14	53.30	53.31	52.67
55.0	55.19	55.36	55.36	54.69
57.5	57.71	58.00	57.41	57.21
59.0	59.51	59.46	59.45	58.70
60.5	60.90	61.01	60.98	60.23
63.0	63.46	63.30	63.52	62.75
65.0	65.31	65.63	65.59	65.00
66.5	66.99	67.17	67.32	66.27
68.0	68.53	69.11	68.89	67.78
70.0	70.70	70.76	70.70	69.49
72.0	72.60	72.52	72.35	71.81
75.0	75.71	75.89	75.60	74.83

Table B-1: Calibration of Thermocouples.

Values of the four thermocouples are so close that they cannot be distinguished if plotted. Correlating the values above gives calibration curves (straight lines)

$$T_{h1} = 0.9744T_{h1,real} + 1.2018 \qquad \dots (B.1)$$

$$T_{h2} = 0.9740T_{h2,real} + 1.0910 \qquad \dots (B.2)$$

$$T_{c1} = 0.9779T_{c1,real} + 0.9035 \qquad \dots (B.3)$$

$$T_{c2} = 0.9924T_{c2,real} + 0.7511 \qquad \dots (B-4)$$

B.2 Calibration of Rotameter

The rotameter is calibrated manually by using a graduated container of 100 liter volume and a stop watch at four temperatures (20, 40, 60 and 70 $^{\circ}$ C). The results of the calibration process are fixed in table B-2 and plotted in fig. B-1.

Q _{meas.}	Q _{obs.} (m ³ /hr)										
(m ³ /hr)	20 °C	40 °C	60 °C	70 °C							
0.20	0.169	0.196	0.209	0.211							
0.30	0.264	0.291	0.307	0.308							
0.40	0.359	0.394	0.413	0.411							
0.50	0.451	0.489	0.513	0.511							
0.60	0.551	0.593	0.608	0.617							
0.70	0.642	0.691	0.725	0.724							
0.80	0.762	0.802	0.837	0.842							
0.90	0.846	0.884	0.932	0.936							
1.00	0.944	0.991	1.039	1.041							
1.10	1.046	1.095	1.146	1.146							
1.20	1.139	1.185	1.240	1.255							
1 20	1 2 2 1	1 201	1.2.15	1 3 50							

Table B-2: Calibration of the Rotameter at20, 40, 60 and 70 °C.

Figure B-1: Calibration of the rotameter at 20, 40, 60 and 70 °C.

The calibration curves of the rotameter at the four temperatures which are plotted above are

$$Q_{obs.,20C} = 0.9739 Q_{meas.} - 0.0301 \qquad \dots (B.5)$$

$$Q_{obs.,40C} = 0.9960 Q_{meas.} - 0.0053 \qquad \dots (B.6)$$

$$Q_{obs,60C} = 1.0411 Q_{meas} - 0.0045 \qquad \dots (B.7)$$

$$Q_{obs.,70C} = 1.0468 Q_{meas.} - 0.0057$$
 ... (B.8)

where Q is in m^3/hr . Equations above are used to correct the values of the volumetric flowrates taken from the rotameter.

B.3 Design and Calibration of the Orifice Plate

An orifice plate is designed as in fig. B-2. The inner diameter of the connecting pipe (D_1) is 16 mm and the plate perforation (D_0) is 6 mm

diameter. To avoid manufacture defaults, actual values of volumetric flowrates are intended to be considered in graduating the mercury manometer and finding an equation for the water manometer to be used in the computer program, so values of an actual calibration are used to produce these equations (volumetric flowrate as a function of pressure drop in mmHg and

Figure B-2: An orifice plate design [37].

 mmH_2O respectively). The calibration values at 60 and 70 °C are listed in table B-3 and plotted in fig. B-3. The equations produced via curve fitting are

$$Q_{obs.,60C} = 0.0233 / (\Delta p_{H_2O})^{0.4801}$$
 ... (B.9)

$$Q_{obs.,60C} = 0.0764 / (\Delta p_{Hg})^{0.4996}$$
 ... (B.10)

$$Q_{obs.,70C} = 0.0206 / (\Delta p_{H_2O})^{0.5062}$$
 ... (B.11)

$$Q_{obs.,70C} = 0.0720 / (\Delta p_{Hg})^{0.5093}$$
 ... (B.12)

Equations (B.10) and (B.12) are used to graduate the mercury manometer, while equations (B.9) and (B.11) are used to determine the flowrate by using the computer program.

	60 °C		70 °C						
Q _{obs.} (m ³ /hr)	Δp (mmH ₂ O)	Δp (mmHg)	Q _{obs.} (m ³ /hr)	Δp (mmH ₂ O)	Δp (mmHg)				
0.11	26	1.9	0.0833	16	1.25				
0.14	37	3	0.1134	29	2.50				
0.165	63	5	0.1325	39	3.25				
0.186	83	6.3	0.1600	57	5.00				
0.226	120	10	0.2037	92	8.25				
0.272	163	13.5	0.3084	210	17.5				
0.308	203	16.5	0.4130	375	31.0				
0.412		28.5	0.5177		46.5				
0.516		44	0.6224		67.5				
0.62		62	0.7270		93.0				
0.724		87.5	0.8318		123.5				
0.828		119							

Table B-3: Calibration of the Orifice Plate at 60 and 70 $^{\circ}$ C.

Figure B-3: Calibration of the orifice at 60 and 70 °C.

Appendix C: Experimental and Predicted Results.

This part includes the experimental and predicted results, either plotted or used to complete calculations. To recognize the plotted values, they are written in *Italic*.

For place saving, only some of the tables (C-1, C-2, C-19, C-20, C-37, C-41and C-42) are presented in printed matter. The others are included in a CD-ROM on the back cover of the thesis.

Re	Q _h 10 ⁻⁴	and	Te Fempera	mperatu <u>ture D</u> if	res ference	(°C)	Pressure Drop				Heat Transfer Rate (W)			
Inner type	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube N/m ²	Ann mmH ₂ O	ulus N/m ²	q_h	q _c	q _{avg.}	Dev. %
Exporim	ontal Can	litions: I	Lot Wata	r Inlot T	Inner T	ube Dim	ensions: I	_=1.245 m	d _i = 0.01	1 m	1 ka/s			
5000	0.2192	60.23	50.76	22.17	20.12	34.22	12.5	122.2	8	78.34	855.732	857.31	856.521	0.18
10000	0.4286	60.18	53.76	22.70	20.04	35.57	41.7	407.9	8	78.34	1133.75	1112.41	1123.08	1.90
15000	0.6356	60.24	55.23	22.95	19.90	36.30	78.7	770.5	7.5	73.44	1311.47	1275.51	1293.49	2.78
20000	0.8383	60.36	56.57	23.47	20.40	36.53	126	1233	7	68.55	1308.02	1283.87	1295.95	1.86
25000	1.0476	60.07	50.90	23.27	19.95	36.87	254	2/22	75	08.55	1530 33	1388.42	13//./8	1.55
35000	1.4536	60.48	57.86	23.66	20.30	37.18	322	3154	7.3	68.55	1350.55	1439.32	1494.92	0.43
40000	1.6594	60.32	58.00	23.81	20.18	37.16	410	4015	7.5	73.44	1584.41	1518.07	1551.24	4.28
Experim	ental Conc	litions: I	Hot Wate	r Inlet T	emperatu	re: 60 ±	0.5 °C	Cold Wa	ter Mass I	lowrate: ().15 kg/s			
5000	0.2252	60.32	47.14	22.05	20.17	32.29	13	126.9	17.5	171.40	1224.92	1179.32	1202.12	3.79
10000	0.4355	60.23	51.60	22.55	20.10	34.5	40.7	398.8	17	166.50	1549.37	1536.89	1543.13	0.81
20000	0.6437	60.35	53.43	23.30	20.44	34.98	80.5	/88.0	17	166.50	1835.35	1794.08	1814./2	2.27
25000	1.0585	60.25	55.32	23.40	20.00	36.08	193	1894	17	166.50	2149.22	2132.82	2141.02	0.77
30000	1.2610	60.43	56.12	24.00	20.50	36.02	256	2511	17	166.50	2237.75	2195.55	2216.65	1.90
35000	1.4663	60.42	56.58	24.13	20.40	36.23	330	3227	17	166.50	2317.98	2339.83	2328.91	0.94
40000	1.6710	60.40	56.98	24.35	20.48	36.27	413	4043	17	166.50	2352.5	2427.65	2390.08	3.14
Experim	ental Conc	litions: I	Hot Wate	r Inlet To	emperatu	$172 \pm 100 \pm 100$	0.5 °C	Cold Wa	ter Mass I	Clowrate: ().1 kg/s	1000.07	1122.02	1.00
5000	0.19/1	69.80	55.52	22.77	20.14	40.93	9.72	95.18	8	78.34	1156.07	1099.87	1127.97	4.98
15000	0.5603	69.78	62.92	23.83	20.3	44.27	63.9	625.4	8	78.34	1575.67	1643.53	1609.6	4.00
20000	0.7392	69.96	64.17	24.47	20.32	44.66	98.1	960.8	8	78.34	1753.86	1735.53	1744.7	1.05
25000	0.9125	70.20	65.60	24.21	20.00	45.79	141	1378	7	68.55	1719.39	1760.62	1740	2.37
30000	1.0910	70.12	66.17	24.41	20.00	45.94	193	1885	7	68.55	1764.96	1844.26	1804.61	4.39
35000	1.2645	70.32	66.84	24.88	20.38	45.95	247	2420	7	68.55	1801.78	1881.9	1841.84	4.35
40000	1.4454	70.16	66.98	24.71 r Inlet T	20.30	46.06	313	3064 Cold Wo	7 ton Mass I	68.55	1881.96	1844.26	1863.11	2.02
5000	0.2027	69.77	51.70	22.19	19.90	39.16	10.2	99.71	18	176.3	1506.05	1436.52	1471.28	4.73
10000	0.3881	69.77	57.68	22.95	20.02	42.07	33.3	326.3	17	166.5	1926.39	1837.99	1882.19	4.70
15000	0.5701	70.00	60.32	23.50	20.00	43.34	62	607.3	17	166.5	2263.99	2195.55	2229.77	3.07
20000	0.7480	70.30	62.22	23.91	20.12	44.21	101	988	17	166.5	2477.92	2377.47	2427.69	4.14
25000	0.9299	70.14	63.12	24.45	20.33	44.22	145	1423	17	166.5	2675.87	2584.48	2630.17	3.47
30000	1.1057	70.30	64.20	24.42	20.00	45.03	196	1922	17	166.5	2763.76	2772.67	2768.21	0.32
40000	1.2858	70.14	65.27	24.80	20.19	44.94	323	3163	17	166.5	2815.08	2929.49	28/1.29	4.05
10000	111021	/0101	00127	2.1100	Inner T	ube Dim	ensions: I	=1.245 m	$d_i = 0.01$	4 m	000000	2710101	2//2//0	
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Cold Wa	ter Mass I	Flowrate: ().1 kg/s			
5000	0.2788	59.87	51.20	22.55	20.12	34.10	6.2	60.870	16	156.68	996.479	1016.23	1006.35	1.96
10000	0.5470	59.97	53.62	23.66	20.07	34.91	18.5	181.29	16	156.68	1431.11	1501.34	1466.23	4.79
20000	0.8098	60.10	55.23	24.22	20.17	35.47	<u>38.9</u>	380.70	16	156.68	1624.26	1693.71	1658.98	4.19
25000	1.3295	60.22	56.85	24.81	20.37	35.97	91.6	897.37	15	146.89	1997.62	1919.54	1958.58	3.99
30000	1.5968	60.13	57.10	25.04	20.45	35.86	126	1232.7	14	137.09	1991.79	1919.54	1955.66	3.69
35000	1.8507	60.42	57.70	25.22	20.32	36.28	158	1550.0	14	137.09	2071.83	2049.18	2060.51	1.10
40000	2.1142	60.30	57.88	25.32	20.38	36.23	205	2003.2	14	137.09	2105.69	2065.91	2085.80	1.91
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 ℃	Cold Wa	ter Mass	Flowrate:	0.15 kg/s	11// =0	11/110	0.00
5000	0.2816	59.86	49.91	21.64	19.78	34.01	6.48	63.450 191.20	29	283.98	1155.42	1166.78	1765.32	0.98
15000	0.3334	60.37	53.66	23.65	20.22	35.05	40.7	398.83	29	283.98	2260.62	2151.64	2206.13	4.94
20000	1.0806	60.42	54.80	24.12	20.30	35.39	63.9	625.44	29	283.98	2501.33	2396.29	2448.81	4.29
25000	1.3461	60.26	55.42	24.10	20.02	35.78	87.9	861.11	29	283.98	2683.16	2559.38	2621.27	4.72
30000	1.6125	60.06	55.86	24.40	20.16	35.68	129	1259.9	28	274.19	2788.86	2659.75	2724.31	4.74
35000	1.8653	60.40	56.66	24.88	20.27	35.95	160	1568.1	28	274.19	2872.01	2891.85	2881.93	0.69
40000 Exporim	2.1300	60.30	56.87	24.95 n Inlot T	20.37	35.92	206	2021.3	27 tor Moss I	264.39	3007.69	28/3.03	2940.36	4.58
5000	0.2469	69.95	57.53	22.93	19.97	42.11	5.09	49.854	16	156.68	1259.06	1237.87	1248.47	1.70
10000	0.4801	70.14	61.22	24.32	20.00	43.48	13.9	135.96	15	146.89	1756.23	1806.62	1781.43	2.83
15000	0.7107	70.21	62.95	25.00	20.11	44.01	28.7	280.99	15	146.89	2114.87	2045.00	2079.94	3.36
20000	0.9369	70.34	64.34	25.67	20.22	44.39	50.9	498.54	15	146.89	2303.37	2279.19	2291.28	1.06
25000	1.1673	70.14	64.98	26.00	20.33	44.39	68.5	670.76	15	146.89	2467.71	2371.19	2419.45	3.99
30000	1.3875	70.43	65.96	26.53	20.26	44.79	93.5	915.5	15	146.89	2540.05	2622.11	2581.08	3.18
35000	1.6149	70.35	66.36	26.14	20.11	45.22	119	1169.3	14	137.09	2638.55	2521.75	2580.15	4.53
Experim	ental Cond	itions: I	Lot Wate	∟ 20.4ð r Inlet Ta	emperatu	1 45.21 tre: 70 ± 1	0.5 °C	Cold Wa	ter Mass I	<u>137.09</u> Clowrate: (2/20.1/).15 kg/s	2030.04	20/9.31	3.04
5000	0.2498	69.85	56.04	22.51	20.14	41.36	5.09	49.854	28	274.19	1416.84	1486.7	1451.77	4.81
10000	0.4889	69.77	59.10	23.37	20.12	42.58	15.7	154.09	28	274.19	2140.76	2038.73	2089.74	4.88
15000	0.7239	69.88	60.76	24.21	20.00	43.17	30.5	299.12	28	274.19	2708.17	2640.93	2674.55	2.51
20000	0.9528	70.00	62.41	24.97	20.23	43.59	49.1	480.41	28	274.19	2964.95	2973.4	2969.18	0.28
25000	1.1802	70.23	63.41	25.28	20.22	44.06	65.7	643.57	27	264.39	3299.00	3174.14	3236.57	3.86
30000	1.4085	70.13	65.00	25.58	20.38	44.21	91.6 123	897.37	27	264.39	3505.00	3261.96	3527.88	3.96
40000	1.8562	70.32	65.63	26.11	20.27	44.84	156	1522.8	26	254.6	3565.64	3738.71	3652.17	4.74

Table C-1: Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: Smooth Tube).

C-2

Temperatures Heat Transfer Rate Pressure Drop Re $Q_{h} 10^{-4}$ and Temperature Difference °C) (W Inner tube Annulus Dev. Inner T_{h2} T_{c2} LMTD T_{h1} T_{c1} (m^3/s) qc q_h qavg. tube mmH₂O N/m² mmH₂O N/m² % Inner Tube Dimensions: L=1.245 m $d_i = 0.011 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Cold Water Mass Flowrate: 0.1 kg/s 59.87 46.87 23.20 20.34 31.33 637.58 93.03 1215.22 5000 0.2265 65.11 9.5 1196.05 1205.64 1.59 10000 0.4336 60.50 51.92 23.90 20.34 34.03 226.4 2216.9 9 88.13 1533.28 1488.79 1511.04 2.94 15000 0.6432 60.05 53.84 23.99 20.34 4730.5 1645.63 1526.43 1586.03 7.52 34.76 483.1 9 88.13 20000 0.8503 60.13 54.90 24.37 20.18 35.24 826 8088.5 9.5 93.03 1831.64 1752.26 1791.95 4.43 1753.27 25000 1.0512 60.32 56.18 24.29 20.19 36.01 1241 12156 9 88.13 1791.93 1714.62 4.41 30000 1.2526 60.50 56.95 24.33 20.16 36.48 1738 17023 9 88.13 1830.46 1743.89 1787.18 4.84 60.43 57.33 24.65 20.35 2315 22670 9 88.13 1860.41 1798.26 1829.34 3.4 35000 1.4580 36.38 40000 1.6619 60.46 57.66 24.54 20.14 36.71 3004 29414 9 88.13 1915.14 1840.08 1877.61 4.00 5°C Cold Water Mass Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0 Flowrate: 0.15 kg/s 5000 0.2310 60.23 44.00 22.60 20.11 30.24 66.65 652.63 18 176.3 1548.41 1561.98 1555.19 0.87 60.27 49.12 20.19 2402 1950.90 1995.84 4.50 10000 0.4437 23.30 32.79 245.3 18 176.3 2040.79 15000 0.6526 60.25 51.72 23.80 20.15 33.95 493.4 4831.3 18 176.3 2294.61 2289.65 2292.13 0.22 2445.79 20000 0.8599 60.18 53.35 24.15 20.21 840.5 8230.4 18 176.3 2420.02 2471.56 2.11 34.56 1.0655 24.20 2499.16 3.71 25000 60.25 54.45 20.29 35.10 1267 12409 17.5 171.4 2545.58 2452.74 30000 1.2705 60.24 55.31 24.40 20.19 35.48 1786 17485 17.5 171.4 2577.45 2640.93 2609.19 2.43 35000 1.4736 60.33 56.00 24.70 20.50 35.56 2374 23250 17 166.5 2627.27 2634.66 2630.96 0.28 60.25 56.25 2769.75 40000 1.6820 24.60 20.23 35.83 3063 29994 17.5 171.4 2755.52 1.03 2741.30 Cold Water Mass Flowrate: 0.1 kg/s Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0 5°C 5000 0.2022 70.00 51.79 23.80 20.32 38.36 52.76 516.67 9 88.13 1514.04 1455.34 1484.69 3.95 24.97 70.13 58.61 1794.7 9 2.80 10000 0.3845 20.50 41.54 183.3 88.13 1869.35 1843.58 1817.80 9 3598.5 0.5637 70.42 25.00 2073.39 1919.54 15000 61.45 20.41 43.19 367.5 88.13 1996.46 7.71 20000 0.7401 70.44 63.53 25.26 20.38 44.16 626.7 6136.5 8.5 83.24 2095.70 2040.82 2068.26 2.65 0.9190 70.50 64.35 25.50 20.23 44.56 948.8 9290.9 9 88.13 2315.75 2203.91 2259.83 4.95 25000 30000 1.0989 70.18 65.15 25.69 20.37 44.64 1340 13125 9 88.13 2264.39 2225.66 2245.02 1.73 70.23 65.90 2260.04 2195.55 2227.79 2.89 1.2744 25.65 20.40 1782 83.24 35000 45.04 17449 8.5 40000 1.4488 70.33 66.50 25.75 20.37 45.35 2283 22353 8.5 83.24 2272.16 2248.84 2260.50 1.03 **Experimental Conditions: Hot Water** · Inlet Temperature: 70 ± 5°C Cold Wate r Mass Flowrate: 0.15 kg/s 5000 0.2079 70.23 47.81 22.88 19.95 36.75 56.46 552.92 17 166.5 1918.02 1837.99 1878.01 4.26 10000 0.3943 70.33 54.95 24.05 20.23 40.22 187.9 1840.1 18 2491.00 2396.29 2443.64 3.88 176.3 15000 0 5775 70.30 58.25 24.55 20.00 41 89 381.4 3734.5 18 176.3 2856.24 2854.22 2855.23 0.07 0.7597 60.25 24.75 19.97 42.79 3088.27 2998.49 3043.38 2.95 20000 70.16 659.1 6453.8 18 176.3 25000 0.9384 70.41 61.62 25.48 20.24 43.13 982.1 9617.2 17.5 171.4 3382.18 3287.05 3334.62 2.85 3198.55 2.73 30000 1.1163 70.10 63.11 25.14 19.90 44.08 1375 13461 17.5 171.4 3287.05 3242.80 1.2919 35000 70.30 64.00 25.45 20.22 44.31 1834 17956 17 166.5 3335.24 3280.78 3308.01 1.65 40000 1.4693 70.24 64.72 25.65 20.31 44.50 2337 22887 17 166.5 3322.81 3349.78 3336.30 0.81 Inner Tube Dimensions: L=1.245 m d_i= 0.014 m Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Cold Water Mass Flowrate: 0.1 kg/s 5000 0.2881 59.70 47.11 23.34 19.90 31.56 29.6 289.9 137.1 1497.02 1438.61 1467.81 3.98 14 0.5519 60.14 52.26 23.96 19.73 34.32 97.2 951.8 1792.52 1768.99 1780.75 1.32 10000 14 137.1 15000 0.8170 60.00 54.14 24.45 19.73 34.98 215 2103 14 137.1 1972.56 1973.9 1973.23 0.07 2.33 60.25 55.48 35.39 3589 2090.29 20000 24.94 20.00 367 14 137.1 2114.66 2065.91 1.0765 25000 1.3382 60.21 56.26 24.92 19.82 35.86 562 5502 13.5 132.2 2176.47 2132.82 2154.65 2.03 30000 1.6005 60.17 56.75 25.61 20.32 35.49 782 7659 14 137.1 2253.51 2212.28 2232.9 1.85 35000 1.8509 60.5 57.61 25.61 20.3 36.09 1038 10161 13 127.3 2201.49 2220.64 2211.07 0.87 60.27 57.72 25.63 20.24 13 127.3 2222.03 2254.1 2238.06 40000 2.1171 36.04 1342 13143 1.43 Cold Water Mass Flowrate: 0.15 kg/s Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0 5°C 59.85 45.10 22.77 19.95 30.73 29.6 290.1 27 1768.99 1774.74 0.65 5000 0.2923 264.4 1780.50 10000 0.5608 60.21 50.10 23.80 19.90 33.21 103 1006 27 264.4 2337.97 2446.47 2392.22 4.54 0.8282 60.12 52.22 24.32 19.95 34.00 222 2175 27 264.4 2696.88 2741.3 2719.09 15000 1.63 20000 1.0901 60.25 53.81 24.67 19.95 34.71 373 3653 26.5 259.5 2892.19 2960.86 2926.53 2.35 25000 1.3528 60.25 54.77 25.10 20.00 34.96 569 5575 26 254.6 3053.50 3199.23 3126.36 4.66 30000 1.6091 60.45 55.75 25.42 20.37 35.20 787 7705 25 244.8 3114.14 3167.87 3141.00 1.71 56.29 1060 10379 25 244.8 3097.96 3255.69 3176.82 4.96 35000 1.8717 60.31 25.64 20.45 35.25 40000 2.1345 60.34 56.55 25.41 20.24 35.62 1375 13461 25 244.8 3330.52 3243.14 3286.83 2.66 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0 Cold Water Mass Flowrate: 0.1 kg/s 5°C 0.2555 52.95 23.96 19.90 39.12 23.1 14 1774.74 1697.89 1736.31 4.43 5000 69.85 226.6 137.1 770.5 10000 0.4903 69.75 58.73 24.95 19.87 41.76 78.7 14 137.1 2217.50 2124.46 2170.98 4.29 15000 0.7192 69.98 61.55 25.80 19.87 42.92 167 1632 14 137.1 2486.42 2479.93 2483.17 0.26 20000 70.32 26.43 20.12 282 2765 2631.49 2638.84 2635.17 0.28 0.9429 63.51 43.64 14 137.1 25000 1.1673 70.50 64.62 26.45 19.96 44.35 424 4151 14 137.1 2812.04 2714.12 2763.08 3.54 30000 70.21 65.35 26.27 19.90 592 13 2779.58 2663.93 2721.76 4.25 1.3962 44.69 5801 127.3 2774 84 35000 1.6219 70.13 66.00 26.84 20.13 44 57 794 7777 13 1273 2743 55 2806.12 2.26 27.15 20.19 44.60 9980 2784.04 2910.67 2847.36 40000 1.8474 70.13 66.45 1019 13 127.3 4.45 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0 °C Cold Water Mass Flowrate: 0.15 kg/s 69.95 50.03 23.68 20.10 37.51 0.2608 24.1 235.7 2137.06 2245.73 2191.40 4.96 5000 27 264.4 10000 0.4992 70.12 55.87 24.83 20.32 40.22 83.3 815.8 27 264.4 2921.77 2829.12 2875.44 3.22 19.87 15000 0.7319 70.25 58.88 25.21 41.95 172 1686 26 254.6 3415.09 3349.78 3382.44 1.93 20000 0.9613 70.22 60.98 25.90 20.00 42.63 292 2855 26 254.6 3642.89 3701.07 3671.98 1.58 70.34 20.21 438 4287 27 264.4 3851.84 3826.53 3839.19 0.66 25000 1.1878 62.43 26.31 43.12 25 30000 1.4141 70.34 63.51 26.33 20.32 43.6 611 5982 244.8 3958.22 3770.07 3864.15 4.87 35000 1.6400 70.45 64.20 26.63 20.22 43.9 812 7949 25 244.8 4199.82 4020.99 *4110.40* 4.35

Table C-2: Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: Wire coil, e= 1 mm, p= 10 mm).

10161

1038

40000

1.8655

70.35 64.93

27.00 20.48

43.9

25

244.8

4142.14 4090.00

4116.07

1.27

Do	0.104		Te	mperatu	res		Pressure Drop				Heat Transfer Rate			
Re	Q _h 10	and	T T T INTERENCE (C)						ulus		(W	`) 	Frr	
tube	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	mmH ₂ O	N/m ²	mmH ₂ O	N/m ²	q_h	q _c	q _{avg.}	%
Experim	ental Conc	litions: 1	Hot Wate	r Inlet To	Inner T	ube Dim	ensions: I	<u>_=1.245 m</u> Cold Wa	d _i = 0.01 ter Mass I	<u>1 m</u> Flowrate: () 1 kg/s			
5000	0.2258	60.00	47.11	22.74	19.97	31.93	39.09	382.78	9	88.13	1201.35	1158.41	1179.88	3.64
10000	0.4349	60.06	51.97	23.70	20.32	33.95	129.6	1269	9	88.13	1450.15	1413.52	1431.83	2.56
20000	0.8480	60.07	55.31	23.09	20.33	35.51	473.9	2728.4 4640.9	8.5 9	88.13	1662.53	1601.71	1632.12	3.90
25000	1.0500	60.28	56.38	24.12	19.90	36.32	710.9	6961.4	9	88.13	1685.97	1764.80	1725.39	4.57
30000	1.2577	60.16 60.39	56.74 57.41	24.29	20.05	36.28	985.8 1321	9653.5 12935	9 8.5	88.13 83.24	1770.89	1773.17	1772.03	0.13
40000	1.6689	60.08	57.47	24.21	20.01	36.61	1707	16715	8.5	83.24	1792.99	1714.62	1753.81	4.47
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Cold Wa	ter Mass I	Flowrate: ().15 kg/s	1502.24	155450	4.00
10000	0.4420	60.34	49.55	23.22	20.00	33.16	138.8	1359.6	17.5	170.3	1967.07	1988.54	1977.80	1.09
15000	0.6476	60.24	52.75	23.47	20.14	34.65	291.6	2855.3	17	166.5	1998.81	2088.91	2043.86	4.41
20000	0.8553	60.42 60.43	53.82 54.83	23.85	19.96 20.03	35.20	488.7 732.2	4786 7169.9	18 17.5	176.3	2325.64	2440.20	2382.92 2500.14	4.81
30000	1.2698	60.20	55.42	23.87	19.85	35.95	1009	9880.1	17.5	171.4	2499.63	2521.75	2510.69	0.88
35000	1.4708	60.47	56.11	24.20	20.00	36.19	1351	13234	17.5	171.4	2640.39	2634.66	2637.52	0.22
Experim	ental Cond	litions: 1	1 50.08 Hot Wate	r Inlet To	19.90 emperatu	36.49 re: 70 ±	0.5 °C	Cold Wa	17.5 ter Mass I	171.4 Flowrate: (2031.08).1 kg/s	2/53.85	2092.//	4.54
5000	0.2006	70.22	52.64	23.72	20.41	38.93	29.62	290.06	8.5	83.24	1449.89	1384.24	1417.06	4.63
10000	0.3838	70.07	58.92 61.98	24.31	20.20	42.14	103.7 218.5	1015.2 2139.2	9 85	88.13 83.24	<u>1756.10</u> 1917 15	1718.80 1865.17	1737.45 1891.16	2.15
20000	0.7398	70.40	63.62	25.04	19.95	44.51	359.2	3517	9	88.13	2055.49	2128.64	2092.06	3.50
25000	0.9173	70.38	64.72	25.33	20.23	44.77	539.7	5284.5	9	88.13	2127.12	2132.82	2129.97	0.27
30000	1.0959	70.19	65.51	25.42	20.31	44.98	749.8	/342.1 9834.8	8.5 8.5	83.24	2100.78	2137.00	2118.89	1.71
40000	1.4472	70.31	66.66	25.63	20.10	45.61	1279	12527	8.5	83.24	2163.00	2312.65	2237.82	6.69
Experim 5000	ental Conc	litions: 1 70-23	Hot Wate	r Inlet To	emperatu 20.00	$re: 70 \pm 37.14$	0.5 °C	Cold Wa	ter Mass I 17	Flowrate: ().15 kg/s 1853 19	1762 71	1807.95	5.00
10000	0.3932	70.22	55.44	23.89	20.00	40.57	111.1	1087.7	18	176.3	2386.98	2358.65	2372.82	1.19
15000	0.5755	70.23	58.81	24.21	20.05	42.29	226.8	2220.8	17.5	171.4	2696.92	2609.57	2653.24	3.29
20000	0.7587	70.10	60.49 62.54	24.61	20.07	42.91	557.2	3689.2 5456.7	18	1/6.3	2990.70	2847.94	2919.32	4.89
30000	1.1141	70.15	63.33	24.95	20.04	44.24	785	7686.5	17	166.5	3114.31	3080.04	3097.18	1.11
35000	1.2900	70.20	64.30	25.32	20.11	44.53	1032	10107 12962	17	166.5	3118.67	3268.23	3193.45	4.68
40000	1.4021	70.50	05.11	25.50	Inner T	ube Dim	ensions: I	=1.245 m	d _i = 0.01	4 m	5220.24	5550.70	5277.00	5.15
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Cold Wa	ter Mass I	Flowrate: ().1 kg/s	12(7.51	1207.00	2.05
5000	0.2859	59.87 59.87	47.93	23.10	19.83	32.24	19.55 65.72	191.45 643.57	14	137.1	1408.47	1367.51	1387.99	2.95
15000	0.8151	60.13	54.32	24.50	20.05	34.95	141.6	1386.8	14.5	142	1951.03	1860.99	1906.01	4.72
20000	1.0760	60.21	55.58	24.81	20.14	35.42	238.8	2338.6	14	137.1	2051.65	1952.99	2002.32	4.93
30000	1.5981	60.14	56.98	25.31	20.22	35.79	505.4	4949.1	13	127.3	2079.00	2128.64	2123.30	2.36
35000	1.8537	60.35	57.55	25.55	20.43	35.95	669.2	6553.5	13	127.3	2136.36	2141.18	2138.77	0.23
40000 Experim	2.1136 ental Conc	60.36 litions: 1	57.86 Hot Wate	25.56 r Inlet To	20.38 emperatu	36.12 re: 60 ±	865.5 0.5 °C	8475.1 Cold Wa	13 ater Mass	127.3 Flowrate:	0.15 kg/s	2166.28	21/0.45	0.38
5000	0.2922	59.75	45.25	22.60	19.67	31.01	20.36	199.42	28	274.2	1749.61	1837.99	1793.80	4.93
10000	0.5581	60.50 60.24	50.44	23.91	20.12	33.36	68.5 148 1	670.76 1450 3	28	274.2	2314.85	2377.47	2346.16	2.67
20000	1.0921	60.15	53.66	24.21	20.03	34.19	245.3	2402	28	264.4	2920.32	2866.76	2893.54	1.85
25000	1.3515	60.20	54.95	24.86	20.38	34.95	367.5	3598.5	26	254.6	2922.40	2810.30	2866.35	3.91
30000	1.6090	60.34 60.27	55.87	25.12	20.20	35.44	506.3 682.2	4958.2 6680.4	26 26	254.6 254.6	2961.52 3052.19	3086.32	3023.92 3125 71	4.13
40000	2.1334	60.29	56.67	25.22	20.13	35.80	873.8	8556.7	25	244.8	3179.42	3192.96	3186.19	0.42
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	$re: 70 \pm 20.50$	0.5 °C	Cold Wa	ter Mass I	Flowrate: ().1 kg/s	1605 90	1672.25	2.15
10000	0.2538	69.71 69.85	53.98	25.18	20.13	<u>39.50</u> 41.66	50.91	135.90 498.54	14	137.1	2177.20	2074.27	2125.74	4.84
15000	0.7181	70.00	61.74	25.53	19.95	43.12	105.5	1033.3	14	137.1	2432.39	2333.56	2382.97	4.15
20000	0.9422	70.24	63.69 64.71	26.10	20.34	43.74	179.6	1758.5	13	127.3	2529.08	2408.83	2468.96	4.87
30000	1.3935	70.31	65.62	26.65	20.20	44.42	381.4	3734.5	13.5	127.3	2614.15	2651.39	2632.77	1.41
35000	1.6155	70.34	66.32	26.71	20.17	44.88	504.5	4940.1	13	127.3	2659.43	2735.03	2697.23	2.80
40000 Experim	1.8400 ental Cond	70.43 litions: 1	66.68 Hot Wate	26.85 r Inlet To	20.26 emperatu	44.99 tre: 70 ±	648 0.5 °C	6345 Cold Wa	13 ter Mass I	127.3 Flowrate: (2825.22 0.15 kg/s	2755.94	2790.58	2.48
5000	0.2602	69.75	50.55	22.98	19.75	38.23	15.74	154.09	27	264.4	2054.81	2026.18	2040.50	1.40
10000	0.4985	70.23	55.95	24.31	19.85	40.81	53.69	525.73	27	264.4	2923.73	2797.76	2860.74	4.40
20000	0.9573	70.34	61.43	25.47	20.11	43.07	187	1831	26	254.6	3497.61	3362.33	3429.97	3.94
25000	1.1846	70.40	62.74	26.02	20.34	43.38	278.6	2728.4	26	254.6	3719.56	3563.06	3641.31	4.30
30000	1.4159	70.14	63.54 64.41	26.29	20.16	43.61	393.4 519 3	3852.3 5085 1	26 26	254.6 254.6	3829.92 3994 52	3845.35 3995 90	3837.64 3995.21	0.40
40000	1.8649	70.27	65.05	26.87	20.31	44.07	665.5	6517.2	25	244.8	3988.06	4115.09	4051.57	3.14

Table C-3: Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube(Enhancement Status: Wire Coil, e=1 mm, p=20 mm).

C-4

Re	Q _h 10 ⁻⁴	and	Te Fempera	emperatures ature Difference (°C) Pressure Drop						Heat Transfer Rate (W)				
Inner	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	tube	Ann mmH-O	ulus N/m ²	q_h	q _c	q _{avg.}	Dev. %
tube					Inner T	ube Dim	ensions: L	=1.245 m	$d_i = 0.01$	1 m			, i i	,,,
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 ℃	Cold Wa	ter Mass I	lowrate: ().1 kg/s	1041 22	10// 75	0.00
5000	0.2229	60.10 60.11	48.70	22.31	19.82	33.14 34.99	26.8 86.09	262.4 842.98	8	78.34	1048.19	1041.32	1044.75	0.66
15000	0.6416	60.00	54.22	23.58	19.75	35.44	186.1	1821.9	8.5	83.24	1527.76	1601.71	1564.73	4.73
20000	0.8446	60.12	55.80	23.50	19.90	36.26	309.2	3027.5	8	78.34	1502.57	1505.52	1504.04	0.20
25000	1.0499	60.17	56.50	23.80	20.15	36.30	461.9 637.8	4523.1	8 85	78.34	1586.42	1526.43	1556.43	3.85
35000	1.4582	60.21	57.53	24.21	20.21	36.66	845.1	8275.7	8	78.34	1608.60	1672.80	1640.70	3.91
40000	1.6724	59.84	57.43	24.02	20.04	36.60	1089	10660	8	78.34	1659.16	1664.44	1661.80	0.32
Experim 5000	ental Cond	itions: 1 60.41	Hot Wate	r Inlet Te 22.49	emperatu 20/32	re: 60 ± 31.06	0.5 °C 29.62	Cold Wa 290.06	ter Mass I 18	lowrate: ().15 kg/s 1413 71	1361 24	138747	3 78
10000	0.4396	60.32	50.30	23.01	20.25	33.55	94.42	924.56	18	176.3	1816.16	1731.35	1773.75	4.78
15000	0.6473	60.31	52.74	23.45	20.17	34.67	190.7	1867.3	18	176.3	2019.21	2057.54	2038.38	1.88
20000	0.8567	60.31 60.43	53.71 54.96	23.76	20.22	35.00	319.3	3127.2	17	166.5	2329.62	2220.64	2275.13	4.79
30000	1.2708	59.90	55.61	23.86	20.21	35.77	659.1	6453.8	17.5	166.5	2245.30	2358.65	2301.97	4.92
35000	1.4699	60.34	56.33	24.42	20.36	35.94	860.9	8429.8	17	166.5	2426.75	2546.84	2486.79	4.83
40000	1.6761	60.30	56.67	24.39	20.23	36.17	1096	10732	17 ton Mass I	166.5	2504.83	2609.57	2557.20	4.10
5000	0.1997	70.10	53.42	23.13	19.77	39.94	20.36	199.42	9	88.13	1368.82	1405.15	1386.99	2.62
10000	0.3809	70.34	59.68	24.06	20.27	42.75	68.5	670.76	8	78.34	1665.91	1584.98	1625.44	4.98
15000	0.5605	70.38	62.26	24.38	20.13	44.04	140.7	1377.8	8.5	83.24	1865.93	1777.35	1821.64	4.86
20000	0.7390	70.24	63.93	24.95	20.19	44.51	235.1	2302.3	8.5 8	83.24	1910.79 2003 13	1990.63	1950.71 2007 34	4.09
30000	1.0907	70.54	65.83	25.21	20.38	45.37	482.3	4722.5	8	78.34	2005.15	2011.34	2052.97	3.22
35000	1.2694	70.34	66.31	25.43	20.19	45.51	638.7	6254.4	8.5	83.24	2094.92	2191.37	2143.14	4.50
40000	1.4489	70.22	66.60	25.12	20.13	45.78	823.8	8067.2	<u>8</u>	78.34	2147.75	2086.82	2117.28	2.88
Experim 5000	0.2058	69.95	49.44	22.52	19.66	37.92	22.22	217.54	ter Mass I	176.3	1736.63	1794.08	1765.36	3.25
10000	0.3925	69.90	56.00	23.47	20.04	40.97	74.98	734.21	17	166.5	2240.81	2151.64	2196.22	4.06
15000	0.5744	69.98	59.31	23.86	20.04	42.60	148.1	1450.3	17	166.5	2515.05	2396.29	2455.67	4.84
20000	0.7552	70.23	60.98	24.48	19.92	43.36	249.9	2447.4	18	176.3	2865.15	2860.49	2862.82	0.16
30000	1.1116	70.22	63.66	24.70	19.88	44.58	505.4	4949.1	17	166.5	2943.13	3042.41	2908.20	3.32
35000	1.2904	70.12	64.34	25.10	20.19	44.58	659.1	6453.8	17	166.5	3056.18	3080.04	3068.11	0.78
40000	1.4631	70.42	65.10	25.54	20.34	44.82	846	8284.8	17	166.5	3188.55	3261.96	3225.25	2.28
Experim	ental Cond	litions: I	Hot Wate	r Inlet Te	inner i emperatu	ube Dim re: 60 ± 1	ensions: L	<u>-1.245 m</u> Cold Wa	ter Mass F	4 m Flowrate: ().1 kg/s			
5000	0.2855	59.78	48.19	23.00	19.86	32.37	14.02	137.3	15	146.9	1365.32	1313.15	1339.24	3.90
10000	0.5519	59.95	52.44	23.82	19.93	34.29	47.21	462.3	14.5	142	1708.49	1626.8	1667.64	4.90
20000	0.8158	59.93 59.87	54.41	24.40	19.95	34.99	101.8	997.1 1613	14.5	142	1855.23	1860.99	1858.11	0.31
25000	1.3363	60.22	56.44	25.00	20.14	35.76	242.5	2375	14	137.1	2079.76	2032.45	2056.11	2.30
30000	1.6000	60.10	56.86	24.40	19.18	36.68	344.3	3372	14	137.1	2134.25	2183.00	2158.63	2.26
35000	1.8588	60.11	57.42	25.42	20.31	35.89	454.5	4451	13	127.3	2058.26	2137.00	2097.63	3.75
Experim	ental Cond	itions: I	Hot Wate	r Inlet Te	20.13 emperatu	re: 60 ± 10	0.5 °C	Cold Wa	ter Mass	Flowrate:	0.15 kg/s	2203.91	2133.42	4.07
5000	0.2903	59.96	45.88	22.53	19.80	31.41	14.81	145	29.5	288.9	1687.37	1712.53	1699.95	1.48
10000	0.5571	60.31	50.85	23.34	19.82	33.91	49.99	489.5	29	284	2173.01	2208.10	2190.55	1.60
20000	0.8230	60.36	54.20	24.00	19.92	35.20	99.97 167.5	978.9 1641	28 28	274.2	2570.69	2559.38	2505.04	0.44
25000	1.3508	60.24	54.98	24.78	20.22	35.11	250.9	2456	27	264.4	2926.38	2860.49	2893.43	2.28
30000	1.6089	60.32	55.90	25.00	20.10	35.56	344.3	3372	27	264.4	2928.16	3073.77	3000.97	4.85
35000	1.8686	60.45 60.50	56.37	25.42	20.33	35.53	458.2	4487	27	264.4	3138.88	3192.96	3165.92	1.71
Experim	ental Cond	litions: I	Hot Wate	r Inlet Te	emperatu	re: 70 ±	0.5 °C	Cold Wa	ter Mass I	lowrate: ().1 kg/s	2111.41	5105.34	7.04
5000	0.2536	69.80	54.03	23.81	19.74	39.85	12.03	117.8	15	146.9	1643.24	1702.07	1672.66	3.52
10000	0.4874	69.82	59.46	24.73	19.96	42.23	37.03	362.6	15	146.9	2072.14	1994.81	2033.48	3.80
20000	0.9400	70.12	63.93	26.12	20.23	43.94	125.9	1233	14	137.1	2303.34	2463.20	2460.38	0.23
25000	1.1665	70.36	64.86	26.45	20.11	44.33	187.9	1840	14	137.1	2628.27	2651.39	2639.83	0.88
30000	1.3933	70.26	65.58	26.73	20.11	44.49	261	2556	14	137.1	2670.81	2768.48	2719.65	3.59
35000	1.6184	70.30	66.68	26.93	20.19	44.64	541.6 438.9	3345 4294	14	137.1	2/70.48	2818.67	2794.58	1.72
Experim	ental Cond	itions: I	Hot Wate	r Inlet Te	emperatu	re: 70 ±	- 30.0 0.5 °С	Cold Wa	ter Mass I	lowrate: (2034.40).15 kg/s	2032.12	2033.29	0.00
5000	0.2600	69.95	50.46	23.15	19.66	38.24	12.03	117.8	28	274.2	2084.11	2189.28	2136.69	4.92
10000	0.4930	70.34	57.38	24.32	20.00	41.55	35.17	344.4	28	274.2	2622.86	2709.94	2666.40	3.27
20000	0.7244	70.39	60.15 61.61	24.94	19.85	42.82	128 7	1260	28	274.2	3469 78	3192.96 3569 34	<i>3118.01</i> 3519 56	4.81
25000	1.1849	70.24	62.86	25.92	20.07	43.55	195.3	1913	28	274.2	3584.69	3669.71	3627.20	2.34
30000	1.4092	70.45	63.87	26.11	20.32	43.94	271.2	2656	27	264.4	3799.57	3632.07	3715.82	4.51
35000	1.6352	70.42	64.62	26.55	20.16	44.16	354.5	3472	27	264.4	3885.70	4008.45	3947.07	3.11
40000	1.0090	/0.40	05.25	20.54	20.06	44.33	448.9	4390	20	234.0	3700.38	4004.90	4010.04	2.40

Table C-4: Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: Wire Coil, e= 1 mm, p= 30 mm).

Da			Te	Semperatures Pressure Drop						Heat Transfer Rate				
Ke	$Q_{h} 10^{-4}$	and	Fempera	ture Dif	ference	(°C)	Innor	tube	e Drop Ann	nlue		(W)	D
Inner tube	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	mmH ₂ O	N/m ²	mmH ₂ O	N/m ²	$q_{\rm h}$	q_{c}	q _{avg.}	bev. %
Eunovin	antal Cand	itiona 1	Lat Wata	n Inlot Te	Inner T	ube Dim	ensions: L	=1.245 m	d _i = 0.01	1 m Elementer (1 ha/a			
5000	0.2234	59.72	48.76	22.58	20.12	32.71	21.48	210.31	8	78.34	1010.31	1028.77	1019.54	1.81
10000	0.4307	60.50	52.80	22.93	19.65	35.31	69.42	679.82	8	78.34	1366.59	1371.70	1369.14	0.37
20000	0.6355	60.42 60.47	56.04	23.41	20.14	36.39	222.2	2175.4	8.5	83.24	1533.84	1367.51	1502.95	4.11
25000	1.0503	60.10	56.52	23.70	19.85	36.53	342.5	3353.8	8	78.34	1548.11	1610.07	1579.09	3.92
35000	1.4524	60.50	57.85	24.32	20.24	37.07	611.9	43/7.5 5991.5	8.5 7.5	73.44	1542.19	1614.25	1578.22	4.59
40000	1.6643	60.10	57.82	24.02	20.13	36.88	775.7	7595.9	7.5	73.44	1561.86	1626.80	1594.33	4.07
Experim 5000	ental Conc 0.2272	60.43	Hot Wate 45.91	r Inlet Te 22.33	20.08	re: 60 ± 31.57	0.5 °C 21.29	Cold Wa 208.48	ter Mass I 17.5	171.4	1361.70 J.15 kg/s	1411.43	1386.56	3.59
10000	0.4389	60.50	50.32	23.11	20.04	33.71	71.28	697.95	18	176.3	1842.25	1925.81	1884.03	4.44
15000 20000	0.6454	60.50 60.35	52.94 54.26	23.43	20.17 20.28	34.88 35.37	142.6 240.7	1395.9 2356.7	18 17	176.3 166.5	2010.42 2139.78	2045.00	2027.71 2098.66	1.71 3.92
25000	1.0591	60.50	55.00	23.95	20.17	35.68	348	3408.2	18	176.3	2399.01	2371.19	2385.10	1.17
30000	1.2694	60.13 60.42	55.53 56.30	24.00	20.34	35.66	481.3	4713.4	17	166.5	2404.76	2295.92	2350.34	4.63
40000	1.6800	60.14	56.52	24.00	20.10	36.23	794.2	7777.2	17	166.5	2503.88	2509.2	2506.54	0.21
Experim	ental Cond	litions: 1	Hot Wate	r Inlet Te	emperatu	re: 70 ±	0.5 °C	Cold Wa	ter Mass I	lowrate: ().1 kg/s	1212 79	1720.07	2.02
<u>10000</u>	0.1984	09.86 70.12	54.54 59.94	<u>22.90</u> <u>2</u> 4.00	<u>20.00</u> <u>20.37</u>	40.43	17.59 <u>5</u> 4.61	534.8	<u>8</u>	78.34 78.34	1248.90 1590.41	<u>1212./8</u> <u>15</u> 18.07	1230.84 1554.24	4.65
15000	0.5580	70.41	62.85	24.21	20.00	44.50	108.3	1060.5	8	78.34	1729.03	1760.62	1744.82	1.81
20000	0.7369	70.39	64.15 64.90	24.45 24.98	20.04	45.02 44.80	177.7 262	1740.4	8	78.34	1884.21 1970.19	1844.26 1894.45	1864.24	2.14
30000	1.0911	70.33	65.95	25.20	20.36	45.36	359.2	3517	8	78.34	1957.25	2024.09	1990.67	3.36
35000	1.2659	70.50	66.52 66.30	25.42	20.25	45.67	461.9	4523.1	8	78.34	2062.93	2162.09	2112.51	4.69
Experim	ental Cond	litions: 1	Hot Wate	r Inlet Te	emperatu	re: 70 ±	0.5 ℃	Cold Wa	ter Mass I	Towrate: (0.15 kg/s	2005.10	2031.33	4./1
5000	0.2034	69.80	51.22	22.52	19.93	38.74	16.66	163.16	17	166.5	1553.85	1624.71	1589.28	4.46
15000	0.5730	70.33	59.30	23.50	20.11	41.52	112	1096.8	17	166.5	2088.41	2164.19	2551.22	3.50
20000	0.7496	70.44	61.80	24.72	20.31	43.57	184.2	1803.8	18	176.3	2655.32	2766.39	2710.86	4.10
25000	0.9295	70.41	62.92 63.95	24.94 24.91	19.87 20.12	44.25	266.6 368.4	2610.5 3607.6	18 17	176.3	2853.50 2960.18	3180.41 3004.77	3016.95 2982.47	10.8
35000	1.2820	70.48	64.85	25.34	20.39	44.80	474.9	4650	17	166.5	2956.91	3105.14	3031.02	4.89
40000	1.4645	70.34	65.05	25.59	20.45 Inner T	44.67 ube Dim	616.5 ensions: I	6036.8 =1 245 m	17	166.5 4 m	3173.77	3224.32	3199.05	1.58
Experim	ental Cond	litions: 1	Hot Wate	r Inlet Te	emperatu	re: 60 ±	0.5 °C	Cold Wa	ter Mass I	Towrate: ().1 kg/s			
5000	0.2808	60.14	50.00	23.14	20.23	33.25	11.18	109.46	15	146.9	1174.03	1216.96	1195.50	3.59
15000	0.8130	60.16	54.64	24.31	20.33	35.12	75.9	743.27	15	146.9	1848.62	1802.44	1825.53	2.53
20000	1.0763	60.12	55.64	25.03	20.31	35.21	125	1223.7	15	146.9	1985.64	1973.9	1979.77	0.59
<u>25000</u> 30000	1.5987	60.41	56.72	25.14	20.22	35.88	188.8	1849.1 2574.3	14	137.1	2022.92 2073.22	2057.54	2040.23	0.85
35000	1.8576	60.21	57.41	25.63	20.36	35.80	346.2	3390.1	14	137.1	2140.95	2203.91	2172.43	2.90
40000 Experim	2.1139 ental Cond	60.32	57.88 Hot Wate	25.52 r Inlet Te	20.45 emperatu	36.10 re: 60 ±	437.8 0.5 °C	4287.4 Cold Wa	13 Iter Mass	127.3 Flowrate:	2122.76 0.15 kg/s	2120.27	2121.52	0.12
5000	0.2850	60.22	47.96	22.42	20.11	32.57	11.11	108.77	29	284	1441.82	1449.06	1445.44	0.50
10000	0.5565	60.10 60.17	51.20	23.52	20.21	33.71	41.65	407.89	29	284	2042.12	2076.36	2059.24	1.66
20000	1.0881	60.20	54.10	24.52	20.32	34.72	128.7	1259.9	29	284	2734.40	2634.66	2684.53	3.72
25000	1.3508	60.20	55.02	24.71	19.92	35.29	194.4	1903.5	28	274.2	2881.87	3004.77	2943.32	4.18
35000	1.6162	60.06	55.55 56.46	24.93	20.12	35.28	352.7	2046.8	28	274.2	3001.88	3017.31	3009.60	1.38
40000	2.1286	60.41	56.85	25.28	20.12	35.92	447.1	4378.1	27	264.4	3119.53	3236.87	3178.20	3.69
Experim 5000	ental Cond 0.2512	itions: 1 69.75	Hot Wate	r Inlet Te 23.42	emperatu 19.81	re: 70 ± 40.69	0.5 °C 8.331	Cold Wa 81.579	ter Mass I 15	10wrate: (0.1 kg/s 1487.34	1509.7	1498.52	1.49
10000	0.4837	70.34	59.98	24.9	20.22	42.54	30.55	299.12	15	146.9	2055.90	1957.18	2006.54	4.92
15000	0.7153	70.14	62.14 63.88	25.57	20.22	43.23	59.24 99.04	580.12	15	146.9 146.9	2346.16	2237.37	2291.76	4.75
25000	1.1668	70.40	64.93	26.23	20.27	44.36	143.5	1405	13	137.1	2543.04	2509.2	2526.12	1.34
30000	1.3940	70.17	65.60	26.53	20.07	44.58	202.7	1985.1	14	137.1	2609.46	2701.57	2655.51	3.47
<u>35000</u> 40000	1.6213	70.11	66.51	26.3	20.12	45.00 44.88	203.8	2585.5 3308.5	14	137.1	2082.72 2788.76	2697.39	2090.05	0.55
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Cold Wa	ter Mass I	Towrate: ().15 kg/s		40	
5000	0.2537	70.50	53.24 57.00	23.11	20.24	39.76 41.26	9.257 29.62	90.643 290.06	28 28	274.2	1799.72 2685 58	1800.35 2684 84	1800.04 2685 21	0.03
15000	0.7285	70.13	59.65	25.13	20.35	42.09	62.94	616.37	28	274.2	3132.35	2998.49	3065.42	4.37
20000	0.9550	70.44	61.65	25.54	20.13	43.19	100.9	988.01	28	274.2	3442.10	3393.69	3417.90	1.42
30000	1.1005	70.00	<u>63.95</u>	26.08	20.07	44.08	206.4	2021.3	20	2/4.2	3711.53	3732.44	3721.98	0.56
35000	1.6328	70.41	64.83	26.3	20.12	44.41	267.5	2619.6	27	264.4	3732.52	3876.71	3804.62	3.79
40000	1.0589	/0.50	05.25	20.54	20.21	44.50	342.5	3333. 8	20	254.0	399/.00	39/0.81	3984.21	0.07

Table C-5: Experimental Results of Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: Wire Coil, e=1 mm, p=40 mm).

