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Abstract

The aim of thiswork is to use the homotopy perturbation method to solve special

types of the local and nonlocal problems. This study including the following aspects:

(1) Give some basic concepts of the homotopy perturbation method.

(2) Use the homotopy perturbation method to solve some types of differential, integral
and integro-differential equations.

(3) Describe some nonlocal problems and use the homotopy perturbation method to solve
them.

(4) Use the homotopy perturbation method to solve some real life applications and these
applications are advection-diffusion problems, gas dynamics problem and the ground

-water level problem.
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| ntroduction

The homotopy perturbation method was first proposed by He J. Huan in 1999, where
the solution of this method is considered as the sum of an infinite series which isvery rapidly
converge to the accurate solution, [13].

The homotopy perturbation method, presents some advantages. obtaining exact
solutions with high accuracy, minimal calculations without loss of physical verification. This
method has found application in different fields of nonlinear equations such as fluid
mechanics and heat transfer, [10].

Many authors and researchers studied the homotopy perturbation method, say, He J. in
1999, used the homotopy perturbation method for solving nonlinear ordinary differential
eguations of the first and second orders, [13], He J. in 2003, solved the Nonlinear ordinary
differential equations with n™ order, [14], He J. in 2004, solved the oscillators equation with
discontinuities via the homotopy perturbation method, [17], He J. in 2005, studied the
homotopy perturbation method for solving one dimensional nonlinear wave equation, [18],
Li-NaZ. and He J. in 2006, solved the electrostatic potential differential equation, [19].

Yu-Xi Wang and et al. in 2008, used the homotopy perturbation method for solving
reaction-diffusion equation, [38], Fatemeh S. and Mehdi D. in 2008, solved the deley
differential equations via the homotopy perturbation method, [9], Jafari H. and et a. in 2008,

used the homotopy perturbation method for solving Gas Dynamics Equation, [22], Jazbi B.



and Moini M. in 2008, used the homotopy perturbation method for solving
Schrodinger equation, [23].

Lin Jin in 2008, studied the homotopy perturbation method to solve the three
dimensions parabolic and hyperbolic partial differential equations with variable coefficients,
[29], Behrouz R., in 2009, solved nonlinear Volttera partial integro-differential equations of
the second kind, [4], Ghorbali A. R., and et a. in 2009, used the homotopy perturbation
method for solving the three dimensional heat equation with variable coefficients, [11].

Mashallah M. and Mohammad S. in 2010, studied the homotopy perturbation method
for solving linear fuzzy Fedholem integral equations, [33], Allahviranloo T. and et al. in
2010, solved the linear fuzzy Voltteraintegral equations of the second kind, [1], Roozi A. and
et a. in 2011, studied the homotopy perturbation method for solving nonlinear parabolic and
hyperbolic partial differential equations of one and two dimensions, [35].

The nonlocal problems plays an important role in real life applications and they used in
various field of mathematical physics and in other fields, [3].

Many authors and researchers studied the nonlocal problem, say, Karakostas G. L. and
Tsamatas P. Ch. In 2000, studied a nonlocal boundary value problem for a second order
ordinary differential equations, [25], Bellin S. in 2002, studied the existence of Solutions for
One-Dimensional Wave equations with Nonlocal conditions, [6], Ruyun M. in 2007,
presented a servay of recent results on the existence and multiplicity of solutions of nonlocal

boundary value problem involving second order ordinary differential equations, [36].



The purpose of this thesisis to give a full information for the homotopy perturbation
method and its applications for solving the non-linear Fredholm integral and integro-
differential equations. Also, this method is used to solve special types of nonloca problems.
Moreover, the solutions of some rea life applications are obtained via the homotopy

perturbation method.

Thisthesis consistsof four chapters:

In chapter one, some basic concepts of the homotopy perturbation method are
described and used to solve the nonlinear ordinary differential equations with and without
initial conditions.

In chapter two, the solutions of the linear integral equation of the second kind are
obtained via the homotopy perturbation method and its convergence is presented. Also, the
solution of the non-linear integral and integro-differential equations of the second kind are
obtained by means of the homotopy perturbation method.

In chapter three, the homotopy perturbation method is used to solve the one
dimensiona wave and hyperbolic integro-differentia equations with non-homogeneous
Neumann and nonlocal conditions, respectively.

In chapter four, the solutions of the advection-diffusion problem with initial boundary
conditions, gas dynamics problem with initial condition and the ground water level problem
with non-homogeneous Dirichlet and nonlocal conditions are obtained via the homotopy

perturbation method.



Chapter One
The Homotopy Perturbation
Method for Solving the Ordinary
Differential Equations



Chapter One The Homotopy Perturbation Method for Solving the Ordinary Differential Equations
| ntroduction:

The homotopy perturbation method proposed first by He J. Huan in 1999 for solving
differential and integral equations, linear and nonlinear has been the subject of extensive
anaytic and numerical studies. This method has a significant advantage in that it provides an
approximated solution to a wide range of nonlinear problems in applied sciences. In this
method, the solution is considered as the summation of an infinite series which usually
converges rapidly to the solutions, [13].

In this chapter, some basic ideas of this method has been explained.

This chapter consists of two sections:

In section one, some basic concepts of the homotopy perturbation method are
described.

In section two, we use this method for solving the non-linear ordinary differentia

eguations.

1.1 Some Basic Concepts of the Homotopy Perturbation Method:

In this section, we give some basic concepts of the homotopy perturbation method. To

do this, we recall the following definition:

Definition (1.1.1), [32]:

Let X and Y be two topological spaces. Two continuous functions f : X ——Y and



Chapter One The Homotopy Perturbation Method for Solving the Ordinary Differential Equations
g: X——Y ae said to be homotopic, denoted by f = g, if there exists a continuous

function H : X x[0,]]——Y, such that:
H(x,0) = f(x), Vxe X
H(x,D) =g(x), Vxe X

In this case, H is said to be a homotopy.

Now, to illustrate this definition, consider the following examples:

Example (1.1.2):

Let X and Y be any topological spaces, f be the identity function and g be the zero
function, then define H : X x[0,1] ——Y by:
H(x, p)=x(1- p), Vxe X, Vpe[0,]]
Then H isa continuous function and
H(x,00=x=f(X), Yxe X
H(x)=0=g(x), Vxe X

Therefore f = g.

Next, the following proposition appeared in [32] without proof, here we give its proof.

Proposition (1.1.3):

On the continuous functions = is an equivalence relation.
-2.
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Proof:

Let f: X——>Y beacontinuous function, then define H : X x[0,1]]——Y by:
H(x, p)=f(x), Vxe X, Vpe[0,1]
Therefore
H(x,0) = f(x), Vxe X
H(x,D) = f(x), Yxe X
and thisimpliesthat f = f. Therefore = isareflexive relation.

To prove = is a symmetric relation, let f = g, then there exists a continuous function

H: X x[0]——>Y such that:
H(x,0) = f(x), Vxe X
H(x,D) =g(x), Vxe X
Define K : X x[0,1]]——Y by:
K(x,p)=H(x1-p), Vxe X, Vpe[0,1]
Then
K(x,0)=H(x,D=g(x), Vxe X
K(x,D)=H(x,0) = f(x), Vxe X
Hence g = f.
To prove = is a trangitive relation, let f =g and g =W, then there exist continuous

functions H: X x[0,]] —Y and K: X x[0]——Y

such that:
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H(x,0) = f(Xx), Vxe X

H(x,D) =g(x), Vxe X
K(x,0) =g(x), Vxe X

K(x,D)=w(Xx), Vxe X

Define L: X x[01]——Y by:

f(x), p=0
L(X, p)=¢H(X p) + K(X,p) - g(x), O<p<l
W(X), p=1

Therefore
L(x,0) = f(x), Vxe X,

L(x,D) =w(X), Vxe X

lim L(x, p) = lim[H (x, p) + K (x, p) - g(¥)]
p— p—
=H(x,0) + K(x,0) — g(x)

=f(¥)+9(x)-a(x)
= f(X)
=L(x,0), VxeX,

and

lim L(x, p) = lim[H (x, p) + K(x, p) — g(X)]
p—->1 p—>1
=H(xD + K(x) - g(x)

=g(x) +w(x) — 9(x)
=wW(X)
=L(x1), VxeX,

Hence L is a continuous function. Therefore f = w. Hence = is an equivalence relation on

the set of al continuous functions.
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Remark (1.1.4):

Let X and Y be two topological spaces, let f:R—— R and g:R—— R be
continuous functions. Define H : R x[0,1] —— R by:
H(x,p)=@Q-p)f(X)+ pg(x), VxeX, Vpe[0,1]
Then
H(x,00=f(x), VxeX
and
H(xD)=g(x), VvxeX

Therefore f = g.

Definition (1.1.5), [32]:

Let X and Y be two topological spacesand f : X ——Y be a continuous function. The

equivalence class of f, denoted by [ f] isdefined by:

[f]= {g\ g: X——Y beacontinuous functionand f = g}

and it is said to be a homotopy class of functions of f.

Remark (1.1.6):

(1) Itisclear that f €[ f], for every continuing function f defined from a topological space

X into atopological space Y. Therefore [f] = ¢.
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(2) By using theorem (2.4.4) in [31], the set of equivalence classes of =~ form a partition of

continuous functions.

Definition (1.1.7), [32]:

Let X and Y be two topological spaces. Two continuous functions f and g are said

homotopic relativeto A < X if there exists a continuous function H : X x[0,1]]——Y such
that:
H(x,0) = f(x), Yxe X
H(x,D) =g(x), Vxe X

H(a,p)=f(a)=9g(a), Vpe[0,1], Vac A

Now, to illustrate the basic idea of the homotopy perturbation method, we consider the
following non-linear equation:

Au)=f(x), xeQ (1.1)
where A is any operator, f isaknown function of x. The operator A can generally speaking
be divided into two parts L and N, where L is a linear operator, and N is a non-linear
operator. Therefore equation (1.1) can be rewritten as follows:

L(u)+ N(u)- f(x)=0
According to [13], we can construct a homotopy v:Qx[01]——>R which satisfies the

homotopy equation:

H(v, p) = (1~ p)[L(V) = L(up)] + PLA(V) — T(X)] = 0
-6-
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or

H (v, p) = L(v(X)) — L(up (X)) + pL(Ug (X)) + PIN(V(X)) — f(x)] =0 (1.2)
where pe[0,1], R represents the set of all real numbers and u, isan initia approximation of

the solution of equation (1.1).
Obvioudly, from equation (1.2) we have:
H(v,0)=L(v)-L(uy)=0

H(v,D)=A)-f(x)=0
The changing process of p from zero to unity isjust that of v(x,p) from u,(X) to u(x).
Therefore

L(V) - L(uy) = A(v) - f(X), xeQ
and

Ug(X) =u(x), xeQ.

