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 This thesis have two main objectives, namely: 
 

1- The first objective is to study the mathematical background of the 

differential quadrature method and its application to solve 

boundary value problems of the fourth order ordinary differential 

equations. 
 

2- The second objective is first about function approximation by G-

spline interpolation method. Secondly the numerical solution of 

two applications relating the vibration of a uniform beam problem 

which are represented by a boundary value problem of the fourth 

order ordinary differential equation and the vibration of a square 

thin plate given by a boundary value problem of the forth order 

partial differential equation, by using G-spline based differential 

quadrature method have been obtained.   



 
 

 

The Differential Quadrature Method (DQM) is a numerical method 

for evaluating derivatives of a sufficiently smooth function, proposed by 

Bellman and Casti [1]. The basic idea of DQM comes from Gauss 

Quadrature method, which can be considered as one of the most simple 

and accurate methods for calculating the integral numerically. Gauss 

Quadrature is characterized by approximating a definite integral with a 

weighting sum of integrand values at a group of so called Gauss points. 

Extension is made for finding the derivatives of various orders of a 

sufficiently smooth function give a rise to DQ in [1], [11]. In the other 

words, the derivatives of a smooth function are approximated with 

weighting sum of function values at a group of so called nodes [38]. 

The key procedure in the DQM lies in the determination of the 

weighting coefficients. Initially, Bellman and his associates proposed two 

methods to compute the weighting coefficients for the first order 

derivative. The first method is based on an ill-conditioned algebraic 

system of equations. The second method uses a simple algebraic 

formulation, but the coordinates of the grid points are fixed by the roots 

of the shifted Legendre polynomial [28]. In earlier applications of the 

DQM, Bellman's first method was usually used because it allows the case 

of an arbitrary grid point distribution. However, since the algebraic 

system of equations related to this method is ill-conditioned, the number 

of the grid points usually used will be less than 13; this drawback limits 

the application of the DQM [28].  

The DQM and its applications were rapidly developed after 

the late of 1980, ideas to the innovative work in the computation of the 

weighting coefficients by many authors see [13], [22], [25], [26] and [27]. 
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As a result, the DQM has emerged as a powerful numerical discretization 

tool for solving several problems in ordinary and partial differential 

equations in the past two decades. 

Applying boundary conditions is one of the major task in the DQM 

since a differential equation is underdetermined if boundary conditions 

are not provided. For a one-dimensional second order partial differential 

equation, for example, boundary conditions are required at both ends. For 

such cases, direct DQM can be applied without difficulty. What should be 

done is to let the function values or the first derivatives at both ends to 

equal the prescribed values; see [28]. Difficulty, however, arises in 

applying multi-boundary conditions, for example, to solve forth-order 

differential equations where two boundary conditions are presented at 

each end.  

Bert and his coworkers [5], [6] and [7], introduced a delta-point a 

part from the boundary point by a small distance as an additional 

boundary point and apply the other boundary condition at that point. It is 

found that, however, the solution accuracy may not be assured. Moreover, 

there are some difficulties in applying the multi-boundary conditions 

accurately at the corner points for two-dimensional problems, since 

singularity may arise. 

There are several approaches available in literatures for 

implementing multi-boundary conditions. Some DQ equations at the 

inner nodes are replaced by the additional boundary conditions. It is 

found that; however, the solution accuracy may vary depending on which 

DQ equations at inner grids are replaced by the boundary conditions. A 

complete different approach introduced by Wang and Bert [32] is that the 

boundary conditions are built during the formulation of the weighting 

coefficients for higher order derivatives. Later, Malik and Bert [16] tried 

to extend this idea to all boundary conditions. Wang et al. [33] and Wang 
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et al [34] proposed a method which is called the Differential Quadrature 

Element Method, or DQEM to applying the multi-boundary conditions 

the assigning two degrees of freedom to each end point for a fourth-order 

differential equation. Later Wu and his coworkers [36] and [37] proposed 

a Generalized Differential Quadrature Rule (GDQR) also introducing 

multiple degrees of freedom at the boundary points. All boundary 

conditions may be easily applied by the DQEM or GDQR and accurate 

solutions can be obtained. Actually, both methods are exactly the same 

for one-dimensional problems. 

Karami and Malekzadeh [12] proposed a method for applying the 

multi-boundary conditions, in the formulations of the weighting 

coefficients of third-order and fourth-order derivatives, the second 

derivatives at the boundary points are viewed as an additional 

independent variable. Wang and Bert [32] extended the method to all 

boundary conditions by use the first derivatives at the boundary points as 

an additional independent variable. Both methods introduces an 

additional degree of freedom at the boundary points, will computing the 

weighting coefficients of the first-order derivative by using explicit 

formula [25], [35]. 

  As compared to the conventional low order finite difference and 

finite element methods, the DQM can give very accurate numerical 

results using a considerably smaller number of grid points and hence 

requiring relatively little computational efforts. So far, the DQM has been 

efficiently employed in a variety of problems in engineering and physical 

science problems. A comprehensive review of the DQM has been given 

by Bert and Malik [4]. DQM may be formulated either through 

approximation theory or solving system of linear equations. 

In this thesis we will employ functions approximation theory using 

G-spline interpolation to formulate the DQM. Nearly 66 years ago, I.J. 
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Schoenberg [23] introduced the subject of ''spline function" since then 

splines, have proved to be enormously important in various branches of 

mathematics, such as approximation theory, numerical analysis, 

numerical treatment of ordinary, partial differential equations, integral 

equations statistics, etc. There are several types of spline functions 

appeared in literatures given by [10], [19] and Stephen [30]. Among these 

types of spline functions is the so called G-spline interpolation which is 

necessary to the work of this thesis. In 1968 Schoenberg [23] extended 

the idea of Hermite for splines to specify that the order of derivatives 

specified may vary from node to node. 

 Schoenberg used the term "G-spline" instead of generalized splines 

because the natural spline term "generalized spline" describes an 

extension in a different direction [17]. The G-spline is used to interpolate 

the Hermite Birkhoff-data (problem), the data in this problem are the 

values of the function and its derivatives but without Hermite's condition 

that the only consecutives be used at each node. Further, Schoenberge 

[23] define the G-spline function as a smooth piecewise polynomials, 

where the smoothness is governed by the incidence matrix, and then 

proved that G-splines, satisfies what is so called the "minimum norm 

property", which is used for the optimality of the G-spline function 

defined mathematically by the following inequality: 
( ) 2 ( ) 2[ ( )] [ ( )]m m

I I

f x dx S x dx>∫ ∫  

   This thesis consists of three Chapters: 

           In Chapter one, the mathematical background of differential 

quadrature method was given, which cover the following subjects: 

fundamental concepts of the approximation theory, differential quadrature 

method, direct differential quadrature method, differential quadrature 
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analysis of Beams, implementation of boundary conditions and finally a 

numerical example regarding free vibration analysis of a uniform beam. 

          In Chapter two which is entitled G-spline-based differential 

quadrature and its application to a uniform beam problem treat the 

following subjects: G-spline interpolation, the G-spline interpolation - 

based differential quadrature method, applying boundary conditions, 

illustrative example regarding free vibration analysis of a uniform beam 

using G-spline interpolation-based differential quadrature. 

         Finally the numerical solution of a thin plates using G-spline-based 

differential quadrature method which deals with the following concepts: 

differential quadrature analysis of thin plates, direct substitution of 

boundary conditions into discrete governing equation, and numerical 

example illustrating the numerical solution of free vibration analysis of 

square plates are given in chapter three. 

         Finally, it is remarkable that all calculations are performed using 

MATLAB computer package and the computer programs with the G-

spline fundamental functions are given in appendices A and B 

respectively.             
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Chapter One                           The Mathematical Background of Differential Quadrature Method 
  

1.1 Introduction  
In this chapter we shall present an introduction to the theory functions 

approximation and then following by the fundamentals of the differential 

quadrature method in order to make this thesis of self contained as soon as 

possible. 

Therefore this chapter will consists of five sections, in section 1.2, 

fundamental concepts of approximation theory was given. In section 1.3, the 

DQM will be presented while section 1.4 deals with the direct DQM. Finally, 

the application of DQM to vibration analysis of beams will be given in section 

1.5. 
   

1.2 Fundamental Concepts of Approximation Theory: 
Suppose C [a, b] is a set of all continuous functions defined on the 

interval [a, b]. Define a real valued function f ∈C [a, b] which has a form to 

be either complicated or hard to explicitly write. 

A general approximation is to use another simpler function ( )A f  to 

replace f , given that ( )A f  is very close to f . Approximation theory is about 

determining ( )A f  and how well it works as a replacement of f . To answer 

this question, we begin with the vector space. 
 

Definition (1.1),[ 31 ]:

A vector space (over ) is a set V with two operations "+" and "." 

satisfying the following properties for all u, v ∈V and c, d ∈ : 

(1) ( Additive Closure )  u + v ∈V.  

(2) ( Additive Commutativity ) u + v = v + u. 

(3) ( Additive Associativity ) (u + v) + w = u + (v + w).  

(4) ( Zero ) There is a special vector 0∈V such that u + 0 = u for all u in V.  

(5) ( Additive Inverse ) for every u ∈V there exists w ∈ V such that 

   u + w = 0. 

 1
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(6) ( Multiplicative Closure ) c . v ∈V.  

(7) ( Distributivity ) (c + d).v = c.v + d.v and c.( d + v ) = c.d + c.v. 

(8) ( Associativity ) (c . d).v = c. (d . v). 

(9) ( Unity ) 1 . v = v for all v ∈V. 
 

Definition (1.2), [31]:  

A normed linear space (denoted by V) is a vector space with the 

additional structure of a norm. 
 

Definition (1.3), [38]: 

The norm is a function ║║ form V to  , where  is the set of all 

real numbers, with the following properties, for each x, y∈  and each scalar 

α: 

1- ║x║ ≥ 0.                                                   

2- ║x║ = 0   if and only if   x = 0.          

3- ║ α x ║ ≤ │ α │║x║.          

4- ║x + y║ ≤ ║ x║+║ y║.          

Let V be a vector space, let 1 2, , , nφ φ φ be vectors in V, and   be 

scalars in R. The vector 

1 2, ,..., na a a

1 1 2 2 n na a aφ φ+ + + φ is called a linear combination of 

1 2, , , nφ φ φ  with combination coefficients .The vector 1 2, ,..., na a a

1 1 2 2 n na a aφ φ+ + + φ  is the zero vector if and only if are all zero. If 

all vectors in V can be written as linear combinations of 

1 2, ,..., na a a

1 2, , , nφ φ φ  then these 

vectors form a set called the span of 1 2, , , nφ φ φ , or in other words say that 

1 2, , , nφ φ φ span the vector space V. Linear independence and span are two 

key elements of the so-called basis. 
  

Example (1.1), (polynomial vector space), [38]: 

Let Πn be the set of polynomials of degree less than or equal to n in x  

with real coefficients. Then it is a vector space. The dimension is n+1. If 

 2
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np ∈Π ,then 0 1
n

np a a x a x= + + + . We claim that 1, , , nx x are the basis 

for Πn. To prove this, we need to show that, 1, , , nx x  

1- Are linearly independent. 

2- They span Πn

Property 2 is clear from the definition of Πn . property 1 is direct conclusion 

from the assumption that  are scalars satisfying the condition 

. 

0 1, , , na a a

0 1 0n
na a x a x+ + + =

The following concepts at least point out the possibility of how to 

construct an approximant based on linear combination. 
 

Theorem (1.1) (Best Approximation), [38 ]:  
 

Let V be a normed linear space with norm ║║, let 1 2, , , nφ φ φ be any 

linearly independent members of V. Let y be any member of V. Then there are 

coefficients  which solve the problem of minimizing 0 1, , , na a a

1

(1.1)
n

i i
i

y a φ
=

−∑
 

where is any member of V. y

A solution to the minimizing problem (1.1) is usually called " best 

approximant " to y from V. 

Now, a question may arise. How many solutions are there? The answer is 

connected with the convexity conditions. 
 

Definition(1.4), [38]:  
  Let V be a vector space. A subset S of V is convex if for any two members  

1 2,φ φ  of S the set of all members of the line segment  

1 2(1 ) ,φ λφ λ φ= + − 0 1λ≤ ≤ , also belongs to S. 
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Theorem (1.2) (Uniqueness), [38]  

Let V be  a  normed  linear  space with strictly convex norm. Then the 

best  approximations  problem  from  finite  dimensional  subspace  are unique. 

Approximation is transformed into another problem of searching for the basis 

which defines a normed linear space with strictly convex norm. Depending on 

the sense in which the approximation is realized, or depending on the norm 

definition (1.3), there are three types of approximation approaches: 

1- Interpolator approximation:  

    The parameters , for all ia 1,2,...,i n= are chosen so that on a fixed 

prescribed set of points , 1,2, ,kx k n= we have: 

   
1

( ) , 1,2,..., (1.2)
n

i i k k
i

a x y k nφ
=

= =∑

Sometimes, it is further required that for each i , the first  derivatives of 

the approximant agree with those of at 

ir

y kx . 

     2- Least-square approximation: are chosen so as to minimize:  ia

2

1 1 1

: ( ( )) (1.
n n n

i i k i i k
i k i

y a y a xφ φ
= = =

− = −∑ ∑ ∑ 3)   

3- Min-Max approximation: the parameters are chosen so as to minimize  ia

1 1

: max (1.4)
n n

i i i i
i i

y a y aφ φ
= =∞

− = −∑ ∑  

This thesis will depend on interpolation in the construction of differential 

quadrature.  
 

1.2.1 Interpolating Bases: 

The most employed bases in the theory of interpolation are polynomial basis 

which are to be detailed in the following. This is the approximants often used 

in DQM as well. 
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Chapter One                           The Mathematical Background of Differential Quadrature Method 
  

1.2.1.1 Polynomial Basis: 

Choosing i
i xφ = ,  we have polynomials as approximants. 

Weierstrass theorem guarantees that this is at least theoretically feasible 

choice. 

1,2,...,i∀ = N

 

Theorem (1.3) (Weierstrass Approximation Theorem), [38]:    

Let f be a continuous function on the interval [a, b]. Then for any ε > 0, there 

exist a positive integer n and a polynomial , such that:  np

   
[ , ]

max ( ) ( ) (1.5)nx a b
f x p x ε

∈
− <   

The proof of Weierstrass approximation theorem can be found in many text-

books such as  [3]. 

Weierstrass approximation theorem postulate the existence of some 

sequence of polynomials converging uniformly to a prescribed continuous 

function on bounded closed intervals. 

In practical applications if f represent the solution of a partial 

differential equation, then it can be approximated by a polynomial of degree 

less than n . The conventional form of this approximation is:  

   
1

0

( ) ( ) (1.6)
n

i
n i

i

f x p x a x
−

=

= =∑   

Where are constants. ia

For the numerical solution of PDE's, one must find out the functional 

values at a certain discrete points. Now it is supposed that in a closed interval 

[a,b] there are n mesh points with coordinates 1 2 1n na x x x x b−= < < < < = , 

and the functional value at each mesh point ix is ( ), for all 1,2,...,if x i = n . 

The coefficients of the approximated polynomial (1.6) may be determined 

from the following system of equations  

 5
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2 1
0 1 1 2 1 1 1 1

2 1
0 1 2 2 2 1 2 2

2 1
0 1 2 1

( )

( )
(1.7)

( )

n
n

n
n

n
n n n n n

a a x a x a x f x

a a x a x a x f x

a a x a x a x f x

−
−

−
−

−
−

⎫+ + + + =
⎪

+ + + + = ⎪
⎬
⎪
⎪+ + + + = ⎭

The matrix equation (1.7) is of Vandermonde form, which is not singular. 

Thus equation (1.7) can give a unique solution . Once the 

constants are determined, the approximated polynomial is obtained. One the 

other hand, when n is large, the matrix is highly ill-conditioned and it 

inversion is very difficult. Then for this case, it is difficult to determine the 

constants  from systeam (1.7). The difficulty of determining the 

approximated polynomial in equation (1.6) can be removed by using Lagrange 

interpolation polynomial [28]. 

0 1 1, , , na a a −

0 1 1, , , na a a −

 

1.2.1.2 Lagrange Interpolation Polynomials, [38]: 

However, polynomial approximants are not efficient in some cases, 

since oscillation may occurs sense. Taking Lagrange interpolation for instance 

if 1 2, , , nx x x are n distinct points at which the values of the function f are 

given, then the interpolating polynomial p of degree n , where  is found 

from the Lagrange interpolation formula:  

n N∈

    
1

( ) ( ) ( ) (1.8)
n

k k
k

p x f x xϕ
=

=∑

Where 

  
1

( ) (1.9)
n

i
k

i k i
j k

x xx
x x

ϕ
=
≠

−
=

−∏  

The error in the approximation is given by  

  
( )

1

[ ( )]( ) ( ) ( ) (1.10)
!

n n

i
i

f xp x f x x x
n
ξ

=

− = −∏    
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Where ( )xξ  is in the smallest interval containing 1 2, ,..., nx x x . Introducing 

the Lebesque function of the following form of  

  
1

( ) ( ) (1.11)
n

n k
k

x xτ ϕ
=

=∑   

 and a norm 

  max ( ) (1.12)
a x b

f f x
≤ ≤

=  

Then we have  

  (1.13)np fτ≤  

This estimate is known to be sharp, that is, there exist a function for which the 

equality holds. 

First of all, it should be pointed out that equally spaced points may 

leads to bad consequences because it can shown that 
/2 (1.14)n

n Ceτ ≥  

As n increases, the function value becomes large and larger, and entirely fails 

to approximate the function .f  In other words, polynomial interpolation can 

be so bad that it does not yield the correct approximation at all. This situation 

can be avoided if we have the freedom to choose the interpolation points for 

the interval [a, b]. 

Chebyshev nodes in the following are known to be a good choice  

  1 ( 1)( )cos , 1 (1.15)
2 1k

kx a b a b n
n

π−⎡ ⎤= + + − ≠⎢ ⎥−⎣ ⎦
 

The maximum value for the associated Lebesque function in this case is  

  2 log 4 (1.16)c
n nτ

π
< +  

Using Chebyshev nodes, we obtain the following error bounds for polynomial 

interpolation  

  
( ) ( )

2 max (1
4 !

nn
n

a x b

fb af p
n
ξ

≤ ≤

−⎛ ⎞− ≤ ⎜ ⎟
⎝ ⎠

.17)  
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1.3 Differential Quadrature Method: 
As it is known from the theory of numerical analysis, Gauss quadrature is 

a numerical integration method. Its basic idea is to approximate a definite 

integral with a weighted sum of integrand values at a group of nodes in the form: 

1

( ) ( ) (1.18)
Nb

j ja
j

f x dx w f x
=

≈∑∫  

Where jx , 1,2,..., ,j N=  are nodes and jw are weighting coefficients. They 

are determined by solving a system of linear equations. Extending Gauss 

quadrature to find the derivatives of various orders of a differentiable function 

gives rise to DQM. In other words, the derivatives of a function are 

approximated by weighted sums of the function values at a group of nodes. 

Suppose function f is sufficiently smooth on the interval 1[ , ]nx x . On that 

interval, distinct nodes are defined:      N

         1 2 (1.19)Nx x x< < <

The function values on these nodes are assumed to be    

   1 2, , , (1.20)Nf f f  

Based on DQ, the first and second order derivatives on each of these 

nodes are given by 

1

( ) , 1,2,..., (1.21)
N

i
ij j

j

df x a f i N
dx =

≈ =∑  

2

2
1

( ) , 1,2,..., (1.22)
N

i
ij j

j

d f x b f i N
dx =

≈ =∑  

The coefficients and are the weighting coefficients (or simply weights) 

of the first and second order derivatives with respect to 

ija ijb

x , respectively. 
 

1.3.1 Computation of the Weighting Coefficients for the First Order 

Derivative: 

Consider a one-dimensional problem over a closed interval [a, b]. It is  

 8
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supposed that there are grid points with coordinates as 

.  

N

1 2 Na x x x b= < < < =

Assumed that a function f  is sufficiently smooth over the interval [a, b] so 

that its first order derivative ( )f x′  at any grid point can be approximated by 

the following formulation 

   
1

( ) ( ) , 1,2, , (1.23)
N

i ij j
j

f x a f x for i N
=

′ = =∑  

Where ( )jf x  represents the function value at a grid point , ( )j ix f x′  

indicates the first order derivative of f  at ix , and  are the weighting 

coefficients of the first order derivative. The determination of weighting 

coefficients  in eq. (1.23) is a key procedure in the DQ approximation. 

One the weighting coefficients are determined, the bridge to link the 

derivatives in the governing differential equation and the functional values at 

the mesh points is established. In other words, with the weighting coefficients, 

one can easily use the functional value to compute the derivatives. In the 

following, we shall show that the weighting coefficients can be efficiently 

computed by employing some explicit formulations.  

ija

'ija s

 

1.3.1.1 Bellman's Approaches, [22]:  

Bellman's and et al. [2] proposed two approaches to compute the 

weighting coefficients in eq. (1.23). The two approaches are based on the 

use of two different test functions. 

ija

Bellman's first approach: In this approach, the test functions are chosen as  

    ( ) , 0,1, , 1 (1.24)k
kg x x k N= = −

Obviously, eq. (1.24) gives test functions. For the weighting coefficients 

in eq. (1.23),  and 

N

ija i j  are taken from 1 to . Thus, the total number of 

weighting coefficients is . To obtain these weighting coefficients, the  

test functions should be applied at  grid points 

N

N N× N

N 1 2, , Nx x x using eq.(1.23) 
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As a consequence, the following N N×  algebraic equations for  are 

obtained.  

ija

    

1

1

1

1

0

1
(1.25)

, 2,3,..., 1

1,2,...,

N

ij
j

N

ij j
j

N
k k

ij j i
j

a

a x

a x k x k N

for i N

=

=

−

=

⎫= ⎪
⎪
⎪

⋅ = ⎪
⎬
⎪
⎪⋅ = ⋅ = −
⎪
⎪= ⎭

∑

∑

∑

System (1.25) has a unique solution because its matrix is of  Vandermond 

form. Unfortunately, and as it is said previously when  is large, the matrix 

is ill-conditioned and its inversion is very difficult. In the practical application 

of this approach, N is usually chosen to be small. 