C-6

Re	O _c 10 ⁻⁴	and	Te Femnera	mperatu ture Dif	res	(°C)	Pressure Drop				Heat Transfer Rate (W)			
Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner	tube	Ann	ulus	aь	a.) Qaya	Dev.
-us				Anni	ulus Dime	ensions:	$mmH_{2}O$ L=1.245 m	$D_0 = 0.02$	$1 \text{ mmH}_2\text{O}$	N/m ²	10	-It	Javg.	70
Experim	ental Conc	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s			
3000	0.8948	60.50 60.18	56.70 55.63	25.30 24.80	20.43	35.73	203.6	1994.2 1994.2	7	68.547 107.72	1788.66	1817.86 2172.01	1803.26 2156.85	1.62
5000	1.5045	60.46	55.03	24.50	20.47	35.26	203.6	1994.2	16	156.68	2555.90	2529.72	2542.81	1.03
6000	1.8289	59.93	54.04	23.80	20.07	35.04	204.6	2003.2	22	215.43	2772.42	2846.59	2809.51	2.64
8000	2.1305	59.91 60.00	53.32	23.72	20.28	34.59	205.5	2012.3	30	372.11	3356.09	3058.08	3080.00	3.14
9000	2.757	60.13	52.66	23.30	20.15	34.63	206.4	2021.3	49	479.83	3516.13	3624.04	3570.09	3.02
10000 Experim	3.0504 ental Cond	60.11 litions: I	52.35 Tot Wate	23.41 r Inlet To	20.40 emperati	34.27 re: 60 + 1	207.3	2030.4 Hot Wate	61 er Mass Fl	597.34	3652.63 2 kg/s	3831.26	3741.94	4.77
3000	0.9024	60.06	57.83	25.00	20.00	36.43	571.1	5592.7	6.5	63.65	1866.06	1882.50	1874.28	0.88
4000	1.1977	60.31	57.62	25.02	20.37	36.26	571.1	5592.7	10.5	102.82	2250.99	2323.59	2287.29	3.17
6000	1.5042	60.30 60.46	57.00	24.62	20.37	36.04	572.1	5601.8	23	225.22	3230.05	3042.84	2/14.32 3136.44	5.97
7000	2.1101	60.31	56.20	24.36	20.46	35.84	572.1	5601.8	29.5	288.88	3439.25	3433.45	3436.35	0.17
8000	2.4137	60.24 60.00	55.74 55.10	24.26	20.48	35.62	572.1 573	5601.8 5610.8	41	401.49	3765.60	3806.81	3786.20	1.09
10000	3.0343	60.26	55.02	23.88	20.38	35.50	573	5610.8	59	577.75	4386.51	4433.05	4409.78	1.06
Experim	ental Con	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s			
<u> </u>	0.8877	70.06	65.00 64 50	26.30 25.90	20.11	44.32	201.8 201.8	<u>1976</u> 1976	7 10	68.547 97 924	2381.74	2292.25	2336.99	3.83
5000	1.4987	69.99	63.35	25.19	20.33	44.02	201.0	1985.1	15	146.89	3125.45	3176.44	3150.94	1.62
6000	1.8178	69.78	62.29	24.50	19.89	43.82	201.8	1976	21	205.64	3525.54	3496.49	3511.02	0.83
8000	2.0973	70.10	62.00 61.74	24.90	20.44	43.35	202.7	1985.1 1985.1	38	264.39 372.11	3812.67	3902.43 4254.44	3857.55 4165.35	4.28
9000	2.7327	70.20	60.57	24.00	20.20	43.22	202.7	1985.1	46	450.45	4532.84	4332.97	4432.91	4.51
10000	3.0355	70.12	60.30	24.00	20.23	43.03	202.7	1985.1	56	548.37	4622.27	4780.37	4701.32	3.36
Experim 3000	0.8807	70.10	10t Wate 67.00	26.98	20.12	44.97	<u>569.3</u>	5574.6	er Mass Fl 7	68.547	2 kg/s 2594.08	2520.00	2557.04	2.90
4000	1.1836	70.10	66.41	26.30	20.11	45.04	569.3	5574.6	10	97.924	3087.79	3056.33	3072.06	1.02
5000	1.4775	70.30	66.00	26.20	20.33	44.88	569.3	5574.6	14.5	141.99	3598.24	3617.84	3608.04	0.54
7000	2.0875	70.00	65.00	25.80	20.41	44.53	570.2	5583.6	20	264.39	4368.10	4001.34	4387.37	0.88
8000	2.3863	70.20	64.44	25.26	20.46	44.46	571.1	5592.7	36	352.53	4819.97	4778.51	4799.24	0.86
9000	2.6883	70.28	64.20	25.08	20.52	44.44	571.1	5592.7 5601.8	45	440.66	5087.74	5114.24	5100.99	0.52
10000	5.0071	/0.1/	03.00	Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	= 0.0155 m	3490.97	3400.10	3492.30	0.23
Experim	ental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s	1	1	T
3000	0.9533	60.39 60.30	55.68 54.85	25.97	20.46	34.82	67.57 67.57	661.7 661.7	13	127.3 215.43	2217.00	2191.06	2204.03	1.18
5000	1.6013	60.41	54.11	25.25	20.49	34.38	67.57	661.7	32	313.36	2965.41	3173.26	3069.34	6.77
6000	1.9328	60.38	53.35	24.80	20.45	34.22	67.57	661.7	43	421.07	3309.02	3507.82	3408.42	5.83
7000	2.2677	60.50 60.50	52.84 52.28	24.35	20.42	34.25	68.04 68.5	666.23 670.76	55 66	538.58 646 3	3605.56	3718.35	3661.95 3977.19	3.08
9000	2.9310	60.50	51.38	23.94	20.38	33.70	69.42	679.82	81.5	798.08	4292.78	4353.79	4323.29	1.41
10000	3.2642	60.43	51.04	23.68	20.44	33.58	69.89	684.36	97 M	949.86	4417.86	4407.12	4412.49	0.24
Experim 3000	0.9437	60.49	57.37	26.95	20.35	35.25	181	1772.1	er Mass Fl	127.3	2 kg/s 2610.82	2598.04	2604.43	0.49
4000	1.2710	60.50	56.84	25.97	20.46	35.45	180.5	1767.5	22	215.43	3062.69	2921.42	2992.05	4.72
5000	1.5897	60.30 60.41	56.02	25.89	20.49	34.97	180.5	1767.5	31	303.56	3581.50	3580.96	3581.23	0.02
7000	2.2419	60.33	55.09	25.27	20.30	34.90	181.4	1785.7	43.3 54	528.79	4384.83	4479.98	4030.34	2.15
8000	2.6005	60.50	54.62	24.52	19.96	35.32	182.8	1790.2	64	626.71	4920.38	4947.72	4934.05	0.55
9000	2.8952	60.35 60.41	54.00 53.90	24.87	20.50	34.48	183.3	1794.7	78	763.81	5313.68	5278.46	5296.07	0.67
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 ℃	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	3433.23	5452.00	0.12
3000	0.9337	70.50	64.41	27.80	20.43	43.34	65.72	643.57	13	127.3	2866.56	2870.09	2868.33	0.12
4000	1.2588	70.50	63.57 62.36	26.83	20.44	45.40	66.18 65.72	648.1 643.57	32	225.22 313.36	3261.95 3760.89	3355.00 3852.01	3308.48 3806.45	2.81
6000	1.9083	70.10	61.33	25.88	20.47	42.52	67.11	657.16	40.5	396.59	4128.04	4306.62	4217.33	4.23
7000	2.2367	70.37	60.81	25.46	20.49	42.57	66.65	652.63	53	519	4499.89	4637.43	4568.66	3.01
9000	2.5687	70.38	59.88 59.20	25.10	20.43	42.30	67.57	661.7	63 77	016.92 754.01	4942.35	5004.63	49/3.49	1.25 3.46
10000	3.2210	70.38	58.76	24.80	20.46	41.83	67.57	661.7	90	881.31	5468.19	5830.23	5649.21	6.41
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	2216.04	2227.22	0.60
4000	1.2439	70.50	65.73	27.84	20.42	43.93	179.6	1758.5	21	205.64	3238.42	3823.25	3794.43	1.52
5000	1.5550	70.24	64.39	27.80	20.50	43.16	180.5	1767.5	31	303.56	4895.28	4734.22	4814.75	3.35
6000	1.8868	70.13	64.27	26.83	20.50	43.53	181	1772.1	45	440.66	4903.65	4981.78	4942.71	1.58
8000	2.2051	70.12	63.13	26.33	20.30	43.37	181.4	1776.6	64	626.71	6091.90	6198.49	6145.2	1.73
9000	2.8552	70.00	62.16	26.10	20.47	42.79	182.4	1785.7	76	744.22	6560.51	6705.37	6632.94	2.18
10000	3.1895	70.23	62.00	25.63	20.47	43.05	182.4	1785.7	88	861.73	6889.25	6860.03	6874.64	0.43

 Table C-6:
 Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Smooth Annulus).

D.			Te	mperatu	res		Pressure Drop				Heat Transfer Rate			
Ke	$Q_{c} 10^{-4}$	and	Fempera	ture Dif	ference	(°C)	Innor	r ressur	e Drop			(W)	n
Annul -us	(m ³ /s)	T _{h1}	T_{h2}	T _{c1}	T _{c2}	LMTD	mmH ₂ O	N/m ²	mmH ₂ O	N/m ²	գհ	qc	q _{avg.}	Dev. %
				Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	- 28 m D _i =	0.0125 m				
Experim 3000	ental Cond	litions: 1 60.21	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C 211	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s 3290 19	3447 74	3368.97	4 68
4000	1.1467	60.36	52.31	29.55	20.50	31.74	211	2066.7	30	293.77	3789.14	3911.50	3850.32	3.18
5000	1.4531	60.47	51.57	27.61	20.37	32.02	212.9	2084.8	44	430.86	4189.23	4387.67	4288.45	4.63
<u> </u>	1.7597	59.85 60.50	50.40 50.27	26.75	20.43	31.51	212.9	2084.8 2102.9	57.5 74	563.06 724.64	4448.12 4815.26	4638.96	4543.54 4910.86	4.20
8000	2.3772	60.00	49.30	25.6	20.20	31.54	214.8	2102.9	91	891.11	5036.49	5107.13	5071.81	1.39
9000	2.7174	60.50	48.97	24.81	19.87	32.28	215.7	2112	117	1145.7	5427.17	5600.89	5514.03	3.15
Experim	ental Cond	itions: I	40.41 Hot Wate	r Inlet To	20.20 emperatu	s1.72	0.5 °C	Hot Wate	er Mass Fl	1400.5 owrate: 0.	5562.50 2 kg/s	5560.50	5561.50	0.04
3000	0.8473	59.98	55.44	30.63	19.87	32.36	581.3	5692.4	18	176.26	3799.07	3801.25	3800.16	0.06
4000	1.1402	60.05 60.28	54.72 54.29	29.73	19.95	32.49	581.3	5692.4 5710 5	29 43	283.98	4460.14	4649.92	4555.03	4.17
6000	1.7421	60.28	53.74	27.88	20.18	32.98	583.2	5710.5	59	577.75	5472.67	5594.56	5533.62	2.20
7000	2.0376	60.28	53.30	27.42	20.42	32.87	585	5728.7	78	763.81	5840.86	5948.73	5894.80	1.83
9000	2.3393	60.28 60.50	52.98	26.96	20.48	32.91	585 585	5728.7	94 114	920.48	6108.64	6667.42	6618.15	3.44
10000	2.9574	60.49	52.44	26.07	20.39	33.22	585.9	5737.7	144	1410.1	6736.24	7007.19	6871.72	3.94
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s	4220 71	4101 44	1.00
4000	1.1143	70.26	60.19	31.23	20.50	39.84	210.1	2057.6	27	264.39	4142.16	4220.71	4181.44 4899.86	3.45
5000	1.4160	69.82	58.70	29.78	20.48	39.12	212	2075.7	40	391.7	5234.18	5490.73	5362.46	4.78
6000	1.7292	70.46	58.10	28.56	20.15	39.89 30.01	212.9	2084.8	53	519	5817.85	6064.84	5941.34	4.16
8000	2.3447	70.40	56.54	27.13	20.10	39.91	212.9	2084.8	87	851.94	6556.85	6865.57	6711.21	4.60
9000	2.6768	70.50	55.94	26.21	19.76	40.10	214.8	2102.9	110	1077.2	6853.39	7202.59	7027.99	4.97
10000 Experim	2.9672	70.34	54.91 Lot Wata	26.02 r Inlet Te	20.15	39.34	214.8	2102.9 Hot Wate	138 ar Mass Fl	1351.3 ovrata: 0	7263.57	7260.53	7262.05	0.04
3000	0.8146	70.27	64.62	34.32	19.73	40.25	576.7	5647.1	17	166.47	4727.92	4953.26	4840.59	4.66
4000	1.0941	69.94	63.25	32.91	20.48	39.83	578.5	5665.2	29	283.98	5598.19	5667.94	5633.07	1.24
5000	1.3921	70.46	62.68	31.70	20.08	40.65	578.5 579.9	5665.2 5678.8	40	391.7 558.17	6510.30 7079.33	6743.56 7360.45	6626.93 7219.89	3.52
7000	1.9790	70.18	61.25	29.92	20.20	40.51	581.3	5692.4	68	665.88	7472.62	7781.20	7626.91	4.05
8000	2.2820	69.77	60.36	29.12	20.50	40.25	581.3	5692.4	85	832.35	7874.29	8202.40	8038.35	4.08
9000	2.5809	70.30	60.32 59.59	28.65	20.50	40.73	581.8 583.2	5696.9 5710.5	103	1008.6	8351.26 8876.06	8771.60 8867.70	8561.43 8871.88	4.91
				Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0155 m				
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ± 100	0.5 ℃	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s	4000 1 4	2001.01	1.20
4000	1.2218	60.50	51.95	29.43	20.25	30.57	69 69	675.29	36 59	<u>352.53</u> 577.75	<u>3953.88</u> 4372.80	4008.14 4569.75	3981.01 4471.28	1.36
5000	1.5534	60.47	50.36	27.99	20.40	31.20	69.4	679.82	90	881.31	4758.78	4917.19	4837.98	3.27
6000	1.8799	60.45	49.57	27.18	20.47	31.14	69.4 69.4	679.82	123	1204.5	5121.22	5261.28	5191.25	2.70
8000	2.5468	60.45	49.00	25.83	20.42	31.09	70.3	688.89	227	2222.9	5744.42	5729.12	5736.77	0.27
9000	2.8798	60.45	47.81	25.39	20.44	31.06	71.3	697.95	283	2771.2	5951.53	5949.96	5950.75	0.03
10000 Experim	3.2136	60.45	47.41 Hot Wate	25.02 r Inlet To	20.44	31.01	71.3	697.95 Hot Wate	345 er Mass Fl	3378.4 owrate: 0	6139.81 2 kg/s	6143.82	6141.81	0.07
3000	0.8766	60.42	54.86	33.63	20.25	30.53	181	1776.6	35	342.73	4652.61	4888.14	4770.37	4.94
4000	1.1888	60.45	53.85	31.86	20.48	30.92	181	1776.6	57	558.17	5522.88	5639.23	5581.06	2.08
5000	1.5088	60.40 60.46	53.16	30.53 29.33	20.44	31.27	181	1776.6	88 120	861.73	6058.43 6727.87	6347.11	6202.77 6815.97	4.65
7000	2.1590	60.47	51.87	28.53	20.50	31.65	181	1776.6	160	1566.8	7196.48	7229.76	7213.12	0.46
8000	2.4935	60.44	51.33	27.71	20.40	31.82	182	1785.7	217	2124.9	7623.25	7604.03	7613.64	0.25
9000	3.1535	60.44	50.95	27.17	20.40	31.89	182	1/85./	333	2003.5	8250.85	8276.36	7956.82 8263.60	0.39
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s	0270000	0200100	0101
3000	0.8677	70.30	60.17 58.37	34.32	20.50	37.79	68.5	670.76	32	313.36	4768.19	4996.73	4882.46	4.68
5000	1.5141	70.12	58.37	31.80	20.45	38.67	69.4 69.4	679.82	55 88	558.58 861.73	5530.73 6043.79	6388.37	5380.38 6216.08	5.54
6000	1.8458	70.44	56.67	29.04	20.22	38.87	69.4	679.82	119	1165.3	6481.54	6788.69	6635.11	4.63
7000	2.1666	70.46	55.90	28.27	20.45	38.72	70.3	688.89	160	1566.8	6853.39	7065.79	6959.59	3.05
9000	2.4997	70.45	54.82	27.00	20.37	38.74	70.3	688.89	262	2555.8	7380.58	7683.58	7532.08	4.02
10000	3.1665	70.39	53.73	26.34	20.39	38.44	71.3	697.95	335	3280.4	7840.52	7857.18	7848.85	0.21
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	1re: 70 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s	5850.07	5770.20	2 70
4000	1.1554	70.30	62.16	34.72	20.30	38.69	181	1767.5	56	548.37	6845.02	6980.89	6912.96	1.97
5000	1.4639	70.20	61.26	33.21	20.49	38.85	181	1776.6	80	783.39	7480.99	7760.51	7620.75	3.67
6000	1.7856	70.10	60.18 50.60	31.72	20.50	39.03	181	1776.6	115	1126.1	8301.06	8351.15	8326.10	0.60
8000	2.4353	70.20	59.09	29.76	20.20	39.55	182	1785.7	195	1909.5	9288.48	9473.90	9381.19	1.98
9000	2.7593	70.40	58.65	29.14	20.42	39.73	182	1785.7	250	2448.1	9832.40	10033.1	<i>9932.75</i>	2.02
10000	3.0959	70.45	58.32	28.43	20.27	40.00	183	1794.7	315	3084.6	10150.4	10535.3	10342.8	3.72

Table C-7: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 10 mm).

Re	Qc 10-4	and]	Te Fempera	mperatu ture Difi	res ference	(°C)		Pressu	e Drop		Heat Transfer Rate (W)			
Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube N/m ²	Ann mmH ₂ O	ulus N/m ²	գո	qc	q _{avg.}	Dev. %
-43				Annu	llus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m			_ 0	
Experim	ental Cond	litions: I	Iot Wate	r Inlet Te	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.859	59.91 59.98	53.25	29.2	20.08	31.92	212	2075.7	16	156.68	3134.86	3266.99	3200.93	4.13
5000	1.4646	60.12	51.33	27.06	20.13	32.03	211	2000.7	38	372.11	4137.45	4172.42	4154.93	0.84
6000	1.7779	60.23	50.83	26.16	20.13	32.36	212.9	2084.8	53	519	4424.58	4472.27	4448.42	1.07
7000	2.0774	60.15	50.08	25.91	20.25	31.98	215.7	2112	70 85	685.47 832.35	4739.95	4904.95	4822.45	3.42
9000	2.7088	60.34	49.31	23.27	20.33	32.06	212.9	2112	106	1038	5356.57	5255.28	5305.92	1.91
10000	3.0105	60.44	48.58	24.58	20.35	31.89	215.7	2112	131	1282.8	5582.5	5313.05	5447.77	4.95
Experim	ental Cond	litions: I	Tot Wate	r Inlet Te	emperatu	$1re: 60 \pm 12$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	2661.01	2712 71	2 70
4000	1.1392	60.12	55.02	29.53	20.18	32.43	583.2	5710.5	25	244.81	4426.67	4417.67	4422.17	0.2
5000	1.4343	60.33	54.29	28.78	20.34	32.74	581.3	5692.4	37	362.32	5054.27	5048.25	5051.26	0.12
6000	1.7616	60.12	53.73	27.21	19.88	33.38	583.2	5710.5	52	509.2	5347.15	5385.94	5366.55	0.72
8000	2.0512	60.45	53.62	27.13	20.13	33.16	585	5728.7	68 83	005.88 812.77	5715.34	5988.80	5852.1 6013.19	4.67
9000	2.6659	60.23	52.62	26.15	20.17	33.26	585.9	5737.7	104	1018.4	6368.05	6650.44	6509.24	4.34
10000	2.9763	60.08	52.3	25.71	20.2	33.22	585.9	5737.7	129	1263.2	6510.3	6841.38	6675.84	4.96
Experim	ental Cond	litions: 1	lot Wate	r Inlet Te	emperatu	$1re: 70 \pm 1$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	4095 56	1170 31	4.07
4000	1.1191	70.43	60.28	31.01	20.21	39.63	208.3	2039.5	24	235.02	4735.24	4083.30	4856.54	4.07
5000	1.4277	70.41	59.07	29.35	20.18	39.97	209.2	2048.5	36	352.53	5337.74	5459.21	5398.47	2.25
6000	1.7269	70.5	58.17	28.65	20.18	39.89	209.2	2048.5	50	489.62	5803.73	6099.69	5951.71	4.97
7000	2.0413	70.49	57.38	27.64	20.04	40.03	209.2	2048.5	66 80	646.3 783 39	6170.88 6580.39	6470.6 6901.65	6320.74	4.74
9000	2.6302	70.20	55.85	26.99	20.5	39.29	210.1	2057.6	100	979.24	6895.76	7119.94	7007.85	3.2
10000	2.9656	70.5	54.95	26.06	20.16	39.42	211	2066.7	126	1233.8	7319.39	7299.06	7309.22	0.28
Experim	ental Cond	litions: H	Hot Wate	r Inlet Te	emperatu	re: 70 ± 100	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	5001.07	5021.20	2.41
4000	1.088	70.2 69.8	62.96	33.41	20.08	39.36	576.7	5647.1	22	215.43	4970.59	5858.12	5790.92	2.41
5000	1.38	70	62.42	32.11	20.46	39.89	578.5	5665.2	34	332.94	6342.94	6701.34	6522.14	5.5
6000	1.6901	69.6	61.42	30.44	20.3	40.13	578.5	5665.2	46	450.45	6845.02	7144.97	6995	4.29
7000	1.9844	70.07	61.2	29.76	20.41	40.55	580.4	5683.3	62	607.13	7422.42	7736.26	7579.34	4.14
9000	2.2859	69.99	60.06	28.97	20.5	40.48	581.3	5692.4	/8 95	930.28	7991.44	8418.85	8052.47	1.02
10000	2.8962	70.13	59.68	27.78	20.5	40.74	581.3	5692.4	117	1145.7	8744.56	8793.32	8768.94	0.56
F .			x , xx 7 ,	Annu	lus Dimo	ensions:	L=1.245 m	$D_0 = 0.02$	$28 \text{ m} \text{ D}_{i}$	0.0155 m				
Experim	ental Cond	litions: 1	lot Wate	r Inlet Te	emperatu	$1re: 60 \pm 10$	0.5 °C	Hot Wat	er Mass Fl 20	owrate: 0.	1125 kg/s 3855 03	3000 7	3022.87	3.46
4000	1.2236	60.5	51.14	29.38	20.48	30.94	68.96	675.29	52	509.2	4405.75	4591.84	4498.8	4.14
5000	1.5529	60.5	50.4	28.06	20.36	31.22	69.42	679.82	83	812. 77	4754.07	4986.73	4870.4	4.78
6000	1.8829	60.49	49.77	27.01	20.5	31.33	69.42 70.25	679.82	119	1165.3	5045.9	5112.75	5079.33	1.32
8000	2.2180	60.4	48.9	25.85	20.3	31.45	70.35	688.89	210	2056.4	5460.12	5746.2	5603.16	5.11
9000	2.8771	60.49	48.59	25.41	20.5	31.46	70.35	688.89	264	2585.2	5601.33	5893.19	5747.26	5.08
10000	3.2187	60.48	47.77	24.9	20.42	31.28	71.28	697.95	326	3192.3	5983.94	6012.09	5998.02	0.47
Experim	ental Cond	litions: 1	lot Wate	r Inlet Te	emperatu	$1re: 60 \pm 100$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s 4736-20	4772 34	1751 21	0.76
4000	1.1913	60.4	53.9	31.67	20.37	31.02	180.5	1767.5	50	489.62	5439.2	5556.9	4/34.31 5498.05	2.14
5000	1.5136	60.49	53.14	30.27	20.42	31.45	181.4	1776.6	80	783.39	6150.48	6215.81	6183.15	1.06
6000	1.8364	60.5	52.72	29.25	20.46	31.75	180.5	1767.5	113	1106.5	6510.3	6730.88	6620.59	3.33
7000	2.1666	60.17 60.28	51.98	28.26	20.46	31.71	181.4 182.4	17/6.6	201	1517.8	0853.39	7047.72	0950.56 7349.87	2.8
9000	2.8247	60.38	51.34	27.05	20.45	32.09	182.4	1785.7	251	2457.9	7564.67	7776.05	7670.36	2.76
10000	3.1585	60.17	50.81	26.5	20.45	31.99	182.4	1785.7	314	3074.8	7832.45	7970.83	7901.64	1.75
Experim	ental Cond	litions: H	Hot Wate	r Inlet Te	emperatu	re: 70 ± 10	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	5100 (7	1070.01	5.25
4000	0.8042	70.13	59.83 58.47	31.95	20.39	37.35	08.5 68.5	670.76	50	204.39 489.62	4048.21	5728.43	49/8.94	5.25 4.19
5000	1.5103	70.13	57.61	30.4	20.48	38.42	69.42	679.82	77	754.01	5893.16	6246.53	6069.85	5.82
6000	1.8397	70.13	56.87	29.07	20.48	38.68	69.42	679.82	114	1116.3	6241.48	6589.76	6415.62	5.43
7000	2.1686	70.43	56.34	28.18	20.46	38.98	70.35	688.89	155	1517.8	6032.16	6981.86 7003 75	6807.01	5.14
9000	2.3048	70.43	55.35	26.72	20.40	39.18	70.35	688.89	260	2546	7131.11	7440.99	7286.05	4.25
10000	3.1695	70.43	55.26	26.19	20.46	39.33	70.81	693.42	316	3094.4	7140.52	7575.67	7358.1	5.91
Experim	ental Cond	litions: I	lot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	(0.00		
3000	0.8358	70.14	63.22	37.9	20.41	37.28	180.5	1767.5	25 47	244.81	5790.66 6853 20	6088 7074 4	5939.33	5.01
5000	1.4593	70.34	61.3	33.54	20.3	38.79	181.4	1776.6	73	714.84	7564.67	7924.13	7744.4	4.64
6000	1.7779	70.5	60.65	32.14	20.47	39.26	181.4	1776.6	106	1038	8242.48	8648.24	8445.36	4.8
7000	2.1029	70.48	60.1	30.87	20.5	39.6	182.4	1785.7	146	1429.7	8685.98	9091.38	8888.68	4.56
9000	2.4546	69.89 70 3	59.15 58.98	29.53	20.16	39.77 40.24	182.4	1785.7	243	1909.5	8987.23	9386.04	9186.64 9601.63	4.54
10000	3.1278	70.1	58.41	27.8	20.17	40.32	182.4	1785.7	308	3016.1	9782.19	10175.6	9978.88	3.94

Table C-8: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 20 mm).

Annul os (m ²) Tel T Tel T	Re	Qc 10-4	and]	Te Fempera	mperatu ture Difi	res ference	(°C)) Pressure Drop				Heat Transfer Rate (W)			
Annum Dimensions: In-1245 m De-0.028 m De-0.028 m De-0.028 m De-0.028 m 3000 8867 60.28 53.61 26.64 35.7 11.5 17.2.67 319.77 316.32 315.90 35.01 26.75 11.5 17.2.67 319.97 316.32 315.90 0.3.2 31.6 21.1 20.67 31.5 17.2.67 319.97 316.32 10.2 0.0.2 32.77 01.85.77 0.0.2 0.2.7 0.0.2 <td< td=""><td>Annul</td><td>(m³/s)</td><td>T_{h1}</td><td>T_{h2}</td><td>T_{c1}</td><td>T_{c2}</td><td>LMTD</td><td>Inner mmH₂O</td><td>tube</td><td>Ann mmH₂O</td><td>ulus N/m²</td><td>զ_հ</td><td>qc</td><td>q_{avg.}</td><td>Dev. %</td></td<>	Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	tube	Ann mmH ₂ O	ulus N/m ²	զ _հ	qc	q _{avg.}	Dev. %
Typermetral Conditions: Unit Water Intel Temperature: 60 ± 0.5 °C. Hew Water Water 6: 0.1125 kg.s. 4000 0.857 0.125 0.612 0.510 0.126	-43				Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	$28 \text{ m} \text{ D}_{i} =$	0.0125 m			- 0	
3400 (1) <td>Experim</td> <td>ental Cond</td> <td>litions: I</td> <td>lot Wate</td> <td>r Inlet Te</td> <td>emperatu</td> <td>re: 60 ±</td> <td>0.5 °C</td> <td>Hot Wate</td> <td>er Mass Fl</td> <td>owrate: 0.</td> <td>1125 kg/s</td> <td></td> <td></td> <td></td>	Experim	ental Cond	litions: I	lot Wate	r Inlet Te	emperatu	re: 60 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s			
Second Like Outs State	3000	0.8657	60.28 59.72	53.61	28.68	19.92	32.63	210.1 210.1	2057.6	11.5	112.61	3139.57	3162.62	3151.09	0.73
6000 1.779 64.33 51.3 25.4 21.1 2067.6 53.7 473.66 448.84 448.57 1473.59	5000	1.4811	60.05	51.52	26.4	19.92	32.61	210.1	2066.7	30	293.77	4015.07	4003.61	4009.34	0.29
7000 12016 645. 50.9 250.9 210.4 200.7 23.4 610.4 23.4 210.4 23.4 210.4 23.4 210.4 23.4 210.4 23.4 210.4 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 210.5 23.4 <	6000	1.7759	60.39	51.3	26.13	20.26	32.62	211	2066.7	40	391. 7	4278.66	4348.51	4313.59	1.62
9000 27:24 663 49:82 24:85 19:27 87 27:27 87 27:27 87 27:27 19:27	7000	2.0716	60.51	50.9 50.45	25.9	20.5	32.46	210.1	2057.6	53	519	4523.43	4666.51	4594.97	3.11
10000 30119 0.0.4 49.4 24.0 212.9 204.8 102 99.8.2 517.11 54.4.12 57.1.1 54.1.2 57.1.1 54.1.2 57.1.1 54.1.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.1.1 54.2.2 57.2.2	9000	2.7241	60.5	49.82	23.25	19.92	32.83	211	2000.7	83	812.77	5027.08	5262.49	5144.78	4.58
Experimental Conditions: Hot Water Inite Temperature: 60.405 *C Hot Water Mate Towartie: 0.2 kg/s 4000 1.161 89.78 55.2 207.5 1.9.6 32.01 550.4 5647.9 1.1 107.72 365.2 2 361.11 362.16 1.5.3 4000 1.161 89.78 54.64 28.54 107.12 365.2 360.11 362.16 1.5.3 5000 1.267 150.3 150.4 27.17 103.1 581.1 500.2 1.5.9 365.2 360.1 1.3.1 9000 2.667.8 60.47 52.81 560.1 57.2 587.2 585.2 5710.6 61 67.74 557.4 1.5.2 2.667.8 60.47 52.81 257.7 20.3 33.8 583.2 5710.6 81 797.17 664.5 597.4 657.6 1.5.2 2.000 2.667.8 60.47 72.11 63.8 548.4 548.4 548.4 548.4 548.4 548.4 548.4 557.6 1.5.2 560.6	10000	3.0119	60.5	49.48	24.61	20.28	32.43	212.9	2084.8	102	998.82	5187.11	5441.22	5314.17	4.78
sec number sec sec<	Experim	ental Cond	litions: 1 50.80	lot Wate	r Inlet Te	emperatu	re: 60 ± 100	0.5 °C 580 8	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s 3656 82	3601 12	3628.07	1.53
Store 1.46.1 59.8.8 54.04 27.1 1.9.1 33.24 881.3 502.4 29 78.9.8 484.9.7 461.55.8 47.2.2 2.2.4 7000 2.8575 6.0.8 5.5.6 20.7.2 20.2.6 33.34 582.2 5701.5 6.1 67.9.7.75 586.1.8 572.2 4.2.4 4.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5.5 2.4.5 2.4.5	4000	1.1611	59.78	54.66	28.38	19.00	33.15	581.3	5692.4	19	186.06	4284.42	4203.43	4243.92	1.91
6000 17541 89.94 53.64 72.2 20.2 20.4 39.1.0 529.94 539.75 557.55 567.51 557.51 567.51 1.55 3000 260.55 60.55 52.58 20.55 1.05 1.00 1.07.24 662.74 667.74 1.55 3000 260.54 1.01 567.51 2.04 40.8 20.83 20.93 1.05 1.07.24 40.93.1 3.35 3000 1.27.37 7.01.4 2.04.51 2.03.25 2.07.25 2.04.81 40.23 2.03.3 2.03.25 7.07.25 2.04.81 40.23 2.03.25 7.07.27 3.07.2 2.04.25 0.07.8 3.07.2 2.04.25 0.07.8 3.00.0 4.07.21	5000	1.4631	59.83	54.04	27.47	19.91	33.24	581.3	5692.4	29	283.98	4845.07	4613.55	4729.31	4.9
John Los, 17 Out State John Los Out	6000	1.7541	59.94	53.61	27.2	20.26	33.04	581.3	5692.4	39	381.9	5296.94 5807.30	5077.51	5187.23	4.23
9000 2.6678 6.047 5.281 2.597 20.29 33.5 58.3.2 5710.5 81 793.18 6402.80 6521.24 6457.45 1.52 Experimental Conditions: Hot Water Infel Temperature: 70 ± 0.5 °C. Hot Water Mass Flowwarte: 0.1125 kg/s. 105 102.24 402.01 389.09 3486.36 4483.14 4.32 3000 1.446 (0.71) 6.06.13 2.292 2.05 40.45 208.3 203.95 18 176.26 457.09 388.09 390.05.44 413.44 4.32 5000 1.437 70.01 8.83 203.55 18 105 107.32 50.49 53.83 203.5 49 479.83 564.8 561.35 50.49 53.83 2.35 50.49 53.83 2.35 50.49 53.83 2.35 50.49 53.83 2.35 50.49 53.83 2.279 2.94.85 53.8 564.8 561.32 2.295 563.83 2.271 1.4 90000 2.265 70.23 <td>8000</td> <td>2.3517</td> <td>60.5</td> <td>53.26</td> <td>26.48</td> <td>20.20</td> <td>33.34</td> <td>582.2</td> <td>5701.5</td> <td>65</td> <td>636.5</td> <td>5974.75</td> <td>5866.15</td> <td>5920.45</td> <td>1.83</td>	8000	2.3517	60.5	53.26	26.48	20.20	33.34	582.2	5701.5	65	636.5	5974.75	5866.15	5920.45	1.83
10000 20:05 60:1 52:8 25:7 20:5 33:8 88:2 27:10:5 100 979:24 66:77.45 6577.45 15:2 3000 0.84:61 70.11 61.55 90.83 19.8 40.5 20:64.4 20:11 105 107.24 4072.4 428.17 43.2 4000 1.4374 70.07 85.7 77.5 20.44 80.33 20.39.5 27 24.43 50.94 438.34 409.1 43.3 6000 1.337 70.21 85.7 77.5 20.44 80.33 20.39.5 49 477.83 664.3 50.91.2 67.83.5 661.33 50.91.2 17.1 7.85 50.91.2 67.91.2 661.31 60.91.2 1.43 90.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2 67.91.2	9000	2.6678	60.47	52.81	25.97	20.29	33.5	583.2	5710.5	81	793.18	6409.89	6321.24	6365.56	1.39
μ. μ	10000	2.9635	60.5	52.58	25.78	20.5	33.38	583.2	5710.5	100	979.24	6627.46	6527.45	6577.45	1.52
umb 1.132 70.46 60.71 29.79 1.0.5 200.5 1.18 77.26 457.91 438.63 438.17 4.31.7 2.30.8 4.31.7 2.30.8 4.31.7 2.30.8 4.31.7 2.30.8 4.31.7 2.31.7 2.30.8 4.31.7 2.31.7 2.30.8 4.31.8 7.32.8 4.31.8 4.32.8 4.31.8 7.32.8 4.32.9 4.36.1.6 4.32.8 4.33.8 7.32.7 4.32.3 4.33.7 2.0.0.8 4.34.7 5.31.8 1.0.7.7 4.37.4 4.32.2 4.36.1.6 4.43.8 7.32.7 4.43.2 4.34.2.4 4.32.7 3.37.7 2.0.0.8 4.31.8 7.32.7 <td>Experim 3000</td> <td>0.8461</td> <td>70.11</td> <td>101 wate</td> <td>30.83</td> <td>19.8</td> <td>40.5</td> <td>206.4</td> <td>2021.3</td> <td>10.5</td> <td>owrate: 0. 102.82</td> <td>4029.19</td> <td>3890.9</td> <td>3960.04</td> <td>3.49</td>	Experim 3000	0.8461	70.11	101 wate	30.83	19.8	40.5	206.4	2021.3	10.5	owrate: 0. 102.82	4029.19	3890.9	3960.04	3.49
5000 1.4374 70.07 59.44 24.84 20.42 208.3 203.95 27 264.39 500.84 481.3.49 490.871 38.3 27.11 533.8 32.21 7000 2.045 70.33 583.33 27.02 20.48 63.5 63.5 63.72 64.4 55.6 62.62 64.8 75.7 76.6 62.64 20.92 204.85 76.8 76.81.8 62.37.6 62.07 76.97 57.67 63.65 62.7.8 62.7.7 76.7 77.7 77.7 77.7 <td< td=""><td>4000</td><td>1.1324</td><td>70.46</td><td>60.73</td><td>29.79</td><td>20.5</td><td>40.45</td><td>208.3</td><td>2039.5</td><td>18</td><td>176.26</td><td>4579.91</td><td>4386.36</td><td>4483.14</td><td>4.32</td></td<>	4000	1.1324	70.46	60.73	29.79	20.5	40.45	208.3	2039.5	18	176.26	4579.91	4386.36	4483.14	4.32
euron 1./08/1 (P.2.1) 58.75 27.75 20.48 49.35 20.95 49 77.21 59.92.2 527.17 53.33 72.3 9000 2.654 70.5 57.66 2.025 40.51 209.2 2048.5 63.5 621.82 640.7.79 559.56 6001.72 1.4 10000 2.657 70.32 56.69 2.58.4 20.5 40.21 70.2 2048.5 95 50.32.8 651.65.4 657.6 650.6.22 2.7 3000 0.820 64.23 33.37 20.03 40.24 573 5610.8 10 97.924 41.73.229 4561.46 467.87 3.7 4000 1.13 70.16 6.2.59 30.05 19.8 473.24 575.8 566.8 38 37.211 673.29 460.87 72.22 8.89 7000 1.70.6 6.3.2 7.3.0 14.38 573.5 566.52 671.3 73.217 673.49 707.33 541.49.	5000	1.4374	70.07	59.44	28.48	20.45	40.28	208.3	2039.5	27	264.39	5003.54	4813.49	4908.51	3.87
Sound 2.5654 70.5 57.66 2.62.5 2.02.5 2.00.45 6.3.5 2.27.5 0.093.5 <td>6000</td> <td>1.7387</td> <td>70.21</td> <td>58.75</td> <td>27.75</td> <td>20.48</td> <td>40.33</td> <td>208.3</td> <td>2039.5</td> <td>38</td> <td>372.11</td> <td>5394.22</td> <td>5271.79 5561.39</td> <td>5333</td> <td>2.3</td>	6000	1.7387	70.21	58.75	27.75	20.48	40.33	208.3	2039.5	38	372.11	5394.22	5271.79 5561.39	5333	2.3
9000 2.6573 70.32 57.07 26.1 20.5 40.27 2002 20.485 78 75.837 62.87.8 6207.43 6.27.13 6.47 10000 2.205 70.19 2002 149.45 75 5610.8 10 79.27 473.627 4501.6 6415.44 6473 5510.8 10 79.27 473.629 4561.6 6464.87 3.76 9000 12.25 70.01 62.269 30.81 175 171.37 747.43 545.34 245.9 245.9 147.8 172.17 751.44 545.34 247.9 246.9 245.9 127.17 147.44 157.5 566.8 38 772.17 752.49 6602.87 747.12.6 747.12.6 747.12.6 747.12.6 747.12.6 747.12.6 747.12.6 747.12.6 747.12.6 747.12.7 16.0.7 16.0.7 767.2.3 753.47 866.7.8 779.0.27 1.6.3 747.7 1.6.4 740.2.3 1.77 77.2.5 754.97	8000	2.3654	70.5	57.66	26.26	20.3	40.75	208.5	2037.5	63.5	621.82	6043.79	5959.66	6001.72	1.33
10000 2.9615 70.32 56.69 25.84 20.5 C Hew Yater Mass Flowrate: 02.3 kg/s 3000 0.8205 69.89 64.23 33.37 20.03 40.24 573 5610.8 110 97.924 4736.29 456.166 464.89.7 3.76 6000 1.133 70.11 63.58 11.38 73.39 5619.9 27 264.39 455.33 558.84 0.27 227.29 455.87 565.81 177.17 754.64 572.92 0.80 609.29.7 769.94 609.29.7 769.94 609.20.8 609.20.8 609.20.8 609.21.7 751.1 141 8000 2.6101 70.48 60.84 27.75 20.41 41.57 578.5 566.2 177.7 758.91 8066.75 7990.27 802.81 0.49.21 177.7 4000 2.0101 70.5 60.52 27.73 80.61.2 775.7 758.91 8066.75 7990.27 802.81 179 730.6 802.81	9000	2.6573	70.32	57.07	26.1	20.5	40.27	209.2	2048.5	78	763.81	6236.78	6207.49	6222.13	0.47
	10000	2.9615	70.32	56.69	25.84	20.5	40.19	209.2	2048.5	95 M F	930.28	6415.64	6597	6506.32	2.79
	Experim 3000	ental Conc	69.89	64.23	33.37	20.03	40.24	573	Hot Wate 5610.8	er Mass Fl 10	owrate: 0. 97.924	2 kg/s 4736.29	4561.66	4648.97	3.76
	4000	1.1133	70.11	63.58	31.78	20.03	40.88	573	5610.8	17.5	171.37	5464.3	5453.37	5458.84	0.2
	5000	1.4225	70.06	62.59	30.05	19.8	41.38	573.9	5619.9	27	264.39	6250.9	6079.92	6165.41	2.77
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.7202	70.11	62.04 61.87	29.25	<u>19.92</u> 20.2	41.49	575.8	5638	38	372.11	6752.98	6692.87	6722.92	0.89
	8000	2.3056	70.5	61.33	28.28	20.43	41.56	578.5	5665.2	61	597.34	7673.46	7547.99	7610.72	1.65
10000 2.9101 70.5 6.6.2 27.4.3 20.4.3 41.5.6 57.5 5 674.3 93 91.6.9 835.1.2.6 8496.2.3 8423.7.5 1.72 Annulus Dimensions: L-1.245 m D	9000	2.6101	70.48	60.84	27.75	20.41	41.57	578.5	5665.2	77.5	758.91	8066.75	7990.27	8028.51	0.95
Experimental Conditions: Hot Water Intel Temperature: 60 ± 0.5°C Hot Water Mass Flowrate: 0.1125 kg/s 3000 0.9102 60.29 52.34 30.02 20.47 31.36 68.5 670.76 23 225.22 3459.65 362.411 3541.88 4.64 4000 1.2371 60.09 51.79 28.3 20.49 31.54 68.5 670.76 39.5 386.8 3906.81 402.91 33.96 31.92.6 2.97 6000 1.8964 60.5 50.83 26.42 20.47 32.18 69.42 679.82 103 1006.6 484.82.1 479.33 491.07 2.55 8000 2.5642 60.38 49.76 25.22 20.46 32.31 69.42 679.82 163 159.6.5 540.77 25.63.85 5.24 10000 3.239 60.29 48.75 24.4 20.38 31.5 180.5 163 159.6.5 540.77 25.63.85 5.24 10000 3.239 60.29 48.75	10000	2.9101	70.5	60.52	27.43	20.43	41.56	579.5	5674.3	93	910.69	8351.26	8496.23	8423.75	1.72
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: I	Iot Wate	r Inlet Te	emperatu	re: $60 \pm$	<u>L−1.245 m</u> 0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.9102	60.29	52.94	30.02	20.47	31.36	68.5	670.76	23	225.22	3459.65	3624.11	3541.88	4.64
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.2371	60.09	51.79	28.3	20.49	31.54	68.5	670.76	39.5	386.8	3906.81	4029.19	3968	3.08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.5662	60.19	51.15	27.19	20.48	31.82	69.42	679.82	50 79	548.37	4255.13	4383.39	4319.20	3.35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.245	60.3	50	25.47	20.16	32.27	69.42	679.82	103	1008.6	4848.21	4973.33	4910.77	2.55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8000	2.5642	60.38	49.76	25.22	20.46	32.14	69.42	679.82	136	1331.8	4998.83	5092.09	5045.46	1.85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9000	2.9159	60.25	49.36	24.6	20.16	32.32	69.42 69.42	679.82 679.82	163	1596.2	5125.92 5429.86	5401.77	5263.85	5.24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: H	Hot Wate	r Inlet Te	emperatu	re: 60 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s	3420.00	5420.50	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.8944	60.09	55.17	31.57	20.49	31.5	180.5	1767.5	21	205.64	4117.06	4130.88	4123.97	0.34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.2225	60.19	54.53	29.36	20.48	32.41	181	1772.1	35	342.73	4736.29	4526.48	4631.39	4.53
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.858	60.37	53.4	29.23	20.45	32.54	181.4	1776.6	74	724.64	5832.5	6136.66	5984.58	5.08
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.1892	60.45	52.9	27.49	20.32	32.77	181.4	1776.6	96	940.07	6317.84	6546.82	6432.33	3.56
20002.0+300.4352.2520.4420.552.85182.41785.715915576861.767044.136952.952.62100003.180860.2851.6425.920.4432.77182.41785.71901860.67232.347244.897238.620.17Experimental Conditions: Hot Water Inlet Temperature: 70 \pm 0.5 °CHot Water Mass Flowrate: 0.1125 kg/s30000.884670.3461.332.5620.4939.2868.04666.2320195.854255.134450.424352.774.4940001.206770.559.9930.6720.3339.7468.5670.765332.8044947.065201.735074.45.0250001.529170.559.0729.3620.4239.8868.5670.7673714.845822.566070.185946.374.1670002.186270.3857.6327.4320.539.9768.5670.7673714.845822.566070.185946.374.1670002.186270.3857.6327.4320.539.9768.5670.761161135.96283.856550.56417.174.1670002.854870.4356.6925.6320.439.9268.5670.761161135.96283.856550.56417.174.1670002.854870.4355.6925.6320.439.9268.5670.76<	8000	2.5227	60.18	52.41	26.63	20.46	32.74	182.4	1785.7	121	1184.9	6501.94	6492.56	6497.25	0.14
Experimental Conditions: 1 2001 1 20	9000	2.843	60.28	52.23	20.44	20.5	32.85	182.4	1785.7	159	155/	7232.34	7044.13	7238.62	2.62
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: I	Iot Wate	r Inlet Te	emperatu	re: 70 ±	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.8846	70.34	61.3	32.56	20.49	39.28	68.04	666.23	20	195.85	4255.13	4450.42	4352.77	4.49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.2067	70.5	59.99 59.07	30.67	20.33	39.74	68.5 68.5	670.76 670.76	33.5	328.04	4947.06	5201.73 5700.23	5074.4	5.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.866	70.43	58.06	29.00	20.42	40.05	68.5	670.76	73	714.84	5822.56	6070.18	5946.37	4.16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.1862	70.38	57.63	27.43	20.5	39.97	68.5	670.76	93.5	915.59	6001.43	6318.91	6160.17	5.15
2000 2.0300 70.43 30.18 20.00 20.4 39.92 06.5 6/0.76 140 1429.7 6/05.12 6/728.51 0.7 10000 3.1924 70.43 55.69 25.63 20.4 39.85 68.5 670.76 180 1762.6 6935.76 697.29 695.1.53 0.45 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/s 9 9 95.65 5071.01 5232.28 5151.65 3.13 4000 1.1695 70.26 63.12 33.33 20.5 39.71 180.5 1767.5 32 313.36 5974.75 6253.07 6113.91 4.55 5000 1.4923 70.31 62.22 31.63 20.33 40.26 180.5 1767.5 50 489.62 6769.71 7029.39 6899.55 3.76 6000 1.8189 70.09 61.27 30.33 20.23 40.4 180.5 1767.5 67 656.09 7380.58	8000	2.5248	70.4	57.05	26.62	20.4	40.11	68.5	670.76	116	1135.9	6283.85	6550.5	6417.17	4.16
Experimental Conditions: How related in the Temperature: 70: ± 0.5 °C How Water Mass Flowrate: 0.2 kg/s 3000 0.8613 70.2 64.14 35.04 20.46 39.27 180 1763 20 195.85 5071.01 5232.28 5151.65 3.13 4000 1.1695 70.26 63.12 33.33 20.5 39.71 180.5 1767.5 32 313.36 5974.75 6253.07 6113.91 4.55 5000 1.4923 70.31 62.22 31.63 20.33 40.26 180.5 1767.5 50 489.62 6769.71 7029.39 6899.55 3.76 60000 1.8189 70.09 61.27 30.33 20.23 40.4 180.5 1767.5 67 656.09 7380.58 7659.57 752.0.07 3.71 7000 2.149 70.07 60.69 29.28 20.16 40.66 181.4 1776.6 90 887.31 7849.18 8172.68 8010.93 4.04 8000 <td>10000</td> <td>2.8588</td> <td>70.43</td> <td>55.69</td> <td>25.63</td> <td>20.4</td> <td>39.92</td> <td>08.5 68.5</td> <td>670.76</td> <td>146</td> <td>1762.6</td> <td>6935.76</td> <td>6967.29</td> <td>0/28.51 6951.53</td> <td>0.45</td>	10000	2.8588	70.43	55.69	25.63	20.4	39.92	08.5 68.5	670.76	146	1762.6	6935.76	6967.29	0/28.51 6951.53	0.45
3000 0.8613 70.2 64.14 35.04 20.46 39.27 180 1763 20 195.85 5071.01 5232.28 5151.65 3.13 4000 1.1695 70.26 63.12 33.33 20.5 39.71 180.5 1767.5 32 313.36 5974.75 6253.07 6113.91 4.55 5000 1.4923 70.31 62.22 31.63 20.33 40.26 180.5 1767.5 50 489.62 6769.71 702.939 6899.55 3.76 6000 1.8189 70.09 61.27 30.33 20.23 40.4 180.5 1767.5 67 656.09 7380.58 7659.57 7520.07 3.71 7000 2.149 70.07 60.69 29.28 20.16 40.66 181.4 1776.6 90 881.31 7849.18 8172.68 8010.93 4.04 8000 2.4706 70.19 60.06 28.58 20.34 40.66 181.4 1776.6<	Experim	ental Cond	litions: I	Iot Wate	r Inlet Te	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s		070100	
4000 1.1695 70.26 63.12 33.33 20.5 39.71 180.5 1767.5 32 313.36 5974.75 6253.07 6113.91 4.55 5000 1.4923 70.31 62.22 31.63 20.33 40.26 180.5 1767.5 50 489.62 6769.71 7029.39 6899.55 3.76 6000 1.8189 70.09 61.27 30.33 20.23 40.4 180.5 1767.5 67 656.09 7380.58 7659.57 7520.07 3.71 7000 2.149 70.07 60.69 29.28 20.16 40.66 181.4 1776.6 90 881.31 7849.18 8172.68 8010.93 4.04 8000 2.4706 70.19 60.06 28.58 20.34 40.66 181.4 1776.6 112 1096.7 8473.44 8493.89 8483.66 0.24 9000 2.7995 70.19 59.15 27.42 20.34 40.72 181.4 1	3000	0.8613	70.2	64.14	35.04	20.46	39.27	180	1763	20	195.85	5071.01	5232.28	5151.65	3.13
6000 1.812 70.01 61.22 61.02 40.03 1707.5 50 40.02 61.02 61.02 60.07.11 7625.35 6059.57 55.00 3.76 6000 1.8189 70.09 61.27 30.33 20.23 40.4 180.5 1767.5 67 656.09 7380.58 7659.57 7520.07 3.71 7000 2.149 70.07 60.69 29.28 20.16 40.66 181.4 1776.6 90 881.31 7849.18 8172.68 8010.93 4.04 8000 2.4706 70.19 60.06 28.58 20.34 40.66 181.4 1776.6 112 1096.7 8473.44 8493.89 8483.66 0.24 9000 2.7995 70.19 59.58 27.95 20.34 40.72 181.4 1776.6 140 1370.9 8875.1 8889.58 8882.34 0.16 9000 2.7995 70.19 59.15 27.95 20.34 40.76 1	4000	1.1695	70.26	63.12	33.33	20.5	39.71	180.5	1767.5	32 50	313.36	5974.75 6769 71	6253.07 7029 39	6113.91 6899 55	4.55
7000 2.149 70.07 60.69 29.28 20.16 40.66 181.4 1776.6 90 881.31 7849.18 8172.68 8010.93 4.04 8000 2.4706 70.19 60.06 28.58 20.34 40.66 181.4 1776.6 112 1096.7 8473.44 8493.89 8483.66 0.24 9000 2.7995 70.19 59.58 27.95 20.34 40.72 181.4 1776.6 140 1370.9 8875.1 8889.58 8882.34 0.16 10000 3.1294 70.19 59.15 27.42 20.34 40.76 181.4 1776.6 172 1684.3 9234.92 9246.2 9240.56 0.12	6000	1.8189	70.09	61.27	30.33	20.33	40.4	180.5	1767.5	67	656.09	7380.58	7659.57	7520.07	3.71
8000 2.4706 70.19 60.06 28.58 20.34 40.66 181.4 1776.6 112 1096.7 8473.44 8493.89 8483.66 0.24 9000 2.7995 70.19 59.58 27.95 20.34 40.72 181.4 1776.6 140 1370.9 8875.1 8889.58 8882.34 0.16 10000 3.1294 70.19 59.15 27.42 20.34 40.76 181.4 1776.6 172 1684.3 9234.92 9246.2 9240.56 0.12	7000	2.149	70.07	60.69	29.28	20.16	40.66	181.4	1776.6	90	881.31	7849.18	8172.68	8010.93	4.04
2000 2.7775 70.19 59.55 27.42 20.34 40.72 181.4 1776.6 172 1684.3 9234.92 9246.2 9240.56 0.12	8000	2.4706	70.19	60.06	28.58	20.34	40.66	181.4	1776.6	112	1096.7	8473.44	8493.89	8483.66	0.24
10010 JETUE	10000	3.1294	70.19	59.58 59.15	27.42	20.34	40.72	181.4	1776.6	140	15/0.9	00/5.1 9234.92	9246.2	0002.54 9240.56	0.10

Table C-9: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil e=1 mm, p= 30 mm).