Assume that the solution of equation (1.1) can be written as a power seriesin p asfollows:
V06, P =2 P () (13)
By setting p=1 in equation (1.3), one can get:

U6 = limv(x, p) = zv (%) (14)

which is the solution of equation (1.1)

The series (1.4) is convergent for some cases, [13].
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1.2 The Homotopy Perturbation Method for Solving The Non-Linear Ordinary Differential

Equations, [13]:

In this section, we use the homotopy perturbation method to solve the non-linear ordinary
differential equationswith or without (initial or boundary) conditions. To do this, consider the
following non-linear ordinary differential equation:

Aly)=f(x), xeQ (1.5)
where A is any differential operator, f is a known function of x. The operator A can be
divided into two partsL and N where L isalinear operator while N is anon-linear operator.
Therefore equation (1.5) can be rewritten as:

L(y)+N(y)—-f(x)=0, xeQ
So, by the homotopy perturbation method, we can construct ahomotopy u:Qx[0,1]——R
which satisfies:

H (u, p) = L(u(x, p)) - L(Yo(X)) + PL(Yo(X)) + PIN(u(x, p)) — f(x)]=0 (1.6)
where pe[0,1], R represents the set of al real numbers and vy, istheinitia approximation
for the solution of equation (1.5) which satisfies the initial or boundary conditions if they
exigt.

Obvioudly, from equation (1.6) one can have:

H (u,0) = L(u(x,0)) — L(¥o(x)) =0
H(u,D)=L(u(x21)+ N@u(xDd)-f(x)=0
The changing process of p from zero to unity isjust that of u(x,p) from y,(x) to y(x).

Therefore
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L(u) - L(yy) = Alu) - f(x), xeQ

and

Yo(X) = y(X), XxeQ.

Assume that, the solution of equation (1.5) can be written as power seriesin p:
u(x, p) = ZO p'u, (%) (1.7)

where u,, u,, ... are the unknown functions that must be determined. By setting p=1 in the

above equation one can obtain:
Y() =limu(x, p) = > u; (X) (8)
> i=0

which isthe solution of the differential equation (1.5).

The infinite series given by equation (1.8) is convergent for some cases. However, the
convergence rate depends on the non-linear operator A. The following opinions are suggested
by He J. to ensure that the convergence of the infinite series given by equation (1.8):

1. The second derivative of N(u) with respect to u must be small.
1 ON
2. Thenorm of L~ — must be smaller than one.

ou

To illustrate this method, consider the following examples.

Example (1.2.1):

Consider thefirst order nonlinear ordinary differential equation:

Y(¥)+y*(x)=0, [x<1 (1.9)
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Here A(y)=Y +Yy? and f (x)=0. The operator A can be divided into two parts L and N,

where L(y)=y and N(y) = y°.

In this case, equation (1.6) becomes:

u'(X) = Yo () + pyo(x) + plu®(¥] =0, pe[0]

Assume the solution of the above equation can be written as given in equation (1.7). By

substituting this solution into the above equation one can have:
3 PU - Yi9+ Y09 + B 3P| =0

By equating the terms with identical powers of p one can have:

P’ U () — Y (X) =0 (1.10.9)
P Ui (X) + Yo (X) + U (X) =0 (1.10.b)
p? UL (X) + 2u, (X)u,(X) =0 (1.10.0)
P> 1 u5(X) + 2u, (X)uy(X) + u*1(X) =0 (1.10.e)

For simplicity, let u,(x) =y, (X), then equation (1.10.a) is automatically satisfied.
Let y,(x) =1 betheinitial approximation of the differential equation (1.9), then
u,(x) =1
By substituting u, and y, into equation (1.10.b) one can have:
u (x)=-1

and thisimplies that:

-10-
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ul(X) =—X

By substituting u, and u, into equation (1.10.c) one can have:
u,(X) = 2x
and thisimpliesthat:
u,(x) = x*
By substituting u,, u,and u, into equation (1.10.e) one can have:
u;(x) = -3x°
and thisimpliesthat:
u,(x) =-x°
By continuing in this manner one can have:
u(x)=(-1'x,i=0,1, ...

By substituting these functions into equation (1.8) one can obtain:

ww:éeww

which isthe exact solution of the ordinary differential equation (1.9).

Example (1.2.2):

Consider thefirst order nonlinear ordinary differential equation:

y(X) +[y(¥) + X]y'(x) =0 (1.11)

-11-
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Here A(Y)=y+(y+Xx)y" and f(x)=0. The operator can be divided into two parts L and

N, where L(y) =y and N(y) =(y+X)y’

In this case, equation (1.6) becomes:

u(x) = Yo () + pyo () + plu(x) + xJu'(x) =0, p<[0, 1]

By substituting equation (1.7) into the above equation one can have:

30U (09~ Y209 + PY(¥)+ B 3Py 09 + x| 3 pu09] -0

By equating the terms with identical powers of p one can have:

P’ :u,(X) -y, (x)=0 (1.12.9)
p' iU (X) + Y, (X) + (U, (X) + X)u(x) =0 (1.12.b)
P 1 u, (%) + [u, (9 + XJu; (%) +u, (X)u; (x) =0 (1.12.c)

Lety,(x) = X, then from equation (1.12.a) one can have:

Ug (X) = X.
From equation (1.12.b) one can have:

U, (X) = —3x
Therefore, the first approximation of equation (1.11) is:

y(X) = u,(X) + u,(x) =-2x
which is the exact solution of the ordinary differential equation (1.11).
That is, the first approximation in this example is sufficient to give the exact solution. Next, if

we choose y,(x) =1, then u,(x) =1, from equation (1.12.b) one can have:
-12 -
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u (x)=-1

and from equation (1.12.c) one can get:
U,(X)=0
and in asmilar manner one can obtain:

u(x)=0, i=34,..

V()= () =0

which is the exact solution of the ordinary differential equation (1.11).

Example (1.2.3), [14]:

Consider thefirst order nonlinear ordinary differential equation:
V() +y23(X)=0, 0<x<1 (1.13.9)
together with the initial condition
y(0) =1 (1.13.b)
Here A(Y(X)) = V'(X) + y2(X) and f(x)=0.
To solve this example by the homotopy perturbation method, consider equations (1.10):

For simplicity, let u,(X)=Y,(X)=Yy(0)=1 then equation (1.10.a) is automaticly
satisfied.

Since

-13-
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y(%) = 2)ui (%)

Then
y(0) =2 u;(0)
i=0
But u,(0) =1, therefore u; (0) =0,i =1,2,.... Thus, equation (1.10.b) becomes:

U3 (%) = =Yp(x) —u’o(x)
=-1

By integrating both sides of the above ordinary differential equation from 0 to x and using the
initial condition u, (0)=0 one can get:

u,(x) = —x.
From equation (1.10.c) one can have:

U, (X) = =2, (X)uy (X)
= 2X.

Then by integrating both sides of the above differential equation from 0 to x and by using the
initial condition u,,(0)=0, one can get:
U, (X) = X°.
By continuing in this manner one can obtain:
u(¥)=(-x)', i=01,..

Therefore

-14 -
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Y(X)=§:Ui (X)=1—-x+ X2 4.

i=0

which is the exact solution of the above initia value problem.

Example (1.2.4):

Consider thefirst order nonlinear ordinary differential equation:
Y(X) + Y(X)y'(x) =1 (1.14.3)
together with the initial condition
y(0)=1 (1.14.b)
Here A(y)=y+ Yy and f(X)=1. The operator A can be divided into two parts L and N,
where L(y) =y and N(y)=yy'
In this case, equation (1.6) becomes:
u(X) = Yo (X) + pYo (X) + Plu(X)u’(x) 1] =0, pe[0,1]

By substituting equation (1.7) into the above equation one can have:
> P'U () = Yo (%) + Yo (X) + D{Z p'u: () p'u; (%) —1} =0

i=0 i=0 i=0

By equating the terms with identical powers of p one can have:

P® 1Us(X) - Yo (X) =0 (1.15.3)

P U (X) + Yo (X) + Uy (X)uj(X) —1=0 (1.15.b)

-15-
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Lety,(x) =1, then from equation (1.15.a) one can have:

Upy(X) =1
From equation (1.15.b) one can have:
u(x)=0
By continuing in this manner one can obtain:
u(X)=0, i=23...

Therefore
y(x) =§(:)ui (=1

which is the exact solution of the above initia value problem.

-16-
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I ntroduction:

Many researchers used analytical methods and numerical methods for solving linear
and nonlinear integral and integro-differential equations[24], [26], [28].

The aim of this chapter is to use the homotopy perturbation method for solving special
types of linear and nonlinear integral and integro-differential equations of the second kind.

This chapter consists of three sections:

In section one, we describe the homotopy perturbation method for sovling the linear
Fredholm and Volteraintegral equations of the second kind with its convergence.

In section two and three, we use the homotopy perturbation method to solve special

types of non-linear Fredholm integral and integro-differential equations of the second kind.

2.1 The Homotopy Perturbation Method for Solving Linear | ntegral Equations, [2]:

In this section, we use the homotopy perturbation method to solve the linear integral
eguations of the second kind. To do this, first, consider the linear Fredholm integral equation

of the second kind:
u(x) = f(x) + /IT k(x,u(t)dt, xe[aDb] (2.1)

where f and k are known functions. The function f is said to be the driving term and k is said
to be the kernel function that depends on x, t and A is a scalar parameter, a and b are known
constants and u is the unknown function that must be determined.

We rewrite equation (2.1) as.

-17 -
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Auw-f(x)=0 (2.2

where A(u) =u(x) — /”LT k(x,t)u(t)dt .

Then the integral operator A can be divided into two parts L and N such that equation (2.2)

becomes:

L(u)+ N(u)- f(x)=0 (2.3)
where Lu=u and N =—/1lj)k(x,t)udt.

Accoding to [13], we construct ahomotopy v:[a,b] x[0,]]—— R which satisfies:
b
H(v, p) = (- p)[V(X, P) —Uo ()] + F{V(X, p) - A[ k(xt)v(t, p)dt - f (X)} =0 (2.4)

where pe [0,1], R represents the set of all real numbers and u, is the initial approximation

to the solution of equation (2.1).
By using equation (2.4) it follows that:

H (v,0) =Vv(X,0) —uy(x) =0
H(v,]) =v(x]1) - l? K(x,t)v(t,D)dt— f(x)=0

and the changing process of p from zero to unity isjust that of v(x, p) from u,(x) to u(Xx).

