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Abstract 
 

      The calculation of the value of stopping power and the range for the 

proton is done by two ways : first, using Bethe-Bloch formula and 

second, using Bragg-Kleeman rule. The differences between the 

experimental and theoretical values of stopping power and range required 

studying  the corrections for Bethe-Bloch formula which are represented 

by the maximum energy and density correction and then comparing the 

results with experimental values. Using these two formulas it has been 

found that the results computed by the Bethe-Bloch formula without 

corrections (maximum energy and density correction) are in agreement 

with experimental results for 2≤βγ  ( MeVE 3102×≤ ) and for 210≤βγ  

( MeVE 510≤ ) with corrections. The maximum energy and density 

corrections contributed to decrease the difference with the experimental 

results for 210≥βγ ( MeVE 510≥ ). 

      The values of stopping power computed using the Bragg-Kleeman 

rule are in agreement with experimental results for MeVE 200≤  and the 

range values computed using the Bragg-Kleeman rule are in agreement 

with the results computed using the Bethe-Bloch formula for MeVE 400≤ . 

      The results show that the energy losses for protons at the high  energy 

values are low and vise versa; the energy losses for protons at the low 

energy values are high. 

      The present calculations confirm that the proton looses its largest 

energy at the end of its path in matter. 



iv 
 

List of symbols 
 
 

symbol definition units and value 
A Atomic mass of absorber 

 
g 1−mol  

b Impact parameter 
 

cm  

C Shell correction 
 

 

D 
( )MeVm

e

e 5.931
1

4
4

2

0

2









πε

π  
12307.0 −gMeVcm  

E Incident particle energy 
 

MeV  

→

E  
Electric field 
 

CN /  

e Particle charge 
 

C1910 1.60219 −×  

I Mean excitation energy 
 

eV  

M Proton mass 
 

311011.9 −× kg 

em  Electron mass 
 

271067.1 −× kg 

p Material dependent parameter 
 

 

R Range of charged particles 
 

2/ cmg  

r Classical electron radius 
 

cm131028.2 −×  

maxT  Maximum energy 
 

eV  

∨  Velocity of  incident proton  
 

scm /  

Z Atomic number of absorber 
 

 

z Charge of incident particle 
 

 

β  The particle velocity in unit of 
speed of light 

 



v 
 

  Planck's constant/ π2  
 

π2/10626068.6 34−× skgm /2   

kaggC ,,,, 10

−

 Material dependent constants 
 

 

0ε  Permittivity of  free space 
 

mF /1085.8 12−×  

ρ Density of material 
 

3/ cmg  

δ Density effect correction to 
ionization energy loss 

 

pω  Plasma energy 
 

28.816 〉〈 AZ /ρ eV  

Λ  Material dependent parameter 
 

pMeVcmg 2/  

 



 
 
 

 

vi 
 

List of Figures 
 

 
Page Explain Figure 

No. 
6 Interaction of a heavy charged particle with an electrons 

in a target atom.  
2.1 

7 Interaction of a heavy charged particle with a nucleus. 
 

2.2 

9 The approximate trajectory of a fast particle passing a 
'rest' particle. 

2.3 

16 Deposition of energy range. 
 

2.4 

17 The experimental  results  of energy loss for protons. 
 

3.1 

18 The calculated results of energy loss for different 
materials. 

3.2 

19 Published theoretical stopping power for protons in Cu 
with exact maxT  and approximate maxT . 

3.3 

20 The effect of maxT on the energy loss of an incident 
protons on C as a function of βγ . 

3.4 

20 The effect of maxT on the energy loss of an incident 
protons on C as a function of initial energy. 

3.5 

21 The same as Fig. (3.4) but for Al. 
 

3.6 

21 The same as Fig. (3.5) but for Al. 
 

3.7 

22 The same as Fig. (3.4) but for Cu. 
 

3.8 

22 The same as Fig. (3.5) but for Cu. 
 

3.9 

23 The same as Fig. (3.4) but for water. 
 

3.10 

23 The same as Fig. (3.5) but for water. 
 

3.11 

24 The effect of density correction on the relation between 
energy loss of incident protons and βγ  for C. 

3.12 

25 The effect of density correction on the relation between 
energy loss of incident protons and energy for C. 

3.13 



 
 
 

 

vii 
 

25 The same as Fig. (3.12) but for Al. 
 

3.14 

26 The same as Fig. (3.13) but for Al. 
 

3.15 

26 The same as Fig. (3.12) but for Cu. 
 

3.16 

27 The same as Fig. (3.13) but for Cu. 
 

3.17 

27 The same as Fig. (3.12) but for water. 
 

3.18 

28 The same as Fig. (3.13) but for water. 
 

3.19 

29 Proton range-energy relationship for C. 
 

3.20 

29 Proton range-energy relationship for Al. 
 

3.21 

30 Proton range-energy relationship for Cu. 
 

3.22 

30 Proton range-energy relationship for water. 
 

3.23 

32 The relationship between energy loss and energy for C 
calculated using the Bragg-Kleeman rule and using the 
Bethe-Bloch formula. 

