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ADbstract

The main objective of this thesis is to introduce fractional integro-
differential equations using a modified type of operators, which consists of
the same order fractional differentiation and fractional integration. Also,
the objective of this work is to study and prove the existence theorems of a
unigue solution of the fractional integro-differential equations, then
studying the approximate solutions of such type of the equations using
the collocation method, the least square method, the Adomian
decomposition method and the modification of Adomian's polynomials
method which are presented with the illustrative examples and comparised

between the results.
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I ntroduction

Fractional calculus is that subject of mathematics which grows out
of the traditional definitions of the calculus integral and integral operators in
which the same by fractional exponents in an outgrowth of exponents with
integral value. Consider the physical meaning of the exponent, according to
our primary school teacher, exponents provide a short notation for what is
essentially a repeated multiplication of numerical value. This concept in
itself is easy to grasp and straight forward. However, the physical
definitions can clearly become confused when considering exponents of
noninteger value, [Loverro, 2004].

Oldham and Spanier [Oldham, 1974], who wrote in this field or
subject had begun their work in 1968 with the realization that the use of
half-order derivatives and integrals had to a formulation of certain electro
chemical problems which is more economical and useful than the classical
approaches. This discovering stimulated our interest, not only in the
application of notions of the derivative and integral to an ordinary order, but
also in the basic mathematical properties of these fascinating operators, [Ali,
2008].

Fractional calculus are old as classical calculus (refer to [Miller and Ross,
1993] or [Oldham and Spanier, 1974] for historical survey). The use of fractional
order differential and integral operators in mathematical models had become

increasingly wide spread in recent years (see [Diethelm and Ford, 2002] and



[Mainardi, 1997]). Several forms of fractional integro-differential equations had

been proposed in

standard models, and there had been significant interest in
developing numerical schemes for their solution (see [Edwards, 2002] and
[Podlubny, 1999]). The interesting of fractional calculus have been
stimulated by using the subject in many applications like the subject of
finding the numerical solution of differential equations and in sciences, such

as physics and engineering, etc., [Al-Hussieny, 2006].

However, much of the work published to date has been concerned
with linear single term equations and, of these, equations of order less than

unity have been most often investigated, [El-Sayed, 2004].

In [Momani, 2000], the Shauder's fixed point theorem had been used to
obtain local existence of the solution and Tychonov's fixed point theorem to
obtain global existence of the solution. In [Momani, 2001], the successive
approximations and Arzela-Ascoli lemma were used to obtain existence and
uniqueness of solution of fractional integro-differential equations. In [Momani
and Hadid, 2003] some important results were proved concerning the
corresponding inequalities of fractional integro-differential equations.

In recent years, there have been interests in the study of fractional
integro-diffeorential equation of the type:

DIu(t) = (t, u(t)) +Jt‘k(t,s,u(s))ds, 0<q<1
0

With the initial condition:
u (0) = ug,

Where f is a continuous function on (t, u) forue R,a>0and0<t<a,k



is a continuous function on (t, s, u) for ueR and0<t,s<a,ug is a

real positive constant and DI denotes the Caputo fractional derivative

operator, [Momani , 2007].

This thesis consists of three chapters. In chapter one, we give the
definitions related to fractional calculus including historical background and
the fundamental concepts. Also, in this chapter, we study some basic
properties of fractional integro-differential equations, like linearity, scale

change, Leibniz's rule and chain rule.

In chapter two, we give the existence and uniqueness theorem of the
solutions for the fractional integro-differential equations using Schauder's

fixed point theorem.

In chapter three we present some approximate methods for solving
fractional integro-differential equations, since approximate methods may be
sometimes considered as the most reliable and applicable method for
solving fractional integro-differential equations. This chapter include three
methods, namely, the collocation method, the least square method and
Adomian decomposition method for solving linear fractional integro-
differential equations, in which the collocation method give more accurate
results in linear case and the Adomian decomposition method in nonlinear

case. Also, for illustration purposes, some examples are given.

It is important to notice that, the computer programs are coded in

MATHCAD 14 software and the results are presented in a tabulated form.



Chapter One

Fundamental Concepts of Fractional
Calculus

Fractional calculus is an important branch of applied mathematics,
which seems first to have many vague notions and poor defined concepts to
the readers who are interested in this branch of mathematics. This type of
differentiation and integration may be considered as a generalization to the
useful definition of differentiation and integration, [Oldham and Spanier,
1974]. This chapter presents some basic concepts and notations, which are
necessary for defining and illustrating fractional calculus. Therefore, the
chapter consists of three sections. In section one, the historical background of
fractional calculus is given. In section two, the fundamental concepts of
fractional calculus such as the gamma and beta functions, differentiation and
integration of fractional order are given. In section three, some properties of
fractional integro-differential equations, like linearity, scale change, etc. are

presented and discussed.
1.1 Historical Background

Recently fractional derivatives have been used to model physical
processes leading to the formulation of fractional differential equations.
The fractional calculus may be considered as an old and yet a new topic. It is
an old topic since it is starting in 1695. L’Hopital was the

first researcher whose ask in a letter to Leibniz on the possibility to
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Performing calculations by means of fractional derivatives of order r = 1/2.
Leibniz answered this question looked as a paradox to him (see [Madueno,
2002]). In (1697), Leibniz referring to the infinite product of Walls for n/2
used the notation d"%y and summarized that the fractional calculus could be

used to get the same results.

The earliest more or less systematic studies seem to had been made in
the beginning and middle of the 19" century by Liouville (1832), Riemann
(1953), and Holmgren (1864), although Euler (1730), Lagrange (1772), and
others made contributions even earlier. It was Liouville (1832) who expanded
functions in series of exponentials and defined the g™ derivative of such a
series by operating term-by-term as though ¢, where a positive integer.
Riemann in (1953), proposed a different definition that involved a definite
integral and was applicable to power series with no integer exponents. Also,
Grunwald in (1867), disturbed by the restriction of Liouville’s approach. Then
these theoretical beginnings were a development for the applications of the
fractional calculus to various problems. The first of these was discovered by
Able in (1823), that the solution of the integral equation for the tautochrone
may be accomplished via an integral transform. A powerful stimulus to the
use of fractional calculus to solve real life problems was provided by the
development of Boole in (1844), of symbolic methods for solving linear

differential equations with constant coefficients.

In the twentieth century, some notable contributions had been made to
both the theory and application of fractional calculus, Weyl (1917), Hardy
(1917), Hardy and Littewood (1932), Kober (1940), and Kuttner

(1953), examined some rather special, but natural, properties of
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integro-differential of functions belonging to Lebesgue and Lipschitz classes,
Erdely (1954), and Oster (1970), have given definitions of integro-differential
with respect to arbitrary functions, and Post (1930) used difference quotient to
define generalized integro-differential for fractional operators, Riesz (1949),
has developed a theory of fractional integration for functions of more than one
variable, Erdely (1965), has applied the fractional calculus to integral
equations and Higgins (1967), has used fractional integral operators to solve

differential equations.

However, fractional calculus may be considered as an important topic,
as well as, since only from a little more than to the later fifty years, it has been
an object of specialized conferences and treatises. For the first monograph the
merit is ascribed to Oldham and Spanier (1974), who after a joint
collaboration started in 1968, published a book devoted to fractional calculus
in 1974. The first texts and proceedings devoted solely or partly to fractional

calculus and its applications are, [Poldlubny, 1999].

[Mainardi, 1997], has fractional calculus of some basic problems
in continuum and statistical mechanics. Samko, Kilbas and Marichev
(1993), has used fractional integrals and derivative of theory and
applications, Diethelm and Ford (2002), used analysis of fractional
differential equations. In recent years, there has been an interest in the
study of fractional integro-differential equations.In (2003) Momani and
Hadid proved some important results concerning with the corresponding
inequalities of fractional integro-differential equations. Rawashdeh
(2005) used the collocation method to approximate the solution of
fractional integro-differential equations. [Mittal R. C., 2008], used the
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Adomian decomposition method to solve fractional integro-

differential equations.

1.2 Fundamental Concepts in Fractional Calculus

It is important to recall that fractional calculus is complicated subject
to understand and because of that, we shall present in this section some of the
most important notions and definitions that are necessary for understanding

this subject.

1.2.1 The Gamma and Beta Functions, [Oldham, 1974]:

The complete gamma function I'(t) plays an important role in the

theory of integro-differential. A comprehensive definition of I'(t) is that

provided by the Euler limit:

. NIN®
re= lim 0 (1.1)
N—oo | t(t+1)(t+2)...(t+ N)

but the integral transform definition is given by:
I'(t)= jxt‘le‘xdx,wo ......................................................................................... (1.2)
0

Is often more useful, although it is restricted to positive x values. An
integration by parts applied to the eq. (1.2) leads to the recurrence

relationship:

TR B () TR (1.3)
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which may be rewritten as:
Ct-1)= @, t
t-1

This is the most important property of the gamma function. The same
result is a simple consequence of eq. (1.1), since I'(1) = 1, this recurrence

shows that for a positive integer n:
I'(n+1)=nTI(n)
e L SRS (1.4)

The following are the most important properties of the gamma

function:

1 r(%— j (‘E)Znn)'\/_ eN.

2. F(1+njzm, neN.

2 4"n!
3. T(-t) = M, neN,t>0.
r{t+1

4. r(nt)_\/ﬂ(m] gr(t+ j neN,t>0.

The following are some frequently encountered examples of gamma

functions for different values of t:

-2 )

Which enable us to calculate for any positive real t, the gamma function

5
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in terms of the fractional part of t. The gamma function expression:

I'(i-a)
Fa)r+1

where j is a nonnegative integer and q may take any value. The

procedure may be generalized to give:

FG-a) _(-9-D(-9-2)..(-9+1D(-0)
Fq)rd+1 J!

N q(a-1(@-2)...(q- j+2)(q-j+1)
jt

where(qj:_ q!_ :
1) Mg-)!