Therefore

V(X,0) — Uy (X) = v(X,D) — /ﬁk(x,t)v(t,l)dt - f(x), xel[ab]

-18-



Chapter Two The Homotopy Perturbation Method for Solving the | ntegral and I ntegro-Differential Equations

and
Ug (X) = u(X), X €[a,b].

Next, we assume that the solution of equation (2.4) can be expressed as
V(X )= p'v; (¥) (2.5)
i=0

Therefore the approximated solution of the integral equation (2.1) can be obtained as follows:

u(x) = Iimlv(x, p)
p—
" (2.6)
=> V(X
i=0
By substituting the approximated solution given by equation (2.5) into equation (2.4) one can
get:
S PV, (¥) ~ U, (X) + pUy(X) + p[— Ak pv et - 1 (x)} -0

i=0

Then by equating the terms with identical powers of p one can have:

P’ :v,(X) —u,(x)=0 (2.7.9)
PV (X) + Ug(X) — F(X) - ﬁ?k(x,t)v0 (Hat=0 (2.7.b)
p’ v, (x) —ﬂjzk(x,t)vj_l(t)dt =0, j=23,.. (2.7.0)

For simplicity we set v,(x) =uy(X) = f(x), then equation (2.7.a) is automatically satisfied.

By substituting u, (X) = vy (X) = f (x) into equation (2.7.b) one can have:
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V(%) = ATK(x, 1) f (t)dlt
By substituting v, into equation (2.7.c) one can have:
b
Vo (X) = A[ k(X t)v, (t)clt

In a similar manner one can get Vv,(X), i =3,4,... By substitutingv, (x), i =0,1,... into

eguation (2.6) one can get the approximated solution of the integral equation (2.1).

Next, we study the convergence of the homotopy perturbation method for solving the
integral equation (2.1). To do this, consider the iteration formulathat is obtained by applying

the homotopy perturbation method to solve the integral equation (2.1):
b
vV, (X) = /Ijk(x,t)vi_l(t)dt, i=12,... (2.8)

with theinitial approximation v,(x) = f (x)

According to the previous equation, we define the partial sum as follow:
S, (X)=>vi(x), n=0,1,... (2.9)
i=0

where s,(x) = f (X).
In view of equations (2.8) and (2.9), one can have:
S(X¥) = f(x)

and
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n+1 n

Spia(X) = ;)Vi (X) =Vo(X) + ;)Vi (x)

= f(X)+ /lTk(x,t)vo (t)dt + zlf k(X t)vy ()t +--- + zf k(x,t)v, (t)dt
=f(x)+ /ITk(x,t)[vo () + Vo (t) + -+ + v, (1) Joit

=f(X)+ /IT k(x,t)s,(t)dt.

From [21], it is known that if v;,Vv,,... be a sequence of functions, then the series ivi (x) is
i=1

said to be convergenceto u if the sequence {sn} of partial sums defined by:

sn<x>=i)vi (%)

convergesto u.
Now, we are in the position that we can give the following theorem.

Theorem (2.1), [21]:

Consider the iteration scheme:
So(X) = f(x)

and

S,u(X)=f(x)+ i? k(x,t)s,(t)dt, n=0,1,...
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to construct a sequence of successive iterations s, (x) to the solution of equation (2.1). Let

f e L?(a,b) and

bb
[ [Ik(xt)[* dxdt = B2 < 0.
aa

If W < % , then the above iteration scheme convergence to the solution of equation (2.1).

To illustrate this method, consider the following example.

Example (2.2):

Consider the following linear Fredholm integral equation of the second kind:

u(x) =g’ ——(29+1)x+jxtu(t)dt 0<x<1

Here a=0, b=A=1, f(x):e3x—§[2e3+1] and k(x.t) = xt.

Therefore
bb 2 11
[ [k(x,t)|"dxdt = [ [ x*tdxdt = = = B < oo,
aa 00
and
A=1<1=3
B

S0, we can use the homotopy perturbation method to solve this example.
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To do this, let

Uo (X) = Vg (X) = f (x) = —g[Ze3 +1).

Hence
Vi (Xt) = AT K(x,t)v, (t)dt
} {e — —(2e + 1)}d
0
2+ 4e°
27
and

v, (X t) = AT K(x, v, (t)dt

a

i {2+4e }
:{2;‘6 }x.

By continuing in this manner, one can have:

v, (x,t) = ﬂj k(x,t)v,_, (t)dt

:{%}x, i=12,..

Thus
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mmzéwu)

_ - 0 3
A | My 2+4¢1 X
ol T & o739
_ - 3 © i-1
e _X[oe? 1 1]4| 2128 XZ(E)
9" - 27 a\3
_ - 3
_e¥ _X[aed a4 3| 24
9" -2 27
:eSX

which isthe exact solution of the above integral equation.

Example (2.3):

Consider the following linear Fredholm integral equation of the second kind:
x 8 3, 4 t
ux)=g@ € x—§x+4jxtu(t)dt, 0<x<1
0

Here a=0, b=1 A1=4, f(x)=e3x—ge3x—gx and Kk(x,t) = xt.

Therefore
bb ) 11 1
[ [k(x ) dxdtt = [ | x2t2cxdt = = = B? <o,
aa 00 9
and
2|=4>=-3
B
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So, if we use the homotopy perturbation method to solve this example, then the solution that

Is obtained by applying this method may be convergent to the exact solution or may not. To

dothis, let
Uy (X) = Vo (X) = f (x) = ¥ —Pe3 +ﬂ}x
9 9
Hence
b
vy (x,t) = 4] xtf (t)dlt
a
1 8 5, 4
:4jxt{e3‘—— t——t}dt
o 9 9
B
=|—€e"——|x
27 27
and

v, (x,1) = 4? Xtv, (t)dt

1 —
=4fxtz{—8e3 —i}dt
o L2727

[—32 3 16}
=|—e’ ——|X
81 81
By continuing in this manner, one can have:
1
v (x,t) = 4] xtv,_, (t)dt
0

i ORI O TP
273~ 27(3)"t

Thus
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u(x)=2vi<x>
:eSX_[§es+ ﬂ}x+i -84 5 A |
9 9 '

=l 2737 T 27(3)

Since
B CNSE bE

0 i-1 0
But 4 isa geometric series, that is divergent since \r\=ﬂ>1.Therefore SV (X) is
i=1 3 3 i=0 I

divergent.

Next, consider the linear Volterraintegral equation of the second kind:
X
u(x) = () + A[k(xt)u(t)dt (2.10)
a

where k is the kernel of the integral equation, f isthe driving term, A isascalar parameter, a
Is aknown constant and u is the unknown function that must be determined.

To solve this integral equation via the homotopy perturbation method, we rewrite
eguation (2.10) as:
Alu)— f(x)=0 (2.112)

where A(u) =u(x) — /”tfk(x,t)u(t)dt :

Then A can be divided into two parts L and N such that equation (2.11) becomes:
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L(u) + N(u) - f(x)=0

where Lu = u and Nu =-A[k(xt)u(t)dt.
Accoding to [13], we construct a homotopy v:[a,«) x[0,]]—— R which satisfies:

H(v, p) = (1~ p)[V(x, P) ~Up (D] + D{V(X, p)- /ﬁ k(O p)dt} =0 (212)

where pe [0,1] ‘R represents the set of all real numbers and u, isthe initial approximation to

the solution of equation (2.10).
By using equation (2.12) it follows that:

H (v,0) = V(x,0) — Uy (X) =0
H(v,) = v(x1) - zf K(x,v(t,Ddt — f(x)=0
and the changing process of p from zero to unity isjust that of v(x, p) from v(x,0)—u(x) to
v(x1) - zf K(x, t)v(t D)t — f (x).
Therefore

V(%,0) — U (X) = V(x,1) — ﬂjk(x,t)v(t,l)dt ~f(x), x>a

and

Ug (X) = u(X), X>a
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Next, we assume that the solution of equation (2.12) can be expressed as in equation

(2.5). By substituting this approximated solution into equation (2.12) one can get:

i P'V; (%) = Up(X) + PUg (X) + P —Af k(x 1) p'v.®)dt— f(x) [=0

i=0
Then by equating the terms with identical powers of p one can have:

po Vo (X) Uy (X) =0

PV (X) + Uy (X) — T (X) - ﬂf K(X,t)vy(t)dt=0

Pl v (%) - A[K(X )V, (t)dt=0, j=23,..

So, if we choose v, (X) =U,y(X) = f(X), then one can get the iteration formula

Vo(X) = f(X)
Vv (X) = ﬂj[(k(x,t)vi_l(t)dt, 1=12,...

Next, we study the convergence of the homotopy perturbation method for solving the

integral equation (2.10). To do this, consider the following theorem.

Theorem (2.4), [21]:

Consider the iteration scheme:
S(X) = f(X)

and
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S, (X)=f(x) +/1j(k(x,t)sn(t)dt, n=0,1,...

to construct a sequence of successive iterations s, (x) to the solution of the integral equation
(2.20).
If fand k arereal-valued continuous functions, then the above iteration scheme convergence

to the solution of the integral equation (2.10) for al valuesof A.
Toillustrate this method consider the following example.

Example (2.5):

Consider the following linear Volterraintegral equation of the second kind:
u(xX) = x+A[ (x—t)u(t)dt
0

To solve this example via the homotopy perturbation method, consider the iteration

formula:
Vo (X) = Ug(X) = X.
Vi ()= A[(x-t)v (t)dt, i=01,....
0
Therefore

X 2‘3
V,(X)=A|t(x-t)dt ==X
1(X) {( ) 3
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Chapter Two

and

V,(X) = —jt (x—t)at

By continuing in this manner, one can have:

Vv (xt)=———x"" i=1.2,....
(2|+1)'
It is known that the sequence
n 2|+1
X
S00=24 G

which is convergent for all valuesof 4 and x.

Therefore

2|+1

0

0% @

which is the exact solution of the above integral equation.

Notethat, if A =-1, then u(x)=sin(x).

2.2 The Homotopy Perturbation Method For Solving Non-Linear | ntegral Equations:

In this section, the homotopy perturbation method is used to solve special types of non-

linear Fredholm integral equations with some illustrative examples. To do this, consider the

following non-linear Fredholm integral equation of the second kind:
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u(x) = f (x) + ﬂ,tj)k(x,t)[u(t)]q dt, a<x<b (2.13)

where ge N, f isthe driving term and k is the kernel of the integral equation that depends on

x and t, A is a scalar parameter, a and b are known constants and u is the unknown function

that must be determined.
We rewrite equation (2.13) as:

Au)— f(x)=0 (2.14)
b
where A(u) =u(x) — A[k(xt)[u(t)]*dt.