3.24 

32 The same as Fig. (3.25) but for Al. 
 

3.25 

33 The same as Fig. (3.25) but for Cu. 
 

3.26 

33 The same as Fig. (3.25) but for water. 
 

3.27 

34 The range calculated by integrating the Bethe-Bloch 
formula and by the Bragg-Kleeman rule as a function of 
energy for C. 

3.28 

35 The same as Fig. (3.29) but for Al. 
 

3.29 

35 The same as Fig. (3.29) but for Cu. 
 

3.30 

36 The same as Fig. (3.29) but for water. 
 

3.31 

37 The stopping power-range relationship computed by the 
Bethe-Bloch formula and the Bragg-Kleeman rule for 
C. 

3.32 



 
 
 

 

viii 
 

37 The same as Fig. (3.33) but for Al. 
 

3.33 

38 The same as Fig. (3.33) but for Cu. 
 

3.34 

38 The same as Fig. (3.33) but for water. 
 

3.35 

39 The range computed by integrating the Bethe-Bloch 
formula and by the Bragg-Kleeman rule as a function of 
energy for C. 

3.36 

40 The same as Fig. (3.37) but for Al. 
 

3.37 

40 The same as Fig. (3.37) but for Cu. 
 

3.38 

41 The same as Fig. (3.37) but for water. 
 

3.39 

42 Dose averaged LET-range relationship computed using 
the Bethe-Bloch formula and the Bragg-Kleeman rule 
for C. 

3.40 

42 The same as Fig. (3.41) but for Al. 
 

3.41 

43 The same as Fig. (3.41) but for Cu. 
 

3.42 

43 The same as Fig. (3.41) but for water. 
 

3.43 

 



 
 
 

Chapter one 
 
 
 
 

Introduction 
and 

historical survey  
 

 
 
 
 
 
 
 
 
 
 
 



Chapter one                                                                               Introduction and historical survey 

 

1 

 

1.1 Introduction 
      The study of the passage of charged particles through matter is one of 

basic importance for modern physics. Also, the knowledge of the 

interactions that take place in the passage of charged  particles allowed 

possible to develop several detectors [1]. 

      Stopping power is the energy loss of a particle per unit path length in 

a particular medium [2]. It is specified by the quantity –dE/dx, where -dE 

is the energy loss and dx is the increment of the path length. The spatial 

distribution of energy deposition in the particle track is described by the 

Linear Energy Transfer (LET), or the amount of energy actually 

deposited per unit length along the path [2]. 

      To determine the dose at any point due to charged particle irradiations 

it is necessary to know, not only the fluency, but also the charged 

particles energy and to use this to calculate the stopping power at that 

point [3]. Heavy charged particles are of interest in radiation therapy 

because of several distinct physical properties. As these charged particles 

pass through a medium, their rate of energy loss or specific ionization 

increases with decreasing particle velocity [4]. Electron and proton 

radiations are used extensively for medical purposes in diagnostic and 

therapeutic procedures [5]. 

      The macroscopic dose of a particle beam is given by the number of 

particles traversing the unit mass and the dose deposited by each particle, 

called linear energy transfer (LET). This energy deposition of heavy 

charged particles, like protons or heavier ions, can be described by the 

Bethe-Bloch formula [6]. The dose average LET is considered as 

a00000000000000 measure of the radiation quality [7]. 
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1.2 Historical survey 
      In 1965, R. W. Peele [8] studied the method that was used to achieve 

rapid computing in a digital computer of the specific energy loss of 

energetic charged particles. The computation were based on the use of the 

usual Bethe-Bloch formula with a density effect correction which might 

be required for incident proton energies as high as 1GeV. 

      In 1976, W. R. Nelson [9] explained the importance of radiation 

dosimeters in medicine to treat cancer and the theoretical relations to 

compute the stopping power. 

      In 1993, Don Groom [10] worked on copper to study the first 

correction of the Bethe-Bloch formula (maximum energy transfer to 

electrons) and its effect on the results. 

      In 1994, Douglas J. Wagenaar [11] explained that γ-rays, X-rays, 

neutrons and neutrinos all have no net charge, they are electrostatically 

neutral, so in order to detect them, they must interact with matter and 

produce an energetic charged particle. In the case of gamma and X-rays, a 

photo-electron is produced. In the case of neutrons, a proton is given 

kinetic energy in a billiard ball collision. So, he discussed charged 

particle interactions by demonstrating that even when detecting neutral 

particles one must think in terms of the charged particles. 

      In 1997, H Tai, Hans Bishel, John W. Wilson, Judy L. Shinn, Francis 

A. Cucinotta and Francis F. Badavi [12] studied the Bethe-Bloch formula 

to calculate stopping power and range. They put this formula in the form 

of  a computer program to calculate electronic stopping power for 

protons, α particles and other ions. 

      Also in 1997, B. Vankuik, G. Gardener, S. Bellavia, A. Rusek and K. 

Brown [13] studied the most important relations which are used to 
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compute the energy loss and the computer programs which are used to 

compute the stopping power. 

      In 1999, J. F. Ziegler [14] studied all equations used for calculating 

the stopping power and the accuracy for different element materials. The 

theory of energetic ion stopping was reviewed with emphasis on those 

aspects of relevance to the calculation of accurate stopping powers 

(corrections). 