A function that is closely related to the gamma function is the
complete beta function B(p,q).For positive values of the two parameters, p and
g; the function is defined by the beta integral:

1
B(p,q) =[P (AL=y)9 Y, P, 4> 0o (1.7)
0

which is also known as the Euler's integral of the second kind. If either
p or q is non-positive, the integral diverges otherwise B(p,q) is defined by
the relationship:

I'(p)I'(q)

B0, 0)= I'(p+q)

where pand g > 0.
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Both the beta and gamma functions have “incomplete” analogs. The

incomplete beta function of argument t is defined by the integral:

t
B, (p,q) = jyp‘l(l—y)q‘ldy ........................................................... (1.9)
0

and the incomplete gamma function of argument t is defined by:

* tl —¥Y(
v(c,t)—r()jy dy

& j
= e—tz_t— ........................................................... (1.10)
j=0

v*(c, t) is a finite single-valued analytic function of t and c.

1.2.2 The Fractional Derivative, [Oldham, 1974]:

The usual formulation of the fractional derivative, given in standard
references such as [Oldham, 1974], [Samko, 1993] is the Riemann-Liouville

definition of fractional derivatives, which is:

1
r'(m —md m

DYu(t) = ja D RRITT() [ T (1.11)

where m is the integer defined by m - 1<qg<m.

The Grunwald definition of fractional derivatives is given by:

t —-q
du(t) _ | (Nj S T(Gi-a), _.(LJ>
e = lim T ;F(HDJ S0 vl | — (1.12)

J
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Where q < O indicates fractional integration and g > O indicates

fractional differentiation.

The Caputo definition of fractional derivative is given by:

t
D3u (t) = ﬁ j (t=5)" 9 2uM (S)dS e (1.13)

Form-1<g<m,me N,t>0.

1.2.3 The Fractional Integral, [Oldham, 1974]:

The common formulation for the fractional integral can be derived
directly from a traditional expression of the repeated integration of a function.

Several definitions of fractional integration may be given, such as:

The Riemann-Liouville definition of any q > 0 for a function u(t) with
te R is:

Jqu(t)_ﬂj(t SRR TTC) 1o I I PO (1.14)

and J°u(t) = | is the Identity operator.

The properties of the operator J9 can be found in [Rawashdeh, 2005]

forg >0, o > 0, we have:
1. J9J3%u(t) =39 u().

2. J9J%u(t) = J* J%u().
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Some properties of the operators J® and DY may be found in

[Podulbny, 1999], and we mention the following:

I'(y+1)
I'(y+1+q)

,fort>0,0>20,y> -1, (1.15)

DQtY: F(y +1) /-
I'(y+1-0q)
One of the basic properties of the Caputo fractional derivatives, are:
m-1 k

IDIUW =U®) = > UOO0) 5 0 (1.16)
k=0 k!

DIJTU) = U(L) oo see e see s seee e (1.17)

The Weyle definition, where u(t) is a periodic function and its mean

value for one period is zero, is given by:
1 o0
I @)= —— [ (t=5)T2U(S)AS .orrereeeeeecereeeeccrereeeeeccree (1.18)
I'(a) _{O

But the formula (1.18) is used as the definition of the fractional
integral without any conditions at the present time. Other types of fractional
integrations are given in [Caputo, 1971].
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1.3 Properties of Fractional Integro-Differential Equations, [Oldham,
1974]

Some properties of fractional integro-differential equations, which one
might expect to generalize the classical formulas of derivatives and integrals,
will be examined and studied next in this section. The properties that will be
discussed will provide our primary means of understanding and utilizing the

fractional differential equations.

1.3.1 Linearity:

The linearity of the integro-differential operators, means that:

q q q
D [clf1+czf2]zch f1+C DY,
Dt Dt

where f; and f; are linear continuous functions, ¢, ¢; e Rand q >0 isa

fractional number.
1.3.2 Scale Change:

By a scale change of the function f with respect to a lower limit, one
mean its replacement with f(pt ), where 3 is a constant termed the scaling
factor, and hence the fractional derivative of order gwith T=t and Y =By, is

given by:

D (BT) _ DY (Bt)
Dt¢ Dt¢

t

_ 1 jf(BY)
T(=a) 3 (t-y)*

10
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_ BIT FON[AY/f]
T o {BT-Y)/g*

_ P BIT £(Y)
I(-q) 3 (BT-Y)¥
DY(pT) (1.20)

= q T asmasmasaassaassrasrEasrEasEEsEsEEREEEEEEEEEEEEEEEER
’ [DET)I

1.3.3 Leibniz's Rule:

The rule for differentiation of a product of two functions is a familiar

result in elementary calculus, which states that:

D" (fg) ( jD” If DJg
........................................................ 1.21
Dt" Z Dt") Dt (.21)

and is, of course, restricted to nonnegative integer n. The following

product rule is for multiple integrals:

D" (fg) Z( j D ")f Dlg

Dt™" Dt pt!
when we observe that the finite sum in (1.21) could be equally well

n
extend to infinity, since (j ] =0 for all j > n, we might expect the product rule

to be generalized to an arbitrary order g as:

DY (fg) Z( qu DG (1.22)
Dt i3 t%) Dt

such that a generalization is indeed valid for all real order.

11



Chapter One Fundamental Concepts of Fractional Calculus

The argument begins with the consideration of the product tf(t) and g

> 0. Making use of the Riemann-Liouville definition, yields:

t t

DY) _ 1 [ YY) 4. t b of(y)
Dt* _F(—q)g (t—y)* Y F(—q)-([ (t—y)d
t
L P) gy s (1.23)

T(-q)q (t-y)*?

t

_ fy) 4,1 f(y)
F(—q)g (t-y)™ F(—q)g (t-y)i*

DY  DIf
=1 +0——
Dt Dt

Extension of this result for g > 0 is now quite easy, if n-1<q<n,n=
1,2, ...; then:

DY(tf) _ D" {Dq‘”(tf)}

Dt Dt" | Dt?™"
D" | DI "f DI "1¢
= t +(q-n)
Dt" | Dt4™" Dtd-"-1
DI DI DI"f
=t +n T+ (q—n)
Dt Dt9™ Dt4"
DY  DIf
=1 +0——
Dt Dt

Leibniz's rule has been thoroughly studied by Osler in (1970),
(1971) and (1972). He was led to wonder whether eq. (1.21) is a special

12
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case of a still more general result in which the interchange ability of f

and g is more apparent. The more general result proved by Osler is:

DY (fg) _ i r(q+1) D" D'l
Dt = T@-y—j+DI(y+j+1) Dt D"

........... (1.24)

where vy is an arbitrary constant, which reduces to eq.(1.21), when y = 0.
Watanabe derived eq. (1.23) in 1931, but this method dose not yield to the
precise region of convergence in the complex plan. A further generalization of

Leibniz's rule due to Osler in (1972) is the integral form:

DY(fg) _ T r'(q+1) DI D'
Dt¢ C(q—y-A+DC(y+r+1) ptd—r* prr*

in which a discrete sum is replaced by an integral.
1.3.4 The Chain Rule:
The chain rule for the first order differentiation is given by:

4

d —
59O = 0

of (t»%f(t)

lacks a simple counterpart in the integral calculus. Indeed if there were

such a counterpart, the process of integration would pose no greater difficulty

: - : DY(f(t
than does differentiation. Since any general formula for M must
Dt
encompass integration as a special case of little hope that can be held out for a
useful chain rule for arbitrary g. Nevertheless, a formal chain rule in fractional

order derivatives may be derived quit simply. Starting from the formula:

13
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DY® i( jdq 1) do
Dt i 91 dt!

The following formula given by:

DY@  t
Dt T(l-q)

permits the evaluation of the effect of the integro-differential operator

upon unity, allowing us to write:

q —q © i-q i
Dio _ t ‘D+Z(qj _t d'o
Dt I'd-q) FZ\I(-q+2) dt

. DIo(f(t) .
Now, consider @ = ®(f(t)) and evaluate % in the second
t
term of the last equation as follows:

£ (k) Pk
—CD(f(t))—JZCD(m)ZHp ( J
k=1 Mk -

where Z is extended over all combinations of nonnegative integer
values of ps, p, ..., pj, such that:

J J
kak:j and Zpk:m

Thus:
DY t™
— @) = Ci-q) O(f (1)) +
i(qj |Zcp(m)ZH ( (k)J
o\ Q- q+D k=1 P!

14
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The complexity of this result will inhibit its general utility. We see

from inserting g = —1 that even for the case of a single integration:

t
[ (0)dy = to(f (1) +
0

YEEIRLDNTESL (”}

j=1 1+157 k=1 P!

A case in which the generalized chain rule may be of limited utility is
provided by f(t) = e". Then:
d(e') +

t—q
th ol )_F(l—OI)

0 - o
e

a\WJr-a+) 5

where SEm) Is a stirling number of the second kind. The chain rule gives

an infinite series that offers little hope of begin expressible in closed form,

except for trivially simple instances of the functions f and @.

15



Chapter Two The Existence and Uniqueness Theorem of the solution of
the Fractional Integro-Defferential Equations

Chapter Two

T he Existence and Wniqueness T heorem of the
Solution of the Fractional Integro-Differential
Equations

The existence and uniqueness theorems of solutions in ordinary
differential equations with initial and boundary conditions plays an important
role in the analytical and numerical solutions, since such type of equations
may not be solved if it does not satisfy the conditions of this theorem in which

the existence of a unique solution is necessary in this topic, [Ali, 2008].

Generally, this chapter presents some of the most basic concepts in
fractional integro-differential equations, secondly the statement and the proof
of the existence and uniqueness of theorem for the solution of the fractional
integro-differential equations by the means of Schauder fixed point theorem is

presented.

This chapter consists of three sections, in section one, which is termed

as fractional integro-differential equations, we are introduced the fractional

integro-differential equations with the illustration that DY and J% that

appeared in the operator is the Caputo derivative operator of eq. (1.13) and
Reimann-Liouville fractional integral operator of eq. (1.14), respectively. In
section two, we give the statement and the proof of the existence theorem of

the solution of fractional integro-differential equations.

16
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the Fractional Integro-Defferential Equations

In section three, we give the statement and the proof of the
uniqueness theorem of the solution of fractional integro-differential
equations.