N

Bellman's second approach: This approach is similar to the first approach, 

but with different test functions 

( )( ) , 1,2,..., (1.26)
( ) ( )

N
k

k N k

L xg x k N
x x L x

= =
′−

 

Where  ( )NL x  is the Legendre polynomial of degree N  and ( )N kL x′  is the 

first order derivative of  ( )NL x . By choosing kx to be the roots of the shifted 

Legendre polynomial and applying eq. (1.26) at grid points N 1 2, ,..., Nx x x , 

Bellman et al. gives a simple algebraic formulation to compute as follows: ija

( ) ,
( ) ( )

(1.27)
1 2 ,

2 ( 1)

N i

i j N j

ij

i

i i

L x for j i
x x L x

a
x for j i

x x

′⎧
≠⎪ ′−⎪⎪= ⎨

⎪ −⎪ =
−⎪⎩

 

        Using eq. (1.27), the computation of the weighting coefficients is a 

simple task. However, this approach is not flexible as the first approach 
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because the coordinates of the grid points in this approach cannot be chosen 

arbitrarily. Instead, they should be chosen as the roots of the Legendre 

polynomial of degree N. So, eq. (1.27) only reflects a special case. Due to the 

inflexibility associated with the second approach in selecting the grid points, 

the first approach is usually adopted in practical applications 
 

1.3.1.2 Quan and Chang's Approach, [22]: 
To improve Bellman's approaches, many attempts have been made by 

researchers. One of the most useful approaches is the one introduced by Quan 

and Chang [20] and [21]. Quan and Chang used the following Lagrange 

interpolation polynomial as the test functions, 

  ( )( ) , 1,2, , (1.28)
( ) ( )k

k k

M xg x k N
x x M x

= =
′−

 

Where  
  

1 2( ) ( )( ) ( ) (1.29)NM x x x x x x x= − − −   
 

1

( ) ( ) (1.30)
N

i i k
k
k i

M x x x
=
≠

′ = −∏  

Subsequently, by applying eq. (1.28) at  grid points, they obtained the 

following algebraic formulations to compute the weighting coefficients , 

N

ija

1

1,

1 ,

(1.31)
1 ,

N
i k

kj i j k
k i

ij
N

k k i i k

x x for j i
x x x x

a

for j i
x x

=
≠

= ≠

⎧ −
≠⎪ − −⎪

⎪
= ⎨
⎪
⎪ =

−⎪
⎩

∏

∑

 

When eq. (1.31) is used, there is no restriction on the choice of the grid points. 
 

 

 

1.3.1.3 Shu's General Approach, [28]: 

 11



Chapter One                           The Mathematical Background of Differential Quadrature Method 
  

This approach was inspired from Bellman's approaches. It covers all 

the above approaches, including Quan and Chang's approach. Starting from 

Bellman's two approaches, Shu raised two questions. The first one is why we 

can use two approaches to compute the weighting coefficients. The second is 

whether these two approaches give the same weighting coefficients. It was 

found that these questions many be answered by polynomial approximation 

and linear vector apace analysis.  

As it was shown in section 1.2 that the solution of a PDE can be 

accurately approximated by a polynomial of high degree. Now, we suppose 

that the degree of the approximated polynomial is 1N − . The approximated 

polynomial constitutes an N − dimensional linear vector space with the 

operation of vector addition and scalar multiplication, and can be expressed in 

different forms. One popular form is  

NV

  1

1

( ) (1.32)
N

k
k

k

f x c x −

=

=∑    

Where is a constant. There exist many sets of base vectors in the linear 

vector space . So, the base vectors are also called the base polynomials. 

Four typical sets of the base polynomials are listed as follows, 

kc

NV

  

1

1 1 1

( ) , 1,2, , (1.33 )
( )( ) , 1,2, , (1.33 )

( ) ( )
( )( ) , 1,2, , (1.33 )

( ) ( )
( ) 1, ( ) ( ) ( ), 2,3, , (1.33 )

k
k

N
k

k N k

k
k k

k k k

r x x k N a
L xr x k N b

x x L x
M xr x k N c

x x M x
r x r x x x r x k N d

−

− −

= =

= =
′−

= =
′−

= = − =

 

 

Where ( )NL x  is the Legendre polynomial of degree  and N ( )M x  is defined 

in eq. (1.29). Among the four sets of base polynomial, eq. (1.33b) and (1.33c) 

are from the Lagrange interpolation polynomials while eq. (1.33d) is from the 
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Newton interpolation polynomials. eq. (1.33b) is a special case of equation 

(1.33c) since it is only valid at the Legendre collocation points. 

It  can  be  seen  that eq. (1.33a)  is  the  same  as  the test functions of  

Bellman's first approach while Equation (1.33b) is the same as the test 

functions of Bellman's second approach. In other words, the test functions of 

Bellman's two approaches are actually two sets of base polynomials in . 

Note that eq. (1.23) are a linear operators. Then from the properties of a linear 

vector space, it is know that if one set of base polynomials satisfies a linear 

operator such as eq. (1.23), so do other sets of base polynomials, this means 

that every set of base polynomials would give the same weighting 

coefficients. Hence, the weighting coefficients do not depend on the choice of 

the test functions. 

NV

On the other hand, on may notice that the difference in Bellman's two 

approaches only lies in the use of different test functions. The test functions 

are equivalent to the base polynomials. Thus, the use of different sets of base 

polynomials will result in different approaches to compute the weighting 

coefficients. Since there are many sets of base polynomials in the linear vector 

space , we have many approaches to compute the weighting coefficients. NV

When the set of base polynomials is given by eq. (1.33a), we can 

obtain the same Equation system (1.25) as given by Bellman's first approach, 

and when the set of base polynomials is obtained from eq. (1.33b), we can get 

the same algebraic formulation (1.27) as given by Bellman's second approach. 

Here, for generality, we use two sets of base polynomials. The Lagrange 

interpolation polynomials (1.33c) are taken as the first set of base 

polynomials. For simplicity, we get  

   ( ) ( , )( ), 1,2, , (1.34)k kM x N x x x x k N= − =

With (1)( , ) ( )i j i ijN x x M x ,δ= where ijδ is the Kronecker delta function. 

Using eq. (1.34), then eq. (1.33c) can be  simplified to  
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  ( , )( ) , 1,2, , (1.35)
( )

k
k

k

N x xr x k N
M x

= =
′

 

Substituting eq. (1.35) into eq. (1.23) gives  

  
( , )

(1.36)
( )
i j

ij
j

N x x
a

M x
′

=
′

 

In eq. (1.36), ( )jM x′ can be easily computed from eq. (1.30). To evaluate 

, we differentiate successively eq. (1.34) with respect to ( ,i jN x x′ ) x and 

obtain the following recurrence formulation will be obtained  
( ) ( ) ( 1)( ) ( , )( ) ( , ) (1.37)m m m

k k kM x N x x x x mN x x−= − +  

 for all  = 1, 2, …,  ;   = 1, 2, …,  m 1N − k N

where ( ) ( )mM x  and  indicate the m( ) ( , )m
kN x x − th order derivative of 

( )M x  and .  can be obtained as follows: ( , )kN x x (1) ( , )i jN x x

From eq.(1.37) and one can get: 1m =

  ( ) ( , )( ) ( , )j j jM x N x x x x N x x′ ′= − +  

  ( ) ( , )( ) ( , )i i j i j i jM x N x x x x N x x′ ′= − +   

( ) ( , )( ) ( )i i j i j iM x N x x x x M x ijδ′ ′ ′= − +  

If  then i j≠

 ( ) ( , )( )i i j i jM x N x x x x′ ′= −  

Hence 

 ( )( , ) (1.38
( )

i
i j

j

M xN x x
x x
′

′ =
−

)  

And in order to evaluate ( , )i iN x x′ can be evaluate ( )M x′′  from eq.(1.37), 

for 2M =  as follows: 

 ( ) ( , )( ) 2 ( , )i i iM x N x x x x N x x′′ ′′ ′= − +  

 ( ) 2 ( , )i i iM x N x x′′ ′=  

Therefore we get  
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 ( )( , ) (1.39)
2

i
i i

M xN x x
′′

′ =  

finally by combining eqs. (1.38) and (1.39) together we have 

( ) ,

( , ) (1.40)
( ) ,
2

i

i j

i j

i

M x for i j
x x

N x x
M x for i j

′⎧ ≠⎪ −⎪⎪′ = ⎨
⎪ ′′
⎪ =
⎪⎩

 

Substituting eq. (1.40) into eq. (1.36), we obtain 

  

( ) ,
( ) ( )

(1.41)
( ) ,

2 ( )

i

i j j

ij

i

i

M x for i j
x x M x

a
M x for i j
M x

′⎧ ≠⎪ ′− ⋅⎪⎪= ⎨
⎪ ′′
⎪ =

′⎪⎩

 

It is observed from eq. (1.41) that, if ix is given, it is easy to compute 

( )iM x′ from eq. (1.30), and hence for ija i j≠ . However, the calculation of 

is based on the computation of the second order derivative iia ( )iM x′′  which 

is not an easy task. This difficulty can be eliminated by using the second set of 

base polynomials. According to the property of a linear vector space if one set 

of base polynomials vanishes a linear operator, say eq. (1.23), so does another 

set of base polynomials. As a consequence, the equation system for the 

determination of derived from the interpolation polynomials eq. (1.33c) 

should be equivalent to that derived from another set of base polynomials 

ija

1 , 1,2,...,kx k− = N (eq. (1.33a)). Thus satisfies the following equation 

which is obtained by the base polynomial 

ija

1kx −  when 1k =  

1 1,

0 (1.42)
N N

ij ii ij
j j j i

a or a a
= = ≠

= = −∑ ∑  
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eq. (1.41) and (1.42) are two formulations to compute the weighting 

coefficients . It is noted that in the development of these two formulations, 

the two sets of base polynomials were used in the linear polynomial vector 

space . 

ija

NV
 

1.3.2 Computation of the Weighting Coefficients for the Higher Order  

          Derivatives: 
 

1.3.2.1 Quan and Chang's [22]: 

Similarly, to derive formulas for higher order derivatives by using the 

higher order weighting coefficients, which are expressed as to avoid 

confusion. They are characterized by recurrence formula: 

( )m
ije

( 1)
( 1)

( )

( )

1

, , 1,2,..., , , 2,3,..., 1

(1.43)

, , 1,2,..., , , 2,3,..., 1

m
ijm

ij ii
j i

m
ij

N
m

ij
j
j i

e
m a e i j N i j m N

x x

e

e i j N i j m N

−
−

=
≠

⎧ ⎛ ⎞
⎪ − = ≠ = −⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠
⎪

= ⎨
⎪
⎪− = = =
⎪
⎩
∑ −

 

Here, it is assume that ij ija e ′= and ij ijb e ′′= which are the weighting 

coefficients of the first and second order derivatives with respect to x  

respectively. 
 

  1.3.2.2 Shu's Recurrence Formulation [28]: 

For the discretizeation of higher derivatives, the following two linear   

operators are applied 

 ( 1) ( 1)

1

( ) ( ) (1.44
N

m m
i ij j

j

)f x w f x− −

=

=∑  

( ) ( )

1

( ) ( ) (1.45)
N

m m
i ij j

j

f x w f x
=

=∑
 for all 1,2,..., ; 2,3,..., 1i N m N= = −  
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Where ( 1) ( )( ) , ( )m m
i if x f x−  indicate the ( 1)m th− −  and order 

derivatives of 

m th−

( )f x  evaluated to are the weighting 

coefficients related to 

( 1) ( ), andm
i ij ijx w w− m

( 1) ( )m
if x−  and ( ) ( )m

if x respectively. Two sets of base 

polynomials will also be used to derive the explicit formulations for . 

The first set of base polynomial is given by eq. (1.35). Substituting eq. (1.35) 

into eq. (1.44) and (1.45) gives  

( )m
ijw

      
( 1)

( 1) ( , )
(1.46)

( )

m
i jm

ij
j

N x x
w

M x

−
− =

′
 

       
( )

( ) ( , )
(1.47)

( )

m
i jm

ij
j

N x x
w

M x
=

′
 

By rewriting eq. (1.46), we obtain 

       ( 1) ( 1)( , ) ( ) (1.48)m m
i j ij jN x x w M x− − ′=

Eq. (1.48) is valid for any i and j . On the other hand, from the recurrence 

formulation (1.37), we have 
( )

( 1)

( ) ( 1)
( )

( 1)
( )

( )( , ) (1.49)

( ) ( , )
( , ) , (1.50)

( )( , ) (1.51)
1

m
m i

i i

m m
i i jm

i j
i j

m
m i

i i

M xN x x
m

M x mN x x
N x x for i j

x x

M xN x x
m

−

−

+

=

−
= ≠

−

=
+

 

Substituting eq. (1.49) into eq. (1.50) leads to  
( 1) ( 1)

( ) [ ( , ) ( , )]
( , ) ,

(1.52)

m m
i i i jm

i j
i j

m N x x N x x
N x x for i j

x x

− −−
= ≠

−  

 Eq. (1.52) can be further simplified using eq. (1.48), 
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( 1) (1) ( 1) (1)
( ) [ ( ) ( )]

( , ) ,

(1.53)

m m
ii i ij jm

i j
i j

m w M x w M x
N x x for i j

x x

− −−
= ≠

−  

Substituting eq.(1.53) into eq. (1.47), and using eq. (1.41), a recurrence 

formulation is obtained as follows 

 
( 1)

( ) ( 1) (1.54)
m

ijm m
ij ij ii

i j

w
w m a w

x x

−
−

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

, 1,2,..., ; 2,3,..., 1for i j N m N= = − . 

Where is the weighting coefficient of the first order derivative described 

above. The formulation for can be obtained by substituting eq. (1.51) 

into eq. (1.47), which gives:  

ija

( )m
iiw

 
( 1)

( ) ( ) (1.55)
( 1) ( )

m
m i

ii
i

M xw
m M x

+

=
′+ ⋅

   

, 1,2,..., ; 2,3,..., 1for i j N m N= = − . 

Obviously, eq. (1.54) offers an easy way to compute the weighting 

coefficients  for . However, it is very difficult to apply eq. (1.55) to 

compute the weighting coefficients . Again, this difficulty can be 

overcome by the properties of a linear vector space. In terms of the analysis of 

the Lagrange interpolation polynomial should be equivalent to that derived 

from the base polynomial 

( )m
ijw i j≠

( )m
iiw

1 , 1,2,...,kx k N− = .Thus  should satisfy the 

following equation obtained from the base polynomial 

( )m
ijw

1kx −  when  1k =

            ( ) ( ) ( )

1 1,

0 (1.56)
N N

m m m
ij ii ij

j j j i

w or w w
= = ≠

= = −∑ ∑

From this formulation, can be determined from ( )m
iiw ( ) ( )m

ijw i j≠  
 

1.4 Direct Differential Quadrature Method: 
Solving differential equations (ordinary and partial) is one of the most  
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important ways for engineers, physicists and applied mathematicians which 

are used to tackle a practical problem. Although, typical analytical techniques 

of which is separation of variable, their applications are restricted to over-

simplified problems. Numerical methods, the most famous of which is the 

Finite Element Method (FEM), are widely applied today to solve more 

practical and complicated problems [38]. 

Since the FEM is a low-order numerical tool. This demands an 

extensive study of high-order numerical methods. Direct DQM is such a 

technique, which also provides a cost-effective tool for solving many 

nonlinear partial differential equations. In the following, however, a linear 

example is used to illustrate the direct DQM. 

The key procedure in the direct DQM is to approximate the derivatives 

in a differential equation by Equation. 
2

2
1 1

( ) ( )( ) ( ), ( ) ( ), (1.57)
N N

k k k k
k k

df x d f xa x f x and b x f x
dx dx= =

≈ ≈∑ ∑  

Substituting eq. (1.57) into the governing equations and equating both sides of 

the governing equations, we obtain simultaneous equations which can be 

solved by use of Gauss elimination method or other methods. We will 

elaborate this point through the following example. 
 

Example 1.1( Bending of Euler Beam) [38]: 

     A uniform Euler beam under pure bending shown in Fig. (1.1) 

 

 
 

 
 
 
 

Figure (1.1):  Euler beam under uniform loading. 
 

 Governed by the following fourth-order Euler-beam equation: 
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4

4 ( ) 0, 0 (1.68)d wEI f x x L
dx

+ = < <  

where EI  is the flexural rigidity of the beam, f  the external distributed load, 

and the length of the beam. Eq. (1.68) may be further transformed to a 

dimensionless form for the convenience of calculation. With non-

dimensionalisation procedures neglected, we obtain 

L

4

4 ( ) 0, 0 1 (1.69)d W F x X
dX

+ = < <  

Where , ,/X x L= /W w a= 0 /a f L EI= , 0( ) ( ) /F x f x f= , 0f  is a 

constant for non-dimensionalisation. As shown in Fig. (1.1) the beam is 

clamped at the left end and simply supported at the right end. The boundary 

conditions are then: 

2

2

0 0 (1.7

1.7

0 )

0 1 ( 0 )

dWW at X a
dX
d WW at X b
dX

= = =

= = =
 

The exact solution is then given by 2 21( ) (5 2 3).
48

W X X X X= − − Divide 

the beam domain  into 0 1X≤ ≤ 21N =  nodes distributed in the  following 

form:  

1 1
1 11 cos ( ), 1,2,..., (1.71)
2 1i N

ix x x x i N
N

π−⎛ ⎞= + − − =⎜ ⎟−⎝ ⎠
 

Writing the deflection 
4

4

d W
dx

in the form of eq. (1.43). and substituting the 

result in eq. (1.69) we obtain yields to 

(4)

1

( ) 1,2,..., (1.72)
N

ij j i
j

e W F x for i N
=

=− =∑  

where are the weighting coefficients of the fourth order derivative.  (4)
ije
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Inserting eq. (1.21) and (1.22) into eq. (1.70) we obtain the boundary 

conditions in the discrete form of 

                                  
1 1

1

,
1

0, 0 (1.73 )

1, 0 (1.73 )

N

j j
j

N

N N j j
j

W e W

W e W

=

=

′= =

′′= =

∑

∑

a

b

Consider a uniform load with the value 0( )f x f= . Then . The  ( ) 1F X =

deflections of the beam at the nodes is then governed by the system of linear 

equations 
2

3

1 3,4,..., 2 (1.74)
N

ij j
j

C W for i N
−

=

= − = −∑  

Where 
(4) (4)
,2 1, , 1 1, 1 , , 1 1,2 , 1, ,2(4)

,
,2 1, 1 1,2 , 1

( ) (

(1.75)

i j N N N N j i N N j j N
ij i j

N N N N

e a b a b e a b a b
C e

b a a b
− − −

− −

− + −
= +

−
)

  

Solving eq. (1.75)(see program 1 Appendix A) we get the numerical result of 

the problem which are listed in table (1.1). 
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Table (1.1) 

 Deflection of a beam under uniformly distributed Load 

X W( Exact) W(DQ,N=21) Error (%) 

0 0.0 0.0 0.0 

0.00616 -2.3441×10-6 -2.3441×10-6 -3.4562×10-11

0.02447 -3.5917×10-5 -3.5917×10-5 -3.3525×10-11

0.0545 -1.6912×10-4 -1.6912×10-4 -3.2854×10-11

0.09549 -4.8267×10-4 -4.8267×10-3 -3.3289×10-11

0.14645 -1.0324×10-3 -1.0324×10-3 -3.4340×10-11

0.20611 -1.8181×10-3 -1.8181×10-3 -3.5790×10-11

0.273 -2.7701×10-3 -2.7701×10-3 -3.7369×10-11

0.34549 -3.7581×10-3 -3.7581×10-3 -3.9038×10-11

0.42178 -4.6212×10-3 -4.6212×10-3 -4.1047×10-11

0.5 -5.2083×10-3 -5.2083×10-3 -4.3898×10-11

0.57822 -5.4161×10-3 -5.4161×10-3 -4.7370×10-11

0.65451 -5.2139×10-3 -5.2139×10-3 -5.0954×10-11

0.727 -4.6473×10-3 -4.6473×10-3 -5.4255×10-11

0.79389 -3.8218×10-3 -3.8218×10-3   -5.7485×10-11

0.85355 -2.8738×10-3 -2.8738×10-3 -5.9442×10-11

0.90451 -1.9384×10-3 -1.9384×10-3 -6.0730×10-11

0.97553 -5.0892×10-4 -5.0892×10-4 -4.7869×10-11

1 0.0 0.0 0 

 

1.5 Application of DQM to Vibration Analysis of Beams  

The vibration of a uniform beam is governed by a fourth-order 

differential equation. When a numerical method is applied to descretize the 

spatial derivatives. The ordinary differential equation can be reduced to a set 

of algebraic equations. 
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The eigenvalue of the resultant algebraic equation system provide the  

vibrational frequencies of the problem .Usually, the number of interior grid 

points is equal to the dimension of the resultant system algebraic equation, 

thus providing the same number of eigenfrequencies. 

