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Abstract

The aim of this work is to use the homotopy perturbation method to solve special

types of the local and nonlocal problems. This study including the following aspects:

(1) Give some basic concepts of the homotopy perturbation method.

(2) Use the homotopy perturbation method to solve some types of differential, integral

and integro-differential equations.

(3) Describe some nonlocal problems and use the homotopy perturbation method to solve

them.

(4) Use the homotopy perturbation method to solve some real life applications and these

applications are advection-diffusion problems, gas dynamics problem and the ground

-water level problem.
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I

Introduction

The homotopy perturbation method was first proposed by He J. Huan in 1999, where

the solution of this method is considered as the sum of an infinite series which is very rapidly

converge to the accurate solution, [13].

The homotopy perturbation method, presents some advantages: obtaining exact

solutions with high accuracy, minimal calculations without loss of physical verification. This

method has found application in different fields of nonlinear equations such as fluid

mechanics and heat transfer, [10].

Many authors and researchers studied the homotopy perturbation method, say, He J. in

1999, used the homotopy perturbation method for solving nonlinear ordinary differential

equations of the first and second orders, [13], He J. in 2003, solved the Nonlinear ordinary

differential equations with nth order, [14], He J. in 2004, solved the oscillators equation with

discontinuities via the homotopy perturbation method, [17], He J. in 2005, studied the

homotopy perturbation method for solving one dimensional nonlinear wave equation, [18],

Li-Na Z. and He J. in 2006, solved the electrostatic potential differential equation, [19].

Yu-Xi Wang and et al. in 2008, used the homotopy perturbation method for solving

reaction-diffusion equation, [38], Fatemeh S. and Mehdi D. in 2008, solved the deley

differential equations via the homotopy perturbation method, [9], Jafari H. and et al. in 2008,

used the homotopy perturbation method for solving Gas  Dynamics Equation, [22], Jazbi  B.



II

and Moini M. in 2008, used  the homotopy perturbation method for solving

Schrodinger equation, [23].

Lin Jin in 2008, studied the homotopy perturbation method to solve the three

dimensions parabolic and hyperbolic partial differential equations with variable coefficients,

[29], Behrouz R., in 2009, solved nonlinear Volttera partial integro-differential equations of

the second kind, [4], Ghorbali A. R., and et al. in 2009, used the homotopy perturbation

method for solving the three dimensional heat equation with variable coefficients, [11].

Mashallah M. and Mohammad S. in 2010, studied the homotopy perturbation method

for solving linear fuzzy Fedholem integral equations, [33], Allahviranloo T. and et al. in

2010, solved the linear fuzzy Volttera integral equations of the second kind, [1], Roozi A. and

et al. in 2011, studied the homotopy perturbation method for solving nonlinear parabolic and

hyperbolic partial differential equations of one and two dimensions, [35].

The nonlocal problems plays an important role in real life applications and they used in

various field of mathematical physics and in other fields, [3].

Many authors and researchers studied the nonlocal problem, say, Karakostas G. L. and

Tsamatas P. Ch. In 2000, studied a nonlocal boundary value problem for a second order

ordinary differential equations, [25], Beilin S. in 2002, studied the existence of Solutions for

One-Dimensional Wave equations with Nonlocal conditions, [6], Ruyun M. in 2007,

presented a servay of recent results on the existence and multiplicity of solutions of nonlocal

boundary value problem involving second order ordinary differential equations, [36].



III

The purpose of this thesis is to give a full information for the homotopy perturbation

method and its applications for solving the non-linear Fredholm integral and integro-

differential equations. Also, this method is used to solve special types of nonlocal problems.

Moreover, the solutions of some real life applications are obtained via the homotopy

perturbation method.

This thesis consists of four chapters:

In chapter one, some basic concepts of the homotopy perturbation method are

described and used to solve the nonlinear ordinary differential equations with and without

initial conditions.

In chapter two, the solutions of the linear integral equation of the second kind are

obtained via the homotopy perturbation method and its convergence is presented. Also, the

solution of the non-linear integral and integro-differential equations of the second kind are

obtained by means of the homotopy perturbation method.

In chapter three, the homotopy perturbation method is used to solve the one

dimensional wave and hyperbolic integro-differential equations with non-homogeneous

Neumann and nonlocal conditions, respectively.

In chapter four, the solutions of the advection-diffusion problem with initial boundary

conditions, gas dynamics problem with initial condition and the ground water level problem

with non-homogeneous Dirichlet and nonlocal conditions are obtained via the homotopy

perturbation method.



Chapter One
The Homotopy Perturbation

Method for Solving the Ordinary
Differential Equations
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Introduction:

The homotopy perturbation method proposed first by He J. Huan in 1999 for solving

differential and integral equations, linear and nonlinear has been the subject of extensive

analytic and numerical studies. This method has a significant advantage in that it provides an

approximated solution to a wide range of nonlinear problems in applied sciences. In this

method, the solution is considered as the summation of an infinite series which usually

converges rapidly to the solutions, [13].

In this chapter, some basic ideas of this method has been explained.

This chapter consists of two sections:

In section one, some basic concepts of the homotopy perturbation method are

described.

In section two, we use this method for solving the non-linear ordinary differential

equations.

1.1 Some Basic Concepts of the Homotopy Perturbation Method:

In this section, we give some basic concepts of the homotopy perturbation method. To

do this, we recall the following definition:

Definition (1.1.1), [32]:

Let X and Y be two topological spaces. Two continuous functions YXf : and
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YXg : are said to be homotopic, denoted by gf  , if there exists a continuous

function YXH  ]1,0[: , such that:

XxxfxH  ),()0,(

XxxgxH  ),()1,(

In this case, H is said to be a homotopy.

Now, to illustrate this definition, consider the following examples:

Example (1.1.2):

Let X and Y be any topological spaces, f be the identity function and g be the zero

function, then define YXH  ]1,0[: by:

[0,1]p,x),1(),(  XpxpxH

Then H is a continuous function and

XxfxxH  x),()0,(

XxgxH  x),(0)1,(

Therefore .gf 

Next, the following proposition appeared in [32] without proof, here we give its proof.

Proposition (1.1.3):

On the continuous functions  is an equivalence relation.
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Proof:

Let YXf : be a continuous function, then define YXH  ]1,0[: by:

[0,1]p,x),(),(  XxfpxH

Therefore

XxxfxH  ),()0,(

XxxfxH  ),()1,(

and this implies that .ff  Therefore  is a reflexive relation.

To prove  is a symmetric relation, let gf  , then there exists a continuous function

YXH  ]1,0[: such that:

XxxfxH  ),()0,(

XxxgxH  ),()1,(

Define YXK  ]1,0[: by:

[0,1]p,x),1,(),(  XpxHpxK

Then

XxxgxHxK  ),()1,()0,(

XxxfxHxK  ),()0,()1,(

Hence .fg 

To prove  is a transitive relation, let gf  and ,wg  then there exist continuous

functions YXH  ]1,0[: and YXK  ]1,0[:

such that:
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XxxfxH  ),()0,(

XxxgxH  ),()1,(

XxxgxK  ),()0,(

XxxwxK  ),()1,(

Define YXL  ]1,0[: by:















1p),(

1p0),(),(),(

0p),(

),(

xw

xgpxKpxH

xf

pxL

Therefore

XxxfxL  ),()0,( ,

XxxwxL  ),()1,(

 

X,x),0,(

)(

)()()(

)()0,()0,(

)(),(),(lim),(lim
00








 

xL

xf

xgxgxf

xgxKxH

xgpxKpxHpxL
pp

and

 

X,x),1,(

)(

)()()(

)()1,()1,(

)(),(),(lim),(lim
11








 

xL

xw

xgxwxg

xgxKxH

xgpxKpxHpxL
pp

Hence L is a continuous function. Therefore .wf  Hence  is an equivalence relation on

the set of all continuous functions.



Chapter One The Homotopy Perturbation Method for Solving the Ordinary Differential Equations

- 5 -

Remark (1.1.4):

Let X and Y be two topological spaces, let :f and :g be

continuous functions. Define  ]1,0[:H by:

[0,1]p,x),()()1(),(  XxpgxfppxH

Then

XxfxH  x),()0,(

and

XxgxH  x),()1,(

Therefore .gf 

Definition (1.1.5), [32]:

Let X and Y be two topological spaces and YXf : be a continuous function. The

equivalence class of ,f denoted by ][ f is defined by:

 YXggf  :][ be a continuous function and gf 

and it is said to be a homotopy class of functions of .f

Remark (1.1.6):

(1) It is clear that ],[ ff  for every continuing function f defined from a topological  space

X into a topological space Y. Therefore .][ f
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(2) By using theorem (2.4.4) in [31], the set of equivalence classes of  form a partition of

continuous functions.

Definition (1.1.7), [32]:

Let X and Y be two topological spaces. Two continuous functions f and g are said

homotopic relative to XA  if there exists a continuous function YXH  ]1,0[: such

that:

XxxfxH  ),()0,(

XxxgxH  ),()1,(

AaagafpaH  [0,1],p),()(),(

Now, to illustrate the basic idea of the homotopy perturbation method, we consider the

following non-linear equation:

    x),()( xfuA (1.1)

where A is any operator, f is a known function of x. The operator A can generally speaking

be divided into two parts L and N, where L is a linear operator, and N is a non-linear

operator. Therefore equation (1.1) can be rewritten as follows:

0)()()(  xfuNuL

According to [13], we can construct a homotopy  ]1,0[:v which satisfies the

homotopy equation:

0)]()([)]()()[1(),( 0  xfvApuLvLppvH
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or

0)]())(([))(())(())((),( 00  xfxvNpxupLxuLxvLpvH (1.2)

where p[0,1],  represents the set of all real numbers and 0u is an initial approximation of

the solution of equation (1.1).

Obviously, from equation (1.2) we have:

0)()()0,( 0  uLvLvH

0)()()1,(  xfvAvH

The changing process of p from zero to unity is just that of v(x,p) from u 0 (x) to u(x).