Then the integral operator A can be divided into two parts L and N equation (2.14)

becomes:

L(u)+ N(u) - f(x)=0
where L(u) =u and N(u) = —zf k(x, t)[u(t)]*tdt .

Accoding to [13], we can construct ahomotopy V:[a,b]x[0,1]—— % which satisfies:
H (v, p) = (L~ p)[V(x, p) ~Up(x)]+ D{V(X, p) - lik(x,t)[V(t, p)Jdt - f (X)} =0 (219

where pe [0,1], R represents the set of all real numbers and u, is the initial approximation
to the solution of equation (2.13).

By using equation (2.15) it follows that:
H (v,0) = v(X,0) —u,(x) =0
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H(v,1) = v(x,1) - z? k(x,t)[v(t,)]Pdt - f(x)=0

and the changing process of p from zero to unity isjust that of v(v, p) from uy(x) to u(x).

Therefore
V(X,0) — Uy (X) = v(x,1) — z? k(x,D)[vt)]dt — f(x), xe[a,b]

and
Ug (X) = u(X), X €[a,b].
Next, we assume that the solution of equation (2.15) can be expressed as in equation

(2.5). By substituting the approximated solution given by equation (2.5) into equation (2.15)

one can get:
i=0

i P'V; (X) — U (X) + Pug(X) + p{— ﬂ? k(X,t){i p'v (t)TOIt — f (X)} =0
a i=0

Then by equating the terms with identical powers of p one can have:

p?:vy(X) —u (X)=0 (2.16.a)

P v (X) + Uy (X) — f(X) — zf k(x,t)[Vo (t)]"dt =0 (2.16.b)
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V,(X) - AT k(x,t)[2v,(t)vy(1)]dt =0, if q=2

b
.| 0= AL O =0, if g=3 (216

VZ(X) - ﬂ’?k(x’t)[él(vo (t))Svl(t)}jt =0, if q= 4

b -1 '
v, (%) -2 j k(x,t)z[vk OV, OBt =0, if q=2
| 0021k % S v 0B -0 103 e
j=lj-i-1j-i-kel
v, zj (xOZ Y SO OUOV OB =0, ifa=4
wherej=34,....

For simplicity, we set V,(X)=Uy(X)= f(X), then equation (2.16.8) is automaticaly

satisfied. By substituting Vv, (X) = U, (X) = f (X) into equation (2.16.b) one can have:
b
Vi (%) = [ k(x,t)[vo (1) "dlt =

By substituting v,V into equation (2.16.c) one can get v, (X).
In asimilar manner, one can get v, (x),1 =3,4,... By subgtituting v, (x),1 =0,1,... into equation

(2.6) one can get the approximated solution of the integral equation (2.13).

To illustrate this method consider the following examples.
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Example (2.4):

Consider the following nonlinear Fredholm integral equation of the second kind:

u(x) :gxz +E15+f(x2 —t[u®)fdt, 0<x<1 (2.17)

Herea=0, b=41=1 q=2, f(x):gx2+%and K(x,t) = X —t.

To solve this example via the homotopy perturbation method, let

Vo (X) =Ug(X) = F(X) ngz +%

~0.8x2 + 0.16667.

Then

b
v, (%) = [K(xt)(vo (t)) it
1 2
=[x —t)Ft2 + E} dt
5 5 6
= -0.18722 + 0.24467x°.

In this case, let N=1, then

N
u(X) = Y.V (X) = Vo (X) + V; (X) = 1.04466x° — 2.05555x 1072

i=0

Next, we must find v, (X):

b
Vo (%) = [k(x,1)[2vp (0w () Jot

1 J—
— 2J‘(X2 _t)|:gt2 +E:||: 337 " 367 tz:ldt
0

6| 1800 1500
=0.02046 — 0.05678x°>.
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In thiscase, let N=2, then

u(x)zivi () =Vo(X) + % () + v (X)

~ (0.98789x° — 2.62963x107°

The following table gives the approximated solution of example (2.4) for different values of

N.

Table (1.1) represents the approxi mated solutions of example (2.4) for different values of N.

N u () N u(x) N u(x)

0 |0.8x°+0.166667 4 |1.00222x°-1.26717x10° 8 | 0.99993x“+1.31635%x10"
1.04466x°-2.05555x10° 5 | 0.99924x°+6.40980x10° 9 | 1.00001x“+1.52175%10"
0.98789x°-9.62963x10™ 6 | 0.99994x°+2.05376x10™ 10 | 1.00001x“-1.03366x10™
0.99762x°+3.58386x10™ 7 | 1.00016x°-1.06638x10* |11 | 1.00001x°-1.00453x10"

Note that from the above table one can deduce that as N increases, the approximated solution

of the integral equation (2.17) converges to the exact solution u(x) = x?.

2.3 The Homotopy Perturbation Method for Solving Non-Linear Fredholm Integro-

Differential Equations, [ 26]:

In this section, the homotopy perturbation method is employed for solving the initial value
problems of special types of the first order non-linear Fredholm integro-differential equations

with some illustrative examples.
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To do this, consider the following first order nonlinear Fredholm integro-differential

eguation of the second kind:
b

u'(x) =)+ A[k(xDu®m]dt, a<x<b (2.18.9)
a

together with theinitial condition:
u@=«a (2.18.b)
where ge N, f isthe driving term and k is the kernel of the integro-differential equation that
depends on x and t, A is a scalar parameter, a and b are known constants and u is the
unknown function that must be determined.

It is clear that, if g=1, then the integro-differential equation is linear, otherwise it is
nonlinear.
We rewrite equation (2.18.a) as.

A(u) - f(x)=0 (2.19)
where A(u) = du_ z? k(x,H)[u(t)]*dt
dx i '

Then the operator A can be divided into two parts L and N such that equation (2.19)
becomes:

L(u)+ N(u) - f(x)=0
du o q
where L(u) = and N(u) =-2[k(xt)u)]"dt.

According to [13], we construct ahomotopy  v:[a,b]x [0,1]—— % which satisfies:
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b
H (v, p) = (- p){d"(d’; P) _ d“é’ix)} p{w—ﬂj k(O b[v(t, p)idt - f(x)|=0 (2.20)

where pe [0,1] R represents the set of all real numbers and u, istheinitial approximation to

the solution of equation (2.18.a) which satisfies the initia condition given by equation
(2.18.b).
By using equation (2.20) it follows that:

dv(x,0)  duy(X) _

H(v,0) =
(v:0) dx dx

0

H(v) = av(x,1)

- /1jlqk(x,t)[v(t,1)]q dt— f(x)=0

and the changing process of p from zero to unity isjust that of v(x, p) from uy(x) to u(x).

Therefore

ov(x0)  V(x) _ov(xD) % Gy .

™ o E iik(x,t)[v(t,l)] dt— f(x), xe[ab]
and

Ug (X) = u(X), X €[a,b].

Next, we assume that the solution of equation (2.18.a8) can be expressed as in equation
(2.5).

By substituting the approximated solution given by equation (2.5) into equation (2.20) one

can get:
g dvi() dug(x) | dug(¥) |2 SN )
E)p dx P +p[ iik(x,t){gpvi(t)} dt f(x)}o
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Then by equating the terms with identical powers of p one can have:

0. OV, (X)  duy(x) _
p°: ™ e (2.21.9)
1. d duy ;
: Vé)((x) i “df(x) - f(x)—ii k(x,t)[vo ()] dt =0 (2.21.b)
dv,(x) % B —
v zjk(x,t)[zvo(t)vl(t)]dt_o, if q=2
d
2. VZ)((X) /Ij k(x,D)[3(% (1), 0) it =0, if g =3 (2219
d"z(x) zj k(x,O[4(vo () vy () Pt =0, if =4
dv" 09 _ AT k(x,t)_’i1 v, Bt =0, if =2
| J( ) 1Tk(x t)il zj[v OV OV, 42O =0 if =3
p':l dx g, KA (2.21.€)
d j=1j—i-1j—i—kel _
OV OV 2 (Oft=0, ifq=4
i=0 k=0 =
wherej=34,....

X
Since u(a) = o then we choose u,(X) =« +j f (t)dt and thisimpliesthat u,(a) =« . Also, for

smplicity we set v,(X) =u,(X) =« + J' f (t)dt. So equation (2.21.a) is automatically satisfied.

Therefore by substituting x=a in equation (2.6) one can have:
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u(a) = zv (a)

But v,(a)=u(a)=«a, hence v,(a)=0,i=1,2,.... By substituting v,(x) =u,(X) =« +T f(t)dt

into equation (2.21.b) one can get:

dv, (X)

N q
. —ijzk(x,t){a+ j f (z)dz} dt=0

By integrating both sides of the above differential equation and by using the initial condition

u,(a) =0 one can obtain:
xb t q
v, (X) = /IH k(s,t){a + j f (z)dz} dtds=0 (2.22)

By substituting v, and v, into equation (2.21.c) and by solving the resulting first order linear
ordinary differential equation together with the initial condition v,(a) =0 one can get v,(X).
Then by substituting j= 3 v,, v,and v, into equation (2.21.€) and by using initial condition
v,(a) =0 one can solve the resulting first order linear ordinary differential equation to get
v,(X). In asimilar manner one can get v, (x),i =4,5,.... By substituting v;(x),i=0,1,... into
eguation (2.6) one can get the approximated solution of the initial value problem given by

equations (2.18).

To illustrate this method consider the following examples.
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Example (2.5), [28]:

Consider the initial value problem that consists of the first order linear Fredholm

integro-differential equation of the second kind:
, -1 5 ¢
u'(x) =?—Ex+j(xt +1u(t)dt, 0<x<1 (2.23.a)
0

together with theinitial condition:

u(0)=1 (2.23.b)
-1 5
Here a=0, b:ﬂ:],f(x):7—gx and Kk(x,t)=xt+1.
We use the homotopy perturbation method to solve this example. To do this, let

b X -1 5
Vo(¥) =Up(X) =ar+ [ f(t)dt =1+ {?—Et}dt
a 0

_1-ixo 2y
2 12

~1-0.5x—0.41667x>.
Then

_xl _E _E )
v (X) = £ i(st+1){1 2t 12t }dtds

~0.11458%? +1.375x.

In this case, let N=1, then

N
u(x) =D v (X) = Vo (X) + v;(X) =1+ 0.11111x - 0.30208x>

i=0
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Next, we must find v, (X)

vy (X) = j} (st +1)[0.11458x? +1.375x]tds
00

= 0.11617x? + 0.34375x.