Anali us (m ² /s) Tai Tai <thtai< th=""> Tai <</thtai<>	Re	Qc 10-4	and]	Te Fempera	mperatu ture Dif	res ference	(°C)		Pressu	e Drop]	Heat Trans (W	sfer Rate		
Anaturb Immensions: 1::1:245 m D:::1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube	Ann mmH ₂ O	ulus N/m ²	q _h	qc	q _{avg.}	Dev.	
Experimental Conditiones: Ibor Water Intel Temperature: 04 - 05 ST Fibe Water Mass Flowwards: 0.1125 kgs- 4000 1306 6975 6065 32713 2466.49 6.171 333.3 326.4 333.3 333	-43				Annu	ılus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m			- 0		
300 0.9747 60.05 833.06 27.05 193.15 200.3 210.975 11 172.7 2866.56 201.3 201.45	Experim	ental Cond	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s				
Sec 1998 594 2321 25.67 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27 234.27 246.27	3000	0.8747	60.05 50.00	53.96	27.78	19.91	33.15	208.3	2039.5	11	107.72	2866.56	2871.3	2868.93	0.17	
6000 1.7785 60.27 52.1 25.7 24.2 2975 34.4 2066 33.43 211.1 2966.7 34.4 206.4 33.44 212.2 33.43 320.2 33.43 320.2 33.43 320.2 33.4 320.2 33.43 320.2 33.43 320.2 33.43 320.2 33.43 320.2 33.43 320.2 33.44 33.43 33.43 33.43 33.43 33.43 33.43 33.43 33.43 33.43 33.44 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.45 33.33 33.45 33.45 33.45 33.45 33.44 44.44<	5000	1.4982	59.99	52.21	25.65	19.67	33.4	208.5	2057.6	25	244.81	3638.51	3731.62	3685.07	2.53	
7000 2.1064 64.5 51.76 24.0 20.07 33.61 212 2075.7 45 44.0.6 4113.02 24.446.21 4491.21 4197.27 41.3 9000 3.007.1 60.25 60.25 80.68 24.05 23.22 121 2197.5 66 64.64 446.21 4490.21 449.13 409.13 30.8 10000 3.067.1 60.25 59.94 55.03 33.55 110.0 77.247 37.18 499.13 409.1 33.66 57.65 56.95 116.75.66 815.84 392.36 382.66 57.06 31.35 444.24 470.16 47.46	6000	1.7785	60.27	52.1	25.79	20.47	33.03	211.1	2066.7	35	342.73	3845.62	3947.07	3896.34	2.6	
800 1.2990 61.35 61.01 2.006 3.32 2.11 2.006.7 64.02	7000	2.1064	60.5	51.76	24.9	20.07	33.61	212	2075.7	45	440.66	4113.92	4244.66	4179.29	3.13	
19000 2.667 40.14 2.614 2.81 2.82 4807.44 0.912.1 499.74 3000 0.866.3 59.94 56.03 28.88 19.79 33.6 57.57 5647.1 16 75.24 2371.89 33.06 35.7.5 4000 1.66 59.83 55.27 27.92 19.79 33.6 57.57 5647.1 16 75.66 351.81 355.30 353.6 560.7 5647.1 16 75.66 351.81 355.30 351.6 564.7 16 75.66 351.81 355.30 351.6 564.7 564.7 567.7 56.7 353.8 582.8 572.87 81 792.1 16 53.35 263.7 263.8 272.7 18 192.1 16 53.9 366.7 70.27 2.66 35.7 70.37 53.8 28.8 272.7 81 272.17 18 153.9 172.7 170.7 133.8 18.7 170.7 16.8 36.7 170.7 <td>9000</td> <td>2.3949</td> <td>60.33</td> <td>51.19</td> <td>24.95</td> <td>20.46</td> <td>32.82</td> <td>211 212</td> <td>2066.7</td> <td>50 66</td> <td>548.37</td> <td>4302.2</td> <td>4486.22</td> <td>4394.21</td> <td>4.19</td>	9000	2.3949	60.33	51.19	24.95	20.46	32.82	211 212	2066.7	50 66	548.37	4302.2	4486.22	4394.21	4.19	
Typerimental Conditions Hat Water That Temperature: 60 ± 0.5°C Hat Water Mase Flowrate: 0.2 EgA 3000 0.655 59.94 50.02 85.02 327.045 0.08 4000 1.166 59.83 52.27 17.97 33.66 57.05 561.71 16 456.64 3815.81 302.042.8 327.065 0.08 54.97 33.6 57.97 567.11 16 456.64 3815.81 302.042.7 33.6 32.05 71.05 53.01 43.04 56.006 411.29 41.06 71.07 12.05 71.07 43.04 56.006 410.27 2.6 41.07 12.05 71.07 63.05 57.77 70.57 63.05 57.77 70.55 53.10 10.07 12.05 10.06 10.07.77 10.05 10.07 10.07 10.07 17.07 13.05 10.05 10.06 10.06 10.06 10.07 10.06 10.07 10.06 10.07 10.06 10.07 10.06 10.07 10.06 10.07 10.06 <td>10000</td> <td>3.0674</td> <td>60.48</td> <td>50.14</td> <td>23.59</td> <td>19.75</td> <td>33.54</td> <td>212.9</td> <td>2073.7</td> <td>82</td> <td>802.98</td> <td>4867.04</td> <td>4915.21</td> <td>4891.13</td> <td>0.98</td>	10000	3.0674	60.48	50.14	23.59	19.75	33.54	212.9	2073.7	82	802.98	4867.04	4915.21	4891.13	0.98	
3000 0.8655 59.91 56.02 128.81 127.95 30.64 77.75 561.90 10 72.24 327.18 30.64 37.75 5000 1.469 6.048 55.24 277.25 17.97 33.65 57.65 564.71 16 156.66 355.31 355.34 44.42 476.18 441.44 476.284 476.24 476.85 441.44 476.284 476.24 476.85 447.24 476.85 447.24 476.85 477.24 476.75 467.24 476.85 477.24 476.95 467.25 476.28 477.24 478.24 476.28 477.24 578.27 478.75	Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s				
aum 1106 25.6. 25.7. 25.6. 25.7. 25	3000	0.8653	59.94	56.03	28.85	19.79	33.6	573.9	5619.9	10	97.924	3271.89	3269.42	3270.65	0.08	
6000 1.751 89.4 54.39 63.56 83.2 5710.5 33 323.15 44.40.8.6 64.70.208 470.208 470.208 470.208 470.216 251.47 94.80 513.47 970.27 26.10 9000 2.637 60.37 33.33 85.85 572.87 64 63.66 63.53.47 573.31 0.84 9000 2.637 60.37 53.38 858 572.87 64 63.66 64.53.51 0.04 1000 2.9957 60.5 53.11 2.51.5 2.02 34.14 1.05 54.64 0.85 1.05 1.04 1.05 1.85 572.87 1.85 1.05 1.02 1.45 1.05 1.02 1.45 1.00 1.05 1.05 1.06 1.05 1.02 1.45 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	5000	1.469	60.05	54.94	27.92	19.79	33.97	583.2	5710.5	24	235.02	4276.05	4417.89	4346.97	3.30	
7000 2.052 89.04 53.06 2.6.47 2.07 2.3 88.2.2 5710.5 44 2.48.86 509.47 597.47 5.0 2.5.3 1.0.5 5.3.1.9 0.8.6 9000 2.66.7 60.7 83.31 2.5.3 2.0.5 3.3.8 855 5728.7 64 5.3.1.7 0.8.6 5.3.1.8 0.8.8 3000 2.65.7 0.7.7 6.5.2 2.2.2.2 2.5.2 0.4.1 0.4.2.2 0.4.2.2 0.5.3 0.4.1 4.7.6 3.4.9.6 3.4.9.6 3.4.9.8 3.4.9.2 0.5.5 4.0.1.2 1.0.7.2.4 4.4.9.5.1 4.4.9.2.1 4.4.1.8.2 4.4.1.2.1 4.4.1.2.1 4.	6000	1.7591	59.94	54.39	26.85	20.36	33.56	583.2	5710.5	33	323.15	4644.24	4762.08	4703.16	2.51	
8000 2.57.4 6.64 5.84.07 5.31.4.0 0.86 9000 2.667 6.02.7 5.33.6 2.55 772.7 6.6 6.6.6 5.844.0.1 582.4.6 771.2.6 0.18 10000 2.997.7 6.0.5 5.31.1 2.51.5 0.0.2 3.41.2 5.85 5772.7 6.8 6.66.6.5 5.844.0.1 582.2.4 0.97.2 1.87.6 618.0.5 1.012.8 1.97.1.8 1.012.8 1.97.1.8 1.012.8 1.97.1.9 1.93.1.8 4.40.2.1 4.40.2.1.4 4.40.2.2 0.97.2 1.87.6 4.40.2.1.4 4.40.2.2 0.95.2 1.97.1.8 1.97.1.97.1.97.1.9 1.97	7000	2.0592	59.94	53.96	26.45	20.47	32	583.2	5710.5	44	430.86	5004.06	5136.47	5070.27	2.61	
10000 29957 0.5 5.11 25.15 202 14.12 858 572.87 81 773.76 6185.66 6195.37 0.44 Sperimental Conditions: How Water Intel Temperature: 70 ± 0.5° How Mark Mass Thowstee Null 55 kg/s 169.24 149.06 1.14 66.0 0.43 149.27 1.85 How stee Null 55 kg/s 0.40.21 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.40.01 4.41.01 9.57 0000 1.475.6 69.9 60.35 2.64 2.65 2.00.32 2.31.31.6 4.41.28 8.17.7 2.41.25 5.17 3.16 8.39.6 4.41.23 9.37.7 3.16 8.55.5 5.11.0 5.54.65 5.58.97 5.31.6 3.16 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.58.97 5.5	9000	2.5744	60.5 60.37	53.94	25.87	20.28	34.14	585	5728.7	54 65	528.79	5489.41	5536.97	5731.26	0.86	
Experimental Conditions: Hot Water Intel Temperature: 70 ± 0.5 °C Het Water Mass Plowrate: 0.1125 kg/s 3000 1456 70.28 61.65 220.51 20.6 199.21 10.76 20.21 10 9.72.21 452.06 349.88 349.87 349.88 349.87 349.88 349.87 349.88 349.88 349.88 349.88 349.88 349.87 33.16 471.39 3.52 6000 1.7746 69.8 59.64 26.36 20.09 41.46 208.3 2039.5 32 313.36 478.31 4641.58 471.194 2.99 7000 20.66 70.34 59.33 20.32 72 42 51.71 51.55 597.71 3.16 9000 26.817 70.14 58.5 21.29 2084.8 78 75.43 53.45 53.49 73.1 10.10 205.76 64 64.75 53.15 51.66 75.3 75.15 75.1 75.1 75.1 75.1 75.1 75.1 75.1	10000	2.9957	60.5	53.11	25.15	20.3	34.12	585	5728.7	81	793.18	6183.95	6186.66	6185.31	0.04	
3000 0.8575 70.17 62.82 25.3 19.9.1 41.76 02.65 2012 15 14.66.9 04.80.1 43.9.0 44.9.7.2 0.58 6000 1.7736 69.9 60.35 20.90 1.473 08.5 2015.5 21.5 1.46.80 40.51.1 43.90.6 41.17.3 0.85 2017.5 31.6 478.21 461.15 471.32 35.6 471.32 35.6 471.73 1.55.5 5697.1/3 3.16 8000 2.366.3 70.34 59.34 62.52 20.43 41.16 10.10 2057.6 64 62.67.7 561.85 558.07 3.33 9000 2.6815 70.13 58.2 25.3 20.64 47.87 763.35 47.83 453.95 565.9 8.31.31 19.96 41.16 10.10 2057.7 561.84 558.3 565.5 9 8.31.31 49.84 40.84 40.84 40.84 40.84 40.84 40.84 40.84 40.84	Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s				
4000 1146 61.85 20.90 21.14 41.37 20.85 20.12.5 15 21.69 416.89 406.11 4.7.6 5000 1.776 60.8 50.44 20.35 20.37 22.3 22.32 22.21 461.13 471.194 2.39 7000 2.66.3 70.24 50.44 20.35 20.37 50.36 50.47 1.31.6 8000 2.573 60.96 58.44 2.5.8 20.44 41.48 20.92.7 42.41.14 20.67 53 51.7 151.85 51.7 2.5.6 50.7 1.3.1 10.66 41.55 12.2 12.04 41.46 40.7 56.43 55.65.5 9 88.131 40.53 58.83.31 56.65.4 9.8 40.11 40.14 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44 40.44	3000	0.8575	70.17	62.82	29.53	19.91	41.76	203.6	1994.2	10	97.924	3459.65	3439.8	3449.72	0.58	
comb 17746 0.93 95.41 20.95 2173.61 471.94 179.15 177.15	<u>4000</u> 5000	1.1466	69.9	61.65	29.05	20.14	41.37	205.5	2012.3	23	146.89	4062.14	4260.08	4161.11	4.76	
	6000	1.7746	69.8	59.64	26.36	20.09	41.46	208.3	2039.5	32	313.36	4782.31	4641.58	4711.94	2.99	
8000 2.370. 69.96 58.46 22.8 20.4 41.16 210.1 2066.7 53 579 541.205 524.6.2 532.6.78 3.2.4 10000 2.8839 70.4 58.29 52.19 20.5 14.55 212.9 2084.8 78 76.2.87 5558.5 558.59 558.59 558.59 558.59 558.59 558.59 558.59 558.59 558.59 575.59 0.75 5000 1.313 19.65 1.97 568.3 556.5 9 88.131 409.47.18 538.9.4 15 1.46.89 4811.6 484.75 482.29 0.75 5000 1.313 19.56 589.74 61.88.47 561.99 14 491.49 51.99 14 572.2 561.99 14 491.49 573.9 561.99 14 491.49 673.45 674.99 677.36 687.49 677.36 687.49 677.36 677.16 687.49 673.45 711.85 329.99 128.33 110.99 128	7000	2.0663	70.34	59.34	26.22	20.4	41.48	208.3	2039.5	42	411.28	5177.7	5016.55	5097.13	3.16	
	8000	2.3703	69.96	58.46	25.8	20.5	40.98	211	2066.7	53	519	5413.05	5240.52	5326.78	3.24	
	9000	2.0815	70.13	58.59	25.39	20.43	41.10	210.1	2057.6	04 78	020./1 763.81	5558 97	5838 31	5698 64	1.2	
	Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	5000001	5070.04	-1.2	
	3000	0.843	69.97	65.1	31.3	19.65	41.97	568.3	5565.5	9	88.131	4075.22	4094.74	4084.98	0.48	
Solu LA312 Dir,1 G.3.4 LA7 Pair A	4000	1.1353	69.53	63.78	30.15	19.91	41.58	570.2	5583.6	15	146.89	4811.6	4847.58	4829.59	0.75	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.4312	69.74 70.49	63.44	29.17	20.14	41.88	570.2	5585.0	31	213.43	5899.44	5389.4 6185.49	5308.28 6042.47	4.73	
B000 2.3217 69.92 61.76 20.91 677.6.33 2.91 9000 2.2687 6.99 61.56 27.08 20.46 11.95 571.9 561.99 77 754.01 7631.62 798.91 7253.85 711.86.3 3.93 10000 2.9642 70.5 61.38 26.36 19.9 42.8 573.9 561.9.9 77 754.01 7631.62 798.11 7809.86 4.56 Annulus Dimensions: L=1.245 m Hot Water Mass Flowmaste: 0.1125 kg/s 3000 0.9145 60.2 52.88 29.77 3831.5 3957.71 389.46 3.24 6000 1.586 60.49 51.60 27.09 20.45 3.22 60.37 54.44 32.42 2.59 7000 2.238 60.37 50.59 25.62 20.44 32.29 70.81 49.42 49.43.24 2.92.9 44.37.55 497.84 492.93 485.55 478.64 487.15 477.53 447.15 4.	7000	2.0509	70.29	62.71	27.21	20.06	42.86	573.9	5619.9	41	401.49	6342.94	6116.49	6229.71	3.64	
9000 2.6287 69.9 61.56 27.08 20.46 41.95 573.9 5619.9 77 754.01 753.162 7988.11 788.93 64.33 3.33 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5° C Hot Water Mass Flowrate: 0.1125 kg/s 3000 0.9145 60.2 52.48 29.74 20.33 31.49 69.42 679.82 19 1/8.66 3445.52 3588.07 351.6.8 4.05 4000 1.2389 60.38 52.24 28.16 20.5 31.98 69.42 679.82 19 1/8.66 3445.21 252.02 4.44 6000 1.9017 60.5 51.09 26.19 20.46 32.44 69.42 679.82 60 \$87.54 4442.22 454.54 447.33 2.502 7000 2.2338 60.37 50.17 25.07 20.44 32.47 70.81 697.95 137 1361.61 176.55 507.86 5 507.86 5 507.86 5 507.86	8000	2.3217	69.92	61.94	27.6	20.5	41.88	573.9	5619.9	52	509.2	6677.66	6874.99	6776.33	2.91	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9000	2.6287	69.9 70.5	61.56	27.08	20.46	41.95	573.9	5619.9	<u>63</u> 77	616.92 754.01	6978.91 7631.62	7258.35	7118.63	3.93	
	10000	2.7042	70.3	01.50	Annu	ilus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	$28 \text{ m} \text{ D}_{i} =$	0.0155 m	7051.02	7900.11	/007.00	4.30	
	Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s		-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.9145	60.2	52.88	29.74	20.33	31.49	69.42	679.82	19	186.06	3445.52	3588.07	3516.8	4.05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.2389	60.38 60.49	52.24	28.16	20.5	31.98	69.42 69.42	679.82	30 44	293.//	3831.5	3957.71	3894.61	3.24	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.9017	60.5	51.09	26.19	20.45	32.44	69.42	679.82	60	587.54	4429.29	4545.4	4487.35	2.59	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.2338	60.37	50.59	25.62	20.44	32.4	70.35	688.89	77	754.01	4603.45	4827.15	4715.3	4.74	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8000	2.5693	60.27	50.17	25.07	20.44	32.39	70.81	693.42	96 117	940.07	4754.07	4962.93	4858.5	4.3	
Experimental Conditions: Hot Water Inlet Temperature: $60 \pm 0.5 ^{\circ}$ CHot Water Mass Flowrate: $0.2 kg/s$ 30000.890860.3255.4131.9220.531.54180.51767.518176.264108.694240.49417.4593.1640001.21160.2854.6330.1820.532.07180.51767.529283.98472.7924887.384807.653.3250001.545760.3754.0928.5820.2532.28181.41776.643421.075255.153.69.65312.232.1560001.862460.2553.5427.9720.532.66181.41776.657558.175614.935801.995708.463.2870002.19860.452.2526.720.533.10182.41785.775734.435974.756197.54608.61.43.6680002.519660.452.2526.720.533.07182.41785.71131106.56510.36698.94660.4622.86100003.191260.4852.2825.6220.4433.31183.31794.713513326881.766895.936878.840.5Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5 ^{\circ}$ CHot Water Mass Flowrate: 0.1125 kg/s30000.884670.4561.4332.5520.539.466.65652.6342411.28531.86550.875456.373.	10000	3.2395	60.32	49.8	24.74	20.44	32.57	71.28	697.95	139	1361.1	4951.70 5154.17	5205.55	5192.49	5 1.48	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	tre: 60 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.8908	60.32	55.41	31.92	20.5	31.54	180.5	1767.5	18	176.26	4108.69	4240.49	4174.59	3.16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.211	60.28 60.37	54.63	30.18	20.5	32.07	180.5	1767.5	29	283.98	4727.92	4887.38	4807.65	3.32	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.8624	60.25	53.54	27.97	20.23	32.66	181.4	1776.6	57	558.17	5614.93	5801.99	5708.46	3.28	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.198	60.49	53.35	27.11	20.35	33.19	182.4	1785.7	75	734.43	5974.75	6197.54	6086.14	3.66	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8000	2.5196	60.4	52.95	26.7	20.5	33.07	182.4	1785.7	93	910.69	6234.16	6515.79	6374.97	4.42	
Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5^{\circ}C$ Hot Water Mass Flowrate: 0.1125 kg/s30000.884670.4561.4332.5520.539.466.65652.6318176.264245.714443.054344.384.5440001.204970.560.0530.720.4339.7166.65652.6329283.984918.825158.935038.874.7750001.543470.358.9328.820.1640.1266.65652.6342411.285351.865500.875456.373.8360001.881270.258.1527.5420.0540.3467.57661.776744.226001.436315.426158.425.170002.219970.4257.6726.7119.8940.6767.57661.776744.226001.436315.426158.425.180002.523370.1957.1426.5720.540.0368.5670.7693910.676345.046705.2652.125.52100003.187570.4556.5425.6720.4940.2668.96675.291341312.26547.446887.856717.645.07Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5^{\circ}C$ Hot Water Mass Flowrate: 0.2 kg/s 30000.862369.6863.7638.87177.71740.417166.474953.865170.335062.094.2	9000	2.8575	60.27 60.48	52.49	25.00	20.44	33.33	182.4	17947	115	1322	6861 76	6895.94	6878.84	2.80	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	00/00/0	00/0.04	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3000	0.8846	70.45	61.43	32.55	20.5	39.4	66.65	652.63	18	176.26	4245.71	4443.05	4344.38	4.54	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1.2049	70.5	60.05 58.03	30.7	20.43	39.71	66.65	652.63	29	283.98	4918.82	5158.93	5038.87	4.77	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000	1.3434	70.3	58.15	27.54	20.10	40.12	67.57	661.7	58	567.96	5671.94	5876.96	5774.45	3.55	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7000	2.2199	70.42	57.67	26.71	19.89	40.67	67.57	661.7	76	744.22	6001.43	6315.42	6158.42	5.1	
90002.860170.4656.9826.0220.440.3868.5670.761121096.76345.046705.26525.125.52100003.187570.4556.5425.6720.4940.2668.96675.291341312.26547.446887.856717.645.07Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °CHot Water Mass Flowrate: 0.2 kg/s30000.862369.6863.7634.8920.538.87177.71740.417166.474953.865170.335062.094.2840001.174370.116332.9520.539.77177.71740.427264.395949.656093.526021.582.3950001.494970.1862.3331.320.540.34177.71740.440391.76568.886730.446649.662.4360001.81570.0961.5830.2620.4940.46178.21744.954528.797121.177393.377257.273.7570002.140870.0561.1129.2820.540.69178.71749.489871.527865.928178.428022.173.990002.854269.89602.69319.6741.63179.61758.51131106.5827.958643.698459.824.551000003.187570.3159.896026.9319.6741.63179.6 <td>8000</td> <td>2.5233</td> <td>70.19</td> <td>57.14</td> <td>26.57</td> <td>20.5</td> <td>40.03</td> <td>68.5</td> <td>670.76</td> <td>93</td> <td>910.69</td> <td>6142.64</td> <td>6388.82</td> <td>6265.73</td> <td>3.93</td>	8000	2.5233	70.19	57.14	26.57	20.5	40.03	68.5	670.76	93	910.69	6142.64	6388.82	6265.73	3.93	
Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5'0$ 01.5271312.20317.44001.65011.64500Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5'0'$ Hot Water Mass Flowrate: 0.2 kg/s 30000.862369.7634.8920.538.87177.71740.417166.474953.865170.335062.094.2840001.174370.1163.7634.8920.538.87177.71740.417166.474953.865170.335062.094.2840001.174370.1163.7634.8920.538.87177.71740.4176.7264.395949.656093.526021.582.3950001.494970.1862.3331.320.4940.46178.21744.954528.797121.177393.377257.273.757000 <th colspa<="" td=""><td>9000</td><td>2.8601</td><td>70.46</td><td>56.98</td><td>26.02</td><td>20.4</td><td>40.38</td><td>68.5 68.94</td><td>670.76</td><td>112</td><td>1096.7</td><td>6345.04</td><td>6705.2</td><td>6525.12</td><td>5.52</td></th>	<td>9000</td> <td>2.8601</td> <td>70.46</td> <td>56.98</td> <td>26.02</td> <td>20.4</td> <td>40.38</td> <td>68.5 68.94</td> <td>670.76</td> <td>112</td> <td>1096.7</td> <td>6345.04</td> <td>6705.2</td> <td>6525.12</td> <td>5.52</td>	9000	2.8601	70.46	56.98	26.02	20.4	40.38	68.5 68.94	670.76	112	1096.7	6345.04	6705.2	6525.12	5.52
3000 0.8623 69.68 63.76 34.89 20.5 38.87 177.7 1740.4 17 166.47 4953.86 5170.33 5062.09 4.28 4000 1.1743 70.11 63 32.95 20.5 39.77 177.7 1740.4 27 264.39 5949.65 6093.52 6021.58 2.39 5000 1.4949 70.18 62.33 31.3 20.5 40.34 177.7 1740.4 40 391.7 6568.88 6730.44 6649.66 2.43 6000 1.815 70.09 61.58 30.26 20.49 40.46 178.2 1744.9 54 528.79 7121.17 7393.37 7257.27 3.75 7000 2.1408 70.05 61.11 29.28 20.5 40.69 178.7 1749.4 71 695.26 7480.99 7837.5 7659.25 4.65 8000 2.47 69.97 60.57 28.44 20.5 40.8 178.7 1749.4	Experim	ental Cond	litions: I	Jot Wate	r Inlet To	20.49 emperatu	140.20	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	000/.03	0/1/.04	3.07	
4000 1.1743 70.11 63 32.95 20.5 39.77 177.7 1740.4 27 264.39 5949.65 6093.52 6021.58 2.39 5000 1.4949 70.18 62.33 31.3 20.5 40.34 177.7 1740.4 40 391.7 6568.88 6730.44 6649.66 2.43 6000 1.815 70.09 61.58 30.26 20.49 40.46 178.2 1744.9 54 528.79 7121.17 7393.37 7257.27 3.75 7000 2.1408 70.05 61.11 29.28 20.5 40.69 178.7 1749.4 71 695.26 7480.99 7837.5 7659.25 4.65 8000 2.47 69.97 60.57 28.44 20.5 40.8 178.7 1749.4 89 871.52 7865.92 8178.42 8022.17 3.9 9000 2.8542 69.89 60 26.93 19.67 41.63 179.6 1758.5	3000	0.8623	69.68	63.76	34.89	20.5	38.87	177.7	1740.4	17	166.47	4953.86	5170.33	5062.09	4.28	
Sum 1.4947 70.18 02.33 31.5 20.5 40.34 177.7 1740.4 40 391.7 6508.88 6730.44 6649.66 2.43 6000 1.815 70.09 61.58 30.26 20.49 40.46 178.2 1744.9 54 528.79 7121.17 7393.37 7257.27 3.75 7000 2.1408 70.05 61.11 29.28 20.5 40.69 178.7 1749.4 71 695.26 7480.99 7837.5 7659.25 4.65 8000 2.47 69.97 60.57 28.44 20.5 40.8 178.7 1749.4 89 871.52 7865.92 8178.42 8022.17 3.9 9000 2.8542 69.89 60 26.93 19.67 41.63 179.6 1758.5 113 1106.5 8275.95 8643.69 874.9.82 43.5 10000 3.1875 70.31 59.89 60 26.38 19.78 1179.6 1758.5	4000	1.1743	70.11	63	32.95	20.5	39.77	177.7	1740.4	27	264.39	5949.65	6093.52	6021.58	2.39	
0000 1013 10.07 01.30 30.20 20.37 10.01 174.7 34 326.77 1121.11 1353.57 123.27 5.75 7000 2.1408 70.05 61.11 29.28 20.5 40.69 178.7 1749.4 71 695.26 7480.99 7837.5 7659.25 4.65 8000 2.47 69.97 60.57 28.44 20.5 40.8 178.7 1749.4 89 871.52 7865.92 8178.42 8022.17 3.9 9000 2.8542 69.89 60 26.93 19.67 41.63 179.6 178.55 113 1106.5 8275.95 8643.69 8459.82 4.35 10000 3.1875 70.31 59.89 10.78 41.99 179.6 178.55 113 1106.5 8275.95 8643.69 879.82 4.35 10000 3.1875 70.31 59.89 60 26.38 10.97.8 1179.5 134 1312.2 8719.46 877.6	5000	1.4949	70.18	61.58	31.3	20.5	40.34	177.7	1740.4	40	591.7 528 70	0568.88	0750.44	0049.66	2.43	
8000 2.47 69.97 60.57 28.44 20.5 40.8 178.7 1749.4 89 871.52 7865.92 8178.42 8022.17 3.9 9000 2.8542 69.89 60 26.93 19.67 41.63 179.6 1758.5 113 1106.5 8275.95 8643.69 8459.82 4.35 10000 3.1875 70.31 59.89 26.38 19.78 41.99 179.6 1758.5 113 1106.5 8275.95 8643.69 8459.82 4.35	7000	2.1408	70.05	61.11	29.28	20.49	40.69	178.7	1749.4	71	695.26	7480.99	7837.5	7659.25	4.65	
9000 2.8542 69.89 60 26.93 19.67 41.63 179.6 1758.5 113 1106.5 8275.95 8643.69 8459.82 4.35 10000 31875 70 31 59.89 26.38 19.78 41.99 179.6 1758.5 134 132.2 8719.46 8776.93 8747.74 9.65	8000	2.47	69.97	60.57	28.44	20.5	40.8	178.7	1749.4	89	871.52	7865.92	8178.42	8022.17	3.9	
	9000	2.8542	69.89 70.31	60 59.80	26.93	19.67	41.63	179.6	1758.5	113	1106.5	8275.95 8719.46	8643.69	8459.82 8747 74	4.35	

Table C-10: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 40 mm).

Re	Qc 10 ⁻⁴	and]	Te Fempera	mperatu ture Dif	res ference	(°C)		Pressu	re Drop]	Heat Trans (W	sfer Rate	
Annul -us	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube N/m ²	Ann mmH ₂ O	ulus N/m ²	q _h	qc	q _{avg.}	Dev. %
				Annu	ılus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m				
Experim	ental Conc 0 8564	litions: 1	lot Wate	r Inlet To 29 52	emperatu 20.03	re: 60 ± 31.76	0.5 °C 203.6	Hot Wat 1994 2	er Mass Fl 38	owrate: 0. 372 11	1125 kg/s 3398 45	3389.06	3393 75	0.28
4000	1.1673	60.16	51.86	27.82	19.8	32.2	205.5	2012.3	62	607.13	3906.81	3904.53	3905.67	0.06
5000	1.4687	60.16	51.09	27.02	20.03	32.09	204.6	2003.2	96	940.07	4269.25	4282.09	4275.67	0.3
6000	1.7858	60.27	50.55	26.11	19.8	32.43	203.6	1994.2	130	1273	4575.2	4700.81	4638.01	2.71
8000	2.3774	60.04	49.47	25.69	20.20	31.9	205.5	2012.3	208	2036.8	5022.37	4879.52 5137.48	4800.32	2.27
9000	2.6849	60.5	49.34	25.32	20.39	31.96	207.3	2030.4	272	2663.5	5253.01	5522.06	5387.54	4.99
10000	2.9916	60.49	48.92	24.98	20.49	31.84	207.8	2034.9	310	3035.6	5446	5603.82	5524.91	2.86
Experim	ental Conc	litions: 1	lot Wate	r Inlet To	emperatu	re: 60 ± 10	0.5 °C	Hot Wat	er Mass Fl 35	owrate: 0.	2 kg/s 30/0 7	3800.67	302460	1.27
4000	1.1299	60.5	54.9	30.1	20.39	32.1)	575.3	5633.5	58	567.96	4686.08	4574.27	4630.17	2.41
5000	1.4304	60.44	54.03	29.02	20.34	32.54	575.8	5638	87	851.94	5363.89	5177.55	5270.72	3.54
6000	1.7288	60.02	53.15	28.25	20.48	32.22	576.7	5647.1	128	1253.4	5748.82	5602.01	5675.42	2.59
8000	2.0299	60.24	52.83	27.69	20.48	32.45	578.5	5665.2	207	2027	6200.69	6103.88	6571.43	0.18
9000	2.6414	59.67	51.63	26.65	20.47	32.08	578.5	5665.2	261	2555.8	6727.87	6809.04	6768.46	1.2
10000	2.9791	60.49	51.73	25.89	19.94	33.18	579.5	5674.3	307	3006.3	7330.37	7394.64	7362.5	0.87
Experim	ental Conc	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 10	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	4100.22	4111 41	4.22
4000	1.1258	<u>69.88</u> 70.26	60.35	30.56	20.03	39.49	201.8	1976	57 57	558.17	4024.49	4198.33	4751.99	4.23
5000	1.4163	70.20	59.48	29.75	20.23	39.72	202.7	1985.1	88	861.73	5050.61	5468.36	5259.48	7.94
6000	1.7239	69.8	57.9	28.55	20.43	39.33	203.6	1994.2	125	1224	5601.33	5837.58	5719.45	4.13
7000	2.0366	70.45	57.74	27.49	20.39	40.09	205.5	2012.3	170	1664.7	5982.6	6030.93	6006.76	0.8
9000	2.5369	70.5	56.55	27.12	20.41	39.97	206.4	2021.3	206	2017.2	6283.85	6712.91	6639.59	4
10000	2.9584	70.4	55.75	26	20.43	39.69	208.3	20239.5	302	2957.3	6895.76	6873.9	6884.83	0.32
Experim	ental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8122	70.49	64.92	34.3	20.03	40.38	572.1	5601.8	33	323.15	4660.98	4829.64	4745.31	3.55
5000	1.1019	70.33	62.96	31.68	20.15	40.48	574	5620.8	50 84	348.37	5/15.34 6301 1	5/13./4	5/14.54 6383 37	2.58
6000	1.6752	70.08	61.47	31.03	20.5	40	573.9	5619.9	117	1145.7	7204.85	7353.86	7279.35	2.05
7000	1.9918	70.44	60.89	29.89	19.95	40.74	574.8	5628.9	157	1537.4	7991.44	8255.4	8123.42	3.25
8000	2.2859	70.36	60.26	29.18	20.29	40.57	575.8	5638	199	1948.7	8451.68	8473.83	8462.76	0.26
9000	2.883	70.25	59.55 59.49	28.78	20.5	40.25	577.6	5656.1	234	2291.4	8953.76 9179.7	8898.26 9522.41	8926.01 9351.05	0.62
10000	21000		0,11,5	Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0155 m	/1//	<i><i>y</i>02211</i>	2001100	0.00
Experim	ental Con	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.9115	60.28	51.88	30.29	20.07	30.89	72.2	707.02	81.5	798.08	3953.88	3884.1	3918.99	1.78
5000	1.5637	60.29	50.78	27.39	20.07	31.61	72.2	707.02	225	2203.3	4475.38	4545.86	4510.62	1.56
6000	1.8936	60.36	50.42	26.52	20.5	31.84	73.1	716.08	320	3133.6	4679.95	4754.91	4717.43	1.59
7000	2.2388	60.46	50.15	25.62	20.25	32.31	73.6	720.61	440	4308.6	4852.92	5015.37	4934.14	3.29
9000	2.5801	60.47	49.84	25	20.15	32.5	73.1	716.08	581	5684.5 7001.6	5002.75	5220.85	5111.8	4.27
10000	3.2533	60.32	48.88	24.13	20.3	32.25	73.1	716.08	880	8617.3	5386.15	5226.03	5306.09	3.02
Experim	ental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8836	59.5	53.67	33.11	20.05	29.86	184	1803.8	78.5	768.7	4878.54	4809.55	4844.05	1.42
4000	1.2049	<u>60.03</u> 59.9	53.48	30.95	20.18	31.14	182	1785.7	140 219	2144 5	5477.92 5848.6	5410.1 5751.71	5444.01 5800.15	1.25
6000	1.8733	59.93	52.58	28.01	19.95	32.27	182	1785.7	312	3055.2	6151.46	6297.19	6224.32	2.34
7000	2.1963	59.65	51.99	27.23	20.3	32.06	184	1803.8	425	4161.8	6407.53	6348.24	6377.88	0.93
8000	2.53	59.8	51.88	26.54	20.3	32.41	183	1794.7	570	5581.7	6629.35	6585.35	6607.35	0.67
10000	2.8519	59.87	52.09	25.25	20.45	32.82	182	1/85./	863	0004.3 8450 8	7000.03	0804.1 6720.49	0044.33 6860.26	4.07
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: $70 \pm$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	0/2011	0000.20	1.07
3000	0.8793	70.22	59.86	33.42	20.18	38.22	71.3	697.95	75	734.43	4876.45	4852.04	4864.25	0.5
4000	1.2073	70.1	58.8	31.01	19.94	38.97	72.2	707.02	134	1312.2	5318.91	5572.12	5445.52	4.65
6000	1.8905	70.45	57.56	27.64	19.52	40.4	71.3	697.95	324	3172.7	5769.58 6090.79	6403.16	6246.98	1.98
7000	2.197	70.48	57	27.33	20.17	39.91	72.2	707.02	418	4093.2	6345.47	6561.21	6453.34	3.34
8000	2.5146	70.5	56.55	26.95	20.42	39.72	73.1	716.08	550	5385.8	6566.08	6849.06	6707.57	4.22
9000	2.8571	70.5	56.14	26.25	20.26	39.92	73.1	716.08	695 865	6805.7	6760.67	7139.14	6949.9 7157.02	5.45
Experim	ental Cond	itions: I	35.15 Tot Wate	<u>23.39</u> r Inlet To	20.13 emperati	<u>39.30</u> re: 70 ± 1	/3.0 0.5 ℃	Hot Wat	er Mass Fl	04/0.4 owrate: 0.	7018.14 2 kg/s	1291.13	/13/.93	3.91
3000	0.8618	70.1	63.25	35.73	19.72	38.77	182	1781.1	72	705.05	5732.08	5748.61	5740.35	0.29
4000	1.1679	70.25	61.94	34.11	19.84	39.04	181	1776.6	130	1273	6953.81	6945.66	6949.73	0.12
5000	1.4804	69.93	60.84	32.5	20.18	39.02	182	1785.7	201	1968.3	7606.51	7602.33	7604.42	0.06
7000	2.1228	70.11	59.97	30.38	20.2	39.74 40.07	182	1/85./	305 408	2980./	0403.15 8585.57	0459.01 8965.76	04/2.38	4.33
8000	2.434	70.44	59.72	29.74	20.5	39.96	182	1785.7	535	5238.9	8970.5	9377.18	9173.84	4.43
9000	2.7664	70.25	59.05	28.93	20.4	39.97	182	1785.7	680	6658.8	9372.16	9840.32	9606.24	4.87
10000	3.1257	70.22	58.24	27.78	20.08	40.26	182	1785.7	845	8274.6	10026.1	10038.1	10032.1	0.12

Table C-11: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes(Enhancement Status: Wire Coil, e= 2.2 mm, p= 10 mm).

Re	Qc 10-4	and]	Te Fempera	mperatu ture Dif	res ference	(°C)		Pressui	re Drop]	Heat Trans (W	sfer Rate	
Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	tube	Ann mmH ₂ O	ulus N/m ²	q _h	qc	q _{avg.}	Dev. %
-43				Annu	llus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m			_ 0	
Experim	ental Con	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8523	60.26	52.62	30.09	19.89	31.43	206.4	2021.3	28	274.19	3596.15	3624.78	3610.47	0.79
5000	1.4473	60.03	50.77	27.87	20.46	31.23	207.3	2030.4	71	695.26	4363.39	4083.18	4082.07	2.47
6000	1.7499	60.31	50.3	27.21	20.46	31.44	208.3	2039.5	97	949.86	4711.71	4926.5	4819.1	4.46
7000	2.0585	60	49.55	26.45	20.5	31.25	208.3	2039.5	134	1312.2	4918.82	5108.92	5013.87	3.79
8000	2.367	60.34	48.97	25.97	20.45	31.35	209.7	2053.1	167	1635.3	5351.86	5450.39	5401.13	1.82
10000	3.002	60.17	48.34	25.28	20.26	31.25	210.1	2057.6	215	2692.9	5810.01	5573.56	5691.78	4.15
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: $60 \pm$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	0070100	007100	
3000	0.8376	60.14	55.13	31.76	19.77	31.74	576.7	5647.1	27	264.39	4192.37	4186.74	4189.55	0.13
4000	1.1336	59.92	54.25	30.31	19.89	31.93	577.6	5656.1	45	440.66	4744.66	4924.94	4834.8	3.73
5000	1.4181	60.03 59.86	52.96	29.63	20.5	31.78	579.5	5674.3	67 95	030.09	5296.94	5938.66	5856.29	1.9
7000	2.0227	60.41	52.85	28	20.3	32.39	580.4	5683.3	131	1282.8	6326.21	6343.61	6334.91	0.27
8000	2.3286	60.2	52.19	27.34	20.5	32.27	580.4	5683.3	163	1596.2	6702.77	6643.16	6672.96	0.89
9000	2.6477	60.09	51.61	26.64	20.27	32.38	581.8	5696.9	210	2056.4	7098.85	7031.6	7065.22	0.95
10000 Exporim	2.9559	60.09	51.29	26.23 n Inlot Te	20.27	32.42	583.2	5710.5	269 an Mass Fl	2634.2	7366.63	7344.79	7355.71	0.3
3000	0.8299	69.61	60.03	32.7	19.66	38.61	203.6	1994.2	26	254.6	4509.31	4511.13	4510.22	0.04
4000	1.1217	69.84	59.05	31.09	20.05	38.87	205.5	2012.3	43	421.07	5078.85	5162.68	5120.77	1.64
5000	1.4295	69.72	57.96	29.53	19.89	39.12	206.4	2021.3	65	636.5	5535.43	5746.24	5640.83	3.74
6000	1.7298	70.5	57.54	28.72	19.96	39.64	206.4	2021.3	93	910.69	6100.27	6319.42	6209.84	3.53
7000	2.0195	70.46	55.56	28.24	20.38	39.28	206.4	2021.3	130	12/3	6401.52	6619.75	6830.03	3.35
9000	2.6637	70.00	54.95	26.4	19.99	39.13	206.4	2021.3	205	2007.4	7098.94	7118.83	7108.89	0.14
10000	2.9787	70	54.36	25.88	19.96	39.06	206.4	2021.3	262	2565.6	7361.75	7356.49	7359.12	0.07
Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8025	70.18	63.74	35.66	19.77	39.05	575.8	5638	24	235.02	5388.99	5313.2	5351.1	1.42
5000	1.3783	69.85	61.68	32.22	20.46	39.08	576.7	5647.1	43 64	626.71	6836.66	6756.3	6796.48	1.18
6000	1.6721	70.51	61.7	31.28	20.42	40.25	577.6	5656.1	92	900.9	7372.21	7569.82	7471.01	2.64
7000	1.9667	70.47	61.06	30.47	20.5	40.28	578.5	5665.2	126	1233.8	7874.29	8174.74	8024.51	3.74
8000	2.2697	70.29	60.3	29.65	20.45	40.24	578.5	5665.2	157	1537.4	8359.63	8706.53	8533.08	4.07
10000	2.9035	70.23	59.08	26.4	20.25	40.62	580.4	5683.3	258	2526.4	<u>9178.3</u>	9156.93	<u>8823.43</u> 9167.62	0.03
				Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0155 m				
Experim	ental Con	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.9161	59.85 59.96	51.69	29.96	19.95	30.81	71.7	702.49	71	695.26	3840.91	3823.81	3832.36	0.45
5000	1.5625	59.78	50.36	27.38	20.47	31.11	72.2	707.02	179	1752.8	4433.99	4090.71	4101.8	1.11
6000	1.8938	60.29	50.15	26.51	20.5	31.67	74.1	725.15	251	2457.9	4772.9	4747.56	4760.23	0.53
7000	2.2427	59.7	49.41	25.54	20.18	31.63	71.3	697.95	332	3251.1	4843.5	5014.85	4929.18	3.48
8000	2.5717	60.3	49.51	25.25	20.18	32.11	73.1	716.08	393	3848.4	5078.85	5439.69	5259.27	6.86
10000	2.8925	59.87	49.05	24.94	20.31	31.63	72.2	097.95 707.02	485	4/49.3	5297.39	5559.27	5428.33	4.85
Experim	ental Cond	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	0007121	5420.55	1.02
3000	0.8814	60.23	54.7	32.96	20.42	30.64	181	1776.6	68	665.88	4627.5	4606.76	4617.13	0.45
4000	1.2137	60.12	53.71	30.53	19.95	31.63	181	1776.6	116	1135.9	5363.89	5353.92	5358.9	0.19
5000	1.5395	60.2	53.04 52.73	29	20.18	31.92	181	17857	246	1/52.8	5824.13	5002.42 6032.35	5/43.28	2.82
7000	2.1845	59.75	52.13	27.5	20.42	31.93	182	1785.7	321	3143.4	6393.15	6377.57	6385.36	0.24
8000	2.502	59.5	51.66	27.06	20.75	31.67	184	1803.8	380	3721.1	6560.51	6584.65	6572.58	0.37
9000	2.8492	59.97	51.69	26.38	20.37	32.44	183	1794.7	470	4602.4	6925.91	7142.94	7034.43	3.09
10000 Eunorim	3.1823	59.97	51.44	25.93	20.37	32.53	183	1794.7	572 m Mass El	5601.2	7135.11	7381.03	7258.07	3.39
3000	0.8793	70.02	59.57	33.65	19.95	37.97	69.4	679.82	68	665.88	4918.82	5020.61	4969.71	2.05
4000	1.2042	70.22	58.64	31.23	19.95	38.84	69.4	679.82	115	1126.1	5450.71	5663.09	5556.9	3.82
5000	1.5269	70.22	57.6	29.73	20.18	38.93	69.4	679.82	173	1694.1	5940.23	6080.16	6010.2	2.33
6000	1.866	70.12	56.88	28.23	20.07	39.3	70.3	688.89 688.90	241	2360	6232.07	6350.34	6291.21	1.88
8000	2.5382	70.22	55.94	26.49	20.07	39.72	70.3	688.89	315	3701.5	6768.67	6797.48	6783.07	0.42
9000	2.8473	69.82	55.23	26.33	20.48	38.96	69.4	679.82	468	4582.8	6867.51	6947.92	6907.72	1.16
10000	3.209	70.13	54.88	25.47	20.11	39.51	70.8	693.42	560	5483.7	7180.19	7175.87	7178.03	0.06
Experim	ental Cond	litions: I	lot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	502(40	5010 07	2.74
3000	0.8563	69.52 70	61.63	30.2	19.84	37.73	181	1767.5	07 112	030.09	5999.63 7002.99	5836.49	5918.06 6989.28	2.76
5000	1.4791	70.17	60.87	32.53	20.07	39.12	181	1767.5	170	1664.7	7781.26	7583.21	7682.23	2.58
6000	1.7969	70.25	60.19	31.4	20.25	39.39	181	1776.6	234	2291.4	8417.15	8352.35	8384.75	0.77
7000	2.1261	70.24	59.54	30.21	20.18	39.69	181	1776.6	307	3006.3	8954.78	8891.37	8923.08	0.71
8000	2.4444	70.34	59.08 59.71	29.45	20.41	39.77	182	1781.1	370	3623.2	9420.51	9213.98	9317.24	2.22
10000	3.1129	70.40	58.06	27.97	20.38	40.11	182	1785.7	545	5336.8	10198.8	10022.4	7020.0 10110.6	1.74

Table C-12: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes(Enhancement Status: Wire Coil, e= 2.2 mm, p= 20 mm).

Re	Qc 10-4	and	Te Fempera	mperatu ture Difi	res ference	(°C)		Pressu	re Drop]	Heat Trans (W	sfer Rate	
Annul -us	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	tube N/m ²	Ann mmH ₂ O	ulus N/m ²	q _h	qc	q _{avg.}	Dev. %
Experim	ental Cond	litions: I	Hot Wate	Annu r Inlet To	llus Dimo emperatu	ensions: re: 60 ± 0	L=1.245 m 0.5 °C	$D_0 = 0.02$ Hot Wat	28 m D _i = er Mass Fl	0.0125 m owrate: 0.	1125 kg/s			
3000	0.8503	60.37	52.83	29.97	20.22	31.49	205.5	2012.3	23	225.22	3549.08	3456.6	3502.84	2.64
4000	1.1536	60.5	52.18	28.31	20.34	32.01	205.5	2012.3	36	352.53	3916.22	3834.33	3875.28	2.11
5000	1.4606	60.41	51.44	27.23	20.3	32.15	207.3	2030.4	50	489.62	4222.18	4221.73	4221.96	0.01
6000	1.7622	60.43	50.97	26.56	20.5	32.14	207.3	2030.4	68	665.88	4452.82	4454.32	4453.57	0.03
7000	2.075	60.37	50.05	25.83	20.43	32.02	208.3	2039.5	97	949.86	4857.62	4674.16	4765.89	3.85
8000	2.3769	60.33	49.77	25.56	20.5	31.94	208.3	2039.5	115	1126.1	4970.59	5017.29	4993.94	0.94
9000	2./311	60.44	49.25	24.43	19.82	32.61	209.2	2048.5	145	1419.9	5267.13	5253.46	5260.29	0.26
Exportin	3.0125	00.41	49.00 Lot Woto	24.5/ n Inlot T	20.5	32.1/	210.1	2057.0	1/5 or Moss Fl	1/15./	5341.1 2 ba/s	5305.21	3333.13	0.45
3000	0.8314	60.04	55 01	32.12	20.08	31 29	5767	5647 1	22	215 43	2 Kg/5 4209 1	4172.66	A190 88	0.87
4000	1.1263	59.77	53.97	30.46	20.31	31.43	577.6	5656.1	34	332.94	4853.44	4766.39	4809.92	1.81
5000	1.4358	60.38	53.99	28.97	20.06	32.65	578.3	5663.4	50	489.62	5347.15	5334.87	5341.01	0.23
6000	1.7473	60.38	53.5	27.8	20	33.04	578.5	5665.2	68	665.88	5757.18	5684.28	5720.73	1.27
7000	2.0308	60.43	53.24	27.63	20.5	32.77	578.5	5665.2	90	881.31	6016.59	6038.94	6027. 77	0.37
8000	2.3564	60.25	52.72	26.61	20.2	33.08	579.9	5678.8	110	1077.2	6301.1	6300.43	6300.77	0.01
9000	2.67	60.5	52.57	25.96	20.23	33.43	580.4	5683.3	139	1361.1	6635.82	6382.11	6508.97	3.9
10000	2.9785	60.25	52.15	25.65	20.2	33.26	580.4	5683.3	165	1615.7	6778.08	6775.43	6776.75	0.04
Experim	ental Conc	litions: I	lot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8258	70.49	61.21	32.9	19.91	39.42	203.6	1994.2	20	195.85	4368.1	4471.27	4419.69	2.33
<u>4000</u> 5000	1.1119	69.94 70.45	59.62	31.43	20.5	38.81	203.0	2016.8	31	303.30	485/.02	5533 7	4901./9	4.2
6000	1.4179	70.43	58.26	29.73	20.39	39.96	200	2010.8	64	626 71	5761 37	606066	5911.01	5.06
7000	2.0453	70.3	57.2	27.51	20.10	39.94	200.5	2023.9	89	871 52	6180 29	6406 58	6293 44	3.00
8000	2.3418	70.41	56.7	27.03	20.32	39.78	208.3	2039.5	106	1038	6453.3	6554.01	6503.65	1.55
9000	2.657	70.37	55.98	26.37	20.24	39.73	208.3	2039.5	130	1273	6773.37	6794.2	6783.78	0.31
10000	2.9711	70.33	55.43	25.86	20.2	39.67	208.7	2044	158	1547.2	7013.43	7015.28	7014.35	0.03
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8049	70.04	64.02	35.26	19.89	39.27	572.7	5608.1	18	176.26	5037.54	5155.15	5096.34	2.31
4000	1.0857	70.39	63.39	33.59	20.5	39.77	573.4	5615.3	29	283.98	5857.6	5922.72	5890.16	1.11
5000	1.3824	69.46	61.79	31.91	20.5	39.39	574.8	5628.9	43	421.07	6418.26	6575.05	6496.65	2.41
6000	1.6722	70.23	61.61	31.19	20.5	40.07	574.8	5628.9	60	587.54	7213.22	7452.16	7332.69	3.26
7000	1.9698	70.34	61.12	30.33	20.5	40.31	575.8	5638	82	802.98	7/15.3	8072.73	7894.01	4.53
8000	2.2717	70.4	60.59 50.74	29.56	20.46	40.48	5/5.8	5638	99	969.45	8209.01	8619.74	8414.38	4.88
9000	2.5891	70.14	59.74	28.48	20.39	40.49	577.6	5656 1	122	1194./	8705.51	8/33.0/	8/19.29 015/ 48	0.32
10000	2.0750	/0.14	57.1	Anni	lus Dim	ensions:	I = 1.245 m	$D_{\rm c} = 0.02$	28 m D=	0.0155 m	7241.00	7007.7	7154.40	1.07
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.908	60.2	51.92	30.65	20.05	30.7	71.3	697.95	52	509.2	3897.4	4013	3955.2	2.92
4000	1.2234	60.19	51.05	29.27	20.5	30.73	72.2	707.02	90	881.31	4302.2	4473.98	4388.09	3.91
5000	1.5541	59.6	49.97	27.85	20.5	30.6	73.1	716.08	138	1351.3	4532.84	4763.9	4648.3 7	4.97
6000	1.8829	60.44	49.93	27.13	20.38	31.39	72.2	707.02	198	1938.9	4947.06	5301.24	5124.15	6.91
7000	2.2153	60.24	49.22	26.32	20.46	31.27	73.1	716.08	262	2565.6	5187.11	5415.07	5301.09	4.3
8000	2.5577	60.46	48.81	25.65	20.25	31.58	73.1	716.08	335	3280.4	5483.66	5761.84	5622.75	4.95
9000	2.8943	60.19	48.15	25.04	20.36	31.33	73.1	716.08	419	4103	5666.44	5655.15	5660.8	0.2
Experim	3.2298	00.19	47.79 Lot Wate	24.0 / r Inlet T/	20.30	31.3	/3.1	/10.08 Hot Wet	510 ar Mass Fl	4994.1 owrsts: 0	2 ka/s	5812.59	3824.14	0.4
3000	0.8814	60.43	54.86	33 31	20 07	30.8	181	1776.6	50	10w1 ate: 0.	2 Kg/S 4660 98	4863.92	4762.45	4 26
4000	1.1904	60.03	53.62	31.72	20.07	30.65	182	1785.7	85	832.35	5363.89	5567.43	5465.66	3.72
5000	1.5243	60.46	53.23	30.03	20.03	31.79	181	1776.6	136	1331.8	6050.06	6355.79	6202.93	4.93
6000	1.8426	60.27	52.32	29.04	20.37	31.59	181	1776.6	195	1909.5	6652.56	6661.79	6657.17	0.14
7000	2.1622	60.25	52.06	28.4	20.5	31.7	182	1785.7	260	2546	6853.39	7123.33	6988.36	3.86
8000	2.4903	60.24	51.64	27.72	20.5	31.83	182	1785.7	330	3231.5	7196.48	7498.66	7347.57	4.11
9000	2.8163	60.12	51.31	27.26	20.5	31.82	181	1767.5	400	3917	7372.21	7940.61	7656.41	7.42
10000	3.1635	60.26	50.65	26.46	20.35	32.02	182	1785.7	502	4915.8	8039.26	8058.98	8049.12	0.25
Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			-
3000	0.8705	70.39	60.01	34.34	20.18	37.91	71.3	697.95	48	470.03	4885.87	5136.62	5011.24	5
4000	1.193	70.49	58.05	31.84	20.18	38.50	71.3	697.95	83	812.//	55/3.09	5/98.76	5085.92	5.97
5000	1.5255	70.20	5/5	28 75	20	38.80	72.2	716.09	102	1502.4	6302.11	6579.96	0183.13	5.73
7000	2.1773	70.15	56.12	20.75	20.25	38.97	72.2	707.02	255	24971	6669 87	6892.01	6780 91	3.28
8000	2,5043	70.3	55.6	27.31	20.42	38.95	73.1	716.08	331	3241 3	6919.29	7196.56	7057.92	3.93
9000	2.8325	70.45	55.3	26.79	20.47	39.08	74.1	725.15	420	4112.8	7131.11	7466.93	7299.02	4.6
10000	3.186	70.33	54.38	25.94	20.26	39.03	74.1	725.15	498	4876.6	7509.01	7547.14	7528.08	0.51
Experim	ental Cond	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8416	70.39	63.37	37.58	20.07	37.81	181	1767.5	45	440.66	5874.34	6138.48	6006.41	4.4
4000	1.1437	70.31	62.06	35.38	20.5	38.15	181	1767.5	77	754.01	6903.6	7090.37	6996.99	2.67
5000	1.4593	70.22	61.13	33.49	20.5	38.65	181	1767.5	125	1224	7606.51	7899.8	7753.16	3.78
6000	1.7955	69.57	59.79	31.44	20.28	38.82	181	1767.5	180	1762.6	8183.9	8353.26	8268.58	2.05
7000	2.1266	70.39	59.69	30.19	20.18	39.85	181	1776.6	253	2477.5	8953.76	8875.66	8914.71	0.88
8000	2.4624	70.49	59.27	29.26	19.95	40.27	181	1776.6	323	3162.9	9388.9	<u>9559.92</u>	9474.41	1.81
10000	2./54	70 2	58.03	29.24	20.49	39.39	182	17811	395 490	3008 4798 3	9509.75	10048.1	9018.91 101736	4.0/

Table C-13: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes(Enhancement Status: Wire Coil, e= 2.2 mm, p= 30 mm).