2.1 Fractional Integro-Differential Equations

Consider the linear fractional integro-differential equation:

DIuU() = (1) + JIU), 0 < G < Lovrereeereeeeeeeeeeesees e (2.1)

Where DJrefers to the Caputo derivative operator of order 0 < q < 1,

which is defined by eq.(1.13):

t
DY u(t)= ﬁ j (t—s)™97y(™ (s)ds

form-1<g<m me N,tel0, T]; and J% denotes the Riemann-

Liouville fractional integral operator of order g, which is defined by eq.(1.14):

Jqu(t)_ﬂj(t )9 u(s)ds

Then the operator of the fractional integro-differential equation (2.1),

becomes:

TG R 1) PO (2.3)

Where:
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the Fractional Integro-Defferential Equations

t t
A= ———— [ (t=5)™ U™ (s)ds-—— [ (t-5) Lu(s)ds
0 0

r'(m-q) I'(q)

2.2 The Existence of the Solution of Fractional Integro-Differential
Equations

Before we study the existence and uniqueness theorems of the solution
of fractional integro-differential equations, we first introduce some basic

concepts related to this study.

Theorem (2.1) (Schauder Fixed Point Theorem), [Zeidler, 1986]:

Let U be a nonempty, closed, bounded and convex subset of Banach
space Band T : U—— U is a compact operator. Then T has at least one fixed

point in U.

Now, we shall give the definition of an important concept which is

called equicontinuous functions.

Definition (2.1), [Marsden, 1995]:

A subset S of C[0, T] is said to be equicontinuous, if for each ¢ >
0, there is a 6 > 0, such that:

|[t—t1]<d and ue M imply lu (t) —u (1) ”C[O,T]<8-

18
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the Fractional Integro-Defferential Equations

Theorem (2.2) (Arzela-Ascoli Theorem), [Dieudonne, 1960]:

Suppose F is a Banach space and E is a compact metric space. In order
that a subset H of the Banach space Tr(E) be relatively compact, if and only if
H be equicontinuous and that, for each x € E, the set H(x) = {f(x): fe H } be

relatively compact in F.

The next theorem will plays an important role in the proof of the

uniqueness theorem, which is called Bihari's inequality.

Theorem (2.3) (Bihari's Inequality), [Momani, 2007]:

Let g be a monotone continuous function in an interval I,
containing a point up, which vanishes nowhere in I. Let u and k be continuous
functions in an interval J = [0, T] such that u (J) — I, and suppose that k is of

fixed sign in J. Let a € I, suppose that
t
u=a+ [k(s)g(ues)ds, ted
0
Then
t
u(t) < G‘{G(a)ﬂ‘k(s)ds:l, tel
0

u
where G(a) is a primitive of (L l.e.G(u _[ ,uel.
g(X

Up
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Theorem (2.4) (The Existence Theorem):

Let u and u™ be a real nonnegative function in C[0, T], and that
te [0, T],0<q<1 Thenegs. (2.1)-(2.2) has a solution u.

Proof:

In order to discuss the conditions for the existence for the

solution

of egs. (2.1)-(2.2), let us define B = C[0, T] to be the Banach space with

the supremum norm, let us define the set:
U={ueC[0, T]:|ull <cq, u*™)| <cpc1, >0,k eN}

Now, since our proof depends on the Schauder fixed point theorem,

then it is sufficient to prove that U is a nonempty, closed, bounded and convex
subset of the Banach space B and then the operator A : U —— U is compact

operator.

It is easy to see that the set U is nonempty since from the properties of the

norm we have 0 € U and also bounded and closed (from the definition of U).

To prove U is convex subset of B. Let uy, U €U, || uy || < cq, [ us™™ || <

Ca, || Uz|| < c1, | u*™ || < ¢, such that:
let u(t)=Au+(1-M)ux(t), Are[0,1]
ToproveueU, [Ju |l scu, [Ju ™ || < ca,
[Hull = 1A u+(1-Auz ||

<IAHu =+ 1A= ][] uzld
20
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<Acr+(1-1)c
= ¢,
U™ = I Doug +(2- 0
= [ 2™ |+ 11(2- 1) u ™|
<A un® ™+ 12 D)) )™
< X+ (1-2) ¢
= ¢,
Hence, u € U, U is convex set.

Now, in order to show that egs. (2.1)-(2.2) has a solution, we have to
show that the operator A in eqg. (2.4) is completely continuous.

Let v(t) = Au(t), to prove that v(t) € U

t

ME o gl qlu“‘”(s)ols——j(t ) tu(e)ds |

j(t s)m 1ds+ ” | j(t s)97ds

T ol
" I'(m-qg+1) TI(g+))

<c’

That is v(t) is bounded.

V=1 = _q) j(t—s)m-q-lu“k*”m>(s)ds

21



Chapter Two The Existence and Uniqueness Theorem of the solution of
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) j (t=5)Tu ™ (s)ds |

amfrnefyomrs

r(m—q+1)  T(q+1)

LGOI 6T
I'm-g+1) TI'(q+1)

*

<c.

that is v™(t) is bounded, v(t) € U. Then the operator A maps U into

itself.
Since for all u € U we have A(u) <c ,then A(U) is bounded operator.
To prove that A is continuous operator. Let u, v € U, then we have:
[Au-Av]|=||
t— smqlu(m)sds—— t—s)9u(s)ds
- q)j< ) (s) j( )¥u(s)
t—s)™" OIlv(m)sds—— t—s)9v(s)ds
| Fm e q)j( ) (s) j( )i v(s)ds ||
1 ¢
== [ t=5)" " ™ (5) -v{™(5))ds -
I(m-aq)y

e (e AR TRl
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™ v Ju=v]

- T'(m-g+1) r'(q+1)

R R T

- I'(m-q+1) I'(q+1)
Let w=u-V
(m)
B ) I Y
I'(m-qg+1) I'g+1
<c

That is Au is bounded operator, Au is continuous operator.

Now, we shall prove that A is equicontinuous operator. Let ueU and t;,
t, [0, T], then:

i1
IAu(t)-Av(L)]| = ||(— [ (=)™ (™ (5)ds -
S)

I'(m-

t
I )j(tl s)¢ 1u(s)ds}—(ﬁ£ (t, _S)m—q—lu(m) (s)ds -

j (t, —5)° 1u(s)ds}||

F(m— )

I'(a)

=)™ 9 ds — j(t —5)™ A gs| +
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< Al tjl(t1 —5)9ds - tjz (t, —s)tds
I'(@)]q ]

C

< tm_q _tm_q +L tq —tq
- r(m—q+1)‘(1 ? )‘ F(q+1)‘(1 2)‘
< 2c, Tm-q 2¢; Td

I'(m-qg+1) I'g+1
<c.

Au is equicontinuous operator. A is relatively compact. Now from
Arzela-Ascoli theorem, A is completely continuous operator,then A is
compact. Then Schauder fixed point theorem gives that the operator A has

fixed point, which corresponds to the solution of eq. (2.3). =

2.3 The Uniqueness of the Solution of the Fractional Integro-Differential
Equations

Consider the initial value problem, which consists of the fractional
integro-differential equation egs. (2.1)-(2.2) of the type:

D3 u(t) = f(t) +J%u(t)
with the initial condition:
u(0)=ug
where f is a continuous function on t foru € R, t e [0, T], up is a real

positive constant and DY denotes the Caputo fractional  derivative

operator. We shall use Bihari's inequality to obtain the uniqueness
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theorem to equations given by egs.(2.1)-(2.2). Eg.(2.1) can be

transformed in the next lemma.

Now, some additional properties are given for completeness purposes.

Lemma (2.1):

The solution of the initial value problem given by egs. (2.1)- (2.2)

has the form:

u(t) = Uo + I )j(t s)97f (s)ds +

S

1
r(ooI e 1{r< r@) ¢ 1”(0)d0}ds

Proof:

From egs. (2.1)-(2.2)
D3u(t) = f(t) + J%u(t)
With the initial condition:

u(0) = uo

Applying the integral:

1 t
a9 P9ty = 19 g _q)a-1
JUDiu(t)=Jf(t) + J F(q)g(t s)"u(s)ds
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t
u(t)—up= qu) _([ (t— s)Q—lf (s)ds

{mj (s— )¢ 1u(0)d0} =

Theorem (2.5) (The Uniqueness's Theorem):

F()

The initial value problem given by egs.(2.1)-(2.2) has a unique
solution on the interval [0, T] if u is continuous function in the region:
D={(t,u)|0<t<T,|u—u<h}
and satisfy the condition:

——(s-0)""u (6)——(S c)7y(o)

r(q) r(q) do<Mo(u-y)) ... (2.5)

I

where M is a positive constant and ¢ is a nondecreasing continuous

function and satisfy

L o) < q{fj
(04 (04

For x> 0, a > 0 and the following integral

1
Where ®(x) is a primitive of the function ——, and ®™ denotes

o(x)’

the inverse of O.
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Proof:

Let that there exists two solutions u and y of egs. (2.1)-(2.2), then:

u(t) =ug +

1 t
7 j (t—s)9 1 (s)ds +
0

1 t
WN—S)“ {r( )I(S c)" 1U(cs)dcs}

0

t
y(O=uq+ rlq) g (t—s)9 L (s)ds +

-1 -1
r()j(— 5)%" {F()j(s o))" y(c)dc}

this implies to:

-1
u(t) - y(t)|<—j( —s)? {F( )j

(s—0)" " (o) - y(o)|do}
It follows from ineq. (2.5) that:
|u(t) - y(t>|<—j(t 5" M¢(|u~y[)ds
thus
M t
lu® -y <e+ @j(t—s)‘*‘lcb(l u-yl)ds
0

foranye>0,0<t<T.

By using theorem (2.3), then:
27
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MTH
g+l

u(t) — y(o)] < cb‘{cb(s) + },for any fixed t € [0, T]...(2.7)

We shall proof that the right-hand side of ineq. (2.7) tend towards zero
as ¢ — 0. Since |u (t) — y (1) is independent of &, it follows that u (t) =y

(t), which we need. Let us remark that condition (2.6) implies that ®

(¢)—-© as € — 0, no matter how we choose the primitive of — . Thus

o(x)
®'(X) — 0 as x — -oo. Consequently, when ¢ — 0 in ineq. (2.7), the
right-hand side tends towards zero (for all finite t). Therefore, u(t) = y(t),
forte [0, T]. m
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Chapter Three

Numerical and Approximate Solution of
1 ntegro-Differential Equations of Fractional
Order

In some cases, the analytical solution may be so difficult to be
evaluated, therefore numerical and approximate methods may be
necessary to be used which cover the problem under consideration.
Hence, in this chapter, some approximate methods are considered to
solve fractional integro-differential equations. These methods are the
collocation method, the least square method and the Adomian
decomposition method, which are given in sections one, two and three,

respectively with some illustrative examples.