      In 1999, John C. Armitage, Madhu S. Dixit, Jacques Dubeau, Hans 

Mes and F. Gerald Oakham [15] studied the interaction of charged 

particles, such as electrons and heavy charged particles, with different 

elements (silicon, argon and gold). They measured the energy losses and 

the ranges of the particles in these elements.  

      In 1999, P. T. Leung [16]  worked on the density correction of the 

Bethe-Bloch stopping power theory for heavy target elements. He worked 

on the relativistic Bethe-Bloch stopping power formula. This relativistic 

correction was found to be significant for high-Z target atoms and 

relatively high-energy incident particles. 

    In 2000, Luigi Foschini [1] studied the most important stages in the 

development of the theory behind the stopping power formula. He started 

with Ernest Rutherford in September 1895 and his recognized two 

different kinds of radiations emitted by uranium to year  1998 and 

referred to everyone who contributed to the development of the stopping 

power theory. 

     In 2004, Jan Jakob Wilkens [7] developed a fast algorithm for three-

dimensional calculations of the dose-averaged linear energy transfer 

(LET) . He studied stopping power in terms of dose averaged LET, range 

and dose for protons. 
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      In 2004, H.W. den Hartog and D.I. Vainshtein [17]  calculated the 

energy loss in a thick target for 0.1 MeV -3 MeV electron irradiation. He 

calculated the range using the Bethe-Bloch formula and the Bragg-

Kleeman rule for NaCl, water and aluminum.  

      In 2006, P. Sigmund  and A. Schinner [18] studied the shell 

correction to the stopping power for protons within the first Born 

approximation in both a non relativistic  and a relativistic version of this 

approximation. 

      In 2006, M. F. Zaki, A. Abdel-Naby and Ahmed Morsy [19] studied 

the theoretical and experimental investigations of the penetration of 

charged particles in matter using solid state nuclear track detectors. An 

attempt has been made to examine the suitability of the single-sheet 

particle identification technique in CR-39 and CN-85 polycarbonate. The 

ranges of the ions ( He4 , Kr86  and Nb93 ) in these detectors have also been 

computed theoretically. 

      In 2006, Önder Kabadayi [20] calculated the range of protons and 

alpha particles in NaI, which is a commonly used compound in 

scintillation detector manufacturing. The stopping power of protons and 

alpha particles in NaI was calculated first by using a theoretical 

formulation. 

      In 2006, F. Maas [21] worked on the interaction of particles with 

matter and the importance of computing the density correction in the 

Bethe-Bloch formula with particle energy above 1GeV. 

 

1.3 The aim of the present work 
      The aim of the present work is to calculate the stopping power and 

range using the Bethe-Bloch formula and the Bragg-Kleeman rule for 
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protons passing through carbon, aluminum, copper and water with 

different energies and studying different parameters affecting the 

stopping power. 

 

1.4 The structure of the rest of the thesis 
      The rest of the thesis is organized as follows: 

      Chapter two contains the theoretical formulation of the stopping 

power and corrections. 

       Chapter three contains the calculation of stopping power and range 

using the Bethe-Bloch formula with maximum energy and density 

correction, and using the Bragg-Kleeman rule and the discussion of the 

comparison between the two kinds of calculations. 

      Chapter four contains the conclusions of this work and 

recommendations for future work. 

 



 
 
 
 

Chapter Two 
 
 
 
 

Theory 
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2.1 Interaction of charged particles with matter 

      Charged particles such as protons, alpha particles, and fission 

fragment ions are classified as heavy, being much more massive than the 

electron. For a given energy, their speed is lower than that of an electron, 

but their momentum is greater and they are less readily deflected upon 

collision. The mechanism by which they slow down in matter is mainly 

electrostatic interaction with the atomic electrons and with nuclei. In each 

case the Coulomb force, varying as 1/ 2r  with distance of separation r, 

determines the result of a collision [22]. 

 
Fig. (2.1) Interaction of a heavy charged particle with an electrons in a target atom 

[22]. 
 

      Fig. 2.1 [22] illustrates the effect of the passage of a heavy charged 

particle by an atom. The electron is energetic enough to produce 

secondary ionization, while hundreds of collisions are needed to reduce 

the alpha particle’s energy by as little as 1 MeV. As a result of primary 
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and secondary processes, a great deal of ionization is produced by heavy 

charged particles as they move through matter. In contrast, when a heavy 

charged particle comes close to a nucleus, the electrostatic force causes it 

to move in a hyperbolic path as in Fig. (2.2) [22]. The projectile is 

scattered through an angle that depends on the detailed nature of the 

collision, i.e., the initial energy and direction of motion of the incoming 

ion relative to the target nucleus, and the magnitudes of electric charges 

of the interacting particles. The charged particle looses a significant 

amount of energy in the process, in contrast with the slight energy loss on 

collision with an electron. Unless the energy of the bombarding particle is 

very high and it comes within the short range of the nuclear force, there is 

a small chance that it can enter the nucleus and cause a nuclear reaction. 

A measure of the rate of ion energy loss with distance traveled is the 

stopping power, symbolized by -dE/dx. It is also known as the linear 

energy transfer (LET) [22]. 