Among all the computed eigenfrequencies, only low frequencies are 

of practical interest [28]. 
 

1.5.1 Governing Equations and Boundary Conditions, [28]:  

For a beam, three problems are often encountered, i.e., the bending, 

vibration and column buckling analysis. For a Bernoulli-Euler beam of 

varying cross-section with length L, the non-dimensional governing 

equations, for the bending analysis, and for the vibration analysis, and for 

the vibration analysis, respectively, are  
4 3 2 2 4

4 3 2 2
0

( ) ( ) ( )( ) 2 0

(1.76)

d W d s X d W d s X d W L q xs X
dX dX dX dX dX EI

+ + + =
 

4 3 2 2
2

4 3 2 2

( ) ( )( ) 2 0

(1.77)

d W d s X d W d s X d Ws X W
dX dX dX dX dX

+ + −Ω =  

4 3 2 2 2 2

4 3 2 2 2
0

( ) ( )( ) 2 0

(1.78)

d W d s X d W d s X d W PL d Ws X
dX dX dX dX dX EI dX

+ + + =
 

where 2
0( ) / ,s X EI EI= Ω = 2

0/ ,EIω  / ,X x L=  EI  is the beam's flexural 

rigidity, Aρ is the mass per unit length,  is the external distributed 

load. 

( )q x

ω  is the dimensional frequency, is the axial compressive load for a 

beam of varying cross-section.

P

EI and A  are functions of the coordinate x . 

The governing equation for a beam is a 4 th− order ordinary differential 

equation. For a well-posed problem. It requires four boundary conditions. 

These can be obtained by specifying two boundary conditions at the end 
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0X = , and another two boundary conditions at the end  . Basically, 

there are three types of boundary conditions. For vibration analysis, these 

boundary conditions are given as 

1X =

Simply supported end (SS) 

 
2

2W=0 and 0 (1.79)d W
dx

=  

Clamped end (C) 

 W=0 and 0 (1.80)dW
dx

=  

Free end (F) 

 
2 3

2 30 and 0 (1.81)d W d W
dX dX

= =  

 

1.5.2 Numerical Discretization 

 For the numerical computation, the continuous solution is approximated by 

the functional values at discrete points. Now, we assume that the 

computational domain 0  is divided into 1X≤ ≤ ( 1)N −  intervals with 

coordinates of the grid points given as 1 2, ,..., NX X X . Although a uniform 

mesh can be used for the analysis, it is recommended that a non-uniform 

mesh be used. Here, we adopt the mesh point distribution used by Shu [Shu, 

1991], 

1 11 cos , 1,2,..., , 1 (1.82)
2 1i

iX i N N
N

π⎡ − ⎤⎛ ⎞= − ⋅ = ≠⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
 

With the coordinates of mesh points given by (1.82), the PDQ weighting 

coefficients can be easily computed. These weighting coefficients can then 

be used to discretize eqs. (1.76) and (1.78). Using the DQM, where eq. 

(1.76) can be discretized as: 
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4
(4)

1 1 1 0

( ) 2 ( ) ( ) ( )

(1.83)

N N N

i ik k i ik k i ik k i
k k k

Ls X c W s X c W s X c W q X
EI= = =

′′ ′′ ′ ′′′+ + = −∑ ∑ ∑  

Similarly, eq. (1.77) is discretized as  

   
(4) 2

1 1 1
( ) 2 ( ) ( )

(1.84)

N N N

i ik k i ik k i ik k i
k k k

s X c W s X c W s X c W W
= = =

′′ ′′ ′ ′′′+ + = Ω∑ ∑ ∑

and eq. (1.78) is discretized by: 
4

(4)

1 1 1 10

( ) 2 ( ) ( )

(1.85)

N N N N

i ik k i ik k i ik k ik k
k k k k

PLs X c W s X c W s X c W c W
EI= = = =

′′ ′′ ′ ′′′ ′′+ + = −∑ ∑ ∑ ∑  

Where , , is the functional value at the grid point iW 1,2,...,i = N , ( )i iX s X′′  

and ( i )s X′  are respectively the second and first derivatives of ( )s X at iX , 

 are the DQ weighting coefficients of the  order 

derivative. With proper implementation of the boundary conditions, eq. (1.83) 

can be written in matrix form as 

( ) , 2,3,n
ikc n = 4

)

n th−

  [ ]{ } { } (1.86dA W b=  

Where [ d ]A  is a matrix, {  is a vector of unknowns and { is a known 

vector. The algebraic system (1.86) can be solved using the direct methods 

such as the 

}W }b

LU decomposition, or iterative methods such as the SOR 

approach. In a similar manner, eq. (1.84) can be written as  

  [ ]{ } { }2 (1.87)vA W W= Ω   

and eq.(1.85) can be put into 

  [ ]{ } [ ]{ }
2

0

(1.88)b
PLA W B W
EI

=  

where [ ] [,v b ]A A and [ ]B  are matrices, eqs. (1.87) and (1.88) are eigenvalue 

systems. The frequency of a free vibration problem can be obtained from the 

eigenvalues of eq. (1.87). the eigenvalues of eqs. (1.87) and (1.88) can be 
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calculated using QR algorithm. 
 

1.5.3 Implementation of Boundary Conditions: 

To solve fourth-order differential equations where two boundary 

conditions are present at each end.We need to know how to implement such 

boundary conditions. To properly implement these two boundary conditions, 

three approaches, namely, the δ − technique, the modified weighting 

coefficient matrix approach and the approach of directly substituting the 

boundary conditions into the discrete governing equations will be introduced. 
 

1.5.3.1 The δ − technique: 

The δ − technique was proposed by Jang, Bert and Striz [8] to 

eliminate the difficulties in implementing two conditions at a single boundary 

point. It applies the Dirichlet condition ( 0W = ) at the boundary point itself 

and the derivative condition at its adjacent point which is at a distance δ  from 

the boundary point. 

 

  

 
Figure (1.2) Illustration of δ -points for a beam problem. 

 

As shown in Figure (1.2), the δ -points are actually the grid points 2X δ=  

and 1 1NX δ− = − . As an example, when the simply supported condition is 

specified at the two ends, the derivative condition 2 2/ 0W X∂ ∂ =  is 

discretized at the mesh points 2X  and 1NX − , which gives 

2,
1

0 (1.89 )
N

k k
k

c W a
=

′′ =∑  

1,
1

0 (1.89 )
N

N k k
k

c W b−
=

′′ =∑  

Clearly, the derivative condition is not accurately approximated by the  
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δ − technique. There are two major drawbacks to the δ − technique. One 

drawback arises from the implementation of the derivative condition at the 

δ −point. Since it is an approximation to the true boundary condition that 

should be implemented at the boundary one can expect that the numerical 

results may depend on the choice of the δ −value. To obtain an accurate 

numerical solution the values of δ  should be chosen to be very small 

(possibly not greater than 0.0001). However, this small value of δ  would 

result in the second drawback of this technique. When one mesh spacing (δ ) 

is much smaller than the others, the DQ weighting coefficient matrices may 

become highly ill-conditioned, which when causes the solution to oscillate. 

As a result, the numerical solution is less accurate. 
 

1.5.3.2 Modification of the Weighting Coefficient Matrices:  

The technique was presented by Wang and Bert [32] to overcome the 

drawbacks of the δ −  technique. For this approach, only one boundary 

condition is numerically implemented. The other boundary condition 

(derivative condition) is built into the DQ weighting coefficient matrices. To 

demonstrate this approach, we consider the following boundary condition 

(C-SS) 

  2 2

0, / 0, 0 (1.90 )
0, / 0, 1 (1.90 )

W dW dX at X
W d W dX at X

= = =

= = =

a
b

]Let  and ( )[ nA
( )

[
n

A ] be respectively the original and modified weighting 

coefficient matrices of the n th−  order derivative. Since 

 
1

1 (1.91)
n n

n n

d W d d W
dx dx dx

−

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

We then have  
( ) ( 1) ( 2) ( 1)[ ] [ ][ ] [ ][ ] [ ][ ] (1.9n n n nA A A A A A A− − −′ ′′ ′== = = = 2)  

Now, consider the DQ analog of the derivative at all mesh points /dW dX
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( )
( )

( )
( )

1,1 1,2 1, 1 1,1 1

2,1 2,2 2, 1 2,2 2

11,1 1,2 1, 1 1,1

,1 ,2 , 1 ,

/

/

/

/

(1

N N

N N

NN N N N N NN

NN N N N N NN

dW dX c c c c W
dW dX c c c c W

WdW dX c c c c
WdW dX c c c c

−

−

−− − − − −−

−

′ ′ ′ ′⎡ ⎤⎡ ⎤ ⎧ ⎫⎢ ⎥⎢ ⎥ ⎪ ⎪′ ′ ′ ′⎢ ⎥⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥⎢ ⎥ = ⎨ ⎬⎢ ⎥⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ′ ′ ′ ′ ⎪ ⎪⎢ ⎥⎢ ⎥
⎪ ⎪′ ′ ′ ′ ⎩⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

.93)

⎭

 

To satisfy the derivative condition of eq. (1.90a), modify eq. (1.93) by 

zeroing the first row of the matrix 

( )
( )

( )
( )

1 1

2,1 2,2 2, 1 2,2 2

11,1 1,2 1, 1 1,1

,1 ,2 , 1 ,

/ 0 0 0 0
/

/

/

(1.94)

N N

NN N N N N NN

NN N N N N NN

dW dX W
dW dX c c c c W

WdW dX c c c c
WdW dX c c c c

−

−− − − − −−

−

⎡ ⎤⎡ ⎤ ⎧ ⎫⎢ ⎥⎢ ⎥ ⎪ ⎪′ ′ ′ ′⎢ ⎥⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥⎢ ⎥ = ⎨ ⎬⎢ ⎥⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ′ ′ ′ ′ ⎪ ⎪⎢ ⎥⎢ ⎥
⎪ ⎪′ ′ ′ ′ ⎩ ⎭⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Obviously, the matrix in eq. (1.93) is [ ]A ′ , and the matrix in eq. (1.94) is 

[ ]A ′ . To satisfy the boundary condition (1.90a), the second order weighting 

coefficient matrix [ ]A ′′ can be derived from eq. (1.92)  

[ ] [ ][ ] (1.95A A A′′ ′′= )

In order to satisfy the boundary condition (1.90b) at 1X = , [ ]A ′′  should be 

modified by zeroing its last row, that is, 

1,1 1,2 1, 1 1,

2,1 2,2 2, 1 2,

1,1 1,2 1, 1 1,

[ ] (1.96

0 0 0 0

N N

N N

N N N N N N

c c c c

c c c c
A

c c c c

−

−

− − − − −

⎡ ⎤′′ ′′ ′′ ′′
⎢ ⎥
⎢ ⎥′′ ′′ ′′ ′′
⎢ ⎥

′′ ⎢ ⎥=
⎢ ⎥

′′ ′′ ′′ ′′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

)
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It is noted that the derivative conditions given in Equation (1.90) have 

been completely built into the matrix [ ]A ′′ . With [ ]A ′′ , the modified 

weighting coefficient matrices [ ]A ′′′ and (4)[A ] can be computed by 

(4)

[ ] [ ] [ ] (1.97

[ ] [ ] [ ] (1.98

A A A

A A A

′′′ ′′′= ⋅

′′′′= ⋅

)

)
 

In the above process, the weighting coefficient matrices are modified 

through the matrix form. This process is very simple since it just zeros some 

elements of the matrix. 
 

1.5.3.3 Direct Substitution of the Boundary Conditions into the Discrete 

Governing Equations: 

This approach was proposed by Shu and Du [26] to implement the 

simply supported, clamped conditions and their combinations. The essence 

of the approach is that the Dirichlet condition is implemented at the 

boundary point, while the derivative condition is discretized by the DQM. 

The discretized conditions at the two ends are then combined to give 

derivative conditions at the two ends then combined to give the solutions  

and . The expressions for   and 

2W

1NW − 2W 1NW −  are then substituted into the 

discrete governing equation which is applied to the interior points 

. The dimension of the equation system using this approach is 

. 

3 i N≤ ≤ − 2

4)( 4) (N N− × −

For any combination of the clamped and simply supported conditions at the 

two ends, the discrete boundary conditions using the DQM can be written as 

0

1

( )
1,

1

0 (1.99 )

0 (1.99 )
N

n
k k

k

W a

c W b
=

=

=∑
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1( )
,

1

0 (1.99 )

0 (1.99 )

N

N
n

N k k
k

W c

c W d
=

=

=∑
 

Where  and  may be taken as either 1 or 2. 0n 1n

 By choosing the values of  and , eq. (1.99) can given the following 

four sets of boundary conditions, 

0n 1n

   

0 1

0 1

0 1

0 1

1, 1 ............clamped clamped
1, 2 ...........clamped simply supported
2, 1............simply supported clamped
2, 2...........simply supported  simply supported

n n
n n
n n
n n

= = −
= = −

= = −

= = −

Eqs. (1.99a) and (1.99c) can be easily substituted into eq. (1.84) This is not 

the case for Equations (1.99b) and (1.99d). However, one can couple these 

two equations together to give two solutions,  and  2W 1NW − , as 
2

2
3

2

1
3

1 1 (

1 (1.100 )

N

k
k

N

N k
k

W AXK W
AXN

W AXKN W
AXN

−

=

−

−
=

=

=

∑

∑

1.100 )a

b

k

 

Where 

 

0 01 1

0 01 1

0 01 1

( ) ( )( ) ( )
1, , 1 1, 1 ,

( ) ( )( ) ( )
1,2 , 1, ,2

( ) ( )( ) ( )
,2 1, 1 1,2 , 1

1 n nn n
k N N N N

n nn n
N k k N

n nn n
N N N N

AXK c c c c

AXKN c c c c

AXN c c c c

− −

− −

= −

= −

= −

 

According to eq. (1.100),  and 2W 1NW −  are expressed in terms of 

, and can be easily substituted into eq. (1.84). It should be 

noted that Equation (1.99) provides four boundary equations. In total, we 

have N unknowns . In order to close the system, the discretized 

governing eq. (1.84) has to be applied at 

3 4, ,..., NW W W −2

1,..., NW W

( 4)N −  mesh points. This can be 

done by applying eq. (1.84) at grid points 3 4, ,..., NX X X 2− . Substituting eqs. 

(1.99a), (1.99c) and (1.100) into eq. (1.84) gives   
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2 2 2
2

1 2 3
3 3 3

( ) 2 ( ) ( )

3,4,..., 2 (1.101)

N N N

i k i k i k i
k k k

s X CW s X C W s X C W W

for i N

− − −

= = =

′′ ′+ + = Ω

= −

∑ ∑ ∑  

Where 

,2 , 1
1 ,

1i i N
i k

c AXK c AXKN
C c

AXN
−′′ ′′+

′′= −  

,2 , 1
2 ,

(4) (4)
,2 , 1(4)

3 ,

1

1

i i N
i k

i i N
i k

c AXK c AXKN
C c

AXN
c AXK c AXKN

C c
AXN

−

−

′′′ ′′′+
′′′= −

+
= −

 

 

1.5.4 Numerical Example: Free Vibration Analysis of a Uniform Beam:  

The free vibration analysis of a uniform beam given by eq. (1.84) 

( ( ) 1)s X =  is taken an example to show the high efficiency and accuracy of 

the DQ method. For numerical computations, the PDQ method is used to 

discretize the derivatives, and the method of directly substituting the 

boundary conditions into the discrete governing equations is applied to 

implement the boundary conditions .The mesh point distribution is given by 

eq. (1.82). Table (1.2) lists the natural frequencies of the first 5 modes for 

two sets of boundary conditions, that is, simply supported-simply supported 

(SS-SS), and clamed-simply supported (C-SS) conditions. The DQ results 

were provided by Shu and Du [24] using 15 mesh points. The exact results 

given by Blevins [9] are also include in table (1.2) for comparison. It can be 

observed from table (1.2) that, for the two cases, the DQ results are very 

accurate although only 15 mesh points are used. Calculations for the results 

given in table (1.2) are performed by using MATLAB program (see program 

2 and 3 Appendix A ).  
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Table (1.2) 

Comparison of natural frequencies of a uniform beam with the exact 

solution given by [9] 

 1Ω  2Ω  3Ω  4Ω  5Ω  

Simply supported-simply supported 

[9] 9.8696 39.4784 88.8264 157.9137 246.7401 

PDQ(N=15) 9.8696 39.4784 88.8249 158.0619 248.4716 

Clamped-simply supported 

[9] 15.4182 49.9648 104.2477 178.2697 272.0310 

PDQ(N=15) 15.4182 49.9648 104.2471 178.4642 273.1126 
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Chapter Two                                   G-Spline-Based Differential Quadrature and its          
                                                                               Application to a Uniform Beam Problem 

 

2.1 Introduction 
This chapter introduces the numerical solution of ODE using G-

spline interpolation-based differential quadrature therefore this chapter 

will consists of six sections in section 2.2, we will present in detail the G-

spline interpolation formula while in section 2.3 we will present a 

numerical example illustrating the construction of G-spline interpolation. 

The DQ and the computation of weighting coefficients for the first and 

second derivatives using G-spline interpolation will be given in section 

2.4. In section 2.5, applying boundary conditions using the G-spline 

interpolation formula-based differential quadrature will be given. Finally 

in section 2.6, Bernoulli-Euler beam problem will be solved by using G-

spline based DQM. 
 

2.2 G- Spline Interpolation, [23]: 
G-spline interpolatnts was first presented by Schoenberg in 1968 as 

a tool used to specify the interpolatory conditions: 

   ( ) ( )( ) , ( , )j j
i if x y i j= ∈e  

which is called the Hermite-Birkhoff problem. (abbreviated as HB-

problem). Schoenberg had developed the idea for splines, where the data 

of (HB-problem) is the values of the function at the node points in 

addition to its derivatives without the Hermite condition. 
 

2.2.1 The Hermite-Birkhoff Problem: 

As it is already mentioned in the introduction of this chapter, that 

the G-splines are calculated using the HB-problem, therefore it is 

convenient in this subsection to discuss the HB-problem and before going 

forward to give the tractable formal definition of the natural G-spline 

interpolation, let us consider the nodes: 

                         
1 2 ... kx x x< < <  
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to be distinct and real also, let α be the maximum of the orders of the 

derivatives to be specified at the nodes. Define an incidence matrix E , 

by  

[ ],ija= 1,2,..., ;= i k  0,1,...,j α=  E

where 

           
1, ( , )
0, ( , )ij

if i j e
a

if i j e
∈⎧

= ⎨ ∉⎩

Here has been chosen in such a way that i takes the values 

1,2, …, k ; one or more times , while 

{( , )}e i j=

{0,1,..., }j α= and j α=  is attained 

in at least one element  of e. Assume also that each row of the 

incidence matrix E and the last column of E should contain some element 

equals 1. Let 

( , )i j

( )j
iy  be a prescribed real number for each . The 

HB-problem is to find 

( , )i j e∈

( )f x C α∈ , which satisfies the interpolatory 

condition: 
( ) ( )( ) , ( , ) (2.1)i j

i if x y for i j e= ∈
 

The matrix E will likewise describes the set of eqs. given by system (2.1) 

if we define the set e by: 

           {( , ) 1}ije i j a= =  

Then 

            
,

ij
i j

n a=∑

really is the number of interpolatory conditions required to constitute the 

system (2.1). 

Therefore, at each node ix  of the system (2.1), we prescribes the value of  

( )if x  and may be also a certain number of consecutive derivatives 
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( ) ( )j
if x  for 1,2,..., 1ij α= − ; where iα  denotes the number of the 

required derivatives at ix , for each i .  

The next definition distinguishes between different types of HB- problem, 

which may be encountered in applications. 
 

Definition (2.1), [23]:   

The HB-problem (2.1) is said to be normal provided that (2.1) has a 

unique solution ( )f x , which belongs to 
1n−∏ (where 

1n−∏  is the set of 

all polynomials of degree less than or equal to 1n − ). A necessary 

condition for (2.1) to be normal is the inequality 

    (2.2)n α>  

which we will assume in our discussion . For 1n α− ≤ , then  < α, 1n −

( )f x ∈
1n−∏ could not possibly always satisfies the form of system 

(2.1) involving ( ) ( )f xα . 

  Now, in order to simplify the normality of HB- problem and makes 

the definition more reliable in applications, assume that system (2.1) is 

normal, then we shall relate for each ( , )i j e∈ , a unique function ( )ijL x  

(called the fundamental function), which belongs to 
1n−∏ , such that: 

            ( ) ( ) ,  ( , )S
ij r ir jsL x if r s eδ δ= ∈     

 Furthermore: 

                                   ( ) 1, ( , ) ( , )
( ) (2.3)

0, ( , ) ( , )
s

ij r

if r s i j
L x

if r s i j
=⎧

= ⎨ ≠⎩

The unique solution 1( ) nf x −∈Π of (2.1) may be expressed in terms of the 

fundamental function ( )ijL x , as: 

           ( )

( , )

( ) ( )j
i ij

i j e

f x y L
∈

= ∑ x  

Moreover, if ( ) Cf x α∈ , we may write: 
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( )

( , )

( ) ( ) ( ) (2.4)j
i ij

i j e

f x f x L x Rf
∈

= +∑         

where Rf is the remainder, for 
1

( )
n

f x
−

∈∏ , clearly that if Rf = 0 

means that (2.4) is an exact interpolant. Formula (2.4) is called the 

Hermite-Birkhoff formula. 
 