Therefore

     x),()()()( 0 xfvAuLvL

and

.      x),()(0  xuxu

Assume that the solution of equation (1.1) can be written as a power series in p as follows:







0

)(),(
i

i
i xvppxv (1.3)

By setting p=1 in equation (1.3), one can get:







01
)(),(lim)(

i
i

p
xvpxvxu (1.4)

which is the solution of equation (1.1)

The series (1.4) is convergent for some cases, [13].
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1.2 The Homotopy Perturbation Method for Solving The Non-Linear Ordinary Differential

Equations, [13]:

In this section, we use the homotopy perturbation method to solve the non-linear ordinary

differential equations with or without (initial or boundary) conditions. To do this, consider the

following non-linear ordinary differential equation:

)()( xfyA  , xΩ (1.5)

where A is any differential operator, f is a known function of x. The operator A can be

divided into two parts L and N where L is a linear operator while N is a non-linear operator.

Therefore equation (1.5) can be rewritten as:

,0)()()(  xfyNyL xΩ

So, by the homotopy perturbation method, we can construct a homotopy  ]1,0[:u

which satisfies:

0)]()),(([))(())(()),((),( 00  xfpxuNpxypLxyLpxuLpuH (1.6)

where p[0,1],  represents the set of all real numbers and 0y is the initial approximation

for the solution of equation (1.5) which satisfies the initial or boundary conditions if they

exist.

Obviously, from equation (1.6) one can have:

0))(())0,(()0,( 0  xyLxuLuH

0)())1,(())1,(()1,(  xfxuNxuLuH

The changing process of p from zero to unity is just that of u(x,p) from )(0 xy to )(xy .

Therefore
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     x),()()()( 0 xfuAyLuL

and

.      x),()(0  xyxy

Assume that, the solution of equation (1.5) can be written as power series in p:







0

)(),(
i

i

i xuppxu (1.7)

where 0u , 1u , ... are the unknown functions that must be determined. By setting p=1 in the

above equation one can obtain:







01
)(),(lim)(

i
i

p
xupxuxy (1.8)

which is the solution of the differential equation (1.5).

The infinite series given by equation (1.8) is convergent for some cases. However, the

convergence rate depends on the non-linear operator A. The following opinions are suggested

by He J. to ensure that the convergence of the infinite series given by equation (1.8):

1. The second derivative of N(u) with respect to u must be small.

2. The norm of
u

N
L


1 must be smaller than one.

To illustrate this method, consider the following examples.

Example (1.2.1):

Consider the first order nonlinear ordinary differential equation:

1x,0)()( 2  xyxy (1.9)
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Here 2)( yyyA  and 0)( xf . The operator A can be divided into two parts L and N,

where yyL )( and .)( 2yyN 

In this case, equation (1.6) becomes:

[0,1]p,0)]([)()()( 2
00  xupxypxyxu

Assume the solution of the above equation can be written as given in equation (1.7). By

substituting this solution into the above equation one can have:

 














0

2

0
00 0)()()()(

i i
i

i

i

i xuppxypxyxup

By equating the terms with identical powers of p one can have:

0)()(: 00

0  xyxup (1.10.a)

0)()()(: 0
2

01

1  xuxyxup (1.10.b)

0)()(2)(: 102

2  xuxuxup (1.10.c)

0)()()(2)(: 1
2

023
3  xuxuxuxup (1.10.e)



For simplicity, let )()( 00 xyxu  , then equation (1.10.a) is automatically satisfied.

Let 1)(0 xy be the initial approximation of the differential equation (1.9), then

1)(0 xu

By substituting 0u and 0y into equation (1.10.b) one can have:

1)(1  xu

and this implies that:
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xxu )(1

By substituting 0u and 1u into equation (1.10.c) one can have:

xxu 2)(2 

and this implies that:

2

2 )( xxu 

By substituting 1u , 2u and 3u into equation (1.10.e) one can have:

3

3 3)( xxu 

and this implies that:

)( 3

3 xxu 

By continuing in this manner one can have:

ii

i xxu )1()(  , i = 0, 1, …

By substituting these functions into equation (1.8) one can obtain:







0

)1()(
i

ii xxy

x


1

1
.

which is the exact solution of the ordinary differential equation (1.9).

Example (1.2.2):

Consider the first order nonlinear ordinary differential equation:

  0)()()(  xyxxyxy (1.11)
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Here yxyyyA  )()( and .0)( xf The operator can be divided into two parts L and

N, where yyL )( and yxyyN  )()(

In this case, equation (1.6) becomes:

  0)()()()()( 00  xuxxupxpyxyxu , p [0, 1]

By substituting equation (1.7) into the above equation one can have:

 
















 



 

0 00
00 0)()()()()(

i i
i

i

i
i

i

i

i xupxxuppxpyxyxup

By equating the terms with identical powers of p one can have:

0)()(: 00

0  xyxup (1.12.a)

0)())(()()(: 0001

1  xuxxuxyxup (1.12.b)

  0)()()()()(: 01102

2  xuxuxuxxuxup (1.12.c)



Let xxy )(0 , then from equation (1.12.a) one can have:

xxu )(0 .

From equation (1.12.b) one can have:

xxu 3)(1 

Therefore, the first approximation of equation (1.11) is:

xxuxuxy 2)()()( 10 

which is the exact solution of the ordinary differential equation (1.11).

That is, the first approximation in this example is sufficient to give the exact solution. Next, if

we choose ,1)(0 xy then ,1)(0 xu from equation (1.12.b) one can have:
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1)(1 xu

and from equation (1.12.c) one can get:

0)(2 xu

and in a similar manner one can obtain:

3,4,...i,0)( xui

so

0)()(
0




i
i xuxy

which is the exact solution of the ordinary differential equation (1.11).

Example (1.2.3), [14]:

Consider the first order nonlinear ordinary differential equation:

1x0,0)()( 2  xyxy (1.13.a)

together with the initial condition

1)0( y (1.13.b)

Here )()())(( 2 xyxyxyA  and .0)( xf

To solve this example by the homotopy perturbation method, consider equations (1.10):

For simplicity, let ,1)0()()( 00  yxyxu then equation (1.10.a) is automaticly

satisfied.

Since
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





0

)()(
i

i xuxy

Then







0

)0()0(
i

iuy

But ,1)0(0 u therefore 1,2,....i,0)0( iu Thus, equation (1.10.b) becomes:

.1

)()()( 0
2

01


 xuxyxu

By integrating both sides of the above ordinary differential equation from 0 to x and using the

initial condition u
1
(0)=0  one can get:

xxu )(1 .

From equation (1.10.c) one can have:

2x.

)()(2)( 102


 xuxuxu

Then by integrating both sides of the above differential equation from 0 to x and by using the

initial condition u
2
(0)=0, one can get:

.)( 2
2 xxu 

By continuing in this manner one can obtain:

0,1,....i,)()(  i
i xxu

Therefore
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





0

21)()(
i

i xxxuxy 

x


1
1 .

which is the exact solution of the above initial value problem.

Example (1.2.4):

Consider the first order nonlinear ordinary differential equation:

1)()()(  xyxyxy (1.14.a)

together with the initial condition

1)0( y (1.14.b)

Here yyyyA )( and .1)( xf The operator A can be divided into two parts L and N,

where yyL )( and yyyN )(

In this case, equation (1.6) becomes:

[0,1]p,0]1)()([)()()( 00  xuxupxpyxyxu

By substituting equation (1.7) into the above equation one can have:

 















 

0 00
00 01)()()()()(

i i
i

i

i
i

i
i

i xupxuppxpyxyxup

By equating the terms with identical powers of p one can have:

0)()(: 00
0  xyxup (1.15.a)

01)()()()(: 0001
1  xuxuxyxup (1.15.b)


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Let 1)(0 xy , then from equation (1.15.a) one can have:

1)(0 xu

From equation (1.15.b) one can have:

0)(1 xu

By continuing in this manner one can obtain:

,....3,2i,0)( xui

Therefore







0

.1)()(
i

i xuxy

which is the exact solution of the above initial value problem.
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Introduction:

Many researchers used analytical methods and numerical methods for solving linear

and nonlinear integral and integro-differential equations [24], [26], [28].

The aim of this chapter is to use the homotopy perturbation method for solving special

types of linear and nonlinear integral and integro-differential equations of the second kind.

This chapter consists of three sections:

In section one, we describe the homotopy perturbation method for sovling the linear

Fredholm and Voltera integral equations of the second kind with its convergence.

In section two and three, we use the homotopy perturbation method to solve special

types of non-linear Fredholm integral and integro-differential equations of the second kind.

2.1 The Homotopy Perturbation Method for Solving Linear Integral Equations, [2]:

In this section, we use the homotopy perturbation method to solve the linear integral

equations of the second kind. To do this, first, consider the linear Fredholm integral equation

of the second kind:

b][a,    x,)(),()()(  
b

a

dttutxkxfxu  (2.1)

where f and k are known functions. The function f is said to be the driving term and k is said

to be the kernel function that depends on x, t and λ is a scalar parameter, a and b are known

constants and u is the unknown function that must be determined.

We rewrite equation (2.1) as:
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0)()(  xfuA (2.2)

where 
b

a

dttutxkxuuA )(),()()(  .

Then the integral operator A can be divided into two parts L and N such that equation (2.2)

becomes:

0)()()(  xfuNuL (2.3)

where uLu  and .),(
b

a

udttxkN 

Accoding to [13], we construct a homotopy  ]1,0[],[: bav which satisfies:

  0)(),(),(),()(),()1(),( 0 







  xfdtptvtxkpxvpxupxvppvH

b

a

 (2.4)

where p [0,1],  represents the set of all real numbers and 0u is the initial approximation

to the solution of equation (2.1).

By using equation (2.4) it follows that:

0)()0,()0,( 0  xuxvvH

0)()1,(),()1,()1,(  
b

a

xfdttvtxkxvvH 

and the changing process of p from zero to unity is just that of ),( pxv from )(0 xu to ).(xu

Therefore

],[      x),()1,(),()1,()()0,( 0 baxfdttvtxkxvxuxv
b

a

 
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and

.],[         x),()(0 baxuxu 

Next, we assume that the solution of equation (2.4) can be expressed as







0

)(),(
i

i
i xvppxv (2.5)

Therefore the approximated solution of the integral equation (2.1) can be obtained as follows:












0

1

)(

),(lim)(

i
i

p

xv

pxvxu

(2.6)

By substituting the approximated solution given by equation (2.5) into equation (2.4) one can

get:

0)()(),()()()(
0 0

00 



   







i

b

a i
i

i

i

i xfdttvptxkpxpuxuxvp 

Then by equating the terms with identical powers of p one can have:

0)()(: 00

0  xuxvp (2.7.a)

0)(),()()()(: 001
1  

b

a

dttvtxkxfxuxvp  (2.7.b)

2,3,...j,0)(),()(: 1   

b

a
jj

j dttvtxkxvp  (2.7.c)

For simplicity we set ),()()( 00 xfxuxv  then equation (2.7.a) is automatically satisfied.