Re	O _c 10 ⁻⁴	and '	Te Tempera	mperatu ture Dif	res	(°C)		Pressu	re Drop]	Heat Trans (W	sfer Rate	
Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner	tube	Ann	ulus	q _h	q	q _{avg.}	Dev.
-us				Annı	l Ilus Dimo	ensions:	L=1.245 m	$D_0 = 0.02$	$28 \text{ m} \text{ D}_{i}=$	0.0125 m			I. g.	/0
Experim	ental Cond	litions: l	Hot Wate	r Inlet To	emperatu	tre: $60 \pm$	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s			
3000	0.848	59.95	53.05	30	20.43	31.27	202.7	1985.1	18	176.26	3247.83	3383.54	3315.69	4.09
4000	1.1482	60.22	52.26	28.56	20.5	31.71	203.6	1994.2	30	293.77	3746.77	3859.42	3803.1	2.96
6000	1.7652	60.39	50.9	26.45	20.46	32.33	203.0	2003.2	65	636.5	4466.94	4333.37	4438.75	1.27
7000	2.0723	60.5	50.5	26.03	20.34	32.27	205.5	2012.3	85	832.35	4707	4918.84	4812.92	4.4
8000	2.3852	60.49	50.05	25.37	20.39	32.31	205.5	2012.3	108	1057.6	4914.11	4955.37	4934.74	0.84
9000	2.6905	60.25	49.35	25.09	20.44	31.93	207.3	2030.4	131	1282.8	5130.63	5219.47	5175.05	1.72
Experim	ental Cond	itions: 1	49.19 Hot Wate	24.71 r Inlet To	20.51 emnerati	32.14	207.5 0.5 °C	Hot Wat	er Mass Fl	1500.0 owrate: 0.1	5255.01 2 kg/s	5520.7	3300.00	4.97
3000	0.8393	60.49	55.79	31.3	20.05	32.35	573.9	5619.9	16.5	161.57	3932.96	3936.32	3934.64	0.09
4000	1.1411	59.9	54.75	29.49	20.12	32.47	573.9	5619.9	28	274.19	4309.52	4458.54	4384.03	3.4
5000	1.4321	60.42	54.57	28.86	20.4	32.85	574.8	5628.9	42	411.28	4895.28	5052.1	4973.69	3.15
7000	2.0453	60.4	53.96	27.84	20.5	33.01	576.7	5647.1	60 76	587.54 744 22	5388.99	5315.8	5352.4 582112	0.18
8000	2.3428	60.5	52.98	26.81	20.5	33.08	576.7	5647.1	103	1008.6	6292.74	6166.17	6229.45	2.03
9000	2.6475	60.38	52.59	26.44	20.48	33.02	577.6	5656.1	126	1233.8	6518.67	6581.95	6550.31	0.97
10000	2.9646	60.44	52.06	25.94	20.31	33.11	577.6	5656.1	150	1468.9	7012.38	6962.59	6987.49	0.71
Experim	ental Conc	litions: 1	Hot Wate	r Inlet To	emperatu	$1re: 70 \pm 10$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	4191.00	117860	2.54
4000	1.1333	70.35	60.4	30.11	20.11	40.26	201.8	1970	26.5	259.5	4683.47	4725.36	4120.00	0.89
5000	1.4347	70.29	59.4	28.85	20.25	40.28	202.7	1985.1	39.5	386.8	5125.92	5145.13	5135.53	0.37
6000	1.7344	70.35	59.01	28	20.45	40.43	203.6	1994.2	56.5	553.27	5337.74	5460.96	5399.35	2.28
7000	2.035	70.2	58.27	27.45	20.5	40.21	203.6	1994.2	73	714.84	5615.45	5898.74	5757.09	4.92
9000	2.3453	70.34	57.23	26.72	20.5	40.08	205.5	2012.3	92	900.9	61/0.88	6455.87	6379.27	1.41
10000	2.9715	70.5	56.68	25.68	20.37	40.42	206.4	2021.3	141	1380.7	6505.07	6582.24	6543.66	1.18
Experim	ental Con	litions: 1	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	2 kg/s			
3000	0.8162	69.6	64.04	34	19.87	39.73	567.4	5556.4	15	146.89	4652.61	4806.66	4729.63	3.26
4000	1.1105	69.77 70.22	63.45	31.99	20.05	40.53	567.4	5556.4	25	244.81	5288.58	5527.25	5407.91	4.41
6000	1.5979	70.33	62.76	29.87	20.47	41.05	569.3	5574.6	53	502.52	5949.05 6460 1	663018	6545 14	2.52
7000	1.9997	70.40	61.82	29.19	20.3	41.32	569.3	5574.6	72	705.05	7112.8	7412.91	7262.86	4.13
8000	2.3043	70.49	61.36	28.5	20.26	41.54	569.7	5579.1	90	881.31	7639.98	7918.44	7779.21	3.58
9000	2.6212	70.17	60.64	27.55	20.24	41.5	571.1	5592.7	115	1126.1	7970.52	7989.73	7980.13	0.24
10000	2.9275	70.17	60.15	27.1 Anni	20.24	41.47	571.1 I =1 245 m	5592.7	137	1341.6	8380.55	8374.43	8377.49	0.07
Experim	ental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	tre: 60 ± 100	<u>L-1.243 п</u> 0.5 °С	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s			
3000	0.9221	60.05	51.56	29.61	19.72	31.13	69.4	679.82	43	421.07	3996.24	3803.08	3899.66	4.95
4000	1.2343	60.06	50.85	28.57	20.42	30.96	69.4	679.82	74	724.64	4335.15	4194.95	4265.05	3.29
5000	1.5625	59.58	49.85	27.38	20.5	30.75	69.4 70.2	679.82	110	1077.2	4579.91	4483.53	4531.72	2.13
7000	2.2256	59.99	49.02	25.88	20.47	31.33	70.3	688.89	202	1978.1	5078.85	4/14.1	5036.82	1.67
8000	2.5538	60.47	49.08	25.53	20.5	31.65	71.3	697.95	260	2546	5361.27	5358.87	5360.07	0.04
9000	2.8986	60.04	48.19	24.77	20.5	31.33	71.3	697.95	320	3133.6	5577.8	5163.75	5370.77	7.71
10000	3.2297	60	48.09	24.53	20.5	31.36	71.7	702.49	395 M	3868	5605.36	5430.37	5517.87	3.17
Experim	ental Cond	11tions: 1 59.93	Hot Wate	r Inlet 1	19 84	31.05	0.5 °C	Hot Wat	er Mass Fl 41	lowrate: 0. 401 49	2 Kg/S 4619 14	4593.06	4606 1	0.57
4000	1.2136	59.93	53.85	30.42	20.07	31.6	181	1767.5	70	685.47	5087.74	5236.93	5162.34	2.89
5000	1.5401	59.8	52.94	29	20.15	31.78	181	1776.6	105	1028.2	5740.45	5683.64	5712.04	0.99
6000	1.8748	59.5	52.21	27.91	19.98	31.91	182	1785.7	154	1508	6100.27	6200.63	6150.45	1.63
7000	2.2031	59.81	51.88	27.19	20.07	32.21	182	1785.7	205	2007.4	6635.82	6542.75	6589.29	1.41
9000	2.341/	59.4	51.05	26.76	20.6	31.53	182	1794.7	316	2407.5 3094.4	6987.28	7269.45	7128.36	3.96
10000	3.1925	59.97	50.93	25.93	20.09	32.41	183	1794.7	389	3809.2	7564.67	7772.1	7668.39	2.71
Experim	ental Conc	litions: 1	Hot Wate	r Inlet T	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	lowrate: 0.	1125 kg/s			
3000	0.8838	70.1	59.64	33.19	19.95	38.28	69	675.29	40	391.7	4923.52	4876.93	4900.22	0.95
4000	1.1963	69.91 69.55	57.48 57.37	29.68	20.48	38 35	08.5 69	070.76 675.29	69 105	0/3.6/ 1028 2	5380.1 5733-13	5391.16	5585.65 5779.80	0.21
6000	1.8483	69.55	56.58	29.68	20.5	38.44	69.4	679.82	150	1468.9	6104.98	6273.91	6189.45	2.73
7000	2.179	69.49	55.94	27.72	20.5	38.52	69.4	679.82	200	1958.5	6377.99	6561.33	6469.66	2.83
8000	2.51	69.6	55.49	27.03	20.5	38.66	69.9	684.36	255	2497.1	6641.58	6836.36	6738.97	2.89
9000	2.8527	69.7	54.96	26.24	20.41	38.84	71.3	697.95	310	3035.6	6938.12	6943.45	6940.78	0.08
Exnerim	ental Corr	09.7 litions• 1	1 54.40 Hot Wate	23.73 r Inlet Ta	20.41 emperatu	38.79 re: 70 + 1	0.5 °C	097.95 Hot Wat	1 - 385 er Mass Fl	3770.1 owrate• 0	/1/3.4/ 2 kg/s	/10/.0/	/140.3/	0.92
3000	0.8565	69.5	62.66	35.9	20.12	37.89	180	1758.5	38	372.11	5723.71	5630.8	5677.26	1.64
4000	1.1613	69.47	61.58	33.97	20.5	38.22	179	1749.4	62	607.13	6602.35	6518.68	6560.52	1.28
5000	1.483	70.08	61.25	32.24	20.28	39.38	179	1749.4	98	959.65	7388.94	7393.4	7391.17	0.06
6000	1.8055	70.08	60.49	30.94	20.28	39.67	180	1758.5	145	1419.9	8024.91	8024.1	8024.51	0.01
8000	2.1218	70.5	59.8	29.27	20.40	40.23	180	1/58.5	188 241	1841	6342.9 8920 29	0557.05 9161.67	0439.9/ 9040 98	2.67
9000	2.7997	70.44	59.35	28.33	19.95	40.74	181	1767.5	301	2947.5	9280.11	9784.59	9532.35	5.29
10000	3.1178	70.08	58.35	27.81	20.27	40.14	181	1767.5	379	3711.3	9812.08	9802.57	9807.32	0.1

Table C-14: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e= 2.2 mm, p= 40 mm).

			m			-						a . a		
Re	O ₂ 10 ⁻⁴	and	I el	mperatu	res	$(0\mathbf{C})$		Pressui	e Drop		1	Heat I rans	ster Rate	
INC	21.10	anu	l empera	ture Dil	lerence		Innor	tubo	Ann	ահոշ		(**)	D
Annul	(m^3/s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	mmU.O	N/m ²	AIII	N/m ²	q _h	q	Qave.	Dev.
-us								N/m	mmH ₂ O	N/m	1	I.	Ia.e.	/0
Fynerim	antal Cond	litions: I	Lot Wate	ANNU r Inlet Ta	nus Dime	$rac{60 \pm 1}{100}$	L=1.245 m 0.5 °C	$\frac{1}{1} D_0 = 0.02$	28 M Di= ar Mass Fl	0.0125 M	1125 ka/s			
3000	0.8659	59.8	52.9	28.81	19.77	32.05	200.9	1967	53.8	527.3	3249.13	3264.46	3256.79	0.47
4000	1.1618	60.07	52.13	27.92	20.11	32.09	201.8	1976	90	881.31	3736.86	3784.3	3760.58	1.26
5000	1.4639	60.3	51.56	27.02	20.31	32.25	201.8	1976	134	1312.2	4115.17	4097.21	4106.19	0.44
6000	1.7713	60.37	50.97	26.35	20.26	32.34	202.7	1985.1	188	1841	4424.27	4499.91	4462.09	1.7
7000	2.089	60.28	50.33	25.55	20.13	32.41	203.2	1989.6	251	2457.9	4685.62	4723.48	4704.55	0.8
8000	2.3907	60.32	49.88	25.24	20.32	32.24	203.6	1994.2	317	3104.2	4912	4907.19	4909.6	0.1
9000	2.6996	60.24	49.38	24.91	20.33	32.09	204.6	2003.2	391	3828.8	5111.69	5158.49	5135.09	0.91
10000	3.0126	60.47	49.23	24.58	20.29	32.29	206	2016.8	475 	4651.4	5290.32	5392.23	5341.27	1.91
Experim	ental Conc		fot wate	r Inlet 10	20 06	$1re: 60 \pm 12$	570.9	Hot Wat	er Mass FI	owrate: 0.	2 Kg/S 2700 16	2050 05	2770 51	42
4000	1 1 3 9 7	59.95	54.62	29.6	20.00	32.38	571.6	5597.2	86	842.14	4462.58	4505 22	4483.9	0.95
5000	1.4285	60.43	54.39	29.02	20.12	32.65	573	5610.8	128	1253.4	5053.95	5098.97	5076.46	0.89
6000	1.731	60.26	53.64	28.23	20.39	32.64	573.9	5619.9	179	1752.8	5537.14	5659.64	5598.39	2.19
7000	2.0324	60.32	53.21	27.69	20.37	32.74	573.9	5619.9	237	2320.8	5945.67	6204.88	6075.27	4.27
8000	2.334	60.36	52.83	27.21	20.43	32.77	573.9	5619.9	302	2957.3	6299.55	6600.15	6449.85	4.66
9000	2.6454	60.27	52.37	26.61	20.38	32.82	574.6	5626.2	375	3672.1	6611.7	6874.52	6743.11	3.9
10000	2.9694	60.1	51.87	25.89	20.22	32.91	574.6	5626.2	460	4504.5	6890.93	7023.56	6957.24	1.91
Experim	iental Cond	litions: 1	Hot Wate	r Inlet To	emperatu	$re: 70 \pm 10$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	1002 (1005 50	
3000	0.8337	69.91	61.47	31.85	20.1	39.69	198.6	1944.3	50	489.62	3971.58	4083.6	4027.59	2.78
5000	1.130	70.04	59.43	29 34	20 32	40.13	199	1948.8	127	042.14	4018.29	4700.35	4009.32	3.03
6000	1.7314	70.31	58.57	29.34	20.32	40.03	199	1948.8	178	1743	5529.78	5559.85	5544.81	0.54
7000	2.0369	70.24	57.76	27.49	20.38	40	199.9	1957.9	238	2330.6	5876.31	6040.12	5958.21	2.75
8000	2.3458	70.26	57.14	26.81	20.39	40.01	199.9	1957.9	305	2986.7	6176.48	6281.68	6229.08	1.69
9000	2.6454	70.43	56.75	26.51	20.48	39.97	200.9	1967	376	3681.9	6441.26	6653.83	6547.54	3.25
10000	2.957	70.37	56.18	26	20.47	39.88	200.9	1967	455	4455.5	6678.11	6821.35	6749.73	2.12
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8216	69.98	64.57	33.3	19.97	40.51	567.9	5561	48	470.03	4524.01	4564.84	4544.43	0.9
4000	1.1011	70.43	63.7	32.58	20.23	40.6	568.1	5562.8	81	793.18	5629.97	5667.97	5648.97	0.67
5000	1.5889	70.45	61.76	31.07	20.32	40.55	568.3	5565.5	121	1184.9	048/.81	7403 10	0529.58	1.28
7000	1.0829	70.33	60.93	29.77	20.22	40.49	569.8	5580	227	2222.9	7781 33	7908 76	7845.05	4.13
8000	2.2807	70.41	60.5	29.19	20.48	40.62	570.2	5583.6	289	2830	8294.68	8283.31	8289	0.14
9000	2.5789	70.44	59.99	28.76	20.46	40.59	571.1	5592.7	358	3505.7	8747.48	8925.88	8836.68	2.02
10000	2.8876	70.48	59.54	28.11	20.43	40.72	571.1	5592.7	433	4240.1	9152.52	9248.73	9200.63	1.05
				Annu	ılus Dimo	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0155 m				
Experim	iental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.9115	60.24	52.21	30.19	20.17	31.03	71.3	697.95	144	1410.1	3780.95	3808.09	3794.52	0.72
4000	1.2468	60.23	51.53	28.05	20.05	31.83	71.7	702.49	250	2448.1	4096.26	4160.14	4128.2	1.55
5000	1.5/2	60.25	51.03	26.90	20.39	31.95	72.2	716.09	577	5121 4	4540.84	4307.88	4524.50	0.76
7000	2.2484	60.49	50.48	25.21	20.40	32.67	73.1	716.08	702	6874.3	4709.63	4615.11	4662.37	2.03
8000	2.5868	60.47	50.15	24.72	20.21	32.76	73.1	716.08	892	8734.8	4855.99	4867.48	4861.73	0.24
9000	2.9047	60.21	49.62	24.61	20.48	32.26	73.1	716.08	1098	10752	4985.09	5005.06	4995.07	0.4
10000	3.257	60.32	49.49	24.02	20.29	32.62	73.6	720.61	1343	13151	5100.57	5065.1	5082.83	0.7
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8871	59.87	54.22	32.85	19.95	30.5	182	1785.7	135	1322	4726.29	4769.74	4748.02	0.92
4000	1.2125	60.13	53.92	30.45	20.12	31.69	182	1785.7	234	2291.4	5198.67	5222.07	5210.37	0.45
5000	1.5571	00.01 50.04	53.36	29.03	20.29	32.01	182	1/85./	515	5042 1	5864 46	5072.08	5021 24	0.00
7000	2 2084	59.94 59.74	52.93	27.01	20 21	32.03	187	1790.2	674	6600 1	6117 57	6107 37	5741.30 6117.47	0.17
8000	2.5506	59.89	52.32	26.03	20.21	33.03	182	1794.7	860	8421.4	6336.84	6298.94	6317.89	0.6
9000	2.8654	60.14	52.34	25.87	20.39	33.09	183	1794.7	1062	10400	6530.24	6550.41	6540.33	0.31
10000	3.2172	60.03	52.02	25.21	20.15	33.32	183	1794.7	1305	12779	6703.24	6789. 77	6746.51	1.28
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8813	70.23	60.16	33.2	20.19	38.48	69.4	679.82	133	1302.4	4740.95	4778.89	4759.92	0.8
4000	1.2192	70.11	58.92	30.25	19.83	39.48	69.4	679.82	243	2379.5	5265.68	5296.98	5281.33	0.59
5000	1.5288	70.35	58.3	29.41	20.39	39.4	70.3	688.89	358	3505.7	5672.69	5749.93	5711.31	1.35
7000	1.8927	70.44	57.08	2/.44	19.62	40.48	71.2	088.89	518	50/2.5	6286 41	6140 76	6218 00	2.77
8000	2.2030	70.30	56.61	26.50	20.27	39.99	71.3	697.95	850	8372 5	6520.41	6494 97	6512 42	0.54
9000	2.8694	70.40	56.17	25.89	20.30	40 11	72.2	707.02	1075	10527	6744.8	6751 14	6747 97	0.09
10000	3.2104	70.36	55.62	25.41	20.13	40.03	72.2	707.02	1312	12848	6936.98	7068.03	7002.5	1.87
Experim	ental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8597	70.13	63.27	35.74	19.93	38.69	181	1767.5	128	1253.4	5742.99	5663.13	5703.06	1.4
4000	1.1688	70.22	62.19	34.01	19.87	39.19	181	1767.5	216	2115.2	6719.44	6887.72	6803.58	2.47
5000	1.4845	69.97	61.03	32.31	20.12	39.26	182	1785.7	332	3251.1	7476.84	7543.17	7510.01	0.88
6000	1.8261	70.07	60.4	30.52	19.69	40.12	181	1767.5	490	4798.3	8095.68	8245.9	8170.79	1.84
7000	2.1278	70.43	60.13	30	20.32	40.12	181	1776.6	627	6139.8	8618.9	8587.93	8603.41	0.36
8000	2.4438	70.5	59.66	29.41	20.47	40.13	182	1/81.1	820	8029.8	9072.13	9109.98	9091.06 0702.00	0.42
10000	3,1269	70.23	58.47	27.71	20.41	40.03	182	1785.7	1202	11770	9829.53	9904.25	9866.89	0.45

Table C-15: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Rib, e= 2.2 mm, p= 10 mm).

Do	0 10-4		Te	mperatu	res	(00)	,	Pressu	e Drop]	Heat Trans	sfer Rate	
Annul	Q _c ¹⁰	and	Tempera	ture Dif	terence	(°C)	Inner	tube	Ann	ulus		(W)	Dev.
-us	(m ³ /s)	T _{h1}	I _{h2}	I _{c1}	1 _{c2}	LMTD	mmH ₂ O	N/m ²	mmH ₂ O	N/m ²	q _h	qc	q _{avg.}	%
Experim	ental Cond	litions: I	lot Wate	Annu r Inlet To	<u>ilus Dimo</u> emperatu	ensions: ire: 60 ± 1	<u>L=1.245 m</u> 0.5 °C	$\frac{D_0 = 0.02}{Hot Wat}$	<u>28 m </u>	<u>0.0125 m</u> owrate: 0.	1125 kg/s			
3000	0.8512	59.92	52.36	30.09	20	31.08	206.4	2021.3	43	421.07	3556.99	3581.21	3569.1	0.68
4000	1.1503	60.07 60.3	51.4 50.76	28.69 27.77	20.21 20.33	31.28 31.47	207.3	2030.4 2039.5	71 110	695.26 1077.2	4081.7 4488.69	4067.99 4502.63	4074.84 4495.66	0.34
6000	1.7652	60.3	50.06	26.75	20.16	31.69	208.3	2039.5	155	1517.8	4821.23	4852.36	4836.8	0.64
7000 8000	2.0625	60.21 60.32	49.37 48.96	26.35	20.43	31.34 31.56	209.2	2048.5	202	1978.1 2546	5102.39 5345.94	5093.24 5319.74	5097.81 5332.84	0.18
9000	2.6868	60.14	48.33	25.28	20.37	31.28	211	2066.7	321	3143.4	5560.76	5503.54	5532.15	1.03
10000 Experim	3.0049 ental Cond	60.17 litions: I	47.95 Tot Wate	24.81 r Inlet To	20.28 emperatu	31.36 tre: 60 ±	212 0.5 °C	2075.7 Hot Wat	391 er Mass Fl	3828.8 owrate: 0.1	5752.93 2 kg/s	5679.12	5716.03	1.29
3000	0.8339	59.97	55.09	31.89	20.04	31.43	576.7	5647.1	41	401.49	4086.11	4119.27	4102.69	0.81
4000	1.1314	59.83 60.4	54.03 53.89	30.31 29.63	20.06	31.69 32.06	578.5 579.1	5665.2 5670.6	71 105	695.26 1028.2	4852 5446.07	4835.24 5398.34	4843.62 5422.2	0.35
6000	1.7259	60.2	53.11	28.59	20.29	32.21	579.5	5674.3	148	1449.3	5931.46	5973.83	5952.64	0.71
7000 8000	2.0283	60.22 60	52.64 52	27.87	20.37	32.31	581.3 580.4	5692.4 5683.3	196 253	1919.3 2477.5	6341.85 6697.34	6344.27 6621.83	6343.06 6659.59	0.04
9000	2.6475	60	51.62	26.64	20.28	32.34	581.3	5692.4	312	3055.2	7010.91	7023.69	7017.3	0.18
10000 Experim	2.9557 ental Cond	60.11 litions: I	51.4 Tot Wate	26.24 r Inlet To	20.27 emperatu	32.48 re: 70 ±	583.2 0.5 °C	5710.5 Hot Wat	378 er Mass Fl	3701.5 owrate: 0.	7291.41 1125 kg/s	7360.66	7326.03	0.95
3000	0.8284	69.85	60.35	32.82	19.71	38.8	206	2016.8	40	<i>391.7</i>	4473.81	4526.72	4500.27	1.18
4000	1.1239	69.96 70.1	58.99 57.99	<u>31.09</u> 29.53	<u>19.87</u> 20.03	38.99 39.25	206.9 207.3	2025.9 2030 4	70 106	685.47 1038	5164.59 5700.4	5257.54 5653.73	5211.07 5677.07	1.78 0.82
6000	1.728	69.92	56.88	28.72	20.05	38.97	207.3	2030.4	148	1449.3	6138.19	6248.02	6193.11	1.77
7000	2.0322	70.21	56.38 55.74	27.91	20.16	39.18 39.19	207.3	2030.4	197 252	1929.1 2467.7	6508.33 6828.97	6568.62 6873.94	6538.47 6851.45	0.92
9000	2.6561	70.23	55.12	26.52	20.17	39.19	207.8	2034.9	314	3074.8	7111.79	7090.97	7101.38	0.00
10000	2.9721	70.17	54.52	26.03	20	39.14	207.8	2034.9	380	<i>3721.1</i>	7364.78	7476.5	7420.64	1.51
3000	0.8004	69.91	63.62	35.79	19.88	38.73	577.8	5658	38	<i>372.11</i>	2 kg/s 5264.4	5305.92	5285.16	0.79
4000	1.0887	70.23	62.82	33.61	20.23	39.53	578.1	5660.7	65	636.5	6197	6070.72	6133.86	2.06
6000	1.6835	69.95	62.12 60.97	32.32	20.3	<u>39.92</u> 39.91	578.5	5665.2	99 141	969.45 1380.7	6920.38 7511.43	7530.82	6915.34 7521.13	0.15
7000	1.9826	70.16	60.59	30.01	20.24	40.25	578.5	5665.2	187	1831.2	8011.15	8076.42	8043.79	0.81
8000	2.2722	70.31	60.22 59.8	29.51	20.49	40.26	579.5 579.9	5674.3 5678.8	236	2311	8444.03 8825.85	8545.91	8494.97 8794 39	1.2
10000	2.8876	70.5	59.54	28.11	20.43	40.73	580.4	5683.3	361	3535	9167.41	9248.73	9208.07	0.88
Fynerim	ental Conc	litions: I	Tot Wate	Annu r Inlet To	ilus Dime	ensions: re: 60 + 1	L=1.245 m	$\frac{D_0 = 0.02}{Hot Wat}$	28 m D _i = er Mass Fl	0.0155 m	1125 kg/s			
3000	0.9153	59.94	51.86	29.97	20.02	30.89	71.3	697.95	113	1102.9	3804.1	3797.43	3800.76	0.18
4000	1.2369	60.03	51.12	28.41	20.39	31.17	72.2	707.02	191	1870.3	4193.82	4137.05	4165.44	1.36
6000	1.505	59.98 60.21	50.43	27.29	20.45	31.51	72.7	707.02	288 402	2820.2 3936.5	4496.12	4464.69	4480.41	0.7
7000	2.2424	60.01	49.49	25.5	20.23	31.81	73.1	716.08	530	5190	4951.95	4930.07	4941.01	0.44
8000	2.5835	60.15 59.81	49.25	24.91	20.13	32.08	74.1	725.15	693 854	6786.1 8362.7	5132.85 5292.41	5152.18 5383.87	5142.51 5338.14	0.38
10000	3.2501	60.02	48.47	24.22	20.27	31.85	73.1	716.08	1045	10233	5435.14	5354.66	5394.9	1.49
Experim	ental Conc	litions: I	Tot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	1697 5	1671 88	0.54
4000	1.2137	60.15	53.86	30.51	19.97	31.72	181	1767.5	188	1841	5266.73	5333.68	5300.2	1.26
5000	1.5401	60.12	53.27	29.02	20.13	32.11	181	1772.1	283	2771.2	5735.59	5709.33	5722.46	0.46
7000	2.1842	59.86	52.75	28.34	20.42	32.02	181	1776.6	510	3819 4994.1	6442.57	6131.02	6432.48	0.2
8000	2.5138	59.6	51.57	26.94	20.46	31.88	181	1776.6	660	6463	6723.14	6794.25	6758.69	1.05
9000	2.8568	60 60.11	51.67 51.52	26.24 25.82	20.28	32.56	182 182	1785.7	825	8078.7 9802.2	6970.62 7192	7102.55	7036.59	1.87
Experim	ental Conc	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	100001		
3000	0.8789	70.11	59.42 58.39	33.66	19.98	37.92	69.4 70.1	679.82 686.17	103	1008.6	5032.39 5544.95	5011.06	5021.73 5588 32	0.42
5000	1.5283	70.17	57.66	29.69	20.14	39.03	69.4	679.82	260	2546	5942.51	6085.7	6014.11	2.38
6000	1.8643	70.11	56.8	28.22	20.16	39.2	70.3	688.89	385	3770.1	6267.35	6266.74	6267.04	0.01
8000	2.2041	70.24	55.89	26.52	20.03	39.61	71.3	697.95	663	6492.3	6779.9	6713.17	6746.53	0.02
9000	2.8509	69.8 7	55.02	26.32	20.38	38.93	70.3	688.89	802	7853.5	6989.75	7063.86	7026.81	1.05
10000 Experim	3.2097 iental Conc	70.15 litions: 1	54.9 Tot Wate	25.44 r Inlet To	20.12 20.12	39.54 are: 70 ±	70.3 0.5 °C	688.89 Hot Wate	985 985 Fl	9645.5 owrate: 0.1	7177.47 2 kg/s	7121.96	7149.71	0.78
3000	0.8533	69.77	62.57	36.41	19.96	37.8	181	1772.1	94	920.48	6021.47	5847.51	5934.49	2.93
4000	1.16	69.93 70.12	61.54 60.81	34.57	20 20 22	38.37 39.04	181 181	1767.5	162 252	1586.4 2467 7	7016.77	7043.24	7030.01	0.38
6000	1.7961	70.29	60.23	31.42	20.27	39.41	182	1785.7	365	3574.2	8419.58	8348.6	8384.09	0.85
7000	2.1242	70.32	59.62	30.31	20.16	39.73	182	1785.7	502	4915.8	8952.9	8989.58	8971.24	0.41
9000	2.4394	70.31	59.00	29.00	20.38	39.00	182	1781.1	769	7530.3	9822.38	9439.22 9774.87	9427.05 9798.62	0.20
10000	3.1097	70.23	58.06	28.09	20.22	39.95	182	1785.7	939	9195	10186.9	10206.6	10196.7	0.19

Table C-16: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Rib, e= 2.2 mm, p= 20 mm).

Re	Qc 10-4	and '	Te Tempera	mperatu ture Dif	res ference	(°C)		Pressu	e Drop]	Heat Trans (W	sfer Rate	
Annul -us	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube N/m ²	Ann mmH ₂ O	ulus N/m ²	q _h	qc	q _{avg.}	Dev. %
Exposim	ontal Cand	litions	Lot Weter	Annu n Inlot T	ilus Dim	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m	1125 ka/s			
3000	0.8462	60.33	52.95	30.26	20.36	31.31	203.6	1994.2	31.6	309.48	3472.92	3492.68	3482.8	0.57
4000	1.1541	60.43	52.07	28.4	20.21	31.95	204.6	2003.2	55	538.58	3933.84	3941.99	3937.91	0.21
5000	1.4592	60.43	51.31	27.31	20.3	32.05	203.6	1994.2	81	793.18	4291.36	4266.51	4278.94	0.58
6000	1.7742	60.41	50.67	26.31	20.16	32.27	207.3	2030.4	115	1126.1	4583.48	4551.68	4567.58	0.7
7000	2.0726	60.45	50.19	25.95	20.41	32.08	207.3	2030.4	149	1459.1	4830.46	4789.73	4810.1	0.85
9000	2.3863	60.32	49.6	25.39	20.33	32.02	207.3	2030.4	240	1899./	5233 12	5037.34	5208 11	0.14
10000	3.0133	60.33	48.85	24.57	20.39	32.03	208.5	2037.5	290	2839.8	5401.93	5393.51	5397.72	0.16
Experim	ental Cond	litions:	Hot Wate	r Inlet To	emperati	ire: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	00,001		0110
3000	0.8244	60.34	55.2	32.75	20.21	31.15	576.7	5647.1	30	293. 77	4298.41	4309.16	4303.79	0.25
4000	1.1268	60.3	54.42	30.67	20.06	31.94	575.8	5638	52	509.2	4922.8	4984.67	4953.73	1.25
5000	1.4229	60.4	53.94	29.5	20.33	32.24	576.7	5647.1	78	763.81	5407.12	5440.55	5423.83	0.62
6000	1.7288	60.42	53.49	28.45	20.28	32.58	577.6	5656.1	109	1067.4	5802.83	5890.41	5846.62	1.5
8000	2.0425	60.22	52.89	27.43	20.2	32.74	5785	5665.2	147	1439.5	6427.22	6426.05	6426.64	0.35
9000	2.6604	60.33	52.34	26.22	20.21	33.08	579.5	5674.3	232	2271.8	6682.86	6592.07	6637.46	1.37
10000	2.9797	60.21	51.95	25.68	20.13	33.16	580.4	5683.3	283	2771.2	6911.54	6899.14	6905.34	0.18
Experim	ental Cond	litions: 1	Hot Wate	r Inlet T	emperati	ire: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8161	70.37	60.86	33.62	20.27	38.64	205.5	2012.3	28	274.19	4476.37	4540.32	4508.35	1.42
4000	1.1177	70.33	59.46	31.24	20.22	39.16	205.5	2012.3	50	489.62	5117.03	5134.75	5125.89	0.35
5000	1.4238	70.21	58.28	29.64	20.13	39.35	205.5	2012.3	77	754.01	5613.97	5646.13	5630.05	0.57
6000	1.7421	69.92	57.13	28.11	19.95	39.45	205.5	2012.3	111	1087	6019.99	5928.78	5974.39	1.53
8000	2.0343	70.47	56.3	27.12	20.20	39.64	205.5	2012.5	145	1419.9	6660 65	6686.1	0340.34 6673 37	0.55
9000	2.6485	70.43	55.72	26.57	20.28	39.48	207.3	2030.4	229	2242.5	6922.95	6904.62	6913.78	0.38
10000	2.9601	70.42	55.21	26.09	20.29	39.44	209.2	2048.5	279	2732.1	7157.58	7161.93	7159.75	0.06
Experim	ental Cond	litions: 1	Hot Wate	r Inlet T	emperati	ire: 70 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.798	69.91	63.79	35.81	20.14	38.68	571.1	5592.7	29	283.98	5121.54	5209.9	5165.72	1.71
4000	1.0863	70.03	62.68	33.81	20.23	39.25	570.1	5582.7	48	470.03	6149.5	6147.83	6148.66	0.03
5000	1.3735	70.33	62.03	32.5	20.5	39.65	571.1	5592.7	74	724.64	6946.85	6869.6	6908.22	1.12
6000	1.6776	69.95	60.87	31.22	20.18	39.7	571.1	5592.7	105	1028.2	7598.33	7721.33	7659.83	1.61
2000	1.9/80	70.00	60	30.19	20.24	39.98	572.0	5610.0	140	15/0.9	8149.15	8630.82	81/8./8	0.72
9000	2.2097	70.31	59 54	29.01	20.49	40.1	574.8	5628.9	217	2124.9	9047 16	9131.08	9028.30	0.03
10000	2.882	70.25	58.99	28.28	20.43	40.24	576.7	5647.1	226	2213.1	9423.64	9434.99	9429.31	0.12
				Annu	ilus Dim	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0155 m				
Experim	ental Cond	litions: 1	Hot Wate	r Inlet T	emperati	ire: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s		1	
3000	0.9065	60.17	51.64	30.72	20.13	30.47	72.2	707.02	87.6	858.02	4013.38	4002.41	4007.9	0.27
4000 5000	1.2254	60.13 50.91	50.6	29.18	20.45	30.55	72.2	707.02	148	1449.3	4485.57	4460.7	44/3.13	0.50
6000	1.5559	59.01 60.43	49.5	27.91	20.45	30.45	73.1	716.08	314	2205.5	4051.05	4034.04 5239.63	4045.24	0.35
7000	2.2163	60.27	48.79	26.31	20.43	31.08	73.1	716.08	418	4093.2	5404.1	5436.08	5420.09	0.59
8000	2.555	60.41	48.46	25.63	20.36	31.32	73.1	716.08	545	5336.8	5623.28	5617.2	5620.24	0.11
9000	2.8993	60.28	47.92	25.03	20.22	31.32	73.1	716.08	669	6551.1	5816.6	5818.15	5817.38	0.03
10000	3.243	60.21	47.49	24.54	20.14	31.33	74.1	725.15	802	7853.5	5989.54	5953.53	5971.53	0.6
Experim	ental Cond	litions:	Hot Wate	r Inlet To	emperatu	$1re: 60 \pm 1$	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	2 kg/s	1000.01	(001.01	0.25
3000	0.8822	60.33	54.51	33.3	20	30.62	182	1785.7	85	832.33	48/3.32	4890.31	4881.81	0.35
5000	1.5234	60.49	52.99	30.04	20.44	31.67	182	1785.7	221	2164.1	6279	6333.12	6306.06	0.20
6000	1.8433	60.22	52.12	29.06	20.32	31.48	183	1790.2	303	2967.1	6780.71	6717.88	6749.29	0.93
7000	2.1617	60.14	51.53	28.46	20.46	31.37	183	1794.7	400	391 7	7204.9	7211.85	7208.37	0.1
8000	2.492	60.32	51.27	27.7	20.46	31.71	183	1794.7	505	4945.2	7572.35	7524.64	7548.49	0.63
9000	2.8231	60.23	50.79	27.13	20.42	31.72	183	1794.7	645	6316.1	7896.46	7901.07	7898.77	0.06
10000	3.1607	60.26	50.47	26.58	20.31	31.89	183	1794.7	775 Marie Fl	7589.1	8186.39	8266.45	8226.42	0.97
Experim	ental Cond	11tions: 1 70.28	50 10	r Inlet 10	20 13	37.43	713	Hot Wat	78 P	owrate: 0.	5218 05	5185 11	5202.03	0.65
4000	1.1908	70.28	58.13	31.92	20.13	38.22	71.3	697.95	137	1341.6	5824.8	5782.74	5803.77	0.03
5000	1.5241	70.29	56.92	30.04	20.03	38.54	71.3	697.95	201	1968.3	6294.74	6361.42	6328.08	1.05
6000	1.8464	70.11	55.92	28.94	20.29	38.33	71.3	697.95	295	2888.8	6678.7	6660.13	6669.41	0.28
7000	2.1795	70.32	55.44	27.92	20.28	38.67	72.2	707.02	401	3926.7	7003.34	6944.61	6973.98	0.84
8000	2.5051	70.25	54.77	27.33	20.37	38.51	73.1	716.08	510	4994.1	7284.55	7272.2	7278.38	0.17
9000	2.8345	70.42	54.42	26.81	20.39	38.62	73.1	716.08	645	6316.1	7532.6	7590.37	7561.48	0.76
10000 Exmani	<u>5.1797</u>	/0.34	53.87	26.12	20.25	<u>58.68</u>	73.1	716.08	761 m Mass F	/452	7754.49 2 kg/s	7784.17	7769.33	0.38
Experim 3000	0.8417	70 32	67 80	37.61	20 03	110: 70±	180	1758 5	76	744 22	2 Kg/S 6215 02	6163.68	6180 8	0.84
4000	1.1438	70.29	61.62	35.42	20.05	37.93	180	1758.5	135	1322	7258.48	7134.04	7196.26	1.73
5000	1.4593	70.18	60.54	33.53	20.46	38.34	181	1767.5	195	1909.5	8067.16	7948.45	8007.8	1.48
6000	1.7699	69.83	59.4	32.54	20.48	38.1	181	1767.5	280	2741.9	8727.89	8896.44	<u>8812.17</u>	1.91
7000	2.1046	70.41	59.31	31.07	20.23	39.21	181	1767.5	380	3721.1	9286.53	9510.94	9398.73	2.39
8000	2.4677	70.23	58.55	29.25	19.77	39.87	181	1776.6	480	4700.3	9770.45	9755.7	9763.08	0.15
9000	2.7574	69.91 70.17	57.52	29.26	20.36	38.98	181	1776.6	623 710	0100.7 6952.6	10197.3	10233.2	10215.2	0.35

Table C-17: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Rib, e= 2.2 mm, p= 30 mm).

Re	Qc 10-4	and]	Te Fempera	mperatu ture Dif	res ference	(°C)		Pressur	e Drop]	Heat Trans (W	sfer Rate	
Annul	(m ³ /s)	T _{h1}	T _{h2}	T _{c1}	T _{c2}	LMTD	Inner mmH ₂ O	r tube N/m ²	Ann mmH ₂ O	ulus N/m ²	զհ	qc	q _{avg.}	Dev. %
-us				Annu	ılus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	28 m D _i =	0.0125 m	_	_	- 8	,,,
Experin	nental Conc	litions: I	lot Wate	r Inlet To	emperatu	re: 60 ±	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8477	60.33	53.06	30.10	20.36	31.45	203.2	1989.6	27	264.39	3423.56	3442.47	3433.02	0.55
5000	1.4514	60.43	51.89	27.60	20.21	31.80	203.6	1994.2	62	607.13	4314.84	4309.97	4312.41	0.42
6000	1.7699	60.20	50.36	26.52	20.16	31.91	207.3	2030.4	85	832.35	4632.96	4695.57	4664.27	1.34
7000	2.0661	60.45	50.04	26.13	20.50	31.87	206.4	2021.3	111	1087	4901.92	4852.22	4877.07	1.02
9000	2.3805	60.12 60.48	49.21	25.60	20.33	31.62	207.3	2030.4	139	1361.1	5134.90	5233.49	5184.19	1.90
10000	3.0045	60.33	48.59	24.74	20.35	31.77	208.3	2039.5	220	2154.3	5524.24	5490.42	5507.33	0.61
Experin	nental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8301	60.34	55.65	32.00	20.34	31.70	575.2	5632.6	26	254.6	3928.22	4034.63	3981.42	2.67
5000	1.4221	60.40	54.09	29.49	20.30	32.15	576.7	5647.1	60	587.54	5292.75	5395.94	5344.34	1.12
6000	1.7296	60.42	53.51	28.41	20.28	32.62	577.6	5656.1	83	812.77	5779.77	5864.26	5822.01	1.45
7000	2.0394	60.22	52.82	27.45	20.31	32.64	577.6	5656.1	109	1067.4	6191.54	6073.33	6132.43	1.93
9000	2.3361	60.43 60.33	52.60	27.11	20.45	32.73	577.6	5655.1	137	1341.6	6548.23 6862.85	6489.34 6903.60	6518.79	0.90
10000	2.9618	60.21	51.67	26.10	20.33	32.76	578.5	5665.2	218	2134.7	7144.29	7252.60	7198.45	1.50
Experin	nental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s			
3000	0.8243	70.29	61.23	32.73	20.25	39.25	203.6	1994.2	26	254.6	4263.32	4287.59	4275.46	0.57
4000	1.1256	70.33	59.99 58.87	<u>30.61</u> 29.12	20.22	39.74	203.6	2012.3	41 59	401.49 577.75	4868.95	48/5./8	48/2.3/	0.14
6000	1.7423	69.86	57.70	28.00	20.05	39.72	205.5	2012.5	81	793.18	5722.53	5776.87	5749.70	0.95
7000	2.0441	70.27	57.42	27.30	20.26	40.00	206	2016.8	110	1077.2	6047.05	6002.16	6024.6	0.75
8000	2.3509	70.33	56.89	26.72	20.29	40.00	205.5	2012.3	138	1351.3	6328.15	6305.38	6316.77	0.36
9000	2.0579	70.42	56.45	26.26	20.32	40.01	206.4	2021.3	212	1684.3	6797 91	6725.25	6761 58	0.15
Experin	nental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s	0723.23	0701.50	1.07
3000	0.8060	69.83	64.05	34.89	20.14	39.25	568.7	5569.1	24	235.02	4840.03	4953.73	4896.88	2.32
4000	1.1008	70.03	63.11	32.73	20.10	40.09	569.6	5577.3	39	381.9	5793.51	5795.19	5794.35	0.03
6000	1.6977	70.43 69.95	61.42	30.34	20.28	40.56	571.1	5592.7	58 81	507.90 793.18	7137.35	0502.08	0347.38 7228.19	0.44
7000	2.0001	70.06	60.92	29.33	20.14	40.76	572.1	5601.8	107	1047.8	7648.25	7664.82	7656.53	0.22
8000	2.2871	70.37	60.70	28.93	20.49	40.82	573.9	5619.9	134	1312.2	8090.82	8049.50	8070.16	0.51
9000	2.5959	70.35	60.21 59.72	28.22	20.42	40.95	573.9	5619.9	168	1645.1 2036 8	8481.19 8830.30	8444.20	8462.69 8012.20	0.44
10000	2.5025	/0.2/	37.12	Annu	lus Dime	ensions:	L=1.245 m	$D_0 = 0.02$	200^{-200}	0.0155 m	0050.57	0774.20	0712.27	1.04
Experin	nental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wat	er Mass Fl	owrate: 0.	1125 kg/s	-	-	
3000	0.9148	60.18	51.72	30.12	19.92	30.92	70.8	693.42	68.9	675.07	3979.94	3890.63	3935.28	2.27
4000	1.2277	60.19 59.74	50.80	28.97	20.49	30.79	70.3	688.89 697.95	114	1713 7	4392.21	4341.38	4300./9	1.10
6000	1.8881	59.93	49.36	26.77	20.50	30.96	71.3	697.95	245	2399.1	4973.26	4938	4955.63	0.71
7000	2.2250	60.11	49.08	25.95	20.45	31.31	71.3	697.95	335	3280.4	5194.17	5105	5149.58	1.73
8000	2.5648	60.34	48.90	25.31	20.35	31.68	70.3	688.89	419	4103	5385.53	5307.29	5346.41	1.46
10000	3.2237	60.09	48.37	23.07	20.44	31.38	70.3	688.89	625	6120.2	5705.30	5850.51	5777.91	2.51
Experin	nental Conc	litions: I	Iot Wate	r Inlet To	emperatu	re: 60 ± 0	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s			
3000	0.8900	60.13	54.55	32.43	20.07	30.96	181	1776.6	65	636.5	4673.31	4585.43	4629.37	1.90
4000	1.2001	60.16 60.07	53.68	31.19	20.30	31.12	181	1776.6	110	1077.2	5420.75	5448.2	5434.48	0.51
6000	1.8632	59.73	51.99	28.23	20.30	31.65	185	1812.9	230	2252.2	6474.21	6239.82	6357.01	3.69
7000	2.1773	60.02	51.80	27.98	20.31	31.77	183	1794.7	320	3133.6	6874.72	6964.65	6919.68	1.30
8000	2.5216	60.18	51.55	26.96	20.17	32.29	183	1794.7	403	3946.3	7221.65	7141.65	7181.65	1.11
9000	2.8358	59.63 60.21	50.65	26.75	20.41	31.55	185	1812.9	501 605	4900.0 5924.4	7801 41	7499.27	7840.22	0.38
Experin	nental Cond	litions: I	Hot Wate	r Inlet To	emperatu	re: 70 ± 0	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	1125 kg/s	7072101	/010.22	0.77
3000	0.874	70.33	59.58	33.97	20.18	37.86	68.5	670.76	63	616.92	5059.26	5022.89	5041.07	0.72
4000	1.1900	70.14	58.19	31.75	20.50	38.04	68.5 69.4	670.76	99 163	969.45	5624.80 6063.46	5580.44	5602.62	0.79
6000	1.8449	69.78	56.08	28.82	20.49	37.99	70.3	688.89	233	2281.6	6421.88	6416.29	6419.09	0.09
7000	2.1795	69.72	55.43	27.71	20.49	38.37	70.3	688.89	310	3035.6	6724.91	6562.84	6643.88	2.44
8000	2.5026	69.83	54.99	27.32	20.47	38.37	70.3	688.89	402	3936.5	6987.42	7149.81	7068.61	2.30
9000	2.8358	70.00	54.66	26.66	20.50	38.57	69.4 70.2	679.82 689.90	505	4945.2	7218.96	7286.36	7252.66	0.93
Experin	nental Cond	litions: I	Jot Wate	r Inlet To	20.45 emperatu	re: 70 ± 0	0.5 °C	Hot Wate	er Mass Fl	owrate: 0.	2 kg/s	/303.20	/303.0/	1.04
3000	0.8478	69.73	62.62	36.64	20.33	37.50	178	1740.4	58	567.96	5948.00	5760.04	5854.02	3.21
4000	1.1530	69.77	61.39	34.65	20.48	37.94	179	1749.4	103	1008.6	7010.17	6807.78	6908.98	2.93
5000	1.4811	70.01	00.65 59.40	32.52	20.12	38.99	179	1/49.4	150 218	1468.9	7834.05	7055.11	//44.58	2.31
7000	2.1126	70.41	59.56	30.55	20.41	39.51	180	1758.5	300	2937.7	9076.37	8931	9003.68	1.61
8000	2.4441	70.22	58.78	29.77	20.10	39.56	181	1767.5	382	3740.7	9569.39	9854.98	9712.19	2.94
9000	2.7920	70.33	58.37	28.64	19.88	40.07	181	1767.5	479	4690.6	10004.3	10200	10102.2	1.94