3.1 The Collocation Method

The collocation method may be considered as one of the most
common used methods in approximating the solution of differential
equations and integral equations, [Deleves, 1985]. This method is based
on approximating the solution of the problem as a linear combination of
certain complete sequence of functions and then solving the linear
algebraic system resulting from substituting this approximate solution in
the governing equation at a finite set of points from the domain of
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definition. Here, this method will be used to solve fractional integro-
differential equations of the form:

DIu() =F (1) +JWE), U Q) = Ug.eeeeeieeeeeieieiei e, (3.1)

Let u(t) be the approximate solution of eq.(3.1), defined by:

UE) = W) + D 80 (1) o (3.2)
i=1

Where wy(t) is a function which satisfies the nonhomogeneous
conditions and {oi(t)} is a complete sequence of functions, which
satisfies the homogeneous conditions. To find the approximate solution
u(t), substitute u(t) in the operator given by eq.(3.1) and hence the
problem is reduced to the problem of evaluating the constants a;'s, for all

1=1,2,...,n;:which is as follows:

and therefore, the residue error R(u, t) will be:
R(u, t)= DI[w(t) + > aig; ()] — I [w(t) + D ap; ()] — F(t) ... (3.4)
i=1 i=1

it is clear that R(u, t) becomes a function of the unknowns a;, a,,
..., a, and hence R(u, t) may be rewritten as R(ay, ay, ..., a,; t) and our
purpose is to make:

R@y, a, ..., an ) =0, VI [0, Tl (3.5)
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To evaluate the coefficients aj's, i=1, 2, ..., n; evaluate eq. (3.4) at

n-distinct points ty, t, ..., t, € [0, T], which will produce the

following linear system:
R(ai, @z ..., an; t1) =0

R(ai, @z ..., an; ) =0

R(ai, @z ..., an; t)) =0

which may be written in matrix form, as:

Aa=B
where:
(a;  ap, ay, |
A dpy a?z don
_anl dpp ann_
where:

a1 = DI gi(ty) — J91(ty), a1 = DI @a(ty) — I9@a(ty), ...,
a1 = DI @n(ty) — I9@n(t1), 821 = DI 1(ty) — J9a(ty),
822 = DI @a(t2) — I9@a(t2), ..., @ = DI @n(tz) — I9¢n(t2), ...,

dn1 = D! @1(tn) — Jq(Pl(tn), dn2 = D Po(tn) — Jq(PZ(tn)'
ann = DI @n(tn) — I%n(ts)
and
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f(t) - (DY 3Dt | [a,]
B f(tz)_(Dfi '_Jq)[\lf(tz)] a- a:z
f(t,)— (DY —3[w(t,)]] L2

It is remarkable that the matrix A is nonsingular since o;'s, for all i
=1, 2, .., n; are selected from a complete sequence of functions, i.e., the
¢i's are linearly independent and the vector B is not identical to the zero
vector if either the fractional integro-differential equations (3.1) has non-

zero initial condition or if eq.(3.1) is nonhomogeneous or both.

Moreover, the method may be used to the nonlinear fractional
integro-differential equations:

DIu(t) =f(t) +IINU()), U(0) = Up vevvveniriiieeeeeeiee, (3.6)

where, N(u) is the nonlinear term, let u(t) be the approximate
solution of eq.(3.6), defined by eq. (3.2):

u(t) = w(t) + > aje;(t)
i=1

where y(t) is a function which satisfies the nonhomogeneous conditions
and {¢i(t)} is a complete sequence of functions, which satisfies the
homogeneous conditions. To find the approximate solution uf(t),
substitute u(t) in the operator given by eq.(3.6) and hence the problem is
reduced to the problem of evaluating the constants a;’s, for all i = 1, 2,

..., n: which is as follows:
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DY [w(® + D aipi ()] = f(®) + IIN([w(®) + Do ()])-......... (3.7)
i=1 i=1
and therefore, the residue error R(u, t) will be:
R(u, )=D2 [w(t) + D aig; ()1 JIN([w(®) + D aig; () ]) - () -..(3.8)
i=1 i=1

it is clear that R(u, t) becomes a function of the unknowns ay, a, ..., a,
and hence R(u, t) may be rewritten as R(ay, ay, ..., an; t) and our purpose

IS to make:
R@y, a, ..., an ) =0, Ve [0, T] oo, (3.9)
To evaluate the coefficients a&’s, i = 1, 2, ..., n;evaluate eq.(3.8) at n-

distinct points ty, t,, ..., tye [0, T], which will produce by the nonlinear
system algebraic equations, which solved using Newton-Raphson

method.
The following examples for illustrate the above method of solution:

Example (3.1):

Consider the linear fractional integro-differential equation is:

DSu(t) = f(t) + 3%2u(t), u(0) =0, t € [0, 1]-revverereerrrrrrere (3.10)
where:

6 t2.5 6 t3.5

fit) = I'(35)  TI(45)

In order to solve eq.(3.10) according to the colloca on
method, we consider the approximate solution u(t) as:
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5
ut) = w(t) + > a;p; (1)
i=1

and since u(0) = 0 is the only initial condition, which is
homogeneous, then y(t) = 0. The functions oi(t), i =1, 2, ..., 5; which

satisfy the homogeneous initial condition u(0) = 0, may be chosen as:
e)=t,i=1,2,..,5
and the approximate solution u(t) will take the form:
u(t) = ast + at® + agt® + ast’ + ast®
Therefore R(ay, ay, ..., as ;t) = 0, implies to:

05 (art+apt? + ast +ast* + ast®) — I (agt + at® + ast® + agt

6 t2.5 6 t3.5

") =T35" " Tus)

and evaluating D2° and J%°, the following algebraic equation is

obtained:

a1(1.12838t%° — 0.75225t™°) + a,(1.50451t"° — 0.601802t*°)
+ a3(1.80541t>° — 0.51583t>°) + a,(2.06332t>> — 0.45852t"°) +
as(2.29258t"° — 0.41683t°°) — (1.80541t*° — 0.51583t>°) = 0

Hence, att=0.1, 0.3, 0.5, 0.7 1, we get the linear system Aa = B, where:
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(0.33304 456734x107° 554600x10° 6.37979x10% 7.11796x10°7° |
049443 021755  8.136%x107° 2.84792x1072 9.61637x10°°

A= 0.53192 0.42554 0.27356 0.16211 0.2108x107
0.50351 0.63441 0.59212 0.50001 0.40192
_0.37613 0.9027 1.28958 1.60480 1.87575 |
a, ] [5.54609x107° |
a, 8.13694x1072

a=|az |,B= 0.27356
ay 0.59212
kS | 1.28958 |

Solving this system for a, a,, ..., as, yields to:
u(t) = 7.91x10 %t — 1.8x107%¢* + £ — 2x107%* — 1x107°¢

A comparison between the exact solution u(t) = t° and the

approximate solution is given in table (3.1).
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Table (3.1)
Exact and approximate results of example (3.1).

T Exact solution | Approximate solution Absolute error

0 0 0 0

0.1 1x107 1x1073 6.08x107%°
0.2 8x107 8x107 8.28x107%
0.3 2.7x1072 2.7x107 5.9x107%
0.4 6.4x1072 6.39999x10° 2.4x107%
0.5 0.125 0.12499 1.7x107
0.6 0.216 0.21599 4.4x107%°
0.7 0.343 0.34299 8.3x107
0.8 0.512 0.51199 1.37x107'8
0.9 0.729 0.72899 2.12x107%8
1 1 0.99999 3.11x107%®

Example (3.2):

Consider the nonlinear fractional integro-differential equation is:

1
0.75 U(t) _ t0.25

*

u(0)=0
where the exact solution

rw25  I(3.75)

2

Is given by u(t) =t.

275 + J9Pu2(t), te[0, 1] ......... (3.11)

In order to solve eq.(3.11) according to the collocation method,

we consider the approximate solution u(t) as:
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5
u(t) = w(t) + > aje; (1)
i=1

and since u(0) = 0 is the only initial condition, which is homogeneous,
then y(t) = 0. The functions ¢;i(t), 1 = 1, 2, ..., 5; which satisfy the

homogeneous initial condition u(0) = 0, may be chosen as:
e)=t,i=1,2,..,5
and the approximate solution u(t) will take the form:
u(t) = ast + at® + agt® + ast’ + ast®

Therefore R(ay, ay, ..., as;t) = 0, implies to:

0.75
J

D7 (agt +agt” +ast’ +aat’ +ast’) — 7 (ant +apt’ +agt’ +aut’ +ast’)’ -

(1.10326t*° — 0.45218t*") = 0

9.75 JO'75

and evaluating D and ,the following algebraic equation is

obtained:
1.10326a;t°% + 1.76522 at'*® + 2.35363 ast>?® + 2.89677
at® + 340797 ast®-— 0.45218a’t*” — 0.30463a5t*" —

0.23546a5t%7° -  0.19445a;t*™ — 0.16697at°"® -
0.36175(2a:2,)t>"° — 0.30463(2a;a3)t""° — 0.26489(2a,a,)t>"° —
0.23546(2a1a5)t>"° — 0.26489(2a.a3)t>"° — 0.23546(2aa,)t°" —
0.21268(2a,as)t""> — 0.21268(2azas)t”"” — 0.19445(2azas)t> " —
0.17949(2asas)t> " = 1.10326t°% — 0.45218t*™ ........ccoceoo....... (3.12)
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algebraic equations, which

Hence, at t = 0.1, 0.3, 0.5, 0.7 1, we get a nonlinear system of

which yields to:

a=1,a,=-2551x10", az = 8.819x10™, a,
as = 5.393x107°

Therefore:

solved using Newton-Raphson method,

=-1.204x107*

u) = t — 2.551x107°t" + 8.819x107°t — 1.204x107%" +
5.393x107°t°

A comparison between the exact and approximate results is given

in table (3.2).
Table (3.2)

Exact and approximate results of example (3.2).
t Exact solution Approximate solution Absolute error
0 0 0 0
0.1 0.1 0.099999821 1.78411x10”"
0.2 0.2 0.19999951 4.90262x10"
0.3 0.3 0.29999924 7.5896x10~"
0.4 0.4 0.39999903 9.67437x10”"
0.5 0.5 0.49999831 1.19344x10°°
0.6 0.6 0.59999846 1.544803x10°°
0.7 0.7 0.69999791 2.09475x10°°
0.8 0.8 0.79999718 2.81718x10°°
0.9 0.9 0.89999648 3.521904x107°
1 1 0.99999 3.79x10°°
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Example (3.3):

Consider the nonlinear fractional integro-differential equation is:
SSut) =F () +3%°u(®), u(0)=0,t €[0,1] «vvevvvrrennnn... (3.13)
Where:
f(t) = 1.12838t°° + 0.75225t™ +0.3009t*° + 8.59717>°

and the exact solution is given by u(t) = te'.