By substituting )()()( 00 xfxvxu  into equation (2.7.b) one can have:
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dttftxkxv
b

a
 )(),()(1 

By substituting v
1

into equation (2.7.c) one can have:

dttvtxkxv
b

a
 )(),()( 12 

In a similar manner one can get 3,4,....i),( xvi By substituting 0,1,...i),( xvi into

equation (2.6) one can get the approximated solution of the integral equation (2.1).

Next, we study the convergence of the homotopy perturbation method for solving the

integral equation (2.1). To do this, consider the iteration formula that is obtained by applying

the homotopy perturbation method to solve the integral equation (2.1):

  

b

a
ii dttvtxkxv 1,2,...i,)(),()( 1 (2.8)

with the initial approximation )()(0 xfxv 

According to the previous equation, we define the partial sum as follow:

0,1,...n,)()(
0




n

i
in xvxs (2.9)

where ).()(0 xfxs 

In view of equations (2.8) and (2.9), one can have:

)()(0 xfxs 

and
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 























b

a
n

b

a
n

b

a
n

b

a

b

a

n

i
i

n

i
in

dttstxkxf

dttvtvtvtxkxf

dttvtxkdttvtxkdttvtxkxf

xvxvxvxs

.)(),()(

)()()(),()(

)(),()(),()(),()(

)()()()(

10

10

0
0

1

0
1











From [21], it is known that if ,..., 21 vv be a sequence of functions, then the series 


1

)(
i

i xv is

said to be convergence to u if the sequence  ns of partial sums defined by:





n

i
in xvxs

0

)()(

converges to u.

Now, we are in the position that we can give the following theorem.

Theorem (2.1), [21]:

Consider the iteration scheme:

)()(0 xfxs 

and

0,1,...n,)(),()()(1   dttstxkxfxs
b

a
nn 
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to construct a sequence of successive iterations )(xsn to the solution of equation (2.1). Let

),(2 baLf  and

  
b

a

b

a

Bdxdttxk .),( 22

If
B

1
 , then the above iteration scheme convergence to the solution of equation (2.1).

To illustrate this method, consider the following example.

Example (2.2):

Consider the following linear Fredholm integral equation of the second kind:

1x0,)()12(
9

1
)(

1

0

33   dttxtuxxu ee
x

Here  12
9

ef(x)1,b,0 33x  e
x

a  and .),( xttxk 

Therefore

    
b

a

b

a

Bdxdttxdxdttxk .
9

1
),( 2

1

0

1

0

222

and

.3
1

1 
B



So, we can use the homotopy perturbation method to solve this example.
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To do this, let

 12
9

)()()( 33
00  e

x
exfxvxu x .

Hence

 

.
27

42

12
9

t

)(),(),(

3

1

0

33

01

x
e

dteext

dttvtxktxv

t

b

a








 






 







and

.
81

42

27

42

)(),(),(

3

1

0

3
2

12

x
e

dt
e

xt

dttvtxktxv
b

a








 









 








By continuing in this manner, one can have:

1,2,....i,
)3(27

42

)(),(),(

1

3

1








 








x
e

dttvtxktxv

i

b

a
ii 

Thus
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 

 

 
.e

27

42

2

3
12

9
e

3

1

27

42
12

9
e

)3(27

42
12

9
e

)()(

3x

3
33x

1

13
33x

1
1

3
33x

0










 

















 









 

























x
e

e
x

x
e

e
x

x
e

e
x

xvxu

i

i

i
i

i
i

which is the exact solution of the above integral equation.

Example (2.3):

Consider the following linear Fredholm integral equation of the second kind:

1x0,)(4
9

4

9

8
)(

1

0

33   dttxtuxxxu ee
x

Here xxea
9

4

9

8
ef(x)4,,1b,0

33x   and .),( xttxk 

Therefore

    
b

a

b

a

Bdxdttxdxdttxk .
9

1
),( 2

1

0

1

0

222

and

.3
1

4 
B


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So, if we use the homotopy perturbation method to solve this example, then the solution that

is obtained by applying this method may be convergent to the exact solution or may not. To

do this, let

xeexfxvxu x




 

9

4

9

8
)()()( 33

00

Hence

xe

dttteext

dttxtftxv

t

b

a





 








 







27

4

27

8

9

4

9

8
4

)(4),(

3

1

0

33

1

and

.
81

6

81

32

27

4

27

8
4

)(4),(

3

1

0

32

12

xe

dtext

dttxtvtxv
b

a





 










 










By continuing in this manner, one can have:

1,2,....i,
)3(27

)4(4

)3(27

)4(8

)(4),(

1

1
3

1

1

1

0
1


























xe

dttxtvtxv

i

i

i

i

ii

Thus
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.
)3(27

)4(4

)3(27

)4(8

9

4

9

8
e

)()(

1
1

1
3

1

1
33x

0

xexe

xvxu

i
i

i

i

i

i
i


































 



Since

.
3

4

27

4

27

8

3

4

27

4

3

4

27

8

1

1
3

1

1
3

1
























 





























i

i

i

ii

xexe

But 














1

1

3

4

i

i

is a geometric series, that is divergent since .1
3

4
r Therefore 



0

)(
i

i xv is

divergent.

Next, consider the linear Volterra integral equation of the second kind:


x

a

dttutxkxfxu )(),()()(  (2.10)

where k is the kernel of the integral equation, f is the driving term,  is a scalar parameter, a

is a known constant and u is the unknown function that must be determined.

To solve this integral equation via the homotopy perturbation method, we rewrite

equation (2.10) as:

0)()(  xfuA (2.11)

where 
x

a

dttutxkxuuA )(),()()(  .

Then A can be divided into two parts L and N such that equation (2.11) becomes:
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0)()()(  xfuNuL

where uLu  and 
x

a

dttutxkNu )(),( .

Accoding to [13], we construct a homotopy  ]1,0[),[: av which satisfies:

  0),(),(),()(),()1(),( 0 







 

x

a

dtptvtxkpxvpxupxvppvH  (2.12)

where p [0,1]  represents the set of all real numbers and 0u is the initial approximation to

the solution of equation (2.10).

By using equation (2.12) it follows that:

0)()0,()0,( 0  xuxvvH

0)()1,(),()1,()1,(  
x

a

xfdttvtxkxvvH 

and the changing process of p from zero to unity is just that of ),( pxv from )()0,( xuxv  to

.)()1,(),()1,(  
x

a

xfdttvtxkxv 

Therefore

axfdttvtxkxvxuxv
x

a

        x),()1,(),()1,()()0,( 0 

and

.         x),()(0 axuxu 
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Next, we assume that the solution of equation (2.12) can be expressed as in equation

(2.5). By substituting this approximated solution into equation (2.12) one can get:

0)()(),()()()(
0 0

00 







  







i

x

a i
i

i
i

i xfdttvptxkpxpuxuxvp 

Then by equating the terms with identical powers of p one can have:

0)()(: 00

0  xuxvp

0)(),()()()(: 001
1  

x

a

dttvtxkxfxuxvp 

2,3,...j,0)(),()(: 1   

x

a
jj

j dttvtxkxvp 

So, if we choose ),()()( 00 xfxuxv  then one can get the iteration formula.

)()(0 xfxv 

  

x

a
ii dttvtxkxv 1,2,...i,)(),()( 1

Next, we study the convergence of the homotopy perturbation method for solving the

integral equation (2.10). To do this, consider the following theorem.

Theorem (2.4), [21]:

Consider the iteration scheme:

)()(0 xfxs 

and
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 

x

a
nn dttstxkxfxs 0,1,...n,)(),()()(1 

to construct a sequence of successive iterations )(xsn to the solution of the integral equation

(2.10).

If f and k are real-valued continuous functions, then the above iteration scheme convergence

to the solution of the integral equation (2.10) for all values of  .

To illustrate this method consider the following example.

Example (2.5):

Consider the following linear Volterra integral equation of the second kind:

 
x

dttutxxxu
0

)()()( 

To solve this example via the homotopy perturbation method, consider the iteration

formula:

.)()( 00 xxuxv 

0,1,....i,)()()(
0

1  

x

ii dttvtxxv 

Therefore

3

0
1 !3

)()( xdttxtxv
x   
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and

.
!5

)(
!3

)(

5
2

0

3
2

2

x

dttxtxv
x







 

By continuing in this manner, one can have:

1,2,....i,
)!12(

),( 12 


 i
i

i x
i

txv


It is known that the sequence









n

i

i
i

n i

x
xs

0

12

)!12(
)( 

which is convergent for all values of  and x .

Therefore











0

12

.
)!12(

)(
i

i
i

i

x
xu 

which is the exact solution of the above integral equation.

Note that, if ,1 then ).sin()( xxu 

2.2 The Homotopy Perturbation Method For Solving Non-Linear Integral Equations:

In this section, the homotopy perturbation method is used to solve special types of non-

linear Fredholm integral equations with some illustrative examples.  To do this, consider the

following non-linear Fredholm integral equation of the second kind:
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  bxa,)(),()()(   dttutxkxfxu q
b

a

 (2.13)

where q , f is the driving term and k is the kernel of the integral equation that depends on

x and t, λ is a scalar parameter, a and b are known constants and u is the unknown function

that must be determined.

We rewrite equation (2.13) as:

0)()(  xfuA (2.14)

where   .)(),()()( dttutxkxuuA q
b

a
 

Then the integral operator A can be divided into two parts L and N equation (2.14)

becomes:

0)()()(  xfuNuL

where uuL )( and   dtttutxkuN
b

a

q )(),()(  .

Accoding to [13], we can construct a homotopy      1,0,: bav which satisfies:

    0)(),(),(),()(),()1(),( 0 







  xfdtptvtxkpxvpxupxvppvH

b

a

q (2.15)

where p [0,1],  represents the set of all real numbers and 0u is the initial approximation

to the solution of equation (2.13).