Table C-18: Experimental Results of Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Rib, e= 2.2 mm, p= 40 mm).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Re	ТT		Annul	us (sm	ooth) [†]			In	ner Tu	be (sm	ooth)	
tube Nuc. Nuc. Nuc. Nuc. Nuc. Nuc. Teporenarial Conditione: Hor Water Intel Temperature: 00 = 0.5°C Cold Water Nax Revente: 01 kg/s South State Sta	Inner	U_0 W/m ² C	Do	Dw	f	Nu	hea	Dr	£	h. i	Nu	Emp	irical
Inter Tube Timeration: 1-1.255 m. der 0011 m. Territoria Transmission: 1-1.255 m. Territoria Transmission: 1-1.255 m. Territoria T	tube		Re _{s,c}	IIc	J s,o	INUS	W/m ² .C	IIh	Js,i	W/m ² .C	T u s,i	$f_{ m s,i}$	Nu _{s,i}
Store Start 20.03 0.074 1176.7 20.03 0.0356 17.4 Store 734.52 324.84 6.732 0.0444 425.20 100.0 51.54 0.055 0.001 32.01 0.0015 32.01 0.0015 32.01 0.0017 0.0012 0.011 0.0122 0.011 0.0122 0.011 0.0122 0.011 0.0112 </td <td>Experim</td> <td>ental Cond</td> <td>litions: Hot</td> <td>Water Inle</td> <td>Inner t Temperat</td> <td><u>Tube Dime</u> ture: 60 ± 0</td> <td>ensions: L= 0.5 °C</td> <td>-1.245 m Cold Water</td> <td>d_i= 0.011 m r Mass Flov</td> <td>vrate: 0.1 k</td> <td>g/s</td> <td></td> <td></td>	Experim	ental Cond	litions: Hot	Water Inle	Inner t Temperat	<u>Tube Dime</u> ture: 60 ± 0	ensions: L= 0.5 °C	-1.245 m Cold Water	d _i = 0.011 m r Mass Flov	vrate: 0.1 k	g/s		
1000 645.6 334.8 6.734 0.0474 26.29 3.1132 0.001 32.00 12.03 0.012 3.013 0.010 3.013 0.010 3.013 0.010 3.010 0.012 4.013 0.012 4.010 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 4.013 0.012 9.013 0.014 4.014 1.013 0.016 1.013 0.016 1.013 0.013 1.014 0.012 0.015 0.013 0.014 1.014 0.012 0.015 0.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.014 1.013 0.013 0.014 1.013 <t< td=""><td>5000</td><td>511.81</td><td>3226.3</td><td>6.7748</td><td>0.0474</td><td>26.14</td><td>1014</td><td>3.2351</td><td>0.0412</td><td>1176.7</td><td>20.03</td><td>0.0386</td><td>16.4</td></t<>	5000	511.81	3226.3	6.7748	0.0474	26.14	1014	3.2351	0.0412	1176.7	20.03	0.0386	16.4
2000 723.3 238.7 6.637 0.0414 2446 98.08 2.079 0.0228 1.466 52.21 0.0027 77.7 2000 55.31 336.5 6.6144 0.0414 25.65 1.079 0.0227 55.6.6 94.18 0.0221 10.14 0.0221 10.14 0.0221 10.14 0.0221 10.14 0.0221 10.14 0.0221 0.0221 0.0221 0.0221 0.0221 10.1 0.0221 0.0221 0.0221 10.1 0.0221	10000	645.6 728.52	3243.8	6.7342	0.0474	26.29	1020.5 980.48	3.154	0.036	2004	34.03	0.0315	32.4
25000 76.51 3256.5 6.6912 0.0414 24.26 9.07.3 328.7 6.6314 0.0414 0.0414 24.65 9.07.3 338.2 6.6314 0.0414 24.44 99.03 3.047 0.022 69.03 1.06 0.0221 0.111 F 0.0000 85.36 0.014 0.044 0.024 603.01 1.066 0.0221 0.111 F 0.0000 85.36 0.014 0.044 0.022 60.01 1.06 0.0221 1.111 F 0.0000 1.014 0.024 0.0447 0.442 1.024 0.0421 0.023 0.023 4.011 0.012<	20000	725.35	3248.1	6.6337	0.0444	23.20	950.95	3.0749	0.0285	3496	59.23	0.0262	60.5
autom autom <th< td=""><td>25000</td><td>763.91</td><td>3262.5</td><td>6.6912</td><td>0.0414</td><td>24.26</td><td>942.45</td><td>3.0739</td><td>0.0255</td><td>4619.8</td><td>78.26</td><td>0.0247</td><td>73.7</td></th<>	25000	763.91	3262.5	6.6912	0.0414	24.26	942.45	3.0739	0.0255	4619.8	78.26	0.0247	73.7
40000 853.46 322.20 6.6231 0.0444 25.62 99.615 3.0522 0.0237 1716 0.0271 1711 5000 70.114 4853.5 6.781.2 0.044 41.24 1716 3.3368 0.0405 1586.7 26.6 0.0272 477 51000 91.65 486.4 0.0417 43.62 1602.7 3.117 0.0272 477 51000 112.13 490.3 6.65.35 0.0447 44.17 1717.3 13.14 0.0276 4871.3 0.0272 477 53000 113.14 490.3 6.65.76 0.0447 44.46 1730.5 3.0013 0.0274 624.5 0.0271 711 53000 1134.1 4978.4 6.571 0.0447 44.46 1730.5 3.0033 0.0216 10.027 111 50000 1347.1 4978.4 6.6119 0.0473 2.675 0.0217 610.3 10.0217 7110 3.324 6.6519 0.0472	30000	827.31	3296.5	6.6144 6.6398	0.0444	25.65	<u>997.53</u> 950.03	3.0479	0.0259	5563.6 6193.4	94.18 104.8	0.0236	86.4 98.8
Experimental Conditions: Hot Water Inter Imperature: 60 - 62 *C Cold Water Mass Howartz 0.15 kg/s Solar 6.14 - 4385.6 Cold - 4	40000	853.46	3292.6	6.6231	0.0444	25.62	996.15	3.0392	0.0237	6852.9	116	0.0221	111
10000 914.58 165.00 100.71 20205 23.64 0.0175 13.75 20000 1158.1 493.1.3 66.451 0.0447 44.12 171.7. 1.3187 0.0255 60.71 60.72 0.0477 77.8 20000 1123.1.3 66.451 0.0447 44.12 171.7. 1.3147 0.0255 69.7 1.00 0.0274 4801.1 81.42 0.0276 77.8 30000 1134.1 4970.7 5.651 0.0447 44.48 1730.5 3.0633 0.0224 6072.4 0.042.8 99 00000 56.3.46 329.44 6.7189 0.0471 2.6.57 10.0427 2.6.67 10.027 2.4.67 0.0379 1429 2.4.66 0.0262 4.6.3 10000 56.3.46 329.4 6.619 0.0471 2.6.76 10.0421 2.4.67 0.0217 1429 2.4.63 0.0217 1429 2.4.63 0.0212 16.0 1.0.217 10.001 3.0.2.6.1	Experim 5000	ental Cond	litions: Hot 4835-3	Water Inle	t Temperat	ture: 60 ± 0 44 24	0.5 ℃ 1716	Cold Water	r Mass Flov	vrate: 0.15 1558 7	kg/s 26.6	0.0386	16.5
15000 1000.7 492.2 6.641 0.0447 44.17 171.7 3.134 0.049 1717.8 5.356 0.022.2 477 25000 1133.4 494.3 6.6752 0.0447 44.16 1717.9 3.1145 0.0216 5700 84.64 0.022.6 497.0 05000 1233.4 494.3 6.6752 0.0447 44.46 173.0.3 3.071 0.0214 574.2 106.3 0.022.6 990.0 05000 131.4 497.0.7 6.571 0.0447 44.46 173.0 3.071 0.0214 574.3 106.228 991 11000 66.61 0.0473 26.77 104.04 274.57 0.027 107.5 0.027 107.5 0.027 107.5 0.027 107.5 0.027 107.5 0.027 107.5 0.027 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5 107.5	10000	914.55	4860.4	6.7423	0.0447	43.62	1692.9	3.2117	0.0403	2269.5	38.6	0.0315	32.5
20000 1128.1 991.2 60.843 90.1.2 60.72 4991.3 60.74 4991.3 60.75 60.75 60.75 60.75 60.75 60.75 60.75 60.75 70.77 10.40.9 27.45 10.60 10.73 20.221 71.77 10.40.2 27.45 10.63 60.73 32.321 65.31 66.10 40.71 24.65 23.66 40.73 28.87 40.222 40.7 23.7 65.31 20.7 10.75 23.75 48.83 40.0215	15000	1060.7	4924.2	6.6451	0.0447	44.12	1714.7	3.1583	0.0309	3177.8	53.96	0.0282	47
30000 1128.1 4968.9 6.5787 0.0447 44.46 1729.9 30648 0.0246 6274.5 106.3 0.02216 111 Experimental Conditions: II or Water Inlet Temperature: 70 + 0.5° Cold Water Nass Flowares: Islgs	20000	1213.3	4931.3	6.6752	0.0447	44.17	1717.1	3.1347	0.0285	40/1.5	69.1 81.42	0.0262	60.7 73.8
35000 13141 4970.7 6.5761 0.6447 44.48 1736.5 3.0731 0.0215 6710.6 117 0.0221 117 Experimental Conditions: Hor Water Intel Temperature: 70 ± 0.5°C. Cold Water Mass Flowrate: 0.1 kg/s 117 0.0215 6710.6 117 0.0215 6710.0 117 0.0215 6710.0 117 0.0215 6710.0 117 0.0215 6710.0 117 0.0215 117 0.0135 117 0.0135 117 0.0125 117 0.0135 117 0.0125 117 11000 117 0.0215 117 0.0135 117 0.0125 117 111 0.0125 111 0.0135 111 0.0216 111 111 0.0216 111 0.0135 11001 111 111 111 111 111 0.0216 111 111 0.0216 111 111 0.0216 111 111 111 111 111 111 111 111 111 111 111	30000	1258.1	4968.9	6.5787	0.0447	44.46	1729.9	3.0848	0.0256	5290.9	89.66	0.0236	86.5
Experimental Conditions: That Weter The Temperature: 70 ± 0.5 °C Cold Water Mass Downster: 0.1 kg/s Description 5000 65.44 3294.0 6.67189 0.0473 26.77 1040.0 27.457 0.0399 1429 24.66 0.0316 16.3 19000 68.643 3324 6.6109 0.0473 26.77 1040.0 27.457 0.0217 1429 145.3 145.3 1327 0.0222 24.63 29000 776.64 3301.1 6.6109 0.0414 24.63 955.9 2.6027 0.027 70.51 79.65 0.0217 72.4 30000 80.314 3309.1 6.5132 0.0414 24.88 90.12 2.997 0.0227 10.02 10.09 10.09 0.0228 612.7 11.05 0.0221 10.9 50000 765.3 3.437 6.7135 0.0474 44.99 174.46 2.9604 0.0394 132.4 32.4 0.0315 32.1 10000 1052.4 471.01 47.99	35000	1314.1	4970.7 4988 4	6.5761 6.5501	0.0447	44.48	1730.5	3.0731	0.0244	6274.5 6910.6	106.3	0.0228	99 111
5000 56.3.40 229.4.6 6.0.836 1.6.3 10000 65.6.4 329.8.9 6.6109 0.0.473 26.77 1040.9 2.747 0.0.349 38.59 0.0.315 32. 10000 65.64 329.8.1 6.6109 0.0.473 26.58 1040.1 2.668 0.0.27 37.55 0.0.262 59.6 20000 705.84 3301.2 6.6139 0.0.414 24.457 955.39 2.6297 0.0.27 47.65.5 0.0.236 64.9 30000 813.55 6.5132 0.0.414 24.48 96.91 2.5997 0.0.277 610.8 10.0.9 0.0.228 96.9 100000 812.65 6.5142 0.0.414 24.88 96.91 2.5997 0.0.277 10.0.8 4.6.3 10.99 17.53 0.0.228 96.9 10.99 17.53 10.99 10.238 2.640 0.0.386 16.3 100000 91.64.53 4797.1 6.733 0.0.641 44.413 17.175	Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	1730.5 0.5 °C	Cold Water	r Mass Flow	vrate: 0.1 k	g/s	0.0221	111
Internal Biology Example Constraint Constast Addt	5000	563.46	3250.4	6.7189	0.0474	26.35	1023	2.8678	0.0399	1429	24.06	0.0386	16.3
20000 796.44 3324 6.535 0.0473 26.98 1050.1 2.6668 0.0237 3810.5 6.6.87 0.0472 27.4 30000 803.14 3309.1 6.5865 0.0414 24.54 985.39 2.0238 5703.1 0.0236 84.4 0.0228 97.0 0.0277 6100.8 10.19 0.0221 10.9 0.0221 10.9 0.0221 10.9 0.0221 10.9 0.0221 10.9 0.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0221 10.9 10.0 10.0224 10.0 10.0224 10.0 1	15000	686.43 743.39	3298.9	6.6091 6.6109	0.0473	26.77	1040.9	2.7457	0.0349	2300.1	38.59 49.82	0.0315	32 46.3
25000 76.84 3301.2 6.639 0.0414 24.57 95.53 2.6297 476.35 79.65 0.0277 72.4 33000 813.56 3332.5 6.5365 0.0414 24.88 969.1 2.5997 0.0217 f010.8 101.9 0.0228 96.9 Psymmental Conditions: Hot Water Inlet Temperature: 70 ± 0.5°C Cold Water Mass Flowrate: 0.158 kg/s. 0.0221 1090 5000 763.13 82.77 6.733 0.0447 44.76 1099.3 2318 0.0353 1253 0.0344 156.38 2.64 0.0336 16.3 15000 1052 4910.1 6.6663 0.0447 44.17 1709.9 2.753 0.0344 153.3 2.64 0.0336 16.3 15000 1052 4910.1 6.6663 0.0447 44.17 1729.5 2.7027 0.028 3666 6.193 0.0326 597.7 30000 1056.2 4994.2 6.5355 0.0447 44.17 1728.9 2.634 0	20000	798.64	3324	6.5536	0.0473	26.98	1050.1	2.6668	0.0287	3815.7	63.87	0.0262	59.6
stand stand <tt< td=""><td>25000</td><td>776.84</td><td>3301.2</td><td>6.6039 6.5865</td><td>0.0414</td><td>24.57</td><td>955.39 958</td><td>2.6297</td><td>0.027</td><td>4763.5</td><td>79.65</td><td>0.0247</td><td>72.4</td></tt<>	25000	776.84	3301.2	6.6039 6.5865	0.0414	24.57	955.39 958	2.6297	0.027	4763.5	79.65	0.0247	72.4
	35000	819.56	3342.5	6.5132	0.0414	24.88	969.1	2.5997	0.0238	6100.8	101.9	0.0230	96.9
Experimental Conditions: Hot Water Intel Temperature: 0: 4.0.5*0. Cold Water Mass Flowrate: 0: 5.8g. 5000 76.81.3 4827.1 6.713 0.0474 4.39 1744.6 2.8064 0.6333 2259.9 3.8 0.0315 32.1 15000 1052 4910.1 6.6663 0.0447 44.10 1709.9 2.783 0.0394 3124 52.34 0.0222 46.3 20000 1120 4958.4 6.5544 0.0447 44.43 1728.3 2.7862 0.0226 533.7 2.8029 0.0226 533.7 8.872 0.0221 58 30000 1360.5 4998.4 6.5355 0.0447 44.43 1728.3 2.6488 0.0246 6072.1 100.218 9.71 40000 1360.5 4998.4 6.5355 0.0447 44.71 174.09 2.6488 0.0241 6940.3 116.1 0.0221 109 Experimental Conditions: Hot Water Inst Temperature: 0: 0: 0: 0: 0: 4.5°C Cold Water Mass Flowrate: 0.1 kg/s 5000 300.366 16.6.3	40000	826.97	3332.7	6.5346	0.0414	24.81	965.83	2.6001	0.0239	6612.7	110.5	0.0221	109
	Experim 5000	ental Conc 768.13	4827.7	6.793	<u>t Temperat</u> 0.0474	ture: 70 ± 0 44.99	1744.6	2.9604	r Mass Flov 0.0394	vrate: 0.15 1563.8	kg/s 26.4	0.0386	16.3
15000 1052 4910.1 6.6663 0.0447 44.01 1709.9 2.7523 0.0304 3124 52.43 0.0282 46.3 20000 11216 4985.4 6.5544 0.0447 44.459 1735.5 2.0680 0.0268 3605.6 6.193 0.0226 59.7 30000 1256.7 4964.2 5.558.6 0.0447 44.43 1728.3 2.6586 0.0256 5283.3 8.8.42 0.0226 97.1 40000 1350.5 4998.4 6.5535 0.0447 44.69 173.9.2 2.634 0.0241 690.0 10.5 0.0228 97.1 40000 1350.5 498.4 6.533 0.0373 2.563 1233.4 3.2329 0.0141 0.0315 3.27 15000 71.11 3080.1 6.5482 0.0273 2.553 1232.2 3.0611 0.0217 7.4 0.0202 47.2 20000 860.01 3109.1 6.5291 0.0337 2.543 1285	10000	914.63	4879.1	6.7135	0.0447	43.76	1699.3	2.818	0.0353	2259.9	38	0.0315	32.1
20000 1122.7 4741.3 6.0340 474.23 172.05 2.0426 0.0436 4653.3 0.0247 72.2 30000 1256.7 4964.2 6.5584 0.0447 44.43 1728.3 2.6686 0.0256 4653.3 88.42 0.0226 85 30000 1350.5 4996.4 6.5312 0.0447 44.45 1739.9 2.6384 0.0246 6007.2 100.5 0.0228 97.1 40000 1350.5 4998.4 6.5355 0.0447 44.69 1739.9 2.6344 0.0241 0.90.3 116.1 0.0221 109 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5°C Cold Water Mass Flowrate: 0.1 Kg/s 500.4 46.63 3017.5 6.7005 0.0573 2.66 1252.9 3.1635 0.0247 71.6 0.0316 3.2.7 10000 692.47 3056.1 6.646 0.0573 2.561 1232.2 3.0641 0.0125 7.4 0.0226 47.2 20000	15000	1052	4910.1	6.6663	0.0447	44.01	1709.9	2.7523	0.0304	3124	52.43	0.0282	46.3
	25000	1122.7	4941.5	6.5544	0.0447	44.25	1720.5	2.6862	0.0288	4653.9	77.95	0.0262	72.6
	30000	1256.7	4964.2	6.5856	0.0447	44.43	1728.3	2.6586	0.0256	5283.3	88.42	0.0236	85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35000	1306.2	5001.4	6.5312	0.0447	44.71	1740.9	2.6488	0.0246	6007.2	100.5	0.0228	97.1
Experimental Conditions: Hor Water Inlet Temperature: $60 \pm 0.5 \cdot C$ Cold Water Mass Flowrate: $0.1 kg/s$ 5000 486.53 3017.5 6.7405 0.0573 25.63 1233.4 3.2329 0.0424 890.99 19.3 0.0386 16.6 10000 692.47 3056.1 6.646 0.0573 26.23 1265.1 3.1169 0.0315 2195.7 47.4 0.0282 47.2 20000 806.01 3109.1 6.5582 0.0573 25.43 1228.1 3.0027 0.0291 3194.7 68.92 0.0262 61 25000 897.84 3117.5 6.5004 0.0501 24.43 1180.2 3.0672 0.0224 210.6 90.77 0.0226 67.1 35000 93.647 3123.2 6.4894 0.0501 24.45 1183.1 3.0428 0.0224 5051.8 10.88 0.0221 112 Experimental Conditions: Hot Water Indet Temperature: 60 ± 0.5 °C Cold Water Mass Flowrate: 0.15 kg/s 7.2 5000 562.83 4458.5	40000	1550.5	4770.4	0.3333	Inner	Tube Dime	nsions: L=	=1.245 m	d _i = 0.014 m	0740.3	110.1	0.0221	109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: Hot	Water Inle	t Temperat	ture: 60 ± 0	.5 °C	Cold Water	r Mass Flow	vrate: 0.1 k	g/s	0.0207	144
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5000	486.53	3017.5	6.7405	0.0573	25.63	1233.4	3.2329	0.0424	890.99	19.3 37.16	0.0386	16.6 32.7
	15000	771.21	3080.1	6.5882	0.0573	26.23	1265.1	3.1169	0.0315	2195.7	47.4	0.0282	47.2
$ \begin{array}{c} 25000 & 5^{7}.64 & 3117.5 & 0.500^{\circ} & 0.0357 & 25.51 & 12.522 & 3.0047 & 0.0272 & 32067.5 & 72.48 & 0.0247 & 74.2 \\ \hline 30000 & 980.90 & 3120.4 & 6.4934 & 0.0501 & 24.45 & 1181.1 & 3.0443 & 0.0245 & 5051.8 & 108.8 & 0.0228 & 99.5 \\ \hline 40000 & 949.37 & 3128.1 & 6.4758 & 0.0501 & 24.45 & 1181.7 & 3.0428 & 0.0243 & 5359.7 & 115.5 & 0.0221 & 112 \\ \hline Experimental Conditions: Hot Water Inlet Temperature: (0 \pm 0.5 ^{\circ} \mathbb{C} \ C \ C \ Old Water Mass Flowrate: 0.15 \ kg/s \\ \hline 5000 & 50.283 & 4458.5 & 6.8546 & 0.0462 & 38.49 & 1849.2 & 3.2697 & 0.0433 & 897.2 & 19.45 & 0.0386 & 16.6 \\ \hline 10000 & 841.98 & 4532.8 & 6.7297 & 0.0462 & 39.07 & 1880.5 & 3.2059 & 0.032 & 1693.1 & 36.64 & 0.0315 & 32.7 \\ \hline 5000 & 103.7 & 4591.7 & 6.6337 & 0.0462 & 39.75 & 1917.7 & 3.1198 & 0.029 & 3135.3 & 67.69 & 0.0224 & 47.3 \\ \hline 20000 & 1140.8 & 4621.8 & 6.5856 & 0.0462 & 39.75 & 1917.7 & 3.1198 & 0.029 & 3135.3 & 67.69 & 0.0262 & 61.1 \\ \hline 25000 & 128.9 & 4602.5 & 6.5735 & 0.0446 & 38.92 & 1877.8 & 3.1013 & 0.0263 & 4261.6 & 91.96 & 0.0236 & 87.2 \\ \hline 30000 & 1321.7 & 4661.9 & 6.5226 & 0.0446 & 38.91 & 1870.8 & 3.1013 & 0.0224 & 4203.2 & 109.5.7 & 0.0228 & 99.7 \\ \hline 40000 & 1349.6 & 4671.3 & 6.5081 & 0.043 & 38.31 & 1850.5 & 3.0687 & 0.0244 & 4903.2 & 105.7 & 0.0228 & 99.7 \\ \hline 40000 & 779.17 & 3106.5 & 6.5246 & 0.0537 & 25.71 & 1237.6 & 2.8173 & 0.0444 & 895.88 & 19.17 & 0.0386 & 16.4 \\ \hline 10000 & 675.55 & 3077.6 & 6.5241 & 0.0537 & 25.57 & 1240.7 & 2.6584 & 0.030 & 2373.9 & 50.61 & 0.0326 & 60.2 \\ \hline 25000 & 880.89 & 3151.3 & 6.4528 & 0.0537 & 25.67 & 1240.7 & 2.6548 & 0.030 & 2373.9 & 50.61 & 0.0386 & 16.4 \\ \hline 10000 & 950.97 & 3168.3 & 6.3846 & 0.0337 & 25.57 & 1243.7 & 2.6484 & 0.033 & 2373.9 & 50.61 & 0.0286 & 97.7 \\ \hline 5000 & 880.89 & 3151.3 & 6.4528 & 0.0537 & 25.67 & 1240.7 & 2.6548 & 0.030 & 2373.9 & 50.61 & 0.0286 & 45.7 \\ \hline 25000 & 890.97 & 3163.1 & 6.3962 & 0.0501 & 24.67 & 1139 & 2.6048 & 0.033 & 2373.9 & 50.61 & 0.0282 & 46.6 \\ \hline 20000 & 850.99 & 3151.3 & 6.4228 & 0.0537 & 25.67 & 1240.7 & 2.6548 & 0.033 & 2373.9 & 50.61 & 0.02$	20000	860.01	3109.1	6.5201	0.0537	25.43	1228.1	3.0927	0.0291	3194.7	68.92 70.49	0.0262	61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30000	899.09	3117.5	6.4936	0.0501	25.51	1232.2	3.0641	0.0273	4210.6	90.77	0.0247	87.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35000	936.47	3122.3	6.4894	0.0501	24.45	1181.1	3.0443	0.0245	5051.8	108.8	0.0228	99.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40000 Experim	949.37 ental Cond	3128.1	6.4758 Water Inle	0.0501 t Temperat	24.5 ture: 60 + 0	1183.7	3.0428 Cold Wate	0.0243 r Mass Flo	5359.7 wrate: 0.15	115.5 kg/s	0.0221	112
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5000	562.83	4458.5	6.8546	0.0462	38.49	1849.2	3.2697	0.0433	897.2	19.45	0.0386	16.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10000	841.98	4532.8	6.7297	0.0462	39.07	1880.5	3.2059	0.032	1693.1	36.64	0.0315	32.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20000	1037.7	4591.7	6.5856	0.0462	39.52 39.75	1905.2	3.1516	0.0323	2534.5	67.69	0.0282	47.3 61.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25000	1208	4605.4	6.6118	0.0462	39.63	1910.9	3.1076	0.0258	3659.7	78.98	0.0247	74.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30000	1258.9	4629.5	6.5735	0.0446	38.92	1877.8	3.1013	0.0263	4261.6	91.96 105 7	0.0236	87.2
Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0.5 \degree$ CCold Water Mass Flowrate: 0.1 kg/s5000488.83025.96.71980.057325.711237.62.81730.0444895.8819.170.038616.410000675.553077.66.59430.053725.1512132.72880.03211693.236.140.031532.315000779.173106.56.52610.053725.411226.92.68840.03032373.950.610.028246.620000850.993135.16.45980.053725.671240.72.65460.03093015.964.230.02626025000898.59315.16.45280.053725.811248.42.64480.0268357376.080.02477330000950.073168.36.38460.053725.971256.52.61670.02594346.392.470.023685.535000940.733148.46.42950.050124.6711932.60960.02444970105.70.022897.740000977.33163.16.39620.050124.81199.72.60120.02325899.1125.40.0221110Experimental Conditions: Hot Water Inlet Temperature: $70 \pm 0 \degree °$ CCold Water Mass Flowrate: $0.15 \ kg/s$ 5000578.84525.26.74230.044638.141835.32.85440.0434937.5620.09 <t< td=""><td>40000</td><td>1349.6</td><td>4671.3</td><td>6.5081</td><td>0.0440</td><td>38.31</td><td>1850.5</td><td>3.0687</td><td>0.0244</td><td>5576.2</td><td>120.2</td><td>0.0228</td><td>112</td></t<>	40000	1349.6	4671.3	6.5081	0.0440	38.31	1850.5	3.0687	0.0244	5576.2	120.2	0.0228	112
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Experim	ental Cond	litions: Hot	Water Inle	t Temperat	ture: 70 ± 0	.5 °C	Cold Water	r Mass Flow	vrate: 0.1 k	g/s	0.0207	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5000	488.8	3025.9	6.7198	0.0573	25.71	1237.6	2.8173	0.0444	895.88	19.17 36.14	0.0386	16.4 32.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15000	779.17	3106.5	6.5261	0.0537	25.41	1226.9	2.6884	0.0303	2373.9	50.61	0.0282	46.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20000	850.99	3135.1	6.4598	0.0537	25.67	1240.7	2.6546	0.0309	3015.9	64.23	0.0262	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30000	898.59 950.07	3151.3	6.3846	0.0537	25.81	1248.4	2.6448	0.0268	3573 4346.3	/0.08 92.47	0.0247	/ <u>5</u> 85.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	35000	940.73	3148.4	6.4295	0.0501	24.67	1193	2.6096	0.0244	4970	105.7	0.0228	97.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40000 Experim	977.3	3163.1	6.3962 Water Inla	0.0501 t Temporal	24.8	1199.7	2.6012	0.0232	5899.1	125.4	0.0221	110
10000 809.17 4571 6.6672 0.0446 38.48 1854 2.7853 0.0351 1594.2 34.08 0.0315 32.3 15000 1021.5 4610.3 6.6039 0.0446 38.78 1870 2.745 0.0311 2503.9 53.47 0.0282 46.7 20000 1123.1 4664.7 6.5184 0.0446 39.18 1892 2.7052 0.0288 3076.6 65.62 0.0262 60.1 25000 1211.1 4681.2 6.4928 0.043 38.39 1854.3 2.6777 0.0252 3892.3 82.95 0.0247 73.1 30000 1241.2 4706.6 6.4539 0.043 38.57 1864.3 2.6612 0.0246 4141.8 88.23 0.0236 85.6 35000 1315.7 4723.7 6.4279 0.043 38.69 1871 2.6421 0.0246 4951.9 105.4 0.0228 97.8 40000 1342.9 4723.1 6.4287 <td>5000</td> <td>57<u>8.8</u></td> <td>4525.2</td> <td>6.7423</td> <td>0.0446</td> <td>38.14</td> <td>1835.3</td> <td>2.8544</td> <td>0.0434</td> <td>937.56</td> <td>20.09</td> <td>0.0386</td> <td>16.4</td>	5000	57 <u>8.8</u>	4525.2	6.7423	0.0446	38.14	1835.3	2.8544	0.0434	937.56	20.09	0.0386	16.4
15000 1021.5 4010.3 6.6039 0.0446 38.78 1870 2.745 0.0311 2503.9 53.47 0.0282 46.7 20000 1123.1 4664.7 6.5184 0.0446 39.18 1892 2.7052 0.0288 3076.6 65.62 0.0262 60.1 25000 1211.1 4661.2 6.4928 0.043 38.39 1854.3 2.6777 0.0252 3892.3 82.95 0.0247 73.1 30000 1241.2 4706.6 6.4539 0.043 38.57 1864.3 2.6612 0.0246 4141.8 88.23 0.0236 85.6 35000 1315.7 4723.7 6.4279 0.043 38.69 1871 2.6421 0.0246 4951.9 105.4 0.0228 97.8 40000 1342.9 4723.1 6.4287 0.0414 37.75 1825.2 2.6264 0.0241 568.35 12.09 0.0221 110	10000	809.17	4571	6.6672	0.0446	38.48	1854	2.7853	0.0351	1594.2	34.08	0.0315	32.3
25000 1211.1 4681.2 6.4928 0.043 38.39 1854.3 2.6777 0.0252 3892.3 82.95 0.0247 73.1 30000 1241.2 4706.6 6.4539 0.043 38.57 1864.3 2.6612 0.0246 4141.8 88.23 0.0236 85.6 35000 1315.7 4723.7 6.4279 0.043 38.69 1871 2.6421 0.0246 4951.9 105.4 0.0228 97.8 40000 1342.9 4723.1 6.4287 0.0414 37.75 1825.2 2.6264 0.0241 568.35 12.09 0.0221 110	20000	1021.5	4610.3	6.6039 6.5184	0.0446	38.78 39.18	1870 1892	2.745	0.0311	2503.9 3076.6	53.47 65.62	0.0282	46.7 60.1
30000 1241.2 4706.6 6.4539 0.043 38.57 1864.3 2.6612 0.0246 4141.8 88.23 0.0236 85.6 35000 1315.7 4723.7 6.4279 0.043 38.69 1871 2.6421 0.0246 4951.9 105.4 0.0228 97.8 40000 1342.9 4723.1 6.4287 0.0414 37.75 1825.2 2.6264 0.0241 5683.5 120.9 0.0221 110	25000	1211.1	4681.2	6.4928	0.043	38.39	1854.3	2.6777	0.0252	3892.3	82.95	0.0247	73.1
35000 1515./ 4/25./ 6.42/9 0.043 38.69 18/1 2.6421 0.0246 4951.9 105.4 0.0228 97.8 40000 1342.9 4723.1 6.4287 0.0414 37.75 1825.2 2.6264 0.0241 5683.5 120.9 0.0221 110	30000	1241.2	4706.6	6.4539	0.043	38.57	1864.3	2.6612	0.0246	4141.8	88.23	0.0236	85.6
	40000	1315.7	4723.1	6.4279 6.4287	0.043	38.69	18/1 1825.2	2.6421	0.0246	4951.9	105.4	0.0228	97.8 110

Table C-19: Predicted Results (Re_{s,c}, Pr, f, h, Nu and empirical values of $f_{s,i}$, and Nu_{s,i}) for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: Smooth Tube).

†Predicted values of smooth annulus are used to complete calculations only. C-20

Re	T		Annul	lus (sm	ooth) [†]			Inn	er Tub	e (augn	nented)	
Inner	U_0	D.	D	c	NI	h	D	c	h.:	N	Augmen	ntation ^{††}
tube	w/m.c	Re _{s,c}	Pr _c	J _{s,o}	INUs	W/m ² .C	Pr _h	Ja	W/m ² .C	INU _a	$f_{\rm a}/f_{\rm s}$	Nu _a /Nu _s
E	entel Cen			Inner	Tube Dime	nsions: L=	=1.245 m	d _i = 0.011 m			•	•
5000	786.85	3275	6.6628	0.0562	29.64	1151.9	3.3582	0.2012	2835.7	g/s 48.42	4.8781	2.3445
10000	907.89	3302.4	6.6013	0.0533	28.9	1123.9	3.1954	0.1912	5418.4	92.11	5.5049	2.2799
15000	932.77	3305.9	6.5934	0.0533	28.93	1125.4	3.1553	0.1855	6262.5	106.3	5.9082	2.2431
20000	995.46	3311.8	6.5804	0.0562	28.99	1168.4	3.0861	0.1815	9813.1	166.3	6.4587	2.21/4
30000	1001.7	3312.2	6.5795	0.0533	28.99	1127.9	3.0615	0.1761	10358	175.4	6.6674	2.1816
35000	1028.2	3332.3	6.5355	0.0533	29.18	1135.9	3.0535	0.1731	12596	213.3	6.8491	2.1682
40000 Experim	1045.6 ental Conc	3319.7 litions: Hot	0.5631 Water Inle	0.0533 et Temperat	29.06 ture: 60 ± 0	1130.9	3.0443 Cold Water	0.1729 r Mass Floy	16214 vrate: 0.15	274.4 kg/s	7.0105	2.1567
5000	1051.4	4863.9	6.7369	0.0474	45.28	1757.6	3.4344	0.1979	2989.5	51.16		
10000	1244.6	4909.6	6.6672	0.0474	45.65	1773.9	3.2806	0.1976	4780.5	81.46		
15000	1380.3	4936.6	6.6266	0.0473	45.87	1783.5	3.2078	0.1839	7024.7	119.5		
25000	1455.9	4968.3	6.5795	0.0475	45.3	1762.4	3.1336	0.1773	9674.6	164.2		
30000	1503.7	4974.2	6.5709	0.046	45.35	1764.5	3.1112	0.1758	11803	200.2		
35000	1512.5	5010.2	6.5184	0.0447	44.78	1743.9	3.0906	0.1738	13256	224.7		
40000 Experim	ental Cond	4988.4 litions: Hot	0.5501 Water Inle	0.046 t Temperat	45.46 ture: 70 + 0	1769.4	Cold Water	0.1721 r Mass Flav	16497 vrate: 0.1 k	279.6 a/s		
5000	791.22	3297.7	6.6118	0.0533	28.85	1122.1	2.9526	0.2054	3066	51.76		2.3418
10000	907.49	3350.8	6.4953	0.0533	29.35	1143.3	2.7883	0.1977	5044.9	84.75		2.2771
15000	945.03	3348.4	6.5004	0.0533	29.33	1142.3	2.7173	0.1846	6286.7	105.4		2.2402
20000	957.63	3357.5	6.4809	0.0503	28.35	1104.7	2.6703	0.1827	8295.4	138.9 209 3		2.2144
30000	1028.3	3374	6.4456	0.0533	29.56	1152.5	2.6402	0.1773	11057	185		2.1787
35000	1011.3	3373.7	6.4463	0.0503	28.49	1110.9	2.6224	0.1753	13123	219.4		2.1652
40000	1019.1	3376.6	6.4402	0.0503	28.52	1112	2.607	0.1738	14223	237.7		2.1537
Experim 5000	ental Conc 1044 9	1itions: Hot 4870.9	Water Inle	0 0447	43.7 ± 0	1696 5	Cold Water	r Mass Flov	vrate: 0.15	kg/s		<u> </u>
10000	1242.1	4956	6.5978	0.0473	46.03	1790.4	2.8687	0.1926	4646.9	78.25		
15000	1393.6	4971.9	6.5743	0.0473	46.16	1796	2.7926	0.1823	7157.9	120.3		
20000	1454	4981.9	6.5596	0.0473	46.24	1799.6	2.7502	0.1822	8738	146.6		
25000	1580.7	5000.8	6.4741	0.046	45.87	1787.6	2.7137	0.178	15960	267.5		
35000	1526.3	5038	6.4784	0.0447	44.99	1753.3	2.663	0.1754	13720	229.6		
40000	1532.9	5055.2	6.4539	0.0447	45.13	1759.1	2.6484	0.1729	13876	232.2		
F .	(10		XX / TI	Inner	Tube Dime	ensions: L=	=1.245 m	$\frac{d_i = 0.014 \text{ m}}{M}$	4 0 1 1	1		
Experim 5000	ental Cond	antions: Hot	6 6894	0 0501	ture: 60 ± 0	1142.5	Cold Water	r Mass Flov 0 1888	vrate: 0.1 k 2593 3	g/s 5636	4 7541	2 4 2 9 6
10000	855.46	3054.6	6.6495	0.0501	23.86	1150	3.1959	0.1692	3722.4	80.54	5.365	2.3626
15000	930.19	3072.5	6.6065	0.0501	24.02	1158.2	3.1486	0.1706	5280.1	114.1	5.7581	2.3246
20000	973.73	3100.3	6.5407	0.0501	24.26	1171	3.1063	0.1678	6474.1	139.7	6.0543	2.2979
25000	990.64	3136.6	6.3579	0.0483	23.64	1140.6	3.0869	0.1605	846/ 9237.1	182.0	6.2940 6.498	2.2//5
35000	1010.3	3135.9	6.4581	0.0465	23.42	1131.8	3.0446	0.1608	10614	228.6	6.675	2.247
40000	1023.9	3134.4	6.4615	0.0465	23.4	1131.2	3.0476	0.159	12213	263.1	6.8323	2.2351
Experim	ental Cond	litions: Hot	Water Inle	et Tempera	ture: 60 ± 0	0.5 ℃	Cold Wate	r Mass Flo	wrate: 0.15	kg/s	1	1
5000	952.24	4529	6.730	0.043	37.28	1/94.2	3.4123	0.1834	2255.7 3829.7	49.1 83		
15000	1318.4	4613.6	6.5987	0.043	37.9	1827.7	3.1976	0.1717	5288.2	114.4		
20000	1390.1	4632.8	6.5683	0.0422	37.58	1813.1	3.1508	0.1665	6674.7	144.2		
25000	1474.5	4659.2	6.5269	0.0414	37.3	1800.9	3.1251	0.165	9156.3	197.7		<u> </u>
35000	14/1.1	4097.2	6.443	0.0398	36.72	1709.4	3.0835	0.1606	9652.7	212.1		+
40000	1521.6	4689.5	6.4801	0.0398	36.56	1766.5	3.076	0.1601	12425	267.9		
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	.5 ℃	Cold Water	r Mass Flow	vrate: 0.1 k	g/s		
5000	731.83	3060.8	6.6345	0.0501	23.92	1152.9	2.928	0.1885	2227.4	47.82		2.4267
15000	953.99	3127	6.4784	0.0501	24.22	1183.2	2.7943	0.1745	5505.4	117.5		2.3398
20000	995.64	3159.4	6.4045	0.0501	24.76	1198	2.6735	0.1693	6603.3	140.7		2.2948
25000	1027.1	3154.3	6.4162	0.0501	24.72	1195.6	2.6448	0.166	8187.7	174.3		2.2743
30000	1004.2	3145.4	6.4362	0.0465	23.49	1135.9	2.6351	0.1621	9752.2	207.6		2.2578
40000	1026.6	3188.6	6.3393	0.0465	23.73	1148.0	2.6224	0.1594	13529	232 287.8		2.2439
Experim	ental Conc	litions: Hot	Water Inle	et Tempera	ture: 70 ± 0	0.5 °C	Cold Water	r Mass Flow	vrate: 0.15	kg/s	1	#.#J1/
5000	963.3	4586.8	6.6416	0.043	37.7	1817.1	2.9973	0.188	2279.1	49.03		
10000	1178.7	4661.9	6.5226	0.043	38.25	1846.8	2.852	0.1779	3630.8	77.78		<u> </u>
20000	1329.4	4658.1	0.5286 6.4589	0.0414	57.29 37.61	1800.4	2.7794	0.1711	5682.5 7286.8	121.5		+
25000	1468.1	4737.5	6.407	0.043	38.79	1876.4	2.6971	0.1654	7570.5	161.4		1
30000	1461.3	4744.7	6.3962	0.0398	36.93	1786.9	2.673	0.1629	9024.8	192.3		
35000	1543.8	4755.8	6.3796	0.0398	37.01	1791	2.6552	0.161	12668	269.8	1	1

Table C-20: Predicted Results (Re_{s,c}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: : Wire Coil, e=1 mm, p= 10 mm).

 40000
 1546
 4790.7
 6.3279
 0.0398
 37.24
 1803.8
 2.6413
 0.1591

 *Predicted values of smooth annulus are used to complete calculations only.

††Augmentation values are predicted by using the proposed correlations and not experimental results.

12240

260.6

Table C-21: Predicted Results (Res,c, Pr, f	f , h, Nu, f_a/f_s and Nu _a /Nu _s) for	or Tube-Side Heat Transf	er Enhancement for
Two Sizes of Inner Tube (Enhancement St	tatus: : Wire Coil, e=1 mm, p	= 20 mm).	

Re	U_0		Annul	us (sm	$ooth)^{\dagger}$		Inner Tube (augmented)						
Inner		De	D	ſ	N	h	р	ſ	h.	Nu	Augmentation ^{††}		
tube	w/m.c	Re _{s,c}	Pr _c	J _{s,o}	Nus	W/m ² .C	Pr _h	Ja	W/m ² .C	Nu _a	$f_{\rm s}/f_{\rm s}$	Nu _s /Nu _s	
				Inner	Tube Dime	ensions: L=	=1.245 m	d _i = 0.011 m			5455		
Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Cold Water Mass Flowrate: 0.1 kg/s													
5000	755.43	3242.6	6.7369	0.0533	28.34	1099.9	3.3471	0.1215	2754.4	47.02	2.8298	1.8353	
10000	862.27	3293.8	6.6205	0.0533	28.82	1120.5	3.2062	0.1088	4284.1	72.85	3.1934	1.7848	
20000	829.95	3293.8	6.5987	0.0503	27.78	1080.3	3.1344	0.1083	4099.8	09.37 110.7	3.42/4	1.7359	
25000	971.27	3293.8	6.6205	0.0533	28.82	1124.4	3.082	0.1047	8411.5	142.5	3.7468	1.7203	
30000	998.66	3306.3	6.5926	0.0533	28.93	1125.5	3.0757	0.0991	10252	173.7	3.8678	1.7079	
35000	983.87	3322.4	6.557	0.0503	28.04	1091.3	3.0525	0.0988	11594	196.3	3.9732	1.6974	
40000	979.44	3305.5	6.5943	0.0503	27.89	1084.8	3.0589	0.0974	11699	198.1	4.0668	1.6884	
Experim	Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C					Cold Water	r Mass Flov	vrate: 0.15	kg/s		1		
10000	1033.8	4854	6.6867	0.0474	45.2	1/54	3.4104	0.1232	28/5.5	49.17		+	
15000	1217.5	4916.6	6.6566	0.0447	44.06	1712.1	3.1798	0.1120	4675.4	79.44			
20000	1384.2	4928.3	6.6389	0.0473	45.81	1780.6	3.1459	0.1061	7155.2	121.5			
25000	1437.5	4947.1	6.6109	0.046	45.13	1755.1	3.1187	0.1033	9174.1	155.6			
30000	1427.9	4923.1	6.6469	0.046	44.94	1746.7	3.1092	0.0994	9034.1	153.2			
35000	1490.1	4951.3	6.6048	0.046	45.16	1756.5	3.084	0.0993	11388	193		-	
40000 1508.6 4950.7 6.6056 0.046 45.16 1756.3 3.0685 0.0983 12422 210.4												1	
5000	744.22	3298.1	6.6109	0.0503	27.82	1081.9	2.9266	0.1171	2722.5	45.92		1.8332	
10000	842.93	3313	6.5778	0.0533	29	1128.2	2.7826	0.1122	3814	64.06		1.7825	
15000	882.14	3315	6.5735	0.0503	27.97	1088.4	2.7081	0.1104	5339.6	89.49		1.7536	
20000	960.98	3331.9	6.5364	0.0533	29.17	1135.7	2.6692	0.1048	7187.8	120.3		1.7335	
25000	972.72	3354.3	6.4877	0.0533	29.38	1144.7	2.6452	0.1024	7454.9	124.7		1.718	
35000	963.03	3365.4	6.4/33	0.0503	28.38	1100	2.032	0.0997	8592.9	143./		1.7055	
40000	1003.1	3361	6.4733	0.0503	28.38	1107.7	2.6039	0.0976	12515	209.1		1.6859	
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Cold Water	r Mass Flow	wrate: 0.15	kg/s			
5000	995.35	4869.7	6.7279	0.0447	43.69	1696.1	3.0298	0.1238	2751.1	46.55			
10000	1195.8	4940.7	6.6205	0.0473	45.91	1784.9	2.8598	0.1145	4146.8	69.81			
15000	1282.8	4954.8	6.5995	0.046	45.19	1757.7	2.7814	0.1092	5447.9	91.5			
20000	1391.1	4979.5	6.5031	0.0473	40.22	1742.5	2./401	0.1044	7003.3 8378.1	118.5		+	
30000	1431.4	4997.8	6.5364	0.0447	44.69	1739.7	2.6813	0.1021	9331	156.3			
35000	1466.1	5023.8	6.4987	0.0447	44.89	1748.5	2.6586	0.099	10507	175.8		1	
40000	1491.4	5039.2	6.4767	0.0447	45	1753.7	2.634	0.0989	11562	193.4			
Inner Tube Dimensions: L=1.245 m d _i = 0.014 m													
Experim	ental Cond	ntions: Hot	6 7171	t Temperat	ture: 60 ± 0	1137.3	Cold Water	r Mass Flov	vrate: 0.1 k	g/s 15.58	2 7570	1 0010	
10000	833.44	3053.1	6.653	0.0501	23.85	1137.3	3.2023	0.1207	3377.5	73.09	3.1123	1.8495	
15000	899.3	3086	6.5743	0.0519	24.68	1190.9	3.1403	0.1131	4095.9	88.48	3.3403	1.8197	
20000	932.09	3100.6	6.5398	0.0501	24.26	1171.2	3.1047	0.1095	5101.8	110.1	3.5122	1.7989	
25000	982.78	3118.6	6.4979	0.0501	24.42	1179.4	3.0809	0.1071	6604.8	142.4	3.6516	1.7829	
30000	969.32	3121.9	6.4902	0.0465	23.3	1125.8	3.07	0.105	7830.9	168.8	3.7695	1.7699	
<u> </u>	981	3138.4	6.4522	0.0465	23.44	1132.9	3.05	0.1034	8219.5	1//.1	3.0635	1.739	
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	23.42 ture: 60 ± 0	1152.5 0.5 °C	Cold Wate	er Mass Flo	wrate: 0.15	kg/s	5.7055	1./4//	
5000	953.9	4504.5	6.7766	0.0446	37.98	1826.9	3.4107	0.1262	2218.9	48.29		Τ	
10000	1159.7	4600.5	6.6196	0.0446	38.7	1866	3.2366	0.1166	3412.8	73.93			
15000	1287	4608.7	6.6065	0.0446	38.76	1869.4	3.1899	0.115	4611.6	<i>99.76</i>			
20000	1379.6	4633.4	6.5674	0.043	38.04	1835.5	3.1575	0.1091	6218.6	134.4		+	
30000	1352.1	4671 3	6,5081	0.0414	37.35	1805.5	3.0937	0.1007	7141 1	150.5		+	
35000	1458.9	4704.4	6.4573	0.0414	37.61	1818.1	3.084	0.1033	8296.5	178.9		t	
40000	1467.4	4672.9	6.5056	0.0398	36.45	1760.4	3.0742	0.1019	9937.8	214.3			
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Cold Water	r Mass Flov	vrate: 0.1 k	g/s	1	1	
5000	677.67	3069.5	6.6135	0.0501	23.99	1156.9	2.9066	0.1146	1817.2	38.99		1.8996	
15000	041.41	317.1	0.5013	0.0501	24.4	11/8./	2.7858	0.1134	32/4.0	95.28		1.84/3	
20000	930.62	3155.4	6.4137	0.0465	23.57	1140.2	2.6712	0.1079	5661.9	120.6		1.7964	
25000	980.19	3163.9	6.3945	0.0483	24.23	1172.2	2.647	0.1064	6705.7	142.8	1	1.7804	
30000	977.16	3174.6	6.3705	0.0465	23.73	1148.5	2.6293	0.1048	7348.4	156.4		1.7675	
35000	990.96	3171.6	6.3771	0.0465	23.7	1147.2	2.6107	0.1032	8173.7	173.9		1.7566	
40000	1022.8	3180.1	6.3582	0.0465	23.77	1150.9	2.6008	0.1021	10368	220.5		1.7472	
Experim	ental Conc	ntions: Hot	Water Inle	t Tempera	ture: 70 ± 0	1.5 °C	Cold Water	r Mass Flov	vrate: 0.15	Kg/S		1	
10000	1155 7	4607.6	6.6083	0.043	37.28	1/94.4	2.9094	0.1233	3509.8	41.27		+	
15000	1260	4647.6	6.545	0.043	38.14	1841.2	2.7782	0.1114	4454.4	95.21		1	
20000	1313.1	4685.6	6.486	0.0414	37.48	1810.9	2.7195	0.1087	5338.2	<u>113.</u> 9			
25000	1383.9	4728.7	6.4203	0.0414	37.78	1827.3	2.6888	0.1058	6387	136.2			
30000	1450.8	4733.6	6.4128	0.0414	37.82	1829.2	2.6768	0.1046	7873.8	167.8		<u> </u>	
35000	1495.4	4/45.8	6 3524	0.0414	37.13	1855.9	2.6526	0.1032	9119.2	194.2			
10000	1.510		0.0044	0.00220	0/.10		4.0101	0.1041	10/40	434.3			

Re			Annul	us (sm	ooth) [†]		Inner Tube (augmented)						
		D.	D	c	NI	h	D	c	h.	N	Augmen	ntation ^{††}	
tube	w/m.c	Re _{s,c}	Pr _c	$J_{s,o}$	INUs	W/m ² .C	Pr _h	Ja	W/m ² .C	Nua	$f_{\rm a}/f_{\rm s}$	Nu _a /Nu _s	
Inner Tube Dimensions: L=1.245 m d _i = 0.011 m													
5000	644.64	3220	6.7894	0.0474	26.09	.5 C 1011.7	3.2976	0.0856	2026.2	34.54	2.0579	1.5902	
10000	755.36	3256.2	6.7055	0.0474	26.4	1025.1	3.1765	0.0735	3280.7	55.74	2.3223	1.5465	
15000 20000	902.8 848.09	3266.8	6.6814 6.6752	0.0503	27.54	1069.9	3.1465	0.0718	6647.4 5509.1	93.4	2.4925	1.5216	
25000	875.19	3291	6.6266	0.0473	26.7	1038	3.0817	0.0666	6413.5	108.7	2.7247	1.4908	
30000	918.15	3299.7	6.6074	0.0503	27.84	1082.5	3.0742	0.0641	6956.1 8507.8	117.8	2.8127	1.48	
40000	915.12	3295.4	6.617	0.0473	26.73	1044.7	3.0662	0.0632	10034	169.9	2.8894	1.4631	
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	.5 ℃	Cold Water	r Mass Flow	vrate: 0.15	kg/s			
5000	913.34	4869.7 4896.1	6.7279 6.6876	0.0474	45.33	1759.7 1769.1	3.3861	0.0902	2166.3 3175.8	37.02 54.06			
15000	1202	4917.2	6.6557	0.0474	45.72	1776.6	3.1781	0.0723	4255.5	72.31			
20000	1329.1	4938.3	6.624	0.0447	44.23	1719.5	3.1518	0.0691	6732.2	114.3			
30000	1309.1	4951.8	6.6258	0.046	45.17	1719.1	3.1155	0.0674	6442.4	121.1			
35000	1414.5	4985.4	6.5544	0.0447	44.59	1735.5	3.0817	0.0633	8825.8	149.5			
40000 Exporim	1445.3	4976 litions: Hot	6.5683 Watar Ink	0.0447	44.52	1732.3	3.0739	0.062 • Mass Flor	10091	170.9			
5000	709.99	3250	6.7198	0.0533	28.41	1102.9	2.9107	0.0813	2273.9	38.34		1.5885	
10000	777.32	3305.9	6.5934	0.0473	26.83	1043.5	2.7591	0.0753	3484.7	58.49		1.5446	
15000	845.75	3313	6.5778	0.0503	27.95	1087.6	2.7	0.0715	4354.8	72.97		1.5196	
25000	905.69	3320.9	6.5605	0.0473	26.95	1097.1	2.6399	0.0667	7638.6	127.8		1.4888	
30000	925.14	3355.5	6.4852	0.0473	27.25	1061.6	2.618	0.0648	8298.3	138.7		1.4779	
35000	962.76	3356.7	6.4826 6.5141	0.0503	28.34	1104.4	2.611	0.0633	8662.7	144.8		1.4688	
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	.5 °C	Cold Water	r Mass Flov	vrate: 0.15	1/5.0 kg/s		1.401	
5000	951.76	4833	6.7848	0.0474	45.03	1746.5	3.0121	0.0834	2386.8	40.36			
10000	1095.9	4910.7	6.6654	0.0447	44.01	1710.1	2.8541	0.0775	3489.2	58.73 72.17			
20000	1349.8	4963	6.5873	0.0473	46.09	1792.9	2.7321	0.0699	6275.7	105.3			
25000	1355.8	5010.8	6.5175	0.0447	44.79	1744.1	2.6931	0.0665	7006.2	117.4			
30000	1372.5	4975.4	6.5691 6.5107	0.0447	44.51	1732.1	2.6746	0.0653	7615.3	127.5			
40000	1471.3	5050.5	6.4606	0.0447	45.09	1757.5	2.6359	0.0631	10455	174.9			
Email	antal Cara	P.C	W-4 I1-	Inner	Tube Dime	nsions: L=	1.245 m	d _i = 0.014 m					
Experim 5000	ental Conc 682.13	3024.4	6.7234	0.0537	ture: 60 ± 0 24.66	.5°C	Cold Water	r Mass Flov 0.0911	vrate: 0.1 K	g/s 	2.0057	1.6481	
10000	801.92	3056.8	6.6442	0.0519	24.42	1177.2	3.1962	0.0822	2799.2	60.57	2.2634	1.6028	
15000	875.53	3078.7	6.5917	0.0519	24.62	1187.5	3.1432	0.0812	3714.5	80.25	2.4292	1.5769	
25000	904.54	3107.6	6.5235	0.0501	24.25	1170.8	3.082	0.0732	4438.5 5502.4	95.8 118.7	2.5542	1.5389	
30000	970.31	3050.6	6.6592	0.0501	23.83	1148.2	3.0742	0.0714	7022.3	151.4	2.7414	1.5338	
35000	963.77	3129.2	6.4733	0.0465	23.36	1128.9	3.0595	0.0698	7389.9	159.3	2.8161	1.5244	
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	23.31 ture: 60 ± 0	.5 °C	Cold Wate	r Mass Flo	wrate: 0.15	10/.9 kg/s	2.0024	1.5105	
5000	892.25	4507.8	6.7712	0.047	39.3	1890.7	3.3852	0.093	1876.9	40.82			
10000	1065	4553	6.6965	0.0462	39.22	1889	3.2304	0.0854	2716.4	58.83			
20000	1303.5	4606.5	6.61	0.0446	38.75	1868.5	3.1373	0.0754	4813.9	104			
25000	1358.8	4653.7	6.5355	0.043	38.19	1843.5	3.1198	0.0729	5781.6	124.8			
30000	1391.5	4659.2	6.5269	0.043	38.23	1845.7 1850 9	3.0934	0.0706	6331.4	136.6			
40000	1469.7	4697.7	6.4674	0.043	<u>3</u> 7.57	1815.6	3.0659	0.0688	8673.1	187			
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	.5 ℃	Cold Water	Mass Flov	vrate: 0.1 k	g/s			
5000	692 793.88	3049.5	6.6619	0.0537	24.89 25.27	1199.4 1219.5	2.9032	0.0995	1817	38.98 54.07		1.6462	
15000	860.6	3112.7	6.5115	0.0501	24.36	1176.7	2.7058	0.0792	3569.6	76.14		1.5748	
20000	923.15	3152.1	6.4212	0.0501	24.7	1194.6	2.6643	0.076	4533.9	96.59		1.5567	
25000	981.9 1007.8	3159.8 3170.1	6.4037 6.3805	0.0501	24.77 24.86	1198.2 1202.9	2.6426	0.0737	6088.5 6968.7	129.6 148.3		1.5429	
35000	1032.3	3180.5	6.3574	0.0501	24.94	1207.6	2.616	0.0696	7985.3	169.9		1.5222	
40000	1050.4	3196	6.323	0.0501	25.08	1214.6	2.5999	0.0692	8737.8	185.8		1.5141	
Experim 5000	ental Conc 921.2	utions: Hot 4533.9	water Inle 6.7279	1 empera 0.0446	ture: 70 ± 0 38.2	1838.9	Cold Water	n Mass Flow	2051.2	кg/s 44,11			
10000	1058.1	4616.4	6.5943	0.0446	38.82	1872.5	2.8118	0.077	2706.6	57.91			
15000	1200.5	4642.1	6.5536	0.0446	39.01	1882.9	2.7473	0.0799	3691.8	78.84			
20000	1347.8	4704.9	0.4564 6.4514	0.043	38.56 39.5	1863.6	2.7126	0.0752	5444.1 5466.3	116.1			
30000	1394.2	4732.5	6.4145	0.043	38.75	1874.5	2.6626	0.0728	6090.8	129.7			
35000	1473.6	4748	6.3912	0.043	38.87	1880.5	2.6466	0.0707	7643	162.7			
40000	1480.5	4/41.9	0.4004	0.0414	37.88	1832.4	2.0317	0.0093	0000.1	188.5		1	

Table C-22: Predicted Results ($\text{Re}_{s,c}$, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: : Wire Coil, e=1 mm, p= 30 mm).

Re		Annulus (smooth) †					Inner Tube (augmented)							
Inner		Da	Dw	£	N	h	Du	£	hai	N	Augmen	ntation ^{††}		
tube	w/m.c	Ke _{s,c}	Pr _e	J s,o	INUs	W/m².C	Pr _h	Ja	W/m ² .C	INUa	$f_{\rm a}/f_{\rm s}$	Nu _a /Nu _s		
Evnovin	antal Can	litional Hat	Watan Inla	Inner	Tube Dime	ensions: L=	=1.245 m o	d <u>≓ 0.011 m</u> Mass Flax	unates 0.1 la	<i>a</i> /a				
5000	637.34	3242.2	6.7378	0.0474	26.28	1019.9	3.3069	0.0682	1937.3	g/s 33.04	1.6416	1.4427		
10000	792.68	3237.5	6.7486	0.0474	26.24	1018.2	3.1713	0.0594	4096.2	69.59	1.8525	1.4035		
15000	785.94	3275.4	6.6619	0.0474	26.56	1032.2	3.1124	0.055	3768.4	63.91 76.2	1.9883	1.3811		
25000	883.68	3275.4	6.6619	0.0303	26.56	1073.7	3.083	0.0493	7066.3	119.7	2.1735	1.3536		
30000	930.94	3315	6.5735	0.0503	27.97	1088.4	3.0517	0.0476	7408.4	125.4	2.2438	1.3439		
35000	870.53 883.88	3298.5 3298.9	6.61 6.6091	0.0444	25.67 25.67	998.21 998.35	3.0402	0.0461	7841.3	132.7	2.3049	1.3357 1.3288		
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	5°C	Cold Water Mass Flowrate: 0.15 kg/s							
5000	898.01	4846.4	6.7639	0.046	44.33	1719.9	3.3701	0.0654	2143.6	36.62				
15000	1142.7	4889.6	6.6974	0.0474	45.49	1766.8	3.1675	0.0587	3700.1 4113.9	62.98 69.88				
20000	1213.2	4930.1	6.6363	0.0447	44.16	1716.7	3.136	0.0526	4740.7	80.45				
25000	1366.6	4946.6	6.6118	0.0473	45.95	1787	3.1124	0.0493	6678.7 7063.1	113.3				
35000	1347.6	4959.5	6.6013	0.0447	44.39	1720.7	3.0804	0.0473	8247.3	139.7				
40000	1414.5	4951.3	6.6048	0.0447	44.33	1723.9	3.082	0.0447	9101.2	154.2				
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	5°C	Cold Water	Mass Flow	vrate: 0.1 k	g/s	r	1 4 4 1		
10000	743.12	3230	6.59	0.0474	26.84	1022.8	2.7582	0.0601	2945.3	49.43		1.4018		
15000	801.58	3301.2	6.6039	0.0473	26.79	1041.7	2.6862	0.0555	3979.3	66.65		1.3794		
20000	846.65	3312.2	6.5795	0.0473	26.88	1045.8	2.6577	0.0523	5098.8	85.33		1.3637		
30000	897.28	3354.3	6.4877	0.0473	27.24	1037.3	2.6191	0.0497	6679.5	111.7		1.342		
35000	945.67	3358.7	6.4784	0.0473	27.27	1062.8	2.6028	0.0461	9924.9	165.8		1.3338		
40000 Experim	922.83	3340.5 litions: Hot	6.5175 Water Ink	0.0473	27.12	1056.1	2.6227	0.045 : Mass Flox	8432.1	141 Va/s		1.3269		
5000	838.83	4848.7	6.7603	0.0447	43.53	1688.8	2.9715	0.0641	1900.3	32.1				
10000	1052.2	4920.1	6.6513	0.0447	44.08	1713.3	2.8361	0.06	3116.2	52.42				
15000	1225.3	4957.1	6.596	0.0447	44.37	1725.9	2.7679	0.0544	4842.3	81.3 82.66				
25000	1394	4987.2	6.5519	0.0473	46.28	1800.1	2.6846	0.0493	7091.4	118.8				
30000	1364.3	5000.2	6.5329	0.0447	44.7	1740.5	2.6601	0.0481	7265.8	121.6				
35000	1383.3	5041.6	6.4733	0.0447	45.02	1754.5	2.6402	0.0461	7528.7	125.9				
Inner Tube Dimensions: L=1.245 m d _i = 0.014 m														
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	5°C	Cold Water	Mass Flow	vrate: 0.1 k	g/s	1 8000	1 (00)		
5000	592.76 813.28	3042.9	6.5665	0.0537	24.83	1196.2	3.2592	0.0751	2515.9	28.26	1.5999	1.4886		
15000	857.02	3086	6.5743	0.0537	25.22	1217	3.1309	0.0609	3226.2	69.67	1.9378	1.4245		
20000	927.1	3114.9	6.5064	0.0537	25.49	1231	3.1055	0.0572	4189.3	90.41	2.0375	1.4082		
25000	937.53	3115.7	6.4623	0.0501	24.39	1178	3.0698	0.0565	5765.2	110.6	2.1184	1.395/		
35000	1000.5	3138.8	6.4514	0.0501	24.59	1188.6	3.0571	0.0533	7089.6	152.8	2.2464	1.3771		
40000	969	3138.1	6.453	0.0465	23.43	1132.8	3.0423	0.052	7521.6	162	2.2993	1.3697		
5000	731.69	4518.7	6.7531	0.0462	$\frac{100 \pm 0}{38.96}$	<u>.5 °C</u> 1874.6	3.3156	0.0724	1331.9	28.91				
10000	1007.3	4584.1	6.646	0.0462	39.46	1902	3.2265	0.0713	2380.9	51.56				
15000	1145.1	4593.4	6.631	0.0462	39.54	1905.9	3.1743	0.0616	3194.3	69.07 00.74				
25000	1375	4633.4	6.5674	0.0402	38.95	1879.4	3.11445	0.0565	5730.8	123.7				
30000	1406.6	4656.4	6.5312	0.0446	39.12	1888.7	3.1095	0.0549	6167.6	133.1				
35000	1410.5	4672.9	6.5056 6.5013	0.043	38.33	1851.1 1852 2	3.0765	0.0537	6638.4 7707 5	143.1				
Experim	ental Con	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	.5 °C	Cold Water	r Mass Flov	vrate: 0.1 k	g/s	1	1		
5000	607.2	3037.9	6.6903	0.0537	24.79	1193.7	2.8732	0.0702	1371.6	29.4		1.4869		
10000	777.78 874.07	3106.9	6.5252	0.0537	25.41	1227.1	2.7523	0.0695	2361.7	50.44 70.51		1.446		
20000	933.47	3153.5	6.4178	0.0537	25.83	1249.5	2.6621	0.0599	4116.5	87.69		1.4063		
25000	938.96	3156.1	6.412	0.0501	24.74	1196.5	2.6435	0.0562	4872	103.7		1.3938		
30000	982.2 985.56	3161.3	6.4004 6.4379	0.0501	24.78	1198.8	2.6304	0.0535	6390 8	129.5		1.3837		
40000	1025.5	3173.1	6.3738	0.0501	24.88	1204.2	2.6096	0.0529	7755.7	165		1.3678		
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	5°C	Cold Water	Mass Flow	vrate: 0.15	kg/s				
5000	1073.1	4563.3	6.6796 6.5891	0.0446	<u>38.42</u> 38.85	1850.9 1873.8	2.9054	0.0765	1388.4	29.79 59.8				
15000	1201	4680.1	6.4945	0.0446	39.3	1898.3	2.7645	0.0632	3643.3	77.84				
20000	1304.9	4690.6	6.4784	0.0446	39.37	1902.5	2.7123	0.059	4637.4	98.93				
25000	1320.5	4697.7	6.4674	0.0446	39.43	1905.4 1869 7	2.6931	0.0565	4803.4	102.4				
35000	1412.6	4732	6.4153	0.043	38.75	1874.2	2.6421	0.0535	6422.2	<u>1</u> 36.7				
40000	1476.3	4750.2	6.3879	0.0414	37.93	1835.5	2.6309	0.0529	8478.9	180.5				

Table C-23: Predicted Results ($\text{Re}_{s,c}$, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Tube-Side Heat Transfer Enhancement for Two Sizes of Inner Tube (Enhancement Status: : Wire Coil, e=1 mm, p= 40 mm).
De			nner T	ube (sr	nooth) [†]	r			Annulu	s (smo	oth)	
Re	Uo			4.50 (51		h			ь. Г		Emp	irical
us	W/m ² .C	Re _{s,h}	Pr _h	$f_{s,i}$	Nus	¶s,i ₩/m².C	Pr _c	$f_{\mathrm{s,o}}$	∏a,i W/m².C	Nu _{s,o}	$f_{s,0}$	Nu _{s,o}
Evnerin	ontal Can	litional Hat	A Watan Inla	nnulus Din 4 Tommono	nensions: 1	L=1.245 m	$D_0 = 0.028$	$\frac{\mathbf{m} \mathbf{D}_{i}=0.0}{\mathbf{M}_{asss}}$)125 m	lug/a		
Experim 3000	ental Cond 1031.8	27334	3.068	0.0248	ture: 60 ± 0 146.1	8623	Hot Water 6.4733	0.052	rate: 0.112: 1197	5 Kg/s 30.72	0.0456	22.55
4000	1250.1	27043	3.1042	0.0248	145.2	8565.6	6.5132	0.0455	1503.2	38.6	0.0414	31.88
5000	1474.6	26976	3.1126	0.0248	145	8552.4	6.5381	0.042	1840.8	47.28	0.0386	40.64
6000 7000	1639.4	26660	3.1532	0.0249	144.7	8519.4 8518.2	6.6337	0.0391	2107.1	54.2 62.14	0.0365	49.23
8000	1970.6	26433	3.1831	0.0251	145	8532.8	6.6021	0.0383	2686.2	69.07	0.0335	65.04
9000	2108.1	26416	3.1852	0.0251	145	8529.4	6.6707	0.0383	2948.7	75.9	0.0324	72.97
10000 Experim	2232.4	26348 litions: Hot	3.1943 Water Inle	0.0252 t Tempera	145.3 ture: 60 ± 0	8545	6.6389 Hot Water	0.039 Mass Flow	3195.5	82.21	0.0315	80.34
3000	1052	48851	3.0502	0.022	241	14235	6.5355	0.0475	1151.1	29.57	0.0456	22.63
4000	1289.7	48866	3.0492	0.022	241	14238	6.5022	0.0435	1441.8	37.01	0.0414	31.86
5000	1535	48631	3.0654	0.022	240.8	14216	6.5364	0.0394	1755.9	45.1	0.0386	40.64
6000 7000	1960	48541	3.0716	0.022	240.5	14200	6.5372	0.042	2083.4	53.51	0.0365	48.97
8000	2173.3	48140	3.0997	0.022	239.6	14105	6.5579	0.0418	2647.6	68.03	0.0335	64.88
9000	2426.5	47813	3.123	0.0221	239.1	14093	6.557	0.0379	3035.2	77.99	0.0324	72.5
10000	2539.4	47881	3.1181	0.0221	239.2	14105	6.5997	0.0381	3213.2	82.61	0.0315	80.16
Experim 3000	ental Cond	11tions: Hot 31302	2 6461	t Tempera 0.0244	ture: 70 ± 0	9297 4	Hot Water	Mass Flow	rate: 0.112:	5 Kg/S 31 91	0.0456	22.49
4000	1267.3	31242	2.6517	0.0244	155.4	9286.7	6.4312	0.0423	1504.5	38.58	0.0414	31.73
5000	1463.6	30890	2.6844	0.0245	155.1	9258.3	6.5098	0.0397	1790.6	45.97	0.0386	40.58
6000	1638	30592	2.7128	0.0244	153.7	9171	6.5882	0.0378	2063.6	53.05	0.0365	49.1
8000	1819.2	30599	2.7121	0.0246	154.3	9205.9	6.5064	0.0365	2357.1	66.82	0.0349	50.9 64 72
9000	2097	30291	2.7421	0.0246	153.5	9150.2	6.6048	0.0366	2851.8	73.33	0.0324	72.7
10000	2234	30211	2.75	0.0246	153.3	9135.6	6.6025	0.0361	3113.1	80.04	0.0315	80.17
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 ℃	Hot Water	Mass Flow	rate: 0.2 kg	/s	0.0456	22.42
4000	1162.4	56280	2.601	0.0218	257.9	15433	6.4162	0.0537	12/4.5	32.05	0.0456	31.71
5000	1643.7	56187	2.6187	0.0218	257.1	15379	6.4062	0.0395	1877.9	48.14	0.0386	40.34
6000	1827.3	55739	2.6415	0.0218	256.4	15331	6.4329	0.0376	2122.6	54.43	0.0365	48.68
7000	2005	55717	2.6426	0.0218	256.4	15327	6.4724	0.0368	2366.2	60.72	0.0349	56.79
9000	2207.1	55399	2.0555	0.0219	256.2	15309	6.4/41	0.0376	2053.0	08.09 73.38	0.0335	04.5/ 72.19
10000	2531.3	55098	2.6748	0.0219	255.7	15272	6.5332	0.0362	3138.5	80.61	0.0315	79.85
			А	nnulus Din	nensions: I	L=1.245 m	$D_0 = 0.028$	m $D_i = 0.0$)155 m			
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.1125	5 kg/s	0.0456	21.57
4000	1043.7	21291	3.1216	0.0274	123.3	5687.3	6.4547	0.0313	1644.5	34.02	0.0430	30.49
5000	1472.1	21037	3.1384	0.0275	122.5	5669.2	6.4716	0.0449	2074.5	42.93	0.0386	38.85
6000	1642.2	20908	3.1597	0.0275	122	5646.4	6.5141	0.0414	2433.8	50.4	0.0365	46.93
7000	1762.8	20845	3.1702	0.0277	122.5	5664.7	6.5553	0.0385	2703.9	56.03	0.0349	54.75
9000	2115	20734	3.2103	0.0278	122.8	5709.8	6.5943	0.0332	3611.1	74.87	0.0333	69.72
10000	2166.8	20541	3.2218	0.0284	124	5726.5	6.6114	0.0327	3756.8	77.91	0.0315	76.97
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s	0.0454	
3000	1218.2	38574	3.051	0.0232	198.2 197.4	9199.1 9158 7	0.5426	0.0525	1451.5	29.56	0.0456	21.49
5000	1688.7	37923	3.0908	0.0232	196.6	9115.7	6.4187	0.0441	2133.4	44.11	0.0386	38.74
6000	1903.5	37862	3.0963	0.0233	197.3	9143.3	6.4354	0.0428	2485.9	51.41	0.0365	46.72
7000	2098	37661	3.1145	0.0234	197.5	9150.3	6.4716	0.0387	2827.5	58.51	0.0349	54.49
9000	2503.6	37350	3.1224	0.0235	197.7	9155.5	0.5804	0.034	3679.9	00.01 76.10	0.0335	69 36
10000	2588.4	37339	3.144	0.0236	197.4	9138.8	6.5509	0.0319	3799.3	78.72	0.0315	76.7
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0).5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	1091.3	24566	2.6495	0.0266	130.4	6123.7	6.2671	0.0537	1363.2	28.12	0.0456	21.4
5000	1462.1	24407	2.6985	0.0208	129.2	6059.7	6.3805	0.0322	2003	41.39	0.0414	38.66
6000	1635.5	23920	2.7272	0.0271	130.7	6123.8	6.4212	0.04	2332.8	48.24	0.0365	46.68
7000	1769.4	23874	2.7328	0.027	129.8	6083	6.4547	0.0381	2623.5	54.27	0.0349	54.44
8000	1938.7	23709	2.7536	0.0273	130.8	6122.9	6.4902	0.0344	3003	62.16	0.0335	62.02
10000	2114	23598	2.70//	0.0273	130.4	6090.1	6.5131	0.0331	3768.9	78.04	0.0324	76.53
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s	0.0010	
3000	1211.2	44435	2.6003	0.0229	211.8	9962.4	6.1907	0.0506	1403.5	28.91	0.0456	21.31
4000	1428.1	44030	2.6262	0.023	210.9	9910.4	6.2607	0.0488	1704.9	35.16	0.0414	30.17
6000	1839.3	435/9	2.6557	0.0231	210.7	9893 9903.4	6.3401	0.0461	2326.8	47.99	0.0386	38.4 46.47
7000	2137.3	43248	2.6777	0.0231	210.3	9870.1	6.3524	0.0377	2827	58.39	0.0349	54.12
8000	2336.2	43215	2.6799	0.0232	210.7	9886	6.3846	0.0359	3184	65.8	0.0335	61.64
9000	2556.1	42761	2.7108	0.0233	210.5	9866.1	6.4028	0.0335	3610	74.62	0.0324	68.95

Table C-24: Predicted Results (Re_{s,h}, Pr, *f*, h, Nu and empirical values of $f_{s,o}$, and Nu_{s,o}) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Smooth Annulus).