In order to solve eq. (3.13) according to the collocation
method, we consider the approximate solution u(t) as:

5
u(t) = w(t) + > aie;(t)
i=1

and since u(0) = 0 is the only initial condition, which is
homogeneous, then y(t) = 0. The function ¢;(t), i = 1, 2, ..., 5; which

satisfy the homogeneous initial condition u(0) = 0, may be chosen as:
p()=t,i=1,2, ...,5
and the approximate solution u(t) will take the form:
Uu(t) = ast + at® + agt® + ast’ + ast®
Therefore R(ay, ay, ..., as ;t) = 0, implies to:

05 (at+a t? +ast +ast* +ast®) — 300 (gt + at? + ast® + agt + ast)

= 1.12838t%° + 0.75225t° +0.3009t>° + 8.59717t>°

and evaluating D2° and J%°, the following algebraic equation is

obtained:
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a1(1.12838t°° — 0.75225t%) + a,(1.50451t"> — 0.601802t>°) +
as(1.80541t>° — 0.51583t>°) + a,(2.06332t>> — 0.45852t*°) +
as(2.29258t"> — 0.41683t>) - (1.12838t° + 0.75225t"°

+0.3009t*° + 8.59717t*°) = 0

Hence, att = 0.1, 0.3, 0.5, 0.7 1, we get the linear system Aa = B,

where:
0.49443
A=| 053192
0.50351
037613
o]
a;
a=|a, | B
ay
| 85 |

Solving this system for ay, a,, .

0.21755
0.42554
0.63441
0.9027

0.38159 |

0.75775
1.12464
1.53267

| 2.26750

0.27356 0.16211

0.59212 0.50001

1.28958 1.60480
.., as, yields to:

(0.33304 456734x107° 554600x10° 6.37979x10%  7.11796x107° |
8.136%4x1072 2.84792x107° 9.61637x10°°

9.2108x107
0.40192
1.87575

u(t)=1.00019t — 0.99737t> + 0.51207t> — 0.14267t" — 5.42085x10 > t°

A comparison between the exact solution u(t) = te' and the

approximate solution is given in table (3.3).
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Table (3.3)
Exact and approximate results of example (3.3).

t Exact solution Approximate solution | Absolute error
0 0 0 0
0.1 0.11050 0.11052 2.91242x10°°
0.2 0.24400 0.24427 8.31221x10°°
0.3 0.40350 0.40493 8.34559x10°
0.4 0.59200 0.59664 3.68465x10™
0.5 0.81250 0.82406 1.14049x10°°
0.6 1.06800 1.09248 2.87964x107
0.7 1.36150 1.40785 6.33362x10°°
0.8 1.69600 1.77685 1.25828x10°°
0.9 2.07450 2.20696 2.31054x1072

1 2.5 2.70651 3.98423x107?

3.2 The Least Square Method

One of the most widely used methods to approximate the solution of the
integro-differential equations, in general, and fractional integro-
differential equation, in particular, is that one which has the general idea
of minimizing the square of the residue error, which is called the mean
square method. To illustrate this method, consider eq.(3.1):

DJu(t) = f(t) + J%u(t), u(0) = uo, t € [0, T]

and approximate the solution by:
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where a;'s, 1 = 1, ..., n; are constants to be determined. Therefore,
substituting eq.(3.14) back into eq.(3.1) and minimizing the square of the

residual error defined as:
t

Ea, ..., an) = | {DIon(t) — I%gn(t) — f(t)}* dit
0

O

{D4 (iaiti ) —J¢ (iait‘ ) f(O)} dt......... (2.15)
i=1 i=1

Hence, the problem now is reduced to find the coefficients a;'s, i = 1, 2,
..., N. A necessary conditions for the coefficients a;'s, which minimizes
E, is that:

ﬁzo,foreachjzl, 2,...,Nn

0a;

Which will give a linear system of n-equations, or the residue error
given by eq.(3.15) may be minimized using the direct minimization
techniques. Consider the fractional integro-differential equation (3.15),
which will take the form:

t n ) . 2
E(ay, ...,an)=j {Z[DS (ait')_JQ(ait')]—f(t)} dt........ (3.16)

0 i=1

and hence

OE

— =2
8aj

{i[Dﬂ (at) -2 (ait") | —f(t)}{Dﬂtj ~ 9} dt

i=1

O
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which is equivalent to:

t

I {E[Dﬂ(ait')—Jq(aim]}{agu_Jqu}dt:

0

f FO (DIt = JI) At v (3.17)
0

for all j =1, ..., n; which give an algebraic linear system of n-equations
into n-unknowns ai, a,, ..., a,; which may be solved using any numerical
method for solving linear systems. Moreover, the method may be used to

solve the nonlinear fractional integro-differential equations (3.6):
Dlu(t) =f(t) +I9N(u(t)), u(0)=uete [0, T]

where, N (u) is the nonlinear term, let u(t) be the approximate
solution of eq.(3.6), defined by eq. (3.14):

n .
o) =D ait' , ne N
i1

where a;'s, i = 1, ..., n; are constants to be determined. Therefore,
substituting eq.(3.14) back into eq.(3.6) and minimizing the square of the
residual error defined as:

t
Eay, ..., a) = | {Dou(t) - ITN[on(t)] - f(H)}* dt
0

O

{D4 (iaiti ) —J¢ N[(iait‘ - FOF dt e, (2.18)
i=1 i=1

Hence, the problem now is reduced to find the coefficients a's, i = 1,
2, ..., n. A necessary conditions for the coefficients a;'s, which minimizes

E, is that:
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ﬁ:O,foreachjzl, 2,...,N

oa j

Which will give a nonlinear system, or the residue error given by
eq.(3.18) may be minimized using the direct minimization techniques.
Consider the fractional nonlinear integro-differential equation (3.18),
which will take the form:

n

. 2
Ea, ..., an) = | { [Dﬂ(aiti)_JqN[(ait‘)]]_f(t)} dt..(3.19)

0 1

and hence

%ff 2i{§[DS(aiti)—JQN[(ait‘)l]‘”t)}{Dﬂ”‘JqN[aj“]}dt

which is equivalent to:

} {i[Dﬂ (at) —J° N[(ait‘)]]}{Dﬂti — %00} dt=

o Li=1l
t . .
[ fO(DI =3t dt ..o (3.20)
0
Forall j=1, 2, ..., n; we get a nonlinear system of algebraic equations.

To find ay, ay, ..., a,, either by minimizing E with respect to ay, ay, ..., a,

: . . ok :
or evaluating the nonlinear system obtained from o =0,vi=1,2, ...,
a:

n; which will be solved then by using Newton-Raphson method.

The following examples illustrate the least square method:
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Example (3.4):

We again consider the linear fractional integro-differential
equation (3.10):

6 {25 6

D&Su(t) = -
I'(3.5) ['(4.5)

25+ 3%%u(t), u(0) =0, t € [0, 1]
and according to the least square method, we consider:

5
ps(t) = > ajt’
i=1

Hence:

115 : :
E(ay,....as) = I {Z[Dg'S(ait')—JO'S(ait')]—

0 L=l

6 25 6 35 i
I35  I(45)

1
= | { O5(art + at? + agt® + agt* + ast®) — 3% (at +
0

atf o+ att o+ att + at) -

( 6 o5 6 t3.5j }Zdt
I35  I(45)

{a:(1.12838t°° — 0.75225t°) + a,(1.50451t"> —

O —_

0.601802t*°) + as(1.80541t*> — 0.51583t>°) +
a4(2.06332t>° — 0.45852t*°) + a5(2.29258t*> —

0.41683t°) — (1.80541t>° — 0.51583t°°)}* dit
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Therefore, to find ay, ay, ..., as, either be minimizing E with respect to ay,

: ok :
a,, ..., as or evaluate the linear system o =0,1=1, 2, ..., 5
a:

Evaluating the linear system, as:

E
g— =0 = 0.21221a; + 0.20372a, + 0.18593a; + 0.20695a, +
o
0.15678as = 0.18593
oE
8— =0 = 0.20372a; + 0.26408a, + 0.27717a; + 0.27594a, +
a
0.26977a5=0.27717
oE
8— =0 = 0.39289a; + 0. 27717a, + 0.31043a; + 0.32193a, +
s
0.32387a5=0.31043
oE
8— =0 = 0.16999a; + 0.27594a, + 0.32193a; + 0.34295a, +
ay
0.35184a5=0.32193
oE
8— =0 = 0.15678a; + 0.26977a, + 0.32387a; + 0.35184a, +
ag

0.36632a5 = 0. 32387
which has the solution:

a;=1.756x10"", 2, =0,a3=1, a,=-2x10"%, a5 =0
and hence the solution of the integro-differential equation is:
u(t) = 1.756x10 Mt + 2 — 2x10 %!