 

 
Fig. (2.2)  Interaction of a heavy charged particle with a nucleus [22]. 
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2.2 Stopping power 
      For charged particles of energy < 10 MeV, the dominant mechanism 

for energy loss is the excitation or ionization of the atoms (or molecules) 

of the gas: electrons being excited to higher bound energy levels in the 

atom, or detached completely. The essential physics of  the process may 

be understood using classical mechanics. 

      Consider a 'fast' particle of charge ze, velocity ∨ , energy E, passing a 

particle of charge z'e mass Rm , initially at rest. Suppose that the fast 

particle deviates a negligible amount from its initial straight-line path 

along the x-axis  (Fig.( 2.3) [23]), and the rest particle at the point (0,b,0) 

moves only a negligible distance during the encounter. The distance b is 

called the impact parameter. 

      The equation of motion of the fast particle is [23]: 

            
→

→

= Eze
dt

pd
                                                       (2.1) 

where 
→

p  is its momentum and 
→

E  is the electric field due to the 'rest' 

particle. The magnetic field due to the 'rest' particle will be negligible. 

This equation remains valid for relativistic momenta. 

       The field 
→

E  has components [23]: 

             ( )
( )2

3
220

'
4

1

xb

xezE x

+
=

πε
,    ( )

( )2
3

220

'
4

1

xb

bezE y

+
−=

πε
.                       (2.2) 

Thus, the change in momentum of the fast particle along its direction of 

motion is small, for if we approximate its motion by tx ∨= , [23]: 

           
( )

0
4

'

2
3

2220

2

=
∨+

∨








≈=∆ ∫∫

∞

∞−

∞

∞− tb

tdtezzdtEzep xx πε
                        (2.3) 

whereas the particle acquires transverse momentum yT pp
→→

∆=  given by 

[23]: 
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Fig. (2.3) The approximate trajectory of a fast particle passing a 'rest' particle [23]. 

 

( ) ∨







−=

∨+








−== ∫∫

∞

∞−

∞

∞− b
ezz

tb

bdtezzdtEzep yT
2

4
'

4
'

0

2

2
3

2220

2

πεπε
.                (2.4) 

(The integral is easily evaluated by the substitution φtanbt =∨ .) 

      Since momentum is conserved overall, the 'rest' particle acquires 

momentum ( )Tp−  and assuming that it does not attain a relativistic 

velocity, gains kinetic energy )2/( 2
RT mp . This energy must be lost by the 

fast particle [23]: 

RR

T

mb
ezz

m
pE 22

2

0

22 1
4

'2
2 ∨








−=−=∆

πε
.                             (2.5) 

      Note that ΔE does not depend on the mass of the fast particle, and that 

the calculation is valid for relativistic particles [23]. 

      In applying this result, the 'rest' particles are the atomic nuclei and 

atomic electrons of the gas. For an atomic nucleus of atomic number Z,  

z' = Z, and (except for hydrogen) pR Zmm 2≈ . For an electron z' 1−=  and  
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eR mm = . Using the formula (2.5), when a fast charged particle passes 

through a gas the ratio of energy lost to the atomic electrons, to the 

energy lost to the atomic nuclei, is 3104/2 ×≈≈ ep mm  (since each atom has 

Z electrons). Thus the energy lost to the nuclei is negligible compared 

with that lost to the electrons [23]. 

      If the gas is of mass density ρ, and consists of atoms of atomic 

number Z, then the fast particle moves through a distance dx in the gas 

passing, on average, ( )am/ρ Z2π b db dx electrons with impact parameter 

between b and b + db, and the energy lost to these electrons is [23]: 

dx
b
db

mm
ZzeEd

ea
2

2

0

2
2 1

4
4

∨







−=

ρ
πε

π .                              (2.6) 

      Integrating this expression over all impact parameters between minb  

and maxb , the total rate of energy loss along the path, or stopping power, is 

[23]: 

L
mm
Zze

dx
dE

ea
2

2

0

2 1
4

4
∨








=−

ρ
πε

π ,                                     (2.7) 

where ( )minmax /ln bbL = . 

      Since Ama ≈  atomic mass units, where A is the mass number of the 

atom, one can write [23]: 

Lzc
A
ZD

dx
dE 2








∨







=− ρ                                     (2.8) 

where 

             ( ) 307.0
5.931

1
4

4
2

0

2

=







=

MeVm
eD

eπε
π 12 −gMeVcm . 

and the mass density ρ of the material is expressed in g 3−cm  [23]. 

      Formula (2.5) clearly breaks down for small b, since the energy 

transfer cannot be indefinitely large; it also breaks down at large b, since 

to ionize the atom the energy transfer cannot be indefinitely small. A 
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quantum mechanical calculation by Bethe and Bloch which holds for 

charged particles other than electrons and positrons gives equation (2.8) 

with [23] 












−








〉〈

= 2
2222

ln β
βγ

I
cm

L e ,                                               (2.9) 

where 〉〈I  is a suitably defined average ionization energy for atomic 

electrons, 2

2
2

c
∨

=β , and 
21

1
β

γ
−

=  [23]. 