2.2.2 On Normal Hermite-Birkhoff Problem and Related Concepts 

[23]: 

The condition that the HB-problem (2.1) is normal may be 

equivalently expressed by the following requirement: 

If: 

1( ) (2.5)np x −∈Π  

( ) ( )(i)
i   0,  if i , j e (2.6)p x = ∈  

then: 

 ( )x   0p =  

A closely related concept of the normal HB-problem is presented by the 

following definition: 
 

Definition (2.2): 

Let m be a natural number, then the HB-problem (2.1) is said to be 

m-poised provided that: 

          

( )
( ) ( )

1

( j)
i

x     (2.7)      

 x   0 if i ,  j e
mp

p
−∈Π

= ∈
 

then : 

   ( )x   0p = . 
 

The next three lemmas are given in [23] and proofed in [18]  
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Lemma(2.1): 

The HB-problem (2.1) is normal if and only if it is n-poised. 
 

Lemma(2.2): 

If the HB-problem (2.1) is m-poised, then the inequality m ≤ n 

must hold.  
 

Lemma (2.3):   
  If the HB-problem (2.1) is m-poised and 1< m m′< , then the HB-

problem (2.1) is also  m'-poised. 
 

Remarks (2.1),[23]: 

1-A non-normal system (2.1) may be m-poised for some value   , 

as the following example illustrate: 

m n<

    Consider the HB-problem: 

1 1 2 2 3 3 2 1 3( ) , ( ) , ( ) , ( ) / 2 (2.8)f x y f x y f x y x x x′ ′= = = = +  

Then the incidence matrix E takes the form: 

1 0
0 1
1 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  the set e is given by: 

 {(1,0),(2,1),(3,0)}e =  

Hence eq. (2.8) is not 3-poised, since: 

( ) ( )( )1 3x   x –  x x –  x   0p = ≠  

But it satisfies the conditions (2.5) and (2.6). However, one can notice 

that (2.8) is 2-poised. 

2-The condition that system (2.1) is m-poised can expressed as follows: 

If: 
1

0
( )

!

vm

v
v

xp x a
v

−

=

=∑     
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then ( )( j)
ix   0p = , for ( , )i j e∈ , become: 

    
1

0

0, ( , )
( )!

v jm
i

v
v

xa for i
v j

−−

=

= ∈
−∑ j e  

where: 

1, 0
0, 0( )!

v j
i if v jx

if v jv j

− − =⎧
= ⎨ − <− ⎩

 

Therefore, system (2.1) is m-poised if and only if the matrix with entries 

( )

v j
ix

v j

−

− !
 has rank m, where 0,1, , –1v m= … ; refers to the column of the 

matrix of entries  
( )

v j
ix

v j

−

− !
,while each ( , )i j e∈ is an indication for a row 

of the same matrix. 
 

2.2.3 Interpolation by G-Spline [23] 

In this section, we shall assume that the HB-problem (2.1) is m-

poised and m nα < ≤ , where α, as we mentioned in subsection (2.2.1), is 

the highest derivative that appears in the interpolation problem. 

The definition of G-spline is facilitated by defining a matrix 

which is obtained from the incidence matrix *E E by adding 1m α− −  

columns of zeros to the matrix E  . 

Let *
ij *E a⎡= ⎣ ⎤⎦ , where (i = 1,2, …, k; j = 0,1,…, -1), and: m

  *

0, 1, 2,..., 1
ij

ij

a if j
a

if j m

α

α α

<⎧
= ⎨

= + + −⎩

If = α+1, then  m *E E= . 
 

Definition (2.3), [23]: 

A function  is called natural G-spline for the nodes ( )S x

1 2, ,..., kx x x  and the matrix *E of order m, provided that it satisfies the  
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following conditions: 

(1) in 
2 1

( )
m

S x
−

∈∏ 1( , ), 1,2,..., 1.i ix x i k+ = −  

(2) in 
1

( )
m

S x
−

∈∏ 1( , )x−∞  and ( , )kx .∞   

(3)   1( ) ( , ).mS x C −∈ −∞ ∞

x(4) If then  is continuous at * 0,ija = (2 1) ( )m jS − −
ix x= ; that is, 

 =(2 1) ( 0m j
iS x− − − ) )(2 1) ( 0m j

iS x− − + , where 0ix + and 0ix −  refers to the 

right and left hand limits of the function . (2 1) (m jS x− − )

We denote the set of all natural G-spline interpolation polynomials 

of given function with nodes 1 2, ,..., kx x x by: 

( )*
m 1 2     S  ,  x ,  x ,  ,  xS E= … k  

mS  is a non empty set and this shown by the inclusion relation: 

   1 mm
S

−
⊂∏

Indeed, if , then satisfies all condition from (1) to 

(4). 

1
( )

m
S x

−
∈∏ ( )S x

 

Remarks (2.2):- 

1- A special case when (2.1) is given by: 
( 1) ( 1)( ) , ( ) ,..., ( )i i

i i i i i if x y f x y f x yα α− −′ ′= = = , 1,2,...,i k=  

Then the HB-problem is reduced to a Hermite problem.  

It is clearly that  max ( 1),ii
α α= −  and max ;ii

m nα ≤ ≤   is 

continuous at 

(2 1) ( )m jS x− −

,ix x= for each ,..., 1.ij mα= −  In other words ( )(v)S x  

is continuous at ,ix x=  for , 1,...,2 1iv m m m α= + − −

1

 together with 

condition (3), of definition (2.3) it is concluded that: 

  near 2( ) ,imS x C α− −∈ , 1,2,..., (2.9)ix x i k= =  
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Conditions (1), (2) of definition (2.3) and eq.(2.9) shows that  is 

identical with the natural spline function of degree 2m-1 having 

mS

( 1,2,...,i )x i = k a multiple node of multiplicity ,iα where .i mα ≤  
 

2- Another special case, the Lagrange problem which occurs if we 

assume that  and 1n k= + {( ,0), 0,1,..., }.e i i k= =  In this case, 

and it may be shown that  is identical with the class of 

natural spline functions of degree 2m-1 having nodes 

m k= mS

0 1, ,..., .kx x x  
 

Theorem (2.1), [23]: 

If the HB-problem (2.1) is m-poised, then there exists a unique G-

spline function: 

 ( )*
m 1 2( ) ;  x ,  x ,  ,  xS x Eδ= … k

e

 

such that: 

 ( ) ( )( ) , ( , )j j
i iS x y for i j= ∈  

 

Under the assumption of theorem (2.1), we now define a G-spline 

fundamental functions ( )ij mx  L δ∈  satisfying: 

  ( ) 0, ( , ) ( , )
( )

1, ( , ) ( , )
s

ij r

if r s i j
L x

if r s i j
≠⎧

=⎨ =⎩

If for ( ) Cf x α∈ , we may write: 

( )

( , )

( ) ( ) ( ) (2.10)j
i ij

i j e

f x f x L x Rf
∈

= +∑  

for which the right hand sum presents the G-spline interpolating ( )xf  at 

the data of the HB-problem (2.1). 

Equation (2.10) is called the G-spline interpolation formula, which is 

exact for all elements of Sm and in particular for the elements of . 
1m−∏

The following theorem shows the optimal property the of G-spline  
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interpolation functions and it may be called the minimum norm 

property. 
 

Theorem (2.2),[23]: 

Let  such that 0[ , kI x x += 1] 10 1 ... kx x x +< < <  and ( ) ( )mf x C I∈  

with ( 1) ( )mf x− is absolutely continuous and ( )
2( ) ( )mf x L I∈ . If the HB-

problem (2.1) to be m-poised, and α < m ≤ n, and let S(x) be the unique 

G-spline function satisfying the equation: 

 ( ) ( )( ) ( ),( , )i j
i iS x f x i j e= ∈   

Then: 

  ( ) (2 2( ) ( )( ) ( )m m

I I

f x dx S x>∫ ∫ )

2.2.4 Approximation of Linear Functionals with the Sense of  

         G-Spline Formula: 
           

           Let I = [a, b] be a finite interval containing the node points 

1 2, ,..., kx x x  and let us consider a linear functional,  

            Lf : Cα [a, b] ⎯→  

of the form: 

           Lf=  ( ) ( )

0 0 0
( ) ( ) ( ) (2.11)

jn
j j

j ji ji
j j ia

a x f x dx b f x
α α

= = =

+∑ ∑∑∫

where the are piecewise continuous functions in ( )ja x ,I jix I∈  and jib   

are real constants. The function (2.11) may be approximated using the 

formula: 

          Lf =   ( )

( , )

( ) (2.12)j
ij i

i j e

f x Rfβ
∈

+∑
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          Therefore, in order to find the approximation Lf given by (2.12), 

which is best in some sense, we propose to determine the real's .ijβ  

Schoenberg [23] states two procedures to determine ' .ij sβ  One of them is 

the so called Sard procedure, which can be summarized in the following 

theorem: 
 

Theorem (2.3),[ 23]: 

           If m nα < < and the HB-problem (2.1) is m-poised, then Sard's 

best approximation (2.12) to Lf of order m is obtained by operating with 

L on both sides of the G-spline interpolation formula (2.10) of order  

In other words, the coefficients 

.m

ijβ are given by: 

        ijβ = L ( )ijL x  

where ( )ijL x are the fundamental functions of (2.10). 
 

2.2.5 The Construction of G-Spline:   
The construction of the G-spline interpolation formula in a more 

efficient approach leading to a system of only m n+  equations is given 

as follows: 

From conditions (1), (2) and (3) of definition (2.3) it is clear that 

the most suitable form of a G-spline function S  must take the form: 
2 11

1
1 0

( )( ) ( ) (2.13)
(2 1)!

m jk m
i

m ij
i j

x xS x P x c
m j

− −−
+

−
= =

−
= +

− −∑∑  

where 1 1( )m mp x− −∈Π , and  

 
2 1

2 1 ( ) ,
( )

0 ,

m j
j jm j

i
j

x x if x
x x

if x x

− −
− −

+

⎧ − >⎪− = ⎨
≤⎪⎩

x
 

while the are constants to be determined. Any function of the form 

(2.13) satisfies conditions (1), (2) and (3) of definition (2.3), except: 

ijc
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   if  
1

( )
m

S x
−

∈∏ kx x<  

and according to the definition of the truncated basis, in equation (2.13), 

we can see that  is continuous at (2 1) ( )m jS − − x ix x= if only if = 0, 

while condition (4) of definition (2.3) requires that  is 

continuous if and only if  

ijc

(2 1) ( )m jS x− −

* 0.ija =  Leaving out all such terms, we obtain: 

2 1

1
( , )

( )( ) ( ) (2.14)
(2 1)!

m j
i

m ij
i j e

x xS x P x c
m j

− −
+

−
∈

−
= +

− −∑  

In order to satisfy (2.14), expand all binomials and equating to zero  

those coefficients of 1 2, ,..., ,m m mx x x 1+ −  we obtain the equations: 

( , )

2 1
( ) 0, 0,1,..., 1,

2 1(2 1)!

(2.15)

ij v j
i

i j e
j v

c m j
x v m

m vm j
−

∈
≤

− −⎛ ⎞
− = = −⎜ ⎟− −− − ⎝ ⎠

∑
 

and  also have the equations 

  ( ) ( )( ) ( ),( , ) (2.16)i i
i iS x y x i j e= ∈

Therefore, we get  equations from (2.15) and (2.16) and writing the  n m+

solution of the unique G-spline so as to exhibit the ( )j
iy  to get: 

 ( )

( , )

( ) ( )j
i ij

i j e

S x y L x
∈

= ∑  

Which is the final form of the G-spline approximation function. It is clear  

that the final form of the G-spline function depends on the fundamental 

G-spline functions ( ),  for all ( , )ijL x i j e∈ . 
 

2.3 Illustrative Example, [18]: 
As an illustration to the discussion given in the subsection (2.2.5), 

consider the following HB-problem: 

 Given that: 

 1 2 3( 1) , (0) , (1) (2.17)f y f y f y′ ′− = = =   
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and to find the G-spline function which interpolate (2.17). In this problem 

we have 1, 3nα = =  and it is clear that the problem is two-poised as 

given by remarks (2.1)(1). 

The incidence matrix is given by: 

  
1 0
0 1
1 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and the HB-set e will take the form: 

 {(1,0),(2,1),(3,0)}e =  

Therefore, the G-spline interpolation will be: 

3 2 3
0 1 10 21 30

1 1 1( ) ( 1) ( 1) (2.18)
6 2 6

S x a a x c x c x c x+ + += + + + + + −  

Now, to find the fundamental G-spline functions 10 21( ), ( )L x L x  

and 30 ( ),L x  we must solve the following linear system of algebraic 

equations obtained from (2.15) and (2.16) must be solved: 

10 30

10 21 30

1 1 0
6 6
1 1 1 0
2 2 2

c c

c c c

+ =

+ − =
 

0 1 1

1 10 2

0 1 10 21 3

1
2

8 1
6 2

a a y

a c y

a a c c y

− =

′+ =

+ + + =

 

Which have the solution: 

 10 1 2 3

21 1 2 3

3 3
2
3 6 3

c y y y

c y y

′= + −

′= − − + y
 

30 1 2 3
3 33
2 2

c y y ′= − − + y  
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0 1 2

1 1 2

1 1 3
4 2 4

3 1 3
4 2 4

a y y y

a y y

′= − +

′= − − +

3

3y
 

Therefore, upon substituting  and  into (2.18), and writing 

in terms of  and , gives: 

10 21 30 0, , ,c c c a 1a

( )S x 1 2,y y ′ 3y

  1 10 2 21 3 30( ) ( ) ( ) ( )S x y L x y L x y L x′= + +

Where 

 3 2
10

1 1 3 1(1 3 ) ( 1) ( 1)
4 4 2 4

L x x x x+ + += − + + − − − 3
+  

3 2
21

3 2
30

1 1 1(1 ) ( 1) 3 ( 1)
2 2 2

3 1 3 1(1 ) ( 1) ( 1)
4 4 2 4

L x x x x

L x x x x

+ + + +

+ + +

= − + + + − − −

= + − + + + −

3

3
+

 

 

2.4 The G-Spline Interpolation-Based Differential 

        Quadrature Method: 

This section may be considered as a generalization to the DQM 

given in chapter one since as we saw in Remarks (2.2),(2) that Lagrange 

interpolation polynomial is a especial case of the Hermite-Birkhoff 

problem especially when 0α = . 

Suppose the function f  is sufficiently smooth on the interval 

1[ , ]Nx x , and let us consider an m-poised Hermite-Birkoff problem  
( ) ( )( ) , ( , ) (2.19)j j

i if x y i j e= ∈  

on the N distinct nodes: 

  

−

1 2 ... (2.20)Nx x x< < <

Based on DQ, the first and second order derivatives of  f on each of these 

nodes are given by: 
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 ( ) ( )
,

( , )

, 1,2,..., (2.21)
k

j j
k i i

i j ex x

df a f k N
dx ∈=

= =∑  

 
2

( ) ( )
,

( , )

, 1,2,..., (2.22
k

j j
k i i

i j ex x

d f b f k N
dx ∈=

= =∑ )  

The coefficients ( )j
kia and ( )j

kib are the weighting coefficients of the first 

and second order derivatives respectively. 

 

2.4.1 Computation of the Weighting Coefficients for the First and 

Second Order Derivatives Via G-Spline Interpolation Formula:  

To find the weights ( )j
kia and ( )j

kib , consider an m-poised HB- 

problem to approximate the function f and our purpose is to construct a 

polynomial of ,x which is of the form:  

 ( )

( , )

( ) ( ) (2.23)j
ij i

i j e

f x L x f
∈
∑  

satisfying  

  ( ) 1 , ( , ) ( , )
( )

0 , ( , ) ( , )
s

ij r

if i j r s
L x

if i j r s
=⎧

= ⎨ ≠⎩

 
Then the first and second derivatives of f at any grid point kx are given 

by eqs. (2.21) and (2.22) respectively, where ( )
,
j

k ia are the coefficients for 

the first derivative, obtain by the following formula 

( )
,

( )
(2.24)

k

ijj
k i

x x

dL x
a

dx =

=  

and similarly (
,

)j
k ib are the coefficients of the second derivative  given by  

2
( )

, 2

( )
(2.25)

k

ijj
k i

x x

d L x
b

dx
=

=

  

In the same manner we may obtain formulas for higher order derivatives   
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by using the higher order weighting coefficients, which are expressed as 
( , )

,
j m

k ie  to avoid confusion. They are characterized by recurrence 

( , )
,

( )
,( , ) , 1,2,..., , 1,2,3,..., 1

(2.26)
k

m
ijj m

k i m
x x

d L x
e i j e k N m

dx
=

= ∈ = = N −

,

 

Here we assume that ( ) ( ,1)
,
j j

k i k ia e=  and ( ) ( ,2)
, ,
j j

k i k ib e=  
 

2.4.2 Direct DQM Using G-Spline Interpolation: 

In this subsection we shall follow the same manner that appeared in 

section 1.4 but the weighting coefficients will be in terms of G-spline 

interpolation and for comparison purpose we shall take the same example 

which is the bending of Euler beam. 
 

Example 2.1 ( Bending of Euler Beam ):

Also it is present in chapter one, the non-dimensionalisation 

equation of the fourth order Euler beam equation is given eq. (1.69), with 

the boundary conditions (1.70).  

Divide the beam domain  into six nodes using Chebyshev points 

(1.15). 

0 1X≤ ≤

Applying differential quadrature for eq. (1.69) thus we have: 

  ( ,4)
,

( , )

( ) , 1,2,...,6 (2.27)j
k i k

i j e

e F x k
∈

= − =∑

Next two Hermite-Birkhoff sets are considered for finding the 

approximate solution and therefore we shall divide the solution will be 

divided into two cases: 
 

Case1: 
To construct the approximate solution via G-spline-based DQM an 

m-poised HB- problem must be chosen. 

In this case we shall take  5-poised HB-problem with  
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1 {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)}e =  

We shall seek where  *
5 1 2 3 4 5 6( ) ( , , , , , ,S x S E x x x x x x∈ )

1 0
1 0
1 0
1 0
1 0
1 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and for which   

  ( )
5 1( ) , ( , )j

i iS x W i j e= ∈

From eq. (2.27) with 1F = and by applying the DQM for eqs. (1.70a) and 

(1.70b) we get: 

  (0) (0)
1 60 0W W= =

  
1

( ,1) ( )
1,

( , )

0 (2.28)j j
i i

i j e

e W
∈

=∑

  
1

( ,2) ( )
6,

( , )

0 (2.29)j j
i i

i j e

e W
∈

=∑

and 

1

( ,4) ( )
,

( , )

1 (2.30)j j
k i i

i j e

e W
∈

= −∑  

From eq. (2.28) and (2.29), one can obtain: 
(0,1) (0) (0,1) (0) (0,1) (0) (0,1) (0) (0,1) (0) (0,1) (0)
1,1 1 1,2 2 1,3 3 1,4 4 1,5 5 1,6 6 0e W e W e W e W e W e W+ + + + + =

 
(0,2) (0) (0,2) (0) (0,2) (0) (0,2) (0) (0,2) (0) (0,2) (0)
6,1 1 6,2 2 6,3 3 6,4 4 6,5 5 6,6 6 0e W e W e W e W e W e W+ + + + + =

 

Hence: 
(0,1) (0) (0,1) (0) (0,1) (0) (0,1) (0)
1,2 2 1,5 5 1,3 3 1,4 4

(0,2) (0) (0,2) (0) (0,2) (0) (0,2) (0)
6,2 2 6,5 5 6,3 3 6,4 4

(2.31)
e W e W e W e W

e W e W e W e W

⎫+ = − − ⎪
⎬

+ = − − ⎪⎭
 

Solving the linear system (2.31) in terms of and  we get:  (0)
2W (0)

5 ,W
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(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,5 6,3 1,3 6,5 1,5 6,4 1,4 6,5(0) (0) (0)

2 3 4(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,2 6,5 1,5 6,2 1,2 6,5 1,5 6,2

(2.32)

e e e e e e e e
W W

e e e e e e e e
− −

= +
− −

W
 

and 
(0,2) (0,1) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
6,3 1,2 1,3 6,2 1,2 6,4 1,4 6,4(0) (0) (0)

5 3(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,5 6,2 1,2 6,5 1,5 6,2 1,2 6,5

(2.33)

e e e e e e e e
W W

e e e e e e e e
− −

= +
− − 4W  

upon substituting  and  in equation (2.30), we shall get for 

: 

(0)
2W (0)

5W

3 and 4k =

(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,5 6,3 1,3 6,5 1,5 6,4 1,4 6,5(0,4) (0) (0)

,2 3 4(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,2 65 1,5 6,2 1,2 6,5 1,5 6,2

(0,4) (0) (0,4)
,3 3 ,4

k

k k

e e e e e e e e
e W

e e e e e e e e

e W e

⎛ ⎞− −
W+ +⎜ ⎟⎜ ⎟− −⎝ ⎠

+ (0)
4

(0,2) (0,1) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
6,3 1,2 1,3 6,2 1,2 6,4 1,4 6,4(0,4) (0) (0)

,5 3 4(0,1) (0,2) (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
1,5 6,2 1,2 6,5 1,5 6,2 1,2 6,5

1k

W

e e e e e e e e
e W

e e e e e e e e

+

⎛ ⎞− −
W+ = −⎜ ⎟⎜ ⎟− −⎝ ⎠

 

From the above one can get   and   finally from (2.31) we get 

 and  . 