By using equation (2.15) it follows that:

0)()0,()0,( 0  xuxvvH
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  0)()1,(),()1,()1,(  
b

a

p xfdttvtxkxvvH 

and the changing process of p from zero to unity is just that of ),( pvv from )(0 xu to ).(xu

Therefore

  ],[      x),()1,(),()1,()()0,( 0 baxfdttvtxkxvxuxv
b

a

q  

and

.],[         x),()(0 baxuxu 

Next, we assume that the solution of equation (2.15) can be expressed as in equation

(2.5). By substituting the approximated solution given by equation (2.5) into equation (2.15)

one can get:

0)()(),()()()(
0 0

00 















  







i

b

a

q

i
i

i
i

i xfdttvptxkpxpuxuxvp 

Then by equating the terms with identical powers of p one can have:

0)()(: 0
0  xuxvp (2.16.a)

  0)(),()()()(: 001
1  

b

a

q dttvtxkxfxuxvp  (2.16.b)
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 

 

 




























4qif,0)())((4),()(

3qif,0)())((3),()(

2qif,0)()(2),()(

:

1
3

02

1
2

02

102

2

dttvtvtxkxv

dttvtvtxkxv

dttvtvtxkxv

p
b

a

b

a

b

a







(2.16.c)

 

 

 




















   

 

 






























4qif,0)()()()(),()(

3qif,0)()()(),()(

2qif,0)()(),()(

:
1

0

1

0

1

0
1

1

0

1

0
1

1

0
1

dttvtvtvtvtxkxv

dttvtvtvtxkxv

dttvtvtxkxv

p
b

a

j

i

ij

k

kij

l
ikljlkij

j

i

ij

k
ikjki

b

a
j

b

a

j

k
kjkj

j







(2.16.e)

where j=3,4,….

For simplicity, we set )()()( 00 xfxuxv  , then equation (2.16.a) is automatically

satisfied. By substituting )()()( 00 xfxuxv  into equation (2.16.b) one can have:

  0)(),()( 01   dttvtxkxv
b

a

q

By substituting 10 ,vv into equation (2.16.c) one can get ).(2 xv

In a similar manner, one can get 3,4,...i),( xvi By substituting 0,1,...i),( xvi into equation

(2.6) one can get the approximated solution of the integral equation (2.13).

To illustrate this method consider the following examples.
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Example (2.4):

Consider the following nonlinear Fredholm integral equation of the second kind:

  
1

0

222 1x0,)()(
6

1

5

4
)( dttutxxxu (2.17)

Here
6

1

5

4
f(x)2,q,1b,0 2  xa  and .),( 2 txtxk 

To solve this example via the homotopy perturbation method, let

.16667.00.8x

6

1

5

4
)()()(

2

2
00



 xxfxuxv

Then

 

.24467.018722.0

6

1

5

4
)(

)(),()(

2

1

0

2
22

01

x

dtttx

dttvtxkxv
b

a

q







 







In this case, let N=1, then

22

0
10 1005555.204466.1)()()()( 




 xxvxvxvxu

i
i

Next, we must find :)(2 xv

 

.05678.002046.0

1500

367

1800

337

6

1

5

4
)(2

)()(2),()(

2

2
1

0

22

102

x

dttttx

dttvtvtxkxv
b

a







 






 






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In this case, let N=2, then

)()()()()( 2
0

10 xvxvxvxvxu
i

i 




52 1062963.298789.0  x

The following table gives the approximated solution of example (2.4) for different values of

N.

Table (1.1) represents the approximated solutions of example (2.4) for different values of N.

N u (x) N u(x) N u(x)

0 0.8x2+0.166667 4 1.00222x2–1.26717×10-3 8 0.99993x2+1.31635×10-5

1 1.04466x2–2.05555×10-2 5 0.99924x2+6.40980×10-5 9 1.00001x2+1.52175×10-5

2 0.98789x2–9.62963×10-5 6 0.99994x2+2.05376×10-4 10 1.00001x2–1.03366×10-5

3 0.99762x2+3.58386×10-3 7 1.00016x2–1.06638×10-4 11 1.00001x2–1.00453×10-5

Note that from the above table one can deduce that as N increases, the approximated solution

of the integral equation (2.17) converges to the exact solution .)( 2xxu 

2.3 The Homotopy Perturbation Method for Solving Non-Linear Fredholm Integro-

Differential Equations, [26]:

In this section, the homotopy perturbation method is employed for solving the initial value

problems of special types of the first order non-linear Fredholm integro-differential equations

with some illustrative examples.



EquationsDifferential-Integral and Integrobation Method for Solving theThe Homotopy PerturwoChapter T

- 36 -

To do this, consider the following first order nonlinear Fredholm integro-differential

equation of the second kind:

  bxa,)(),()()(   dttutxkxfxu q
b

a

 (2.18.a)

together with the initial condition:

)(au (2.18.b)

where q , f is the driving term and k is the kernel of the integro-differential equation that

depends on x and t, λ is a scalar parameter, a and b are known constants and u is the

unknown function that must be determined.

It is clear that, if q=1, then the integro-differential equation is linear, otherwise it is

nonlinear.

We rewrite equation (2.18.a) as:

0)()(  xfuA (2.19)

where  
b

a

q dttutxk
dx

du
uA )(),()(  .

Then the operator A can be divided into two parts L and N such that equation (2.19)

becomes:

0)()()(  xfuNuL

where
dx

du
uL )( and  

b

a

q dttutxkuN )(),()(  .

According to [13], we construct a homotopy      1,0,: bav which satisfies:
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  0)(),(),(
),()(),(

)1(),( 0 











   xfdtptvtxk

dx

pxdv
p

dx

xdu

dx

pxdv
ppvH

b

a

q (2.20)

where p [0,1]  represents the set of all real numbers and 0u is the initial approximation to

the solution of equation (2.18.a) which satisfies the initial condition given by equation

(2.18.b).

By using equation (2.20) it follows that:

0
)()0,(

)0,( 0 
dx

xdu

dx

xdv
vH

  0)()1,(),(
)1,(

)1,(  
b

a

q xfdttvtxk
dx

xdv
vH 

and the changing process of p from zero to unity is just that of ),( pxv from )(0 xu to ).(xu

Therefore

  ],[      x),()1,(),(
)1,()()0,( 0 baxfdttvtxk

x

xv

x

xv

x

xv b

a

q 














and

.],[         x),()(0 baxuxu 

Next, we assume that the solution of equation (2.18.a) can be expressed as in equation

(2.5).

By substituting the approximated solution given by equation (2.5) into equation (2.20) one

can get:

0)()(),(
)()()(

0 0

00 















  







i

b

a

q

i
i

iii xfdttvptxkp
dx

xdu
p

dx

xdu

dx

xdv
p 
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Then by equating the terms with identical powers of p one can have:

0
)()(

: 000 
dx

xdu

dx

xdv
p (2.21.a)

  0)(),()(
)()(

: 0
011   dttvtxkxf
dx

xdu

dx

xdv
p q

b

a

 (2.21.b)

 

 

 




























4qif,0)())((4),(
)(

3qif,0)())((3),(
)(

2qif,0)()(2),(
)(

:

1
3

0
2

1
2

0
2

10
2

2

dttvtvtxk
dx

xdv

dttvtvtxk
dx

xdv

dttvtvtxk
dx

xdv

p
b

a

b

a

b

a







(2.21.c)

 

 

 




















   

 

 






























4qif,0)()()()(),(
)(

3qif,0)()()(),(
)(

2qif,0)()(),(
)(

:
1

0

1

0

1

0
1

1

0

1

0
1

1

0
1

dttvtvtvtvtxk
dx

xdv

dttvtvtvtxk
dx

xdv

dttvtvtxk
dx

xdv

p
b

a

j

i

ij

k

kij

l
ikljlki

j

j

i

ij

k
ikjki

b

a

j

b

a

j

i
kjk

j

j







(2.21.e)

where j=3,4,….

Since )(au then we choose 
x

a

dttfxu )()(0  and this implies that )(0 au . Also, for

simplicity we set .)()()( 00 
x

a

dttfxuxv  So equation (2.21.a) is automatically satisfied.

Therefore by substituting ax  in equation (2.6) one can have:
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





0

)()(
i

i avau

But ,)()(0  auav hence 1,2,....i,0)( avi By substituting 
x

a

dttfxuxv )()()( 00 

into equation (2.21.b) one can get:

0)(),(
)(1 








   dtdzzftxk

dx

xdv b

a

qt

a



By integrating both sides of the above differential equation and by using the initial condition

0)(1 au one can obtain:

0)(),()(1 







   

x

a

b

a

qt

a

sdtddzzftskxv  (2.22)

By substituting 0v and 1v into equation (2.21.c) and by solving the resulting first order linear

ordinary differential equation together with the initial condition 0)(2 av one can get )(2 xv .

Then by substituting j= 3 10  v,v and 2v into equation (2.21.e) and by using initial condition

0)(3 av one can solve the resulting first order linear ordinary differential equation to get

)(3 xv . In a similar manner one can get 4,5,....i),( xvi By substituting 0,1,...i),( xvi into

equation (2.6) one can get the approximated solution of the initial value problem given by

equations (2.18).

To illustrate this method consider the following examples.



EquationsDifferential-Integral and Integrobation Method for Solving theThe Homotopy PerturwoChapter T

- 40 -

Example (2.5), [28]:

Consider the initial value problem that consists of the first order linear Fredholm

integro-differential equation of the second kind:

 



1

0

10,)()1(
6

5

2

1
)( xdttuxtxxu (2.23.a)

together with the initial condition:

1)0( u (2.23.b)

Here xa
6

5

2

1
f(x),1b,0 


  and .1),(  xttxk

We use the homotopy perturbation method to solve this example. To do this, let

 



 



xb

a

dttdttfxuxv
0

00 6

5

2

1
1)()()( 

2

12

5

2

1
1 xx 

.41667.05.01 2xx

Then

dtdsttstxv
x

  



 

0

2
1

0
1 12

5

2

1
1)1()(

.375.111458.0 2 xx 

In this case, let N=1, then

2
10

0

30208.011111.01)()()()( xxxvxvxvxu
N

i
i 


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Next, we must find )(2 xv

 dtdsxxstxv
x

  
0

2
1

0
2 375.111458.0)1()(

.34375.011617.0 2 xx 

Therefore, for N=2,

18591.00.45486x1

)()()()()(

2

210
0

x

xvxvxvxvxu
N

i
i






In a similar manner one can get ,...4,3),( ixvi .The following table gives the approximated

solutions for different values of N.