      A better parameterization of I is given by [10]: 

         712 += ZI  eV                    for 1 < Z  < 13 

        19.08.5876.9 −+= ZZI  eV       for Z  ≥  13 

      In the ‘minimum ionization’ region where 43−=βγ , the minimum 

value of dxdE /−  can be calculated from eq. (2.8) and, for a particle with 

unit charge, is given approximately by [24]: 

21

min

5.3 cmMeVg
A
Z

dx
dE −≈






−                                      (2.10) 

      Ionization losses are proportional to the squared charge of the 

particle, so that a fractionally charged particle with 3≥βγ  would have a 

much lower rate of energy loss than the minimum energy loss of any 

integrally charged particle [24].  

 

2.3 Maximum energy 
      One is concerned with the average energy loss of a high-energy 

massive charged particle. High energy means that the velocity is high 

compared with that of atomic electrons, and massive mean that the  

particle is not an electron or positron, but a heavier particle. Most 

particles of interest have charge e±  [10]. 
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      At low energies, nuclear recoil contributes to energy loss. At very 

high energies ( above 100 GeV ) radiative processes contribute in 

significant way and eventually dominate. Here, one is concerned with the 

middle regime in which virtually all of the energy loss occurs via a large 

number of collisions with electrons in the medium. In this discussion the 

medium is taken as a pure element with atomic number Z and atomic 

mass A, but this restriction can easily be removed [10]. 

      The mean energy loss rate ( -dE/dx or stopping power S ) is, therefore, 

calculated  by summing the contributions of all possible scatterings. 

These are normally scatterings from a lower to higher state, so that the 

particle looses a small amount of energy in each scattering. The kinetic 

energy of the scattering electron is T, and the magnitude of the 3-

momentum transfer is q [10]. 

 

1. Low-T approximation. Here q/  (roughly an impact parameter b ) 

is large compared with atomic dimensions. The scattered electrons 

have kinetic energies up to some cutoff 1T , and the contribution to 

the stopping power is [10]: 









−+= 22

222
1

2
2

1 ln
2/

ln1
2

βγ
ββ cmI

T
A
ZzDS

e

,                    (2.11) 

where the denominator 22 2/ ∨emI  in the first term is the effective 

lower cutoff on the integral of dT/T. The first term comes from 

''longitudinal excitations'' (the ordinary Coulomb potential), and the 

other two terms from transverse excitations. The  low-T region is 

associated with large impact parameters and, hence, with long 

distance. The correction is usually introduced by subtracting a 

separate term called density correction δ [10]. 
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2. Intermediate-T approximation. In this region, atomic excitation 

energies are not small compared with T, but, in contrast to the low-

T region, transverse excitation can be neglected. This region 

extends from 1T  to 2T , and the contribution to –dE/dx  is [10]: 









=

1

2
2

2
2 ln

2 T
TZzDS

β
.                                          (2.12) 

3. High-T approximation. In this region one can equate T with the 

energy of the electron, i. e., neglect its binding energy. When the 

energy is carried out between the lower limit 2T  (which is 

hopefully the same as in eq. (2.12)) and the upper limit upperT , one 

obtains [10]: 









−=

max

2

2
2

2
3 ln1

2 T
T

T
T

A
ZzDS upperupper β
β

.                          (2.13) 

      Here, maxT  is the maximum possible electron recoil kinetic energy, 

given by [10]: 

2

222

max

21

2







++

=

M
m

M
m
cm

T
ee

e

γ

γβ .                                       (2.14) 

where M  is the mass of the charged particle. 

      upperT  is normally equal to maxT . In any case, maxTTupper ≤ . The low-

energy approximation 222
max 2 γβcmT e≈  is implicit. The minimum T in this 

region, 2T , is much less than 2cme  but much larger than (any) electron's 

binding energy –a situation that becomes a little paradoxical for high-Z 

material. The "shell correction" which corrects this problem is usually 

introduced as a term -2C/Z inside the square brackets of eq. (2.13). The 

high-T region is associated with high-energy recoil particles. For the 

usual case maxTTupper = , the second term is virtually constant, while the first 

term rises as 2lnγ . If the maximum energy transfer is limited to some 
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maxTTupper < , then the increase disappears. In the above, it was  implicitly 

assumed that one can find electron kinetic energies 1T  and 2T  at which the 

three regions join. When the three contributions are summed the 

intermediate T’s cancel and one gets the usual Bethe-Bloch formula, [10]: 












−−−








=−

2
2

ln
2
11 2

2
max

222

2
2 δβ

γβ
β Z

C
I

Tcm
A
ZDz

dx
dE e               (2.15) 

where δ is the density correction                                                                      

 

2.4 Shell correction 
      The shell correction becomes important only at the lowest energy. 

This correction is, therefore, not of much interest in high-energy physics 

applications. It treats effects at very low particle momentum when the 

particle velocity is comparable or lower than the orbital velocity of the 

bound atomic electrons [10]. 

 

2.5 Density correction 

      As the particle energy increases its electric field increases flattens and 

extends, so that the distant-collision contribution to the energy loss 

increases as ( ) 2/1ln/ln2/ −+= βγωδ Ip [10]. Here Mcp /=βγ  is the 

particle momentum in terms of its mass, pω  is the so-called plasma 

energy, parameterized as 28.816 〉〈 AZ /ρ  eV. The term with ( )Ip /ln ω  

accounts for the polarizability of the medium. However, this 

parameterization of the density correction is only valid at large βγ . For 

electrons, this parameterization is valid almost always. For charged 

particles, however, a parameterization is necessary and it is given in the 

following form [10]:                       
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       =δ       ( )
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;                 (2.16) 

Here, βγ10log=g , ( )( ).1/ln2
−

+−= pIC ω  aggC ,,, 10

−

 and k  are material 

dependent constants. 0g  is usually around zero. Values of k  range 

between 2.9 and 3.6. The value of a is chosen such that it provides a 

smooth passage from 0gg <  to 1gg >  [10]. 