A comparison between the exact and approximate results is given

in table (3.4).
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Table (3.4)

Exact and approximate results of example (3.4).
T Exact solution Approximate solution | Absolute error
0 0 0 0
0.1 1x107 1x1073 1.7558x107*8
0.2 8x107° 8x107° 3.5088x107*8
0.3 2.7x1072 2.7x107 5.252x107*8
0.4 6.4x1072 6.4x1072 6.973x107*8
0.5 0.125 0.125 8.66x107'8
0.6 0.216 0.216 1.028x107Y
0.7 0.343 0.343 1.181x107"
0.8 0.512 0.512 1.323x107Y
0.9 0.729 0.729 1.449x107Y
1 1 1 1.56x10°Y

Example (3.5):

We again consider the nonlinear equation (3.11 ), given by:

2

D9.75 U(t) _ 1 t0.25

(.25  TI(3.75)

275+ 3% u2(t), u(0) = 0, t e [0, 1]

and according to the least square method, consider:
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1 5 5\
E(ay, az, ..., ast) = I {DS'E(Zait'j—JO% [Zait'j —

2
1 {025 _ 2 275 |U gt
I'(1.25) I'(3.75)

{ 07 (it + at? + agt® + agt + ast®) — I (ayt

O —_

+ at? + agt® + ast’ + ast®)? —

2
1 {025 _ 2 {275 dt
'(1.25) '(3.75)

Then after evaluating the fractional derivatives and fractional integrals
under the integral sign. To find ay, a,, ..., as, either by minimizing E with

respect to aj, ay, ..., as or evaluating the nonlinear system obtained from

% =0,Vi=1, 2, ..., 5; which will be solved then by using Newton-

0a;

Raphson method, which has the solution:
a =1, 8= —4.669x107°, a3 = 1.232x10°, a4 = -1.332x10~°,
as = 5.084x107°

and therefore, the solution of the nonlinear integro-differential equation

IS given by:
u(t) = t—4.669x10 %+ 1.232x10°t*~ 1.332x10°t* +5.084x10°

A comparison between the exact solution u(t) = t and the

approximate solution are given in table (3.5).
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Table (3.5)
Exact and approximate results of example (3.5).
t Exact solution Approximatesolution | Absolute error
0 0 0 0
0.1 0.1 9.99999x107% | 3.56512x10°®
0.2 0.2 0.199999 1.07885x10~"
0.3 0.3 0.299999 1.83108x107’
0.4 0.4 0.399999 2.47492x1077
0.5 0.5 0.499999 3.00875x107’
0.6 0.6 0.599999 3.506602x10~’
0.7 0.7 0.699999 4.05714x1077
0.8 0.8 0.799999 4.70267x1077
0.9 0.9 0.899999 5.37811x107’
1 1 0.999999 5.85x107’
Example (3.6):
Consider the nonlinear equation given by eq. (3.13):
SSu(t) =f(t) +3%°u(t), u(0) =0, t [0, 1]
and according to the least square method, we consider:
S i
|
os(t) = D _ajt
i=1
Hence:
t[e 0 0
5 i 5 i
E(al,...,as)z I {Z[ * (aitl)—\] (aitl):|—
o Li=1
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2
(112838t°-5+ 0.75225t*° +0.3009t%° + 8.59717t3-5)}

1
= | { O5(art + at? + agt® + agt* + ast®) — 3% (at +
0

wt? + at + at + at) — (112838t%° +
2
0.75225t"° +0.3000t>° + 8.59717t3-5)} dt

1
= [{a:(1.12838t°° — 0.75225t"°) + a,(1.50451t"° —
0

0.601802t*°) + as(1.80541t*> — 0.51583t>°) +
a4(2.06332t>° — 0.45852t*°) + a5(2.29258t*> —

0.41683t>%) —  (112838t"° +0.75225t"° +
2
0.3009t2° + 8.59717t3-5)} dt

Therefore, to find ay, ay, ..., as, either be minimizing E with respect to as,

: ok :
a,, ..., as or evaluate the linear system o =0,1=1, 2, ..., 5
a:

Evaluating the linear system, as:

g—aEl = 0 = 0.21221a; + 0.20372a, + 0.18593a; + 0.20695a, +
0.15678as = 0.54338

(%EZ =0 = 0.20372a; + 0.26408a, + 0.27717a; + 0.27594a, +
0.26977as = 0.66304

(;%i =0 = 0.39289a; + 0. 27717a, + 0.31043a; + 0.32193a, +

0.32387as = 0.68484
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S—E =0 = 0.16999a; + 0.27594a, + 0.32193a; + 0.34295a, +
G
0.35184a5=0.67807
E
s— =0 = 0.15678a; + 0.26977a, + 0.32387a; + 0.35184a, +
ag

0.36632as = 0. 66174
and hence the solution of the integro-differential equation is:
u(t) =—1.71402x10%t + 4.50386t*— 3.17152t> + 0.22997t* —
1.07351¢°

A comparison between the exact and approximate results is

given in table (3.6).

Table (3.6)

Exact and approximate results of example (3.6).
t Exact solution Approximate solution | Absolute error
0 0 0 0
0.1 0.11050 0.04173 6.87873x107°
0.2 0.24400 0.15515 8.91158x107°
0.3 0.40350 0.32367 8.11765x107°
0.4 0.59200 0.53383 6.24319x10°°
0.5 0.81250 0.77659 4.63282x107*
0.6 1.06800 1.04859 4.10065x107*
0.7 1.36150 1.35350 4.8015x10°°
0.8 1.69600 1.70325 6.10206x107°
0.9 2.07450 2.11933 6.45209x107°
1 2.5 2.63411 3.25559x107°
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3.3 The Adomian Decomposition Method [Ibrahim, 2006]:

Adomian decomposition method (ADM) is one of the new
methods that may be used for solving initial value problems in fractional
integro-differential equations of various kinds that arising not only in the
field of medicine, physical and biological science, but also in the area of
engineering. It is important to note that a large amount of researches
workers has been devoted to the application of ADM to a wide class of
linear and nonlinear integro-differential equations of fractional order. In
resent years, the decomposition method has emerged as an alternative
method for solving a wide range of problems whose mathematical
models involve algebraic, differential, integral, integro-differential,
higher order ordinary differential equations, partial differential equations
and in this section fractional integro-differential equations. The
convergence of this method have investigated by Cherruault and
cooperators. In [Cherruault , 1989], Cherruault proposed a new definition
of the method and then he insisted that it will become possible to prove
the convergence of the decomposition method. In [Cherruault, 1993],
Cherruault and Adomian proposed a new convergence proof of Adomian
method based on properties of convergence series. In this method, the
solution is considered as the sum of an infinite series, rapidly converging
to an accurate solution. In [Abbaoui, 2001], Abbaoui et al. proposed a
new approach of decomposition which is obtained in a more natural way
in the classical representation. Lesnic [Lesnic, 2002] investigated
convergence of Adomian's method to periodic temperature fields in heat

conductors. The advantage of this method is that it provides a direct
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scheme for solving the problem without any need for linearization or
discritization. Essentially, the method provides a systematic
computational procedure for equations of physical significance.
Adomian in (1994), (1989); Kaya and El-Sayed in (2003), has used
Adomian decomposition method to solve the problems in applied
sciences. Decomposition method provides an analytical approximation to

linear and nonlinear problems, [Adomian, 1988], [Adomian, 1985].

3.3.1 The Analysis of ADM [lbrahim, 2007]:

The ADM will be reviewed by following the procedure of
Adomain given in 1988 and improved in 1991. However, the same
technigues may be applied to other system of equations [Bulut and
Evens, 2002]. To introduce this method, first we consider the eq. (3.1) is
linear, i.e., the fractional integro-differential equation (3.1) is of the
form:

DY u(t) = f(t) + J9u(t), u(0) = uo

or equivalently:
DY u(t) = f(t) + %i(t—s)q—lu(s) 4, U(0) = Ugorrrrro (3.21)

where 0 < q < 1, f(t) i1s assumed to be bounded, V t € [0, T].
Operating with J* on both sides of eq. (3.21), getting:

J9DIu(t) = J9f(t) + J° {%i(t—s)q‘lu(s)ds}

Hence:
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t
u(t) = u(0) + J9f(t) + J° L IR RIS [ — (3.22)
I'(a)
Adomian's method defines the solution u(t) by the series:
U = D Un() oo (3.23)
n=0

Hence, from (3.22) we obtain that:

PR VT(0) TR Ak () N (3.24)
1—Jq(mj (t—s)9tu (s)dsJ ........................................... (3.25)
un+1—Jq(—J' (t—s)9tu (s)dsJ ........................................ (3.26)

where the components un(t) will be determined, recursively. Moreover,
the method may be used to the nonlinear integro-differential equation of
fractional order (3.6):

Dl u(t) = f(t) + IIN(u(), u(0) =0

or equivalently:

DJu(t) = f(t) + Lj(t —9)%IN(u(s))ds, u(0) = Ug.rrne..... (3.27)
NG

Where 0<q <1, f(t) is assumed to be bounded forallt € I =[0, T] and

j(t s)97ds| <M, forall0<s<t<T

') 5

o4



Chapter Three Numerical and Approximate Solution of Integro-Differential
Equations of Fractional Order

where M is finite constant. The nonlinear term N(u) is Lipschitzian with:
IN(u) — N(2)| £ Lju- Z|

and may be decomposed in the form:

N(u(t)) = i N T (3.28)
n=0

where A, are the Adomian polynomials, given by:

Then N(u) will be a function of A, uo, U, ... . Now, substituting
eq.(3.28) in eq.(3.27), yields to:

1 t ~ 00
g _ _q)u-1
D, u(t) = f(t) + ) g (t—s) (nE_OAn (s)jds ...................... (3.30)

Operating with J* on both sides of eq.(3.30), give:

The components ug, Uy, ... are determined recursively by:

TITY(0) R KA 1 (3.32)
t
Ugey = J9 (%g(t —s)4tA, (s)dsJ ....................................... (3.33)

The Adomian's polynomials can be generated from Taylor expansion of

N(u(t)) about the first component ug, which means that:
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N = 3 A,
n=0

i - uo) (n)(Uo)

In [Adomian, 1995], Adomian's polynomials are arranged to have
the form:

A= Ulf(l)(uo)

A, =u,fD(u, )+ £ (ug) L e (3.34)

3
Az =gt ® (ug) +uyu,f @ (up) +%f(3)(uo)

3.3.2 Modification of Adomian's Polynomials [Ibrahim, 2007]:

By rearranging the terms in the obtained polynomials (3.34),
yields to:

Aq =N(uo)

_ 1 U2 2 U3 3

A, = ulN()(u0)+2—1lN( )(u0)+3—1||\|( ) (Ug) +...