Therefore, for N=2,

N
u(X) = D Vi (X) = Vo (X) + vy (X) + V,(X)
i=0
~1+ 0.45486x — 0.18591x>

In asimilar manner one can get V, (X),i =34,... .The following table gives the approximated

solutions for different values of N.

Table (1.2) represents the approximated solutions of example (2.5) for different values of N.

N u(x) N u(x) N U(X)

0 | 1-0.5x-0.41667x" 9 [ 1+0.98903x-3.7401x10°x* | 18 | 1+0.99986x—4.6173x10°x"
1 | 1+0.11111x-0.30208x" 10 | 1+0.99327x-2.2952x10°x* | 19 | 1+0.99992x—2.8335x10™x"
2 | 1+0.45486x-0.18591x" 11 [ 1+0.99587x-1.4085x10°x* | 20 | 1+0.99995x—1.7389x10x"

3 | 1+0.79470x-0.070018x10°x* | 12 | 1+0.99747x-8.6440x10*x* 21 | 140.99997x-1.0671x10™x"

4 | 140.87401x-4.2969x10x" 13 | 1+0.99844x-5.3047x10*x* 22 | 1+0.99998x—6.5488x10°x*

5 | 1+0.92268x-2.6369x10“x" 14 | 1+0.99905x—3.2554x10*x* 23 | 1+0.99999x-4.0189x10°x~

6 | 1+0.95255x—1.6183x10x* 15 | 140.99941x-1.9978x10*x* 24 | 140.99999x-2.4663x10°x*

7 | 1+0.97088x-9.9310x10°x* 16 | 1+0.99964x-1.2260x10*x* 25 | 1+4x-1.5136x10°%*

8 | 1+0.98213x-6.0945x10>x" 17 | 1+0.99978x-7.5238x10>x" 26 | 1+x-1.00336x10°x*
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Note that from the above table one can deduce that as N increases the approximated solution
of the initial value problem given by equations (2.23) converges to the exact solution

u(x)=1+x.

Example (2.6), [26]:

Consider theinitial value problem that consider of the first order nonlinear Fredholm integro-

differential equation:

u'(x) :%—&x + j (x* +t)[u(t) [ ot (2.24.9)

together with theinitial condition:
u(0)=0 (2.24.b)

Here a=0, b—— =3, A=1, 1=()_£9—6—14 and k(x )= X +1 .

We use the homotopy perturbation method to solve this example. To do this, let

Vo (X) = Uy (X) = j{@——t }dt

160 64
15 1
160 192

Then

1
X2 159, 1
v,(¥) = [[(s? t)[—t——t } ditds.
! ﬂ 160 192

~6.11634x103x +5.09791x 103 x°.
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In this case, let N=1, then
U0) = 3V, () =V, (X) + %, (X)

~(0.99987x —1.10428 x 1074 x°.

Next, we must find v, (X)

V,(X) = [ [ (s* +1)[3v, (t)v, (1) fitds

O — X
O =N |+

~8.54066x10 % x + 8.38354 x 10 * x3.

Therefore, for N=2,
U0 = 3V, (0 =V (0 + %, () +V, (%)

~1.00072x - 7.27926x10™ x3 .
In a similar manner one can get v (x),i =34,.... The following table gives the approximated

solutions of example (2.6) for different values of N.

Table (1.3) represents the approxi mated solutions of example (2.6) for different values of N.

N u(x) N u(x) N u(x)

0 | 0.99375x-5.20833x10°x* 4 | 1.00086x+8.63897x10°x" | 8 [ 1.00086x+8.66701x10x"
0.99987x-1.10428x10"'x" 5 | 1.00086x+8.66308x10"x> | 9 [ 1.00086x+8.66702x10"x>
1.00072x-7.27926x10x" 6 | 1.00086x+8.66651x10x> | 10 | 1.00086x+8.66703%10 x>
1.00084x+8.46953%10x" 7 | 1.00086x+8.66700x10"x> | 11 | 1.00086x+8.66704x10x"
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Note that from the above table one can deduce that as N increases the approximated
solution of theinitial value problem given by equations (2.24) converges to the exact solution

u(x)=x.

Example (2.7), [26]:

Consider the initial value problem that consists of the nonlinear first order Fredholm

integral differential equation:
1

u'(%) =%x—é+ [(xt + Du(t) Pt (2.25.9)
0

together with theinitial condition:
u(0)=0 (2.25.b)
11 1
Herea=0,b=1=1,0=2, f(X)= EX_ c and k(x,t) =xt +1.
We use the homotopy perturbation method to solve this example. To do this, let

V,(X) =U,(X) = I(—t——)dt

.1

=—X :
12 5

Then
v, (X) = H(st+1)[—t —gt} dtds

~ 0.03836x> + 0.8975x..
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In this case, let N=1, then
U0) = DV (X) = Vo () + v, (¥)

~ 0.95502x° — 0.11028x.

Next, we must find u, (x)
Vo (X) = If k(s,t)[2v, (t)v; (1) pitds
00

~0.01629x° + 0.03939x..

Therefore, for N=2,
U0 = 3V, (0 = Vo (0 + % () +V, (%)

~0.97131x2 — 7.09997 x107 x.

In a similar manner one can get v (x),i =3,4,... . The following table gives the approximated

solutions for different values of N.
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Table (2.4) represents the approximated solutions of example (2.7) for different values of N

N U(x) N u(x) N u(x)
0 | 0.91667x°-0.2x 13 | 0.998330x°-4.16697x10°x | 26 | 0.999838x°-4.04670x10*x
1 | 0.95502x°-0.11028x 14 | 0.998631x°-3.41862x10°x | 27 | 0.999863x°-3.43486x10*x

2 | 0.97131x°~7.09997x10°x | 15 | 0.998872x°-2.81678x10°x | 28 | 0.999883x°—2.91965x10™x

31 0.98022x°-4.90465%x10°x | 16 | 0.999067x°—2.32982x10°x | 29 | 0.999901x°-2.48517x10x

4 ] 0.98572x°-3.54806x10°x | 17 | 0.999226x°-1.93369x10°x | 30 | 0.999915x°~2.11818x10*

5 | 0.98936x°-2.64527x10°x | 18 | 0.999355x°~1.60990x10°x | 31 | 0.999928x°~1.80774x10x

6 | 0.99190x°-2.01584x10°x | 19 | 0.999462x°-1.34412x10°x | 32 | 0.999938x°-1.54475x10x

7 | 0.99373x°-1.56202x10“x | 20 | 0.999550x°-1.12510x10°x | 33 | 0.999947x°-1.32165x10™x

8 | 0.99508x°-1.22643x10°x | 21 | 0.999622x°-9.43993x10*x | 34 | 0.999954x°-1.13214x10*x

9 | 0.996096x°-9.73292x10°x | 22 | 0.999682x°-7.93753x10"x | 35 | 0.999961x°-9.70962x10 X

10 | 0.996875x°—7.79290x10°x | 23 | 0.999732x°-6.68758x10*x | 36 | 0.999966x°-8.33727x10°x

11 | 0.997480x°-6.28651x10°x | 24 | 0.999774x°-5.64490x10"x | 37 | 0.999971x°~7.16747x10X

12 | 0.997955x°-5.10395x10°x | 25 | 0.999809x°-4.77297x10"x | 38 | 0.999975x°~6.16927x10X

Note that from the above table one can deduce that as N increases, the approximated
solution of the initial value problem given by equations (2.25) converges to the exact solution

u(x) = x>.
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Chapter Three The Homotopy Perturbation Method for Solving Some Nonlocal Problem
| ntroduction:

It is seen that in the modeling of many real life applications systems in various fields of
physics, ecology, biology, etc, an integral term over the spatial domain is appeared in some part
or in the whole boundary, [8]. Such boundary value problems are known as nonlocal problems.
The integra term may appear in the boundary conditions. Nonlocal conditions appear when
values of the function on the boundary are connected to values inside the domain, [3]

Many researchers studied the nonlocal problems, say, [7] used Galerkin method for
solving the nonlocal problem for the diffuson equation, [6] discussed the existence of the
solutions for the nonlocal problem of the one-dimensional wave equations, [30] used Fourier
method to establish the existence of the solution for a class of linear hyperbolic equations with
nonlocal conditions, [27] used the homotopy perturbation method for solving the one-
dimensional parabolic integro-differential equations with some real life applications.

In this chapter, we use the homotopy perturbation method to solve some types of the
nonlocal problems.

This chapter consists of two sections:

In section one, we use the homotopy perturbation method for solving the one-dimensional
wave eguation with non-homogeneous Neumann and nonlocal conditions.

In section two, we give the solution of hyperbolic integro-differential equations with non-

homogeneous Neumann and nonlocal conditions via the homotopy perturbation method.
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3.1 Solutions of One-Dimensional Wave Equation with Non-Homogeneous Neumann

and Nonlocal Conditions:

Consider the one-dimensional non-homogeneous wave equation:

¥§§0_6g$ﬁhzuxo,(xoeg (3.13)

together with the initial conditions:

u(x,0) =r(x), 0<x</, (3.1.b)
uxY) =r,(x), 0<x</, (3.1.c)
ot t=0

the non-homogeneous Neumann condition:

ou(x,t)
OX

—a(t), 0<t<T (3.1.d)

x=0

and the non-homogeneous nonlocal condition:

l

fux,tydx=p(t), 0<t<T (3.1.€)
0

where f is a known function of x and t, Qz{(x,t)|0< x<£,0§t§T}, r,r,a and S aregiven

functions that must satisfy the compatibility conditions:
l L

r/(0) = «(0), r;(0) ='(0), jrl(x)dx: S(0), and frz(x)dx = p'(0).
0 0

To solve this nonlocal problem by the homotopy perturbation method, we first transform this
nonlocal problem into another nonlocal problem, but with homogeneous Neumann condition and

homogeneous nonlocal conditions. To do this we use the transformation that appeared in [1]:

-48-



Chapter Three

The Homotopy Perturbation Method for Solving Some Nonlocal Problem
w(x,t) =u(xt) — z(x,t), (x,)e (3.2
where z(x,t) = a(t){x - q + @
2 14
Then
ou(x,t)  *w(x,t) 8%z(x,t)
2 2 T 2
ot ot ot
and

o%u(xt)  o*w(x,t)
ox? ox:

Therefore the nonlocal problem given by equations (3.1) is transformed to the one-dimensional

non-homogeneous wave equation:

O2W(x,t)  o*w(xt)
= + g(x,t), (Xt)eQ
2 N g(xt), (xt)e

(3.3.9

together with the initial conditions:

w(x,0) = g, (x),0<x </ (3.3.b)

ow(x,t)
ot

=(Q,(x),0<x </ (3.3.0)
t=0

the homogeneous Neumann condition:

OW(X,t)
OX

=0, t>0 (3.3.0)
x=0

and the homogeneous nonlocal condition:

fw(x,t)dx =0, t>0 (3.3.d)
0
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2
whereg (x,t) = T{x,t) - 83—?” (¥ =1,(9) - z(x,0) and Q2(x)=rz(x)—8z(a)t('t)

t=0
To solve this nonlocal problem by the homotopy perturbation method, we construct a

homotopy v:Qx[0,]]—— R which satisfies:

Hv. p) = o%v(xt, p) 0wy (X.t) . IO82w0(x,t) o oAkt p) g(x,t)} _o (3.4)

o’ o’ ot? ox°
where pe[0]], ‘R represents the set of all real numbers and w, isthe initial approximation to
the solution of equation (3.3.a) which satisfies the initial conditions, the Neumann condition and
the nonlocal condition given by equations (3.3.b)-(3.3.d).