      In order to parameterize this in a simple way, a general 

parameterization for all materials was chosen: 00 =g , 31 =g , 3=k  and 

27/0Ca −=  [10]. 

 

2.6 The range 
      The range of the charged particles R in a medium can be determined 

by integrating the stopping power from 0 to E [12]: 

dE
dx
dER

E 1

0

−

∫ 





−=                                                        (2.17) 

      In practice, however, not all charged particles that start with the same 

energy will have the same range [12]. 

      The range, as given by eq. (2.17), is actually an average value because 

scattering is a statistical process and there will, therefore, be a spread of 

values for individual particles. The spread will be greater for light 

particles and smaller for heavier particles. These properties have 

implications for the use of radiation in therapeutic situations, where it 

may be necessary to deposit energy within a small region at a specific 

depth of tissue, for example to precisely target a cancer [24]. Fig.(2.4) 

shows a deposition of energy range diagram [25]. 
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      It is possible to fit the relation between  range (in 2/ cmg ) and initial 

energy (in MeV) by [17]: 
pER Λ=                                                       (2.18) 

 
Fig. (2.4) Deposition of energy range [25]. 

 

      Relation (2.18) is known as the Bragg-Kleeman rule [17]. Using the 

empirical relation between E and R given in relation (2.18), it is possible 

to simplify the calculation considerably. 

      The energy ( )xE  at a depth x is determined by the residual range 

( )xR −0  which the particles traversed before stopping [17]: 

                                          ( ) ( ) p

p

xRxE
1

01

1
−

Λ

=                                      (2.19) 

From this one can determine dE/dx [17]: 

                                      ( ) 11

01

1 −−

Λ

−
= p

p

xR
p

dx
dE                                      (2.20) 
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3.1 Calculation of stopping power  
      The stopping power calculations are carried out by using MATLAB 

software as environment for programming. 

      The general behavior of the experimental energy loss for protons is 

shown in Fig. (3.1) [23].    

       

 
Fig. (3.1) The experimental  results  of energy loss for protons [24]. 

 

      Fig. (3.2) shows the results of the present work calculated by using 

the previous formulation of chapter two (eq. (2.8)) for different materials, 

where no corrections are taken into account.  
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     The difference between the published results of Fig. (3.1) and the 

present results appears especially at the region 2>βγ  as in Fig. (3.2), 

because the results in Fig. (3.2) are based on formulation of stopping 

power without any correction. For C, Al, Fe, Sn and Pb in Fig. (3.1), the 

magnitudes of stopping power at 410=βγ  are between 

( gMeVcmgMeVcm /3/2 22 − ) and in  Fig. (3.2) are between 

( gMeVcmgMeVcm /4/9.2 22 − ). 

 
Fig. (3.2)  The calculated results of energy loss for different materials. 

 

      However, in general, the two curves have the same general behavior 

and minimum position. 
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3.2 Effect of maximum energy  
      As a first step, the effect of  maximum energy transfer to the electron 

is studied. The published theoretical results are shown in Fig. (3.3) [10].  

 
Fig. (3.3) Published theoretical stopping power for protons in Cu with exact maxT  and 

approximate maxT [10]. 

 

       The results of the present work for computing the stopping power 

using eq. (2.15) with maxT only are shown in Figs. (3.4) - (3.11). 
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       For carbon C, the results are shown in Figs. (3.4) and (3.5).  

 
Fig. (3.4) The effect of maxT on the energy loss of an incident protons on C as a 

function ofβγ . 

Fig. (3.5) The effect of maxT on the energy loss of an incident protons on C as a 

function of initial energy. 
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      For aluminum Al, the results are shown in Figs. (3.6 ) and (3.7). 

 
Fig. (3. 6) The same as Fig. (3.4) but for Al. 

Fig. (3.7) The same as Fig. (3.5) but for Al. 
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      For cupper Cu, the results are shown in Figs. (3.8) and (3.9). 

 
Fig. (3.8) The same as Fig. (3.4) but for Cu. 

Fig. (3.9) The same as Fig. (3.5) but for Cu. 



Chapter Three                                                                                  Calculations, results and discussion 
 
 

23 
 

      For water, the results are shown in Figs. (3.10) and (3.11). 

Fig. (3.10) The same as Fig. (3.4) but for water. 

Fig. (3.11) The same as Fig. (3.5) but for water. 
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      It has been found that the effect of the maximum energy appears at 

200≥βγ  ( MeV5102× ) and the results are coincident with the published 

theoretical data in Fig. (3.3), but with a small difference relative to the 

experimental results at 200≥βγ . This reflects the importance of 

computing  the stopping power with  maximum energy to lower the 

difference between theoretical and experimental results in this region.  