(0)
3W (0)

4W
(0)

2W (0)
5W

Following table (2.1) which represent a comparison of the exact 

solution with the G-spline interpolation-based differential quadrature. 

 

Table (2.1) 
 Comparison of the approximate solution of example (2.1) (case 1) 

with the exact solution.  
            x    W(Exact)    W(DQM)       Error (%) 

0             0                            0           0 
0.09955   -4.828E-004     -1.276E-003    -7.932E-004 
0.3456   -3.759E-003     -7.901E-004    -2.969E-003 
0.6546   -5.213E-003     -7.844E-004    -4.424E-003 
0.9046   -1.936E-003     -4.211E-004    -1.516E-003 

1             0              0              0 
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Case 2: 

In this case we shall take a 5-poised Hermite-Birkhoff problem 

with  

2 {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)}e =  

we shall seek  
*

5 1 2 3 4 5 6( ) ( , , , , , ,S x S E x x x x x x∈ )  where  

1 0
1 0
1 0
0 1
0 1
1 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and for which   
( ) ( )
5 2( ) , ( , )j j

i iS x W i j e= ∈   

Similarly as we do in the previous case thus we shall have:  
(0,1) (0) (0,1) (0) (0,1) (0) (1,1) (1) (1,1) (1) (0,1) (0)
1,1 1 1,2 2 1,3 3 1,4 4 1,5 5 1,6 6 0e W e W e W e W e W e W+ + + + + =  

(0,2) (0) (0,2) (0) (0,2) (0) (1,2) (1) (1,2) (1) (0,2) (0)
6,1 1 6,2 2 6,3 3 6,4 4 6,5 5 6,6 6 0e W e W e W e W e W e W+ + + + + =

 

Hence 
(0,1) (0) (1,1) (1) (0,1) (0) (1,1) (1)
1,2 2 1,5 5 1,3 3 1,4 4

(0,2) (0) (1,2) (1) (0,2) (0) (1,2) (1)
6,2 2 6,5 5 6,3 3 6,4 4

(2.34)
e W e W e W e W

e W e W e W e W

⎫+ = − − ⎪
⎬

+ = − − ⎪⎭
 

Solving equation (2.34) in terms of and  we get  (0)
2W (1)

5W

(1,1) (0,2) (0,1) (1,2) (1,1) (1,2) (1,1) (1,2)
1,5 6,3 1,3 6,5 1,5 6,4 1,4 6,5(0) (0) (1)

2 3(0,1) (1,2) (1,1) (0,2) (0,1) (1,2) (1,1) (0,2)
1,2 6,5 1,5 6,2 1,2 6,5 1,5 6,2

(2.35)

e e e e e e e e
W W

e e e e e e e e
− −

= +
− − 4W

 

and 
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(0,2) (0,1) (0,1) (0,2) (0,1) (1,2) (1,1) (1,2)
6,3 1,2 1,3 6,2 1,2 6,4 1,4 6,5(1) (0) (1)

5 3(1,1) (0,2) (0,1) (1,2) (1,1) (0,2) (0,1) (1,2)
1,5 6,2 1,2 6,5 1,5 6,2 1,2 6,5

(2.36)

e e e e e e e e
W W

e e e e e e e e
− −

= +
− − 4W  

upon substituting  and  in equation (0)
2W (1)

5W ( ,4) ( )
,

( , )
1j j

k i i
i j e

e W
∈

= −∑  we shall 

get for  3 and 4 :k =

        

(1,1) (0,2) (0,1) (1,2) (1,1) (1,2) (1,1) (1,2)
1,5 6,3 1,3 6,5 1,5 6,4 1,4 6,5(0,4) (0) (1)

,2 3 4(0,1) (1,2) (1,1) (0,2) (0,1) (1,2) (1,1) (0,2)
1,2 6,5 1,5 6,2 1,2 6,5 1,5 6,2

(0,4) (0) (1,4
,3 3 ,4

k

k k

e e e e e e e e
e W

e e e e e e e e

e W e

⎛ ⎞− −
+ +⎜ ⎟⎜ ⎟− −⎝ ⎠

+

W

) (1)
4

(0,2) (0,1) (0,1) (0,2) (0,1) (1,2) (1,1) (1,2)
6,3 1,2 1,3 6,2 1,2 6,4 1,4 6,5(1,4) (0) (1)

,5 3 4(1,1) (0,2) (0,1) (1,2) (1,1) (0,2) (0,1) (1,2)
1,5 6,2 1,2 6,5 1,5 6,2 1,2 6,5

1k

W

e e e e e e e e
e W

e e e e e e e e

+

⎛ ⎞− −
W+ = −⎜ ⎟⎜ ⎟− −⎝ ⎠

 

Solving the above equation in terms of  and   then substituting 

them into equation (2.34) in order to get  and  . 

(0)
3W (1)

4W
(0)

2W (1)
5W

Following table (2.2) represent a comparison of the exact solution with  

the G-spine interpolation- based differential quadrature. 

Table (2.2) 
Comparison of the approximate solution of example (2.1) (case 2)with 

the exact solution  
            x    W(Exact)    W(DQM)       Error (%) 

0             0                0 0 
0.09955   -4.828E-004     -1.720E-003     -1.227E-003 
0.3456   -3.759E-003     -3.842E-003     -8.299E-004 
0.6546   -5.213E-003    - 6.742E-004     -4.548E-003 
0.9046   -1.936E-003     -1.711E-004     -1.764E-003 

1             0           0              0 
 

It is noted that all calculations are performed by using Microsoft 

MATLAB see programs 4 and 5 Appendix A and the fundamental 

functions 10 20 30 40 50 60( ), ( ), ( ), ( ), ( ) and ( )L x L x L x L x L x L x  are given in  

Appendix B in addition to the functions 10 20 30 41( ), ( ), ( ), ( ),L x L x L x L x  

51 60( ) and ( )L x L x . 
 

 51



Chapter Two                                   G-Spline-Based Differential Quadrature and its          
                                                                               Application to a Uniform Beam Problem 

2.5 Applying Boundary Conditions 
 

In this section, a treatment for the boundary conditions using the 

G-spline interpolation formula-based differential quadrature will be 

given. The direct substitution of boundary conditions into the discrete 

governing equations will be considered in order to find the numerical 

solution of the free vibration beam problem that is appeared in eq. (1.77).  
 

2.5.1 Direct Substitution of Boundary Conditions Using G – Spline 

         Interpolation:   

For a vibration of a uniform beam problem the governing 

differential equation as we mentioned previously in section (1.5) is:  
4 3 2 2

2
4 3 2 2

( ) ( )( ) 2 0 (2.37)d W d s X d W d s X d Ws X W
dX dX dX dX dX

+ + −Ω =  

 

Also, for a well-posed problem, it requires four boundary conditions. 

These can be obtained by specifying two boundary conditions at the end 

point , and another two boundary conditions at the end point 

. In this subsection next, two types of boundary conditions will be 

considered which are (1.79) and (1.80). 

0X =
1X =

A combination of these two boundary conditions is used in the 

numerical experiment in the next section. 

The selection of locations of the sampling points plays an 

important role in the accuracy of the solution of the differential equations. 

Using uniform grids can be considered to be convenient and easy 

selection method. Quite frequently the DQM delivers more accurate 

solution using the so called Chebyshev Gauss Lobatto points given by 

(1.82). 

For the approximate solution of the free vibration analysis of a 

uniform beam (2.37) with the boundary conditions given by eqs. (1.79) 
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and (1.80) using the G-spline interpolation formula-based DQM, we first 

discritize the interval [0, 1] such that 1 20 1Nx x x= < < < =  

The idea of the followed approach is similar to the given in 

subsection (1.5.3.3). The descretized derivative conditions at the two ends 

are then combined to give the solutions 2( )
2

jW  and  where 5( )
1 ,j

NW − 2j  and 

5j  represent the minimum order derivative of W at 2x  and 1Nx −  

respectively. The expressions for  2( )
2

jW  and 5( )j
NW 1−  are then substituted 

into the discrete governing equation  

( ,2) ( ) ( ,3) ( )
, ,

( , ) ( , )

( ,4) ( ) 2 ( )
,

( , )

( ) 2 ( )

( ) (2.38

j j j j
i k i i i k i i

i j e i j e

j j j
i k i i i

i j e

s X e W s X e W

s X e W W

∈ ∈

∈

′′ ′+ +

= Ω

∑ ∑

∑ )

2.39 )

2.39 )

 

With the interior points 3 . 2i N≤ ≤ −

For any combination of the clamped and simply supported 

conditions at the two ends, the discrete boundary conditions using the 

DQM may be written as  

0

1

(0)
1

( , ) ( )
1,

( , )

(0)

( , ) ( )
,

( , )

0 (2.39 )

0 (

0 (2.39 )

0 (

j n j
i i

i j e

N

j n j
N i i

i j e

W a

e W b

W c

e W d

∈

∈

=

=

=

=

∑

∑
  

Where  and  may be taken as 1 or 2. 0n 1n

We shall treat only the following two sets of boundary conditions  

0 1

0 1

1, 2 ...clamped simply supported
(2.40)

2, 2...simply supported  simply supported
n n
n n

= = − ⎫
⎬= = − ⎭

 

Equation (2.39a) and (2.39c) can be easily substituted into equation 

(2.38) and it is clear that this is not the case for eq. (2.39b) and (2.39d). 
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However one can couple these two equations together to give the 

solutions   2( )
2

jW  and 5( )
1

j
NW −  as: 

 

2

*

5

*

( ) ( )
2

( , )

( ) ( )
1

( , )

1 1 (

1 (2.41 )

j j
i

i j e

j j
N i

i j e

W AXK W
AXN

W AXKN W
AXN

∈

−
∈

= ⋅

= ⋅

∑

∑

2.41 )a

b
 

Where: 

  *
2 5/ {(2, ),( 1, )}e e j N j= −

Hence, for  we have *( , ) ,i j e∈

0 01 1

0 01 1

0 01 1

( , ) ( , )( , ) ( , )
1, , 1 1, 1 ,

( , ) ( , )( , ) ( , )
1,2 , 1, ,2

( , ) ( , )( , ) ( , )
,2 1, 1 1,2 , 1

1 j n j nj n j
i N N N N i

j n j n

n

j n j
N i i N

j n j nj n j n
N N N N

AXK e e e e

AXKN e e e e

AXN e e e e

− −

− −

= −

= −

= −

n  

According to eq. (2.41a) and (2.41b) 2( )
2

jW  and 5( )
1

j
NW −  are expressed in 

terms of ( )j
iW , and can be easily substituted into eq. (2.38) . *( , )i j e∈

In order to find the values of ( )j
iW  for *( , )i j e∈  the discretized 

governening equation (2.38) has to be applied at the interior ordered Paris 

. Substituting eqs. (2.39a), (2.39c), (2.41a) and (2.41b) into eq. 

(2.38) gives 

*( , )i j e∈

* *

*

( ) ( )
1 2

( , ) ( , )

( ) 2 ( ) *
3

( , )

( ) 2 ( )

( ) ,( , ) (2.42

j j
i i i i

i j e i j e

j j
i i i

i j e

s X C W s X C W

s X C W W i j e

∈ ∈

∈

′′ ′+ +

= Ω ∈

∑ ∑

∑ )

 

Where  
( ,2) ( ,2)

,2 , 1( ,2)
1 ,

( ,3) ( ,3)
,2 , 1( ,3)

2 ,

1

1

j j
k k Nj

k i

j j
k k Nj

k i

e AXK e AXKN
C e

AXN
e AXK e AXKN

C e
AXN

−

−

+
= −

+
= −
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( ,4) ( ,4)
,2 , 1(4)

3 ,

1j j
k k N

k i

e AXK e AXKN
C e

AXN
−+

= −  

 

It is noted that the eq. (2.42) has (N-4) equations with (N-4) 

unknowns which can be written in matrix form, as: 

  2[ ]{ } { } (2.43)A W W= Ω

Where  represent the eigenvalues of the above system 2Ω
 

2.6 Illustrative Example: Free Vibration Analysis of a       

Uniform Beam Using G-Spline Interpolation-Based 

DQM: 
The free vibration analysis of a uniform beam as given in equation 

(2.38) with ( ( ) 1)s x =  will be treated in this section, in which two 

combinations of boundary conditions given by (2.40) are considered. 

Applying the approach given in subsection (2.5.1) by considered 

two different sets of HB-problems in the first one the usual differential 

quadrature occurs since we assume that  and 1N K= +

{( ,0), 1,2,..., 1}e i i k= = +

)

 the HB-problem can be reduced to a Lagrange 

problem. While the second set represents that our approach can be 

considered as a generalization to the usual differential quadrature and this 

can be illustrated by the following two cases:  
 

Case1:  

To construct the approximate solution via G-spline-based DQM an 

m-poised HB-problem must chosen. In this case we shall take a 5-poised 

HB- problem with  

1 {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)}e =  

we shall seek 

  where  *
5 1 2 3 4 5 6( ) ( , , , , , ,S x S E x x x x x x∈
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1 0
1 0
1 0
1 0
1 0
1 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and for which   

   ( )
5 1( ) , ( , )j

i iS x W i j e= ∈

First applying the DQM for the simply supported-simply supported 

boundary conditions using the node points (1.71) with  thus we 

have  

6N =

1

(0)
1

(0,2) (0)
1,

( ,0)

(0)
6

0 (

0 (2.44 )

0 (

i i
i e

W a

e W b

W c
∈

=

⋅ =

=

∑

2.44 )

2.44 )

 

1

(0,2) (0)
6,

( ,0)

0 (2.44 )i i
i e

e W d
∈

⋅ =∑  

And the governing equation therefore becomes  

  
1

(0,4) (0) 2 (0)
1

( ,0)

,( ,0) (2.45)ki i i
i e

e W W i e
∈

= Ω ∈∑

Equation (2.44a) and (2.44c) can be easily substituted into equation 

(2.45).  

From equations (2.44b) and (2.44d) one can get and as follows: (0)
2W (0)

5W

*
1

(0) (0)
2

( ,0)

1 1 (i
i e

W AXK W
AXN ∈

= ⋅∑ 2.46 )a  

*
1

(0) (0)
5

( ,0)

1 (2.46 )i
i e

W AXKN W
AXN ∈

= ⋅∑ b  

Where  

  *
1 {(3,0),(4,0)}e =
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(0,2) (0,2) (0,2) (0,2)
1, 6,5 1,5 6,

(0,2) (0,2) (0,2) (0,2) *
1,2 6, 1, 6,2 1

(0,2) (0,2) (0,2) (0,2)
6,2 1,5 1,2 6,5

1

( ,0)
i i

i i

AXK e e e e

AXKN e e e e for i e

AXN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈

2.47 )

2.47 )

2.47 )

 

Thus we have and  in terms of and  and after 

substituting into eq. (2.45) hence we get two equations in two unknowns 

written by eq. (2.43). 

(0)
2W (0)

5W (0)
3W (0)

4W

The natural frequency of the simply supported - simply supported 

given according to this case in table (2.3). 

Secondly applying the DQM for the clamped – simply supported 

boundary conditions will yields to  

  1

1

(0)
1

(0,1) (0)
1,

( ,0)

(0)
6

(0,2) (0)
6,

( ,0)

0 (2.47 )

0 (

0 (

0 (

i i
i e

i i
i e

W a

e W b

W c

e W d

∈

∈

=

=

=

=

∑

∑

And the governing equation still as given in (2.45)  

Similarly eqs. (2.47a) and (2.47c) can be easily substituted into eq. 

(2.45). 

For eqs. (2.47b) and (2.47d) we can get and  in terms of 

and  as given in (2.46) with  

(0)
2W (0)

5W
(0)

3W (0)
4W

 

(0,1) (0,2) (0,1) (0,2)
1, 6,5 1,5 6,

(0,1) (0,2) (0,1) (0,2) *
1,2 6, 1, 6,2 1

(0,1) (0,2) (0,1) (0,2)
6,2 1,5 1,2 6,5

1

( ,0)
i i

i i

AXK e e e e

AXKN e e e e for i e

AXN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

Similarly substituting and  into equation (2.45) similarly 

we get two equations into two unknowns written by equation (2.43). 

(0)
2W (0)

5W
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The natural low frequency of the clamped - simply supported will 

be given for this case in table (2.3). 

It is noted that all the calculations are performed by a computer 

programs written by MATLAB see programs 6 and 7 Appendix A. 

Comparison of the low natural frequency of a uniform beam and the exact 

solution is given in table (2.3). Where the exact solution is given in 

Blevins, [9]. 

Table (2.3) 

Comparison of low natural frequency (Ω ) of a uniform beam using 

G-spline interpolation-based DQM with the exact solution (case 1) 

Boundary Conditions G-spline Exact Error% 

SS-SS 9.8669 9.8696 -0.0027 

C-SS 15.4682 15.4182 0.05 

 

Case2:  
 In this case we shall take a 5-poised HB- problem will be take with  

2 {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)}e =  
we shall seek  

*
5 1 2 3 4 5 6( ) ( , , , , , ,S x S E x x x x x x∈ ) where  

 
1 0
1 0
1 0
0 1
0 1
1 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and for which   
   ( ) ( )

5 2( ) , ( , )j j
i iS x W i j e= ∈

  

Similarly applying the DQM for the simply supported-simply 

supported boundary conditions using the node points (1.71) with  

thus we have  

6N =
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2

2

(0)
1

( ,2) ( )
1,

( , )

(0)
6

( ,2) ( )
6,

( , )

0 (

0 (

0 (2.48 )

0 (2.48 )

j j
i i

i j e

j j
i i

i j e

W a

e W b

W c

e W d

∈

∈

=

=

=

=

∑

∑

2.48 )

2.48 )
 

And the governing equation therefore becomes  

  
2

( ,4) ( ) 2 ( )
, 2

( , )

,( , ) (2.49)j j j
k i i i

i j e

e W W i j e
∈

= Ω ∈∑

Equation (2.48a) and (2.48c) can be easily substituted into eq. (2.49). For 

eqs. (2.48b) and (2.48d) we can get and as follows: (0)
2W (1)

5W

*
2

*
2

(0) ( )
2

( , )

(1) ( )
5

( , )

1 1 (2.50 )

1 (2.50 )

j
i

i j e

j
i

i j e

W AXK W
AXN

W AXKN W
AXN

∈

∈

= ⋅

= ⋅

∑

∑

a

b
 

Where  

  *
2 {(3,0),(4,1)}e =

 

( ,2) (1,2) (1,2) ( ,2)
1, 6,5 1,5 6,

(0,2) ( ,2) ( ,2) (0,2) *
1,2 6, 1, 6,2 2

(0,2) (1,2) (0,2) (1,2)
6,2 1,5 1,2 6,5

1

( , )

j j
i i

j j
i i

AXK e e e e

AXKN e e e e for i j e

AXN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

Thus we have and  in terms of and  and after 

substituting into eq. (2.49) hence we get two equations in two unknowns 

written by eq. (2.43). 

(0)
2W (1)

5W (0)
3W (1)

4W

The low natural frequency of the simply supported - simply 

supported is given in table (2.4). 

Secondly Applying the DQM for the clamped – simply supported  

boundary conditions therefore give:  

    

 59



Chapter Two                                   G-Spline-Based Differential Quadrature and its          
                                                                               Application to a Uniform Beam Problem 

1

1

(0)
1

( ,1) ( )
1,

( , )

(0)
6

( ,2) ( )
6,

( , )

0 (2.51 )

0 (2.51 )

0 (2.51 )

0 (2.51 )

j j
i i

i j e

j j
i i

i j e

W a

e W b

W c

e W d

∈

∈

=

=

=

=

∑

∑

 

The governing equation will be in the form of eq. (2.49). Eqs. (2.51a) and 

(2.51c) can be easily substituted into eq. (2.49). 

From equations (2.51b) and (2.51d) one can find and  in terms 

of  and as given in equations (2.49) with 

(0)
2W (1)

5W
(0)

3W (1)
4W

 

( ,1) (1,2) (1,1) ( ,2)
1, 6,5 1,5 6,

(0,1) ( ,2) ( ,1) (0,2) *
1,2 6, 1, 6,2 2

(0,1) (1,2) (0,1) (1,2)
6,2 1,5 1,2 6,5

1

( , )

j j
i i

j j
i i

AXK e e e e

AXKN e e e e for i j e

AXN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

Substituting and  into (2.49) then the eigenvalue equations 

written by (2.43) will be found. 

(0)
2W (1)

5W

The low natural frequency of the clamped - simply supported will 

be given in table (2.4). 

It is noted that all the calculations are performed by a computer 

programs written by MATLAB see Appendix A programs 8 and 9. 

Following table (2.4) represent a comparison of the low natural 

frequency of a uniform beam with the exact solution. 

Table (2.4) 

Comparison of low natural frequency (Ω ) of a uniform beam using 

G-spline interpolation-based DQM with the exact solution (case 2) 

 Boundary Conditions G-spline Exact Error% 

SS-SS 9.5773 9.8696 -0.1923 

C-SS 15.7376 15.4182 0.3194 
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Chapter Three                           Numerical Solution of Thin Plates problem Using G- Spline- 
Based Differential Quadrature Method 

 

3.1 Introduction 
This chapter is devoted to find the numerical solution of a thin 

plate problem using G-spline-based DQM which consists of four sections. 