Table (1.2) represents the approximated solutions of example (2.5) for different values of N.

N u(x) N u(x) N U(X)

0 1–0.5x–0.41667x2 9 1+0.98903x–3.7401×10-3x2 18 1+0.99986x–4.6173×10-5x2

1 1+0.11111x–0.30208x2 10 1+0.99327x–2.2952×10-3x2 19 1+0.99992x–2.8335×10-5x2

2 1+0.45486x–0.18591x2 11 1+0.99587x–1.4085×10-3x2 20 1+0.99995x–1.7389×10-5x2

3 1+0.79470x–0.070018×10-2x2 12 1+0.99747x–8.6440×10-4x2 21 1+0.99997x–1.0671×10-5x2

4 1+0.87401x–4.2969×10-2x2 13 1+0.99844x–5.3047×10-4x2 22 1+0.99998x–6.5488×10-6x2

5 1+0.92268x–2.6369×10-2x2 14 1+0.99905x–3.2554×10-4x2 23 1+0.99999x–4.0189×10-6x2

6 1+0.95255x–1.6183×10-2x2 15 1+0.99941x–1.9978×10-4x2 24 1+0.99999x–2.4663×10-6x2

7 1+0.97088x–9.9310×10-3x2 16 1+0.99964x–1.2260×10-4x2 25 1+x–1.5136×10-6x2

8 1+0.98213x–6.0945×10-3x2 17 1+0.99978x–7.5238×10-5x2 26 1+x–1.00336×10-6x2
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Note that from the above table one can deduce that as N increases the approximated solution

of the initial value problem given by equations (2.23) converges to the exact solution

u(x)=1+x.

Example (2.6), [26]:

Consider the initial value problem that consider of the first order nonlinear Fredholm integro-

differential equation:

  
2

1

0

322 )()(
64

1

160

159
)( dttutxxxu (2.24.a)

together with the initial condition:

0)0( u (2.24.b)

Here a=0, b=
2

1
, q=3, 1 , 2

64

1

160

159
)( xxf  and txtxk  2),( .

We use the homotopy perturbation method to solve this example. To do this, let

 



 

x

dttxuxv
0

2
00 64

1

160

156
)()(

3

192

1

160

159
xx  .

Then

dtdstttsxv
x

  



 

0

3
3

2

1

0

2
1 192

1

160

159
)()( .

333 1009791.51011634.6 xx   .
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In this case, let N=1, then

)()()()( 10
0

xvxvxvxu
N

i
i 



.1010428.199987.0 34 xx 

Next, we must find )(2 xv

 dtdstvtvtsxv
x

  
0

10

2

1

0

2
2 )()(3)()(

.1038354.81054066.8 344 xx  

Therefore, for N=2,

)()()()()( 210
0

xvxvxvxvxu
N

i
i 



 x10×7.27926-1.00072x 3-4 .

In a similar manner one can get ,...4,3),( ixvi . The following table gives the approximated

solutions of example (2.6) for different values of N.

Table (1.3) represents the approximated solutions of example (2.6) for different values of N.

N u(x) N u(x) N u(x)

0 0.99375x-5.20833×10-3x3 4 1.00086x+8.63897×10-4x3 8 1.00086x+8.66701×10-4x3

1 0.99987x-1.10428×10-4x3 5 1.00086x+8.66308×10-4x3 9 1.00086x+8.66702×10-4x3

2 1.00072x-7.27926×10-4x3 6 1.00086x+8.66651×10-4x3 10 1.00086x+8.66703×10-4x3

3 1.00084x+8.46953×10-4x3 7 1.00086x+8.66700×10-4x3 11 1.00086x+8.66704×10-4x3
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Note that from the above table one can deduce that as N increases the approximated

solution of the initial value problem given by equations (2.24) converges to the exact solution

u(x)=x.

Example (2.7), [26]:

Consider the initial value problem that consists of the nonlinear first order Fredholm

integral differential equation:

  
1

0

2)()1(
5

1

6

11
)( dttuxtxxu (2.25.a)

together with the initial condition:

0)0( u (2.25.b)

Here a=0, b= =1, q=2,
5

1

6

11
)(  xxf and 1),(  xttxk .

We use the homotopy perturbation method to solve this example. To do this, let

 
x

dttxuxv
0

00 )
5

1

6

11
()()(

xx
5

1

12

11 2  .

Then

dtdstttsxv
x

  



 

0

2
2

1

0

2
1 5

1

12

11
)1()(

.8975.003836.0 2 xx  .
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In this case, let N=1, then

)()()()( 1
0

0 xvxvxvxu
N

i
i 



xx 11028.095502.0 2  .

Next, we must find )(2 xu

 dtdstvtvtskxv
x

 
0

10

1

0
2 )()(2),()(

.03939.001629.0 2 xx  .

Therefore, for N=2,

)()()()()( 21
0

0 xvxvxvxvxu
N

i
i 



 x.10×7.099970.97131x -22 

In a similar manner one can get ,...4,3),( ixvi . The following table gives the approximated

solutions for different values of N.
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Table (2.4) represents the approximated solutions of example (2.7) for different values of N

N U(x) N u(x) N u(x)

0 0.91667x2–0.2x 13 0.998330x2–4.16697×10-3x 26 0.999838x2–4.04670×10-4x

1 0.95502x2–0.11028x 14 0.998631x2–3.41862×10-3x 27 0.999863x2–3.43486×10-4x

2 0.97131x2–7.09997×10-2x 15 0.998872x2–2.81678×10-3x 28 0.999883x2–2.91965×10-4x

3 0.98022x2–4.90465×10-2x 16 0.999067x2–2.32982×10-3x 29 0.999901x2–2.48517×10-4x

4 0.98572x2–3.54806×10-2x 17 0.999226x2–1.93369×10-3x 30 0.999915x2–2.11818×10-4x

5 0.98936x2–2.64527×10-2x 18 0.999355x2–1.60990×10-3x 31 0.999928x2–1.80774×10-4x

6 0.99190x2–2.01584×10-2x 19 0.999462x2–1.34412×10-3x 32 0.999938x2–1.54475×10-4x

7 0.99373x2–1.56202×10-2x 20 0.999550x2–1.12510×10-3x 33 0.999947x2–1.32165×10-4x

8 0.99508x2–1.22643×10-2x 21 0.999622x2–9.43993×10-4x 34 0.999954x2–1.13214×10-4x

9 0.996096x2–9.73292×10-3x 22 0.999682x2–7.93753×10-4x 35 0.999961x2–9.70962×10-5x

10 0.996875x2–7.79290×10-3x 23 0.999732x2–6.68758×10-4x 36 0.999966x2–8.33727×10-5x

11 0.997480x2–6.28651×10-3x 24 0.999774x2–5.64490×10-4x 37 0.999971x2–7.16747×10-5x

12 0.997955x2–5.10395×10-3x 25 0.999809x2–4.77297×10-4x 38 0.999975x2–6.16927×10-5x

Note that from the above table one can deduce that as N increases, the approximated

solution of the initial value problem given by equations (2.25) converges to the exact solution

2)( xxu  .



Chapter Three
The Homotopy Perturbation

Method for Solving Some
Nonlocal Problems
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Introduction:

It is seen that in the modeling of many real life applications systems in various fields of

physics, ecology, biology, etc, an integral term over the spatial domain is appeared in some part

or in the whole boundary, [8]. Such boundary value problems are known as nonlocal problems.

The integral term may appear in the boundary conditions. Nonlocal conditions appear when

values of the function on the boundary are connected to values inside the domain, [3]

Many researchers studied the nonlocal problems, say, [7] used Galerkin method for

solving the nonlocal problem for the diffusion equation, [6] discussed the existence of the

solutions for the nonlocal problem of the one-dimensional wave equations, [30] used Fourier

method to establish the existence of the solution for a class of linear hyperbolic equations with

nonlocal conditions, [27] used the homotopy perturbation method for solving the one-

dimensional parabolic integro-differential equations with some real life applications.

In this chapter, we use the homotopy perturbation method to solve some types of the

nonlocal problems.

This chapter consists of two sections:

In section one, we use the homotopy perturbation method for solving the one-dimensional

wave equation with non-homogeneous Neumann and nonlocal conditions.

In section two, we give the solution of hyperbolic integro-differential equations with non-

homogeneous Neumann and nonlocal conditions via the homotopy perturbation method.
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3.1 Solutions of One-Dimensional Wave Equation  with Non-Homogeneous Neumann

and Nonlocal Conditions:

Consider the one-dimensional non-homogeneous wave equation:








 t)(x,),,(),(),(

2

2

2

2

txf
x

txu

t

txu (3.1.a)

together with the initial conditions:

,x0),()0,( 1  xrxu (3.1.b)

,0),(),(
2

0







xxr
t

txu

t

(3.1.c)

the non-homogeneous Neumann condition:

Ttt
x

txu

x








0),(),(

0
 (3.1.d)

and the non-homogeneous nonlocal condition:

 


0
0),(),( Tttdxtxu  (3.1.e)

where f is a known function of x and t,  ,0,0),( Ttxtx   ,, 21 rr and  are given

functions that must satisfy the compatibility conditions:

),0()(),0()0(),0()0(
0

121   


dxxrrr and ).0()(
0

2   dxxr


To solve this nonlocal problem by the homotopy perturbation method, we first transform this

nonlocal problem into another nonlocal problem, but with homogeneous Neumann condition and

homogeneous nonlocal conditions. To do this we use the transformation that appeared in [1]:
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 t)(x,),,(),(),( txztxutxw (3.2)

where .)(
2

)(),(


 t
xttxz

 



 

Then

2

2

2

2

2

2 ),(),(),(
t

txz

t

txw

t

txu













and

.),(),(
2

2

2

2

x

txw

x

txu









Therefore the nonlocal problem given by equations (3.1) is transformed to the one-dimensional

non-homogeneous wave equation:








 t)(x,),,(),(),(

2

2

2

2

txg
x

txw

t

txw
(3.3.a)

together with the initial conditions:

 x0),()0,( 1 xqxw (3.3.b)








x0),(),(
2

0
xq

t

txw

t

(3.3.c)

the homogeneous Neumann condition:

0     t,0),(

0





xx

txw (3.3.c)

and the homogeneous nonlocal condition:

0   t,0),(
0




dxtxw (3.3.d)
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where ,),(),(),( 2

2

t

txz
txftxg




 )0,()()( 11 xzxrxq  and .),()()(
0

22





tt

txz
xrxq

To solve this nonlocal problem by the homotopy perturbation method, we construct a

homotopy v : [0,1]  which satisfies:

0),(),,(),(),(),,(),( 2

2

2
0

2

2
0

2

2

2



























 txg

x

ptxv
p

t

txw
p

t

txw

t

ptxv
pvH (3.4)

where ]1,0[p ,  represents the set of all real numbers and 0w is the initial approximation to

the solution of equation (3.3.a) which satisfies the initial conditions, the Neumann condition and

the nonlocal condition given by equations (3.3.b)-(3.3.d).