A, = uzN(l)(uo)+%(u§ +2u,U,)N® (uo)+%(3u12 +3u,U3 +

uZ)N® (ug) +...
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As =uzNY (uy) +%(u§ +2UU5 + 2U,U3)NP (u) +%(u§ n

303 (Ug +U,) +3U3(Uy +U,)2 )N (ug) +...

n
Define the partial sum S, = ) u;(t), from the rearranged
i=0
polynomials, then one can write:

'K‘O = N(UO) = N(So)

2 3
A, + A, = N(Ug) + ulN(l)(uo)+%N(2)(uo)+%N(3)(uo)+...

= N(Up + Uy)
= N(Sl)
Similarly:
Ay + A+ A, =N(Up+ U+ Uy
= N(Sz)
and by induction, the following sum is obtained:
n J—
2 Ai(Ug, Uy, U;) = N(sn)
i=0
Therefore, in general:

A =N(sy) - nz_lﬂi ................................................................. (3.35)
i=0

For example, if N(u) = u®, then the first four polynomials using

formulae (3.29) and (3.35) are computed to be:
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Using formula (3.29):
Ao= ug
A; =3U3 Uy
A, = 3Upu? +3U3u;
Ag = U3 + BUolyU, + 3UJ Us
A, = 3UZ U, + 3UgU5 + BUoU;Us + 3U3 Uy
Using formula (3.35)
A, = ul

A, =3u3uy +3ueu? + u3

A, =3uZu, + 3uoujs + 3ufu, + 3uu3 + BugUslz + U3

A, = 3udus + 3upui + 3ufus + 3u;u3 + 3usus + 3upu3 +

BUoU1U3 + BUgUizUs + BUyUUs + U3

A, =3udus +3upus +3uus + 3uruj +3usus + 3u,uf + 3uduy

+ 3U3 uﬁ + BUoU1U4 + BUgU2U4 + BUoU3U4 + BUsULU4 + BUsU3U4

+ BUoUsUs + U3

Therefore, the nonlinear part N(u) of eq.(3.27) may be written in

the form:

1

DIu(t) = f
u(t) (t)+F(q)
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Clearly, the first four polynomials computed using the suggested
formula (3.35) include the first four polynomials computed using
formula (3.29) in addition to other terms that should appear in As, As,
A, ... using formula (3.29). Thus, the solution that is obtained using
formula (3.35) enforces many terms to the calculation processes earlier,

yielding after a faster convergence.

3.3.3 Convergence Analysis:

In chapter two, we prove the existence and uniqueness theorem of
fractional integro-differential equation (3.1). Now in this section, the
convergence of the series solution (3.23) is also proved. Finally, the

maximum absolute error of the truncated series (3.23) is estimated.

Theorem (3.1):

The series solution (3.23) of eq.(3.21) using ADM converges
MTH
I'g+1

whenever where k = O<k<1.

Proof:
Let s, and sy, be an arbitrary partial sums with n > m, and to prove
that {s,} is a Cauchy sequence in Banach space B=(C[I],|| . ) of all

continuous functions of I.

Therefore:

”Sn - Sm” = MaxX |Sn - Sm|
tel
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n

=max| > u(t)

tel Jicm+1

— max i J‘{ r@) j (t—s)"tA._(s) dsJ

tel licm+1

= max |J (F( )j(t 5)d-1 Z A ((s) dsJ

tel i=m+1

From (3.35), we have:

nz_l/&i = N(Sn_l) — N(Sm_l)

i=m

ISn — Sm || = max
tel

t
Jf{% [CRIRUCRELE) dsJ

< max J¢ IN(Sp1) = N(Sp1))
te

if(t —5)97ds
I'(a) g

1 -1
<~ max t—s)91ds||N(s N(s (t-s)""ds
F(q) tel F(Q)‘[( ) | ( n 1) ( m 1)”

LMTq max |s —s |

F(q+1) tel |0t oMl
LMTY

< [ISn-1 — Sm-||
I'g+1

Hence:

lISn — Sml| < KllSn-1 — Sm-l|

Letn=m + 1, then:
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lISm+1 — Smll < K|[Sm — Sm-4l

< k2||5m—1 — Sm-2||

<K"lls1 = ol

and from the triangle inequality:
lISn = Smll < lISm+1 — Smll + [|Sm+2 = Smeal| + .. + |ISn — Sn-all

< (K™ + K™+ L+ K" |lsy — s

1-Kk"™
< K™ Z—— | |uq(t
( T Jn 0]

Since 0 <k<1,s0(1-k"™) <1, and then:

m

But |u(t)| < oo

Since f(t) is bounded, so as m—— oo, then ||S, — Sp|| ——> O

So {sn}is a Cauchy sequence in B, and therefore the series )  u;(t)
i=0

converges. W

Theorem (3.2):

The maximum absolute truncation error of the series solution
(3.23) to eq. (3.21) is estimated to be:

m

u(t) - i u; (t)| < 1k——k ngglx (VR ()] I (3.38)

MmaXx
tel |=0
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Proof:

From ineq. (3.37) in theorem (3.1), we have:

km
lISn — S| < K max |uy(t)]

— tel

and as n—— oo, then s,—— u(t), so we have:

km
u(t) — Sm|| < —— max |uy(t)]
1—k tel
and the maximum absolute truncation error in the interval | is
estimated to be:

km
< —— max |uy(t)). [ |
1-K tel (1)

it - u;®)

i=0

maX
tel

Example (3.7):
Consider the fractional integro-differential equation (3.10):
D%Su(t) = f(t) + 3% u(t), u(0) =0, t e [0, 1]

where:

fi(t) = 6 {25 _ 6 {35
[(35)  I(4.5)

and the exact solution is given by u(t) = t*.

According to the Adomian decomposition method, the
approximate solution:

W) = uO) + 0 osps 6 10585,

T(3.5) (4.5)

05| 1 05
J mj(t—s) u(s)ds

a
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and therefore:

Uo(t) = u(0) + L 305425 _ L 105435
['(3.5) ['(4.5)

6 I'(35): _6 I(45),
[(35) I'(4) TI(45) I(5)

- t2 - 0.25t*

uy(t) = J° j (t—5)""°uy(s) ds}

| {r(o 5

=0.25t* — 0.05¢°

Up(t) = J° j (t-s) °5u1(s)ds}

| {r(o 5) )

= 0.05t° — 8.33333x107%°

Hence:

u(t) = up(t) + uy(t) + ...

Also, the absolute error is evaluated, and the following notations

for the absolute error will be used:

Es = [u(t) — @s(D)], E4 = u(t) — @a(t)]

where:

on(t) = nZ_lui(t), n>1
i=0
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and the exact solution is u(t) = lim on(t).
N—o0

A comparison between the approximate and the exact solutions is

given in table (3.7).

Exact and approximate results of example (3.7).

Table (3.7)

f Exact solution ADM . E; ADM @, E;

0 0 ] 0 ] 0
0.1 11073 599992107 B.33333x107 | 9.95959%:107% | 1.19048x10710
0.2 8x107F 7.999471073 5333331077 | 7.99998:107F| 1523811078
0.3 2. 7x1072 2699351072 6075001078 | 2.69997x1072 | 2.60357x1077
04 641072 6396591072 3413331070 6.3998x1072 | 1.95048x107F
0.5 0.125 0.12487 1.30208x107 0.1249% 9.30010x107¢
0.6 D216 0.21561 3. 88800x107¢ 0.21597 3332571077
0.7 0.343 0.34202 9. 80408x107 0.34290 9. 80408x107
0.8 0512 0.50982 2.18453:x1073 0.51175 2.49661=107
0% 0729 0.72457 4.42868x1077 0.72843 5.69401 =107

1 1 0.99167 8.33333x107F 0.99881 1.19048=«107F

Example (3.8):

Consider the nonlinear fractional integro-differential equation
(3.11):

0.25 2

A " T@E75)

- = t2.75 + JO75U2 t ,t O, 1
I'(1.25) O.tel0.1]

u(0)=0
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where the exact solution is given by u(t) =t.
Therefore, according to the Adomian decomposition method:

Uo(t) = u(0) + J%°f(1)

20+Jo.75{ 1 {025 2 t2.75}

r(L25  [(3.75)
.2 s
['(4.5)
Unsa () = 307 #j(t—s)‘o'z‘r’A (s)ds |,n=0,1, ...
" r(0.75) " ! Y
where:
Ao= ug
A; = 2UgUy

A, = 2Uglz+ UZ

Az = 2U1U, + 2UgU3

are the Adomian polynomials for the nonlinear term N(u) = u®.

o] 1t e[ 2 35
a(t) =] {r(ms){(t °) (S r@s) jds}

= 25x107%% + 0.17194t>° + 1.24908x103%°

Cqoms| 1 b oos 2
() = J {r(ms)i(t ) HS I'(45)
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(—2.5x107%%+ 0.17194s%° + 1.24908x10°s%) } ds }

= —1.73157x107*%" + 25x107%° — 3.85698x107“%° —
8.90992x10%t*3°

Hence, the approximate solution using ADM is given by:
u(t) = up(t) + uy(t) + ...

Also, the absolute error is computed and the following notations

are used:

Es = [u(t) — @s(D)], E4 = u(t) — @a(t)]

where:
n-1
on(t) = D u;(t),n>1
i=0
and the exact solution is u(t) = lim on(t).
N—o0

A comparison between the approximate and the exact solutions is
given in table (3.8).

Table (3.8)
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Exact and approximate results of example (3.8).

t Exact solution ADM @, E; ADM @, E;

0 0 0 0 0 0
0.1 1x107! 1x107! 1.06269x1071 1x107! 4347711075
0.2 2x1071 2x1071 3.84206x«107F 2x1071 88863510712
0.3 3x1071 3xl071 1.20243x1077 31071 76538110710
0.4 4x1071 4x1071 1.38013x1078 4x1071 1.79946:«107¢
0.5 51071 0.500002 2131961078 0.500001 2.07341x107
0.6 6107 0.600011 4.26005x107F 0.60005 1.51925%107%
0.7 Tx1071 0.70004 1.55976x107 0.70019 8132841070
0.8 81071 0.80011 4. 77811=107 0.80058 3454931077
0.9 91071 0.5003 1.27607x1073 0.90151 1.22837=107
1 1 1.00068 3.05543«107F 1.00355 3.78995=107

Also, this example may be solved using the modified Adomian's

polynomials.