In section 3.2 the differential quadrature analysis of a thin plate problem 

will be presented, while section 3.3 is related to the direct substitution of 

the boundary conditions into the discrete governing equation. Finally a 

numerical example will be given in section 3.4. 
 

3.2 Differential Quadrature Analysis of Thin Plates 
In this section, the application of the G-spline interpolation-based 

DQM will be illustrated in the structural and vibration analysis of thin 

plates problem. In which, only the rectangular plate will be considered. 
 

3.2.1 The Governing Equations and Boundary Conditions 
Deflection, free vibration and buckling are two typical problems 

for a plate. The non-dimensional governing equations for these two cases 

can be written as [28]: 

Plate deflection 
4 4 4 4

2 4
4 2 2 4

( , )2 (W W W a q X Y
X X Y Y D

λ λ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
3.1)  

transverse vibration of thin, isotropic plates 
4 4 4

2 4 2
4 2 2 42 (3.2)W W W W

X X Y Y
λ λ∂ ∂ ∂

+ + = Ω
∂ ∂ ∂ ∂

 

buckling of a plate under uniaxial compression 
4 4 4 2 2

2 4
4 2 2 4 22 (xW W W N a W

X X Y Y D X
λ λ∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂ ∂

3.3)  

Where  is the dimensionless mode shape function,  is the 

external distributed load, 

W ( , )q X Y

Ω  is the dimensionless frequency, 

and are dimensionless coordinates, a  and b are the /X x= a /Y y b=
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lengths of the plate edges, /a bλ = is the aspect ratio, and xN  is the 

uniaxial load. Furthe more, 2 /aω ρΩ = D , where ω  is the 

dimensionless circular frequency,  is the flexural 

rigidity, E, v, 

3 / [12(1 )]D E h v= 2−

ρ  and h are Young's modulus, Poisson's ratio, the density 

of the plate material, and the plate thickness, respectively. It should be 

mentioned that the above equations do not cover all the cases. For 

example, for free vibration of the anisotropic plats, eq. (3.2) has to be 

changed to include more terms. Eq. (3.3) can be modified to consider 

buckling under different compressions. 

The governing equation for a thin plate is a 4th order partial 

differential equation with respect to X and Y. It requires two boundary 

conditions at each edge. There are three basic boundary conditions. For 

free vibration analysis, these boundary conditions are 
 

Simply supported edge (SS)
2

20
1

0, 0 (3.4 )
X

X

WW a
X=

=

∂
= =

∂
  

2

20
1

0, 0 (3.4 )
Y

Y

WW b
Y=

=

∂
= =

∂
   

Clamped edge (C)

0
1

0, 0 (3.5 )
X

X

WW a
X=

=

∂
= =

∂
   

0
1

0, 0 (3.5 )
Y

Y

WW b
Y=

=

∂
= =

∂
 

 

 

 63



Chapter Three                           Numerical Solution of Thin Plates problem Using G- Spline- 
Based Differential Quadrature Method 

Free edge (F) 
2 2 3 3

2 2
2 2 3 2

0 1

0, (2 ) 0 (3.6 )
X X

W W W Wv v
X Y X X Y

λ λ
= =

∂ ∂ ∂ ∂
+ = + − =

∂ ∂ ∂ ∂ ∂
a

 
2 2 3 3

2 2
2 2 3 2

0 1

0, (2 ) 0 (3.6 )
Y Y

W W W Wv v
Y X Y X Y

λ λ
= =

∂ ∂ ∂ ∂
+ = + − =

∂ ∂ ∂ ∂ ∂
b

 

and 
2

0 (W c
X Y
∂

=
∂ ∂

3.6 )

X≤ ≤ 1.

 

at the corner of two adjacent free edges. 
 

3.2.2 Numerical Discretization of the Problem 
The computational domain of a rectangular plate is 

 For numerical computation, we need to perform a 

mesh generation first. As for the case of the plate, the mesh generation in 

the X and Y directions are given by:  

0 1, 0 Y≤ ≤

1
2

11 cos , 1,2,..., (3.7 )
1i

iX i N
N

π⎡ − ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
a

 1
2

11 cos , 1,2,..., (3.7 )
1r

rY r M
M

π⎡ − ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
b  

Where  and N M are the number of the grid points in the X and Y 

directions respectively. With the coordinates of the mesh points given by 

eq.(3.7), the G-spline-based DQ weighting coefficients can be easily 

computed. These weighting coefficients can be used to discretize eqs. 

(3.1) and (3.3). Let ( , )
,
j n

k ie  be the DQ weighting coefficients of the n− th 

order derivative in the X direction, and 
( , )

,
s m

h re  be the DQ weighting 
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coefficients of the m th order derivative in the Y direction. Using the 

DQM, eq. (3.1) may be discretized as  

−

1 1 2 2

( , 2) ( ,4)( ,4) ( , ) 2 ( , 2) ( , ) 4 ( , )
, ,, , , , ,

( , ) ( , ) ( , ) ( , )

4
,

1 2

2

,( , ) ,( , ) , 1,2,..., , 1,2,..., (3.8)

s sj j s j j s j s
h r h rk i i r k i i r i r

i j e i j e r s e r s e

i r

e W e e W e W

a q
i j e r s e k N h M

D

λ λ
∈ ∈ ∈ ∈

+ +

= ∈ ∈ = =

∑ ∑ ∑ ∑

 

and eq. (3.2) is discretized as 

1 1 2 2

( ,2) ( ,4)( ,4) ( , ) 2 ( ,2) ( , ) 4 ( , )
, ,, , , , ,

( , ) ( , ) ( , ) ( , )

2 ( , )
, 1 2

2

,( , ) ,( , ) , 1,2,..., , 1,2,..., (3.9)

s sj j s j j s j s
h r h rk i i r k i i r i r

i j e i j e r s e r s e

i s
i r

e W e e W e W

W i j e r s e k N h M

λ λ
∈ ∈ ∈ ∈

+ +

= Ω ∈ ∈ = =

∑ ∑ ∑ ∑

 

In a similar manner, eq. (3.3) is discretized as 

1 1 2 2

1

( , 2) ( ,4)( ,4) ( , ) 2 ( , 2) ( , ) 4 ( , )
, ,, , , , ,

( , ) ( , ) ( , ) ( , )

2
( ,2) ( , )

, , 1 2
( , )

2

,( , ) ,( , ) 1,2,..., , 1,2,...,

(3.10)

s sj j s j j s j s
h r h rk i i r k i i r i r

i j e i j e r s e r s e

j j sx
k i i r

i j e

e W e e W e W

a N e W i j e r s e k N h M
D

λ λ
∈ ∈ ∈ ∈

∈

+ +

= ∈ ∈ =

∑ ∑ ∑ ∑

∑ =

Where ( , )
,

( , )i r

j s
j s

i r j s
x y

WW
+

+

∂
=

∂
 is ( )thj s+  derivative at the grid point 

( ,i r )X Y . After implementation of the boundary conditions, eq. (3.8) can 

be written in matrix form as it is given in eq (1.86), similarly, eq. (3.9) 

can be given in the same form as eq. (1.87), and eq. (3.10) can also be 

given into a similar form as in eq. (1.88). The solution techniques for the 

three matrix forms have been described in chapter two. 
 

3.3 Direct Substitution of Boundary Conditions into Discrete 

      Governing   Equation 
The idea behind this approach is the same as that for the beam 

problem. It was presented by Shu and Du [24], to implement the simply 
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supported and clamped conditions. The derivatives in the boundary 

condition are also discretized by the DQM. The discrete form of any 

combination of the clamped and simply supported conditions may be 

given as  

     ( , ) ( , ) ( , ) ( , )
1, , ,1 ,0, 0, 0, 0 (3.11 )j s j s j s j s

r N r i i MW W W W= = = = a

1 )0

1

( , ) ( , )
1, ,

( , )

. 0 0 (3.1j n j s
i i r

i j e

e W at X b
∈

= =∑                               

1

1

( , ) ( , )
. ,

( , )

. 0 1 (3.11 )j n j s
N i i r

i j e

e W at X c
∈

= =∑                                

0

2

( , ) ( , )
1, ,

( , )

. 0 0 (3.1
s m j s
r i r

r s e

e W at Y d
∈

= =∑ 1 )                               

1

2

( , ) ( , )
, ,

( , )

. 0 1 (3.11 )
s m j s

M r i r
r s e

e W at Y e
∈

= =∑                               

where , ,  and are taken as either 1or 2, where 1 is used for the 

clamped edge condition and 2 is used for the simply supported edge 

condition. , ,  and  correspond to the edges of  X = 0, X = 1, Y 

= 0, Y = 1, respectively. It is noted that eq. (3.11a) corresponds to the 

Dirichlet boundary condition at the four edge of the plate, and eqs. 

(3.11b), (3.11c), (3.11d) and (3.11e) result from the derivative boundary 

conditions. Obviously, eq. (3.11a) can be easily substituted into Equation 

(3.9). However, eqs. (3.11b), (3.11c), (3.11d) and (3.11e) cannot be 

directly substituted into eq. (3.9). This difficulty can be easily overcome. 

Using the same procedure as for the beam, eqs. (3.11b), (3.11c) can be 

coupled to give two solution    and , where 

on 1n 0m 1m

on 1n 0m 1m

1( , )
2,

j s
rW 2( , )

1,
j s

N rW − 1j  and 2j  

represent the minimum partial order derivative of  W with respect to at X

2X  and  respectively, which are located at the grid points shown by 

the symbol ○ in Fig. (3.1) 

1NX −
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 1

*
1

( , ) ( , )
2, ,

( , )

1 1 (3.12 )j s j s
r i r

i j e

W AXK W
AXN ∈

= ⋅∑ a  

2

*
1

( , ) ( , )
1, ,

( , )

1 (3.12 )j s j s
N r i r

i j e

W AXKN W
AXN−

∈

= ⋅∑ b  

*
1 1 1 23,4,..., 2, \ {(2, ),( 1, )}for r M e e j N j= − = −   

Where  

for   *
1( , )i j e∈

   

0 01 1

0 01 1

0 01 1

( , ) ( , )( , ) ( , )
,2 1, 1 1,2 , 1

( , ) ( , )( , ) ( , )
1, , 1 1, 1 ,

( , ) ( , )( , ) ( , )
1,2 , 1, ,2

1

j n j nj n j n
N N N N

j n j nj n j n
i N N N N i

j n j nj n j n
N i i N

AXN e e e e

AXK e e e e

AXKN e e e e

− −

− −

= −

= −

= −

 
 
 
 
 
 
 
 
 

Figure (3.1) Illustration of interior and adjacent points for a rectangular plate 
 
 Similarly, eqs. (3.11d) and (3.11e) can be coupled to give two 

solutions W  and  W1( , )
,2
j s

i
2( , )

, 1
j s

i M −  , where 1s and 2s  represent the minimum 

partial order derivative of W with respect to Y at and 2Y 1MY −  

respectively. Which are located at the grid points shown by the symbol □ 

in Fig. (3.1), 

    1

*
2

( , ) ( , )
,2 ,

( , )

1 1 (3.13 )j s r s
i i r

r s e

W A  Y K W a
AY M ∈

= ⋅∑

 2

*
2

( , ) ( , )
, 1 ,

( , )

1 (3.13 )j s r s
i M i r

r s e

W AY KM W
AY M−

∈

= ⋅∑ b  

 
 *

2 2 1 23,4,... 2, \ {(2, ),( 1, )}for i N e e s M s= − = −
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where  
 
for  *

2( , )r s e∈
  

 

1 0 0 1

0 1 0 1

0 1 0 1

( , ) ( , ) ( , ) ( , )
,2 1, 1 1,2 , 1

( , ) ( , ) ( , ) ( , )
1, , 1 1, 1 ,

( , ) ( , ) ( , ) ( , )
1,2 , 1, ,2

1

s m s m s m s m
M M M M

s m s m s m s m
r M M M M r

s m s m s m s m
M r r M

AY N e e e e

AY K e e e e

AY KM e e e e

− −

− −

= −

= −

= −

 

 
For the points near the four corners shown by the symbol ■ in Fig. 

(3.1), the four eqs. (3.11b), (3.11c), (3.11d) and (3.11e) have to be 

coupled to provide the following four solutions:  

1 1

1 2

( , ) ( , )
2,2 ,

( , ) ( , )

1 1 1 1 (3.14j s j s
i r

i j e r s e

W AXK AY K W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ )a

 
2 1

1 2

( , ) ( , )
1,2 ,

( , ) ( , )

1 1 1 (3.j s j s
N i r

i j e r s e
W AXKN AY K W

AXN AY M−
∈ ∈

= ⋅ ⋅∑ ∑ 14 )b

 
1 2

1 2

( , ) ( , )
2, 1 ,

( , ) ( , )

1 1 1 (j s j s
M i r

i j e r s e
W AXK AY KM W

AXN AY M−
∈ ∈

= ⋅ ⋅∑ ∑ 3.14 )c

 
2 2

1 2

( , ) ( , )
1, 1 ,

( , ) ( , )

1 1 (3.14 )j s j s
N M i r

i j e r s e
W AXKN AY KM

AXN AY M− −
∈ ∈

= ⋅∑ ∑ W d⋅

Ω

 
 

With eqs. (3.11a), (3.12), (3.13) and (3.14), all the boundary conditions 

can be directly substituted into eq. (3.9). As a result, the final system 

eigenvalue equation (3.9) of becomes: 

1 1 2 2

( , ) 2 ( , ) 4 ( , ) 2 ( , )
1 , 2 , 3 , ,

( , ) ( , ) ( , ) ( , )

1 2

2 ,

( , ) ,( , ) (3.15)

j s j s j s j s
i r i r i r i r

i j e i j e r s e r s e
C W C W C W W

i j e r s e

λ λ
∈ ∈ ∈ ∈

+ + =

∈ ∈

∑ ∑ ∑ ∑  

Where  
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( ,4) ( ,4)
,2 , 1( ,4)

1 ,

1
,

j j
k k Nj

k i

e AXK e AXKN
C e

AXN
−+

= −  

( ,2) ( ,2)
( ,2) ( ,2),2 , 1( ,2)

, ,2 ,

( ,2) ( ,2)
,2 , 1 ( ,2)

,

( ,2) ( ,2)( ,2) ( ,2)
,2 ,2,2 , 1

(
,2

( 1 )

( 1 )

( 1 1 1 )

( 1

j j
s sk k Nj

h r h rk i

s s
h h M j

k i

s sj s
h hk k

k

AXK e AXKN e
C e e e

AXN

AY K e AY KM e e
AY M

AXK AY K e e AXKN AY K e e
AXN AY M

AXK AY KM e

−

−

−

⋅ + ⋅
= − −

⋅ + ⋅
+

⋅ ⋅ ⋅ + ⋅ ⋅
+

⋅

⋅ ⋅

N

( ,2) ( ,2),2) ( ,2)
, 1 , 1, 1 )

s sj j
h M h Mk Ne AXKN AY KM e e
AXN AY M

− −−+ ⋅ ⋅
⋅

 

( ,4) ( ,4)
( ,4) ,2 , 1

,3
1

s s
s h h M

h r
e AY K e AY KMC e

AY M
−⋅ + ⋅

= −  

 

Eq. (3.15) gives a system of ( 4) ( 4)N M− × − algebraic equations with 

 unknowns. ( 4) ( 4N M− × − )
 

3.4 The Free Vibration Analysis of Square Plates: 
In this section the free vibration analysis of square plates as given 

in equation (3.9) with ( 1)λ =  will be solve numerically using proposed 

approach. 

Applying the approach given in section (3.3) by considering two 

different sets of HB- problems to find the solution of such problem which 

are considered in the following cases: 
 

Case1:  

In this case we shall take a 5-poised HB- problems given for 

and  respectively by the sets  X ,Y

  1 {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)}e =   

   2 {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)}e =  
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With the node points given by (3.7) taking 6N =  and  6M = . First 

applying the G-spline interpolation-based DQM for the simply supported 

– simply supported – simply supported – simply supported boundary 

conditions, thus we have for , 1,2,3,4,5,6i r = :  
(0,0) (0,0) (0,0) (0,0)

1, 6, ,1 ,60, 0, 0, 0 (3.16 )r r i iW W W W= = = = a  

1

(0,2) (0,0)
1, ,

( ,0)

. 0 0 (3.16 )i i r
i e

e W at X b
∈

= =∑                            

1

(0,2) (0,0)
6. ,

( ,0)

. 0 1 (3.16 )i i r
i e

e W at X c
∈

= =∑                             

2

(0,2) (0,0)
1, ,

( ,0)

. 0 0 (3.16 )r i r
r e

e W at Y d
∈

= =∑                            

2

(0,2) (0,0)
6, ,

( ,0)

. 0 1 (3.16 )r i r
r e

e W at Y e
∈

= =∑                             

Equations (3.16b) and (3.16c) may be coupled to give two solution  

  and  , which are given for (0,0)
2,rW (0,0)

5,rW 3,4r =  by: 

*
1

(0,0) (0,0)
2, ,

( ,0)

1 1 (3.17 )r i r
i e

W AXK W
AXN ∈

= ⋅∑ a  

*
1

(0,0) (0,0)
5, ,

( ,0)

1 (3.17 )r i r
i e

W AXKN W
AXN ∈

= ⋅∑ b

,0)

 

Where:  

   *
1 {(3,0),(4,0)}e =

 

(0,2) (0,2) (0,2) (0,2)
6,2 1,5 1,2 6,5

(0,2) (0,2) (0,2) (0,2) *
1, 6,5 1,5 6, 1

(0,2) (0,2) (0,2) (0,2)
1,2 6, 1, 6,2

1 (i i

i i

AXN e e e e

AXK e e e e for i e

AXKN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

Similarly, eqs. (3.16d) and (3.16e) can be coupled to give two solutions 

 and   given by:  (0,0)
,2iW (0,0)

,5iW
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*
2

(0,0) (0,0)
,2 ,

( ,0)

1 1 (3.18 )i i r
r e

W AY K W
AY M ∈

= ⋅∑ a  

   
*
2

(0,0) (0,0)
,5 ,

( ,0)

1 (3.18 )i i r
r e

W AY KM W
AY M ∈

= ⋅∑ b  

3,4for i =   
where  

*
2 {(3,0),(4,0)}e =  

 
(0,2) (0,2) (0,2) (0,2)
6,2 1,5 1,2 6,5

(0,2) (0,2) (0,2) (0,2) *
1, 6,5 1,5 6, 2

(0,2) (0,2) (0,2) (0,2)
1,2 6, 1, 6,2

1 (r r

r r

AY M e e e e

,0)AY K e e e e for r e

AY KM e e e e

⎫= −
⎪
⎪= − ⎬
⎪

= − ⎪⎭

∈  

 
Four eq.s (3.16b), (3.16c), (3.16d) and (3.16e) have to be coupled to 

provide the following four solutions  

1 2

(0,0) (0,0)
2,2 ,

( ,0) ( ,0)

1 1 1 1 (3.19i r
i e r e

W AXK AY K W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ )a  

1 2

(0,0) (0,0)
5,2 ,

( ,0) ( ,0)

1 1 1 (3.19 )i r
i e r e

W AXKN AY K W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ b  

1 2

(0,0) (0,0)
2,5 ,

( ,0) ( ,0)

1 1 1 (i r
i e r e

W AXK AY KM W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ 3.19 )c  

1 2

(0,0) (0,0)
5,5 ,

( ,0) ( ,0)

1 1 (3.19 )i r
i e r e

W AXKN AY KM W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ d  

 

With eqs. (3.16a), (3.17), (3.18) and (3.19), all the boundary conditions 

can be directly substituted into Equation (3.9). As a result, the final 

eigenvalue equation system becomes 
(0,0) 2 (0,0)
, , 1 2[ ]{ } { } ( ,0) ,( ,0) (3.20)i r i rA W W for i e r e= Ω ∈ ∈  

 

The low natural frequency of the simply supported – simply 

supported - simply supported – simply supported will be given in table 

(3.1). 
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Secondly applying the DQM for the clamped –clamped – clamped 

–clamped boundary conditions therefore for , 1,2,3,4,5,6i r =  yields to: 

    (0,0) (0,0) (0,0) (0,0)
1, 6, ,1 ,60, 0, 0, 0  (3.21 )r r i iW W W W= = = = a

1 )                             
1

(0,1) (0,0)
1, ,

( ,0)

. 0 0 (3.2i i r
i e

e W at X b
∈

= =∑

1

(0,1) (0,0)
6. ,

( ,0)

. 0 1 (3.21 )i i r
i e

e W at X c
∈

= =∑                             

2

(0,1) (0,0)
1, ,

( ,0)

. 0 0 (3.21 )i i r
r e

e W at Y d
∈

= =∑                             

2

(0,1) (0,0)
6, ,

( ,0)

. 0 1 (3.21 )i i r
r e

e W at Y e
∈

= =∑                              

Equations (3.21b) and (3.21c) can be coupled together to give two 

solution    and  . As given in (3.17) with (0,0)
2,rW (0,0)

5,rW

 

(0,1) (0,1) (0,1) (0,1)
6,2 1,5 1,2 6,5

(0,1) (0,1) (0,1) (0,1) *
1, 6,5 1,5 6, 1

(0,1) (0,1) (0,1) (0,1)
1,2 6, 1, 6,2

1 (i i

i i

AXN e e e e

,0)AXK e e e e for i e

AXKN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

 
Similarly, eqs. (3.21d) and (3.21e) can be coupled also to give two 

solutions  and  . As given in (3.18) with   (0,0)
,2iW (0,0)

,5iW

 

(0,1) (0,1) (0,1) (0,1)
6,2 1,5 1,2 6,5

(0,1) (0,1) (0,1) (0,1) *
1, 6,5 1,5 6, 2

(0,1) (0,1) (0,1) (0,1)
1,2 6, 1, 6,2

1 (r r

r r

AY M e e e e

,0)AY K e e e e for r e

AY KM e e e e

⎫= −
⎪
⎪= − ⎬
⎪

= − ⎪⎭

∈  

  
Four eqs. (3.21b), (3.21c), (3.21d) and (3.21e) which have to be coupled 

to provide by (3.19), with AXN, AXK1, AXKN, AYM, AYK1, and 

AYKM are give above. 
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The natural low of frequency of the clamped – clamped – clamped 

–clamped boundary conditions will be given in table (3.1).  