By using equation (3.4) it follows that:

02V(x,t,0)  2°wy(x,t) 0

H(v.0)= ot? ot?

o%v(x,tl) a*v(xt])
ot? ox?
Next, we assume that the solution of equation (3.4) can be expressed as:

H(vl = g(x,t)=0

wixt, p) =3 P (x1) (35)

i=0
Therefore the approximated solution of the nonloca problem given by equations (3.3) can be

obtained as follows:
wOx ) =limv(xt, p) = v (x1) (36)
p—. i=0

By substituting the approximated solution given by equation (3.5) into equation (3.4) one

can get:
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= OAL(Xt) OPw(xt) 87wy (xt) = 9% (X 1)
Hiv,p)=Y p ——"-——2""+ Ul p - p — - g(x.t) [=0.
(v, p) 2P e e P-2P 2 —9(xt)
Then by equating the terms with identical powers of p one can have:
0. OV, (Xt) 0wy (X,t) 0 (3.7.9)
ot? ot?
oV, (x,t) o0°w,(x,t) 0%V, (x1)
1 2 e -g(x,t)=0 3.7b
S o 9D (3.7.b)
2 2
OV 0L (D =0,j=23.. (3.7.0)

ot? ox?
For simplicity, we take v, (x,t) = w,(X,t). In this case equation (3.7.a) is automatically satisfied.
Let Wy(X,t) = (X)+d,(X)t then

W, (X,0) = q,(x), 0<x</,

<9VV0_(XJ) :qz(x), 0<x</,

ot o
OWp (X, 1) , , L oz(x.t) ’ 022(x.1)
XD _ 2 (0) + g (0)t = F{(0) - 0)—

X |y @0+ a0 =10 ox |t=0 " "2(0) otox  |i=o

x=0 N =0
={(0)—a(0)+r;(0t—a'(0)t=0, O<t<T

and

0z(x,t)

fwo(x,t)dx = qu(x)dx+ tfq2 (X)dx = f(rl(x) —z(x,0))dx + tf{rz (xX)— }dx

= B(0) - B(0) + B'(0)t — B'(0O)t =0, t>0.

Therefore w, satisfies the initial conditions, the Neumann condition and the nonlocal condition
given by equations (3.3.b)-(3.3.d). Therefore by substituting t=0 in equation (3.6) one can have:
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w(x,0) = ivi (x,0).
i=0

But v, (X,0) =q,(X) and w(x,0) = q,(x), hence v;(x,0) =0,i =1,2,.... By substituting v,(x,t) =
W, (X,1) = g, (X) + 0, (X)t into equation (3.7.b) one can get:

oV, (xt)

e q’(x) +tg; (x) + g(x,t)

By integrating twice for both sides of the above differential equation with respect to t and by

M =0 one can obtain:

t=0

using theinitial conditions v, (x,0) =0and

2 3

t 4 t /4 L2
V(X t) = () + = a5 (X) + [ [ g(x, 7)drdls
By substituting v, into equation (3.7.c) and by solving the resulting second order linear partial

=0 onecan
t=0

differential equation together with the initial conditions v, (x,0) =0 and _sza(tx,t)

get v, (x,t). Inasimilar manner one can get Vv, (X,t),i =3,4,.... By substituting Vv, (X,t),i =0,1,...
into equation (3.6) one can get the approximated solution w of the nonlocal problem given by

equations (3.3). Therefore from equation (3.2):

U(x,) = Wixt) + z(xt) = SV () + z(x,t), (x,HeQ
i=0

which is the solution of the original nonlocal problem given by equations (3.1).

To illustrate this method consider the following example
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Example (3.1):

Consider the homogeneous wave equation:

ou(x,t) 2%u(xt) _

e e 0, 0<x<rz 0<t<1 (3.8.9)

together with the initial conditions:

u(x,0) = cos( x), 0<x<~x (3.8.b)
U —cos(xX), O0=<x<=x (3.8.0)
o o

the homogeneous Neumann condition:

ou(x,t)

=0, 0<t<1 (3.8.d)
OX

x=0

and the homogeneous nonlocal condition:
fu(x,t)dx=0, 0<t<1 (3.8.d)
0

It is easy to check that the compatibility conditions are satisfied for this nonlocal problem. We

use the homotopy perturbation method to solve this example. To do this, et

ou(x,t) t = cos(X) —t cos(x). From equation (3.7.b) and by

t=0

Vo (X, 1) = Uy (X, 1) = u(x,0) +

using theinitial conditions:

ov; (%,t)

=V, (x,0) = 0 one can have:
ol

v, (x,t) = %tz COS(X) — ét?’ cos(X).
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Hence

1.,
Vo (X, 1) + v, (X, t) = [1 t+2t 6 }cos(x)

From equation (3.7.c) one can get:

V, (X, 1) = H (X S)

1 4 5
=—t" cos(Xx ——t cos(X).

4 S(X) g S(X)

and thisimplies:
2 1 1 1 1

u(x,t) = > v (x,t) = 1—t+—t2——t3+—t4——t5}co X).
(00 = S0 00 = 1=t 247 264t - 2 ost
and by continuing in this manner one can have:

u(x,t) = ivi (x,t) = e cos(x).
i=0

which is the exact solution of the nonlocal problem given by equations (3.8).

Example (3.2):

Consider the one-dimensional non-homogeneous wave equation:

ocu(x.t)  d%u(x, t) _

2 . —xsin(t) —4e?*, 0< ng, 0<t<1 (3.9.9

2

together with the initial conditions:

u(x,00=e?, 0

IA
IA

X (3.9.b)

3
2
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ou(x.t) x, 0<x<Z (3.9.0)
ot o 2

the non-homogeneous Neumann condition:

oulx.t) =sn(t)-2, 0<t<1 (3.9.d)
OX |0

and the non-homogeneous nonlocal condition:

2

ju(x,t)dx:ézzzsin(t)—le‘” +1, 0<t<1 (3.9.d)

9 8 2 2

It is easy to check that the compatibility conditions are satisfied for this nonlocal problem. We
use the homotopy perturbation method to solve this example. To do this, consider the

transformation given by equation (3.2). In this case:
z(x,t) =(sin(t) — 2)(x— 1rr) + 1|:2(E7Z'2 sin(t)e” — E)e‘” + 1}
4 7| 8 2

Therefore the nonlocal problem given by equations (3.9) is transformed to the one-dimensional

non-homogeneous wave equation

O*W(x,t) _ " w(x.t)

_4e®, 0<x<Z, 0<t<1,
ot? OX? 2
together with the initial conditions:
w(x,O)ze‘ZX+2x—£—£[1—e‘”], o<x<Z,
2 2
WY 0<x<Z,
ot o 2

the homogeneous Neumann condition:
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OW(X,t

(x1) =0, 0<t<1

OX

x=0

and the homogeneous nonlocal condition:
2

Jw(x,t)dx=0, o<t<l.

0

To solve this nonlocal problem by using the homotopy perturbation method, let
Vo (X,1) = Wy (X,1) = 0y (X) + g, (X)t
= i[27ze‘2" +A4nx—nm*+ 267" — 2]
2
From equation (3.24.b) one can have:

3

| PR B X
vy (x,t) = qu(X) +gq2(><) +[ [ g(x r)dwds
00
=0
Thus
Vv, (x,t) =0, 1=23,....
Therefore
W(X,t) =W, (Xx,t)
= L ey 4mx— a2 1267 2]
2

which is the exact solution of the above nonlocal problem.

Hence

u(x,t) = wy(X,t) + z(x,t)

=% + xsin(x).

which is the exact solution of the original nonlocal problem.
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3.2 Solutions of the Hyperbolic | ntegro-Differential Equations with Non-Homogeneous

Neumann and Nonlocal Conditions:

Consider the hyperbolic integro-differential equation:

o%u(xt)  u(xt)
ot? ox°

+ cu(x,t) = jk(t, S)u(x,s)ds+ f(xt), (x,t)eQ (3.10.8)

together with the initial conditions:

u(x,0) = r,(x), 0<x</ (3.10.b)
WY r,(X), 0<x</ (3.10.0
ot |

the non-homogeneous Neumann condition:

MY _ ), o<t<T (3.10.d)
OX

and the non-homogeneous nonlocal condition:

l

fuxtydx= (), 0<t<T (3.10.¢)
0

Where c is a known constant, f is a known function of x and t, Q= {(x,t)\0< x</,0<t ST},

r,r,,a and g aregiven functions that must satisfy the previous compatibility conditions.

To solve this nonlocal problem by the homotopy perturbation method, we first transform
this nonlocal problem into another nonlocal problem, but with homogeneous Neumann condition
and homogeneous nonlocal condition. To do this we use the transformation given by equation
(3.2). Therefore the nonlocal problem given by equations (3.10) is transformed to the hyperbolic

integro-differential equation:
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2 Z‘gt(;"t) - az‘g(;"t) +on(x,t) = [kt W 9ds + g(x ), (k1) € © (31L3)
X 0

together with the initial conditions:

w(x,0) = q,(x), 0<x</, (3.11.b)
@%%9. —,(%), 0<x</, (3.11.0)

t=0

the homogeneous Neumann condition:

ow(X,t)
OX

-0, t>0 (3.11.d)

x=0

and the homogeneous nonlocal condition:

K w(x,t)dx=0, t>0 (3.11.¢)
0
where
g(x,t) = f(x,t) - % —cz(x,t) + j k(t,s)z(x,s)ds,
0

0h (X) = r;(X) — z(x,0)
and

0z(x,t)
oA o

a, (X) =TI, (X) -

To solve this nonlocal problem by the homotopy perturbation method, we construct a homotopy

v:Qx[0,]]—— R which satisfies:
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H(v, p) = O°V(x.t, p)  O°W, (X, . 0°W, (x,t) N

ot? ot? ot?
p{—%+ cv(x,t, p) - [K(t, V(xS p)ds-— g(m)} ~0
X 0

(3.12)
where pe[01],R represents the set of all real numbers and w, isthe initial approximation to
the solution of equation (3.11.8) which satisfies the initial condition, the Neumann condition and
the nonlocal condition given by equations (3.11.b)-(3.11.d).