By using equation (3.4) it follows that:

0),()0,,()0,( 2
0

2

2

2











t

txw

t

txv
vH

0),()1,,()1,,()1,( 2

2

2

2










 txg
x

txv

t

txv
vH

Next, we assume that the solution of equation (3.4) can be expressed as:







0
),(),,(

i
i

i txvpptxw (3.5)

Therefore the approximated solution of the nonlocal problem given by equations (3.3) can be

obtained as follows:







01
),(),,(lim),(

i
i

p
txvptxvtxw (3.6)

By substituting the approximated solution given by equation (3.5) into equation (3.4) one

can get:
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.0),(),(),(),(),(),( 2

2

0
2

0
2

2
0

2

2

2

0



























 








txg

x

txv
pp

t

txw
p

t

txw

t

txv
ppvH i

i

ii

i

i

Then by equating the terms with identical powers of p one can have:

0),(),(:
2

0
2

2
0

2
0 








t

txw

t

txv
p (3.7.a)

0),(
),(),(),(

:
2

0
2

2
0

2

2
1

2
1 













txg
x

txv

t

txw

t

txv
p (3.7.b)

,...3,2,0
),(),(

: 2
1

2

2

2









  j
x

txv

t

txv
p jjj (3.7.c)

For simplicity, we take ).,(),( 00 txwtxv  In this case equation (3.7.a) is automatically satisfied.

Let txqxqtxw )()(),( 210  then

,0),()0,( 10  xxqxw

,x0),(),(
2

0

0 






xq
t

txw

t

Tt0,0)0()0()0()0(

),()0(),()0()0()0(),(

21

0
0

2

2
0
0121

0

0





































ttrr

t
xt

txz
r

x

txz
rtqq

x

txw

x
t

x
t

x



and

0.    t,0)0()0()0()0(

),()())0,()(()()(),(
0 0

2
0 0

1
0

21
0

0














  



tt

dx
t

txz
xrtdxxzxrdxxqtdxxqdxtxw

t



 

Therefore ow satisfies the initial conditions, the Neumann condition and the nonlocal condition

given by equations (3.3.b)-(3.3.d). Therefore by substituting t=0 in equation (3.6) one can have:
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.)0,()0,(
0






i
i xvxw

But )()0,( 10 xqxv  and ),()0,( 1 xqxw  hence 1,2,....i,0)0,( xvi By substituting ),(0 txv

txqxqtxw )()(),( 210  into equation (3.7.b) one can get:

),()()(),(
22

1
2

1
txgxqtxq

t

txv





By integrating twice for both sides of the above differential equation with respect to t and by

using the initial conditions 1v (x,0) 0 and 0),(

0

1 




tt

txv one can obtain:

.),()(
6

)(
2

),(
0 0

2

3

1

2

1 dsdxgxq
t

xq
t

txv
t s

 

By substituting 1v into equation (3.7.c) and by solving the resulting second order linear partial

differential equation together with the initial conditions 0)0,(2 xv and 0),(

0

2 




tt

txv one can

get ).,(2 txv In a similar manner one can get 3,4,....i),,( txvi By substituting 0,1,...i),,( txvi

into equation (3.6) one can get the approximated solution w of the nonlocal problem given by

equations (3.3). Therefore from equation (3.2):

 



t)(x,),,(),(),(),(),(

0i
i txztxvtxztxwtxu

which is the solution of the original nonlocal problem given by equations (3.1).

To illustrate this method consider the following example
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Example (3.1):

Consider the homogeneous wave equation:

10,0,0),(),(
2

2

2

2










tx
x

txu

t

txu  (3.8.a)

together with the initial conditions:

 x0),cos()0,( xxu (3.8.b)








x0),cos(),(

0
x

t

txu

t

(3.8.c)

the homogeneous Neumann condition:

1t0,0),(

0





xx

txu (3.8.d)

and the homogeneous nonlocal condition:

1t0,0),(
0




dxtxu (3.8.d)

It is easy to check that the compatibility conditions are satisfied for this nonlocal problem. We

use the homotopy perturbation method to solve this example. To do this, let

).cos()cos(),()0,(),(),(
0

00 xtxt
t

txu
xutxutxv

t









From equation (3.7.b) and by

using the initial conditions:

0)0,(),(
1

0

1 






xv
t

txv

t

one can have:

).cos(
!3

1)cos(
!2

1),( 32
1 xtxttxv 
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Hence

).cos(
6
1

2
11),(),( 32

10 xttttxvtxv 



 

From equation (3.7.c) one can get:

).cos(
!5

1)cos(
!4

1
x

),(),(

54

0 0
2

1
2

2

xtxt

dsd
sxv

txv
t






  




and this implies:

).cos(
!5

1
!4

1
!3

1
2
11),(),( 5432

2

0
xttttttxvtxu

i
i 



 



and by continuing in this manner one can have:

).cos(),(),(
0

xetxvtxu t

i
i







which is the exact solution of the nonlocal problem given by equations (3.8).

Example (3.2):

Consider the one-dimensional non-homogeneous wave equation:

10,
2

0,4)sin(),(),( 2
2

2

2

2








  txetx

x

txu

t

txu x  (3.9.a)

together with the initial conditions:

2
x0,)0,( 2 
  xexu (3.9.b)
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2
x0,),(

0









x
t

txu

t

(3.9.c)

the non-homogeneous Neumann condition:

10,2)sin(),(

0







tt
x

txu

x

(3.9.d)

and the non-homogeneous nonlocal condition:

1t0,
2
1

2
1)sin(

8
1),( 2

2

0
  



 etdxtxu (3.9.d)

It is easy to check that the compatibility conditions are satisfied for this nonlocal problem. We

use the homotopy perturbation method to solve this example. To do this, consider the

transformation given by equation (3.2). In this case:





   1)

2
1)sin(

8
1(21)

4
1)(2)(sin(),( 2 


 eetxttxz

Therefore the nonlocal problem given by equations (3.9) is transformed to the one-dimensional

non-homogeneous wave equation

1,t0,
2

0,4),(),( 2
2

2

2

2








  

xe
x

txw

t

txw x

together with the initial conditions:

  ,
2

x0,11
2

2)0,( 2 


    exexw x

,
2

x0,0),(

0







tt

txw

the homogeneous Neumann condition:
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1t0,0),(

0





xx

txw

and the homogeneous nonlocal condition:

1.t0,0),(
2

0




dxtxw

To solve this nonlocal problem by using the homotopy perturbation method, let

 2242
2
1

)()(),(),(

22

2100





 


exe

txqxqtxwtxv

x

From equation (3.24.b) one can have:

0

),()(
6

)(
2

),(
0 0

2

3

1

2

1



   dsdxgxq
t

xq
t

txv
t s



Thus

2,3,....i,0),( txvi

Therefore

 .2242
2
1

),(),(

22

0





 


exe

txwtxw

x

which is the exact solution of the above nonlocal problem.

Hence

).sin(e

),(),(),(
2x-
0

xx

txztxwtxu





which is the exact solution of the original nonlocal problem.
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3.2 Solutions of the Hyperbolic Integro-Differential Equations with Non-Homogeneous

Neumann and Nonlocal Conditions:

Consider the hyperbolic integro-differential equation:










 t)(x,),,(),(),(),(),(),(

0
2

2

2

2

txfdssxustktxcu
x

txu

t

txu t

(3.10.a)

together with the initial conditions:

 x0),()0,( 1 xrxu (3.10.b)








xxr
t

txu

t

0),(),(
2

0

(3.10.c)

the non-homogeneous Neumann condition:

Ttt
x

txu



 0),(),(  (3.10.d)

and the non-homogeneous nonlocal condition:

Tt0),(),(
0




tdxtxu  (3.10.e)

Where c is a known constant, f is a known function of x and t,  ,0,0),( Ttxtx  

,, 21 rr and  are given functions that must satisfy the previous compatibility conditions.

To solve this nonlocal problem by the homotopy perturbation method, we first transform

this nonlocal problem into another nonlocal problem, but with homogeneous Neumann condition

and homogeneous nonlocal condition. To do this we use the transformation given by equation

(3.2). Therefore the nonlocal problem given by equations (3.10) is transformed to the hyperbolic

integro-differential equation:
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








 t)(x,),,(),(),(),(),(),(

0
2

2

2

2

txgdssxwstktxcw
x

txw

t

txw t

(3.11.a)

together with the initial conditions:

,x0),()0,( 1  xqxw (3.11.b)

,x0),(),(
2

0







xq
t

txw

t

(3.11.c)

the homogeneous Neumann condition:

0    t,0),(

0





xx

txw (3.11.d)

and the homogeneous nonlocal condition:

0   t,0),(
0




dxtxw (3.11.e)

where

,),(),(),(),(),(),(
0

2

2

dssxzstktxcz
t

txz
txftxg

t







)0,()()( 11 xzxrxq 

and

0
22

),()()(





tt

txz
xrxq .