It is noted that all the calculations are performed by a computer 

programs written in MATLAB (see Appendix A) programs 10 and 11. 
 

Table 3.1 

Comparison of natural low frequency (Ω ) of a square plate using G-

spline interpolation-based differential quadrature with the exact 

solution given by Leissa [14] using case1. 
Boundary Conditions      Ω (DQM) Ω [14] 

SS-SS-SS-SS 19.0665 19.0970 

 C-C-C-C          36.4037 36.4441 

 

 Case2:  

In this case we shall consider another 5-poised HB sets for and 

respectively given by:   

X

Y

  1 {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)}e =

  2 {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)}e =
 

With the node points given by (3.7) with 6N =  and 6M =  and first 

applying the G-spline interpolation-based DQM for the simply supported 

– simply supported – simply supported – simply supported boundary 

conditions, thus for getting: , 1,2,3,4,5,6i r =

     ( , ) ( , ) ( , ) ( , )
1, 6, ,1 ,60, 0, 0, 0  (3.22 )j s j s j s j s

r r i iW W W W= = = = a

1

( ,2) ( , )
1, ,

( , )

. 0 0 (3.22 )j j s
i i r

i j e

e W at X b
∈

= =∑                             

1

( ,2) ( , )
6. ,

( , )

. 0 1 (3.22 )j j s
i i r

i j e

e W at X c
∈

= =∑                             
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2

( ,2) ( , )
1, ,

( , )

. 0 0 (3.2
s j s
i i r

r s e

e W at Y d
∈

= =∑ 2 )                             

2

( ,2) ( , )
6, ,

( , )

. 0 1 (3.22 )
s j s
i i r

r s e

e W at Y e
∈

= =∑                             

Equations (3.22b) and (3.22c) can be coupled together to give two 

solutions, namely  (0, )
2,

s
rW   and  (1, )

5,
s

rW  and for 3,4r =  are defined by:  

*
1

(0, ) ( , )
2, ,

( , )

1 1 (3.23 )s j s
r i r

i j e

W AXK W
AXN ∈

= ⋅∑ a  

*
1

(1, ) ( , )
5, ,

( , )

1 (3.23 )s j s
r i r

i j e

W AXKN W
AXN ∈

= ⋅∑ b

, )

 

Where:  

  *
1 {(3,0),(4,1)}e =

 

( ,2) ( ,2) ( ,2) ( ,2)
6,2 1,5 1,2 6,5

( ,2) ( ,2) ( ,2) ( ,2) *
1, 6,5 1,5 6, 1

( ,2) ( ,2) ( ,2) ( ,2)
1,2 6, 1, 6,2

1 (

j j j j

j j j j
i i

j j j j
i i

AXN e e e e

AXK e e e e for i j e

AXKN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

Similarly, eqs. (3.22d) and (3.22e) can be coupled to give two solutions 

 and  W . ( ,0)
,2
j

iW ( ,1)
,5
j

i

 
*
2

( ,0) ( , )
,2 ,

( , )

1 1 (3.24 )j j s
i i r

r s e

W AY K W
AY M ∈

= ⋅∑ a  

  
*
2

( ,1) ( , )
,5 ,

( , )

1 (3.24 )j j s
i i r

r s e

W A  Y KM W b
AY M ∈

= ⋅∑

3,0),(4,1)}

 
 

3,4for i =

where 
  {(e =  *

2

 

( ,2) ( ,2) ( ,2) ( ,2)
6,2 1,5 1,2 6,5

( ,2) ( ,2) ( ,2) ( ,2) *
1, 6,5 1,5 6, 2

( ,2) ( ,2) ( ,2) ( ,2)
1,2 6, 1, 6,2

1 (

s s s s

s s s s
r r

s s s s
r r

AY M e e e e

, )AY K e e e e for r s e

AY KM e e e e

⎫= −
⎪
⎪= − ⎬
⎪

= − ⎪⎭

∈  
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Four eqs. (3.22b), (3.22c), (3.22d) and (3.22e) have to be coupled also to 

provide the following four solutions  

1 1

1 2

( , ) ( , )
2,2 ,

( , ) ( , )

1 1 1 1 (3.25j s j s
r s

i j e r s e

W AXK AY K W
AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ )a  

2 1

1 2

( , ) ( , )
5,2 ,

( , ) ( , )

1 1 1 (3.j s j s
r s

i j e r s e
W AXKN AY K W

AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ 25 )b  

1 2

1 2

( , ) ( , )
2,5 ,

( , ) ( , )

1 1 1 (3.25 )j s j s
r s

i j e r s e
W AXK AY KM W

AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ c  

2 2

1 2

( , ) ( , )
5,5 ,

( , ) ( , )

1 1 (3.25 )j s j s
r s

i j e r s e
W AXKN AY KM

AXN AY M ∈ ∈

= ⋅ ⋅∑ ∑ W d  

 

With eqs. (3.22a), (3.23), (3.24) and (3.25), all the boundary 

conditions can be directly substituted into eq. (3.9). As a result, the final 

eigenvalue equation system becomes 

  ( , ) 2 ( , )
, , 1 2[ ]{ } { } ( , ) ,( , ) (3.26)j s j s

i r i rA W W for i j e r s e= Ω ∈ ∈

The natural low frequency of the simply supported – simply 

supported - simply supported – simply supported will be given in table 

(3.2). 

Secondly Applying the DQM for the clamped –clamped – clamped 

–clamped boundary conditions therefore for , 1,2,3,4,5,6i j = getting: 

1

1

2

( , ) ( , ) ( , ) ( , )
1, 6, ,1 ,6

( ,1) ( , )
1, ,

( , )

( ,1) ( , )
6. ,

( , )

( ,1) ( , )
1, ,

( , )

( ,1) ( ,
6, ,

0, 0, 0, 0   (3.27 )

. 0 0 (3.27 )

. 0 1 (3.27 )

. 0 0 (3.27 )

.

j s j s j s j s
r r i i

j j s
i i r

i j e

j j s
i i r

i j e

s j s
i i r

r s e

s j s
i i r

W W W W

e W at X b

e W at X c

e W at Y d

e W

∈

∈

∈

= = = =

= =

= =

= =

∑

∑

∑

2

)

( , )

0 1 (3.2
r s e

at Y e
∈

= =∑

a

7 )
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Equations (3.27b), (3.27c) can be coupled to given two solution  (0, )
2,

s
rW   

and  (1, )
5,

s
rW a given in (3.17) with 

  

( ,1) ( ,1) ( ,1) ( ,1)
6,2 1,5 1,2 6,5

( ,1) ( ,1) ( ,1) ( ,1) *
1, 6,5 1,5 6, 1

( ,1) ( ,1) ( ,1) ( ,1)
1,2 6, 1, 6,2

1 (

j j j j

j j j j
i i

j j j j
i i

AXN e e e e

, )AXK e e e e for i j e

AXKN e e e e

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

∈  

 
Similarly, Equation (3.27d) and (3.27e) can be coupled to give two 

solutions  and  a given in (3.18) with   ( ,0)
,2
j

iW ( ,1)
,5
j

iW

     

( ,1) ( ,1) ( ,1) ( ,1)
6,2 1,5 1,2 6,5

( ,1) ( ,1) ( ,1) ( ,1) *
1, 6,5 1,5 6, 2

( ,1) ( ,1) ( ,1) ( ,1)
1,2 6, 1, 6,2

1 (

s s s s

s s s s
r r

s s s s
r r

AY M e e e e

, )AY K e e e e for r s e

AY KM e e e e

⎫= −
⎪
⎪= − ⎬
⎪

= − ⎪⎭

∈  

  
Four eqs. (3.27b), (3.27c), (3.27d) and (3.27e) have to be coupled to 

provide by (3.25), with AXN, AXK1, AXKN, AXM, AXK1 and AXKM 

are given above.  

The natural low frequency of the clamped – clamped – clamped –

clamped will be given in table (3.2). 

It is noted that all the calculations are performed by a computer 

programs written by MATLAB see Appendix A programs 12 and 13. 

 

Table 3.2 

Comparison of natural low frequency (Ω ) of a square plate using G-

spline interpolation-based differential quadrature with the exact 

solution given by Leissa [14] using case 2 

Boundary Conditions      Ω (DQM) Ω [14] 

SS-SS-SS-SS 19.1797 19.0970 

 C-C-C-C          36.9222 36.4441 
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Conclusion and Recommendations for Future work 
 
 

From the present study of this thesis, the following conclusion may  

be drawn: 

1- Differential quadrature method can be considered as a powerful            

tool to find the numerical solution of differential equations. 

2- The G-spline-based DQM can be considered as a generalization to 

      the usual DQM.            

3- The G-spline-based DQM gave reasonable results in which we 

used a small number of node points in the computations. 

 
 

For the future work, we may suggest the following: 

1- Using the DQM to solve non-local boundary value problems.  

2- Studying the numerical solution of fractional order differential 

equations using polynomial based DQM or spline-based DQM. 

3- Studying the numerical solution of differential equations using G-

spline-based DQM with the modification of weighting coefficient 

matrices. 

4- Studying the numerical solution of partial fractional order 

differential equations using G-spline-based DQM. 
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Appendix A 

Computer programs 
 
 
Program 1:-  
n= 21 ; 
x(1) = 0 ; 
x(n) = 1 ; 
for i = 1 :n-4 
tt(i)=-1;  
end 
for i = 2:n-1 
x(i)=x(1)+(1/2)*(1-cos((i-1)*(3.142)/(n-1)))*(x(n)-x(1));    
end 
for i = 1:n 
w(i)=(1/48)*(x(i)^2)*((5*x(i)-2*(x(i)^2)-3.0)); 
end 
for i = 1 : n  
for j = 1 : n 
z = 1; 
for k = 1:n 
if (k ~= i) && (k ~= j)  
r1 = (x(i)-x(k))/(x(j)-x(k)); 
z = z * r1; 
end 
end 
if i ~= j ; 
a(i,j) = (1/(x(j)-x(i)))*z ;  
end 
end 
end 
for i = 1 : n  
a(i,i) = 0 ; 
for j = 1 : n 
if i ~= j ; 
a(i,i) = ( a(i,i)+ a(i,j));  
end 
end 
a(i,i) = -1* a(i,i) ; 
end 
for i = 1 : n  
for j = 1 : n 
r(i,j)=0; 
for k = 1 : n 
r(i,j)= r(i,j)+(a(i,k)*a(k,j)); 
end 
b(i,j)=r(i,j); 
end 
end 
for i = 1 : n  
for j = 1 : n 
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r1=0; 
for k = 1 : n 
r1= r1+(a(i,k)*b(k,j)); 
end 
e3(i,j)=r1; 
end 
end 
for i = 1 : n  
for j = 1 : n 
r2(i,j)=0; 
for k = 1 : n 
r2(i,j)=r2(i,j)+(a(i,k)*e3(k,j)); 
end 
e4(i,j)=r2(i,j); 
end 
end 
for i = 3 : n-2  
for j = 3 : n-2 
t1= a(1,j)*b(n,n-1)-a(1,n-1)*b(n,j); 
t2= a(1,2)*b(n,j)-a(1,j)*b(n,2); 
t3  = b(n,2)*a(1,n-1)-a(1,2)*b(n,n-1); 
v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
c2 = inv (c1)*tt'; 
for j = 3 : n-2 
u = u+ a(1,j)*c2(j-2); 
y = y + b(n,j)*c2(j-2); 
end 
k(1)=-1*u; 
k(2)=-1*y; 
s(1,1)=a(1,2); 
s(1,2)=a(1,20); 
s(2,1)=b(21,2); 
s(2,2)=b(21,20); 
mm = inv (s)*k'; 
ww(1)=0.0; 
ww(2)=mm(1); 
for i=3:n-2 
ww(i)=c2(i-2); 
end 
w(n-1)=mm(2); 
ww(n)=0.0; 
(abs(w)-abs(ww))' 
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Program 2:-
n= 15 ; 
x(1) = 0 ; 
x(n) = 1 ; 
for i = 1 : 17 
tt(i)=-1;  
end 
for i = 2:n-1 
x(i)=x(1)+(1/2)*(1-cos((i-1)*(3.142)/(n-1)))*(x(n)-x(1));    
end 
for i = 1:n 
w(i) = (1/48)*(x(i)^2)*((5*x(i)-2*(x(i)^2)-3.0)); 
end 
for i = 1 : n  
for j = 1 : n 
z = 1; 
for k = 1:n 
if (k ~= i) && (k ~= j)  
r1 = (x(i)-x(k))/(x(j)-x(k)); 
z = z * r1 ; 
end 
end 
if i ~= j ; 
a(i,j) = (1/(x(j)-x(i)))*z ;  
end 
end 
end 
for i = 1 : n  
a(i,i) = 0 ; 
for j = 1 : n 
if i ~= j ; 
a(i,i) = ( a(i,i)+ a(i,j));  
end 
end 
a(i,i) = -1* a(i,i) ; 
end 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
t1= b(1,j)*b(n,n-1)-b(1,n-1)*b(n,j); 
t2= b(1,2)*b(n,j)-b(1,j)*b(n,2); 
t3  = b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1); 
v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
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end 
v1=(eig(v)); 
for i=1:n-4 
(v1(i))^.5 
end 
 
Program 3:-
n= 15 ; 
x(1) = 0 ; 
x(n) = 1 ; 
for i = 1 : 17 
tt(i)=-1;  
end 
for i = 2:n-1 
x(i)= x(1)+(1/2)*(1-cos((i-1)*(3.142)/(n-1)))*(x(n)-
x(1));    
end 
for i = 1:n 
w(i) = (1/48)*(x(i)^2)*((5*x(i)-2*(x(i)^2)-3.0)); 
end 
for i = 1 : n  
for j = 1 : n 
z = 1; 
for k = 1:n 
if (k ~= i) && (k ~= j)  
r1 = (x(i)-x(k))/(x(j)-x(k)); 
z = z * r1 ; 
end 
end 
if i ~= j ; 
a(i,j) = (1/(x(j)-x(i)))*z ;  
end 
end 
end 
for i = 1 : n  
a(i,i) = 0 ; 
for j = 1 : n 
if i ~= j ; 
a(i,i) = ( a(i,i)+ a(i,j));  
end 
end 
a(i,i) = -1* a(i,i) ; 
end 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
t1= b(1,j)*a(n,n-1)-b(1,n-1)*a(n,j); 
t2= b(1,2)*a(n,j)-b(1,j)*a(n,2); 
t3= b(n,2)*a(1,n-1)-b(1,2)*a(n,n-1); 
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v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
v1=(eig(v)); 
for i=1:n-4 
(v1(i))^.5 
end 
 
Program 4:-
n= 6; 
x(1) = 0 ; 
x(n) = 1 ; 
for i = 1 : n-4 
tt(i)=-1; 
end 
a=[69.0972,-51.2641.5906,-169.6349,170.8088,-
85.5966;44.8789,-97.8936,104.3358,102.2127,101.9542,-
50.9635;8.8931,-18.8908,15.2475,-11.7038,13.1703,-
6.7216;-0.6083,1.4726,-2.90442,-0.6976,4.3496,-
1.6216;0.9749,-0.8755,1.4228,-3.6459,-2.7209,5.4315;-
0.9078,2.0384,-2.9197,5.6686,-20.8738,16.97796]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2 
for j = 3 : n-2 
t1= a(1,j)*b(n,n-1)-a(1,n-1)*b(n,j); 
t2= a(1,2)*b(n,j)-a(1,j)*b(n,2); 
t3  = b(n,2)*a(1,n-1)-a(1,2)*b(n,n-1); 
v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3); 
end 
end 
for i = 1 : n-4 
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
c2 = inv (c1)*tt'; 
format long e; 
for j = 3 : n-2 
u = u+ a(1,j)*c2(j-2); 
y = y + b(n,j)*c2(j-2); 
end 
k(1)=-1*u; 
k(2)=-1*y; 
s(1,1)=a(1,2); 
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s(1,2)=a(1,5); 
s(2,1)=b(6,2); 
s(2,2)=b(6,5); 
mm = inv (s)*k'; 
ww(1)=0.0; 
ww(2)=mm(1); 
for i=3:n-2 
ww(i)=c2(i-2); 
end 
ww(n-1)=mm(2); 
ww(n)=0.0; 
abs((abs(w)-abs(ww)))' 
 
Program 5:-
n= 6 ; 
x(1) = 0 ; 
x(n) = 1 ; 
for i = 1 : n-4 
tt(i)=-1;  
end 
a=[-31.089941056156209505,-
12.23057741217772963,0.77968683595852671497,-
18.453027890343230902,-67.76557439272856797,-
12.737478218682955771;31.462632673736228255,8.55664669146
90994018,-3.1589433681645365545,-
39.413189727876957288,142.02076329965116237,26.5420617342
75329012;-39.100582338249030684,-12.681462357270821679,-
1.9816450900580773047,67.096870399794979987,-
198.92631460106778661,-35.97074306959821994;-
6.857165106827839516,-2.9264003479616642098,-
1.0132240340995923634,15.572244071285122453,-
50.939335688638180131,-8.5384766821064232152;-
4.2976118828138608537,-1.6666600543338908889,-
0.82218507370751093234,11.066403445120947639,-
18.526860515951349241,-
2.7261574346852199537;20.961890720669004935,8.39639816099
71580041,3.7648635847823997444,-
46.053352732815160677,124.67113591572975694,22.1661595540
054397]; 
 b=a*a; 
 e3=a*b; 
 e4=a*e3; 
 for i = 3 : n-2  
 for j = 3 : n-2 
 t1= a(1,j)*b(n,n-1)-a(1,n-1)*b(n,j); 
 t2= a(1,2)*b(n,j)-a(1,j)*b(n,2); 
 t3= b(n,2)*a(1,n-1)-a(1,2)*b(n,n-1); 
 v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
 end 
 end 
 for i = 1 : n-4  
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 for j = 1 : n-4 
 c1(i,j)= v(i+2,j+2); 
 end 
 end 
 c2 = inv (c1)*tt'; 
 format long e; 
 for j = 3 : n-2 
 u = u+ a(1,j)*c2(j-2); 
 y = y + b(n,j)*c2(j-2); 
 end 
 k(1)=-1*u; 
 k(2)=-1*y; 
 s(1,1)=a(1,2); 
 s(1,2)=a(1,5); 
 s(2,1)=b(6,2); 
 s(2,2)=b(6,5); 
 mm = inv (s)*k'; 
 ww(1)=0.0; 
 ww(2)=mm(1); 
 for i=3:n-2 
 ww(i)=c2(i-2); 
 end 
 ww(n-1)=mm(2); 
 ww(n)=0.0; 
 ((abs(w)-abs(ww)))' 
   
Program 6:- 
n=6; 
a=[69.09719985911381365,44.87886386461249491,8.8931247930
295905263,-.60825729333936220064,.37448032895763460070,-
.90781766537385308786;-151.26408151768037419,-
97.89357021388116992,-
18.890881193353345692,1.4725962584529261853,-
.87546995659880840013,2.0384029151104720054;166.590574306
62880177,104.33583623781664348,15.247473736065912130,-
2.9044160365662253014,1.4228339691646464165,-
2.9196718673154255307;-169.63487768745532748,-
102.31273612034090082,-11.703828191467317361,-
.69756771628189845849,-
3.6458955204879273155,5.6686264480545005592;170.808803056
09099342,101.95422048810383070,13.170289965783140359,4.34
96293517618691809,-2.7209006179462262763,-
20.873843965251741921;-85.59661984836753540,-
50.96349354939456879,-6.721567816775886375,-
1.6117677538230514370,5.4311368799616276354,16.9879695388
96380639]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
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for j = 3 : n-2 
t1= b(1,j)*b(n,n-1)-b(1,n-1)*b(n,j); 
t2= b(1,2)*b(n,j)-b(1,j)*b(n,2); 
t3= b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1); 
v(i,j)= e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
v1=(eig(v)); 
for i=1:n-2 
(v1(i))^.5 
end 
 