 

3.3 Effect of density correction 
      The results of the present work after including the effect of density 

correction using eq. (2.15) are shown in Figs. (3.12) - (3.19). 

      For carbon C, the results are shown in Figs. (3.12) and (3.13).  

 
Fig. (3.12) The effect of density correction on the relation between energy loss of 

incident protons and βγ  for C. 
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Fig. (3.13) The effect of density correction on the relation between energy loss of 

incident protons and energy for C. 

       

      For aluminum Al, the results are shown in Figs. (3.15) and (3.16). 

Fig. (3.14) The same as Fig. (3.12) but for Al. 
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Fig. (3.15) The same as Fig. (3.13) but for Al. 

 

      For cupper Cu, the results are shown in Figs. (3.16) and (3.17). 

 
Fig. (3.16) The same as Fig. (3.12) but for Cu. 
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Fig. (3.17) The same as Fig. (3.13) but for Cu. 

 

      For water, the results are shown in Figs. (3.18) and (3.19). 

 
Fig. (3.18) The same as Fig. (3.12) but for water. 
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Fig. (3.19) The same as Fig. (3.13) but for water. 

 

      From these results it has been found that the effect of density 

correction appears clearer at 2≥βγ  ( MeV3102× ) and this reflects the 

importance of computing the stopping power with effect of density 

correction in this region to lower the difference with the experimental 

results. The results of computing with the Bethe-Bloch formula without 

corrections are in agreement with experimental values for MeVE 3103×> . 

For all these  results, it has been found that the minimum ionization for 

carbon, aluminum, copper and water occurs between 43−≈βγ  

( )43( MeVMev −≈ ) as in eq. (2.10). 

 

3.4 The proton range 

      The present results for computing the proton range using eq. (2.17) 

are shown in Figs. (3.20) - (3.23). 
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Fig. (3.20) Proton range-energy relationship for C. 

 
Fig. (3.21) Proton range-energy relationship for Al. 
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Fig. (3.22) Proton range-energy relationship for Cu. 

 
Fig. (3.23) Proton range-energy relationship for water. 
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      The range of the proton increases when the incident proton energy 

increases. The horizontal lines represent the range for 50 MeV, 100 MeV, 

150 MeV proton energies.  

 

3.5 The Bragg-Kleeman rule 
      The present calculations are performed to compute the parameters Λ  

and  p in equation (2.18). The results are shown in table (3.1). 

  

Table. (3.1) 

 C Al Cu water 

)/( 2 pMeVcmgΛ  31072.2 −×  31033.3 −×  31018.4 −×  31046.2 −×  

p(dimensionless) 1.75 1.73 1.72 1.74 

 

 

      These values are used to find the accuracy of the Bragg-Kleeman rule 

in computing stopping power and range. 

      The present results are shown in Figs. (3.24) - (3.27). 
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Fig. (3.24) The relationship between energy loss and energy for C calculated using the 

Bragg-Kleeman rule and using the Bethe-Bloch formula. 

 
Fig. (3.25) The same as Fig. (3.24) but for Al. 
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Fig. (3.26) The same as Fig. (3.24) but for Cu. 

 
Fig. (3.27) The same as Fig. (3.24) but for water. 
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      From these results it has been found that the values of the stopping 

power calculated using the Bragg-Kleeman rule are in agreement with the 

stopping power calculated using the Bethe-Bloch formula for 

MeVE 200≤ . 

     The comparison of the computed ranges for the two cases are shown 

Figs. (3.28)-(3.31). 

 
Fig. (3.28) The range calculated by integrating the Bethe-Bloch formula and by the 

Bragg-Kleeman rule as a function of energy for C. 
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Fig. (3.29) The same as Fig. (3.28) but for Al. 

 
Fig. (3.30) The same as Fig. (3.28) but for Cu. 
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Fig. (3.31) The same as Fig. (3.28) but for water. 

 

       From these results it has been found that the proton range calculated 

by the Bragg-Kleeman rule is in agreement with the range calculated by 

the Bethe-Bloch formula for proton energies MeVE 400≤ . 

      The stopping power-range relationships computed by the Bethe-Bloch 

formula and by the Bragg-Kleeman rule are shown in Figs. (3.32)-(3.35). 
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Fig. (3.32) The stopping power-range relationship computed by the Bethe-Bloch 

formula and the Bragg-Kleeman rule for C. 

Fig. (3.33) The same as Fig. (3.32) but for Al. 
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Fig. (3.34) The same as Fig. (3.32) but for Cu. 

 
Fig. (3.35) The same as Fig. (3.32) but for water. 
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      It has been found  the results for the relationship between the stopping 

power and range calculated by the Bethe-Bloch formula and by the 

Bragg-Kleeman rule  are in agreement. 

 

3.5 Energy deposition  
      For energy deposition, the results of comparison between the 

computed results of the Bethe-Bloch formula and the Bragg-Kleeman 

rule are shown in Figs. (3.36)-(3.39). 

 

 
Fig. (3.36) The range computed by integrating the Bethe-Bloch formula and by the 

Bragg-Kleeman rule as a function of energy for C. 
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Fig. (3.37) The same as Fig. (3.36) but for Al. 