To solve this nonlocal problem by the homotopy perturbation method, we construct a homotopy

v : [0,1]  which satisfies:
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0),(),,(),(),,(),,(

),(),(),,(),(

0
2

2

2
0

2

2
0

2

2

2






 





















t

txgdspsxvstkptxcv
x

ptxv
p

t

txw
p

t

txw

t

ptxv
pvH

(3.12)

where ]1,0[p , represents the set of all real numbers and 0w is the initial approximation to

the solution of equation (3.11.a) which satisfies the initial condition, the Neumann condition and

the nonlocal condition given by equations (3.11.b)-(3.11.d).

By using equation (3.12) it follows that:

2
0

2

2

2 ),()0,,()0,(
t

txw

t

txv
vH










 









t

txgdssxvstktxcv
x

txv

t

txv
vH

0
2

2

2

2

0),()1,,(),()1,,()1,,()1,,()1,(

Next, we assume that the solution of equation (3.11) can be expressed as in equation (3.5).

Therefore the approximated solution of the nonlocal problem given by equations (3.11) is given

by equation (3.6).

By substituting the approximated solution given by equation (3.5) into equation (3.12) one

can get:

0),(),(),(),(),(

),(),(),(),(

0 00
2

2

0

2
0

2

2
0

2

2

2

0































 


















t

i
i

i

i

ii

i

i

i

i

i

txgdssxvpstktxvpc
x

txv
pp

t

txw
p

t

txw

t

txv
ppvH

Then by equating the terms with identical powers of p one can have:

0),(),(:
2

0
2

2
0

2
0 








t

txw

t

txv
p (3.13.a)
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0),(),(),(),(
),(),(),(

:
0

002
0

2

2
0

2

2
1

2
1 













 txgsxvstktxcv
x

txv

t

txw

t

txv
p

t

(3.13.b)

,0),(),(),(
),(),(

:
0

112
1

2

2

2










 

 dssxvstktxcv
x

txv

t

txv
p

t

jj
jjj ,...3,2j (3.13.c)

Similar to the previous, we take .)()(),(),( 2100 txqxqtxwtxv  In this case equation (3.13.a)

is automatically satisfied. By substituting it into equation (3.13.b) one can get:

 

  ),()()(),(

)()()()(),(

21

t

0

21212
1

2

txgdssxqxqstk

txqxqctxqxq
t

txv










By integrating twice for both sides of the above differential equation with respect to t and by

using the initial conditions 1v (x,0) 0 and 0),(

0

1 




tt

txv one can obtain:

     



t st

dsdxgdtdsdsxqxqsk
t

xcq

txcqxq
t

xq
t

txv

0 00 0
221

3

2

2
12

3

1

2

1

),()()(),(
6

)(

2
1)()(

6
)(

2
),(

2




In a similar manner one can get iv (x, t), i 2,3,.... By substituting iv (x, t), i 0,1,... into

equation (3.6) one can get the approximated solution w of the nonlocal problem given by

equations (3.11). Therefore from equation (3.2):

 



t)(x,),,(),(),(),(),(

0i
i txztxvtxztxwtxu

which is the solution of the original nonlocal problem given by equations (3.10).
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To illustrate this method consider the following example.

Example (3.3):

Consider the hyperbolic integro-differential equation:

1.t01,x0

,
2
1

4
136),()(),(3),(),( 33433

0

2
2

2

2

2












 txtxtxxtdssxusttxu
x

txu

t

txu t

(3.14.a)

together with the initial conditions:

1,x0,0)0,( xu (3.14.b)

1,x0,),( 3

0








x
t

txu

t

(3.14.c)

the homogeneous Neumann condition:

1t0,0),(

0





xx

txu (3.14.d)

and the non-homogenous nonlocal condition:

1t0,
4
1),(

1

0
 tdxtxu (3.14.e)

We use the homotopy perturbation method to solve this example. To do this, we transform this

nonlocal problem into one  but with homogeneous nonlocal condition. To do this, consider the

transformation given by equation (3.2). In this case:

ttxz
4
1),( 
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and the nonlocal problem given by equations (3.14) consisting of the hyperbolic integro-

differential equation

1,t0,10,t
8
1t

16
1t

4
3tx

2
1tx

4
1

36),()(),(3),(),(

343343

1

0

32
2

2

2

2














x

txxtdssxwsttxw
x

txw

t

txw

together with the initial conditions:

,1x00)0,( xw

,1x0,
4
1),( 3

0








x
t

txw

t

the homogeneous Neumann condition:

1t0,0),(
0






xx

txw

and the homogeneous nonlocal condition:

1.t0,0),(
1

0
 dxtxw

To solve this nonlocal problem by using the ho motopy perturbation method, let

txtxwtxv )
4
1(),(),( 3

00 

From equation (3.13.b) one can have:

0),(
2

1
2





t

txv

therefore

1,2,...i,0),( txvi
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and this implies that

.)
4
1(),(),(),( 3

00 txtxvtxwtxw 

which is the exact solution of the above nonlocal problem.

Hence

.tx

),(),(),(
3

 txztxwtxu

which is the exact solution of the original nonlocal problem.



Chapter Four
Solution of Some Real Life

Applications Via the Homotopy
Perturbation Method
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Introduction:

In this chapter we use the homotopy perturbation method for solving some real life

applications, namely advection-diffusion problems, gas dynamics equation and the

ground-water level equation.

This chapter consists of four sections:

In section one and two, we solved advection-diffusion problems and gas dynamics

via the homotopy perturbation method.

In section three, we present the homotopy perturbation method for solving the ground-

water level problem.

4.1 Advection-Diffusion Problems:

Problems involving diffusion-advection equations arise in many domains of science.

There are several methods for solving these quations, like the differential transform

method, [34]. In this section, we use the homotopy perturbation method to solve the

advection-diffusion problem that consists of the advection-diffusion equation:













 t)(x,),(),(),(),(
2

2

xs
x

txu

x

txu

t

txu  (4.1.a)

together with initial condition:

,x0),()0,(  xrxu (4.1.b)

and the boundary conditions:

0,      t),(),0(  tftu (4.1.c)

0,      t),(),(  tgtu  (4.1.d)
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where the first two terms on the right hand side represent different physical processes:

2

2 ),(
x

txu


 corresponds to normal diffusion while

x

txu


 ),( describes advection which is

why the equation is also known as the advection-diffusion equation. Further u is the

variable of interest (species concentration for mass transfer). And ,  are non-negative

real numbers where  is the diffusivity for species or heat transfer and  is the velocity,

u is a known function of x only and {(x, t) 0 x , t>0},     fr, and g are given

functions that must satisfy the compatibility conditions:

r(0) f (0)

and

r( ) g(0).

To solve this problem by the homotopy perturbation method, we first transform this

problem into another problem, but with homogeneous boundary conditions. To do this we

use the transformation:

w(x, t) u(x, t) z(x, t),  (x,t)   (4.2)

where

 1z(x, t) f (t) f (t) g(t) x  


Then

u(x, t) w(x, t) z(x, t)
t t t

  
 

  

and

2 2

2 2

u(x, t) w(x, t)
x x

 


 
.
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Therefore the problem given by equations (4.1) is transformed to the partial differential

equation:

2

2

w(x, t) w(x, t) w(x, t) g(x, t),      (x,t)
t x x

  
    

  
(4.3.a)

together with the initial condition:

w(x,0) q(x), 0 x ,    (4.3.b)

and the homogeneous boundary conditions:

w(0, t) 0, t 0  (4.3.c)

w( , t) 0, t 0  (4.3.d)

where z(x, t) z(x, t)g(x, t) s(x)
x t

 
  

 
and q(x) r(x) z(x,0). 

To solve this problem by the homotopy perturbation method, we rewrite equation

(4.3.a) as

A(w) g(x, t) 0 

where
2

2

w w wA(w) .
t x x

  
   
  

Then the operator A can be divided into two parts L

and N such that equation (4.3.a) becomes:

L(w) N(w) g(x, t) 0  

where L
t





and
2

2N .
x x
 

  
 

According to [13], we can construct a homotopy v : [0,1]  which satisfies

0 0

2

2

v(x, t,p) w (x, t) w (x, t)H(v,p) p
t t t

v(x, t,p) v(x, t,p)  p g(x, t) 0
x x

  
   

  
  
      
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(4.4)

where p [0,1] is an embedding parameter and ow is the initial approximation to the

solution of equation (4.3.a) which satisfies the initial condition and the boundary

conditions given by equations (4.3.b)-(4.3.d).

Next, we assume that the solution of equation (4.4) can be expressed as

i
i

i 0

v(x, t,p) p v (x, t)




 (4.5)

Therefore the approximated solution of the problem given by equations (4.3) can be

obtained as follows:

p 1
w(x, t) lim v(x, t,p)


 i

i 0

v (x, t)




 (4.6)

By substituting the approximated solution given by equation (4.5) into equation

(4.4) one can get:

i i 0 0

i 0

2
i ii i

2
i 0 i 0

v (x, t) w (x, t) w (x, t)H(v,p) p p
t t x

v (x, t) v (x, t)     p p p g(x, t) 0
x x





 

 

  
   

  

  
      



 

Then by equating the terms with identical powers of p one can have:

0 0 0v (x, t) w (x, t)p : 0
t t

 
 

 
(4.7.a)

2
1 1 0 0 0

2

v (x, t) w (x, t) v (x, t) v (x, t)p : g(x, t) 0
t t x x

   
     

   
(4.7.b)

and in general

2
j j 1 jj

2

v (x, t) v (x, t) v (x, t)
p : 0, j=2,3,...

t x x
  

   
  

(4.7.c)
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For simplicity, we take 0 0v (x, t) w (x, t) . In this case equation (4.7.a) is automatically

satisfied. Let 0w (x, t) q(x) then

0w (x,0) q(x), 0 x ,    ow (0, t) q(0) r(0) z(0,0) r(0) f (0) 0, t 0      

and

ow ( , t) q( ) r( ) z( ,0) g(0) g(0) 0, t 0         

Therefore ow satisfies the initial and the boundary conditions given by equations (4.3.b)-

(4.3.d). Therefore by substituting t=0 in equation (4,6) one can have:

i
i 0

w(x,0) v (x,0)






But 0w (x,0) q(x) and w(x,0) q(x) , hence iv (x,0) 0, i=1,2,.... By substituting

0 0v (x,0) w (x, t) q(x)  into equation (4.7.b) one can get:

1v (x, t) q (x) q (x) g(x, t)
t

     


By integrating both sides of the above differential equation and by using the initial

condition 1v (x,0) 0 one can obtain:

 
t

1
0

v (x, t) q (x) q (x) t g(x, )d      

By substituting 1v into equation (4.7.c) and by solving the resulting first order linear

partial differential equation together with the initial condition 2v (x,0) 0 one can get

2v (x, t) . In a similar manner one can get iv (x, t), i 3,4,.... By substituting

iv (x, t), i 0, 1,... into equation (4.6) one can get the approximated solution of the

problem given by equations (4.3). Therefore from equation (4.2):
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i
i 1

u(x, t) w(x, t) z(x, t) v (x, t) z(x, t),  (x,t)




    

which is the solution of the advection-diffusion problem given by equations (4.1).