77.88 0.0315

Inner Tube (smooth)¹ Annulus (augmented) Re U₀ Augmentation^{†*} Annul h_{s,i} ₩/m².C ha,o W/m².C W/m².C Prc Re_{s,h} Nu_{s,i} Prh Nua f_{s,i} fa Nu_a/Nu 115 $f_{\rm a}/f_{\rm s}$ 1.245 m $D_i = 0.0125 \text{ m}$ Annulus Dimensions: $D_0 = 0.028 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3.1678 147.9 8704.4 6.1726 0.1537 76.96 2.6291 3.2276 2153.4 26548 0.0257 3013.7 3000 4000 2479.8 26391 3.1885 0.0257 147.4 8671.6 6.1914 0.1357 3701 94.54 2.7003 2.961 2738 26261 3.2059 0.0259 148 8702.8 6.2873 0.1239 4298.5 110 2.7568 2.7669 5000 6000 2948.2 25893 3.256 0.0259 146.9 8624.6 6.3524 0.1104 4868.1 124.7 2.8038 2.6168 136.6 7000 3122.1 26000 3.2413 0.0262 148.2 8705.1 6.4212 0.1024 5326.5 2.8442 2.4975 8000 3287.4 25699 3.2832 0.0262 147.2 8640.1 6.4463 0.0958 5859.6 150.3 2.8797 2.399 3.2783 9000 3492.1 25733 8676.2 0.0942 6520.2 167.5 2.9113 2.3116 0.0263 147.8 6.5631 3597.9 25572 147.3 0.0939 177.9 2.9399 2.2411 10000 3.3011 0.0263 8641.1 6.5393 6924.1 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 6.0887 3000 2401 47932 3.1145 0.0224 242.1 14274 0.1492 2986.2 76.15 95.6 2866 47691 3.1317 0.0224 241.5 14232 6.1522 0.1327 3744.6 4000 241.9 110.7 5000 3200.1 47617 3.1371 0.0224 14254 6.1978 0.1243 4333.6 3430.8 47414 3.1518 0.0225 241.4 14218 6.2808 0.1156 4772.4 122.1 6000 7000 3666.6 47252 3.1637 0.0225 241.6 14224 6.2986 0.1117 5240.3 134.1 8000 3861.7 47135 3.1724 0.0225 241.3 14203 6.3311 0.1022 5651.9 144.7 9000 4063.2 47094 3.1754 0.0225 241.2 14196 6.4062 0.0958 6095.7 156.3 241.3 14199 6.412 0.0979 6476.2 166 10000 4229.1 47013 3.1814 0.0226 Hot Water Mass Flowrate: 0.1125 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C kg/s 3000 2145.8 30511 2.7207 0.0254 158.6 9457.1 5.9758 0.1542 2908.2 74.03 3.2461 4000 2540.1 30255 2.7457 0.0256 158.7 9458.3 5.9953 0.1294 3682.8 93.77 2.9785 29780 9383.6 4278.5 2.7800 2802.4 2.7933 0.0257 157.7 6.1071 0.1187 109.1 5000 29789 2.7924 0.0258 0.1054 4860.7 124.2 2.6277 6000 3045 158.2 9417.8 6.2287 7000 3227.6 29632 2.8085 0.0258 157.8 9387.3 6.2921 0.1091 5354.4 137 2.5074 2.8282 0.0258 157.3 9350.4 6.3475 0.0941 153.9 2.4068 8000 3448.9 29443 6009.4 9000 29317 2.8415 158 9389.6 6.453 0.0913 6409.2 2.3204 3583.4 0.026 164.4 2.2468 29056 157.2 6.4359 7078 3773.7 2.8694 9337.6 181.5 10000 0.0261 0.0932 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2458.5 55575 2.6499 0.0221 258.4 15446 5.8251 0.1525 3019.7 76.67 4000 2891.5 54853 2.6877 0.0222 257.5 15373 5.8727 0.1442 3704.9 94.14 5000 3333.1 2.6888 0.0222 257.4 15370 5.9915 0.1228 4462.9 113.6 54832 6000 3618.7 54548 2.7041 0.0222 257.3 15354 6.0611 0.1191 4992 1273 54122 2.7272 0.0223 256.8 0.1033 5447.4 138.9 7000 3849.4 15316 6.0956 5941.6 4082.8 53591 2.7566 0.0223 255.6 15230 6.1569 0.0971 151.7 8000 53790 2.7455 9000 4297.8 0.0223 256.2 15272 6.1938 0.092 6399.8 163.5 10000 53452 0.0224 255.9 15246 6.2959 0.0948 6705.7 171.6 4431.2 2.7644 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3.1987 2147.5 123.2 5693.1 6.0398 0.1587 3714.6 76.33 3.3652 3.125 3000 20676 0.028 4000 2385.1 20580 3.215 0.028 122.9 5675.6 6.1358 0.1423 4500.3 92.63 3.4563 2.9024 3.2396 0.0282 123 5678.5 6.2543 0.1342 5149.2 106.2 3.5286 2.7388 5000 2556.5 20438 20308 122.6 0.1252 6024.2 124.4 3.5888 2.6127 6000 2748.8 3.2626 0.0282 5654.3 6.314 2.5117 20224 0.0282 122.3 5638.7 0.1253 144.5 3.6405 7000 2930.3 3.2774 6.3681 6996.7 8000 3042 20096 3.3004 0.0286 123.1 5671.7 6.4281 0.1259 7602.6 157.2 3.6859 2.4261 9000 3159 20026 3.3132 0.029 124.1 5714.7 6.4651 0.1228 8275.8 171.2 3.7264 2.3541 10000 3265.5 19962 3.3249 0.029 123.8 5702.4 6.4964 0.1202 9083.7 188 3.763 2.2916 **Experimental Conditions: Hot** Hot Water Mass Flowrate: 0.2 kg Water Inlet Temperature: 60 ± 0.5 °C 3.1182 77.38 3000 2576 37620 0.0233 196.6 9108 5.8373 0.164 3778.6 37335 0.0233 195.9 9066.2 5.9498 0.1452 4719.5 96.84 4000 2976.3 3.1443 3270.3 37121 3.1643 0.0233 195.3 9034.7 6.0527 0.1392 5517.2 5000 113.4 131.7 0.1279 6000 3555 36925 3.1828 0.0233 194.8 9005.6 6.1545 6395.3 7000 3757.2 36769 3.1976 0.0233 194.4 8982.5 6.2033 0.1235 7096.7 146.2 8000 3944.9 36605 3.2134 0.0235 194.7 8993.5 6.2769 0.1256 7788 160.7 9000 4113.7 8977.1 8491 175.3 36495 0.0235 194.4 0.1229 3.224 6.3207 10000 4266.8 36389 3.2343 0.0236 194.9 8996.4 6.36 0.1205 9148.1 189 **Experimental Conditions: Hot** Temperature: 70 ± 0.5 °C Water Inlet Hot Water Mass Flowrate: 0.1125 kg/s 6195.4 23746 2.7489 0.0277 132.3 5.7703 3.1467 3000 2130 0.1531 3462.7 70.83 23394 2.794 6202 5.9565 0.1399 2.9159 4000 2413.7 0.0281 132.6 4277.3 87.77 23314 2.7517 5000 2650.2 2.8044 0.0281 132.4 6188.5 6.0764 0.1382 5090.4 104.7 6000 2814.4 23151 2.8259 0.0281 131.9 6160.8 6.1851 0.1257 5759.5 118.6 2.6231 2.5201 7000 2963.4 23021 2.8434 0.0285 132.8 6202.5 6.2279 0.1227 6371.1 131.3 8000 3125.4 22884 2.8619 0.0285 132.4 6178.8 6.2945 0.1163 7205.6 148.7 2.4348 2.3624 9000 22841 2.8678 0.0285 132.3 6.3279 0.1177 7660.1 158.2 3205.8 6171.2 177.5 10000 3366.2 22635 2.8964 0.0289 132.9 6198 6.3894 0.1202 8587.3 2.298 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2520 43298 2.6744 0.0232 210.9 9897 5.5703 0.158 3534 72.03 5.7618 91.1 4000 2945.7 42872 2.7032 0.0231 209 9800.2 0.1511 4454.1 5000 3234.4 42534 2.7265 0.0232 209.1 9795 5 5.8503 0.1344 5150.2 105.5 6000 3517.7 42155 2.7532 0.0232 208.1 9744.7 5.9587 0.1299 5928.6 121.7 7000 3742.4 42031 2.762 0.0233 208.7 9767.6 6.0672 0.1245 6584.4 135.4 9756.8 7076.2 3894.4 41951 2.7677 0.0234 208.5 6.1126 0.1184 145.6

Table C-25: Predicted Results ($Re_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: : Wire Coil, e=1 mm, p= 10 mm).

0.0235 [†]Predicted values of smooth inner tube are used to complete calculations only.

0.0234

8000 9000

4122.6

10000 4263.1

41765

41676

2.7812

2.7876

†Augmentation values are predicted by using the proposed correlations and not experimental results.

208

208.6

6.1616

6.2295

0.1182

0.1183

7885.9

8394.2

162.4

173

9731.4

Inner Tube (smooth)¹ Annulus (augmented) Re U₀ Augmentation[†] Annul W/m².C h_{s,i} ₩/m².C ha,o W/m².C Prc Nu_{s,i} Re_{s,h} Prh Nua f_{s,i} fa Nu_a/Nu us $f_{\rm a}/f_{\rm s}$ **Annulus Dimensions:** =1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0125 \text{ m}$ L= Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2050 26492 3.1751 0.0258 8722.2 0.129 2812.9 71.85 1.876 2.8991 3000 148.2 6.1836 2.7025 4000 2382.7 26298 3.2009 0.0257 147.1 8652.2 6.2727 0.1149 3492.3 89.33 1.9267 4096.6 5000 2648.9 26140 3.2223 0.0258 147.1 8648 6.3434 0.1054 104.9 1.967 2.5594 6000 2810.9 26060 3.2332 0.0259 147.4 8660 6.4262 0.0997 4494 115.2 2.0006 2.4439 25889 3.2566 8709.9 5210.7 133.6 2.3562 7000 3082.7 0.0263 148.3 6.4371 0.0965 2.0294 8000 3181.3 25789 3.2706 0.0259 146.5 8602.3 6.4826 0.0886 5548.5 142.4 2.0547 2.2808 6157.4 <u>6.53</u>98 9000 3384 25699 147.7 8668.6 0.0859 158.2 2.0773 2.2151 3.2832 0.0263 3492.4 25641 147.5 6.5415 0.0859 6533.9 167.8 2.0977 2.1595 10000 3.2912 0.0263 8656.2 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 6.0725 73.74 3000 2341.6 48050 3.106 0.0224 243 14331 0.1249 2892.3 4000 2768 47839 3.1211 0.0224 242.5 14293 6.1459 0.1146 3574.5 91.24 108.7 0.0224 241.4 5000 3154.9 47636 3.1357 14222 6.1962 0.107 4254.3 6000 3287.3 47352 3.1564 0.0225 241.2 14207 6.3598 0.0997 4500.3 115.3 7000 3581.8 47433 3.1505 0.0225 242 14257 6.3459 0.0961 5064 129.7 6.3722 8000 3707.2 47138 3.1721 0.0225 241.3 14204 0.0892 5326.8 136.5 5958.4 9000 4001.5 46984 3.1836 0.0226 241.2 14194 6.4237 0.087 152.8 4108.4 3.1965 0.0226 240.8 14162 6.4581 0.0866 6205.3 159.2 10000 46811 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3000 2141.8 30543 2.7175 0.0252 157.5 9396.7 5.9594 0.1206 2907.4 73.99 2.9198 4000 2505.3 30257 2.7455 0.0252 156.8 9343.2 6.0239 0.1140 3629.5 92.46 2.7212 29997 9327.1 6.1639 2.5732 5000 2761.8 2.7714 0.0254 156.6 0.1051 4197.4 107.2 2.7899 3050.6 29814 0.0254 156.1 9292.4 0.0997 4914 125.6 2.4584 6000 6.2191 7000 3228.2 29635 2.8083 0.0254 155.6 9258.2 6.3116 0.0942 5404.9 138.3 2.3662 3522.6 29348 2.8382 0.0255 155.4 9235.4 6.2752 0.0883 6296.3 2.2919 8000 161.1 2.2259 9000 29297 2.8436 0.0255 155.2 9225.6 6.3271 0.0860 6710.3 171.8 3646.8 29099 2.8647 155.2 9219 6.4321 2.1672 3791.1 0.0852 7220.3 185.2 10000 0.0256 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2613.6 55391 2.6595 0.0221 258 15418 5.7309 0.1200 3258.5 82.59 4000 3008.7 54673 2.6973 0.0221 256.4 15305 5.8359 0.1106 3904.6 99.15 5000 3342.9 54531 2.7049 0.0222 256.8 15322 5.9328 0.1063 4485 114.1 6000 3563.6 53953 2.7364 0.0222 255.5 15230 6.0703 0.0958 4902.3 125 5396.2 3821.6 54056 2.7308 0.0222 256.4 15285 6.1141 0.0937 137.7 7000 4057.2 53713 2.7498 0.0223 255.9 15250 0.0888 5884.3 150.3 8000 6.1686 53558 2.7584 9000 4209.9 0.0223 255.5 15225 6.2223 0.0841 6215.7 158.9 10000 4400.2 53461 2.7638 0.0223 255.3 15209 6.2631 0.0830 169.9 6643.2 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2114.9 20759 0.1292 2.4011 2.7663 3000 3.1847 0.0278 122.8 5678.8 6.0043 74.44 3624.7 4000 2397.5 20569 3.217 0.028 122.8 5673.5 6.1459 0.125 4546 93.58 2.4661 2.6153 2571.8 20449 3.2377 0.0282 123.1 6.2519 0.1239 5209.9 107.4 2.5177 2.5036 5000 5680.6 2673.3 20346 3.2558 0.0282 122.7 6.3254 0.1208 5665 117 2.5607 2.4168 6000 5661.4 2.3451 2922.9 6875.3 2.5975 7000 20176 3.286 0.0286 123.4 5686.8 6.3962 0.1213 142.1 8000 2937.2 20208 3.2803 0.0286 123.5 5692.8 6.4262 0.1166 6945 143.6 2.6299 2.2862 9000 3012.6 20156 3.2895 0.0286 123.3 5683.1 6.4581 0.1148 7399.6 153.1 2.6588 2.2351 10000 3161.2 20024 3.3135 0.029 124 5714.4 6.5079 0.1132 8291.8 171.7 2.685 2.1898 Hot Water Mass Flowrate: 0.2 kg Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C 76.8 3000 25596 37637 3.1166 0.0232 195 9 9074 2 5.8438 0.131 3749.6 2922.8 37335 3.1443 0.0232 9030.1 5.9639 4596.7 94.34 4000 195.1 0.1269 3241.3 37141 3.1624 0.0233 195.4 9037.7 6.0741 0.1257 5433.9 111.7 5000 37023 0.0232 8984.3 124.3 6000 3437.9 3.1735 194.3 6.1498 0.1206 6036.6 7000 3613.6 36714 3.2028 0.0233 194.2 8974.3 6.2279 0.1188 6605.9 136.2 8000 3798.4 36654 3.2087 0.0235 194.8 9000.8 6.276 0.1164 7231.8 149.2 7773.1 9000 3940.6 36590 3.2148 0.0235 194.6 8991.3 0.1132 160.5 6.3262 10000 4073.1 36378 3.2354 0.0235 194.1 8959.4 6.3714 0.1133 8336.6 172.2 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2197.9 23655 2.7604 0.0277 132 6180.2 5.7443 0.1302 74.66 2.7869 3000 3651.6 2425.9 23415 2.7913 0.0277 131.3 6140.3 5.9498 0.1274 4349.3 89.24 2.6306 4000 23262 2.8113 132.2 6179.6 2.5172 5000 2605.2 0.0281 6.0596 0.1215 4933.6 101.4 6000 2734.9 23132 2.8284 0.0281 131.8 6157.5 6.1624 0.1212 5439.3 112 2.4281 6214.9 2.3555 7000 2879.4 23092 2.8338 0.0285 133.1 6.2343 0.1186 5982.3 123.3 8000 2959.4 22981 2.8488 0.0285 132.7 6195.6 6.3091 0.1164 6360.6 131.3 2.2924 9000 2.8553 2.2405 3066 22933 0.0285 132.6 6.3549 0.1163 6885.5 142.2 6187.2 10000 3084.6 22905 2.8591 0.0287 133.1 6214.2 6.3962 0.1132 6942.6 143.5 2.1945 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2627.2 43155 2.6839 0.0231 209.7 9837.5 5.5317 0.129 3757.9 76.54 5.6989 93.23 4000 2994.1 42947 2.698 0.0231 209.2 9810.2 0.1293 4563.3 5000 3291.8 42592 2.7225 0.0232 209.2 9803.3 5.8294 0.1235 5294.9 108.4 6000 3546.6 42434 2.7335 0.0232 208.8 9782.1 5.9298 0.1208 5995.4 123 7000 3700.5 42251 2.7464 0.0233 209.2 9797.4 6.0224 0.1189 6441.5 132.3 9731 140.3 3808.7 41761 2.7814 0.0234 208 0.1165 6812.2 8000 6.1671 9000 3934 41837 2.7759 0.0234 208.2 9741.3 6.2247 0.1128 7217.6 148.8

Table C-26: Predicted Results (Re_{s,h}, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 20 mm).

0.1133

7749

159.9

10000 4080.3

41595

2.7936

0.0234

Inner Tube (smooth)¹ Annulus (augmented) Re U₀ Augmentation[†] Annul W/m².C h_{s,i} ₩/m².C ha,o W/m².C Prc Nu_{s,i} Re_{s,h} Prh Nua f_{s,i} fa Nu_a/Nu us $f_{\rm a}/f_{\rm s}$ **Annulus Dimensions:** L=1.245 m $D_0 = 0.028 m$ $D_i = 0.0125 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 1974.2 26644 3.1553 0.0256 147.6 8694.6 6.2375 0.0913 2675 68.39 1.5398 2.5303 3000 2.3815 4000 2253 26232 3.2098 0.0256 146.4 8609.1 6.3871 0.0834 3227.4 82.71 1.5815 3786.6 5000 2513.4 26164 3.2189 0.0257 146.7 8624.1 6.4237 0.0813 97.09 1.6145 2.2751 6000 2703.4 26189 3.2156 0.0257 146.8 8629.3 6.4178 0.0754 4233.5 108.5 1.6421 2.194 26131 6.417 0.0734 2.1264 7000 2894.3 3.2234 0.0256 146.1 8588 4735.3 121.4 1.6658 5067.2 8000 3016.2 26037 3.2363 0.0257 146.3 8597.3 6.4885 0.0692 130.1 1.6865 2.0687 0.0258 5619.1 9000 3203.8 25908 8598.8 6.5813 0.0665 144.4 1.7051 2.0169 3.254 146.4 25838 3.2637 0.0259 156.1 1.7218 1.9758 10000 3350.3 146.7 8612.8 6.545 0.0669 6078 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 3.1147 241.9 0.089 70.57 3000 2254.7 47928 0.0224 14265 6.1718 2763.6 4000 2617.6 47569 3.1406 0.0224 241.2 14210 6.2792 0.0838 3332.8 85.26 47359 0.0224 3823.4 97.9 5000 2909.2 3.1559 240.7 14173 6.336 0.0806 3209.5 47241 3.1645 0.0224 240.4 14152 6.3295 0.0754 4361.8 111.7 6000 7000 3463.1 47429 3.1508 0.0224 241.1 14203 6.3681 0.073 4837 123.9 6.3689 8000 3631 47282 3.1616 0.0224 240.8 14177 0.0699 5175.1 132.6 9000 3884.9 47142 3.1719 0.0225 240.7 14169 6.4287 0.0677 5708 146.4 4028.4 47068 3.1773 0.0225 240.5 14156 6.427 6025.9 154.5 10000 0.0677 Hot Water Mass Flowrate: 0.1125 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C kg/s 3000 1999 30497 2.722 0.025 156.3 9321.3 6.0787 0.0873 2657.3 67.76 2.5447 4000 2266 30388 2.7326 0.0252 157.1 9367.7 6.1048 0.0835 3144.8 80.22 2.3981 92.23 2.2863 5000 2491.7 30004 2.7707 0.0252 156.1 9295.6 6.2112 0.0777 3609.2 0.0748 2703.7 29879 2.7832 155.7 9272.1 4076.7 104.3 2.2015 6000 0.0252 6.2671 7000 2828.9 29812 2.7901 0.0252 155.6 9259.3 6.3246 0.0697 4371.5 111.9 2.1326 29700 2.8016 0.0254 155.8 9270.6 6.4103 0.0675 2.074 8000 3011.6 4820.1 123.6 9000 3158.7 29528 2.8194 0.0254 155.3 9237.7 6.4004 0.0657 5220.4 133.8 2.0249 29443 2.8282 155.1 3309.7 0.0254 9221.5 6.422 5652.8 144.9 1.9816 10000 0.0644 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2362.2 55246 2.667 0.0219 256.4 15315 5.872 0.0884 2880.8 73.2 4000 2729.8 55064 2.6766 0.0219 256 15286 5.9893 0.084 3448.6 87.8 5000 3045.9 2.6998 0.022 255.3 15238 6.1389 0.0794 3972.7 101.4 54627 6000 3313.2 54419 2.711 0.0221 255.5 15245 6.1922 0.0764 4439.1 113.4 3512.2 54510 2.7061 0.0221 256.4 15299 6.2152 0.0704 4797.7 122.6 7000 3744.4 54287 2.7182 0.0222 256.2 15283 6.2287 0.0683 5243.9 134 8000 2.7297 144.7 9000 3948.7 54076 0.0222 255.7 15249 6.2727 0.0677 5658.9 10000 4143.8 53953 0.0222 255.8 15249 6.297 0.0653 6068.3 155.3 2.7364 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3.1732 0.0999 2937.6 1.9709 2.3641 3000 1862.4 20827 0.0278 123.1 5691.1 6.0894 60.42 4000 2074.1 20608 3.2103 0.0279 122.3 5651.4 6.2223 0.0929 3518 72.51 2.0242 2.2604 2238.1 3.2253 0.0279 122 6.3124 0.0822 4026.2 83.11 2.1867 5000 20521 5635.6 2.0666 20519 3.2256 0.0282 123.3 5693.4 6.3763 0.079 4440.3 91.75 2.1018 2.1267 6000 2371.6 20353 122.7 0.0735 4973.9 102.9 2.1321 7000 2509.1 3.2546 0.0282 5662.6 2.076 6.4818 8000 2588.3 20327 3.2592 0.0282 122.6 5657.9 6.4775 0.0744 5299.9 109.7 2.1587 2.0355 9000 2685.6 20242 3.2743 0.0282 122.3 5642 6.5562 0.069 5742.5 119 2.1824 1.9993 10000 2798.9 20149 3.2908 0.0282 122 5624.8 6.5541 0.0669 6310.5 130.8 2.2038 1.9683 Hot Water Mass Flowrate: 0.2 kg Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C 3000 21587 37614 3.1187 0.0232 195.8 9070.8 5.9706 0.0945 2948 60.51 0.0233 6.1397 3329.4 68.53 4000 2355.9 37457 3.1331 195.8 9066.1 0.0843 2804.8 37289 3.1486 0.0233 195.7 9059.4 6.1522 0.0829 4304 88.61 5000 0.0772 37182 0.0233 4868.9 100.4 6000 3032.2 3.1586 195.5 9043.6 6.2311 7000 3236.5 37060 3.17 0.0233 195.1 9025.7 6.301 0.0721 5425.2 112 8000 3271.7 36841 3.1907 0.0235 195.3 9028.8 6.3598 0.0684 5523.7 114.1 9000 90<u>31.8</u> 3490.2 36861 3.1888 0.0235 195.4 6.3722 0.0708 6174.8 127.6 138.3 10000 3642.6 36649 3.2091 0.0235 194.8 9000.1 6.422 0.0676 6687.7 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 23958 1827.3 2.7225 0.0275 6196.9 5.8975 0.092 2727.8 55.92 2.3773 3000 132.2 69.82 2105.1 23750 2.7484 0.0277 6196 6.0504 0.0828 3397.2 2.2736 4000 132.3 23585 2.7693 0.0277 2.1958 5000 2290.4 131.8 6168.7 6.1444 0.0801 3919.6 80.69 6000 2448 23394 2.794 0.0277 131.2 6136.7 6.2615 0.0755 4422.8 91.22 2.1334 7000 2541.2 23309 2.8051 0.0277 131 6122.6 6.2913 0.0704 4746.1 97.93 2.084 8000 2638 23211 2.818 0.0277 130.7 6106.1 6.3656 0.0655 5107.9 105.5 2.0417 9000 117.6 2.0053 2779.1 23064 2.8376 0.0277 130.2 6.4121 0.0643 5688.8 6081.3 1.9735 10000 2875.9 22979 2.8491 0.0277 130 6067 6.4481 0.0635 6125.9 126.7 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2163.2 43481 2.6621 0.023 210 9859.8 5.7226 0.0971 2873.6 58.73 73.31 5.8409 4000 2538.8 43162 2.6835 0.0231 209.7 9838.4 0.0843 3579.5 5000 2825.4 42882 2.7025 0.0231 209 9801.5 5.978 0.0808 4184.3 85.9 6000 3069.4 42502 2.7288 0.0231 208.1 9751.1 6.084 0.0729 4755.8 97.8 7000 3248.6 42308 2.7423 0.0232 208.5 9765.3 6.171 0.0701 5195.7 107 42144 2.7539 9743.2 5713 117.7 8000 3440.4 0.0232 208.1 6.2123 0.066 9000 3596.5 41991 2.7649 0.0232 207.7 9722.6 6.2626 0.0643 6165.6 127.2

Table C-27: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 30 mm).

0.0632

6603.6

136.3

9704.2

10000

3738.2

41855

2.7747

0.0232

Do		J	nner T	ube (sr	nooth) [†]	•	-	An	nulus	(augme	nted)	
Ne	Uo					h			h		Augmer	ntation ^{††}
us	W/m².C	Re _{s,h}	Pr _h	$f_{s,i}$	Nu _{s,i}	IIs,i W/m².C	Pr _c	fa	Па,о W/m ² .C	Nu _a	f_a/f_s	Nu _a /Nu _s
			A	nnulus Din	nensions: I	<i>,</i> =1.245 m	$D_0 = 0.028$	m D _i = 0.0	125 m			
Experim 3000	ental Conc 1769.3	litions: Hot 26669	Water Inle	t Tempera 0.0253	ture: 60 ± 0 146.7	.5 °C 8640.3	Hot Water 6.3108	Mass Flow	rate: 0.112: 2316.7	5 kg/s 59.29	1.2752	2,1997
4000	2053.9	26464	3.179	0.0254	146.1	8598.2	6.3979	0.0725	2835.2	72.67	1.3097	2.0894
5000	2255.6	26284	3.2028	0.0256	146.6	8619.8	6.5073	0.0662	3231.1	82.96	1.3371	2.0068
7000	2542.5	26329	3.1908	0.0257	147.2	8683.2	6.5381	0.0603	3839.9	91.12 98.63	1.3795	1.947
8000	2722.4	26154	3.2203	0.0257	146.7	8621.9	6.5004	0.0581	4282.5	109.9	1.3967	1.8495
9000	2860.9 2982	26033 25969	3.2368	0.0258	146.8 147.1	8625.4 8640.8	6.5226 6.6805	0.0537	4634.4	119 127.5	1.4121	1.8121
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	5°C	Hot Water	Mass Flow	rate: 0.2 kg	/s		11//10
3000	1990.2	48136	3.1	0.0221	240.2	14167	6.2343	0.0794	2379.6	60.83		
5000	2539.5	47813	3.125	0.0222	240.3	14104	6.3648	0.0661	3326.4	85.21		
6000	2865.4	47529	3.1435	0.0225	241.7	14238	6.35	0.0634	3743	95.86		
7000	3239.5	47370	3.1551	0.0225	241.3	14210 14281	6.3738 6.4379	0.0617	4410.9	113 115.9		
9000	3458.7	47407	3.1524	0.0225	242	14252	6.4312	0.0543	4822	123.7		
10000	3706.9	47263	3.1629	0.0225	241.6	14226	6.5056	0.0537	5322.6	136.6		
Experim 3000	ental Cond 1688.8	30808	2.6922	0.0247	ture: 70 ± 0 155.4	.5°C 9277.3	Hot Water 6.171	0.0809	2138.4	5 kg/s 54.61		2.2083
4000	2056.5	30559	2.7159	0.0249	155.9	9299.4	6.1907	0.0679	2762	70.55		2.0993
5000	2164.1	30172	2.7539	0.0252	156.5	9327.3	6.3871	0.063	2956.6	75.76		2.014
7000	2523.4	30042	2.7668	0.0252	156.2	9292.6	6.3987	0.0604	3651.9	83./5 93.6		1.9500
8000	2657.5	29758	2.7956	0.0256	157.1	9346.8	6.4254	0.0561	3957.2	101.5		1.8546
9000	2773	29738	2.7977	0.0255	156.5	9310.4	6.4657	0.0529	4227.3	108.5		1.8155
Experim	ental Cond	29886 litions: Hot	2./820 Water Inle	0.0258 t Tempera	158.5 ture: 70 ± 0	9430.0 .5 °C	Hot Water	0.0521 Mass Flow	42/0.4 rate: 0.2 kg	109.0		1./805
3000	1990	55653	2.6459	0.0218	255.6	15277	6.0542	0.0753	2346.8	59.82		
4000	2374.5	54903	2.685	0.0218	254.6	15202	6.1226	0.0692	2903.8	74.1		
6000	2907.5	55165	2.6712	0.0218	255.9	15282	6.2104	0.062	3737.4	95.5		
7000	2971.4	54773	2.692	0.022	255.7	15261	6.345	0.058	3845.2	98.4 7		
8000	3308.3	54299 54134	2.7175	0.022	254.6	15186	6.2776	0.0574	4435.9	113.5		
10000	3731.1	54307	2.7171	0.022	254.6	15188	6.4287	0.0521	5230.6	134.1		
Б. ·	(10		A	nnulus Din	nensions: I	<u>=1.245 m</u>	$D_0 = 0.028$	$m D_i = 0.0$	155 m			
Experim 3000	ental Cond 1841.2	20803	3.1773	0.0282	ture: 60 ± 0 124.2	5°C	Hot Water 6.1218	0.0818	rate: 0.112: 2869.9	5 Kg/S 59.06	1.7132	2.0267
4000	2008	20728	3.1899	0.0282	124	5731.8	6.2327	0.0703	3301.9	68.07	1.7596	1.9562
5000	2170.1	20652	3.2028	0.0282	123.7	5717.8	6.323	0.0644	3770.9	77.85	1.7964	1.9022
7000	2399.9	20301	3.236	0.0282	123.4	5701.2	6.4455	0.0555	4128.8	93.25	1.8534	1.8264
8000	2473.4	20375	3.2507	0.0288	124.7	5753	6.4919	0.0523	4764.8	98.63	1.8765	1.7977
9000	2586.9	20324	3.2597	0.029	125.1	5771.8	6.5201	0.0500	5187.8	107.4	1.8971	1.7722
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	5°C	Hot Water	Mass Flow	rate: 0.2 kg	/s	1.7157	1./470
3000	2182.1	37751	3.1063	0.0232	196.2	9090.7	5.9439	0.0817	2989.6	61.34		
4000	2471.6	37512	3.128	0.0232	195.6	9056 9073 1	6.0748	0.0712	3566.8	73.34		
6000	2882	37188	3.158	0.0233	195.5	9044.5	6.2479	0.0591	4492.7	92.64		
7000	3023.5	37202	3.1567	0.0234	196.3	9082.6	6.3295	0.0559	4834.3	<i>99.81</i>		
8000	3178.4	37060	3.17	0.0235	195.9	9061.5 9036.2	6.3508 6.4087	0.0527	5250.5 5567.6	108.4 115.1		
10000	3403.2	36890	3.1861	0.0236	196.2	9071.8	6.4455	0.0477	5889	121.8		
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		2.020
4000	2092.2	24002	2.7471	0.027	130.2	6103.3	5.8975	0.0828	3408.1	55.92 70.04		2.038
5000	2242.4	23525	2.7771	0.027	128.8	6026.7	6.2088	0.0635	3842.5	79.18		1.9101
6000	2360.4	23369	2.7972	0.0274	129.8	6067.2	6.3189	0.059	4180.7	86.3		1.867
8000	2490.5	23323	2.8032	0.0274	129.0	6102.6	6.3615	0.0555	4032.0	93.70 101.2		1.0314 1.8034
9000	2664.2	23209	2.8182	0.0277	130.7	6105.8	6.4153	0.0493	5207.4	107.7		1.7745
10000	2751.4	23130	2.8287	0.0279	131.1	6125	6.4371	0.0475 Mass Flore	5533.7	114.4		1.7524
3000	2147.2	43181	2.6821	0.0227	207.2	9718.7	5.7302	0.0824	2858.7	58.43		
4000	2496.5	43072	2.6895	0.0227	206.9	9704.6	5.8684	0.0705	3515	72.02		
5000	2718.1	42875	2.7029	0.0227	206.4	9679.1 9663 7	5.99	0.0644	3975.7 4513.8	81.63 92.8		
7000	3103.7	42437	2.7333	0.0229	<u>200.2</u> <u>2</u> 06.3	9662.2	<u>6.1444</u>	0.0558	4863.1	<u>1</u> 00.1		
8000	3242.3	42238	2.7473	0.0229	205.8	9635.9	6.2104	0.0525	5220.9	107.6		
9000	3350.6 3434.9	42031 42129	2.762	0.023	206.1 206.4	9648.3 9661.5	6.4004 6.4371	0.0499	5503 5729.1	113.7 118.5		

Table C-28: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=1 mm, p= 40 mm).

Table C-29: Predicted Results ($\text{Re}_{s,h}$, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=2.2 mm, p= 10 mm).

Re	TT	Inner Tube (smooth) [†] Annulus (augmented									nted)	
Annul		D	n	C	N	h .	D	C	h	N	Augme	ntation ^{††}
us	W/m².C	Re _{s,h}	Pr _h	J s,i	Nu _{s,i}	W/m ² .C	Pr _c	J a	W/m ² .C	Nu _a	$f_{\rm e}/f_{\rm e}$	Nu _o /Nu _o
			A	nnulus Din	nensions: 1	[<i>=</i> 1.245 m	$D_0 = 0.028$	m D;=0.0)125 m	1	JAJS	a a a a a a a a a a a a a a a a a a a
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 60 ± 0).5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2184.6	26480	3.1768	0.0248	143.6	8453.3	6.1624	0.3082	3112.3	7 9.4 7	5.8418	2.8705
4000	2479.9	26257	3.2064	0.025	144	8467.5	6.3165	0.2706	3745	95.86	5.9999	2.7203
5000	2724.3	26099	3.2279	0.0249	143	8405.7	6.3631	0.2647	4350.3	111.4	6.1254	2.6096
7000	2924.5	25852	3.2399	0.0248	142.3	8384 5	6.4379	0.2424	4902.5 5333.9	125.8	63197	2.5215
8000	3275.8	25762	3.2743	0.025	142.5	8365.9	6.4472	0.2432	5972.8	153.2	6.3985	2.3931
9000	3446.1	25809	3.2677	0.0253	143.7	8433.6	6.475	0.2244	6517.7	167.3	6.4688	2.3411
10000	3547.8	25721	3.28	0.0253	143.6	8429.7	6.4953	0.206	6894.4	177	6.5324	2.2939
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 60 ± (0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s	1	r
3000	2492.8	47961	3.1124	0.0221	240	14154	6.0573	0.2927	3136.1	79.94		
4000	2920.7	47924	3.115	0.0221	240.1	14157	6.0894	0.2703	3844.7	98.05		
6000	3601.6	47500	3.1398	0.0222	239.4	14100	6 2271	0.2329	4557.0	1313		
7000	3876.3	47065	3.1776	0.0222	238.6	14035	6.2719	0.2353	5713.2	146.1		
8000	4154.2	46819	3.1959	0.0223	238.4	14024	6.3091	0.2264	6342.2	162.3		
9000	4313.6	46416	3.2265	0.0223	237.4	13952	6.3574	0.2225	6740.1	172.6		
10000	4537.4	46753	3.2009	0.0223	238.5	14030	6.4648	0.2057	7279.1	186.8		
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s	1	2.00/0
3000	2128.5	30393	2.7321	0.0244	153.2	9135.1	5.9624	0.3011	2911.9	74.1 90.71		2.8868
5000	2433	30045	2.7457	0.0243	152.9	9105.2	6 1087	0.2070	4122.6	105 2		2.7344
6000	2973.2	29597	2.8122	0.0247	152.2	9055.6	6.2073	0.2502	4788.5	122.4		2.5358
7000	3063.4	29706	2.8009	0.0249	153.6	9141.4	6.2953	0.2438	4997.2	127.9		2.4603
8000	3280.1	29586	2.8134	0.025	153.9	9151.3	6.3238	0.2243	5596.4	143.3		2.4006
9000	3400	29452	2.8273	0.0251	153.8	9142.3	6.3722	0.219	5959.3	152.7		2.3487
10000	3546.8	29253	2.8483	0.0253	154	9152.8	6.4145	0.2052	6419.6	164.6		2.3024
Experim 3000	2402 4	55799	2 6384	0.0219	257.3	15380	5 8051	0 2978	2938 2	/\$		
4000	2886.3	55123	2.6735	0.0219	256	15290	5.9202	0.2745	3701.9	94.14		
5000	3213.6	54962	2.6819	0.022	256.1	15293	5.9624	0.2602	4257.8	108.4		
6000	3720.5	54171	2.7245	0.022	254.3	15166	6.0103	0.2481	5212.7	132.8		
7000	4076.3	54081	2.7294	0.022	254.4	15171	6.1397	0.2354	5938	151.6		
8000	4264.6	53790	2.7455	0.0221	254.1	15145	6.1686	0.2266	6351.6	162.2		
9000	4534.3	53457	2.7641	0.0221	253.8	15121	6.1836	0.2096	69/4./	178.1		
10000	4/0/.2	53510	2.7007 A	0.0221 nnulus Din	254.1 nensions: 1	=1.245 m	$D_{-}=0.028$	m D = 0.0	/38/ 155 m	100.0		
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 ℃	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2091.8	20653	3.2026	0.0294	127.5	5892.1	6.0994	0.3531	3470.1	71.38	7.5635	2.4688
4000	2245.5	20559	3.2187	0.0294	127.2	5874.1	6.2407	0.3392	3923.5	80.89	7.7681	2.3763
5000	2352.8	20477	3.2329	0.0294	126.9	5858.3	6.301	0.3311	4272.7	88.18	7.9307	2.3091
6000	2442.6	20430	3.2411	0.0297	128	5906.2	6.3656	0.3211	4546.4	93.92	8.066	2.2532
8000	2516.2	20403	3 2 5 4 3	0.0299	120.5	5929.2	6 5226	0.3139	5112.7	99.20 105 9	8 2842	2.2083
9000	2653.7	20197	3.2823	0.0298	127.1	5860.5	6.5141	0.306	5378.4	111.4	8.3753	2.1397
10000	2713	20176	3.286	0.0298	127	5856.5	6.5865	0.2991	5631.9	116.8	8.4576	2.1086
Experim	ental Con	litions: Hot	Water Inle	t Tempera	ture: 60 ± ().5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s		
3000	2674.9	37008	3.1749	0.0237	197.3	9125.2	5.8895	0.3621	3991.5	81.82		
4000	2883.1	37107	3.1656	0.0234	196	9068.4	6.0405	0.3472	4489	92.25		
5000	3040.1	36904	3.1847	0.0235	195.5	9038.3	6.13/4	0.33/8	4891.2	100.7		-
7000	3281 4	36567	3.1929	0.0235	195.5	9058.6	6.3238	0.3171	5538.8	114.3		
8000	3360.7	36579	3.2159	0.0236	195.4	9025	6.3805	0.3204	5783.7	119.5		
9000	3439.4	36769	3.1976	0.0235	195.1	9018.1	6.3945	0.3101	6024.3	124.5		
10000	3437	36488	3.2246	0.0236	195.1	9011.4	6.494	0.3008	6020.3	124.6		
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 ℃	Hot Water	Mass Flow	rate: 0.112	5 kg/s		A (24)
3000	2098.3	23676	2.7577	0.0288	136.3	6380.8	5.8575	0.3493	3321.5	68.05		2.4816
4000	2303.7	23400	2./846	0.0292	137	6335 1	6.1164	0.331	2855.9	/9.20 80.10		2.388
6000	2549.4	23413	2.8039	0.0289	135.2	6318.5	6.3541	0.3262	4650.4	96.06		2.2591
7000	2666.2	23216	2.8173	0.0292	136.2	6364.7	6.3262	0.3116	5022	103.7		2.2183
8000	2784.1	23141	2.8273	0.0296	137.3	6415	6.3369	0.313	5416.9	111.9		2.1821
9000	2870.3	23070	2.8368	0.0296	137.1	6402.1	6.4078	0.3063	5764.7	119.2		2.1478
10000	2983.6	22822	2.8704	0.0298	136.9	6388.6	6.4741	0.3032	6254.7	129.4		2.1162
Experim	ental Con	ditions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s	1	1
3000	2441.3	43152	2.6842	0.0233	211	9898	5.7261	0.3493	3380.9	69.1 00.57		
5000	32131	42//1	2.7101	0.0232	209.0	9805 7	5.0323	0.3432	4423.1 5093.4	90.57		
6000	3515.4	42091	2.7577	0.0233	209.4	9775.8	6.081	0.3322	5909.4	121.5		1
7000	3610.6	42283	2.7441	0.0232	208.4	9761.9	6.0864	0.3259	6189.7	127.3		1
8000	3785.7	42117	2.7559	0.0233	208.9	9779.3	6.1087	0.3251	6713.7	138.1		
9000	3962.7	41844	2.7755	0.0234	208.2	9742.2	6.1796	0.3198	7314.2	150.7		
10000	4108.3	41580	2.7947	0.0234	207.6	9706.1	6.297	0.3113	7852	162		1

Table C-30: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=2.2 mm, p= 20 mm).

Re	T	I	Inner T	ube (sr	nooth)	ŕ		Ar	nnulus	(augme	nted)	
Annul	U_0	D.	D	ſ	NT	h.	D	ſ	h.	NT	Augmer	ntation ^{††}
us	w/m².C	Re _{s,h}	Pr _h	J _{s,i}	Nu _{s,i}	W/m ² .C	Pr _c	J _a	W/m ² .C	Nu _a	f_a/f_s	Nu _a /Nu _s
			A	.nnulus Din	nensions: 1	L=1.245 m	$D_0 = 0.028$	m $D_i = 0.0$)125 m		5455	a 3
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2348.4	26435	3.1828	0.0251	145	8533.2	6.1288	0.2293	3440.8	87.81	4.1683	2.8552
5000	2626.0	26152	3.2206	0.0252	144.7	8474 9	6 2591	0.2008	4080.1	104.4	4.2811	2.7595
6000	3133.7	25967	3.2452	0.0254	144.6	8495.5	6.3124	0.1884	5454.3	139.6	4.4453	2.6389
7000	3280.8	25750	3.276	0.0254	144	8450.1	6.3714	0.1881	5941.2	152.2	4.5093	2.5917
8000	3522	25701	3.2829	0.0255	144.6	8483	6.4153	0.1773	6758.5	173.3	4.5655	2.5519
9000	3653.5	25538	3.3059	0.0256	144.3	8462.9	6.4898	0.1766	7277	186.8	4.6157	2.5154
10000 Eunorim	3723.8	25434	3.3208	0.0256	144	8440.8	6.5209	0.1814 Mass Flow	7581.3	194. 7	4.6611	2.4852
Experim	2698 5	47876	3 1185	0 0222	240.4	14175	Hot water	Mass Flow	rate: 0.2 kg	/\$ 		1
4000	3096.2	47470	3.1478	0.0222	239.7	14173	6.1118	0.2084	4158.1	106.1		
5000	3440.4	47308	3.1597	0.0222	239.3	14093	6.1172	0.1982	4807.3	122.7		
6000	3770	46973	3.1844	0.0223	239.1	14069	6.1828	0.1915	5480.4	140		
7000	3998.8	47135	3.1724	0.0224	239.8	14115	6.2471	0.1905	5968.1	152.6		
8000	4227.6	46815	3.1962	0.0224	239	14058	6.2986	0.1788	6506.4	166.5		
9000	4460.7	40503	3.2152	0.0224	238.8	14039	6.3/44	0.1/81	7080.7	181.4		
Experim	ental Cond	litions: Hot	Water Inle	t Temnera	230.9 ture: 70 ± 0	14044	Hot Water	Mass Flow	7337.1 rate: 0.1124	195.5 5 kg/s		
3000	2388.1	30033	2.7677	0.0247	153.4	9136.3	5.9483	0.2246	3420.5	87.03		2.8719
4000	2693.2	29864	2.7848	0.0249	154	9170.8	6.0398	0.2034	4075.2	103.8		2.7757
5000	2948.1	29592	2.8127	0.025	153.9	9152.6	6.1726	0.1892	4694	119.9		2.7042
6000	3202.7	29673	2.8044	0.025	154.1	9167.7	6.2311	0.1849	5368.4	137.2		2.6474
7000	3588.8	29512	2.821	0.025	153.7	9157.5	6.2359	0.1896	5927.2	151.5		2.602
9000	3714	29137	2.8007	0.025	152.0	9000.2	6.3004	0.1722	0525.5	107.2		2.5369
10000	3852.2	28861	2.8906	0.0251	151.9	9013.5	6.464	0.1756	7604.1	195.1		2.4906
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s		
3000	2801.3	55161	2.6715	0.0221	257.2	15362	5.7275	0.2219	3558.9	90.2		
4000	3180.6	54656	2.6982	0.0221	256.2	15292	5.8858	0.213	4200.1	106.7		
5000	3527	54163	2.7249	0.0221	255.3	15224	5.9247	0.2005	4834	122.9		
<u>6000</u> 7000	3795.3	54444	2.7097	0.0221	256.2	15288	5.9975	0.1958	5343.0	130.1		
8000	4335.1	53778	2.7461	0.0222	255.1	15203	6.1195	0.1813	6497.5	165.8		
9000	4442.3	53501	2.7616	0.0222	254.9	15186	6.2336	0.1783	6744.7	172.4		
10000	4606.3	53331	2.7712	0.0223	254.7	15168	6.2809	0.182	7134.5	182.5		
			A	nnulus Din	nensions: I	L=1.245 m	$D_0 = 0.028$	$m D_i = 0.0$)155 m			
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s	5 20//	2 /201
3000	2051.2	20553	3.2198	0.0292	126.5	5854.1	6.1343	0.3045	3831.8	09.51 78.07	5.5900	2.4381
5000	2362.9	20430	3.2592	0.0294	126.3	5829.4	6.2953	0.2639	4323.6	89.22	5.6586	2.372
6000	2478.3	20375	3.2507	0.0301	129	5952.1	6.3664	0.2518	4640.2	95.86	5.7552	2.3505
7000	2569.4	20161	3.2886	0.029	124.5	5740.8	6.4741	0.2375	5145.4	106.5	5.8381	2.3309
8000	2701	20274	3.2686	0.0297	127.4	5875.6	6.4987	0.2138	5561.2	115.1	5.9109	2.3167
9000	2721	20131	3.2941	0.029	124.4	5734.9	6.497	0.2086	5798.2	120	5.9758	2.3029
10000 Exporim	2812.8	20091 litions: Hot	3.3012 Watar Ink	0.0294	125.5	5/83.7	0.5555 Hot Water	0.2033 Mass Flow	0108.8	12/.8	0.0343	2.2901
3000	2484.5	37518	3.1275	0.0233	196.4	9093.1	5.8735	0.3152	3587.4	73.51		
4000	2793.6	37199	3.157	0.0233	195.5	9046.2	6.0902	0.2835	4281	88.05	·	
5000	2966.6	36971	3.1784	0.0233	194.9	9012.4	6.1914	0.2718	4711.3	97.06		
6000	3149.3	36939	3.1814	0.0235	195.6	9043.5	6.2359	0.2561	5178.1	106.8		
7000	3297.4	36631	3.2109	0.0235	194.8	8997.4	6.2856	0.2421	5610.8	115.8		
8000	3422	36572	3.2304	0.0237	195.7	9037.7	6 3970	0.2185	5901.7	123		
10000	3678.8	36500	3.2235	0.0236	195.4	9013.2	6.4254	0.2003	6802.4	133.3		
Experim	ental Con	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		1
3000	2158	23589	2.7689	0.0281	133.2	6235	5.8575	0.3167	3523.1	72.17		2.4526
4000	2359	23459	2.7855	0.0281	132.8	6213.1	6.0367	0.2855	4103	84.31		2.4142
5000	2545.2	23276	2.8095	0.0281	132.3	6182	6.1343	0.2671	4721.1	97.17		2.3846
6000	2639.8	23132	2.8284	0.0285	133.2	6221.9	6.2615	0.2491	5028	103.7		2.3602
7000	2/45.0	23059	2.8382	0.0285	133	6199.2	6.4037	0.2341	5437.2	112.3		2.3238
9000	2923.7	22795	2.8742	0.0283	130.7	6099.6	6.3829	0.2077	6307.6	130.3		2.3230
10000	2995.5	22789	2.875	0.0287	132.8	6193.7	6.486	0.1956	6531.7	135.2		2.2961
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0).5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s		
3000	2586.4	42667	2.7173	0.0231	208.5	9773	5.6851	0.3292	3685	75.27		
4000	2997.3	42589	2.7227	0.0231	208.3	9762.7	5.788	0.2998	4582.2	93.76		
5000	3238	42398	2.736	0.0231	207.9	9737.3	5.9188	0.2798	5177.6	106.2		
7000	37063	41996	2.7645	0.0232	208.3	9723.2	6,0971	0.2445	6495 3	133.6	<u> </u>	
8000	3863.3	41882	2.7727	0.0233	207.9	9727.6	6.1382	0.2229	6990.7	143.9		
9000	3958.1	41802	2.7784	0.0234	208.1	9736.6	6.2144	0.2128	7302	150.5		
10000	4167.7	41532	2.7982	0.0234	207.4	9699.6	6.2679	0.2024	8076.8	166.6	-	l —

Inner Tube (smooth)¹ Annulus (augmented) Re U_o Augmentation[†] Annul h_{s,i} ₩/m².C ha,o W/m².C W/m².C Prc Nu_{s,i} Re_{s,h} Prh fa Nua f_{s,i} Nu_a/Nu us $f_{\rm a}/f_{\rm s}$ Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0125 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2274.1 26501 3.174 8517 6.1126 0.1893 83.84 3.4214 2.6641 3000 0.025 144.7 3286.3 4000 2474.9 26393 3.1883 0.025 144.4 8495.2 6.2335 0.1609 3727.4 95.28 3.5139 2.6096 8519.1 2685 26222 3.2111 0.0252 144.9 6.3238 0.1394 4218.7 108 3.5875 2.5667 5000 6000 2833.1 26129 3.2237 0.0252 144.6 8500 6.3623 0.1302 4602.6 117.9 3.6487 2.5337 25928 3.2512 0.0254 6.4287 133.1 2.5083 7000 3043.4 144.5 8487.4 0.134 5190 3.7013 8000 3196.6 25862 3.2603 0.0254 144.3 8473.7 6.4455 0.121 5658.9 145.1 3.7474 2.484 <u>3.2</u>72 0.0255 9000 3298.1 25778 8485 6.6004 0.1156 5978.5 153.7 3.7886 144.6 2.46 25733 3.2784 3.8258 2.4447 10000 3402.4 0.0256 144.9 8504.2 6.5466 0.1146 6318 162.3 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 2738 0.0222 5.9602 3534 89.93 3000 47795 3.1243 240.2 14161 0.1894 <u>3.1</u>594 4000 3128.4 47311 0.0222 239.3 14094 6.068 0.1595 4219.2 107.6 47544 3.1424 240.2 117.9 5000 3344.2 0.0223 14149 6.2033 0.1443 4614.6 3540.3 47363 3.1556 0.0223 239.8 14121 6.3018 0.1325 5000.6 128 6000 139.5 7000 3760.8 47285 3.1613 0.0223 239.6 14107 6.2752 0.1298 5454.5 8000 3894.6 47028 3.1803 0.0223 239.4 14088 6.3829 0.1178 5744.3 147.2 5931.2 9000 3981.1 47065 3.1776 0.0224 239.6 14103 6.4346 0.1159 152.1 3.1959 0.0224 239 14059 6.4634 0.1106 6361.2 163.2 10000 4165.9 46819 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3000 2292.5 30506 2.7211 0.0247 154.6 9222.7 5.9151 0.1745 3215.7 81.77 2.678 4000 2613.6 30015 2.7695 0.0247 153.3 9132.9 5.9803 0.1492 3903.6 99.37 2.6258 4412.8 29956 9204.5 112.6 2.5813 5000 2840.2 2.7755 0.025 154.6 0.1361 6.1164 2.7878 29834 154.8 9214.5 6.2239 0.1275 4869.7 124.5 2.5472 6000 3024 0.0251 7000 3221.3 29559 2.8162 0.0252 154.6 9195 6.3254 0.1265 5410.2 138.5 2.5178 3342.9 29465 2.8259 0.0253 154.6 9193.4 6.3385 0.115 5762.8 147.6 2.4948 8000 2.4721 9000 3491.3 29297 2.8436 0.0253 9161.2 6.3995 0.1095 6235.3 159.8 154.2 29167 2.8574 170.5 2.4533 0.0253 154.1 9152.3 6.4455 10000 3615 0.1064 6646.8 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2653.4 55220 2.6683 0.0219 256.2 15305 5.7471 0.1654 3326.5 84.34 4000 3028.3 55102 2.6746 0.022 256.2 15302 5.8222 0.1464 3937.8 99.97 5000 3372.1 54048 2.7312 0.022 254.4 15166 5.9446 0.1339 4553.4 115.8 6000 3741.8 54291 2.718 0.022 254.9 15205 5.9983 0.1277 5249.4 133.7 4003.5 54134 2.7265 0.0221 254.9 15200 0.1257 5780.1 147.3 7000 6.0634 4249.5 53941 2.7371 0.0221 254.4 15169 6.1257 0.1141 6313.3 161.1 8000 53491 2.7622 9000 4402.3 0.0221 253.7 15116 6.2158 0.1083 6668.1 170.4 10000 4627.1 53233 2.7768 0.0222 253.5 15094 6.2622 0.1064 7203.6 184.2 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2124.6 3.2037 5833.1 0.227 4.4296 20647 6.0733 3585.6 73.72 2.2419 3000 0.029 126.2 4000 2354.1 20504 3.2281 0.0294 127 5863.6 6.1452 0.2164 4273.7 87.98 4.5495 2.242 20235 3.2754 0.0297 127.2 5868.1 6.2575 0.2056 4795.3 98.89 4.6446 2.2379 5000 2505 2691.4 20364 3.2526 0.0294 126.5 5836.5 6.3254 0.201 5559.2 114.8 4.7239 2.2376 6000 2.2374 20218 127.2 2795.3 3.2786 0.0298 5864.6 6.3854 0.1921 5988.9 123.8 4.792 7000 8000 2935.5 20187 3.284 0.0298 127.1 5858.6 6.4589 0.1842 6680.4 138.2 4.8517 2.2361 9000 2979.4 20037 3.311 0.0298 126.5 5829.2 6.5016 0.1799 6958.1 144.1 4.905 2.2358 10000 3067.9 19980 3.3215 0.0298 126.3 5817.8 6.5332 0.1759 7481.1 155 4.9532 2.2346 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3.1179 76.28 3000 2549.8 37623 0.0233 196.6 9108.4 5.8735 0.2318 3722.4 2940.1 37147 3.1618 0.0234 9074.4 5.9587 0.216 4626.7 94.95 4000 196.1 3216.7 37159 3.1607 0.0233 195.4 9040.2 6.1226 0.2107 5364.2 110.4 5000 3.1907 6000 3474.8 36841 0.0233 194.5 8993.2 6.1733 0.2067 6146.8 126.6 7000 3634.3 36760 3.1984 0.0235 195.1 9016.8 6.2136 0.2002 6649.9 137 8000 3806.7 36636 3.2103 0.0235 194.8 8998.2 6.2679 0.1915 7263.9 149.8 7948.1 9000 36507 8908 3966.8 0.0232 192.9 6.3051 0.1815 164 3.2228 178.7 10000 4145.4 36357 3.2375 0.0235 194 8956.3 6.3827 0.1805 8648.4 **Experimental Conditions: Hot** Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 6390.7 2179.6 23734 2.7505 136.5 5.7916 72.16 2.2587 3000 0.0288 0.2282 3526.5 0.21 4255.2 2431.3 23509 2.7791 0.0288 6351.7 5.9736 87.34 2.2543 4000 135.8 23265 2.8108 0.0292 2.2497 5000 2623.2 136.4 6373.4 6.1273 0.2058 4866 100.1 6000 2755 23083 2.835 0.0296 137.1 6404.6 6.2073 0.2016 5315.6 109.5 2.2457 6331.5 2.2438 7000 2869.2 23030 2.8422 0.0292 135.6 6.2623 0.1936 5824.8 120.1 6378.9 8000 2987.4 22941 2.8541 0.0296 136.7 6.3075 0.1899 6281.9 129.7 2.2422 9000 2.8577 137.9 6.3459 137 2.2441 3079.6 22915 0.03 0.1884 6634.3 6437 137.3 10000 3180.2 22737 2.8822 0.03 6404.1 6.4336 0.1765 7164.4 148.2 2.2407 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 3000 2619.1 43288 2.675 0.0231 210 9854.9 5.5756 0.2289 3738.6 76.21 5.6962 4000 3024.1 42830 2.7061 0.0231 208.9 9794.6 0.2121 4637.2 94.73 5000 3307.8 42498 2.729 0.0231 208.1 9750.6 5.8294 0.2114 5353.7 1096 5.996 6000 3512.3 41863 2.7741 0.0231 206.6 9665.5 0.201 5946.1 122.1 7000 3688.2 42091 2.7577 0.0232 208 9736.1 6.0987 0.2014 6433.6 132.3 3879.5 41989 207.7 9722.3 145.2 2.765 0.0232 6.1891 0.1917 7047 8000 9000 4110.1 41604 2.7929 0.0234 207.6 9709.5 6.1483 0.1875 7856.3 161.7

Table C-31: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=2.2 mm, p= 30 mm).