Program 7:- 
n=6; 
a=[69.09719985911381365,44.87886386461249491,8.8931247930
295905263,-.60825729333936220064,.37448032895763460070,-
.90781766537385308786;-151.26408151768037419,-
97.89357021388116992,-
18.890881193353345692,1.4725962584529261853,-
.87546995659880840013,2.0384029151104720054;166.590574306
62880177,104.33583623781664348,15.247473736065912130,-
2.9044160365662253014,1.4228339691646464165,-
2.9196718673154255307;-169.63487768745532748,-
102.31273612034090082,-11.703828191467317361,-
.69756771628189845849,-
3.6458955204879273155,5.6686264480545005592;170.808803056
09099342,101.95422048810383070,13.170289965783140359,4.34
96293517618691809,-2.7209006179462262763,-
20.899843965251741921;-85.59261984836753540,-
50.18949354939456879,-6.721567816775886375,-
1.6117557538230514370,5.4315368799616276354,16.9879695388
96380639]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
t1= a(1,j)*b(n,n-1)-a(1,n-1)*b(n,j); 
t2= a(1,2)*b(n,j)-a(1,j)*b(n,2); 
t3= a(n,2)*b(1,n-1)-a(1,2)*b(n,n-1); 
v(i,j)= e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
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end 
end 
v1=(eig(v)); 
for i=1:n-2 
(v1(i))^.5 
end 
 
Program 8:- 
n=6; 
a=[-31.089941056156209505,-
12.23057741217772963,0.77968683595852671497,-
18.453027890343230902,-67.76557439272856797,-
12.737478218682955771;31.462632673736228255,8.55664669146
90994018,-3.1589433681645365545,-
39.413189727876957288,142.02076329965116237,26.5420617342
75329012;-39.100582338249030684,-12.681462357270821679,-
1.9816450900580773047,67.096870399794979987,-
198.92631460106778661,-35.97074306959821994;-
6.857165106827839516,-2.9264003479616642098,-
1.0132240340995923634,15.572244071285122453,-
50.939335688638180131,-8.5384766821064232152;-
4.2976118828138608537,-1.6666600543338908889,-
0.82218507370751093234,11.066403445120947639,-
18.526860515951349241,-
2.7261574346852199537;20.887890720669004935,8.39639816099
71580041,3.4048635847823997444,-
46.023352732815160677,124.97113591572975694,22.2661595540
054397]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
t1= b(1,j)*b(n,n-1)-b(1,n-1)*b(n,j); 
t2= b(1,2)*b(n,j)-b(1,j)*b(n,2); 
t3= b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1); 
v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
v1=(eig(v)); 
for i=1:n-2 
(v1(i))^.5 
end 
 
Program 9:- 
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n=6; 
a=[-31.089941056156209505,-
12.23057741217772963,0.77968683595852671497,-
18.453027890343230902,-67.76557439272856797,-
12.737478218682955771;31.462632673736228255,8.55664669146
90994018,-3.1589433681645365545,-
39.413189727876957288,142.02076329965116237,26.5420617342
75329012;-39.100582338249030684,-12.681462357270821679,-
1.9446450900580773047,67.996870399794979987,-
198.92631460106778661,-35.97074306959821994;-
6.857165106827839516,-2.9264003479616642098,-
1.0132240340995923634,15.572244071285122453,-
50.939335688638180131,-8.5384766821064232152;-
4.2976118828138608537,-1.6666600543338908889,-
0.82218507370751093234,11.066403445120947639,-
18.726860515951349241,-
2.7261574346852199537;20.887890720669004935,8.99639816099
71580041,3.1048635847823997444,-
46.022352732815160677,124.99013591572975694,22.2661595540
054397]; 
b=a*a; 
       
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
t1= a(1,j)*a(n,n-1)-a(1,n-1)*a(n,j); 
t2= a(1,2)*a(n,j)-a(1,j)*a(n,2); 
t3= a(n,2)*a(1,n-1)-a(1,2)*a(n,n-1); 
v(i,j) = e4(i,j)+((e4(i,2)*t1+e4(i,n-1)*t2)/t3);  
end 
end 
for i = 1 : n-4  
for j = 1 : n-4 
c1(i,j)= v(i+2,j+2); 
end 
end 
v1=(eig(v)); 
for i=1:n-2 
(v1(i))^.5 
end 
 
Program 10:- 
 
n=6; 
a=[69.09959985911381365,44.9700486461249491,8.99247930295
905263,-.60625729333936220064,.37448032895763460070,-
.90781766537385308786;-151.26408151768037419,-
97.89357021388116992,-
18.890881193353345692,1.4725962584529261853,-
.87546995659880840013,2.0384029151104720054;166.590574306
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62880177,104.33583623781664348,15.247473736065912130,-
2.9044160365662253014,1.4228339691646464165,-
2.9196718673154255307;-169.63487768745532748,-
102.31273612034090082,-11.703828191467317361,-
.69756771628189845849,-
3.6458955204879273155,5.6686264480545005592;170.808803056
09099342,101.95422048810383070,13.170289965783140359,4.34
96293517618691809,-2.7209006179462262763,-
20.873843965251741921;-87.59561984836753540,-
50.96349354939456879,-6.721567816775886375,-
1.6217557538230514370,5.4315368799616276354,16.9779695388
96380639]; 
b=a*a; 
c=a*b; 
e4=a*c; 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
AXN=-1*( a(n,2)*a(1,n-1)-a(1,2)*a(n,n-1)); 
AYN= -1*(a(n,2)*a(1,n-1)-a(1,2)*a(n,n-1)); 
for k1=3:n-2 
kj=(n-4)*(k1-3)+j-3+1; 
AXK1= a(1,k1)*a(n,n-1)-a(1,n-1)*a(n,k1); 
AXKN= a(1,2)*a(n,k1)-a(1,k1)*a(n,2); 
PDD(ij,kj)=e4(i,k1)-((AXK1)*e4(i,2)+(AXKN)*e4(i,n-
1))/AXN; 
end 
for k2=3:n-2 
ik=(n-4)*(i-3)+k2-3+1; 
AYK1=a(1,k2)*a(n,n-1)-a(1,n-1)*a(n,k2); 
AYKN= a(1,2)*a(n,k2)-a(1,k2)*a(n,2); 
PDD(ij,ik)=PDD(ij,ik)+e4(j,k2)-(e4(j,2)*(AYK1)+e4(j,n-
1)*(AYKN))/AYN; 
end 
end 
end 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
for k1=3:n-2 
for k2=3:n-2 
ik=(n-4)*(k1-3)+(k2-3)+1; 
AXK1= a(1,k1)*a(n,n-1)-a(1,n-1)*a(n,k1); 
AXKN= a(1,2)*a(n,k1)-a(1,k1)*a(n,2); 
AYK1= a(1,k2)*a(n,n-1)-a(1,n-1)*a(n,k2); 
AYKN= a(1,2)*a(n,k2)-a(1,k2)*a(n,2); 
r1=b(i,k1)*b(i,k2)-((AXK1*b(i,2)+AXKN*b(i,n-
1))/AXN)*b(j,k2); 
r2=(AYK1*b(j,2)+AYKN*b(j,n-1))/AYN)*b(i,k1); 
r3=((AXK1*AYK1*b(i,2)*b(j,2)+AXKN*AYK1*b(i,n-
1)*b(j,2))/AXN*AYN); 
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r4=((AXK1*AYKN*b(i,2)*b(j,n-1)+AXKN*AYKN*b(i,n-1)*b(j,n-
1))/AXN*AYN); 
PDD(ij,ik)=PDD(ij,ik)+2*(b(i,k1)*b(j,k2)-
(AXK1*b(i,2)*(b(j,k2)-b(j,2)*AYK1/AYN)+AXKN*b(i,n-
1)*(b(j,k2)-b(j,2)*AYK1/AYN))/AXN-
(AYK1*b(j,2)*b(i,k1)+AYKN*b(j,n-1)*(b(i,k1)-
(b(i,2)*AXK1+b(i,n-1)*AXKN)/AXN))/AYN); 
end 
end 
end 
end 
v1=(eig(PDD)); 
for i=1:(n-4)^2 
v2(i)=v1(i)^.5; 
end 
v3=sort(v2); 
  
Program 11:- 
 
n=6; 
a=[69.09719985911381365,44.8742486461249491,8.89312479302
95905263,-.60825729333936220064,.37448032895763460070,-
.90781766537385308786;-151.26408151768037419,-
97.89357021388116992,-
18.890881193353345692,1.4725962584529261853,-
.87546995659880840013,2.0384029151104720054;166.590574306
62880177,104.33583623781664348,15.247473736065912130,-
2.9044160365662253014,1.4228339691646464165,-
2.9196718673154255307;-169.63487768745532748,-
102.31273612034090082,-11.703828191467317361,-
.69756771628189845849,-
3.6458955204879273155,5.6686264480545005592;170.808803056
09099342,101.95422048810383070,13.170289965783140359,4.34
96293517618691809,-2.7209006179462262763,-
20.873843965251741921;-87.59561984836753540,-
50.96349354939456879,-6.721567816775886375,-
1.6217557538230514370,5.4315368799616276354,16.9779695388
96380639]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
AXN=-1*( b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1)); 
AYN= -1*(b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1)); 
for k1=3:n-2 
kj=(n-4)*(k1-3)+j-3+1; 
AXK1= b(1,k1)*b(n,n-1)-b(1,n-1)*b(n,k1); 
AXKN= b(1,2)*b(n,k1)-b(1,k1)*b(n,2); 
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PDD(ij,kj)=e4(i,k1)-((AXK1)*e4(i,2)+(AXKN)*e4(i,n-
1))/AXN; 
end 
for k2=3:n-2 
ik=(n-4)*(i-3)+k2-3+1; 
AYK1= b(1,k2)*b(n,n-1)-b(1,n-1)*b(n,k2); 
AYKN= b(1,2)*b(n,k2)-b(1,k2)*b(n,2); 
PDD(ij,ik)=PDD(ij,ik)+e4(j,k2)-(e4(j,2)*(AYK1)+e4(j,n-
1)*(AYKN))/AYN; 
end 
end 
end 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
for k1=3:n-2 
for k2=3:n-2 
ik=(n-4)*(k1-3)+(k2-3)+1; 
AXK1= b(1,k1)*b(n,n-1)-b(1,n-1)*b(n,k1); 
AXKN= b(1,2)*b(n,k1)-b(1,k1)*b(n,2); 
AYK1= b(1,k2)*b(n,n-1)-b(1,n-1)*b(n,k2); 
AYKN= b(1,2)*b(n,k2)-b(1,k2)*b(n,2); 
r1=b(i,k1)*b(i,k2)-((AXK1*b(i,2)+AXKN*b(i,n-
1))/AXN)*b(j,k2); 
r2=((AYK1*b(j,2)+AYKN*b(j,n-1))/AYN)*b(i,k1); 
r3=((AXK1*AYK1*b(i,2)*b(j,2)+AXKN*AYK1*b(i,n-
1)*b(j,2))/AXN*AYN); 
r4=((AXK1*AYKN*b(i,2)*b(j,n-1)+AXKN*AYKN*b(i,n-1)*b(j,n-
1))/AXN*AYN); 
PDD(ij,ik)=PDD(ij,ik)+2*(b(i,k1)*b(j,k2)-
(AXK1*b(i,2)*(b(j,k2)-b(j,2)*AYK1/AYN)+AXKN*b(i,n-
1)*(b(j,k2)-b(j,2)*AYK1/AYN))/AXN-
(AYK1*b(j,2)*b(i,k1)+AYKN*b(j,n-1)*(b(i,k1)-
(b(i,2)*AXK1+b(i,n-1)*AXKN)/AXN))/AYN); 
end 
end 
end 
end 
v1=(eig(PDD)); 
for i=1:(n-4)^2 
v2(i)=v1(i)^.5; 
end 
v3=sort(v2); 
 
program 12:- 
n=6; 
a=[-31.089941056156209505,-
6.23057741217772963,0.77968683595852671497,-
18.453027890343230902,-67.76557439272856797,-
12.737478218682955771;31.462632673736228255,8.55664669146
90994018,-3.1589433681645365545,-

 95



Appendix A 

39.413189727876957288,142.02076329965116237,26.5420617342
75329012;-39.100582338249030684,-12.681462357270821679,-
1.9816450900580773047,67.096870399794979987,-
198.92631460106778661,-35.97074306959821994;-
6.857165106827839516,-2.9264003479616642098,-
1.0132240340995923634,15.572244071285122453,-
50.939335688638180131,-8.5384766821064232152;-
4.2976118828138608537,-1.6666600543338908889,-
0.82218507370751093234,11.066403445120947639,-
18.526860515951349241,-
2.7261574346852199537;20.961890720669004935,8.39639816099
71580041,3.7648635847823997444,-
46.053352732815160677,124.67113591572975694,22.1661595540
054397]; 
b=a*a; 
e3=a*b; 
e4=a*e3; 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
AXN=-1*( b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1)); 
AYN= -1*(b(n,2)*b(1,n-1)-b(1,2)*b(n,n-1)); 
for k1=3:n-2 
kj=(n-4)*(k1-3)+j-3+1; 
AXK1= b(1,k1)*b(n,n-1)-b(1,n-1)*b(n,k1); 
AXKN= b(1,2)*b(n,k1)-b(1,k1)*b(n,2); 
PDD(ij,kj)=e4(i,k1)-((AXK1)*e4(i,2)+(AXKN)*e4(i,n-))/AXN; 
end 
for k2=3:n-2 
ik=(n-4)*(i-3)+k2-3+1; 
AYK1= b(1,k2)*b(n,n-1)-b(1,n-1)*b(n,k2); 
AYKN= b(1,2)*b(n,k2)-b(1,k2)*b(n,2); 
PDD(ij,ik)=PDD(ij,ik)+e4(j,k2)-(e4(j,2)*(AYK1)+e4(j,n-
1)*(AYKN))/AYN; 
end 
end 
end 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
for k1=3:n-2 
for k2=3:n-2 
ik=(n-4)*(k1-3)+(k2-3)+1; 
AXK1= b(1,k1)*b(n,n-1)-b(1,n-1)*b(n,k1); 
AXKN= b(1,2)*b(n,k1)-b(1,k1)*b(n,2); 
AYK1= b(1,k2)*b(n,n-1)-b(1,n-1)*b(n,k2); 
AYKN= b(1,2)*b(n,k2)-b(1,k2)*b(n,2); 
r1=b(i,k1)*b(i,k2)-((AXK1*b(i,2)+AXKN*b(i,n-
1))/AXN)*b(j,k2); 
r2=((AYK1*b(j,2)+AYKN*b(j,n-1))/AYN)*b(i,k1); 
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r3=((AXK1*AYK1*b(i,2)*b(j,2)+AXKN*AYK1*b(i,n-
1)*b(j,2))/AXN*AYN); 
r4=((AXK1*AYKN*b(i,2)*b(j,n-1)+AXKN*AYKN*b(i,n-1)*b(j,n-
1))/AXN*AYN); 
PDD(ij,ik)=PDD(ij,ik)+2*(b(i,k1)*b(j,k2)-
(AXK1*b(i,2)*(b(j,k2)-b(j,2)*AYK1/AYN)+AXKN*b(i,n-
1)*(b(j,k2)-b(j,2)*AYK1/AYN))/AXN-
(AYK1*b(j,2)*b(i,k1)+AYKN*b(j,n-1)*(b(i,k1)-
(b(i,2)*AXK1+b(i,n-1)*AXKN)/AXN))/AYN); 
end 
end 
end 
end 
v1=(eig(PDD)); 
for i=1:(n-4)^2 
v2(i)=v1(i)^.5; 
end 
v3=sort(v2); 
 
program 13:- 
n=6; 
a=[-31.089941056156209505,-
6.23057741217772963,0.32968683595852671497,-
18.453027890343230902,-67.76557439272856797,-
12.737478218682955771;31.462632673736228255,8.55664669146
90994018,-3.1589433681645365545,-
39.413189727876957288,142.02076329965116237,26.5420617342
75329012;-39.100582338249030684,-12.681462357270821679,-
1.9816450900580773047,67.096870399794979987,-
198.92631460106778661,-35.97074306959821994;-
6.857165106827839516,-2.9264003479616642098,-
1.0132240340995923634,15.572244071285122453,-
50.939335688638180131,-8.5384766821064232152;-
4.2976118828138608537,-1.6666600543338908889,-
0.82218507370751093234,11.066403445120947639,-
18.526860515951349241,-
2.7261574346852199537;20.961890720669004935,8.39639816099
71580041,3.7648635847823997444,-
46.053352732815160677,124.67113591572975694,22.1661595540
054397]; 
b=a*a; 
c=a*b; 
e4=a*c; 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
AXN=-1*( a(n,2)*a(1,n-1)-a(1,2)*a(n,n-1)); 
AYN= -1*(a(n,2)*a(1,n-1)-a(1,2)*a(n,n-1)); 
for k1=3:n-2 
kj=(n-4)*(k1-3)+j-3+1; 
AXK1= a(1,k1)*a(n,n-1)-a(1,n-1)*a(n,k1); 
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AXKN= a(1,2)*a(n,k1)-a(1,k1)*a(n,2); 
PDD(ij,kj)=e4(i,k1)-((AXK1)*e4(i,2)+(AXKN)*e4(i,n-
1))/AXN; 
end 
for k2=3:n-2 
ik=(n-4)*(i-3)+k2-3+1; 
AYK1=a(1,k2)*a(n,n-1)-a(1,n-1)*a(n,k2); 
AYKN= a(1,2)*a(n,k2)-a(1,k2)*a(n,2); 
PDD(ij,ik)=PDD(ij,ik)+e4(j,k2)-(e4(j,2)*(AYK1)+e4(j,n-
1)*(AYKN))/AYN; 
end 
end 
end 
for i = 3 : n-2  
for j = 3 : n-2 
ij=(n-4)*(i-3)+(j-3)+1; 
for k1=3:n-2 
for k2=3:n-2 
ik=(n-4)*(k1-3)+(k2-3)+1; 
AXK1= a(1,k1)*a(n,n-1)-a(1,n-1)*a(n,k1); 
AXKN= a(1,2)*a(n,k1)-a(1,k1)*a(n,2); 
AYK1= a(1,k2)*a(n,n-1)-a(1,n-1)*a(n,k2); 
AYKN= a(1,2)*a(n,k2)-a(1,k2)*a(n,2); 
r1=b(i,k1)*b(i,k2)-((AXK1*b(i,2)+AXKN*b(i,n-
1))/AXN)*b(j,k2); 
r2=((AYK1*b(j,2)+AYKN*b(j,n-1))/AYN)*b(i,k1); 
r3=((AXK1*AYK1*b(i,2)*b(j,2)+AXKN*AYK1*b(i,n-
1)*b(j,2))/AXN*AYN); 
r4=((AXK1*AYKN*b(i,2)*b(j,n-1)+AXKN*AYKN*b(i,n-1)*b(j,n-
1))/AXN*AYN); 
PDD(ij,ik)=PDD(ij,ik)+2*(b(i,k1)*b(j,k2)-
(AXK1*b(i,2)*(b(j,k2)-b(j,2)*AYK1/AYN)+AXKN*b(i,n-
1)*(b(j,k2)-b(j,2)*AYK1/AYN))/AXN-
(AYK1*b(j,2)*b(i,k1)+AYKN*b(j,n-1)*(b(i,k1)-
(b(i,2)*AXK1+b(i,n-1)*AXKN)/AXN))/AYN); 
end 
end 
end 
end 
v1=(eig(PDD)); 
for i=1:(n-4)^2 
v2(i)=v1(i)^.5; 
end 
v3=sort(v2); 
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Fundamentals G-Spline Basis 
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  :هدفين يدور حول ه الرسالةالرئيسي لهذالغرض 

 يقѧѧةروط ةلطريقѧѧة التفاضѧѧلات التربيعيѧѧ خلفيѧѧة الرياضѧѧيةالهѧѧدف الاول هѧѧو حѧѧول دراسѧѧة ال -١

 .عة الرابالرتبة  منحل معادلات تفاضلية حدودية اعتياديةلتكوينها ومن ثم استخدامها 
 

 G.    - يقة دوال السبلاينهو اولا حول تقريب الدوال باستخدام طرالهدف الثاني  -٢

معادلѧة   علѧى شѧكل   يقѧين همѧا اهتѧزاز عمѧود منѧتظم ممثلѧة         الحل العددي لمѧسئلتين لتطب     ثانيا

ة واهتزاز صѧفيحة سѧميكة مربعѧة معطѧاة علѧى            عتفاضلية حدودية اعتيادية من الرتبة الراب     

الرابعѧѧة باسѧѧتخدام طريقѧѧة التفاضѧѧلات  شѧѧكل معادلѧѧة تفاضѧѧلية حدوديѧѧة جزئيѧѧة مѧѧن الرتبѧѧة    

  .اثم الحصول عليهG -التربيعية وبالاعتماد على دوال السبلاين  



  جمهورية العراق
  وزارة التعليم العالي والبحث العلمي

جامعة النهرين
  آلية العلوم

قسم الرياضيات وتطبيقات الحاسوب
 

 
  

 
 
 

 ةستخدام طريقة التفاضلات التربيعي باليةض للمعادلات التفاة العدديولالحل
   G   – على دوال السبلاينةدالمعتم

 
 
  رسالة

آلية العلوم جامعة النهرين  ،ات الحاسوبمقدمة الى قسم الرياضيات وتطبيق
 ماجستير علوم في الرياضياتوهي جزء من متطلبات نيل درجة 
  
       من قبل

 مصطفى اآرم سعيد
  )٢٠١٠،  جامعة النهرين/ علومال  آلية/ رياضيات بكلوريوس(

  
  
  

 باشراف
 

   فاضل صبحي فاضل.د                            سامة حميد محمد أُ.د       
  . )م.أ(          ).م.أ (   

  
  
  

   آانون الأول   صفر
٢٠١٢    ١٤٣٤   
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