4.2 Gas Dynamics problem:

Consider the nonlinear non-homogeneous gas dynamic equation:

  






 t)(x,),,(),(1),(),(),(),(

txftxutxu
x

txu
txu

t

txu (4.8.a)

together with the initial condition:

1x0),()0,(  xrxu (4.8.b)

where f is a known function of x and t }0 t,10|),{(  xtx

In [22], they use the homotopy perturbation method for solving the homogeneous

gas dynamic equation in case 1.x0,)(  xexr Here we use the same method to solve

the non-homogeneous gas dynamic equation for any choice of the initial condition. To do

this, we construct a homotopy  ]1,0[:v which satisfies:
















t

txu
p

t

txu

t

ptxv
pvH

),(),(),,(),( 00

0)],,(1)[,,(),,(),,( 



 




 ptxvptxv
x

ptxv
ptxvp (4.9)

where ]1,0[p and ou is the initial approximation to the solution of equation (4.8.a)

which satisfies the initial condition given by equation (4.8.b).

By using equation (4.9) it follows that:

0),()0,,()0,( 0 









t

txu

t

txv
xH
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.0)]1,,(1)[1,,()1,,()1,,()1,,()1,( 








 txvtxv
t

txv
txv

t

txv
vH

Next, we assume that the solution of equation (4.9) can be expressed as in

equation (3.3). By substituting this approximated solution into equation (4.9) one can get:

`0),(1),(),(),(

),(),(),(),(

0000

00

0















 












































txvptxvp
x

txv
ptxvpp

t

txu
p

t

txu

t

txv
ppvH

i
i

i
i

i

ii

i

i
i

i

i

i

i

i

Then by equating the terms with identical powers of p one can have:

0),(),(: 000 








t

txu

t

txv
p (4.10.a)

  0),(1),(),(),(),(),(: 00
0

0
011 













txvtxv
x

txv
txv

t

txu

t

txv
p (4.10.b)

0),(),(),(2),(),(),(),(),(: 110
0

1
1

0
22 













txvtxvtxv
x

txv
txv

t

txv
txv

t

txv
p (4.10.c)



For simplicity, we take ).,(),( 00 txutxv  In this case equation (4.10.a) is automatically

satisfied. Let )(),(0 xrtxu  then 1.x0),()0,(0  xrxu Therefore 0u satisfies the the

initial condition given by equation (4.8.a). Thus:







0
)0,()0,(

i
i xvxu

But )()0,()0,(0 xrxuxv  hence 1,2,....i,0)0,( xv i By substituting ),()0,( 00 txuxv 

)(xr into equation (4.10.b) one can get:

    txrxrxrxrtxv )()()()(),( 2
1 
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By substituting 1v into equation (4.10.c) and by solving the resulting first order linear

partial differential equation together with the initial condition 0),(2 txv one can get

).,(2 txv In a similar manner one can get 3,4,....i),,( txvi Thus ),(),(
0

txvtxu
i

i



 is the

approximated solution of the initial value problem given by equations (4.8).

4.3 The Ground Water Level problem:

Consider the linear partial differential equation:

T](0,b)(0,t)(x,),,(1),(2



















txh

x
x

xxt

tx  (4.11.a)

together with the initial conditions:

bx0),()0,(  xrx (4.11.b)

bx0),(),(

0







xp
t

tx

t

 (4.11.c)

the non-homogeneous Dirichlet condition:

T0),(),(  tttb  (4.11.d)

and the non-homogeneous nonlocal condition:

Tt0),(),(1

0
 tdxtx

b

b

 (4.11.e)

where  is the ground water level, )(t is the mean value of  at time t and h is a known

function of x and t and ,, pr and  are given functions that must satisfy the

compatibility conditions:

),0()( br
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),0()(  bp

),0()(1

0


b

dxxr
b

and

 
b

dxxp
b 0

).0()(1 

To solve this nonlocal problem by the homotopy perturbation method, we first transform

this nonlocal problem into another nonlocal problem, but with homogeneous Dirichlet and

nonlocal conditions. To do this we use the transformation that appeared in [5]:

],0(),0(t)(x,),,(),(),( Tbtxztxtxw  (4.12)

where    .)()(2)()(2),( tt
b

x
tttxz   Then the nonlocal problem given by

equations (4.11) is transformed to the one-dimensional non-homogeneous linear partial

differential equation:

T](0,(0,1)t)(x,),,(),(1),(
2

2



















txg

x

txw
x

xxt

txw (4.13.a)

together with the initial conditions:

1x0),()0,( 1  xqxw (4.13.b)

1x0),(),(
2

0







xq
t

txw

t

(4.13.c)

and the homogeneous Dirichlet conditions:

Tt0,0),( tbw (4.13.d)

and
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 
b

dxtxw
b 0

Tt0,0),(1 (4.13.e)

where 



















x

txz
x

xxt

txz
txhtxg

),(1),(),(),( 2

2

and )0,()()(
1

xzxrxq  and

.),()()(
0

2





tt

txz
xpxq

To solve this nonlocal problem by the homotopy perturbation method, we can

construct a homotopy  ]1,0[],0()1,0(: Tv which satisfies:

0),(),(1),(),(),,(),( 2
0

2

2
0

2

2

2






 


























 txg

x

txw
x

xx
p

t

txw
p

t

txw

t

ptxv
pvH

(4.14)

where ]1,0[p and 0w is the initial approximation to the solution of equation (4.13.a)

which satisfies the initial condition and the nonlocal conditions given by equations

(4.13.b)-(4.13.d).

By using equation (4.21) it follows that:

0)0,,()0,,()0,( 2
0

2

2

2











t

txw

t

txv
vH

.0),()1,,(1)1,,()1,( 2

2



















 txg

x

txv
x

xxt

txv
vH

Next, we assume that the solution of equation (4.14) can be expressed as:

),(),(
0

txvptxv i
i

i



 (4.15)

Therefore the approximated solution of the nonlocal  problem given by equations (4.13) is

given by:
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),(),(
0

txvtxw
i

i



 (4.16)

By substituting the approximated solution given by equation (4.15) into equation (4.14)

one can get:

.0),(),(1),(),(),(),(
0

2
0

2

2
0

2

2

2

0




































 








txg

x

txv
px

xx
p

t

txw
p

t

txw

t

txv
ppvH i

i

ii

i

i

Then by equating the terms with identical powers of p one can obtain:

0),(),(: 2
0

2

2
0

2
0 








t

txw

t

txv
p (4.17.a)

0),(),(1),(),(: 0
2

0
2

2
1

2
1 























txg
x

txv
x

xxt

txw

t

txv
p (4.17.b)

2,3,...j,0
),(1),(

: 1
2

2



















 

x

txv
x

xxt

txv
p jjj (4.17.c)

For simplicity, we take ).,(),( 00 txwtxv  In this case equation (4.17.a) is automatically

satisfied. Let txqxqtxw )()(),( 210  then

),()0,( 10 xqxw  ,0 bx 

b,x0),(),(
2

0

0 






xq
t

txw

t

Tt00,
(0)t(0)t(0)(0)

),()()0,()(

)()(),(

0

210
















t

bxt

txz
ttbpbzbr

tbqbqtbw

and
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Therefore ow satisfies the initial condition and the nonlocal conditions given by equations

(4.13.b)-(4.13.d). By substituting )(),()0,( 00 xqtxwxv  into equation (4.13.b) and by

using the initial condition 0)0,(1 xv one can get:

 dxgtxqtxv
t

),()(),(
0

1 

From equation (4.13.c) and by using the initial condition iv (x,0) 0, i=2,3,... one can

have:

,
),(

),(
0

2
1

2




d
x

xv
txv

t
j

j  


  ,...3,2j

Therefore from equation (4.12):

],0()1,0(t)(x,,),(),(),(),(),(
1

Ttxztxvtxztxwtxu
i

i  




which is the solution of the original nonlocal problem given by equations (4.11).

 

   

   

   
T.t0,0

)0()0()0()0(2)0()0()0()0()0(2)0(

)0()0(21)0()0(21

)0()0()0(21)0()0(21)0(

),()(1)0,(1)(1

)()(1),(1

b

0

b

0

b

0

b

0

b

0

b

0 0

b

0

b

0

0
21

0
0
















 



 











ttt

dx
b

x
t

b
dxt

b

tdx
b

x

b
dx

b

dx
t

txz

b

t
dxxpt

b
dxxz

b
dxxr

b

dxtxqxq
b

dxtxw
b

t

bb
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Conclusions and Recommendation

From the present study, we can conclude the following:

(1)The homotopy perturbation method can also be used to solve the linear Volttera

integral equation of the first kind by transferring it into an equivalent integral equation

of the second kind.

(2) The homotopy perturbation method for solving linear integral equations of the second

order is precisely the method of successive in case the initial approximation is

)()(0 xfxu  instead of .0)(0 xu

(3) The homotopy perturbation method for solving any initial or boundary value problems

requires the initial approximation to the solution of these problems must satisfy the

initial or boundary conditions associated with these problems.

(4) The homotopy perturbation method can be also used to solve systems of differential,

integral and integro-differential equations.

Also, we recommend the following for future work:-

(1) Discuss the convergence of the homotopy perturbation method for the prescribed non-

local problems.

(2) Use the homotopy analysis method to solve the nonlocal problems.

(3) Solve the fuzzy integro-differential equations via the homotopy perturbation method.
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