9676.4 6.2525

0.1828

8246.2

170.1

10000 4207.5

41506

2.8001

0.0233

207

Inner Tube (smooth)¹ Annulus (augmented) Re U_{0} Augmentation[†] Annul h_{s,i} ₩/m².C ha,o W/m².C W/m².C Prc Nua Re_{s,h} Prh Nu_{s,i} fa f_{s,i} Nu_a/Nu us $f_{\rm a}/f_{\rm s}$ **Annulus Dimensions:** L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0125 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 26459 3.1795 0.0247 8419.4 6.094 0.1489 78.66 2.8334 2.4321 3000 2168.2 143.1 3084.2 2.4053 4000 2452.1 26352 3.1937 0.0248 143.3 8427.6 6.2009 0.1354 3690.5 94.29 2.9101 5000 2670 26286 3.2026 0.0248 143.1 8414.3 6.3598 0.1269 4211.2 107.9 2.971 2.3849 6000 2822 26107 3.2267 0.0249 143 8407.4 6.3747 0.1241 4604.5 118 3.0217 2.3702 26047 3.2349 8424.5 0.1177 2.3567 7000 3049.6 0.025 143.4 6.4195 5235.3 134.2 3.0652 25953 0.1129 8000 3122.3 3.2478 0.025 143.1 8405.2 6.4708 5462.7 140.2 3.1035 2.346 9000 3313.4 25760 3.2746 8423.4 6.4902 0.1076 6064.7 155.7 2.3368 0.0253 143.5 3.1376 25748 143.5 6.5338 0.1052 3.1684 2.3272 10000 3426.6 3.2763 0.0253 8420.8 6456.8 165.8 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 79.59 240.5 6.0239 3000 2486.4 48251 3.0919 0.0221 14187 0.1394 3124.2 4000 2760.1 47647 3.1349 0.0221 239 14082 6.1577 0.1279 3576.7 91.32 47773 239.6 6.1851 4157.4 106.2 5000 3095.8 3.1259 0.0221 14121 0.1218 3315.3 47540 3.1427 0.0222 239.6 14116 6.2583 0.1183 4563.8 116.7 6000 7000 3593.5 47315 3.1591 0.0222 239.1 14077 6.3254 0.1081 5113.9 130.9 6.3418 8000 3850 47215 3.1664 0.0222 238.8 14059 0.1116 5653 144.8 9000 4056.3 47028 3.1803 0.0222 238.6 14044 6.3738 0.1069 6112.4 156.6 4315.3 3.1932 0.0222 238.2 14013 6.4295 0.1015 6728.2 172.5 10000 46855 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3000 2134 30386 2.7328 0.0244 153.2 9133.9 5.9736 0.1329 2922.5 74.39 2.4415 4000 2388.8 30287 2.7425 0.0245 153.2 9132.7 6.1102 0.1228 3422.5 87.31 2.4135 9105.2 99.47 2.3944 5000 2606.4 30045 2.7666 0.0246 152.9 6.1978 0.1142 3893.3 106.7 2.3783 2730.8 29970 2.7741 0.0247 153.2 9124.6 6.2495 0.1117 4172.8 6000 7000 2927.4 29769 2.7945 0.0247 152.7 9087.5 6.2897 0.1048 4661.1 119.3 2.3648 3126.1 29568 2.8152 0.0249 153.3 9115.4 6.3492 0.0995 5175.8 2.3526 8000 132.6 9000 3189.2 29528 2.8194 0.025 9140.4 6.5047 0.0957 5341.4 137.1 2.3384 153.7 2.332 29481 2.8243 5693.7 146 3310.3 0.025 153.6 9131.6 0.095 10000 6.4463 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2433.8 55043 2.6777 0.0217 253.9 15163 5.838 0.134 2994.8 76.05 4000 2728.4 54866 2.6871 0.0217 253.5 15136 5.9721 0.1206 3455.1 87.94 5000 3001.3 55005 2.6797 0.0217 253.8 15157 6.0193 0.1127 3903.2 99.43 254.2 6000 3230 54874 2.6866 0.0218 15177 6.0987 0.1095 4297 2 109.6 3593.3 54415 2.7112 253.2 15105 6.1671 0.1071 4973.8 127 7000 0.0218 3828.5 54295 2.7177 0.0218 253.1 15097 6.2247 0.1008 5437.4 139 8000 53865 2.7413 9000 3931.8 0.0219 252.6 15059 6.3025 0.0996 5654.2 144.7 10000 4130.6 2.7524 0.0219 252.2 15027 6.3392 0.0951 6080.4 155.7 53666 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2065.2 3.2178 5701.8 71.5 3.8505 2.019 3000 20564 0.0282 123.4 6.1796 0.182 3471.5 4000 2271.6 20451 3.2374 0.0282 123.1 5680.9 6.2065 0.1748 4109.6 84.68 3.9547 2.0417 3.2794 0.0282 122.2 6.2953 4691.1 96.81 4.0375 2.0569 5000 2429.7 20213 5636.6 0.1621 20211 3.2797 0.0286 123.5 6.3755 0.1561 4954.5 102.4 4.1063 2.069 6000 2510.8 5693.4 20174 5539.2 7000 2651 3.2863 123.3 114.5 4.1655 2.0807 0.0286 5686.4 6.4187 0.1467 8000 2792 20232 3.276 0.029 124.8 5754.3 6.448 0.1434 6106.1 126.3 4.2174 2.0906 9000 2826.8 20020 3.3142 0.029 124 5713.7 6.5124 0.137 6328.9 131.1 4.2638 2.1017 10000 2900.7 19997 3.3183 0.0292 124.6 5737.4 6.5329 0.1362 6676.3 138.3 4.3057 2.1082 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 72.21 3000 2445.8 37347 3.1432 0.0232 195.1 9031.8 5.9758 0.1843 3517.5 37185 0.0232 9008.1 0.1711 4059.7 83.5 4000 2693.9 3.1583 194.7 6.0894 2963.1 36884 3.1866 0.0233 194.7 8999.6 6.1938 0.1593 4706.5 96.96 5000 0.0235 8990.9 0.1577 108.9 6000 3178.1 36587 3.215 194.6 6.2945 5276.4 194.6 7000 3372.7 36582 3.2156 0.0235 8990.1 6.3459 0.152 5835.7 120.5 8000 3537 36530 3.2206 0.0235 194.5 8982.3 6.4137 0.1415 6350.2 131.3 9000 3727.4 36226 3.2504 0.0236 194.4 8971.6 6.3377 0.1421 6998.4 144.5 3.2377 157.6 10000 3901 36355 0.0236 194.8 8991.2 6.4485 0.1373 7620.9 **Experimental Conditions: Hot** Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 23615 0.0279 5.8909 69.85 2.0343 3000 2110.5 2.7654 132.6 6206.6 0.1844 3407.7 2318 2.7963 82.49 23376 0.0277 6133.8 5.9923 0.1736 4017.3 2.0546 4000 131.2 23118 2.8303 0.0279 6122.9 93.69 5000 2485 131.1 6.1133 0.1631 4553.5 2.068 2.0800 6000 2654.6 22981 2.8488 0.0281 131.3 6131.6 6.1946 0.158 5150.4 106.1 22860 6110.9 7000 2769.4 2.8652 0.0281 131 6.2679 0.1516 5620.4 115.9 2.091 8000 2874.4 22802 2.8732 0.0283 131.4 6132.6 6.3238 0.1457 6046.8 124.8 2.0999 9000 2.8834 129.8 2.1064 2946.7 22728 0.0289 133.2 6214.5 6.3966 0.1371 6280.4 10000 3035 22643 2.8953 0.0289 133 6199.3 6.4375 0.1363 6715.5 138.9 2.1147 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 2470.2 3000 42761 2.7108 0.023 207.9 9745.1 5.6865 0.1866 3457.5 70.62 5.7951 2.7358 4000 2830.1 42402 0.0229 206.2 9657.5 0.1656 4224.4 86.45 5000 3094.3 42492 2.7294 0.0229 206.4 9669.4 5.9365 0.1604 4838.3 99.25 6000 3335 42248 2.7466 0.023 206.7 9677.2 6.0337 0.1601 5451 112 7000 3459.1 42395 2.7362 0.023 207 9696.8 6.0833 0.1503 5782.8 118.9 3695.9 42148 2.7536 9703.9 6472.8 133.3 0.0231 207.3 0.14438000 6.16 9000 3857.9 41999 2.7643 0.0231 206.9 9683.9 6.2631 0.1382 6998.3 144.3

Table C-32: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Wire Coil, e=2.2 mm, p= 40 mm).

0.1403

7622.1

157.2

9625.8

10000

4029

41568

2.7955

0.0231

Inner Tube (smooth)¹ Annulus (augmented) Re U_o Augmentation[†] Annul h_{s,i} ₩/m².C ha,o W/m².C W/m².C Prc Nu_{s,i} Re_{s,h} Prh Nua f_{s,i} fa Nu_a/Nu_s us $f_{\rm a}/f_{\rm s}$ Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0125 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2077.3 26397 3.1877 8347.5 6.2391 0.4272 74.48 8.6658 2.5661 3000 0.024 141.9 2913.3 4000 2396.5 26294 3.2015 0.025 142.1 8356.7 6.2832 0.3966 3580.7 91.61 8.8494 2.5652 5000 2602.4 26224 3.2109 0.025 141.9 8342.7 6.3401 0.3719 4064.5 104.1 8.9946 2.566 6000 2821.3 26117 3.2253 0.025 142.1 8350.7 6.3995 0.3563 4622.1 118.5 9.1149 2.5645 9.2179 25967 3.2458 0.025 141.9 6.4775 5032.7 129.2 2.5628 7000 2966.9 8335 0.342 8000 3114 25883 3.2575 0.025 141.9 8332.5 6.4877 0.3298 5472.3 140.5 9.3081 2.5633 8337.3 6.5149 <u>0.319</u> 9000 3272 25764 3.274 0.025 5976.8 153.5 9.3884 2.5625 142 3382.1 25781 3.2717 0.025 142.8 6.5467 9.4607 2.5607 10000 8384.2 0.3112 6324 162.5 Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 47991 0.022 238.8 3002.9 76.52 3000 2405.5 3.1103 14082 6.0413 0.4286 3.1371 3699.5 2830.4 47617 0.022 238.1 14032 6.1491 0.3939 94.44 4000 110.1 5000 3178.6 47710 3.1304 0.022 238.8 14075 6.1678 0.3732 4313.1 6000 3508 47370 3.1551 0.022 238.3 14033 6.2359 0.3553 4948.6 126.5 7000 3795.7 47234 3.1651 0.022 238 14009 6.2808 0.3413 5545.4 141.9 8000 4024.1 47109 3.1743 0.022 237.6 13987 6.3148 0.3297 6051.6 154.9 9000 4200.6 46907 3.1894 0.022 237.3 13964 6.3681 0.3187 6465.4 165.6 4320.5 3.2078 0.022 13921 6.4413 0.3102 6765.4 173.5 10000 46661 236.7 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 3000 2074.9 30432 2.7283 0.024 151.3 9024.6 5.9788 0.4281 2824.7 71.9 2.5804 4000 2388.9 30177 2.7534 0.024 151 8996 6.1265 0.3965 3445.1 87.91 2.5784 8974.4 0.3718 4082.9 2.5786 5000 2677 30056 2.7654 0.024 150.7 6.1538 104.2 2.5763 2826.6 29864 2.7848 150.2 8939.8 0.3532 4451.1 113.8 6000 0.024 6.2375 7000 3044.6 29664 2.8053 0.024 150.2 8936.7 6.2962 0.3412 5018 128.4 2.5737 29530 2.8192 149.9 8912.3 6.3508 0.3296 5416.1 138.7 2.573 8000 3183.2 0.024 9000 29481 2.8243 0.024 150.3 8936.1 0.3195 5900.7 151.2 2.573 3348.4 6.3681 29341 2.8389 2.5714 0.024 149.9 6.4112 6272 10000 3460.4 8910.4 0.3094 160.8 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2294.3 55429 2.6575 0.022 254.9 15233 5.8815 0.4232 2783.6 70.74 4000 2845.5 55250 2.6668 0.022 254.6 15209 5.9151 0.3976 3640.3 92.56 5000 3291.3 54836 2.6886 0.022 253.8 15151 5.9758 0.3733 4408.8 112.2 2.7119 6000 3707 54402 0.022 252.8 15084 6.0413 0.3572 51973 132.4 3952.8 54011 2.7333 0.022 252.5 15054 6.1273 5698.5 145.4 7000 0.3416 4171.9 53908 2.7389 0.022 252.4 15046 6.153 0.3305 6166.9 157.4 8000 53713 2.7498 173.6 9000 4449.7 0.022 252.3 15034 6.1883 0.3202 6796.5 10000 4620.3 53546 2.7591 0.022 251.9 15008 6.2423 0.3089 7209.6 184.3 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2015.7 20700 3.1946 6.0994 67.52 12.2557 2.2648 3000 0.029 5843.2 0.6239 3282.4 126.4 4000 2138.2 20588 3.2136 0.0292 126.7 5850.9 6.2776 0.5787 3617.1 74.62 12.5154 2.1991 3.227 0.0294 127 5864.8 6.3385 0.549 3885.9 80.24 12.7207 2.1527 5000 2231.6 20511 2337.8 3.2329 0.0297 128.1 5915.3 6.3929 0.5209 4191.2 86.62 12.8909 2.1139 6000 20477 2353.7 3.2357 0.0297 5912.2 20461 128.1 6.4928 0.4996 4244.1 87.85 13.0366 2.0821 7000 8000 2447.4 20404 3.2456 0.0297 127.9 5901.2 6.5415 0.4796 4566.3 94.6 13.1641 2.055 9000 2552.7 20277 3.268 0.0297 127.4 5876.3 6.5278 0.4682 4966.7 102.9 13.2776 2.0348 10000 2568.6 20274 3.2685 0.0299 128 5903.9 6.5949 0.4554 5004.9 103.8 13.38 2.0128 Hot Water Mass Flowrate: 0.2 kg Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C 7715 3.1946 3000 20157 20700 0.029 126.4 5843.2 6.0994 0.6239 3762.1 20588 0.0292 5850.9 6.2776 0.5787 4077.5 83.85 4000 2138.2 3.2136 126.7 2231.6 20511 3.227 0.0294 127 5864.8 6.3385 0.549 4472.5 92.12 5000 3.2329 0.0297 6.3929 98.3 6000 2337.8 20477 128.1 5915.3 0.5209 4761.8 7000 2353.7 20461 3.2357 0.0297 128.1 5912.2 6.4928 0.4996 5045 104.2 8000 2447.4 20404 3.2456 0.0297 127.9 5901.2 6.5415 0.4796 5187.7 107.3 5470.8 9000 2552.7 20277 0.0297 58<u>76.3</u> 3.268 127.4 6.5278 0.4682 113.1 0.0299 5710.2 10000 2568.6 20274 3.2685 128 5903.9 6.5949 0.4554 118.2 **Experimental Conditions: Hot** Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2039.3 23732 2.7507 133.7 6259.1 5.8727 65.79 2.2781 3000 0.0281 0.6166 3210.3 23489 75.32 2206.3 2.7816 132.9 6218.2 6.1211 0.5885 2.2108 4000 0.0281 3660.2 23422 2.7903 2.1649 5000 2389.6 0.0285 134.1 6271.8 6.1428 0.5514 4167.2 85.78 6000 2480.6 23328 2.8025 0.0285 133.8 6255.7 6.3623 0.5203 4461 92.15 2.1203 23202 97.32 7000 2564.1 2.8192 0.0289 134.8 6298.2 6.3483 0.4964 4711.8 2.0928 6.3738 8000 2686.8 23148 2.8264 0.0289 134.6 6288.7 0.4787 5150.6 106.4 2.0672 9000 23075 2.8361 5439.3 112.5 2.0428 2774.1 0.0292 135.7 6339.6 6.4388 0.4698 10000 2884.4 22955 2.8523 0.0292 135.3 6318.2 6.4892 0.458 5900.5 122.1 2.0205 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2429.7 43168 2.683 0.0231 209.7 9839.3 5.7107 0.6239 3366.3 68.79 5.8373 4000 2862.8 42843 2.7052 0.0231 208.9 9796.3 0.5694 4267.9 87.4 5000 3154.7 42386 2.7369 0.0233 209.6 9815.6 5.9431 0.5425 4945.4 101.5 6000 3356.6 42216 2.7489 0.0231 207.4 9712.9 6.111 0.529 5496.1 113.1 7000 3535.9 42244 2.7468 0.0232 208.4 9756.7 6.1025 0.4985 5975.4 122.9 3734.8 42117 2.7559 9759.4 135.1 8000 0.0233 208.5 0.4942 6565 6.1366 9000 3910.3 41793 2.7791 0.0234 208.1 9735.3 6.2025 0.4625 7141.7 147.2

Table C-33: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Ribs, e=2.2 mm, p= 10 mm).

0.4424

7557.3

156

9716

10000

4028

41652

2.7894

0.0234

D o			Inner T	ube (sı	nooth)	†		Ar	nulus	(augme	ented)	
Annul	Uo		-	<u>`</u>	,	h			h		Augmer	ntation ^{††}
us	W/m ² .C	Re _{s,h}	Pr _h	$f_{s,i}$	Nu _{s,i}	II _{s,i} ₩/m².C	Pr _c	f_a	Па,0 W/m².С	Nu _a	f_a/f_s	Nu _a /Nu _s
			A	nnulus Dir	nensions: l	L=1.245 m	D _o = 0.028	m D _i = 0.()125 m			
Experim 3000	ental Cond	ditions: Hot	Water Inle	et Tempera	ture: 60 ± 0).5 °C 8507 9	Hot Water	Mass Flow	rate: 0.112:	5 kg/s 87 02	6 2011	2612
4000	2662.8	26144	3.2217	0.0252	144.7	8503	6.2136	0.3192	4168.5	106.5	6.3359	2.5814
5000	2921.5	26060	3.2332	0.0254	144.9	8514.7	6.2776	0.3107	4835.1	123.7	6.4398	2.5606
6000 7000	3120.1 3326.1	25916	3.2529	0.0254	144.5	8484.8 8480.3	6.3747 6.3854	0.2958	5418.4 6074.1	138.8	6.5259 6.5997	2.5396
8000	3455.7	25695	3.2837	0.0255	144.5	8481.7	6.4522	0.2732	6519.5	167.2	6.6642	2.5101
9000	3615	25529	3.3072	0.0257	144.8	8489.5	6.4801	0.2644	7104.4	182.3	6.7217	2.4992
Experim	ental Cond	25456 ditions: Hot	t Water Inle	0.0258 et Tempera	145 ture: 60 ± 0	0.5 °C	Hot Water	0.2373 Mass Flow	7550.0 rate: 0.2 kg	/s	0.//33	2.4004
3000	2667.5	47799	3.124	0.0222	240.3	14162	5.9803	0.3509	3417.3	86.99		
4000	3125.1	47355	3.1562	0.0223	239.8	14119	6.0987	0.33	4210.7	107.4		
6000	3778.8	47153	3.1711	0.0223	239.5	14101	6.2152	0.2956	5493.4	140.4		
7000	4014.2	46987	3.1833	0.0224	239.7	14107	6.2663	0.2834	6004.2	153.6		
8000	4203.9	46672	3.207	0.0224	238.6	14033	6.3483	0.2736	6456.6	165.4		
10000	4610.6	46493	3.2206	0.0225	239.1	14053	6.4078	0.2573	7461.8	191.3		
Experim	ental Conc	ditions: Hot	Water Inle	et Tempera	ture: 70 ± 0).5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		2 (201
3000	2370.4	30161 29877	2.755	0.025	155.1	9242.5	5.9357 6.0535	0.3469	3368 4152.7	85.67 105.8		2.6281
5000	2957.1	29684	2.8032	0.0251	154.7	9202.5	6.1616	0.3096	4702.1	120.1		2.5708
6000	3248.8	29397	2.8331	0.0251	153.9	9148	6.2239	0.2948	5507.3	140.8		2.5502
7000	3412.2	29350 29218	2.838	0.0251	153.8	9139.1 9113.8	6.28	0.2837	5998.5 6534.9	153.5		2.5339
9000	3704.6	29077	2.8671	0.0252	153.3	9102.9	6.397	0.2647	6988.6	179.1		2.5063
10000	3877.4	28933	2.8827	0.0252	152.9	9075.1	6.448	0.2558	7652.6	196.3		2.4961
Experim 3000	ental Conc 2789 7	titions: Hot 54996	Water Inle	et Tempera	ture: 70 ± 0	0.5 °C 15380	Hot Water 5 7107	Mass Flow	rate: 0.2 kg	/s 89.67		<u> </u>
4000	3173.5	54794	2.6909	0.0221	257.2	15354	5.8402	0.3264	4182.6	106.2		
5000	3542.1	54569	2.7029	0.0222	256.9	15328	5.9291	0.3097	4850.5	123.4		
6000	3853.9	53912 53843	2.7387	0.0222	255.4	15223	6.0436	0.296	5469.9 5949.8	139.4		
8000	4313.6	53753	2.7425	0.0222	255.3	15212	6.1273	0.2719	6445.9	164.5		
9000	4417	53599	2.7561	0.0222	255.1	15202	6.2295	0.2661	6683.1	170.8		
10000	4623.4	53554	2.7586	0.0223	255.2	15204	6.2423 D = 0.028	0.2575 m D=00	7166.5	183.2		
Experim	ental Conc	ditions: Hot	Water Inle	et Tempera	ture: 60 ± 0	0.5 ℃	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2028.4	20595	3.2126	0.029	126.1	5823.3	6.128	0.4839	3323.6	68.4	8.7743	2.3766
4000	2203.2	20490	3.2307	0.0294	126.9	5860.8 5866.1	6.2215	0.4493	3802.5 4288.8	78.37 88.52	8.9602 9.1072	2.2873
6000	2479.6	20360	3.2534	0.0294	126.5	5835.7	6.3689	0.4031	4726.3	97.64	9.229	2.1712
7000	2560.9	20224	3.2774	0.0297	127.2	5865.9	6.4733	0.3792	5006	103.6	9.3333	2.1271
9000	2643.1	20207	3.2804	0.0301	128.4	5918.7	6.5321	0.3735	5282.6	109.4	9.4246	2.0906
10000	2793	20062	3.3066	0.0298	126.6	5834	6.5794	0.3559	6014.1	124.7	9.5792	2.0371
Experim	ental Conc	ditions: Hot	Water Inle	et Tempera	ture: 60 ± 0).5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s		
<u> </u>	2510.7	37495	3.1296	0.0232	195.5	9053.4	5.8887	0.4983	3649.5	74.8 86.36		
5000	2938.7	37071	3.169	0.0233	194.8	9009.3	6.1938	0.4295	4642.3	95.64		
6000	3153.6	36904	3.1847	0.0233	194.7	9002.5	6.2247	0.4074	5204.8	107.3		
7000	3313.9	36677	3.2064	0.0233	194.1	8968.8 8932.1	6.2848	0.3847	56/1.3 6245.9	117		
9000	3563.2	36576	3.2162	0.0235	194.6	8989.2	6.407	0.3637	6431.2	132.9		
10000	3652.4	36563	3.2174	0.0235	194.6	8987.3	6.4379	0.3544	6728.8	139.2		
2000 Experim	2183.3	23578	2.7703	0.0281	133.2	6233.1	5.8546	0.4802	3591.7	5 Kg/S 73.58		2.3928
4000	2382.2	23406	2.7924	0.0284	133.6	6249.6	6.0352	0.4396	4155.6	85.39		2.3022
5000	2540.5	23296	2.8068	0.0281	132.3	6185.4	6.1405	0.4007	4702.7	96.8		2.2346
7000	2035.8	23116	2.8307	0.0285	133.1	6219	6.3492	0.3987	5336.9	103.4		2.180/ 2.1357
8000	2808.6	22989	2.8477	0.0289	134.1	6260.8	6.3929	0.3714	5642.5	116.6		2.0998
9000	2976.5	22768	2.878	0.0285	132	6158.3	6.392	0.3551	6485	134		2.0685
Experim	2981.4 ental Conc	22/96 litions: Hot	2.8/4 Water Inle	0.0285 et Tempera	132.1 ture: 70 ± 0	0103.3).5 °C	0.4870 Hot Water	0.344 Mass Flow	0502.4 rate: 0.2 ko	134.0 /s		2.0383
3000	2588.7	42821	2.7066	0.0232	209.3	9813.7	5.6624	0.4652	3683.4	75.2		
4000	3021	42539	2.7262	0.0231	208.2	9756	5.788	0.4336	4639.3	94.93		
6000	3235.8	42304 42231	2.7384	0.0232	208.0	9794.8	5.9983	0.4155	5211.9	120.7		<u> </u>
7000	3722.7	42047	2.7609	0.0233	208.7	9769.8	6.091	0.4005	6522.6	134.2		
8000	3919.6	41865	2.7739	0.0233	207.9	9725.4	6.1242	0.3823	7178.6	147.7		

Table C-34: Predicted Results ($Re_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Ribs, e=2.2 mm, p= 20 mm).

9698.6 6.2607 0.3495 8232.2 169.8

207.4

10000 4208.5 41525 2.7987 0.0234

Inner Tube (smooth)¹ Annulus (augmented) Re U_{0} Augmentation[†] Annul h_{s,i} ₩/m².C ha,o W/m².C W/m².C Prc Nu_{s,i} Re_{s,h} Prh Nua f_{s,i} fa Nu_a/Nu us $f_{\rm a}/f_{\rm s}$ **Annulus Dimensions:** L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0125 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2274 26518 3.1718 0.0248 8460.9 6.0794 3295.6 84.03 5.1027 2.6578 3000 143.7 0.2626 4000 2520.2 26357 3.1931 0.0249 143.8 8458.1 6.2367 0.2456 3839.9 98.16 5.2108 2.6069 5000 2729.2 26200 3.2141 0.0248 142.8 8396.9 6.3173 0.2262 4365.6 111.7 5.2963 2.5717 6000 2893.6 26064 3.2326 0.0252 144.4 8486.5 6.4112 0.2173 4769.4 122.3 5.3671 2.5414 25973 0.0253 134.9 5.4278 2.5178 7000 3065.5 3.2451 144.1 8467.6 6.4203 0.2063 5263.3 5748.1 8000 3218.9 25826 3.2653 0.0253 143.7 8437.2 6.4741 0.2026 147.5 5.4809 2.4969 3.2676 0.0254 9000 3315.5 25810 8462.6 6.5022 0.1965 6048.9 155.3 5.5282 2.4795 144.2 25675 3.2865 0.0255 6.5484 0.1899 5.5708 2.4627 10000 3445.2 144.2 8463.2 6494.6 166.8 **Experimental Conditions: Hot** Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg/ 0.0222 240.7 5.9041 0.2627 93.51 3000 2825.2 47978 3.1112 14193 3678.2 4000 3171.5 47672 3.1332 0.0222 239.6 14122 6.071 0.2437 4295 109.5 0.0222 239.6 0.2292 4803.8 122.6 5000 3440.1 47532 3.1433 14115 6.1405 6000 3668.6 47372 3.1549 0.0222 239.5 14104 6.2271 0.2169 5263 134.5 7000 3839.7 47078 3.1766 0.0222 238.8 14052 6.3156 0.2096 5632 144.2 8000 3981.5 47031 3.1801 0.0223 238.9 14062 6.3697 0.2021 5940.5 152.2 9000 4102.8 46919 3.1884 0.0223 239 14059 6.4087 0.1949 6215.2 159.3 4258 0.0224 238.8 14043 0.1895 168.9 10000 46731 3.2026 6.4665 6582.4 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 9269.6 3000 2385.6 30397 2.7317 0.0249 155.5 5.8366 0.2503 3394.7 86.2 2.6744 4000 2675.9 30067 2.7643 0.0249 154.6 9208.6 6.0156 0.2382 4027.6 102.6 2.6231 2925.3 9154.1 5000 29774 2.7939 0.0249 153.8 6.1452 0.226 4636.2 118.3 2.5855 29452 0.0249 0.2175 130.5 2.5524 3096.3 2.8273 152.9 9093.7 6.2808 5102.2 6000 7000 3273 29535 2.8187 0.0249 153.2 9109.2 6.2873 0.2084 5593.9 143.1 2.5292 29386 2.8343 0.0251 153.9 9145.8 6.3336 0.202 156.4 2.5093 8000 3449.2 6110.1 9000 2.4911 3580.4 29254 2.8482 0.0253 154 9152.9 0.1942 6530.3 167.3 6.3763 29140 2.8604 9163 178.8 2.474 3711.6 0.0254 154.3 6.4187 0.1893 10000 6973.6 Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.2 kg 3000 2730.6 55068 2.6764 0.0219 255.3 15247 5.6913 0.2711 3452.1 87.44 4000 3202.6 54653 2.6984 0.0218 254 15160 5.8258 0.2421 4250.3 107.9 5000 3562.2 54506 2.7063 0.0219 254.1 15159 5.9012 0.2335 4907.9 124.8 6000 3944.6 53872 2.741 0.0219 252.6 15059 6.0201 0.222 5680.6 144.7 4183 53693 2.7509 0.0219 252.6 15051 6.094 0.2128 6190.1 157.9 7000 4399.1 53664 2.7525 0.022 253.2 15085 6.1195 0.2033 170.1 8000 6667.6 53493 2.7621 253.1 9000 4625.7 0.022 15078 6.1647 0.1954 7204.5 184 10000 4790.9 53231 2.7769 0.0221 253.2 15074 6.2287 0.1618 7614.3 194.6 Annulus Dimensions: L=1.245 m $D_0 = 0.028 \text{ m}$ $D_i = 0.0155 \text{ m}$ Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2168.8 20597 5881.4 0.3839 75.9 7.2164 3000 3.2122 0.0294 127.3 6.0618 3692 2.462 5847.7 4000 2414.3 20422 3.2425 0.0294 126.7 6.1561 0.3548 4486.8 92.38 7.3693 2.3605 2622.2 20194 3.2828 0.0298 127.1 5859.9 6.2567 0.3353 5251.1 108.3 7.4902 2.2811 5000 20291 3.2655 0.0297 127.4 5879 6.3271 0.3186 5763.8 119 7.5904 2.2206 6000 2748.7 2.1711 20153 5851.9 132 7.6762 2875.8 3.2901 0.0298 126.9 6.3887 0.3062 6387.9 7000 8000 2958.4 20123 3.2955 0.0298 126.8 5846.1 6.4514 0.3004 6819.1 141.1 7.7512 2.1281 9000 3062 20016 3.315 0.0298 126.4 5824.9 6.5141 0.2863 7433.8 153.9 7.8181 2.0908 10000 3142.9 19936 3.3296 0.0301 127.4 5864.6 6.5631 0.2743 7849 162.7 7.8784 2.0579 Hot Water Mass Flowrate: 0.2 kg Experimental Conditions: Hot Water Inlet Temperature: 60 ± 0.5 °C 79.73 3000 2629.1 37491 3.13 0.0234 1971 9125 3 5.8793 0.3933 3890.4 37066 0.0235 195.9 9062.4 5.9617 4892.3 100.4 4000 3043.6 3.1694 0.3605 3283.4 37097 3.1665 0.0234 196 9067 6.1187 0.3428 5541.1 114 5000 3.1977 0.0235 9035.7 6.1757 0.321 130.1 6000 3535.4 36768 195.5 6315.6 7000 3788.3 36576 3.2162 0.0236 195.4 9024.6 6.212 0.3081 7178.5 147.9 8000 3925.4 36553 3.2184 0.0236 195.3 9021.1 6.2727 0.2927 7690.1 158.6 9000 4106.2 36390 3.2342 0.0236 194.9 8996.5 6.3222 0.2912 8439.9 174.2 0.2791 188.1 10000 4253.6 36306 3.2424 0.0236 194.6 8983.8 6.3763 9101.4 **Experimental Conditions: Hot** Water Inlet Temperature: 70 ± 0.5 °C Hot Water Mass Flowrate: 0.1125 kg/s 2291.3 23568 136 5.7887 0.3711 3840.1 78.57 2.4816 3000 2.7715 0.0288 6362 23417 2504 2.7909 0.0289 135.5 6335.8 5.9609 0.3479 92.18 2.3751 4000 4491.7 2707 23168 2.8236 5222.7 107.5 2.2938 5000 0.0289 134.7 6292.3 6.1218 0.3115 6000 2868.7 22964 2.8511 0.0289 134 6256.3 6.1875 0.3115 5894.7 121.4 2.2327 22917 2.1796 7000 2973.8 2.8574 0.0293 135.2 6311.4 6.2695 0.3038 6294.5 129.8 8000 3116.7 22790 2.8748 0.0296 136.1 6351.4 6.31 0.2925 6917.8 142.8 2.1337 9000 22758 2.8792 0.2889 154.9 2.0995 3228.2 0.0296 136 6.3508 7501.6 6345.6 10000 3312.3 22650 2.8942 0.0296 135.7 6325.8 6.4194 0.2708 8006.4 165.5 2.065 Hot Water Mass Flowrate: 0.2 kg/ Experimental Conditions: Hot Water Inlet Temperature: 70 ± 0.5 °C 3000 2717.4 43106 2.6872 0.023 208.7 9790.4 5.5763 0.3865 3953.7 80.6 5.6969 2.7165 9734.2 4000 3128.2 42678 0.023 207.7 0.3717 4903.1 100.2 5000 3443.9 42295 2.7432 0.0231 207.6 9723.6 5.8294 0.3298 5729.9 117.3 6000 3813.7 41821 2.7771 0.0231 206.5 9660 5.8997 0.3219 6867.3 140.8 7000 3952.2 41977 2.7658 0.0231 206.9 9681 6.0277 0.3089 7316.6 150.3 4037.3 2.7873 156.9 8000 41681 0.0232 207 9680.5 6.2041 0.2837 7614.2 9000 4320.5 41321 2.8138 0.0232 206.1 9631.5 6.1569 0.2949 8732.5 179.8

Table C-35: Predicted Results ($\text{Re}_{s,h}$, Pr, f, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Ribs, e=2.2 mm, p= 30 mm).

9634

6.2443

0.2655

8913.9

183.8

10000 4365.1

41339

2.8124

0.0232

R o]	Inner T	'ube (sr	nooth) [†]	ŕ		Ar	nnulus	(augme	ented)	
		D	D	ć		h .	D	C	h		Augmen	ntation ^{††}
us	W/m².C	Re _{s,h}	Pr _h	f _{s,i}	Nu _{s,i}	₩s,i W/m².C	Pr _c	f _a	Па,0 W/m².С	Nu _a	$f_{\rm a}/f_{\rm s}$	Nu _a /Nu _s
			А	nnulus Din	nensions: 1	L=1.245 m	$D_0 = 0.028$	m D _i = 0.()125 m			
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s	1 2220	2 6037
4000	2532.7	26339	3.2037	0.0247	143.5	8412.6	6.2367	0.2230	3209.8	99.19	4.2339	2.6937
5000	2773	26190	3.2155	0.0248	142.8	8394.8	6.2792	0.1751	4479.4	114.6	4.3945	2.5905
6000	2988.8	25956	3.2473	0.0253	144.1	8464.2	6.3937	0.1614	5042.5	129.2	4.4533	2.5523
7000	3128.9	25942	3.2494	0.0251	143.6	8432 8411 9	6.3979	0.1546	5470 6204	140.2	4.5036	2.5236
9000	3405.2	25763	3.2741	0.0254	144	8452.9	6.4928	0.1445	6360.7	163.3	4.5869	2.4767
10000	3544.2	25622	3.294	0.0254	143.6	8423.3	6.5269	0.1449	6885.6	176.8	4.6223	2.4565
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	2/S		
4000	2303.3	47772	3.126	0.0221	239.9	14139	6.0817	0.1962	3932.1	100.3		
5000	3385.2	47582	3.1396	0.0222	239.7	14124	6.1366	0.1765	4696.4	119.9		
6000	3649.4	47382	3.1542	0.0222	239.5	14106	6.2303	0.165	5223.3	133.5		
7000	3841.3	47054	3.1784	0.0222	238.7	14048	6.3051	0.1559	5636.1 6146 3	144.2		
9000	4303.7	46840	3.1943	0.0222	238.5	14048	6.3639	0.1472	6696.3	171.5		
10000	4492.8	46629	3.2103	0.0223	237.9	13990	6.4228	0.1478	7176.7	184		
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		2 5054
3000	2227.3	30465	2.7251	0.0247	154.5	9215.2	5.9026	0.2278	3089.8	78.55		2.7076
5000	2740.6	29906	2.7805	0.0247	154.2	9178.7	6.1843	0.1720	4183	106.8		2.5988
6000	2959.7	29566	2.8154	0.025	153.5	9131.4	6.2816	0.1587	4730	121		2.5602
7000	3079.7	29595	2.8124	0.025	153.6	9136.9	6.3213	0.1566	5042.2	129.1		2.5304
8000	3228.7	29489	2.8234	0.0249	153	9100.6 0119.5	6.3664	0.1485	5469.1	140.1		2.5063
10000	3463	29412	2.8411	0.025	153.4	9110.5	6.402	0.1446	6176.9	150.1		2.4630
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	y/s		
3000	2550.6	55142	2.6724	0.0218	254.6	15207	5.7555	0.2199	3171.4	80.42		
4000	2955.4	54831	2.6889	0.0218	254.2	15176	5.9136	0.1915	3824.4	97.25		
6000	3648.2	54097	2.7285	0.0219	253.1	15095	6.101	0.1672	5080.9	12.5		
7000	3841	53937	2.7373	0.0219	253.1	15090	6.1686	0.1591	5463.7	139.5		
8000	4041.8	53974	2.7353	0.022	253.9	15135	6.1726	0.1524	5871.4	149.9		
9000	4225.1	53767	2.7467	0.022	253.4	15102	6.2343	0.1483	6272.7	160.4		
10000	4452	53535	2.7596 A	0.022 Innulus Din	nensions: 1	L=1.245 m	$D_0 = 0.028$	$m D_i = 0.0$	0794.8 0155 m	1/3.0		
Experim	ental Conc	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2098.2	20612	3.2096	0.0288	125.5	5797.6	6.1242	0.2965	3525.6	72.55	6.2818	2.5253
4000	2338.3	20474	3.2335	0.0286	124.4	5742.8	6.1694	0.2722	4293.8	88.43	6.4149	2.414
6000	2639	2021)	3.2833	0.029	124.6	5746.4	6.345	0.2473	5426.5	112.1	6.6074	2.2583
7000	2711.7	20173	3.2865	0.029	124.6	5743.1	6.417	0.2435	5747.1	118.8	6.6821	2.204
8000	2782.7	20182	3.2849	0.0286	123.4	5687.9	6.4792	0.2292	6145.3	127.2	6.7474	2.1557
9000	2926.2	20070	3.3051	0.0286	123	5652.3	6.4919	0.2179	6926.4 7665 3	143.4	0.8030 6.8581	2.11/4
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 60 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.2 kg	/s	0.0501	2.0017
3000	2465.1	37444	3.1343	0.0233	196.2	9082.2	5.9379	0.2955	3549	72.81		
4000	2879	37203	3.1566	0.0233	195.5	9046.7	6.0133	0.275	4484.8	92.12		
6000	3312.1	36591	3.2147	0.0233	194.8	9009.4	6.2511	0.2384	5152.2	115.7		
7000	3591.6	36620	3.2119	0.0236	195.5	9031.3	6.2623	0.2429	6499.9	134.1		
8000	3667	36593	3.2145	0.0236	195.4	9027.2	6.3565	0.2281	6753.7	139.5		
9000	3928.6	36172	3.2556	0.0238	195.8	9033.5 9034 0	6.3541	0.2242	7692.7	158.9		
Experim	ental Cond	litions: Hot	Water Inle	t Tempera	ture: 70 ± 0	0.5 °C	Hot Water	Mass Flow	rate: 0.112	5 kg/s		
3000	2195.4	23646	2.7615	0.0277	132	6178.8	5.8179	0.297	3645.3	74.63		2.5468
4000	2428.5	23365	2.7977	0.0277	131.1	6132	5.9565	0.2517	4362.2	89.52		2.4295
5000	2642.1	23076	2.8359	0.0281	131.6	6147.9 6185.6	6.0764	0.256	5091.3	104.7		2.3394
7000	2855.1	22813	2.8717	0.0285	132.3	6166.2	6.2695	0.2349	5927.3	122.3		2.2000
8000	3037.2	22755	2.8797	0.0285	132	6156.1	6.3026	0.231	6783.4	140		2.1665
9000	3100.4	22729	2.8833	0.0281	130.5	6088.1	6.3541	0.226	7210	148.9		2.124
10000 Experim	3145.4 entel Corr	22630	2.8971 Water Inla	0.0285 t Tempore	131.6 ture: 70 ± 0	6134.2	6.4162	0.2169 Mass Flow	7382.8	152.6		2.0885
3000	2573.7	42824	2.7065	0.0227	206.3	9672.4	5.6215	0.2908	3675.3	74.98		
4000	3002.3	42438	2.7332	0.0229	206.3	9662.3	5.7485	0.2791	4618.9	94.44		
5000	3275.1	42276	2.7446	0.0229	205.9	9640.9	5.9276	0.2462	5304.8	108.8		
6000	3565.6	41797	2.7788	0.023	205.6	9617.1	6.0542	0.2393	6121.9	125.8		
8000	4047.9	41750	2.7822	0.023	206.2	9650.4	6.1374	0.242	7672.8	157.9		
9000	4156.8	41656	2 7891	0.0231	206.1	9637.7	6 2 4 3 9	0 2212	8083.6	166 7	1	1

Table C-36: Predicted Results ($\text{Re}_{s,h}$, Pr, *f*, h, Nu, f_a/f_s and Nu_a/Nu_s) for Annulus-Side Heat Transfer Enhancement for Two Annulus Sizes (Enhancement Status: Circular Ribs, e=2.2 mm, p= 40 mm).

9591.5 6.2562 0.2106 8799.2 181.5

10000 4327.8 41316 2.8141 0.0231 205.2

		0				Au	gmented	Tube,	Wire coi	l, e = 1 i	mm	
Re	Q	Sm	100th Tu	ibe	p = 1	0 mm	$\mathbf{p} = 20$) mm	p = 30) mm	$\mathbf{p} = 4$	0 mm
Inner	$\times 10^{-10}$ (m ³ /s)	Δр	ſ	s	Δp	f	Δp	f	Δp	f	Δр	f
tube	(111 / 3)	(mm H ₂ O)	Exp.	Theo.	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja
Fynerime	ntal Canditi	one. Isothe	rmal T -	Inner Tu	be Dimensi	ons: L=1.2	45 m d _i = 0	0.011 m				
5000	0.4336	51	0.0425	0.0386	241	0.2009	143	0.1189	99	0.0824	79	0.0658
10000	0.8671	162	0.0338	0.0315	899	0.1873	524	0.1092	352	0.0733	272	0.0567
20000	1.3007	537	0.0302	0.0282	1961 3419	0.1816	1131	0.1047	1269	0.0691	566 950	0.0524
25000	2.1679	793	0.0264	0.0247	5267 *	0.1756	2989	0.0997	1918	0.0639	1424	0.0475
30000	2.6014	1093	0.0253	0.0236	7506 *	0.1738	4222	0.0977	2684	0.0621	1972	0.0457
<u> </u>	3.035	1433	0.0244	0.0228	10131 * 13128 *	0.1723	5653 * 7263 *	0.0962	4538	0.0606	2598	0.0442
Experime	ental Conditi	ons: Isothe	ermal T=	40 °C	10120	011/1	/200	010710	1000	010071	022	010122
5000	0.2843	21	0.0412	0.0386	105	0.2027	62	0.1206	42	0.0829	34	0.066
10000	0.5685	140	0.0341	0.0315	390 850	0.1891	491	0.1107	320	0.0736	240	0.0561
20000	1.1371	230	0.028	0.0262	1483	0.1797	849	0.1035	545	0.0664	405	0.0494
25000	1.4213	339	0.0265	0.0247	2284	0.1771	1296	0.1011	825	0.0644	607	0.0474
30000	1.7056	466	0.0252	0.0236	3255 4393	0.1753	2452	0.0992	1154	0.0625	842	0.0456
40000	2.2741	773	0.0236	0.0221	5693 *	0.1725	3149	0.096	1951	0.0595	1409	0.0429
Experime	ntal Conditi	ons: Isothe	ermal T =	60 °C		0.20/7	22	0 1000	22.5	0.00.17	10	0.0475
5000	0.2049	35	0.0423	0.0386	203	0.2067	32 119	0.1223	22.5	0.0847	18 63	0.0675
15000	0.6146	72	0.0303	0.0282	444	0.187	256	0.1078	169	0.0712	130	0.0547
20000	0.8195	120	0.0284	0.0262	773	0.1831	443	0.1049	287	0.068	218	0.0516
25000	1.0243	178	0.027	0.0247	1192	0.1807	676 955	0.1025	434	0.0658	326	0.0494
35000	1.434	318	0.0233	0.0238	2292	0.1788	1279	0.0989	806	0.0639	595	0.0475
40000	1.6389	405	0.024	0.0221	2970	0.1759	1643	0.0973	1027	0.0608	753	0.0446
Experime	ntal Conditi	ons: Isothe	rmal T = 0.0419	70°C	20.5	0 2022	22.5	0 1 2 0 2	165	0.00/1	12	0.067
10000	0.3535	28	0.0418	0.0315	148	0.2033	23.5	0.1203	58	0.0743	47	0.0602
15000	0.5302	55	0.0313	0.0282	323	0.1838	186	0.1058	124	0.0706	92	0.0523
20000	0.7069	89	0.0285	0.0262	563	0.1802	322	0.1031	211	0.0675	160	0.0512
25000	1.0604	132	0.027	0.0247	1236	0.1776	492 695	0.0989	446	0.0633	235 330	0.0481
35000	1.2371	235	0.0246	0.0228	1668	0.1743	931	0.0973	592	0.0619	430	0.0449
40000	1.4139	297	0.0238	0.0221	2162	0.173	1196	0.0957	754	0.0603	550	0.044
Experime	ntal Conditi	ons: Isothe	ermal T=	Inner Tul	be Dimensi	ons: L=1.2	45 m d _i =	0.014 m				
5000	0.5518	23	0.0395	0.0386	106	0.1821	71	0.122	52	0.0894	42	0.0722
10000	1.1036	79	0.0339	0.0315	394	0.1693	261	0.1121	188	0.0808	148	0.0636
15000	1.6555	159 263	0.0304	0.0282	855	0.1632	563 974	0.1075	401	0.0766	311	0.0594
25000	2.7591	387	0.0282	0.0202	2292	0.1575	1491	0.1040	1044	0.0739	792	0.0544
30000	3.3109	535	0.0255	0.0236	3265	0.1558	2109	0.1007	1468	0.0701	1106	0.0528
35000	3.8627	702	0.0246	0.0228	4405	0.1545	2829	0.0992	1957	0.0686	1463	0.0513
Experime	4.4140 ental Conditi	ooo ons: Isothe	ermal T=	40 °C	5/10	0.1333	3045	0.09/9	2304	0.00/2	1605	0.0301
5000	0.3618	10	0.0402	0.0386	46	0.1839	29	0.1166	22	0.0885	17	0.0684
10000	0.7236	33	0.0332	0.0315	172	0.1719	113	0.1136	81	0.0814	63 122	0.0633
20000	1.0054	113	0.0308	0.0282	650	0.1637	426	0.1099	296	0.0744	226	0.0394
25000	1.809	169	0.0272	0.0247	1002	0.1602	652	0.1049	449	0.0722	340	0.0547
30000	2.1708	232	0.0259	0.0236	1428	0.1586	922	0.103	631	0.0705	475	0.0531
40000	2.5325	304	0.0249	0.0228	2500	0.15/2	1237	0.1015	1076	0.0676	798	0.0515
Experime	ntal Conditi	ons: Isothe	ermal T=	60 °C								
5000	0.2607	5	0.0391	0.0386	24	0.1875	15	0.1172	11	0.086	9	0.0703
15000	0.5215	16 35	0.0313	0.0315	89 194	0.1739	58 126	0.1133	42	0.082	<u> </u>	0.0608
20000	1.0429	58	0.0283	0.0262	338	0.1651	220	0.1074	155	0.0757	119	0.0581
25000	1.3037	85	0.0266	0.0247	520	0.1625	337	0.1053	236	0.0738	179	0.0559
30000	1.5644	117	0.0254	0.0236	741	0.1608	477	0.1035	332	0.0721	250	0.0543
40000	2.0859	196	0.0239	0.0220	1298	0.1585	825	0.1021	566	0.0691	421	0.0526
Experime	ntal Conditi	ons: Isothe	ermal T =	70 °C		0.1		0.11	-	0.00-		0.070
5000	0.2249	4	0.0422	0.0386	17 65	0.1795	11 42	0.1161	9 31	0.095	7	0.0739
15000	0.6748	27	0.0317	0.0282	143	0.1677	91	0.1067	68	0.0798	51	0.0598
20000	0.8997	42	0.0277	0.0262	249	0.1643	159	0.1049	117	0.0772	87	0.0574
25000	1.1247	65	0.0274	0.0247	384	0.1622	243	0.1026	178	0.0752	131	0.0553
30000	1.5496	85 116	0.0249	0.0236	548 741	0.1596	344 461	0.0003	250	0.0711	185	0.0524
40000	1.7995	143	0.0236	0.0221	960	0.1584	594	0.098	423	0.0698	309	0.051

Table C-37: Isothermal Pressure Drop and Friction Factor for Smooth and Augmented Tubes (Using a Wire Coil of e = 1 mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C.