By using equation (3.12) it follows that:

o2V(x,1,0)  2*wy(xt)

H(v.0)= ot? ot?

d2v(x,t,) ~ d2v(x,t,)
2

Hvh)=—"2p ox

+cv(xt,1) — j k(t,s)v(x,s)ds—g(x,t)=0

Next, we assume that the solution of equation (3.11) can be expressed as in equation (3.5).
Therefore the approximated solution of the nonlocal problem given by equations (3.11) isgiven
by equation (3.6).

By substituting the approximated solution given by equation (3.5) into equation (3.12) one
can get:

= azv(xt) aw(xt) aw(xt)

H(v.p) Zo" ot? ot?

{i av(xt)+cZ|Ov(xt) jk(ts)va(xs)ds g(xt)}:

=0

Then by equating the terms with identical powers of p one can have:

o0 OVo6) 0w (X0 _ (3.13.9)
ot’ ot’
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ot 0%y (x.t) N 0°Wo (X, 1) _ 0*Vo(x,1) + oV (X, ) — j K(t, Vo (X, 8) — g(x,t) =0 (3.13.b)

ot? ot? ox?

0%, (x.t) ) 0%V 4 (x1)

i
P ot? ox?

t
+ovy_y (%) - [K(t,S)v;4(x,5)ds=0, j =23,... (3.13.0)
0
Similar to the previous, we take v,(X,t) = wy(X,t) = g (X) + 0, (X)t. In this case equation (3.13.a)

Isautomatically satisfied. By substituting it into equation (3.13.b) one can get:

0%V, (x,1)

o = R00+ a0t - cla () + g, (0] +

t
[k(t, 9 (x) + g, () slds+ g(x,t)
0
By integrating twice for both sides of the above differential equation with respect to t and by

M =0 one can obtain:
t=0

using theinitial conditions v, (x,0) =0and

2 3

t " t 14 1
Vi(X,t) = qu(x) Y 2 (X) — C%(X)Etz -

t3 t2‘['

cqz(x)g+ [ [k(z, )| (%) + G, (x)s|dsd it + | j g(x,7)dzds
00 00

In a similar manner one can get v,(x,t), i=23,.... By substituting v.(x,t), i=0,1... into
eguation (3.6) one can get the approximated solution w of the nonlocal problem given by

equations (3.11). Therefore from equation (3.2):
u(x,t) =w(x,t) + z(x,t) = ivi (x,t) + z(x,1), (X,1) e
i=0

which is the solution of the original nonlocal problem given by equations (3.10).
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To illustrate this method consider the following example.

Example (3.3):

Consider the hyperbolic integro-differential equation:

ou’(x,t)  2%u(xt)
ot? ox?

together with theinitial conditions:

u(x,00=0, 0<x<1,

ou(x,t)
ot

=x3, 0<x<l,
t=0

the homogeneous Neumann condition:

ou(x,t)

=0, 0<t<«1
OX

x=0

and the non-homogenous nonlocal condition:

: 1
Ju(x,tydx==t, 0<t<1
0 4

t
+3u(x,t) = [ (t+ s*)u(x, s)ds — 6xt + 3tx° —%
0

xt? —lxe’ts,
2

0<x<1,0<Lt<L].
(3.14.9)

(3.14.h)

(3.14.0

(3.14.d)

(3.14.¢)

We use the homotopy perturbation method to solve this example. To do this, we transform this

nonlocal problem into one but with homogeneous nonlocal condition. To do this, consider the

transformation given by equation (3.2). In this case:

z(x,t) :%t
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and the nonlocal problem given by equations (3.14) consisting of the hyperbolic integro-

differential equation

o*w(x,t)  *w(x.t)
2

1
e +3wW(x,t) = [ (t + S*)W(x,s)ds — 6xt + 3tx° —
0

1x3t“—1x3t3—§t+it“Jrlt3, 0<x<1l 0<t<1,
4 2 4 16 8

together with the initial conditions:
w(x,0) =0 0<x<1],

OW(X, t)
ot

:x3—£, 0<x<1,
t=0 4

the homogeneous Neumann condition:

ow(x,t)
OX

=0, 0<t<1

x=0

and the homogeneous nonlocal condition:
1

[w(xt)dx=0, 0<t<1.

0

To solve this nonlocal problem by using the ho motopy perturbation method, let
3 1
Yo%) = Wp (%) = (6 =)t

From equation (3.13.b) one can have:

82v1 (ZX,t) 0
ot

therefore

Vv, (x,1) =0, 1=12,..
-62-



Chapter Three The Homotopy Perturbation Method for Solving Some Nonlocal Problem
and thisimplies that

W(X,1) = Wy (X, 1) = Vg (X,1) = (x° - %)t.

which is the exact solution of the above nonlocal problem.
Hence

u(x,t) =w(x,t) + z(x,t)

= tx°.

which isthe exact solution of the origina nonlocal problem.
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Chapter Four Solution of Some Real Life Applications Via the Homotopy Perturbation Method
| ntroduction:

In this chapter we use the homotopy perturbation method for solving some redl life
applications, namely advection-diffusion problems, gas dynamics equation and the
ground-water level equation.

This chapter consists of four sections:
In section one and two, we solved advection-diffusion problems and gas dynamics
viathe homotopy perturbation method.
I n section three, we present the homotopy perturbation method for solving the ground-

water level problem.

4.1 Advection-Diffusion Problems:

Problems involving diffusion-advection equations arise in many domains of science.
There are severa methods for solving these quations, like the differential transform
method, [34]. In this section, we use the homotopy perturbation method to solve the

advection-diffusion problem that consists of the advection-diffusion equation:

au((;t(,t) —u azgiﬁ’t) _ B a”éx’t) Fs(x), (xf)eQ (4.1.)
together with initial condition:

u(x,0)=r(x), 0<x</, (4.1.b)
and the boundary conditions:

u(o,t)= f(t), t=>0, (4.1.0
u(/,t)=g(t), t=0, (4.1.d)
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where the first two terms on the right hand side represent different physical processes:

d2u(x,t)
Ox?

U yescribes advection which is

a corresponds to normal diffusion while g

why the equation is also known as the advection-diffusion equation. Further u is the
variable of interest (species concentration for mass transfer). And o, 3 are non-negative
real numbers where « isthe diffusivity for species or heat transfer and £ isthe velocity,
u is a known function of x only and Q:{(x,t)\0<x<€, t>0}, r,f and g are given
functions that must satisfy the compatibility conditions:

r(0)=f(0)
and

r(¢) =9(0).

To solve this problem by the homotopy perturbation method, we first transform this
problem into another problem, but with homogeneous boundary conditions. To do thiswe
use the transformation:

w(X,t) =u(x,t) —z(x,t), (x,t) e Q (4.2

where

20x,1) = (1) —%[f (t)—g®)]x

Then

ou(x,t) ow(x,t) N o0z(x,t)
o ot ot

and

o’u(x,t)  o*w(x,t)
ox> x>
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Therefore the problem given by equations (4.1) is transformed to the partial differential

eguation:
ow(x,t) _ dw(x,t) L ow(x,t)
=t TPy, (kD e (4.3.3)

together with the initial condition:

w(X,0)=q(x), 0<x </, (4.3.b)
and the homogeneous boundary conditions:

w(0,t)=0,t>0 (4.3.0)
w(/,t)=0,t>0 (4.3.d)

oz(x,t)  oz(x,t)
OX ot

where g(x,t) =s(x) — and g(x) =r(x) —z(x,0).

To solve this problem by the homotopy perturbation method, we rewrite equation

(4.3.8) as

A(w)-g(x,t)=0

2
where A(w) = 6;:/ — ocg V;/ +B ZW Then the operator A can be divided into two parts L
X X

and N such that equation (4.3.8) becomes:

L(w)+ N(w)—-g(x,t)=0

2
where L=< and N :—aa—2+B£.
ot OX OX

According to [13], we can construct a homotopy v:Qx[0,]]—— R which satisfies

ov(x,t,p) B oW, (X, 1) N Ioawo(x,t) N

Hlv.p) =5 ot ot
p{_aa YLD | p ML) —g(x,t)} -0
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(4.4)

where pe[0,1] is an embedding parameter and w, is the initial approximation to the

solution of equation (4.3.a) which satisfies the initial condition and the boundary

conditions given by equations (4.3.b)-(4.3.d).

Next, we assume that the solution of equation (4.4) can be expressed as
v(x,t,p) = > p'vi(x,1) (4.5)
i=0

Therefore the approximated solution of the problem given by equations (4.3) can be

obtained as follows:
w(x,t) =limv(x,t,p) =;vi (x,t) (4.6)

By substituting the approximated solution given by equation (4.5) into equation

(4.4) one can get:

H(v,p) = io a"(x ) @Wa(tX ) pawg(xx’t)+
oS im N iM_ _
p{ Ot;p o2 +B§p ox g(x,t)} 0

Then by equating the terms with identical powers of p one can have:

0. V(X 1) owy(x,t)

p: p p =0 (4.7.9)
1. aVl(X!t) a\NO(X’t) _ (X t) aVO(X’t) _ —

p: p + p a e + p a(x,t)=0 (4.7.b)
and in general

D ONGD D s (4.7.0)

ot OX? OX
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For simplicity, we take v,(x,t) =w,(x,t). In this case equation (4.7.8) is automatically

satisfied. Let w,(X,t) =q(x) then
W, (X,0)=q(x), 0<x </, w,(0,t)=q(0)=r(0)-2z(0,0)=r(0)-f(0)=0,t>0
and

W, (£,1) =q(¢) =r(£) - z(£,0)=g(0) -9(0) =0, t>0

Therefore w, satisfies the initial and the boundary conditions given by equations (4.3.b)-

(4.3.d). Therefore by substituting t=0 in equation (4,6) one can have:
w(x,0) = > Vv,(x,0)
i=0

But w,(x,0)=q(x) and w(x,0)=q(x), hence v,(x,0)=0, i=1,2,.... By substituting
V,(X,0) =w,(X,t) =q(x) into equation (4.7.b) one can get:

vy (x,t) _

p ag’(x) —Bg'(x) +9(x1)

By integrating both sides of the above differential equation and by using the initia

condition v,(x,0) =0 one can obtain:

v,(x,1) =[aq () - Ba ()]t + [g(x, t)ck

By substituting v, into equation (4.7.c) and by solving the resulting first order linear
partial differential equation together with the initial condition v,(x,0)=0 one can get
V,(X,t). In a similar manner one can get v.(x,t), i=34... By substituting
v.(x,t),i=0, 1,... into equation (4.6) one can get the approximated solution of the

problem given by equations (4.3). Therefore from equation (4.2):
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U(x,t) = W, 1) + 2(x, 1) = ivi (x.1) +2(x,1), (x1) €O

which is the solution of the advection-diffusion problem given by equations (4.1).