 
Fig. (3.38) The same as Fig. (3.36) but for Cu. 
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Fig. (3.39) The same as Fig. (3.36) but for water. 

 

      From these results it has been found the energy of the proton 

decreases sharply at the end of its path and the results for the energy 

deposition calculated using the Bethe-Bloch formula and the Bragg-

Kleeman rule are in agreement.  

      The comparisons  between the linear energy transfer values (the dose 

averaged LET) calculated using the Bethe-Bloch formula and the  Bragg-

Kleeman rule are shown in Figs. (3.40)-(3.43). 
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Fig. (3.40) Dose averaged LET-range relationship computed using the Bethe-Bloch 

formula and the Bragg-Kleeman rule for C.  

 
Fig. (3.41) The same as Fig, (3.40) but for Al. 
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Fig. (3.42) The same as Fig. (3.40) but for Cu. 

 
Fig. (3.43) The same as Fig. (3.40) but for water. 
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       From these figures it has been found that the stopping power of 

protons is approximately constant  except at the end of its path where it 

becomes very high because the proton looses all its kinetic energy in this 

region. The results of the dose averaged LET range for protons calculated 

by integrating the Bethe-Bloch formula and the Bragg-Kleeman rule are 

in agreement. 
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4.1 Conclusions  
      From the present work, it can be concluded that: 

1.The stopping power computed using the Bethe-Bolch formula without 

corrections is in agreement with experimental results for 2≤βγ  

( MeVE 3102×≤ ). 

2. The results of computing the stopping power using the Bethe-Bolch 

formula with density correction is in agreement with experimental results 

for 210≤βγ  ( MeVE 510≤ ), assuming that this formula remains correct at 

these energies. 

3. For MeVE 510≥ , it is concluded from the present results that the 

density correction and the effect of maximum energy are important to 

lower the differences between  theoretical and experimental results. 

4. The results of computing the stopping power by the Bragg-Kleeman 

rule are in agreement with experimental results for MeVE 200≤ . 

5. The values of calculation of the range by the Bragg-Kleeman rule are 

in agreement with experimental results for MeVE 400≤ . 

6. Proton looses a great percentage of its initial energy at the end of its 

path in the medium and the stopping power becomes very high. 

 

4.2 Recommendations 

      This work can be extended to include other aspects as follows:  

1. Calculating the stopping power and range for protons with 

maximum energy effect and density correction for other elements 

and compounds [10]. 

2. Using the maximum energy and density correction for light 

charged particles (electron, positron, etc ) to study their effects on 

the previously calculated results for these particles [10]. 
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3. Studying the effects of the maximum energy and density 

correction using  heavy charged particles (deuterons and alpha 

particles) on different elements. 
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الخلاصة 
 

إن عملية حساب قيم  قدرة الإيقاف ومدى الاختراق للبروتون  تتم بطريقتين :       

الطريقة الأولى باستخدام معادلة بيتا-بلوخ و الطريقة الثانية باستخدام معادلة براك- 

كليمان و الاختلاف بين النتائج النظرية و النتائج التجريبية يتطلب دراسة 

التصحيحات لمعادلة بيتا-بلوخ المتمثلة بالطاقة القصوى و تصحيح الكثافة و مقارنة 

النتائج مع النتائج التجريبية.  بدراسة تلك المعادلات وجدنا أن نتائج حساب معادلة 

بيتا-بلوخ بدون تصحيحات الطاقة القصوى و تصحيح الكثافة تكون متوافقة مع 

βγ(MeVE≥2النتائج التجريبية  للطاقات ( βγ( MeVE≥210 و (≥×3102 510≤ 

مع التصحيحات. إن تأثير الطاقة القصوى و تصحيح الكثافة يساهمان في تقليل 

βγ (MeVE≤210الاختلاف  مع النتائج التجريبية للطاقات ( 510≥ .

       إن قيم قدرة الإيقاف المحسوبة باستخدام معادلة براك-كليمان تكون متوافقة مع 

MeVEالنتائج التجريبية للطاقات  وقيم مدى الاختراق المحسوبة باستخدام  ≥200

معادلة براك-كليمان متوافقة مع النتائج المحسوبة باستخدام معادلة بيتا-بلوخ للطاقات 

MeVE 400≤ .

      أظهرت النتائج أن معدل الخسارة في الطاقة للبروتون عند الطاقات العالية يكون 

صغيراً والعكس صحيح حيث إن معدل الخسارة للبروتون عند الطاقات الواطئة 

يكون عالياً . 

      تؤكد النتائج الحالية إن البروتون يفقد نسبة كبيرة من طاقته في نهاية مساره في 

 المادة .



 
 
 
 

 

 

  يقافالإدراسة قدرة 
 ات للبروتونمدىو ال

 
رسالة 

  الحصول علىمقدمة إلى كلية العلوم جامعة النهرين كجزء من متطلبات
  في الفيزياء علوم الماجستيردرجة

 
 

 من قبل
مصطفى عبد المحسن عبد العالي 

) ۲۰۰٥س بكالوريو(

 

 

 
 

 ه۱٤۳۰
 م۲۰۰۹

 شوال
 تشرين الأول

 

جمهورية العراق 
والبحث العلمي ي وزارة التعليم العال

جامعة النهرين 
 كلية العلوم
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