* Values of pressure drop larger than 5000 mm H_2O are obtained via extrapolation and not by experimental work. C-38

						Aug	nented A	Annulus	. Wire c	oil. e = 1	mm	
Re	Q	Smo	oth Ann	ulus	p = 1	0 mm	$\mathbf{p} = 20$	0 mm	$\mathbf{p} = 3$	0 mm	p = 40	0 mm
Annul	$\times 10^{-1}$ (m ³ /s)	An	j	f _s	An An		An		An		An	c
us	(11178)	(mm H ₂ O)	Exp.	Theo.	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja
Fynarim	ontol Condi	tions. Isot	Anr hormol T	ulus Dimer	nsions: L=1	1.245 m E	$n_0 = 0.028 \text{ m}$	$D_i = 0.012$	25 m			
3000	0.9578	7	0.0453	0.0456	21	0.136	18	0.1166	15	0.0972	10	0.0648
4000	1.2771	11	0.0401	0.0414	32	0.1166	27	0.0984	23	0.0838	18	0.0656
5000	1.5963	17	0.0396	0.0386	42	0.0979	41	0.0956	37	0.0863	27	0.063
7000	2.2349	32	0.0381	0.0349	80	0.0952	70	0.0833	64	0.0761	51	0.0607
8000	2.5541	42	0.0383	0.0335	99	0.0902	90	0.082	81	0.0738	63	0.0574
9000	2.8734	52 65	0.0374	0.0324	123	0.0885	118	0.0849	102	0.0734	80	0.0576
Experim	ental Condi	tions: Isotl	hermal T	$= 40 ^{\circ}\text{C}$	130	0.0074	130	0.00/4	155	0.0/0/	102	0.0375
3000	0.628	3	0.0455	0.0456	9	0.1356	7.5	0.1137	6	0.091	5	0.0758
4000	0.8373	5	0.0426	0.0414	13	0.1102	12	0.1023	9 13	0.0767	7	0.0597
6000	1.2559	10	0.0379	0.0365	20	0.0942	20	0.0758	13	0.0682	17	0.0644
7000	1.4653	14	0.039	0.0349	35	0.0969	29	0.0807	24	0.0668	21	0.0585
8000	1.6746	18	0.0384	0.0335	42	0.089	35	0.0746	30	0.064	29	0.0618
10000	2.0932	22	0.0371	0.0324	53 62	0.0887	46 56	0.07/5	<u> </u>	0.0657	34 41	0.0573
Experim	ental Condi	tions: Isotl	hermal T	= 60 °C								
3000	0.4526	1.5	0.0442	0.0456	5	0.1473	4	0.1178	3	0.0884	2.5	0.0736
<u>4000</u> 5000	0.6034	2.5	0.0414	0.0414	10	0.116	5	0.0828	4	0.0663	4	0.0663
6000	0.9051	5.5	0.0405	0.0365	14	0.1031	12	0.0884	9	0.0663	7	0.0515
7000	1.056	7.5	0.0406	0.0349	18	0.0974	15	0.0812	12	0.0649	11	0.0595
8000	1.2068	9.5	0.0394	0.0335	22	0.0911	19	0.0787	15	0.0621	13	0.0539
10000	1.5085	12	0.0393	0.0324	33	0.0831	30	0.0733	25	0.0622	20	0.0524
Experim	ental Condi	tions: Isotl	hermal T	= 70 °C					-			
3000	0.3904	1.5	0.0597	0.0456	3	0.1194	3	0.1194	2.5	0.0995	2	0.0796
5000	0.5206	3	0.0448	0.0414	5	0.1119	4	0.0895	4	0.0895	3	0.0672
6000	0.7808	4	0.0398	0.0365	11	0.1094	8	0.0796	7	0.0696	6	0.0597
7000	0.911	5	0.0365	0.0349	14	0.1023	11	0.0804	9	0.0658	8	0.0585
8000	1.0411	7	0.0392	0.0335	17	0.0951	13	0.0728	11	0.0616	10	0.056
10000	1.3014	10	0.0358	0.0324	21	0.0929	21	0.0752	13	0.0609	12	0.0537
	•		Anr	ulus Dimer	nsions: L=1	1.245 m D	$0_0 = 0.028 \text{ m}$	$D_i = 0.015$	5 m			
Experim 3000	ental Condi	tions: Isotl	hermal T	$c = 20 \circ C$	45	0 1520	41	0 1 3 0 3	28	0.0051	24	0.0815
4000	1.3717	24	0.0459	0.0414	75	0.1433	69	0.1319	43	0.0822	37	0.0707
5000	1.7146	36	0.044	0.0386	110	0.1345	100	0.1223	63	0.0771	52	0.0636
6000	2.0575	46	0.0391	0.0365	150	0.1274	141	0.1198	82	0.0696	72	0.0612
8000	2.7433	78	0.0373	0.0349	240	0.11230	230	0.1099	136	0.0008	107	0.055
9000	3.0863	94	0.0355	0.0324	305	0.1151	287	0.1083	171	0.0646	133	0.0502
10000	3.4292	113	0.0346	0.0315	372	0.1137	343	0.1049	203	0.0621	161	0.0492
Experim 3000	ental Condi	tions: Isoti	0.0477	= 40 °C 0.0456	20	0.1581	17	0.1352	12	0.0954	11	0.0875
4000	0.8993	10	0.0447	0.0414	33	0.1467	29	0.1297	18	0.0805	17	0.076
5000	1.1241	15	0.0429	0.0386	47	0.1337	43	0.1231	25	0.0716	25	0.0716
6000 7000	1.549	20	0.0398	0.0365	64 88	0.1265	59 80	0.1173	34 45	0.0676	33	U.U656 0.0628
8000	1.7986	31	0.0347	0.0335	114	0.1267	103	<u>0.1152</u>	59	0.066	55	0.0615
9000	2.0234	39	0.0345	0.0324	141	0.1238	132	0.1166	70	0.0618	67	0.0592
10000 Exporim	2.2483	48 tions: Isotl	0.0343	0.0315	175	0.1245	163	0.1166	87	0.0623	78	0.0558
3000	0.4861	3	0.0463	-00°C	11	0.1699	9	0.139	6	0.0927	6	0.0927
4000	0.6481	5	0.0435	0.0414	18	0.1564	15	0.1304	10	0.0869	9	0.0782
5000	0.8101	7	0.0389	0.0386	24	0.1335	22	0.1224	15	0.0834	13	0.0723
6000 7000	0.9722	10	0.0386 0.0369	0.0365	34 45	0.1313	31 41	0.1197	20	0.0772	20	0.0568
8000	1.2962	17	0.0369	0.0335	59	0.1282	52	0.113	32	0.0695	24	0.0521
9000	1.4583	21	0.036	0.0324	71	0.1219	65	0.1116	38	0.0652	33	0.0566
10000 Experim	ental Condi	25	<i>0.0348</i> hermal T	0.0315	87	0.121	76	0.1057	45	0.0626	37	0.0514
3000	0.4193	2	0.0417	0.0456	8	0.167	6.5	0.1357	5	0.1044	4	0.0835
4000	0.5591	3.5	0.0411	0.0414	14	0.1644	11	0.1292	8	0.0939	7	0.0822
5000	0.6989	5.5	0.0413	0.0386	20	0.1503	15	0.1127	11	0.0827	10	0.0751
7000	0.8387	8 10.5	0.0417	0.0303	35	0.1409	21	0.1096	14	0.0728	13	0.0652
8000	1.1182	13	0.0382	0.0335	43	0.1262	35	0.1027	23	0.0675	21	0.0616
9000	1.258	16	0.0371	0.0324	53	0.1229	44	0.102	27	0.0626	25	0.058
10000	1.5978	17	0.0319	0.0315	70	0.1315	55	0.1033	54	0.0639	50	0.0564

Table C-38: Isothermal Pressure Drop and Friction Factor for Smooth and Augmented Annuli (Using a Wire Coil of e = 1 mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C.

		_				Augn	nented A	nnulus.	Wire co	il. e = 2.	2 mm	
Re	Q	Smo	oth Ann	ulus	p = 1	0 mm	$\mathbf{p} = 2$	0 mm	$\mathbf{p} = 3$	0 mm	p = 40) mm
Annul	$\times 10^{-4}$ (m ³ /s)	An	j	f _s	An An		An An		An	C	r An	ſ
us	(11178)	(mm H ₂ O)	Exp.	Theo.	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja	(mm H ₂ O)	Ja
Fynarim	antal Candi	tions. Isot	Anr hormal T	ulus Dime	nsions: L=1	1.245 m E	$D_0 = 0.028 \text{ m}$	$D_i = 0.012$	25 m			
3000	0.9578	7	0.0453	0.0456	47	0.2639	34	0.1909	29	0.1628	22	0.1235
4000	1.2771	11	0.0401	0.0414	76	0.24	56	0.1769	43	0.1358	37	0.1169
5000	1.5963	17	0.0396	0.0386	110	0.2224	85	0.1718	62	0.1253	55	0.1112
7000	2 2349	32	0.0389	0.0365	142	0.1993	117	0.1642	85 115	0.1193	100	0.1053
8000	2.5541	42	0.0383	0.0335	241	0.1903	199	0.1571	139	0.1098	125	0.0987
9000	2.8734	52	0.0374	0.0324	302	0.1884	244	0.1522	165	0.1029	157	0.0979
10000 Eunoxim	3.1927	65 tiongy Igotl	0.0379	0.0315	360	0.1819	300	0.1516	200	0.1011	183	0.0925
3000	0.628	3	0.0455	=40 °C 0.0456	19	0.2863	13	0.1971	12	0.1819	9	0.1364
4000	0.8373	5	0.0426	0.0414	29	0.2458	23	0.1961	17	0.145	13	0.1109
5000	1.0466	7.5	0.0409	0.0386	44	0.2387	35	0.191	24	0.131	22	0.1201
6000	1.2559	10	0.0379	0.0365	60 80	0.226	48	0.1819	35	0.1326	31	0.1175
8000	1.4035	14	0.039	0.0349	102	0.2214	81	0.1734	43 56	0.1233	54	0.1142
9000	1.8839	22	0.0371	0.0324	129	0.216	101	0.1701	70	0.1179	67	0.1129
10000	2.0932	28	0.0382	0.0315	158	0.2143	124	0.1692	84	0.1146	83	0.1132
Experim	ental Condi 0 4526	tions: Isoti	nermal 1 0.0442	$= 60 ^{\circ}\text{C}$	9	0 2651	7	0 2062	6	0 1767	45	0 1326
4000	0.6034	2.5	0.0414	0.0414	16	0.2651	12	0.1988	9	0.1491	7	0.116
5000	0.7543	3.5	0.0371	0.0386	25	0.2651	17	0.1803	12	0.1273	10	0.106
6000	0.9051	5.5	0.0405	0.0365	32	0.2357	25	0.1841	17	0.1252	15	0.1105
7000	1.056	9.5	0.0406	0.0349	40	0.2164	32 40	0.1731	24	0.1298	20	0.1082
9000	1.3577	12	0.0393	0.0324	64	0.2095	52	0.1702	35	0.1146	29	0.0949
10000	1.5085	14	0.0371	0.0315	77	0.2041	62	0.1644	42	0.1113	38	0.1007
Experim	ental Condi	tions: Isotl	hermal T	$^{\circ} = 70 ^{\circ} C$	7	0 2786	5	0 100	4.5	0 1701	35	0 1 2 0 2
4000	0.5904	1.5	0.0397	0.0430	12	0.2780	9	0.2015	4.5	0.1791	3.5 5	0.1393
5000	0.6507	3	0.043	0.0386	18	0.2579	13	0.1863	10	0.1433	8	0.1146
6000	0.7808	4	0.0398	0.0365	25	0.2487	20	0.199	13	0.1293	11	0.1094
7000	0.911	5	0.0365	0.0349	34	0.2485	25	0.1827	18	0.1316	15	0.1096
9000	1.1713	9	0.0392	0.0333	53	0.2331	40	0.1791	23	0.1287	25	0.1105
10000	1.3014	10	0.0358	0.0315	61	0.2185	48	0.1719	33	0.1182	30	0.1075
			Anr	ulus Dime	nsions: L=1	1.245 m D	$0_0 = 0.028 \text{ m}$	$D_i = 0.015$	55 m			
Experim	ental Condi	tions: Isoti	hermal 1	$= 20 ^{\circ}\text{C}$	105	03567	88	0 200	65	0 2208	54	0 1835
4000	1.3717	24	0.0459	0.0430	103	0.3421	145	0.2771	110	0.2208	<u> </u>	0.172
5000	1.7146	36	0.044	0.0386	261	0.3192	215	0.263	171	0.2091	132	0.1614
6000	2.0575	46	0.0391	0.0365	375	0.3185	301	0.2557	230	0.1954	185	0.1571
8000	2.4004	61 78	0.0373	0.0349	661	0.3170	504	0.2413	402	0.1947	305	0.1491
9000	3.0863	94	0.0355	0.0324	836	0.3156	634	0.2393	508	0.1918	390	0.1472
10000	3.4292	113	0.0346	0.0315	1023	0.3128	767	0.2345	622	0.1902	475	0.1452
Experim 3000	ental Condi	tions: Isotl	nermal T	$= 40 ^{\circ}\text{C}$	42	0 2 2 7	3/	0 2702	27	0 2147	22	0 1740
4000	0.8993	10	0.0447	0.0430	72	0.3201	60	0.2683	46	0.2057	37	0.1655
5000	1.1241	15	0.0429	0.0386	110	0.313	88	0.2519	68	0.1946	56	0.1603
6000	1.349	20	0.0398	0.0365	151	0.2984	121	0.2405	93	0.1849	75	0.1491
7000	1.5738	25	0.0365	0.0349	212	0.3078	162	0.2366	130	0.1899	100	U.146 0.1465
9000	2.0234	39	0.0345	0.0324	339	0.2977	263	0.2323	211	0.1864	166	0.1467
10000	2.2483	48	0.0343	0.0315	430	0.3059	322	0.2304	258	0.1846	196	0.1403
Experim	ental Condi	tions: Isotl	hermal T	$= 60 \circ C$	22	0 2552	10	0 2701	15	0 7217	12	0 10=1
4000	0.4001	5	0.0405	0.0430	40	0.3355	31	0.2781	22	0.2317	12	0.1564
5000	0.8101	7	0.0389	0.0386	56	0.3115	46	0.2558	33	0.1835	28	0.1557
6000	0.9722	10	0.0386	0.0365	79	0.3051	64	0.2472	46	0.1777	40	0.1545
7000	1.1342	13	0.0369	0.0349	103	0.2923	81	0.2299	62 81	0.1759	52 63	0.1476
9000	1.4583	21	0.036	0.0333	174	0.302	130	0.2232	103	0.1768	78	0.1339
10000	1.6203	25	0.0348	0.0315	215	0.2989	158	0.2197	123	0.171	95	0.1321
Experim	ental Condi	tions: Isotl	hermal T	= 70 °C								0.45
3000	0.4193	2	0.0417	0.0456	17	0.3548	14	0.2922	11	0.2296	9	0.1879
5000	0.5591	5.5	0.0411	0.0414	45	0.3381	37	0.2933	26	0.10/9	22	0.1/01
6000	0.8387	8	0.0417	0.0365	60	0.3131	51	0.2661	36	0.1879	29	0.1513
7000	0.9785	10.5	0.0403	0.0349	83	0.3182	67	0.2569	47	0.1802	39	0.1495
8000	1.1182	13	0.0382	0.0335	105	0.3082	82	0.2407	59 74	0.1732	48	0.1409
10000	1.230	10	0.03/1	0.0324	160	0.3100	102	0.2300	90	0.1/10	75	0.1430

Table C-39: Isothermal Pressure Drop and Friction Factor for Smooth and Augmented Annuli (Using a Wire Coil of e = 2.2 mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C.

C-40

						Augme	nted An	nulus, C	ircular	ribs, e =	2.2 mm	
Re	Q	Smo	oth Ann	ulus	n = 1	0 mm	n = 20	0 mm	n = 3	0 mm	n = 40) mm
Annul us	$\times 10^{-4}$ (m ³ /s)	Δp	j	fs Theo	Δp	fa		f _a		fa		f_{a}
		(11111120)	Exp. Anr	ulus Dime	1 sions: L=1	1.245 m D	$h_{0} = 0.028 \text{ m}$	D= 0.012	(mm 1120) 5 m		(11111120)	
Experim	ental Condi	tions: Isotl	hermal T	= 20 °C			0 010-0		•			
3000	0.9578	7	0.0453	0.0456	79	0.4436	64	0.3594	43	0.2414	41	0.2302
<u>4000</u> 5000	1.27/1	17	0.0401	0.0414	127	0.4011	103	0.3253	<u> </u>	0.21/9	<u>65</u> 91	0.2053
6000	1.9156	24	0.0389	0.0365	244	0.3425	197	0.2765	132	0.1853	125	0.1755
7000	2.2349	32	0.0381	0.0349	314	0.3238	254	0.262	170	0.1753	161	0.166
9000	2.5541	42 52	0.0383	0.0335	396 485	0.3127	320	0.2327	214	0.1635	203	0.1553
10000	3.1927	65	0.0379	0.0315	582	0.2941	471	0.238	315	0.1592	299	0.1511
Experim	ental Condi	tions: Isotl	nermal T	$= 40 \circ C$	20	0 (521	24	0.2(20	165	0.3501	15	0.2274
4000	0.628	5	0.0455	0.0436	30 50	0.4521	24 40	0.3638	27	0.2302	26	0.22/4
5000	1.0466	7.5	0.0409	0.0386	74	0.4014	59	0.322	40	0.2183	37	0.2019
6000	1.2559	10	0.0379	0.0365	102	0.3843	81	0.307	55	0.2084	52	0.1971
7000	1.4653	14	0.039	0.0349	134	0.3709	106	0.2951	72 91	0.2005	68 85	0.1893
9000	1.8839	22	0.0371	0.0333	207	0.3466	164	0.2353	112	0.194	105	0.1769
10000	2.0932	28	0.0382	0.0315	249	0.3377	197	0.2688	134	0.1828	125	0.1705
Experim 3000	ental Condi	tions: Isotl	hermal T	$= 60 ^{\circ}\text{C}$	14.5	0 4271	12	03525	85	0 2501	7	0 2062
4000	0.6034	2.5	0.0442	0.0430	24	0.42/1	20	0.3314	14	0.232	12	0.2002
5000	0.7543	3.5	0.0371	0.0386	35	0.3712	29	0.3075	20	0.2121	17	0.1803
6000	0.9051	5.5	0.0405	0.0365	48	0.3535	40	0.2946	28	0.2062	24	0.1767
7000	1.056	7.5	0.0406	0.0349	<u>63</u> 80	0.3409	<u>52</u> 66	0.2813	<u> </u>	0.2002	31	0.1677
9000	1.3577	12	0.0393	0.0324	98	0.3207	81	0.2651	57	0.1866	48	0.1571
10000	1.5085	14	0.0371	0.0315	117	0.3102	97	0.2572	68	0.1803	58	0.1538
Experim 3000	ental Condi	tions: Isotl	hermal T	$^{\circ} = 70 ^{\circ}\text{C}$	12	0 4776	0	03587	65	0 2587	55	0 2180
4000	0.5206	2	0.0397	0.0430	21	0.4701	16	0.3582	11	0.2387	<u> </u>	0.2015
5000	0.6507	3	0.043	0.0386	30	0.4298	23	0.3295	16	0.2292	14	0.2006
6000	0.7808	4	0.0398	0.0365	42	0.4179	32	0.3184	22	0.2189	19	0.189
7000	0.911	5	0.0365	0.0349	50 69	0.4093	42 52	0.307	<u>29</u> 36	0.212	25 31	0.1827
9000	1.1713	9	0.0398	0.0324	85	0.3759	64	0.283	44	0.1946	38	0.168
10000	1.3014	10	0.0358	0.0315	102	0.3653	77	0.2758	53	0.1898	46	0.1648
Fynerim	antal Candi	tions. Isot	Anr hormol T	$1 \text{ ulus Dimenti} = 20 ^{\circ}\text{C}$	isions: L=	1.245 m D	$0_0 = 0.028 \text{ m}$	$D_i = 0.015$	5 m			
3000	1.0288	15	0.051	0.0456	184	0.6251	142	0.4824	113	0.3839	87	0.2956
4000	1.3717	24	0.0459	0.0414	304	0.581	234	0.4472	186	0.3555	144	0.2752
5000	1.7146	36	0.044	0.0386	448	0.5479	345	0.422	275	0.3363	212	0.2593
7000	2.4004	61	0.0391	0.0303	805	0.5023	620	0.4020	494	0.3202	381	0.2472
8000	2.7433	78	0.0373	0.0335	1014	0.4844	781	0.3731	622	0.2972	480	0.2293
9000	3.0863	94	0.0355	0.0324	1241	0.4685	956	0.3609	761	0.2873	587	0.2216
Experim	<u> </u>	113 tions: Isotl	<u>0.0346</u> hermal T	v.0313 = 40 °C	1494	0.4368	1151	0.3519	910	0.2801	/0/	0.2162
3000	0.6745	6	0.0477	0.0456	77	0.6086	60	0.4771	48	0.3816	37	0.2942
4000	0.8993	10	0.0447	0.0414	133	0.5913	103	0.4607	81	0.3623	63	0.2818
5000	1.1241	15 20	0.0429	0.0386	252	0.5548	152	0.4336 0.3886	119	0.3406	93	0.2662
7000	1.5738	25	0.0365	0.0349	333	0.4834	259	0.3782	205	0.2994	160	0.2337
8000	1.7986	31	0.0347	0.0335	425	0.4724	331	0.3695	262	0.2929	205	0.2292
9000	2.0234	39	0.0345	0.0324	533	0.4681	415	0.3662	327	0.2889	257	0.227
Experim	ental Condi	tions: Isotl	hermal T	$= 60 ^{\circ}\text{C}$	043	0.43/4	300	0.33/0	370	0.2034	510	0.2210
3000	0.4861	3	0.0463	0.0456	41	0.6334	32	0.4944	25	0.3862	20	0.309
4000	0.6481	5	0.0435	0.0414	68	0.5909	52	0.4519	40	0.3476	32	0.2781
6000	0.9722	10	0.0389	0.0386	101	0.5369	106	0.4094	<u>59</u> 81	0.3129	47	0.2511
7000	1.1342	13	0.0369	0.0349	180	0.5108	138	0.3916	106	0.3008	84	0.2384
8000	1.2962	17	0.0369	0.0335	227	0.4932	174	0.378	133	0.289	106	0.2303
9000	1.4583	21	0.036	0.0324	280	0.4807	214	0.3674	164	0.2815	130	0.2232
Experim	ental Condi	1000 tions: Isotl	hermal T	$= 70 ^{\circ}\text{C}$	330	0.40/2	231	0.33/3	19/	0.2/39	15/	0.2183
3000	0.4193	2	0.0417	0.0456	30	0.6262	23	0.4801	17	0.3548	14	0.2922
4000	0.5591	3.5	0.0411	0.0414	49	0.5753	39	0.4579	28	0.3288	23	0.27
<u>5000</u> 6000	0.6989	5.5	0.0413	0.0386	100	0.5218	57	0.4283	41	0.3081	34 47	0.2355
7000	0.9785	10.5	0.0403	0.0349	130	0.5022	103	0.3949	74	0.2837	62	0.2377
8000	1.1182	13	0.0382	0.0335	165	0.4843	130	0.3816	93	0.273	78	0.229
9000	1.258	16	0.0371	0.0324	201	0.4662	159	0.3688	114	0.2644	95 114	0.2203

Table C-40: Isothermal Pressure Drop and Friction Factor for Smooth and Augmented Annuli (Using Circular Ribs of e = 2.2 mm and p = 10, 20, 30, and 40 mm) for Water Flowing at 20, 40, 60, and 70 °C.

C-41

				Wire co	oil inside th tube	ne inner	Wire surface	coil on the e of the inn	outer er tube	Circular to outer su the inn	rib on the rface of er tube
T	ype o	f Inse	ert	Param-	$d_i = 11.0$	$d_i = 14.0$	Param-	$D_i = 12.5$ $D_o = 28.0$	$D_i = 15.5$ $D_o = 28.0$	$D_i = 12.5$ $D_o = 28.0$	$D_i = 15.5$ $D_o = 28.0$
				eter	Para. value	Para. value	eter	Para. value	Para. value	Para. value	Para. value
			10	e/d_i	0.0909	0.0714	e/D_e	0.0645	0.0800	—	_
			10	p/d_i	0.9091	0.7143	p/D_e	0.6452	0.8000	—	
	- 1 mm		20	e/d_i	0.0909	0.0714	e/D_e	0.0645	0.0800	—	_
		(20	p/d_i	1.8182	1.4286	p/D_e	1.2903	1.6000	_	—
ter	e = 1	mm	20	e/d_i	0.0909	0.0714	e/D_e	0.0645	0.0800	—	—
ame	9) d	30	p/d_i	2.7273	2.1429	p/D_e	1.9355	2.4000	—	_
b di		tch,	40	e/d_i	0.0909	0.0714	e/D_e	0.0645	0.0800	_	
ar ri		ig pi	40	p/d_i	3.6364	2.8571	p/D_e	2.5806	3.2000	—	_
ircul		bbin	10	e/d_i	—	_	e/D_e	0.1419	0.1760	0.1419	0.1760
or ci		or ri	10	p/d_i			p/D _e	0.6452	0.8000	0.6452	0.8000
/ire	ш	ing	20	e/d_i			e/D_e	0.1419	0.1760	0.1419	0.1760
1	2 m	Coil	20	p/d_i	_		p/D_e	1.2903	1.6000	1.2903	1.6000
	= 2.	-	30	e/d_i			e/D_e	0.1419	0.1760	0.1419	0.1760
	в		50	p/d_i	—	—	p/D_e	1.9355	2.4000	1.9355	2.4000
			40	e/d_i	—	—	e/D_e	0.1419	0.1760	0.1419	0.1760
			70	p/d_i	—	—	p/D_e	2.5806	3.2000	2.5806	3.2000

Table C-41: Description of Turbulence Promoters (Inserts) in Terms of the Dimensionless Parameters (e/d_i) and (p/d_i) or (e/D_e) and (p/D_e)

Re			FG-2a Cr	iterion, V	Vire Coil,	e = 1 mm	ı	
Inner	p = 1	0 mm	p = 20	0 mm	p = 3	0 mm	p = 4	0 mm
tube	Reo	q_a/q_o	Reo	q _a /q _o	Reo	q_a/q_o	Reo	q_a/q_o
		Inne	r Tube Dime	nsions: L=1.	245 m d _i = 0	.011 m		
			ΔΤ	'i= 40 °C, Pr=	3.14			
5000	8936.1	1.4505	7319.8	1.3408	6513.4	1.2806	5995.8	1.2395
10000	18682	1.3605	15303	1.2576	13617	1.2011	12535	1.1625
15000	28758	1.3104	23556	1.2114	20961	1.1569	19296	1.1198
20000	39055	1.2761	31991	1.1796	28467	1.1266	26205	1.0904
25000	49520	1.25	40563	1.1555	36095	1.1036	33226	1.0681
30000	60121	1.2291	49246	1.1362	43821	1.0851	40339	1.0503
35000	70835	1.2117	58023	1.1201	51631	1.0698	47528	1.0354
40000	81649	1.1969	66880	1.1064	59513	1.0566	54783	1.0227
			ΔΤ	'i= 50 °C, Pr=	2.72			
5000	8936.1	1.4486	7319.8	1.3391	6513.4	1.2789	5995.8	1.2378
10000	18682	1.3587	15303	1.256	13617	1.1995	12535	1.161
15000	28758	1.3087	23556	1.2098	20961	1.1554	19296	1.1183
20000	39055	1.2744	31991	1.178	28467	1.1251	26205	1.089
25000	49520	1.2484	40563	1.154	36095	1.1021	33226	1.0667
30000	60121	1.2275	49246	1.1347	43821	1.0837	40339	1.0489
35000	70835	1.2101	58023	1.1187	51631	1.0684	47528	1.0341
40000	81649	1.1953	66880	1.1049	59513	1.0553	54783	1.0214
		Inne	r Tube Dime	nsions: L=1.	245 m d _i = 0	.014 m		
			ΔΤ	' _i = 40 °C, Pr=	3.14			
5000	8852.2	1.5151	7251.1	1.4005	6452.3	1.3376	5939.5	1.2947
10000	18506	1.4211	15159	1.3136	13489	1.2546	12417	1.2143
15000	28488	1.3688	23335	1.2653	20765	1.2084	19114	1.1696
20000	38689	1.3329	31691	1.2321	28200	1.1767	25959	1.139
25000	49056	1.3057	40183	1.2069	35756	1.1527	32914	1.1157
30000	59557	1.2838	48784	1.1868	43410	1.1334	39960	1.0971
35000	70170	1.2657	57478	1.17	51146	1.1174	47082	1.0815
40000	80882	1.2501	66252	1.1556	58954	1.1037	54269	1.0683
		-	ΔΤ	i= 50 °C, Pr=	2.71	-	-	-
5000	8852.2	1.5131	7251.1	1.3987	6452.3	1.3358	5939.5	1.293
10000	18506	1.4192	15159	1.3119	13489	1.2529	12417	1.2127
15000	28488	1.367	23335	1.2636	20765	1.2068	19114	1.1681
20000	38689	1.3311	31691	1.2305	28200	1.1752	25959	1.1375
25000	49056	1.304	40183	1.2054	35756	1.1512	32914	1.1142
30000	59557	1.2822	48784	1.1852	43410	1.1319	39960	1.0956
35000	70170	1.264	57478	1.1685	51146	1.1159	47082	1.0801
40000	80882	1.2485	66252	1.1541	58954	1.1022	54269	1.0669

Table C-42: Application of FG-2a Criterion to the Tube-Side Heat Transfer

 Enhancement for all Geometrical Characteristics and Conditions.

Re	FG-3 Criterion, Wire Coil, e = 1 mm							
Inner	p = 10 mm		p = 20	20 mm p = 30		p = 40 m		0 mm
tube	Reo	P _a /P _o	Reo	P _a /P _o	Reo	P _a /P _o	Reo	P _a /P _o
		Inne	r Tube Dime	nsions: L=1.2	245 m d _i = 0	.011 m	•	
$\Delta T_{i} = 40 \text{ °C}, \text{ Pr} = 3.14$								
5000	13965.3	0.2957	10409	0.3825	8764.86	0.4447	7758.35	0.4949
10000	27034.1	0.3647	20149.9	0.4719	16967.1	0.5486	15018.7	0.6105
15000	39784.8	0.4124	29653.6	0.5335	24969.7	0.6203	22102.3	0.6903
20000	52333.1	0.4499	39006.5	0.5821	32845.3	0.6768	29073.5	0.7531
25000	64733.1	0.4814	48248.8	0.6228	40627.7	0.7241	35962.3	0.8058
30000	77016	0.5087	57403.9	0.6581	48336.7	0.7652	42786	0.8515
35000	89202.6	0.533	66487.2	0.6896	55985.2	0.8017	49556.2	0.8922
40000	101307	0.555	75509.4	0.7181	63582.3	0.8348	56280.9	0.929
			ΔΤ	i= 50 °C, Pr=	2.72			
5000	13943.4	0.2969	10392.7	0.3842	8751.12	0.4467	7746.19	0.497
10000	26991.8	0.3663	20118.3	0.4739	16940.5	0.551	14995.2	0.6131
15000	39722.5	0.4141	29607.1	0.5358	24930.6	0.623	22067.7	0.6932
20000	52251.1	0.4518	38945.4	0.5846	32793.8	0.6797	29027.9	0.7563
25000	64631.6	0.4834	48173.2	0.6255	40564	0.7272	35905.9	0.8092
30000	76895.3	0.5109	57313.9	0.661	48261	0.7685	42719	0.8552
35000	89062.8	0.5353	66383	0.6926	55897.5	0.8052	49478.6	0.896
40000	101148	0.5574	75391	0.7211	63482.7	0.8384	56192.7	0.933
Inner Tube Dimensions: L=1.245 m d _i = 0.014 m								
			ΔΤ	_i = 40 °C, Pr=	3.14			
5000	14576.8	0.2564	10864.8	0.3317	9148.65	0.3856	8098.2	0.4291
10000	28217.9	0.3162	21032.2	0.4091	17710.1	0.4757	15676.6	0.5293
15000	41526.9	0.3575	30952.1	0.4626	26063.1	0.5378	23070.5	0.5985
20000	54624.7	0.3901	40714.5	0.5047	34283.5	0.5868	30347	0.6529
25000	67567.6	0.4174	50361.5	0.54	42406.7	0.6278	37537.5	0.6986
30000	80388.4	0.441	59917.5	0.5706	50453.3	0.6634	44660.2	0.7382
35000	93108.6	0.4621	69398.5	0.5979	58436.7	0.6951	51727	0.7735
40000	105743	0.4812	78815.8	0.6226	66366.5	0.7238	58746.2	0.8054
$\Delta T_{\rm f}$ = 50 °C, Pr= 2.71								
5000	14553.9	0.2575	10847.8	0.3331	9134.31	0.3873	8085.5	0.4309
10000	28173.7	0.3176	20999.3	0.4109	17682.3	0.4777	15652	0.5316
15000	41461.8	0.3591	30903.6	0.4646	26022.2	0.5401	23034.3	0.601
20000	54539.1	0.3918	40650.7	0.5069	34229.7	0.5893	30299.5	0.6557
25000	67461.7	0.4191	50282.6	0.5423	42340.2	0.6305	37478.7	0.7016
30000	80262.4	0.4429	59823.6	0.5731	50374.2	0.6663	44590.2	0.7414
35000	92962.7	0.4641	69289.7	0.6005	58345.1	0.6981	51645.9	0.7768
40000	105578	0.4833	78692.2	0.6252	66262.4	0.7269	58654.1	0.8089

Table C-43: Application of FG-3 Criterion to the Tube-Side Heat Transfer Enhancement for all Geometrical Characteristics and Conditions.

Re	FN-1 Criterion, Wire Coil, e = 1 mm							
Inner	p = 1	0 mm	$\mathbf{p} = 2$	0 mm	p = 30 mm		$\mathbf{p} = 4$	0 mm
tube	Reo	A _a /A _o	Reo	A _a /A _o	Reo	A _a /A _o	Reo	A _a /A _o
Inner Tube Dimensions: L=1.245 m d= 0.011 m								
	$\Delta T_{i} = 40 \text{ °C}, Pr = 3.14$							
5000	7344.63	0.5855	6270.82	0.6556	5717.02	0.7005	5354.01	0.7342
10000	15882.2	0.6421	13560.1	0.719	12362.6	0.7682	11577.6	0.8051
15000	24936.6	0.6776	21290.8	0.7588	19410.5	0.8108	18178	0.8497
20000	34343.9	0.7041	29322.7	0.7884	26733.1	0.8424	25035.6	0.8829
25000	44022.6	0.7253	37586.4	0.8122	34267	0.8678	32091.2	0.9095
30000	53923.3	0.7431	46039.6	0.8321	41973.6	0.8891	39308.5	0.9318
35000	64012.5	0.7585	54653.7	0.8494	49827	0.9075	46663.2	0.9511
40000	74265.9	0.7721	63408	0.8646	57808.2	0.9238	54137.6	0.9682
			ΔΤ	'i= 50 °C, Pr=	2.72			
5000	7349.69	0.5866	6275.14	0.6569	5720.96	0.7018	5357.7	0.7356
10000	15893.1	0.6433	13569.5	0.7203	12371.1	0.7696	11585.6	0.8066
15000	24953.8	0.6789	21305.5	0.7603	19423.9	0.8123	18190.5	0.8513
20000	34367.6	0.7054	29342.9	0.7899	26751.5	0.844	25052.9	0.8846
25000	44053	0.7267	37612.3	0.8137	34290.6	0.8694	32113.3	0.9112
30000	53960.5	0.7445	46071.3	0.8337	42002.6	0.8907	39335.6	0.9336
35000	64056.6	0.7599	54691.4	0.851	49861.3	0.9092	46695.3	0.9529
40000	74317.1	0.7735	63451.7	0.8662	57848	0.9255	54174.9	0.97
Inner Tube Dimensions: L=1.245 m d= 0.014 m								
			ΔΤ	'i= 40 °C, Pr=	3.14			
5000	7110.46	0.5499	6070.89	0.6158	5534.74	0.6579	5183.27	0.6896
10000	15375.8	0.603	13127.8	0.6753	11968.4	0.7215	11208.4	0.7562
15000	24141.5	0.6365	20612	0.7127	18791.6	0.7615	17598.3	0.7981
20000	33248.9	0.6613	28387.8	0.7405	25880.8	0.7912	24237.3	0.8292
25000	42619.1	0.6812	36388	0.7628	33174.4	0.815	31067.8	0.8542
30000	52204.1	0.6979	44571.7	0.7816	40635.4	0.835	38054.9	0.8752
35000	61971.6	0.7124	52911.2	0.7978	48238.3	0.8523	45175.1	0.8933
40000	71898.1	0.7252	61386.4	0.8121	55965.1	0.8676	52411.2	0.9093
			ΔΤ	i= 50 °C, Pr=	2.71			
5000	7115.36	0.551	6075.07	0.617	5538.56	0.6592	5186.85	0.6909
10000	15386.4	0.6042	13136.9	0.6766	11976.7	0.7229	11216.1	0.7576
15000	24158.2	0.6377	20626.2	0.7141	18804.6	0.7629	17610.5	0.7996
20000	33271.8	0.6625	28407.4	0.7419	25898.6	0.7927	24254	0.8308
25000	42648.4	0.6825	36413.1	0.7643	33197.3	0.8166	31089.2	0.8558
30000	52240.1	0.6993	44602.4	0.783	40663.4	0.8366	38081.2	0.8768
35000	62014.3	0.7137	52947.6	0.7993	48271.6	0.854	45206.3	0.895
40000	71947.6	0.7265	61428.7	0.8136	56003.6	0.8693	52447.3	0.911

Table C-44: Application of FN-1 Criterion to the Tube-Side Heat Transfer

 Enhancement for all Geometrical Characteristics and Conditions.

Re	FG-2a Criterion, Wire Coil, e = 1 mm							
Annulu	p = 10 mm p = 20 mm p = 30 m		0 mm	p = 4(0 mm			
\$	Reo	q _a /q _o	Reo	q _a /q _o	Reo	q _a /q _o	Reo	q _a /q _o
		Annulus Di	mensions: L	=1.245 m D	_o = 0.028 m	$D_i = 0.0125 \text{ m}$		
3000	4314.35	2.3679	3800.3	2.3669	3528.44	2.2033	3347.46	2.0056
4000	5810.48 7319.85	2.1562	5118.17	2.1921	4/52.04	2.0020	4508.29	1.892/
6000	8839.86	1.8896	7786.61	1.9674	7229.58	1.8794	6858.76	1.7442
7000	10368.8	1.7971	9133.35	1.8882	8479.98	1.8141	8045.02	1.6908
8000	11905.3	1.7206	10486.8	1.8221	9736.65	1.7594	9237.24	1.6459
9000	13448.6	1.6559	11846.3	1.7657	10998.8	1.7125	10434.7	1.6073
10000	14770	Annulus Di	mensions: L	=1.245 m D	$_{0}=0.028 \text{ m}$	$D_i = 0.0155 \text{ m}$	11050.0	1.5/50
3000	4733.81	2.1126	4169.72	2.0804	3871.45	1.8978	3672.86	1.7009
4000	6375.39	1.9507	5615.7	1.9567	5214	1.806	4946.53	1.6328
5000	9699 3	1.8337	70/4.48	1.8659	6568.42 7932.39	1.7378	6231.48 7525.48	1.5818
7000	11376.9	1.6704	10021.2	1.7368	9304.35	1.6398	8827.07	1.5079
8000	13062.8	1.6097	11506.3	1.688	10683.2	1.6025	10135.2	1.4796
9000	14756.2	1.558	12997.8	1.6462	12068.1	1.5703	11449	1.455
10000	16456.1	1.5132	14495.2	1.6097	13458.3	1.542	12768	1.4334
Re		F	G-2a Cri	terion, W	ire Coil,	e = 2.2 mr	n	
Annulu	p = 1	0 mm	p = 20) mm	p = 3	0 mm	p = 4() mm
s	Reo	q_a/q_o	Reo	q_a/q_o	Reo	q_a/q_o	Reo	q_a/q_o
		Annulus Di	mensions: L	=1.245 m D	_o = 0.028 m	$D_i = 0.0125 \text{ m}$		
3000	5824.29	1.6344	5130.34	1.8074	4763.33	1.7938	4519.01	1.7129
4000	7844.04	1.5393	6909.44 8704.28	1.7376	6415.16	1.7472	6086.11	1.6848
6000	11933.6	1.4094	8704.28 10511.8	1.6439	9759.8	1.6836	9259.19	1.6459
7000	13997.6	1.37	12329.9	1.6096	11447.8	1.6601	10860.6	1.6313
8000	16072	1.3324	14157.1	1.5804	13144.3	1.6399	12470.1	1.6188
9000	18155.4	1.3001	15992.3	1.5552	14848.2	1.6223	14086.6	1.6078
10000	20247	Annulus Di	mensions: L	=1.245 m D	= 0.028 m	D = 0.0155 m	13/07.4	1.3701
3000	6390.55	1.2978	5629.05	1.4266	5226.39	1.3955	4958.29	1.3175
4000	8606.67	1.2431	7581.09	1.3975	7038.8	1.3865	6677.73	1.323
5000	10842.4	1.2023	9550.41 11533.6	1.3753	8867.25	1.3796	8412.39	1.3273
7000	15358.6	1.1433	13528.4	1.3425	12560.7	1.3693	11916.4	1.3338
8000	17634.6	1.1207	15533.2	1.3297	14422.1	1.3652	13682.3	1.3364
9000	19920.6	1.1012	17546.8	1.3186	16291.7	1.3616	15456	1.3387
10000	22215.5	1.084	19568.3	1.3086	18168.5	1.3584	17236.5	1.3407
Re		FG	-2a Crite	rion, Circ	ular Ribs	s, e = 2.2 r	nm	
Annulu	p = 1	0 mm	p = 20) mm	p = 3	0 mm	p = 40) mm
s	Reo	q_a/q_o	Reo	q_a/q_o	Reo	q_a/q_o	Reo	q_a/q_o
	•	Annulus Di	mensions: L	=1.245 m D	_o = 0.028 m	$D_i = 0.0125 \text{ m}$	•	1. 1.
3000	6754.83	1.277	5957.6	1.4423	5535.55	1.5593	5254.4	1.6529
4000	9077.71	1.2701	8006.34	1.4193	7439.14	1.5253	7061.31	1.6101
<u>5000</u> 6000	11416.7	1.2649	10069.3	1.4018	9355.96	1.4994	8880.77	1.5///
7000	16131.5	1.2569	14227.6	1.3758	13219.7	1.4613	12548.2	1.53
8000	18503.5	1.2538	16319.7	1.3656	15163.6	1.4464	14393.4	1.5115
9000	20883.8	1.251	18419	1.3566	17114.2	1.4334	16244.9	1.4954
10000	23271.3	1.2486	20524.7	1.3487	19070.7	<i>1.4218</i>	18102.1	1.4811
3000	7694 74	Annulus Di 1.035	6786 49	-1.245 m D 1.2078	₀- 0.028 m 6305 75	$D_i = 0.0155 \text{ m}$ 1.3302	5985 45	1.4282
4000	10340.9	1.0025	9120.27	1.1589	8474.2	1.2695	8043.76	1.3579
5000	13005.3	0.978	11470.3	1.1223	10657.7	1.2243	10116.4	1.3058
6000	15684.6	0.9585	13833.2	1.0933	12853.3	1.1885	12200.4	1.2647
7000	18376.1	0.9423	16207.1	1.0693	15059	1.1592	14294.1	1.231
9000	23789.7	0.9284	20981.7	1.049	1/2/3.4	1.1343	18505.1	1.2025
10000	26509.4	0.9058	23380.4	1.0159	21724.1	1.0939	20620.7	1.1564

Table C-45: Application of FG-2a Criterion to the Annulus-Side Heat Transfer Enhancement for all Geometrical Characteristics and Conditions.

Re	FG-3 Criterion, Wire Coil, e = 1 mm							
Annulu	p = 10 mm p = 20 mm p = 30 mm				p = 40) mm		
s	Reo	P _a /P _o	Reo	P _a /P _o	Reo	P _a /P _o	Reo	P _a /P _o
		Annulus Di	mensions: L	=1.245 m D	_o =0.028 m	D _i = 0.0125 m		
3000	11995	0.0658	10560.4	0.0659	9006.28	0.0827	7642.77	0.1112
5000	14455.9	0.0885	12985.5	0.084	13297.5	0.1018	9009.15	0.1555
6000	18805.1	0.1342	17377	0.1182	15281.7	0.1365	13268.7	0.1728
7000	20782.7	0.1573	19412.3	0.1345	17188.5	0.1526	15000.6	0.1906
8000	22663.2	0.1804	21367.1	0.1505	19031.5	0.1681	16682.6	0.2075
9000	24462.7	0.2036	25082.8	0.1002	20820.6	0.1831	18322	0.2236
10000	201/0.1	Annulus D	imensions: L	=1.245 m D	$_{o}=0.028 m$	$D_i = 0.0155 m$	1//21.0	0.2371
3000	11495.2	0.0944	9942.94	0.0991	8278.59	0.1324	6896.85	0.1871
4000	14084.3	0.1214	12451.7	0.1202	10512.2	0.1548	8848.8	0.2128
6000	16487.7	0.1470	14820	0.1397	12052	0.1748	10735.9	0.2552
7000	20909.4	0.1981	19289	0.1751	16729.7	0.2099	14369	0.2735
8000	22976.7	0.2226	21412.4	0.1916	18691.3	0.2258	16131.1	0.2904
9000	24969.3	0.2467	23478.5	0.2074	20611.5	0.2407	17863.9	0.3062
10000	26897.7	0.2706	25495.2	0.2226	22495.9	0.2549	195/1.1	0.321
Re]	FG-3 Crit	erion, Wi	re Coil, e	= 2.2 mm	1	
Annulu	p = 1	0 mm	p = 20) mm	p = 3	0 mm	p = 40) mm
S	Reo	P_a/P_o	Reo	P_a/P_o	Reo	P_a/P_o	Reo	P_a/P_o
	· ·	Annulus Di	mensions: L	=1.245 m D	_o = 0.028 m	D _i = 0.0125 m	÷	
3000	10431.2	0.2122	10353.2	0.1544	9527.06	0.1581	8556.88	0.1829
4000	13084.6	0.2563	13307.4	0.1749	12436.5	0.1718	11299.8	0.1928
6000	18008.7	0.3346	18956.1	0.1923	18106	0.1833	16721.2	0.2008
7000	20334	0.3703	21685.3	0.2227	20885.3	0.202	19407.6	0.2134
8000	22589.6	0.4043	24365.1	0.2359	23635.4	0.2099	22081.2	0.2187
9000	24786	0.4368	27002.5	0.2482	26360.2	0.2172	24743.5	0.2234
10000	20931	0.4001 Annulus D	29002.7 imensions: L	0.2397 =1.245 m D	$_{-}=0.028 m$	0.2239 D = 0.0155 m	2/390	0.22//
3000	8706.04	0.4393	8580.1	0.3258	7760.2	0.3494	6877.05	0.4188
4000	11141.8	0.5032	11276.1	0.3477	10371.8	0.3565	9307.73	0.4133
5000	13491.3	0.559	13938.2	0.3658	12988.9	0.3622	11770.6	0.4092
7000	15//4.4	0.6093	105/3.4	0.3812	18235.6	0.3709	14259.4	0.4038
8000	20187.7	0.6979	21781.1	0.4068	20863.9	0.3744	19299.4	0.4005
9000	22333.2	0.7377	24359.3	0.4178	23495	0.3775	21845.3	0.3983
10000	24444.9	0.7754	26923.1	0.4279	26128.5	0.3804	24406	0.3964
Re		FC	G-3 Criter	ion, Circu	ular Ribs	e = 2.2 m	ım	
Annulu	p = 1	0 mm	p = 20) mm	p = 3	0 mm	p = 40) mm
s	Re	P_a/P_a	Re	P_a/P_a	Re	P _a /P _a	Reo	P _a /P _a
	- 0	Annulus Di	mensions: L	=1.245 m D	$_{0} = 0.028 \text{ m}$	$D_i = 0.0125 \text{ m}$	-0	a U
3000	9027.7	0.4622	9199.1	0.3148	9376.2	0.2461	9537.1	0.2047
4000	12055	0.4702	12130	0.3311	12275	0.2638	12424	0.2224
5000	15086	0.4764	15032	0.3444	15128	0.2785	15253	0.2372
7000	21158	0.4813	20772	0.3350	20731	0.3021	20782	0.2433
8000	24198	0.4898	23617	0.3741	23493	0.312	23496	0.2715
9000	27239	0.4932	26448	0.3819	26232	0.321	26183	0.2809
10000	30283	0.4963	29267	0.389	28953	0.3293	28845	0.2895
3000	8014.8	Annulus Di	mensions: L ² 8490 4	=1.245 m D	₀ = 0.028 m 8845 5	$D_i = 0.0155 \text{ m}$ 0.4064	91351	0.3247
4000	10371	0.9922	10864	0.6279	11246	0.471	11563	0.3807
5000	12667	1.0726	13153	0.6948	13549	0.528	13883	0.4308
6000	14915	1.1432	15377	0.7547	15776	0.5798	16120	0.4765
7000	17124	1.2065	17548	0.8094	17943	0.6274	18291	0.519
9000	21449	1.2041	21764	0.8399	20058	0.7137	20406	0.5388
10000	23573	1.3667	23821	0.9516	24165	0.7533	24499	0.6322

Table C-46: Application of FG-3 Criterion to the Annulus-Side Heat Transfer Enhancement for all Geometrical Characteristics and Conditions.

Re	FN-1 Criterion, Wire Coil, e = 1 mm							
Annulu	p = 1	p = 10 mm p = 20 mm p = 30 mm		p = 4) mm			
s	Reo	A _a /A _o	Reo	A _a /A _o	Reo	A _a /A _o	Reo	A _a /A _o
		Annulus Di	mensions: L	=1.245 m D	_o = 0.028 m	$D_i = 0.0125 \text{ m}$	÷	
3000	2684.96	0.2831	2365.62	0.2833	2284.67	0.3146	2282.54	0.361
4000	380/.28	0.3247	3323.34 4325.00	0.317	3190.71	0.3405	31/3./	0.393
6000	6228.59	0.394	5365.96	0.3714	5109.09	0.3971	5050.35	0.443
7000	7510.41	0.424	6438.03	0.3944	6110.46	0.4182	6025.94	0.4636
8000	8832.14	0.4519	7538.37	0.4155	7135.22	0.4373	7022.13	0.4822
9000	10189.8	0.4779	8664.03	0.4351	8180.87	0.455	8036.68	0.4992
10000	11580.2	0.5026	9812.68 monsions: L	<u> </u>	9245.44	0.4714 D=0.0155 m	9067.82	0.515
3000	3136.87	0.3346	2786.49	0.3422	2721.29	0.3915	2742.08	0.4595
4000	4414.14	0.376	3881.52	0.3743	3766.4	0.4209	3777	0.4879
5000	5753.28	0.4117	5019.43	0.4013	4846.32	0.4453	4841.89	0.5111
6000	7143.87	0.4433	6192.72	0.4248	5954.82	0.4663	5931.3	0.5308
8000	85/8.// 10052.7	0.4/19	8626 34	0.4457	/08/.0/ 8241 77	0.4848	7041.55	0.5481
9000	11561.7	0.5225	9880.09	0.4821	9414.8	0.5166	9314.36	0.5775
10000	13102.5	0.5454	11155.2	0.4982	10604.9	0.5305	10473.3	0.5903
Re]	FN-1 Crit	erion, Wi	ire Coil, e	= 2.2 mm	ı	
Annulu	p = 1	0 mm	$\mathbf{p} = 20$	0 mm	$\mathbf{p} = 3$	0 mm	$\mathbf{p} = 40$) mm
s	Re	A _a /A _a	Re	A_a/A_a	Re	A_a/A_a	Rea	A _a /A _a
	1100	Annulus Di	mensions: L	=1.245 m D	= 0.028 m	$D_{i}=0.0125 \text{ m}$	1100	11/11/0
3000	4444.81	0.4872	3704.36	0.4205	3453.64	0.4251	3360.76	0.4548
4000	6186.83	0.5318	5098.17	0.4454	4719.13	0.4418	4567.68	0.466
5000	7995.86	0.5693	6531.3	0.4657	6012.16	0.4552	5795.07	0.4749
<u> </u>	9860.13	0.6018	7996.56	0.4831	8661.84	0.4005	7039.03	0.4822
8000	13724.6	0.657	11005.4	0.4702	10012.5	0.4702	9566.89	0.4941
9000	15714.4	0.681	12542.7	0.5239	11377.7	0.4925	10847.5	0.499
10000	17737.6	0.7033	14099.1	0.5351	12755.9	0.4995	12137.6	0.5034
2000		Annulus D	imensions: L	=1.245 m D	$_{o} = 0.028 m$	$D_i = 0.0155 m$	12(0.2)	0.4480
<u> </u>	5536.74 7635.37	0.6828	4629.44	0.5944	4350.88	0.614	4260.26	0.6679
5000	9797.01	0.7636	8014.37	0.6272	7428.38	0.6243	7198.74	0.6607
6000	12010.2	0.7947	9748.49	0.6393	8991.08	0.6281	8680.99	0.6581
7000	14267.3	0.8219	11504.3	0.6497	10566.2	0.6313	10169.9	0.656
8000	16562.6	0.8463	13279	0.6589	12152	0.634	11664.6	0.6541
9000	18891.8	0.8684	150/0.2	0.6671	15/4/.2	0.6365	13164.4	0.6525
Do	21231.0	<u> </u>	N-1 Criter	ion, Circ	ular Ribs	e = 2.2 n	14000.0	0.031
ne	n = 1	0	n - 2	0	n-2	0	n = 4)
Annulu	p - r		p - 2		p = 3		p - 4	
3	Reo	A_a/A_o	Re _o	A_a/A_o	Re _o	A_a/A_o	Re _o	A_a/A_o
2000	5004 59	Annulus Di	mensions: L	=1.245 m D	$h_0 = 0.028 \text{ m}$	$D_i = 0.0125 \text{ m}$	2095 12	0 4702
4000	7958.58	0.0991	6603.18	0.5989	4335.18 5897.11	0.5219	5433.39	0.4792
5000	10032.2	0.709	8361.61	0.6099	7486.72	0.5527	6910.31	0.513
6000	12121.7	0.7125	10140.7	0.6191	9098.75	0.5641	8410.47	0.5257
7000	14224.3	0.7155	11937.2	0.6269	10729.7	0.5739	9930.23	0.5366
8000	16338.4	0.7181	13748.7	0.6338	12376.9	0.5826	11467	0.5462
10000	20595.4	0.7205	155/3.5	0.6399	14038.0	0.5904	14584	0.5549
10000	20373.7	Annulus Di	mensions: L	=1.245 m D	$h_0 = 0.028 \text{ m}$	$D_i = 0.0155 \text{ m}$	17307	0.3047
3000	7550.65	0.951	6116.79	0.7585	5389.65	0.6586	4919.6	0.5935
4000	10326.6	0.9964	8409.48	0.8058	7431.69	0.7052	6797.46	0.639
5000	13165.3	1.0331	10764.7	0.8446	9534.84	0.7436	8734.98	0.6766
7000	10054.8	1.004	151/0.9	U.8//0 0.9066	13883 7	0.7700	10/21.4	0.7091
8000	21957.4	1.1148	18107.6	0.9324	16116.4	0.8316	14813.9	0.7634
9000	24960.4	1.1363	20628.2	0.9558	18382	0.8552	16910.6	0.7868
10000	27993.1	1.1559	23178.8	0.9772	20677.3	0.8769	19036.4	0.8084

Table C-47: Application of FN-1 Criterion to the Annulus-Side Heat Transfer

 Enhancement for all Geometrical Characteristics and Conditions.

الخلاصة

تم استخدام ثلاث طرق لتعزيز انتقال الحرارة باستخدام مسببات شدة الاضطراب وذلك من اجل زيادة الكفائة الحرارية لمبادل حراري من نوع الانابيب المتمركزة بطول 1245 ملم وبقطر خارجي 28 ملم وانبوب داخلي قابل للتغيير بقطرين 11 و 14 ملم. محلزنات سلكية بقطر 1 ملم وفواصل لف بمقدار 10، 20، 30 و40 ملم استخدمت كمسببات شدة الاضطراب داخل الانبوب الداخلي للمبادل الحراري في مدى رقم رينولدز بين 5000 و40000. كما تم استخدام نوعين جديدين من مسببات شدة الاضطراب لزيادة انتقال الحرارة في الجانب الخارجي لنفس المبادل الحراري في مدى رقم رينولدز بين 3000 و 10000. النوع الاول تم باستخدام محلزنات سلكية بقطر 1 و2.2 ملم وفواصل لف بمقدار 10، 20، 30 و40 ملم تم تركيبها على السلحارجي لنفس المبادل الحراري في الداخلي للمبادل الحراري في مدى رقم رينولدز بين 2000 و 14000. كما تم استخدام نوعين جديدين مدى رقم رينولدز بين 3000 و 10000. النوع الاول تم باستخدام محلزنات سلكية بقطر 1 و2.2 ملم وفواصل لف بمقدار 10، 20، 30 و40 ملم تم تركيبها على السطح الخارجي للانبوب الداخلي. اما الطريقة الثانية فكانت باستخدام نتؤات دائرية المقطع بقطر 2.2 ملم ركبت بنفس الفواصل والموقع. أستخدام الماء في جانبي المبادل الحراري كما تم تنويع الظروف التجريبية وذلك بتغيير معدل الجريان الكتلي للجانب الغير المراد رفع كفائته وكذلك بتغيير درجة حرارة الدخول للمائع الساخن. الهدف من تغيير الظروف التجريبية هو الحصول على اكبر قدر من النقاط التجريبية للحصول على معادلات تجريبية بأدق مايمكن بالاضافة الى معرفة مدى تأثير تغيير نلك الظروف.

تم زيادة انتقال الحرارة في داخل الانبوب الداخلي بمقدار 2.43 ضعف ماهو عليه في حالة استخدام انبوب املس بنفس رقم رينولدز وكان ذلك مصحوبا بازدياد معامل الاحتكاك بمقدار 4.75 اضعاف مقارنة اضعاف. اما في الجانب الخارجي للمبادل فقد تم زيادة انتقال الحرارة بمقدار 3.25 اضعاف مقارنة بالجانب الخارجي الاملس وكان ذلك مصحوباً بزيادة معامل الاحتكاك بمقدار 2.63 اضعاف.

تم الحصول على معادلات تجريبية جديدة لرقم نسلت ومعامل الاحتكال لجانبي المبادل الحراري وذلك كدوال لرقمي رينولدز وبرانتل بالاضافة للخواص الهندسية للمضافات والانابيب. كما تم تطبيق معايير تقييم الانجاز (PEC) الموضوعة من قبل وب وبيرجلز وذلك لتحديد الطريقة الاكثر فائدة.

شكر وتقدير

بعد شكر الباري عز وجل والثناء عليه، اود ان اتقدم بالشكر الجزيل الى استاذي الفاضل والمشرف على هذه الرسالة الاستاذ الدكتور قاسم جبار السليمان والذي لولا توجيهاته لما خرج هذا العمل بهذه الصورة البهية، كما أتقدم بوافر الشكر والامتنان للسيد عميد كلية الهندسة لما ابداه من دعم معنوي لي اثناء العمل التجريبي، وأشكر السيد رئيس قسم الهندسة الكيمياوية والسادة التدريسيين والكادر العامل في قسم الهندسة الكيمياوية.

ولا انسى ان أشكر جميع زملائي وزميلاتي في جامعة النهرين لما كان لهم من دور كبير في التخفيف من معاناة التعب والانتظار.

عباس نوار

تعزيز إنتقال الحرارة بإستخدام مسبباب شدة الإضطراب

رسالة مقدمة إلى كلية الهندسة فى جامعة النهرين وهي جزء من متطلبات نيل درجة ماجستير علوم فى الهندسة الكيمياوية

من قبل

عباس نوار زناد (بكالوريوس علوم في الهندسة الكيمياوية ، 1995)

1432هـ	ربيع الأول
2011 م	شباط