4.2 Gas Dynamics problem:

Consider the nonlinear non-homogeneous gas dynamic equation:

ou(x,t) Fu(xt) ou(x,t)

ot OX N U(X,t)[l— U(X,t)] = f (X’t)’ (X,t) e (488.)

together with theinitial condition:
u(x,0)=r(x), 0<x<1 (4.8.b)
where f isaknown functionof x andt Q={(x,t)|0<x<1t>0}

In [22], they use the homotopy perturbation method for solving the homogeneous
gas dynamic equation in case r(x) =e*,0< x <1. Here we use the same method to solve
the non-homogeneous gas dynamic equation for any choice of the initial condition. To do

this, we construct a homotopy v:Q x[0,]] —— R which satisfies:

_ ov(Xt,p)  duy(xt) N IOauo(x,t) N

H (v,
(v.p) ot ot ot

p[— v(Xt, p)%-v(x,t, o)[1— v(xt, p)]} -0 (4.9)

where pe[0]] and u, is the initial approximation to the solution of equation (4.8.a)

which satisfies the initial condition given by equation (4.8.b).

By using equation (4.9) it follows that:

0

H(x,0) = av(g:[t,O) _ OU, (X,1) _

ot
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H (v) = a"(g‘t’t’l) vt ) MO - v(x )] =

Next, we assume that the solution of equation (4.9) can be expressed as in

equation (3.3). By substituting this approximated solution into equation (4.9) one can get:

H (v, p) = io o wg,t) ~ 8uoa(tx,t) . pauoa(:,t) N

p{ zopv(xt)zpava(x“) ipv(xt)(l va(xt)ﬂ

i=0
Then by equating the terms with identical powers of p one can have:

0°: Vo (%,1) B OUy (X,1)

~ = 0 (4.10.9)
pr: 4D B0y 000y (- vy )]0 (4100)
02 5V2(§tx,t) v (x,t) 24 OV. (X t) v, (1) 8Vo( t) + 2V (X OV (X, ) vy (x1) =0  (4.10.)

For simplicity, we take v,(x,t) =uy(x,t). In this case equation (4.10.8) is automatically
satisfied. Let uy(x,t) =r(x) then u,(x,0)=r(x),0<x<1. Therefore u, satisfies the the
initial condition given by equation (4.8.a). Thus:
u(x0) = 3., (x0)

i=0
But v, (x,0) =u(x,0) =r(x) hencev, (x,0) =0,i =1,2,.... By substituting V,(X,0) = Uy (X,t)
=r(X) into equation (4.10.b) one can get:

V() = (=r(r'() + 1(x) - [r () t
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By substituting v; into equation (4.10.c) and by solving the resulting first order linear

partial differential equation together with the initial condition v,(x,t)=0 one can get
V,(X,t). In asimilar manner one can get v, (X,t),i =3,4,.... Thus u(x,t) :ivi (x,t) isthe
i=0

approximated solution of theinitial value problem given by equations (4.8).

4.3 The Ground Water Level problem:

Consider the linear partial differential equation:

2%0(xt) 1 a( o0
ot X OX

x&j —h(xt), (x1)e(0b)x(0,T] (4.11.9)

together with theinitial conditions:

0(x,0)=r(x), 0<x<b (4.11.b)
89((91(,0 =p(x), 0<x<b (4.11.¢

the non-homogeneous Dirichlet condition:
O(b,t)=a(t), O<t<T (4.11.d)

and the non-homogeneous nonlocal condition:

1b

b { (x,t)dx=B(t), 0<t<T (4.11.e)
where 6 isthe ground water level, A(t) isthe mean valueof & at timet and h isaknown
function of x and t and r,p,a and S are given functions that must satisfy the

compatibility conditions:

r(b) = «(0),
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p(b) = '(0),

1b
Bjr(x)dx=,3(0),
0
and
1b
[ p(x=5(0)
0

To solve this nonlocal problem by the homotopy perturbation method, we first transform
this nonlocal problem into another nonlocal problem, but with homogeneous Dirichlet and

nonlocal conditions. To do this we use the transformation that appeared in [5]:

w(x,t) =6(x,t) — z(x,t), (X,t) €(0,b)x(0,T] (4.12)
where z(x,t):[Zﬂ(t)—a(t)]—%[ﬂ(t)—a(t)]. Then the nonloca problem given by

equations (4.11) is transformed to the one-dimensional non-homogeneous linear partial

differential equation:

d*W(X,t) _Ei(xaw(x,t)

e ol < ox )=g(x,t), (x,0)€(0,1)x(0,T] (4.13.9)

together with the initial conditions:

w(x,0) =g, (X), 0<x<1 (4.13.b)
W, 1) =0,(x), 0<x<1 (4.13.0)
o

and the homogeneous Dirichlet conditions:
w(b,t)=0, 0<t<T (4.13.d)

and

-72 -



Chapter Four Solution of Some Real Life Applications Via the Homotopy Perturbation Method

b
% fw(x,t)dx=0, 0<t<T (4.13.¢)
0

d%z(x,t) L10 (Xaz(x,t)

Az xox ax) and q,()=r(-2x0) and

where  g(x,t) =h(x,t) -

0z(X,1)

0, (X) = p(x) - o :

To solve this nonlocal problem by the homotopy perturbation method, we can

construct a homotopy v: (0, x (0,T] x[0,]] —— R which satisfies:

H v, p) = O(Xt,p) O Wo(Xt) p@zwo(x,t) N p{_ 10 (Xﬁw(x,t)j g(x t)} 0

ot? ot? ot? xox\|  ox

(4.14)
where pe[0]] and w, is the initia approximation to the solution of equation (4.13.a)
which satisfies the initial condition and the nonlocal conditions given by equations
(4.13.b)-(4.13.d).

By using equation (4.21) it follows that:

o2V(x,1,0)  2°wy(x,t,0) 0

H(v,0) =
(.0) ot? ot?
dAv(xtl) 10 ( av(x,t,l))
Hvl)=———""———| X———=|— 0g(X,t =0.
v ot? X OX OX 9(x)

Next, we assume that the solution of equation (4.14) can be expressed as.
v(xt) =3 p'v (x1) (4.15)
i=0

Therefore the approximated solution of the nonlocal problem given by equations (4.13) is

given by:
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w(X,t) = ivi (%,1) (4.16)

By substituting the approximated solution given by equation (4.15) into equation (4.14)

one can get:

()= S UG 00 D, L[5 D |0 <o

Then by equating the terms with identical powers of p one can obtain:

0.0V (xt)  2%wp(x1)
ot? ot?

_0 (4.17.9)

1 02V (X, 1) 0wy (xt) 1@ avy(xt)
p': L+ - x—2
ot ot X OX OX

j—g(x,t) =0 (4.17.b)

j=23,... (4.17.0)

- 0? Vi(x,t) 10 ( ovj(xt)
5 X———— =0,
ot X OX

P OX

For simplicity, we take v,(xt) =w,(xt). In this case equation (4.17.a) is automatically
satisfied. Let w,(x,t) = g,(x) + g, (Xt then

Wy (X,0) =g, (X), 0<x<Db,

OWp (X,1)

=0,(X), 0<x<b,
i 0, (X)

W (0,1) = 0, (b) + 0 (D)t

_r(b) - 2(b0) + p(b)t - taz(a)t( 1)
— 2(0) - (0) + &' (0)t — &' (Ot _

=0, 0<t<T

o

and
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1% 17
o [ wo (x )= bl Jlow(x) + g (x)t]ox
0

62(x t)

t=0

:_Ir(x)dx——JZ(XO)dX+ t[ p(x)dx —_I

_ p(0) - j 26(0) — a(O)]cbc+ L | ol 250 - a(lex + 50)

_ Bt j [28'(0) - &' (0) Jox + %t I %[ﬁ’(O) _ '(0)dx
0 0
= B(0) - 2(0) + (0) + B(0) - (0) +t5'(0) ~t[25'(0) - &' (0) ]+ t[ 8'(0) - &'(0)]
=0, 0<t<T.
Therefore w, satisfies the initial condition and the nonlocal conditions given by equations
(4.13.b)-(4.13.d). By substituting v, (x,0) =w,(X,t) =q(x) into equation (4.13.b) and by

using theinitial condition v, (x,0) = 0 one can get:
t

v, (x,1) =" (9t + [ g(x,7)dr
0

From equation (4.13.c) and by using the initial condition v,(x,0)=0, i=2,3,... one can
have:

t 9%y —1(X 7) _
v (x,t) = j—d j=23...
Therefore from equation (4.12):
u(x,t) = w(x,t) + z(x,t) = ivi (x1) + z(x,t), (X,t)e(0,)x(0,T]

which is the solution of the original nonlocal problem given by equations (4.11).
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Conclusions and Recommendation

From the present study, we can conclude the following:
(1) The homotopy perturbation method can also be used to solve the linear Volttera
integral equation of the first kind by transferring it into an equivalent integral equation
of the second kind.

(2) The homotopy perturbation method for solving linear integral equations of the second
order is precisely the method of successive in case the initial approximation is
Ug(X) = f(X) instead of u,(x)=0.

(3) The homotopy perturbation method for solving any initial or boundary value problems
requires the initia approximation to the solution of these problems must satisfy the

initial or boundary conditions associated with these problems.

(4) The homotopy perturbation method can be aso used to solve systems of differential,

integral and integro-differential equations.

Also, we recommend the following for future work:-

(1) Discuss the convergence of the homotopy perturbation method for the prescribed non-

local problems.
(2) Use the homotopy analysis method to solve the nonlocal problems.

(3) Solve the fuzzy integro-differential equations viathe homotopy perturbation method.
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