2
{35

0= Tas)

1075 1 B
un+l(t)_J 1_,(075)_(|;(t S)

where:
A, = us
A, = 2Uouy + u?
A, = 2Ugl; + 2UgU; + U3

5\3 = 2UgU3 + 2U1U3 + 2U,U3 +

OBA (s)ds |, n

U3
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are the modified Adomian polynomials for the nonlinear term N(u) = u®.

I B T P Y
us(t) = J {r(ms) {(t 5) Ao(s)ds}

_qors| 1 }(t_s)—o.% (s— 2 S3.5j2 ds
r(0.75) T'(4.5)

0

= —25x107%% + 0.17194t>° + 1.24908x103%°

Cqors| 1 b s 2 35| (95,1025
uy(t)=J {—r(o.m) £ (t—s) {2(3 F(4.5)3 j(2.5 107%s

+1.24908x10°s>%)+(—2.5x10 %s°+0.171945>°+

1.24908x103s%%)? } ds }

= -0.99482x107t¥% + 25x107%% + 7.09251x107°t" +
2.00164x107 8185 3.36153x107t®° + 1.29643x107t**°

Hence, the approximate solution using ADM is given by:
u(t) = up(t) + uy(t) + ...

Also, the absolute error is computed and the following notations
are used:

Es =[u(t) — os(t)], Ea= [u(t) — @a(t)|
where:
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Pn(t) = nz_lui(t)v n>1
i=0

and the exact solution is u(t) =t.

A comparison between the approximate and the exact solutions is

given in table (3.9). A comparative study between table (3.8) and table

(3.9), shows that the solution using eq.(3.35) converges faster than the

solution using eq.(3.29).

Exact and approximate results of example (3.8).

Table (3.9)

Modified Modified
f Exact solution E; E;
ADM @, ADM @,
0 0 0 0 0 0
01 1x1071 0.09955 66794610712 0.09999 1.199402:x10713
0.2 2x1071 0.1995% 2417021073 0.19999 2.45548x10712
0.3 3xl071 0.29955 7578661078 0.29999 2.12228x10710
0.4 4x1071 0.39959% 8.72554x1077 0.39999 5.01838x107F
0.5 S5x1071 049955 5799151078 0.49999 5.83087x1078
0.6 Gx107 0.59997 2.72134%1073 0.59999 4.32077=1077
0.7 Tx1071 0.69985 1.00383x107 0.69999 2.34652x1070
0.8 Bx1071 0.79965 3.10293x107 0.79999 1.01467x«1077
0.9 91071 0.89916 8.37477x107 0.89996 3.68508x1073
1 1 0.95757 2.02955x1073 0.99988 1.16564=107
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Example (3.9):

Consider the nonlinear integro-differential equation of
fractional order given by eq. (3.13):

SSu(t) =f(t) +3%°u(t), u(0) =0, t [0, 1]

According to the Adomian decomposition method, the
approximate solution:

u(t) = u(0) + J%°(1.12838t>° + 0.75225t"° +0.3009t*° +8.59717t*%) +

0.5 -0.5
J {F(OS)j(t s)” u(s)ds}

and therefore:

Uo(t) = u(0) + J°°(1.12838t°° + 0.75225t*° +0.3009t>° +8.59717t>°)

=t+0.5t* +0.16667 t2 +4.16667x10t*

uy(t) = JOS{mJ‘(t ) OSUO(S)dS}

=t +0.5t> +0.16667 t2 +4.16667x10°t*+ 8.33333x107°°

Hence:
u(t) = up(t) + uy(t) + ...
Also, the absolute error is evaluated, and the following notations
for the absolute error will be used:

Es = [u(t) — @s(D)], E4 = u(t) — @a(t)]
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where:

on(t) = nz_lui(t)v n>1
i=0

and the exact solution is u(t) = lim on(t).

A comparison between the approximate and the exact solutions is
given in table (3.10).

Exact and approximate results of example (3.9).

Table (3.10)

f Exact solution ADM @, E; ADM @, E;

0 0 ] 0 ] 0
0.1 0.11050 0.11051 399861x107° 0.11051 2527981077
0.2 0.24400 0.24420 £.12444:1077 0.24427 8180321078
0.3 0.40350 0.40455 2.95988x107 0.40491 £5.2818x«1077
0.4 0.55200 0.59538 8.90311=107 0.59653 267703107
0.5 0.81250 0.82086 2.06163x1073 0.82374 8.26203=107
0.6 1.06800 1.08856 4.0352x107 1.05168 207915107
0.7 1.36150 1.30448 7.0396x1073 1.40606 4.54489x107F
0.8 1.69600 1.75302 1.12412x1072 1.77323 8.96179x107F
0. 2.07450 2.161710 1.67579x1072 2.20018 1.63334x«1072

1 2.50000 2.64306 2361111072 2.65464 2.79762x1072

3.3.4 Comparison of the Results:

In this chapter, we have solved the linear fractional integro-differential

equation given by eq.(3.10) by applying three approaches; namely, the

collocation method, the least square method and the ADM. In table

(3.11), the approximate results of the absolute error produced by solving
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eq.(3.10) using the three approaches are given, and one can see that

the collocation give the best results.

Table (3.11)

Comparison of the results of eq.(3.10).

p The collocation The least square Adomian
method method decomposition method

0 0 0 0
0.1 6.08x10720 1.7558x1071% 1.19048x10710
0.2 8.28x10720 3.508x10718 1.52381x107°
0.3 5.9x10720 5.252x10718 2.60357x1077
0.4 2.4x10720 6.973x10718 1.95048x1076
0.5 1.7x1071% 8.66x10717 9.30010x1076
0.6 4.4x1071° 1.028x10717 3.33257x107
0.7 8.3x1071° 1.181x10717 9.80408x107
0.8 1.37x10718 1.323x10717 2.49661x1074
0.9 2.12x10718 1.449x10717 5.69401x1074

1 3.11x10718 1.56x10717 1.19048x1073

Similarly, we have solve the nonlinear fractional integro-differential
equa on given by eq.(3.11) by applying the four approaches, which are
the collocation method, the least square method, Adomian
decomposition method and the modified Adomian decomposition
method. In table (3.12), the comparison between the obtained absolute

errors are given for each method and one can see that Adomian
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decomposi on method given by eq.(3.35) and the least square method

give the best results.

Comparison of the results of eq.(3.11).

Table (3.12)

‘ The collocation | The least square defadnf;f;an ‘Mgﬁe}fpigfn
method method method method
0 0 0 0 0
0.1 1.78422x1077 356512x1078 434771x10713 119940210717
0.2 4.90262x1077 1.07885x1077 8.88635x10712 2.45548x10712
03 7.5896x1077 1.83108x1077 7.65381x<10710 2.12228x10710
0.4 9.67437x1077 2.47492x1077 1.79946:x1075 5.01838x107°
0.5 1.19344x107° 3.00873x1077 2.07341x1077 5.83087x1078
0.6 1.544803x107° 3.506602:x1077 1.51925x107° 4.32077=1077
0.7 2.09475x107% 4.05714x1077 8.13284x10°% 2.34652x107%
0.8 2.81718x107% 4702671077 3.45493x107° 1.01467=107°
0.9 3.521904x107% 5.37811x1077 1.22837=<10 3.68308x1077
1 3.79x107% 5.85x1077 3.78995x107* 116564107
Finally, we have solved the nonlinear fractional integro-

differential equation given by eq. (3.13) by applying the three

approaches, which are the collocation method, the least square method

and the Adomian decomposi on method.

In table (3.13), the

comparison between the obtained absolute errors are given for each

method and one can see that the collocation method and the Adomian

decomposition method give the best results.

73




Chapter Three

Numerical and Approximate Solution of Integro-Differential
Equations of Fractional Order

Comparison of the results of eq.(3.13).

Table (3.13)

y The collocation The least square Adomian
method method decomposition method

0 0 0 0
0.1 2.91242x107¢ 6.87873x1072 2.52798x1077
0.2 8.31221x107°¢ 8.91158x107 8.18032x107¢
0.3 8.34559x1073 8.11765x1072 6.2818x1072
0.4 3.68465x1074 6.24319x1072 2.67703x10™4
0.5 1.14049x1073 4.63282x1072 8.26203x10™
0.6 2.87964x1073 4.10065x1072 2.07915x1073
0.7 6.33362x1072 4.8015x1072 4.54489x1073
0.8 1.25828x1072 6.10206x1072 8.96179x1073
0.9 2.31054x1072 6.45209x1072 1.63334x1072

1 3.98423x1072 3.25559x107 2.79762x1072
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1.

From the present study, the following conclusions may be drown:

In these examples, we solving linear fractional integro-differential
equations, the collocation method gives more accurate results than

the least square method and Adomian decomposition method.

In solving nonlinear fractional integro-differential equations, the
Adomian decomposition method gives more accurate results than the
collocation method and the least square method.

The solved problems in this thesis are all solved for the closed
interval [0,1] and with fractional order of integration and
differentiation are taken to be equal to g, which may be generalized
in a straightforward manner for any interval [a, b] and for arbitrary
order of fractional integration an differentiation which may be not

equal.

Also, from this study, we can recommend the following open

problems for future work:

1. Studying, theoretically and numerically, singular fractional integro-

differential equations.

2. Using other numerical and approximate methods for solving

fractional integro-differential equations, such as trapezoidal rule,

Simpson's rule, Bool's rule, Weddel's rule, Bellman rule, etc.
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3. Studying the statement and the proof of the existence and uniqueness
theorem of solution of fractional integro-differential equations using

other fixed point theorems.

4. Studying fractional integro-differential equations resulting from other

types of fractional integro-differential operators, linear or nonlinear.

5. Studying the behaviour and solution of real life problems, which may

be modeled as fractional integro-differential equations.
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